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Preface

The initiative for this book came from the PISA 2012 Mathematics Expert Group,

which had worked together with a team from the Australian Council for Educa-

tional Research (ACER) for nearly 4 years in the preparation of the OECD’s 2012
PISA survey. The mathematics assessment for the 2012 survey underwent substan-

tial changes, building on and further developing the structures and conceptua-

lisation of the 2003 survey (when Mathematics had last been the major domain)

and responding to the wide-ranging international feedback that had arisen in those

9 years. The Framework has grown steadily since its inception for the 2000 survey,

and its impact has expanded dramatically over this time. The item design has also

been substantially refined. The expert group came to realise that the work that goes

into an international survey such as PISA should be better known: hence this book.

We hope it is a contribution both to thinking about the most fundamental goals and

activities of mathematics education and toward better understanding the results of

the PISA surveys.

It has been a pleasure to work with a team of such talented, engaged, and well-

informed authors in the preparation of this book. Many chapter authors were also

members of the Mathematics Expert Group for the PISA 2012 survey and the

mathematics teams of international contractors for PISA 2012 led by ACER. We

thank them for contributions to the book as well as for their contribution to the

Mathematics Framework and items for the 2012 survey. Other authors have played

important roles in using PISA to improve mathematics education in their own

countries. The editors have also enjoyed bringing their own two different perspec-

tives together as they worked on this book: Ross’s experience as the leader of the
ACER team responsible for delivering the mathematics framework, items, and

coding since the first PISA survey and Kaye’s view from research, teaching, and

national policy and as chair of the Mathematics Expert Group for PISA 2012.

It is essential to acknowledge that many of the ideas in the book are the outcome

of the joint work of the members of all the Mathematics Expert Groups from PISA

2000 to PISA 2012. Their names are listed at the end of this Preface along with
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other key mathematics staff members of agencies contracted to develop and

implement PISA mathematics over its first several survey administrations.

We also acknowledge the valuable input of the Springer editors and especially of

the anonymous reviewers whose useful comments helped sharpen the text. It is a

special pleasure to acknowledge the work of Pam Firth from the University of

Melbourne for her able editorial and administrative assistance.

Opinions expressed in this book are those of the authors and do not imply any

endorsement by the Organisation for Economic Co-operation and Development

(OECD) or any other organization.

Melbourne, VIC, Australia Kaye Stacey

Camberwell, VIC, Australia Ross Turner

3 Dec 2013
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The Assessment of Mathematical Literacy:

Introduction to PISA and to This Book

Abstract This book gives the ‘inside story’ of the mathematics component of the

PISA survey, with contributions from authors directly involved in the international

PISA development and implementation, and national policy responses and practical

actions. This introductory chapter introduces the key ideas explored in the book,

and sets the context in which detailed commentary is provided in later sections. The

two main audiences for the book are identified as those with direct involvement or

concern with what happens in mathematics classrooms (that is, mathematics

teachers, curriculum developers, test developers and teacher educators), and those

with an interest in the policy environment within which mathematics education

occurs. The three main parts of the book are introduced. The first part describes the

key concepts of the Mathematics Framework and their evolution over the PISA

2000 to PISA 2012 survey administrations, including the literacy concept, the place

of mathematical modelling, and of mathematical competencies. The second part

gives an insider view of the development and implementation of the PISA survey,

including test item development and test administration, questionnaire develop-

ment and the new computer-based assessment of mathematics. The third part gives

a collection of reports and views about impacts of the PISA survey in 14 countries.

This introductory chapter also gives a very broad outline of the PISA surveys for

mathematics for readers unfamiliar with the details of this initiative.

Aims of This Book

This book aims to give the ‘inside story’ of the mathematics component of the

world’s largest educational survey—the assessment of mathematical literacy of

students around the world by PISA, the Programme for International Student

Assessment of the Organisation for Economic Co-operation and Development

(OECD). The editors and authors have been directly involved in creating the

PISA Mathematics Framework and mathematical literacy test items and designing
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and implementing the associated quality control measures. Some contributors have

been through all first five administrations of the PISA survey: PISA 2000, PISA

2003, PISA 2006, PISA 2009 and PISA 2012. Other authors are also involved in

understanding and interpreting the results of the PISA surveys in their own countries

and in designing initiatives to improve their educational systems in response to PISA

results. The initiative for the book came from the PISA 2012 Mathematics Expert

Group, the members of which worked together with the team of international

contractors led by The Australian Council for Educational Research (ACER) for

nearly 4 years in the preparation of the Framework and items for the 2012 survey.

The conduct of international assessments involves many groups: the commissioning

governments, the psychometricians who ensure that the statistical basis of the survey

makes the results sufficiently authoritative for legitimate comparisons to be made,

the psychologists and educators who design the parameters and variables of interest

across the whole study, and groups in each participating economy who work with

schools and students and with the policy implications arising from the assessments.

Within this large mix, the Mathematics Expert Group is the voice of mathematics

educators, and this book looks at PISA mainly from their point of view.

All members of the Mathematics Expert Group felt strongly that the theoretical

and practical developments of PISA needed to be better known. Naturally the main

interest of PISA is in its results: the country achievements, rankings and trends over

time, the examination of equity, the links between performance and characteristics

of schools and teachers. However, this book is not about the results. Instead it has

been written in the belief that the results of PISA will be used most wisely by people

who understand what lies behind PISA, both in its conceptualisation and in the

practical issues of designing and conducting a valid and equitable survey of a

worthwhile construct.

The editors and authors had two particular sets of interests at the forefront of

their thinking as the included material was selected and presented: those with direct

involvement or interest in what happens in mathematics classrooms; and those with

an interest in the policy environment within which mathematics education and

testing occurs.

First, mathematics teachers, curriculum developers, test developers and teacher

educators will be interested in the detailed discussion of the mathematical literacy

concept, the processes of development of PISA mathematics tasks, the results of

research into key drivers ofmathematical literacy and theway that literacy is expressed

in the behavioural repertoire ofmathematics students; and the insiders’ insights into the
practical examples of mathematics tasks that have been used in the PISA surveys.

Second, the community of interests that has generated or supported the PISA

survey will also be interested in several aspects of this book. Those responsible for

guiding the development and implementation of PISA may enjoy their share of the

credit for producing such a significant program that has been so influential in

shaping educational practice in so many ways. One part of the book aims to

document ways in which this has happened, from experts around the world. At an

individual country level, those responsible for various aspects of educational policy

development may benefit from the observations presented here regarding the

specific ways in which PISA ideas and methodology have been, are being or
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could be used to drive educational improvement. There are many practical models

to follow.

The book is in three main parts. Part I begins with a discussion of the concept of

mathematical literacy. The origins of this concept are drawn together, along with

some of the closely related and often partially conflicting ideas that sit alongside

it. These are discussed to clarify the different terminology that has been used

particularly in recent years to discuss this part of the mathematics education

territory. The PISA Mathematics Framework is introduced as a significant mile-

stone in the development and also in the dissemination of these ideas, because the

survey is used so widely around the world (65 countries in 2012). The underlying

mathematical competencies on which mathematical literacy so strongly depends

are described in two chapters, along with a scheme for operationalising these

competencies so that the cognitive demand of items can be estimated. PISA

assesses 15-year-olds’ ability to apply knowledge and skills to real-life problems

rather than how well they have learned the school curriculum. For this reason, there

is a chapter that focuses on the links in the assessment between the real world and

the mathematical world. This first part concludes with a personal reflection from a

research mathematician on how his views of mathematics education have changed

as a result of his involvement with PISA mathematics. Although the value of

education for all is now widely acknowledged, exactly what type of mathematics

should be given the highest priority remains contested.

Part II provides significant detail on aspects of the development and implemen-

tation of the PISA survey, specifically the processes of mathematics item develop-

ment in paper-based and computer-based environments, coding of responses to

items, and questionnaire development. Some of the tricks of the trade used by one

of the world’s pre-eminent test development agencies are discussed; features and

characteristics of several publicly released PISA items are demonstrated; and issues

that affect the ways in which these mathematics items are used to measure levels of

mathematical literacy are canvassed. This part also describes how the PISA 2012

survey collected data to measure the opportunity students in participating countries

have had to learn mathematics involving the approaches promoted through PISA.

Evidence from sources such as this can assist countries to find the right balance of

PISA-like classroom activities with traditional approaches to mathematics, when

the goal is mathematical literacy. A major theme of this part is the range of quality

assurance measures that need to be applied so that the results of PISA are mean-

ingful, and the substantial international collaboration that is involved in doing this

complex task.

The third part of the book goes to the issue of impact. We present the viewpoints

of mathematics educators in various contexts in 14 countries to show how PISA and

its constituent ideas and methods have influenced teaching and learning practices,

curriculum arrangements, assessment practices at a variety of levels, and the

education debate more generally in different countries. Some of these contributions

may go some way to explaining why there has been improvement in PISA scores in

some countries over time and may provide models and ideas for policy makers who

wish to use PISA outcomes as a stimulus for further educational improvement.
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A Compact Introduction to PISA Surveys

This part gives a very brief introduction to the PISA program, designed to provide

background information for readers unfamiliar with PISA and pointing to later

sections of the book where particular issues mentioned are developed in greater

detail.

PISA stands for the Programme for International Student Assessment, which

was initiated by the Organisation for Economic Co-operation and Development

(OECD) in the 1990s to provide governments and other interested parties informa-

tion on the effectiveness of educational systems, especially in preparing students for

the challenges of their future lives. The foreword to the first report of results from

PISA sets out the agenda in these terms:

PISA represents a new commitment by the governments of OECD countries to monitor the

outcomes of educational systems in terms of student achievement on a regular basis and

within a common framework that is internationally agreed upon. PISA aims at providing a

new basis for policy dialogue and for collaboration in defining and operationalizing

educational goals—in innovative ways that reflect judgements about the skills that are

relevant to adult life. (OECD 2001, p. 3)

PISA surveys are conducted every 3 years, with a random sample of 15-year-old

students in OECD and partner countries and economies. This age group was chosen

because this is around the end of compulsory schooling in many countries. The first

PISA survey was in 2000, so that the 2012 survey was the fifth in the series and the

sixth is in 2015. This book has been prepared between the data collection for the

PISA 2012 survey and the announcement of its first results in December 2013.

Further analyses will be published for many years. Every survey administration

assesses reading literacy, scientific literacy and mathematical literacy, with a variety

of additional assessment components varying across survey administrations such as

problem solving, and optional components that also vary such as financial literacy.

The meaning of the phrase ‘mathematical literacy’ and the reasons for selecting this

as the construct to be assessed in the mathematics component of the PISA survey

feature prominently in this book, especially in Chap. 1. In addition to what are usually

referred to as the cognitive assessment components (the reading, mathematics and

science components that relate to recognised and established curriculum domains),

background questionnaires directed to schools and students gather data on the school

and home environment for learning. Results from PISA are used in many different

ways: to compare the performance of students from different countries, to examine

the differential performance of students belonging to different subgroups within a

country, to track changes in performance over time, and to link features of the

learning environment to student performance. Turner and Adams (2007) provide an

overview of many organisational and other aspects of PISA.

The surveys are designed so that scores from different survey administrations are

directly comparable, so it is now possible to examine trends in achievement over an

extended timeframe. In the case of mathematics, the full PISA mathematics scale

was developed from the PISA 2003 survey, so mathematics trends can be examined
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over more than a decade. Because sufficiently many trend items from previous

surveys are used within each survey, it is possible to say that a mathematics score of

500 (say) in PISA 2003 describes the same ability level as a score of 500 in PISA

2012. Of course, this is not true for country rankings, because the group of

participating countries varies. For example, Finland had a mean score of 536 in

PISA 2000 and was ranked fourth. Japan had a mean score of 536 in PISA 2012 and

was ranked seventh. The overall performance of Finland in 2000 and Japan in 2012

are the same, with the different rankings reflecting the significant increase in the

number of countries participating in PISA over that period.

In each survey administration, the major focus of the survey rotates through

reading literacy, mathematical literacy and scientific literacy. The 2003 and 2012

surveys focused on mathematical literacy, with the surveys in 2000, 2006 and 2009

providing a smaller volume of data on mathematics, and with the focus in those

years being on either reading or science. For 2003 and 2012, a large number of new

mathematical literacy items had to be created and trialled, and this process is

described later in this volume in Chap. 6 (by Ross Turner, in discussing test

development alongside other aspects of quality assurance in PISA) and Chap. 7

(by Dave Tout and Jim Spithill, from the ACER mathematics test development

team for PISA 2012). Mathematics items used in PISA surveys are also presented

and discussed in other chapters (including in Chap. 3 by Kaye Stacey as part of her

discussion of modelling within PISA mathematics, and in Chap. 8 by Caroline

Bardini as part of her discussion of features of the computer-based mathematics

option for PISA 2012). In the 2003 and 2012 survey administrations, the question-

naires for students and schools also emphasised mathematics and some of the

specifically mathematical probes are discussed in Chap. 10 in this volume by

Leland Cogan and William H. Schmidt.

PISA is a huge educational study. In 2012, for example, a random sample of just

under 519,000 students in 65 countries (including all 33 of the OECD member

countries) participated in the main survey covering mathematics, reading, science,

general problem solving and the core background questionnaires, with many

undertaking the optional components including computer-based assessment of

reading and mathematical literacy, financial literacy, parent questionnaires and

student questionnaires on familiarity with ICT and educational careers. All of

these instruments were prepared in up to 85 different national versions, including

versions translated into 43 different languages using rigorous processes to ensure

that they are free from cultural and linguistic biases, so that the data are as truly

comparable as possible.

PISA draws on the skills and knowledge of many experts around the world. The

2012 mathematics assessment required 115 new items to be created for the nine-

yearly in-depth study of mathematical literacy, alongside 36 items linked to earlier

administrations of the survey to enable estimation of trends. From a very large set of

raw ideas, new items proposed by teams around the world went into a large pool for

extended development and that pool was approximately halved for the field trial

and halved again for the main survey in the light of empirical results. Even before

selection for the field trial, items were subject to intensive scrutiny by PISA’s
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Mathematics Expert Group, by the item development teams, by external experts,

and by the national teams in every participating country. In 2012, test booklets also

included items specially tailored so that emerging economies with currently low

performing school systems were able to obtain more reliable data than had been

possible in the past.

The substantial length of time between data collection and the release of the first

results is in part due to the thorough procedures that are applied to checking the

adequacy of the achieved sample of students and schools, and to the sophisticated

statistical methods used to produce results, especially in order to make them

comparable from survey to survey. To improve the breadth of assessment of

mathematical literacy, each student does only a small selection of the full bank of

items for mathematics according to a rotated booklet design, within which booklets

are assigned randomly to sampled students. Student responses are ‘coded’
according to pre-defined response categories (see Chap. 9 in this volume written

by Agnieszka Sułowska).

There is a great deal of information freely available about PISA, past and present,

in accordance with OECD policy. The official OECD website (http://www.pisa.

oecd.org) includes general descriptions of the project, official reports, links to

operational manuals, survey instruments and all released items from previous

administrations, and secondary analyses of data on topics of interest. Some other

websites, including the website hosted by the Australian Council for Educational

Research, which led the international consortium of contractors for PISA from the

2000 to 2012 survey administrations, contain or link to copies of the numerous

national and international reports, research publications and commentaries, techni-

cal manuals and discussion documents and all released items (e.g. http://pisa-sq.

acer.edu.au and http://cbasq.acer.edu.au). It is possible to download databases and

manuals for analysis, or to submit a query to an automated data analysis service. In

addition to official sites, there are many reports of scientific procedures (e.g. Turner

and Adams 2007), secondary analyses of PISA data (e.g. Kotte et al. 2005; Grisay

andMonseur 2007;Willms 2010) and many reports with a policy or local focus (see,

for example, Oldham 2006; Stacey and Stephens 2008; Stacey 2010, 2011).

A difficult point for mathematics educators to accept is the precise goal of the

mathematics work in PISA. All the work carried out to bring PISA mathematics

into being is towards the goal of providing the best possible measure of mathemat-

ical literacy and its specified components. All of the items are selected on this

criterion. Items that do not contribute well are not used, even though they may

provide very interesting, important insights into student thinking. Moreover, items

have to be coded reasonably economically, so there remains a wealth of information

about student performance that is not captured for statistical analysis, although it

could possibly be made available for researchers. There are many questions about

particular aspects of mathematical thinking where the results of PISA items some-

times provide useful information, but this happens by accident not design, unless it

is directly related to the measurement of mathematical literacy.

PISA is not without criticism, but even this can often be seen as a positive result

of the OECD’s entry to this space. For example, criticisms have been made of
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technical and methodological aspects particularly of the analysis of PISA data (for

example, see Prais 2003; Goldstein 2004; Kreiner 2011 and a response to Kreiner

by Adams 2011). Some criticisms are based on a lack of knowledge of the quality

control measures used in item design and survey construction, a gap that this

volume hopes to fill. In particular, it is often assumed that no measures are taken

to minimise potential biases relating to culture and familiarity with the real-world

context. Criticisms have also been made regarding the accessibility of the PISA

survey in terms both of the cost of participation and the appropriateness of the test

items it uses for countries less wealthy and less developed than most OECD

member countries, an important issue that is taken up in several chapters of this

volume. A further form of criticism is based on views of the ways in which PISA

data are often used, especially where that use is limited to global comparisons of

performance with a ‘horse-race mentality’ rather than deeper use to understand the

correlates and drivers of performance in order to design system and other educa-

tional improvements. It is to be hoped that this volume will play a part in promoting

a more informed use of PISA results and constructs. Increased methodological

debate related to the conduct of educational surveys might well be seen as a positive

outcome of PISA; similarly the number and range of countries either joining PISA

or investigating alternative sources of the kind of measures that PISA generates

stands as testament to the fundamental importance of the aims of the PISA

enterprise. By explaining the inside view of the processes in creating a PISA survey,

this book may be seen as a contribution to deepening the nature of consideration and

debate about what positive lessons can be learned from PISA and its results.

About This Book

The remainder of this introduction briefly introduces each of the parts of the book in

turn. This book is divided into three parts. Part I is concerned with the ideas that are

central to PISA mathematics and how they link with other ideas within educational

thinking. Part II focuses on the implementation of the survey and Part III brings

together perspectives from people around the world who have used PISA initiatives

to improve mathematics education in their countries. The chapters differ signifi-

cantly in style, from broad scholarly surveys and reports of research methods to

accounts by individuals of their encounters with PISA ideas and work. Together it is

hoped that they provide readers with a rich account of many, but certainly still not

all, aspects of the large enterprise that is PISA mathematics.

Part I: The Foundations of PISA Mathematics

Part I reviews the main concepts and theoretical background for the mathematics

component of the PISA survey.

The Assessment of Mathematical Literacy: Introduction to PISA and to This Book xvii



Chapter 1 The Evolution and Key Concepts of the PISA Mathematics Frame-
works by Kaye Stacey and Ross Turner describes the key concepts of the Frame-

works and some of the history and origins of those ideas, within PISA and from

broader educational thinking.

Chapter 2 Mathematical Competencies and PISA by Mogens Niss describes the

origins of a set of mathematical competencies that take a central place in the PISA

Framework to describe what it means to ‘do mathematics’.
Chapter 3 The Real World and the Mathematical World by Kaye Stacey

describes how PISA theorises the link between mathematics and its use for practical

purposes through the mathematical modelling cycle, and how an assessment using

real-world contexts can be implemented fairly across groups and cultures.

Chapter 4 Using Competencies to Explain Mathematical Item Demand: A Work
in Progress by Ross Turner, Werner Blum and Mogens Niss describes research that

has shown how the PISA mathematical competencies can be used to understand

aspects of the cognitive demand of PISA mathematics tasks.

Chapter 5 A Research Mathematician’s View on Mathematical Literacy by

Zbigniew Marciniak presents a personal reflection on how involvement with

PISA mathematics has affected his views about what is important in mathematics

education. Including this reflection acts as a reminder that important theoretical

considerations actually have an impact on individuals involved in education. The

issues that it addresses have been at the heart of the ‘math wars’ that have raged in

many countries over several decades.

Part II: Implementing the PISA Survey: Collaboration,
Quality and Complexity

Part II describes aspects of the implementation of the PISA survey from various

insider perspectives, showing the complexity of the PISA enterprise, the steps taken

to ensure quality of PISA outcomes and the extensive collaboration among a variety of

stakeholders and other players that takes place to make the enterprise such a success.

Chapter 6 From Framework to Survey Data: Inside the PISA Assessment Process
by Ross Turner introduces the major elements involved in the development and

implementation of each PISA survey.

Chapter 7 The Challenges and Complexities of Writing Items to Test Mathemat-
ical Literacy by Dave Tout and Jim Spithill provides an outline of the processes of

test development. It uses released PISA items to exemplify the processes.

Chapter 8 Computer-Based Assessment of Mathematics in PISA 2012 by

Caroline Bardini describes theoretical and practical issues related to the computer

delivery of PISA items and illustrates with several of the PISA 2012 items.

Chapter 9 Coding of Mathematics Items in the PISA Assessment by Agnieszka

Sułowska provides a very practical account of the way student responses to PISA

items are processed from the perspective of a PISA national assessment centre.

Chapter 10 The Concept of Opportunity to Learn (OTL) in International Com-
parisons of Education by Leland Cogan and William Schmidt discusses the

xviii The Assessment of Mathematical Literacy: Introduction to PISA and to This Book

http://dx.doi.org/10.1007/978-3-319-10121-7_1
http://dx.doi.org/10.1007/978-3-319-10121-7_2
http://dx.doi.org/10.1007/978-3-319-10121-7_3
http://dx.doi.org/10.1007/978-3-319-10121-7_4
http://dx.doi.org/10.1007/978-3-319-10121-7_5
http://dx.doi.org/10.1007/978-3-319-10121-7_6
http://dx.doi.org/10.1007/978-3-319-10121-7_7
http://dx.doi.org/10.1007/978-3-319-10121-7_8
http://dx.doi.org/10.1007/978-3-319-10121-7_9
http://dx.doi.org/10.1007/978-3-319-10121-7_10


development and inclusion of innovative questions related to opportunity to learn

mathematics in the student questionnaire for PISA 2012.

After the stages of item creation, the data collection and the coding that are

described in these chapters, a long and complex process of collating, cleaning,

processing and then reporting results ensues. Understanding the statistical pro-

cedures is also important to a well-informed interpretation of the PISA results.

This is beyond the scope of this book, but is well described in the technical manuals

written as part of the documentation for each PISA survey administration

(e.g. Adams and Wu 2002).

Part III: PISA’s Impact Around the World: Inspiration
and Adaptation

Part III of the book is a collection of reflections on the impact that PISA has had on

individuals’ thinking, on education systems, and on teaching and learning practice

in 14 different countries.

Chapter 11 Applying PISA Ideas to Classroom Teaching of Mathematical
Modelling by Toshikazu Ikeda discusses the application of the ideas related to

mathematical modelling, as promoted in the PISA Framework, in classroom prac-

tice in Japan.

Chapter 12 The Impact of PISA on Mathematics Teaching and Learning in
Germany by Manfred Prenzel, Werner Blum and Eckhard Klieme, discusses the

changes instituted in German schools and systems as a direct consequence of

concern about Germany’s unexpectedly low initial PISA results.

Chapter 13 The Impact of PISA Studies on the Italian National Assessment
System by Ferdinando Arzarello, Rossella Garuti and Roberto Ricci describes

efforts to reform classroom practices in order to better prepare Italian students for

the kinds of thinking valued through PISA.

Chapter 14 The Effects of PISA in Taiwan: Contemporary Assessment Reform by

Kai-Lin Yang and Fou-Lai Lin describes contested plans in a high-performing

PISA country to introduce reforms arising from Taiwan’s PISA results.

Chapter 15 PISA’s Influence on Thought and Action in Mathematics Education,
compiled by Kaye Stacey, is a collection of shorter pieces that provide reflections

on aspects of the impact of PISA in ten countries. It speaks to the influence of PISA

ideas around the world as well as to its congruence with the major concerns of many

educators.

Final Reflections

Compiling this book marks the end of a long process for those of us working on

mathematics for PISA 2012. The framework has been revised so that it better

shows the connections among its elements, with work by the Mathematics
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Expert Group (MEG), ACER, and Achieve, and with input from experts around

the world. Organised by ACER, a huge number of items were developed by

teams around the world, critiqued numerous times including by teams in all

countries, selected by the MEG, translated into 43 languages, administered and

coded in the field trial in 65 countries and statistically analysed to provide data

for selection of items into the main survey, involving its major administration,

coding, statistical analysis and finally presentation of the first results in

December 2013. For most people, PISA begins at this point when the first results

are available.

These results are only worth the investment of so much effort if they can be used

for productive purposes to improve educational outcomes. This in turn depends on

the extent to which the processes that are followed provide confidence in the

reliability and integrity of the results, and whether PISA outcomes generate insight

into student performance. Whereas dealing with complexity is one theme of many

of the chapters, using strong quality assurance measures is another. We hope that

some of the qualms about PISA’s capacity to provide good measures across

countries will be alleviated by reading this book.

As is evident in many chapters of this book, the concept of mathematical literacy

is well founded within the tradition of mathematics education but is also a distinct

new contribution, especially because the PISA processes have forced some inte-

gration of analyses from across the globe. Around the world, countries are adopting,

and of course adapting, mathematical literacy as the major goal of schooling for

most students. Unlike some of its variants such as numeracy and despite the

impression given in some countries as a result of the words typically used to render

the terminology in different languages, mathematical literacy for all is not a low

level goal, but a high aspiration. In Part III, there are examples of countries where

PISA’s analysis of mathematical literacy is also forming a framework for national

curriculum development. The pool of publicly released items from PISA Mathe-

matics is now sizeable, and is also beginning to be used quite widely, in educational

research, for teacher professional development and as a model for assessment. In

other words, PISA has grown out of existing traditions and practices in mathematics

education, and in turn has influenced the directions in which mathematics education

is developing. Whilst close copying of PISA-style items is not sufficient to encour-

age strong mathematical literacy, because the inevitable constraints of providing

robust international assessment limit the range of such tasks, the released items

certainly provide ideas and directions for improving instruction. They can also

stimulate the production and classroom use of PISA-like tasks that develop math-

ematical modelling and mathematical literacy more richly. PISA also publishes all

databases, so further research on many fronts is supported. With well-informed

commentators, PISA can make a contribution far beyond the horse race results so

frequently represented in the media.

Working within PISA also makes it clear that one of the world’s largest educa-
tional research surveys cannot answer all of the research questions that need to be

answered. It cannot, for example, directly answer questions about the best direction
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for educational reform. However, we hope that this book contributes to widespread

better understanding of PISA results, so that they can be sensibly used as a basis for

the needed experimentation, study and policy development that can follow having the

strong measure of mathematical literacy that PISA surveys provide.

Melbourne Graduate School of Education Kaye Stacey

The University of Melbourne

Melbourne, VIC, Australia

International Surveys, Educational Ross Turner

Monitoring and Research

Australian Council for Educational Research

Melbourne, VIC, Australia
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Part I

The Foundations of PISA Mathematics

Introduction to Part I

In this part the inside story of the conceptualisation of mathematical literacy for

PISA for the first five surveys is presented. Authors have been directly involved in

creating the PISA Mathematics Framework, which specifies the assessment param-

eters and the nature of the mathematical literacy items. The key elements of the

Mathematics Framework for PISA 2012 are introduced in the context of a discus-

sion of the evolution of the Frameworks of the PISA survey from 2000. The

relationships between the literacy notion and other ideas underpinning the PISA

Framework, and the appearance of similar ideas elsewhere in the mathematics

education world show clearly that the developments here form part of an ongoing

historical progression in the thinking of policy-makers and educational practi-

tioners of all kinds that is aimed at improving the quality of mathematics education.

In Chap. 1, Kaye Stacey and Ross Turner put the 2012 Framework in its

historical context, emphasising the links between ideas harnessed in this Frame-

work and other contexts in which the same or similar ideas have been used. Two

major sets of ideas central to PISA mathematics since its inception are mathemat-

ical modelling and mathematical competencies.

In Chap. 2, Mogens Niss provides an extensive history of the development of the

competency notion for mathematics, which is the general attempt to describe

mathematics in terms of a small set of competencies involved in doing mathematics

rather than by naming the topics studied in mathematics courses. The importance of

this is that it focusses the attention of teachers, assessors and students on working

mathematically in the broadest sense, not just on knowing how to solve routine

problems. This description of competencies centres on the work of Niss himself and

colleagues in Denmark but links to some other well-known schemes are also

discussed. The chapter reports on the evolution of the competencies (renamed the

fundamental mathematical capabilities for PISA 2012) over the first fifteen or so

years of PISA’s existence from the more general schemes to one specifically

designed for PISA purposes. In conjunction with Chap. 4, this chapter offers an

http://dx.doi.org/10.1007/978-3-319-10121-7_1
http://dx.doi.org/10.1007/978-3-319-10121-7_2
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accessible and authoritative outline of the history, background and current devel-

opments of these influential ideas.

In Chap. 3, Kaye Stacey explains how mathematical modelling and

mathematisation fit within PISA mathematics, using a number of released PISA

items to illustrate the points made. The central idea of mathematical literacy is that

is it about the use of mathematics in people’s lives, and this raises issues of

authenticity and interest of the real-world contexts and the equity of assessment

using them. Assessing mathematics in context is more complicated than assessing

mathematical skills and routines. A further contribution of the chapter is in clari-

fying the meaning and use of many different terms (such as literacy, numeracy,

competency, modelling, mathematising) that are sometimes used in discussions

about PISA.

In Chap. 4, Turner, Blum and Niss present the story of ongoing research that has

exposed aspects of the role played by mathematical competencies in affecting the

empirical difficulty of PISA items, and therefore the expression of the literacy

construct of which PISA items are intended to provide indicators. The chapter

elaborates on the definition and operationalisation of the competencies and how this

has been used in task development. The detailed discussion of the thinking behind

the scheme and its modifications is invaluable for anyone aiming to understand the

role of competencies in doing mathematics. The final appendix, which defines the

competencies and the specifications of four levels for each, is a definitive guide for

researchers, teachers and test designers intending to use competencies to explain,

monitor or manipulate item demand.

Marciniak completes this part by providing in Chap. 5 a personal reflection from

the perspective of a pure mathematician on the changes in his thinking about

mathematics education that have resulted from his grappling with the main ideas

and practices of PISA mathematics, first as a national reviewer of draft PISA

material, and then as a member of the Mathematics Expert Group for the last four

survey administrations. The contribution belongs in this part because it is intimately

about what PISA should value most. Marciniak reflects on his growing realisation

that for most students at school, the goal of mathematical literacy is of greater

importance than promoting abstract mathematical thinking, and that the common

‘catch the fox’ approach to curriculum does not serve students well. This is an

individual account, contrasting in style to other chapters in this part, but it is

significant because of ongoing community debate about what should be the highest

priorities of school mathematics, and hence what type of mathematics PISA should

assess. Whilst the ‘math wars’ (Schoenfeld 2004) in the USA are extensively

documented aspects of this debate, many educators and professional mathemati-

cians around the world grapple with this issue. The beauty and structure of pure

mathematics and the opportunities for truly challenging problem solving attracted

many of us (including Marciniak) to work in mathematics, but mathematics as a

compulsory subject must place the highest priority on its usefulness.

There is a humorous saying in English that ‘a camel is a horse designed by a

committee’. As readers of this part encounter some of the extra camel humps in the

conceptual framework of PISA, they will see the signs that PISA has been designed
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by numerous committees, modified over time, and has taken on board suggestions

from around the world. But just as a real camel has characteristics that make it a

valuable and unique animal and not just a poorly designed horse, the PISA ‘camel’
is a strong and robust beast, fit to withstand the many perils in the desert of

international assessment. It has been designed through genuine collaborative think-

ing, rather than bureaucratic committee processes. It has amalgamated constructs

and ideas from many sources, expressed in many different educational traditions

and languages, to build a framework upon which an assessment of valuable learning

for citizens around the world can be founded.
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Chapter 1

The Evolution and Key Concepts of the PISA

Mathematics Frameworks

Kaye Stacey and Ross Turner

Abstract This chapter describes the purpose of the Framework for the PISA

surveys of mathematical literacy and its evolution from 2000 to 2012. It also

describes some of the analysis and scholarship on which the key constructs of the

Framework are based, and links to kindred concepts in the wider mathematics

education literature. The chapter does not intend to present the Framework but

instead to share insights into its creation by successive Mathematics Expert Groups.

The main Framework concept is that of mathematical literacy which has its roots

in recognition of the increasing importance of mathematical proficiency in the

modern world. The chapter describes mathematical literacy, its evolving definition

and the origin of the term within broadened notions of literacies and its relationship

to other terms such as quantitative literacy and numeracy. It describes the central

constructs of the Framework, which are used to describe what abilities make up

mathematical literacy and are also used to ensure that the item pool is comprehen-

sive and balanced. These are the real-world context categories that group the source

of mathematical challenges, the phenomenologically-based content categories, the

fundamental mathematical capabilities and a set of processes based on the mathe-

matical modelling cycle. The way in which new technologies have expanded the

view of mathematical literacy and how this has been assessed through the 2012

computer-based assessment of mathematics is also discussed.
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Introduction

Imagine you were asked to find out whether educational systems around the world

are doing a good job in preparing students for the challenges that they are likely to

face in their futures. You are almost certain to decide that the traditional ‘three
Rs’—reading, ’riting and ’rithmetic—remain highly important, along with other

capabilities about which there will be more debate. Now focus on arithmetic. Here,

you are likely to decide that restricting your investigation to arithmetic is definitely

out of date and that you need to investigate success in the broad field of mathemat-

ics. (Here, and almost everywhere else in this volume, this term ‘mathematics’
includes all branches of the mathematical sciences, including statistics.) This

needed breadth has been recognised for many years. For example, in 1989 the

National Council of Teachers of Mathematics commented:

To become mathematically literate, students must know more than arithmetic. They must

possess a knowledge of such important branches of mathematics as measurement, geom-

etry, statistics, probability, and algebra. These increasingly important and useful branches

of mathematics have significant and growing applications in many disciplines and occu-

pations. (NCTM 1989, p. 18)

Within this wide domain of mathematics, what sort of tasks should be posed to

answer the main concern of the OECD’s PISA survey for mathematics: have

students have been well prepared mathematically for future challenges (OECD

2000)? The main topic of this chapter is to discuss the PISA answer to this question:

that the highest priority for assessment is ‘mathematical literacy’ with its focus on

life after school, not just life at school. The chapter discusses the concept of

mathematical literacy from many points of view, including its history from before

PISA and as it developed through the 2000–2012 surveys. It provides an analysis of

the components of mathematical literacy (and their origins in many branches of

educational thought) and describes how this analysis is employed to create a

balanced assessment of mathematical literacy. The way in which PISA

operationalises these components of mathematical literacy is officially described

in the Mathematics Framework (see, for example, OECD 2013a), so the chapter

begins with a brief description of its purpose and history.

The Frameworks from PISA 2000 to PISA 2012

Much of the subsequent discussion in this chapter draws on the Frameworks for

mathematics for the PISA surveys from 2000 to 2012 (OECD 1999, 2004, 2006,

2009c, 2013a). These were created by the Mathematics Expert Groups (MEG)

appointed for each survey by the international contractors with the approval of

the PISA Governing Board. MEG members include mathematics educators, math-

ematicians and experts in assessment, technology, and education research from a

range of countries. The preface lists the membership from 2000 to 2012. External
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review of the Frameworks has been widely sourced over time, with the

U.S.A. group Achieve (www.achieve.org) co-ordinating major input for the PISA

2012 Framework. Whilst the Mathematics Framework has been revised and

published anew for each administration of the PISA survey, only the initial Frame-

work (OECD 1999) and the versions for PISA 2003 and PISA 2012 (OECD 2004,

2013a) when mathematics was the major survey domain represent significant

developments.

The purpose of the Framework is to set out the PISA approach and describe the

assessment instruments in terms of the processes that students need to perform, the

mathematical content that is relevant, and the real-world contexts in which knowl-

edge and skills are applied. This analysis of the concept of mathematical literacy

and what contributes to student success is used to ensure that the assessment gives a

sufficiently balanced and thorough coverage of the domain to gain the support of

countries participating in the PISA survey. The Mathematics Framework also

identifies mathematics-related aspects of the assessment of attitudes that contribute

to students using and further developing their capabilities.

The Frameworks for the first four surveys were developed by the MEGs under

the chairmanship of Professor Jan de Lange from the Netherlands. de Lange’s
leadership provided a strong link to the Freudenthal Institute’s approach to math-

ematics education, known widely as Realistic Mathematics Education (RME). The

first Framework was only partially developed, but it made a clear statement of the

centrality in PISA of the mathematisation of the real world that permeates de

Lange’s RME perspective (de Lange 1987). PISA was therefore able to capitalise

on an existing body of research and resources (see, for example, de Lange 1992). A

more complete development was undertaken for PISA 2003 and this second

Framework (OECD 2004) began to flesh out the description of the process of

doing mathematics and the competencies involved. The changes that were made

to the Frameworks for the 2006 and 2009 survey administrations were largely

cosmetic, but when mathematics was again the major survey domain for PISA

2012, the Framework (OECD 2013a) underwent a major revision. This chapter is

intended as a behind-the-scenes explanation of framework ideas: the published

Frameworks remain the authoritative source of the outcomes of that development.

What Is Mathematical Literacy?

The task for PISA, as set by the OECD is to discover whether students have been

well prepared mathematically for future challenges in life and work. What sort of

mathematical tasks should be posed to answer this question? Consider Pythagoras’s
theorem, arguably the most important theorem in all of mathematics, known for

over 3,000 years. It provides practical information for calculating distances and it is

used and generalised in many different branches of pure and applied mathematics.

It has about 370 known proofs. It also motivated Fermat’s Last Theorem, the most

famous of all mathematical problems. Certainly knowledge of Pythagoras’s
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theorem is important, but what type of problems about it would be appropriate to

ask? Figure 1.1 offers a range of possibilities. All of these are valid questions that

students could be asked at school when studying Pythagoras’s theorem.

• Sample Problem 1. State Pythagoras’s theorem.

• Sample Problem 2. ABC (see Fig. 1.1a) is a triangle right-angled at C. AC has

length 7 cm. BC has length 12 cm. Calculate the length of side AB.

• Sample Problem 3. In triangle DEF (see Fig. 1.1b), angle F is 90�, angle D is 45�

and side EF is 150 m. Calculate the length of side DE.

• Sample Problem 4. A large kite is flying at an angle of 45� to the ground at height
of 150 m. How long is the rope tethering it?

• Sample Problem 5. KLM (see Fig. 1.1c) is a triangle right-angled at M. P is a

point on KM and Q is a point on LM. Prove that KQ2 +LP2¼KL2 + PQ2.

• Sample Problem 6. Prove Pythagoras’s theorem.

Sample Problem 1 tests recall of fundamental knowledge that is required to

answer all of the sample problems that follow. Sample Problem 2 is a very

straightforward application of the theorem also requiring accurate calculation.

Sample Problem 3 draws in other geometric knowledge (triangle DEF is isosceles,

and so has two equal sides) before the knowledge of Pythagoras’s theorem as tested

in Sample Problem 2 can be used. Sample Problem 4 has the same mathematical

core as Sample Problem 3, but is presented in a context. Thus the problem solver

first has to uncover the mathematical structure within the real-world situation

described, introducing for himself or herself the triangle and the right angle using

real-world knowledge and deciding whether it is reasonable to consider the rope as

a straight line, at least as a first approximation. As with Sample Problem 3, the intra-

mathematical Sample Problem 5 requires devising a problem solving strategy,

although in this case it does not draw in knowledge beyond Pythagoras’s theorem.

Instead it requires the insight that Pythagoras’s theorem can be used in four

different right-angled triangles within the figure, followed by use of a little algebra.

Like Sample Problem 5, Sample Problem 6 is again in the intra-mathematical

world, connecting students’ experience to the great advance that the Pythagoreans

are credited with. They changed mathematics from the practice of rules for numer-

ical calculation to an intellectual structure by “examining its principles from the

beginning and probing the theorems in an immaterial and intellectual manner”

(Boyer 1968, p. 53). Depending on students’ mathematical experience, Sample

Fig. 1.1 Diagrams for sample problems involving Pythagoras’s theorem
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Problem 6 may be answered by reproduction of ‘book knowledge’, or it may present

a substantial challenge. Questions like all of those above could potentially be asked

to investigate the effectiveness of educational systems.

In preparation for the first PISA assessment, the OECD and its Framework

developers needed to decide what subset and style of mathematics was the most

important for PISA to assess. The answer was summarised in the phrase ‘mathe-

matical literacy’. The key idea is to assess as directly as possible students’ ability to
use mathematics in solving problems arising in authentic real-world problems,

rather than to make unsupported inferences about that ability by examining only

the abstracted core mathematical knowledge and skills. The PISA 2000 report

explains that the term ‘literacy’ is used

to indicate the ability to put mathematical knowledge and skill to functional use rather than

just to master it within a school curriculum. (OECD 2000, p. 50)

Sample Problem 4 above is the closest to a PISA problem; in fact it is an

abbreviated version of an item from the PISA 2012 main survey, PM923Q03

Sailing ships Question 3, shown in Fig. 1.2. The Skysails Company http://www.

skysails.info/english/power/ makes sails to supply green power from the wind to

drive ships and for power generation at sea. This authentic situation provides the

stimulus for items involving percentage change (PM923Q01 Question 1), real-

world interpretation of algebraic formulas (PM923Q02 Question 2 not released),

Pythagoras’s theorem (PM923Q03 Question 3) and a multi-step calculation involv-

ing rates (PM923Q04 Question 4). Like Sample Problem 4, solving PM923Q03

Sailing ships Question 3 involves creating a mathematical model of the real

situation and then applying the same intra-mathematical thinking as in Sample

Problem 3 above, which in turn involves the component knowledge and skills of

Sample Problems 2 and 1. Items that test mathematical literacy involve the creation,

use or interpretation of a mathematical model for a real-world problem as well as

intra-mathematical thinking. PISA does not set out to test ‘book knowledge’ or
factual recall, except as part of solving a problem in an authentic situation, although

in some of the simplest items the real situation is, in fact, involved in only a minimal

way. These ideas are discussed fully in Chap. 3 of this volume.

A Continuum to Complex Mathematical Thinking

Can questions testing mathematical literacy involve intra-mathematical thinking

and proof of the complexity of Sample Problem 5 or Sample Problem 6 above?

Producing insightful solutions to complex problems can be part of mathematical

literacy, provided the need for the thinking emerges from a realistic context and

solving the problem could genuinely describe, explain or predict something about

that context. Mathematical literacy can also involve the presentation of convincing

arguments about those real situations, and the special proof-related nature of these

is a characteristic of mathematics.
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When discussing complex mathematical thinking, an important caveat for the

implementation of PISA is that the questions are able to be solved by an adequately

large percentage of the target age group, under the conditions in which the survey is

administered. It is useless to include in the PISA survey questions with very high or

very low success rates because an item makes very little contribution to the

measurement if nearly all students obtain the same score. As a construct, there is

Fig. 1.2 PM923 Sailing ships, released after PISA 2012 main survey (OECD 2013b)
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no bound to the complexity of mathematical literacy items and it transcends age

boundaries, but the items used in the PISA survey must take the characteristics of

15-year-old students into account. Only a subset of mathematical literacy items can

be used with 15-year-olds.

Mathematical literacy, as defined by PISA, is not something that people have or

do not have, instead it is something that everyone possesses to a greater or lesser

degree. Proficiency lies along a continuum applying to very direct, simple tasks in

everyday situations through to situations involving the highest levels of technical

work. As noted by Marciniak (Chap. 5 of this volume), when judging the appro-

priateness of the mathematical content for PISA items, it is more important to select

items involving content that features prominently in functional use than advanced,

difficult content.

Formal Definitions

For PISA 2000 mathematical literacy was defined as:

an individual’s capacity to identify and understand the role that mathematics plays in the

world, to make well-founded mathematical judgements and to engage in mathematics, in

ways that meet the needs of that individual’s current and future life as a constructive,

concerned and reflective citizen. (OECD 1999, p. 41)

For PISA 2006 mathematical literacy was revised to:

an individual’s capacity to identify and understand the role that mathematics plays in the

world, to make well-founded judgements and to use and engage with mathematics in ways

that meet the needs of that individual’s life as a constructive, concerned and reflective

citizen. (OECD 2006, p. 72)

The definition has again been revised for the 2012 Framework (OECD 2013a)

but in all of these revisions, there has not been an intention to change the underlying

construct. For 2012 the revision, in response to international comment, was

intended to clarify the ideas underpinning mathematical literacy so that they can

be more transparently operationalised and to identify more clearly the fundamental

and growing role that mathematics plays in modern society. The formal PISA 2012

definition of mathematical literacy is as follows:

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret

mathematics in a variety of contexts. It includes reasoning mathematically and using

mathematical concepts, procedures, facts, and tools to describe, explain, and predict

phenomena. It assists individuals to recognise the role that mathematics plays in the

world and to make the well-founded judgments and decisions needed by constructive,

engaged and reflective citizens. (OECD 2013a, p. 25)

All of these definitions are built on the consensus of the governments supporting

PISA and most research literature that all adults, not just those with technical or

scientific careers, now require a more sophisticated level of mathematical literacy

than in the past (see, for example, Autor et al. 2003).
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The first sentence of the 2012 definition identifies mathematical literacy as a

capacity of individuals and asserts the centrality of working in context, as described

above. It asserts that mathematical literacy is very closely related to mathematical

modelling, because formulating mathematical models, employing mathematical

knowledge and skills to work on the model and interpreting and evaluating the

outcome are its essential processes. The second sentence explains that all aspects of

mathematics are involved in mathematical literacy, whether through specific math-

ematical concepts and techniques or generic mathematical reasoning. The defini-

tion also highlights the functional purpose of mathematical literacy: to increase

understanding of real-world phenomena and hence to support sound decision

making across all areas of life. This is not a new idea. One of the reports that

followed the release of the PISA 2003 outcomes (OECD 2009b) cites Josiah Quincy

writing in 1816 of the importance of ‘political arithmetick’ to fulfil the duties of a

citizen conscientiously. Both the published Framework for PISA 2012 (OECD

2013a) and Stacey (in press) unpack further aspects of this definition.

Why Call It ‘Mathematical Literacy’?

The name ‘mathematical literacy’ has come to be associated with PISA, as part of

its broadened understanding of literacy in modern society (OECD 1999), but it has a

longer history. Ray Adams, the International Project Director contracted by the

OECD to lead development and implementation of the first five PISA survey

administrations, reminisced that he suggested the name ‘mathematical literacy’ at
the beginning of work on PISA (as part of the broad notion of literacy as described

below for all PISA domains) but he does not recall a specific source. In fact, the

phrase was already being used, although it was not widespread. Turner (2012)

points to usage in the 1940s without definition. The introduction to the famous

NCTM Standards (National Council of Teachers of Mathematics 1989) reports how

they began with a Commission charged with creating “a coherent vision of what it

means to be mathematically literate” (p. 1) and went on to summarise the term as

denoting:

an individual’s ability to explore, to conjecture, and to reason logically, as well as to use a

variety of mathematical methods effectively to solve problems. By becoming literate, their

mathematical power should develop. (NCTM 1989, p. 6)

This early definition includes two features of the use of the word ‘literacy’: that it
involves functional use of knowledge (applying knowledge to solve problems—by

implication important problems) and that it increases the individual’s power.

Comber (2013), writing on the development of the reading-writing concept of

literacy and its relation to critical theory, notes that the term ‘literacy’ did not

come into common use until the middle of the twentieth century and then it was

used, especially as illiteracy, mainly in adult education and to describe the needs of

the developing world. She reports how critical theorists such as Paulo Friere
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changed the view of literacy away from a skill to be mastered and instead put the

emphasis on engagement with the world in the expectation that literacy should

transform workers’ lives. When we translate into the context of mathematics, this

means to have the power to use mathematical thinking to solve real-world problems

to better deal with the challenges of life. The 2003 PISA Mathematics Framework

(OECD 2004) takes up the distinction made by Gee (1998) between the design

features of a language (e.g. its grammar) and the social functions of language. It

makes a parallel distinction between design features of mathematics (concepts,

procedures, conventions) and the functions that mathematics can serve in the wider

world. Like Gee, PISA emphasises how education must not focus on the design

features to the exclusion of the function. This is a broad theme across mathematics

education although rarely expressed in those terms.

Adopting the term ‘mathematical literacy’ was also strongly influenced by the

long-standing use of the term ‘scientific literacy’. Bybee (1997) provides a brief

history, dating ‘scientific literacy’ back to at least the 1950s. It denotes a familiarity

with science on the part of the general public and an orientation to helping people

understand the world they live in and to act appropriately (DeBoer 2000). It is part

of a push for a broad school treatment of science and its implications for society.

Turner (2012) gives a broad discussion of the links to scientific literacy, as well as

to the concepts that are discussed in the next section.

By 2012, mathematical literacy has become a common phrase: a search of the

index of the electronic pre-proceedings of the 2012 International Congress for

Mathematical Education showed it was used in 10 % of the 500 submitted papers.

Mathematical Literacy, Numeracy and Quantitative Literacy

There are at least two other terms in widespread use with strong links to mathe-

matical literacy: numeracy and quantitative literacy. Neither of these has a univer-

sally agreed definition. One advantage of PISA’s use of the initially less familiar

term ‘mathematical literacy’ is that consistent use of the PISA definition might

contribute to better communication within mathematics education.

The term ‘numeracy’ has been principally used in countries influenced by the

United Kingdom where it was coined as a mirror image to literacy in the Crowther

Report of 1959 with a broad meaning (Cockcroft 1982), quite closely related to

mathematical literacy. The influential Cockcroft Report noted a narrowing of the

term by 1982, and described the goal of numeracy as “an ‘at-homeness’ with

numbers and an ability to cope confidently with the mathematical demands of

everyday life” along with “an appreciation and understanding of information

which is presented in mathematical terms” (Cockcroft 1982, para 39, p. 11). It

went on to give a list of mathematics topics for lower achieving students, to be

taught alongside a range of applications. Numeracy continues to be used in several

different senses: as a minimum expectation for the mathematical knowledge of all

learners so that they can cope in the world, as a label for the mathematics learned in
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the early years of school (especially in the Number domain), or as a solid founda-

tion for meeting the mathematical demands of higher education and most work. In

summary, some uses of the term ‘numeracy’ are very close to PISA’s ‘mathematical

literacy’ and others are far away.

The report of the first OECD Adult Literacy Survey (OECD 1995) explains that

it follows earlier practice in dividing literacy into three domains: prose literacy,

document literacy and quantitative literacy. Quantitative literacy is described as:

the knowledge and skills required to apply arithmetic operations, either alone or sequen-

tially, to numbers embedded in printed materials, such as balancing a cheque book, figuring

out a tip, completing an order form or determining the amount of interest on a loan from an

advertisement. (OECD 1995, p. x)

This closely defined interpretation of ‘quantitative literacy’ contrasts with

broader uses of the term, especially in the U.S.A. such as that of the influential

report “Mathematics and Democracy: The Case for Quantitative Literacy” (Steen

2001). This describes examples across a wide range of aspects of life

(e.g. citizenship, personal finance, education, management) and skills drawing on

understanding of broadly interpreted branches of mathematics (e.g. arithmetic,

data, computers, statistics, modelling). It is close to PISA’s mathematical literacy.

The essential role of context in quantitative literacy is reiterated in many places in

the book, as in this passage:

. . . mathematics focuses on climbing the ladder of abstraction, while quantitative literacy

clings to context. Mathematics asks students to rise above context, while quantitative

literacy asks students to stay in context. Mathematics is about general principles that can

be applied in a range of contexts; quantitative literacy is about seeing every context through

a quantitative lens. (Hughes-Hallett 2001, p. 94)

Confusingly, the Steen report seems to use the terms ‘quantitative literacy’ and
‘numeracy’ synonymously. It sometimes uses the term ‘mathematical literacy’ to
relate only to intra-mathematical tools and vocabulary but elsewhere conveys the

PISA meaning. However, the report also contains a useful discussion of the origins

of all the terms, as does Turner (2012). In yet another variation, de Lange (2006)

sees the relationship somewhat differently with mathematical literacy the overarch-

ing concept, having subsets of quantitative literacy, spatial literacy and numeracy,

and the PISA phenomenological content categories contributing in different ways

to each these literacies.

The major difficulty with all of these words is that sometimes people use them in

a narrow sense, so that the broad ambitious sense of PISA’s mathematical literacy,

for example, is often not appreciated. This is an especially serious issue in some

languages. A strong criticism of the name ‘mathematical literacy’ comes from

countries particularly in the Spanish speaking world, but in other places too,

where the word ‘literacy’ has such an entrenched narrow meaning in their language

that it can be impossible to convey the broader meaning intended by PISA in local

and national educational debates. As Professor Maria Sánchez has put it in a

personal communication to Ross Turner (and cited in Turner 2012)
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The word for ‘literacy’ in Spanish is ‘alfabetización’. This concept leads to very basic

reading and writing abilities. So ‘alfabetización matemática’ would be interpreted as

knowing how to count and add, more or less, but no more than that.

The response in Uruguay, for example, to PISA’s use of the name ‘mathematical

literacy’ was to refer initially to ‘mathematical culture’, ‘scientific culture’ and
‘reading comprehension’. More recently the concepts of ‘cognitive competency’,
‘cognitive processes’, ‘developing of competencies for life’, have gained wider

acceptance, so they now refer to Competency in Mathematics, in Science and in
Reading. The French language has a similar difficulty with the term literacy

because the translation to ‘alphabétisation’ is narrow and very strongly linked to

reading and writing. Instead the term ‘culture mathématique’ is now being used in

reports from the French government such as that by Keskpaik and Salles (2013).

Keskpaik and Salles define ‘la culture mathématique’ by translating the official

PISA 2012 definition for mathematical literacy given above.

The international concerns have led to pressure to modify the PISA language. So

at the organisational level, the OECD has shifted its language towards referring to

PISA as an assessment of mathematics, science and reading; and where reference to

‘mathematics’ is not sufficient, to refer to ‘mathematical competence’. This is

intended to convey the same meaning as mathematical literacy but aims to avoid

the narrow connotations of that term. Nevertheless, within each of the survey

domains, the literacy reference has been retained at least in English and in lan-

guages that do not have such a strong association of literacy with only a basic level

of understanding. There is a possibility that the formal name may change in the

future: the Context Questionnaire Framework for PISA 2012, for example, uses the

phrase ‘mathematical competence’ instead (OECD 2013a, p. 183).

Mathematics and Mathematical Literacy: Set or Subset?

The quote from Hughes-Hallett above raises the question of whether mathematical

literacy, along with quantitative literacy and numeracy, are best considered as a part

of mathematics, or whether they are best considered as being larger than mathe-

matics or just different to it. For those who think that ‘mathematics’ is best

constrained to the abstract and theoretical, mathematical literacy interpreted

broadly must go beyond mathematics, because mathematical literacy tasks involve

linking the abstract with the real-world phenomena and making decisions based on

both. For others, mathematical literacy is that part of mathematics where the goal of

mathematical activity is functional and alongside this, there is a part of mathemat-

ical activity where the goal is to explore and understand abstract structures and

patterns for their own sake. Turner (2012) also discusses this question, as does Niss

in Chap. 2 of this volume.

The PISA definition of mathematical literacy does not directly address this

debate, and indeed the wording in the various definitions carefully steps around

it. However, the definitions make it clear that mathematical literacy is the ability to
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use mathematical content (concepts, facts, procedures and tools) in real situations.

It is also clear that teaching the school subject ‘Mathematics’ must address more

than an ‘abstract structures and skills’ curriculum to develop students’mathematical

literacy. Writing the preface to “Mathematics and Democracy” (Steen 2001), Orrill

observes:

An important theme of this volume, then, is that efforts to intensify attention to the

traditional mathematics curriculum do not necessarily lead to increased competency with

quantitative data and numbers. While perhaps surprising to many in the public, this

conclusion follows from a simple recognition—that is, unlike mathematics, numeracy

does not so much lead upward in an ascending pursuit of abstraction as it moves outward

toward an ever richer engagement with life’s diverse contexts and situations. When a

professional mathematician is most fully at work, [the process becomes abstract]. The

numerate individual, by contrast, seeks out the world and uses quantitative skills to come to

grips with its varied settings and concrete particularity. (Orrill 2001, p. xviii)

Analysing Mathematical Literacy

The PISA Mathematics Framework defines mathematical literacy and the domain

of mathematics for the PISA survey and describes the approach of the assessment.

Figure 1.3 shows an overview of the main constructs of the 2012 Framework

(OECD 2013a) and how they relate to each other.

The outer-most box in Fig. 1.3 shows that mathematical literacy is required to

meet a challenge that arises in the real world. These challenges are categorised in

two ways: by the nature of the situation (the context category) and the major

domain of mathematics involved (the content category). The middle box highlights

the nature of mathematical thought and action that needs to be used in solving this

challenge. This is described in three ways: by mathematical content, by the funda-

mental mathematical capabilities that constitute mathematical activity and which

are described in detail in Chaps. 2 and 4 of this volume (by Niss and by Turner,

Blum and Niss respectively), and by the processes of mathematical modelling

(discussed in detail in Chap. 3 of this volume by Stacey). The innermost box

illustrates how the problem solver goes through these mathematical modelling

processes in solving a problem.

