
Computing Hierarchical Skyline Queries

“On-the-Fly” in a Data Warehouse

Tassadit Bouadi1, Marie-Odile Cordier1, and René Quiniou2

1 IRISA - University of Rennes 1
2 IRISA - INRIA Rennes

Campus de Beaulieu, 35042 RENNES, France
{tassadit.bouadi,marie-odile.cordier}@irisa.fr, rene.quiniou@inria.fr

Abstract. Skyline queries represent a powerful tool for multidimen-
sional data analysis and for decision aid. When the dimensions are con-
flicting, skyline queries return the best compromises associated with
these dimensions. Many studies have focused on the extraction of skyline
points in the context of multidimensional databases, but, to the best of
our knowledge, none of them have investigated skyline queries, when data
are structured along multiple and hierarchical dimensions. This article
proposes a new method that extends skyline queries to multiple hier-
archical dimensions. Our proposal, HSky (Hierarchical Skyline Queries)
allows the user to navigate along the dimensions hierarchies (i.e. spe-
cialize / generalize) while ensuring an efficient online calculation of the
associated skyline.

1 Introduction

Skyline queries represent a powerful tool for multidimensional data analysis and
decision-making. When the dimensions are in conflict, the skyline queries return
the best compromises on these dimensions. Skyline queries have been extensively
studied [1, 2] in the database and the artificial intelligence communities. Several
studies have investigated [3, 4] the problem of expressing and evaluating OLAP
preferences, but few of them have addressed the problem of skyline computation
when dealing with aggregated data and hierarchical dimensions in a data ware-
house. The aim is to couple OLAP with skyline analysis to enable the user to
select the most interesting facts from the data warehouse. Therefore, the main
challenge is to compute skylines efficiently over hierarchical dimensions and over
aggregated data. This problem rises several scientific and technical issues. Should
the skylines be recomputed at every hierarchical level? Can the skyline of a given
level be derived from the skyline at lower or higher level? Can conventional sky-
line algorithms be extended to cope with hierarchical dimensions?

Recent work [5, 6, 7] has considered the computation of skyline queries over
aggregated data. These proposals have focused on the optimization of queries
involving both Skyline and Group-By operators. But, they propose to execute
the two operators sequentially without a real coupling. More interestingly, the
operatorAggregate Skyline proposed by the authors of [8], combines the function-
alities of both Skyline and Group-By operators. The definition of the dominance

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 146–158, 2014.
c© Springer International Publishing Switzerland 2014

Computing Hierarchical Skyline Queries “On-the-Fly” in a Data Warehouse 147

relation is extended to point groups. This operator enables the user to perform
skyline queries on point groups in order to select the most relevant group.

The aim of this work is to propose an efficient approach simulating the effect
of the OLAP operators ”drill-down” and ”roll-up” on the computation of skyline
queries. The proposed method HSky (Hierarchical Skyline queries) provide the
user with an interactive navigation tool that let him specialize/generalize a ba-
sic preference and its associated skyline, and derive the corresponding skylines
while respecting the hierarchical structure of the involved dimensions. Prop-
erties of the hierarchical relationships between preferences associated with the
different dimensions are used to design an efficient navigation schema among the
preferences, while ensuring an online computation of skyline queries.

In Section 2, we introduce the basic concepts related to skyline queries and
preference orders. Section 3 develops the formal aspects of our new approach
HSky and its implementation. Section 4 gives the results of the experimental
evaluation performed on synthetic datasets and highlights the relevance of the
proposed solution. Section 5 concludes the paper.

2 Basic Concepts

Let D � �d1, ..., dn� be an n-dimensional space, E a data set defined in space D
and p, q � E. p�di� denotes the value of p on dimension di. A preference on the
domain of a dimension di, denoted by ℘di , is defined by a partial order �di . This
order can also be represented by the set of binary preferences (possibly infinite)

℘di � ��u, v��u �di v�, where �u, v� is an ordered pair. ℘ �
��D�

i�1 ℘di denotes
the set of preferences associated to the space D. p is said to dominate q in D,
denoted by p �D q, if 	di � D, p�di� �di q�di� (i.e. p is preferred or equal to
q on D) and
di � D, p�di� �di q�di� (i.e. p is strictly preferred to q on some
dimension di). For better readability, p �D q is simply noted p � q.

Definition 1. (Skyline) Let ℘ be the preference set on D. The skyline of the
dataset E on the dimension space D is the set of points that are not dominated
by any point in E: Sky�D,E�℘ � �p � E� ��
q � E, q �D p��.

Property 1. [9] (Monotonicity of preference extension) Let ℘� and ℘�

be two preference sets on D. If ℘� ℘� (i.e. ℘� is an extension of ℘�) then
Sky�D,E��Z,℘� � Sky�D,E��Z,℘� �.

