
Mining Recurrent Concepts in Data Streams
Using the Discrete Fourier Transform

Sakthithasan Sripirakas and Russel Pears

Auckland University of Technology, New Zealand
{ssakthit,rpears}@aut.ac.nz

Abstract. In this research we address the problem of capturing recurring con-
cepts in a data stream environment. Recurrence capture enables the re-use of pre-
viously learned classifiers without the need for re-learning while providing for
better accuracy during the concept recurrence interval. We capture concepts by
applying the Discrete Fourier Transform (DFT) to Decision Tree classifiers to ob-
tain highly compressed versions of the trees at concept drift points in the stream
and store such trees in a repository for future use. Our empirical results on real
world and synthetic data exhibiting varying degrees of recurrence show that the
Fourier compressed trees are more robust to noise and are able to capture recur-
ring concepts with higher precision than a meta learning approach that chooses
to re-use classifiers in their originally occurring form.

Keywords: Data Stream Mining, Concept Drift Detection, Recurrent Concepts,
Discrete Fourier Transform.

1 Introduction

Data stream mining has been the subject of extensive research over the last decade or
so. One of the major issues with data stream mining is dealing with concept drift that
causes models built by classifiers to degrade in accuracy over a period of time.

While data steam environments require that models are updated to reflect current
concepts, the capture and storage of recurrent concepts allows a classifier to use an
older version of the model that provides a better fit with newly arriving data in place
of the current model. This approach removes the need to explicitly re-learn the model,
thus improving both accuracy and computational cost. A number of methods have been
proposed that deal with the capture and exploitation of recurring concepts [4], [5], [7],
[1] and [12]. Although achieving higher accuracy as expected during phases of concept
recurrence in the stream, a major issue with existing approaches is the setting of user
defined parameters to determine whether a current concept matches with one from the
past.

Such parameters are difficult to set, particularly due to the drifting nature of real
world data streams. Our approach avoids this problem by applying the Discrete Fourier
Transform (DFT) as a meta learner. The DFT, when applied on a concept (Decision
Tree model) results in a spectral representation that captures the classification power
of the original models. One very attractive property of the Fourier representation of
Decision Tree is that most of the energy and classification power is contained within

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 439–451, 2014.
© Springer International Publishing Switzerland 2014



440 S. Sripirakas and R. Pears

the low order coefficients [9]. The implication of this is that that when a concept C
recurs as concept C* with relatively small differences caused by noise or concept drift,
then such differences are likely to manifest in the high order coefficients of spectra S
and S* (derived from C and C* respectively), thus increasing the likelihood of C* being
recognized as a recurrence of C.

The DFT, apart from its use in meta learning, has a number of other desirable proper-
ties that make it attractive for mining high speed data streams. This includes the ability
to classify directly from the spectra generated, thus eliminating the need for expensive
traversal of a tree structure.

Our experimental results in section 5 clearly show the accuracy, processing speed
and memory advantages of applying the DFT as opposed to the meta learning approach
proposed by Gama and Kosina in [4].

The rest of the paper is as follows. In section 2 we review work done in the area of
capturing recurrences. We describe the basics of applying the DFT to decision trees in
section 3. In section 4 we discuss a novel approach to optimizing the computation of
the Fourier spectrum from a Decision Tree. Our experimental results are presented in
section 5 and we conclude the paper in section 6 where we draw conclusions on the
research and discuss some directions for future research.

2 Related Research

While a vast literature on concept drift detection exists [14] only a small body of work
exists so far on exploitation of recurrent concepts. The methods that exist fall into two
broad categories. Firstly, methods that store past concepts as models and then use a
meta learning mechanism to find the best match when a concept drift is triggered [4],
[5]. Secondly, methods that store past concepts as an ensemble of classifiers.

Lazarescu in [10] proposes an evidence forgetting mechanism for data instances
based on a multiple window approach and a prediction module to adapt classifiers
based on an estimation of the future rate of change. Whenever the difference between
the observed and estimated rates of change are above a user defined threshold a clas-
sifier that best represents the current concept is stored in a repository. Experimenta-
tion on the STAGGER dataset showed that the proposed approach outperformed the
FLORA method on classification accuracy with re-emergence of previous concepts in
the stream.