A major purpose of the Framework is to specify the breadth of contexts, of

mathematical thought and action and of solution processes that are included in the

survey and the balance between them in the items. Figure 1.4 shows that there are

six factors for which the Framework specifies the proportion of the items in the

survey, relating to mode of assessment, content, context, process, response type,

and difficulty (which is measured on a continuum rather than discretely). As well as

being combined to make the overall score and ranking, three of these factors were

separately reported for the 2012 survey: the continuing paper-based assessment and

the new optional computer-based assessment (see below and also in Chap. 8), the

content categories (four) and the processes (three). Reporting by process is a new

feature of PISA 2012 that is discussed below. It has been introduced in order to give
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Fig. 1.3 A model of mathematical literacy in practice (OECD 2013a)

← Reporting categories → ← Further categories for balance →

Assessment
mode

Process
categories

Content
categories

Context
categories

Response
Type

Cognitive
Demand

Paper-based

Computer-
based

Quantity

Personal

Societal

Occupational

Scientific

Selected 
Response
(multiple 
choice, 
complex 
multiple 
choice, 

variations)

Constructed 
Response
(expert, 

manual or 
auto-coded)

↑

Continuum
of 

empirical
difficulty 

↑

↑
↑

Formulating
situations 

mathematically

Employing
mathematical

concepts,
facts,

procedures,
and reasoning

Interpreting,
applying and

evaluating
mathematical

outcomes

Uncertainty
and data

Change and
Relationships

Space and
 Shape

Fig. 1.4 Categories over which the 2012 PISA Mathematics is reported and balanced
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a better description of the abilities that underlie mathematical literacy. Previously

PISA frameworks discussed processes by grouping items into ‘competency classes/

clusters’ according to whether they required reproduction, connections or reflec-

tion, but outcomes were not reported using that classification. In Chap. 2 of this

volume, Niss describes how the competency classes were linked to the other

Framework elements. An early version of the competency classes as lower, middle

and higher levels of assessment is found in de Lange (1992).

Each PISA item is classified according to these six factors, to ensure the

balance of the assessment, and for aggregation of scores from designated items

for reporting. Table 1.1 shows the relevant metadata for the three released items

of PM923 Sailing ships. The assessment mode and response format are easily

decided. The categorisations for process, content and context are determined by

the Mathematics Expert Group and sometimes involve ‘on balance’ decisions.
The cognitive demand is the item difficulty derived in advance of the main survey

item selection from the field trial using Rasch-based item response theory (see, for

example, Adams and Wu 2002). An average item has difficulty 0, items more

difficult than average have positive scores and very difficult items have a score

over 3.

Real-World Context Categories

Four context categories identify the broad areas of life from which the problem

situations in the items may arise. For PISA 2012 these are labelled Personal,
Societal, Occupational and Scientific. This is a simplification of the names for

categories used in earlier PISA surveys, with minor adjustments of the scope of

each. Formal definitions are given in the PISA 2012 Framework (OECD 2013a).

Briefly, problems in a personal context arise from daily life with the perspective of

the individual being central. Problems in a societal context arise from being a

citizen, local, national, or global. Problems in an occupational context are from the

Table 1.1 Metadata for PM923 Sailing ships (PISA 2012 main survey)

PM923 Sailing ships

Question 1 Question 3 Question 4

Assessment mode Paper-based Paper-based Paper-based

Process category Employ Employ Formulate

Content category Quantity Space and

shape

Change and

relationships

Context category Scientific Scientific Scientific

Response format Multiple

choice

Multiple choice Constructed response

Cognitive demand (item

difficulty)

�0.9 �0.3 1.8
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world of work and problems in a scientific context (such as PM923 Sailing ships in

Fig. 1.2) apply mathematical analysis to science and technology. From 2012, the

Scientific category also includes problems entirely about mathematical constructs

such as prime numbers (previously in the educational/occupational category), but

because mathematical literacy is for functional use, extremely few PISA items are

entirely intra-mathematical.

Earlier versions of the Framework described the different context categories as

being of varying ‘distance from the student’ (with personal the closest, and scien-

tific the furthest), which some observers criticised because of the great individual

variation in students’ experiences. This description was not used in 2012: instead

the categories were effectively defined through multiple exemplifications. The four-

way context categorisation is not rigorously defined, and can often be debated. Its

only purpose is to ensure balance in the items of the PISA survey—they should

arise from all the areas where mathematical literacy is important in order to fully

represent the construct while engaging the interest of many types of students. The

Framework specifies that about 25 % of the items should belong to each category.

Stacey’s Chap. 3 of this volume addresses the contentious issue of selecting

contexts for items that are authentic and relevant to students around the world, and

Chaps. 6 (Turner) and 7 (Tout and Spithill) explain how this relevance is monitored

by ratings from every participating country.

Content Categories

The outermost box of Fig. 1.3 shows that PISA problems are also categorised

according to the nature of the mathematical phenomena that underlie the challenges

and consequently the domains of mathematics that their solutions are likely to call

upon. Starting from the 2003 survey, there have been four categories and approx-

imately 25 % of items in the survey belong to each. The content categories of the

PISA 2012 Framework (OECD 2013a) have previously been labelled ‘big ideas’ for
PISA 2000 (OECD 1999) and ‘overarching ideas’ for the 2003, 2006 and 2009

surveys (OECD 2004, 2006, 2009c).

These content categories have a reasonable correspondence with divisions of the

traditional school curriculum. So the items allocated to the content category

Quantity tend to draw heavily on topics encountered under the headings of Number

and Measurement, Space and shape items on Geometry, Uncertainty and data
items on Probability and Statistics and Change and relationships on Algebra and

Functions. However, the origin of the content categories is not from the school

curriculum or from inside the discipline of mathematics. Instead, it reflects a

movement towards phenomenological organisation that is intended to stress the

underlying phenomena with which mathematics is concerned and to emphasise the

unity of mathematics where ideas from different branches often work together to

illuminate phenomena. Mathematical literacy tasks arising in real life often require
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mathematical concepts and procedures from various school or university topics to

be used together. PISA items sometimes do.

It is also often the case that different good solutions can draw on different topics.

For example PM923Q03 Sailing ships Question 3 could be solved by geometry and

Pythagoras’s theorem, but it might also be solved by making a scale drawing.

PM977Q02 DVD Rental Question 2 (see Chap. 9 this volume or OECD 2013b)

can be solved for full credit using either algebra or arithmetic reasoning. These

difficulties are reduced by classifying PISA items on the underlying phenomenon

that lies at the heart of the problem, rather than by the topic deemed by some expert

to be appropriate.

As shown in Table 1.1, PM923Q01 Sailing ships Question 1 is categorised as

Quantity because the essence is in the relative magnitude of the two wind speeds

and the resultant percentage calculation. PM923Q03 Sailing ships Question 3 is

categorised as Space and shape because of the geometric reasoning involved.

PM923Q04 Sailing ships Question 4 is categorised as Change and relationships
because the underlying challenge is to work with the savings as they increase over

time. Because real-world challenges can involve many different thinking skills,

on-balance decisions about where the main cognitive load arises often need to be

made in this and other categorisations. As the PISA 2009 Framework explains:

Each overarching idea represents a certain perspective or point of view and can be thought

of as possessing a core, a centre of gravity, and somewhat blurred outskirts that allow for

intersection with other overarching ideas. (OECD 2009a, p. 94)

Experience has shown that the four content categories, broadly interpreted, work

well for an assessment of 15-year-olds. They provide sufficient variety and depth to

reveal the essentials of mathematics and to stimulate the breadth that a good

measure of mathematical literacy requires. They readily encompass the major

problem types addressed within the compulsory years of school. It is frequently

the case that more than one of the content categories is relevant to a proposed item,

but it has never been the case that a potential item has been rejected because it

cannot be placed within a content category. Theoretically, however, there is no

claim that the four PISA content categories capture all of the phenomena that

inspire mathematics. An exhaustive list would not be possible because of the

breadth and variety of mathematics (OECD 2009b). As an example, the new

phenomenon of ‘information’ as it applies to computer science and digital technol-

ogy and modern biology (coding, security, transmission etc.) is now inspiring a

great deal of mathematics but it is not clearly within any of the PISA content

categories. However, experience has shown that the potential items (hence

approachable by 15-year-olds) that have involved this phenomenon have had

other characteristics that enable them to be placed within the current four catego-

ries. It is more usual for more than one of the content categories to be relevant to a

proposed item than for none of them to be obviously relevant.
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Behind Phenomenological Categorisation

The phenomenological organisation of mathematics has arisen in trying to identify

unifying themes in the ever expanding and increasingly diversified discipline of

mathematics. Steen (1990) edited a book that explored the ‘developmental power’
of five deep mathematical ideas (dimension, quantity, uncertainty, shape and

change) relating to different types of pattern and which “nourish the growing

branches of mathematics” (p. 3). He also identified other ‘deep ideas’ such as

symmetry and visualisation, which recur in all parts of mathematics. Steen’s five
selected deep ideas have some commonality with the PISA content categories and

indeed they are acknowledged as a source in the 2000, 2003, 2006 and 2009

frameworks.

PISA mathematics has also drawn inspiration from the Realistic Mathematics

Education approach work of the famous Freudenthal Institute in the Netherlands, of

which Jan de Lange, the Chair of the Mathematics Expert Group for the PISA

2000–2009, was a member (see, for example, de Lange 1987). Freudenthal (1991)

saw mathematical concepts, structures, ideas and methods as serving to organise

phenomena from the real world and from mathematics itself. For teaching, he

valued problem situations that could be easily used by teachers to create in students

the need to organise phenomena mathematically. Oldham (2006) explores these

links.

There have been different approaches to describing mathematics from the

problems that inspire it. For example, Bishop (1991) studied the mathematics of

many different human cultures, aiming to identify universal characteristics.

Because many cultures do not have a readily identifiable symbolic aspect to their

mathematics, even the definition of mathematics is unclear, so deconstructing this is

one of Bishop’s aims. Bishop identified six ‘environmental activities’ (counting,
measuring, locating, designing, playing and explaining) and claims that these are

probably universal. Through many examples, he describes how these activities lead

to the development of mathematics. In different cultures the end product mathe-

matics may be different, but Bishop sees the commonality in the activities and the

environmental needs that motivate them. Counting and measuring correspond

broadly to PISA’s Quantity and locating and designing correspond broadly to

PISA’s Space and shape. However, Bishop’s description of playing links it to

many underlying phenomena and he especially links explaining to classification

and logic. Explaining in PISA fits better into the fundamental mathematical capa-

bilities (see below). Bishop’s cultural activity approach shares with PISA’s phe-

nomenological approach the intention to identify the human activities and concerns

behind mathematics.

There are several consequences of PISA’s decision to organise not around

traditional curriculum topics but around the phenomena that inspire mathematics.

One consequence, consistent with PISA’s remit from the OECD to assess capacity

to meet future challenges, is that there is no intention to systematically test a

common core curriculum of participating countries as is done in TIMSS. Instead

1 The Evolution and Key Concepts of the PISA Mathematics Frameworks 21



PISA item writers begin by identifying problem situations that involve mathemat-

ical thinking. They aim for authentic situations, with obvious face validity, even if

practical aspects of item presentation mean that considerable modification is

needed. Tout and Spithill describe these processes in Chap. 7 of this volume.

Although PISA does not set out to test curriculum knowledge systematically,

school curricula impinge strongly on the item writing and item selection process.

An assessment of 15-year-olds must take into account the mathematics that they are

likely to have learned, even though problems can often be solved without what

teachers might think is the targeted knowledge. From a measurement perspective, it

is useless to have items with only a tiny success rate. To this end, the PISA 2012

Framework, more than any of the earlier versions, includes a list of broadly

described topics that might be required (e.g. ‘linear and related equations and

inequalities’, ‘basic aspects of the concept of probability’), supported by a survey

of the mathematics standards for 11 high performing educational jurisdictions. This

does not constitute a ‘PISA curriculum’ that is systematically tested, but it does

guide item writers and gives participating countries better information about

expected content. Topics do not belong to only one content category. Percentage

calculations for example are likely to be common in problems inherently about

quantity and also in problems about change. PM923 Sailing ships Questions 1 and

3 illustrate this (see Fig. 1.2 and Table 1.1). When the final item selection is being

made, there are also checks to ensure that a good range of mathematical topics are

involved, and that no particular mathematical skills are over-represented in the

items. Turner in Chap. 6 of this volume describes such measures.

The Processes of Doing Mathematics

The mathematics frameworks for all PISA surveys have identified three key aspects

of mathematical literacy items: the context and the content (as discussed above) and

what is frequently called a ‘process dimension’ of mathematics—the activities that

constitute doing and applying mathematics beyond Gee’s (1998) ‘design features’
of mathematics. This dual nature of mathematics as content and process has long

been widely recognised. For example, Georg Pólya (1962) who inspired much of

the problem solving movement in mathematics education wrote:

Our knowledge about any subject consists of information and of know how. If you have

genuine bona fide experience of mathematical work on any level, elementary or advanced,

there will be no doubt in your mind that, in mathematics, know-how is more important than

mere possession of information. . . .What is know-how in mathematics? The ability to solve

problems—not merely routine problems but problems requiring some degree of indepen-

dence, judgment, originality, creativity. (p. vii)

The influential US report Adding It Up (Kilpatrick et al. 2001) lists five strands

of mathematical proficiency: conceptual understanding, procedural fluency, strate-

gic competence, adaptive reasoning and productive disposition. The first two

strands relate to mathematical content (Pólya’s ‘information’) and the third and
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fourth describe mathematical process (Pólya’s ‘know-how’), and the fifth describes
the intention to use these effectively (which is measured in PISA through the

questionnaires). Around the world, there are many ways of describing this

content-process distinction, and as is evident from Part III of this volume, PISA

has been another prompt to highlight this.

Figure 1.3 depicts mathematical thought and action in three components. The

first corresponds to the content aspect of mathematics (concepts, knowledge and

skills) and the other two correspond to the process of solving problems with

mathematics: the fundamental mathematical capabilities and the three ‘processes’
of solving real problems. The fundamental mathematical capabilities describe

mathematical actions that are involved in any mathematical activity, whilst the

three processes refer to stages of action in solving real problems. Because of their

centrality to the theorisation of PISA mathematics, they are each discussed below,

and Chaps. 2 and 3 explore them in greater depth.

Fundamental Mathematical Capabilities

The PISA Frameworks described the fundamental mathematical capabilities
differently over the years. This old idea is newly named for PISA 2012 to avoid

conflicts within OECD material over the meaning of the previously used term

(‘competency’). They describe the type of activities that underlie any type of

mathematical thought and problem solving. Abstract ideas have to be represented

concretely (e.g. by a graphs or symbols), arguments have to be constructed,

strategies for solving problems have to be described, calculations have to be carried

out etc. The description of these mathematical thoughts and actions in PISA had its

immediate roots in the work of Niss and colleagues in Denmark (Niss 1999; Niss

and Højgaard 2011), who devised a set of eight competencies that together consti-

tute mathematical competence. In Chap. 2, Niss gives a history of this development

in Denmark and analyses how the Danish scheme was adopted and adapted in

PISA. It also provides a useful guide to the confusing terminology changes that

have beset this work. In Chap. 4 Turner, Blum and Niss describe how the funda-

mental mathematical capabilities can be used to describe the cognitive demand of

mathematical tasks, in particular PISA items. They present empirical evidence that

the difficulty of PISA items can in large part be predicted by analysing the items to

see how deeply they call on each of the fundamental mathematical capabilities. As

well as providing a useful tool for item and survey construction, understanding what

contributes to increased demand for a capability can guide teachers towards what

needs to be taught in mathematics, beyond just more content.

The fundamental mathematical capabilities cannot be individually assessed and

reported by PISA, because from a psychometric point of view there are too many of

them, and because they are rarely activated in isolation. Hence the ‘process’ aspect
of mathematics is being reported for PISA 2012 through the more global Formu-
late—Employ—Interpret scheme that is described below. However, the work that
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has been done in describing low and high level activation of the fundamental

mathematical capabilities is the key to creating informative descriptions of the

proficiency levels of students. Figure 1.5 shows two examples of how the funda-

mental mathematical capabilities appear in the description of proficiency—for

overall proficiency for Level 5 and for the Change and relationships content

category at Level 3 (OECD 2013d). The formal proficiency descriptions are

given in the centre of the figure and the underlined sections point out the links to

the capabilities. The different levels of activation of the capabilities become evident

by comparing the descriptions across levels (see, for example OECD 2013d). In

Chap. 4, Turner, Blum and Niss describe the increasing levels of activation of the

capabilities from both theory driven and data driven approaches. Although they are

not used formally for reporting or for balancing the item pool (as shown in Fig. 1.4),

the fundamental mathematical capabilities are an essential feature of the Mathe-

matics Framework and central to mathematical literacy.

Fig. 1.5 Sample proficiency level descriptions showing references to fundamental mathematical

capabilities
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Three Processes Linked to the Mathematical Modelling Cycle

Since 2000, PISA has reported by mathematics content categories, but reporting by

the processes of mathematics is needed to provide countries with a full picture of

the mathematical literacy of their students. This was an important innovation for

PISA 2012 (OECD 2013a). The inner-most box of Fig. 1.3 portrays a model,

idealised and simplified, of the stages through which a problem solver moves

when exhibiting mathematical literacy. Mathematical literacy often begins with

the “problem in context.” The problem solver identifies the relevant mathematics in

the problem situation, formulating the situation mathematically by imposing math-

ematical concepts, identifying relationships and making simplifying assumptions.

This is the process of Formulating situations mathematically, abbreviated to ‘For-
mulate’. The problem solver has thus transformed the ‘problem in context’ into a

mathematical problem, which is hopefully amenable to mathematical treatment.

This is the process that both Sample Problem 4 (discussed earlier in this chapter)

and PM923Q03 Sailing ships Question 3 (Fig. 1.2) involve and Sample Problem

3 (discussed earlier) does not.

The downward-pointing arrow in the inner-most box of Fig. 1.3 depicts the next

process of Employing mathematical concepts, facts, procedures, and reasoning
(abbreviated to Employ) to obtain mathematical results within the mathematical

world of abstract objects. For Sailing ships Question 3, this is equivalent to solving

Sample Problem 3. Next, the mathematical results are interpreted in terms of the

original situation to obtain the ‘results in context’. In the Sailing ships question, the
numerical answer is interpreted as the length of the rope in metres. Furthermore, the

adequacy of these results (and hence of the model) should be evaluated against the

original problem. A serious solution of the Sailing ships question would need to

take into account the precise purpose of solving the problem and consequently the

required accuracy of the result. Is the amount of rope for tethering the kite at either

end significant? Is it reasonable to assume the tethering rope lies in a plane? Does

the deviation of the straight line model from a more accurate catenary matter? If it

does matter, a new cycle of mathematical modelling may begin. In the context of a

PISA assessment, these two stages have been combined to make one process

Interpreting, applying, and evaluating mathematical outcomes, abbreviated to

Interpret. This is because there are limited opportunities for any serious evaluation

under the conditions of a PISA survey, in a short time by students sitting at a desk

without additional resources. The key idea for PISA is to report separately on the

two processes of moving between the real world and the mathematical world

(Formulate, Interpret) and the process of working within the mathematical world

(Employ).
In PM923 Sailing ships (Fig. 1.2), the judgement was made that for Question

1 and Question 3, the main demand was in carrying out the intra-mathematical work

(see Table 1.1). PM923Q01 Question 1 requires a very small amount of formula-

tion, discarding the extraneous information about 150 m height and seeing that the

required quantity is 25 % more than the deck wind speed. Calculating this
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accurately is likely to be the major demand in this easy item. Similarly the intra-

mathematical work is likely to be the most demanding aspect of PM923Q03

Question 3 (as discussed for Sample Problem 4 above). However for PM923Q04

Question 4, it is not the calculations, but identifying the relationships involved and

how to put them together to build a solution that has been judged to be the most

demanding aspect, and so Question 4 has been classified as Formulate in Table 1.1.
Student performance on Question 4 is then pooled with performance on other items

classified as Formulate to give a measure of proficiency on this process. Countries

can use this measure to understand how well their students are learning to transform

real problems into a form where mathematical analysis can be applied.

Just as the fundamental mathematical capabilities are used to describe overall

proficiency, the degree of activation of them can be used to describe the levels of

proficiency of students in the three processes. For example, among other capabil-

ities, students who are at Level 4 of Formulate are described in the PISA 2012

report (OECD 2013d) as being able to link information and data from related

representations (representation fundamental mathematical capability). This is

higher activation than using only one representation.

The modelling cycle is a central aspect of the PISA conception of students as

active problem solvers, and tasks that fully assess mathematical literacy will most

probably involve all of these processes in the full modelling cycle. These are

generally the favourite items of members of the Mathematics Expert Group.

However, in the PISA survey it is important for the underlying psychometrics

that students complete a large number of independent items in a short time.

(Students in 2012 were presented with from 12 to 37 mathematics items, according

to which particular booklets they were randomly assigned from the booklet rotation

design.) Consequently, in most PISA items, the student is involved in only part of

the modelling cycle. Items are classified according to the process that presents the

highest demand for mathematical literacy within the item. This issue is explored in

Chap. 3. In Chap. 11 in this volume, Ikeda discusses how tasks that focus on part of

the modelling cycle can be an important part of teaching mathematical modelling.

Of course over time, teaching must also give students extensive experience of tasks

involving the whole modelling cycle.

The Framework specifies that about half of the mathematics items used in the

PISA survey are classified as Employ and about one quarter are in each of the

Formulate and Interpret categories. Mathematisation and the mathematical model-

ling cycle have always had a substantial role in the PISA frameworks but 2012 was

the first survey to report results according to the modelling cycle processes.

Because of its centrality to PISA, Chap. 3 of this volume by Stacey discusses the

theoretical background and practical considerations of the assessment of mathe-

matics as applied in the real world.
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Computer-Based Assessment of Mathematics

For the first time, PISA 2012 supplemented the paper-based assessment with an

optional computer-based assessment of mathematical literacy, abbreviated to

CBAM. In 2012, 32 countries took up this option. This follows two earlier PISA

initiatives: the computer-based assessment of science beginning in 2006 and a

digital reading assessment beginning in 2009. CBAM items are presented on a

computer, students respond on the computer, and they can also use pencil and paper

to assist their thinking. In Chap. 7 of this volume Tout and Spithill describe the

development of CBAM items, and in Chap. 8 Bardini analyses their characteristics.

Computer technology can alter assessment from the points of view of the student

and the assessor. It can alter all phases of assessment: how tasks are selected

(e.g. they might be automatically generated from an item pool), how they are

presented, how students should operate while responding and with what tools,

how the evidence provided by students is identified, and how this evidence is

accumulated across tasks (Almond et al. 2003). The review by Stacey and Wiliam

(2013) provides a wide range of examples of fruitful directions for these potential

improvements, which range from simple changes in items to assessment of authen-

tic tasks by collaborative groups in virtual environments. For PISA, these changes

are just beginning.

In 2015, students in most countries will take the PISA mathematical literacy

assessment at a computer. Items previously used in the paper-based survey will be

presented on computer (OECD 2013c). An equivalent paper-based assessment will

be used in countries without adequate infrastructure in schools. The advantages

anticipated from this approach stem from simplified survey administration and

greatly simplified processing of survey responses. The intention is that as far as

possible the measure of mathematical literacy remains comparable with that of

previous paper-based surveys despite the change in delivery mode (and this will be

monitored).

Importantly, CBAM in PISA 2012 had a different philosophy. Just as the PISA

Digital Reading survey was a response to the observation that in all walks of life,

citizens now use digital resources to obtain information and communicate with

friends and businesses, CBAMwas a response to the changing face of mathematical

literacy in a technology-rich world, where computerisation is rapidly changing the

face of occupational, social and personal life (Frey and Osborne 2013). Conse-

quently, a main task of the 2012 Mathematics Framework development was to

define the new proficiency to be assessed by CBAM. What should the items and the

assessment process be like?

Computer technology provides a communications infrastructure as well as a

substantial computational infrastructure. Technology can support remarkable

changes in the presentation of items and in the way students operate on them. It

can provide simple computational aids (such as the many online calculators that

abound on commercial websites) or it can provide open computational tools of

remarkable power, including spreadsheets, function graphing, statistical software
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and computer algebra systems. The 2012 Framework embraced all of these aspects

as theoretically part of CBAM.

One function of CBAM was recognised as enhancing the assessment of ‘tradi-
tional’ mathematical literacy beyond what can be achieved with a paper-based

assessment. In this function, computer-based assessment can extend the range of

phenomena that inspire viable PISA items, for example by using a dynamic

stimulus for an item involving movement or by providing a rotatable three dimen-

sional image to mimic the way in which a real object can be handled, or by

realistically including modern-day website interactions. By having enhanced visual

presentation and action responses, computer-based assessment may incidentally

reduce the influence of verbal ability on mathematics scores. Chapters 7 and 8 give

many examples.

The second function of the Framework analysis for CBAM was to demonstrate

how mathematical literacy may itself be changing in a computationally rich world.

This required considerations of changes in the workplace as well as changes in

mathematical practice. The impact of computer technology on the ways in which

individuals use mathematics, and consequently should learn it, has long been

discussed and continues to evolve. Over the previous 40 years, the practical

importance of pen and paper arithmetic algorithms has withered to close to zero,

being gradually replaced by mental computation and estimation when feasible,

backed up by computer or calculator use (Cockcroft 1982). This trend is acceler-

ating, and applying now to mathematical routines across all topics (e.g. algebra,

statistics, data presentation, functions) not just basic arithmetic.

The explicit mathematics of computation is increasingly embedded in the tools

we use and consequently is increasingly invisible in people’s lives. Shopping

provides a daily reminder. It is no longer the shop assistant but the computerised

technology at the cash register that weighs vegetables, multiplies weights by unit

costs to get the prices, adds them up to get the bill and subtracts to calculate the

change. The computer takes over the computational load so that what many people

regard as ‘the mathematics’ is no longer evident.

Changes in mathematics in the workplace go beyond this. It is not just that the

shop assistant no longer works out the bill. Behind the scenes, the shop manager has

access to a vast web of data on purchasing and products. This needs to be

insightfully utilised to run a business effectively. We now live increasingly in a

society “drenched in data” (Steen 1999, p. 9) where

computers meticulously and relentlessly note details about the world around them and

carefully record these details. As a result, they create data in increasing amounts every time

a purchase is made, a poll is taken, a disease is diagnosed, or a satellite passes over a section

of terrain. (Orrill 2001, p. xvi)

Handling these large data sets or their automatically generated summary data

(e.g. in control systems) and interacting flexibly and intelligently with them will

increasingly become a common stimulus for employing mathematical literacy. The

National Research Council’s study of massive data analysis (2013) points to the

technical challenges but it also points to the centrality of inference, having people
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who can turn data into knowledge. Sound inference is an aspect of mathematical

literacy, with or without computer-based assessment. In the introduction, the

National Research Council (2013) observes that there were six fields strongly

affected by massive data analysis at the turn of the century when the quotes

above by Steen and Orrill were written, and thirteen strongly affected by 2012.

After analysing the mathematical literacy required in industry and business to

respond to the new data-rich, visualisation-rich and computationally-rich environ-

ment, Hoyles et al. (2010) coined the term ‘techno-mathematical literacies’ to

describe the inter-dependence of mathematical literacy and the use of information

technology for employees at all levels in the workplace. In responding to computer-

based items, students encounter cognitive demands from three sources:

• from using the technology itself (e.g. using a mouse, knowing computer con-

ventions such as the back button for moving around websites)

• from mathematical literacy inherent in the problem independent of technology

• from the techno-mathematical literacies at the interface of mathematics and

technology.

The intention is that the first of these should be minimised, the second is familiar

and the third is rapidly becoming part of mathematical literacy. Using specialised

workplace systems and also open mathematical tools, especially for statistics,

graphing, data handling, three dimensional visualisation and algebra requires both

the understanding of the underlying mathematics as well as being able to think in

the ways that using the technology demands. Some of the challenges and opportu-

nities in assessing mathematics supported by such tools are reviewed by Stacey and

Wiliam (2013). CBAM is an expansion of existing policies of PISA mathematics

has had for allowing calculator use: students should make sensible choices to use or

not to use their tools as the problem requires; it is not calculator use itself that is

tested. Despite all the changes and new opportunities afforded by the increasing use

of computers including in the assessment context, it was judged that the major

categorisations of the items, as shown in Fig. 1.4, could be taken across to apply to

CBAM, without major change.

The optional CBAM of 2012 was a small first step towards developing the new

assessment, constrained by both the complexity of delivering an untried component

and the likely abilities of students around the world in this new area. However, it

was an important step. Full participation in society and in the workplace in this

information-rich world requires an expanded view of mathematical literacy.

Surveying Attitudes and School Context

In addition to measuring students’ mathematical literacy, PISA uses questionnaires

for students and schools to measure the attitudes towards learning that are likely to

make them successful life-long learners and to gather information that can help

explain what promotes good outcomes of schooling. Attitudes and emotions
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(e.g. self-confidence, curiosity) are not defined as components of mathematical

literacy. This contrasts with some frameworks that are focused on teaching. For

example, Kilpatrick et al. (2001) identify ‘productive dispositions’ as one of the

strands on mathematical proficiency. PISA does not include these personal qualities

as part of mathematical literacy, but recognises that it is unlikely that students who

do not exhibit productive dispositions will develop their mathematical literacy to

the full (OECD 2006).

For mathematics, the Context Questionnaire Framework for PISA 2012 specifies

“information about students’ experience with mathematics in and out of school

[. . .], motivation, interest in mathematics and engagement with mathematics” as

well as aspects of learning and instruction, learning and teaching strategies and

links to school structures and organisation (OECD 2013a, p. 182). Questions about

motivation and intentions to work hard and to continue with the study of mathe-

matics at school are seen as especially important, not just because there is a positive

correlation between attitudes and performance, but also because of the concern by

governments around the world to boost the STEM workforce (science, technology,

engineering and mathematics). The PISA 2012 Framework (OECD 2013a)

provides the reasons behind the choices of questionnaire themes and items. In

Chap. 10 of this volume, Cogan and Schmidt describe one of the most interesting

aspects for PISA 2012, the innovative investigation of opportunity to learn with

specific regard to items varying on dimensions relevant to mathematical literacy.

Conclusion

This chapter has offered an introduction to the assessment frameworks for the

first several PISA surveys and their key concepts, and given insight into the

underpinning ideas and some of the related scholarship that have influenced

the Mathematics Expert Groups from 2000 to 2012 in framework development.

Preparation of the framework involves two main tasks: to clearly define the domain

that is to be assessed, and to analyse the domain so that the resulting item set

provides comprehensive coverage of the domain from multiple points of view and

so that descriptions of students’ increasing proficiency reveal the fundamental

capabilities that contribute to success.

It is perhaps worth explicitly noting that decisions made in an assessment

framework really affect the results of that assessment. Making different choices

of what to assess, or choosing a different balance of the items in various categories

makes a difference in all outcomes, including international rankings. One illustra-

tion of this is that the two major international surveys of mathematics, PISA and

Trends in Mathematics and Science Study (TIMSS) produce different international

rankings. In contrast to PISA’s focus on mathematical literacy, TIMSS begins with

a thorough analysis of the intended school curricula of participating countries and

designs items to test this (Mullis et al. 2009). The systematic differences in results

have been analysed in many publications (e.g. Wu 2010). Within the PISA
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approach, changing the proportions of items in each Framework category would

also change results, because countries vary in their performance across categories.

For these theoretical and practical reasons, the choices made in devising the PISA

Frameworks matter.

As outlined above, there have been many changes in the Mathematics Frame-

works but this is best seen as a process of evolution in response to feedback from

many sources, rather than revolution. The core idea of mathematical literacy has

been strongly held through the 2000–2012 surveys, extended now to encompass the

new directions that arise as the personal, societal, occupational and scientific

environment is gradually transformed by technology.
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Chapter 2

Mathematical Competencies and PISA

Mogens Niss

Abstract The focus of this chapter is on the notion of mathematical competence

and its varying role in the PISA mathematics frameworks and reports of PISA

results throughout the first five survey administrations, in which mathematical

literacy is a key concept. The chapter presents the genesis and development of

the competency notion in Denmark, especially in the so-called KOM project, with a

view to similar or related notions developed in different environments and contexts,

and provides a detailed description of the eight competencies identified in the KOM

project. Also the relationship between the mathematical competencies and the

fundamental mathematical capabilities of the PISA 2012 Framework is outlined

and discussed.

Introduction

The notion of mathematical competence—which will be introduced and discussed

in greater detail below—has been present in some way or another in all the PISA

mathematics frameworks from the very beginning in the late 1990s. However, the

actual role of mathematical competencies in the PISA frameworks and in the

reporting of PISA outcomes has been subject to considerable evolution across the

five PISA surveys completed so far; that is, until 2013.

These facts provide sufficient reason for including a chapter on the role of

mathematical competencies within PISA in this book. The structure of the chapter

is as follows. After this introduction comes a section in which the genesis of the

notion of mathematical competence is presented and its history briefly outlined. It

may be worth noticing that the inception of this notion—in the specific version

presented in this chapter—took place more or less at the same time but completely

independently of the launching of PISA in 1997. Subsequently, the trajectories of

development of mathematical competencies and PISA, respectively, became

intertwined in several interesting ways. The section to follow next considers further
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aspects of the notion of mathematical competence in a general setting not specif-

ically focused on PISA. Then comes the core of this chapter, namely an analysis and

discussion of the changing role of mathematical competencies within PISA, both in

relation to the mathematics frameworks of the different PISA survey administra-

tions, and to the reporting of PISA outcomes. That section also includes a discus-

sion of the transformation of the original competencies into a particular set of

competencies that have proved significant in capturing and characterising the

intrinsic demands of PISA items.

Brief History of the General Notion of Competencies
and a Side View to Its Relatives

Traditionally, in most places mathematics teaching and learning have been defined

in terms of a curriculum to be taught by the teacher and achieved by the student.

Typically, a curriculum used to be a sequence—organised by conceptual and

logical progression—of mathematical concepts, terms, topics, results and methods

that people should know, supplemented with a list of procedural and technical skills

they should possess. In curriculum documents, the generally formulated require-

ments are often accompanied by illustrative examples of tasks (including exercises

and problems) that students are expected to be able to handle when/if they have

achieved the curriculum.

However, there have always been mathematics educators (e.g. Hans Freudenthal

(1973, 1991), who kept emphasising that mathematics should be perceived as an

activity) who have insisted that coming to grips with what it means to be mathe-

matically competent cannot be adequately captured by way of such lists. There is

significantly more to be said, they believe, in the same way as no sensible person

would reduce the definition of linguistic competence in a given language to lists of

the words, orthography and grammatical rules that people have to know in that

language. Already in the first IEA study (Husén 1967), the precursor to and

generator of the later TIMSS studies, mathematics is defined by way of two

dimensions, mathematical topics and five cognitive behaviour levels:

(a) knowledge and information: recall of definitions, notations, concepts; (b) techniques

and skills: solutions; (c) translation of data into symbols or schemas and vice versa;

(d) comprehension: capacity to analyse problems, to follow reasoning; (e) inventiveness:

reasoning creatively in mathematics. (Niss et al. 2013, p. 986)

Heinrich Winter (1995) spoke about three fundamental, general experiences that

mathematics education should bring about: coming to grips with essential phenom-

ena in nature, society and culture; understanding mathematical objects and relations

as represented in languages, symbols, pictures and formulae; fostering the ability to

engage in problem solving, including heuristics.

Also, the notions of numeracy, mathematical literacy, and quantitative literacy

have been coined so as to point to essential features of mathematical mastery,
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geared towards the functional use of mathematics, that go beyond factual knowl-

edge and procedural skills (see also Chap. 1 in this volume). Moreover, newer

curriculum documents such as the NCTM Standards of 1989 (National Council of

Teachers of Mathematics 1989) also involve components that are not defined in

terms of factual knowledge and procedural skills. The Standards identify five

ability-oriented goals for all K-12 students: (1) that they learn to value mathematics,

(2) that they become confident in their ability to do mathematics, (3) that they

become mathematical problem solvers, (4) that they learn to communicate mathe-

matically, and (5) that they learn to reason mathematically (NCTM 1989, p. 5).

Let these few examples suffice to indicate that lines of thought do exist that point

to (varying) aspects of mathematical mastery that go beyond content knowledge

and procedural skills. The notion of mathematical competence and competencies

was coined and developed in the same spirit, albeit not restricted to functional

aspects as above.

From the very beginning, the graduate and undergraduate mathematics studies at

Roskilde University, Denmark, designed and established in 1972–1974, and con-

tinuously developed since then, were described partly in terms of the kinds of

overarching mathematical insights and competencies (although slightly different

words were used at that time) that graduates were supposed to develop and possess

upon graduation. Needless to say, the programme documents also included a list of

traditional mathematical topics that students should become familiar with. For a

brief introduction to the mathematics studies at Roskilde University, see Niss

(2001). In the 1970s and 1980s aspects of this way of thinking provided inspiration

for curriculum development in lower and upper secondary mathematics education

in Denmark.

In the second half of the 1990s executives of the Danish Ministry of Education

wanted the Ministry to chart, for each school subject, what was called ‘the added

value’ generated within the subject by moving up through the education levels,

from elementary and primary (Grades K-6), over lower secondary (Grades 7–9)

through to the upper secondary levels (Grades 10–12 in different streams), with a

special emphasis on the latter levels. It was immediately clear to the mathematics

inspectors and other key officers in the Ministry that the added value could not be

determined in a sensible manner by merely pointing to the new mathematical

concepts, topics and results that are put on the agenda in the transition from one

level or grade to the next. But what else could be done? The officers in the Ministry

turned to me for assistance, and after a couple of meetings I devised a first draft of

what eventually became a system of mathematical competencies. The underlying

thinking was greatly influenced by the philosophy underpinning the mathematics

studies at Roskilde University. The fundamental idea was to try to answer two

questions.

The first question springs from noting that any observer of mathematics teaching

and learning in the education system, at least in Denmark, will find that what

happens in elementary and primary mathematics classrooms, in lower secondary

classrooms, in upper secondary classrooms and, even more so, in tertiary class-

rooms, displays a dramatic variability, not only because the mathematical topics
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and concepts dealt with in these classrooms are different, but also, and more

importantly, because topics, concepts, questions and claims are dealt with in very

different ways at different levels—in particular when it comes to justification of

statements—even to the point where mathematics at, say, the primary level and at

the tertiary level appears to be completely different subjects. So, given this vari-

ability, what is it that makes it reasonable to use the same label, mathematics, for all

the different versions of the subject called mathematics across education levels?

Differently put, what do all these versions have in common, apart from the label

itself? Next, if we can come up with a satisfactory answer to the question of what

very different versions of mathematics have in common, the second question is then
to look into how we can use this answer to account, in a unified and non-superficial

manner, for the obvious differences encountered in mathematics education across

levels.

As we have seen, the commonalities in the different versions of mathematics do

not lie in any specific content, as this is clearly very different at different levels.

Whilst it is true that content introduced at one level remains pertinent and relevant

for all subsequent levels, new content is introduced at every level. The general

rational numbers of the lower secondary level are not dealt with at the primary

level. The trigonometry or the polynomials of the upper secondary level have no

presence at the primary or lower secondary levels. The general vector spaces,

analytic functions or commutative rings of the tertiary level have no place at the

upper secondary level. In other words, in terms of specific content, the only content

that is common to all levels are small natural numbers (with place value) and names

of well-known geometrical figures. Well, but instead of specific content we might

focus on more abstract generic content such as numbers and the rules that govern

them, geometric figures and their properties, measure and mensuration, all of which

are present at any level, albeit in different manifestations. Yes, but the intersection

would still be very small, as a lot of post-elementary mathematics cannot be

subsumed under those content categories. Of course, we might go further and

adopt a meta-perspective on content, as is done in PISA, and consider phenome-

nological content categories such as Space and shape, Change and relationships,
Quantity, and Uncertainty and data, all of which are present at any level of

mathematics education. However, this does not in any way imply that these

categories cover all mathematical content beyond the lower secondary level. For

example, an unreasonable amount of abstraction and flexibility of interpretation

would be required to fit topics such as integration, topological groups or functional

analysis into these categories. Finally, one might consider taking several steps up

the abstraction ladder and speak, for example, of mathematics as a whole as the

science of patterns (Devlin 1994, 2000), a view that does provide food for thought

but is also so abstract and general that one may be in doubt of what is actually being

said and covered by that statement. If, for instance, people in chemistry, in botany,

or in art and design wished to claim—which wouldn’t seem unreasonable—that

they certainly profess sciences of patterns, would we then consider these sciences

part of mathematics? Probably not.
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Instead of focusing on content, I chose to focus on mathematical activity by

asking what it means to be mathematically competent. What are the characteristics

of a person who, on the basis of knowledge and insight, is able to successfully deal

with a wide variety of situations that contain explicit or implicit mathematical

challenges? Mathematical competence is the term chosen to denote this aggregate

and complex entity. I wanted the answers to these questions to be specific to

mathematics, even if cast in a terminology that may seem generalisable to other

subjects, to cover all age groups and education levels, and to make sense across all

mathematical topics, without being so general that the substance evaporates. The

analogy with linguistic competence touched upon above was carried further as an

inspiration to answering these questions. If linguistic competence in a language

amounts to being able to understand and interpret others’ written texts and oral

statements and narratives in that language, as well as to being able to express

oneself in writing and in speech, all of this in a variety of contexts, genres and

registers, what would be the counterparts with regard to mathematics? Clearly,

people listen, read, speak and write about very different things and in very different

ways when going to kindergarten and when teaching, say, English history to PhD

students. However, the same four components—which we might agree to call

linguistic competencies—play key parts at all levels.

Inspired by these considerations, the task was to identify the key components,

the mathematical competencies analogous to linguistic competencies, in mathemat-
ical competence. The approach taken was to reflect on and theoretically analyse the
mathematical activities involved in dealing with mathematics-laden, challenging

situations, taking introspection and observation of students at work as my point of

departure.

It is a characteristic of mathematics-laden situations that they contain or can give

rise to actual and potential questions—which may not yet have been articulated—to

which we seek valid answers. So, it seems natural to focus on the competencies

involved in posing and answering different sorts of questions pertinent to mathe-

matics in different settings, contexts and situations. The first competency then is to

do with key aspects of mathematical thinking, namely the nature and kinds of

questions that are typical of mathematics, and the nature and kinds of answers that

may typically be obtained. This is closely related to the types, scopes and ranges of

the statements found in mathematics, and to the extension of the concepts involved

in these statements, e.g. when the term ‘number’ sometimes refers to natural

numbers, sometimes to rational numbers or complex numbers. The ability to relate

to and deal with such issues was called the mathematical thinking competency. The
second competency is to do with identifying, posing and solving mathematical

problems. Not surprisingly, this was called the mathematical problem handling
competency. It is part of the view of mathematics education nurtured in most places

in Denmark, and especially at Roskilde University, that the place and role of

mathematics in other academic or practical domains are crucial to mathematics

education. As the involvement of mathematics in extra-mathematical domains

takes place by way of explicit or implicit mathematical models and modelling,

individuals’ ability to deal with existing models and to engage in model
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construction (active modelling) is identified as a third independent competency, the

mathematical modelling competency. The fourth and last of this group of compe-

tencies focuses on the ways in which mathematical claims, answers and solutions

are validated and justified by mathematical reasoning. The ability to follow such

reasoning as well as to construct chains of arguments so as to justify claims,

answers and solutions was called the mathematical reasoning competency.
The activation of each of these four competencies requires the ability to deal

with and utilise mathematical language and tools. Amongst these, various repre-

sentations of mathematical entities (i.e. objects, phenomena, relations, processes,

and situations) are of key significance. Typical examples of mathematical repre-

sentations take the form of symbols, graphs, diagrams, charts, tables, and verbal

descriptions of entities. The ability to interpret and employ as well as to translate

between such representations, whilst being aware of the sort and amount of

information contained in each representation, was called the mathematical repre-
sentation competency. One of the most important categories of mathematical

representations consists of mathematical symbols, and expressions composed of

symbols. The ability to deal with mathematical symbolism—i.e. symbols, symbolic

expressions, and the rules that govern the manipulation of them—and related

formalisms, i.e. specific rule-based mathematical systems making extensive use

of symbolic expressions, e.g. matrix algebra, was called the mathematical symbols
and formalism competency. Considering the fact that anyone who is learning or

practising mathematics has to be engaged, in some way or another, in receptive or

constructive communication about matters mathematical, either by attempting to

grasp others’written, oral, figurative or gestural mathematical communication or by

actively expressing oneself to others through various means, a mathematical com-
munication competency is important to include. Finally, mathematics has always,

today as in the past, made use of a variety of physical objects, instruments or

machinery, to represent mathematical entities or to assist in carrying out mathe-

matical processes. Counting stones (calculi), abaci, rulers, compasses, slide rulers,

protractors, drawing instruments, tables, calculators and computers, are just a few

examples. The ability to handle such physical aids and tools (mathematical tech-

nology in a broad sense) with insight into their properties and limitations is an

essential competency of contemporary relevance, which was called the mathemat-
ical aids and tools competency. In the next section, a figure depicting the compe-

tencies as the petals of a flower is presented (Fig. 2.1).

We now have identified eight mathematical competencies, which are claimed to

form an exhaustive set of constituents of what has been termed mathematical

competence. The first published version of these competencies (in Danish) can be

found in Niss (1999) in a journal published then by the Danish Ministry of

Education. Each of the competencies can be perceived as the ability to successfully

deal with a wide variety of situations in which explicit or implicit mathematical

challenges of a certain type manifest themselves. By addressing and playing out in

mathematics-laden situations, the competencies do not deal with mathematics as a

whole. Therefore, the set of competencies was complemented with three kinds of

overview and judgement concerning mathematics as a discipline: the actual use of
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mathematics in society and in extra-mathematical domains, the specific nature and

characteristics of mathematics as a discipline compared and contrasted with other

scientific and scholarly disciplines, and the historical development of mathematics

in society and culture.

Soon after, in 2000, a Danish government agency and the Danish Ministry of

Education jointly established a task force to undertake a project to analyse the state

of affairs concerning the teaching and learning of mathematics at all levels of the

Danish education system, to identify major problems and challenges within this

system, especially regarding progression of teaching and learning and the transition

between the main sections of the system, and to propose ways to counteract, and

possibly solve, the problems thus identified. I was appointed director of the project

with Tomas Højgaard Jensen serving as its academic secretary. The project became

known as the KOM project (KOM ¼ Kompetencer og matematiklæring, in Danish,

which means “Competencies and the learning of mathematics”), because the main

theoretical tool adopted by the task force to analyse mathematics education in

Denmark was the set of eight mathematical competencies, and the three kinds of

overview and judgement, introduced above. More specifically, the actual presence

and role of the various competencies in mathematics teaching and learning at

different levels were analysed. This allowed for the detection of significant differ-

ences in the emphases placed on the individual competencies in different sections

of the education system. This in turn helped explain some of the observed problems

of transition between the sections as well as insufficient progression of teaching and
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Fig. 2.1 The ‘competency flower’ from the KOM project
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learning within the entire system. The competencies were also used in a normative

manner to propose curriculum designs, modes and instruments of assessment, and

competency-oriented teaching and learning activities from school to university,

teacher education included. In the next section we shall provide a more detailed

account of further aspects of the competencies and their relationship with mathe-

matical content. The formal outcome of the KOM project was the publication, in

Danish, of the official report on the project (Niss and Jensen 2002). However,

during and after the completion of the project a huge number of meetings, seminars

and in-service courses were held throughout Denmark and in other countries to

disseminate and discuss the ideas put forward by the project. Also, the project

informed—and continues to inform—curriculum design and curriculum documents

in mathematics at all levels of the education system in Denmark. An English

translation of the most important sections of the KOM report was published in

2011 (Niss and Højgaard 2011).

Concurrently with the KOM project similar ideas emerged elsewhere in the

world. To mention just one example, consider the influential Adding It Up (National
Research Council 2001), produced by the Mathematics Learning Study Committee

under the auspices of the National Research Council, edited by Kilpatrick,

Swafford and Findell, and published by the National Academies in the USA. In

this book we read the following (p. 116):

Recognizing that no term captures completely all aspects of expertise, competence, knowl-

edge, and facility in mathematics, we have chosen mathematical proficiency to capture

what we believe is necessary for anyone to learn mathematics successfully. Mathematical

proficiency, as we see it, has five components, or strands:

• conceptual understanding—comprehension of mathematical concepts, operations, and

relations

• procedural fluency—skill in carrying out procedures flexibly, accurately, efficiently,

and appropriately

• strategic competence—ability to formulate, represent, and solve mathematical

problems

• adaptive reasoning—capacity for logical thought, reflection, explanation, and

justification

• productive disposition—habitual inclination to see mathematics as sensible, useful, and

worthwhile, coupled with a belief in diligence and one’s own efficacy.

These strands are not independent; they represent different aspects of a complex whole.

(National Research Council 2001, p. 116)

Although different in the specifics from the conceptualisation put forward by the

competency approach, which focuses on what it takes to do mathematics, the

approach in Adding It Up is an attempt to capture what it takes to learn mathemat-

ics, and hence what is characteristic of an individual who has succeeded in

learning it.

A more recent attempt, in some respects closer to that of the competency

approach, can be found in the first part of the US Common Core State Standards
Initiative, which identifies (2010, pp. 1–2) what is called eight “Standards for

Mathematical Practice” common to all (school) levels as below.
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• Make sense of problems and persevere in solving them.

• Reason abstractly and quantitatively.

• Construct viable arguments and critique the reasoning of others.

• Model with mathematics.

• Use appropriate tools strategically.

• Attend to precision.

• Look for and make use of structure.

• Look for and express regularity in repeated reasoning.

Since the first inception of the competency approach to mathematics, the KOM

project and its ramifications have been subject to a lot of further development and

follow-up research in various parts of the world. This, together with experiences

gained from various sorts of uses of the competency approach in different places

and contexts, has given rise to conceptual and terminological development and

refinement. This is not the place to elaborate on these developments. Suffice it to

mention that one modification of the scheme is essential in the research done by

some of the MEG members to capture and characterise item difficulty in PISA, see

the next section and in Chap. 4 of this volume.

Further Aspects of the Notion of Competency

It should be underlined that the eight competencies are not mutually disjoint, nor

are they meant to be. (Note differences here with the closely related scheme for item

rating in Chap. 4 of this volume.) On the contrary the whole set of competencies has

a non-empty intersection. In other words, the competencies do not form a partition

of the concept of mathematical competence. Yet each competency has an identity, a

‘centre of gravity’, which distinguishes it from the other competencies. The fact that

all competencies overlap can be interpreted such that the activation of each

competency involves a secondary activation of the other competencies, details

depending on the context. Consider, for example, the modelling competency.

Working to construct a model of some situation in an extra-mathematical context

presupposes ideas of what sorts of mathematical questions might be posed in such a

context and of what sorts of answers can be expected to these questions. In other

words, the thinking competency is activated. Since the very purpose of constructing

a mathematical model is to mathematise aspects and traits of the extra-

mathematical situation, leading to the posing of mathematical problems that then

have to be solved, the problem handling competency enters the scene. Carrying out

the problem solving processes needed to solve the problems arising from the

mathematisation normally requires the use of mathematical representations, as

well as manipulating symbolic expressions and invoking some formalism, along-

side using mathematical aids and tools, e.g. calculators or computers, including
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mathematical software. In other words the representation competency, the symbols

and formalism competency, and the aids and tools competency are all activated as

part of the process of solving the problem(s) posed. In order to validate, and

eventually justify, the solutions and answers obtained as a result of the modelling

steps just mentioned, the reasoning competency has to be activated. Finally,

beginning and undertaking the modelling task usually requires activation of the

receptive side of the communication competency, whereas presenting the model-

ling process, the model constructed, the model results and their justification, to

others activates the constructive side of the communication competency.

In the KOM project we chose to represent the set of competencies as the

competency flower shown in Fig. 2.1. Each petal represents a competency. They

are all distinct petals although they overlap. The density of the shading of each petal

is maximal in the middle, at the ‘centre of gravity’, and fades away towards the

boundary. The centre of the flower is the non-empty intersection of all the compe-

tencies. Even though a given petal may seem to have a larger intersection with its

two neighbours than with the other petals, this is not meant to point to a closer

relationship amongst neighbouring petals than amongst other sets of petals.

Possessing a mathematical competency is clearly not an issue of all or nothing.

Rather we are faced with a continuum. How, more specifically, can we then

describe the extent of an individual’s possession of a given competency? The

approach taken by the KOM project was to identify three dimensions of the

possession of any competency, called degree of coverage; radius of action; and
technical level.

A more detailed description of each of the competencies includes a number of

aspects employed to characterise that competency. Take, for instance, the repre-

sentation competency. One of its aspects is to interpret mathematical representa-

tions. Another aspect is to bring representations to use, a third is to translate

between representations, whereas a fourth aspect is to be aware of the kind and

amount of information about mathematical entities that is contained—or left out—

in a given representation. Moreover, all of these aspects pertain to any specific

mathematical representation under consideration. The degree of coverage of a

given competency, in this case the representation competency, then refers to the

extent to which a person’s possession of the competency covers all the aspects
involved in the definition and delineation of that competency. The more aspects of

the competency the person possesses, the higher the degree of coverage of that

competency with that person.

Each competency is meant to deal with and play out in challenging mathematics-

laden situations that call for the activation of that particular competency. Of course,

there is a wide variety of such situations, some more complex and demanding than

others. For example, the communication competency can be put to use in situations

requiring a person to show and explain how he or she solved a certain task, but it can

also be put to use in situations where the person is requested to present and defend

his or her view of mathematics as a subject. The radius of action of a given
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competency refers to the range of different kinds of contexts and situations in which
a person can successfully activate the competency. The wider the variety of

contexts and situations in which the person can activate the competency, the larger

the radius of action of that competency with that person.

Different mathematics-laden situations give rise to different levels of mathemat-

ical demands on a given competency. The symbols and formalism competency, for

instance, can be activated in situations that require dealing with arithmetic opera-

tions on concrete rational numbers using the rules that govern the operations. It can

also be activated, however, in situations that require finding the roots of third degree

polynomials, or the solution of separable first order differential equations. The

technical level on which an individual possesses a given competency, in this case

the symbols and formalism competency, refers to the range of conceptual and
technical mathematical demands that person can handle when activating the com-

petency at issue. The broader the set of demands the person can handle with respect

to the competency, the higher the technical level on which the person possesses that

competency.

The three dimensions of the possession of a competency allow us to characterise

progression in competency possession by an individual as well as by groups or

populations. A person’s possession of a given competency increases from one point

in time to a later point in time, if there is an increase in at least one of the three

dimensions, degree of coverage, radius of action or technical level, and no decrease

in any of them at the same time. This can be extended to groups or entire

populations if some notion of average is introduced. Taking stock of the change

of average competency possession for all eight competencies across groups or

populations allows us to capture progression (or regression for that matter) in

mathematical competence at large for those groups or populations. The three

dimensions can also be used to compare the intended or achieved mathematical

competency profiles of different segments of the education system, or even of

different such systems. It is worth noting that such comparisons over time within

one section of the education system, or at the same time between segments or

systems, attribute at most a secondary role to mathematical content.

One issue remains to be considered. What is the relationship between

mathematical competencies and mathematical content? In the same way as it

is true that linguistic competencies are neither developed nor activated in

environments without the presence of spoken or written language, mathematical

competencies are neither developed nor activated without mathematical content.

Since one and the same set of mathematical competencies are relevant from

kindergarten to university, and vis-à-vis any kind of mathematical content, we

can neither derive the competencies from the content, nor the content from the

competencies.

The position adopted in the KOM project is that the eight competencies and any

set of mathematical content areas, topics, should be perceived as constituting two

independent, orthogonal spaces.
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Analysis and Discussion of the Role of Competencies
Within PISA

It should be borne in mind when reading this section that for all official PISA

documents published by the OECD the final authorship and the corresponding

responsibility for the text lie with the OECD, even though the international con-

tractors under the leadership of the Australian Council for Educational Research, in

turn seeking advice from the Mathematics Expert Group, was always, of course, a

major contributor to the publications ‘behind the curtains’.
In the first PISA survey administration, in 2000, mathematics was a minor

assessment domain (reading being the major domain). The initial published version

of the Framework (OECD 1999), gives emphasis to a version of the eight mathe-

matical competencies of the KOM project. In the text they actually appear as ‘skills’
(‘mathematical thinking skill’, ‘mathematical argumentation skill’, ‘modelling

skill’, ‘problem posing and solving skill’, ‘representation skill’, ‘symbolic, formal

and technical skill’, ‘communication skill’, and ‘aids and tools skill’) but under the
section headed ‘Mathematical competencies’ (p. 43), the opening paragraph uses

the term ‘competency’. This is the first indication of reservations and (later)

problems with the OECD concerning the term ‘mathematical competency’. In the

Framework, ‘mathematical competencies’ was presented as one of two major

aspects (p. 42), the other one being ‘mathematical big ideas’, along with two

minor aspects, ‘mathematical curricular strands’ and ‘situations and contexts’.
Together these aspects were used as organisers of the mathematics (literacy)

domain in PISA 2000. Based on the point of view that the individual competencies

play out collectively rather than individually in real mathematical tasks (p. 43), it

was not the intention to assess the eight competencies individually. Instead, it was

decided to aggregate them (quite strongly) into what were then called ‘competency

classes’—Class 1: reproduction, definitions, and computations; Class 2: connec-

tions, and integration for problem solving; Class 3: mathematical thinking, gener-

alisation and insight. The Framework emphasises that all the skills are likely to play

a role in all competency classes. The degree of aggregation of the competencies into

competency classes is very high, so that the competency classes take precedence as

an organising idea, while the competencies are recognised to play a component role

in all mathematical activity.

