
Extending Drill-Down through Semantic

Reasoning on Indicator Formulas

Claudia Diamantini, Domenico Potena, and Emanuele Storti

Dipartimento di Ingegneria dell’Informazione,
Università Politecnica delle Marche,

via Brecce Bianche, 60131 Ancona, Italy
{c.diamantini,d.potena,e.storti}@univpm.it

Abstract. Performance indicators are calculated by composition of
more basic pieces of information, and/or aggregated along a number of
different dimensions. The multidimensional model is not able to take into
account the compound nature of an indicator. In this work, we propose
a semantic multidimensional model in which indicators are formally de-
scribed together with the mathematical formulas needed for their compu-
tation. By exploiting the formal representation of formulas an extended
drill-down operator is defined, which is capable to expand an indicator
into its components, enabling a novel mode of data exploration. Effec-
tiveness and efficiency are briefly discussed on a prototype introduced as
a proof-of concept.

1 Introduction

Performance measurement is the subject of extensive interdisciplinary research
on information systems, organizational modeling and operation, decision sup-
port systems and computer science. Much work is devoted to categorize refer-
ence performance measures, or indicators [1, 2]. Strategic support information
systems exploit results on data warehouse architectures. The multidimensional
model has been introduced to suitably represent Performance Indicators (PI)
and to enable flexible analyses by means of OLAP operators, facilitating man-
agers in visualization, communication and reporting of PIs. Nevertheless, design
and management of PIs are still hard. Among the major obstacles: (1) differ-
ences between the business view and the technical view of PIs, (2) information
overload syndrome: managers are inclined to ask for more indicators than those
actually needed [3], (3) interpretation of the meaning of indicators and their val-
ues. To some extent these obstacles relate to the fact that indicators are complex
data with an aggregate and/or compound nature, as their values are calculated
by applying some formulas defined over other indicators, or by aggregating raw
data values, or both. Unawareness of the dependencies among indicators leads
people to treat indicators as independent pieces of information, and is a cause of
the information overload syndrome. Similarly, many disputes during managerial
meetings come from a lack of a common understanding of indicators. To give an
example, somebody states that the amount of investment in higher education

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 57–68, 2014.
c© Springer International Publishing Switzerland 2014



58 C. Diamantini, D. Potena, and E. Storti

in Italy is too low (far below the EU average), while somebody else states it is
too high and should be lowered. Digging into this apparent contradiction, one
discovers that both evaluate the amount of investment as the ratio between “to-
tal expenditure” and “student population”, but whereas the former defines the
“student population” as people officially enrolled in a course, the latter subtracts
students who do not actually take exams. In order to fully grasp the meaning of
the indicator an analysis of the way it is calculated is necessary. Furthermore,
a correct interpretation of the value and trend of the indicator is unachievable
without analysing its components.

Although the complex nature of indicators is well-known, it is not fully cap-
tured in existing models. The multidimensional model takes into account the ag-
gregative aspect, defining a data cube as a multi-level, multidimensional database
with aggregate data at multiple granularities [4]. The definition of powerful
OLAP operators like drill-down directly comes from this model. Semantic rep-
resentations of the multidimensional model have been recently proposed [4–8]
mainly with the aim to reduce the gap between the high-level business view of
indicators and the technical view of data cubes, to simplify and to automatize
the main steps in design and analysis.

The compound nature of indicators is far less explored. Proposals in [2,9–14]
include in the representations of indicators’ properties some notion of formula
in order to support the automatic generation of customized data marts, the
calculation of indicators [9, 10, 13], or the interoperability of heterogeneous and
autonomous data warehouses [12]. In the above proposals, formula representation
does not rely on logic-based languages, hence reasoning is limited to formula eval-
uation by ad-hoc modules. No inference mechanism and formula manipulation is
enabled. Formal, logic-based representations of dependencies among indicators
are proposed in [2,14]. These properties are represented by logical predicates (e.g.
isCalculated [14], correlated [2]) and reasoning allows to infer implicit dependen-
cies among indicators useful for organization modeling, design, as well as reuse,
exchange and alignment of business knowledge. An ontological representation of
indicator’s formulas is proposed in [11] in order to exchange business calculation
definitions and to infer their availability on a given data mart through semantic
reasoning, with strong similarities with our previous work [15].

