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Abstract. Several studies deal with mechanisms for processing transactional 
queries over encrypted data. However, little attention has been devoted to de-
termine how a data warehouse (DW) hosted in a cloud should be encrypted to 
enable analytical queries processing. In this article, we present a novel method 
for encrypting a DW and show performance results of this DW implementation. 
Moreover, an OLAP system based on the proposed encryption method was de-
veloped and performance tests were conducted to validate our system in terms 
of query processing performance. Results showed that the overhead caused by 
the proposed encryption method decreased when the proposed system was 
scaled out and compared to a non-encrypted dataset (46.62% with one node and 
9.47% with 16 nodes). Also, the computation of aggregates and data groupings 
over encrypted data in the server produced performance gains (from 84.67% to 
93.95%) when compared to their executions in the client, after decryption.  

1 Introduction 

One of the services provided by cloud computing is often referred to as Database as a 
Service (DAS), where data management is outsourced to a cloud provider. This allows 
customers to create, maintain and query their data in the cloud using their internet 
connection. Because data are stored in the DAS provider, there are potential risks of 
sensitive data, such as financial information or medical records, being stored in an 
untrusted host [16]. For security reasons, sensitive data may be encrypted before be-
ing sent to the cloud. However, the execution of queries over these data requires de-
crypting, which often causes high processing costs and can compromise data privacy 
if this task is performed in an unsafe data provider. Thus, the execution of queries 
directly over encrypted data is able to significantly improve query performance, while 
maintaining data privacy [15]. 

There are several studies in the literature dealing with mechanisms for query 
processing over encrypted data [1–7, 9, 13]. Also, in many database applications, data 
are often aggregated, integrated and stored in a data warehouse (DW), in order to be 
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queried in a suitable manner and to help users in increasing the productivity of their 
decision-making processes. However, little attention has been devoted to the investi-
gation of how the dimensional data of a DW hosted in a cloud should be encrypted for 
allowing the processing of analytical queries. A method for encrypting and querying 
such a DW is the focus of this article. 

In this article, we investigate the development of a method for encrypting and que-
rying a DW hosted in a cloud. To achieve this objective, we introduce in this article 
the following contributions: 

─ We describe performance tests that investigate how dimensional data should be 
encrypted. 

─ We propose a novel method for encrypting and querying a DW hosted in a cloud, 
which generates indistinguishable encrypted data (i.e. encrypted values different 
from each other) and allows the execution of joins between large fact tables and 
dimension tables, data aggregations, selection constraints, data groupings and sort-
ing operations over the encrypted dimensional data stored in the cloud. 

─ We introduce an OLAP system based on the proposed encryption method. 
─ We validate the proposed OLAP system in terms of query processing. 

This article is organized as follows. Section 2 surveys related work. Section 3 
presents the results gathered from performance tests that investigate how dimensional 
data should be encrypted. Section 4 proposes a novel encryption method for DW. 
Section 5 details the architecture of the proposed OLAP system, which is validated 
experimentally in Section 6. Section 7 concludes the article. 

2 Related Work 

Several encryption techniques have been proposed to perform computations over 
encrypted data, enabling query processing directly over encrypted databases. Symme-
tric Encryption [1, 7, 10] and Asymmetric Encryption [1] are used to encrypt attributes 
that are compared by equality operations; Homomorphic Encryption [8–9] is applied 
to attributes that are used in the computation of aggregation functions, such as sum 
and average; Order Preserving Encryption (OPE) [7, 12–13] and Bucketization [2–3] 
ensure that their encrypted values maintain the same order as their corresponding 
original values, and are applied to attributes that are used in the computation of max 
and min aggregation functions, or attributes that are compared using relational opera-
tors such as =, >, <, ≥, ≤, ≠. Also, Multivalued OPE (MV-OPE) [3–4] is an OPE en-
cryption that produces a probabilistic encryption schema, where unique values from 
an original dataset are encrypted to distinct encrypted values with a high probability. 
In this article, these distinct encrypted values are referred to as indistinguishable en-
crypted values. 