Example 1. (Running example) In this paper, we will use as running ex-
ample the dataset E in Table 1. It contains 6 agricultural plots described by
3 dimensions: location (Loc), nitric pollution rate (Np) kgN/ha/year and crop
yield (Yd) kg/ha. A basic preference ℘0

di
is defined for each dimension di of

the space D. The order relations �Y d and �Np are based on the order rela-
tion on natural numbers, and specify that plots with the highest crop yield (Yd)
and with the lowest nitric pollution rate (Np) are preferred. The values of di-
mension Loc are associated with the preference order �Brittany �Loc Epte,
Y eres �Loc Normandy�. The remaining values of dimension Loc are left un-
ordered. Sky�D,E�℘0 � �a, b, e, c, d, f�.

148 T. Bouadi, M.-O. Cordier, and R. Quiniou

Table 1. A set of agricultural plots

ID plot Loc Np Yd

a Pays de la Loire (PL) 16 200

b Yeres (YRS) 24 500

c Vilaine (VLN) 36 100

d Yar 30 200

e ALL 23 400

f Epte (EPT) 30 300

2.1 Hierarchy Formalization

In data warehouses, the domain values of dimensions are structured in hierar-
chies. Each dimension di � D is associated with a hierarchy that is represented
by a directed acyclic graph whose nodes represent subsets of di domain values
and edges represent set inclusion relationships. The most general value is at the
root of the hierarchy and the leaves correspond to the most specific values.

Definition 2. (Hierarchy) Let HD � �hd1 , ..., hd�D�
� be the set of hierarchies

associated with the dimensions of space D where:

– hdi represents the hierarchical relationship, possibly empty (i.e. the graph
reduced to the single node ALL), between the values of dimension di � D,

– hdi is a directed acyclic graph,
– for each node nj � hdi , label�nj� � vj with vj � dom�di�,
– for each value vj � dom�di�,
nj � hdi , label�nj� � vj.

�vj denotes the set of nj ancestor (direct or indirect) labels in the hierarchy hdi

and �vj denotes the set of its descendant labels.
The value ALL, the most general value in the hierarchy, is required to belong

to the domain values of every di.

Example 2. Figure 1 describes examples of hierarchies defined on dimensions
Loc and Np. The hierarchy of dimension Loc is represented by three hierarchical
levels: region (Brittany, Normandy,...), sub-region (West Brittany, North Nor-
mandy,...) and catchment (Yar, Epte,...). The domain values of Loc contains
all these values associated with hierarchical levels. Similarly, the Np hierarchy
introduces categorical values abstracting numerical values associated with Np.

A hierarchy allows representing incomplete information. For example, plot e
in table 1 is described by the value ALL on the dimension Loc. This means that
there is no information on the exact location where plot e is located. Similarly,
plot a in table 1 is described by the value Pays de Loire on dimension Loc. This
means that the most detailed and most accurate value that exists about the
location of plot a is its region (Pays de Loire). In contrast, plots b, c, d and f
are described by the most precise values of the Loc domain.

Defining hierarchies on dimensions allows the user to generalize or specialize
preferences for computing related skyline. For example, once domain values of

Computing Hierarchical Skyline Queries “On-the-Fly” in a Data Warehouse 149

ALL ALLALLLLALL

 Low Medium High

5 10 19

Meediued um iued HigHigh gHi

5 1

LowLow

10 1910

owLo

… … 20 30 34 … … 35 45 49 … …

Low: [5,20[
Medium: [20,35[
High: [35,50[

(a) The hierarchy of dimension Np

ALL ALL

 Brittany (BRN) Normandy (NOR) Pays de la Loire (PL)

East Brittany
(EBRN)

West Brittany
(WBRN)

Normandy (NOR) and Pays de la la Loire (PL) a La Brittan

Brittany

ny (BRN)

W t B

ttan

North Normandy
(NNOR)

South
Normandy
(SNOR)

Loire
(LR)

Oudon
(ODN)

Grand Lieu
(GL)

L ALL

OR) P d l L i (PL) Aquitaine (AQN)

Yar
Odet
(OD)

Frémeur
(FRM)

Vilaine
(VLN)

Ille Couesnon
(COS)

Yeres
(YRS)

Epte
(EPT)

Varenne
(VRN)

(b) The hierarchy of dimension Loc

Fig. 1

Np are partitioned in categorical values (e.g. the rates below 10 – low – have a
low impact, the rates between 20 and 34 – medium – have a medium impact and
the rates higher than 35 – high – have a strong impact), the user can express
abstract preferences, and submit related abstract queries, instead of formulating
preferences between individual values only (e.g. a plot with a nitric pollution rate
of 16 is better than a plot with a rate of 30). Similarly, a user may be interested
in more specific phenomena, e.g. green algae proliferation in coastal agricultural
catchments and is likely to pay attention to specific regions of dimension Loc
like Brittany, where this proliferation problem is well-known.

2.2 Hierarchical Relationships between Preferences

After defining the structure of hierarchical dimensions, we focus now on prefer-
ence properties introduced by such dimensions.

