

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 245–253, 2014.
© Springer International Publishing Switzerland 2014

Improving the Processing of DW Star-Queries under
Concurrent Query Workloads

João Pedro Costa1 and Pedro Furtado2

1 Polytechnic Institute of Coimbra, ISEC, DEIS, Portugal
jcosta@isec.pt

2 University of Coimbra, Portugal
pnf@dei.uc.pt

Abstract. Currently, Data Warehouse (DW) analyses are extensively being
used not only for strategic business decisions by a few, but also for feedback to
a wider audience and into daily operational decisions. As a result, there’s an
increase in the number of aggregation star-queries that are being concurrently
submitted. Although such queries require similar processing patterns, they are
stressing the database engine ability to deliver timely execution, due to the fact
that each query executes independently from the others (query-at-time
processing model). Recently, there’s an increasing interest in approaches that
cooperate to manage large numbers of concurrent aggregation star-queries. We
have proposed SPIN in a previous paper [1]. It is a data processing model that
shares data and computation in order to handle large concurrent query loads,
and its data organization provides almost constant and predictable execution
times for all submitted queries. It has a data reader that reads data in circular
loop, placing it in a pipeline, before being processed by branches that combine
common processing computations. SPIN is IO dependent, i.e. a query is only be
answered after a full circular loop, even though tuples and similar predicates
have been evaluated in the past. In this paper we propose data processing
approach that uses a set of bitsets, built on-the-fly, to significantly reduce the
query processing time, the tuple evaluation cost and the number of predicates
and tuples evaluated, without sacrificing its predictability features. The data
read from storage is reduced to the minimum needed by the current query load.

1 Introduction

Common database engines process every query independently without data and
processing sharing considerations. In this model (query-at-time) each competes for
resources, and thus the execution time increases with the number of queries that are
concurrently being executed. While this may not raise performance issues for most
operational systems, it is a performance killer when dealing with large Data
Warehouses (DW). In this context, large fact and dimension relations are concurrently
scanned by each query and tuples are independently filtered, joined and aggregated.
This lack of data and processing sharing results in the system inability to provide
predictable execution times for scalable data volumes and query workloads.

We have proposed SPIN [1], a data and processing sharing model that delivers
predictable execution times to a large set of concurrently running aggregation star
queries. SPIN physically stores the star schema as a single de-normalized relation as

246 J.P. Costa and P. Furtado

proposed in [2], [3] to avoid costly join operations. A data reader is continuously
spinning, sequentially reading data chunks in a circular loop, placing the data in a
base pipeline shared by all running queries. Common filters and computations (with
the same operators) from different queries are combined into common pipelines with
data switches added to end to share its results. Subsequent data pipelines are then
connected as logical branches of this common data pipeline, consuming its output. As
a result, pipelines of running queries are split, merged and organized into a workload
data processing tree (WPTree), with the base pipeline as root. Any query q, Each
query starts processing tuples that flow along the pipelines and only stops when all
the tuples have being considered for evaluation (after a complete loop). While this
improves IO sharing, the query execution is constrained by the time needed to fully
read the data. SPIN performance can also be limited by the evaluation costs related to
redirecting and filtering tuples as they go along branches, even though most of them
already has been evaluated in the past.

The query execution time is constrained by the data reading time (tread) and the
query processing time (tprocess), particularly tread since all tuples must be considered for
evaluation. While tread is constant and shared among queries, the tprocess time is
influenced by the computation (e.g. aggregation operators) and evaluation of
predicates of each query (teval), and how these can be shared among queries. Since
reading and processing is done in parallel, the query execution time is constrained by
the largest of these times (max(tprocess ,tread)). For wide WPTree (large number of
simultaneous queries), the processing time (tprocess) can be larger than the reading time
(tread), and thus endangering the objective of execution time predictability.

In this paper we propose a bitset-based data processing approach that uses a set of
bitsets to reduce the overall execution time, by reducing the evaluation time (teval), the
number of evaluated tuples (neval), and also the time required to read the data
(tread).Bitsets are built on-the-fly with the results of previous executions, and when
built they deliver faster processing times (by using a bit lookup instead of the actual
evaluation), and also reduce the number of evaluations and the data read from storage.

