

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 195–207, 2014.
© Springer International Publishing Switzerland 2014

Processing OLAP Queries over an Encrypted Data
Warehouse Stored in the Cloud

Claudivan Cruz Lopes1, Valéria Cesário Times1, Stan Matwin2,
Ricardo Rodrigues Ciferri3, and Cristina Dutra de Aguiar Ciferri4

1 Informatics Center, Federal University of Pernambuco, Recife, Brazil
2 Institute for Big Data Analytics, Dalhousie University, Halifax, Canada

3 Computer Science Department, Federal University of São Carlos, São Carlos, Brazil
4 Computer Science Department, University of São Paulo, São Carlos, Brazil

{ccl2,vct}@cin.ufpe.br, stan@cs.dal.ca,
ricado@dc.ufscar.br, cdac@icmc.usp.br

Abstract. Several studies deal with mechanisms for processing transactional
queries over encrypted data. However, little attention has been devoted to de-
termine how a data warehouse (DW) hosted in a cloud should be encrypted to
enable analytical queries processing. In this article, we present a novel method
for encrypting a DW and show performance results of this DW implementation.
Moreover, an OLAP system based on the proposed encryption method was de-
veloped and performance tests were conducted to validate our system in terms
of query processing performance. Results showed that the overhead caused by
the proposed encryption method decreased when the proposed system was
scaled out and compared to a non-encrypted dataset (46.62% with one node and
9.47% with 16 nodes). Also, the computation of aggregates and data groupings
over encrypted data in the server produced performance gains (from 84.67% to
93.95%) when compared to their executions in the client, after decryption.

1 Introduction

One of the services provided by cloud computing is often referred to as Database as a
Service (DAS), where data management is outsourced to a cloud provider. This allows
customers to create, maintain and query their data in the cloud using their internet
connection. Because data are stored in the DAS provider, there are potential risks of
sensitive data, such as financial information or medical records, being stored in an
untrusted host [16]. For security reasons, sensitive data may be encrypted before be-
ing sent to the cloud. However, the execution of queries over these data requires de-
crypting, which often causes high processing costs and can compromise data privacy
if this task is performed in an unsafe data provider. Thus, the execution of queries
directly over encrypted data is able to significantly improve query performance, while
maintaining data privacy [15].

There are several studies in the literature dealing with mechanisms for query
processing over encrypted data [1–7, 9, 13]. Also, in many database applications, data
are often aggregated, integrated and stored in a data warehouse (DW), in order to be

196 C.C. Lopes et al.

queried in a suitable manner and to help users in increasing the productivity of their
decision-making processes. However, little attention has been devoted to the investi-
gation of how the dimensional data of a DW hosted in a cloud should be encrypted for
allowing the processing of analytical queries. A method for encrypting and querying
such a DW is the focus of this article.

In this article, we investigate the development of a method for encrypting and que-
rying a DW hosted in a cloud. To achieve this objective, we introduce in this article
the following contributions:

─ We describe performance tests that investigate how dimensional data should be
encrypted.

─ We propose a novel method for encrypting and querying a DW hosted in a cloud,
which generates indistinguishable encrypted data (i.e. encrypted values different
from each other) and allows the execution of joins between large fact tables and
dimension tables, data aggregations, selection constraints, data groupings and sort-
ing operations over the encrypted dimensional data stored in the cloud.

─ We introduce an OLAP system based on the proposed encryption method.
─ We validate the proposed OLAP system in terms of query processing.

This article is organized as follows. Section 2 surveys related work. Section 3
presents the results gathered from performance tests that investigate how dimensional
data should be encrypted. Section 4 proposes a novel encryption method for DW.
Section 5 details the architecture of the proposed OLAP system, which is validated
experimentally in Section 6. Section 7 concludes the article.

2 Related Work

Several encryption techniques have been proposed to perform computations over
encrypted data, enabling query processing directly over encrypted databases. Symme-
tric Encryption [1, 7, 10] and Asymmetric Encryption [1] are used to encrypt attributes
that are compared by equality operations; Homomorphic Encryption [8–9] is applied
to attributes that are used in the computation of aggregation functions, such as sum
and average; Order Preserving Encryption (OPE) [7, 12–13] and Bucketization [2–3]
ensure that their encrypted values maintain the same order as their corresponding
original values, and are applied to attributes that are used in the computation of max
and min aggregation functions, or attributes that are compared using relational opera-
tors such as =, >, <, ≥, ≤, ≠. Also, Multivalued OPE (MV-OPE) [3–4] is an OPE en-
cryption that produces a probabilistic encryption schema, where unique values from
an original dataset are encrypted to distinct encrypted values with a high probability.
In this article, these distinct encrypted values are referred to as indistinguishable en-
crypted values.