Based on the aforementioned encryption techniques, data encryption schemas and 
encryption systems have been proposed. In [4], an MV-OPE encryption schema is pro-
posed but the processing of grouping operations, used in many database applications, 
has to be done in the client, after decryption. CryptDB [7] is a system that enables the 
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processing of SQL queries over encrypted data. However, range constraints and sorting 
operations are executed over values encrypted by an OPE encryption, which leaks the 
order of encrypted data and reveals the distribution of the original values since unique 
original values are encrypted to the same encrypted value [12].  

In [6], a data encryption schema is proposed where each database column is en-
crypted using homomorphic encryption, an indexing mechanism based on MV-OPE 
and a secure hash function. This approach does not enable the execution of data 
groupings and sorting operations in the same query, because these computations must 
be specified over different columns of database tables, while most DBMS require that 
these operations are specified in a query over the same columns.  

In [5], each record is encrypted as a unique value by using a symmetric encryption, 
and the values involved in selection constraints are given as input to an encryption 
function to produce indistinguishable encrypted values. Nevertheless, this data en-
cryption schema does not allow the execution of grouping operations over encrypted 
values because each record in the database is encrypted as a unique value.  

In summary, to the best of our knowledge, all the existing methods suffer from par-
ticular limitations that constrain their use in practical DW implementations. We pro-
pose a novel method that does not suffer from any of these limitations and scales with 
respect to the number of processors used in its parallelization. 

3 Performance Tests 

To compute analytical queries over an encrypted DW, there is a need for: joining 
large fact tables and dimension tables; performing aggregations that are usually based 
on the sum aggregate function; computing selection constraints (i.e. range/equality 
constraints); and executing data groupings and sorting operations. To achieve this, we 
carried out performance tests that investigated the following hypotheses: 

─ Hypothesis 1. Primary keys of dimension tables and fact tables, and foreign keys of 
fact tables should be left unencrypted. 

─ Hypothesis 2. Sum aggregation functions should be calculated directly over the 
encrypted data stored in the server. 

─ Hypothesis 3. Encrypted DWs can be used in the processing of selection con-
straints, data groupings and sorting operations. 

For executing the performance tests, we considered a client-server system architec-
ture. The client is responsible for encrypting the data before sending them to the serv-
er, mapping the user analytical queries to queries based on the encrypted DW,  
decrypting the data returned by the execution of analytical queries over the encrypted 
DW in the server and computing query operations that were not executed in the serv-
er. The server provides all DBMS functionalities by accessing the encrypted data. We 
executed performance tests based on the Star Schema Benchmark (SSB) [11], which 
is the standard benchmark for the performance evaluation of DW modeled according 
to the star schema. We executed all SSB queries over synthetic datasets created with 
scale factor 1, which produced about 6M records in the fact table. We defined the test 
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configurations of Table 1, and for each of them, each SSB query was executed five 
times, and the averages of the elapsed time (collected in seconds) were calculated. 
Experiments were conducted on a laptop with 2.8 GHz Core i7-2640M processor, 6 
GB RAM, 5400 RPM SATA 1 TB HD, Debian 7.0 64 bits, PostgreSQL 9.2 and 
JRE7, which played the role of client and server. Network costs were not computed 
and the encryption algorithms used to encrypt the datasets were implemented in Java. 

Table 1. Test Configurations Used in the Experiments 

Hypothesis Test Configuration Description 

1 
KEY-ENC 

Primary/foreign keys were encrypted by 
Blowfish [10]. 

KEY-NONENC Primary/foreign keys were kept unencrypted. 

2 
MEASURE-SYM Measures were encrypted by Blowfish. 

MEASURE-HOM 
Measures were encrypted by the homomor-
phic encryption proposed in [8]. 

3 

ALL-MVOPE 
Descriptive attributes/measures were encrypted 
by MV-OPE encryption proposed in [4]. 

ALL-OPE 
Descriptive attributes/measures were encrypt-
ed by OPE encryption defined in [13]. 

SYM 
Descriptive attributes/measures were encrypt-
ed by Blowfish. 

