
 

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 245–253, 2014. 
© Springer International Publishing Switzerland 2014 

Improving the Processing of DW Star-Queries under 
Concurrent Query Workloads 

João Pedro Costa1 and Pedro Furtado2 

1 Polytechnic Institute of Coimbra, ISEC, DEIS, Portugal 
jcosta@isec.pt  

2 University of Coimbra, Portugal 
pnf@dei.uc.pt 

Abstract. Currently, Data Warehouse (DW) analyses are extensively being 
used not only for strategic business decisions by a few, but also for feedback to 
a wider audience and into daily operational decisions. As a result, there’s an 
increase in the number of aggregation star-queries that are being concurrently 
submitted. Although such queries require similar processing patterns, they are 
stressing the database engine ability to deliver timely execution, due to the fact 
that each query executes independently from the others (query-at-time 
processing model). Recently, there’s an increasing interest in approaches that 
cooperate to manage large numbers of concurrent aggregation star-queries. We 
have proposed SPIN in a previous paper [1]. It is a data processing model that 
shares data and computation in order to handle large concurrent query loads, 
and its data organization provides almost constant and predictable execution 
times for all submitted queries. It has a data reader that reads data in circular 
loop, placing it in a pipeline, before being processed by branches that combine 
common processing computations. SPIN is IO dependent, i.e. a query is only be 
answered after a full circular loop, even though tuples and similar predicates 
have been evaluated in the past. In this paper we propose data processing 
approach that uses a set of bitsets, built on-the-fly, to significantly reduce the 
query processing time, the tuple evaluation cost and the number of predicates 
and tuples evaluated, without sacrificing its predictability features. The data 
read from storage is reduced to the minimum needed by the current query load.  

1 Introduction 

Common database engines process every query independently without data and 
processing sharing considerations. In this model (query-at-time) each competes for 
resources, and thus the execution time increases with the number of queries that are 
concurrently being executed. While this may not raise performance issues for most 
operational systems, it is a performance killer when dealing with large Data 
Warehouses (DW). In this context, large fact and dimension relations are concurrently 
scanned by each query and tuples are independently filtered, joined and aggregated. 
This lack of data and processing sharing results in the system inability to provide 
predictable execution times for scalable data volumes and query workloads.  

We have proposed SPIN [1], a data and processing sharing model that delivers 
predictable execution times to a large set of concurrently running aggregation star 
queries. SPIN physically stores the star schema as a single de-normalized relation as 
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proposed in [2], [3] to avoid costly join operations. A data reader is continuously 
spinning, sequentially reading data chunks in a circular loop, placing the data in a 
base pipeline shared by all running queries. Common filters and computations (with 
the same operators) from different queries are combined into common pipelines with 
data switches added to end to share its results. Subsequent data pipelines are then 
connected as logical branches of this common data pipeline, consuming its output. As 
a result, pipelines of running queries are split, merged and organized into a workload 
data processing tree (WPTree), with the base pipeline as root. Any query q, Each 
query starts processing tuples that flow along the pipelines and only stops when all 
the tuples have being considered for evaluation (after a complete loop). While this 
improves IO sharing, the query execution is constrained by the time needed to fully 
read the data. SPIN performance can also be limited by the evaluation costs related to 
redirecting and filtering tuples as they go along branches, even though most of them 
already has been evaluated in the past. 

The query execution time is constrained by the data reading time (tread) and the 
query processing time (tprocess), particularly tread since all tuples must be considered for 
evaluation. While tread is constant and shared among queries, the tprocess time is 
influenced by the computation (e.g. aggregation operators) and evaluation of 
predicates of each query (teval), and how these can be shared among queries. Since 
reading and processing is done in parallel, the query execution time is constrained by 
the largest of these times (max(tprocess ,tread)). For wide WPTree (large number of 
simultaneous queries), the processing time (tprocess) can be larger than the reading time 
(tread), and thus endangering the objective of execution time predictability.  

In this paper we propose a bitset-based data processing approach that uses a set of 
bitsets to reduce the overall execution time, by reducing the evaluation time (teval), the 
number of evaluated tuples (neval), and also the time required to read the data 
(tread).Bitsets are built on-the-fly with the results of previous executions, and when 
built they deliver faster processing times (by using a bit lookup instead of the actual 
evaluation), and also reduce the number of evaluations and the data read from storage.  