In the present paper we propose to extend the data cube model with the de-
scription of the structure of an indicator given in terms of its algebraic formula.
Relations between the aggregation function and the formula are taken into ac-
count. As the traditional multidimensional model leads to the definition of the
drill-down operator, so the novel structure enables the definition of a novel opera-
tor we call indicator drill-down. Like the usual drill-down, this indicator increases
the detail of a measure of the data cube, but instead of disaggregating along the
levels of dimensions, it expands an indicator into its components. The two no-
tions of drill-down are integrated thus allowing a novel two-dimensional way of
exploring data cubes. To the best of our knowledge this is the first time that
such an extended drill-down is considered. As a further contribution, we intro-
duce a first-order logic theory for the representation of indicators’ formulas and



Extending Drill-Down through Semantic Reasoning on Indicator Formulas 59

Table 1. An excerpt of the enterprise glossary

Indicator Description Aggr Formula

AvgCostsExtIdeas Average costs of ideas produced by external users
through the crowdsourcing platform

n/a
CrowdInv

NumExternalIdeas

CrowdInv Total Investments for crowdsourcing activities:
management of the platform, promoting and fa-
cilitating the participation,...

SUM

IdeasAcceptedEng The number of ideas accepted for engineering.
These ideas are intended for future production

SUM

IdeasProposed Number of (internal/external) ideas proposed SUM NumInternalIdeas+
NumExternalIdeas

IdeaYield Ratio of proposed ideas to ideas that have entered
the engineering phase and will be developed

n/a
IdeasAcceptedEng

IdeasProposed

NumExternalIdeas Number of ideas generated from the external
stakeholders

SUM

NumInternalIdeas Number of ideas generated from enterprise’s em-
ployees

SUM

manipulation based on equation resolution. The set of predicates defines a knowl-
edge base for reference, domain-independent indicators specification. Other pred-
icates are introduced to define members’ roll-up along dimensional hierarchies, as
well as to state the set of indicators actually implemented in a given data mart,
thus providing the specification for a certain application domain. The theory
enables formula manipulation thus providing the full drill-down functionalities,
allowing to expand an indicator into its components even if some are not explic-
itly stored in the data mart. Besides enabling the definition of a novel operator,
the proposed logic representation extends the state of the art in the following
ways: (1) we are not limited to the reference indicator specification, since equiv-
alent definitions can be inferred, hence the evaluation of the formula can follow
several paths, (2) indicators that are not explicitly stored in the data mart can
be calculated by exploiting their relationships with other indicators represented
in the knowledge base, (3) relevant relationships among indicators, like (inverse)
dependency, (inverse) correlation, causality, influence can be inferred, while they
have to be explicitly introduced with other approaches [2, 13, 14].

The rest of the paper is organized as follows: Section 2 introduces the case
study that will be used as an illustrative example through the paper. Section 3
presents the proposed model, then Section 4 discusses its application to the defi-
nition of the extended drill-down operator. In Section 5 the proposal is evaluated.
Finally Section 6 draws some conclusion and discusses future work.