2 Related Work

The usage pattern of DWs is changing from the traditional, limited set of
simultaneous users and queries, mainly well-known reporting queries, to a more
dynamic and concurrent environment, with more simultaneous users and ad-hoc
queries. DW query patterns are mainly composed by star aggregation queries, which
contain a set of query predicates (filters) and aggregations. The query-at-a-time
execution model of traditional RDBMS systems, where each query is executed
following its own execution plan, does not provide a scalable environment to handle
much larger, concurrent and unpredictable workloads. Analyzing the execution query
plan, we observe that the low-level data access methods, such as sequential scan,
represent a major weight in the total query execution time. One way to reduce such a
burden is to store relations in memory. However, the amount of available memory is
limited, insufficient to hold large DW, and is also required for performing join and
sort operations. Recently there is increasing interest in approaches that share data and
processing among queries.

 Improving the Processing of DW Star-Queries under Concurrent Query Workloads 247

Cooperative scans [4] enhances performance by improving data sharing between
concurrent queries, by performing dynamic scheduling of queries and their data
requests taking into account with the current executing actions. While this minimizes
the overall IO costs, by mainly using sequential scans instead of a large number of
costly random IO operations, and the number of scan operations (since scans are
shared between queries), it introduces undesirable delays to query execution and does
not deliver predictable query execution times.

QPipe [5] applies on-demand simultaneous pipelining of common intermediate
results across queries, avoiding costly materializations and improving performance
when compared to tuple-by-tuple evaluation.

CJOIN[6] [7] applies a continuous scan model to the fact table, reading and placing
fact tuples in a pipeline, and sharing dimension join tasks among queries, by attaching
a bitmap tag to each fact tuple, one bit for each query, and attaching a similar bitmap
tab to each dimension tuple referenced by at least one of the running queries. Each
fact tuple in the pipeline goes through a set of filters (one for each dimension) to
determine if it is referenced by at least one of the running queries. It not, the tuple is
discarded. Tuples that reach the en d of the pipeline (tuples not discarded in filters)
are them distributed to dedicated query aggregations operators, one for each query.
However, its usefulness is limited to small dimensions that can fit entirely in memory
and, as recognized in [7], large dimensions may severely impact performance.

SPIN [1] is conceptually related to CJoin, and QPipe in what concerns the
continuous scanning of fact data, but it uses a simpler approach with minimum
memory requirements and does not have the limitations of such approaches. SPIN
uses a de-normalized model, as proposed in [2] as a way to avoid the join costs, at the
expense of additional storage costs. Since it has fully data and processing scalability,
ONE allows massive parallelization [3], which provides balanced data distribution,
scalable performance and predictable query execution times.

3 The bitset Branch Processing Approach

The evaluation time (teval) is constrained by the number of predicates and branches of
the current WPTree. A submitted query has to process and evaluate each of its
predicates, even though similar queries, with common predicates, have been
previously processed in the past. As predicates of common queries are associated to
common branches, a branch with a given predicate can be repeatedly built or may
persist over time while at least one running query uses it. To avoid subsequent
evaluation of unchanged data tuples, we propose to maintain the result of the
predicate evaluation as tuples flow through data branches. This is particularly relevant
for predicates with high evaluations costs. We build a branch bitset (bitmap)
according to the branch’ predicates, where each bit represents the result of the
predicate evaluation (true/false) applied to a corresponding tuple index.

As SPIN processes tuples in a circular fashion, when the relation reaches the end, it
restarts reading from the beginning. Therefore, future evaluations of a tuple can take
advantage of the existence of this bitset, since the selection operator that evaluates the
predicate can be replaced by a fast lookup operator that look up the corresponding
position in the bitset to gathers the result. Bitsets are small and will be in memory in
order to avoid introducing overhead at IO level.

248 J.P. Costa and P. Furtado

3.1 Creation of Bitsets

A bitset is built on-the-fly, as tuples go through the branches and are evaluated, with
minimum overhead, since these results are stored in an in-memory data structure. A
branch evaluates each tuple and stores the result of the predicate evaluation in the
bitset, at the tuple index position. This is very important, since it makes it possible in
every future evaluation of each row, to decide whether that row should proceed to the
next step in the branch, or not, based on the simple lookup of the bitset. This avoids
most of the evaluation costs. A bitset can be built for each value (e.g. 11, 12, 13 …),
sets of values, or ranges of the attribute domain (e.g. [10;13]). To avoid additional
overhead, bitsets are built according to the selection predicates of the submitted
queries. For a new selection operator deployment in the WPTree, without a matching
bitset, a new bitset is built with the result of the selection predicate. This bitmap is
kept in memory and shared by all branches that can use it, allowing future evaluations
of these tuples to be replaced by a fast bitset lookup operator.

