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Abstract. Tree structures (e.g., UF-trees, UFP-trees) corresponding to
many existing uncertain frequent pattern mining algorithms can be large.
Other tree structures for handling uncertain data may achieve compact-
ness at the expense of loose upper bounds on expected supports. To
solve this problem, we propose a compact tree structure that captures
uncertain data with tighter upper bounds than the aforementioned tree
structures. The corresponding algorithm mines frequent patterns from
this compact tree structure. Experimental results show the compactness
of our tree structure and the tightness of upper bounds to expected sup-
ports provided by our uncertain frequent pattern mining algorithm.

1 Introduction and Related Works

Over the past few years, many frequent pattern mining algorithms have been
proposed [7, 9, 13, 14], which include those mining uncertain data [3–5, 11,
16]. For instance, the UF-growth algorithm [10] is one of the uncertain frequent
pattern mining algorithms. In order to compute the expected support of each
pattern, paths in the corresponding UF-tree are shared only if tree nodes on
the paths have the same item and same existential probability. Consequently,
the UF-tree may be quite large when compared to the FP-tree [6] (for mining
frequent patterns from precise data). In an attempt to make the tree compact,
the UFP-growth algorithm [2] groups similar nodes (with the same item x and
similar existential probability values) into a cluster. However, depending on the
clustering parameter, the corresponding UFP-tree may be as large as the UF-tree
(i.e., no reduction in tree size). Moreover, because UFP-growth does not store
every existential probability value for an item in a cluster, it returns not only
the frequent patterns but also some infrequent patterns (i.e., false positives).
The PUF-growth algorithm [12] addresses these deficiencies by utilizing the idea
of upper bounds to expected support with much more aggressive path sharing
(in which paths are shared if nodes have the same item in common regardless of
existential probability), to yield a final tree structure that can be as compact as
the FP-tree is for precise data.

In this paper, we study the following questions: can we further tighten the
upper bounds on expected support (e.g., than the PUF-tree)? Can the resulting
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tree still be as compact as the FP-tree? How would frequent patterns be mined
from such a tree? Would such a mining algorithm be faster than PUF-growth?
Our key contributions of this paper are as follows:

1. a branch-level item prefixed-cap tree (BLIMP-tree), which can be as
compact as the original FP-tree and PUF-tree; and

2. a mining algorithm (namely, BLIMP-growth), which finds all frequent
patterns from uncertain data.

The remainder of this paper is organized as follows. The next section presents
background material. We then propose our BLIMP-tree structure and BLIMP-
growth algorithm in Sections 3 and 4, respectively. Experimental results are
shown in Section 5, and conclusions are given in Section 6.

2 Background

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . , xk} ⊆ Item

be a k-itemset (i.e., a pattern consisting of k items), where 1 ≤ k ≤ m. Then, a
transactional database = {t1, t2, . . . , tn} is a set of n transactions. The projected
database of X is the set of all transactions containing X . Each item xi in a trans-
action tj = {x1, x2, . . . , xh} ⊆ Item in an uncertain database is associated with
an existential probability value P (xi, tj), which represents the likelihood
of the presence of xi in tj [8]. Note that 0 < P (xi, tj) ≤ 1. The expected sup-
port expSup(X) of X in the database is the sum (over all n transactions) of
the product of the corresponding existential probability values of items within
X when these items are independent [8]: expSup(X) =

∑n
j=1

(∏
x∈X P (x, tj)

)
.

Hence, given (i) a database of uncertain data and (ii) a user-specified minimum
support threshold minsup, the research problem of frequent pattern mining from
uncertain data is to discover from the database a complete set of frequent pat-
terns (i.e., to discover every pattern X having expSup(X) ≥ minsup).

To mine frequent patterns from uncertain data, the PUF-growth algorithm
[12] scans the uncertain data to build a PUF-tree for capturing the contents of
transactions in the uncertain data. Specifically, each node in a PUF-tree captures
(i) an item x and (ii) its prefixed item cap.