In investigating Hypothesis 1, we found that the test configuration KEY-ENC (i.e. 
primary and foreign keys encrypted) presented drawbacks w.r.t. KEY-NONENC (i.e. 
keys unencrypted). First, the encryption of primary and foreign keys resulted in an 
increasing of up 500% in their sizes, degrading the performance of the join operation 
in 33.26% w.r.t. the use of unencrypted keys, as shown in Figure 1(A). Second, when 
the SSB queries were executed, primary and foreign keys were used only in the com-
putation of joins, which revealed associations between the data items of the tables 
associated with the joins being processed, independent of keeping the key attributes 
encrypted or not. In addition, we can assume that primary and foreign keys of dimen-
sional data schemas are often surrogate keys as is highly recommended by the literature 
[14]. Therefore, keeping these keys unencrypted in a DW provides better performance 
than encrypting them, and does not affect data confidentiality because they are often 
composed by artificial values that do not display any semantic information. 

To investigate Hypothesis 2, we collected the elapsed time for computing the sum 
aggregation function over encrypted measures. Results showed that the encryption of 
measures by using homomorphic encryption (MEASURE-HOM) produced perfor-
mance gains of 20.54% when compared to measures encrypted through a symmetric 
encryption (MEASURE-SYM), as depicted in Figure 1(B). This gain occurred be-
cause with homomorphic encryption, the sum aggregation function was calculated 
directly over the encrypted measure values stored in the server, whereas using the 
symmetric encryption, the sum had to be executed in the client after decryption since 
the symmetric encryption does not enable the computation of the sum operation over 
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encrypted and its respective attribute type as input, and generates as output the respec-
tive encrypted value(s). The algorithm tests the attribute type to define the kind of 
encryption that will be applied over the original value. If the attribute type is a prima-
ry key or a foreign key (Line 1), then the original value itself is returned (Line 2). If 
the attribute type is a measure (Line 3), then two encrypted values are returned: 
EncrMeasure1 and EncrMeasure2 (Line 7). EncrMeasure1 is obtained by applying a 
homomorphic encryption over the original value (Line 4), while the EncrMeasure2 is 
computed by a MV-OPE encryption that produces an ordered set of integer values for 
the original value, and an integer value (i.e. encrypted value) is chosen randomly from 
this set (Lines 5 and 6). If the attribute type is a descriptive attribute (Line 8), then a 
similar MV-OPE encryption process as outlined before is executed, i.e., an ordered 
set of integers is generated for the original value (Line 9), and an encrypted value (i.e. 
EncrDescriptiveAtt) is chosen from this set and returned by the algorithm (Lines 10 
and 11). To execute selection constraints, data groupings and sorting operations over 
EncrMeasure2 and EncrDescriptiveAtt, the MV-OPE encryption generated by the 
Algorithm Encrypt satisfies the following properties: 

1. The generation of an ordered set of integer values must be an order preserving 
process. This ensures that the generated encrypted values preserve the order of 
their respective original values, enabling selection constraints and sorting opera-
tions be executed directly over the encrypted values. 

2. An encrypted value must be chosen randomly from an ordered set of integer val-
ues. This guarantees that the generated encrypted values are different from each 
other with a high probability, improving the security of the encrypted DW against 
statistical attacks because all encrypted values are likely to be indistinguishable. 

3. Different multivalued encrypted values belonging to the same ordered set of integ-
ers can be re-encrypted to a unique value. This is for eliminating the indistingui-
shability between encrypted values from the same ordered set of integers (as stated 
in Property 2), ensuring that data groupings are performed over the encrypted val-
ues without decrypting them.  