Ramamurthy and Bhatnagar [15] use an ensemble approach based on a set of clas-
sifiers in a global set G. An ensemble of classifiers is built dynamically from a collec-
tion of classifiers in G if none of the existing individual classifiers are able to meet a
minimum accuracy threshold based on a user defined acceptance factor. Whenever the
ensemble accuracy falls below the accuracy threshold, then the global set G is updated
with a new classifier trained on the current chunk of data.

Another ensemble based approach by Katakis et al. is proposed in [8]. A mapping
function is applied on data stream instances to form conceptual vectors which are then
grouped together into a set of clusters. A classifier is incrementally built on each cluster
and an ensemble is formed based on the set of classifiers. Experimentation on the Usenet
dataset showed that the ensemble approach produced better accuracy than a simple
incremental version of the Naive Bayes classifier.



Mining Recurrent Concepts in Data Streams Using the Discrete Fourier Transform 441

Gomes et al [5] used a two layer approach with the first layer consisting of a set of
classifiers trained on the current concept while the second contains classifiers created
from past concepts. A concept drift detector is used to flag changes in concept and
when a warning state is triggered incoming data instances are buffered in a window to
prepare a new classifier. If the number of instances in the warning window is below a
user defined threshold then the classifier in layer 1 is used instead of re-using classifiers
in layer 2. One major issue with this method is validity of the assumption that explicit
contextual information is available in the data stream.

Gama and Kosina also proposed a two layered system in [4] designed for delayed
labeling, similar in some respects to the Gomes et al. [5] approach. In their approach
Gama and Kosina pair a base classifier in the first layer with a referee in second layer.
Referees learn regions of feature space which its corresponding base classifier predicts
accurately and is thus able to express a level of confidence on its base classifier with
respect to a newly generated concept. The base classifier which receives the highest
confidence score is selected, provided that it is above a user defined hit ratio parameter;
if not, a new classifier is learned.

3 Application of the Discrete Fourier Transform on Decision Trees

The Discrete Fourier Transform (DFT) has a vast area of application in very diverse
domains such as time series analysis, signal processing, image processing and so on. It
turns out as Park [13] and Kargupta [9] show that the DFT is very effective in terms of
classification when applied on a decision tree model. Kargupta and Park in [9] explored
the use of the DFT in a distributed environment but did not explore its usage in a data
stream environment as this research sets out to do.

Fig. 1. Decision
Tree with 3 binary
features

Kargupta and Park in [9] showed that the Fourier spectrum con-
sisting of a set of Fourier coefficients fully captures a decision tree
in algebraic form, meaning that the Fourier representation preserves
the same classification power as the original decision tree.

A decision tree can be represented in compact algebraic form by
applying the DFT to the paths of the tree. We illustrate the process
by considering a binary tree for simplicity but in practice the DFT
can be applied to non binary trees as well [9]. For trees with a total
of d binary valued features the jth Fourier coefficient ωj is given
by:

ωj =
1

2d

∑

x

f(x)ψj(x) (1)

where f(x) is the classification outcome of path vector x and ψj(x), the Fourier basis
function is given by:

ψj(x) = (−1)(j.x) (2)

Figure 1 shows a simple example with 3 binary valued features x1, x2 and x3, out of
which only x1 and x3 are actually used in the classification.

As shown in [13] only coefficients for paths that are defined by attributes that actually
appear in the tree need to be computed as all other coefficients are guaranteed to be zero



442 S. Sripirakas and R. Pears

in value. Thus any coefficient of the form ω∗1∗ will be zero since attribute x2 does not
appear in the tree.