2 Case Study

The present work is conceived within the EU Project BIVEE1. In this Section
we present a case study that is based on the data mart (DM) used by one of the
end-users of the project, and will be used as an illustrative example through the
paper. In particular, we refer to an enterprise that develops innovative solutions,

1 http://bivee.eu



60 C. Diamantini, D. Potena, and E. Storti

Fig. 1. The Innovation data mart

from metrology to robotics domains, to satisfy specific requests of customers. The
enterprise adopts the open innovation paradigm [16], where innovation extends
beyond the boundaries of the enterprise, involving both partners and customers
as sources of innovative ideas. To this end, the enterprise hosts and manages
a crowdsourcing platform. Finally, in the enterprise the work is organized on a
project basis. Figure 1 shows the data mart used by the enterprise to analyse
innovation projects. The data mart provides 5 indicators (i.e. measures in data
warehouse terminology) and 3 dimensions, which represent different perspectives
of analysis: time, organization and project. The attribute budget in the project
dimension is not a level, but an informative attribute of a project. The descrip-
tion of measures is given in Table 1. In particular note that together with a
textual description, the mathematical formula to calculate the indicator is pro-
vided for some indicators. When the formula does not exist, the indicator is said
atomic, and is independent on other indicators. Otherwise the indicator is said
compound, and the operands occurring in its formula are called dependencies.
Note that compound indicators can be defined in terms of other compound in-
dicators, producing a tree of dependencies, although it cannot be fully grasped
in an informal glossary like the one presented. Also, aggregation functions are
specified when applicable. When an aggregation function exists, it means that
it is applied to the result of the formula in order to aggregate over dimensions.
According to the case study and for the sake of simplicity, hereafter it is assumed
that the same aggregation function applies to each dimension.

3 Semantic Multidimensional Model

The semantic multidimensional model is based on a first-order logic representa-
tion of indicators’ formulas and their properties as well as of a multidimensional
structure. Hence we first introduce the basic notions related to the multidimen-
sional model.



Extending Drill-Down through Semantic Reasoning on Indicator Formulas 61

Definition 1. (Cube schema) A cube schema S is a pair 〈D, I〉, where I is a
set of indicators {ind1, . . . , indm} and D is the set of dimensions for I.

A dimension Di ∈ D is the hierarchy of levels LDi
1 � ... � LDi

l along which
measures are aggregated. The partial order � is such that if LD

1 � LD
2 then LD

1

rolls up to LD
2 (and LD

2 drills down to LD
1 ). The domain of a level LDi

j is a set of

members {mj1 , . . . ,mjn} and will be denoted by α(LDi

j ), e.g. α(Department) =
{RnD, RforI, ElectricDept, MechanicDept, ...}. Referring to the Organization
dimension of the case study, the following hierarchy holds: Person � Team �
Department. In general the definition allows also for multiple hierarchies.

Definition 2. (Cube element) A cube element ce for the cube schema S = 〈D, I〉
is the tuple 〈m1, . . . ,mn, v1, . . . , vm〉 where each member belongs to a level of a
dimension in D (i.e., ∀mi ∃Lj

Di such that mi ∈ α(Lj
Di)), and {v1, . . . , vm} are

values for I.

In the following, we will not assume completeness of data cubes, i.e. cubes that
include a cube element for any possible combination of members.

Central to our model is the notion of indicator: while in the standard cube
schema definition (1) indicators are just labels, in the proposed model the struc-
ture of an indicator is taken into account.

Definition 3. (Indicator) An indicator ind ∈ I is defined by the pair 〈aggr, f〉,
where:

– aggr ∈ {SUM,MIN,MAX,AVG,VAR,COUNT,NONE, . . .} is an aggrega-
tion function that represents how to group values of the indicator;

– f(ind1, . . . , indn) is the formula of the indicator, i.e. a mathematical expres-
sion that describes the way ind is computed in terms of other indicators
(ind1, . . . , indn) ∈ I.

The label NONE is used to denote the absence of aggregation function, e.g.
IdeaY ield = 〈NONE, IdeasAcceptedEng/IdeasProposed〉. According to
widely accepted models (e.g. [17]), aggregation is categorized in distributive,
algebraic or holistic. Indicators with a distributive aggregator can be directly
computed on the basis of values at the next lower level of granularity (e.g.,
SUM, MIN, MAX). Algebraic aggregator cannot be computed by means of val-
ues at next lower level unless a set of other indicators are also provided, which
transform the algebraic indicator in a distributive one; a classical example is
given by the average aggregator (AVG). Indicators described by holistic func-
tions can never be computed using values at next lower level (e.g., MEDIAN
and MODE).