Definition 3. (Preference consistency) Let ℘di � ��v1, v2�, ..., �vn, vm�� be
a preference on the hierarchical dimension di. The preference ℘di is consistent
if and only if it does not contain binary preference ordering a value and its
ancestors: ��vk, vj� � ℘di , k � j, �vk � �vj � vj � �vk�.

In the rest of the paper, we only consider consistent preferences and we as-
similate preferences to their hierarchical closures.

Definition 4. (Hierarchical closure) Let ℘di be a preference associated with
the hierarchical dimension di of the multidimensional space D. The hierarchical

150 T. Bouadi, M.-O. Cordier, and R. Quiniou

closure of preference ℘di , noted �℘di�
H , is defined as the set of binary preferences

resulting from the transitive closure over the descendants values of ℘di : �℘di�
H

� ��vp, vq� �
 �vn, vm� � ℘di , �vp � �vn � vp � vn� � �vq � �vm � vq � vm��.

Example 3. Let ℘Loc � ��BRN,EPT ��. The hierarchical closure of ℘Loc is
�℘Loc�H � ��BRN,EPT �, �EBRN,EPT �, �WBRN,EPT �, �Y ar,EPT �, �OD,
EPT �, �FRM,EPT �, �Ille, EPT �, �V LN,EPT �, �COS,EPT ��.

Property 2. The hierarchical closure of a preference ℘ is consistent iff ℘ is
consistent.

Starting from an initial preference ℘0, called the base preference, we want to
provide the user with means to navigate through the associated hierarchies, i.e. to
generalize or to specialize the values ordered in the base preference. Specializing a
preference removes indifference: it introduces a partial or total order on the direct
descendants of some value in the base preference. These descendants must be
non ordered initially. If an order is already specified, its completion at the same
level is not considered to be a specialization but an extension of the order (cf.
property 1). Specialization can be done in two ways: introducing new preference
pairs either on values explicitly mentioned in the base preference or on values
ignored in the base preference. Thus, the domain values of some dimension, e.g.
Loc, can be divided into two sets: values that can be specialized (ordered values
– colored green in Figure 2 – and non ordered values – colored blue) and those
that cannot be specialized (colored red in Figure 2). A border can be traced
between these two kinds of values (cf. Figure 2).

Example 4. Let ℘0
Loc and ℘�Loc be two preferences associated with the hierarchi-

cal dimension Loc. ℘0
Loc � ���BRN,EPT ���H���BRN,EPT �, �BBRN,EPT �,

�HBRN,EPT �, �Y ar,EPT �, �OD,EPT �, �FRM,EPT �, �Ille, EPT �, �V LN,
EPT �, �COS,EPT ��, ℘�Loc � ℘0

Loc

�
��Y ar, V LN�� and ℘�Loc � ℘0

Loc

�
��LR,GL��. ℘�Loc is a specialization of ℘0

Loc since the values of ��Y ar, V LN��
are descendants of BRN in hLoc.

℘�Loc is a specialization of ℘0
Loc with respect to hLoc. The ancestor of GL and

LR (i.e. PL) does not belong to ℘0
Loc. This means that the value PL is not

explicitly ordered in ℘0
Loc with respect to the other values (i.e. BRN and NOR).

Let now ℘0
Loc � ���BRN,EPT ���H and ℘�Loc � ℘0

Loc

�
��V LN, Y RS��. ℘�Loc

is an extension of ℘0
Loc but ℘�Loc is not a specialization of ℘0

Loc since the value
Y RS mentioned in ℘�Loc is not the specialization of a value mentioned in ℘0

Loc

(i.e. values colored green or blue Figure 2).

Preference generalization, the dual operation of preference specialization, adds
indifference between values ordered in the preference. Definition 3 gives the for-
mal specification of preference specialization / generalization:

Definition 5. (Preference specialization/generalization)
Let ℘di � ��v1, v2�, ..., �vn, vm�� and ℘�di

� ��v�1, v
�
2�, ..., �v

�
p, v

�
q�� be two prefer-

ences associated with the hierarchical dimension di.

Computing Hierarchical Skyline Queries “On-the-Fly” in a Data Warehouse 151

ALL ALL

 Brittany (BRN) Normandy (NOR) Pays de la Loire (PL)

East Brittany
(EBRN)

West Brittany
(WBRN)

North Normandy
(NNOR)

South
Normandy
(SNOR)

Loire
(LR)

Oudon
(ODN)

Grand Lieu
(GL)

LALL

Aquitaine (AQN)

Odet
(OD)

Frémeur
(FRM)

Vilaine
(VLN)

Ille Couesnon
(COS)

Yeres
(YRS)

Epte
(EPT)

Varenne
(VRN)

A

Brittany (BRN) Normandy (NOR) Pays de la Loire (PL)

East Brittany
(EBRN)

West Brittany
(WBRN)

Normandy (NOR) and Pays de la la Loire (PL) a La Brittan

BBBBBBrittany

ny (BRN)

W t B

ttan

North NormandyNormaandyandy
(NNOR)