Soon after, in a precursor publication to the official report of PISA 2000, (OECD

2000) the terms ‘competencies’ and ‘skills’ of the Framework were replaced with

the term ‘mathematical processes’ (p. 50). The headings are unchanged, except that
the word ‘skill’ is omitted in each of them. Similarly, the ‘competency classes’,
including the very term, were preserved but now referred to as ‘levels of mathe-

matical competency’.
The first results of PISA 2000 were officially reported in 2001 (OECD 2001). As

to the competencies, they almost disappeared in that report. The notion of mathe-

matical processes as composed of different kinds of skills was preserved. The

competency classes of the 1999 Framework were changed to ‘competency clusters’
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simply labelled ‘reproduction’, ‘connections’ and ‘reflection’ (p. 23). Apart from
that no traces of the competencies are left in the report, including in Chap. 2 in

which the findings concerning mathematical literacy are presented.

Mathematics was the major domain in PISA 2003. In the Framework (OECD

2003), it is interesting to observe that the eight mathematical competencies are back

on stage in a slightly modified version. In outlining the main components of the

mathematics assessment, the Framework reads:

The process of mathematics as defined by general mathematical competencies. These

include the use of mathematical language, modelling and problem solving skills. Such

skills, however, are not separated out in different text [sic, should be test] items, since it is

assumed that a range of competencies will be needed to perform any given mathematical

task. Rather, questions are organised in terms of ‘competency clusters’ defining the type of
thinking skill needed. (OECD 2003, p. 16)

This short text, six lines in the original, succeeds in interweaving process,

competencies and skills, whilst letting questions be organised by way of compe-

tency clusters that define thinking skills. However, in the chapter devoted to

mathematical literacy (Chap. 1), there is a clearer—and much more detailed—

account of the competencies and their role in the Framework. Taking its point of

departure in mathematisation, focusing on what is called, there, ‘the
mathematisation cycle’ (p. 38), (and called the modelling cycle in the PISA 2012

Framework (OECD 2013), see also Chap. 1 of this volume) the role of the

competencies is to underpin mathematisation. The Framework reads:

An individual who is to engage successfully in mathematisation in a variety of situations,

extra- and intra-mathematical contexts, and overarching ideas, needs to possess a number

of mathematical competencies which, taken together, can be seen as constituting compre-

hensive mathematical competence. Each of these competencies can be possessed at differ-

ent levels of mastery. To identify and examine these competencies, OECD/PISA has

decided to make use of eight characteristic competencies that rely, in their present form,

on the work of Niss (1999) and his Danish colleagues. Similar formulations may be found

in the work of many others (as indicated in Neubrand et al. 2001). Some of the terms used,

however, have different usage among different authors. (OECD 2003, p. 40)

The Framework moves on to list the competencies and their definition. These are

‘Thinking and reasoning’, ‘Argumentation’, ‘Communication’, ‘Modelling’, ‘Prob-
lem posing and solving’, ‘Representation’, ‘Using symbolic, formal and technical

language and operations’, and ‘Use of aids and tools’ (pp. 40–41). The three

competency clusters of the PISA 2000 report (reproduction, connections, and

reflection) were preserved in the PISA 2003 Framework, but whilst the competen-

cies didn’t appear in the description of these clusters in PISA 2000, they were

indeed present in PISA 2003. For each of the three clusters, the ways in which the

competencies manifest themselves at the respective levels are spelled out in the

Framework (OECD 2003, pp. 42–44 and 46–47, respectively).

How then, do the competencies figure in the first report on the PISA 2003 results

(OECD 2004)? In the summary on p. 26 the competencies as such are absent; only

the competency clusters are mentioned. In Chap. 2, reporting in greater detail on the

mathematics results, the competencies are only listed by their headings (p. 40) when
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the report briefly states that they help underpin the key process, identified as

mathematisation. In the description of the competency clusters (pp. 40–41) there

is no mention of the competencies. Even though competencies are referred to in the

previous paragraph (p. 40), they do not appear in the competency clusters. The

description of the six levels of general proficiency in mathematics (p. 47) employs

some elements from the competency terminology. So, the re-introduction of the

competencies into the Framework of PISA 2003 was not really maintained in the

reporting of the outcomes.

Apart from what seems to be a general reservation within the OECD towards

using the notion of competency in relation to a specific subject—they prefer to use

the term to denote more general, overarching processes such as cross-curricular

competencies (OECD 2004, p. 29)—there is also a more design-specific and

technical reason for the relative absence of the competencies in the report. The

classification system for PISA items (that which is called the metadata in Chap. 7 of

this volume) did not include information on the role of the eight competencies in the

individual items. An item was not classified with respect to all the competencies,

only assigned to one of the three competency clusters and other characteristics such

as overarching idea, response type etc. This means that there were no grounds on

which the PISA results could attribute any role to the individual competencies

except in more general narratives such as the proficiency level descriptions. In

retrospect one may see this as a deficiency in the Framework. If the eight compe-

tencies were to play a prominent role in the design of the PISA mathematics

assessment, each of the competencies, and not only the competency clusters,

would have to be used in the classification of all the items.

In 2009 the OECD published an in-depth study on aspects of PISA 2003

mathematics done by a group of experts from within and outside the MEG in

collaboration with the OECD (2009a). In this report, the eight competencies

re-emerge under the same headings as in the 2003 Framework, and with the

following opening paragraph:

An individual who is to make effective use of his or her mathematical knowledge within a

variety of contexts needs to possess a number of mathematical competencies. Together,

these competencies provide a comprehensive foundation for the proficiency scales

described further in this chapter. To identify and examine these competencies, PISA has

decided to make use of eight characteristic mathematical competencies that are relevant

and meaningful across all education levels. (OECD 2009a, p. 31)

On the following pages (pp. 32–33) of the report, each of the competencies is

presented as a key contributor to mathematical literacy.

Science was the major domain in PISA 2006, whereas mathematics was a minor

domain so the 2006 Framework (OECD 2006) was pretty close to that of 2003 for

mathematics. The central mathematical process was still mathematisation, depicted

by way of the mathematisation cycle (p. 95). The competencies were introduced as

one of the components in the organisation of the domain:

The competencies that have to be activated in order to connect the real world, in which the

problems are generated, with mathematics, and thus to solve the problems. (p. 79)
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Otherwise, the role and presentation of the competencies (pp. 96–98) resembled

those of 2003, as did the three competency clusters and the description of their

competency underpinnings.

The reporting of the mathematics outcomes of PISA 2006 (OECD 2007) is rather

terse, focused on displaying and commenting on a set of items and on presenting the

six proficiency levels, the same as used in 2003. In the report, there is no explicit

reference to the competencies, even though words from the competency descrip-

tions in the Framework are interspersed in the level descriptions. In this context it is

interesting to note that the term ‘competencies’ does in fact appear in the very title

of the report, but in the context of science, “PISA 2006. Science Competencies for

Tomorrow’s World”.

As regards the competencies, the PISA 2009 Mathematics Framework (OECD

2009b) is very close to 2003 and 2006, with insignificant changes of wording here

and there. It is interesting, though, that the heading of the section presenting the

competencies has been changed to “the cognitive mathematical competencies”. The

overall reporting of the 2009 mathematics outcomes (OECD 2010) does not deviate

from that of 2006. The same is true of the role of the competencies.

In PISA 2012, mathematics was going to be the major domain for the second

time. In the course of the previous PISA survey administrations certain quarters

around the world had aired some dissatisfaction with the focus on mathematical

literacy and with the secondary role attributed to classical content areas in the

assessment framework. It was thought, in these quarters, that by assessing mathe-

matical literacy rather than ‘just mathematics’, the domain became more or less

misrepresented. With reference to the need to avoid monopolies, there were also

parties in OECD PISA who wanted to diversify the management of PISA, which

throughout the life of PISA had taken place in a Consortium (slightly changing over

time) led by the Australian Council for Education Research (ACER). Several

authors of chapters in this book have personally witnessed expressions of dissatis-

faction with aspects of the design of PISA mathematics and an increasing ensuing

pressure on those involved in PISA mathematics to accommodate the

dissatisfaction.

This is not the place to go into details with evidence and reflections concerning

the activities that took place behind the public stage of PISA, but one result of these

activities was that PISA mathematics 2012 was launched in a somewhat different

setting to what was the case in the previous survey administrations. First, a new

agency Achieve, from the USA, was brought in to oversee, in collaboration with

ACER, the creation of a newMathematics Framework, especially with regard to the

place of mathematical content areas. Secondly, a number of new MEG members

were appointed to complement the set of members in the previous MEG which was

rather small because mathematics was a minor domain in PISA 2006 and 2009. The

opening meeting of the new MEG was attended by a chief officer of the OECD who

gave clear indications of the desired change of course with respect to PISA

mathematics 2012.

The process to produce a Framework for PISA 2012 mathematics became a

lengthy and at times a difficult one, in particular because it took a while for the
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MEG to come to a common understanding of the boundary conditions and the

degrees of freedom present for the construction of the Framework. After several

meetings and iterations of draft texts, the MEG eventually arrived at a common

document—submitted to the OECD in the northern autumn of 2010—which was to

everyone’s satisfaction, even though several compromises had of course to be

made, but at a scale that was acceptable to all members, as well as to Achieve,
ACER and eventually the PISA Governing Board.

Some of the compromises were to do with the competencies and their role in the

Framework. We shall take a closer look at these issues below. Before doing so, it is

worth mentioning that as the very term ‘mathematical competencies’ was not

acceptable to the OECD for PISA 2012, the term chosen to replace it was ‘funda-
mental mathematical capabilities’, whilst it was acknowledged that these had been

called ‘competencies’ in previous Frameworks (OECD 2013, pp. 24 and 30). As

will be detailed below, the names, definitions, and roles of these capabilities have,

in fact, been changed as well.

Technically speaking the definition of mathematical literacy in the 2012 Frame-

work (p. 25) appeared to be rather different from the ones used in previous

Frameworks. However, in the view of the MEG the only difference was that the

new definition attempted to explicitly bring in some of the other Framework

elements in the description so as to specify more clearly, right at the beginning in

the definition, what it means and takes to be mathematically literate. So, the change

has taken place on the surface rather than in the substance.

In the introduction to the Framework (OECD 2013, p. 18), the mathematical

processes are summarised as follows:

Processes: These are defined in terms of three categories ( formulating situations mathe-
matically; employing mathematical concepts, facts, procedures and reasoning; and
interpreting, apply [sic] and evaluating mathematical outcomes—referred to in abbreviated

form as formulate, employ and interpret)—and describe what individuals do to connect the

context of a problem with the mathematics and thus solve the problem. These three

processes each draw on the seven fundamental mathematical capabilities (communication;
mathematising; representation; reasoning and argument; devising strategies for solving
problems; using symbolic, formal and technical language and operations; using mathe-
matical tools) which in turn draw on the problem solver’s detailed mathematical knowledge

about individual topics.

The role of the fundamental mathematical capabilities—a further modification

of the eight mathematical competencies of the KOM project and of the previous

four Frameworks—in the 2012 Framework is to underpin the new reporting cate-

gories of the three processes (Formulate—Employ—Interpret) (see Chap. 1 of this

volume.) A detailed account of how this is conceptualised is given on pages 30–31

and in Fig. 1.2 in the Framework (OECD 2013). Apart from the change of

terminology from ‘mathematical competencies’ to ‘fundamental mathematical

capabilities’, which is primarily a surface change, what are the substantive changes

involved—signalled by the new headings of the fundamental capabilities—and

what caused them? (As ‘competency’ is the generally accepted term in several

quarters outside PISA, we continue to use this term rather than fundamental
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mathematical capabilities in the remainder of this chapter.) There are three such

changes. First, there are some changes in the number and names of the competen-

cies. For example, in the particular context of PISA it was never possible to really

disentangle the mathematical thinking competency from the reasoning competency,

especially as the former was mainly present indirectly and then closely related to

the latter. It was therefore decided to merge them under the heading ‘reasoning and
argument’. This change is predominantly of a pragmatic nature.

The second, and most significant, change is in the definition and delineation of

the fundamental capabilities. In the first place, this change is the result of research

done over almost a decade by members of the MEG with the purpose of capturing

and characterising the intrinsic mathematical competency demands of PISA items

(see Chap. 4 in this book). The idea is to attach a competency vector, the seven

components of which are picked from the integers 0,1,2,3, to each item. Over the

years, in this research, it became increasingly important to reduce or remove

overlap across the competency descriptions, primarily in order to produce clear

enough descriptions for experts to be able to rate the items in a consistent and

reliable manner. It was also because the scheme was used to predict empirical item

difficulty, which imposed certain requirements in order for it to be psychometrically

reliable. This means that the fundamental mathematical capabilities are defined and

described in such a way that overlap between them is minimal. This is in stark

contrast to the original system of competencies, all of which, by design, overlap.

Even though there is a clear relationship between the eight competencies and the

seven fundamental mathematical capabilities (e.g. ‘communication’ corresponds to
‘communication’, ‘modelling’ corresponds to ‘mathematising’, ‘thinking and rea-

soning’ together with ‘argumentation’ correspond to ‘reasoning and argumenta-

tion’) the correspondence between the two sets is certainly not one-to-one. In the

final formulation of the 2012 Framework it was decided to use the descriptions and

delineations from the PISA research project to define the fundamental mathematical

capabilities. This implies that the set of mathematical competencies does not make

the set of fundamental mathematical capabilities superfluous, nor vice versa. They

have different characteristics and serve different purposes, namely providing a

general notion of mathematical competence and a scheme to analyse the demands

of PISA items, respectively. From that perspective it can be seen as a stroke of luck

that the requirement to introduce a new terminology eventually served to avoid

confusion of the scheme of the KOM project (and the earlier versions of the PISA

Framework) and the 2012 Framework.

The third change was one of order. The fundamental mathematical capabilities

of the 2012 Framework occur in a different order than did the mathematical

competencies of the previous survey administrations. The reason for this reordering

was an attempt to partially (but not completely) emulate the logical order in

which a successful problem solver meets and approaches a PISA item. First, the

problem solver reads the stimulus and familiarises himself or herself with what

the task is all about. This requires the receptive part of ‘communication’. Next,
the problem solver engages in the process of mathematising the situation

(i.e. ‘mathematising’), whilst typically making use of mathematical representations
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(i.e. ‘representation’) to come to grips with the situation, its objects and phenomena.

Once the situation has been mathematised, the problem solver has to devise a

strategy to solve the ensuing mathematical problems (i.e. ‘devising strategies for

solving problems’). Such a strategy will, more often than not, involve ‘using
symbolic, formal and technical language and operations’, perhaps assisted by

‘using mathematical tools’. Then comes an attempt to justify the solutions and

mathematical conclusions obtained by adopting the strategy and activating the

other capabilities (i.e. ‘reasoning and argument’). Finally the problem solver will

have to communicate the solution process and its outcome as well as its justification

to others. This takes us back to ‘communication’, now to its expressive side.

At the time of writing this chapter, the official report of PISA 2012 had not yet

been published. So, it is not possible to consider the way in which the three

processes and the fundamental mathematical capabilities fare in the reporting.

This is, of course, even more true of PISA 2015 and subsequent PISA survey

administrations, which are in the hands of a completely different management,

even though my role as a consultant to the agency in charge of producing the PISA

2015 Framework allows me to say that this Framework is only marginally different

from the PISA 2012 Framework.

Concluding Remarks

This chapter has attempted to present the genesis, notion and use of mathematical

competencies in Denmark and in other places with a side view to analogous ideas

and notions, so as to pave the way for a study of the place and role of mathematical

competencies and some of their close relatives, fundamental mathematical capa-

bilities, in the Frameworks and reports of the five PISA survey administrations that

at the time of writing have almost been completed (September 2013). The chapter

will be concluded by some remarks and reflections concerning a special but

significant issue of the relationship between competencies (capabilities) and the

entire Framework. In a condensed form this issue can be phrased as a question:

‘what underpins what?’
From the very beginning of PISA the approach to the key constituent

of the mathematics assessment, i.e. mathematical literacy, was based on mathemat-

ical modelling and mathematisation of situations in contexts, although the specific

articulation of this in the Framework varied from one survey administration to the

next, as did the related terminology. In other words, modelling and mathematisation

were always at the centre of PISA. However, the eight mathematical competencies,

and most recently the seven fundamental capabilities, were part of the Frameworks

as well. Now, do we detect here a potential paradox or some kind of circularity,

since modelling (mathematising) is one of the eight competencies (seven capabil-

ities) underpinning the whole approach, above all modelling? It is not exactly

surprising that a set of competencies that includes modelling can serve to underpin

modelling. If modelling is in centre, why do we need the other competencies then?
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Alternatively, would it have been better (if possible) to specify mathematical

literacy in terms of the possession of all the mathematical competencies, without

focusing especially on the modelling competency, the possession of which would

then become a corollary?

Let us consider the first question. When it comes to the eight competencies, it

was mentioned in a previous section that the fact that they all overlap means that

even when the emphasis is on one of the competences, the others enter the field as

‘auxiliary troops’ in order for the competency at issue to be unfolded and come to

fruition. It is therefore consistent with this interpretation to have the entire system

of competencies underpin the modelling competency. One might say, though, that

were it only for PISA, in which the emphasis is on the modelling competency, that

competency might have been omitted from the list in order to avoid the tiny bit of

circularity that is, admittedly, present. However, as the competency scheme is a

general one used in a wide variety of contexts, and not only in PISA, it would be

unreasonable to remove it from the list solely because of its special use in PISA.

What about the seven fundamental mathematical capabilities in the 2012 Frame-

work, then? Here the circularity problem has actually disappeared, at least termi-

nologically speaking, because the seven capabilities do not contain one called

modelling, only mathematising (and in a more limited sense than it sometimes

has), and because the term mathematising is not used in the modelling cycle in the

Framework, as it has been replaced by ‘formulating situations mathematically’. So,
in the 2012 Framework it is indeed the case that the capabilities underpin this

process as well as the other two, ‘employing mathematical concepts, facts pro-

cedures and reasoning’, and ‘interpreting, applying and evaluating mathematical

outcomes’.
As to the second question, since the eight competencies are meant to constitute

mathematical competence and mastery at large, the option mentioned would have

amounted to equating mathematical literacy and mathematical competence. This is

certainly a possible but not really a desirable option. The perspective adopted in

PISA, right from the outset, was not to focus on young people’s acquisition of a

given subject, such as mathematics, but on their ability to navigate successfully as

individuals and citizens in a multifaceted society as a result of their compulsory

schooling. This zooms in on putting mathematics to use in a variety of mainly extra-

mathematical situations and contexts, in other words the functional aspects of

having learnt mathematics. This is what mathematical literacy is all about, being

brought about by way of modelling. I, for one, perceive mathematical literacy as a

proper subset of mathematical competence, which implies that for someone to be

mathematically competent he or she must also be mathematically literate. Even

though mathematical literacy does indeed draw upon (aspects of) all the compe-

tencies, it does not follow that all the competencies are represented at a full scale

and in an exhaustive manner. So, the converse implication, that a mathematically

literate person is also necessarily mathematically competent, does not hold.

Mathematical competence involves operating within purely mathematical struc-

tures, studying intra-mathematical phenomena such as the irrationality of
ffiffiffi
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p

and π
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even though this is never really required in the physical world, and at a higher level

understanding the role of axioms, definitions and proofs.

These remarks are meant to show that what at face value may appear, to some,

as a kind of circularity or inconsistency in the PISA Frameworks concerning

mathematical literacy, mathematical competence and competencies, fundamental

mathematical capabilities, modelling and mathematising are, as a matter of fact,

basically logically coherent in a closer analysis.

It will be interesting to follow, in the years to come, how mathematical compe-

tencies are going to be developed from research as well as from practice perspec-

tives. At the very least, putting the competencies on the agenda of mathematics

education has offered new ways of thinking about what mathematics education is

all about.
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Chapter 3

The RealWorld and theMathematical World

Kaye Stacey

Abstract This chapter describes the way in which PISA theorises and

operationalises the links between the real world and the mathematical world that

are essential to mathematical literacy. Mathematical modelling is described and

illustrated and the chapter shows why it is used as the cornerstone to mathematical

literacy. It discusses how this concept has developed over the PISA Frameworks

from 2000 to 2012, culminating in the reporting in PISA 2012 of student profi-

ciency in the three modelling processes of Formulate, Employ and Interpret.
Consistent with the orientation to mathematical modelling and mathematisation,

the authenticity of PISA items is given a high priority, so that students feel that they

are solving worthwhile, sensible problems. The use of real-world contexts is

regarded as essential to teaching and assessing mathematics for functional purposes

and in assisting in motivation of students, but potential problems of cultural

appropriateness and equity (through familiarity, relevance and interest) arise for

an international assessment. This is the case for countries as a whole and also for

subgroups of students. Relevant research and the PISA approach to minimising

potential biases are discussed.

Introduction

The emphasis of PISA’s mathematical literacy is on “mathematical knowledge put

to functional use in a multitude of different situations” (OECD 2004, p. 25). It

follows from this that presenting students with problems in real-world contexts is

essential. PISA has steered away from the dubious route of inferring students’
ability to solve problems in real-world contexts from a measure of students’ ability
to perform mathematical procedures in the abstract (e.g. solving equations,

performing calculations). The use of real-world contexts and how this interacts

with the world of mathematics is therefore the theme of this chapter.
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Within the mathematics education world, the process of applied problem solving

(solving problems that are motivated by a concern arising outside of the world of

mathematics itself) has for many years been widely described by means of the

‘mathematical modelling cycle’ (Blum and Niss 1991). The process of mathemat-

ical modelling is described in this chapter, which discusses the concept from the

theoretical perspective as well as explaining in detail how it is linked to mathemat-

ical literacy and PISA items.

Whereas mathematising the real world and using mathematical modelling to

solve problems always been a cornerstone of PISA (although variously named in

the various surveys), this was not evident in the reporting of PISA results, which

gave only overall scores for mathematical literacy and scores for the four content

categories (Space and shape; Quantity etc.). However, in PISA 2012 the modelling

cycle has also been used to provide an additional reporting category for student

proficiency. The major reason for this was to describe more precisely what pro-

ficiencies make up mathematical literacy, and to report how well different groups of

students do on each of these. More detailed reporting gives educational jurisdictions

better information from PISA about the strengths of their students.

The PISA 2009 survey of science (OECD 2010) reported the degree to which

three scientific competencies are developed: identifying scientific issues,

explaining phenomena scientifically and using scientific evidence. What is a par-

allel way of thinking about the constituents of mathematical literacy? The answer,

from the modelling cycle, is discussed in this chapter. The purpose of this chapter is

therefore:

• to describe mathematical modelling and to show why it is the key to PISA’s
mathematical literacy

• to demonstrate with sample PISA items how mathematical literacy is connected

with modelling

• to discuss the reporting in PISA 2012 according to the three mathematical

processes of Formulate, Employ and Interpret
• to link mathematical literacy and mathematical modelling with mathematisation

• to discuss item design issues concerning the use of real-world contexts in PISA

problems, especially related to authenticity and equity.

Mathematics is a difficult subject to learn because all mathematical objects are

abstract: numbers, functions, matrices, transformations, triangles. Even though we

can identify triangle-like shapes around us, we cannot see the abstract ‘object’ of a
triangle; we must impose the mental concept of triangle on the real-world thing.

Perhaps surprisingly mathematics derives much of its real-world power from being

abstract: abstract tools developed in one context can be applied to many other

physical phenomena and social constructs of the worlds of human experience and

science. This is what mathematical modelling does. A problem arising in the ‘real
world’ is transformed to an intra-mathematical problem that can be solved

(we hope) using the rules that apply to abstract mathematical objects and which

may have been first derived or discovered for quite a different area of application.

Then the solution is used for the real-world purposes. This real world includes
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personal, occupational, societal and scientific situations, not just physical situa-

tions; a convention that is summarised in PISA’s Personal, Societal, Occupational
and Scientific context categories (see Chap. 1). Critically also and perhaps para-

doxically, the real world for mathematics is not confined to what actually exists.

Ormell (1972) describes the greatest value of mathematics as providing, through its

modelling capability, the ability to look at possibilities; testing out the details of

not-yet-actualised situations. A great deal of investigation of the feasibility and

necessary characteristics of the sails described in PM923 Sailing ships (see Chap. 1

of this volume) would be done mathematically, long before any sail is

manufactured.

Mathematical Modelling

What Is a Mathematical Model?

In the past, a mathematical model was a physical object, often something beautiful

to be admired or used for teaching. For example, Cundy and Rollett’s book entitled
“Mathematical Models” (1954) gave detailed instructions for making a wide variety

of mathematical models, such as Archimedean and stellated polyhedra and link-

ages, and for drawing loci. Now, reflecting common usage, the Wikipedia article on

mathematical models briefly dismisses this former understanding in one sentence.

Instead the article defines a mathematical model as “a description of a system using

mathematical concepts and language” and explains the purposes of modelling as

“A model may help to explain a system and to study the effects of different

components, and to make predictions about behaviour.” One quick search of an

online job advertisement agency using the term “mathematical modelling” showed

that there are vacancies today in my region for mathematical modellers in banking,

finance and accounting, agriculture, gambling and online gaming, mechanical

engineering, software engineering, marketing, mining and logistics. It is clear

from this that mathematical modelling is essential to business and industry.

The primary meaning of the word ‘model’ (as a noun) now refers to

• the set of simplifying assumptions (e.g. which variables are important in the

situation for the problem at hand, what shape something is),

• the set of assumed relationships between the variables, and

• the resulting formula or computer program or other device that is used to

generate an answer to the question.

Models can be extraordinarily complex, such as the highly sophisticated models

that are used for predicting the weather. They can summarise profound insights into

the nature of the universe, such as Newton’s three laws of motion. Models can also

be very simple, like many of the rules of thumb and instructions that we use on a

daily basis. I make tea in a teapot by remembering the rule “one [spoonful of tea] for
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each person and one for the pot”. This is a simple linear model taught to me by my

grandmother, based on assumptions of the volume of teapots and preferred strength

of tea, and validated by experience. I drive keeping a gap of 2 seconds between the

next car and mine: an easily memorised and implemented rule to follow (especially

as it is independent of speed) that has been derived from the relationship between

stopping distances and speed and based on assumptions about good driving condi-

tions, typical braking force, reaction time etc. Figure 3.1 shows the instructions

written on a packet of frozen sausage rolls. For the microwave oven, the time is

modelled as a linear function of the number of sausage rolls. For a conventional

oven, the model for the heating time is independent of this variable. These math-

ematically distinct models reflect the very different physical processes of heating in

the two ovens, by exciting water molecules with microwaves or from a heat source.

They also rely on many simplifying assumptions and relationships, including the

size, shape and ingredients of the sausage rolls, the heating capacity of ovens, and

food safety (hot enough on the inside to kill germs, but not too hot to burn the

mouth). Of course, Aunty Betty herself, in designing the instructions, probably

adopted an empirical method, heating sausage rolls and testing the temperature

against food safety rules (also perhaps expressed as mathematical models). The

normal consumer just needs to follow the instructions to work out the cooking time;

a caterer may need to modify the rule for heating a very large number of sausage

rolls. Many of the real situations in which mathematical literacy is required arise in

the role of ‘end user’ of a model.

The Modelling Cycle and PISA’s Model of Modelling

M154 Pizzas was released after the PISA 2003 survey (OECD 2006b, 2009b). It

illustrates the main features of mathematical modelling in a simple way. For anyone

feeding a large group of hungry people with pizza, this is a real-world problem. In

my city, pizza diameters are often advertised alongside the cost. Note that a zed is

the unit of currency in the imaginary Zedland where PISA items are often set, in

order to standardise the numerical challenges for students around the world.

Conventional Oven. Put sausage rolls on tray in centre of oven. Heat approxi-
mately 25 minutes or until hot right through. To heat when unfrozen, reduce heat-
ing time to 15 minutes.

Microwave Oven. Microwave on full power for required time. 2 sausage rolls for

1½ minutes. 4 sausage rolls for 2½ minutes. 6 sausage rolls for 3½ minutes.
Allow to stand for one minute. Serve.  

Fig. 3.1 Instructions for heating on a packet of Aunty Betty’s frozen sausage rolls
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M154 Pizzas. A pizzeria serves two round pizzas of the same thickness in different sizes.

The smaller one has a diameter of 30cm and costs 30 zeds. The larger one has a diameter of

40cm and costs 40 zeds.

M154Q01. Which pizza is better value for money? Show your reasoning.

A solution involves taking the real-world concept of value for money and

describing it mathematically: perhaps as area of pizza per zed (or alternatively

zeds per square centimetre, volume per zed, zeds per cubic centimetre). Assuming

that the pizza is circular completes the formulation stage: the real-world problem

has been transformed into a mathematical problem. Next the calculations can

proceed (exactly or approximately) and the comparison of areas of pizza per zed

(say) can be made. This is the stage where mathematical techniques come to the

fore, in solving the mathematical problem to obtain a mathematical result. After

this, the desired real-world solution is identified (the pizza with higher numerical

area per zed) and interpreted as a decision that the larger size is better value for

money. (Of course, the problem can also be solved algebraically without any

calculation comparing the quadratic growth of area with diameter with the linear

growth of cost, and similar modelling considerations apply). Next the real-world

adequacy and appropriateness of the solution is examined. If only large pizzas are

purchased, can everyone get the menu choice that they want? Will too much be

purchased? This means that the idea of value for money may need to be more

complex than square centimetres per zed. Where M154 Pizzas stops, in real life a

new modelling cycle may begin with modified variables, assumptions and relation-

ships (e.g. at least five different pizzas are required for this party) to better aid the

“well-founded judgments and decisions” that feature in PISA’s definition of math-

ematical literacy (OECD 2013a).

When mathematics was first a major domain for the PISA survey in 2003, the

Framework (OECD 2004) included a model of the modelling cycle (although there

it was called the mathematisation cycle following the RME tradition as in de Lange

(1987)). This cycle described the stages through which solving a real-world prob-

lem proceeds. Figure 3.2 shows the graphics depicting it that appeared in the 2006

Fig. 3.2 The mathematisation (modelling) cycle (OECD 2006a, p. 95)
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Framework (OECD 2006a). Models of the modelling (mathematisation) cycle have

long been used in discussing its teaching and learning and there are many varia-

tions, which bring in various levels of detail (e.g. Blum et al. 2007; Stillman

et al. 2007). A diagram that depicts the modelling cycle in essentially the same

way as PISA does was published by Burkhardt in 1981 and there may be earlier

occurrences.

The first feature of this diagram is the division into two sides. On the real world

side, the discourse and thinking are concerned with the concrete issues of the

context (pizzas, money). On the mathematical world side, the objects are abstract

(area, numbers) analysed in strictly mathematical terms. Within the ovals are the

states that the modelling cycle has reached, and the arrows indicate the processes of

movement between these states. The numbers on the diagram give an explanation

of the activities that constitute the arrows. The first arrow (labelled (1), (2), (3))

represents the formulation process during which the mathematical features of the

situation are identified and the real-world problem is transformed into a mathemat-

ical problem that faithfully represents the situation: (1) starting with a problem

situated in reality, (2) organising it according to mathematical concepts and iden-

tifying the relevant mathematics involved and (3) trimming away the reality by

making assumptions, generalising and formalising. The problem solver has thus

moved from real-world discourse to mathematical-world discourse. The ‘problem
in context’ (best value for money) has been transformed into a mathematical

problem about abstract mathematical objects (area, numbers, rates) that is hopefully

amenable to mathematical treatment. The arrow within the mathematical world

(4) represents solving the mathematical problem (calculating then comparing the

areas per zed). The arrow labelled (5) indicates the activity of making sense of the

mathematical solution in terms of the real situation, and considering whether it

answers the real problem in a satisfactory way (e.g. large pizzas may not give

enough variety).

A more picturesque description of the same modelling cycle was given by

Synge:

The use of applied mathematics in its relation to a physical problem involves three steps.

First, a dive from the world of reality into the world of mathematics; two, a swim in the

world of mathematics; three, a climb from the world of mathematics back into the world of

reality, carrying the prediction in our teeth. (Synge 1951, p. 98)

Apart from the diagram having undergone reflection in a horizontal axis, Fig. 3.2

is extremely similar to Fig. 3.3, which shows the diagram and terminology for

the modelling cycle used in the PISA 2012 Framework. In labelling the arrows,

the PISA 2012 diagram links directly to the reporting of student proficiency in the

separate processes that will be discussed below. There are two arrows that move

between the real world and the mathematical world: Formulate and Interpret.
The Employ arrow represents solving actions that lie entirely within the mathemat-

ical world. Within the real world is the Evaluate arrow. Here the result obtained

from the model is judged for its adequacy in answering the real-world problem.
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If the solution is satisfactory, the modelling ends. If it needs improvement, a

modified problem in context has been established, and the cycle begins again

probably building in assumptions and relationships that better reflect the real

situation.

Both Figs. 3.2 and 3.3 depict an idealised and simplified model of solving a

real-world problem with mathematics. In reality, problem solvers can make

many movements back and forth rather than steadily progressing forward through

the modelling cycle. A result may be found to be unrealistic at the evaluation

stage leading to a move forward to a new formulation or instead there may be a

move backwards to check calculations or carry them out with greater precision.

A formulated model may lead to equations that cannot be solved, prompting a move

backwards from Employ to Formulate to search for assumptions and relationships

that will lead to a more tractable mathematical problem. Indeed, the Formulate and
Employ processes need to be closely intertwined because in formulating a mathe-

matical model the problem solver is wise to keep an eye on the technical challenges

that lie ahead.

In addition to these back and forth movements between processes, there are

deeper ways in which the simple division into the real world and the mathematical

world does not reflect reality. Reasoning from the context can be an aid to finding

the mathematical solution (“I must have made a mistake because I know mass does

not affect the result, so the m’s in my formula should cancel”). Furthermore,

understanding details of the mathematical solution can be essential to interpreting

the findings sensibly (e.g. “I ignored the quadratic terms so I could solve the

equations, so it is not surprising that my results show that the quantities are linearly

related.”; “I assumed cars go through the traffic lights at a rate of 30 per minute, so it

is not surprising that as the time that the lights are set on green increases, the

number of cars that could pass through the lights tends asymptotically towards

30� 60 per hour”.)

The mathematical modelling cycle is also affected when people work together,

perhaps in employment, with some people creating models and others using them

possibly in a routine way. Not all use of mathematics involves the full modelling

cycle, which is the key observation when discussing the link between mathematical

literacy and modelling below.

Fig. 3.3 PISA 2012 model of mathematical modelling (OECD 2013a)
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Mathematical Literacy and Mathematical Modelling

What is the relationship between PISA’s mathematical literacy and mathematical

modelling, which is described as its cornerstone and key feature (OECD 2013a)?

Two facts are immediately clear. On the one hand, almost by definition, mathe-

matical modelling and mathematical literacy are strongly connected. The definition

of mathematical literacy (OECD 2013a) includes to “describe, explain and predict

phenomena” and to assist in making “well-founded judgements and decisions”. The

Wikipedia modelling page quoted above includes a very similar list: “explain a

system, study the effects of different components, and to make predictions about

behaviour.” On the other hand, most people in real life, and especially 15-year-old

students working under test conditions, would only rarely engage in the full

modelling cycle as described above except in very simple instances of it. For

example, only mathematically adept customers probably consider the functional

variation described above when buying pizzas, and then probably only if they have

to buy a lot. It is, however, much more critical that the pizzeria owner understands

the mathematical model for ordering ingredients and setting prices. What is the

resolution to this paradox that mathematical modelling is key to mathematical

literacy, that everyone needs mathematical literacy, yet most people rarely engage

in the whole modelling cycle? In most cases, people exercising their mathematical

literacy are engaged in just a part of the modelling cycle with other parts greatly

abbreviated. Examples follow.

In very many instances where mathematical literacy is required, people use

mathematical models that are supplied to them, greatly truncating the Formulate
process. Using the ‘rule-of-thumb’ models referred to above are simple examples.

I want to heat five sausage rolls in the microwave. I read the instructions on the

packet. Implicitly I assume linear interpolation, so I just have to calculate the time

halfway between the times for four and six sausage rolls. Some PISA items are of

this ‘using models’ type. An Occupational example, the item PM903Q03 Drip rate

Question 3 (OECD 2013a) requires calculation of the volume of a drug infusion

given the drip rate, the total time, the drop factor and a formula that connects these

four variables together. In a question such as this, the Formulate and Interpret
processes are greatly truncated and the cognitive demand comes almost entirely

from the Employ process (substituting values, changing the subject of the formula,

and calculation).

In many other instances where mathematical literacy is required, the formulation

process is greatly truncated because the relevant mathematical models have been

explicitly taught and practised at school (e.g. calculating distance from speed and

time, area of composite shapes, converting units, percentage discounts for shop-

ping, using scales on maps, reading a pie chart). A very common instance in PISA,

as in real life, is where proportional reasoning is required. M413Q01 Exchange

Rate Question 1 (OECD 2006a, 2009a) stated that 1 Singapore dollar was worth 4.2

South African rand and asked how many South African rand would be received for

3,000 Singapore dollars. It was the third easiest item in the PISA 2003 survey
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(OECD 2009a). The cognitive demand for formulating this problem is very low

because conversion of units is a commonly taught application of rate (proportional

reasoning), and because the item is set up to go directly from 1 SGD to 3000 SGD.

Reading information from charts and graphs is a common instance of mathe-

matical literacy for citizens and employees, and there are many PISA items testing

this, such as PM918Q02 Charts Question 2 (see Fig. 3.4). Items like this almost

exclusively involve the Interpret process of the modelling cycle. (Note that the

interpret process does not involve the receptive communication of reading the

question, but is about understanding the real-world meaning of the results.) Rele-

vant mathematical information is presented (often in a graph, a timetable, a

diagram) and has to be used quite directly with little processing to answer a question

of interest. PM918Q02 Charts Question 2 was an easy item with 79 % of students

correct in the field trial. To link this into the modelling cycle, I imagine that this

information has been assembled, perhaps by a newspaper or by a sales team. They

have formulated the situation mathematically by making a series of choices

(e.g. what and how many variables, aggregation by month better than by week,

selecting a clustered column graph) and then creating a graph. The end user

(perhaps a band manager) and in this case also the PISA test taker exhibiting

mathematical literacy, has to interpret this mathematical product, selecting the

two data series in question, and compare the heights of the columns visually,

starting from January. This activity lies just at the end point of the modelling

cycle. In summary, using mathematical literacy can involve full engagement with

the mathematical modelling cycle, but most frequently it involves just a small part

of it in real life and in PISA.

PISA Assessment and the Modelling Cycle

As noted above, in PISA 2012 the modelling cycle has been used to provide a new

reporting category. The intention is to describe what abilities make up mathemat-

ical literacy and the degree to which students possess them. As discussed in Chap. 2,

this is well described by the fundamental mathematical capabilities (called compe-

tencies in Chap. 2 and earlier Frameworks), and Turner, Blum and Niss in Chap. 4

provide empirical evidence for this claim. However, reporting against six or more

capabilities is impractical because there are just too many and also because they

normally occur together in problem solving.

Instead, PISA 2012 uses the processes Formulate—Employ—Interpret of the
modelling cycle for reporting. All three can generally be identified in solving a

problem, but because of the constraints of the PISA assessment (e.g. time) it is

nearly always possible to identify that the main demand of an item lies with one of

them. As noted in the section above, this also reflects much use of mathematics in

real life: some aspects of the modelling cycle are so truncated as to be barely present

for the end user. Items that mainly focus on the arrow labelled Formulate in Fig. 3.3
are used to measure student performance in Formulating situations mathematically.
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Fig. 3.4 Two questions from the unit PM918 Charts (OECD 2013b)
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Items that focus on the Employ arrow are used to report on the process formally

labelled Employing mathematical concepts, facts, procedures, and reasoning.
Finally, one process Interpreting, applying, and evaluating mathematical outcomes,
abbreviated to Interpret, is constructed from items that mainly focus on the

interpreting and evaluating arrows. These have been combined because the oppor-

tunities for any serious evaluation under the conditions of a PISA survey are

severely limited: items are completed in a short time by students sitting at a desk

without additional resources.

Above, examples of PISA items that are close to real-world situations and were

very strongly focused on just one process were given: PM903Q03 Drip rate

Question 3 and M413Q01 Exchange Rate focused on the Employ process and

PM918Q02 Charts Question 2, focused on the Interpret process. M537Q02 Heart

beat Question 2 (OECD 2006a, 2009a) is an example of an item strongly focused on

the Formulate process. The stimulus gave the formula

recommended maximum heart rate ¼ 208� 0:7� ageð Þ

and the information that physical training is most effective when heartbeat is at

80 % of the recommended maximum. The question asked for a formula for the heart

rate for most effective physical training expressed in terms of age. In this item, full

credit was obtained by students who left the expression without expansion. For

example, both of the equations heart rate ¼ (208� 0.7� age)� 0.8 and

h¼ 166� 0.6a were scored with full credit. Consequently, the main cognitive

demand was focused in formulating the new model.

The above PISA items are easy to allocate to just one process, but not all items

are like this. The psychometric model used by PISA requires that items be allocated

to only one of the three processes, so the following examples illustrate how

on-balance judgements are made for items involving more of the modelling pro-

cess. Three straightforward decisions are illustrated first, followed by the difficult

case of PM918Q05 Charts Question 5.

PM995Q03 Revolving Door Question 3 (see Fig. 3.5) involves proportional

reasoning, but this item is far from a routine application. Students have to construct

a model of the situation (probably implicitly) to go from total time (30 min) to total

revolutions (120) to total entry options (360) to total people (720). Although each of

these relationships is a standard proportional reasoning situation, they need to be

assembled systematically to solve the problem. The item is classified as Formulate
because the demand from this process was judged to be greater than from the

calculation (Employ) and interpreting of the answer in real-world terms is very

straightforward (Interpret).
The item PM995Q02 Revolving door Question 2 (see Fig. 3.5) was one of the

most difficult items in the field trial, with only 4 % of students successful. This item

makes heavy demands at the formulation stage. It addresses the main purpose of

revolving doors, which is to provide an airlock between inside and outside the

building and it requires substantial geometric reasoning followed by accurate

calculation. The real situation has to be carefully analysed and this analysis needs

3 The Real World and the Mathematical World 67



Fig. 3.5 The unit PM995 Revolving door (OECD 2013b)
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to be translated into geometric terms and back again to the contextual situation of

the door multiple times during the solution process. As the diagram supplied in the

question shows (see Fig. 3.5) air will pass from the outside to the inside, or vice

versa, if the wall between the front and back openings is shorter than the circum-

ference subtended by one sector. Since the sectors each subtend one third of the

circumference, and there are two walls, together the walls must close at least two

thirds of the circumference, leaving no more than one third for the two openings.

Assuming symmetry of front and back, each opening cannot be more than one sixth

of the circumference. There is further geometric reasoning required to check that

the airlock is indeed maintained if this opening length is used. The question

therefore draws very heavily on the reasoning and argument fundamental capabil-

ity. It is unclear in this problem when the formulation ends and the employing

process begins, because of the depth of geometric reasoning required. A careful

analysis of the solution of an individual in terms of the modelling cycle would

probably find it often moving from the Formulate arrow (what does it mean in

mathematical terms to block the air flow?) to the Employ arrow and back again. The

decision to place this item in the Formulate process indicates a judgement that the

most demanding aspect is to translate into geometric terms the requirement that no

air pass through the door. However, working within the mathematical world is also

demanding in this case. Allocating to Formulate is supported by the observation

that it is more likely that a student will have failed to make progress on this item in

the Formulate process, rather than have succeeded there and been unable to solve

the intra-mathematical problem.

PM918Q05 Charts Question 5 (see Fig. 3.4) illustrates that the allocation to one

of the three processes is sometimes unexpectedly complex. To solve this problem,

first the phrase “same negative trend” needs to be formulated mathematically, and

there are several choices. Formulating graphically might lead the student to phys-

ically or mentally draw a line of best fit through the tops of the Kicking Kangaroos

columns for February to June, extend the line to where July would be and observe

that it will be of height not much below 500 (hence answer B correctly). Alterna-

tively, a gradient for the line could be calculated and applied to calculate a value for

July. Formulating numerically, a student may calculate an average drop per month

and reduce the June sales by this amount. The interpretation of the answer obtained

by any of these processes is simple. The test designers allocated this item to the

Employ process, deciding that the main cognitive demand is in carrying out any one

of these strategies, rather than in deciding that the drop should equal the average

drop of previous months (or equivalently that the downwards trend in the sales

figures should be linear). If the latter decision were made, the problem could have

been classified as Formulate.
Given the somewhat involved problem analysis above, it was surprising to find

that PM918Q05 Charts Question 5 was an easy item, with about 70 % of students

correct at the field trial and the main study. Statistically the item behaved extremely

well. The students with the correct answer B (370) had the highest ability on all

other items, the approximately 20 % of students with answer C (670) had a lower

ability overall, and the approximately 5 % answering each of A (70) and D (1,340)
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had much lower ability again. These good item statistics indicate that the multiple-

choice format is working well: students are using their mathematical literacy

proficiency to choose the alternative. But what part of this proficiency is most

critical? The most common wrong answer was C (670), which is very close to the

sales in June. Students giving this answer probably do not have a mathematical

concept of ‘trend’. Probably they have interpreted “same negative trend” as just a

continuation of the same bad sales situation, and not even looked for the decreasing

data series. This is a failure related to Formulate, not to Employ. Amongst students

who had a more mathematical concept of trend, the high success rate indicates that

many of them were probably able to select answer B (370) on qualitative rather than

quantitative grounds. Two choices, B (370) and D (70) were below the June sales

figures; choosing B over D is likely to have been supported by reasoning along the

lines described above, but done much less precisely without much cognitive

demand on the Employ process. In summary, it is likely that the major cognitive

demand in this item has arisen in Formulate and not in the allocated Employ. This is
a speculative argument based on an interpretation of the item statistics, but it

indicates some of the difficulties that can arise in allocating items to just one of

the three mathematical processes. In-depth exploration of item performance from

this point of view, using the publicly available PISA 2012 international data base,

may prove fruitful in understanding items better, and for research.

Using Reported Measures of Mathematical Processes
in Teaching

Reporting PISA results by these processes of mathematical literacy may assist

educational jurisdictions to review curriculum and teaching. For example a country

that has low scores on the Formulate process might decide to emphasise this

process more in schools, especially by more often beginning with problems in

context that need some substantial formulation. This will also involve class discus-

sion about how an element of the real-world context is best described in mathe-

matical terms (e.g. value for money in M154 Pizzas). Teachers may explicitly

consider teaching strategies that help students identify mathematical structure and

connect problem elements such as the Singapore model method (Fong 1994). A

focus on formulation will also involve problems where the solver has to identify

multiple relationships (complex or simple) and decide how to put them together, as

in PM942Q02 Climbing Mount Fuji Question 2 discussed in Chaps. 4 and 8 of this

volume. Teachers can discuss the assumptions behind the models that are used.

Even the simplest word problems involve assumptions that are usefully discussed

with students and doing this alerts students to how this is essential for applying

mathematics. This process can be used to make seemingly unauthentic word

problems more realistic. With the pizza problem, students could discuss the

assumption that pizzas are circular, the assumption that it is the area of pizza to
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eat that matters, and how the solution would be modified to find value for money of

liquorice strips given their length or value for money of oranges used for juice given

their diameters. Research into the teaching of mathematical modelling (see, for

example, Blum 2011; Blum et al. 2007) gives many more suggestions. In Chap. 11

of this volume Ikeda shows how using PISA items that focus on particular aspects

of the modelling cycle (such as the formulating aspect) can be useful for teaching.

Zulkardi in Chap. 15 of this volume describes the creation of PISA-like tasks which

reflect life in Indonesia. There is now a big bank of released PISA items to inspire

such efforts (e.g. OECD 2013a).

There is no claim that PISA is a full assessment of mathematical modelling. As is

evident from the large body of educational research on modelling and applications

(e.g. Blum et al. 2007) both teaching and assessment require students to engage

with extended tasks even involving multiple trips around the modelling cycle.

Along with many other authors, this point is made by Turner (2007) in his

presentation of PISA problems with rich classroom potential. Extended tasks can

share the PISA philosophy, but they can move considerably away from the PISA

format. This is because PISA items must be exceptionally robust. As discussed in

Chaps. 6 (by Turner), 7 (by Tout and Spithill) and 9 (by Sułowska) of this volume,

they must be suitable for translation into many languages, appropriate for students

in many cultures, involve mathematical concepts and processes that are likely to be

familiar to students around the world, be able to be consistently scored by many

separate teams of markers in an efficient manner, be able to be completed by

students within a tight timeframe, have psychometric properties that fit the mea-

surement model well, be self-contained and require very few resources for com-

pletion. However, outside of these constraints, many more possibilities exist for

designing tasks for teaching and assessing mathematical literacy in a richer way.

In his review of large scale assessment, de Lange (2007) cites initiatives from

around the world that assess modelling more completely. Frejd (2013) in an

extensive review of the impressive array of recent work compares frameworks

and atomistic with holistic approaches. The article recommends that an elaborated

judgement of the mathematical and realistic quality of the models produced is

required for classroom assessment to improve.

Modelling and Mathematisation Within Mathematics

Education

This section aims to clarify the two terms ‘mathematisation’ and ‘modelling’,
which readers of the PISA Mathematics Framework will observe have been used

with both the same and different meanings at various stages (see also Chaps. 2 and 4

of this volume). They also have various meanings within the broader field of

mathematics education. This section exposes and explains these different

meanings.
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Modelling

Within mathematics education, Kaiser and Sriraman (2006) point out how the term

‘modelling’ is applied in multiple ways with various epistemological backgrounds

to curriculum, teaching and classroom activities. At one end of the spectrum is

realistic or applied modelling, and PISA belongs here. This endeavour is dominated

by pragmatic goals of solving real-world problems and gaining understanding of the

real world. Applied modelling in education was given early prominence by Henry

Pollak’s survey lecture at ICME-3 in 1976 (Pollak 1979; Blum et al. 2007). Also

related to PISA’s philosophy through its literacy focus is modelling used for socio-

critical goals, with an emancipatory perspective achieved through the capacity to

better deal with and understand the world (see also Chap. 1 in this volume). Blum

and Niss (1991) point out some of the varying goals and emphases within this

tradition of applications and modelling.

At the other end of the spectrum lies what Kaiser and Sriraman (2006) call

educational modelling. Here modelling serves the educational goals of developing

mathematical theory and fostering the understanding of concepts by starting with

real-world situations. The Realistic Mathematics Education tradition at the

Freudenthal Institute is the prime example of this approach. Real-world situations

are carefully selected to become the central focus for the structuring of teaching and

learning a topic, and they provide for students what are now often called ‘models of’
and ‘models for’mathematical concepts that students can use in a process of guided

re-invention of mathematics (Gravemeijer and Stephan 2002). The real-world

phenomenon models the abstract construction, rather than vice versa as in applied

modelling. Classroom materials from the Freudenthal tradition provide many

examples of this ‘conceptual mathematisation’. For example, de Lange (1987)

explains how a situation of aquatic plants growing over a pond, simplified so that

the area is doubling every day, can be used to introduce logarithms to students. He

defines the base 2 logarithm of a number n to be the time taken for 1 square metre of

plants to grow to n square metres. From this definition, students can be guided to

discover that the logarithm of 16 is 4 (because the area goes successively from 1 to

2 to 4 to 8 to 16 over 4 days) and can generalise this property. They can also

discover the addition law for logarithms. For example, they can discover that log 5
+ log 7¼ log 35 because the plants grow from 1 square metre to 5 square metres in

log 5 days and in the next log 7 days they grow by another factor of 7. The other

properties of logarithms can be deduced in this way, using the real situation as a

model for the mathematical theory.

In summary, within the mathematics educational world, modelling is used in

multiple senses, which reflect different goals and purposes for using real-world

situations in teaching. At one end of the spectrum, which lies entirely within

schools, knowledge of the real-world situation is exploited to teach mathematics.

The real world ‘models’ the mathematical world. At the PISA end of the spectrum,

lying inside and outside schools, knowledge of abstract mathematics is exploited to

better understand the real world. The mathematical world models the real world.
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Within schools, the modelling goes in both directions. For nearly everyone, in life

beyond school, there is only one direction and that is reflected in the approach taken

in PISA. One of the arguments for educational modelling is that it better equips

students for applied modelling by contributing “significantly to both the meaning-

fulness and usability of mathematical ideas” (de Lange 1987, p. 43) and conse-

quently many educational projects include both educational and applied modelling

(e.g. Garfunkel’s work in the Consortium for Mathematics and Its Applications

COMAP).

Mathematisation in PISA and Elsewhere

The term ‘mathematisation’ has regularly been used in PISA Frameworks. In the

Frameworks of 2003, 2006 and 2009 (OECD 2004, 2006a, 2010) it is used to mean

the key process behind the Framework (which is called mathematical modelling in

the 2012 Framework, aligning it more closely with international usage). In the 2012

Framework mathematisation labels the fundamental mathematical capability of

moving in either direction between the real world and the mathematical world. In

previous PISA Frameworks this was labelled the modelling competency, some-

times with a broader meaning. The translation back to real-world terms is also

sometimes called de-mathematising (e.g. OECD 1999, p. 43). These changes have

arisen because PISA is a collaboration involving people from different scholarly

and educational traditions who use different natural and technical languages to

describe what they do. These terminology changes are also discussed by Niss in

Chap. 2 and in Chap. 4 by Turner, Blum and Niss in this volume. The present

chapter uses the PISA 2012 terminology.

Within the Freudenthal Realistic Mathematics Education tradition, the term

‘mathematisation’ has a central role, referring to a very broad process by which

the real world comes to be viewed through mathematical lenses. Mathematics is

created in this human endeavour, with the overarching purpose of explaining the

world and thereby giving humanity some measure of control over it. This is a

philosophical position on the nature and origin of mathematics, as well as a

principle guiding teaching. Mathematisation can happen ‘locally’, when a mathe-

matical model for solving a specific problem is created or ‘globally’ for developing
a mathematical theory (e.g. logarithms as above) or to tie theories together. It also

refers to the process of guided re-invention, when a carefully selected real-world

context is used in teaching.

Researchers working within this tradition also distinguish horizontal

mathematising which works between reality and mathematics, in both directions,

and vertical mathematising where working within the mathematical world provides

solutions to problems (locally) or globally develops theory (e.g. generalising log-

arithms and deducing theorems about them). In Figs. 3.2 and 3.3, horizontal

mathematisation in a local situation is depicted by the two horizontal arrows, and

vertical mathematisation is depicted by the one vertical arrow in the mathematical

3 The Real World and the Mathematical World 73

http://dx.doi.org/10.1007/978-3-319-10121-7_2
http://dx.doi.org/10.1007/978-3-319-10121-7_4


world. However, RME’s ‘global’ meaning of mathematisation goes considerably

beyond its use in any PISA Framework. In mathematisation, a real-world context

can be the inspiration for a mathematical theory or an application of it, or both.

Setting PISA Items in Real World Contexts

Real-world contexts have been at the heart of the mathematical modelling and

mathematical literacy discussed above. This section draws on the PISA experience

and also the research literature as the specific focus moves from mathematical

modelling and turns to some of the challenges that arise from the decision to set

(almost) all PISA items in real-world contexts.

The word ‘context’ is used in several ways in describing educational assessment.

Frequently ‘context’ refers to the conditions under which the student operates.

These range from very broad features (e.g. the type of school and facilities), through

specific aspects applying to all students (e.g. the purpose of the assessment, done by

groups or individuals, timed or not) to the very individual (e.g. this student had a

headache). Within PISA mathematics, however, ‘context’ (and alternatively ‘situ-
ation’) refers specifically to those aspects of the real world that are used in the item.

In mathematics education, this is sometimes called the ‘figurative context’, or the
‘objective figurative context’ contrasting with the ‘subjective figurative context’
which refers to the individual’s own personal interpretation of that real-world

situation. For M154 Pizzas the context includes all the aspects of purchasing pizzas

(e.g. that they are a round food, with the most delicious part only on the top), and

also more general aspects of shopping including the concept of value for money

(which is mathematised as a rate).

Roles of Context in the Solution Process

Knowledge of context can impinge on solutions in many ways. PISA’s approach
follows that of de Lange (1987). There is a graduation in the importance of the

context in solving PISA items. At the lowest level is a unit such as PM918 Charts

(see Fig. 3.4) which, as noted above, could have been set in many different contexts

with minimal change. This is not to say the context is fully irrelevant to the

students’ endeavours, even at this lowest level. For a student to feel that they

understand the question requires generic real-world knowledge such as why

bands are associated with CDs, recognising the abbreviated months of the year,

and appreciating that no one is actually kicking kangaroos. Even though knowledge

like this does not seem to contribute, students do not do well when they do not

understand the basic premises of an item. I recall a boy who told me he could not do

a word problem because he did not know what a ‘Georgina’ was—this girl’s name

written in the problem was irrelevant to the solution but it stopped him making
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progress. As discussed elsewhere, an attractive context may also encourage stu-

dents to try harder to solve the problem.

The next level of context use is common in PISA items, where specific features

of the context need to be considered in deriving the solution. Appropriate rounding

of numbers is frequent e.g. to answer with a whole number of discrete objects

(e.g. see PM977Q02 DVD rental Question 2 in Chap. 9 of this volume). The PISA

2006 item M302Q02 Car drive Question 2 (see Fig. 3.6) asked students to give the

time when Kelly braked to miss the cat. This requires making the real-world link

between braking and decreasing speed, and identifying this feature on the graph.

In a few PISA items, students have to bring into their solutions quite specific

real-world knowledge. For example, in the item M552 Rock concert from the field

trial for PISA 2003 (OECD 2006a, 2009a) students were given the dimensions of a

space for a rock concert, and asked to estimate the number of people it could hold

when full with all fans standing. This item required students to make their own

estimate of the amount of space that a person would take up in such a concert—

information that was not supplied in the item. This has been described as ‘second
order’ use of context (de Lange 1987). Another example of this higher demand of

involvement with the context, this time involving Interpret, is from the item M179

Robberies (OECD 2006a, 2009a) where students have to comment on an interpre-

tation of a truncated column graph, as shown in Fig. 3.7. Both avoiding the visual

trap arising from the truncated columns, and deciding whether the increase should

be regarded as large or not, depend on mathematical ability. In essence, this is the

Fig. 3.6 Stimulus for PISA 2006 unit M302 Car drive (OECD 2006b)
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ability to see the relevance of both the absolute change and the relative change.