A formula is said to be additive if it includes only summation and differences
of indicators, e.g. f(indx, indy) = indx + indy. Additivity is a relevant property
since indicators with additive formulas and distributive aggregation functions
(e.g., SUM) define a special subclass of indicators, for which holds that:

aggr(f(ind1, . . . , indn)) = f(aggr(ind1), . . . , aggr(indn)). This is not true in
the general case, e.g. AV G(x/y) �= AV G(x)/AV G(y).



62 C. Diamantini, D. Potena, and E. Storti

Indicators and their properties are represented by first-order logic predicates.
We refer to Horn Logic Programming, and specifically to Prolog, as the repre-
sentation language. formula(ind, f) is a fact representing the formula related to
an indicator. In the predicate ind is an indicator label, while f is an expression
including algebraic operators like sum, difference, product, power, and operands
are indicators’ labels. Additivity is expressed by the predicate isAdditive(ind).
The set of formulas and its properties define a reference knowledge base for
indicators specification. A further predicate hasInd(c, ind) allows to state the
presence of the indicator ind in the schema of the cube c. For what concerns
the multidimensional structure, similarly to [18], the predicate rollup(X,Y ) is
introduced to assert that a member X is mapped to the member Y of the next
higher level to perform the roll-up operation.

Given the set of facts, rules are devised to implement reasoning functionali-
ties. For instance the following rule implements the transitive closure of roll-up:

partOf(X,Y ) : − rollup(X,Y ).
partOf(X,Y ) : − rollup(X,Z), partOf(Z, Y ).

While formulas are represented as facts, manipulation of mathematical ex-
pressions is performed by specific predicates from PRESS (PRolog Equation
Solving System), which is a formalization of algebra in Logic Programming for
solving equations. Such predicates implement axioms of a first-order mathemat-
ical theory, and can manipulate an equation to achieve a specific syntactic effect
(e.g., to reduce the number of occurrence of a given variable in an equation)
through a set of rewriting rules. PRESS works in the domain of R-elementary
equations, that is on equations involving polynomials, and exponential, loga-
rithmic, trigonometric, hyperbolic, inverse trigonometric and inverse hyperbolic
functions over the real numbers, although all indicators found in the analysis of
real-world scenarios until now have linear formulas. PRESS is demonstrated to
always find a solution for linear equations.

Due to lack of space, we cannot go into the details of the rule system. We
just enlighten that the use of PRESS here allows to derive a new formula for an
indicator that is not explicitly given. Among all possible inferred formulas, we
are able to individuate the subset that can be actually calculated on the given
data cube by the predicate hasInd(c, ). In the following we will refer to this
high-level reasoning functionality as F(ind, C). Referring to the cube DM of the
case study, the following formulas are derived by PRESS:

IdeasProposed = NumInternalIdeas+NumExternalIdeas;
IdeasProposed = NumInternalIdeas+ CrowdInv

AvgCostsExtIdeas ;

IdeasProposed = IdeasAcceptedEng
IdeaY ield .

F(IdeasProposed,DM ) returns only the last two since, although the first one
is the definition of the indicator provided in the knowledge base, it cannot be
calculated in this way on DM due to the lack of NumExternalIdeas.

The formal representation and manipulation of the structure of a formula
enables advanced functionalities like the definition of an extended drill-down
operator, described in the next Section.