South So
Normandy
(SNOR)

Loire oire
(LR)

Oudon Oud
(ODN)

Grand Lieu
(GL)

L ALL

OR) P d l L i (PL) Aquitaine (A it i

Fig. 2. Specialization/generalization implicit border

– ℘�di
is a specialization of ℘di (denoted ℘di �h ℘�di

) if:
1. ℘di � ℘�di

i.e. ℘�di
is an extension of ℘di ,

2. 	�v�i, v
�
j� � ℘�di

:
� either (a): �v�i, v

�
j� � ℘di ,

� or (b):
∗
�vk, vm� � ℘di , (v

�
i � �vk � v�j � �vk) � (v�i � �vm � v�j � �vm) or,

∗ �v�i � �v�j � � � 	v � �v�i � �v�j , v is not ordered in ℘di .
and there exists at least one pair �v�i, v

�
j� which verifies property (b).

– ℘di is a generalization of ℘�di
if ℘�di

is a specialization of ℘di .
– ℘di and ℘�di

are incomparable if there exists no specialization nor generaliza-
tion relation between these values (��℘di �h ℘�di

� � ��℘�di
�h ℘di�).

We extend the definition of specialization/generalization to preferences
expressed on several hierarchical dimensions.

Definition 6. Let ℘ �
�

di�D
℘di and ℘� �

�
di�D

℘�di
be two preferences associ-

ated with dimension space D. ℘� is a specialization of ℘ (i.e. ℘ is a generalization
of ℘�) iff 	di � D, ℘di �h ℘�di

� ℘di � ℘�di
�
di � D, ℘di �h ℘�di

.

The set of specializations and generalizations of a preference associated with
a set of dimensions is partially ordered with respect to the specialization / gen-
eralization relation. For example, the set of specializations and generalizations
of the base preference ℘0 specified on the dimensions of Table 1, induces the
hierarchical structure of Figure 3. Nodes in this structure are associated with
a specialization or a generalization of the base preference ℘0. To improve the
readibility of figures, the notation ℘kl, where k is a level in the structure and l is
a rank, is used to specify the nodes at level k. The preferences associated with
the direct descendants (resp. the direct ancestors) of node N with associated
preference ℘ are called direct specializations (resp. direct generalizations) of ℘.

3 Hierarchical Skyline Queries

In this section, we give some properties of hierarchical preferences and a material-
ization method for storing related skylines which is grounded on these properties.

152 T. Bouadi, M.-O. Cordier, and R. Quiniou

Following definition 3, the specialization of a preference is also an extension
of its preference, but the converse is not true. The corollary of property 1 asserts
the monotonicity of preference specialization (resp. generalization).

Corollary 1. (Hierarchical monotonicity) Let ℘ and ℘� be two preferences
on dimension space D. If ℘� is a specialization of ℘ (℘ �h ℘�) then ℘� is also an
extension of ℘ and, by property 1, Sky�D,E�℘� Sky�D,E�℘.

The hierarchical monotonicity property states that every skyline point associ-
ated with a given preference remains skyline when considering a generalization
of this preference. In the sequel, the hierarchical preferences designate the set of
specializations and generalizations of some base preference ℘.

3.1 Hierarchical Skyline Query: Algorithm HSky

Our goal is to minimize the number of dominance test for computing efficiently
the skyline sets while navigating in the hierarchical dimensions. To do so, we
characterize the skyline points that remains skyline and those that become sky-
line or non skyline after specializing (drill-down) or generalizing (roll-up) hi-
erarchical preferences. We propose a compromise between (i) materializing all
skyline points of every hierarchical preferences associated with the base prefer-
ence ℘0, and (ii) compute, for every user query, the skyline points associated
with the hierarchical preferences formulated in the query.

Computation of Hierarchical Skyline Queries. In order to compute the
skyline points for a user query related to some specialization ℘� of preference ℘,
we introduce the set of hierarchical skyline points, HNSky�D,E��℘�,℘� where ℘
is a direct ancestor of ℘� in the specialization/generalization structure. This set
gathers the skyline points that are disqualified when ℘ is specialized in ℘� or,
conversely, the skyline points introduced when ℘� is generalized in ℘.

Definition 7. (HNSky: Hierarchical New Skyline) Let ℘ be a preference
defined on D, Sky�D,E�℘ its associated skyline, ℘� a direct specialization of
℘, and Sky�D,E�℘� its associated skyline. By definition: HNSky�D,E��℘,℘��

� �p � Sky�D,E�℘�p � Sky�D,E�℘��.

Example 5. Let ℘ � ���BRN,EPT ���H
�

℘Sn

�
℘0
Re and ℘� � ℘

�
��Y ar, V LN�� be two preferences defined on space D. ℘� is a direct special-
ization of ℘0. Sky�D,E�℘ � �a, b, e, c, d, f� and Sky�D,E�℘� � �a, b, d, e, f�.
Consequently, HNSky�D,E��℘,℘�� � �c�.