Algorithm Encrypt 
Input: Original Value, Attribute Type 
Output: Encrypted Value(s) 
1: if Attribute Type is in {Primary Key, Foreign Key} 
2:  return Original Value 
3: if Attribute Type is Measure 
4:  EncrMeasure1 = Homomorphic(Original Value) 
5:  Set = GenerateOrderedSetOfInt(Original Value) 
6:  EncrMeasure2 = ChooseIntFromSet(Set) 
7:  return {EncrMeasure1, EncrMeasure2} 
8: if Attribute Type is Descriptive Attribute 
9:  Set = GenerateOrderedSetOfInt(Original Value) 
10:  EncrDescriptiveAtt = ChooseIntFromSet(Set) 
11:  return EncrDescriptiveAtt 
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results obtained from Slave nodes into a merged final result set to be sent to Client 
Layer. Slave nodes are responsible for submitting analytical queries to be processed in 
a specific DW-i and for post-processing the retrieved results in order to compute the 
data groupings. Finally, Query Queue is used by Master node for sending messages to 
Slave nodes in order to request the execution of analytical queries over the encrypted 
DW stored in the DaaS, while Status Queue is used by Slave nodes to notify the Mas-
ter node about the ending of an analytical query processing, so that the Master node 
can retrieve the partial results from each Slave node. 

5.1 Computing OLAP Queries over Indistinguishable Encrypted Data 

In detail, User Application submits an analytical query to Client Layer, which for-
wards the query to the Secure Host’s Engine in order to be mapped into an analytical 
query to be executed over the encrypted DW. To achieve this, the Engine searches the 
metadata for mapping attributes and tables specified in the given analytical query into 
the corresponding attributes and tables of the encrypted DW. Also, it removes the 
group by clause since this operation cannot be executed directly over the indistin-
guishable encrypted values stored in the encrypted DW. Next, Engine obtains the 
necessary encryption keys to encrypt each parameter’s value defined in the analytical 
query and generates public keys to be sent to Slave nodes. These keys are used by 
Slave nodes for re-encrypting the indistinguishable encrypted values in order to elimi-
nate their indistinguishability and thus, enabling the computation of data groupings 
(as stated in Section 4). Then, Engine sends a set K = {QRY, G, PuK} back to Client 
Layer, where QRY corresponds to the mapped analytical query (based on the en-
crypted DW and without data groupings), G is the list of attributes specified in the 
group by clause, and PuK are the generated public keys.  

Master node receives the set K from Client Layer and sends a request to DW Mas-
ter to obtain the address of each DW-i where the analytical query will be executed. 
The Master node then issues a set of messages of the type {ID, K, ADDRi} to Query 
Queue, where ID is the analytical query identifier, K is the set K and ADDRi is the 
address of a specific DW-i. Further, the Slave nodes read the messages queued in the 
Query Queue and send the analytical query QRY to the respective DW-i to be 
processed. Each message read from Query Queue is dequeued to avoid reprocessing. 
Further, Slave nodes obtain the result set from the DW-i and compute the data group-
ings by executing the Algorithm ExecuteGrouping. This algorithm takes the result set, 
the list of attributes G specified in the group by clause, and the public keys PuK as 
input, and executes an iterative process (Lines 1 to 8) to generate as output a result set 
G’ with the query results grouped by G (as specified in the user’s analytical query). 

For each attribute specified in the group by clause (Line 2), the algorithm obtains 
its respective public key from PuK (Line 3) and its respective indistinguishable en-
crypted value from the record read (Line 4), and uses both to produce a unique en-
crypted value (Line 5), which is stored in a record of identifiers (Line 6). A unique 
encrypted value is obtained by mapping the indistinguishable encrypted value se-
lected by a query into a sorted identifier. This identifier is generated for the ordered 
set of integers to which the indistinguishable encrypted value belongs. Therefore, 
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there is a 1:1 association between ordered sets of integers and their identifiers, and 
this association eliminates the indistinguishability since indistinguishable encrypted 
values belonging to the same ordered set of integers will be mapped to the same iden-
tifier in a query. Also, a same ordered set of integers is associated with distinct iden-
tifiers in different query executions with a high probability because the identifier of an 
ordered set is randomly generated in different query executions. Further, the original 
values remain unknown to the server because the generated identifiers do not reveal 
any information about the original values except their ordering. 

Next, the list of measure values are collected from the record read (Line 7) and 
used together with the identifiers obtained for the attributes in G in order to compose 
the new result set G’ whose sum of measure values is grouped by G (Line 8). A result 
set G’ is represented by a hash table HT composed by two columns denoted by k and 
v. For each row (k, v) in HT, k is the concatenation of each identifier (obtained for the 
attributes specified in G), and v is a list of measure values. A new row (k’, v’) is added 
to HT when the value k’ is not found in HT; otherwise, each value of v’ is added to the 
corresponding value of v stored in an existing row (k, v) of HT, so that k = k’. When 
all records in the result set are processed, the new result set G’ is returned (Line 9). 