With the wild card operator * in place we can use equations (1) and (2) to calculate
non zero coefficients. Thus for example we can compute:

ω000 =
4

8
f(∗ ∗ 0)ψ000(∗ ∗ 0) + 2

8
f(0 ∗ 1)ψ000(0 ∗ 1) + 2

8
f(1 ∗ 1)ψ000f(1 ∗ 1) = 3

4

ω001 =
4

8
f(∗ ∗ 0)ψ001(∗ ∗ 0) + 2

8
f(0 ∗ 1)ψ001(0 ∗ 1) + 2

8
f(1 ∗ 1)ψ001f(1 ∗ 1) = 1

4

and so on. In addition to the properties discussed above, the Fourier spectrum of a given
decision tree has two very useful properties that make it attractive as a tree compression
technique [9]:

1. All coefficients corresponding to partitions not defined in the tree are zero.
2. The magnitudes of the Fourier coefficients decrease exponentially with their

order, where the order is taken as the number of defining attributes in the
partition.

Taken together these properties mean that the spectrum of a decision tree can be ap-
proximated by computing only a small number of low order coefficients, thus reducing
storage overhead. With a suitable thresholding scheme in place, the Fourier spectrum
consisting of the set of low order coefficients is thus an ideal mechanism for capturing
past concepts.

Furthermore, classification of unlabeled data instances can be done directly in the
Fourier domain as it is well known that the inverse of the DFT defined in expression
(3) can be used to recover the classification vector, instead of the use of a tree traversal
which can be expensive in the case of deep trees. Expression 3 uses the complex conju-
gate ψj(x) function for the inverse operation in place of the original basis function of
ψj(x).

f(x) =
∑

j

ωjψj(x) (3)

Due to thresholding and loss of some high order coefficient values the classification
value f(x) for a given data instance x may need to be rounded to the nearest integer in
order to assign the class value. For example, with binary classes a value for f is rounded
up to 1 if it is in the range [0.5, 1) and rounded down to 0 in the range (0, 0.5).

4 Exploitation of the Fourier Transform for Recurrent Concept
Capture

We first present the basic algorithm used in section 5.1 and then go on to discuss an
optimization that we used for energy thresholding in section 5.2.

4.1 The FCT Algorithm

We use CBDT [6] as the base algorithm which maintains a forest of trees. This forest
of trees is dynamic in the sense that it can adapt to changing concepts at drift detection
points. We thus define the memory consumed by this forest as active.



Mining Recurrent Concepts in Data Streams Using the Discrete Fourier Transform 443

We integrate the basic CBDT algorithm with the ADWIN [2] drift detector to signal
concept drift. At the first concept drift point the best performing tree (in terms of ac-
curacy) is identified and the DFT is applied after energy thresholding after which the
resulting spectrum is stored in the repository for future use if the current concept recurs.
The spectra stored in the repository are fixed in nature as the intention is to capture past
concepts. At each subsequent drift point a winner model is chosen by polling both the
active memory and the repository. If the winner emerges from the active memory, two
checks are made before the DFT is applied. First of all, we check whether the differ-
ence in accuracy between the winner tree in active memory (T) and the best performing
model in the repository is greater than a tie threshold τ . If this check is passed then the
DFT is applied to T and a further check is made to ensure that its Fourier representation
is not already in the Repository. If the winner model at a drift point emerges from an al-
ready existing spectrum in the Repository then no Fourier conversion is applied on any
of the trees in active memory. Whichever model is chosen as the winner it is applied to
classify all unlabeled data instances until a new winner emerges at a subsequent drift
point. The least performing model M having the lowest weighted accuracy function is
deleted if the repository has no room for new models.The weighted accuracy of M is
defined by: weight(M) = winner tally(M) ∗ accuracy(M), where winner tally
is the number of times that M was declared a winner since it was inserted into the
repository.

