
Interval OLAP: Analyzing Interval Data

Christian Koncilia1, Tadeusz Morzy2,�, Robert Wrembel2,�, and Johann Eder1

1 Klagenfurt University, Institute of Informatics Systems, Klagenfurt, Austria
2 Poznan University of Technology, Institute of Computing Science, Poznań, Poland

{koncilia,eder}@isys.uni-klu.ac.at,
{Tadeusz.Morzy,Robert.Wrembel}@cs.put.poznan.pl

Abstract. The ability to analyze data organized as sequences of events
or intervals became important by nowadays applications since such data
became ubiquitous. In this paper we propose a formal model and briefly
discuss a prototypical implementation for processing interval data in an
OLAP style. The fundamental constructs of the formal model include:
events, intervals, sequences of intervals, dimensions, dimension hierar-
chies, a dimension members, and an iCube. The model supports: (1)
defining multiple sets of intervals over sequential data, (2) defining mea-
sures computed from both, events and intervals, and (3) analyzing the
measures in the context set up by dimensions.

1 Introduction

It is observed that current applications in use generate huge sets of data. Some of
the data have the character of events that last an instant, whereas some of them
last for a given time period - an interval. Events typically have a strict order,
thus possess a sequential nature. Sequential data can be categorized either as
time point-based or interval-based [13].

Some examples of systems that generate this kind of data include: workflow
systems, Web logs, RFID, public transport, and sensor networks. In workflow
systems objects arrive to ordered tasks at certain points in time and they are
processed there during a certain period of time. By analyzing workflow log data
one is able to discover bottlenecks and idle time. In Web log analysis, especially
for e-commerce, one may be interested in knowing the navigation path lead-
ing to a product purchase. RFID technology is becoming widely used in supply
chain management (e.g., just-in-time delivery). Here, by analyzing sequences of
events generated by the RFID devices one is able to optimize product transporta-
tion routes. In advanced public transportation infrastructures, cf. [12] passenger
tracking records are automatically generated by various devices. These records
can be used for analyzing the most frequently used routes and, thus, for discov-
ering route bottlenecks, station bottlenecks, and rush hours in various districts.
In intelligent installations (e.g., ambient living, jet engines, refineries), numerous

� Work supported from the Polish National Science Center (NCN), grant No.
2011/01/B/ST6/05169.

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 233–244, 2014.
c© Springer International Publishing Switzerland 2014



234 C. Koncilia et al.

sensors supply their data. Based on the chronologically analyzed data, one can
discover patterns of behavior or predict device breaks.

There is a substantial demand for models and tools for analyzing sequential
data. Most of the existing OLAP techniques, although very advanced ones, allow
to analyze mostly set oriented data without exploiting the existing order among
the data. For this reason, it was necessary to create new models and techniques
that would be able to store and analyze sequential data efficiently.

Paper Contribution In this paper, we contribute a formal and implementa-
tion model, called I-OLAP, for an OLAP system that enables the user to define
and analyze intervals stemming from sequential data. In particular, we present
an extension of the S-OLAP concept [3] to achieve the following features: (1)
enable the user to easily define multiple sets of intervals over sequential data,
(2) define measures computed from both, events and intervals, (3) analyze these
measures easily along multiple dimensions.

Analyzing sequences and intervals could also be done with standard SQL
queries. However, we will show that this leads to huge query statements which
therefore are nearly unreadable and most notably not maintainable. Therefore,
we prototypically implemented a query language which enables the user to ana-
lyze sequential data and interval based data.

Paper Organization: This paper is organized as follows. In section 2 we will
discuss related work. Section 3 presents our running example and define the set
of example queries. Section 4 presents the I-OLAP data model. Section 5 shows
how to query interval data, based on our data model. In section 6 we will briefly
discuss the implementation of our approach. Section 7 summarizes the paper,
outlines open issues and research directions for the future.

2 Related Work

The model which will be presented in this paper is - to the best of our knowledge
- the first OLAP model focusing on how to analyze interval data. However,
our model is building on different approaches which focus on how to analyze
sequential data. These approaches will be briefly discussed in this section.