Based on the aforementioned encryption techniques, data encryption schemas and
encryption systems have been proposed. In [4], an MV-OPE encryption schema is pro-
posed but the processing of grouping operations, used in many database applications,
has to be done in the client, after decryption. CryptDB [7] is a system that enables the

 Processing OLAP Queries over an Encrypted Data Warehouse Stored in the Cloud 197

processing of SQL queries over encrypted data. However, range constraints and sorting
operations are executed over values encrypted by an OPE encryption, which leaks the
order of encrypted data and reveals the distribution of the original values since unique
original values are encrypted to the same encrypted value [12].

In [6], a data encryption schema is proposed where each database column is en-
crypted using homomorphic encryption, an indexing mechanism based on MV-OPE
and a secure hash function. This approach does not enable the execution of data
groupings and sorting operations in the same query, because these computations must
be specified over different columns of database tables, while most DBMS require that
these operations are specified in a query over the same columns.

In [5], each record is encrypted as a unique value by using a symmetric encryption,
and the values involved in selection constraints are given as input to an encryption
function to produce indistinguishable encrypted values. Nevertheless, this data en-
cryption schema does not allow the execution of grouping operations over encrypted
values because each record in the database is encrypted as a unique value.

In summary, to the best of our knowledge, all the existing methods suffer from par-
ticular limitations that constrain their use in practical DW implementations. We pro-
pose a novel method that does not suffer from any of these limitations and scales with
respect to the number of processors used in its parallelization.

3 Performance Tests

To compute analytical queries over an encrypted DW, there is a need for: joining
large fact tables and dimension tables; performing aggregations that are usually based
on the sum aggregate function; computing selection constraints (i.e. range/equality
constraints); and executing data groupings and sorting operations. To achieve this, we
carried out performance tests that investigated the following hypotheses:

─ Hypothesis 1. Primary keys of dimension tables and fact tables, and foreign keys of
fact tables should be left unencrypted.

─ Hypothesis 2. Sum aggregation functions should be calculated directly over the
encrypted data stored in the server.

─ Hypothesis 3. Encrypted DWs can be used in the processing of selection con-
straints, data groupings and sorting operations.

For executing the performance tests, we considered a client-server system architec-
ture. The client is responsible for encrypting the data before sending them to the serv-
er, mapping the user analytical queries to queries based on the encrypted DW,
decrypting the data returned by the execution of analytical queries over the encrypted
DW in the server and computing query operations that were not executed in the serv-
er. The server provides all DBMS functionalities by accessing the encrypted data. We
executed performance tests based on the Star Schema Benchmark (SSB) [11], which
is the standard benchmark for the performance evaluation of DW modeled according
to the star schema. We executed all SSB queries over synthetic datasets created with
scale factor 1, which produced about 6M records in the fact table. We defined the test

198 C.C. Lopes et al.

configurations of Table 1, and for each of them, each SSB query was executed five
times, and the averages of the elapsed time (collected in seconds) were calculated.
Experiments were conducted on a laptop with 2.8 GHz Core i7-2640M processor, 6
GB RAM, 5400 RPM SATA 1 TB HD, Debian 7.0 64 bits, PostgreSQL 9.2 and
JRE7, which played the role of client and server. Network costs were not computed
and the encryption algorithms used to encrypt the datasets were implemented in Java.

Table 1. Test Configurations Used in the Experiments

Hypothesis Test Configuration Description

1
KEY-ENC

Primary/foreign keys were encrypted by
Blowfish [10].

KEY-NONENC Primary/foreign keys were kept unencrypted.

2
MEASURE-SYM Measures were encrypted by Blowfish.

MEASURE-HOM
Measures were encrypted by the homomor-
phic encryption proposed in [8].

3

ALL-MVOPE
Descriptive attributes/measures were encrypted
by MV-OPE encryption proposed in [4].

ALL-OPE
Descriptive attributes/measures were encrypt-
ed by OPE encryption defined in [13].

SYM
Descriptive attributes/measures were encrypt-
ed by Blowfish.