Algorithm FCT
Input: Energy Threshold ET , Accuracy Tie Threshold τ
Output: Best Performing model M that suits current concept
1. read an instance I from the data stream
2. repeat
3. Call Classify to classify I using the best model M
4. append 0 to ADWIN’s window for M if classification is correct, else append 1
5. until drift is detected by ADWIN
6. if M is from active memory
7. identify best performing model F in repository
8. if (accuracy(M)-accuracy(F))> τ
9. apply DFT on model M to produce F* using energy threshold ET

10. if F* is not already in repository
11. insert F* into repository
12. Identify best performing model M by polling active memory and repository
13. GoTo 1

Algorithm Classify
Input: Instance I , Classifier M
Output: class value
1. if M is a Decision Tree, route I to a leaf and return the class label of the leaf
2. else using all coefficients (j) of M , Calculate f(x) using f(x) =

∑
j ωjψj(x) where

ψj(x) is the the complex conjugate function of ψj(x) and x is the instance I
3. If f(x) is greater than 0.5, return class1, otherwise class2



444 S. Sripirakas and R. Pears

4.2 Optimizing the Energy Thresholding Process

In order to avoid unnecessary computation of higher order coefficients which yield in-
creasingly low returns on classification accuracy, energy threshold is highly desirable.
To threshold on energy a subset S of the (lower order) coefficients needs to be deter-
mined such that E(S)

E(T ) > ε, where E(T ) denotes the total energy across the spectrum
and ε is the desired energy threshold value.

In our optimized thresholding, we first compute the cumulative energy CEi at order
i given by: CEi =

∑i
j=0

∑
k(wk

2|order(k) = j).
Given an order i, an upper bound estimate for the cumulative energy across the rest

of the spectrum is given by: (d+1−(i+1)+1)CEi, as the exponential decay property
ensures that the energy at each of the orders i + 1, i + 2, · · · , d is less than energy Ei

at order i, where d is number of attributes in the dataset. Thus a lower bound estimate
for the fraction of the cumulative energy CEFi at order i to the total energy across all
orders can then be expressed as:

CEFi =
CEi

CEi + (d− i+ 1)Ei
(4)

where Ei is actual (computed) energy at order i. The lower bound estimate allows the
specification of a threshold ε based on the energy captured by a given order i which is
more meaningful to set rather than an arbitrary threshold.

The scheme expressed by equation (4) enables the thresholding process to be done
algorithmically. If the cumulative energy CEFi ≥ ε, then we can guarantee that the
actual energy captured is at least ε, since CEFi is a lower bound estimate. On the other
hand if CEFi < ε, then CEFi+1 can be expressed as:

CEFi+1 =
CEi+1

CEi+1 + (d− i)Ei+1
=

CEi + Ei+1

CEi + dEi+1
(5)

Thus equation (5) enables the cumulative fraction to be easily updated incrementally
for the next higher order (i+1) by simply computing the energy at that order while ex-
ploiting the exponential decay property of Fourier spectrum. The thresholding method
guarantees that no early termination will take place. This is because CEFi is a lower
bound estimate and hence the order that it returns will never be less than the true order
that captures a given fraction ε of the total actual energy in the spectrum.

5 Experimental Study

This section elaborates on our empirical study involving the following learning sys-
tems: CBDT, FCT (Fourier Concept Trees) and MetaCT. The FCT incorporates the
Fourier compressed trees in a repository in addition to the forest of trees that standard
CBDT maintains. We implement Gama’s meta learning approach with CBDT as the
base learner, namely MetaCT. The main focus of the study is to assess the extent to
which recurrences are recognized using old models preserved in classifier pools.



Mining Recurrent Concepts in Data Streams Using the Discrete Fourier Transform 445

5.1 Parameter Values

All experimentation was done with the following parameter values:

– Hoeffding Tree Parameters The desired probability of choosing the correct split
attribute=0.99, Tie Threshold=0.01, Growth check interval=32

– Tree Forest Parameters Maximum Node Count=5000, Maximum Number of Fourier
Trees=50, Accuracy Tie Threshold τ=0.01

– ADWIN Parameters drift significance value=0.01, warning significance value=0.3
(MetaCT only)

All experiments were done on the same software with C# .net runtime and hardware
with Intel i5 CPU and 8GB RAM, clearning the memory in each run to have a fair
comparison.