Definition 1. The prefixed item cap [12] of an item xr in a tree path tj =
〈x1, . . . , xr , . . . , xh〉 representing a transaction where 1 ≤ r ≤ h—denoted as
ICap(xr, tj)—is defined as the product of (i) P (xr, tj) and (ii) the highest ex-
istential probability value M1 of items from x1 to xr−1 in tree path tj (i.e., in
the proper prefix of xr in tj):

ICap(xr , tj) =

{
P (x1, tj) if h = 1
P (xr, tj)×M1 if h > 1

(1)

where M1 = max1≤q≤r−1 P (xq, tj). ��
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Table 1. A transactional database of uncertain data (minsup=1.1)

TID Transactions

t1 a:0.6, b:0.1, c:0.2, f :0.8, g:0.5
t2 a:0.5, b:0.2, c:0.1, e:0.9, g:0.6
t3 a:0.7, b:0.2, c:0.2, f :0.9
t4 a:0.9, b:0.1, c:0.1, e:0.8, f :0.6
t5 b:0.9, c:0.9, d:0.4

Fig. 1. BLIMP-trees for the database shown in Table 1 when minsup=1.1

It was proven [12] that the expected support of any k-itemsetX (where k > 2)
(which is the product of two or more probability values) must be ≤ ICap(xr , tj).
However, such an upper bound may not be too tight when dealing with long
patterns mined from long transactions of uncertain data. See Example 1. In
many real-life situations, it is not unusual to have long patterns to be mined
from long transactions of uncertain data.

Example 1. Consider a path t1 = 〈a:0.6, b:0.1, c:0.2, f :0.8, g:0.5〉 in a PUF-tree captur-
ing the contents of uncertain data shown in Table 1. IfX={a, b, c, f}, then ICap(f, t1) =
P (f, t1)×M1 = 0.8×0.6 = 0.48 because 0.6 is the highest existential probability value
in the proper prefix 〈a:0.6, b:0.1, c:0.2〉 of f in t1. Note that ICap(f, t1) also serves
as an upper bound to the expected support of patterns {a, f}, {b, f}, {c, f}, {a, b, f},
{a, c, f}, {b, c, f} and {a, b, c, f}. While this upper bound is tight for short patterns
like {a, f} having P ({a, f}, t1)=0.48, it becomes loose for long patterns like {a, b, f}
having P ({a, b, f}, t1) =0.048 and {a, b, c, f} having P ({a, b, c, f}, t1)=0.0096. ��

3 Our BLIMP-tree Structure

To tighten the upper bound for all k-itemsets (k > 2), we propose a branch-level
itemprefixed-cap tree structure (BLIMP-tree). The key idea is to keep track
of a value calculated solely from the maximum of all existential probabilities
for the single item represented by that node. Every time a frequent extension
is added to the suffix item to form a k-itemset (where k > 2), this “blimp”
value will be used. Hence, each node in a BLIMP-tree contains: (i) an item xr ,
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(ii) an item cap ICap(xr, tj) and (iii) a “blimp” value, which is the maximum
existential probability of xr in tj . Fig. 1(c) shows the contents of a BLIMP-tree
for the database in Table 1.

With this information, BLIMP-trees give a tightened upper bound on the ex-
pected support of an itemset by the product of ICap(xr , tj) and the “blimp”
values in the prefix of xr. This new compounded item cap of any k-itemset

X = {x1, x2, . . . , xk} in a tree path tj = 〈x1, x2, . . . , xh〉 (denoted as ̂I(X, tj)
where xk = xr) can be defined as follows.

Definition 2. Let tj = 〈x1, x2, . . . , xr, . . . , xh〉 be a path in a BLIMP-tree,
where h = |tj | and r ∈ [1, h]. Let Mxi denote the highest existential proba-
bility of xi in the prefix of xr in tj . If X = {x1, x2, . . . , xk} is a k-itemset in tj

such that xk = xr, its compounded item cap ̂I(X, tj) is defined as follows:

̂I(X, tj) =

{
ICap(xr, tj) if k ≤ 2

ICap(xr, tj)×
∏k−2

i=1 Mxi if k ≥ 3
(2)

where ICap(xr , tj) is the prefixed item cap as defined in Definition 1. ��

Example 2. Let us revisit Example 1. If X={a, b, c, f}, then ̂I(X, t1) = ICap(f, t1) ×
(
∏2

i=1 Mxi) = (0.8×M1)× (Mx1 ×Mx2) = (0.8× 0.6)× (0.6× 0.1) = 0.0288. Simiarly,

if X ′={b, c, g}, then ̂I(X ′, t1) = ICap(g, t1) × (
∏1

i=1 Mxi) = (0.5 × M1) × Mx1 =
(0.5× 0.8) × 0.1 = 0.04. ��

To construct a BLIMP-tree, we scan the transactional database of uncertain
data to compute the expected support of every domain item. Any infrequent
items are removed. Then, we scan the database a second time to insert each
transaction into the BLIMP-tree. An item is inserted into the BLIMP-tree ac-
cording to a predefined order. If a node containing that item already exists in
the tree path, we (i) update its item cap by summing the current ICap(xr , tj)
with the existing item cap value and (ii) update its “blimp” value by taking the
maximum of the current P (xr , tj) with the existing “blimp” value. Otherwise,
we create a new node with ICap(xr , tj) and P (xr, tj) (i.e. the initial “blimp”
value). For a better understanding of BLIMP-tree construction, see Example 3.