Beyond this, the answer also depends on real-world judgements about the robberies

context (Almuna Salgado 2010). There would be very different considerations if the

graph referred to the number of students attending a school, or the number of parts

per million of a toxic chemical in drinking water. Lindenskov in Chap. 15 reports

some Danish students’ responses to this item.

Measuring students’ capacity to solve problems with second order use of context

is valuable because it is rare that all the data required is given clearly in a problem in

real life. In solving M552 Rock concert, PISA students needed to make an estimate

based on body size and personal experience. Outside of the test situation, a real life

concert organiser needs to recognise the risks of high crowd density and find

published guidelines on crowd safety. In both cases, the problem solver must

identify what further information is needed and then access the best available

source.

Achieving Authenticity of Context

The definition of mathematical literacy requires that the items used in PISA are

authentic: as far as possible they should present students with the challenge of using

Fig. 3.7 M179 Robberies (OECD 2006b)
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mathematics in the way in which it is likely to be used in life outside school.

Moreover, items should not just be authentic; they should appear to be authentic so
that students feel they are engaged in a sensible endeavour. PISA item writers and

selectors give this a high priority so this is one of the criteria on which all countries

rate the suitability of items. As is evident from the reports in Chaps. 13, 14 and 15 of

this volume, this focus on authentic items has been an important contribution of

PISA to mathematics teaching in some countries, which have used items as a model

for redesigning school tasks.

Achieving authenticity in items is a complex endeavour. Palm (2006) has

created a framework for the characteristics that make a school task authentic. The

event should be likely to happen and the question posed should concord with the

corresponding out-of-school situation. The purpose of finding a solution needs to be
as clear as it would be in the real situation. The language use (e.g. terminology,

sentence structure etc.) should match that used in the real situation. The information
and data given in the question should be of the type available in the real situation,

and the numbers should be realistic. Students should be able to use methods that are

available in the real-life setting, not just particular school content, the validity of

solutions should be judged against real-world criteria, and the circumstances of

performing the tasks (e.g. with calculators) should mimic the real situation. Because

PISA attends to these features, it is likely that the item style maximises the chances

that students will respond in a realistic way. Many genuine situations are used, such

as those in the unit PM923Q03 Sailing ships (see Chap. 1 of this volume). M154

Pizzas gains authenticity by giving the diameter of the pizzas, which I often see

alongside prices on the menus in pizzeria. Of course, authenticity is curtailed in an

international assessment. One small example is that prices in M154 Pizzas are in the

fictional currency of PISA’s fictional country Zedland because using realistic prices
in the many different currencies around the world would introduce a myriad of

variations in the computational difficulty of items. Chapter 7 in this volume gives

further examples of this issue.

Palm (2008) provides some evidence that students are indeed more likely to

attend to the real-world aspects of the situation when word problems give more

details of the situation and attend to the aspects above, although a well-designed

study by De Bock et al. (2003) showed that increasing the authenticity of the

context by using videos in fact reduced students’ success in choosing of sensible

models that reflected the real-world situation faithfully. They concluded students

may not have expected to process the video information deeply. This is one of many

instances where further research would be informative.

Palm’s framework has been developed to guide attempts to make school tasks

more authentic, and to investigate the well-known phenomenon of students not

using their real-world knowledge sensibly within school mathematics. There are

many studies that document this, from countries around the world, using word

problems such as the one following, where less than 20 % of student solutions were

judged realistic:
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Steve has bought 4 planks of 2.5 m each. How many planks of 1 m can he get out of these

planks? (Verschaffel et al. 1994, p. 276)

Verschaffel et al. (2009) examine this phenomenon from many points of view.

They show how unrealistic problems are a long standing feature of school, by

giving historical examples of unrealistic word problems parodied by Lewis Carroll

and Gustave Flaubert. From a socio-cultural point of view, students’ lack of sense

making is in part a reaction to this divorce of school from real life. However, it is

also a result of students’ superficial mathematisation of the real situations presented

even in simple word problems. The extensive series of studies reported in

Verschaffel et al. (2009) provide guidance on improving the authenticity of school

mathematics even when using simple word problems. Greater effects are likely to

come from incorporating realistic modelling into school mathematics, but this is a

larger challenge. Studies such as that by Stillman and Galbraith (1998) analyse the

ways in which students can be assisted to deal with the cognitive and metacognitive

aspects of such complex problems.

It is easy to criticise test items as not being authentic. A salutary experience

happened to me many years ago. Some children came home from school and saw

the quarterly telephone bill lying on the table. They were shocked to see that the bill

was for what seemed to them to be an enormous amount of money. Simplifying the

situation, I explained that we had to pay some money to have the telephone and then

a certain amount for each call. I intended to leave the discussion there, but the

10 year old wondered aloud how many phone calls the family must have made each

day and the children then speculated amongst themselves about this. Shortly after, I

wrote a problem for some experimental lessons with the same data and asked ‘how
many calls per day’. In his feedback, I was surprised to see that the teacher

commented especially on this one problem, lamenting the fact that mathematics

was full of unrealistic problems that did not interest students, and commented that

no child would ever want to know this. Just as a flower withers after it has been

picked, a real-world problem often does not stay alive when it is written down on

paper. If the techniques adopted by PISA item writers (see Chap. 7 in this volume)

are more successful in creating ‘face authenticity’ of items for students, they could

be used in classroom instruction to good effect.

Using Contexts for Motivation

In mathematics teaching, contexts are used for multiple reasons. They are essential

to teach students to apply what they learn, and as discussed earlier in this chapter

the conceptual mathematisation of a real problem can be used for students to

re-invent mathematics through educational modelling. Many teachers also believe

that contexts can create positive affect and hence stimulate students’ effort to learn
and solve problems. Students’ genuine interest in a real-world context such as a

sustainability issue or the direct relevance of a context to students’ lives
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(e.g. planning a school event) can be harnessed to increase motivation (see, for

example, Blum and Niss 1989). Additionally, attractive contexts are very often used

simply to enhance the image of mathematics, which some people think is dull, by

associating it with pleasurable things (Pierce and Stacey 2006).

Within PISA, contexts are used because doing so is inherent in the definition of

mathematical literacy, but there is also a hope that careful choice of contexts that

are attractive to 15-year-olds may increase motivation to work at the items. For

example, the mathematical core of the unit PM918 Charts could have been tested in

many different contexts, so the choice of music bands is likely to have been

influenced by the interests of the intended audience of 15-year-olds. Beyond the

use of attractive contexts to increase motivation, major issues with the use

of contexts are their authenticity (discussed above) and their equity, which is

discussed below.

PISA’s approach to ensuring the items are as attractive, as equitable and as

authentic as possible is three pronged (see also Chaps. 6 and 7 in this volume).

1. Expert opinion on authenticity, interest (and hence motivation) and the equity

factors (familiarity and relevance including to subgroups) is sought on each item

from every country. Countries also report any cultural concerns to ensure that

items do not touch on contexts that are considered inappropriate for use in

schools (e.g. gambling, contexts that are potentially distressing).

2. The items use many different contexts and are balanced across the four context

categories (Personal, Societal, Occupational, Scientific) to minimise the chance

of systematic bias arising from the particular contexts chosen.

3. Empirical data from the field trial are used to eliminate from the main survey

those items that are easier or harder than expected in some countries, or that

show a large gender difference because in these items factors of familiarity

or interest or relevance may be differentially affecting performance. One of

the reasons for the large item pool taken to the field trial is to allow for this

culling. The final findings of overall gender differences are made more robust

because the main survey includes only items that did not show large gender

differences.

Ensuring Equity

The construction of PISA items must ensure that the survey provides a valid

measure of mathematical literacy across countries and groups of students within

countries. This is a demanding condition. The use of contexts is essential to PISA,

yet it is known that individual students will bring differing background knowledge,

interpretations and experiences into the solving process. These differences will

affect the survey results when they systematically affect countries or subgroups of

interest. Because PISA is not concerned with assessment outcomes of individual

students but pools their results, it is not important that every item is fair to every
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student (that would be impossible) but it is important that, as a whole, every

reported group of items is fair to all the targeted groups of students.

Several broad aspects of problems in context are likely to affect an equitable

assessment of mathematical literacy: reading demands, the cultural and individual

familiarity of the contexts and students’ interest in the context. High reading

demand was a criticism of early PISA problems, and so attention has been given

to simplifying the reading in later surveys. In Chap. 7 of this volume, Tout and

Spithill describe some of the rules that are followed. Some strategies for reducing

the reading demand reduce authenticity. For example, it is somewhat artificial to

provide information question by question as it is required, rather than all together in

the stimulus material for a unit. Such competing demands have to be weighed

according to their likely effect on the assessment as a whole.

It is clear that the contexts used in PISA must be familiar to the students, at least

in the sense that a short text can provide enough information to have students feel

confident that they understand the question. In a well-designed study Chipman

et al. (1991) found a very small positive effect of context familiarity on word

problem performance, with unfamiliarity promoting omission. For tackling PM995

Revolving Door, having seen a revolving door probably gives a small advantage,

especially in the initial stages of making sense of the diagrams. However, not

everyone who uses a revolving door appreciates how the design blocks the flow

of air, and this fact may explain why field trial results did not show differential

performance between countries where these doors might be common or not (beyond

that predicted by their performance on the item set as a whole).

Critical to PISA is the potential effect of differential familiarity and interest of

problem context on performance of countries (addressed through the ratings by

each country) and on the subgroups of students for which results are reported such

as girls and boys. The research on this is not conclusive. One very frequently cited

small scale study is by Boaler (1994), who reported that girls were more likely than

boys to be distracted by elements of a context in which they were interested and

hence not perform so well. Low and Over (1993) found that girls were more likely

than boys to incorporate irrelevant information into solutions (regardless of their

interest in the context), although this finding may be an artefact of teaching since

the boys and girls were from different (single-sex) schools. On the other hand, the

large study by Chipman et al. (1991) found no effect on performance of using

problems stereotyped as interesting and familiar to the same or opposite gender or

designed to be gender neutral. Familiarity (separately measured) assisted both

genders. A recent Dutch study (Hickendorff 2013) of over 600 children found no

differential effect of using problems in context for either gender or language ability.

This study also found no difference in difficulty between ‘naked number’ items and

word problems, which the author attributed to the Realistic Mathematics Education

curriculum in the Netherlands having developed in students a good ability to model

real situations. For the purposes of PISA’s assessment of mathematical literacy, it is

not important whether students perform better or worse on problems in context than

on ‘naked number’ problems, which is what has concerned some researchers.

Instead what is important for PISA is that choice of context does not systematically
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affect the performance of identified groups of students. There are some studies such

as that by Cooper and Dunne (1998) that show social class can influence how

students work with problems in context, with students of lower social class more

likely to draw on their real-world knowledge than the mathematical information

specified in the problem statement. If this is a general effect that reflects a difference

in ability to use mathematics in context, then it is important that PISA measures

it. If it is an artefact of the artificial setting of the assessment, research is needed to

eliminate it. We do not know.

Knowledge of the findings of individual studies (rather than the body of evi-

dence) and an acute awareness of the great variety of interests and life experiences

around the world have stimulated some critiques of the use of context in PISA

problems and claims that a meaningful international assessment using problems in

context is impossible. de Lange (2007) reviews these and concludes

Authors also get quite excited about the role of contexts in large-scale assessments. There

are many good reasons to do so, as we still fail to understand quite often the actual role the

context plays in a certain problem. . . .. And I would like to add: we cannot say anything

firm about the relationship ‘context familiarity’ to ‘success rate’. (p. 1119)

If there are real differences in the mathematical literacy of the targeted groups,

then it is important that PISA identifies them. If the differences are due to particular

choices in item construction and do not reflect the mathematical literacy construct,

it is important that they are eliminated.

In summary, using real-world contexts in items is essential for PISA but raises

some important issues. There is potential to motivate students to work hard solving

the problems through using attractive contexts, but there is also potential for

introducing biases into the assessment. Expert opinion and statistical testing are

used by PISA to minimise this threat. Overall, item writers pay serious attention to

the authenticity of PISA items, to give as good a measure as possible of students’
proficiency to use mathematics beyond school.

Conclusion

The purpose of this chapter has been to examine the links between mathematics

and the real world, as they are evident in PISA’s concept of mathematical literacy,

and to present relevant research and conceptual frameworks. The use of real-world

contexts in the teaching and assessment of mathematics has a long history,

especially through the use of word problems, which are frequently lampooned

for lacking authenticity and relevance. The movement towards mathematical

modelling takes the real context seriously. Within mathematics teaching, mathe-

matical modelling goes well beyond the learning of applied mathematics, where

techniques for standard problems in areas of application (such as physics) are

taught and practised, aiming to teach students to develop their own mathematical

models, and to interpret results in real-world terms, as well as to solve the
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intra-mathematical problems involved. Mathematical literacy lies within this con-

cept of mathematical modelling. The chapter also discussed the way in which the

PISA teams have worked within the strong constraints of an international assess-

ment to develop survey items that use real-world contexts in a way that motivates

students to solve the items, and to make these items as equitable as possible taking

into account their varying familiarity, interest and relevance to groups of students.

The high authenticity of PISA items, especially considering the constraints of the

international assessment situation, have provided a model and resources for

authentic problem solving in schools that is relatively easy to implement, as well

as resources to inspire more extended problem solving.
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Chapter 4

Using Competencies to ExplainMathematical

Item Demand: A Work in Progress

Ross Turner, Werner Blum, and Mogens Niss

Abstract This chapter describes theoretical and practical issues associated with

the development and use of a rating scheme for the purpose of analysing mathe-

matical problems—specifically, to assess the extent to which solving those prob-

lems calls for the activation of a particular set of mathematical competencies. The

competencies targeted through the scheme are based on the mathematical compe-

tencies that have underpinned each of the PISA Mathematics Frameworks. The

scheme consists of operational definitions of the six competencies (labelled as

communication; devising strategies; mathematisation; representation; using sym-
bols, operations and formal language; and reasoning and argument), descriptions
of four levels of activation of each competency, and examples of the ratings given

to particular items together with commentary that explains how each proposed

rating is justified in relation to the competency definition and level descriptions.

The mathematical problems used so far to investigate the action of those compe-

tencies are questions developed for use in the PISA survey instruments from 2000

through to 2012. Ratings according to the scheme predict a large proportion of the

variation in difficulty across items, providing evidence that these competencies are

important elements of students’ problem solving capabilities. The appendix gives

definitions of each competence and the specification of each of four levels for each.
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Introduction

In Chap. 2 of this volume, Mogens Niss describes a set of competencies that have

been central to the definition of mathematical literacy within the PISA context, and

have been increasingly instrumental to the design of PISA mathematics items.

Indeed Niss’s work outlines what might be referred to as a ‘competence model’
of mathematical proficiency, in which proficiency can be seen as a function of the

extent to which an individual possesses and is able to mobilise certain mathematical

competencies. Investigative work described in the present chapter shows how these

competencies can help to understand the cognitive demand and predict the empir-

ical difficulty of PISA mathematics items. This in turn suggests that the competen-

cies form a very important part of the cognitive actions taking place when

individuals attempt to solve certain types of mathematical problems. That kind of

knowledge has also been of assistance to test item developers, by helping them in

targeting their development work more efficiently. It is also likely to be of rele-

vance to mathematics teachers as they design teaching and learning activities to

improve the mathematical proficiency of their students. This chapter describes the

development and key features of a scheme for evaluating PISA test items according

to the extent to which the processes of solving the problems demand activation of

the mathematical competencies (called the fundamental mathematical capabilities

in the PISA 2012 Framework). The development work is ongoing; nevertheless use

of the scheme has already borne fruit.

Background and Context

The processes and outcomes of survey instrument development, survey implemen-

tation, data generation, and data analysis associated with the PISA survey have

presented many opportunities for participating countries and others involved in

PISA to investigate a wide variety of educational and technical matters. The PISA

Mathematics Expert Group (subsequently referred to as the MEG) in October 2003

began an investigation of the PISA items that had been developed for use in the

2003 survey when mathematics first took its place as the major PISA test domain.

Initially, the focus of that investigation was on aspects of item and test validity that

had been raised a year previously as an issue requiring attention in the item

development process. Several questions were posed by the MEG members as part

of its process of test item development. To what extent did the test items under

development reflect the Framework? To what extent did the items give an indica-

tion of mathematical literacy? Would the PISAmeasure of mathematical literacy be

confirmed through other tests of mathematical literacy? Do PISA results predict

something about later levels of mathematical proficiency, for example adult math-

ematical literacy?
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The posing of those questions led to some concentrated work by different

members of the MEG to investigate aspects of the validity of the PISA mathematics

test instrument then under development. One direction in particular lay in examin-

ing factors related to the empirical difficulty of PISA mathematics items. In an

unpublished discussion paper developed on this topic, Blum and de Lange noted

that while certain factors that make mathematics items more or less difficult could

not be easily investigated in a large-scale study such as PISA (in particular, personal

factors such as “individual pre-knowledge or individual motivations/emotions”),

what could be investigated is

. . . on the one hand, to describe as precisely as possible certain external features of items as

well as the cognitive demands that items impose on the problem solver and, on the other

hand, to establish statistical correlations between characteristics of items and the empirical

item difficulty (in the whole population). This can be done by methods such as regression

analysis.

They also noted that

In order to describe cognitive demands of items one needs to have at one’s disposal

appropriate “competence models” (like the one we have developed for PISA mathematics).

Then one has to compile, for each item, ideal typical solution processes and to identify

those “competence elements” (knowledge & skills, images/“Vorstellungen”, abilities/com-

petencies) that have to be activated during these processes, including the cognitive level of

this activation. If one distinguishes for each competency (for instance: mathematical

argumentation) let’s say three levels (0— not necessary, 1—moderately necessary, 2—

substantially necessary) then for each item and each competency there is a certain number

(describing the cognitive level of activation of this competency for solving this item).

(Blum and de Lange, unpublished MEG meeting document, October 2003)

This discussion set the scene for an investigation of the relationship between the

competence model underpinning the PISA Mathematics Framework on one hand

(some set of competencies underpin mathematical literacy, and those competencies

need to be activated by individuals in order for them to solve mathematical

problems), and the empirical difficulty of PISA mathematics test items on the

other. The central question posed in designing the investigation was whether and

how the mathematical competencies needed to solve PISA problems were

connected to the empirical difficulty of the problems. Two kinds of connection

were envisaged. First, if solving one problem requires drawing on a wider range of

competencies than solving another problem, how would that difference be reflected

in the relative difficulty of the two problems? Second, to the extent that different

levels of activation of a particular competency could be identified (for example no

activation at all, activation to a small degree, activation to a large degree) would the

degree of activation of competencies required for a particular problem be related to

the difficulty of that problem?

Blum and de Lange argued that the choice of variables to use in such an

investigation should largely be a theoretical matter, and proposed as a starting

point considering a set of variables that flowed out of task analysis work done

previously in the German context in the COACTIV project (Neubrand et al. 2013),
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combining surface features of the items and several cognitive characteristics. The

set of variables proposed for consideration at that time are presented in Table 4.1.

The conception of the investigation planned at that time was to identify a set of

factors, or variables, which would be a mixture of surface features and cognitive

dimensions, and to rate items according to the applicable characteristics and the

demand for activation of the cognitive dimensions as part of the solution process,

resulting in a several-dimensional vector that would describe important aspects of

the cognitive demand of each item. The terminology of item demand was

established as a reference to the number and nature of aspects of the item that

were called in to play as part of the solution process and the level at which the

aspects were called in to play. There was a clear expectation that the process of

examining and assigning ratings to items would lead to further consideration of the

competence model being used, and an iterative process of refinement and develop-

ment would likely ensue. Indeed that is exactly what has occurred.

Features of an Item Analysis Scheme

Following that initial discussion among members of the MEG, a research team

comprising some members of the MEG continued to develop and refine a scheme

for evaluating mathematics problems. The main objective was to better understand

Table 4.1 Initial set of variables proposed for item difficulty research (Blum and de Lange 2003)

Variable Possible level definitions

Surface features of

items

1. Mathematical topic 1 Arithmetic, 2 algebra, 3 geometry,

4 probability and statistics

2. Overarching idea 1 Quantity, 2 change and relationships,

3 space and shape, 4 uncertainty

3. Item format type 1 Multiple choice, 2 closed constructed,

3 open constructed

4. Context type 0 zero, 1 intra-mathematical, 2 quantities,

3 close to reality, 4 authentic

Cognitive demand

characteristics of

items

5. Concept images

(“Grundvorstellungen”)

needed

0 none, 1 only one elementary, 2 several

elementary or one non-elementary, 3 more

6. Extent of solution

process

1 only one step, 2 two or three steps,

3 more

7. Argumentation compe-

tency needed

0 none, 1 moderate, 2 substantial

8. Modelling competency

needed

0 none, 1 moderate, 2 substantial

9. Communication com-

petency needed

0 none, 1 moderate, 2 substantial

10–14 . . . See remaining

PISA competencies

0 none, 1 moderate, 2 substantial
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the drivers of item difficulty. The scheme would consist of a set of variables,

operational definitions of those variables, and descriptions of levels within each

variable. The particular variables chosen for investigation arose from the PISA

competence model referred to earlier.

In the original proposal, several item characteristics had been suggested as

variables alongsidemathematical competencies. Specifically, as shown in Table 4.1,

inclusion of information about surface features of mathematics tasks such as the

question format, content category, context type, or mathematical topic area had

been proposed. However, the process of developing and selecting items for use in

the PISA survey instruments involved consciously balancing several of those

surface factors with respect to item difficulty as far as was possible (OECD 2003

p. 50). A design objective was to produce items within each category that had as

wide a range of difficulties as possible, in order to avoid the unintended possibility

that student performance on different items may be systematically affected by

factors unrelated to the measured construct. For example items allocated to the

four context categories (see Chap. 1, this volume) defined in the Framework need to

span the difficulty spectrum, but these categories are not seen as fundamental to the

mathematical literacy construct. Similarly, the item developers consciously aimed

to have as full a range of difficulties as possible for items presented in each of the

item format types (such as multiple-choice format, and open-ended items). For this

reason it was not expected that surface characteristics such as these would contrib-

ute useful information in the analysis of the relationship between item cognitive

demand and empirical item difficulty.

For the purpose of this investigation, the initially proposed variables were

reduced to a set of six variables based on a reconfiguration of the ‘Niss competen-

cies’ that had been a central element of the PISA Mathematics Framework since

PISA’s inception (for example, as originally articulated for PISA (OECD 1999) and

in the most recent Framework (OECD 2013b)). The origin of this set of competen-

cies, and their use and development over several PISA survey administrations, is

discussed in detail by Niss in Chap. 2. Using the six competencies and a procedure

for assigning ratings to mathematics test items according to the extent to which

solving each item calls on activation of each of the defined variables, has generated

sets of ratings that have been used as data to examine the relationship between

demand for activation of the competencies in solving PISA mathematics items, and

the empirical difficulty of those items as measured through the various PISA survey

administrations.

Building Competency Definitions and Level Descriptions

The eight mathematical competencies of the first PISA Framework (OECD 1999)

provided a starting point for building a scheme to analyse the competency-related

demands imposed by the solution processes needed for a range of mathematical

tasks. To build a scheme that would be as compact and manageable as possible
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within the context of an international survey, those eight competencies were

reconfigured as six in the initial PISA version of the scheme: reasoning and
argument (including mathematical thinking, reasoning, argumentation, and justifi-

cation); communication; modelling; representation; problem solving; and using
symbolic, formal and technical language and operations (abbreviated as ‘symbols

and formalism’). Thus the two Niss competencies (see Chap. 2) of mathematical
thinking and mathematical reasoning were combined into one, and the mathemat-
ical aids and tools competency was dropped as being inappropriate in the context of

PISA tasks, which at that time were all paper-based. Operational definitions of each

of the chosen competencies were devised, together with a description of four levels

of activation of each competency. The initial definitions and descriptions are

reproduced in Appendix 1.

However, the initial definitions and level descriptions have undergone signifi-

cant and progressive change over a period of years in which the scheme has been

put to use to analyse PISA mathematics tasks. For example, the competency that

was initially labelled modelling was first defined as “Mathematising, interpreting,

validating.” Subsequently, the label was changed to mathematising and the defini-

tion has become “Translating an extra-mathematical situation into a mathematical

model, interpreting outcomes from using a model in relation to the problem

situation, or validating the adequacy of the model in relation to the problem

situation.” The following section of this chapter describes the issues thrown up

for the investigators to consider as they applied the scheme, generated sets of item

ratings, and analysed those ratings.

Two sets of ratings and their statistical analysis have been reported publicly,

with both of them providing similar pictures of the strengths and weaknesses of the

scheme as it developed during the period in which those two phases of the research

were conducted.

The first results were presented at the PISA Research Conference in Kiel,

Germany, in 2009 and subsequently published in the Proceedings (Turner

et al. 2013). That analysis was based on two sets of ratings of the 48 mathematics

items that had been used in both the PISA 2003 and PISA 2006 survey instruments:

the first set of ratings provided by eight raters working independently; and the

second set being ratings of the same 48 items 2 years later by a different (but

overlapping) set of raters, again completing the task independently, and using a

scheme that had changed in only very minor ways. The items were rated according

to their demand for activation of the six aforementioned competencies, in accor-

dance with competency definitions and descriptions of four possible levels of

activation of each of the competencies. The ratings by individual raters for each

item were averaged to provide the final rating for each competency for the item.

Analysis of the data showed that a regression model that included the ratings for

just three of the six competencies (those labelled reasoning and argument, symbols
and formalism, and problem solving) could account for more than 70 % of the

variability of item difficulty across this set of 48 items (for details, see Turner

et al. 2013).
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A reasonable level of consistency was achieved among the different raters, but

there was enough evidence of idiosyncrasy on the part of individual raters and

inconsistency across the raters in relation to particular items to suggest that the

shared understanding of the meaning of the competencies and the standards defined

by the level descriptions of each competency could be further enhanced. In partic-

ular, discussion among the raters demonstrated that in some cases similar ratings

had been assigned for very different reasons, while in other cases assigned ratings

were widely divergent. The success of the regression model showed that when

ratings were averaged across a small group of raters, useful data were derived, but

considerable variability was observed across the raters indicating there was room

for further refinement of the scheme. The observation that three of the competencies

did not appear to contribute usefully to the prediction model provided some

direction as to which of the competency definitions could usefully be revised.

A third set of ratings was reported publicly in late 2011. The ratings had been

produced in 2011 by five members of the research team using a revised version of

the scheme, independently analysing a total of 196 test items that had been newly

developed for possible use in the 2012 PISA survey. The scheme as used in that

exercise was described by Turner (2012) and data were analysed as reported by

Turner and Adams (2012). From that analysis, a prediction model with reasonably

good properties that involved three of the competencies, devising strategies (which
was a re-named and differently defined version of the former problem solving
competency), communication, and symbols and formalism, was shown to account

for some 74 % of the variation in difficulty of those test items, an even higher

proportion than in the first published analysis.

The analysis showed that significant overlap existed between the newly defined

variables devising strategies, mathematising, and reasoning and argument, so only

one of these was included in the prediction model. The communication competency

now seemed to be contributing usefully to the prediction (whereas it had not in the

earlier analysis) and the symbols and formalism competency continued to contrib-

ute. Two of the competencies, representation and mathematisation, were found in

both sets of analysis not to contribute useful information to the prediction model

(in the case of mathematisation, information that was not already captured by other

competencies in light of the very high observed correlations). Nevertheless it was

evident from the two sets of analyses that adjusting the wording of the definitions,

and the descriptions of levels of operation of each competency, had led to a marked

change in the way the scheme had functioned, although the good prediction of

difficulty was maintained.

While the scheme had been further developed as these rating and analysis

exercises went on, the two phases of rating and analysis pointed to several features

of the definitions and descriptions as being potentially problematic. A more focused

review of the category definitions and level descriptions was instituted as a result.

The first issue was that there was not sufficient agreement on the boundaries

between related categories. In the original set of competency definitions

(in Appendix 1) the text clearly anticipates overlap, which is consistent with the

assumption of overlap in the KOM competency scheme described by Niss in
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Chap. 2 of this volume. For example, both the reasoning and argumentation and the
representation competency definitions include the rather confusing statement ‘can
be part of problem solving process’ without in any way attempting to clarify when

an item demands reasoning and argumentation, or representation, and when it

demands problem solving; nor did it show the relationship between these aspects of

cognitive demand, and any implications this relationship might have for the item

rating task, thereby leaving the door wide open for different interpretation by raters.

Similarly, the problem solving definition includes the phrase ‘and implementation

of the mathematical solution processes, largely within the mathematical world’ and
that wording opens the way to significant overlap with the symbols and formalism
competency, and perhaps others. A further example of lack of clarity in the

distinctions between competencies is in the original symbols and formalism defini-

tion, which includes the phrase ‘using particular forms of representation. . .’without
clarifying at all where this competency ends and where the representation compe-

tency begins. The formulations used in that set of definitions did not sufficiently

clarify the boundaries among the competencies.

The problem, though, continued to be apparent in the revised descriptions. For

example, there was no clear agreement on where the strategic thinking involved in

devising a suitable strategy for solving a problem and monitoring its implementa-

tion ended, and where processes of mathematical reasoning to solve the problem

commenced. It was also clear that the definition of mathematising did not support a
sufficiently consistent interpretation, so that in some cases one rater may have used

the mathematising competency while another may have used the symbols and
formalism competency to describe essentially the same aspect of mathematical

thinking and processing, namely setting up a formula or an algebraic expression

as a mathematical model of a given real-world situation. It became clear that further

work was needed to better delineate the meaning of each the competencies in order

to give them operational definitions that identified and were built on separate

aspects of each process.

A second problematic feature, closely related to the first, stemmed from the

observation that typically more than one of the competencies as they were defined

at that time was required to solve a problem. When the activation of several

competencies is necessary to solve a problem, as is typically the case in PISA

tasks, identifying which one competency is the most important, or which of the

competencies are more important than others, proved very difficult, and different

raters frequently made different judgements about this. Operation of a ‘halo effect’
might lead raters to rate an item at a similar level for each relevant competency, for

example for very demanding items to assign high ratings to all competencies just

because the item seems relatively difficult, or to assign all low ratings for a very

straightforward and easy item. This would lead to high correlation between the

ratings for each competency and this was likely a major cause of the outcomes of

the statistical analysis of the first sets of ratings that showed the best predictive

model required only three of the competencies. Whilst the instructions for the rating

exercise had recommended that the rater should identify which single competency

is the most central to the item, and treat other related competencies by separating
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out their unique contribution over and above that which is already covered by the

‘main’ competency, this proved a difficult judgement to make in practice. Indeed

some of those involved in the rating exercise questioned whether such a goal could

or should be achieved at all. This raised questions about whether six competencies

were required or whether perhaps fewer would be sufficient. For example, if it is

always or almost always true that reasoning and devising strategies occur together,
perhaps they should be combined into a single more general competency that

encompasses them both. This question reinforced the need to further explore

separation of the competency definitions. This experience also highlighted the

fact that the procedure to be adopted when making the ratings was an essential

part of the scheme.

A third feature that appeared to cause difficulties to users of the scheme was the

way in which the level of demand for each competency was described. Two aspects

of this issue were identified. The first followed from the observation that several of

the adjectives used to describe different levels of activation of each competency

were rather generic, relative terms that did not convey sufficient objective meaning

to different users of the scheme. For example, words like ‘simple’ and ‘complex’
did not support consistent interpretation and categorisation of problem solving

events, and words like ‘familiar’ have a curricular or experiential connotation that

is counter to the cognitively oriented definitions of the competency levels. Certainly

words such as these would tend to mean something very different for students at

different stages of their education. The decision was taken to revise the level

descriptions to minimise the incidence of unclear adjectives of this kind, and

where that proved difficult, to provide further examples in order to clarify the

intended meaning of those words. But a second and more fundamental question

requiring an answer was just what aspects of each competency change as the level

of activation changes. A further aspect of an overhaul of the level descriptions,

therefore, was to have a fresh look at what aspects of demand for each competency

would most effectively capture gradations in the degree of demand.

Since the first attempt to operationally define the variables and levels, the current

authors and their research collaborators have made ongoing attempts to revise the

definitions and descriptions in order to reduce the impact of the three issues

identified in the preceding paragraphs. Appendix 2 presents the current set of

competency definitions and level descriptions, which reflect the progress made to

date in the refinement of the scheme in an attempt to address the problems identified

through its early uses. The following sections describe how these issues were

confronted as the scheme was developed.

One further factor that causes some of the observed variability in the ratings

assigned by different raters to particular items is that for some items, different

methods of solution may call for the activation of the competencies in a different

combination or at different levels. It is recognised, therefore, that some degree of

variability in rating outcomes is inevitable. For PISA ratings, the advice was to rate

the solution which was judged by the rater to be most likely given by 15-year-old

students.
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Competency Definitions

For a scheme such as this to work well, there is clearly a need to devise operational

definitions of the six competencies that will maximise the distinctions between

competencies, and will therefore help users of the scheme to treat particular aspects

of problem demand more reliably and consistently. Ideally, when a specific cogni-

tive demand within a solution is identified, the associated competency will be

unambiguous and should support consistent ratings. Making these definition is an

especially challenging task when, as in PISA, end users will have different lan-

guages and education traditions.

In Table 4.2, the development of the operational definition of the communication
competency is traced as a first example of how the definitions have changed over

time. The set of definitions shows the development from the initial version (Appen-

dix 1) to the current version (Appendix 2), and all of the intervening versions. The

definitions have become progressively longer as more and more features have been

added in an attempt to delineate the competency. From the beginning, this compe-

tency included both a receptive and an expressive component. The expressive

component expanded early and remained unchanged after that. But the receptive

component has continued to change to clarify which elements of the question

statement should be taken into account as part of the competency, and towards its

main emphasis being on understanding and interpreting the situation presented.

This leads to additional descriptive material (in Appendix 2) supporting the 2013

definition that aims to put the focus of the receptive aspect of this competency on

understanding what the task asks the problem solver to achieve, and not on the

Table 4.2 Development of communication definition

Communication

2005a Decoding and interpreting stimulus, question, task; expressing conclusions

2005b Decoding and interpreting stimulus, question, task; explaining one’s work, expressing
conclusions

2006 Decoding and interpreting statements, questions and tasks; including making sense of

the information provided; presenting and explaining one’s work or reasoning

2007 Decoding and interpreting statements, questions and tasks; including imagining the

situation presented so as to make sense of the information provided; presenting and

explaining one’s work or reasoning

2011a Decoding and interpreting statements, questions, tasks and objects; imagining and

understanding the situation presented and making sense of the information provided;

presenting and explaining one’s mathematical work or reasoning

2011b Reading, decoding and interpreting statements, questions, tasks and objects; imagining

and understanding the situation presented and making sense of the information pro-

vided; presenting and explaining one’s mathematical work or reasoning

2013 Reading and interpreting statements, questions, instructions, tasks, images and objects;

imagining and understanding the situation presented and making sense of the infor-

mation provided including mathematical terms referred to; presenting and explaining

one’s mathematical work or reasoning
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interpretation of (for example) the mathematical content of any representations
present. Understanding the goal of the task is an essential precursor to the detailed

mathematical thinking and work needed to achieve that goal, with the expectation

that the subsequent thinking and work would form part of other competencies.

In Table 4.3, the development of the devising strategies competency is traced.

The label of the problem solving competency was changed to solving problems
mathematically and then to devising strategies for solving problems. This change
reflected a shift in emphasis from a focus on the processes and steps of a problem

solution to the processes of planning how to go about solving a problem, planning a

solution path, and monitoring the implementation of the strategy. The change was

intended to help users focus on the strategic thinking required, and therefore help

avoid some of the previous overlap particularly with the reasoning, the modelling,

and the symbols and formalism activities that flowed from a focus on implemen-

tation of the strategy implied by the original label.

The development of the mathematising competency definition is tracked in

Table 4.4. The term ‘modelling’ carries certain baggage with it so that in the

minds of many people it would include all aspects of the modelling cycle (including

the formulating, mathematical processing, interpreting and validating aspects). The

changes to the label and to the operational definition here were intended to narrow

the focus to the parts of the modelling cycle (see Chap. 3) that are about the direct

interface between the context and its mathematical expression, hence to only the

Table 4.3 Development of the devising strategies for solving problems definition

Devising strategies for solving problems (originally labelled ‘Problem solving’)

2005 The planning, or strategic controlling, and implementation of mathematical solution

processes, largely within the mathematical world

2006 Selecting or creating a mathematical strategy to solve problems arising from the task or

context; successfully implementing the strategy

2007 Selecting or devising, as well as implementing, a mathematical strategy to solve prob-

lems arising from the task or context

2013 Selecting or devising a mathematical strategy to solve a problem as well as monitoring

and controlling implementation of the strategy

Table 4.4 Development of the mathematising definition

Mathematising (originally labelled ‘modelling’)

2005 Mathematising, interpreting, validating

2006 Mathematising an extra-mathematical situation, or making use of a given or constructed

model by interpreting or validating it in relation to the context

2007 Mathematising an extra-mathematical situation (which includes structuring, idealising,

making assumptions, building a model), or making use of a given or constructed model

by interpreting or validating it in relation to the context

2013 Translating an extra-mathematical situation into a mathematical model, interpreting

outcomes from using a model in relation to the problem situation, or validating the

adequacy of the model in relation to the problem situation
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steps of transforming some feature of the problem context into a mathematical form

(the process Formulate of Chap. 1) or interpreting mathematical information in

relation to the elements of the context it reflects (the process Interpret of Chap. 1).
The critical defining feature identified in clarifying this competency lies in the

active connection of a real-world context with a mathematical expression of some

feature of the context. A benefit of this would be to separate the intra-mathematical

processing work, the manipulation of mathematical representations, and perhaps

the mathematical reasoning elements from the way the mathematisation compe-

tency should be used within this scheme.

Changes over time to the definition of the representation competency are

presented in Table 4.5. This competency is one that appears to have contributed

little to understanding the drivers of item difficulty, yet it is seen as an important

mathematical competency and so arguably should remain in the scheme. The

development of the definition shows a number of features and different attempts

to resolve potential overlap and confusion in its use. The original definition referred

to both modelling and problem solving without attempting to clarify the particular

aspects of those activities that should be considered as part of the representation
competency. The confusion with the mathematising variable is also evident in the

original level descriptions for representation where the relationship between the

representation and the feature being represented are prominent. The key elements

around which clarification has been sought are the need to include both devising

mathematical representations and using given representations, as well as a delin-

eation of which problem elements should be regarded as mathematical representa-

tions for the purposes of this scheme. In the explanatory text written to support

interpretation of the current version (presented in Appendix 2), the words decoding,

devising, and manipulating are included to guide the user to a clearer understanding

of what actions are relevant, in addition to the demand of linking different

Table 4.5 Development of the representation definition

Representation

2005 Concrete expression of an abstract idea, object or action; a transformation or mapping

from one form to another; can be part of modelling or problem solving

2006 Interpreting, translating between, and making use of given representations; selecting or

devising representations to solve problems or to present one’s work

2007 Interpreting, translating between, and making use of given representations; selecting or

devising representations to solve problems or to present one’s work. The representations
referred to are depictions of mathematical objects or relationships, which include equa-

tions, formulae, graphs, tables, diagrams, pictures, textual descriptions, concrete

materials

2011 Interpreting, translating between, and making use of given mathematical representations;

selecting or devising representations to capture the situation or to present one’s work.
The representations referred to are depictions of mathematical objects or relationships,

which include symbolic or verbal equations or formulae, graphs, tables, diagrams

2013 Decoding, translating between, and making use of given mathematical representations in

pursuit of a solution; selecting or devising representations to capture the situation or to

present one’s work
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representations to each other; and the list of included mathematical entities is

further clarified. In particular, the potential overlap between interpreting and

using mathematical representations on the one hand, and the interpretation involved

in the communication competency is addressed; as is the potential overlap between

the use of symbolic forms of representation as part of this competency or part of the

symbols and formalism competency.

In Table 4.6, the developmental stages of the using symbols, operations and
formal language competency definition are presented. This competency was orig-

inally labelled as using symbolic, formal and technical language and operations
following the full name used in the PISA Framework, but has generally been

referred to as the symbols and formalism competency. It has consistently come

out as a strong predictor of item difficulty, and is clearly a key element of a

competency-based scheme since mostly at least some formal or technical opera-

tions have to be carried out in conjunction with other activities in order to solve a

mathematical problem. The potential overlap with the mathematising competency

was addressed through the text that locates the Formulate process (including with

symbolic expressions) in mathematising, and the manipulation of symbolic expres-

sions (within the Employ process of Chap. 1) in the symbols and formalism
competency. The potential overlap with the representation competency was dealt

with by removing the reference to representations from the original definition and

shifting the focus of this competency to applying procedures, rules and conventions.

Finally, the development of the reasoning and argument definition is recorded in
Table 4.7. This definition is probably the one that has changed least, other than to

give more prominence to the inferential thinking needed to form or evaluate

conclusions and arguments. It remains to be seen to what extent the current

definition will stand up to use in the context of revisions to the other competencies

when the scheme is next tested. It seems likely that further development may be

warranted given that this competency has not consistently contributed to the

prediction models so far used.

Table 4.6 Development of the using symbol, operations and formal language definition

Using symbols, operations and formal language

2005 Activating and using particular forms of representation governed by special rules

(e.g. mathematical conventions)

2006 Understanding, manipulating, and making use of symbolic expressions (including using

arithmetic expressions and carrying out computations), governed by mathematical con-

ventions and rules; understanding and utilising constructs based on definitions, rules and

formal systems

2011 Understanding and implementing mathematical procedures and language (including

symbolic expressions and arithmetic operations), governed by mathematical conventions

and rules; understanding and utilising constructs based on definitions, rules and formal

systems

2013 Understanding and implementing mathematical procedures and language (including

symbolic expressions, arithmetical and algebraic operations), using the mathematical

conventions and rules that govern them; activating and using knowledge of definitions,

results, rules and formal systems
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Level Descriptions

How can different levels of demand for activation of a mathematical competency be

identified? This is the second major element of the item analysis scheme, after the

general competency definitions. For the scheme to work well it is essential to have a

set of level descriptions based on a well-founded and useable set of factors that

capture significant aspects of the cognitive requirements of the competencies. They

would be factors that do not occur, or that apply at only a low level, with problems

for which the competency is less relevant, and that are needed at demonstrably

higher levels of intensity in problems where it is more relevant.

In this section, the features used to define the different levels of demand for the

six competencies are described. In the following section, Applications of the

Scheme, some examples are provided to exemplify application of the scheme to a

selection of PISA mathematics problems.

For the communication competency, the level of demand for the receptive aspect

is described in terms of the complexity of material to be interpreted in understand-

ing the task, the need to link multiple information sources or to move backwards

and forwards between information elements (referred to as ‘cycling’). The level of
demand for the constructive aspect focuses on the nature and complexity of the

parts of the solution process and the explanations or justifications of the result that

have to be actively communicated. As with each of the competencies, the descrip-

tions of four levels aim at identifying steps of progression between none or very

little of this competency being required, and a substantial requirement for its

presence.

In the May 2013 level descriptions (see Appendix 2), the lowest level (level 0)

involves understanding short sentences or phrases that give immediate access to the

context, where all information is relevant to the task (and no irrelevant information

needs to be sifted out) and where the information given is well matched to the task

demand. The problem is presented in direct terms that are easily understood and

interpreted, without the need for re-reading the text several times in order to

understand it, and without the need to forge essential connections between different

information elements in the problem statement. At this lowest level the constructive

Table 4.7 Development of the reasoning and argument definition

Reasoning and argument

2005 Logically rooted thought processes that explore and connect problem elements to work

towards a conclusion, and activities related to justifying, and explaining conclusions; can

be part of problem solving process

2007 Logically rooted thought processes that explore and link problem elements so as to make

inferences from them, or to check a justification that is given or provide a justification of

statements

2013 Drawing inferences by using logically rooted thought processes that explore and connect

problem elements to form, scrutinise or justify arguments and conclusions
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aspect would involve only writing a word, a short phrase or a single number as the

problem solution.

The scheme’s highest level (level 3) involves understanding more complex text,

for example where different information elements need to be understood and linked

together in order to proceed, where some of the information may be irrelevant so

that a selection and identification process is required, and where logical relation-

ships, for example in the wording of the problem, are more involved. For the

constructive aspect, an extended presentation of the solution process may be

required, or a coherent explanation or justification of the solution proposed.

The descriptions of levels for the devising strategies competency have gone

through changes that reflect the substantively changed operational definition to

focus on strategic thinking aspect of problem solving and not on problem solving in

a more complete sense. Specifically, the wording in the original level descriptions

that implies carrying out the strategy devised has been changed. The main challenge

here, however, is to identify a plausible gradation of demands. The main variable

used to build this gradation is the complexity of the strategy. This has been

quantified in terms of the number of identifiably separate stages in the solution

process, and complexity is further heightened when those stages themselves involve

multiple steps. As part of that complexity, the metacognitive monitoring process

needed to keep the solution process on track has also been identified as a contributor

to increased demand.

The lowest described level (level 0) for this competency is an example where

virtually none of the competency is required. The strategy needed is either stated or

obvious from the wording of the problem. The description of level 3 for devising
strategies refers to a multi-stage strategy that may involve multiple sub-goals. As

well as the heightened need for metacognitive control processes at this level, a third

indicator of increased demand is in the possible need to evaluate or compare

different strategies. These aspects of the description focus on the possibility of a

high level of reflection on the problem solving process.

The mathematising variable has two separate elements, so the descriptions of

graded levels need to pick up both the formulating aspect (transforming features

of the context into mathematical form) and the interpreting or validating aspect

(discussing the contextual meaning of calculated or given mathematical informa-

tion). Heightened demand for the formulating aspect is expressed mainly in terms

of the degree of guidance provided in the problem statement as to what are the

required elements of a mathematical model (assumptions, variables, relationships

and constraints). Gradations in the interpreting or validating aspect are arguably

less clearly delineated, but the gradation is expressed in terms of the directness of

the connection between the mathematical information and the related context, or

the degree of creativity required to make that connection. A further element of

demand lies in the possible need to evaluate or compare different models, once

again implying the need for reflection at higher levels of activation of this

competency.

Level 0 for this competency again involves no mathematisation (the situation is

purely intra-mathematical, so no translation is required, or the relationship between
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the mathematical expression of the context and the context itself is not needed to

solve the problem). The highest level described envisages the construction of a

model where little guidance is given regarding the assumptions, variables, relation-

ships and constraints needed, which must therefore be defined by the problem

solver; or validation or evaluation of models in relation to the situation is needed;

or there is a need to link or compare different models.

The graded levels of the representation competency are based on the complexity

of information and interpretation needed in relation to the mathematical represen-

tations to be used, the number of different representations that need to be employed

and related to each other, and whether there is a need to construct or create an

appropriate representation (rather than using given representations) to support the

problem solution process.

The lowest described level (level 0) for this competency involves either no use of

representations, or very minimal use such as extracting a single numerical value

from a familiar table or chart or from text. The level 3 description refers to the need

to use multiple representations of complex entities, to compare or evaluate repre-

sentations (requiring a degree of reflection that can be a feature of higher level

demand in a number of competencies), or to create or devise a representation that

captures a mathematical entity.

For the using symbols, operations and formal language competency, the

described levels are based on the degree of mathematical complexity and sophis-

tication of the mathematical content and procedural knowledge required. This

competency is clearly subject very much to the educational level of the problem

solvers being considered, and the descriptions of levels of activation in the PISA

context need to take into account the wide range of levels observed among 15-year-

olds in participating countries. Any adaptation of the scheme needs to take the

target age range into account for all competencies, but particularly for this one.

The level 0 description is expressed in terms of elementary mathematical facts

and definitions, and short arithmetic calculations involving only easily tractable

numbers (for example, a requirement to add a small number of one- or two-digit

whole numbers) and the use of mathematical rules and procedures that are likely to

be very familiar to most 15-year-olds such as the formula for the area of a rectangle.

The level 3 description refers to using multi-step formal mathematical procedures

that combine a variety of rules, facts, definitions and techniques; and using complex

relationships involving variables.

The descriptions of levels of activation of the reasoning and argument compe-

tency have changed substantially since the initial set of descriptions (in Appendix 1)

to reflect the focus of the definition on forming inferences, rather than on general

thinking and reasoning steps that might come in to any part of a problem solving

process. The levels are described in terms of the nature, number or complexity of

elements that need to be drawn together to formulate inferences, and the length and

complexity of the chains of inferential reasoning needed.

The description of level 0 envisages inferences of only the most direct kind from

given information that lead straight to the required conclusions. The level 3 descrip-

tion requires creating or using linked chains of inferences; checking or justifying
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inferences; or synthesising and evaluating conclusions and inferences in such a way

that draws on and combines multiple elements of complex information. As with

other higher-level descriptions this one implies a level of reflection typical of the

more demanding levels of activation of a competency.

Application of the Scheme

In this section, a number of PISA problems are presented, an ideal-typical solution

process is proposed for each, and a set of ratings for each competency is proposed

along with explanation as to why those ratings have been chosen.

M413Q01 Exchange Rate Question 1

The first problem, M413Q01 Exchange rate, is shown in Fig. 4.1. This problem

originated in the PISA 2003 survey. The problem scenario involves a student

preparing to go on exchange from her home country to another country, and

needing to change money from one currency to the other. Reading the problem,

the two countries are mentioned, together with the names and abbreviations of the

two currencies; a conversion rate is given in the form of an equation showing what

one unit of the home currency becomes in the other currency; and the question asks

how much money the student would get in exchange for 3,000 units of the home

currency. To solve the problem, the given model (the exchange rate equation) needs

to be used along with some proportional reasoning to scale the 3,000 units up by the

amount of the rate. The calculation needed is to multiply 3,000 by 4.2, giving

12,600 ZAR as the required answer. How does the item analysis scheme apply to

this problem?

Students need to read and understand the text (e.g. recognising that ‘dollar’ and
‘rand’ are the names of currencies and that SGD and ZAR are their abbreviations,

and understanding the link to the equation) and to decide what information is

relevant and what is not relevant (e.g. the time period of 3 months is irrelevant to

a conversion at the current exchange rate) in order to understand exactly what is

required (conversion of 3,000 SGD to ZAR). The material is presented in the order

in which it will be used, the text is reasonably straight-forward but with the need to

identify and link relevant information, and the solution required is an amount of

money. All these features reflect the level 1 description of the communication
competency. The strategy needed to solve the problem involves using the given

equation to scale up the conversion from 1 unit to 3,000 units, which is a straight-

forward single-stage strategy that fits the level 1 description of the devising
strategies competency. To implement that strategy, two main competencies are

called in to play. Firstly mathematising is needed to transform the given equation

into a proportional model enabling the required calculation, and setting up the
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proportional model requires reference to the obvious contextual elements (the two

currencies and the money amounts), which fits the level 2 description. Then using
symbols, operations and formal language is required in order to implement the

required calculation (multiplication of a decimal fraction), which fits the level 1

description. The conversion rate equation is a representation of a mathematical

relationship, but this aspect of the problem has been taken into account in relation to

the other competencies, hence representation should be rated at level 0, as should

the reasoning and argument competency, since the general reasoning needed has

been accounted for through the other competencies, and no additional inferences

are required.

PM942 Climbing Mount Fuji

Three items from the unit PM942 Climbing Mount Fuji (OECD 2013a) are

presented in Figs. 4.2, 4.3, 4.4, and 4.5. This unit was developed for the PISA

2012 survey and used in the main survey. For each problem, a solution process is

outlined, and proposed competency ratings are discussed.

The first question, shown in Fig. 4.2, requires calculation of an average number

of climbers per day for a given period. To calculate this, the number of climbers is

needed (this is given directly for the specified period) along with the number of days

(which can be calculated from the dates given). So a strategy would be to find the

total number of days, and combine this with the total number of people to calculate

(or estimate approximately) the average people/day rate.

Exchange rate

Mei-Ling from Singapore was preparing to go to South Africa for 3 months as an 
exchange student. She needed to change some Singapore dollars (SGD) into 
African rand (ZAR).

Question 1

Mei-Ling found out that the exchange rate between Singapore dollars and South 
African rand was
1 SGD = 4.2 ZAR

Mei-Ling changed 3000 Singapore dollars into South African rand at this exchange 
rate.
How much money in South African rand did Mei-Ling get?

Fig. 4.1 M413Q01 Exchange rate Question 1 (OECD 2006)
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From 1 July to 27 August we have all of July and 27 days of August. There are

31 July days (this is real-world knowledge that must be brought to the problem), and

the 27 August days (inferred directly from information given). The total (from an

arithmetic calculation adding two two-digit numbers) is 58.

Climbing mount fuji

Mount Fuji is a famous dormant volcano in Japan.

Question 1

Mount Fuji is only open to the public for climbing from 1 July to 27 August each 
year. About 200 000 people climb Mount Fuji during this time.
On average, about how many people climb Mount Fuji each day?

 A    340
 B    710
 C    3400
 D    7100
 E    7400

Fig 4.2 PM942Q01 Climbing Mount Fuji Question 1 (OECD 2013a)

Climbing Mount Fuji

Question 2

The Gotemba walking trail up Mount Fuji is about 9 kilometres (km) long.
Walkers need to return from the 18 km walk by 8 pm.
Toshi estimates that he can walk up the mountain at 1.5 kilometres per hour on 
average, and down at twice that speed. These speeds take into account meal breaks 
and rest times.
Using Toshi’s estimated speeds, what is the latest time he can begin his walk so that 
he can return by 8 pm?

Fig. 4.3 PM942Q02 Climbing Mount Fuji Question 2 (OECD 2013a)
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A model is needed to express the people per day rate, which can be established

by applying a fairly obvious definition to express the rate as the number of people

divided by the number of days (for the same period). This is a simple model with

constraints and variables given directly in the question. The model can be written as

average rate ¼ number of people/number of days.

For the rate calculation, one suitable approach might be to calculate 200,000/60

(¼3,333), and 200,000/50 (¼4,000), and see if only one of the options lies between

them. Three thousand four hundred is the only option that lies between these, so

response C should be selected.

For communication, contextual information must be read and some can safely be

ignored (for example, Mount Fuji’s name, its dormancy, and its location). The task

objective is expressed simply and clearly, with the need only to recognise the two

Fig. 4.4 Calculation process for PM942Q02 Climbing Mount Fuji, Question 2

Climbing Mount Fuji

Question 3

Toshi wore a pedometer to count his steps on his walk along the Gotemba trail.
His pedometer showed that he walked 22 500 steps on the way up.
Estimate Toshi’s average step length for his walk up the 9 km Gotemba trail. Give your 
answer in centimetres (cm).

Answer   _______________  cm

Fig. 4.5 PM942Q03 Climbing Mount Fuji Question 3 (OECD 2013a)

104 R. Turner et al.



critical bits of information (how long it is open, and the number of visitors in that

time), and to form an ‘average’. No expressive communication is required. The

communication level required is more than zero because of the extraneous infor-

mation, and the two elements to be combined, but definitely not higher—no cycling

through the material is needed because of the simple and straight-forward presen-

tation of information. Level 1 is proposed.

A strategy is needed, involving two distinct but straightforward steps: find the

number of days, and combine that with the number of people to form a rate (and

then compare these with the given response options). The strategy is not explicitly

stated in the text, but not far from obvious; nevertheless it does involve two steps,

and hence fits the level 2 description.

A model must be constructed for the rate, but the variables to use seem obvious

(people, days), indeed for some students this would constitute a definition; and it

also seems a small assumption to suppose that the average number of people per day

can reasonably be estimated from the stated period in which Mount Fuji is open to

the public. The question can safely be interpreted to mean ‘average people per day
for the open period’ rather than to consider applying the average across the rest of

the year when no people would be visiting. This fits level 1 for mathematising.
Reading numbers directly from the text is similar to reading isolated values from

a graph or table. No transformation into any other specific form is needed, other

than to do what is required for the modelling step and for the calculation. The

level 0 description for representation fits well.

For the using symbols, operations and formal language competency, some

level 0 calculation is needed (adding two 2-digit numbers), along with some

external knowledge (the number of days in July), and the division calculation

might lead to decimal results. On balance, level 1 seems to apply.

The reasoning and argument competency is proposed at level 0, since the

general reasoning steps involved in the assumption about the period for which the

calculation is needed are taken as part of mathematising, and other general reason-

ing steps are taken as part of the strategic thinking and the calculations. No

additional reasoning steps are involved.

PM942Q02 Climbing Mount Fuji, Question 2

The second question from this unit, shown in Fig. 4.3, involves planning a climb up

the walking trail and back to ensure returning by a specified time. The walk

comprises two components each 9 km in length, but they are traversed at different

speeds hence taking different times. A constraint given in the stimulus is the 8 pm

‘latest return time’.
Information is also given about the speed for the two segments of the walk, one

being double the other, and that information should be useful for calculating the

time it will take, and counting back by that amount from the 8 pm limit. This

strategy should be effective. The phrase ‘latest time’ can be interpreted to mean the

time without any rests (other than meal breaks and rest times mentioned in the
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question as already included in the given average speeds) and with no stopping at

the top.

A small sketch such as that shown in Fig. 4.4 helps to represent the given

information and to transform the context information (distance at specified speed)

to a mathematical form that will provide a way to calculate the time taken

(S ¼ D/T). It is helpful to rearrange that formula to D/S ¼ T, in order to calculate

the time taken in each of the two components of the walk. This is done for each

component, and the two results combined give a total time of 9 h. Finally, the total

9 h needs to be ‘subtracted’ from the end time. Nine hours before 8:00 pm is

11:00 am, giving a ‘latest departure’ of 11:00 am.