The computation of HNSky�D,E��℘,℘�� does not require to compute the
whole skyline associated with ℘� but only to verify that the skyline points asso-
ciated with ℘ remains skyline for ℘�. When specializing preference ℘ into ℘�, the
skyline associated with ℘� may be obtained by removing from the skyline asso-
ciated with ℘ the points disqualified by the specialization (i.e. the set HNSky).

We want to build a memorization data structure HSky for storing efficiently
the pre-computed information. Our goal is to avoid computing and storing all the

Computing Hierarchical Skyline Queries “On-the-Fly” in a Data Warehouse 153

skyline points associated with every possible hierarchical preference defined on
D. HSky is a graph data structure whose nodes represent preferences and whose
arcs connecting a child node associated with some preference ℘� to a parent node
associated with preference ℘ is labeled by HNSky�D,E��℘,℘��.

Once the base preference ℘0 is chosen, the HSky building process navigates
in the specializations and the generalizations of its associated node:

– generate all the direct and indirect specializations and generalizations of ℘0

and build the preference hierarchy. This gives the general structure of HSky.
The node at the top of the structure denotes the empty preference �,

– for each arc of HSky, compute the set HNSky that stores the disqualified
points (resp. introduced) when going from a preference to a direct special-
ization (resp. generalization) of this preference.

In practice, these two operations are performed simultaneously. Thanks to
property 1, every point in Sky�D,E�℘0 belongs to the skyline associated with
each parent node (generalization) of℘0. Consequently, to compute the setHNSky
associated with an arc going from node ℘0 to one of its generalizations N , it is

Algorithm 1. HSky�℘0, ℘, Sky�D,E�℘0�

input : ℘0: base preference associated with start node, Sky�D,E�℘0 : skyline associated

with preference ℘0, ℘: preference associated with target node
output: Sky�D,E�℘: skyline associated with ℘

1 Sky 	 Sky�D,E�℘0

2 if ℘
h ℘0// Test whether ℘ is a generalization of ℘0

3 then
4 foreach parent node ℘1 of ℘0 do
5 if ℘ � ℘1 then
6 Sky 	 Sky�D,E�℘0

�
HNSky�D,E��℘1,℘0�

7 Sky�D,E�℘ 	 Sky

8 else
9 if ℘
h ℘1// Test whether ℘ is a generalization of ℘1

10 then
11 Sky 	 Sky�D,E�℘0

�
HNSky�D,E��℘1,℘0�

12 HSky�℘1, ℘, Sky�
13 Exit

14 if ℘0
h ℘// Test whether ℘ is a specialization of ℘0

15 then
16 foreach child node ℘1 of ℘0 do
17 if ℘ � ℘1 then
18 Sky 	 Sky�D,E�℘0 - HNSky�D,E��℘0,℘1�

19 Sky�D,E�℘ 	 Sky

20 else
21 if ℘1
h ℘// Test whether ℘ is a specialization of ℘1

22 then
23 Sky 	 Sky�D,E�℘0 - HNSky�D,E��℘0,℘1�

24 HSky�℘1, ℘, Sky�
25 Exit

26 Return Sky�D,E�℘

154 T. Bouadi, M.-O. Cordier, and R. Quiniou

sufficient to test the dominance of points that does not belong to the sets Sky�D,
E�℘0 or to the sets HNSky associated with arcs targeting node N . Similarly,
to compute the set HNSky associated with any specialization of preference ℘0,
only points belonging to Sky�D,E�℘0 must be tested. Figure 3 gives the structure
HSky of the running example.

Query Evaluation. In traditional OLAP, the drill-down and roll-up operators
are applied on dimension hierarchies. In our approach, these operators are ap-
plied on hierarchical preferences associated with skyline queries. The data struc-
ture HSky helps to reduce the runtime computation of skyline points associated
with hierarchical preferences, which enhances interactivity. Below, the HSky
structure depicted in Figure 3 is used to illustrate a navigation from the base
preference ℘0 � ���BRN,EPT ���H

�
℘0
Sn

�
℘0
Re and the computation of the

related skylines. The skyline associated with ℘0 is Sky�D,E�℘0 � �a, b, e, c, d, f�.
We show how to use the structure HSky for computing the skyline points asso-
ciated with the preferences ℘� � ℘0

�
��LR,GL�,�Y ar,V LN��.