Example 3. Consider the database in Table 1, and letminsup=1.1. For simplicity, items
are arranged in the alphabetic order. After the first database scan, we remove infrequent
domain item d. The remaining items a:2.7, b:1.4, c:1.4, e:1.7, f :2.3 & g:1.1 are frequent.
With the second database scan, we insert only the frequent items of each transaction
(with their respective item cap and “blimp” values). For instance, after reading trans-
action t1={a:0.6, b:0.1, c:0.2, f :0.8, g:0.5}, we insert 〈a:0.6:0.6, b:0.06(=0.1×0.6):0.1,
c:0.12(=0.2×0.6):0.2, f :0.48(=0.8×0.6):0.8, g:0.4(=0.5×0.8):0.5〉 into the BLIMP-tree
as shown in Fig. 1(a). As the tree path for t2 shares a common prefix 〈a, b, c〉 with
an existing path in the BLIMP-tree created when t1 was inserted, (i) the item cap
values of those items in the common prefix (i.e., a, b and c) are added to their corre-
sponding nodes, (ii) the existential probability values of those items are checked against
the “blimp” values for their corresponding nodes, with only the maximum saved for
each node, and (iii) the remainder of the transaction (i.e., a new branch for items e
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and g) is inserted as a child of the last node of the prefix (i.e., as a child of c). See
Fig. 1(b). Fig. 1(c) shows the BLIMP-tree after inserting all transactions and pruning
those items with infrequent extensions (i.e. item g because its total item cap is less
than minsup). ��

Observation 1. With this compact BLIMP-tree, we observed the following:
(a) expSupCap(X), which sums compunded item caps for tree paths containing
X , serves as an upper bound on the expected support of X . (b) expSupCap(X)
does not generally satisfy the downward closure property because expSupCap(Y )
can be less than expSupCap(X) for some proper subset Y of X . (c) For special
cases where X ′ and its subset Y ′ share the same suffix item (e.g., Y ′={a, b, f}
⊂ {a, b, c, f}=X ′ sharing the suffix item f), expSupCap(Y ′) for BLIMP-trees
satisfies the downward closure property. (d) The number of tree nodes in a
BLIMP-tree can be equal to that of an FP-tree [6] (when the BLIMP-tree is
constructed using the frequency-descending order of items). (e) The compounded

item cap ̂I(X, tj) computed based on the existential probability value of xk,
the highest existential probability value in its prefix and the “blimp” values of
its prefix items provides a tighter upper bound than that based on the non-
compounded item cap ICap(xr , tj) of PUF-trees because the former tightens the
bound as candidates are generated during the mining process with increasing
cardinality of X , whereas the latter has no such compounding effect. ��

4 The BLIMP-growth Algorithm

To mine frequent patterns (from our BLIMP-tree structure), we propose a tree-
based pattern-growth mining algorithm called BLIMP-growth. The basic op-
eration in BLIMP-growth is to construct a projected database for each potential
frequent pattern and recursively mine its potentially frequent extensions.

Once an item x is found to be potentially frequent, the existential probabil-
ity of x must contribute to the expected support computation for every pattern
constructed from the {x}-projected database (denoted asDBx). Hence, the com-
plete set of patterns with suffix x can be mined (ref. Observation 1(c)). Let (i) X
be a k-itemset (where k > 1) with expSupCap(X) ≥ minsup in the database and
(ii) Y be an itemset in DBX . Then, expSupCap(Y ∪X) in the original database
≥ minsup if and only if expSupCap(Y ) in all the transactions in DBX ≥ minsup.
Like UFP-growth [2] and PUF-growth [12], this mining process may also lead to
some false positives (i.e., those itemsets that appear to be frequent but are truly
infrequent) in the resulting set of frequent patterns at the end of the second
database scan.

Fortunately, all these false positives will be filtered out with a third database
scan. Hence, our BLIMP-growth is guaranteed to return to the user the exact
collection of frequent patterns (i.e., all and only those frequent patterns with
neither false positives nor false negatives).
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5 Experimental Results

As it was shown [12] that PUF-growth outperformed many existing algorithms
(e.g., UF-growth [10], UFP-growth [2] and UH-Mine [2]), we compared the per-
formances of our BLIMP-growth algorithm with PUF-growth. We used both
real life and synthetic datasets for our tests. The synthetic datasets, which are
generally sparse, are generated within a domain of 1000 items by the data gener-
ator developed at IBM Almaden Research Center [1]. We also considered several
real life datasets such as kosarack, mushroom and retail. We assigned a (ran-
domly generated) existential probability value from the range (0,1] to each item
in every transaction in the dataset. The name of each dataset indicates some
characteristics of the dataset. For example, the dataset u100k5L 10100 contains
100K transactions with average transaction length of 5, and each item in a trans-
action is associated with an existential probability value that lies within a range
of [10%, 100%].