Extending Drill-Down through Semantic Reasoning on Indicator Formulas 63

4 Extended Drill-Down

The present Section discusses how to exploit reasoning capabilities over indi-
cator’s formula by introducing a novel indicator drill-down operator. Like the
usual drill-down, it increases the detail of a measure of the data cube, but in-
stead of disaggregating along the levels of dimensions, it expands an indicator
into its components. As the traditional drill-down is enabled by the notion of
dimension’s hierarchies, so the indicator drill-down arises from introducing the
indicator’s structure in the model. Furthermore, by reasoning on the logic rep-
resentation proposed, the operator is able to extract values even for indicators
not explicitly stored in the cube. We hasten to note that the rules defined to this
end must work jointly on the structure of an indicator and on the structure of its
dimensions. This integration of the notion of indicator in the multidimensional
model is what enables the definition of the extended drill-down as the composi-
tion of the classic drill-down and of the indicator drill-down defined as follows.

Definition 4. (Indicator drill-down)
Given a schema S=〈D, {ind1, . . . , indi, . . . , indn}〉 and an indicator indi with a
formula findi = f(indi1 , . . . , indik), the indicator drill-down on indi is a function
that maps a cube with schema S in a cube with schema S′ such that:

– S′ = 〈D, I ′〉, I ′ = (I \ {indi}) ∪ {indi1 , . . . , indik};
– instances are cube elements ce = 〈m1, . . . ,mh, v1, . . . , vi1 , . . . , vik , . . . , vn〉,

such that vj is the value of the j−th indicator, mp is the member of Dimen-
sion Dp and vi = f(vi1 , . . . , vik).

Operationally, this means to access the definition of indi, extract the dependen-
cies from its formula, and extract values for dependencies in order to build the
new cube. This can be expressed as the rewriting of the multidimensional query
generating the cube S.

Definition 5. (Multi-dimensional Query) A multi-dimensional query MDQ on
a cube C with schema 〈D, I〉 is a tuple 〈δ, {ind1, . . . , indm},W,K, σ〉, where:
– δ is a boolean value introduced here to make explicit how the query is per-

formed. If δ = false then indicator values are materialized in the cube,
otherwise they are virtual, hence we assume they are calculated by aggrega-
tion of values at the lowest levels of dimensional hierarchies;

– {ind1, . . . , indm} is the set of requested indicators;
– W is the set of levels {LD1 , ..., LDn} on which to aggregate, such that LDi ∈

Di and {D1, . . . , Dn} ⊆ D;
– K is the collection of sets Kh = {mh1 , ...,mhk

}, h := 1, ..., n, of members on
which to filter, such that each mhj belongs to α(LDh). Kh can be an empty
set. In this case all members of the corresponding level are considered;

– σ is an optional boolean condition on indicators’ values.



64 C. Diamantini, D. Potena, and E. Storti

{ind1, . . . , indm} are the elements of the target list, W is the desired roll-up
level (or group-by components) for each dimension, while K allows slice and
dice (suitable selections of the cube portion). While K works on members, the
filter σ defines a condition on other elements of the DM: both descriptive at-
tributes of dimensional schema (e.g. Budget>50K) and values of indicators (e.g.
NumberInternalIdeas<NumberExternalIdeas).

The result of a MDQ is a subset of the original cube where cube elements
are ce = 〈m1, . . . ,mn, v1, . . . , vm〉, where 〈m1, . . . ,mn〉 ∈ K1 × . . . ×Kn and vi
is a value of the indicator indi. Given the notion of query, the drill-down can
be seen as a rewriting of the original query MDQ = 〈δ, I,W,K, σ〉 as MDQ′ =
〈δ, I ′,W,K, σ〉. Rewriting an indicator as its direct dependencies produces a
correct query only if the data cube has been designed to store the set of indicators
{indi1 , . . . , indik}. The rewriting rules allowing to correctly specify the indicator
drill-down are discussed in the following. They depend on the typology of formula
and aggregation function. For the sake of simplicity we consider multidimensional
queries with only one indicator in the target list.

Indicator Drill-Down Rule. Let MDQ = 〈δ, {ind},W,K, σ〉 be a query over
the cube C with schema 〈D, I〉, where ind = 〈aggr, f(ind1, . . . , indk)〉. The
indicator drill-down of MDQ is MDQ′ = 〈δ, {ind1, . . . , indk},W,K, σ〉 where
∀indi either indi ∈ I or one of the following equivalence rules applies.