Fig. 1. Branch processing using equivalent BitSets

3.2 Bitset Lookup Operators

Branches can be built, or reorganized, to use bitsets. Selection operators (σ) with a
matching bitset are replaced with a bit-selection operator (σbit), which performs bit
lookups to the corresponding index position in the bitset, and thus avoiding the
evaluation of these tuples. Selection operators without a matching bitset can still take
advantage of bitset evaluation by combining the existing bitsets for other values of the
attribute domain, by using a bit-selection not operator (σ!bit) evaluates as true all the
index positions in the bitset that are 0. σ!bit is equivalent to NOT σbit.

Fig. 2. a) NOT b) NOR c) NOR and selection operator

DS

σbit

σbit

σbit DS

σbit

σbit

σbitDS

DS

DS

DS

Σ

Σ

Σ

Σ

DS

20
01

20
01

20
01

20
00

20
00

20
01

20
02

20
01

20
02

20
00

B C B A C B C B C A

0 0 0 1 1 0 0 0 0 1

1 1 1 0 0 1 0 1 0 0

1 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 1 0 0

σ!bit DS

1 1 1 0 0 1 0 1 0 0

Y=2000

D(Y)={2001;2000}

σ Y=2001 DS σ!bit

0 0 0 1 1 0 1 0 1 1

D(Y)={2001;2000;2002}
0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0

Y=2000
Y=2002

σ!bit DS

1 1 1 0 0 1 0 1 0 0

D(Y)={2001;2000;2002;2003}
0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0

Y=2000
Y=2002

NOT NOR NOR

 Improving the Processing of DW Star-Queries under Concurrent Query Workloads 249

For instance, consider that the domain of the attribute Y (year) is 2000 and 2001,
D(Y)={2000,2001}. If there’s a bitset for 2000, bitset(y=2000), the selection
operators σ (y=2001) can be replaced with a σ!bit (y=2000) operator that applies a
bitwise NOT to bitset(y=2000). The result is equivalent to NOT(σbit (y=2000)).
Fig.2 shows how bitset processing can be employed for boost performance even when
a perfectly matching bitset does not exist. Fig.2-a) depicts the domain complement.

Fig.2-b) depicts the scenario for a wider domain, where a bitset exists for each of
the values of the attribute domain except for the value Y=2001. In this case, the σ!bit
operator applies a NOR(bit (y=2000), bit (y=2002)). The domain complement (Fig.2-
a)) is a particular case, where the domain has only two distinct values.

Bitset processing can still be used when the number of values, of the attribute
domain, without a matching bitset is greater than 1 (Fig.2-c). In this case, the
selection operator σ is maintained in the branch, but it is preceded by a σ!bit that
applies a NOR to the existing bitsets, and thus obtaining a bitset with all the index
positions that are certainly false, marked as 0. The goal of this σ!bit is to avoid the σ
operator from evaluating these tuples that are known to be false. The remaining index
positions, which can be evaluated as true or false, are market as 1. As the σ operator
evaluates these remaining tuples, it the updates and completes the bitset with the
result of the evaluation (illustrated in the figure with a blue arrow).

3.3 Mixed Branch Processing: Branches with and without bitsets

At any given time, SPIN may have branches with bitset operators and other branches
that have to evaluate the predicates, because there isn’t a bitset that matches the
selection predicate. Branches that use bitsets are pushed forward and connected
directly to the base data pipeline to maximize the sharing costs, and to reduce the
overall number of tuples that have to be evaluated with selection operators (σ). New
branches without σbit operators are connected as usual to existing pipelines,
regardless if they have a bitset or not, and the corresponding branch predicate is
associated with a bitset filled with 1’s. This bitset can be updated with existing bitsets
related with the branch’ predicate, when exists. Whenever a branch ends building a
bitset, it is replaced by an equivalent branch with a corresponding bitset operator
(σbit). Since bitset processing is faster than the tuple predicate evaluation, branches
that contain bitset operators are reorganized and pushed forward to the base pipeline.

Over time, predicates more frequently used will have a corresponding bitset, and
therefore will deliver faster query processing times.