Skyline of a Specialized Preference. The skyline associated with preference ℘�,
a specialization of the base preference ℘0, is computed as follows. The search
starts from the node associated with ℘0 and explores recursively its children
node depth-first, looking for the node associated with ℘� (cf. algorithm 1 line
16). When the searched node is reached, Sky�D,E�℘� is computed by subtracting
from Sky�D,E�℘0 each set HNSky labeling an arc of the path going from ℘0 to

31 = °
Loc U °

Np U °
Yd

41= 31 U
{(ODN, LR)}

…

…

01=Ø

Basic preference:
°
Yd

°
Loc = {(BRN,EPT)}

°
Np

42= 31 U
{(WBRN, EBRN)}

43= 31 U
{(LR, GL)}

44= 31 U
{(Yar,VLN)}

 21 = 31 - °
Loc

53= 31 U
 {(LR, GL),(Yar,VLN)}

51= 31 U
 {(ODN, LR), (WBRN, EBRN)}

(,)}

53= 31 U
 {(LR, GL),(ODN, LR)}

 23
 = 31 - °

Np U
{(Low,High), (Medium, High),

(Low,Medium)}

…

 11
 = 31 - (°

Np U °
Loc 12

 = 31 - (°
Np U °

Loc) U {(Low, High), (Medium, High),
(Low,Medium)} …

HNSky(D,E)(21 , 31)={} HNSk
y(

D,E
) (

22
 ,

31
)=

{}

HNSky(D,E)(23 , 31)={}

HNSky(D,E)(12 , 21)={}

HNSky(D,E) (11 , 21)={} HNSky(D,E)(11 , 22)={}
HNSky(D,E)(12 , 23)={}

HNSky(D,E)(01 , 11)={} HNSky(D,E)(01 , 12)={}

HNSky(D,E) (31 , 41)={}

HN
Sk

y(
D,

E)
(

31
 ,

42
)

={
c}

HNSky(D,E)(31 , 44)={c}

HNSky(D,E)
(31 , 43) ={}

HNSky(D,E)
(41 , 51)

={c} HNSky(
D,E) (43 ,

53)={c}

HNSky(
D,E) (44 ,

53)

={} HNSky(D,E) (42 , 51)={} HNSky(D,E)
(42 , 53)

={}

HNSky(D,E)
(43 , 53)

={c}

 22 = 31 - °
Np

…

Loc = = {(BRN,
°
Np

43= 31 U
{(LR, GL)}

44= 31 U
{(Yar,VLN)} ,)}{(,

HNSky(D,E)

HN

(((31 , 44)={c}

HNSky(D,E)
(((31 ,

43)
4

{}={}

NSky(
D,E)

HNS

(((43 ,
53)

(LR(LR
={c}
((

HNSky(
D,E) (((44 ,

) 53)

={}

NSky(D,E)

HHNS

(((43 ,
3)

53)

={c}

sic preference:
Yd

23 = 31 - °
Np U

{(Low,High), (Medium, High),
(Low,Medium)}

Bas
°
Yd

)
(D

,E
)

HNSk
y(

D
((((

22
 ,

31
))=

{}

HNSky(D,E)(((23 , 31)={}={}

D E)HNSky(DD,E)HNSky(D ((((1122 , 21)21)={}{} HNSky(D E
HNSky(D,E)(((12 , 23)={}

 = 31 - °
NppNp

,H

Fig. 3. The specialization / generalization data structure HSky

Computing Hierarchical Skyline Queries “On-the-Fly” in a Data Warehouse 155

℘� (Algorithm 1, lines from 21 to 24). For the sake of efficiency, the search only
explores nodes associated with some generalization of preference ℘� (Algorithm
1, line 21). This pruning insures that the path going from the node associated
with ℘0 to the node associated with ℘� has a minimal length.

Example 6. ℘0 � ���BRN,EPT ���H
�

℘0
Sn

�
℘0
Re. The skyline related to ℘0

is Sky�D,E�℘0 � �a, b, e, c, d, f�. Let ℘� � ℘0
�

��LR,GL�, (Y ar,V LN�� be a
specialization of ℘0. In Figure 3, the path from the start node ℘0 � ℘31 to the
target node ℘� � ℘53, whose skyline must be computed, is colored in red.

Sky�D,E�℘�= Sky�D,E�℘31 - (HNSky�D,E��℘31,℘44�

�
HNSky�D,E�

�℘44,℘53�) � �a, b, c, e, d, f� -(�c�
�
��) � �a, b, e, d, f�.

The query evaluation of a generalization is symmetric to the specialization.

4 Experiments

In this section, we present an empirical evaluation of algorithm HSky on syn-
thetic data. HSky is implemented in JAVA. The experiments were performed
on an Intel Xeon CPU 3GHz with 16 GB de RAM under Linux. Data related
to dimensions with only one hierarchical level were produced by the generator
presented in [1]. Three kinds of datasets were generated: independent data, cor-
related data, non-correlated data. A detailed description of these datasets can be
found in [1]. We only give the results concerning non-correlated data. The results
on other datasets were similar, whereas the results of pre-computing and query
answering are much shorter for correlated data. Data for hierarchical dimensions
were generated with respect to a Zipfian distribution [10]. By default, the Zip-
fian parameter θ was initialized to 1 (non-correlated data). This yielded 700.000
tuples for 6 dimensions with one hierarchical level. We imposed the number of
hierarchical dimensions vary from 3 to 20 and the number of hierarchical levels
of these dimensions vary from 3 to 7. The base preference was chosen to yield
a balanced number of specializations and generalizations. The query preference
template was such that the preference represents an indirect specialization /
generalization of the base preference.