Equivalence Rules. Let MDQ = 〈false, {ind},W,K, σ〉 be a query over the
cube C with schema 〈D, I〉, where ind = 〈aggr, f〉
– if (aggr is distributive AND f is additive) OR (aggr = NONE):

MDQ = 〈false, g,W,K, σ〉, g ∈ F(ind, C)
– else: MDQ = 〈true, g,W,K, σ〉, g ∈ F(ind, C)

The equivalence rules make use of the inference mechanism represented by
F(ind, C), which defines any formula equivalent to f that can be inferred and is
computed by indicators of the cube. The rule described in the else case captures
the fact that for general aggregation functions the correct value of an indicator
at a given level can be only obtained by calculating the formula at the lowest
level of granularity (given that δ = true), and then applying the aggregation
on the resulting values. The first rule accounts for the commutativity property
stated in the previous section that allows to apply the formula directly on the
requested aggregation levels. This rule can be easily extended to algebraic aggre-
gators given the well-known relation with distributive aggregators. For instance,
in the case of the AV G the query becomes MDQ = 〈δ, { ind′

CountM },W,K, σ〉,
where ind′ = 〈SUM, f〉 and CountM is a special function which returns the
number of members m0 of the lowest level such that partOf(m0,m),m ∈ K.

5 Evaluation

A prototype of the system has been implemented as a proof-of-concept. This
is part of a system offering additional services developed within the BIVEE



Extending Drill-Down through Semantic Reasoning on Indicator Formulas 65

Fig. 2. Interface of the system for extended drill-down

Project [19, 20]. As logic programming system we refer to XSB2, which extends
conventional Prolog systems with an operational semantics based on tabling, i.e.,
a mechanism for storing intermediate results and avoiding to prove sub-goals
more than once. XSB also provides interfaces to Java, through which service
interfaces are written and calls to Prolog rules are managed, and MDQs are
finally translated in SQL. We refer to MySQL to store all the cube elements
that are in the enterprise’s data mart, without adding pre-aggregations.

Figure 2 shows the interface with the query specification form and the visual-
ization of results. The query is aimed to analyse the monthly trend of IdeaY ield
in 2013 for the RnD Department: 〈false, {IdeaY ield}, {Month,Department},
{{2013−01, . . . , 2013−12}, {RnD}}, {}〉. The result is shown both as a table and
as a chart. Symbols near to the labels of levels enable classical drill-down/roll-up
operators, while the arrow near IdeaY ield enables the indicator drill-down. The
chart enlightens a peak in July 2013. In order to understand the reason for such
a variability, the analyst performs an indicator drill-down on IdeaY ield. The
indicator has been chosen since it allows to demonstrate both rewriting rules
and formula inference.

The operator rewrites the query by replacing IdeaY ield with its dependen-
cies as in the knowledge base (see Table 1), namely IdeasAcceptedEng and
IdeasProposed. Since the latter is not in the DM , the equivalence rule is used
and the query becomes: 〈false, {IdeasAcceptedEng, (NumInternalIdeas+

CrowdInv
AvgCostsExtIdeas )}, {Month,Department}, {{2013− 01, . . .}, {RnD}}, {}〉.

2 http://xsb.sourceforge.net/



66 C. Diamantini, D. Potena, and E. Storti

Fig. 3. The result of IdeaY ield drill-down

The result is shown in Figure 3. The cause of the trend of IdeaY ield
is now clear: it is due to the decreasing trend of IdeasProposed, while
IdeasAcceptedEng is almost constant. The analyst can iteratively perform clas-
sical OLAP operators and indicator drill-down to refine the result. It is to be
noted that, since IdeasAcceptedEng is atomic, it is not possible to perform a
further indicator drill-down on it; hence the arrow icon is not shown.