3.4 Merging bitsets along the Query Logical Path

When in a logical data path, two or more branches use exclusively bitsets to evaluate
tuples, then these branches are merged into the later one, composed with a single
bitset that is a logical AND of all these branches. The resulting branch replaces the
merged branches, or is directly connected to the base pipeline. The main goal is to
filter as soon as possible the data tuples that are relevant to a query, before reaching
the branches that evaluate tuples using selection operators. Fig. 3 depicts the new
deployment, where the query logical data paths are built with less data branches,

250 J.P. Costa and P. Furtado

where the last branch of each query path in the previous deployment (Fig. 1) is
substituted with a branch that evaluates tuples using single bitset that represents the
logical evaluation of all the bitsets of the logical data path. In the figure, the bitset of
query 1 (the topmost branch, which has only the first bit set to 1) was built by the
selection operator (σ) of the last branch of the logical path, but it could also be built
by applying a AND to bitset(y=2000) and bitset(p=b). The four queries depicted in
the figure are evaluated with dedicated branches, each with a single σbit operator.
These bitsets can be pushed forward to the base pipeline and be used by the data
reader to reduce the cost of getting and forwarding the data.

3.5 Pushing forward bitsets to the Data Reader

When all the branches connected to the base pipeline use σbit operators to filter
relevant tuples for each branch, then a WPbitset is created by applying a logical OR to
all the branches’ bitsets. The data reader can use this WPbitset to control the data to
gather from storage and optimize the IO reading cost.

In a mixed environment, with some branches using σbit operators and others not,
an all 1’s bitset is considered in the bitwise OR, when exists at least one first level
branch that does not use a σbit operator to evaluate tuples. For the previous
deployment, the result of the merging OR is depicted in Fig. 3.

Fig. 3. Data Reader Bitset computed as a bitwise OR of the branches bitsets

WPbitset allows the Data Reader to control the data to gather from storage and
optimize the IO reading cost, by skipping data chunks that are not relevant for the
workload processing tree. For relevant chunks, the data reader uses the WPbitset to
decide which tuples to place in the pipeline (only tuples pinpointed by the WPbitset).
Queries, with predicates that are evaluated exclusively with σbit operators, can early
end its execution and return the result, without having to wait for the full loop to be
completed. As soon as the number of processed tuples reaches the bitset count
(hamming distance), then the query can stop execution since all the tuples relevant for
the query (which satisfies the selection predicates) were processed. When that occurs,
the query execution time fall below the barrier imposed by the IO cost of reading the
full relation (in a circular loop), since with bitsets a query can end as soon as all the
set positions of the bitset as been processed.

DS

σbit

Σ

Σ

Σ

Σ

DS

20
01

20
01

20
01

20
00

20
00

20
01

20
02

20
01

20
02

20
00

B C B A C B C B C A 1 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

σbit DS

σbit DS

σbit DS

σbit

1 0 1 1 1 1 0 1 0 1

 Improving the Processing of DW Star-Queries under Concurrent Query Workloads 251

4 Evaluation

We extended our SPIN engine (release 1.9.1), which is implemented in Java, and
incorporated the bitset-based processing approach, presented in this paper, and used
the TPC-H benchmark with a scale factor (SF) of 10 to evaluate its performance and
scalability capabilities. We used an Intel i5 processor, with 8GB of RAM and 3
SATAIII disks with 2Terabytes each, running a default Linux Server distribution. An
additional server submits 1000 random variations of Q5, with different selectivity,
generated by a varying number of simultaneous concurrent clients. For this setup, we
compare the number of evaluations carry out to tuples as they flow and are switched
along the branches in the WPTree when using the base SPIN setup (SPIN), the bitset
operators (σbit) (SPIN-WP bitset), and when the Data Reader uses the WPbitset
(SPIN-DR bitset). Fig. 4 depicts the results for a WPTree with 10 branches.

Fig. 4. Number of evaluations

The number of evaluations with SPIN-WP bitset, because bitsets are merged along
the logical path, is utmost equal to the number of tuples, while the base SPIN requires
more evaluations to filter and redirect tuples to appropriated branches. With SPIN-DR
bitset, the number of evaluates drops significantly, with some chunks aren’t read from
storage and uninteresting tuples are not placed into pipelines, and thus reducing the
number of evaluations, and improving the average execution time (depicted in Fig.5).