2 Related Work 

The usage pattern of DWs is changing from the traditional, limited set of 
simultaneous users and queries, mainly well-known reporting queries, to a more 
dynamic and concurrent environment, with more simultaneous users and ad-hoc 
queries. DW query patterns are mainly composed by star aggregation queries, which 
contain a set of query predicates (filters) and aggregations. The query-at-a-time 
execution model of traditional RDBMS systems, where each query is executed 
following its own execution plan, does not provide a scalable environment to handle 
much larger, concurrent and unpredictable workloads. Analyzing the execution query 
plan, we observe that the low-level data access methods, such as sequential scan, 
represent a major weight in the total query execution time. One way to reduce such a 
burden is to store relations in memory. However, the amount of available memory is 
limited, insufficient to hold large DW, and is also required for performing join and 
sort operations. Recently there is increasing interest in approaches that share data and 
processing among queries.  
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Cooperative scans [4] enhances performance by improving data sharing between 
concurrent queries, by performing dynamic scheduling of queries and their data 
requests taking into account with the current executing actions. While this minimizes 
the overall IO costs, by mainly using sequential scans instead of a large number of 
costly random IO operations, and the number of scan operations (since scans are 
shared between queries), it introduces undesirable delays to query execution and does 
not deliver predictable query execution times.   

QPipe [5] applies on-demand simultaneous pipelining of common intermediate 
results across queries, avoiding costly materializations and improving performance 
when compared to tuple-by-tuple evaluation.  

CJOIN[6] [7] applies a continuous scan model to the fact table, reading and placing 
fact tuples in a pipeline, and sharing dimension join tasks among queries, by attaching 
a bitmap tag to each fact tuple, one bit for each query, and attaching a similar bitmap 
tab to each dimension tuple referenced by at least one of the running queries. Each 
fact tuple in the pipeline goes through a set of filters (one for each dimension) to 
determine if it is referenced by at least one of the running queries. It not, the tuple is 
discarded. Tuples that reach the en d of the pipeline (tuples not discarded in filters) 
are them distributed to dedicated query aggregations operators, one for each query. 
However, its usefulness is limited to small dimensions that can fit entirely in memory 
and, as recognized in [7], large dimensions may severely impact performance.  

SPIN [1] is conceptually related to CJoin, and QPipe in what concerns the 
continuous scanning of fact data, but it uses a simpler approach with minimum 
memory requirements and does not have the limitations of such approaches. SPIN 
uses a de-normalized model, as proposed in [2] as a way to avoid the join costs, at the 
expense of additional storage costs. Since it has fully data and processing scalability, 
ONE allows massive parallelization [3], which provides balanced data distribution, 
scalable performance and predictable query execution times.  

3 The bitset Branch Processing Approach 

The evaluation time (teval) is constrained by the number of predicates and branches of 
the current WPTree. A submitted query has to process and evaluate each of its 
predicates, even though similar queries, with common predicates, have been 
previously processed in the past. As predicates of common queries are associated to 
common branches, a branch with a given predicate can be repeatedly built or may 
persist over time while at least one running query uses it. To avoid subsequent 
evaluation of unchanged data tuples, we propose to maintain the result of the 
predicate evaluation as tuples flow through data branches. This is particularly relevant 
for predicates with high evaluations costs. We build a branch bitset (bitmap) 
according to the branch’ predicates, where each bit represents the result of the 
predicate evaluation (true/false) applied to a corresponding tuple index.  

As SPIN processes tuples in a circular fashion, when the relation reaches the end, it 
restarts reading from the beginning. Therefore, future evaluations of a tuple can take 
advantage of the existence of this bitset, since the selection operator that evaluates the 
predicate can be replaced by a fast lookup operator that look up the corresponding 
position in the bitset to gathers the result. Bitsets are small and will be in memory in 
order to avoid introducing overhead at IO level.  
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3.1 Creation of Bitsets  

A bitset is built on-the-fly, as tuples go through the branches and are evaluated, with 
minimum overhead, since these results are stored in an in-memory data structure. A 
branch evaluates each tuple and stores the result of the predicate evaluation in the 
bitset, at the tuple index position. This is very important, since it makes it possible in 
every future evaluation of each row, to decide whether that row should proceed to the 
next step in the branch, or not, based on the simple lookup of the bitset. This avoids 
most of the evaluation costs. A bitset can be built for each value (e.g. 11, 12, 13 …), 
sets of values, or ranges of the attribute domain (e.g. [10;13]). To avoid additional 
overhead, bitsets are built according to the selection predicates of the submitted 
queries. For a new selection operator deployment in the WPTree, without a matching 
bitset, a new bitset is built with the result of the selection predicate. This bitmap is 
kept in memory and shared by all branches that can use it, allowing future evaluations 
of these tuples to be replaced by a fast bitset lookup operator.  