In order to evaluate the cost of the novel operator, we observe that the main
steps required to perform an indicator drill-down on ind are: (1a) searching the
formula of ind in the knowledge base, or (1b) inferring any valid formula for
ind (i.e. F(ind, C)) and (2) executing the query over the data mart, until a
rewriting succeeds in data retrieval. Steps (1a) and (1b) concern the rewriting of
the query, and their costs depend on the number of indicators in the knowledge
base, and on the structure of their formulas. The cost of step (2) depends on
the cardinality of data, their schema and the adopted management system. It is
noteworthy that these parameters do not affect the cost of other steps. Here, we
discuss the costs due to query rewriting, which is the cost added by the proposed
operator to the classical execution of a query.

Since step (1a) has negligible cost compared to (1b), the complexity of the
query rewriting is comparable to that of inferring F(ind, C) that, in the worst
case, corresponds to all possible rewritings of the original formula by traversing
all the dependencies’ paths. In order to provide an evaluation of these costs we
give the average execution time of F(ind, C) over each ind in the knowledge
base, for a real and a synthetic scenario3.

In the real-world scenario, the knowledge base representing the business do-
mains of the BIVEE project is characterized by 356 indicators. The dependency
tree has on average 2.67 operands per indicator, height 5 for the root node
(i.e. the number of layers of indicators in the tree) and average height 3.14. In
this situation, the average execution time of F(ind, C) is 219ms. We recall that
100ms is about the limit for making the user feel that the system is reacting
instantaneously.

3 Experiments have been carried on an Intel Xeon CPU 3.60GHz with 3.50GB memory,
running Windows Server 2003 SP 2.



Extending Drill-Down through Semantic Reasoning on Indicator Formulas 67

A synthetic knowledge base has been generated to perform more extensive
tests. In particular, we have generated 10 different random trees with height 5,
where each indicator is calculated on the basis of 4 random indicators of the
lower layer; the number of operands in the formula is fixed. This kind of tree has
1365 different indicators. The average execution time of F(ind, C) mediated over
the 10 trees is 431ms, with 449ms as maximum value. We believe these execution
times are perfectly in line with the notion of On Line Analytical Processing, also
in the view of possible optimizations of the system.

6 Conclusions

The paper proposed an extension of the data cube model to take into account
the structure of an indicator given in terms of a formula. The extension allows
to introduce a novel drill-down operator able to increase the detail of a measure
of the data cube along the tree of indicators dependencies. Relations between
the aggregation function and the formula are taken into consideration, so that
the novel and the classic drill-down can be integrated. The logic representation
adopted is a powerful way to reason over the tree of indicators’ dependencies to
calculate measures not explicitly provided in a data mart through formula rewrit-
ing. This approach can extend existing DB management systems, as queries can
be rewritten either in SQL and executed on relational database, like the proto-
type shown, or in MDX queries on traditional OLAP systems. The evaluation of
a prototype on real and synthetic scenarios enlightens the effectiveness and effi-
ciency of the approach. For the sake of simplicity, the presentation assumed that
the data mart schema adopts the knowledge base terminology to define mea-
sures, but the model can be simply extended with mapping predicates to relax
this assumption. Although only indicators with the analytic expressions man-
aged by PRESS can be represented, this does not limit the model applicability
since other kinds of indicators (e.g. qualitative indicators) can be introduced
as atomic. We plan to study extensions of the theory towards more complex
expressions manipulation. Other extensions regard the representation of rela-
tional algebra expressions as indicator’s formulas, and of different aggregation
functions for different indicator’s dimensions.

Acknowledgments. This work has been partly funded by the European Com-
mission through the FoF-ICT Project BIVEE (No. 285746). The authors wish to
thank project partners for providing data useful for the case study, and Haotian
Zhang for the implementation of the interface.