Algorithm ExecuteGrouping 
Input: Result Set, G, PuK 
Output: Result Set With Data Groupings 
1: for each Record in Result Set 
2:  for each Attribute in G 
3:   PKey = GetPublicKeyFromPuK(PuK, Attribute) 
4:   Indist = GetIndistFromRecord(Record, Attribute) 
5:   Id = GenerateOrderedSetOfIntID(Indist, Key) 
6:   Save(Id, RecordOfIds) 
7:  Measures = GetMeasuresFromRecord(Record) 
8:  G’ = AddGrouping(G’, Measures, RecordOfIds) 
9: return G’ 

In the sequence, each Slave node notifies the Master node by sending a message to 
Status Queue. A message is composed by {ID, ADDRsh}, where ID is the analytical 
query identifier and ADDRsh is the address of the Slave node. Then, Master node 
reads messages queued in Status Queue (each message read is dequeued to avoid 
reprocessing), and obtains the result set from each Slave node identified by ADDRsh. 
Master node merges all result sets into a merged final result set by executing the Al-
gorithm MergeResults detailed as follows. It receives a result set G’ produced by a 
Slave node and a merged result set MRS as input, and produces a new MRS merged 
with G’. For each row (k’, v’) in G’ (Line 1), it tries to find a row (k, v) of MRS so that 
k = k’ (Line 2). If a row is found (Line 3), then each measure value of v’ in (k’, v’) is 
added to the corresponding measure value of v of the found row (Line 4). Otherwise, 
the row (k’, v’) is inserted into MRS (Line 6). When all rows of G’ are processed, the 
merged result set MRS is returned (Line 7). 

After merging all result sets, the Master node sends the final result set to Client 
Layer, which forwards it to Secure Host’s Engine for decryption. Engine obtains the 
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necessary encryption keys, decrypts the final result set, and sends it back to Client 
Layer. Finally, Client Layer delivers the final results to User Application. 

Algorithm MergeResults 
Input: Result Set G’, Merged Result Set MRS 
Output: Merged Result Set MRS 
1: for each (k’, v’) in G’ 
2:  Row = FindRowInMergedResultSet(k’, MRS) 
3:  if Row is found 
4:   AddMeasureValues(v’, Row) 
5:  else 
6:   InsertRowInMergedResultSet((k’, v’), MRS) 
7: return MRS 

6 Performance Evaluation 

We defined three test configurations: All Processing in the Server (ALL-SRV), which 
is the test configuration for the OLAP system proposed in Section 5, where all DW’s 
attributes were encrypted according to the encryption method of Section 4, and the 
homomorphic encryption defined in [8]; Non Encrypted Baseline (NONENC-BLN), 
where a DW with unencrypted values was considered; and Post-Processing in the 
Client (POST-CLI), where primary and foreign keys were kept unencrypted, descrip-
tive attributes were encrypted by the OPE encryption defined in [13], measures were 
encrypted by using Blowfish [10], and the Secure Host was responsible for decrypting 
the final results and computing the sum aggregation functions and data groupings. 

Using the benchmark SSB [11], we created datasets with scale factor 1 for each 
test configuration. The Client Layer and Secure Host were deployed on a laptop with 
2.10 GHz Pentium T4300 processor, 4 GB RAM, 5400 RPM SATA 500 GB HD, 
Debian 6.0 32bits and JRE7. The Scalable Layer was deployed on the Windows 
Azure using computers with shared CPUs, 768 MB RAM, 20 GB HD and Windows 
Server 2008 R2. The DaaS was deployed on the Windows SQL Azure. The band-
width network used between the Client Layer and the Master node was 6Mbps, while 
the bandwidth network used between the components of the Scalable Layer itself and 
between the components of the Scalable Layer and the DaaS was 5Mbps. Network 
costs between the Client Layer and the Secure Host were not computed. The encryp-
tion algorithms were implemented in Java. 