All programs were written in C++ and ran in a Linux environment on an Intel
Core i5-661 CPU with 3.33GHz and 7.5GB RAM. Unless otherwise specified,
runtime includes CPU and I/Os for tree construction, mining, and false-positive
removal. While the number of false positives generated at the end of the second
database scan may vary, all algorithms (ours and others) produce the same set
of truly frequent patters at the end of the mining process. The results shown
in this section are based on the average of multiple runs for each case. In all
experiments, minsup was expressed in terms of the absolute support value, and
all trees were constructed using the ascending order of item value.

False Positives. Although PUF-trees and BLIMP-trees are compact (in fact,
the number of nodes in the global tree can be equal to the FP-tree for both),
their corresponding algorithms generate some false positives. Hence, their overall
performances depend on the number of false positives generated. In this experi-
ment, we measured the number of false positives generated by both algorithms
for fixed values ofminsup with different datasets. Figs. 2(a)–(b) shows the results
when using one minsup value for each of the two datasets (i.e., mushroom 5060
and u100k5L 10100). BLIMP-growth was observed to greatly reduce the num-
ber of false positives when compared with PUF-growth. The primary reason of
this improvement is that the upper bounds for the BLIMP-growth algorithm are
much tighter than PUF-growth for higher cardinality itemsets (k > 2), hence
less total candidates are generated and subsequently less false positives. If fact,
when existential probability values were distributed over a narrow range with a
higher minsup as shown in Fig. 2(a), BLIMP-growth generated fewer than 1% of
the total false positives of PUF-growth. When the existential probability values
were distributed over a wider range with a much lower minsup, as in Fig. 2(b),
the total number of false positives in BLIMP-growth was still fewer than 10%
of the total false positives of PUF-growth. As a result, BLIMP-growth had a
runtime less than or equal to that of PUF-growth in every single experiment we
ran.
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Fig. 2. Experimental results

Runtime. Recall that PUF-growth was shown [12, 15] to outperform UH-Mine
and subsequently UFP-growth. Hence, we compared our BLIMP-growth algo-
rithm with PUF-growth. Fig. 2(c) shows that, for low values of minsup, BLIMP-
growth had shorter runtimes than PUF-growth for u100k5L 10100. The primary
reason is that, even though PUF-growth finds the exact set of frequent patterns
when mining an extension of X , it may suffer from the high computation cost
of generating unnecessarily large numbers of candidates due to only using two
values in its item cap calculation: the existential probability of the suffix item
and the single highest existential probability value in the prefix of xr in tj . This
allows large amounts of high cardinality candidates to be generated with similar
expected support cap values as low cardinality candidates with the same suffix
item. The use of the “blimp” values in BLIMP-growth ensures that those high
cardinality candidates are never generated due to their expected support caps
being much closer to the actual expected support. Moreover, for lower values of
minsup, the number of high cardinality candidates being generated increases. In
this situation, the probability is higher that the “blimp” values in each node will
actually be low, tightening the upper bound even further.

Scalability. To test the scalability of BLIMP-growth, we applied the algorithm
to mine frequent patterns from datasets with increasing size. The experimental
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results presented in Fig. 2(d) indicates that our algorithm (i) is scalable with
respect to the number of transactions and (ii) can mine large volumes of uncer-
tain data within a reasonable amount of time. The experimental results show
that our algorithms effectively mine frequent patterns from uncertain data irre-
spective of distribution of existential probability values (whether most of them
have low or high values and whether they are distributed into a narrow or wide
range of values).

6 Conclusions

In this paper, we proposed a compact tree structure—called BLIMP-tree—for
capturing important information from uncertain data. In addition, we presented
the BLIMP-growth algorithm for mining frequent patterns from the BLIMP-
tree. The algorithm obtains upper bounds on the expected supports of frequent
patterns based on the compounded item caps. As these item caps are compounded
with a “blimp” value (computed based on the maximum existential probability
of a particular item), they further tighten the upper bound on expected supports
of frequent patterns when compared to PUF-growth. BLIMP-growth has been
shown to generate significantly fewer false positives than PUF-growth (e.g., 1% of
the total value). Our algorithms are guaranteed to find all frequent patterns (with
no false negatives). As ongoing work, we are conducting theoretical analyses on
the tightness of the upper bound.
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