5.2 Datasets Used for the Experimental Study

We experimented with data generated from 3 data generators commonly used in drift
detection and recurrent concept mining, namely SEA concept [16], RBF and Rotating
hyperplane generators. In addition we used 2 real-world datasets, Spam and the NSW
electricity which have also been commonly used in previous research.

For the synthetic datasets, each of the 4 concepts spanned 5,000 instances and reap-
peared 25 times in a data set, yielding a total of 500,000 instances with 100 true concept
drift points.

In order to challenge the concept recognition process, we added a 10% noise level
for all synthetic data sets to ensure that concepts recur in similar, but not exact form.

Synthetic Data Sets. We used MOA [3] as the tool to generate these datasets.

1. SEA: The concepts are defined by the function feature1+feature2 > threshold.
We ordered the concepts as concept1, concept2, concept3 and concept4 generated
using threshold values 8,7,9 and 9.5 respectively on the first data segment of size
20,000. We generated 96 recurrences of a modified form of these concepts by using
different seed values in MOA for each sequence of recurrence. Thus, our version of
this dataset differed from the one used by Gama and Kosina [4]. who simply used
3 concepts with the third being an exact copy of the first.

2. RBF: The number of centroids parameter was adjusted to generate different con-
cepts for the RBF dataset. Concept1, concept2, concept3 and concept4 were pro-
duced with the number of centroids set to 5,15, 25 and 35 respectively. Similar
to the SEA dataset, the seed parameter helped in producing similar concepts for a
given centroid count value. This dataset had 10 attributes.

3. Rotating hyperplane: The number of drifting attributes was adjusted to 2,4,6, and
8 in a 10 dimensional data set to create the four concepts. The concept ordering,
generation of similar concepts and concatenation were exactly the same as in the
other data sets mentioned above.



446 S. Sripirakas and R. Pears

Real World Datasets

1. Spam Data Set: The Spam dataset was used in it original form1 which encapsulates
an evolution of Spam messages. There are 9,324 instances and 499 informative
attributes, which was different from the one version used by Gama that had 850
attributes.

2. Electricity Data Set: NSW Electricity dataset is also used in its original form 2.
There are two classes Up and Down that indicate the change of price with respect
to the moving average of the prices in last 24 hours.

5.3 Tuning MetaCT Key Parameters

In our preliminary experiments, we found optimal values for the two parameters, delay
in receiving labels for the instances in short term memory, and hit percentage threshold
value as 200 and 80%, respectively. The latter parameter reflects the estimated similarity
of the current concept with one from the past and thus controls the degree of usage of
classifiers from the pool.

5.4 Comparative Study: CBDT vs FCT vs MetaCT

Our focus in this series of experiments was to assess the models in terms of accuracy,
memory consumption and processing times. None of the previous studies reported in
the recurrent concept mining literature undertook a comparative study against other ap-
proaches and so we believe our empirical study to be the first such effort. Furthermore,
all of the previous studies focused exclusively on accuracy without tracking memory
and execution time overheads and so this study would also be the first of its kind.

Accuracy. A delay period of 200 was used with all three approaches in order to perform
a fair comparison. Figure 2 clearly shows that overall, FCT significantly outperforms its
two rivals with respect to classification accuracy. The major reason for FCT’s superior
performance was its ability to re-use previous classifiers as shown in the segment 20k-
25k on the RBF dataset where the concept is similar to concept1 that occurred in interval
1-5K. This is in contrast to MetaCT which was unable to recognize the recurrence
of concept1. A similar situation occurs in the interval 25k-35k where the concept is
similar to the previously occurring concepts, which are concept2 and 3. As expected
CBDT, operating on its own without support for concept recurrence had a relatively flat
trajectory throughout the stream segment.

A similar trend to the RBF dataset was observed in Rotating Hyperplane and SEA
datasets as well. It can be clearly seen that FCT was successful in reusing the mod-
els learned before on data segments from 20k to 25k and from 30k to 35k. Though a
preserved model was reused on the data segment from 25k to 30k (corresponding to
concept3), the accuracy was not as high as in the above two segments. On the seg-
ment from 35k to 40k, concept recurrence was not picked up by either FCT or MetaCT
resulting in a new classifier being used.