In investigating Hypothesis 1, we found that the test configuration KEY-ENC (i.e.
primary and foreign keys encrypted) presented drawbacks w.r.t. KEY-NONENC (i.e.
keys unencrypted). First, the encryption of primary and foreign keys resulted in an
increasing of up 500% in their sizes, degrading the performance of the join operation
in 33.26% w.r.t. the use of unencrypted keys, as shown in Figure 1(A). Second, when
the SSB queries were executed, primary and foreign keys were used only in the com-
putation of joins, which revealed associations between the data items of the tables
associated with the joins being processed, independent of keeping the key attributes
encrypted or not. In addition, we can assume that primary and foreign keys of dimen-
sional data schemas are often surrogate keys as is highly recommended by the literature
[14]. Therefore, keeping these keys unencrypted in a DW provides better performance
than encrypting them, and does not affect data confidentiality because they are often
composed by artificial values that do not display any semantic information.

To investigate Hypothesis 2, we collected the elapsed time for computing the sum
aggregation function over encrypted measures. Results showed that the encryption of
measures by using homomorphic encryption (MEASURE-HOM) produced perfor-
mance gains of 20.54% when compared to measures encrypted through a symmetric
encryption (MEASURE-SYM), as depicted in Figure 1(B). This gain occurred be-
cause with homomorphic encryption, the sum aggregation function was calculated
directly over the encrypted measure values stored in the server, whereas using the
symmetric encryption, the sum had to be executed in the client after decryption since
the symmetric encryption does not enable the computation of the sum operation over

 Processing OLAP Queries

encrypted data. Therefore,
the server is more efficient

To investigate Hypothesi
constraints, data grouping
attributes and encrypted m
these attributes in analytica
gains of 38.91% and 8.69%
Figure 1(C). When compar
encrypted values generated
same order as their respecti
tioned operations directly o
using a symmetric encrypt
encrypted data in the serv
operations were performed
mance gains w.r.t. ALL-MV
an MV-OPE encryption (su
tive original values, and al
operations over the encryp
ecuted in the client after de
OPE encryption are distinct

Fig. 1. Query Pr

Because a DW is a high
a DW based on fixed encr
degree of redundant encryp
statistical attacks [3–4]. Ho
use of an encryption techn
performed by MV-OPE). W
encrypting descriptive attri
head w.r.t. OPE in the proc
operations, and because MV
attacks over encrypted data

4 A Method for E

Based on the collected resu
a DW, which is detailed by

over an Encrypted Data Warehouse Stored in the Cloud

results indicated that the computation of aggregations
than their calculations in the client after decryption.
is 3, we collected the elapsed time for performing select
gs and sorting operations over encrypted descript

measures, since these operations are usually specified o
al queries. Results showed that ALL-OPE had performa
% w.r.t. SYM and ALL-MVOPE, respectively, as shown
red to SYM, the ALL-OPE’s gains occurred because

d by an OPE encryption (such as ALL-OPE) preserved
ive original values, enabling the execution of the aforem
over the encrypted data in the server. On the other hand,
tion (SYM), only equality constraints were executed o
ver, whereas range constraints, data grouping and sort
d in the client, after decryption. The ALL-OPE’s perf
VOPE were modest because encrypted values produced
uch as ALL-OPE) also preserves the order of their resp
llows the computation of selection constraints and sort
ted data in the server. However, data groupings were
ecryption, because the encrypted values produced by M
t from each other.

rocessing Performance for each Test Configuration

h-redundant dimensional database, we have that encrypt
ypted values (as done by OPE) means a DW with a h
pted values and a vulnerability that could be explored
owever, such vulnerability can be minimized through

nique that produces indistinguishable encrypted values
We conclude that MV-OPE is best suited than OPE
ibutes and measures, since MV-OPE caused a small ov
cessing of selection constraints, data groupings and sort
V-OPE is more appropriate than OPE to prevent statist
.

ncrypting a DW

ults of Section 3, we propose a novel method for encrypt
y the Algorithm Encrypt. It receives the original value to

199

s in

tion
tive

over
ance
n in
the
the

men-
, by
over
ting
for-

d by
pec-
ting
ex-

MV-

ting
high
d by

the
(as
for

ver-
ting
tical

ting
o be

200 C.C. Lopes et al.

encrypted and its respective attribute type as input, and generates as output the respec-
tive encrypted value(s). The algorithm tests the attribute type to define the kind of
encryption that will be applied over the original value. If the attribute type is a prima-
ry key or a foreign key (Line 1), then the original value itself is returned (Line 2). If
the attribute type is a measure (Line 3), then two encrypted values are returned:
EncrMeasure1 and EncrMeasure2 (Line 7). EncrMeasure1 is obtained by applying a
homomorphic encryption over the original value (Line 4), while the EncrMeasure2 is
computed by a MV-OPE encryption that produces an ordered set of integer values for
the original value, and an integer value (i.e. encrypted value) is chosen randomly from
this set (Lines 5 and 6). If the attribute type is a descriptive attribute (Line 8), then a
similar MV-OPE encryption process as outlined before is executed, i.e., an ordered
set of integers is generated for the original value (Line 9), and an encrypted value (i.e.
EncrDescriptiveAtt) is chosen from this set and returned by the algorithm (Lines 10
and 11). To execute selection constraints, data groupings and sorting operations over
EncrMeasure2 and EncrDescriptiveAtt, the MV-OPE encryption generated by the
Algorithm Encrypt satisfies the following properties:

1. The generation of an ordered set of integer values must be an order preserving
process. This ensures that the generated encrypted values preserve the order of
their respective original values, enabling selection constraints and sorting opera-
tions be executed directly over the encrypted values.

2. An encrypted value must be chosen randomly from an ordered set of integer val-
ues. This guarantees that the generated encrypted values are different from each
other with a high probability, improving the security of the encrypted DW against
statistical attacks because all encrypted values are likely to be indistinguishable.

3. Different multivalued encrypted values belonging to the same ordered set of integ-
ers can be re-encrypted to a unique value. This is for eliminating the indistingui-
shability between encrypted values from the same ordered set of integers (as stated
in Property 2), ensuring that data groupings are performed over the encrypted val-
ues without decrypting them.

Algorithm Encrypt
Input: Original Value, Attribute Type
Output: Encrypted Value(s)
1: if Attribute Type is in {Primary Key, Foreign Key}
2: return Original Value
3: if Attribute Type is Measure
4: EncrMeasure1 = Homomorphic(Original Value)
5: Set = GenerateOrderedSetOfInt(Original Value)
6: EncrMeasure2 = ChooseIntFromSet(Set)
7: return {EncrMeasure1, EncrMeasure2}
8: if Attribute Type is Descriptive Attribute
9: Set = GenerateOrderedSetOfInt(Original Value)
10: EncrDescriptiveAtt = ChooseIntFromSet(Set)
11: return EncrDescriptiveAtt

 Processing OLAP Queries

5 Querying an En

Our proposed method deta
this section. The proposed
directly over the encrypted
analytical query processing
2 shows the architecture of
nents: DaaS, Scalable Laye
ble Layer are component
considered vulnerable elem
deployed in the user environ

The DaaS maintains an
among several database ma
DW-i has an embedded que
contains a DW Master whic
The address of a DW-i is us
analytical queries.

Fig. 2.

Client Layer is responsib
for sending back the respo
analytical queries and thei
schema of the original DW,

To process these analyti
with Secure Host, which re
cal data schema of the encr
query parameters and for
Scalable Layer. For this, Se
of the original DW and of i
keys used in the encryption

Scalable Layer is aimed
queries over an encrypted D
Query Queue and Status Q
for distributing analytical q

over an Encrypted Data Warehouse Stored in the Cloud

ncrypted DW Hosted in the Cloud

ailed in Section 4 is used by an OLAP system outlined
OLAP system allows that analytical queries be proces

d DW without post-processing in the client, and that
g makes use of the scalability provided by the cloud. Fig
f the proposed OLAP system, which has four main com
er, Secure Host and Client Layer. The DaaS and the Sca
ts deployed in the cloud (server), and therefore,

ments, whereas the Secure Host and the Client Layer
nment (client) and are seen as secure elements.

n encrypted DW whose data are partitioned horizonta
anagement systems DW-1, DW-2, …, DW-n, so that e

ery processor to compute analytical queries. Also, the Da
ch is a repository that contains the addresses of each DW
sed to open a connection with the DW-i in order to exec

The Proposed OLAP System Architecture

ble for receiving user’s queries from User Application
onses of these queries to the User Application. The use
ir respective answers are built based on the logical d
, ensuring a transparent encryption for User Application
ical queries over an encrypted DW, Client Layer intera
ewrites and transforms them into queries based on the lo
rypted DW. Secure Host is also responsible for encrypt
decrypting the analytical queries’ results received fr

ecure Host keeps metadata about the logical data schem
its corresponding encrypted DW, and holds the encrypt
 and decryption processes.

d at providing a scalable mechanism to perform analyt
DW stored in the DaaS. It is composed by a Master no

Queue, and several Slave nodes. Master node is responsi
queries between Slave nodes, and for merging the par

201

d in
ssed
the

gure
mpo-
ala-
are
are

ally
each
aaS
W-i.
cute

and
er’s
data
n.
acts
ogi-
ting
rom
mas
tion

tical
ode,
ible
rtial

202 C.C. Lopes et al.

results obtained from Slave nodes into a merged final result set to be sent to Client
Layer. Slave nodes are responsible for submitting analytical queries to be processed in
a specific DW-i and for post-processing the retrieved results in order to compute the
data groupings. Finally, Query Queue is used by Master node for sending messages to
Slave nodes in order to request the execution of analytical queries over the encrypted
DW stored in the DaaS, while Status Queue is used by Slave nodes to notify the Mas-
ter node about the ending of an analytical query processing, so that the Master node
can retrieve the partial results from each Slave node.