 

Fig. 1. Branch processing using equivalent BitSets  

3.2 Bitset Lookup Operators 

Branches can be built, or reorganized, to use bitsets. Selection operators (σ) with a 
matching bitset are replaced with a bit-selection operator (σbit), which performs bit 
lookups to the corresponding index position in the bitset, and thus avoiding the 
evaluation of these tuples. Selection operators without a matching bitset can still take 
advantage of bitset evaluation by combining the existing bitsets for other values of the 
attribute domain, by using a bit-selection not operator (σ!bit) evaluates as true all the 
index positions in the bitset that are 0. σ!bit  is equivalent to NOT σbit. 
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For instance, consider that the domain of the attribute Y (year) is 2000 and 2001, 
D(Y)={2000,2001}. If there’s a bitset for 2000, bitset(y=2000), the selection 
operators σ (y=2001) can be replaced with a σ!bit (y=2000) operator that applies a 
bitwise NOT to bitset(y=2000). The result is equivalent to NOT(σbit (y=2000)). 
Fig.2 shows how bitset processing can be employed for boost performance even when 
a perfectly matching bitset does not exist. Fig.2-a) depicts the domain complement.  

Fig.2-b) depicts the scenario for a wider domain, where a bitset exists for each of 
the values of the attribute domain except for the value Y=2001. In this case, the σ!bit 
operator applies a NOR(bit (y=2000), bit (y=2002)). The domain complement (Fig.2-
a)) is a particular case, where the domain has only two distinct values.  

Bitset processing can still be used when the number of values, of the attribute 
domain, without a matching bitset is greater than 1 (Fig.2-c). In this case, the 
selection operator σ is maintained in the branch, but it is preceded by a σ!bit that 
applies a NOR to the existing bitsets, and thus obtaining a bitset with all the index 
positions that are certainly false, marked as 0. The goal of this σ!bit is to avoid the σ  
operator from evaluating these tuples that are known to be false. The remaining index 
positions, which can be evaluated as true or false, are market as 1. As the σ operator 
evaluates these remaining tuples, it the updates and completes the bitset with the 
result of the evaluation (illustrated in the figure with a blue arrow).  

3.3 Mixed Branch Processing: Branches with and without bitsets 

At any given time, SPIN may have branches with bitset operators and other branches 
that have to evaluate the predicates, because there isn’t a bitset that matches the 
selection predicate. Branches that use bitsets are pushed forward and connected 
directly to the base data pipeline to maximize the sharing costs, and to reduce the 
overall number of tuples that have to be evaluated with selection operators (σ). New 
branches without σbit operators are connected as usual to existing pipelines, 
regardless if they have a bitset or not, and the corresponding branch predicate is 
associated with a bitset filled with 1’s. This bitset can be updated with existing bitsets 
related with the branch’ predicate, when exists. Whenever a branch ends building a 
bitset, it is replaced by an equivalent branch with a corresponding bitset operator 
(σbit). Since bitset processing is faster than the tuple predicate evaluation, branches 
that contain bitset operators are reorganized and pushed forward to the base pipeline. 

Over time, predicates more frequently used will have a corresponding bitset, and 
therefore will deliver faster query processing times. 