Some cycling among text elements is needed to understand the task—it contains

multiple elements that need to be linked (the distances given, the time constraint,

the speed information, and the objective of the question). No expressive demand is

made beyond presenting a simple numeric answer. Level 2 seems appropriate for

communication.
For devising a strategy, the solution strategy is somewhat involved, since it has

two separate stages: using the given distance and speed data for each segment of the

walk to calculate the total walking time, then putting this with the timing constraint

to calculate a start time. This is more than the level one description, fits the level 2

description quite well, but probably does not yet amount to the complex multi-stage

strategy envisaged for level 3.

Two distinct modelling steps occur here. The first is in formulating the distance/

speed/time relationship mathematically (here the constraints are clear, and the

variables are spelled out fairly directly); and the second is in translating the

calculated distance into a ‘latest departure time’, which uses reference to the latest

finish time and an assumption like ‘no more breaks or rests’ in order to implement

the ‘latest time’ condition. Having both of these modelling steps leads to level 2 for

mathematising, but each of them separately might constitute only level 1.

Even though the solution process described includes construction of a simple

representation of the given information to help understand and think through the

relationships, this was not required and therefore should not be counted as part of

the item demand. In this case, level 0 is appropriate for representation.
For using symbols, operations and formal language level 2 is proposed. The

solution process outlined involved writing down, then manipulating the formula

connecting D, S, T, and substituting into it (twice); then performing a reasonably

simple time subtraction. ‘Employ multiple rules, definitions, etc. (including

repeated application of lower level calculation)’ seems to fit better than ‘apply
multi-step formal procedures combining a variety of rules, facts, etc.’ Each of these
by itself might fit level 1, but the requirement for the repeated substitution and the

time calculation takes it beyond level 1.

General reasoning steps are needed to formulate a strategy, establish the models

needed, and to carry out the calculations required, but no further inferences are

needed, so the reasoning and argument competency is proposed as level 0.
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PM942Q03 Climbing Mount Fuji, Question 3

In the third question of this set, data from a pedometer are given showing the total

number of steps taken by a walker, and the question asks for an estimate of that

walker’s average step length. Given that it takes 22,500 steps to walk the total

distance, the average step length will be the distance divided by 22,500. The

calculation can be completed by converting 9 km into centimetres (it is 900,000)

and dividing this by 22,500, the number of steps, giving an average step length of

40 cm.

The communication competency is proposed as level 1 because of the need to

link the separate elements in the question statement. The receptive aspect involves

recognising one sentence as providing contextual information that is not relevant to

answering the question, and bringing together information in three other sentences

in order to know what is needed, including the instruction about units. The

constructive aspect involves presenting a simple numerical result.

The strategy to calculate an average step-length is a single stage strategy to

combine the given elements (divide the total distance by the number of steps). This

strategy is not explicitly given, but it seems straight forward. The devising strate-
gies competency is therefore proposed as level 1.

The situation model described earlier (distance walked ¼ total distance covered

by 22,500 steps) leads directly to the required mathematical model (average step

length¼ distance divided by number of steps), which uses only given variables, and

the required relationship seems obvious. This leads to level 1 for mathematising.
No additional representations are given or required other than extraction of data

for the model and for the calculation, so level 0 is appropriate.

Level 2 is proposed for using symbols, operations and formal language, which
involves a division with large numbers, either after a conversion of units or

followed by such a conversion to ensure that the required units are obtained (this

step involves drawing on relevant knowledge), and this constitutes ‘using multiple

rules, definitions, results . . . together’ so level 2 rather than level 1 (as each of these
calculation steps would be by itself).

A small inference is made using reasoning about one aspect of the problem by

using two mathematical entities (count, distance in the required units) to calculate

the value required (length per step). This fits with the level 1 description for

reasoning and argument. Other general reasoning steps (particularly to support

the unit conversion) have been taken into account in the previous competency.

Future Steps

The scheme as currently described is presented in Appendix 2. It includes intro-

ductory text explaining for each variable some broad features, specific advice about

what is and what is not included in the scope of the variable, a summary of the
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features that drive change across the levels of the variable, a variable definition, and

level descriptions.

For these revisions to be tested, a set of annotated items now must be developed

to exemplify each competency definition and the assignment of levels for each

competency, to guide future uses of the scheme. Some examples have been

provided in the previous section of this chapter. While it might be expected that

any future use of the scheme would generate results at least as good as those

produced in the applications of the previous versions, that expectation must now

be tested empirically. Results of that analysis should inform the research team as to

the directions needed to further develop and improve the scheme and its documen-

tation. A description of how the scheme is most effectively applied is also needed,

since it seems likely that different application methods can lead to different rating

outcomes.

A number of wider developments should also be considered. Some action has

been taken by independent research teams to apply the scheme, and the results of

such independent use will certainly be informative in planning further documenta-

tion and development of the scheme. Wider use of the scheme would be very

beneficial.

Further research into the drivers of demand within each of the competencies

would also be highly beneficial. For example, the elements that make up the

descriptions of the four levels of activation of each competency may not yet

focus on the most important variables underpinning gradations in competency

demand.

It is an open question as to whether the scheme could be used to analyse the

mathematical demand of items other than PISA-like items, and items designed for

use by students at a different age. The kinds of modification needed for other

applications such as these warrants investigation.

Of course other potential uses of the scheme might be the subject of future

research. It has already been shown that the use of the scheme can help to improve

the targeting of test development procedures, and can improve the efficiency and

effectiveness of test development processes (see Chap. 7 by Tout and Spithill in this

volume). A similar kind of use could be made by test developers and by teachers in

devising assessment items, to check that the items meet criteria related to difficulty

and that they elicit mathematical behaviours related to each of the competencies.

One potential importance of the results described in this chapter and in other

reports of the analysis of ratings generated from the scheme as it has developed, lies

in the implications for mathematics classroom teaching and learning practice. It

seems clear that the six competencies described here are very strongly related to the

cognitive action taking place as students attempt to solve mathematics problems. It

seems obvious, particularly if this finding is reproduced by other researchers, that

these competencies should legitimately be taking a prominent place in mathematics

teaching and learning, and efforts should be directed to the conscious and visible

development of these mathematical competencies among our students. Emphasis is

already given to teaching the elements of the symbols and formalism competency

and perhaps also the representation competency. Teaching and practising
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mathematisation requires extensive use of real-world problems, which happens in

some but not all mathematics classrooms. Opportunities for practising the commu-
nication competency, as well as devising strategies and reasoning and argument
are perhaps less commonly observed. An important challenge for the future will be

to ensure that teachers teach and provide practice opportunities for each of these

competencies, as a way of building levels of mathematical literacy in our students.

Appendix 1: Initial Competency Definitions and Level

Descriptions (April 2005)

Reasoning and Argumentation: Logically rooted thought processes that explore and connect

problem elements to work towards a conclusion, and activities related to justifying, and

explaining conclusions; can be part of problem solving process

0: Understand direct instructions and take the actions implied

1: Employ a brief mental dialogue to process information, for example to link separate

components present in the problem, or to use straightforward reasoning within one aspect of the

problem

2: Employ an extended mental dialogue (for example to connect several variables) to follow or

create sequential arguments; interpret and reason from different information sources

3: Evaluate, use or create chains of reasoning to support conclusions or to make generalisa-

tions, drawing on and combining multiple elements of information in a sustained and directed

way

Communication: Decoding and interpreting stimulus, question, task; expressing conclusions

0: Understand short sentences or phrases containing single familiar ideas that give immediate

access to the context, where it is clear what information is relevant, and where the order of

information matches the required steps of thought

1: Identify and extract relevant information, and use links or connections within the text, that

are needed to understand the context, or cycle between the text and other related representation/

s; some reordering of ideas may be required

2: Use repeated cycling to understand instructions and decode the elements of the context;

interpret conditional statements or instructions containing diverse elements; actively

communicate a constructed explanation

3: Create an economical, clear, coherent and complete presentation of words selected to

explain or describe a solution, process or argument; interpret complex logical relations

involving multiple ideas and connections

Modelling: Mathematising, interpreting, validating

0: Either the situation is purely intra-mathematical, or the relationship between the real

situation and the model is not needed in solving the problem

1: Interpret and infer directly from a given model; translate directly from a situation into

mathematics (for example, structure and conceptualise the situation in a relevant way, identify

and select relevant variables)

2: Modify or use a given model to satisfy changed conditions; or choose a familiar model

within limited and clearly articulated constraints; or create a model where the required

variables, relationships and constraints are explicit and clear

3: Create a model in a situation where the assumptions, variables, relationships and constraints

are to be identified or defined, and check that the model satisfies the requirements of the task;

evaluate or compare models

(continued)
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Problem solving: The planning, or strategic controlling, and implementation of mathematical

solution processes, largely within the mathematical world

0: Direct and obvious actions are required, with no strategic planning needed (that is, the

strategy needed is stated or obvious)

1: Identify or select an appropriate strategy by selecting and combining the given relevant

information to reach a conclusion

2: Construct or invent a strategy to transform given information to reach a conclusion; identify

relevant information and transform it appropriately

3: Create an elaborated strategy to find an exhaustive solution or a generalised conclusion

Representation: Concrete expression of an abstract idea, object or action; a transformation or

mapping from one form to another; can be part of modelling or PS

0: Handle direct information, for example translating directly from text to numbers, where

minimal interpretation is required

1: Make direct use of one standard or familiar representation (equation, graph, table, diagram)

linking the situation and its representation

2: Understand and interpret or manipulate a representation; or switch between and use two

different representations

3: Understand and use an unfamiliar representation that requires substantial decoding and

interpretation, or where the mental imagery required goes substantially beyond what is stated

Symbols and Formalism: Activating and using particular forms of representation governed by

special rules (e.g. mathematical conventions)

0: No mathematical rules or symbolic expressions need to be activated beyond fundamental

arithmetic calculations, operating with small or easily tractable numbers

1: Make direct use of a simple functional relationship (implicit or explicit); use formal

mathematical symbols (for example, by direct substitution) or activate and directly use a formal

mathematical definition, convention or symbolic concept

2: Explicit use and manipulation of symbols (for example, by rearranging a formula);

activate and use mathematical rules, definitions, conventions, procedures or formulae using

a combination of multiple relationships or symbolic concepts

3: Multi-step application of formal mathematical procedures; working flexibly with functional

relationships; using both mathematical technique and knowledge to produce results

Appendix 2: Competency Definitions and Level Descriptions

(May 2013)

Communication: The communication competency has both ‘receptive’ and ‘constructive’
components. The receptive component includes understanding what is being stated and shown

related to the mathematical objectives of the task, including the mathematical language used,

what information is relevant, and what is the nature of the response requested. The constructive

component consists of presenting the response that may include solution steps, description of the

reasoning used and justification of the answer provided.

In written and computer-based items, receptive communication relates to understanding text

and images, still and moving. Text includes verbally presented mathematical expressions and

may also be found in mathematical representations (for example titles, labels and legends in

graphs and diagrams).

(continued)
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Communication does not include knowing how to approach or solve the problem, how to make

use of particular information provided, or how to reason about or justify the answer obtained;

rather it is the understanding or presenting of relevant information. It also does not apply to

extracting or processing mathematical information from representations. In computer-based

items, the instructions about navigation and other issues related to the computer environment

may add to the general task demand, but is not part of the communication competency.

Demand for the receptive aspect of this competency increases according to the complexity of

material to be interpreted in understanding the task; the need to link multiple information sources

or to move backwards and forwards (to cycle) between information elements. The constructive

aspect increases with the need to provide a detailed written solution or explanation.

Definition: Reading and interpreting statements, questions, instructions, tasks, images and

objects; imagining and understanding the situation presented and making sense of the infor-

mation provided including the mathematical terms referred to; presenting and explaining one’s
mathematical work or reasoning.

0: Understand short sentences or phrases relating to concepts that give immediate access to the

context, where all information is directly relevant to the task, and where the order of infor-

mation matches the steps of thought required to understand what the task requests. Constructive

communication involves only presentation of a single word or numeric result

1: Identify and link relevant elements of the information provided in the text and other related

representation/s, where the material presented is more complex or extensive than short

sentences and phrases or where some extraneous information may be present. Any constructive

communication required is simple, for example it may involve writing a short statement or

calculation, or expressing an interval or a range of values

2: Identify and select elements to be linked, where repeated cycling within the material

presented is needed to understand the task; or understand multiple elements of the context or

task or their links. Any constructive communication involves providing a brief description or

explanation, or presenting a sequence of calculation steps

3: Identify, select and understand multiple context or task elements and links between them,

involving logically complex relations (such as conditional or nested statements). Any con-

structive communication would involve presenting argumentation that links multiple elements

of the problem or solution

Devising strategies: The focus of this competency is on the strategic aspects of mathematical

problem solving: selecting, constructing or activating a solution strategy and monitoring and

controlling the implementation of the processes involved. ‘Strategy’ is used to mean a set of

stages that together form the overall plan needed to solve the problem. Each stage comprises a

sub-goal and related steps. For example a plan to gather data, to transform them and to represent

them in a different way would normally constitute three separate stages.

The knowledge, technical procedures, mathematising and reasoning needed to actually carry

out the solution process are taken to belong to those other competencies.

Demand for this competency increases with the degree of creativity and invention involved in

identifying a suitable strategy, with increased complexity of the solution process (for example

the number, range and complexity of the stages needed in a strategy), and with the consequential

need for greater metacognitive control in the implementation of the strategy towards a solution.

Definition: Selecting or devising a mathematical strategy to solve a problem as well as

monitoring and controlling implementation of the strategy.

0: Take direct actions, where the solution process needed is explicitly stated or obvious

1: Find a straight-forward strategy (usually of a single stage) to combine or use the given

information

2: Devise a straight-forward multi-stage strategy, for example involving a linear sequence of

stages, or repeatedly use an identified strategy that requires targeted and controlled processing

(continued)
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3: Devise a complex multi-stage strategy, for example that involves bringing together multiple

sub-goals or where using the strategy involves substantial monitoring and control of the

solution process; or evaluate or compare strategies

Mathematising: The focus of this competency is on those aspects of the modelling cycle that

link an extra-mathematical context with some mathematical domain. Accordingly, the

mathematising competency has two components. A situation outside mathematics may require

translation into a form amenable to mathematical treatment. This includes making simplifying

assumptions, identifying variables present in the context and relationships between them, and

expressing those variables in a mathematical form. This translation is sometimes referred to as

mathematising. Conversely, a mathematical entity or outcome may need to be interpreted in

relation to an extra-mathematical situation or context. This includes translating mathematical

results in relation to specific elements of the context and validating the adequacy of the solution

found with respect to the context. This process is sometimes referred to as de-mathematising.

The intra-mathematical treatment of ensuing issues and problems within the mathematical

domain is dealt with under other competencies. Hence, while the mathematising competency

deals with representing extra-mathematical contexts by means of mathematical entities, the

representation of mathematical entities is dealt with under the representation competency.

Demand for activation of this competency increases with the degree of creativity, insight and

knowledge needed to translate between the context elements and the mathematical structures of

the problem.

Definition: Translating an extra-mathematical situation into a mathematical model,

interpreting outcomes from using a model in relation to the problem situation, or validating the

adequacy of the model in relation to the problem situation.

0: Either the situation is purely intra-mathematical, or the relationship between the extra-

mathematical situation and the model is not relevant to solving the problem

1: Construct a model where the required assumptions, variables, relationships and constraints

are given; or draw conclusions about the situation directly from a given model or from the

mathematical results

2: Construct a model where the required assumptions, variables, relationships and constraints

can be readily identified; or modify a given model to satisfy changed conditions; or interpret a

model or mathematical results where consideration of the problem situation is essential

3: Construct a model in a situation where the assumptions, variables, relationships and

constraints need to be defined; or validate or evaluate models in relation to the problem

situation; or link or compare different models

Representation: The focus of this competency is on decoding, devising, and manipulating

representations of mathematical entities or linking different representations in order to pursue a

solution. By ‘representation of a mathematical entity’ we understand a concrete expression

(mapping) of a mathematical concept, object, relationship, process or action. It can be physical,

verbal, symbolic, graphical, tabular, diagrammatic or figurative.

Mathematical tasks are often presented in text form, sometimes with graphic material that only

helps set the context. Understanding verbal or text instructions and information, photographs and

graphics does not generally belong to representation competency—that is part of the commu-

nication competency. Similarly, working exclusively with symbolic representations lies within

the using symbols, operations and formal language competency. On the other hand, translation

between different representations is always part of the representation competency. For example,

the act of transforming mathematical information derived from relevant text elements into a

non-verbal representation is where representation commences to apply.

While the representation competency deals with representing mathematical entities by means

of other entities (mathematical or extra-mathematical), the representation of extra-mathematical

contexts by mathematical entities is dealt with under the mathematising competency.

(continued)
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Demand for this competency increases with the amount of information to be extracted, with

the need to integrate information from multiple representations, and with the need to devise

representations rather than to use given representations. Demand also increases with added

complexity of the representation or of its decoding, from simple and standard representations

requiring minimal decoding (such as a bar chart or Cartesian graph), to complex and less

standard representations comprising multiple components and requiring substantial decoding

perhaps devised for specialised purposes (such as a population pyramid, or side elevations of a

building).

Definition: Decoding, translating between, and making use of given mathematical represen-

tations in pursuit of a solution; selecting or devising representations to capture the situation or to

present one’s work.

0: Either no representation is involved; or read isolated values from a simple representation, for

example from a coordinate system, table or bar chart; or plot such values; or read isolated

numeric values directly from text

1: Use a given simple and standard representation to interpret relationships or trends, for

example extract data from a table to compare values, or interpret changes over time shown in a

graph; or read or plot isolated values within a complex representation; or construct a simple

representation

2: Understand and use a complex representation, or construct such a representation where some

of the required structure is provided; or translate between and use different simple represen-

tations of a mathematical entity, including modifying a representation

3: Understand, use, link or translate between multiple complex representations of mathematical

entities; or compare or evaluate representations; or devise a representation that captures a

complex mathematical entity

Using symbols, operations and formal language: This competency reflects skill with activat-

ing and using mathematical content knowledge, such as mathematical definitions, results (facts),

rules, algorithms and procedures, recalling and using symbolic expressions, understanding and

manipulating formulae or functional relationships or other algebraic expressions and using the

formal rules of operations (e.g. arithmetic calculations or solving equations). This competency

also includes working with measurement units and derived quantities such as ‘speed’ and
‘density’.
Developing symbolic formulations of extra-mathematical situations is part of

mathematisation. For example, setting up an equation to reflect the key elements of an extra-

mathematical situation belongs to mathematisation, whereas solving it is part of the using

symbols, operations and formal language competency. Manipulating symbolic expressions

belongs to the using symbols, operations and formal language competency even though they are

mathematical representations. However, translating between symbolic and other representations

belongs to the representation competency.

The term ‘variable’ is used here to refer to a symbol that stands for an unspecified number or a

changing quantity, for example C and r in the formula C¼ 2πr.
Demand for this competency increases with the increased complexity and sophistication of the

mathematical content and procedural knowledge required.

Definition: Understanding and implementing mathematical procedures and language (including

symbolic expressions, arithmetic and algebraic operations), using the mathematical conventions

and rules that govern them; activating and using knowledge of definitions, results, rules and

formal systems.

0: State and use elementary mathematical facts and definitions; or carry out short arithmetic

calculations involving only easily tractable numbers. For example, find the area of a rectangle

given the side lengths, or write down the formula for the area of a rectangle

1: Make direct use of a simple mathematical relationship involving variables (for example,

substitute into a linear relationship); use arithmetic calculations involving fractions and

(continued)
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decimals; use repeated or sustained calculations from level 0; make use of a mathematical

definition, fact, or convention, for example use knowledge of the angle sum of a triangle to find

a missing angle

2: Use and manipulate expressions involving variables and having multiple components

(for example, by algebraically rearranging a formula); employ multiple rules, definitions,

results, conventions, procedures or formulae together; use repeated or sustained calculations

from level 1

3: Apply multi-step formal mathematical procedures combining a variety of rules, facts,

definitions and techniques; work flexibly with complex relationships involving variables, for

example use insight to decide which form of algebraic expression would be better for a

particular purpose

Reasoning and argument: This competency relates to drawing valid inferences based on the

internal mental processing of mathematical information needed to obtain well-founded results,

and to assembling those inferences to justify or, more rigorously, prove a result.

Other forms of mental processing and reflection involved in undertaking tasks underpin each

of the other competencies. For example the thinking needed to choose or devise an approach to

solving a problem is dealt with under the devising strategies competency, and the thinking

involved in transforming contextual elements into a mathematical form is accounted for in the

mathematising competency.

The nature, number or complexity of elements that need to be brought to bear in making

inferences, and the length and complexity of the chain of inferences needed would be important

contributors to increased demand for this competency.

Definition: Drawing inferences by using logically rooted thought processes that explore and

connect problem elements to form, scrutinise or justify arguments and conclusions

0: Draw direct inferences from the information and instructions given

1: Draw inferences from reasoning steps within one aspect of the problem that involves simple

mathematical entities

2: Draw inferences by joining pieces of information from separate aspects of the problem or

concerning complex entities within the problem; or make a chain of inferences to follow or

create a multi-step argument

3: Use or create linked chains of inferences; or check or justify complex inferences; or

synthesise and evaluate conclusions and inferences, drawing on and combining multiple

elements of complex information, in a sustained and directed way
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Chapter 5

A Research Mathematician’s View
on Mathematical Literacy

Zbigniew Marciniak

Abstract This chapter provides a personal account of how the views of a pure

mathematician on good mathematics education for all students changed through

experiences with PISA. Marciniak describes those elements of his own mathemat-

ics education that attracted him to mathematics and his own disregard for applica-

tions to the real world. His close experience of how students perform on PISA

problems have highlighted the difference between significant mathematics and

complicated mathematics, and the weakness of educational systems that use a

‘catch the fox’ paradigm designed primarily for the most talented. It is not true

that students who can solve advanced problems can necessarily solve problems that

appear simple when analysed only from the point of view of the required mathe-

matical tools. Marciniak has changed his view so that he now sees the ability to

employ mathematics when necessary to be the crucial aim of mathematics educa-

tion for all.

The Charm of Mathematics

As is probably typical for professional mathematicians, mathematics has occupied

most of my adult life. It charmed me with its unique beauty in my youth and has

kept me under its spell ever since. People outside mathematics usually do not

realise that working in pure mathematics has a lot to do with emotions. We usually

pick our problems guided solely by curiosity and their aesthetic beauty. However,

the ‘queen of sciences’ likes to be misleading: ideas elude us for a long time as

splendid concepts and then most of them end up as misconceptions stemming from

a well-hidden error. Nevertheless, once in a while, we are lucky: the idea is right

and we get a solution that has previously escaped the efforts of our colleagues. The

strike of adrenaline on such, unfortunately rare, occasions is the best reward for the

earlier struggles.
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This kind of intimate cohabitation with mathematics is probably partly respon-

sible for the fact that research mathematicians, especially those in pure mathemat-

ics, have quite a strong view of what they mean by mathematics and that makes

them (us) quite reluctant to negotiate that view. As being a mathematician includes

a permanent self-education process, we perceive mathematics as a path, along

which we started our travel some years ago. In consequence, we cannot clearly

distinguish our initial mathematical education from our further self-development

process as a conscious researcher. One thing, however, is clear to us: our mathe-

matics education was the right one! The proof is that it got us where we are today.

It is quite easy to describe those elements of my mathematics education that

‘tasted’ the best and which probably made me a mathematician. First of all, those

experiences offered me the beauty of mathematics, its clarity and precision. Sec-

ondly, as opposed to many other school subjects, mathematics did not refer to any

other authority. I was able to judge the truth by myself, according to very simple

and clear rules. Next, I was challenged with very nice problems for which I did not

know the answer, but which would eventually give in to the pressure of my

thinking. Success here makes you feel that there are no obstacles that cannot be

eventually overcome. In all of this work, for me, the critical feature was the beauty

of the problem and the surprise that it was hiding; the realistic context of the

problems was something that I did not care about.

What Is Good Mathematics Education?

I do still believe that an education like the one I received is the optimal education

path for a future pure mathematician. However, many of my pure mathematician

colleagues very strongly believe that this is the universal prescription for good

mathematics education for everyone. I have to admit that for many years my own

opinions on good mathematical education were similar. However, my encounter

with PISA has changed my opinions on that matter; it stimulated my thinking on the

subject and I came to the conclusions presented below.

The first remark is quite simple. In large part, my strong convictions about

mathematics are based on the appreciation of the beauty of mathematics. Can we,

however, expect that every student will share this view, even if we make the

(completely unrealistic) assumption that every teacher is able to present this

beautiful science as such? No reasonable person would expect that each student

will become a great fan of Bach or Picasso; the same must be true about mathe-

matics. Thus founding the teaching of mathematics on the aesthetic fascination

must, in general, end in failure.

I remember getting my first contact with PISA. That was in Lisbon, in May 2002,

where the items prepared for the 2003 assessment were presented. (By the way, it is

a good tradition of PISA to include mathematicians from the participating countries

in the large teams judging items.) Of course I knew there was a document called the

“Mathematics Framework”, but I was then convinced that the items will tell me all
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by themselves. To my surprise, and then disappointment, the items seemed to me

just trivial. They were not like the problems that I valued most—with purely

mathematical context, requiring a smart application of mathematics appropriate

to 15-year-olds. I shared this view with one of my colleagues from another country.

His reaction was very intelligent; he said: “I know what you mean. But, are you sure

that the students to whom you offer your problems would have no difficulties with

the items you consider trivial?” I knew right away that the answer must be negative.

I had seen the outcomes of the PISA 2000 assessment in Poland. Students, who

according to the school curriculum were expected to deal with reasonable facility

with complex problems about ‘speeds of trains going from city A to city B’, were
not able to correctly do simple percentages.

The above exchange touches on the fundamental problem of mathematics

education policy. Some people prefer what is referred to in Polish idiom as the

‘catch the fox’ paradigm: you set up the school program so that the most talented

profit most; the others just strive to get as much as they can. The talented students

are the leading hounds or maybe the fox—all the teacher’s attention is focused out

there at the front. The other students are the big pack of hounds, running along

behind the main action and keeping up as best they can. In the ‘catch the fox’
paradigm, it is assumed that talent is what matters and that others will fail on many

occasions, because their mental capacities simply do not allow them to master

solving sophisticated problems in the regular instruction time. They can get a

passing mark because a student needs to master only a certain part of the program

for that. This paradigm can be very comfortable for some program makers; any-

thing will fit, because the sky is the limit for the possibilities of the best. This

paradigm was present for decades in the Polish national curricula, especially in

secondary schools. A similar approach was also evident in other Central European

countries.

This system was also based on the assumption that a student who was asked to

solve sophisticated problems will be able to solve easy ones without much trouble.

PISA is a cold shower for those who believe that! Mathematics programs in most

countries offer at some point quite advanced mathematical procedures, like for

example investigating the variation of a function by studying its first and second

derivative. However, the very same students who can learn to do this may have

difficulties with calculating a given percentage of a number—a skill much more

often encountered in practical life. Even if it were the only advantage of the PISA

assessment, it would still be worthwhile participating, for the single reason to learn

this lesson.

Today, in European and many other countries, the idea of qualification frame-

works has become the main interface between education or training and the labour

market. In this setting, the language of learning outcomes becomes crucial. In other

words, the attention is shifting from the education process to its results. It is not so

important what we are trying to teach students and how complex is the mathematics

that is intended to be taught. Much more important is what the students are

effectively able to learn.
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Mathematical Literacy as the Learning Outcome for All

Students

Then, sooner or later, one must ask the question about the purpose of teaching

mathematics to all students and about the expected learning outcomes of this

process. Clearly, only a very small fraction of them will become mathematicians

and even fewer pure mathematicians. What should all the others students learn?

From this perspective, I personally find the idea of mathematical literacy to be a

brilliant answer. It offers the following perspective on mathematical skills: they are

only worth as much as you are able to employ them when needed in your life.

It should be stressed right away, that this mathematical literacy point of view

defines no glass ceiling for the skills. Some people seem to think that all you need

from mathematics to deal with real life are the basic arithmetic operations with

percentage calculations at the most ambitious end of the list, and maybe the

measurement properties of the basic geometric figures. The term ‘literacy’ might

suggest that absolutely minimal skills are meant, as opposed to ‘illiterate’ which
means the lack of the most basic skills. As emphasised in Chap. 1 of this volume,

this is not the definition of the PISA Mathematics Framework (OECD 2013).

The PISA set of items shows how wrong those people are. PISA items cover a

very wide range of authentic situations, in which you have to invoke mathematical

thinking or operations in order to be successful. This process is nicely described in

the PISA 2012 Mathematics Framework (OECD 2013) in terms of the modelling

cycle. Many of the PISA items require the students to invoke mathematical reason-

ing or strategic thinking to solve them. In fact, after spending over 10 years working

on PISA items, as a member of the Mathematics Expert Group, I came across many

items that required mathematical reasoning and argumentation on a level quite

satisfactory even from the perspective of a pure mathematician. As one of many

good examples, I indicate unit M136 Apples (OECD 2006) as shown in Fig. 5.1.

The problem develops slowly through three steps; solving the last one requires

decent mathematical reasoning. This item was used in the main survey for PISA

2000 and then released. The difficulty of the item was 550 score points for Question

1 (above average), 665 score points for Question 2 and 672 score points of Question

3. OECD (2006) gives the coding scheme in full.

I find the ability to employ mathematics when necessary to do so to be the crucial

aim of mathematics education. Let us notice that it is valid also at the highest levels

of research: we admire our most talented colleagues (in the present and from the

past) for their ability to find a surprising connection within our domain and solve a

problem by employing a tool or idea that no one thought of trying before. The

history of pure mathematics is full of such breakthrough stories.

Let us teach all students to find their breakthrough solutions—of course with all

proportions preserved. To achieve this goal we should not rush to fill students’
heads with many dozens of new tools for the possible use in some future. Doing

mathematics exercises with new tools is like practising scales on a piano—master-

ing it gives an artisan’s satisfaction, but rarely an excitement. Pressing for more and
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more tools in school curricula decreases the chance that our students find the taste of

mathematics at all. We, people doing research in mathematics, understand the

meaning of the taste of success very well.

The idea of evaluating mathematics skills through the ability to use them has

many advantages. First of all, it refers to the usefulness of mathematics and pro-

vides a proof of such. Many pure mathematicians tend to forget that most of the

Question 1
Complete the table:

n Number of apple trees Number of conifer trees
1 1 8
2 4
3
4
5

A farmer plants apple trees in a square pattern. In order to protect the apple trees 
against the wind he plants conifer trees all around the orchard. Here you see a 
diagram of this situation where you can see the pattern of apple trees and conifer 
trees for any number (n) of rows of apple trees:

Question 2
There are two formulae you can use to calculate the number of apple trees and the 
number of conifer trees for the pattern described above:
Number of apple trees = n2

Number of conifer trees = 8n
where n is the number of rows of apple trees.

There is a value of n for which the number of apple trees equals the number of 
conifer trees. Find the value of n and show your method of calculating this.

Question 3
Suppose the farmer wants to make a much larger orchard with many rows of trees. 
As the farmer makes the orchard bigger, which will increase more quickly: the 
number of apple trees or the number of conifer trees? Explain how you found your 
answer.

Fig. 5.1 M136: Apples (OECD 2006, pp. 11–14) (formatting condensed from original)
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most important mathematical ideas were invented or discovered in the process of

solving real problems. The theorem about equal angles being created by a line

cutting two parallel lines was the basis for Eratosthenes’ ingenious calculation of

the Earth’s circumference around 240 BC (see Fig. 5.2). He knew about a deep well

in Syene where the sun only shone on the bottom at the solstice, and he knew the

distance of Syene from Alexandria, and could observe the angle of the sun there at

the critical moment. This information enabled him to get a very good estimate for

the circumference of the Earth.

The theorem of Thales on proportional segments on the arms of an angle cut out

by parallel lines was the main mathematical tool used by Aristarchus of Samos in

300 BC to estimate the distances of the Earth to the Sun and Moon. From his

discovery that the Sun was much larger and further away, he concluded that

probably it is the Earth that rotates around the Sun and not the other way around.

Because the angles are equal in Fig. 5.3 (known from solar eclipses), Thales’
theorem says that the ratio of the distance of the sun from the earth to the distance

of the moon from the earth is equal to the ratios of the sun diameter to the moon

diameter. He combined this information with other observations from eclipses and

the phases of the moon to draw his conclusion (Protasov 2010). How many teachers

of mathematics have ever heard of that? How many research mathematicians

remember that? Also many more fundamental examples can be offered from

modern times: the idea of a general smooth manifold and its geometry was

developed by Riemann and Poincare to satisfy the needs of advanced mechanics

and cosmology. Today is no different. The fast developing non-commutative

geometry, building the ideas corresponding to measure, topology, distance and

differential geometry in the context of non-commutative algebras is just a response

to the needs of quantum physics.

Fig. 5.2 Eratosthenes

calculates the

circumference of the earth

Fig. 5.3 Aristarchus’s diagram of moon, earth and sun
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I see deep sense in showing our students the relation of mathematics to real life.

In fact, many of them may be surprised how often they successfully invoke their

mathematical skills. In fact, any reasoning of the type “if. . .then. . .” or “it is not so,
because. . .” has some mathematics content.

The types of pure mathematics problems that I mentioned at the beginning of

this paper as enjoying so much, are artificially (and skilfully) composed like a chess

problem: you are given a position and perhaps must invent how to make the check-

mate in two moves. Whatever we say, it is just an intellectual game. Some people,

like me, find deep satisfaction in playing such games. All others like to see a

purpose.

Final Thoughts

Finally, I want to make two more points. The first is the following. Over the long

period of work in the PISA Mathematics Expert Group I have learned to appreciate

the really hard research in mathematics education. Compared to the problems those

people try to solve, my non-commutative algebra problems look like child’s toys:
clearly formulated, simply stated with the only catch being that no one knows how

to solve them. The mathematics educators’ problems have completely different

nature: the basic difficulty is probably to identify the problem. Even then, there are

many ‘ifs’ and ‘buts’, because it inevitably touches on diverse areas including

neuroscience, psychology or even sociology. And then a solution to such a problem

will have exceptions (counterexamples!) and yet it still has a value. I learned a great

lesson in this area. I was most fortunate to learn from the best of the best: Mogens

Niss, Werner Blum, Kaye Stacey, Ross Turner, Sol Garfunkel, Bill Smith—to name

a few of them. Thank you, friends!

And the last comment. Once we, the Mathematics Expert Group members,

accepted the mathematical literacy perspective, we got an unexpected bonus:

during more than 10 years of meetings I do not remember even a single discussion

concerning the differences of the content of mathematics curricula in different

countries. After all, what counts in PISA is the ability of a student to resolve a

situation, whichever mathematics tools stand at his/her disposal. The problems we

decided to offer to test the students were nearly always of the kind that several

different successful approaches were possible and could be effectively used by

students. By the way, that shows great flexibility of mathematics, even at the

elementary level. That is one more reason that I am proud of being a mathematician.
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Part II

Implementing the PISA Survey:
Collaboration, Quality and Complexity

Introduction to Part II

In this part aspects of the implementation of the PISA survey from various insider

perspectives are presented. The contributions provide insight from the perspective

of a leading test development agency and its collaborators, into the mathematics test

development for the world’s largest international educational survey. The main

themes that emerge from this part are collaboration, complexity and quality. Even

just in its mathematics component, through the stages of framework to items to

survey to data, the PISA survey requires collaboration of people from many

different countries and with many different skill sets. The contributions in this

part highlight the many different types of expertise required, as well as the way in

which collaboration and critique from around the world is brought in to optimise the

validity and relevance of the end product. The complexity of the undertaking is both

in the theoretical understanding of the task and also in the logistics of delivery that

arise, and several of the chapters describe some of these aspects. A raft of quality

assurance measures are employed so that the product of all this effort will provide

sound data for educational decision making. A further overarching message of this

part is that participation in the PISA survey provides an array of training and

development opportunities to individuals, organisations and systems. Later Part

III of this volume details how some of this learning is also now applied within

national assessments. In addition, PISA has provided an impetus to conceptual and

technical innovation and invention at various points of the survey process.

Ross Turner has led the development and delivery of the mathematics compo-

nent of PISA for the lead international contractors since 2000 not long after PISA’s
inception, and in the lead-up to the first PISA administration. He opens the part in

Chap. 6 with an overview of the different activities that various participants and

contributors engage in to bring the PISA mathematics survey to fruition. Some of

the mystery surrounding the development and implementation of this high profile

endeavour is exposed, and some commonly expressed concerns about PISA are

http://dx.doi.org/10.1007/978-3-319-10121-7_6


answered. In Chap. 7, item developers Dave Tout and Jim Spithill use the stories of

two PISA items to provide insights into the intricate process of developing PISA

mathematics test items, both paper-based and computer-based. Those ideas are

picked up and developed in greater depth in Chap. 8 by Caroline Bardini who

provides additional examples, analysis and commentary related to the computer-

based assessment which was a new innovation for PISA 2012. In Chap. 9,

Agnieszka Sułowska offers an insightful overview, from the perspective of an

experienced national head of coding for four PISA surveys, of the processes and

issues involved in transforming student responses to the PISA mathematics items

into data for analysis. She explains how different this coding process is to the

process of a teacher marking student work. The chapter also illustrates the inves-

tigation into students’ mathematical thinking that is sometimes required for accu-

rate coding. In addition to practical advice for coding of large scale assessments,

and insights into how some PISA items operate in practice, this chapter is signif-

icant for its frank discussion of the complexity of the coding task, and the depth of

personal experience that it draws on. This part concludes in Chap. 10 with a

discussion of one set of the background questionnaire variables introduced into

the student questionnaire for PISA 2012. In their chapter, Lee Cogan and Bill

Schmidt provide important insights to the opportunity to learn sections of the

student questionnaire, giving a glimpse of the depth of thought and earlier research

that has gone into developing this crucial aspect of the battery of PISA survey

instruments. This chapter also highlights the different intentions between the two

major series of international mathematics achievement studies, PISA and TIMSS;

differences that are reflected in different approaches to opportunity to learn. The

curriculum-based TIMSS surveys aim to test content that students are very likely to

have had the ‘opportunity to learn’ while the PISA surveys start with the intention

to assess knowledge and skills that are judged most valuable. Information derived

from the conjoint analysis of responses to background questionnaire variables and

domain (mathematics) variables is what gives PISA much of its power to generate

insights leading to policy reform and innovation in teaching and learning.
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Chapter 6

From Framework to Survey Data: Inside

the PISA Assessment Process

Ross Turner

Abstract This chapter provides an overview of quality assurance mechanisms that

have been put into place by the international contractor responsible for

implementing the PISA survey. These quality assurance mechanisms aim to ensure

the fitness for purpose of the PISA data, derived from over 60 different countries

and from students instructed in over 40 different languages in a wide array of

schools from education systems that vary quite considerably. The mechanisms

reviewed include the frameworks that drive the content of the PISA survey instru-

ments, the processes followed in test item development, student sampling pro-

cedures, the mechanisms designed to guarantee comparability of the different

versions of test instruments that go into the field in participating countries, steps

to ensure test administration procedures are common across all test administration

centres, the mechanisms associated the processing and scoring of student responses

to the test questions, and processes related to capturing, processing and analysing

PISA data. This chapter also brings together into an accessible and consolidated

form, information that has been published in a variety of other documents, such as

in PISA operational manuals and technical reports. However, the chapter also

explains the significance of these processes and the reasons for the decisions, and

highlights how they are implemented for mathematics.

Introduction

How is it possible to implement a survey in more than 60 countries that generates

measures that are in any sense comparable? This is the challenge faced by the

international contractors responsible for implementation of the PISA survey.

This chapter outlines various steps taken by the Australian Council for Educa-

tional Research (ACER) and its international collaborators to implement PISA in
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such a way that meets this challenge based on ACER’s experience in delivering the
survey across its first five administrations. ACER has been the lead agency in an

international consortium awarded the contracts to deliver the first five administra-

tions of the PISA survey (in 2000, 2003, 2006, 2009 and 2012) on behalf of the

Organisation for Economic Co-operation and Development (OECD). The author

has been a senior manager within the ACER project team from early 2000, so has

seen the entire survey administration process from close quarters including two

complete survey administration periods in which mathematics was the major survey

domain. The story of PISA implementation has several threads. One important

thread relates to framework development (see Chap. 1) and the steps of develop-

ment of the items that end up in the PISA tests, which are discussed in more detail

by Dave Tout and Jim Spithill in Chap. 7 of this volume. But the generation of

comparable measures in such a large survey program also involves quality assur-

ance procedures related to every aspect of survey delivery: the sampling of survey

respondents, the preparation of translated versions of survey instruments, mecha-

nisms to ensure that test administration procedures are the same everywhere, steps

to ensure that survey responses are processed and scored using a common set of

standards, data capture procedures that ensure the integrity and confidentiality of

data generated by the survey, and data analysis methods that guarantee the national

and international reports that are generated are fit for purpose. This chapter brings

together into an accessible and consolidated form, information that has been

published in a variety of other documents, such as in PISA operational manuals

and technical reports that are all are available from the PISA website (www.oecd.

org/pisa). However, the chapter also explains the significance of these processes

and the reasons for the decisions, and highlights how they are implemented for

mathematics.

The Starting Point: An Assessment Framework

One essential requirement for a useful measurement of learning outcomes within

any domain is clarity about what will be measured. Assessment frameworks have

been developed with exactly this need in mind, in order to guide a vast array of

local, national and international assessment enterprises. The importance of assess-

ment frameworks is captured by Jago (2009) writing on the history of the frame-

works used in the USA’s National Assessment for Educational Progress (NAEP) in

a piece written for the 20th anniversary of the National Assessment Governing

Board.

[NAEP] frameworks describe the content and skills measured on NAEP assessments as

well as the design of the assessment. They provide both the “what” and the “how” for

national assessment. Representing the best thinking of thousands of educators, experts,

parents, and policymakers, NAEP frameworks describe a broad range of what students

learn and the skills they can demonstrate in reading, mathematics, writing, science, history,

civics, economics, foreign language, geography, and the arts. (Jago 2009 p. 1)
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The PISA Frameworks were initially developed for the first survey administra-

tion in 2000, covering the domains of Reading, Mathematics and Science (OECD

1999). The Frameworks have been revised, updated and expanded over the period

in which the PISA survey has existed, as the domains have evolved (for example as

digital technology has changed the way learning occurs and as computer-based

assessment components have been added) and as additional survey domains have

been added (for example as a separate problem solving component was added, first

in 2003 and again in a computer-based form for PISA 2012). A ‘questionnaire
framework’ has also been developed to provide the rationale for the collection of

various elements of background and contextual information gathered through a

suite of questionnaires used alongside the cognitive instruments.

The PISA frameworks specify what is to be measured in each of the assessed

domains. They define each assessment domain, and from the domain definitions the

frameworks spell out in considerable detail the constructs of interest and their key

components, the constraints within which those constructs will be understood and

approached, and the variables that will be built into the pool of test and question-

naire items developed to generate indicators of the constructs of interest. Each

framework provides a blueprint for test or questionnaire development in the

relevant test domain.

The Mathematics Framework, as discussed by Stacey and Turner in Chap. 1 of

this volume, defines mathematical literacy, the central construct of interest. It

outlines mathematical content categories, mathematical processes, and a range of

mathematical problem context types, which are taken as constraints within which

the assessment of mathematical literacy is to be understood and approached. The

Framework also sets constraints related to the range of students to be assessed

through PISA (15-year-olds in school) and the consequent span of the mathematical

literacy construct that will be targeted, as well as the kinds of mathematical

problems that can realistically be used in an assessment of this type. The Frame-

work describes how each of these variables will be arranged and balanced in a PISA

survey instrument.

Of course the PISA Frameworks are not handed down as if they were biblically

ordained laws. Rather, they are developed through widespread and ongoing con-

sultation processes that involve experts from all participating countries contributing

information about the priorities of the assessment domain and the potential basis for

an international comparative survey of such a scale. Framework drafts are devel-

oped, circulated for comment, and revised, and are only adopted when sufficient

buy-in has been achieved to permit the OECD’s PISA Governing Board to have

confidence that the Frameworks are sufficiently reflective of the interests of all

participants.

This consultative and inclusive approach to the development of the PISA

Frameworks sets a template of consultation and involvement that is reflected in

all aspects of PISA survey development and implementation.
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High Quality Survey Instruments

Assessment frameworks provide definition, and must be enacted through the survey

instruments developed to generate indicators of the constructs of interest. The

processes followed to develop PISA survey instruments further ensure that PISA

adheres to the highest standards of technical quality.

As the lead contractor appointed by the OECD to develop and implement the

first five administrations of the PISA survey, ACER has led the development of test

items in each of the survey domains and the formation of the test instruments so far

used in PISA. Typically this has been driven by a team of professional test

developers at ACER, working in collaboration with teams of professionals from

test development agencies in other locations and other countries, under the guid-

ance of a reference group of international experts. In the case of mathematics, the

international Mathematics Expert Group (MEG) includes mathematicians, mathe-

matics educators, and experts in assessment, technology, and education research

from a range of countries. Material and ideas for test items in each domain come

from a variety of sources: from team members of the various professional test

development agencies contracted to contribute, from members of the MEG, and

most importantly from teachers and other domain experts in participating countries.

All countries that participate in a particular administration of the PISA survey are

encouraged to submit items, and many have chosen to do so. These contributions

are typically sought through the PISA national centre, which coordinates and

manages all PISA-related processes within each participating country. Using mate-

rial from such a diverse range of sources helps to ensure richness and variety in the

pool of material from which a set of test items is built that expresses different

approaches and priorities in different countries, as well as different cultural and

educational practices, within the orientation and constraints set by the Framework.

The test development teams institute a rigorous process to turn ideas and

suggested items into test content. Typically, this starts with a rigorous ‘shredding’
of the draft item by a small panel of developers. That involves scrutinising the

material from several angles—clarity of wording, quality of accompanying stimu-

lus material, fit to the Framework, the range of possible responses to the item, and

so on. Items are then revised, and sent to one of the other teams to repeat the

process. Once draft items showing potential reach that stage, they are then subjected

to small-scale field testing with individual students, and with small groups of

students through ‘thinking aloud’ methods as described by Rowe (1985) and

cognitive interviews. Students of the same age as the intended target for the PISA

test are given the draft items, and asked to attempt the items and to ‘think aloud’ as
they do this in order to expose their thought processes as they tackle the problem.

The test developer records this or takes careful notes for later analysis, and then

further probes the students by asking them to articulate further their reaction to

particular elements of the problem, the solution method they used, and the steps

they took as they attempted the problem. In this way, further insights are gained into

the draft item and whether the item is triggering the kind of mathematical thinking
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and behaviour assumed or sought. Carrying out such a process with students in

different countries, and using material presented in different languages, gives

significant insight into the merits of the item and its likely usefulness to generate

indicators of the constructs of interest. In Chap. 7, Tout and Spithill illustrate this

development process with some sample items. A further stage in the development

of items uses field testing of sets of items with larger groups of students under test

conditions. Such a procedure can be used to trial different forms of an item (for

example to test alternative wording). Using several groups of students on whom to

field test sets of items is a way to generate useful comparative information about a

group of items (for example, the relative difficulty of items) and it can be very

helpful in the development or refinement of scoring rubrics that are used to identify

the set of possible responses to each item actually observed among responding

students.

At the conclusion of this item development process, source versions of the items

are prepared in both English and French, and sets of these items are then formed and

sent to participating countries for review. The reviews are normally undertaken by

national experts in the domain, who are asked to provide detailed feedback on each

item including: relevance of the item to the key OECD notion of ‘preparedness for
life’ from the perspective of each participating country; relevance of the item to the

local mathematics curriculum; likely interest level of the item to 15-year-old

students; the degree of authenticity of the item context from the perspective of

the country; whether there are any cultural concerns or other potential sensitivities

with the item; whether any translation issues are anticipated; whether any problems

are anticipated with the proposed response coding rubric; and a rating of the

country’s view of the priority for inclusion of the item in the final selection for

use in the PISA survey instruments. The information received from these reviews is

used to identify items that will be unacceptable to participating countries, and

contributes to the selection of items for possible use in the PISA survey.

As a final part of ensuring items of the highest possible quality are available for

use in the PISA survey, PISA employs a two-stage process in its implementation of

each administration of the survey: a field trial, and a main survey. In the year prior

to the main survey, an extensive field trial is administered in every country

participating in the survey. A large pool of test items that have successfully gone

through the development process described in the previous paragraphs is selected

for field testing. Those items are translated into the required national languages, and

the translations are verified according to a highly rigorous process, placed in test

booklets according to a rotated test design, and administered to several hundred

students in each country. Test booklets are formed by putting together four clusters

of items, with each cluster representing 30 min of test time, and following a linked

rotation design that ensures each cluster appears exactly once in each of the four

possible cluster positions, and exactly the same number of times in total, across the

set of booklets. Test administration procedures are developed centrally by ACER

and its collaborators, and national teams in each country are trained in those

procedures to ensure a high degree of consistency across participating countries.

Teams of mathematics experts in each country are trained to assign standard codes
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to each response observed to each item. For more detail of the coding process, see

Chap. 9 by Sułowska in this volume. Standardised data capture procedures are

implemented, so that ACER receives consistent and reliable data from all test

administration centres.

The field trial generates data that can be used for a variety of purposes. Some of

those relate to the operational issues involved in test administration within each

country, while others relate to the technical qualities of the test material. Extensive

analysis of the field trial item responses provides further information on the quality

of each country’s translation of the test material, and on the psychometric properties

of each item. This allows the test developers to understand how the items are likely

to actually perform when administered to 15-year-old students: which items gen-

erated useful data, what was the empirical difficulty of each item, did any of the

items perform differentially with boys compared to girls or with students in one

country compared to another (after adjusting for student ability) and so on. Data and

information generated from the field trial provide a very strong basis on which to

identify the best available items for possible inclusion in the main survey item pool.

After the field trial, a further review of items by experts at the national centre for

each participating country is conducted, generating fresh information based on

countries’ field trial implementation experience relating to any unanticipated trans-

lation issues, unexpected difficulties with the coding of student responses to items,

or any other problems identified, and providing a new set of priority ratings for

inclusion of each item in the main survey item selection.

By the time test items are chosen for inclusion in the main survey instruments,

they have been through a development and selection process designed to produce

items that are fit for purpose from the perspective of a variety of technical charac-

teristics, their useability for the intended target audience, and their acceptability to

relevant stakeholders.

Questions for use in the various background questionnaires are developed using

a similar mechanism. Those questions are based on a questionnaire framework that

provides a theoretical basis for the background variables of interest, which are used

to help understand which students perform at different levels, what characteristics

of the students’ backgrounds might explain differential performance, and in partic-

ular what factors that influence performance might be affected by particular aspects

of educational practice and policy settings at the local, regional or national levels.

Chapter 10 by Cogan and Schmidt in this volume describes the theoretical founda-

tion and development of the ‘opportunity to learn’ thread of these questionnaires.

Rigorous Scientific Student Samples

PISA survey instruments (the booklets containing questions about the assessed

domains, and the student background questionnaires) are administered to scientif-

ically sampled students in each participating country. Sampling standards are

designed by the PISA international contractor to ensure proper coverage of the
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population of interest, an acceptable level of accuracy and precision in the estimates

derived from PISA data, and adequate school and student response rates, and these

are applied in each participating country.

The PISA national centre in each participating country obtains a sampling frame

that lists all educational settings with students falling inside the age definition for

the survey, and provides this to the international PISA contractor that then checks

its accuracy. A limited number of school exclusions are permitted for well-defined

reasons such as inaccessibility through extreme remoteness, or the existence of

political turmoil in a particular part of the country that would make survey admin-

istration dangerous or impossible, and any such instances are documented. Steps are

taken by the PISA international contractor to verify the accuracy and completeness

of each country’s sampling frame from independent sources—for example, by

comparing the data in the sampling frame with other publicly accessible data.

Sampling for the PISA main survey in each administration then proceeds

through two main stages: the international contractor selects a random sample of

schools, with the probability of selection being proportional to the number of

eligible students; then for each of those sampled schools selects a random sample

of eligible students. The number of schools and students required is determined to

achieve an acceptable degree of precision in the estimates derived from the survey.

Typically about 150 schools are sampled, and within each school a sample of about

35 students are selected, meaning a total of a little over 5,000 students are typically

sampled in each participating country. Some countries increase their sample

because they are interested in finer-grained information about particular subpopu-

lations, for example several participants take a larger sample in order to get regional

or provincial estimates. In Chap. 13 of this volume, Arzarello, Garuti and Ricci

describe how such regional information has been used in Italy. Accuracy in the

estimates of the location of the measured population (mean score), and the precision

of those estimates (the narrowness of the range of possible estimates), are also

increased as countries take up the possibility of systematically applying stratifica-

tion variables to the sampling process, whereby schools are classified and sampled

according to variables on which they tend to be similar, such as school type, school

size, programme type, school funding source, or location variables. In some cases

countries have also used such stratification variables to provide greater detail in

their national PISA reports.

A key piece of information captured from every PISA survey administration site

is the number of sampled students who actually respond to the survey. Acceptable

response rates are defined at both the school and student levels, together with

mechanisms for sampling additional schools to substitute for sampled schools

that refuse to or cannot participate or where student response rates are unacceptably

low. The recorded response rates are used to determine whether the sampling

standards have been met in each participating country, and whether the student

response rate at each sampled school is sufficient to include data from that school.

There have been cases of countries having data excluded from the PISA interna-

tional reports and database because of failure to meet the response rate standards.

For example, data from the Netherlands were excluded from a large number of
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tables in the PISA 2000 international report, and only included as a separate line in

other tables with a footnote indicating “Response rate too low to ensure compara-

bility” (OECD 2001). Several countries have come close to achieving unacceptably

low response rates in one or more PISA administrations (including Australia, the

Netherlands, UK and USA) and such countries have to work hard to achieve

acceptable rates.

In addition, data about the number of respondent schools and students are used to

determine sampling weights that are the statistical mechanism applied to PISA data

to ensure the sample gives the most accurate possible estimates of the targeted

characteristics of the population of interest.

Linguistic Quality Control for Test Materials

A further area requiring explicit steps to guarantee the quality of survey instruments

in such a large international survey is the translation and adaptation of test materials

in the array of local languages of instruction used in participating countries. In this

section, two main aspects of quality assurance related to linguistic quality control in

PISA will be discussed. The first is the steps followed as part of the development of

test items to take language, cultural and translation issues into account in order to

anticipate and minimise potential translation difficulties. Second, the mechanisms

used to achieve the highest possible quality across the 85 different national versions

of survey instruments (tests and questionnaires) in the 43 different languages that

were used in the PISA 2012 survey administration are briefly reviewed.

Linguistic Quality Issues in the Design of Test Questions

PISA test materials may originate in any of a variety of languages and an early step

in item development is preparation of an English language version that reflects the

intentions of the item’s author and any modifications subsequently introduced by

the professional test development teams that work on the item. At an early stage, a

parallel French language version is also developed, and these two versions are

further adjusted to ensure their equivalence with the help of the advice of content

experts fluent in both English and French under the direct guidance of the test

developers. These two versions are referred to as the source versions of each item.

They are tied together using a version control process that means a change to one

version causes status changes that ensure the two source versions remain

synchronised.

Source versions of each item can be subject to change for a variety of reasons.

Some of those relate to specifically mathematical issues inherent in the item. Some

relate to the lessons learned about each item as it is used with individuals and

groups during the item development process. However another key source of input
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to items as they develop comes from the accumulated knowledge and wisdom of the

linguistic quality control experts engaged by ACER to provide advice on cultural

and language factors known to be critical to the design of good test questions that

will be used in different languages and different cultural contexts. The objective of

this advice is to ensure that the source versions of all test items can be rendered as

equivalently as possible into all of the target languages.

The linguistic quality advice given to test development teams covers a range of

technical matters, including syntactic issues, vocabulary issues, cultural issues, and

even matters related to the presentation of graphics. Guidelines relating to syntax

are important because different languages employ different syntactic rules and

structures, and this can threaten the equivalence of different language versions.

Experience has shown that certain syntactic forms should be avoided wherever

possible because the different forms used in different languages make translation

extremely difficult. One example is the need to avoid incomplete or hanging stems

in a question statement because different languages structure the missing part of an

incomplete stem differently. For example in English, the missing part can be at the

end, but in other languages such as Turkish the missing part must be at the

beginning. This applies particularly commonly to questions presented in multiple-

choice format. Another is the problem caused by use of the passive voice. Sentences

that contain more than one phrase expressed in the passive voice can be extremely

difficult to translate while retaining a comparable level of reading difficulty. Such

issues can generally be avoided by transforming the offending phrase or sentence

and using only direct wording expressed in the active voice. Another syntactic

problem arises from long or unduly complex sentences, since translation can make

these even longer and more complex. Often that problem can be solved simply by

breaking the long sentence into a number of shorter ones.

The phrasing of questions can also create translation difficulties in particular

languages. Questions in English beginning with ‘how’ (how much . . ., how many

. . ., by how many times . . .) can be difficult to translate into some languages.

Sometimes this can be resolved by changing to a ‘what. . .’ question. For example

instead of asking ‘How much tax is on . . .’ it is better to ask ‘What is the tax on . . .’.
Instead of asking ‘How fast does the vehicle go . . .’, it is better to ask ‘What is the

speed of the vehicle. . .’. Questions beginning with ‘which’ (which of the following
. . .) cannot be used because in some languages a word denoting either singular or

plural is required, hence giving more information than is contained in the English

version. Expressing the source version as ‘which one of the following. . .’ or ‘which
one or more of the following. . .’ depending on what is intended usually gets around
this issue. A similar issue arises according to whether the language requires the

noun ending to change or not to change according to whether it is singular or plural.