5.1 Computing OLAP Queries over Indistinguishable Encrypted Data

In detail, User Application submits an analytical query to Client Layer, which for-
wards the query to the Secure Host’s Engine in order to be mapped into an analytical
query to be executed over the encrypted DW. To achieve this, the Engine searches the
metadata for mapping attributes and tables specified in the given analytical query into
the corresponding attributes and tables of the encrypted DW. Also, it removes the
group by clause since this operation cannot be executed directly over the indistin-
guishable encrypted values stored in the encrypted DW. Next, Engine obtains the
necessary encryption keys to encrypt each parameter’s value defined in the analytical
query and generates public keys to be sent to Slave nodes. These keys are used by
Slave nodes for re-encrypting the indistinguishable encrypted values in order to elimi-
nate their indistinguishability and thus, enabling the computation of data groupings
(as stated in Section 4). Then, Engine sends a set K = {QRY, G, PuK} back to Client
Layer, where QRY corresponds to the mapped analytical query (based on the en-
crypted DW and without data groupings), G is the list of attributes specified in the
group by clause, and PuK are the generated public keys.

Master node receives the set K from Client Layer and sends a request to DW Mas-
ter to obtain the address of each DW-i where the analytical query will be executed.
The Master node then issues a set of messages of the type {ID, K, ADDRi} to Query
Queue, where ID is the analytical query identifier, K is the set K and ADDRi is the
address of a specific DW-i. Further, the Slave nodes read the messages queued in the
Query Queue and send the analytical query QRY to the respective DW-i to be
processed. Each message read from Query Queue is dequeued to avoid reprocessing.
Further, Slave nodes obtain the result set from the DW-i and compute the data group-
ings by executing the Algorithm ExecuteGrouping. This algorithm takes the result set,
the list of attributes G specified in the group by clause, and the public keys PuK as
input, and executes an iterative process (Lines 1 to 8) to generate as output a result set
G’ with the query results grouped by G (as specified in the user’s analytical query).

For each attribute specified in the group by clause (Line 2), the algorithm obtains
its respective public key from PuK (Line 3) and its respective indistinguishable en-
crypted value from the record read (Line 4), and uses both to produce a unique en-
crypted value (Line 5), which is stored in a record of identifiers (Line 6). A unique
encrypted value is obtained by mapping the indistinguishable encrypted value se-
lected by a query into a sorted identifier. This identifier is generated for the ordered
set of integers to which the indistinguishable encrypted value belongs. Therefore,

 Processing OLAP Queries over an Encrypted Data Warehouse Stored in the Cloud 203

there is a 1:1 association between ordered sets of integers and their identifiers, and
this association eliminates the indistinguishability since indistinguishable encrypted
values belonging to the same ordered set of integers will be mapped to the same iden-
tifier in a query. Also, a same ordered set of integers is associated with distinct iden-
tifiers in different query executions with a high probability because the identifier of an
ordered set is randomly generated in different query executions. Further, the original
values remain unknown to the server because the generated identifiers do not reveal
any information about the original values except their ordering.

Next, the list of measure values are collected from the record read (Line 7) and
used together with the identifiers obtained for the attributes in G in order to compose
the new result set G’ whose sum of measure values is grouped by G (Line 8). A result
set G’ is represented by a hash table HT composed by two columns denoted by k and
v. For each row (k, v) in HT, k is the concatenation of each identifier (obtained for the
attributes specified in G), and v is a list of measure values. A new row (k’, v’) is added
to HT when the value k’ is not found in HT; otherwise, each value of v’ is added to the
corresponding value of v stored in an existing row (k, v) of HT, so that k = k’. When
all records in the result set are processed, the new result set G’ is returned (Line 9).