1 From http://www.liaad.up.pt/kdus/
products/datasets-for-concept-drift

2 From http://moa.cms.waikato.ac.nz/datasets/



Mining Recurrent Concepts in Data Streams Using the Discrete Fourier Transform 447

We omit the figure for the SEA dataset due to space constraints. In summary, FCT
outperformed MetaCT over 90 recurring concepts whereas MetaCT did better in 6 oc-
currences, thus maintaining the same trend as with the other 2 synthetic datasets that
we experimented with.

The next experiment was on the NSW Electricity data set. Figure 2 shows that over-
all, FCT was the winner here as well, outperforming MetaCT at 25 segments out of 35
that we tracked. Sudden fall in accuracy of MetaCT is occational but due to incorrect
selection of winner which was a decision stump.

Memory. Our experimentation on accuracy has revealed, especially in the case of FCT,
the key role that concept capture and re-use has played in improving accuracy. The
question is, what price has to be paid in terms of memory overhead in storing these
recurrent concepts? Table1 clearly shows that the Fourier transformed trees consume a
small fraction of the memory used by the pool of trees kept in FCT’s active memory, de-
spite the fact that collectively these models outperform their decision tree counterparts
at a greater number of points in the stream progression.

Fig. 2. Classification Accuracy for CBDT, FCT and MetaCT

Comparison of over-
all memory consump-
tion across FCT and
MetaCT is complicated
by the fact that the
latter tended to have
immature trees in its
classifier pool that un-
der fits concepts. De-
spite this, Table 1 re-
veals that FCT’s mem-
ory consumption is com-
petitive to that of MetaCT.
The only case where
MetaCT had a sub-
stantially lower con-
sumption was with the
Spam dataset with a
lower overhead for ac-
tive memory.

Processing Speed. FCT and MetaCT have two very contrasting methods of classifi-
cation. The former routes each unlabeled instance to a single tree, which is the best
performing tree selected at the last concept drift point. In contrast MetaCT classifies by
routing an unlabeled instance to all referees to obtain their assessment of their corre-
sponding models and in general will have more processing overhead on a per instance
basis. However, FCT has potentially more overhead at concept drift points if the winner
tree is one that is selected from the active forest as this tree needs to be converted into
its Fourier representation. Thus it is interesting to contrast the run time performances of
the two approaches.



448 S. Sripirakas and R. Pears

Table 1. Average Memory Consumption (in KBs) and
Processing Speed (Instances per second) Comparison

Datasets

Memory Memory Processing Processing
FCT MetaCT Speed Speed

Tree Fourier Tree Pool
Forest Pool Forest FCT MetaCT

RBF 97.9 24.8 122.7 14.9 3540.6 2662.5
Rot. Hy/plane 187.4 59.7 148.7 43.4 2686.2 2180.1
SEA 29.3 34.8 28.0 18.1 11368.2 10125.8
Spam 1712.8 18.8 878.0 15.3 4.1 4.3
Electricity 48.4 39.9 19.8 18.9 5705.7 7191.42

Table 1 shows that in gen-
eral FCT has a higher processing
speed (measured in instances pro-
cessed per second); the only ex-
ception was with the Electricity
dataset where MetaCT was faster.
The electricity data contains a rela-
tively larger number of drift points
in comparison to the other datasets
and this in turn required a greater
number of DFT operations to be
performed, thus slowing down the processing. In our future research we will investi-
gate methods of optimizing the DFT process.

Finally, we close this section with two general observations on FCT which hold
across all experiments reported above. Firstly, we note that the Discrete Fourier Trans-
form (DFT), as expected, was able to capture the essence of a concept to the extent that
when it reappeared in a modified form in the presence of noise it was still recognizable
and was able to classify it accurately. Secondly, not only was the DFT robust to noise,
it actually performed better than the original decision trees at concept recurrence points
due to its better generalization capability.