To the best of our knowledge, there does not exist a work on skyline extrac-
tion within hierarchical dimensions in the literature. Thus, we have implemented
algorithm DC-H that computes skyline on the Divide & Conquer (D&C) prin-
ciple [1]. DC-H does not materialize any partial result and re-computes all the
skyline sets at every hierarchical level. As D&C can be encoded naturally in par-
allel, we have parallelized DC-H to improve its performance. Algorithm HSky
is also based on the DC-H principle.

Varying the Number of Hierarchical Dimensions. In these experiments, the num-
ber of one level dimensions is set to 6 and the number of hierarchical dimensions
varies from 3 to 20. Figure 4 shows that the memory size and the pre-computation
runtime of HSky rises with the number of hierarchical dimensions. This is re-
lated to the complexity of the data structure HSky (quadratic in the number of
hierarchical dimensions). Algorithm DC-H does not need any memory storage,
nor pre-computation runtime since it does not store any partial result.

156 T. Bouadi, M.-O. Cordier, and R. Quiniou

0
20

00
40

00
60

00
80

00

Nb.Dimensions

S
to

ck
ag

e
m

ém
oi

re
 (

M
B

)

HSky
DC−H

0 5 10 15 20

0 5 10 15 20

0
20

00
40

00
60

00
80

00

0
20

00
40

00
60

00
80

00

Nb.Dimensions

S
to

ra
ge

 S
iz

e
(M

B
)

(a)
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Nb.Dimensions
Te

m
ps

 d
e

pr
é−

ca
lc

ul
 (

s)

HSky
DC−H

0 5 10 15 20

0 5 10 15 20

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Nb.Dimensions
P

re
pr

oc
es

si
ng

 T
im

e
(s

)

(b)

0
20

0
40

0
60

0
80

0
10

00
12

00

Nb.Dimensions

Te
m

ps
 d

e
ré

po
ns

e
(s

)

HSky
DC−H

0 5 10 15 20

0 5 10 15 20

0
20

0
40

0
60

0
80

0
10

00
12

00

0
20

0
40

0
60

0
80

0
10

00
12

00

Nb.Dimensions

Q
ue

ry
 T

im
e

(s
)

(c)

Fig. 4. Varying the number of hierarchical dimensions

0
10

00
20

00
30

00
40

00
50

00
60

00

Nb. de Tuples (Millier)

S
to

ck
ag

e
m

ém
oi

re
 (

M
B

)

HSky
DC−H

100 200 300 400 500 600 700

100 200 300 400 500 600 700

0
10

00
20

00
30

00
40

00
50

00
60

00

0
10

00
20

00
30

00
40

00
50

00
60

00

S
to

ra
ge

 S
iz

e
(M

B
)

Nb. of Tuples (in thousands)

(a)

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Nb. de Tuples (Millier)

Te
m

ps
 d

e
pr

é−
ca

lc
ul

 (
s)

HSky
DC−H

100 200 300 400 500 600 700

100 200 300 400 500 600 700

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

P
re

pr
oc

es
si

ng
 T

im
e

(s
)

Nb. of Tuples (in thousands)

(b)

0
50

0
10

00
15

00
20

00
25

00
30

00

Nb. de Tuples (Millier)

Te
m

ps
 d

e
ré

po
ns

e
(s

)

HSky
DC−H

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

0
50

0
10

00
15

00
20

00
25

00
30

00

0
50

0
10

00
15

00
20

00
25

00
30

00

Q
ue

ry
 T

im
e

(s
)

Nb. of Tuples (in thousands)

(c)

Fig. 5. Varying the size of datasets

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Nb.Niveaux hiérarchiques

S
to

ck
ag

e
m

ém
oi

re
 (

M
B

)

HSky
DC−H

3 4 5 6 7

3 4 5 6 7

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Nb. of hierarchical levels

S
to

ra
ge

 S
iz

e
(M

B
)

(a)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Nb.Niveaux hiérarchiques

Te
m

ps
 d

e
pr

é−
ca

lc
ul

 (
s)

HSky
DC−H

3 4 5 6 7

3 4 5 6 7

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

P
re

pr
oc

es
si

ng
 T

im
e

(s
)

Nb. of hierarchical levels

(b)

0
50

10
0

15
0

Nb.Niveaux hiérarchiques

Te
m

ps
 d

e
ré

po
ns

e
(s

)

HSky
DC−H

3 4 5 6 7

3 4 5 6 7

0
50

10
0

15
0

0
50

10
0

15
0

Q
ue

ry
 T

im
e

(s
)

Nb. of hierarchical levels

(c)

Fig. 6. Varying the number of levels in hierarchical dimension

Varying the Size of the Dataset. In these experiments, the number of tuples in
the dataset varies from 50.000 to 700.000. Figure 5 shows that the memory size
and the pre-computation runtime of HSky rises with the dataset size as well.
This is due to the size of skyline sets which rises polynomially with the dataset
size.