Vocabulary-related issues can also cause translation problems. For example,

common names of plants and animals can be impossible to translate without clear

guidance on the object being named (for example, by including the object’s Latin
name in a translation note). Some technical terms, including mathematical terms,

can be difficult to translate where standard usage and definitions may not be in

common use in different countries. For example, different types of graphs or charts
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need to be referred to with care. Similarly, the word ‘average’ can be interpreted

differently according to different usage in mathematics classroom in different

countries. In some countries ‘average’ would refer to the arithmetic mean, but in

others its usage would be a more generic reference to measures of central tendency,

perhaps including the median in its interpretation. Words with a technical meaning

in English (for example ‘quadrilateral’) are rendered in some languages by words

that spell out key features of the definition (‘four sided figure’) so there would be no
point in asking a question that including testing whether the student knows the

meaning of such a word. Care must also be taken to decide on the implications of

using a word that may have an agreed technical definition, but for which common

usage may vary (for example, the word ‘weight’ would more correctly be referred

to as ‘mass’, but such words may be understood differently according to common

usage). Common ways of expressing ranges of numbers (for example whether the

boundaries are included in a phrase such as ‘between A and B’) create issues both
for the wording of questions, and for the interpretation of responses. The use of

metaphors or other ‘figures of speech’ in the wording of questions is another issue

that can cause translation problems. For example, the phrase ‘helicopter view’ to
denote an overview of a situation without any details may not convey the same

meaning in so few words in other languages. Many metaphors tend to be language-

specific, and cannot always be translated without making the wording longer or

more complex.

A number of issues that might be regarded as cultural matters have also been

highlighted by the linguistic experts, often related to different levels of familiarity

with objects referred to in mathematics problems. For example, a question requiring

familiarity with a metropolitan rail system (such as an underground metro) might

present very different challenges for students living in a city with such a system

compared to students from a remote rural community. The extensive item review

processes in which all PISA countries participate tend to pick up those issues.

Nevertheless being aware of potential problems of this kind in advance can help to

avoid difficulties before they arise.

Finally, even matters related to the preparation of graphic materials need to be

considered from a linguistic quality point of view. Graphics typically contain labels

and other text, and these must be put together in such a way that they are easily

editable by those responsible for translation in each country. Not only that, but the

design of the graphic elements in the source versions must take account of language

variations such as the maximum length of words or phrases when translated, and the

direction in which text is written (left to right, or the reverse as in Arabic). Great

care is needed to ensure that graphics are designed to accommodate the different

language demands in such a way that the ease of use and interpretation of the

graphic is consistent across languages.

136 R. Turner



Maximising the Linguistic Quality of National Versions

A major quality assurance challenge arises in relation to the need for each country

participating in PISA to prepare test materials in the local languages of instruction

that can be regarded as comparable to the source versions prepared by the interna-

tional contractor. Without this, PISA results would have no credibility.

A total of 18 countries involved in the PISA 2012 survey administration used

French or English language versions adapted directly from the appropriate source

version. Adaptations might include substituting familiar names for people referred

to, or changing to the local spelling standard. In all other countries, where other

language versions were needed (referred to as the target versions), translation
experts within each country were responsible for producing a local target language

version of each item. Different countries may have used slightly different processes

to achieve this. The recommended approach, used in several countries, is to use

both the English and French source versions independently to produce two target

versions that are then reconciled by an independent translation expert to form a

single version. In other countries, two independent translations were generated

from one of the source versions (either the French or the English language version),

each with cross-checking against the other source version, and the two versions

were reconciled by an independent translator into a single version. In several PISA

countries that share common languages, these translation tasks were shared by

experts in the cooperating countries.

The next stage in the process is to have each reconciled local version verified by

an independent expert. This work has been done by one of ACER’s consortium

partners (cApStAn Linguistic Quality Control) that employs language experts who

are all trained in application of the rigorous standards and procedures used in the

verification of translated PISA instruments. Personnel fluent in both the target

language and at least one, and often both, of the source version languages (English

or French) were engaged to undertake the verification, which consists of a detailed

comparison of the target and source versions. The team of verifiers met for face-to-

face training, and used a specially prepared set of training materials including a

common set of guidelines that defined exactly what kinds of things they should look

for in evaluating the quality of each translation, and lists of quite specific issues to

look for in relation to particular items for which potential translation problems had

previously been identified. Verifiers used a common set of categories that defined

exactly when an expert judgement was required to approve or reject a proposed

translation element, or to seek clarification of the reason for a proposed change, or

to refer proposed text to a central authority for further consideration. Categories

included such events as text being added that was not in the source version, text

missing that should have been there, layout changes, grammar or syntax errors,

consistency of word and other usage both within and across units, mistranslations

(so that the intended meaning is changed), and so on.

Some countries sharing a common language cooperated in a further procedural

variation, whereby the countries using a particular shared language cooperated to
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prepare a single version that was verified according to the standard processes then

adapted (subject to an external approval process) to suit the particular needs of each

of the cooperating countries. A similar process also occurred where one country

borrowed a verified version from another country having a shared language, and

introduced approved adaptations where needed to make it suitable for local use.

Once the verifier interventions had been carefully considered by the national

translation experts in each country, and final test booklets were formed from the

verified target version, an external final optical check was carried out to ensure that

the materials had been correctly assembled into the student booklets, and to identify

any remaining errors that had been missed in the national centre.

The translation and verification process described here is undertaken in its fullest

and most rigorous form at the stage of preparing materials for the field trial. After

the field trial, when a selection from the test material is identified for use in the main

survey, a further lighter-touch verification is undertaken that focuses on any

changes made to the source versions of the items (or their response coding instruc-

tions), and on any errors identified in the local versions as a result of the field trial

experience. Because of the complexity of creating comparable items, items that do

not perform optimally at the field trial are almost always discarded rather than

changed for the main survey.

Common Test Administration Procedures

For an international survey to generate comparable data from the different countries

that participate, the procedures through which the survey is administered should be

as near as possible to the same in all countries. The PISA survey uses a variety of

processes designed to ensure common and high standards of test administration are

adhered to everywhere.

Each country that participates in the PISA survey appoints a survey administra-

tion team. In some cases this is a team assembled and trained by the PISA national

centre, in other cases dedicated test administration agencies might be appointed to

administer the survey. The international contractor (ACER and its collaborators)

has developed a detailed set of test administration procedures, which are

documented in a series of manuals. These are used as the basis for training

personnel from each participating country using a ‘train the trainer’ model, so

that those responsible for managing test administration in each country are given

the same training, and are provided with the same guidelines and instructions. The

instructions are explicit and detailed, and include a script that is used in every test

administration session in every participating country to introduce the test and get

students started on answering the survey questions.

Test administrators can be school personnel, or they can be external staff

employed specially to conduct test sessions in a number of schools. In the case

where internal school personnel are used as test administrators, guidelines are
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designed to ensure that teachers do not administer test sessions that contain students

they teach in any of the subject areas being tested.

The test administration guidelines cover such matters as protocols for contacting

schools to arrange the basic details such as location and time of each test session,

and permission from parents for the students’ participation in countries where this is
required; packaging, transport, delivery and storage of test materials to ensure they

remain secure prior to the test session; arrangements at the test centre on the day of

the test, including for example setting up the room, and carrying out pre-defined

testing of computer hardware to be used in the computer-based components of the

test; exactly how the test sessions are conducted, including for example procedures

for checking on the identity of students turning up to sit the test, ensuring that each

student is issued with the correct test booklet (the international contractor randomly

assigns booklets to individuals on the lists of sampled students), what the test

administrators are permitted to say to students who ask questions during a test

session, and monitoring student behaviour during the test; the forms used to record

attendance and to report other data from each test administration session;

collecting, packing and shipping completed and unused test materials; and pro-

cedures for conducting any follow-up test sessions required to ensure response

standards are met. Sometimes multiple visits to a school are required to reach the

desired response rate of the designated sample of students.

As well as mandating these common and standard procedures, the international

contractor also applies a system of quality assurance to monitor adherence to the

procedures. Independently of the test administration system in each country, the

international contractor employs and trains a small number of staff known as PISA

Quality Monitors in each country, who attend a sample of test administration

sessions to observe and record the procedures followed. The monitor prepares a

report of each session observed, and highlights any discrepancies between the

intended and implemented procedures. These reports are compiled by the interna-

tional contractor and are used in the data adjudication process, a technical process

undertaken by ACER and the PISA Technical Advisory Group to determine

whether or not data from each country meet the PISA Technical Standards and

are therefore fit for purpose.

Processing and Scoring Survey Responses

PISA survey instruments contain questions in a variety of formats. Some of them

can be machine-scored. For example, responses to the various kinds of multiple-

choice questions can be scanned directly into digital form, or they can be easily

captured by data entry personnel and recorded digitally in the data processing

system being used. No particular expertise is required to do this, and such processes

are used to capture data from about a half the questions from the PISA 2012

cognitive instruments (the paper-based mathematics, reading, science and financial

literacy questions in PISA) and from most of the questions used in the background
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questionnaires. PISA has implemented procedures designed to maximise the qual-

ity of data captured from these questions, including through the design of the

response spaces and instructions given to student about how they should record

their responses, and the provision of double data entry procedures as a quality

assurance option taken up by several countries.

The major challenge presented at the stage of processing and scoring survey

responses exists in relation to the (approximately) 50 % of items that require

manual intervention to interpret the student response and convert it to a digital

code. Ensuring quality and consistency in the way these responses are processed in

the more than 60 countries that participated in PISA 2012 uses a number of steps.

During item development, possible responses to each question are identified, and

these are categorised according to the level of knowledge of the variable measured

in the question that is indicated by each response. Dichotomous items have two

broad categories: those attracting full credit (for example the single correct answer

to a multiple-choice question), and those for which no credit is warranted (the

distracter response options). Some questions involve more than two response

categories, so that particular responses may be of a quality that is clearly interme-

diate between the full credit and no credit categories. In these cases, a partial credit
category can be defined. These ordered response categories, defined as part of the

item creation process, are a critical part of each item. The response categories are

described in the coding instructions for each item in relation to the particular

knowledge and understanding needed for that category to apply, and the coding

instructions also contain examples of particular responses given by students during

item development, or in previous administrations of the item, to facilitate classify-

ing observed responses into the defined response categories. The coding instruc-

tions for many of the released items have been published (see, for example, OECD

2009, 2013) and several are republished and discussed in Sułowska’s Chap. 9 of this
volume.

When the completed PISA test booklets are received for processing from each

test administration centre (most commonly these are schools) within each country,

after the field trial, and again after the main survey data collection is completed,

teams of coders are assembled and trained to carry out the task of looking at student

responses, assigning each response to one of the defined response categories for the

item, and giving it the appropriate response code. Typically, teams of experts in

each domain (for example, graduate students, or trainee teachers, or retired

teachers) are recruited and trained by personnel from each PISA national centre

to carry out this task. Those personnel had previously received training directly

from the domain experts of the international contractor—indeed usually by the lead

test developers in each domain—beginning a ‘train the trainer’ model. The con-

tractor’s domain leaders develop training materials that cover general issues in the

coding of student responses, as well as specific issues in the coding of each item.

They take the national coding team leaders through every item, teaching them how

each kind of response should be treated.

Within each country, those team leaders pass on their learning to the local team

they assemble. In Chap. 9 Sułowska, the leader of the coding team in Poland,
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describes her experiences in this role. Team leaders often develop additional sets of

response examples to complement the material provided in the coding guides and

through the international training. They implement local quality management pro-

cedures to ensure that all members of the national coding team are applying

consistent standards as they work through the student material. In PISA 2012 an

online coding process was introduced that was taken up in several participating

countries, which used scanned images of student responses, and which allocated

responses to members of the coding team in a systematic way. Typically the process

involved coding all available responses to a particular item before moving on to the

next item, in order to help focus concentration on the particular issues associated

with each item, to rationalise coder training, and to remove the potential for bias

associated with coder perception of the set of responses in a particular student’s
question booklet. Control scripts (student responses for which correct response

codes were known in advance) were used periodically in the item allocation to

monitor consistency of standards, to identify individuals who were not applying the

standards correctly, and to identify items that were generating disagreement and

therefore may have warranted additional training.

The international contractor provided an additional service to support national

coding teams to complete their work. An international coder query service was

implemented, whereby student responses found by coding teams to be difficult to

classify, could be transmitted to ACER and the test developers could provide advice

on the correct coding. Those responses were circulated among all national coding

teams as a further means of achieving consistency of coding standards especially

for hard-to-code items.

As a final check on the consistency of coding within each national coding

operation and across the coding operations mounted in each country, ACER

implemented formal coder consistency studies. At the national level, a random

sample of student material was identified by ACER and national coding teams were

required to have four coders independently code each selected item. The resulting

data were analysed and reports were generated on the degree of consistency of

output of each national coding operation. At the international level, a further sample

of work from each national coding operation was identified by ACER for shipping

to a central location, and an independent team coded the sample of work. Again, the

data from this process were analysed to generate measures of the degree of

consistency of output across participating countries. The studies to monitor coder

consistency and the outcomes of these are reported in more detail in the various

PISA technical reports (e.g. Adams and Wu 2003).

Data Capture, Processing and Analysis

The final stages of preparing PISA data for reporting lie in the steps of data capture,

processing and analysis. Participating countries submit the data captured from the

test sessions they conduct in purpose-built data capture software that the
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international contractor provides to all countries. The software ensures that the data

entered into the various pre-defined fields meet the data definition requirements,

and permit subsequent processing using a suite of analysis tools that are built for the

purpose and applied across the entire dataset. The contractor’s sampling experts

first process the submitted data to ensure that the sampling plans were adhered to

and that the data represent the population in accordance with the sampling variables

defined earlier. A team of analysts at ACER check the data submitted by each

country for each variable to ensure consistency and completeness, and engage in a

dialogue with the data manager in each national centre to clarify any instances

where the submitted data appear to lack consistency or are incomplete. A prelim-

inary analysis of the data for each country is carried out, and detailed reports are

generated and delivered to each country to provide an opportunity for analysts in

each country to review their data and check any unexpected observations about the

data. At that stage, data are sometimes identified that indicate an unacceptable

degree of inconsistency, for example a particular item may have been unusually

difficult in a particular country, or responses to particular questions in the back-

ground questionnaire may appear to be inconsistent, and possible explanations are

then sought before a final decision about inclusion or exclusion of those data is

made by the PISA Technical Advisory Group during the data adjudication process.

The analytic methods used in PISA are similar to those used in other large-scale

surveys. They are designed to generate statistically the best possible estimates of

the population parameters targeted by the survey. Those tools and techniques are

described in a technical report published after each survey administration

(e.g. Adams and Wu 2003). The OECD makes all of the resulting data publicly

available for use by researchers and others.

Summary

The PISA survey is an enormous undertaking, involving the co-operation of a very

large number of people in many countries. While the stakes are not high for

individual students who participate, there is a growing interest in the kinds of

comparisons made from PISA data, and the kinds of policy decisions that are

taken by governments and education systems in response to PISA outcomes. As a

result, PISA and its outcomes are increasingly exposed to public scrutiny. What

comments and questions might we expect?

“PISA doesn’t test the things we are really interested in, and the test questions

they use do not match what students in our schools are taught.”

“How can it be fair that PISA students in countries as disparate as Albania,

Argentina, Australia, Austria and Azerbaijan undertake an assessment with test

items written by test developers in Australia?”

“I heard that students in one particular country do well in PISA because in that

country, only the very best students are chosen to undertake the PISA survey.”
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“In one country I know about, teachers help students with their PISA tests,

students are allowed to stay in the test session until they have completed their test

booklet no matter how long that takes, and then the teachers mark the students’
examination papers very leniently.”

This chapter was written to expose the myths such as those above that are voiced

about PISA, and to answer legitimate questions that potential users of PISA data

might have. The quality assurance mechanisms employed at each stage of the

development and implementation of the PISA survey result in the generation of

data that help to answer many questions about the state of educational outcomes

across a large part of the globe.
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Chapter 7

The Challenges and Complexities of Writing

Items to Test Mathematical Literacy

Dave Tout and Jim Spithill

Abstract The key to obtaining valid results from a large, international survey is

having access to assessment items that are fit for the intended purpose. They must

align with and incorporate the requirements of the relevant framework, give

students fair and reasonable opportunity to demonstrate their true level of perfor-

mance, cover a wide range of student abilities and mathematical literacy content,

and work well in many different languages and cultural contexts. This chapter

describes in detail the process that item writers from the PISA international

contractors applied to generate items for the 2012 survey, from initial draft to

final assessment, for both paper-based and computer-based items.

Introduction and Background

In PISA 2012 mathematical literacy was the major domain for the first time since

2003 so a comprehensive new set of items needed to be developed, including items

for the new optional computer-based assessment of mathematics known as CBAM.

The mathematics development work for PISA 2012 was shared among seven

different test development teams: the Leibniz-Institute for Science and Mathe-

matics Education (IPN) and Universität Kassel both in Germany, Analyse des

systèmes et des pratiques d’enseignement (aSPe) in Belgium, the Institutt for

Laererutdanning og Skoleutvikling (ILS) in Norway, the National Institute for

Educational Policy Research (NIER) in Japan, and the University of Melbourne

and the Australian Council for Educational Research (ACER) both in Australia.

Initial item drafts were also submitted by participating countries and these were all

reviewed by the international test development teams and then the most promising

of these developed for selection into the field trial and potentially the main survey.

The lead international contractor for PISA 2012, ACER, oversaw the process and
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managed the item development teams and the review processes as well as the

finalisation and preparation of the final survey instruments.

Because mathematical literacy was again the major domain, the item develop-

ment process benefited from input from such a diverse consortium. In total, drawing

from many more initial ideas, 345 new items were written for the paper-based

assessment, of which 172 advanced to the field trial, and 72 of those were used in

the main survey. The corresponding numbers for the computer-based assessment

were 122 new items, with 86 used in the field trial and 41 of those used in the main

survey.

The present authors, as test developers on this international assessment,

quickly learned about the complex process and sophistication of developing and

preparing suitable test items. It was a steep learning curve. It was not like a lot of

test development where test developers sit at their own desks, write some good

questions covering specified skills, submit them and then see them magically

appear in a final assessment. An item developer in PISA soon learned that this was

not the case.

This chapter focuses on the item development process, from the beginnings of an

item, through revisions, to potentially ending up as an item in the main survey. The

chapter attempts to describe the skills, knowledge and quality assurance processes

that guarantee that the final survey assesses what it is supposed to assess. The test

development process for PISA has to be particularly well developed because of the

constraints of a large international assessment and the scrutiny to which the surveys

are rightly subjected. For this reason, it was judged that this chapter should include

general aspects of test development relevant to many assessments, as well as

features specific to PISA.

The terminology that test developers use in PISA is that items begin with a real-

world stimulus, which may be long or short (see, for example, the first sentence and

image of Fig. 7.1). One or more questions then follow using the same stimulus

material. The set of questions that derive from the same stimulus make up a unit.

The unit PM942 Climbing Mount Fuji (OECD 2013b) shown in Fig. 7.1 has three

questions. The word ‘item’ refers to the stimulus, the question, and the instructions

for coding responses to the question.

Telling the Story: A Sample Unit

Throughout this chapter we will use one unit from the PISA 2012 survey to

illustrate the process of item writing. PM942 Climbing Mount Fuji originated at

ACER, and it has been chosen partly because it went through its full development in

the hands of the authors and colleagues, ending up in the main survey of 2012.

Figure 7.1 shows the final version of the unit. This chapter discusses the reasoning

behind its evolution from the initial version shown in Fig. 7.2: how the stimulus text

was tightened, how information in the stimulus was aligned more closely with its
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CLIMBING MOUNT FUJI

Mount Fuji is a famous dormant volcano in Japan.

Question 1

Mount Fuji is only open to the public for climbing from 1 July to 27 August each 
year. About 200 000 people climb Mount Fuji during this time.
On average, about how many people climb Mount Fuji each day?

A 340
B 710
C 3400
D 7100
E 7400

Question 2

The Gotemba walking trail up Mount Fuji is about 9 kilometres (km) long.
Walkers need to return from the 18 km walk by 8 pm.
Toshi estimates that he can walk up the mountain at 1.5 kilometres per hour on 
average, and down at twice that speed. These speeds take into account meal 
breaks and rest times.
Using Toshi’s estimated speeds, what is the latest time he can begin his walk so 
that he can return by 8 pm?

Question 3

Toshi wore a pedometer to count his steps on his walk along the Gotemba trail.
His pedometer showed that he walked 22 500 steps on the way up.
Estimate Toshi’s average step length for his walk up the 9 km Gotemba trail.
Give your answer in centimetres (cm).

Fig. 7.1 Final version of PM942 Climbing Mount Fuji (OECD 2013b)
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relevant question, and how questions were significantly revised and restructured to

better meet the intent and purposes of the PISA Mathematics Framework. The

rationale for decisions about the CBAM unit CM013 Car cost calculator (ACER

2012) shown in Fig. 7.4 below will also be discussed.

CLIMBING MOUNT FUJI

Mount Fuji is open for walking from the 1 July to the 27 August each year.
About 200 000 people walk up Mount Fuji during this period each year.

Question 1

On average, about how many people walk up Mount Fuji each day during this 
period?

A 340
B 700
C 3400
D 7000

Question 2

Toshi took 7 hours to walk to the top of Mount Fuji along the Gotemba trail.
The trail is 9.1 kilometres long.
What was Toshi’s average walking speed in kilometres per hour?
Give your answer to one decimal place.

Question 3

On his 9.1 km walk along the Gotemba trail, Toshi estimated that the length of 
each of his steps was about 40 centimetres.
Using Toshi’s estimate, about how many steps did he take to walk to the top of 
Mount Fuji along the Gotemba trail?

Fig. 7.2 Initial version of the PISA 2012 unit PM942 Climbing Mount Fuji
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PISA Test Development Process

An extensive process helps to guarantee the quality of the items. This is outlined in

Fig. 7.3. ACER and the test development centres used a team approach to item

writing, whereby experienced test developers wrote the items (with initial ideas

from many sources) and met together to critique each other’s items, following

which the items were revised and improved. Then the revised items went through

further comprehensive reviews and revisions. This included what ACER calls

cognitive laboratories and pilots with potential test-takers, feedback from partici-

pating countries, and revisions made during a formal translation and review process

with language experts. After the review processes, a field trial was undertaken with

a sample of the target population in each participating country. The field trial data

were analysed psychometrically and the results of this analysis guided the selection

of the best performing items for the main survey. The final selection had to meet the

criteria established in the Mathematics Framework (OECD 2013a), the technical

requirements and the preferences as expressed by each country. The following

sections elaborate on these strategies and processes. Some of these processes are

also mentioned briefly in Turner’s Chap. 6 in this volume.

Fig. 7.3 ACER’s test development process for PISA 2012
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Before Item Writing Begins: The Conceptual Framework

Test development and writing proceeded from the agreed conceptual framework

(OECD 2013a) that included a description of what was being assessed and

why and how. The PISA Mathematics Framework for each PISA survey was

developed by the Mathematics Expert Group (MEG), a team of international

experts from different countries, drawing on scholarship described in Chap. 1 of

this volume.

For test developers the Framework was the crucial document in that it

established the requirements for the items to be developed. As noted elsewhere

(see Chap. 1 of this volume), PISA is not a curriculum-based assessment. The PISA

definition and description refers to the ability of the student to cope with tasks that

are likely to appear in the real world, that contain mathematical or quantitative

information, and that require the activation and application of mathematical or

statistical knowledge and skills. This was the key challenge for test developers—to

write items testing mathematical literacy and not just standard school-based

mathematics.

The PISA Mathematics Framework (OECD 2013a) also specified the propor-

tions of items with certain characteristics in the final survey (see also Chap. 1 of this

volume). For example, approximately 25 % of items should be in the multiple-

choice format and approximately 25 % should belong to each of the four mathe-

matical content categories. Item developers needed to ensure that they provided the

Mathematics Expert Group with sufficient items in each cell of the specification

grid to allow for a good selection of items for the main survey.

The Item Writing Process

Item writing for PISA proceeded through the stages outlined in the diagram in

Fig. 7.3, and depended on a wide range of knowledge, experience and skills. This

section outlines the formal processes and mechanics of item writing that were

followed, and also its more creative and challenging aspects.

Test Development Teams’ Induction and Training

Before writing commenced for PISA 2012, key members of each of the test

development teams met and were introduced to the PISA Mathematics Framework

and trained in the item writing process, including the mechanics and quality

assurance processes, and approaches to writing successful items. Item writers in
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PISA needed to meet different cultural and linguistic demands, to address the

various requirements and specifications in the PISA Mathematics Framework,

and also to address specific new requirements and expectations for PISA 2012. A

similar training session was also provided to the National Program Managers and

relevant country personnel to support countries that intended to submit potential

items.

Based on feedback and reactions to previous PISA assessments, some specific

key challenges were set for PISA 2012 mathematical literacy test developers. These

included that the suite of new items should:

• be more realistic and authentic than items in previous surveys, which had been

produced for PISA 2003 when mathematics was first the major domain and test

developers were themselves coming to terms with the relatively new notion of

mathematical literacy

• make the contribution of school mathematics content more explicit and

more easily recognisable to external observers than in some items of previous

surveys

• include a greater number of more difficult items that allow capable students to

demonstrate their ability

• include a greater number of very easy items so that the level of performance of

students at the lowest levels could be better measured.

Examples of the impact of these requirements can be seen in the revisions made

to the unit PM942 Climbing Mount Fuji. The changes made to Questions 2 and

3 were explicitly made to make the questions more authentic. Also in the computer-

based unit, CM013 Car cost calculator (ACER 2012) shown in Fig. 7.4 below, there

were a number of questions developed to meet the second and third requirements in

the above list—to make the contribution of school mathematics content more

explicit and more easily recognisable, and to include a greater number of more

difficult items.

Optional Computer-Based Assessment

In PISA 2012, an optional computer-based assessment of mathematical literacy

(CBAM) was introduced for the first time. In CBAM, specially designed PISA units

are presented on a computer, and students respond on the computer. They are also

able to use pencil and paper to assist their thinking processes. The CBAM initiative

is further discussed in Chaps. 1 and 8 of this volume.

This required a new set of skills for the test development teams, as the CBAM

option provided opportunities for test developers to write items that were more

interactive and engaging, and which may move mathematics assessment away from

the current strong reliance on written, text-based stimuli and responses, potentially
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enabling different student abilities to be assessed. The challenge posed to both the

test developers and the computer platform development team and programmers was

to make CBAMmore than a version of the paper-based assessment transferred onto

a computer. The intention was to develop items that reflected the real-world use and

Fig. 7.4 CBAM item CM013Q03 Car cost calculator Question 3 (ACER 2012)
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application of mathematics within a computer-based environment, but also to take

advantage of the potential to assess aspects of mathematical literacy that could not

be assessed with paper-based assessment. The styles and types of items and

interactivity included: drag-and-drop items; the use of hot spots on an image to

allow students to respond non-verbally; the use of animations and representations of

three-dimensional objects that can be manipulated; the ability to present students

with sortable datasets; and the use of colour and graphics to make the assessment

more engaging.

With the above in mind, a classification scheme was developed by the ACER test

development team to classify the items that were developed. The non-mutually-

exclusive categories described were:

• animation and/or manipulation

• automatic calculation, where calculation was automated ‘behind the scenes’ to
support assessment of deeper mathematical skills and understanding

• drawing, spatial, visual cues and/or responses

• automatic function graphing and statistical graphing

• simulation of common computer applications (e.g. using the data sorting capa-

bility of an ‘imitation’ spreadsheet)
• simulation of web-based applications or contexts, with or without computer-

based interactivity (e.g. buying goods on line).

The following sections in this chapter apply to the writing of both paper-

based and computer-based mathematical literacy items. However, developing

CBAM items posed additional challenges especially as this was the first time

this assessment was offered. At first, the computer platform was still under

development, so it was unclear what interactivities would be supported and

not all the envisioned interactivities were eventually realised. For example,

there was no ability for students to enter mathematical symbols (apart from

the standard set of key-board symbols), expressions or formulae into the system.

The use of video or audio was not practical, especially because of the large

number of languages. Many of these limitations arose from the complexity of

providing a platform that could be used in a large number of countries around

the world, using equipment that a random sample of schools were highly likely

to possess at that time, and supervised by test administrators without special

computer expertise. The screen size (the available ‘real estate’) restricted the

number of words and images. It was necessary to allocate extra space in the

English source versions of each item to allow for the longer text forms that occur

in many other languages. The design process used mock-ups and story boards of

the items, and interactive items were sometimes programmed initially in Excel

or Word so that a meaningful item review process could be undertaken cost

effectively. Item writers had to work hard to communicate their vision to the

programmers, illustrators and designers.
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The Challenges and Complexities of Item Writing:

A Creative Science or Art?

When writing PISA mathematical literacy items, there was no single fixed process

to follow. There were certainly a number of processes and structures available that

supported the item writing process, and these are explained in more detail in this

section. The challenge for item writers was to create items that:

• were rich and interesting for 15-year-olds around the world and were neither too

hard nor too easy

• had obvious authenticity and did not pose seemingly artificial questions

• were as much as possible equally accessible and equitable for students of

different gender, culture, religion, living conditions

• used appropriate and accessible language.

Where and How to Begin?

One of the key creative aspects was to find a context with realistic and authentic

mathematical content likely to be accessible to and engage 15-year-olds across the

world. One approach was to start with a real-world context and develop it into a

unit. The problem with this was that often the real-world context was too compli-

cated and complex for 15-year-olds in a test situation. Often the mathematics was

too highly embedded in the context and to extract the mathematical model required

too much reading and understanding of the situation, which would block many

students from solving the problem. Another issue was that the mathematical

formulas and the required quantities or numerical information to be manipulated

in the real-world context were also complex and so calculation would be time

consuming and open to arithmetical errors, thereby clouding what the item

assessed. It was important to simplify the real-world context, the related stimulus

and its embedded mathematical information to make it accessible whilst still

maintaining the authentic aspect.

The CM013 Car cost calculator unit (ACER 2012), the stimulus and one item of

which is shown in Fig. 7.4, is an example of a unit that began from a real world

experience. The idea was stimulated by a cardboard calculator handed out freely by

a transport authority. It then developed into a CBAM unit because the real manip-

ulative cardboard calculator stimulus could not be used in an international paper-

based assessment. The electronic version also had strong face validity: many

websites have similar features. This is an example of how online assessment

extends the range of authentic situations that can be used.

The interactive car cost calculator could be manipulated by the student to see

what impact the distance variable had on the cost of car travel and to gather data for

answering a number of questions. This allowed the student to focus on the
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functional relationship between the variables rather than using a formula or table of

values. This unit would have been much more difficult to write as a realistic paper-

based item, given the inability to ‘hide’ the formula behind the scenes.

Another approach to item development was to start with a mathematical concept

or content area and try to find an appropriate context based on an authentic real-world

task. The problem with this approach was that often this resulted in what is tradi-

tionally seen as a school, curriculum-based, word problem that has little real-world

relevance or authenticity. Many of the items submitted by countries were of this style,

and few such items were able to be developed for use in the PISA main survey.

An idea for a unit often developed from a test developer’s personal experiences
or interests, or from something they read or found—in the media, in the outside

world, at home, in the community or in a workplace. In other cases, often still based

on such an observation or interest, a test developer searched on the internet for

related examples or contexts that would be a suitable starting point and then turned

that into a useful context for asking mathematical literacy questions suitable and

relevant to 15-year-olds. The unit PM942 Climbing Mount Fuji is a good example.

The test developer was looking for a context that he could use to develop a unit

about walking (his personal hobby) to assess skills related to speed, distance and

time relationships. Units are likely to be more authentic and accurate if test

developers write about the things they know. Because he was aiming to engage

an international audience, he chose Mount Fuji as an iconic physical feature that

many students would know. Although not having personally walked Mount Fuji,

the writer was able to select and evaluate the information he found when

researching—he knew what he was looking for. In this sense the item writer

could guarantee that the context and the related mathematics were realistic and

dealt with factors that really have to be considered by walkers.

Some items started small and grew, while others started as a big idea that was

edited and reduced to suit the 15-year-old test taker. As mentioned above, simpli-

fication of the context and related stimulus was usually needed. It can often be

useful if the item writer has in mind a particular student they have taught when

trying to set an item at an easier or harder level within the overall set of items.

Sometimes to fill gaps in the item set, a test developer was required to write a unit

fitting Framework specifications e.g. to write items for a specific content category

(e.g. Change and relationships), context category (e.g. Occupational) and process

(e.g. Employ, perhaps using a formula) from the Framework (OECD 2013a).

Use of Visual Support

No matter which approach was used to develop the unit, there was always the need

for some form of visual support for the stimulus. This had been the case with earlier

PISA surveys, but was seen as a feature to be strengthened for the PISA 2012

survey, where there was a more extensive and consistent use of visual support by

the use of illustrations, diagrams, or photographs. This was used to increase
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accessibility of the problem, by tuning the student in to the context and thereby

helping to reduce the reading demand. In other words, the visual support helps

make the unit attractive to students and helps connect the content to the real world

and give the questions a purpose.

The Mechanics of Item Writing

Item writers were expected to provide a variety of items that met the framework

specifications for context, format, content, processes and fundamental mathemati-

cal capabilities as described in Chap. 1 in this volume. The list below gives a

number of requirements that needed to be operationalised through the test devel-

opment process.

• There needed to be a full range of difficulty so that all participating students

would find some items that gave them an opportunity to demonstrate what they

could do.

• A requirement of the psychometric model is that items should be independent of

each other to the maximum extent possible. In particular, a response to one item

in a unit must not be required in solving another item.

• Items should not require excessive computation. Whilst items could include

computations (as they might naturally arise in the context), the items were

generally not to test great computational dexterity.

• The level of reading required should not interfere significantly with a student’s
ability to engage with and solve an item. Practical guidelines were issued for this.

• No single item should take more than five minutes to complete, and no unit more

than 15 min so that students had sufficient time to attempt a range of independent

items. This is needed for the psychometric model. This criterion led to a number

of interesting items being discarded before the field trial.

• Items were to be culturally acceptable across participating countries, and should

be readily translatable.

• Student responses must be able to be consistently scored (coded) in an efficient

manner by teams around the world.

A standard Word template was provided so that all item writers wrote to the

same style and format. The template ensured that the item metadata was a consis-

tent reflection of the Framework. The template included a section for the coding of

each item (for further details see Sułowska’s Chap. 9 of this volume), a question

intent description and the Framework process, content and context categories.

Figure 7.5 shows the basic coding instructions of PM942Q02 Climbing Mount

Fuji Question 2. This information is provided for all newly released items

(e.g. OECD 2013b). The question intent is a brief description of what the student

has to do to solve the problem. For coding, the item writer needed to specify the

types of response that would receive Full Credit, Partial Credit (where relevant) or

No Credit. The template ensured that all these issues were addressed by the item

writer and discussed, reviewed and agreed upon in panel sessions.
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The coding scheme for this question shown in Fig. 7.5 recognises that a student

who has arrived at a correct value of 11 has achieved the question intent and is not

penalised for omitting the time specification ‘am’ from their response. This is a

point of difference between mathematical literacy and common school mathematics

teaching practice, where teachers may well deduct marks if such information is not

written along with the numerical answer. In PISA it is a case of giving credit for

what a student can do. Teachers aim to develop good habits in their students, which

is different to the measurement aims of the PISA assessment.

The Metadata

Test developers must map each unit and item against the characteristics of the PISA

Mathematics Framework. These item characteristics become metadata for each

item. For PM942 Climbing Mount Fuji, the key item characteristics (metadata)

for the items, for both the final version (Fig. 7.1) and the initial version (Fig. 7.2) are

shown in Table 7.1. The process categorisation only occurs in the final version,

because initial test development began before this new aspect of the Framework had

been finalised. The estimated difficulty was obtained by test developers by rating

against the fundamental mathematical capabilities, as described below.

PM942Q02 was completely redesigned between the initial and final versions and

this increased its estimated difficulty substantially from 4 to 10. In the initial

version (see Fig. 7.2), time and distance were given directly, so the student had

the straightforward task of making a single calculation to find the average speed. In

contrast, the final version (see Fig. 7.1) demands two different time calculations

based on related speeds and then a calculation of a latest starting time, where even

the notion of ‘latest start’ is linguistically not simple for many students.

CLIMBING MOUNT FUJI SCORING 2

Question Intent

Description Calculate the start time for a trip given two different speeds, a 
total distance to travel and a finish time

Content Change and relationships

Context Societal

Process Formulate

Full Credit

Code 1 11 (am) [with or without am, or an equivalent way of writing 
time, for example, 11:00]

No Credit

Code 0 Other responses.

Code 9 Missing.

Fig. 7.5 Scoring and Question Intent section of PM942Q02 Mount Fuji Question 2
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Item Format and Item Response Types

PISA had used items with different presentation formats and with a range

of response format types for the earlier paper-based surveys, and these item

format types were combined with new presentation formats developed for

PISA computer-based assessments in 2009 (science and electronic reading)

and 2012. The item response categories described and used for PISA 2012

were:

• Constructed Response Expert—items where the student writes a response that

needs expert judgement for the coding. In PM942Q02 Climbing Mount Fuji

Question 2, the field trial data indicated students could sometimes add in

comments and valid variations. The complex coding process for these items is

described by Sułowska in Chap. 9 of this volume. Expert coded items are often

intended to measure higher level thinking, argument, evaluation and the appli-

cation of knowledge, and they might involve constructing mathematical expres-

sions or drawings and diagrams that necessitate the involvement of a suitably

expert person to assign observed student responses to the defined response

categories.

• Constructed Response Manual—items that have a very limited range of possible

full credit responses (e.g. single number or name) but are best coded manually

Table 7.1 Item characteristics of final and initial versions of PM942 climbing Mount Fuji

Item

characteristics Question 1 Question 2 Question 3

Final version (see Fig. 7.1)

Mathematical

content

Quantity C&R Quantity

Context Societal Societal Societal

Process Formulate Formulate Employ

Estimated

difficulty

5 10 9

Response type Multiple choice

(simple)

Constructed response

expert

Constructed response

manual

Initial version (see Fig. 7.2)

Mathematical

content

C&R or quantity C&R C&R or quantity

Context Societal Societal Societal

Process Processes category definitions not finalised until after this stage

Estimated

difficulty

4 2 4

C&R Change and relationships
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although extensive training is not required. PM942Q03 Climbing Mount Fuji

Question 3 (single number response) is an example. Items of this type work well

in place of a multiple-choice format that has too many or too few good

distracters, and they reduce the potential for guessing.

• Constructed Response Auto-coded—items that can be automatically coded. The

actual response is keyed in by a data entry operator as part of the processing of

responses, or in the case of computer-based items captured directly by the

computer. Many CBAM items were of this type, including CM013Q03 Car

cost calculator Question 3 (see Fig. 7.4).

• Simple Multiple Choice—items where there is one correct response that the

student selects (e.g. PM042Q01 Climbing Mount Fuji Question 1). This includes

both radio buttons and a drop down menu where there is a unique correct auto-

coded response.

• Complex Multiple Choice—items where the student responds to a set of multiple

choice statements (usually two or three) and selects one of the optional responses

to each (for example, ‘true’ or ‘false’). The item is only coded correct if all

responses are correct. Items of this type could be automatically coded and were

used in both the paper-based and computer-based assessments. They reduce the

effect of guessing.

• Selected Response Variations—these variations to the standard multiple-choice

formats above were only used in CBAM, and could all be coded automatically.

Preparing for Reliable Coding

In constructed response items the challenge for the item writer is that the question

stems need to be well structured with clear instructions to the student, as in

PM942Q02: ‘Using Toshi’s estimated speeds, what is the latest time he can begin

his walk so that he can return by 8 pm?’ Even with clear instructions, there are many

ways in which the student could write the time (e.g., 11 am, 11:00, 11 in the

morning, 11) and so manual coding of the responses is required. Because of this,

the item writer also needs to communicate explicitly with the coder through the

coding guide. The potential range of responses needs to be anticipated and then

documented fully for reliability and ease of coding. Further examples are discussed

by Sułowska in Chap. 9 of this volume.

Use of the Fundamental Mathematical Capabilities

Test developers estimated the item difficulty of each item before the empirical data

of the field trial was available using their professional judgement based on their

experience of students generally and in the cognitive laboratories in particular, and
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also created a score (see Table 7.1) by rating the items against the fundamental

mathematical capabilities, as described by Turner, Blum and Niss in Chap. 4 of this

volume. This procedure predicted for the Climbing Mount Fuji unit, that Question1

(PM942Q01) would be much easier than Question 2 (PM942Q02) or Question

3 (PM942Q03). In the field trial, the success rates across all countries were 46 % for

PM942Q01, 12 % for PM942Q02, and 11 % for PM942Q03 (full credit) and a

further 4 % with partial credit. This shows that using the rating scheme did predict

difficulty quite well and also that quite difficult items had total scores much below

the theoretical maximum rating of 18. The other use of the fundamental mathemat-

ical capabilities was to ensure that the sets of selected items were balanced across

different aspects of mathematical literacy. Additionally, questions could be devised

to highlight Reasoning and argument or Using symbolic, formal and technical
language and operations over other capabilities to round out the item set.

The Three Processes

An issue that affected test development was the determination, after some item

writing had commenced, to apply the new classification of items against the three

processes of mathematical literacy developed in the 2012 revision of the Frame-

work as explained by Stacey and Turner in Chap. 1 of this volume:

• Formulating situations mathematically

• Employing mathematical concepts, facts, procedures, and reasoning

• Interpreting, applying and evaluating mathematical outcomes.

For example, in PM942Q01 Climbing Mount Fuji Question 1 (see Fig. 7.1) the

main cognitive demand on students was to understand the problem and its real-

world meaning in order to recognise that they could use the dates to work out the

number of days that Mount Fuji is open, and divide the total number of people by

this number. This meant that it fell predominantly into the Formulate process. For
15 year old students, there was lower demand from the Employ (the calculation) and
Interpret processes. In contrast, in PM942Q03 Climbing Mount Fuji Question 3, the

mathematical process required was much more explicit and matched a standard

process for conversion within metric units. This item was hence classified as

Employ. As the test developers and the Mathematics Expert Group applied the

new classification to items from earlier PISA surveys, it emerged that it was not

always easy to draw sharp lines between the processes and the classification hinged

on what was judged to be the main cognitive challenge or impediment to a student

solving the problem. When writing new items for PISA 2012 after the Formulate—
Employ—Interpret classification definitions had become available, test developers

constructed items that focused more strongly on just one process. Within the

Mathematics Expert Group, there was agreement that tasks that best encapsulated

mathematical literacy in its fullest sense would usually involve aspects of all three

processes, since they reflected all stages of the mathematical modelling cycle.
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Classroom activities that use tasks like this are required to develop mathematical

literacy to the full. However, in the context of an assessment, items that measure

abilities in constituent processes are valuable. In Chap. 11 of this volume, Ikeda

discusses this issue more fully.

Review Processes

The Panel

After individual test developers drafted items they met as a panel (at least three

writers) to critique and review each other’s items. Panel members individually

examined the items before the panel meeting. Questions addressed during the panel

included the following:

• Is the mathematics correct?

• Does the content sit well with the PISA Framework?

• Does the metadata accurately describe the item against the Framework criteria?

• Is each question coherent, unambiguous and clear?

• Is it clear what constitutes an answer: do students know exactly what they should

produce?

• Is each question self-contained? If it assumes prior knowledge, is this

appropriate?

• Are there dependencies between items (e.g. does one item give a clue for the

next one)? Would a different order of items with the unit help or hinder students?

• Is the reading load as low as possible? Is the language simple and direct?

• Are there any ‘tricks’ in the question that should be removed?

• Are the distracters for the multiple-choice items plausible, or can better

distracters be devised?

• Are the response categories complete and well defined, and is the proposed

coding easy to apply?

• Is the context appropriate and relevant for the target group?

• Is the context authentic?

• Are the text and the questions fair? Are there any ethical matters or other

sensitivities that may be breached (for example, racial, ethnic, gender stereo-

types, and cultural inappropriateness)?

• Do the questions relate to the essence of the stimulus?

• Is the proposed scoring consistent with the underlying ability that is being

measured?Would students possessing more of the underlying ability score better

on this item than students with less?

• Is it clear how the coding would be applied to all possible responses?

• Could partial credit be given if part of the answer is achieved?

• Are there any likely translation difficulties?

• How would this item stand up to public scrutiny?
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Two to three hours were allocated for each panel to discuss 20 items. Discussion

within a panel meeting was direct and robust, and each member was expected to

comment on each item. Virtually no items escaped amendment of some kind. How

this process impacted on Climbing Mount Fuji is discussed in a later section.

Immediately after a review, resulting changes were implemented in the PISA

item development database while the discussions and amendments were fresh in

the test developer’s mind. The new versions were then cross-checked by another

panel member to ensure that they met the panel recommendations.

Some items required only minor changes, such as splitting long sentences with

conditional sub-clauses into shorter, more direct statements, using active rather

than passive voice, or moving stimulus material from the beginning of the unit to

be adjacent to the relevant item, and editing diagrams. Other items required major

changes. Items that could not be reworked to the satisfaction of the panel were

discarded. Such items tended to be not realistic, too difficult for the target

audience or too time consuming to solve. Sometimes a panel suggested an

additional item to complement a unit. In some multiple-choice items the

distracters were judged weak or artificial but the mathematics itself was interest-

ing and sound. Such items could be changed to a constructed response item or

multiple-choice options could be improved. In the case of complex multiple-

choice items, sometimes the item writer supplied three or four multiple-choice

statements all of which went to the field trial with a decision afterwards to

retain all or delete one or more. By using trial data on each statement, the

difficulty level and the other psychometric properties of the complete item

could be manipulated. This is one of the few item-level modifications that could

be safely made after the field trial. Everything in the main survey needs to have

been tested in advance.

Student Feedback from Cognitive Laboratories and Pilot Study

The items were also tested with local students of the target age group in cognitive

laboratories in the early stages and in later larger pilot work. A cognitive laboratory

involves a test developer meeting with three or four students, observing how they

work with the items and then discussing with them any issues that affected their

interpretations or approaches. Essentially this uses the long established ‘think
aloud’ interview methodology commonly used in mathematics education research

(Ginsburg et al. 1983). Student responses were then used for reworking or

discarding items.

The test developer explained first that it was the items that are being tested, not

the students. Students were given one unit at a time with the test developer

observing how they went about working it out and asking questions about their

actions and reasons. When all members of the group were finished there was group

discussion and feedback. Each student was asked to respond to these issues:
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• whether it was easy to follow the instructions

• whether the content or context was familiar

• whether the content was difficult or easy

• whether the unit was interesting or boring

• specific comments about the stem, the distracters in multiple-choice items, the

language used, and diagrams

• (for CBAM) ease of interactivity and navigation.

In a one hour session it was possible to cover about four or five units. For CBAM

items, feedback often resulted in improved and simplified instructions and

improved graphic design for the interactivity and navigation around the screen.

The quality of the feedback varied, of course, but there were numerous cases where

students were commended and humorously advised that a career as a test developer

might well await them, given their insight into the testing process.

The pilot study involved more than 1,000 students in 46 schools across Australia

where the lead international contractor (ACER) is located. These schools were not

reused in the Australian sample for the field trial or main survey. Students worked

through the near-final versions of the units allocated to 19 test booklets. The

responses were analysed to check that the items were behaving as expected.

Constructed responses were checked for the range of responses, expected and

unexpected. Experienced coders from other ACER teams also coded the responses,

and made valuable comments to simplify and clarify the coding guides. The

students’ responses were also used as examples within the coding guide and for

the coder training workshops.

Country Reviews

National Project Managers from OECD member countries and partner countries

and the Mathematics Expert Group reviewed items batch by batch and all their

feedback was considered by the development team. For each item, reviewers rated

each of the following criteria on a five point scale:

• What is the item’s relevance to preparedness for life?

• How well does the item sit within the curriculum expectations for 15-year-old

students in your country? (Although PISA is not curriculum based, it is neces-

sary that items can be solved using mathematics that students have learned).

• How interesting is the item?

• How authentic is the context?

• Are there any cultural concerns with the item?

• Do you foresee any translation problems with the item?

• Are there any coding concerns with the item?

• Does the stated question intent reflect the content of the item?
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Table 7.2 summarises the feedback from 47 member and partner countries for the

PM942 Climbing Mount Fuji unit (near final version) for the first four criteria above.

The mean scores showed that Climbing Mount Fuji was highly regarded as a strong

candidate for inclusion in the field trial. Fewer than 10 % of countries reported

concerns with the unit under these criteria. For PM942Q01 the concerns were about

the format of the date, and the interpretation of the phrase ‘On average, about . . .’. For
PM942Q02 there were comments about this being more of a science curriculum topic

than mathematics in their country, and comments about authenticity noting that

walking distances are often expressed in hours, not kilometres. For PM942Q03 the

concerns includedwhether it is necessary to insist on stating the answer in centimetres,

and that pedometers are not common so their function should be explained. This

feedback was used in the revision of the items, and in the translation notes to allow

customisation to local conventions, such as for representing time.

Translation Issues

The PISA 2012 survey was conducted in 39 different languages, so the need for

translation into those languages impacted on the wording and structure of units and

items. Through the comprehensive translation process and review system described

briefly by Turner in Chap. 6 of this volume, language structure, the meaning of

items, content and cultural issues are identified and addressed as an important

thread within the item development process.

The translation process required dialogue between developers and the Linguistic

Quality Control Agency (cApStAn) in Belgium under the guidance of the transla-

tion expert, also based in Belgium, engaged by ACER to oversee this process and to

provide definitive advice on technical matters related to the preparation of national

versions of each item. Agreed French and English ‘master’ versions of each item

were constructed for translation into local languages. The French translation man-

ager described how “English is concise but French is precise”. The rewording in

English that was often required to facilitate an unambiguous translation into French

often helped make the English clearer.

Over the many months of this overnight email dialogue between Belgium and

Melbourne a set of standards on structure and wording of items emerged. Some

examples were avoiding truncated stems for multiple-choice items, stating units in

Table 7.2 National program manager ratings for PM942 climbing Mount Fuji

Mean scoresa PM942Q01 PM942Q02 PM942Q03

Relevance to preparedness for life 4.32 4.49 4.23

Within the curriculum 4.57 4.49 4.49

Interest level 3.83 3.94 3.83

Authentic context 4.36 4.45 4.11
aRange 1–5, with 5 best
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each option rather than in the question stem, and accommodating how some

languages (e.g. Slavonic) treat plurals. Item writers needed to accommodate vocab-

ulary differences (e.g. some languages do not have a word for ‘million’, some

languages use different words for concepts depending on the context, such as the

area of a shape versus the area of a country where the same word ‘area’ is used in

English). With CBAM units there was a limited amount of screen space, and

sentences that fitted that space in English may not fit after translation: writers had

to allow about 50 % more space for the translation than was needed for the original

English version. Graphics and other layouts had to accommodate languages that are

written right-to-left. Turner in Chap. 6 of this volume gives other examples.

The translation notes that accompanied each item specified what could be

changed. According to local usage, translators routinely changed the decimal

point or comma, used local conventions for operator symbols such as � or / for

division, and for writing dates and times. Translation notes specified when it was

appropriate to change the letters used for algebraic variables in formulas to agree

with the initial letters of the corresponding words (e.g. in F ¼ ma the letters are the

initial letters of force, mass and acceleration) and whether to change metric to

locally used units. These translation notes are included in the released versions of

items (e.g. OECD 2013b).

The Impact of the Review: Climbing Mount Fuji

Comparing the final (Fig. 7.1) and initial (Fig. 7.2) versions of PM942 Climbing

Mount Fuji shows a number of changes. The initial stimulus contained some key

information that was moved to Question 1 where the data were needed. The data in

the stimulus were replaced by a short scene-setting sentence. In the final version,

the information for each item is presented within that item, which reduces the

reading demand. The graphic design team produced an illustration to make the

context more explicit and engaging, and experiences in the cognitive laboratories

indicated that illustrations did indeed have this effect. The words ‘walking’ and
‘walk’ were changed at the panel stage to ‘climbing’ and ‘climb’ in Question 1, to

be consistent with the unit title. Streamlining language in this way, so that different

words are not used for the same idea, improved student comprehension and

simplified translation.

Question 1 initially asked for an approximate answer rounded to the nearest ten,

hundred or thousand. The panel standardised the options at two significant figures.

The original option D 7,000 could have been the result of rounding either 7,143

(200,000� 28, the sum of the dates given 1 + 27) or 7,407 (200,000� 27, from

ignoring the fact that the time period is over 2 months). This observation led to the

addition of distracter E in the final version. To simplify reading and translation, the

phrase ‘during this period’ was deleted because there is no other period during

which the trail is open to walkers.
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The initial version of Question 2 was thought to be too much a straightforward

school exercise where the context was not really needed, and hence it was not in the

PISA mathematical literacy style. There were also concerns from students in cog-

nitive laboratories about the item not addressing real-world considerations such as

meal breaks and rest times, and these considerations, when included in the thinking

of students analysing the problem at a more sophisticated level, caused wrong

answers. So the item was reworked into a more realistic scenario about planning a

walk up and down the Gotemba track, with different average speeds when walking

up or down the mountain, and then requiring the student to find the latest time to

begin the walk. In order that the mathematical reasoning rather than the numerical

calculations would provide the main challenge of this question, and to give a whole

number response that would be easy to code, the distance was realistically rounded

to 9 km, and the walking speeds were given as values that lead to whole number time

calculations: 9 � 1.5¼ 6 and 9 � 3¼ 3. It was also made explicit that the total

distance travelled was 18 km, so students would not be confused by the one-way trip

of 9 km in Question 3. The careful, but still realistic, choice of values enabled the

intent of the question to be met, with the focus on the Formulate process.
The original Question 3 of Fig. 7.2 met similar criticism of being artificial. In the

real world a walker who was interested in their number of steps would most likely

have a pedometer to count their steps. So Question 3 was turned around to give the

two most easily known pieces of data, total distance and total number of steps, then

asked for an estimate of average step length. The initial version had ‘to walk to the

top of Mount Fuji’ in Questions 2 and 3 but ‘walk up Mount Fuji’ in the stimulus. It

was decided to take out the reference to ‘top’ and refer to ‘up’ and ‘down’
throughout the unit. This streamlined the instructions, but also attended to a student

concern expressed in cognitive laboratories about people who might take the walk

but not make it all the way to the top.

In summary, the changes to Climbing Mount Fuji aimed to:

• make the unit realistic so that students could relate to the story, thereby helping

them to link the different questions as they worked through them

• be consistent and direct in the use of language, and be specific about measure-

ment units required for constructed response items

• remove unintended complications and ambiguities (e.g. whether meal breaks

needed to be added) by addressing them explicitly in the text

• make the calculations straightforward so that the unit and items could focus on

the mathematical literacy skills and processes being assessed.

From Field Trial to Main Survey

The field trial was the key winnowing stage for items. The MEG selected just over

180 new paper-based items and 90 computer-based items for the field trial, using a

variety of information sources including detailed feedback from National Program
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Managers, feedback from the ACER pilot study, independent reviews by each MEG

member and the Mathematics Framework specifications.

After the items had been through their final proofreading, design and desktop

publishing processes, they were grouped into clusters for trialling with a sample of

the target population in every participating country. Each booklet in the paper-based

assessment or each online CBAM test form was made up of a number of item

clusters. These clusters were then rotated among booklets and forms. In the paper-

based assessment each cluster consisted of about 12 items and in CBAM each cluster

had about 10 items. After creating the clusters, the final mathematics field trial

conducted in 2011 used 172 new paper-based items and 86 computer-based items.

Psychometric Review of Item Performance: Difficulty,
Fairness, Reliability, Validity

The psychometric data from the field trial that summarised the measurement

properties of each item were crucial for selecting items for the main survey. By

the time the statistical review had to be finalised for the 2012 survey, results from

approximately 6,200 students from OECD countries and additional students from

partner countries and economies were available for each item. Many more students

were involved overall, because individual students only complete a small number of

the items. The set of items selected for the main survey had to satisfy several

requirements, such as showing a good spread of difficulty. Every item was checked

to see if it performed at the test developer’s expected difficulty level—a significant

deviation from what was expected could indicate an issue with the item, such as

unexpected ambiguity. Test developers checked that the coding and scoring worked

well. Each distracter for a multiple-choice question needed to attract an appropriate

number of test takers.

Rasch scaling was used to calculate the item difficulty, and these item difficulties

were used to obtain the required range of difficulty of the main survey items.

Various statistics tested the fit of the item to the Rasch model. The correlation of

the item score with students’ scores on all the other items combined was calculated

to indicate whether the item measured the same underlying ability as the survey as a

whole and also contributed something unique. The ability (according to the Rasch

model) of the students respectively with correct and incorrect answers for each item

was calculated, to test that the average ability of students answering each item

correctly was higher than the average ability of students providing an incorrect

response. For example, in PM942Q02 Climbing Mount Fuji Question 2 successful

students had an average ability of 0.39 (above the mean of 0) and unsuccessful

students had an average ability of �0.83 (below the mean). Students who omitted

the item had an average ability of �1.19. Statistics for each multiple-choice option

were also analysed. Together, these item statistics indicated that this item and its

multiple-choice options were working validly and reliably.
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Sometimes students who know more or think more deeply do not score as well

on some items as students taking a naı̈ve approach. For each response code, the

‘characteristic curve’ of the probability of success of the item against student ability

(as estimated from the Rasch model) was plotted and compared to the theoretical

curve for each item. This gave guidance on how the item performs across the ability

range, and picked up instances where more capable students read more into the

problem than was expected by the item writer, or where there were unforeseen

ambiguities or likely misinterpretations. As noted above, a potential instance of this

was identified in the cognitive laboratories for PM942Q02 (then eliminated), when

students who thought more deeply about the context allowed for meal breaks. The

reworded item, modified to eliminate this potential ambiguity, performed well at

the field trial.