5.5 Sensitivity Analysis on FCT

Having established the superiority of FCT we were interested in exploring the sensitiv-
ity of FCT’s accuracy on two key factors.

Fig. 3. Sensitivity of Accuracy on Spectral
Energy

Energy Threshold. FCT’s energy thresh-
old parameter controls the extent to
which it captures recurring contexts. We
ran experiments with all datasets we ex-
perimented with and tracked accuracy
across four different thresholds: 95%,
80%, 40% and 20%. The trends observed
for all datasets were very similar and
hence we display results for the SEA
concepts dataset due to space constraints. Figure 3 clearly shows that very little dif-
ference in accuracy exists between the trajectories for 40% and 95%, showing the re-
silience of the DFT in capturing the classification power of concepts at low energy
levels such as 40%. Thus the low order Fourier coefficients that survive the 40% thresh-
old hold almost the same classification power of spectra at the 80% or 90% levels which
contain more coefficients. Such higher energy spectra would represent larger decision
trees in which some of the decision nodes would be split into leaf nodes, thus enabling
them to reach a slightly higher level of accuracy.

Noise Level. In section 5.4 we observed that FCT outperformed MetaCT by recog-
nizing concepts from the past even though the concepts did not recur exactly in their



Mining Recurrent Concepts in Data Streams Using the Discrete Fourier Transform 449

original form due partly to noise and partly due to different data instances being pro-
duced as a result of re-seeding of the concept generation functions. In this experiment
we explicitly test the resilience of FCT to noise level by subjecting it to three different
levels of noise - 10%, 20% and 30%. For reasons of completeness we also included
MetaCT in he experimentation to aid in the interpretation of results.

Figure 4 reveals three interesting pieces of information. Firstly, FCT is still able to
recognize recurring concepts at the 20% noise level even though the models it re-uses
do not have quite the same classification power (when compared to the 10% noise level)
on the current concept due to data instances being corrupted by a relatively higher level
of noise.

Secondly, FCT’s concept recurrence recognition is essentially disabled at the 30%
noise level as shown by its flat trajectory, thus essentially performing at the level of the
base CBDT system. It is able to avoid drops in accuracy on account of the forest of trees
that is maintained and is able to switch quickly and seamlessly from one tree to another
when concepts change occurs.

Thirdly, although MetaCT is not the focus of this experiment we see that MetaCT’s
ability to recognize recurring concepts is disabled at the 20% level, showing once gain
the resilience of the DFT to noise. At the 30% level its accuracy drops quite sharply at
certain points in the stream.This is due to the fact that it learns a single new classifier
and relies on it to classify instances in the current concept. In contrast, FCT exploits
the entire forest of trees and switches from one tree to another tree in its active forest in
response to drift.

Fig. 4. Sensitivity of Accuracy for FCT and MetaCT on Noise Level

6 Conclusions and Future Work

In this research we proposed a novel mechanism for mining data streams by captur-
ing and exploiting recurring concepts. Our experimentation showed that the Discrete
Fourier Transform when applied on Decision Trees captures concepts very effectively,
both in terms of information content and conciseness. The Fourier transformed trees
were robust to noise and were thus able to recognize concepts that reappeared in mod-
ified form, thus contributing significantly to improving accuracy. Overall our proposed
approach significantly outperformed the meta learning approach by Gama and Kosina
[4] in terms of classification accuracy while being competitive in terms of memory and
processing speed.



450 S. Sripirakas and R. Pears

We were able to optimize the derivation of the Fourier spectrum by an efficient
thresholding process but there is further scope for optimization in the computation of
low order coefficients in streams exhibiting frequent drifts, as our experimentation with
the NSW Electricity dataset reveals. Our future work will concentrate on two areas.
Firstly we plan to investigate the use of multi-threading on a parallel processor plat-
form to optimize the DFT operation. Allocating the DFT process to a thread while
another thread processes the incoming stream will greatly speed up processing for FCT
as the two processes are independent of each other and can be executed in parallel. Sec-
ondly, the computation of the Fourier basis function that requires a vector dot product
computation can be optimized by using patterns in the two vectors involved.