3.4 Merging bitsets along the Query Logical Path  

When in a logical data path, two or more branches use exclusively bitsets to evaluate 
tuples, then these branches are merged into the later one, composed with a single 
bitset that is a logical AND of all these branches. The resulting branch replaces the 
merged branches, or is directly connected to the base pipeline.  The main goal is to 
filter as soon as possible the data tuples that are relevant to a query, before reaching 
the branches that evaluate tuples using selection operators. Fig. 3 depicts the new 
deployment, where the query logical data paths are built with less data branches, 
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where the last branch of each query path in the previous deployment (Fig. 1) is 
substituted with a branch that evaluates tuples using single bitset that represents the 
logical evaluation of all the bitsets of the logical data path. In the figure, the bitset of 
query 1 (the topmost branch, which has only the first bit set to 1) was built by the 
selection operator (σ) of the last branch of the logical path, but it could also be built 
by applying a AND to bitset(y=2000) and bitset(p=b). The four queries depicted in 
the figure are evaluated with dedicated branches, each with a single σbit operator. 
These bitsets can be pushed forward to the base pipeline and be used by the data 
reader to reduce the cost of getting and forwarding the data. 

3.5 Pushing forward bitsets to the Data Reader 

When all the branches connected to the base pipeline use σbit operators to filter 
relevant tuples for each branch, then a WPbitset is created by applying a logical OR to 
all the branches’ bitsets. The data reader can use this WPbitset to control the data to 
gather from storage and optimize the IO reading cost.  

In a mixed environment, with some branches using σbit operators and others not, 
an all 1’s bitset is considered in the bitwise OR, when exists at least one first level 
branch that does not use a σbit operator to evaluate tuples. For the previous 
deployment, the result of the merging OR is depicted in Fig. 3. 

 

Fig. 3. Data Reader Bitset computed as a bitwise OR of the branches bitsets 
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the query (which satisfies the selection predicates) were processed. When that occurs, 
the query execution time fall below the barrier imposed by the IO cost of reading the 
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set positions of the bitset as been processed.  
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4 Evaluation 

We extended our SPIN engine (release 1.9.1), which is implemented in Java, and 
incorporated the bitset-based processing approach, presented in this paper, and used 
the TPC-H benchmark with a scale factor (SF) of 10 to evaluate its performance and 
scalability capabilities. We used an Intel i5 processor, with 8GB of RAM and 3 
SATAIII disks with 2Terabytes each, running a default Linux Server distribution. An 
additional server submits 1000 random variations of Q5, with different selectivity, 
generated by a varying number of simultaneous concurrent clients. For this setup, we 
compare the number of evaluations carry out to tuples as they flow and are switched 
along the branches in the WPTree when using the base SPIN setup (SPIN), the bitset 
operators (σbit) (SPIN-WP bitset), and when the Data Reader uses the WPbitset 
(SPIN-DR bitset). Fig. 4 depicts the results for a WPTree with 10 branches. 

   

Fig. 4. Number of evaluations 
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The results shows that even though bitset evaluation is faster than tuple evaluation, 
the SPIN-WP bitset setup only yields a slightly improvement in the average execution 
time in comparison with SPIN (in the graph they are almost the same). This is 
because this query workload results in a WPTree with utmost 50 branches, with low 
selectivity operators and the IO reading costs represents a large percentage of the 
overall execution cost. Therefore, for more complex, and more processing intensive 
evaluations, SPIN-WP bitset will deliver better results that the base SPIN. The results 
also show that when we apply the WPbitset to the data reader (SPIN-DR bitset) the 
execution time is significantly lower since it avoids reading large number of tuples, 
and consequently reduces the number of evaluations and the evaluation time.  

5 Conclusions 

We present a bitset-based data processing approach that extends the SPIN processing 
model, a data and processing sharing model that deliver predictable execution times to 
star-join queries even in the presence of large concurrent workloads. It replaces 
selection operators, or sets of selection operators, with fast bitset selection operators.  

Bitset speeds up SPIN by minimizing the processing costs, replacing selection 
operators with fast bit-selectors, and thus reducing the number of evaluated tuples and 
consequently the overall processing cost.  

Since the number of bitsets is limited by the available memory, we currently are 
employing run-length encoding compression algorithms, such as the Byte-aligned 
Bitmap Code (BBC), and Enhanced Word-Aligned Hybrid (EWAH) which require 
very little effort to compress and decompress and can be used in bitwise operations 
without decompression. We are evaluating in algorithms that take into account factors 
such as usage, rebuildability, predicate evaluation costs and hamming distance for 
managing the bitsets that are maintained in memory. We are also working on a 
column-oriented data organization that can be combined with bitset processing for 
further improvement in IO reading costs and query execution times.  
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