Experiments were performed using 1, 2, 4, 8 and 16 Slave nodes, so that the SBB 
datasets were equally partitioned among 1, 2, 4, 8 and 16 DW-i. For each test configu-
ration, each SSB query was executed five times, and the averages of the following 
metrics were collected in seconds: Query: average time spent by each Slave node to 
process an analytical query; Retrieve: time spent by the Master node to collect the 
query results obtained from each Slave node and merge them; Total Server: server 
time (i.e. sum of Query and Retrieve); Download: time spent by the Client Layer to 
retrieve the final results of an analytical query from the Master node; Post 
Processing: time spent by the Secure Host to decrypt the analytical query results; and 
finally, Total Client: client time (i.e. sum of Download and Post Processing). 
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values of Query collected for ALL-SRV and NONEN

overhead of ALL-SRV w.r.t. NONENC-BLN ranged fr
e) to 17.72% (with 16 Slave nodes). Results showed t
was scaled out, the use of an encrypted DW did not imp
e of analytical queries, because the overhead caused by 
d was reduced when compared to an unencrypted DW. 
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lapsed time for computing all SSB queries using ALL-S
ere executed in the server) with the elapsed time produ

ent was responsible for computing sum aggregation fu
Figure 4(A) shows that ALL-SRV obtained performa
varied from 84.67% to 93.95%, by ranging the number

These gains occurred because POST-CLI does not comp
ings over the server’s encrypted data, and consequently
transferred from Slave nodes to the Master node, and fr
ent Layer. This increased the workload of the Master n
r number of records and the workload of the Secure H

er number of records and to compute aggregates and d
ed data records. Figure 4(B) shows that ALL-SRV produ
OST-CLI of at least: 97.60% in the processing perform
Retrieve); 97.50% in the time spent for transferring d
ode to the Client Layer (i.e. Download); and 96.20% in 
y the Secure Host (i.e. Post Processing). 
lapsed time on query processing distributed between 
re 5(A) shows that ALL-SRV produced performance ga
ranged from 63.21% to 82.13% in the server; and w
e client, indicating that the calculation of aggregates 
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data groupings in the clien
mance on the processing o
spent from 62.77% up to 77
processing in the client ex
shows that ALL-SRV spent
because ALL-SRV enabled 
crypted data in the server, w
to transfer the queries’ enc
these results in the client. 

Fig. 4. Query Pro

Fig. 5. Distribution o

7 Conclusion and 

We proposed a new metho
OLAP queries over an en
showed that: primary and f
aggregates using measures 
ical query processing perfor
computation of selection co
scriptive attributes and mea
novel encryption method. 
DWs partitioned among sev
caused by our encryption 
(with 1 Slave node); and th
encrypted data in the server
93.95% when compared to
work, we intend to evalua
different data scalability, an
the component DaaS of th

nt (after decryption) impaired the overall system’s perf
of analytical queries. As shown in Figure 5(B), POST-C
7.20% of its runtime in the client, illustrating that the po
xecuted by POST-CLI was time consuming. Figure 5
t from 67.33% up to 89.33% of its runtime in the serv

the execution of analytical queries directly over the 
while the ALL-SRV’s remaining time was the time requi
crypted results to the client, and the time for decrypt
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Future Work 

od for encrypting a DW and enabling the processing
ncrypted DW that was validated experimentally. Res
foreign keys must be kept unencrypted; the computation
encrypted by homomorphic encryption favored the ana
rmance; and the use of an MV-OPE encryption enables 
onstraints, data groupings and sorting operations over 
asures. Also, we proposed an OLAP system based on 
This system performs analytical queries over encryp

veral nodes in the DAS. Results showed that the overh
ranged from to 9.47% (with 16 Slave nodes) to 46.6

hat the computation of aggregates and data groupings o
r produced performance gains that ranged from 84.67%

o their executions in the client, after decryption. As fut
ate the performance of the proposed OLAP system w
nd to investigate if data groupings should be computed

he proposed system using indistinguishable encrypted v
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ues. A study of the proposed encryption method in terms of security guarantees is 
another indication of future work. 
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