[3] propose a formal model for time point-based sequential data with the
definitions of a fact, measure, dimension, and a dimension hierarchy. Thus, the
model allows to analyze sequential data in an OLAP style. However, neither a
query language nor a prototype system was built on the model.

In the S-OLAP approach [12] propose the set of operators for a query language
for the purpose of analyzing patterns, whereas [4,5] concentrate on an algorithm
for supporting ranking pattern-based aggregate queries and on a graphical user
interface. The drawback of this approach is that it is based on relational data
model and storage for sequential data.

Stream Cube [9] and E-Cube [11,10] implement OLAP on data streams. Their
main focus is on providing tools for OLAP analysis within a given time window
of constantly arriving streams of data.

[6,7] address interval-based sequential data, generated by RFID devices. In
[6] the authors focus on reducing the size of such data. They propose techniques



Interval OLAP: Analyzing Interval Data 235

for constructing RFID cuboids and computing higher level cuboids from lower
level ones. Based on this foundation, [7] propose a language for analyzing paths
with aggregate measures, generated by RFID devices.

[17,16] focus on mining sequential patterns on interval-based data applying a
class of Apriori and PrefixSpan algorithms.

From the commercial systems only Oracle [15] and Teradata Aster [2] support
SQL-like analysis of sequential data in their OLAP engines but they focus on
pattern recognition in time-point-bases sequential data.

To the best of our knowledge, the aforementioned contributions do not support
the analysis of interval data. With this respect, there is an evident need for
developing a model and a query language capable of discovering and analyzing
such data in an OLAP style.

3 Running Example

As a running example, we will use sample data acquired by sensors installed
in an intelligent building. Let us assume that: (1) the sensors report the status
of lights and temperatures in some rooms, and (2) our data warehouse stores
events that report changes, i.e. if a light sensor reports a sequence of events
< {room1, t1, on}, {room1, t2, on}, {room1, t3, on}, {room1, t4, off} >, the sec-
ond and third event will not be stored. Table 1 depicts the data received from
the light and heating sensors in two rooms (room id 100 and 101). Obviously,
the light sensors return boolean values (on, off) whereas the heating sensors re-
port the temperature as float values once per hour. Heating sensor H1 reports a
failure at 2013.03.20 14:08:13. This problem has been fixed 3 hours later.

Table 1. Example light and temperature sensor data

room id sensor id time value

100 L1 2013.03.20 10:08:12 on
100 H1 2013.03.20 10:08:13 19.2
100 H1 2013.03.20 11:08:13 20.0
100 H1 2013.03.20 12:08:13 21.2
100 L1 2013.03.20 12:24:12 off
100 H1 2013.03.20 13:08:13 18.0
100 L1 2013.03.20 13:09:12 on
100 H1 2013.03.20 14:08:13 failure
100 H1 2013.03.20 17:08:13 21.2
100 L1 2013.03.20 17:38:12 off
101 H2 2013.03.20 9:18:13 19.0
101 L2 2013.03.20 9:19:12 on
101 H2 2013.03.20 10:18:13 21.5
101 H2 2013.03.20 11:08:13 21.6
101 L2 2013.03.20 19:40:12 off

Typical examples of OLAP queries on this kind of interval data could include:
(1) find the floor (sum of all rooms on a floor) where light was on for the longest
time per day, (2) find all rooms where light was off and heating was on, i.e. the
temperature increased, (3) report the average heating costs per room and day,
(4) report the five rooms with the longest/shortest period of time light was on,
(5) report the largest number of state changes per day per a light sensor.



236 C. Koncilia et al.

4 I-OLAP Data Model

In this section we propose a metamodel and a formal model of interval OLAP
(I-OLAP). The elements of the I-OLAP metamodel are shown in Figure 1. It con-
sists of events and its attributes, dimensions, hierarchies, and dimension mem-
bers, intervals, sequences of intervals, and iCubes.