Computing Hierarchical Skyline Queries “On-the-Fly” in a Data Warehouse 157

Varying the Number of Levels in Hierarchical Dimensions. In these experiments,
the number of levels in hierarchical dimensions varies from 3 to 7. Figure 6 shows
that the memory size and the pre-computation runtime of HSky rises also with
the number of hierarchical levels. This is due to the volume of hierarchical dimen-
sions which rise exponentially with the number of hierarchical levels. However,
one should note that experiments were notably complex since it is not common
to have to analyze dimensions with 7 hierarchical levels in real applications.

However, for each of these experiments, HSky outperforms DC-H for sky-
line query answering (Figures 4c, 5c and 6c). HSky response times are quasi-
instantaneous. In fact, for each new query, DC-H re-computes the whole skyline
whereasHSky deduces it using simple set operations. it should be noted that the
query response time is an important criterion in the context of online analysis.

The construction of the data structure HSky impacts the global runtime and
memory storage. To obtain some benefit, on average, from 6 to 8 navigations
from the same base preference must be performed.

5 Conclusion

This article proposes a new method, called HSky, which extends skyline points
extraction to hierarchical dimensions. Coping with hierarchies on dimensions
enables to specialize or generalize user preferences when computing skylines.
Hierarchical relations between preferences on dimensions were formulated and
some interesting properties were explicited. These properties, e.g. the hierarchi-
cal monotonicity property, are exploited in a data structure called HSky for
designing an efficient navigation tool along the preferences hierarchy while en-
suring an online computation of skylines. The experiments underline the online
performance of HSky compared to DC-H (an algorithm for computing skylines
with no materialization based on [1]) when the number of queries performed
during navigation is greater than some threshold (6 to 8 queries on average).

This structure could evolve with respect to the application context. For ex-
ample, if the size of the structure were too high it could be possible to restrict
the specializations / generalizations to values explicitly ordered in the base pref-
erence. We plan to extend the hierarchical dimensions presented in this paper
to the case of dynamic preferences, as introduced in [9, 11]. In this setting, the
dynamical aspect of preferences may lead to an explosion of the preferences to
be materialized. A potential solution would be to restrict the preferences to the
class of so-called nth-order preferences [9].

References

[1] Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc of the
17th Int. Conf. on Data Engineering, pp. 421–430. IEEE Computer Society (2001)

[2] Räıssi, C., Pei, J., Kister, T.: Computing closed skycubes. Proc. VLDB Endow.,
838–847 (2010)

[3] Golfarelli, M., Rizzi, S., Biondi, P.: myolap: An approach to express and evaluate
olap preferences. IEEE Trans. Knowl. Data Eng. 23(7), 1050–1064 (2011)

158 T. Bouadi, M.-O. Cordier, and R. Quiniou

[4] Golfarelli, M., Rizzi, S.: Expressing OLAP preferences. In: Winslett, M. (ed.)
SSDBM 2009. LNCS, vol. 5566, pp. 83–91. Springer, Heidelberg (2009)

[5] Antony, S., Wu, P., Agrawal, D., Abbadi, A.E.: Aggregate skyline: Analysis for
online users. In: Proceedings of the 2009 Ninth Annual International Symposium
on Applications and the Internet, pp. 50–56. IEEE Computer Society (2009)

[6] Antony, S., Wu, P., Agrawal, D., El Abbadi, A.: Moolap: Towards multi-objective
olap. In: Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering, pp. 1394–1396. IEEE Computer Society (2008)

[7] Jin, W., Ester, M., Hu, Z., Han, J.: The multi-relational skyline operator. In:
ICDE, pp. 1276–1280 (2007)

[8] Magnani, M., Assent, I.: From stars to galaxies: skyline queries on aggregate data.
In: EDBT, pp. 477–488 (2013)

[9] Bouadi, T., Cordier, M.O., Quiniou, R.: Computing skyline incrementally in re-
sponse to online preference modification. T. Large-Scale Data- and Knowledge-
Centered Systems 10, 34–59 (2013)

[10] Trenkler, G.: Univariate discrete distributions: N.L. Johnson, S. Kotz and A.W.
Kemp, 2nd edn. JohnWiley, New York (1992) ISBN 0-471-54897-9; Computational
Statistics & Data Analysis, pp. 240–241 (1994)

[11] Bouadi, T., Cordier, M.O., Quiniou, R.: Incremental computation of skyline
queries with dynamic preferences. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M.,
Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446, pp. 219–233. Springer,
Heidelberg (2012)

	Computing Hierarchical Skyline Queries“On-the-Fly” in a Data Warehouse
	1 Introduction
	2 BasicConcepts
	2.1 Hierarchy Formalization
	2.2 Hierarchical Relationships between Preferences

	3 Hierarchical Skyline Queries
	3.1 Hierarchical Skyline Query: Algorithm HSky

	4 Experiments
	5 Conclusion
	References