References

1. Kaplan, R.S., Norton, D.P.: The Balanced Scorecard: Measures that Drive Perfor-
mance. Harvard Business Review 70, 71–79 (1992)

2. Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators.
Information Systems 35, 505–527 (2010)



68 C. Diamantini, D. Potena, and E. Storti

3. Ackoff, R.L.: Management misinformation systems. Management Science 14 (1967)
4. Lakshmanan, L.V.S., Pei, J., Zhao, Y.: Efficacious data cube exploration by se-

mantic summarization and compression. In: VLDB, pp. 1125–1128 (2003)
5. Neumayr, B., Anderlik, S., Schrefl, M.: Towards Ontology-based OLAP: Datalog-

based Reasoning over Multidimensional Ontologies. In: Proc. of the Fifteenth In-
ternational Workshop on Data Warehousing and OLAP, pp. 41–48 (2012)

6. Niemi, T., Toivonen, S., Niinimäki, M., Nummenmaa, J.: Ontologies with semantic
web/grid in data integration for olap. Int. J. Sem. Web Inf. Syst. 3, 25–49 (2007)

7. Huang, S.M., Chou, T.H., Seng, J.L.: Data warehouse enhancement: A semantic
cube model approach. Information Sciences 177, 2238–2254 (2007)

8. Priebe, T., Pernul, G.: Ontology-Based Integration of OLAP and Information Re-
trieval. In: Proc. of DEXA Workshops, pp. 610–614 (2003)

9. Pedrinaci, C., Domingue, J.: Ontology-based metrics computation for business pro-
cess analysis. In: Proc. of the 4th International Workshop on Semantic Business
Process Management, pp. 43–50 (2009)

10. Xie, G., Yang, Y., Liu, S., Qiu, Z., Pan, Y., Zhou, X.: EIAW: Towards a Business-
Friendly Data Warehouse Using Semantic Web Technologies. In: Aberer, K., et
al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 857–870. Springer, Heidelberg
(2007)

11. Kehlenbeck, M., Breitner, M.H.: Ontology-based exchange and immediate applica-
tion of business calculation definitions for online analytical processing. In: Peder-
sen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp.
298–311. Springer, Heidelberg (2009)

12. Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: OLAP Query
Reformulation in Peer-to-peer Data Warehousing. Inf. Sys. 37, 393–411 (2012)

13. Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos,
J.: Strategic business modeling: representation and reasoning. Software & Systems
Modeling (2012)

14. del-Ŕıo-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Defining process performance
indicators: An ontological approach. In: Meersman, R., Dillon, T.S., Herrero, P.
(eds.) OTM 2010. LNCS, vol. 6426, pp. 555–572. Springer, Heidelberg (2010)

15. Diamantini, C., Potena, D.: Semantic enrichment of strategic datacubes. In: Proc.
of the ACM 11th International Workshop on Data Warehousing and OLAP,
DOLAP 2008, pp. 81–88 (2008)

16. Chesbrough, H.: Open Innovation: The New Imperative for Creating and Profiting
from Technology. Harvard Business Press, Boston (2003)

17. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov. 1, 29–53 (1997)

18. Neumayr, B., Schrefl, M.: Multi-level conceptual modeling and OWL. In: Heuser,
C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 189–199. Springer, Heidel-
berg (2009)

19. Diamantini, C., Potena, D., Storti, E.: A logic-based formalization of KPIs for
virtual enterprises. In: Franch, X., Soffer, P. (eds.) CAiSE Workshops 2013. LNBIP,
vol. 148, pp. 274–285. Springer, Heidelberg (2013)

20. Diamantini, C., Potena, D., Proietti, M., Smith, F., Storti, E., Taglino, F.: A
semantic framework for knowledge management in virtual innovation factories.
International Journal of Information System Modeling and Design 4, 70–92 (2013)


	Extending Drill-Down through SemanticReasoning on Indicator Formulas
	1 Introduction
	2 Case Study
	3 Semantic Multidimensional Model
	4 Extended Drill-Down
	5 Evaluation
	6 Conclusions
	References