Fig. 1. The I-OLAP metamodel

4.1 Events and Attributes

Event ej = (a1j , a2j , . . . , anj), where: aij is the value of attribute Ai of the j-th
elementary event and aij ∈ Dom(Ai). A = {A1, A2, . . . , An} is the set of at-
tributes of the elementary event, and Dom(Ai) is the domain of the ith attribute
(including atomic values plus null). The set of all events E = {e1, e2, . . . , em}.

Intuitively, we can say that an event is simply a tuple in the original trans-
actional dataset. In our running example the first record could be mapped to
event e1 with assigned values room id = 100, sensor id = L1, time = 2013.03.20
10:08:12, and value = on. An example set of events is given in Table 2.

In the model we distinguish two specializations of the event, namely: artificial,
and consecutive. The artificial event exists temporarily to answer a given query,
cf. Section 5. Consecutive events are used to represent intervals, cf. Section 4.2.

4.2 Intervals

Intuitively, intervals correspond to the ’gap’ between any two consecutive events.
Figures 2(a) and 2(b) depict intervals for ’Heating’ and ’Light’. The intervals are
defined over attribute value, i.e. the current temperature and light status.



Interval OLAP: Analyzing Interval Data 237

Table 2. Events in our running example

Event ID Event data

e1 100, L1, 2013.03.20 10:08:12, on
e2 100, H1, 2013.03.20 10:08:13, 19.2
e3 100, H1, 2013.03.20 11:08:13, 20.0
e4 100, H1, 2013.03.20 12:08:13, 21.2
e5 100, L1, 2013.03.20 12:24:12, off
e6 100, H1, 2013.03.20 13:08:13, 18.0
e7 100, L1, 2013.03.20 13:09:12, on
e8 100, H1, 2013.03.20 14:08:13, failure
e9 100, H1, 2013.03.20 17:08:13, 21.2
e10 100, L1, 2013.03.20 17:38:12, off

Two consecutive events form an interval. Events e1 and e2 are consecutive if:
(1) both of them belong to intervals that belong to the same sequence of intervals
and (2) there exists no other event between both events, i.e. �ei ∈ S : e1.t ≤
ei.t ≤ e2.t.

Interval I =< en, em >, where en ∈ E ∧ em ∈ E, en and em are consecutive
events. The set of all defined intervals is denoted as I = {I1, I2, ..., In}.

(a) Temperature intervals (b) Light intervals

Fig. 2. Temperature and Light Intervals

Two basic methods are defined on intervals, namely: (1) start() – returns
the start event of the interval, (2) end() – returns the end event of the interval.

4.3 Sequences of Intervals

Multiple intervals form the sequence of intervals. The order within the sequence is
defined by an ordering attribute(s) assigned to all events of all intervals. Hence,
within the sequence of intervals all events must have the same ordering at-
tribute(s). Furthermore, an event may be the part of several, different intervals
as long as these intervals do not belong to the same sequence of intervals. For
example, the user might create three separate sequences of intervals, i.e., about
heating, light, and both heating and light.



238 C. Koncilia et al.

Sequence of intervals S =< I1, I2, ..., In >, where Ii ∈ I. The set of all
sequences of intervals is denoted as S = {S1, S2, ..., Sn}.

While defining the methods on intervals we were inspired by [3]. The meth-
ods include: (1) first(), last(), next(), prev() – they allow to iterate over
the intervals within a sequence of intervals, (2) insertArtificialEvent() – it
creates a new, artificial event (cf. Section 5).

4.4 Dimensions, Hierarchies, and Dimension Members

A dimension is derived from one attribute assigned to events. Each dimension
may have a concept hierarchy associated with it. In order to support galaxy
schemas, our model supports ’shared dimensions’, i.e. dimensions that may be
assigned to multiple cubes. Our running example could for instance have dimen-
sions ’Location’, ’Time’, and ’Event Type’.

Every dimension consists of one hierarchy that represents the root hierar-
chical element of a cube. This element may consist of multiple sub-elements
that, in turn, may consist of multiple sub-elements, thus building a hierar-
chy. In our running example, the ’Location’ dimension could include hierarchy
Building → Floor → Room.