Statistics also allowed examination of the performance in and between individ-

ual countries, in order to identify items with a cultural or linguistic bias or major

mismatch with local curricula. There were no countries where PM942Q02 was

significantly easier or harder than expected on the basis of the total scores. The item

had low discrimination in only one country and higher than expected in only two

countries and, in all countries, successful students had higher ability as measured by

the whole item set than unsuccessful students. The reliability of coding was also

examined as was the gender difference. Large gender difference may indicate

cultural bias. Items that did not perform well on any of these psychometric

measures were rejected, as there was no opportunity to adequately trial an

amended item.

The Main Survey Items

The final selection of items for the main survey was made using all the data from the

field trial at the MEG meeting in Melbourne in September 2011, also attended by

ACER project managers, lead test developers, psychometricians and a representa-

tive of the secretariat of the OECD who ensured that the Framework criteria were

implemented. For the paper-based assessment a large number of suitable items

survived psychometric scrutiny from the field trial and were available for selection

for the main study. For the CBAM assessment, which was designed to be smaller, a

more restricted set of items was available because a much smaller set had been

developed and trialled. As well, OECD had employed a separate organisation,

Achieve (www.achieve.org), to conduct an independent validation and review

process. At this MEG meeting, the Achieve external reviews of each item were

made available to the MEG. Officers of Achieve reported that their reviewers had

found the items in the new pool to generally be an improvement over previous

surveys. The report cited one reviewer who noted that

the present selection of items and the formulation of the questions are much better than in

previous years, where the questions often were loaded with unnecessary—and [hard to

read]—information. (Forgione and Saxby 2011, p. 17)
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For the paper-based item set, the Achieve review was generally very positive. For

theCBAM itemsAchieve reviews commented in a number of cases that therewas little

or no significant mathematics in the items. This led to discussion about the role and

purpose of the CBAM items. By design, mathematical operations including calcula-

tion were often automated in CBAM (e.g. by the CM013 Car cost online calculator),

so that the assessment could focus more on the Formulate or Interpret processes of a
problem without being confused with calculation or substitution into a formula for

example. In the view of the test developers this was a strength of CBAM but this view

was not shared by all the Achieve reviewers. Some comments by the Achieve
reviewers also concerned the lack of significant mathematics in the easiest items,

those intended for the extensive number of low ability 15-year-old students around the

world. Part of the test design for PISA 2012 was to include alternative test content to

suit countries known or expected to be performing at a level markedly below the

OECDaverage. Countrieswere able to choose two relatively easier clusters in place of

two standard clusters, in order to provide better measures and richer descriptions of

performances in the lower part of the PISA proficiency scale. Test developers had to

write enough ‘easy’ items for this: if the given items did not cover the actual range of

student ability then the test was not going to be maximally informative for the

education authorities in a country. Marciniak in Chap. 5 of this volume discusses

the confusion of significant and difficult mathematics in the PISA context. In fact, the

statistical review showed that it had proved difficult to develop a large number of items

suitable for these easy clusters, and the final choice of items for those clusterswas from

a smaller pool than had originally been hoped. After the field trial, all of the well

performing very easy itemswent into themain survey, andmore could have been used

had they been available. On the other hand, the results of the field trial indicated that

toomany difficult items had been trialled. It seemed that test developers and reviewers

were too optimistic about the mathematical literacy of 15-year-olds.

Using all of the data described above in a long and complex task, theMEG approved

90 paper-based and 45 computer-based items for the main survey. This was a fewmore

than the minimum number of items required to construct the main survey instruments,

so the ACER team had some flexibility in balancing all the framework requirements

across the whole item pool, and also in balancing requirements within each cluster of

items. These clusters were then arranged in the rotated design in booklets and online

forms. In the end 72 new paper-based items and 41 computer-based items were used in

the PISA 2012main survey. To enable the 2012 results to be accurately put on the same

scale as for previous PISA surveys, the 2012 booklets also included three clusters of

link items (36 secure items) that had been used in previous surveys.

Reflections

As mentioned at the beginning, test developers on PISA quickly learned about the

complex and sophisticated processes of developing such assessment instruments.

We, as ACER mathematics test developers and as mathematics educators, had a
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number of reflections after the challenging journey of writing many items and

assisting in the test development process in PISA 2012. This journey, alongside

the knowledge about the actual performance of the items in both the field trial and

the main survey, was very illuminating.

First, there were some very positive reflections from seeing the overall scores,

scanning the actual responses of students from some countries and seeing other

responses through the coder query process described by Sułowska in Chap. 9 of this

volume. In many cases there were students who were able to respond and answer in

a very sophisticated way, often showing unanticipated mathematical and real-world

knowledge and insights. These students demonstrated much higher levels of math-

ematical understanding and knowledge than expected of most 15-year-olds, or

alternatively a high ability to connect the mathematical content to the context—

the ability to mathematically formulate problems from the real world, or to interpret

mathematics in relation to the real world. The examples were very heartening to

observe and it was an endorsement of the value and purpose of mathematical

literacy.

In relation to CBAM, the test developers realised that this was only the starting

point for computer-based assessment of mathematics. In the PISA 2012 survey,

limitations were imposed by the time available for item development and by the

information technology capacity in schools around the world, but also by the

expectations of what computer-based tools 15-year-olds around the world would

be able to manage at that point in time. There were a number of positives. One was

the capacity to develop some highly interactive items that used combinations of

animations and provided automatic calculations ‘behind the scenes’ to enable

assessment of different and potentially deeper mathematical skills and understand-

ing. As well, there was also the capacity to assess spatial and visual interactivity in a

way not possible in a paper-based assessment. Some CBAM items definitely

assessed skills that could not be assessed otherwise, hence broadening PISA’s
assessment of mathematical literacy. It was also heartening to observe students in

cognitive laboratories being highly engaged with the CBAM tasks, and undertaking

tasks with a very positive attitude and tending to persevere much more with them

than with some of the paper-based items. It is hoped that future PISA surveys will

extend the CBAM approach and feature more sophisticated, interactive computer-

based mathematical literacy items.

Another key reflection is the observation, as mentioned earlier, that the spread of

items written by seven professional test development centres across the globe

significantly overestimated the mathematical literacy abilities of 15-year-olds

around the world. The external reviewers of the 2012 PISA pool of items similarly

over-estimated the expected mathematical knowledge of 15-year-olds. The psycho-

metric analysis of the field trial data demonstrated this quite clearly—there were too

few easy items and too many difficult items. This can also be interpreted as

demonstrating that 15-year-olds around the world are not being well prepared in

mathematics classrooms with the skills and knowledge to solve mathematical

problems set within a real-world context. This is a challenge for education systems

as we move further into the twenty-first century.
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Chapter 8

Computer-Based Assessment of Mathematics

in PISA 2012

Caroline Bardini

Abstract In 2012, when mathematics was again the major subject assessed, PISA

included optional computer-based mathematics units for the very first time. This

chapter will provide an overview of some of the key features of the computer-based

units of PISA 2012 by addressing the following questions. What choices

underpinned the design of the PISA units to be presented—and responded to—on

a computer? What technological tools were available? Finally, what potential does

a computer-based environment offer when it comes to assessing mathematical

literacy and what are its limitations? These questions will be tackled taking into

account the mathematical content knowledge, competencies and processes assessed

as defined in the PISA 2012 Mathematics Framework.

Introduction

When calculators first made their appearance in mathematics classrooms, an ava-

lanche of questions followed. Will students still be able to calculate? Will they lose

their pen-and-paper skills? Will students still be able to do maths? Despite the many

research studies that clearly show benefits in learning mathematics when calcula-

tors are appropriately used in the classroom, the debate is still lively and far from

being closed (see for example the National Council Teachers of Mathematics

summary by Ronau et al. (2011)).

A similar scepticism rekindles discussions that arose decades ago with the now

growing availability of computers to students. Abundant research that focused in

particular on the question of impact of different software—both commonly used

desktop applications and software specifically designed for the teaching and learn-

ing of mathematics—on students’ learning and understanding of mathematics has

flourished ever since. And when it comes to using technological tools in assess-

ment, the subject is particularly sensitive.
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It is not my aim to add to the pile of papers that make up the above debate, as I

believe that the main character of the discussion oftentimes misses the real point.

This is not about ‘whether or not’ to incorporate computers in the learning of

mathematics (and this includes assessment), rather it is about ‘how to do so’. It is
undeniable that computers are nowadays part of everyday life and that they are of

significant importance in the workplace. Burying one’s head like an ostrich would

only deprive us of appreciating the twenty-first century landscape with all its

potentialities.

In the PISA 2012 Mathematics Framework (see Chap. 1 by Stacey and Turner in

this volume), incorporating computers in mathematics assessments appears as an

obvious fact: “a level of competency in mathematical literacy in the twenty-first

century includes usage of computers” (OECD 2013, p. 43). Hence, following 2006

when PISA implemented computer-based science assessment, and after 2009 when

it included an optional digital reading assessment, 2012 marked another major

innovation in PISA. 2012 was when PISA included for the very first time an

optional computer-based item assessment of mathematics—the year when mathe-

matics was again the major subject assessed. But what should one understand by

‘computer-based assessment’? More specifically, what should one understand by

‘computer-based’ assessment of mathematics in PISA 2012? In other words,

exactly what mathematics was assessed in such an environment? What technolog-

ical tools were available? What choices underpinned the design of the PISA units to

be presented—and responded to—on a computer? Finally, what potential does a

computer-based environment offer when it comes to assessing mathematical liter-

acy and what are its limitations? These are the questions I propose to tackle in this

article, from the point of view of a mathematics educator, also a member of the

Mathematics Expert Group for PISA 2012.

Assessing Mathematics with a Computer in PISA 2012

Computer-Based Assessment: Characteristics, Affordances
and Challenges

Despite an apparent contradiction, the following clarification is crucial for under-

standing what lies behind the notion of PISA’s ‘computer-based assessment’. It is of
utmost importance to acknowledge that this type of assessment is not just an

‘assessment on computer’. The units—and students’ responses—are certainly

presented on computers, but this must be distinguished from what could be

interpreted as ‘an electronic version of a paper-based unit’. As trivial as this

distinction may appear to be, it is worthwhile highlighting it. In fact, the process

of designing a computer-based item is far from consisting of different disconnected

stages, that is to say, it does not follow a pattern such as: one team designs a paper-

and-pencil task, then hands out to a technical team who ‘transfers’ it into a
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computer. Although the computer-based items were indeed originally presented on

paper (item writers do not necessarily have programming skills), those items were,

from their very first versions, designed with the anticipation of the fact that a range

of electronic tools were available. Obviously there was at the end the need for a

technical team to program and implement such units into a computer environment,

but the item writers did design the different tasks with the aim of making the best

use of all potentialities the computer environment could offer.

It is also important to note that the idea of incorporating computers in PISA 2012

mathematical literacy assessment was not primarily driven, for example, by the

desirability of automated marking of the responses—clearly attractive when it

comes to rating hundreds of thousands students’ answers from over 60 countries.

Various reasons underpinned the choice for a computer-based assessment and these

can be viewed as responding to two aspects of the rationale. The first one, men-

tioned earlier, relates to the recognition of the importance of computational tools in

today’s workplace:

For employees at all levels of the workplace, there is now an interdependency between

mathematical literacy and the use of computer technology, and the computer-based com-

ponent of the PISA survey provides opportunities to explore this relationship. (OECD 2013,

p. 43)

The second one relates to the potentialities offered by the computer

environment:

the computer provides a range of opportunities for designers to write test items that are

more interactive, authentic and engaging. (Stacey and Wiliam 2013). These opportunities

include the ability to design new item formats (e.g., drag-and-drop), to present students

with real-world data (such as a large, sortable dataset), or to use colour and graphics to

make the assessment more engaging. (OECD 2013, p. 43)

But the essence of incorporating a computer-based assessment goes far beyond

engagement and motivation and constitutes the core of every such item: to assess

mathematical literacy in a way otherwise not possible—or at least too onerous to be

considered. This is specifically what makes the computer-based items far from

‘electronically transposed pen-and-paper tasks’ and it is precisely what constituted

one of the many challenges of this major area of innovation for PISA 2012. Since

they were not merely electronic versions of paper-based items, computer-based

items were particularly challenging to design as they added to the already complex

task of having to create mathematical units that follow the different features

described in the PISA Framework (balance between the different mathematical

content categories, context categories and processes assessed, ranges of difficulty,

etc.), and also keep to a minimum the load arising from information and commu-

nications technology (ICT) demands of the item. This is clearly acknowledged in

the PISA 2012 Framework (OECD 2013).
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What Competencies Assessed, with What Tools?

There are basically two types of mathematical ‘competencies’ (as referred in OECD
2013 p. 44) that are assessed in the computer-based units: those that are not

dependent on the specifics of the environment (pen-and-paper versus computer)

and those, on the contrary, that “require knowledge of doing mathematics with the

assistance of a computer or handheld device” (p. 44). The former mathematical

competencies are exactly the same ones that pen-and-paper units assess and these

are tested in every computer-based item. The latter are present in some items only

and, as described in PISA 2012 Framework, include the following:

• Making a chart from data, including from a table of values, (e.g., pie chart, bar

chart, line graph), using simple ‘wizards’
• Producing graphs of functions and using the graphs to answer questions about

the functions

• Sorting information and planning efficient sorting strategies

• Using hand-held or on-screen calculators

• Using virtual instruments such as an on-screen ruler or protractor

• Transforming images using a dialog box or mouse to rotate, reflect, or translate

the image.

Amongst the many challenges item developers were faced with (see Chap. 7 by

Tout and Spithill in this volume) and especially because of (i) the innovative

character of such tests in mathematics units for PISA and (ii) the very tight

timeframe that separated all the item creation stages (original version, program-

ming, implementation and trial) was the fact that none of the electronic tools used in

computer-based items pre-existed. For licensing reasons in particular, no existing

software or tool could be used and although the international contractors had

previously developed the delivery systems for the computer-based units of both

Science and Reading, these were not exported to Mathematics. The programmers

had indeed to design from scratch and within a very limited timeframe a wide range

of electronic tools that best opened opportunities for “computation, representation,

visualisation, modification, exploration and experimentation on, of and with a large

variety of mathematical objects, phenomena and processes” (OECD 2013, p. 43). It

is hoped that, as developers and item writers get more familiar with the underlying

principles of a computer-based assessment, future PISA administrations will pre-

sent even richer and more sophisticated items. Indeed, as noted in the PISA 2012

Mathematics Framework (OECD 2013), “PISA 2012 represents only a starting

point for the possibilities of the computer-based assessment of mathematics.”

(p. 43). Having said that, despite the complexity of the task, developers nevertheless

produced computer-based items of a considerable range of types and formats,

which reflect the notion of mathematical literacy as defined in PISA. The next

section will use some released items (ACER 2012) to illustrate and further analyse

the different types of tools available in this optional assessment taking into account

the mathematical content knowledge, competencies and processes assessed.
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Computer-Based Assessment of Mathematical Literacy

in PISA 2012: Some Examples

Basic Tools and Features

As stated in the previous section, an on-screen calculator similar to pocket calcu-

lators or those present in commonly used desktop applications and mobile phones

was available in every item. It included the four basic operations and square root,

and was able to be customised and offered in different versions according to the

standard notation (e.g. for division) of each participating country (see Fig. 8.1).

This is just one example of how translation of items for use around the world

requires attention to mathematical and format issues as well as the expected

linguistic issues, as is described by Turner in Chap. 6.

As was permitted in the paper-based survey, calculators (real and virtual) were

available not only because they are in some countries normally used in schools

(hence potentially providing informative comparison of students’ performance

across different education systems) but also because assessing mathematical liter-

acy goes beyond assessing computational skills—note that in many cases, numbers

involved in items are carefully chosen so to encourage and ease eventual mental

computations. The availability of the tool potentially relieves the burden of com-

putation and helps students focus on the higher order mathematical thinking

required by the task.

Amongst the most basic—yet important—features of computer-based units are

the ones related to students’ engagement and motivation. At their lower level of

sophistication, one can name colourful presentations, three-dimensional represen-

tation of objects that can be rotated, moving stimulus, etc. Interactivity is also part

of the basic features that a computer environment offers, but even at its most basic

form (e.g. an online calculator) it can be an important asset when it comes to trying

to assess aspects of mathematical literacy that would otherwise be too onerous

either for students or for coders. Figure 8.2 provides an example of a more

interactive item.

Fig. 8.1 Three versions of the on-screen calculator according to countries’ standards (multiple

combinations possible)
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CM010Q03 Graphs Question 3, set in the Scientific context category, assesses

mathematics from the Uncertainty and data content category and the Employ
mathematical process. Students are required to order bars on a graph so that they

are consistent with the given information. Full credit is given when all ten bars

representing Jenny’s income are correctly placed on the graph. The correct place-

ment shows the bars in increasing order except for her income in years 4 and

9 where extra cash payments were made. This item was of above average difficulty

in the field trial, with only 11 % correct. The response time of 80 % of students was

less than 167 s. It had relatively low discrimination in 9 field trial countries, and

therefore it was not used in the main survey.

The drag and drop functionality available to students works both ways: from

right to left (group of bars to diagram) and conversely. Note that when dropping

from right to left, bars are automatically centred on the corresponding intervals and

their bases are positioned exactly along the time axis (which enables a reading of

the yearly income to be independent of the precision of students’ drag-and-drop
action). This feature also enables dragging bars next to others, allowing students to,

for example, easily compare heights before positioning the bars on the diagram.

With such characteristics, the drag-and-drop functionality along with the possibility

of having multiple attempts (reset button) allows students to focus on the mathe-

matical features of the item (understanding a constant increase in value, interpreting

graphically the extra cash received, etc.), instead of having to concentrate their

efforts on drawing skills and precision, which are not targeted by this item.

Fig. 8.2 CBAM item CM010Q03 Graphs Question 3 with drag-and-drop functionality (ACER

2012)
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Also, it seems hard to imagine a meaningful equivalent paper-based item. We

could alternatively have a similar setting that displays an empty diagram with

labelled graph axes on the left and a group of bars on the right. Bars could possibly

be labelled and students could then be asked to write down the appropriate sequence

of bars (which would thus deprive them of experiencing the graphical interpreta-

tion/representation of the evolution of the income over the years—the meaningful-

ness of such a task is hence questionable) or students could be asked to draw them

on the empty graph (closer to the task set in the computer). In either case, the

reading of the height of each bar is a potential initial problem. If originally

displayed on a blank background without any grid as in the computer-based version,

it would require, depending on students’ strategies, a fastidious process and/or an

additional drawing accuracy to determine the constant yearly increment of income

(key to finding the appropriate answer). Even if students realise that one can begin

by only comparing the two smallest bars to find the constant increment, to be

accurate, this increment would have to be compared with the difference of height

between—at least—another pair of bars with adjacent heights. The value of the

heights (or eventually the increment between them) might vary according to

accuracy of either (i) measuring the actual height of the bars with a ruler (which

then would require a further conversion into the graph’s scale) or (ii) transporting
the heights into the diagram (by drawing a line parallel to the time axis, provided

that the base of bars is aligned with the axis). Students might alternatively or

subsequently perceive the need to find out the height of all bars before embarking

on drawing of the diagram, which could turn out to be quite painstaking.

Another possible—and maybe more likely—paper-based version of this item

could take this form: given the value of the first two incomes (or any two consec-

utive pairs of incomes excluding year 4 and 9) or their equivalent bars already

drawn on the diagram, ask students to complete the graph according to the stimulus

information. It is easy to see that the values of the income for years 4 and 9 become

an issue, unlike on the computer-based version. In a paper-based item, one would

have to either specify the extra cash or explicitly inform students that they should

arbitrarily choose the amount. One of the benefits of the computer-based item is the

fact that it is up to students to figure out that the exact value of the extra income is

not relevant for solving the problem.

Many scenarios for a pen-and-paper version of item shown in Fig. 8.2 can be

conceived. It is not our aim to provide an exhaustive range but this quick glance at

some possibilities clearly highlights the benefits for using a computer environment,

and the great potential for introducing substantially changed cognitive demands

depending on what item design choices are made. Not only does the version used

here emphasise students’ mathematical thinking, but the task itself seems to be less

artificial in its set-up. The interactivity feature of a computer-based assessment,

which could have been perceived as a superfluous tool, can, when appropriately

designed, become a powerful feature of high relevance for assessing mathematical

literacy.
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A Wide Range of Opportunities

Interactivity to Support Mathematical Thinking

Other than the drag-and-drop functionality, which can be seen as amongst the most

basic types of interactivity when it comes to supporting students’ mathematical

thinking, interactivity can appear at a more advanced level, especially when

designed to target competencies such as “sorting information and planning efficient

sorting strategies” as listed in the Framework (OECD 2013, p. 44). Figure 8.3

provides an example. The unit CM038 Body mass index consists of three items,

requiring students to derive information from a partially functioning website.

Although the website has been specially constructed for the item and students

doing the assessment are not connected to the internet, the website is authentic in

the sense that there are many websites like this.

CM038Q03 Body mass index Question 1 involves the Uncertainty and data
content category, and the Interpret process (make inferences from a set of graphs),

within a Societal context. This is another example where a computer-based version

of a task supports a strong focus on the mathematics being assessed. The website is

partially functioning in the sense that students can click on the buttons to show or

hide any of the six graphs. By default, all the six graphs are displayed, but not all of

them are required to answer the true/false statements.

The truth value of the second statement is possibly easier to determine than the

first one, as it explicitly indicates which value is relevant to answer the question,

namely the lowest 5 % BMI (for both boys and girls). Although not essential, it is

Fig. 8.3 CBAM item CM038Q03 Body mass index Question 1 (ACER 2012)
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expected from the way in which the instruction is worded (“You can click on the

buttons below to show or hide any of the six graphs.”) that students select the

corresponding two graphs for the lowest 5 % BMI for boys and girls and hide the

four others in order to answer the question (these two graphs are however suffi-

ciently close one to another and separated from the other graphs for the latter not to

be a visual distraction). One can think that a similar question on pen-and-paper

could be envisaged; this issue will be discussed later on.

The first statement is, on the other hand, less obvious to decipher and the

question ultimately requires students to adopt an efficient sorting strategy. The

statement is indeed rich in information and along with their strategic skills, students

will have to demonstrate appropriate understanding of diverse mathematical (sta-

tistical) concepts. One of the key issues students are faced with is the notion of

‘range of BMI scores’ and more precisely its translation into the graphical register.

In other words, students will have to select which one(s) of the three given different

BMI values (lowest 5 %, median—which definition is recalled—and highest 5 %) is

(are) relevant to answer the question. In particular, acknowledging that the median

value provides superfluous information (and hence that the two corresponding

graphs can be hidden) is essential. Once this is discerned, students would probably

deselect the median graphs for boys and girls, obtaining the screen as shown in

Fig. 8.4.

Another key step is to understand and graphically interpret what it means for a

range of values—in this case BMI scores—to increase and, at the same time, what is

meant by ‘for both boys and girls’. The specifics of the actual graphs reinforce the
idea that, in order to judge the truth of an ‘and’ statement, one has to consider the

two components separately. Since the graphs for boys and girls of both the 5 %

lowest and 5 % highest values almost—and sometimes do—overlap, the need to

display the pairs of graphs separately becomes indeed more evident. As contradic-

tory as it may seem, analysis of the statement ‘for both boys and girls’ requires the
students precisely to not display both sets of graphs. The interactive feature of this

Fig. 8.4 Screenshot of CM038Q03 Body mass index Question 1 graphic without ‘median’
(ACER 2012)
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item to show or hide graphics goes beyond the added-value of students’ engage-
ment and motivation: it promotes substantial mathematical thinking, and allows the

assessment of key mathematical knowledge.

It is easy to see why a pen-and-paper version of this item may not be as

appropriate or rich as this computer-based item. It is also worth noting that, in

order to add authenticity, the unit has been set as simulating a web-site, with two of

the three tabs (‘Your BMI’, ‘Statistics’ and ‘Zedland data’) used to support the

different items. The usage of a computer environment to replicate the usage of a

computer in real life will be further discussed in the last paragraph of this section.

Although PISA items often use real data sourced from a particular country, PISA

items nearly always replace specific country information so that cultural biases are

avoided. Instead the fictitious country Zedland with its currency the zed is used.

Geometrical Tools: Support for Students’ Work as Well as for Coding

Responses

Amongst the richest electronic tools to support students’ mathematical thinking,

including conjecturing, generalising and proving skills, are the various dynamic

geometry packages nowadays commonly used in mathematics classrooms. Given

the item developers’ tight schedule, replicating such a complex tool with all the

usual features was certainly not feasible. However different key features of

dynamic geometry packages were incorporated in the computer-based units.

These included being able to construct and/or rotate two- or three-dimensional

shapes and objects, use virtual rulers to measure distances, dynamically change the

shape of given two-dimensional figures, create points or lines on shapes, etc. These

features, such as the one shown in Fig. 8.5 are of particular value when it comes to

encouraging students’ investigations in their search for, for example, specific

geometrical properties of shapes.

It is not unusual to see tasks that aim at exploring the relationship between area

and perimeter of given shapes in secondary—and in some cases even primary—

mathematics classes. Setting tasks of optimisation such as CM012Q03 Fences

Question 2 shown in Fig. 8.5 (maximal area with minimal perimeter—specifically

relevant for the given Occupational context) on a computer offers a particularly

mathematically rich environment as it potentially helps students to actively expe-

rience variation, often acknowledged as a stimulus for learning and awareness

(Marton and Booth 1997) as well as for gaining mathematical knowledge (Watson

and Mason 2005; Leung 2008). In fact, CM012Q03 Fences Question 2 simulta-

neously displays a geometrical representation of given shapes (rectangle and circle)

and a table that records the corresponding values of their different features (length,

width, area, etc.) that is automatically populated whenever there is a change in the

shapes (through a dragging action). This multiple representation allows students to

better recognise the effect of the change of each of the shape’s dimensions on their

area and perimeter and separate out patterns with respect to fixed conditions. This

tool supports students to draw inferences from specific instances and conjecture on
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the validity of a general case, which can support potential further algebraic work

when seeking to make generalisations. This item was of average difficulty in the

field trial, and 80 % of students answered within 115 s. It had low discrimination in

16 countries and was not used in the main survey.

Figure 8.6 shows another usage of interactive geometrical tools. By allowing

students to create points and lines on the figures, the mathematical notion of star

domain (in this unit tackled through the notion of star point) takes on a concrete

dimension and its relevance in everyday life (e.g. for surveillance) is put forward in

the last question of the unit, where more substantial mathematical thinking is

required. Consider the item CM020Q01 Star points Question 1 shown in Fig. 8.6.

At the same time that the computer setting of such task allows a more flexible

assessment of students’ mathematical competencies (various correct answers are

possible), it permits—and to some extent compels—a very precise marking

scheme. In fact, the full credit code had to be devised by envisaging all possible
answers as shown in Fig. 8.7. For shape 3 this includes any point in the lightly

shaded triangular area; for shape 4 this includes any point not in the central square.
This item was coded by computer. CM020Q01 Star points Question 1 was a

relatively difficult item in the field trial. There were 11 % of students correctly

indicating a star point for both Shapes 3 and 4, and 32 % correct for one shape. Only

11 % of students had missing responses. The item was completed by 80 % of

Fig. 8.5 CBAM item CM012Q03 Fences Question 2 (ACER 2012)
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students in less than 181 s. The unit was used in the main survey. A later item in the

unit applied the star point idea to positioning of surveillance cameras.

Adding Authenticity: When Real-World Becomes Truly Real

Developing authentic items has always been a major concern in PISA. In pen-and-

paper units, authenticity is mainly conveyed through the context in which the item

Fig. 8.6 Screenshot of item CM020Q01 Star points Question 1 (ACER 2012)

Fig. 8.7 Hot spots indicating regions of correct answers for CM020Q01 Star points Question

1 (ACER 2012)
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is set. While this remains true for computer-based components as attested by the

items discussed above (designing a garden bed, positioning security cameras in a

shopping centre, etc.), setting the task on a computer environment provides the

opportunity to explore the authenticity feature at an even higher level.

The previously analysed unit CM038 Body mass index shown in Fig. 8.3 pro-

vides one example where a fictitious web-page is presented. Although one can

acknowledge that this potentially adds authenticity to the question, it does not make

the most of what a computer environment may offer. The unit CM030 Photo

Printing illustrates a further exploitation of such a feature. Figure 8.8 shows the

initial screen of the unit.

As for CM038 Body mass index, this unit simulates an online activity—here

comparing prices of printed photos for different online shops, but different features

of such item contribute to adding authenticity to the task. The first one is that it

includes information nowadays often present—or at least sought after—when

shopping on line, namely the rating of the service or product by previous costumers.

This is represented by horizontal bars showing scores from 0 to 3. Another more

advanced feature is shown in Figs. 8.9 and 8.10.

CM030 Photo printing takes a step further on the simulation of a web-page, as it

enables the user to interact with the content displayed on the screen. By clicking on

any of the shop names or hovering over them with the mouse, students are able to

gather further information to help them make appropriate judgements when com-

paring prices between the different shops. It is worth mentioning that no question

Fig. 8.8 CBAM item CM030Q01 Photo printing Question 1 replicating a web page (ACER 2012)
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Fig. 8.9 CM030Q03 Photo printing. Clicking on or hovering the mouse for further information

(ACER 2012)

Fig. 8.10 CBAM item CM030Q04 Photo printing Question 4 showing hovering the mouse for

further information (ACER 2012)
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requires students to gather information from all four shops. In fact, it is only in

Question 3 shown in Fig. 8.9 that students have to collate additional data on shop

‘Foto 2000’. However, to add authenticity as well as assess students’ ability to

identify relevant information, further information is available for all the four shops.

Figure 8.10 shows another instance where there is a need to find further infor-

mation (by hovering the mouse). Indeed, in order for students to analyse the

reliability of the rating for ‘Best photo’ compared to the other shops, students

need to understand the importance of the sample size that the given score is

based on. By hovering the mouse over each rating bar, students are able to see

the number of customers who have actually answered the satisfaction question and

hence better compare the reliability of the different shops’ scores. And apart from

adding authenticity to the task, the functionality illustrated in Figs. 8.9 and 8.10 also

substantially relieves the communication demand of the unit (see Chap. 4 of this

volume), which would require lengthy text in a paper-based item.

Concluding Remarks and Perspectives

This chapter presented and analysed some of the features of PISA 2012 computer-

based mathematics items as theoretically described in the Framework (see Chap. 1

of this volume) and as implemented in practice. Although limited to examination of

the publicly released items, these already illustrate a range of characteristics. Even

this first implementation of CBAM demonstrates an array of potential which I hope

will be further exploited in future PISA surveys. Indeed, this chapter has shown that

although setting the test in a computer environment may increase students’ engage-
ment and motivation, the reasons for integrating such components in a mathemat-

ical literacy assessment go far beyond these and actually do provide opportunities to

give a more rounded picture of mathematical literacy.

Just as “PISA 2012 represents only a starting point for the possibilities of the

computer-based assessment of mathematics” (OECD 2013, p. 43) the present

chapter is only a partial discussion on this matter. Many avenues that have not

been explored here are worth considering. Amongst these, there is the analysis of

the whole range of extra information that testing on a computer allows to be

gathered that could supplement and refine the analysis of students’ responses.

These include tracking students’ clicks. Has the student repeatedly selected and

deselected boxes, suggesting some hesitation? Has the student clicked on the

relevant tools or regions of the screen for a given question? In what order?

Recording the time spent on each item could be used to modify the results of the

survey (rather than only to arrange clusters of an appropriate number of items as

was done for 2012 using field trial data) or the tools used. Has the student used the

on-screen calculator? When? This additional information could be of particular

help when it comes to, for example, examining students’ responses to multiple-

choice questions. Then there is the obvious question that keeps fuelling the debate
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whenever it comes to assessing on computer, namely the effect of this specific

support on students’ performances. As pointed out in the PISA 2012 Framework

Research has been conducted on the impact a computer-based testing environment has on

students’ performance [original references omitted] and the PISA 2012 survey provides an

opportunity to further this knowledge, particularly to inform development of future

computer-based tests for 2015 and beyond. By design, not all computer-based items will

use new item formats, which might be helpful in monitoring the (positive or negative)

impact that new item formats have on performance. (OECD 2013 p. 43)

Specific studies that compare paper-based and computer-based modes of assess-

ment on parallel items, particularly when it involves large-scale testing, have been

previously conducted and PISA computer-based assessment of science has already

been explored. Similar studies that would now focus on the mathematical literacy

competencies would be worth exploring, especially if computer environments will

progressively become the main means of assessing students’ performance.
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Chapter 9

Coding Mathematics Items in the PISA

Assessment

Agnieszka Sułowska

Abstract Coding of student responses is one of the most important, but also

difficult processes of the PISA assessment. This chapter explains how this is

done, without assuming any prior knowledge of PISA assessment. First the

resources and procedures that are used in the course of the coding process are

described: the coding guide and the general principles of coding. For better under-

standing, actual items are used to illustrate the multilayer structure of codes. There

is an explanation of the elaborate preparations for the coding process, both within a

participating country as well as globally, aimed at reaching a common understand-

ing of codes within the international community of coders. After the long period of

careful preparations the actual coding takes place. The actual coding process is

explained by sharing the author’s experiences as a supervisor of coders during four

consecutive PISA survey administrations. Examples illustrate the inevitable coding

dilemmas, proving again and again that our students’ creativity exceeds the imag-

ination of the most experienced coding guide authors. Examples also show how

PISA can resolve such dilemmas in a systemic way.

Introduction

Coding of student responses is one of the most important, but also difficult

processes of the PISA assessment. Students have just completed the booklets and

now, across the globe, their responses have to be transformed into codes in the most

uniform way.

Why is this called coding, rather than marking or grading? There is a funda-

mental difference between PISA coding and the marking of students’ papers, as
practised by thousands of teachers on a daily basis: it has a different objective.

When a teacher marks a student’s work or a presentation, he or she really creates

feedback information for the student. It is aimed at helping the student to recognise
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his or her strong and weak areas within the assessment scope, as the first step

towards improvement.

In contrast, the over-riding objective of coding in PISA-like surveys is only to

obtain the data from which a measure of mathematical literacy can be derived and

applied to specified groups (countries, girls, boys, etc.). Also the coding needs to be

carried out in many countries by many different people and in many different

languages, so it must be as simple and robust and also as economical as possible.

It is of utmost importance to get consistency across all these different groups so that

differences in the measure of mathematical literacy reflect as nearly as possible

differences in the students, and not systematic differences in how the assessors in

each country have valued different responses.

This chapter aims to explain how those crucial issues are addressed in the PISA

survey. Thus, it describes the resources and procedures that are used in the course of

the coding process: the coding guide and the general principles of coding. For better

understanding, actual items are used to illustrate the multilayer structure of codes.

There is also an explanation of the elaborate process of preparations of the coding

process, both within a participating country as well as globally, aimed at reaching a

common understanding of codes within the international community of coders.

After the long period of careful preparation the actual coding takes place: stacks

of booklets arrive at the coding venue, filled with the full richness of students’
responses. Some of the items can be automatically coded, but this chapter is

concerned with the items labelled in Chap. 7 as Constructed Response Expert and

Constructed Response Manual, where expertise and judgement are required. The

chapter explains the actual coding process, by sharing the author’s experiences as a
supervisor of coders during four consecutive PISA survey administrations. Exam-

ples illustrate the inevitable coding dilemmas, proving again and again that our

students’ creativity exceeds the imagination of the most experienced coding guide

authors. Most importantly, examples show how PISA is prepared to resolve such

dilemmas in a systemic way.

The Coding Guide Structure

Coding of PISA items involves assigning appropriate codes to students’ responses.
Codes available for each item are precisely described by the coding guide. The

codes for each item are essentially defined at two or three levels: either Full
credit—No credit, or Full credit—Partial credit—No credit. These descriptors

were chosen to avoid formulations like: ‘correct answer’, ‘partially correct answer’
and ‘incorrect answer’. It was done on purpose, to stress the fact that a Full credit
code can be assigned to a solution that is not perfectly correct and also a No credit
code can be assigned to a solution that is not completely wrong. The precise

description of the level of accuracy of students’ responses required for each code

level is item-specific. In most items, the coding is only single digit, indicating full

credit, partial credit, or no credit (2, 1, 0) in some items, and just full credit or no
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credit (1, 0) in others. The fact that some items have full credit coded as 2 and others

have full credit coded as 1 does not indicate any weighting of the items in creating

a total score. These codes are not totalled to get the students’ results. Instead, the
complex statistical processes used to calculate overall scores are based on Rasch-

based item response modelling. They are described in OECD technical reports such

as Adams and Wu (2003). As will be demonstrated below, some items have ‘double
digit’ codes, which provide researchers with information about the solution pro-

cesses that students use, but they do not change the allocation of full, partial or no

credit.

Figure 9.1 provides an example of one item. PM977 DVD rental was a three-

item unit, which was used in the PISA 2012 field trial then released (OECD 2013).

Figure 9.1 shows the stimulus, Question 2, and the categorisation of this question

and Fig. 9.2 shows the coding instructions for its double digit coding. The item was

of above average difficulty. Eight different codes have been defined for this item:

four at the full credit level (labelled with codes 21, 22, 23, 24 in Fig. 9.2) two at the

partial credit level and two at the no credit level. Each code is defined by a

description of the kind of student responses to which it will be applicable. In

addition, most codes are illustrated by examples of actual students’ responses, as
displayed in Fig. 9.2.

Fig. 9.1 PM977Q02 DVD rental Question 2 with categorisation (OECD 2013)
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Full Credit 

Code 21: Answer 15 [Algebraic solution with correct reasoning.]

3.20x = 2.50x+ 10
0.70x =10
x =10 / 0.70 = 14.2 approximately
but whole number solution is required: 15 DVDs

3.20x > 2.50x + 10 
[Same steps as previous solution but worked as an inequality].

Code 22: Answer 15 [Arithmetical solution with correct reasoning.]

For a single DVD, a member saves 0.70 zeds. Because a member 
has already paid 10 zeds at the beginning, they should at least 
save this amount for the membership to be worthwhile. 10 / 0.70 
= 14.2... So 15 DVDs.

15 x 3.2 – 10 = 38, 15 x 2.5 = 37.5. So 15 DVDs is cheaper for 
members.

Code 23: Answer 15 [Solve correctly using systematic trial and error.]

10 DVDs = 32 zeds non-members and 25 zeds + 10 zeds = 35 zeds
for members. Therefore try a higher number than 10. 15 DVDs is 
48 zeds for non-members and 37.50 + 10 = 47.50 zeds for 
members. Therefore try a smaller value: 14 DVDs = 44.80 zeds for 
non-members and 35 +10 = 45 zeds for members. Therefore 15 
DVDs is the answer.

Code 24: Answer 15. Without reasoning or working.

Partial Credit 

Code 11: A correct method (algebraic, arithmetical or trial and error) but 
minor error made leading to a plausible answer other than 15.

Code 12: Correct calculation but with incorrect rounding or no rounding to 
take into account context.

• 14
• 14.2
• 14.3
• 14.28 …

No Credit 

Code 00: Other responses.

Code 99: Missing.

Fig. 9.2 PM977Q02 DVD rental Question 2 coding guide (OECD 2013)
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As shown by this item, the relevant part of the coding guide is released with the

item, although coding teams are given considerably more detailed instructions that

are unpublished. Extracts from this unpublished material are used in this chapter.

All codes for this item are double digit codes. The first digit defines the code

level (which is the score for the item, used to calculate performance); the second is

specific for a group of responses at that level and reflects a method students used to

approach the problem or a type of student error. In PM977 DVD rental Question

2, the full credit code level is 2, (so the associated codes are 21, 22, 23 and 24), the

partial credit code level is 1 and the no credit code level is 0.

As is evident in the coding instructions in Fig. 9.2, a student’s response can be

assigned a code at the full credit level only if it contains the correct answer of

15 DVDs. A specific code from that level is selected according to the method

applied by the student to obtain that answer. If the student just gave the correct

number without any explanation and hence we cannot infer by which method the

number was determined, code 24 was used.

At the partial credit level we have two codes. The first, code 11, was applied to

responses in which a student had applied a correct method but also made an

arithmetic error that resulted in a number of DVDs different from 15. The second

code at this level, code 12, was used when the method and calculations were

correct, but the final result was not rounded and hence the answer to the question

is also not 15. Thus, the two codes make a distinction between a general error (code

11) and a specific mistake (code 12).

At the no credit level we also have two codes. The first, code 00:Other responses
is applied to all responses not covered by the higher level codes. For example, when

a student had used a correct method, but made an arithmetic error and also did not

round the obtained real number then the response does not fit any of the criteria

defined for the codes mentioned earlier and hence the response is coded as 00. This

is an example of a response that is not completely wrong (a correct solution method

was used), but it still gets a code from the no credit level. The same code is assigned

to all completely wrong responses.

Code 00 covers also all responses that were first written down but later either

rubbed out or crossed out by the student, whether legible or not. It is also assigned to

all responses like ‘it is too difficult’, ‘I do not have enough time’, ‘this is silly’ or
even when a student puts in the solution space a question mark or just any mark. In

all such instances it is assumed that the student has read the item, but does not have

the ability to provide a solution.

At the no credit level we also have code 99: Missing, which is applied when the

solution space is completely empty and there are no signs indicating that the item

was read by the student. There is one more special code 97: Not applicable. This is
used when it was not possible for the student to answer the question for reasons

independent of ability, for example when the print was not legible or an essential

part of the supporting drawing or graph was missing in the student’s booklet. A
further code is also applied in the data analysis stage, after coding has been

completed, because of its interest for research. This Not reached category is applied
to all of the items in the booklet beyond the last one reached by the student, i.e.,
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when all the following items got code 99. There are likely to be different reasons for

missing responses. For example when insufficient time may be a factor, missing

responses may be interspersed with answered items, especially because the items

are not arranged in order of difficulty. An uninterrupted sequence of missing

responses at the end of student booklets is not included in the calculation of item

difficulty parameters, but such responses are treated as ‘incorrect’ for the purpose of
estimating student abilities.

General Rules of Coding

The basic tool used by the coder is, of course, the coding guide. However, despite

the great attention paid to eliminating the subjectivity of coding, by means of very

carefully formulated code descriptions and by selection of representative response

examples, the coder has sometimes to make the decision how to classify a particular

borderline response and hence to decide where the subtle borders between different

codes are located.

To make such decisions coherent, several general rules are defined in the coding

guide. The first fundamental and intuitively obvious rule is that spelling and

grammar mistakes should be ignored. In PISA Mathematics, the assessment mea-

sures mathematical literacy—it is not a test of written expression. For the same

reason also a student’s arrangement of the response plays no role. For example, it

does not matter when a student presents a descriptive solution instead of circling

one of the words YES or NO, or when a student positions the response outside the

expected response space (e.g., on the margin, next to the picture etc.)

The second rule states that when the student’s response does not fit any code

description, the coder should consider whether the student has understood the

substance of the question and to what extent has demonstrated the ability to answer

the question. Each code in the coding guide covers a certain class of responses,

which correspond to a certain class of students’ abilities. Some codes are defined by

indicating typical students’ errors, which—in turn—identify the lack of certain

abilities. In the case of a response not fitting any code description—in most cases

this is a partially correct solution—the coder must try to identify the reason for the

student’s mistake and make a judgement about the student’s abilities. Next, the

coder should compare these abilities with those associated with particular codes and

then assign the code best fitting the response.

The third rule states that coders should avoid applying a deficit model. In other

words, they should avoid deducting ‘points’ for anything that falls short of a perfect
answer or for each error. This rule also gives the student the benefit of any doubt

about the response when it seems reasonable to do so. For example, coders should

be ready to accept a certain degree of informality or even a chaotic presentation of

the solution. Also they should not penalise solutions employing mental arithmetic.

The fourth rule concerns responses that contain more information than required

by the question or that is irrelevant to the question. The main task of the coder is
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then to consider whether or not the elements of the response contradict one another.

If a contradiction occurs, the no credit code is applied. For example, if the expected

answer is a number and a student provides two different numbers, without indicat-

ing (or crossing out) one of them, then code 0 is assigned even if one of the two

numbers is correct. On the other hand, if no elements of the response contradict

each other, the coder should ignore the irrelevant information and assign a code to

the relevant part of the response.

Coding Preparation Process

International Coders’ Training

Prior to each survey, both the field trial and the main survey, there are organised

international meetings for persons supervising the coding process in the participat-

ing countries. At each of those meetings most of the time is devoted to joint coding

of a selected set of solutions. Those solutions represent typical responses, illustrat-

ing the particular code categories, as well as problematic responses, not fitting

directly any of the code descriptions. The process of coding those solutions is often

accompanied by fierce discussion. This 1-week-long joint work results in a set of

solutions with codes assigned. They enrich the set of example responses illustrating

the particular code categories and can later help coders to make decisions in

dubious cases. They are also used as a source of training materials for the national

coders’ training, which is held in each country.

National Coders’ Training

The general rules of the national coders’ training are defined by PISA procedures.

To illustrate those rules and their implementation, let us review the coders’ training
process in Poland.

In all PISA survey administrations, we have decided to employ as PISA math-

ematics coders, students who are studying for a Masters or PhD degree in mathe-

matics from the University of Warsaw or the Warsaw University of Technology.

Each time we have found their work highly satisfactory. They have put every effort

into fully understanding the coding guide and were truly devoted to applying it with

full precision. Multiple coding statistics have each time confirmed a high degree of

agreement of their codes. Also their sharp mathematical brains have helped to

resolve the mysteries of many obscure responses.

Over the years, I have had quite a few meetings with Polish teachers of

mathematics, presenting the PISA results to them. Many of them find it difficult

to accept strict rules of coding, in full accordance with the coding guide. They were
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not able to distance themselves from their private rules and convictions concerning

the evaluation and rewarding of individual student’s work, which they had devel-

oped in their school practice, where teaching good mathematical practices is the

main goal. In particular, they usually had very strong, although quite subjective,

opinions about what it means for a solution to be correct. They found it difficult to

accept that for measurement purposes, full credit could be assigned to a student’s
solution that is not perfect. Also, they were not flexible enough to accept the

assignment of no credit to solutions that are completely wrong as well as to

solutions that are partially correct, but not covered by higher codes. These obser-

vations made me very careful when recruiting and later training my PISA coders.

Before the start of the training, applicants for PISA coding positions have to

study carefully a few of the released PISA items with the corresponding codes from

the coding guide as well as the general rules of PISA coding. During a meeting,

materials are thoroughly discussed and the participants are encouraged to ask any

questions. After answering all questions and clearing up all their doubts, they are

given the task of coding a dozen or so sample student responses to each of the

discussed items. Those candidates who perform best are invited to the main coder

training.

During the main coder training, the coders acquaint themselves with the actual

coding guide that they will be using in the coding process and review once again

the general principles of coding. At the training preceding each coding round,

items that are about to be coded are discussed again. Next, a training round of

coding occurs, based on the training materials prepared earlier. Students’
responses included in the training materials originate both from the international

coders’ training as well as from students’ response booklets from Poland. The trial

coding consists of two sessions. During the first session, coders jointly assign

codes to a first set of students’ responses from the training materials and discuss

their decisions. The aim of this session is to reach precise understanding of rules

of the item coding. In the second session, each coder independently codes a

second set of students’ responses so that their coding accuracy can be assessed

by the supervisor. Responses for which full conformity was not reached are

discussed again. Then the actual coding starts. The work of coders whose coding

during the training session did not fully comply with the expected results is

carefully supervised.

Coder Query Service

It often happens during the actual coding that a coder has difficulty assigning a code

to a student’s response. Then they can ask the supervisor for help. This person,

equipped with the experience of the joint coding at the international coders’ training
and also with the thorough knowledge of the coding guide enriched by a set of

coded items, can help to make a decision. However, it can happen that the

supervising person also has serious doubts concerning the code assignment to a
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particular solution. If the difficulty encountered concerns more than one case, a

query can be sent to the coding department of the international contractors

organising the PISA survey. A list of solutions causing coding difficulty received

from different countries together with the correct codes assigned and supporting

comments are distributed by the international contractors for use by all national

coding teams. This document called Coder Queries provides an even bigger set of

coding examples, which can be referred to in case of doubt.

Coding of a Sample Item

The unit PM978 Cable television was released (OECD 2013) after use in the field

trial for the PISA 2012 survey but not in the main survey. The first question in the

unit was multiple-choice so automatically scored and not dealt with by the coders.

Question 2 is given in Fig. 9.3. In the field trial this question PM978Q02 was

slightly easier than average.

As shown in Fig. 9.4, this item has a relatively simple, two level system of

codes. At the no credit level we have the simplest possible set of codes: 00 and 99.

At the full credit level there are also only two codes: 11 and 12. The distinction

between codes 11 and 12 is quite clear. Code 11 is used when the student points

out the general rule that the total number of households is essential information

for interpreting the percentage. Code 12 is applied when the student just calcu-

lates quantities relevant to the problem. The three sample responses illustrating

the codes are clear too—each of them quite extensively justifies the claim posed in

the item.

An additional set of sample students’ responses with codes assigned and exten-

sive comments was assembled by the item development team for the international

coders’ training. This set contained, among others, the following responses:

Response 1 This is incorrect because France has a lot bigger population (24.5 million) whereas

Norway only has a population of 2 million

Response 3 97 % of 24.5 million >97.2 % of 2 million

Response 5 The statement is incorrect because France has a much larger amount

of households that own TVs

Response 7 The population of France is bigger than the population of Norway

Responses 1, 5 and 7 were assigned code 11. They fit the general code descrip-

tion, although they are less extensive than the sample responses quoted in the

coding guide. The most laconic is response 7. Here the student mentions neither

the percent calculation of the quantities being compared nor quotes any exact

numbers showing the large difference of the population sizes. The rationale for

assigning code 11 to this response (given in the unpublished documentation for

coders) is as follows:
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We feel there is an implicit understanding of the percentages of cable TV subscribers

(otherwise they would not have responded in the way they did), and that they recognised

that the much higher total number of households owning TVs in France compared with

Norway overrides the difference in percentage in Cable TV subscribers. So we are giving

the student the benefit of the doubt that they had taken those percentages into account.

Response 3 received code 00, with the accompanying comment in the

unpublished coding advice:

The student has simply written down the numbers from the first two columns of the table—

we feel if they were aware of the need to take into account the information in the last

column they would have included those in their calculations (and it would have then been a

clear code 12).

Fig. 9.3 PM978Q02 Cable television Question 2 with categorisation (OECD 2013)
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Among all the queries received by the international contractors, only four

concerned the PM978 Cable television item. Two of them were similar to the

responses 1, 5 and 7 from the coders’ training, quoted above. One query (Query

5184) concerned the response: “There is a great difference in the number of

households that own TVs in both countries.” The student author of this response

does not state precisely how large the difference between the population sizes of the

two countries is, nor is it explicitly stated in which direction this difference works—

to France or to Norway. This was even vaguer than the above responses, but it still

was given code 11:

The response implies understanding of the percentages of cable TV subscribers and

recognition that the much higher total number of households owning TVs in France

compared with Norway overrides the difference in percentage in Cable TV subscribers.

So we recommend giving the student the benefit of the doubt that they had taken those

percentages into account.

Another query (Query 5017) concerned a response that contained a small

calculation error: “This is incorrect because France has a 23.5 million difference

in the number of households that own a TV.” In fact, the difference is 22.5 million,

not 23.5 million. The coder submitted a query to the international contractors

Full Credit 

Code 11:  A response that says that Kevin needed to take into 
account the actual number of households with TVs for the two 
countries. [Accept “population” as a substitute for “households”].

He is wrong because there are over 22 million more 
households that own TVs in France, and even if only 15.4% 
subscribe to cable TV that is more than Norway.

Because the population of France is about 10 times more 
than Norway and there is only about 3 times as many 
households that subscribe to cable TV in Norway compared 
to France.

Code 12: A response that is based on calculation of the actual 
number of subscribers in the two countries.

Because France has 24.5 × 0.154 = approximately 3.8 million 
households that subscribe to cable TV, while Norway has 2.0 
× 0.427 which is approximately 0.8 million households. 
France has more cable television subscribers.

No Credit 

Code 00: Other responses.

Code 99: Missing.

Fig. 9.4 PM978Q02 Cable Television Question 2 coding guide (OECD 2013)
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asking whether this student response was more like Responses 1 and 5 above, than

Response 3. Again the decision was to give code 11. “We feel that the student

response provided is most similar to [Responses 1 and 5 above] and should be

scored accordingly as Code 11.”

The Polish Experience of Coding the Cable Television Item

While coding over 1,000 Polish students’ responses, coders came across several

answers that were hard to code. Let us look at four examples:

Response P1 The number of households that own TVs is smaller

Response P2 Despite the fact that in Norway the percentage of households that subscribe to

cable TV is about 3 times larger, the number of those households is about

12 times smaller

Response P3 Because more people live in France than in Norway and not everybody sub-

scribes to cable TV

Response P4 France has over 15 % cable TV subscribers. But even if there were only 10 %, it

would still amount to about 2.5 million subscribers. Norway has about 42 %, but

even 50 % would give only 1 million subscribers. Hence France has more

subscribers

Response P1 is close to the general description of code 11 in the coding guide

shown in Fig. 9.4. However, it is far more terse than any of the examples provided

there—the student did not use any numbers and did not indicate which country has

fewer households with cable TV. For that reason coders had doubts whether such a

general response deserves code 11. After comparing it with Query 5184 above, they

decided to assign code 11.

Response P2 above is very close to the second example for code 11 in the coding

guide, although the second part of sentence is not precise—the words ‘of those
households’ refers to the first part of the sentence, i.e., to households that subscribe
to cable TV. However, the number of households that own TVs is 12 times larger,

not the number of households that subscribe to cable TV. Comparing this response

with Query 5017 above, which was coded 11, hence allowing for a certain lack of

precision, it was decided that the second part of the sentence was a mental leap

rather than a logical error—code 11 was assigned.

Response P3 consists of two parts. The first part fits well the code 11 description

and it is also similar to the sample Response 7 from the international training

materials above (The population of France is bigger than the population of Nor-
way.) However, there is also the second part, which does not fit the first part. Coders
had to decide whether this is a case of contradictory elements, which would mean

that the student did not understand the question. Or rather, is it a clumsy way to

indicate that the percentages must be calculated with respect to the total populations

in both countries? In the latter case it is just language clumsiness, caused by the lack
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of experience in formulating justifications. After a discussion, we decided to assign

code 11—we gave the student the benefit of doubt.

Response P4 is one of the very few where the student was actually performing

some calculations. But it is not just the calculation of the actual number of the cable

TV subscribers, as in the code 12 description. It is rather an estimation used to

justify a more general principle, formulated in the code 11 description. After a

discussion we decided to assign code 12 to this response, to stress the presence of

the calculations in the response.

In summary, difficulties in coding items that require an explanation or a justifi-

cation of an opinion in most cases are caused by two factors. First quite often

students’ responses are much shorter and more laconic than those predicted by the

coding guide. It is then hard to unambiguously conclude whether it fits the general

code description. One can have doubts as to which of the following two cases takes

place. Perhaps the student understood the claim and was able to justify it, but

formulated the response in terms that were too general. Alternately, the student did

not understand the claim or was unable to justify it and therefore offered a very

general, ambiguous answer. On such occasions we need to draw a borderline

between the level of generality that can be accepted as a correct answer and when

it is insufficient. Second, students’ responses are often ambiguous—they contain

correct justifications and references to correct information, as well as parts that are

not correct or simply hard to understand or interpret. Are those obscure fragments a

result of the language clumsiness resulting from lack of experience in producing

justifications? Are they caused by a mental leap or even by a language error? Or do

they rather prove that the student did not understand the problem? On such

occasions the coder’s decision is rather subjective and depends on how a student’s
unclear response is interpreted.

A Second Example

Question 2 of PM00L Ice-cream Shop from the field trial for PISA 2012 is shown in

Fig. 9.5 and its coding instructions are in Fig. 9.6. It belongs to a different type of

item from the Cable TV question above, because it does not ask for an explanation

but instead the student has to plan and perform calculations.

The “Show Your Work” Instruction

An apparent contradiction between the problem formulation and the coding guide is

worth noticing. The item has an instruction “Show your work”. However, from the

code descriptions in Fig. 9.6 it can be seen that a student can obtain any code—

including full credit (code 2)—even when he does not provide any calculations or

show any working at all; it is enough to provide the correct answer.
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Before we explain this rule of coding let us recall that the tested students solve

problems in a dozen different booklets, assigned randomly to students. It is highly

improbable that two students sitting next to each other would have the same

booklets and solve the same item. Hence it is almost impossible that a student

would copy the correct answer from another one, which would often be a danger in

a classroom assessment. In these circumstances, we can safely assume that if a

Fig. 9.5 PM00LQ02 Ice-cream shop Question 2 with categorisation (OECD 2013)
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student has presented the correct answer then he is highly likely to have solved the

problem unassisted. The student may have solved it mentally, or by performing a

series of calculator operations or even by writing down the results of the interme-

diate calculations somewhere inside or outside the answer booklet, or erasing them.

What is then the rationale of including this instruction in the item? It is the

following: if a student’s answer is wrong but he follows this instruction and writes

down the consecutive steps of the calculations, the coder gets the chance to track the

steps and to find the reason for the student’s error. Also, the coder can assign a

partial credit to solutions containing computational error if such a code exists for

the item. This would not be possible if only the answer had been provided, without

any working.