Algorithm ExecuteGrouping
Input: Result Set, G, PuK
Output: Result Set With Data Groupings
1: for each Record in Result Set
2: for each Attribute in G
3: PKey = GetPublicKeyFromPuK(PuK, Attribute)
4: Indist = GetIndistFromRecord(Record, Attribute)
5: Id = GenerateOrderedSetOfIntID(Indist, Key)
6: Save(Id, RecordOfIds)
7: Measures = GetMeasuresFromRecord(Record)
8: G’ = AddGrouping(G’, Measures, RecordOfIds)
9: return G’

In the sequence, each Slave node notifies the Master node by sending a message to
Status Queue. A message is composed by {ID, ADDRsh}, where ID is the analytical
query identifier and ADDRsh is the address of the Slave node. Then, Master node
reads messages queued in Status Queue (each message read is dequeued to avoid
reprocessing), and obtains the result set from each Slave node identified by ADDRsh.
Master node merges all result sets into a merged final result set by executing the Al-
gorithm MergeResults detailed as follows. It receives a result set G’ produced by a
Slave node and a merged result set MRS as input, and produces a new MRS merged
with G’. For each row (k’, v’) in G’ (Line 1), it tries to find a row (k, v) of MRS so that
k = k’ (Line 2). If a row is found (Line 3), then each measure value of v’ in (k’, v’) is
added to the corresponding measure value of v of the found row (Line 4). Otherwise,
the row (k’, v’) is inserted into MRS (Line 6). When all rows of G’ are processed, the
merged result set MRS is returned (Line 7).

After merging all result sets, the Master node sends the final result set to Client
Layer, which forwards it to Secure Host’s Engine for decryption. Engine obtains the

204 C.C. Lopes et al.

necessary encryption keys, decrypts the final result set, and sends it back to Client
Layer. Finally, Client Layer delivers the final results to User Application.

Algorithm MergeResults
Input: Result Set G’, Merged Result Set MRS
Output: Merged Result Set MRS
1: for each (k’, v’) in G’
2: Row = FindRowInMergedResultSet(k’, MRS)
3: if Row is found
4: AddMeasureValues(v’, Row)
5: else
6: InsertRowInMergedResultSet((k’, v’), MRS)
7: return MRS

6 Performance Evaluation

We defined three test configurations: All Processing in the Server (ALL-SRV), which
is the test configuration for the OLAP system proposed in Section 5, where all DW’s
attributes were encrypted according to the encryption method of Section 4, and the
homomorphic encryption defined in [8]; Non Encrypted Baseline (NONENC-BLN),
where a DW with unencrypted values was considered; and Post-Processing in the
Client (POST-CLI), where primary and foreign keys were kept unencrypted, descrip-
tive attributes were encrypted by the OPE encryption defined in [13], measures were
encrypted by using Blowfish [10], and the Secure Host was responsible for decrypting
the final results and computing the sum aggregation functions and data groupings.

Using the benchmark SSB [11], we created datasets with scale factor 1 for each
test configuration. The Client Layer and Secure Host were deployed on a laptop with
2.10 GHz Pentium T4300 processor, 4 GB RAM, 5400 RPM SATA 500 GB HD,
Debian 6.0 32bits and JRE7. The Scalable Layer was deployed on the Windows
Azure using computers with shared CPUs, 768 MB RAM, 20 GB HD and Windows
Server 2008 R2. The DaaS was deployed on the Windows SQL Azure. The band-
width network used between the Client Layer and the Master node was 6Mbps, while
the bandwidth network used between the components of the Scalable Layer itself and
between the components of the Scalable Layer and the DaaS was 5Mbps. Network
costs between the Client Layer and the Secure Host were not computed. The encryp-
tion algorithms were implemented in Java.

Experiments were performed using 1, 2, 4, 8 and 16 Slave nodes, so that the SBB
datasets were equally partitioned among 1, 2, 4, 8 and 16 DW-i. For each test configu-
ration, each SSB query was executed five times, and the averages of the following
metrics were collected in seconds: Query: average time spent by each Slave node to
process an analytical query; Retrieve: time spent by the Master node to collect the
query results obtained from each Slave node and merge them; Total Server: server
time (i.e. sum of Query and Retrieve); Download: time spent by the Client Layer to
retrieve the final results of an analytical query from the Master node; Post
Processing: time spent by the Secure Host to decrypt the analytical query results; and
finally, Total Client: client time (i.e. sum of Download and Post Processing).