The hierarchy assigned to a dimension defines the navigation path a user may
use to perform roll-up and drill-down operations, like in the standard OLAP.
However, we have to consider that we are aggregating intervals. This problem
will be discussed on a general level in Section 5.

Just as hierarchies, dimension members are also in a hierarchical order rep-
resented by the recursive association of the dimension members. For instance, the
’Location’ hierarchy could consist of dimension members Room100, Room102,
etc. Each dimension member is derived from event attributes.

Dimension D = {AD,HD}, where AD is an attribute with AD ∈ A and HD is
the set of hierarchical assignments associated with the dimension. Thus, HD =
{H1, ..., Hn} with Hi = {ID,Name,H.PID,M}, where ID is a unique identifier,
Name is the name of the hierarchy, and H.PID is the identifier of the parent
hierarchy or null if there is no parent.

M is the set of dimension members assigned to this hierarchy: M =
{M1, ...,Mn}, where Mj = {ID,Name,M.PID}, where ID is a unique iden-
tifier, Name is the name of the dimension member, and M.PID is the identifier
of the parent dimension member or null if there is no parent.

4.5 iCube

iCube is a data cube enabling users to analyze interval-based data. It consists
of: (1) entities well known in traditional OLAP, namely dimensions, hierarchies,
and dimension members and (2) entities used to analyze interval data, namely
sequences of intervals, intervals, events, and attributes.

iCube = {S,D,FCV,FFC} where S is the set of sequences of intervals, D is the
set of dimensions, FCV and FFC are two different sets of functions. Mandatory
set FCV, called compute value functions includes user defined functions for



Interval OLAP: Analyzing Interval Data 239

computing fact values (measures). Optional set FFC, called fact creating func-
tions includes user defined functions for creating new measures / facts assigned
to an interval.

The compute value functions are used to derive / estimate values from two
given consecutive events. For instance, when using the ’Heating’ events, the tem-
peratures at e1.time and e2.time are defined by e1.value and e2.value. However,
there exists no data for any time point t witch e1.time < t < e2.time. The user
may now define functions to compute values for ’Heating’ and ’Light’ as shown in
Listings 1.1 and 1.2. In these examples, we use simple linear monotonic functions,
but any function may be used to compute values.

Listing 1.1. Function computing tem-
perature at a given time point

//INPUT: t − timepoint
//OUTPUT: value, in this case the costs
function TempAtT(t) {
//does t correspond to an event time?
e = fetchEvent where e.time = t
if (e != null) return e.value
//if it does not match any event, find the
//corresponding interval for t
i = fetchInterval for Timepoint t
//if there exists no interval, return null
if (i == null) return null
e1 = i.startEvent()
e2 = i.endEvent()
//assuming that the temperature rises/falls
//linear and that ut(t) returns the number
//of seconds of t
return (e2.value−e1.value)/

(ut(e2.time)−ut(e1.time))∗ut(t)}

Listing 1.2. Function computing light
status at a given time point

//INPUT: t the timepoint
//OUTPUT: a value, in this case the costs
function LightStatusAtT(t) {
//does t correspond to an event time?
e = fetchEvent where e.time = t
if (e != null) return e.value
//if it does not match any event, find the
//corresponding interval for t
i = fetchInterval for Timepoint t
//if there exists no interval, return null
if (i == null) return null
e1 = i.startEvent()
e2 = i.endEvent()
return e1.value }

Now, using functions LightStatusAtT and TempAtT , we can compute the
light status and temperature at any given point in time. For example, fetching
the temperature of room 100 for the time point that corresponds to t = 170 can
be done by calling TempAtT (170).

Listing 1.3. Example function computing energy cost of an interval

//INPUT: e1, e2 − two consecutive events
//OUTPUT: value, in this case costs
function costs(e1, e2) {
//assuming that light sensors are boolean and return only ON or OFF
if (e1.value == ’on’)
//assuming that the costs for each minute are 0.02 cents
return (e2.time − e1.time)∗0.02

else return 0 }

The fact creating functions are used to create facts that do not stem from
events, but from sequences or intervals. For instance, in our running example
we could assign a user defined operation that for ’Light’ computes the costs by
multiplying minutes between a ’Light on’ and a ’Light off’ event with a given
cost factor (cf. Listing 1.3). Obviously, this fact cannot be derived from a single
event but from sequences or intervals.