Fig. 5. Average execution time

0

20

40

60

80

100

SPIN SPIN-WP
bitset

SPIN-DR
bitset

Millions # of tuple evaluations

1

10

100

1.000

0 20 40 60 80 100

Time (s)

#concurrent queries

Avg. Exec Time

SPIN
SPIN-WP bitset
SPIN-DR bitset

252 J.P. Costa and P. Furtado

The results shows that even though bitset evaluation is faster than tuple evaluation,
the SPIN-WP bitset setup only yields a slightly improvement in the average execution
time in comparison with SPIN (in the graph they are almost the same). This is
because this query workload results in a WPTree with utmost 50 branches, with low
selectivity operators and the IO reading costs represents a large percentage of the
overall execution cost. Therefore, for more complex, and more processing intensive
evaluations, SPIN-WP bitset will deliver better results that the base SPIN. The results
also show that when we apply the WPbitset to the data reader (SPIN-DR bitset) the
execution time is significantly lower since it avoids reading large number of tuples,
and consequently reduces the number of evaluations and the evaluation time.

5 Conclusions

We present a bitset-based data processing approach that extends the SPIN processing
model, a data and processing sharing model that deliver predictable execution times to
star-join queries even in the presence of large concurrent workloads. It replaces
selection operators, or sets of selection operators, with fast bitset selection operators.

Bitset speeds up SPIN by minimizing the processing costs, replacing selection
operators with fast bit-selectors, and thus reducing the number of evaluated tuples and
consequently the overall processing cost.

Since the number of bitsets is limited by the available memory, we currently are
employing run-length encoding compression algorithms, such as the Byte-aligned
Bitmap Code (BBC), and Enhanced Word-Aligned Hybrid (EWAH) which require
very little effort to compress and decompress and can be used in bitwise operations
without decompression. We are evaluating in algorithms that take into account factors
such as usage, rebuildability, predicate evaluation costs and hamming distance for
managing the bitsets that are maintained in memory. We are also working on a
column-oriented data organization that can be combined with bitset processing for
further improvement in IO reading costs and query execution times.

Acknowledgments. This work was partially financed by iCIS – Intelligent Computing
in the Internet Services (CENTRO-07- ST24 – FEDER – 002003), Portugal.

References

[1] Costa, J., Furtado, P.: SPIN: Concurrent Workload Scaling over Data Warehouses. In:
Proc. of 15th International Conference on Data Warehousing and Knowledge Discovery -
DaWaK 2013, Prague, Czech Republic (2013)

[2] Costa, J.P., Cecílio, J., Martins, P., Furtado, P.: ONE: a predictable and scalable DW
model. In: Proceedings of the 13th International Conference on Data Warehousing and
Knowledge Discovery, Toulouse, France, pp. 1–13 (2011)

[3] Costa, J.P., Martins, P., Cecílio, J., Furtado, P.: A Predictable Storage Model for Scalable
Parallel DW. In: 15th International Database Engineering and Applications Symposium
(IDEAS 2011), Lisbon, Portugal (2011)

 Improving the Processing of DW Star-Queries under Concurrent Query Workloads 253

[4] Zukowski, M., Héman, S., Nes, N., Boncz, P.: Cooperative scans: dynamic bandwidth
sharing in a DBMS. In: Proceedings of the 33rd International Conference on Very Large
Data Bases, Vienna, Austria, pp. 723–734 (2007)

[5] Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: QPipe: A Simultaneously Pipelined
Relational Query Engine. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pp. 383–394 (2005)

[6] Candea, G., Polyzotis, N., Vingralek, R.: A scalable, predictable join operator for highly
concurrent data warehouses. Proc. VLDB Endow. 2, 277–288 (2009)

[7] Candea, G., Polyzotis, N., Vingralek, R.: Predictable performance and high query
concurrency for data analytics. The VLDB Journal 20(2), 227–248 (2011)

	Improving the Processing of DW Star-Queries under Concurrent Query Workloads
	1 Introduction
	2 Related Work
	3 The bitset Branch Processing Approach

	3.1 Creation of Bitsets
	3.2 Bitset Lookup Operators
	3.3 Mixed Branch Processing: Branches with and without bitsets

	3.4 Merging bitsets along the Query Logical Path

	3.5 Pushing forward bitsets to the Data Reader

	4 Evaluation
	5 Conclusions
	References