References

1. Alippi, C., Boracchi, G., Roveri, M.: Just-In-Time Classifiers for Recurrent Concepts.
IEEE Transactions on Neural Networks and Learning Systems 24(4), 620–634 (2013),
doi:10.1109/tnnls.2013.2239309

2. Bifet, A., Gavaldà, R.: Learning from Time-Changing Data with Adaptive Windowing. In:
Symposium Conducted at the Meeting of the 2007 SIAM International Conference on Data
Mining (SDM 2007), Minneapolis, Minnesota (2007)

3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis. The Journal
of Machine Learning Research 11, 1601–1604 (2010)

4. Gama, J., Kosina, P.: Tracking recurring concepts with meta-learners. In: Lopes, L.S., Lau,
N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS, vol. 5816, pp. 423–434. Springer,
Heidelberg (2009)

5. Gomes, J.B., Sousa, P.A., Menasalvas, E.: Tracking recurrent concepts using context. Intel-
ligent Data Analysis 16(5), 803–825 (2012)

6. Hoeglinger, S., Pears, R., Koh, Y.S.: CBDT: A Concept Based Approach to Data Stream
Mining. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009.
LNCS, vol. 5476, pp. 1006–1012. Springer, Heidelberg (2009), doi:10.1007/978-3-642-
01307-2 107

7. Hosseini, M.J., Ahmadi, Z., Beigy, H.: New management operations on classifiers pool to
track recurring concepts. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448,
pp. 327–339. Springer, Heidelberg (2012)

8. Katakis, I., Tsoumakas, G., Vlahavas, I.P.: An Ensemble of Classifiers for coping with Re-
curring Contexts in Data Streams. In: Symposium Conducted at the Meeting of the ECAI
(2008)

9. Kargupta, H., Park, B.-H.: A Fourier Spectrum-Based Approach to Represent Decision
Trees for Mining Data Streams in Mobile Environments. IEEE Trans. on Knowl. and Data
Eng. 16(2), 216–229 (2004), doi:10.1109/tkde.2004.1269599

10. Lazarescu, M.: A Multi-Resolution Learning Approach to Tracking Concept Drift and Re-
current Concepts. In: Symposium Conducted at the Meeting of the PRIS (2005)

11. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and learnabil-
ity. Journal of the ACM 40(3), 607–620 (1993), doi:10.1145/174130.174138

12. Morshedlou, H., Barforoush, A.A.: A new history based method to handle the recurring
concept shifts in data streams. World Acad. Sci. Eng. Technol. 58, 917–922 (2009)

13. Park, B.-H.: Knowledge discovery from heterogeneous data streams using fourier spectrum
of decision trees. Washington State University (2001)

14. Pears, R., Sakthithasan, S., Koh, Y.: Detecting concept change in dynamic data streams.
Machine Learning, 1–35 (2014), doi:10.1007/s10994-013-5433-9



Mining Recurrent Concepts in Data Streams Using the Discrete Fourier Transform 451

15. Ramamurthy, S., Bhatnagar, R. (2007). Tracking recurrent concept drift in streaming data us-
ing ensemble classifiers. In: Symposium Conducted at the Meeting of the Sixth International
Conference on Machine Learning and Applications (2007)

16. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification.
Presented at the Meeting of the Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, California (2001),
doi:10.1145/502512.502568


	Mining Recurrent Concepts in Data StreamsUsing the Discrete Fourier Transform
	1 Introduction
	2 Related Research
	3 Application of the Discrete Fourier Transform on Decision Trees
	4 Exploitation of the Fourier Transform for Recurrent ConceptCapture
	4.1 The FCT Algorithm
	4.2 Optimizing the Energy Thresholding Process

	5 Experimental Study
	5.1 Parameter Values
	5.2 Datasets Used for the Experimental Study
	5.3 Tuning MetaCT Key Parameters
	5.4 Comparative Study: CBDT vs FCT vs MetaCT
	5.5 Sensitivity Analysis on FCT

	6 Conclusions and Future Work
	References