240 C. Koncilia et al.

The two following methods on iCube are available to create new fact creating
functions and compute value functions, namely: (1) fMeasureValue() – creates
new function f ∈ FCV, (2) fCreateFact() – creates new function f ∈ FFC.

5 Querying I-OLAP Data

In this section, we will discuss how to answer queries on the I-OLAP model.
We would like to emphasize that, due to a space limit, we will outline how our
query language works, rather than its formal description. Basically, answering
an I-OLAP query is done in the three steps discussed in this section.

5.1 Step 1: Getting Query Time Frame

The initial step is to get the time frame defined in a query. We assume that the
underlying data warehouse has at least one time dimension (which will usually
also serve as an ordering attribute for events). The dimension members selected
by the user for the time dimension are extracted. This may be the All node
(the root node) of the time dimension, i.e. all events, or any subset of dimension
members belonging to the time dimension, i.e., the subset of events.

For example, for a given query: ’compute the number of minutes the light has
been turned on in room 100 between timestamp 2013.01.01 and 2013.01.31’, the
time frame would be defined by tS = 2013.01.01 and tE = 2013.01.31.

(a) Before step 2 (b) After step 2

Fig. 3. Sequences of intervals before and after applying step 2



Interval OLAP: Analyzing Interval Data 241

5.2 Step 2: Inserting Artificial Events

Artificial events are used to guarantee a uniform distribution of events over all se-
quences of intervals. For instance, in the sequences of intervals for the temperature
depicted in Figure 3(a) there are no such events defined for time point t = 240,
t = 300, and t = 360 - for room 101, and for time point t = 240 - for room 101. In
order to allow queries to aggregate data over multiple sequences of intervals, we
extend each interval sequencewith artificial events for tS and tE returned by step 1.

Extending a sequence of intervals with an artificial event at time point t is
done in two steps: (1) inserting new events and (2) adopting all affected intervals.
Figure 3(b) depicts the results of inserting artificial events, denoted as AEi.
Artificial events are inserted by the algorithm outlined in Listing 1.4.

We would like to emphasize that this only happens on a conceptual level. Each
meaningful implementation of the model would first select all interval sequences
affected by the query and enrich by artificial events only these interval sequences.

Next, adopting affected intervals takes the set of sequences of intervals as an
input and creates a uniform event distribution over all sequences of intervals, cf.
the pseudocode in Listing 1.2. As a result, the following condition is fulfilled: if
there exists an event e with e.t = T in any sequence than there also exist events
e′ in all other sequences of intervals with e′.t = T .

Listing 1.4. Creating an artificial
event

//INPUT: t − time point
// I − sequence of intervals
//OUTPUT: new sequence of intervals
function createArtificialEvent(t, I) {

eprev = event e with max(e.t) ≤ t;
if (eprev .t = t) return I
//create new event
enew = eprev

enew.t = t
foreach (f ∈ I.FCV)

enew.value = f(t)
end foreach
//insert new event into sequence
//of intervals
Inew = Insert(enew, I)
return Inew }

Listing 1.5. Uniformly distributing an arti-
ficial event among sequences of intervals

//INPUT: I set of sequences of intervals
//OUTPUT: new set of sequences of intervals
function createUniformEventDistr(I) {
foreach (SI ∈ I)
i = SI.first()
while (i �= NULL)
foreach (SI′ ∈ I)
j = SI’.first()
while (j �= NULL)
if (j.start() = i.start) exists = true
j = SI’.next()

end while
if (false = exists)
I’=I’ ∪ createArtificialEvent(i.start(),SI′)

end foreach
i = SI.next()

end while
end foreach
return I′ }

5.3 Step 3: Aggregating Measures

In this section we outline how to aggregate data using aggregate functions. Al-
though we illustrate this step with the average function (AVG), the method is ap-
plicable to other aggregation functions such as MIN, MAX, SUM, and COUNT.
We will show how to aggregate measures using two scenarios, namely: (1) time
point aggregation, e.g., ”what is the average temperature in all rooms at time
point t” and (2) aggregation along time, e.g. ”what is the average temperature
in all rooms between time point t1 and t2”.