 Processing OLAP Queries

We investigated the imp
tributing the execution of an
Layer of the proposed syst
encrypted by the proposed
collected the elapsed time
overhead of ALL-SRV w.r.t
creased with the increase in
occurred because with the
each Slave node was minim
to complete the processing

Figure 3(B) depicts the
BLN. For this metric, the
50.11% (with 1 Slave node
when the proposed system w
the processing performance
proposed encryption metho

Fig. 3. Query Proce

We also compared the el
(i.e. all query operations we
by POST-CLI (i.e. the clie
tions and data groupings).
gains w.r.t. POST-CLI that
Slave nodes from 1 to 16. T
aggregates and data groupi
large volume of data were t
the Master node to the Clie
that had to merge a greater
that had to decrypt a large
groupings over the decrypte
performance gains w.r.t. P
by the Master node (i.e. R
records from the Master no
post-processing executed by

We also gathered the e
client and the server. Figur
w.r.t. POST-CLI, which: r
greater than 97.38% in the

over an Encrypted Data Warehouse Stored in the Cloud

act of scaling out on query processing performance by d
nalytical queries across Slave nodes located in the Scala
tem architecture of Figure 2. Using ALL-SRV (i.e. a D
method) and NONENC-BLN (i.e. an unencrypted DW),
for computing all SSB queries. Results showed that

t. NONENC-BLN ranged from 9.47% to 46.62%, and
n the number of Slave nodes (Figure 3(A)). This decre
increase in the number of Slave nodes, the workload

mized shortening the average time spent by each Slave n
of all SBB queries (i.e. Query).
values of Query collected for ALL-SRV and NONEN

overhead of ALL-SRV w.r.t. NONENC-BLN ranged fr
e) to 17.72% (with 16 Slave nodes). Results showed t
was scaled out, the use of an encrypted DW did not imp
e of analytical queries, because the overhead caused by
d was reduced when compared to an unencrypted DW.

essing Performance of ALL-SRV w.r.t. NONENC-BLN

lapsed time for computing all SSB queries using ALL-S
ere executed in the server) with the elapsed time produ

ent was responsible for computing sum aggregation fu
Figure 4(A) shows that ALL-SRV obtained performa
varied from 84.67% to 93.95%, by ranging the number

These gains occurred because POST-CLI does not comp
ings over the server’s encrypted data, and consequently
transferred from Slave nodes to the Master node, and fr
ent Layer. This increased the workload of the Master n
r number of records and the workload of the Secure H

er number of records and to compute aggregates and d
ed data records. Figure 4(B) shows that ALL-SRV produ
OST-CLI of at least: 97.60% in the processing perform
Retrieve); 97.50% in the time spent for transferring d
ode to the Client Layer (i.e. Download); and 96.20% in
y the Secure Host (i.e. Post Processing).
lapsed time on query processing distributed between
re 5(A) shows that ALL-SRV produced performance ga
ranged from 63.21% to 82.13% in the server; and w
e client, indicating that the calculation of aggregates

205

dis-
able
DW
 we
the
de-

ease
d of
node

NC-
rom
that
pair
the

SRV
uced
unc-
ance
r of

pute
y, a
rom
ode

Host
data
uced
med
data
the

the
ains

were
and

206 C.C. Lopes et al.

data groupings in the clien
mance on the processing o
spent from 62.77% up to 77
processing in the client ex
shows that ALL-SRV spent
because ALL-SRV enabled
crypted data in the server, w
to transfer the queries’ enc
these results in the client.

Fig. 4. Query Pro

Fig. 5. Distribution o

7 Conclusion and

We proposed a new metho
OLAP queries over an en
showed that: primary and f
aggregates using measures
ical query processing perfor
computation of selection co
scriptive attributes and mea
novel encryption method.
DWs partitioned among sev
caused by our encryption
(with 1 Slave node); and th
encrypted data in the server
93.95% when compared to
work, we intend to evalua
different data scalability, an
the component DaaS of th

nt (after decryption) impaired the overall system’s perf
of analytical queries. As shown in Figure 5(B), POST-C
7.20% of its runtime in the client, illustrating that the po
xecuted by POST-CLI was time consuming. Figure 5
t from 67.33% up to 89.33% of its runtime in the serv

the execution of analytical queries directly over the
while the ALL-SRV’s remaining time was the time requi
crypted results to the client, and the time for decrypt

ocessing Performance of ALL-SRV w.r.t. POST-CLI

of Queries Processing between the Client and the Server

Future Work

od for encrypting a DW and enabling the processing
ncrypted DW that was validated experimentally. Res
foreign keys must be kept unencrypted; the computation
encrypted by homomorphic encryption favored the ana
rmance; and the use of an MV-OPE encryption enables
onstraints, data groupings and sorting operations over
asures. Also, we proposed an OLAP system based on
This system performs analytical queries over encryp