242 C. Koncilia et al.

Fig. 4. Aggregation between t1 and t2

Table 3. Resulting temperatures for all rooms for 150 ≤ t ≤ 330

Room t=150 t=180 t=240 t=300 t=330 AVG

100 19,2 18,0 - - 20,0 19,07
101 19,1 18,2 18,8 19,2 19,6 18,98
102 17,0 17,2 18,0 20,0 20,8 18,60

Floor 18,85

Answering the first query is straight forward. We simply call the corresponding
function defined in FCV for all facts fulfilling the selection predicate. For instance,
in our example we call TempAtT (t) for interval sequences for all rooms.

The second query will be executed as follows. First, we call TempAtT (t) for
t = t1 as well as for t = t2. Second, we fetch all events for all sequences of intervals.
For each event e, we call TempAtT (t) with t = e.t. Figure 4 depicts this technique
for t1 = 150 and t2 = 330. The resulting values are given in Table 3.

6 Implementation

We prototypically implemented this approach as a web application using PHP,
the PHP PEG package1 (a package used for defining PEGs - parsing expression
grammar - and parsing strings into objects) and PostgreSQL.

As we are currently working on a query language enabling the user to analyze
sequences in OLAP cubes, called S-SQL (Sequential SQL), we implemented this
interval based approach as an extension of S-SQL [1]. Due to space limitations, we
cannot give a detailed description of S-SQL. Basically, S-SQL statements enable
users to formulate queries in order to analyze sequences using different functions
like for instance HEAD(), TAIL() or PATTERN(). The S-SQL prototype consists

1 PHP PEG has been developed by Hamish Friedlander. Available at:
https://github.com/hafriedlander/php-peg

https://github.com/hafriedlander/php-peg


Interval OLAP: Analyzing Interval Data 243

of a parser translating S-SQL into objects and an engine which then creates
standard SQL statements out of these objects. As an example the query given
in listing 1.6 might be used to fetch all sequences of events that fulfill a given
pattern (A,*,B) and where the temperature was below 19 degrees at the start
and the end of the day.

Listing 1.6. Sample S-SQL Query

SELECT ∗
FROM t1
WITH PATTERN ’a,∗,b’ BIND (a,b) TO sensor.heating ON SEQUENCE room
WHERE a.value < 19 AND b.value < 19;

This simple query would translate into a SQL query with over 40 lines of code
(formatted). Other queries we tested resulted in queries with up to 160 lines of
code.

We extended the functionality of S-SQL in order to be able to parse and
execute statements using functions defined in FCV and FFC. In it’s current version
these functions have to be defined as PL/pgSQL functions. The web service is
used to parse the metadata of a given database and apply these functions to the
defined intervals. Internally, the three steps as described in section 5 (getting
the query time frame, inserting artificial events and aggregating measures) will
be applied to the intervals. This enables us to state queries like:

Listing 1.7. Sample I-SQL Query

SELECT AVG(value)
FROM t1
WHERE left(sensor id,1) = ’H’ AND

time >= ’2013−03−20 00:00:00’ AND time <= ’2013−03−20 23:59:59’

This query would return the average temperature of all rooms on March, 20th.
The implementation would automatically apply the three steps described above
to get a correct result.

7 Summary

In this paper we proposed a formal model for processing interval data in an
OLAP style and a prototypical implementation. To the best of our knowledge, no
such model has been proposed before. The model supports: (1) defining multiple
sets of intervals over sequential data, (2) define measures computed from both,
events and intervals, and (3) analyze the measures in the context set up by
dimensions - to this end we proposed the iCube. The formal model was reflected
in an implementation model that we also proposed. We shown how to apply
the model to querying I-OLAP data. In the next step we will develop physical
data structures for supporting I-OLAP queries and evaluate their performance.
Future work will focus on analyzing and developing methods to represent interval
data by means of functions, similarly as proposed in [8] - for moving objects and
in [14] - for interpolating values returned by sensors.



244 C. Koncilia et al.

References

1. Retr. March 31, 2014, http://solap-isys.aau.at
2. Aster nPath,

http://developer.teradata.com/aster/articles/aster-npath-guide

(retr. from March 13, 2014)
3. B ↪ebel, B., Morzy, M., Morzy, T., Królikowski, Z., Wrembel, R.: OLAP-like analysis

of time point-based sequential data. In: Castano, S., Vassiliadis, P., Lakshmanan,
L.V.S., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 153–161.
Springer, Heidelberg (2012)

4. Chui, C.K., Kao, B., Lo, E., Cheung, D.: S-OLAP: an olap system for analyzing
sequence data. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data,
pp. 1131–1134. ACM (2010)

5. Chui, C.K., Lo, E., Kao, B., Ho, W.-S.: Supporting ranking pattern-based aggre-
gate queries in sequence data cubes. In: Proc. of ACM Conf. on Information and
Knowledge Management (CIKM), pp. 997–1006. ACM (2009)

6. Gonzalez, H., Han, J., Li, X.: FlowCube: constructing RFID flowcubes for multi-
dimensional analysis of commodity flows. In: Proc. of Int. Conf. on Very Large
Data Bases (VLDB), pp. 834–845. VLDB Endowment (2006)

7. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive
RFID data sets. In: Proc. of Int. Conf. on Data Engineering (ICDE) (2006)

8. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider,
M., Vazirgiannis, M.: A foundation for representing and querying moving objects.
ACM Trans. on Database Systems (TODS) 25(1), 1–42 (2000)

9. Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream
Cube: An architecture for multi-dimensional analysis of data streams. Distributed
and Parallel Databases 18(2), 173–197 (2005)

10. Liu, M., Rundensteiner, E., Greenfield, K., Gupta, C., Wang, S., Ari, I., Mehta,
A.: E-Cube: multi-dimensional event sequence analysis using hierarchical pattern
query sharing. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data,
pp. 889–900. ACM (2011)

11. Liu, M., Rundensteiner, E.A.: Event sequence processing: new models and opti-
mization techniques. In: Proc. of SIGMOD PhD Workshop on Innovative Database
Research (IDAR), pp. 7–12 (2010)

12. Lo, E., Kao, B., Ho, W.-S., Lee, S.D., Chui, C.K., Cheung, D.W.: OLAP on se-
quence data. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data,
pp. 649–660 (2008)

13. Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. SIGKDD
Explor. Newsl. 9(1), 41–55 (2007)

14. Thiagarajan, A., Madden, S.: Querying continuous functions in a database system.
In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 791–804 (2008)

15. Witkowski, A.: Analyze this! Analytical power in SQL, more than you ever dreamt
of. Oracle Open World (2012)

16. Ya-Han, H., Tony Cheng-Kui, H., Hui-Ru, Y., Yen-Liang, C.: On mining
multi-time-interval sequential patterns. Data & Knowledge Engineering 68(10),
1112–1127 (2009)

17. Yen-Liang, C., Mei-Ching, C., Ming-Tat, K.: Discovering time-interval sequential
patterns in sequence databases. Expert Systems with Applications 25(3), 343–354
(2003)

http://solap-isys.aau.at
http://developer.teradata.com/aster/articles/aster-npath-guide

	Interval OLAP: Analyzing Interval Data
	1 Introduction
	2 Related Work
	3 Running Example
	4 I-OLAPDataModel
	4.1 Events and Attributes
	4.2 Intervals
	4.3 Sequences of Intervals
	4.4 Dimensions, Hierarchies, and Dimension Members
	4.5 iCube

	5 Querying I-OLAP Data
	5.1 Step 1: Getting Query Time Frame
	5.2 Step 2: Inserting Artificial Events
	5.3 Step 3: Aggregating Measures

	6 Implementation
	7 Summary
	References