veral nodes in the DAS. Results showed that the overh
ranged from to 9.47% (with 16 Slave nodes) to 46.6

hat the computation of aggregates and data groupings o
r produced performance gains that ranged from 84.67%

o their executions in the client, after decryption. As fut
ate the performance of the proposed OLAP system w
nd to investigate if data groupings should be computed

he proposed system using indistinguishable encrypted v

for-
CLI
ost-

5(C)
ver,
en-

ired
ting

g of
ults
n of
alyt-

the
de-
the

pted
head
62%
over
% to
ture
with
d by
val-

 Processing OLAP Queries over an Encrypted Data Warehouse Stored in the Cloud 207

ues. A study of the proposed encryption method in terms of security guarantees is
another indication of future work.

Acknowledgments. This work has been funded by the Conselho Nacional de Desen-
volvimento Científico e Tecnológico (CNPq) under the grants 246688/2012-2 and
246263/2012-1, by the São Paulo Research Foundation (FAPESP) under the grant
2011/23904-7, by the Natural Sciences and Engineering Research Council of Canada,
and by the Canadian Bureau for International Education.

References

1. Kadhen, H., Amagasa, T., Kitagawa, H.: A Novel Framework for Database Security Based
on Mixed Cryptography. In: Proc. ICIW, Venice, Italy, pp. 163–170 (2009)

2. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure Multidimensional Range
Queries over Outsourced Data. The VLDB Journal 21(3), 333–358 (2012)

3. Kadhen, H., Amagasa, T., Kitagawa, H.: Optimization Techniques for Range Queries in
the Multivalued-Partial Order Preserving Encryption Scheme. Knowledge Discovery,
Knowledge Engineering and Knowledge Management 272, 338–353 (2013)

4. Kadhen, H., Amagasa, T., Kitagawa, H.: MV-OPES: Multivalued-Order Preserving En-
cryption Scheme: A Novel Scheme for Encrypting Integer Value to Many Different Val-
ues. IEICE Trans. Inf. & Syst. 93-D(9), 2520–2533 (2010)

5. Chen, K., Kavuluru, R., Guo, S.: RASP: Efficient Multidimensional Range Query on At-
tack-resilient Encrypted Databases. In: Proc. CODASPY, New York, USA, pp. 249–260
(2011)

6. Liu, D., Wang, S.: Programmable Order-Preserving Secure Index for Encrypted Database
Query. In: Proc. CLOUD, Washington, USA, pp. 502–509 (2012)

7. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: Processing Que-
ries on an Encrypted Database. Commun. ACM 55(9), 103–111 (2012)

8. Castelluccia, C., Chan, A.C.F., Mykletun, E., Tsudik, G.: Efficient and Provably Secure
Aggregation of Encrypted Data in WSN. ACM Trans. Sen. Netw. 5(3), 1–36 (2009)

9. Liu, D.: Securing Outsourced Databases in the Cloud. In: Security, Privacy and Trust in
Cloud Systems, pp. 259–282. Springer, Heidelberg (2014)

10. Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blowfish).
In: Fast Software Encryption, Cambridge Security Workshop, London, UK, pp. 191–204
(1993)

11. O’Neil, P., O’Neil, E., Chen, X.: The Star Schema Benchmark. Online Publication of Da-
tabase Generation Program (2007),
http://www.cs.umb.edu/~poneil/StarSchemaB.pdf

12. Wang, P., Ravishankar, C.V.: Secure and Efficient Range Queries on Outsourced Databas-
es using Rp-trees. In: Proc. ICDE, Brisbane, Australia, pp. 314–325 (2013)

13. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order Preserving Encryption for Numeric
Data. In: Proc. SIGMOD, Paris, France, pp. 563–574 (2004)

14. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling, 3rd edn. John Wiley & Sons (2013)

15. Suciu, D.: SQL on an Encrypted Database: Technical Perspective. Commun. ACM 55(9),
102–102 (2012)

16. Adabi, J.D.: Data Management in the Cloud: Limitations and Opportunities. IEEE Data
Eng. Bull. 32(1), 3–12 (2009)

	Processing OLAP Queries over an Encrypted Data Warehouse Stored in the Cloud
	1 Introduction
	2 Related Work
	3 Performance Tests
	4 A Method for E ncrypting a DW
	5 Querying an En ncrypted DW Hosted in the Cloud
	5.1 Computing OLAP Queries over Indistinguishable Encrypted Data

	6 Performance Evaluation
	7 Conclusion and Future Work
	References