Coding Difficulties with Items Requiring Calculations

The item PM00LQ02 Ice-cream shop Question 2 was one of the most difficult and

laborious items to code in the whole history of PISA coding. It was obviously easy

to assign code 2—to get it a student has to provide the correct answer of 31.5

without units or with units that are either correct or incorrect. It was much harder to

decide whether the student’s response deserves code 1 or 0. A necessary condition

Full Credit 

Code 2: 31.5. [With or without units and with or without 
working. Note: It is likely that working will be shown on the grid. 
Incorrect units can be ignored because to get 31.5, the student 
has worked in metres.]
Partial Credit 

Code 1: Working that clearly shows some correct use of the grid 
to calculate the area but with incorrect use of the scale or an 
arithmetical error.

126. [Response which indicates correct calculation of the 
area but did not use the scale to get the real value.]

7.5 x 5 (=37.5) – 3 x 2.5 (=7.5) – ½ x 2 x 1.5 (=1.5) = 28.5 m2. 
[Subtracted instead of adding the triangular area when 
breaking total area down into sub areas.]

63. [Error using scale, divided by 2 rather than 4 to convert 
to metres.]

No Credit 

Code 0: Other responses.

Code 9: Missing.

Fig. 9.6 PM00LQ02 Ice-cream shop Question 2 coding guide (OECD 2013)
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for receiving code 1 was the proper use of the square grid to calculate the area. Code

1 allowed for mistakes in scaling or calculation errors. To decide whether the

student was properly using the grid, one had to monitor the reasoning path and

this was very difficult. The number of ways that students chose to calculate this

irregular area was practically infinite. Some divided the area into parts, most of

them into two rectangles and a triangle or into three rectangles and a triangle. But

quite often we encountered much finer dissections. Also different rectangles were

used. Some started from a rectangle situated along the longer side of the ice-cream

shop; others along the shorter side. The remaining part of the floor was divided into

a large variety of different pieces. Some students did not add the floor area from

simpler pieces; instead they subtracted from the total floor area the areas of the

service area and the counter. But, of course, this could be achieved in many ways.

Further variations arose because the student could calculate with the number of grid

squares or measures in metres. Taking into account the possibility of making errors

in counting the squares and/or computational errors, we obtain a huge number of

possible combinations and hence of different solution paths. In this situation the

attempt to determine whether a student correctly and consistently used the grid

required genuine detective skills from the coders.

In some PISA mathematics items, calculations constitute only a part of the

problem solution. Sometimes, besides performing calculations, the student has to

interpret the obtained result. In other problems, before starting the calculations, the

student has to find and understand the necessary data. Many different mistakes are

possible when solving tasks of such complexity: improper or inaccurate reading of

data, wrongly planned or performed calculations, wrongly interpreted results. Of

course, any combination of the above is possible. Items of this complexity fre-

quently have complex coding systems where different codes correspond to different

categories of errors. In those cases, when the number of possible error combinations

is large, coding is very difficult and requires of the coders a lot of effort, commit-

ment and concentration.

At last, I would like to add a comment on the double digit coding. I believe that

its potential still remains to be exploited. In the past administrations of Polish PISA

we did not use this opportunity. However, the lesson has been learned: we have

adopted the double digit coding in our education research on learning mathematics

that lead us to very interesting conclusions concerning the way our students

approach mathematics problems (Sułowska and Karpiński 2012).

Conclusion

There are many other interesting topics related to coders’ work. During the last

decade, while supervising the work of the Polish PISA mathematics coders’ teams

at the 2003, 2006, 2009 and 2012 assessments, my expertise was considerably

strengthened. The coding process brings a lot of very detailed information about

how students learn mathematics, which is much deeper than the codes reported to
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the international data base. I had the chance to use the experience gained in the

consecutive assessments in the Polish core curriculum reform, as a Leading Expert

for the Ministry of National Education, and later as an expert for the Polish Central

Examination Commission helping to improve the quality of the national tests in

mathematics. Recently, I have been involved in educational research at the Educa-

tional Research Institute, again capitalising on the lessons learned from PISA.

PISA is for me a fascinating adventure. I appreciate its guiding idea of mathe-

matical literacy. PISA impresses me with its utmost diligence paid to the prepara-

tion of tools and procedures, including its great care for reliable coding. At all the

stages of preparation, comments from the people involved in PISA around the

world were appreciated. To my great satisfaction, also some of my comments about

mathematics items and coding guides were considered useful.
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Chapter 10

The Concept of Opportunity to Learn (OTL)

in International Comparisons of Education

Leland S. Cogan and William H. Schmidt

Abstract Items addressing the Opportunity to Learn (OTL) construct, the idea that

the time a student spends in learning something is related to what that student

learns, was included in the mathematics portion of PISA 2012 for the first time.

Several questions on the student survey were designed to measure students’ oppor-
tunity to learn important concepts and skills associated with the assessed mathe-

matical literacy. This chapter traces the development of this type of information in

international comparisons of education and discusses four types of items that have

been developed for this purpose. It also discusses the unique challenge of measuring

this concept in PISA as it focuses on literacy, the knowledge students have acquired

over their schooling to date, rather than on the content knowledge students have

gained from schooling during a particular year or at a particular grade level. The

specific OTL items and their purpose are identified from the Student Questionnaire

section of Appendix A in the PISA 2012 Assessment and Analytic Framework.

An Opportunity Model

The mathematics portion of PISA 2012 included for the first time several questions

designed to measure students’ opportunity to learn important concepts and skills

associated with the assessed mathematical literacy. The Opportunity to Learn

(OTL) concept is the rather common sense notion that the time a student spends

in learning something is related to what that student learns. This idea is fundamental

to schools. As Bloom stated in his Thorndike award address, “All learning, whether

done in school or elsewhere, requires time” (p. 682, Bloom 1974). Schools are

created and organised to provide students with the time and selected learning

experiences geared toward learning specific subject-matter content. The idea that

the time spent learning something is important to what is learned is evident around
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the turn of the last century in the writings of psychologists Edward Thorndike and

William James (for a brief history of this, see Berliner 1990).

John B. Carroll, however, was among the first to feature time explicitly in his

model of school learning (1963). Carroll posited that student learning was a

function of both student factors: aptitude, ability, and perseverance; and classroom

(or teacher) factors: time allocated for learning (OTL) and instructional quality. The

latter is conceptualised as the interaction of the instruction provided with what is

needed by the student in order to learn. Carroll summarised his model in the

following equation:

degree of learning ¼ f
time actually spent on learning

time needed to learn

� �

Carroll conceived of the ‘time actually spent on learning’ as the product of the
‘opportunity to learn’ provided by the classroom teacher and the student’s
‘perseverance’.

International Comparisons of Education

Comparisons of education systems by UNESCO, OECD, and others up until the

early 1960s were primarily qualitative, consisting of rich descriptions of each

national system. These descriptions often included tables of statistics that compared

aspects of education that could be counted and quantified. Educational system

characteristics and outcomes such as per pupil expenditures, teacher-pupil ratios,

graduation rates, degrees, and proportion of students seeking further study were

produced. However, what was yet missing was any measure of what students in

each system might have learned or gained through their education experiences. The

interest in exploring the creation of quantifiable measures that could be compared

across systems was one of the impetuses that led to the creation of the Council of the

International Project for the Evaluation of Educational Achievement (IEA) in the

early 1960s. The council consisted of national education ministry representatives

and university research professors who made plans to design and to conduct what

came to be known as the First International Mathematics Study (FIMS) (Husén

1967; Travers and Westbury 1989).

Benjamin Bloom, who based his concept of mastery learning on Carroll’s model

of school learning (Bloom 1974), was a member of the Standing Committee that

was charged with leading and carrying out the project. Enough was known about

differences in instructional practices and the curricula of the national systems

represented in IEA to suggest that any measure of student learning or achievement

was likely to vary substantially across the countries involved. Consequently there

was also interest in measuring factors that might be related to such differences.
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Stemming from Carroll’s seminal model, which informed Bloom’s mastery learn-

ing model, it was thought that

one of the factors which may influence scores on the achievement examination was whether

or not the students had an opportunity to study a particular topic or learn how to solve a

particular type of problem presented by the test. (Husén 1967, pp. 162–163)

Although the ‘opportunity to learn’ (OTL) construct was conceived as operating at

the individual student level, the challenges of a large-scale survey led to this being

measured at the classroom (teacher) level through a teacher survey. In later analyses

this simple index of students’ OTL demonstrated a significant relationship with the

achievement measures.

Although IEA studies have included descriptions of national education systems

often including some of the same tables about the organisation of schools and

schooling such as number of instructional days and teacher characteristics, the OTL

index in FIMS demonstrated their focal interest on the teaching-learning process

that occurs in schools. This was made explicit in the curriculum model introduced

in the Second International Mathematics Study (SIMS) (Travers and Westbury

1989). This model articulated three instantiations of curriculum to be investigated:

intended, implemented, and attained. The intended curriculum included the stan-

dards and expectations that education systems make known for student learning

such as in curriculum frameworks. The implemented curriculum focused on class-

room instructional practices and content. What students learned in school was

represented in the model as the attained curriculum.

The IEA investigation of curriculum climaxed in the 1995 Third International

Mathematics and Science Study (TIMSS). Prior to conducting the study early in

1995, a multi-year research and development project investigated the curriculum

documents and classroom practices in multiple countries (Schmidt et al. 1996). This

project produced curriculum frameworks for K-12 mathematics and science that

were developed and adjudicated internationally. These frameworks were designed

to be comprehensive of what any of the participating countries would teach in these

subjects across the grades, and provided a common language for other aspects of the

study thus yielding integrated curriculum measures. The frameworks were used to

specify blueprints for the student assessments, classroom instruction topic catego-

ries in the teacher surveys, and the coding categories for the curriculum document

analysis. National staff in each country trained by TIMSS document analysis staff

coded their own curriculum documents. These included the official documents

specifying what students were expected to learn at each grade (the intended

curriculum) and a representative sample of textbooks used by students in the

TIMSS targeted student populations. Textbooks embody a particular set of student

learning expectations and provide resources to guide classroom instruction. Con-

ceptually, textbooks form a bridge between what is officially intended for students

to learn (intended curriculum) and the classroom instruction of teachers

(implemented curriculum) becoming documents that give expression to a poten-

tially implemented curriculum (Schmidt et al. 1996).
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Countries used the different international benchmarks that TIMSS produced for

each of these curriculum instantiations to inform various education reform efforts.

Some were surprised by and dissatisfied with the large differences evident with

what teachers reported teaching. Others were challenged by the curriculum expec-

tations of other countries and used these to spur the development and formulation of

new or revised curriculum standards. One example of the latter is the Common Core

Standards for Mathematics recently adopted by a majority of U.S. states (Common

Core State Standards Initiative 2010).

Literacy, Opportunity, and PISA

The prominent role of OTL in IEA studies is logical given their foundation in

theories of student learning and the role that schools as organisations have in

providing schooling (instruction) for students. The IEA curriculum model made

explicit conceptual links between aspects of curriculum and the learning students

attained through their schooling. This focus on school learning in IEA studies is

evident in both the definition of the student population and in the sampling

methodology. Student population definitions are grade focused as the question of

interest relates to what students may know at a particular point in their schooling

experience. Given the emphasis on student knowledge as a function of classroom

instruction (schooling), these studies also gather information about classroom

instruction from teachers. For these two curriculum indicators to be linked empir-

ically the sampling of students and the sampling of teachers must be linked.

Therefore, these studies sample entire classrooms in schools and survey the

teachers of the sampled student classrooms.

The questions of interest in PISA have been less about what students know after

studying a particular curriculum for a period of time, i.e., student outcomes at a

particular grade level, and more on students’ ability to use what they have learned

through their accumulated schooling experience to address authentic, real-life

challenges and problems. This practical orientation requiring the application of

knowledge is the literacy that PISA has sought to assess. The difference in PISA

focus and emphasis from IEA studies is expressed in both the definition of the

student population and in the sampling methodology. The question PISA explores

is what students of a particular age are able to do with the knowledge they have.

This yields an age-based student population definition, i.e., 15-year olds, and a

corresponding sampling methodology that is school based, randomly sampling

students from a random sample of all the schools in which these students are to

be found.

However, this shift in focus from the content knowledge students have gained

from schooling during a particular year (grade level) to the application of the

cumulative knowledge acquired over their schooling to date raises an interesting

question: how relevant is opportunity to learn? How relevant is students’ learning of
core formal content-based competencies to their ability to apply their learning to
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authentic, real-world based problems and situations? Cognitive models of learning

suggest that all learning is problem solving; the application and transfer of what has

been learned in one context or situation to a different one (VanLehn 1989). Yet this

does not clarify the specific types of OTL one might want to explore as being

related to the literacy competencies measured in PISA. That school-based knowl-

edge is related to PISA literacy seems clear from comparisons of results from

TIMSS and PISA. For example, looking at the 26 countries/jurisdictions that

participated in both the 2011 TIMSS and the 2009 PISA, the mathematics perfor-

mance correlation was 0.87 (Mullis et al. 2012; OECD 2010). However, relative

ranking on these two assessments did differ, sometimes rather dramatically, for

some: a few did better on the TIMSS, e.g., the Russian Federation and Israel, and

others did better on PISA, e.g., New Zealand and Norway. This similarity of results

at least at the country level seems to suggest that the OTL issue, that is, the learning

opportunities in schools, may well be pertinent for the development of literacy as

assessed in PISA. What might literacy-pertinent OTL measures look like?

Traditionally, content or subject matter based OTL has been gathered through

four different types of items. The first simply takes items from the student assess-

ment and asks whether anything has been done in school that would enable students

to obtain a correct answer on the test item. Response categories are typically binary,

yes/no, but could also be expressed as some time gradient such as never, sometimes,

and often. A variation of this method is to ask teachers to indicate how many

students have had the opportunity to learn this type of problem. This was the

method used in FIMS (p. 167, Husén 1967). A second option would be to present

categories of school learning and to ask for a judgement of time each has been

represented in schooling. Examples of mathematical experience could be formal

school mathematics problems, mathematics word problems, problems involving the

application of mathematics, and situations requiring the application of mathematics

principles to real-world situations. This would simply yield an overall, relative

indication of how much instruction time had been devoted to these various types of

learning experiences.

A third option is abstracted from the first one listed above. In this option,

exemplar problems that require the application of knowledge are presented and

the respondent is asked whether anything like this has been done in school. This

assesses more directly the extent to which students may have had experiences as

part of their schooling in applying their knowledge in order to practise a particular

skill. A final option is to present a full representation of subject-matter specific

topics and ask to what extent these may have been encountered in school. With the

PISA emphasis on assessing literacy, it seems likely that options one and three

might be the most fruitful to explore

The PISA definition of mathematical literacy provides further guidance as to the

specific aspects of students’OTL that are likely to be relevant. These are clarified in

the PISA 2012 Mathematics Framework:

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret

mathematics in a variety of contexts. It includes reasoning mathematically and using

mathematical concepts, procedures, facts and tools to describe, explain and predict

10 Opportunity to Learn (OTL) in International Comparisons 211



phenomena. It assists individuals to recognise the role that mathematics plays in the world

and to make the well-founded judgments and decisions needed by constructive, engaged

and reflective citizens. (OECD 2013a, p. 25)

The definition of mathematical literacy identifies specific skills to be assessed

and, consequently, for which it would be appropriate to have some indication of

students’ OTL, i.e., some indication of what they may have encountered in their

instructional experiences in school that would have helped them respond appropri-

ately to the items or problems presented in the assessment. This identifies the

information relevant to crafting the third type of OTL question described above.

In addition, the Framework identifies four broad content areas for which some

measure of student OTL would be appropriate: Change and relationships; Space
and shape; Quantity; and Uncertainty and data. These four broad content catego-

ries provide an indication of the types of items that could profitably be used in an

‘option one’ type OTL measurement as well as defining the broad areas from which

key topics/concepts might come for an ‘option three’ type OTL measurement.

PISA Measurements of Opportunity

In PISA 2012 the opportunity to learn measures were obtained through a series of

items in the student questionnaire. The rationale for students providing their own

OTL information is a function of PISA’s age-based rather than grade-based meth-

odology. PISA randomly samples 15-year old students from all classes in a school

rather than sampling intact classrooms. Measuring OTL at the student level,

however, is also consistent with the Carroll and Bloom models of student learning

that first identified the OTL concept that in PISA and many other studies is

considered an aspect of the learning environment. Most other comparative educa-

tion studies have had teachers report on students’ OTL. Although the PISA sam-

pling methodology doesn’t provide a way to estimate classroom effects, it does

provide a true individual-level OTL measure that can be aggregated and analysed as

a characteristic of schools and/or countries. Students’ report on classroom instruc-

tion is sometimes criticised as unreliable as individual students in the same class

tend to report differently and their reports do not always align well with what their

teachers report. To the extent that interest in OTL is to explain student achievement

rather than to reliably report on classroom instruction, the phenomenological

response of the student may well be more powerful than a single teacher’s report
for multiple students. If a student can’t recall encountering any sort of learning

experience relevant to a particular topic or problem type this may indicate that the

student does not have the needed knowledge to correctly solve the relevant item(s)

or item type.

Six different items representing all but OTL ‘option two’ above were selected

from the field trial and included in PISA 2012. This range of items across these

three different approaches to the measurement of OTL represents a sort of

212 L.S. Cogan and W.H. Schmidt



‘generalisability study’ of mathematical literacy OTL. Each addresses the OTL

issue for the application of mathematical literacy in different contexts. One item

(question 38 in PISA 2012, see Fig. 10.1) asks students to indicate how often they

have “encountered the following types of mathematics tasks” during their time at

school. The nine tasks listed include a variety of formal mathematics tasks involv-

ing the application of mathematics knowledge in a real-world situation.

Another item (question 39) presents students with a list of 16 mathematics

concepts (e.g. exponential function, divisor, vectors, rational number) and asks

students how familiar they are with each one. The five response categories were:

‘never heard of it’, ‘heard of it once or twice’, ‘heard of it a few times’, ‘heard of it

often’, and ‘know it well, understand the concept’. Three of the listed concepts

(proper number, subjunctive scaling, declarative fraction) were not true names of

mathematics concepts to provide a check on a response bias (see p. 234, OECD

2013a).

A set of four items (question 44 through question 47 in Fig. 10.2) presented four

different types of problems to students and asked them how often they had encoun-

tered such a problem type in: (1) their mathematics lessons, and (2) in the tests they

had taken in school. The response categories for these were ‘frequently’, ‘some-

times’, ‘rarely’, and ‘never.’ Questions 44 and 47 each presented students with two

examples of problem types requiring the application of mathematical skills or

knowledge in a practical situation. Questions 45 and 46 each presented two

Q38 How often have you encountered the following types of mathematics 
tasks during your time at school?                (Please tick only one box in each row)

Frequently Rarely Never

a)
Using a <train timetable> to work 
out how long it would take to get 
from one place to another. �1 �2 �3 �4

b)
Calculating how much cheaper a 
TV would be after a 30% dis-
count. �1 �2 �3 �4

c)
Calculating how many square metres
of tiles you need to cover a floor. �1 �2 �3 �4

d) Understanding graphs presented 
in newspapers. �1 �2 �3 �4

e) Solving an equation like
3x+5= 17. �1 �2 �3 �4

Sometimes

Fig. 10.1 Part of Question 38 (ST61) from PISA 2012 Student Questionnaire (OECD 2013a,

p. 234)
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Fig. 10.2 Questions 44–47 (ST73—76) from PISA 2012 Student Questionnaire (OECD 2013a,

pp. 235, 236)
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examples of problem types involving the use of formal mathematics content (see

pp. 235–236 OECD 2013a). This sequence of four items measured how frequently

students had the opportunity to work with word problems (Q44), applications of

known rules and formulas (Q45), pure mathematics problems (Q46) and problems

similar to previous PISA assessment items (Q47). The intention was to have

students respond by considering the type of problem (as exemplified by the given

mathematical tasks), rather than by considering the actual content such as solving

equations or calculating percentages. Simple examples of each problem type were

preferred for these items.

Summaries of results from the field trial for each of the items suggest that these

various approaches to the measurement of mathematical literacy OTL will be of

great interest in and of themselves. That is, the results vary across countries in a way

that is of interest apart from any consideration of how this variation may be related

to PISA mathematical literacy. In fact, in the initial PISA 2012 report one entire

chapter documents the OTL variation across countries as well as some of the

different ways OTL is related to PISA mathematics literacy performance

(pp. 147ff, OECD 2013b). In addition, an OECD working paper reveals how the

relationship between OTL and PISA mathematics literacy differs as a function of

economic factors within countries (Schmidt et al. 2013).

Further analyses will no doubt reveal the fruitfulness of having included OTL as

part of the PISA 2012 assessment. For example, such OTL items will enable

researchers to explore issues of access and equity in educational opportunity within

each country. As these have been included in a rather comprehensive survey, these

issues may be explored additionally as a function of various measures of economic

and social capital. It will also be possible to investigate the relationship between

mathematics OTL and performance on the various PISA measures including the

mathematics sub-scales and measures of reading and science performance. The

particular way OTL is related to student-level and school-level socioeconomic

measures is likely unique for each country as has been demonstrated with similar

previously available data (Schmidt and McKnight 2012). The interpretation of

these relationships and their attendant policy implications are also unique to an

individual country’s context.
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Part III

PISA’s Impact Around the World:
Inspiration and Adaptation

Introduction to Part III

This part demonstrates some of the ways in which PISA and its constituent ideas,

methods and results have influenced education, drawing on the direct testimony of

individuals many of whom have unique connections to PISA. The influence is of

many types, including as a call to action from poor results, as a stimulus for new

teaching and learning practices and for curriculum review, as a model for new

assessment practices and provoking deeper education debates more generally and

the creation of new educational standards. The underlying themes of the part are

first of inspiration from PISA (both the need for change and possible directions for

change), but second of adaptation of PISA resources, ideas and methods to meet the

needs of very different educational environments.

This part is a collection of reflections on the impact that PISA has had on

individuals, on education systems, and on teaching and learning practices in

fourteen different countries. Inevitably, this is only a small sample of countries

and a small sample of activities within the chosen countries. These reflections do

not represent an official country view of the influence of PISA, and most impor-

tantly, they do not claim to represent all that is happening in these countries.

Instead, they are written from the viewpoints of the authors and the initiatives

with which they have been associated.

A striking feature of these reviews is the diversity of responses, including using

PISA resources in teaching, to reviewing curriculum, through teacher education

projects and formal assessment. This is a clear demonstration that aiming to

improve educational systems requires working on many different fronts, and

assessment results can stimulate many ideas for improvement.

Toshikazu Ikeda (Chap. 11) argues that the PISA Framework offers useful

guidance to teachers on teaching mathematical modelling, on the selection or

design of suitable problems, and significantly that particular modelling-related

skills and competencies can be fostered through the kinds of problems used in

http://dx.doi.org/10.1007/978-3-319-10121-7_11


PISA. In support of this argument, Ikeda describes classroom practice that can

advance relevant modelling skills. He also speaks from a broader perspective about

why such practice is important, and concludes with a brief discussion of changes to

Japanese curriculum resulting from local reflection on PISA results. Falling PISA

results were one stimulus for the revision of the Japanese national curriculum to

increase the time allocation for mathematics, and a two-pronged national assess-

ment has been introduced, part focusing on basic skills and part on PISA-like

problems.

Prenzel, Blum and Klieme (Chap. 12) give an overview of some of the signif-

icant impacts in Germany that have followed from their relatively poor mean

performance in international surveys, especially the first PISA survey. A substantial

impetus given to teacher professional development, the development and dissem-

ination of new national performance standards for mathematics across several

levels of schooling, and an intensified research focus on educational outcomes are

key products of the PISA-related activity in Germany over the last decade or so.

This contribution provides a clear example of concerted action leading to real

improvements in educational outcomes over a relatively short timeframe, even

within the constraints of a diverse federal system of government.

Arzarello, Garuti and Ricci (Chap. 13) provide a southern-European perspective

on PISA’s impact. As with the German example, below average national results in

the early PISA survey outcomes have led to concerted action to improve educa-

tional outcomes particularly for the poorer-performing regions in the south of Italy.

Beginning with information sharing, especially among teachers of PISA-aged

students but extending to action at the precursor year levels, new approaches to

curriculum and assessment have been introduced. They are supported by the

development and dissemination of new classroom materials designed to foster the

kinds of thinking valued through PISA.

Kai-Lin Yang and Fou-Lai Lin (Chap. 14) discuss some effects of PISA on

educational practices in Taiwan, a perspective that differs from the previous two in

that Taiwan has been a consistent high performer on international surveys such as

PISA. They are concerned to improve from a high base. The article is focused on

the selection of high achieving students by schools in their competitive and

hierarchically structured system. Yang and Lin describe an attempt to use ideas

underpinning PISA as the basis of a new selection system. The resulting debate has

been studded with controversy regarding the relative merits of two goals that Yang

and Lin refer to as ‘learning power’ (approached using a PISA-oriented curriculum
and assessment) and mastery of textbook content characterised as ‘mathematics for

examination’. In Chaps. 13 and 14 and elsewhere in Part III, there is discussion

about how the goals of a school curriculum (and hence the necessary assessment)

are broader than PISA’s mathematical literacy. Consistent with the goals of the

PISA programme as set by the OECD, PISA mathematics derives its strength from

a focus on the outcomes of the education that are most relevant to success in future

life. However, mathematics as a school subject and as a branch of human endeavour

is more than this. Consequently, these chapters discuss how the PISA framework

needs to be broadened for a full assessment of school mathematics, particularly by
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including intra-mathematical argumentation and proof, ideas of mathematical

structure, and mathematics motivated by interest and beauty, not only utility. The

balance between mathematical literacy and intra-mathematical work in assessments

will vary with the age and stage of students and, for those beyond the compulsory

years, their purpose in studying mathematics.

Ten shorter pieces round out the discussion of the impact PISA has had in

different countries, including nine countries that have participated in the PISA

surveys, and one that has not. Almuna (Chile), Lindenskov (Denmark), Salles and

Chesné (France), Zulkardi (Indonesia), Gooya and Rafiepour (Iran), Perl (Israel),

Park (Korea), Kaur (Singapore), Rico, Lupiáñez and Caraballo (Spain), and

Garfunkel (United States of America) provide a range of perspectives on important

effects that PISA has had on educational debate and on classroom practice in their

countries. Once again, these reflections do not claim to be comprehensive, and are

not official reports. As well as the contributors being from variety of countries,

there is great variety in their roles, from a teacher to the head of mathematics

teaching for a country, people influential in teacher education, research, and

curriculum development and people who have worked in the national agencies

that contribute to PISA. There is also considerable variation in style of the accounts,

ranging from quite official accounts to the intensely personal. In this chapter again,

the themes of inspiration from PISA and diverse adaptation of PISA’s ideas,

resources and methods come to the fore.
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Chapter 11

Applying PISA Ideas to Classroom Teaching

of Mathematical Modelling

Toshikazu Ikeda

Abstract This chapter argues that the Mathematics Framework of PISA provides a

meaningful guide for practical classroom teaching focused on mathematical model-

ling. The chapter discusses in detail how the Framework can provide guidance on

choosing problem situations that interest students and also guide teaching students

to appreciate the ways in which mathematics is used by society. In order to

supplement the teaching of modelling through holistic problems involving all

aspects of the modelling cycle, the chapter recommends the use of PISA-type

problems to foster specific modelling competencies such as selecting variables

and generating relationships. Advice on how this can be done is backed up by

reports of experimental teaching. Finally, the effects of PISA in Japan are briefly

discussed.

Introduction

Comparing test results among various countries in the world regarding mathemat-

ical literacy is one of the main purposes in PISA. However, PISA ideas can also

make an important contribution to practical classroom teaching focused on math-

ematical modelling: firstly by considering the constructs and definitions that are set

out in the Mathematics Framework, and secondly, by using sample PISA items as

models for classroom tasks. This chapter discusses these two aspects. In particular,

the definition of mathematical literacy, the four categories of contexts (Personal,
Occupational, Societal, Scientific), and the three processes (Formulate, Employ,
Interpret) will be used as a guide when considering teaching plans aimed to foster

students’ competencies regarding mathematical modelling. This should be of value

for teachers when setting teaching objectives, selecting a problem context, and

introducing a problem situation. In the last section, there is a brief discussion on the

treatment of PISA-type problems in Japanese classroom teaching. The suggestion is
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made that there needs to be more dissemination of ideas about how to encourage

students to think deeply when they treat PISA-type problems.

Regarding teaching objectives, the definition of mathematical literacy from the

PISA 2012Mathematics Framework can be used as a guide to design a mathematics

curriculum, a teaching plan, and so on.

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret

mathematics in a variety of contexts. It includes reasoning mathematically and using

mathematical concepts, procedures, facts, and tools to describe, explain, and predict

phenomena. It assists individuals to recognise the role that mathematics plays in the

world and to make the well-founded judgements and decisions needed by constructive,

engaged and reflective citizens. (OECD 2013, p. 25)

In the definition, two components can be seen. First is an individual’s capacity to
formulate, employ, and interpret mathematics in a variety of contexts. This math-

ematical modelling capacity is a very important teaching objective in mathematics.

Second is a citizen’s recognition of the role that mathematics plays in the world and

being able to use it in their lives. For students to recognise the role of mathematics

in the world, it is necessary that the students have a lot of experience of solving real-

world problems in a variety of contexts and additionally teachers must encourage

students to reflect on the role of mathematics by comparing and contrasting those

examples.

Regarding teaching methods, it is important for students to solve modelling

problems completely so that they have experience in combining the different

aspects that such problems require. They should have the opportunity to perform

the whole modelling cycle, as illustrated in Chaps. 1 and 3 of this volume. On the

other hand, it is also important for teachers to focus on the specific modelling

competencies so that students can discuss and understand them and know how to

use them. As everyone knows, it is hard for a teacher to treat the complete

modelling process in the limited school time available. So one of the effective

ways to use time is to set a problem that focuses on one or two of the constituent

processes of mathematical modelling (Formulate, Employ, and Interpret) in the

same way that many PISA items do. The case studies showed that the use of PISA

items combined with group discussion and careful teacher direction was quite

effective in helping to shape students’ thinking about key features and stages of

mathematical modelling. In this chapter, we will discuss how to apply the ideas of

the PISA Framework in the classroom teaching of modelling.

Problem Situations to Interest Students

Problem situations that people are interested in differ according to the place where

people are living, such as in which country and in what type of environment. It is

obvious that the problem situations people face or are interested in differ between

developing countries and developed countries. Further, even in the same country,

familiar problem situations also differ between urban areas and suburbs. It is also
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said that problem situations that people are interested in differ between past society

and present society. For example, constructing a figure to measure length or angle

was important in the past but we now have convenient instruments to measure these

things, so it is not as important now (Ikeda 2009).

In this respect, the four context categories (Personal, Occupational, Societal,
Scientific) defined in the PISA 2012 Mathematics Framework (OECD 2013, p. 37)

are useful to clarify when, where and for whom a problem situation is set. Before

thinking about the teaching and learning of applications and modelling, it is

suggested that the teacher understand the differences of problem situations so that

he or she can plan that students will encounter a variety of situation to mathematise.

In other words, it is not appropriate to focus on situations that only some of the

students may have encountered outside of school. Drawing from the four different

context categories will guide teachers to provide a balance by using a variety of

problem situations.

When identifying the context, it is also important to consider place, time and

person. As Jablonka noted, “different purposes may result in different mathematical

models of the ‘same’ reality,” and she gave an example about comparing mortgage

plans.

[For] the bank employee (aided by a software package), who must advise a client in the

comparison of financing offers for a mortgage, for the manager of the bank this is a problem

of profitability, and for the customer it is one of planning her personal finance. (Jablonka

2007, p. 193)

Further, the teacher should select an appropriate modelling task for teaching

modelling. This suggestion raises practical questions, such as consideration of what

is an appropriate modelling task. Galbraith (2007) makes two points regarding this

question. First he notes the importance of consistency with avowed purpose. This is

a basic and important issue that is sometimes neglected by teachers in practical

teaching.

If applications and modelling is included in mathematics education to attain goals such as

‘students will experience school mathematics as useful for solving problems in real life

outside the classroom’ then students, to some extent, need to encounter tasks that are close

parallels to comparable problem situations encountered outside the mathematics classroom.

(Galbraith 2007, p. 182)

Galbraith (2007) also notes the importance of using models based on students’
experience (which is influenced by their backgrounds) and the importance of

motivation, which can come from “looking to the world and other disciplines for

knowledge and problems” (p. 182). In considering these issues, there are different

considerations for problem situations concerning the students at present, or in the

future. If the problem situation concerns the present surroundings of students, is it

concerned with most students or a few students? For example, the problem “What is

the minimum size of a mirror where I can see my whole face?” and the problem of

finding a strategy for “rock-paper-scissors” are in contexts familiar to most Japa-

nese students, but problems about games such as soccer, tennis, and rugby are only

familiar to students who are interested in these sports. If the problem situation
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concerns students in the future, is it concerned with them as citizens, as individuals

or in their potential professional or vocational capacity? The former two situations

concern many students. But occupational situations may only concern the particular

students who want to work in that direction.

Fostering Specific Modelling Competencies with PISA-Type

Problems

For the PISA 2012 survey, each of the questions was allocated to one of the

following three processes, and performance on these was subsequently reported:

• formulating situations mathematically

• employing mathematical concepts, facts, procedures, and reasoning, and

• interpreting, applying and evaluating mathematical outcomes (OECD 2013,

p. 28).

Problems involving these modelling processes can be seen in the assessment of

modelling competency elsewhere. One example is Haines et al. (2001) and a very

early example is Treilibs et al. (1980) who identified the five skills below that are

especially involved in the formulating process and gave rich examples for teaching

each of them:

• Generating variables—the ability to generate the variables or factors that might

be pertinent to the problem situation

• Selecting variables—the ability to distinguish the relative importance of vari-

ables in the building of a good model

• Specifying questions—the ability to identify the specific questions crucial to the

typically ill-defined realistic problem

• Generating relationships—the ability to identify relationships between the vari-

ables inherent in the problem situation

• Selecting relationships—the ability to distinguish the applicability of possible

relationships to the problem situation (Treilibs et al. 1980, p. 29).

Treilibs’s Sock Problem, shown in Fig. 11.1, is an example to test the skill of

‘Selecting relationships’, in this case in a graphical representation. The problem is

to select a graph that shows a realistic relationship for socks that shrink in the wash.

Students choose one graph from four. All of the graphs show the same total

decrease in size (not numerically marked) and all four functions decrease mono-

tonically. However the shapes of the graphs differ, so students have to think how the

shrinking at each successive wash will relate to the amount of shrinking previously.

What will happen if we treat PISA-type problems that focus on distinct phases of

modelling as a basis for classroom teaching about mathematical modelling? It was

reported from a pilot study (Ikeda et al. 2007) that teaching using multiple-choice

modelling problems focusing on distinct phases of modelling (e.g. Treilibs’s Sock
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Problem above) can be a valuable teaching approach to foster students’ thinking
about modelling. These multiple-choice modelling tasks are, of course, no substi-

tute for actually carrying out extended pieces of work involving mathematical

modelling. But in many countries time to carry out such extended tasks is often

hard to find in the crowded high school curriculum. Fully elaborated modelling

tasks also present challenges for many teachers. On the other hand, multiple-choice

tasks are familiar to teachers and students and may be useful in providing an

introduction to mathematical modelling. These tasks should not be seen as ends

in themselves. They can be used to provide students with an introduction to

mathematical modelling, and can serve as a basis from which more serious work

can proceed at a later stage. Here the teacher’s role is crucial in keeping students

focused on the larger picture.

A Teaching Experiment

Let us discuss the possibilities and limitations of using PISA-type problems in the

teaching of mathematical modelling. This pilot study involved nine high school

students in Japan divided into three groups of three members each. The empirical

teaching was done in the following procedure. First, students solved the problems

individually. Then they discussed their answers in their groups and after this

answered three questions:

• Was your answer changed through discussion? Explain the reason.

• What kinds of issues were discussed?

• Justify your solution.

After this, all of the students discussed their answers together, with the teacher

focusing the discussion on the most important issues. Then the teacher summarised

the important ideas involved in solving modelling problems. For the study, all the

students’ discussions were recorded, and the transcripts were analysed.

We have chosen to consider the three multiple-choice modelling problems below

and describe the students’ performance. The Cooling Problem (see Fig. 11.2) and

Fig. 11.1 The Sock Problem (After Treilibs et al. 1980, p. 35)
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the Mountain Problem (see Fig. 11.3) were developed by Ikeda et al. (2007, p. 103)

and the Supermarket Problem (see Fig. 11.4) was developed by Treilibs et al. (1980,

p. 31). The aim of the Cooling Problem is justification of a given model. The

Mountain Problem focuses on selecting assumptions for the modelling to proceed.

The aim of the Supermarket Problem is to focus on selecting variables.

The answers to the three problems given by each group are shown in Table 11.1.

The students participated in the whole group discussion bringing to that discussion

their own solutions and their reason for choosing those solutions. In the Supermar-

ket Problem (Fig. 11.4), all the groups had chosen the correct answer. The teacher

guided the students through a discussion of why this answer was correct. Even

though some students initially gave an ambiguous reason that was not fully correct,

after the whole group discussion, they clearly understood the reasoning behind the

correct answer. In the Cooling and Mountain problems, only one group had a

correct solution. For these two problems, at first the teacher guided students to

distinguish shared opinions from individual opinions in the small groups. Then the

Cooling Problem
On a warm summer day, some high school students decided to make a 

mathematical model to analyse how the temperature of a cup of coffee changes 
over time as it cools.  By plotting the data of time and the temperature of the 
coffee, they obtained the graph below. Using the graph, the students investigated 
whether the following three types of functions could represent the relation between 
time x and temperature y of coffee (when x > 0).

Function 1 y = ax + b (a, b constant) 

Function 2 y = ax2 + bx + c (a, b, c constant)

Function 3 y = ae-bx (a, b constant)

Which one of the following explanations is most appropriate? 

A. Function 1 is not appropriate because the temperature will become negative 
when the time goes by.

B. Even if we restrict the range of x, none of the functions are appropriate.  
C. Even if we do not restrict the range of x, it is possible to use Function 2
D. Function 2 is not appropriate because according to this function the 

temperature of the coffee will eventually increase.
E. If Function 3 is used, the temperature is predicted to tend to zero as time goes 

by (provided the range of x is not restricted).  However, it is possible to use 
Function 3 by transforming this formula.

Fig. 11.2 The Cooling Problem on generating and selecting relationships
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Mountain Problem
Consider this real world problem (do not try to solve it!).

It is impossible to see Mt. Fuji from Okinawa prefecture even if you have
excellent eyesight. How far from Mt. Fuji is it possible for someone located at 
ground level to see it?  Specify the distance from which it is possible to see Mt. 
Fuji using geometric arguments.

Which one of the following assumptions do you consider the least important in 
formulating a simple geometrical model to represent the problem situation?

A. Assuming the shape of Mt. Fuji as an equilateral trapezoid.
B. Assuming the shape of earth is a sphere.
C. Knowing sun’s rays go in straight lines.
D. There is nothing to interrupt one’s sight of Mt. Fuji. 

To be able to see Mt. Fuji means to be able to see the upper half part of Mt. Fuji.

Fig. 11.3 The Mountain Problem focusing on making assumptions for modelling

Supermarket Problem
Consider this real world problem but do not try to solve it!

The management of a large supermarket is trying to estimate how many of its 
checkout tills should be operating at any given time.  The factors or variables that 
could be taken into consideration include:

(a) average age of customers (b) average bill size

(c) efficiency of the checkout girls (d) maximum reasonable queuing time that 
can be expected of customers

(e) number of customers in the store (f) average number of items bought

(g) pay rate for checkout girls (h) proportion of customers using baskets 
rather than trolleys

(i) working hours

Which one of the following sets of variables is most important in order to 
estimate how many of the checkout tills should be operating for customers?

A.  (a), (c), (f), (i) B.  (c), (d), (e), (f)

C.  (h), (c), (d), (e) D.  (e), (f), (g), (i)

E.  (c), (e), (f), (h)

Fig. 11.4 The Supermarket Problem focusing on selecting variables
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teacher guided students to first discuss shared opinions. Through active discussion,

the students understood further issues and the different kind of ideas that had been

put forward and sometimes derived new reasons that had not been discussed in their

small groups.

Given below are transcripts of part of the whole group discussion of the

Cooling and Mountain Problems, translated from Japanese. Through discussion,

the students came to appreciate other issues and ideas, and learned how to evaluate

other students’ thinking. By exchanging ideas between groups, students made

explicit the important ideas that are expected to be fostered in the teaching of

modelling.

Partial Transcript of Cooling Problem Discussion

Teacher: Each group has a different answer for this problem; A, D and E. All groups

rejected B and C. Why did you not select answers B and C?

Group 2: In answer B, if we restricted the range of x, it is possible to represent this

phenomena with y¼ ax + b. Therefore, answer B is incorrect.

Teacher: How about answer C?

Group 1: Function y¼ ax2 + bx+ cwill increase when x is over a certain value. So, it
is necessary to restrict the range of x. Answer C is incorrect.

Teacher: One of the groups has got the correct answer. (The teacher did not say

which group.) Let’s eliminate the other answers.

Group 3: We think that D is incorrect. Because when a in the expression

y¼ ax2 + bx+ c is a negative number, the value of y does not increase when

x is getting larger. Therefore, the description “the temperature of the coffee will

eventually increase” is not correct. Answer D is wrong.

Group 1: If you say “when a is a positive number,” the value of y is never

going down.

Group 2: This kind of argument is funny. For function y¼ ax+ b, it is enough for us
to restrict the value of a to a negative number. For function y¼ ax2 + bx+ c, it is
enough for us to restrict the value of a to be a positive number. It is enough for us

to consider the case that fits the given situation.

Group 1: We have a question. How do you transform the function y¼ ae� bx in

answer E.

Table 11.1 Answers to the

three problems given by each

small group

Cooling Mountain Supermarket

Group 1 D C Ba

Group 2 Ea D Ba

Group 3 A Aa Ba

aCorrect answer
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Group 2: The transformation means “+c”. Namely the function becomes

y¼ ae� bx+ c. If we set an adequate value for c, the temperature of coffee will

converge to a certain temperature (that is room temperature) that fits the real

situation.

Group 1: Can you show this by using a graphics calculator?

Teacher: Let me show you the graph of y¼ ae� bx + c. (Presentation was made by

the teacher using big screen at the front of the classroom.)

All: Great!

Teacher: How about A and D?

Group 2: In answer D, there is no description such as “restricting the range of x”. If
we set the range of x it becomes possible to represent the phenomena with

y¼ ax2 + bx+ c. So D is incorrect. Further, if we restrict the range of x it is also
possible to represent the phenomenon with y¼ ax+ b. So answer A is also

incorrect.

Teacher: Nice discussion! You have elicited some nice ideas. When we represent

the phenomena by a function, we need to pay attention not only to the shape of

the function but also the range of x. Further, we need to understand how the

shape of function will change corresponding to changes to the coefficients of the

function.

Partial Transcript of the Mountain Problem Discussion

Group 2: If the shape of earth was set as a plane, we can see Mt. Fuji from

everywhere. As the shape is a sphere, there are areas from where we cannot

see Mt. Fuji. So B is incorrect (i.e. it is an important factor to consider in the

model).

Group 1 and 3: We agree with your idea.

Teacher: We can understand why B and E are incorrect. One of your groups has the

correct answer. Let’s eliminate the other groups’ answers or provide a justifica-
tion for the idea of your group.

Group 2: We think that C is incorrect. Because if the sun’s rays curved, even though
the shape of the earth was circular, we could see Mt. Fuji from everywhere.

Group 1: We see. We made a mistake.

Teacher: How about A and D?

Group 2: We thought D is correct. We cannot see Mt. Fuji if there is something in

front of it. So it has no meaning to set the assumption that there is nothing to

interrupt one’s line of sight of Mt. Fuji.

Group 1: Group 2 is wonderful!

Teacher: What did you think, Group 3?

Group 3: We thought A is correct. There is no purpose to set the shape of Mt. Fuji as

an equilateral trapezoid. It is possible to set the shape of Mt. Fuji as a triangle.

Therefore, assumption A is meaningless.
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Group 2: In assumption A, if a right triangle is placed on a circle, we can see

Mt. Fuji differently corresponding to the placement of the right triangle. There-

fore, the shape of Mt. Fuji is important.

Group 3: It is necessary to set the shape of Mt. Fuji. However, equilateral trapezoid

is not important.

Group 3: I don’t agree with the idea of Group 2. If we consider whether or not we

can see Mt. Fuji at a certain place, it is important whether or not there is

something to interrupt one’s sight of Mt. Fuji. But, in this case, the problem

asks how far from Mt. Fuji is it possible to see it. In other words, the problem is

to find the length of the radius from the centre, at Mt. Fuji. Therefore, it is

necessary to set the assumption that there is nothing to interrupt one’s sight of
Mt. Fuji.

Group 3: I have a thought about the previous idea of Group 2. If the shape of

Mt. Fuji can be seen differently according to the direction, it is impossible to

consider the geometrical problem in a two dimensional plane. If we consider the

problem in a two dimensional plane, the shape of Mt. Fuji would be seen as the

same from everywhere. Therefore, a right triangle is not appropriate in this case.

Although it is necessary to set the shape of Mt. Fuji as a certain figure, it is not

necessary to set the shape of Mt. Fuji as an equilateral trapezoid. For example, a

triangle and a rectangle are also possible.

Group 1: At first, we agreed with the idea of Group 2. However, by listening to the

idea of Group 3, I understand that the assumption “there is nothing to interrupt

one’s sight to see Mt. Fuji” is necessary. This problem asks about the possibility

of seeing Mt Fuji, not whether someone can actually see it from a certain place.

Group 2: We understand.

Teacher: Nice discussion! As you discovered, the answer is A.

As shown in the transcripts of the two problems above, meaningful discussion

took place between the groups, and students were able to elicit important ideas

that promote modelling. On the other hand, we observed two limitations of the

students’ discussion that might be caused by using multiple-choice modelling

problems. First, a few students tended to consider only how to eliminate the

items, rather than to think about correct answers. This point will be shown in

later analysis. As a result, students needed to be reminded that solving a real-

world problem is not the same as checking and eliminating incorrect alternatives in

multiple-choice answers.

Second, as multiple-choice modelling problems focus on the particular thinking

that will be applied at a certain stage of the modelling process, it seemed that

students tended to limit their considerations too strongly. For example, the Super-

market Problem given below is aimed at generating and selecting variables. In the

partial transcript to be given below, the students only discussed whether each item

was important or not. However, even in the stage of generating and selecting

variables, we would like students to clarify the meaning of the given variables

and also think about the relationships that might be generated between the vari-

ables. From the transcript that is given below, we can see that no students really
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clarified the meaning of the given variables when they were solving the multiple-

choice problem.

In a classroom, an important teaching strategy is to treat the next or previous step

of the modelling process after or during solving a multiple-choice modelling

problem. In the transcript for the Supermarket Problem below, the teacher treated

the next step of the modelling process, namely generating relationships immedi-

ately after selecting the variables. Students saw the importance of anticipating what

kind of relationships might be generated when selecting variables. Tackling a whole

modelling process by taking account of the different stages of the modelling process

or analysing a certain stage of the modelling process by taking account of the whole

modelling process are both important.

Partial Transcript of the Supermarket Problem

Teacher: All groups selected B. Why did you select B?

Group 1: We eliminated meaningless items. The average age of customers is

irrelevant.

Teacher: Why do you think so?

Group 3: The aim of this problem is to estimate how many checkouts should be

operated. So, if a customer was a child or grandfather, the age is irrelevant.

Group 1: Thank you for your assistance. The pay rate for checkout girls is also not

important.

Group 3: Whether the checkout girl earned 1,000 yen per hour or 800 yen per hour,

it has no bearing on the number of checkouts.

Group 1: Thanks again. The proportion of customers using baskets rather than

trolleys is also not important. Some customers who buy small numbers of items

choose to use a trolley. So this factor is not related to the number of items

bought.

Teacher: Very good! This time, you could explain why the trolley choice is not

important. Are there any more ideas?

Group 3: The average bill size is not important. Even if the bills of two customers

were the same, the number of items bought could be quite different. It takes more

time when the number of items bought is larger.

Group 2: The working hours is not related. After determining the number of

checkouts, the working hours and number of checkout girls are determined.

Teacher: By eliminating the incorrect items (a), (b), (g), (h) and (i), each group was

able to select the correct answer, namely answer B. Is there anyone who

considered the relation between the four selected variables?

All: No.

Teacher: Let’s consider the relation between the four variables.

Group 2: What is the meaning of the efficiency of the checkout girls?

11 Applying PISA Ideas to Classroom Teaching of Mathematical Modelling 231



Group 3: Let’s consider that it means the time in seconds to check out one item.

Let’s ignore the time to put all the items into a bag. The unit is ‘seconds per
item’.

Group 1: How about the number of checkouts?

Group 2: I set the number of checkouts as x.
Group 1: How about the number of customers in the store? Some are selecting and

taking goods and some are waiting for a checkout.

Group 3: We should set the meaning of this as the number of customers who are

waiting for checkouts. The number of customers who are selecting goods is not

relevant to the problem.

Teacher: Let’s summarise the assumptions. (Teacher lists on blackboard.)

number of checkouts: x
efficiency of checkout girls (seconds per item): c
maximum reasonable queuing time: d
the number of customers who are waiting for checkouts: e
average number of items bought: f

Teacher: (Students work in groups and teacher resumes several minutes later). Let’s
explain the relation between the five variables.

Group 3: ef/cx < d
Group 2: cef/d < x
Group 1: Same as Group 2.

Teacher: Are these two answers the same or different? (i.e. from Group 2 and 3)

Group 1: Different. The location of c is different.
Teacher: Which is correct?

Group 1: We considered it by substituting concrete numbers in the formula. At first,

the meaning of cf, namely multiplying ‘efficiency of checkout girl (seconds per

item)’ by ‘average number of items bought’ is ‘the time for one customer to pass

through the checkout’. Next, the product of multiplying cf by e (the number of

customers who are waiting for checkouts) gives ‘the time for the last customer to

wait for the checkout’. Then divide cef by d (maximum reasonable queuing

time). As a result, each checkout till is assigned according to the maximum

reasonable queuing time.

Teacher: Do you understand the meaning of dividing cef by d?
Group 3: No.

Group 2: I have another idea. Let’s focus on the last person who is waiting for the

checkout. As cef means the time that last person who is waiting to pass through

the checkout, dividing cef by x that means the number of checkouts. Then we can

get the time that the last person in each checkout should wait. This time should

be shorter than d which is the maximum reasonable queuing time. By

transforming the inequality cef/x < d we can get the inequality cef/d < x.
Group 1: We considered a lot!

Teacher: What did you learn by formulating the inequality? What do you pay

attention to when selecting variables?
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Group 2: When selecting variables, we should check the meaning of variables, and

anticipate the relation between variables.

Teacher: You made some very important points. Even though you can select

important variables, this has no meaning if you don’t formulate a relationship

between them. It is important to clarify the meaning of variables by considering

or at least imagining the relationship between the variables.

When combined with group discussion and careful teacher direction, the use of

multiple-choice modelling tasks, as prepared by Haines et al. (2001), proved to be

quite effective in helping to shape students’ thinking about key features and stages

of mathematical modelling in two relatively concentrated sessions. The problems in

this pilot study were accessible and challenging to senior high school students of

mathematics who had no prior teaching relating to mathematical modelling. Having

a range of well designed and tested tasks on hand for teachers to use was a strategy

that allowed students to come to terms with some important aspects of mathemat-

ical modelling within a relatively short period of time.

In this pilot case study, the teacher organised whole class discussion so that

students could discuss shared ideas at first, then asked them to consider conflicting

opinions from small groups by asking, “Why do you think the other group’s idea is
incorrect?” or “Why do you think your group’s answer is correct?”. In some cases,

group discussion was able to bring all the students to a correct understanding of the

problem. In other cases, by critiquing the ideas of their classmates and by listening

to criticism, students realised that their explanation was still inadequate, ambiguous

or unconvincing. As a result, they are pressed into giving clearer and more detailed

explanations. The teacher’s role was to help students identify the issues that need to
be discussed, drawing on conflicting or opposing opinions among small groups,

while not telling students the correct answer. When the teacher was unable at first to

see opposing opinions among small groups, it was necessary for the teacher to

probe students’ thinking further so that conflicting or opposing ideas were exposed

more clearly.

Purposes for Using Mathematics in Society

The definition of mathematical literacy (OECD 2013, p. 25) includes

“recognising the role that mathematics plays in the world and making the

well-founded judgements and decisions needed by constructive, engaged and

reflective citizens” and states that the purpose of the mathematical thinking

involved is to “describe, explain, and predict phenomena.” These points are

strongly concerned with the purposes for using mathematics in the real world.

Niss (2008) has put the same ideas into slightly different words, when he

identified three different kinds of purposes for using mathematics in other

disciplines or areas of practice:
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• In order to understand (represent, explain, predict) parts of the world

• In order to subject parts of the world to some kind of action (including making

decisions, solving problems)

• In order to design aspects of the extra-mathematical world (creating or shaping

artefacts, i.e. objects, systems, structures).

I think these three purposes help us to clarify the educational goals that students

are expected to attain, the understanding of the modelling process for the beginner

and the appreciation of the usefulness of mathematics in society. These three

aspects are discussed in turn.

Educational Goals That Students are Expected to Acquire

This first point is characterised by the question: what kinds of educational goals are

emphasised in teaching and learning mathematical modelling? Modelling is used

for a variety of educational goals, such as foundations of science, critical citizen-

ship, professional and vocational preparation, a way of living. There seems to be a

strong connection between purposes for using mathematics and educational goals.

In the case of Niss’s first purpose ‘to understand parts of the world’ and the

‘predict, explain, describe’ component of the PISA definition of mathematical

literacy, parts of the world are considered to be phenomena of extra-mathematical

domains such as nature or society. The mathematical model is verified by

contrasting it with real data taken from the phenomenon being considered. There-

fore, aims such as the foundation of science and professional or vocational prepa-

ration are emphasised more when we treat mathematical models that aim to

‘understand’.
In the case of Niss’s second purpose ‘action’ that references the well-founded

judgements and decisions of the PISA mathematical literacy definition, parts of the

world are considered problem situations, in which people have to make a decision

or solve a problem. There are two types of mathematical model. First there is a

social system model that is developed to make an objective and safe decision for

people in a society, such as taxi prices or railway schedules. These models concern

all citizens. After this mathematical model is embedded in a society, it becomes a

main source for the reconstruction of reality (Skovsmose 1994). The second type is

developed with personal purposes in mind, such as planning a family trip, or

planning for family savings or loans. However, we must again note that “different

purposes may result in different mathematical models of the same reality”

(Jablonka 2007, p. 193). For example, trip planning may become part of a tour

conductor’s job. The mathematical model developed is effectively validated by

developing another model to compare it with. Therefore, aims such as critical

preparation for citizenship and for professions and vocations are emphasised

more when we treat mathematical models that have the purpose of action.
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In the case of ‘design’, which is Niss’s third purpose and again related to the

well-founded judgements and decisions of the PISA definition, the focus is on

objects that make our life more comfortable, such as furniture, architecture and

designs using tessellation. This type of object is evaluated by an individual sense of

value. Therefore, the aim of professional and vocational preparation is emphasised

more when we treat a mathematical model that has a purpose to design. When we

consider the teaching of modelling, we should examine the relation between the

purpose for using mathematics and the educational goals that we have.

Understanding the Modelling Process for the Beginner

Considering Niss’s three purposes also helps us clarify the modelling process. The

three purposes above imply that the modelling process depends on the purpose or

the other disciplines. For example, when we understand a natural or social phe-

nomenon, the mathematical model is abstracted from the real-world phenomenon,

and also verified by contrasting it with real-world phenomena. However, when we

make an action or design, multiple mathematical models are developed to make a

decision, and the appropriate mathematical model is selected among several models

according to the aim.

When we introduce mathematical modelling for students, a particular diagram

(see examples in Chap. 3 of this volume) of the modelling process is often used to

let students understand roughly what modelling is. We have to pay more attention to

the fact that the modelling process differs according to the purpose for using the

mathematics or the other disciplines involved, and teachers need to consider why

they choose that particular modelling diagram with those students.

Appreciation of the Usefulness of Mathematics in Society

Third, Niss’s three kinds of purposes are also useful when we teach the usefulness

of mathematics to students. When we teach howmathematics is used in a real-world

situation, one of the methods is to identify purposes for using mathematics in the

real world. By tackling a series of modelling tasks, students are expected to reflect

on and find out the purposes for using mathematics in a variety of cases studied. For

example, one of the methods is for the teacher to assess students’ appreciation of the
usefulness of mathematics by asking “How is mathematics useful when we see real-

world situations from a variety of viewpoints?” before and after modelling teach-

ing. The teacher can assess how students deepened their appreciation of the

usefulness of mathematics in a society, by comparing their writing before and

after teaching modelling. For example, students’ writing can be assessed according

to the viewpoint that the student takes. Writing at the first level is only from the

students’ personal perspective. At the next level, it is from a social perspective, but
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it is not clear or only refers to special cases. At level 3, the social perspectives are

clear and integrated, and may include the three different kinds of purposes identi-

fied by Niss and in the definition of mathematical literacy.

For example, the following responses (translated from Japanese) are from a

Grade 9 student before and after experimental teaching, of 18 classroom periods of

50 min each (Ikeda 2002). Before the teaching, student A wrote:

We can acquire mathematical thinking and judging from mathematics, but most people

don’t use mathematics in real life. So, it is not meaningful to consider how to use

mathematics in real life in school.

This is assessed at level 2, because it adopts a social perspective. After the

teaching, the writing is more elaborated and displays characteristics of level

3. Student A made progress regarding the appreciation of the usefulness of

mathematics.

Mathematics is useful to set the criteria or theory in a real world situation so that everyone

can see what will happen. Mathematics is useful to consider before doing something. Using

mathematics we can predict the result in advance without actually doing the thing.

Effect of PISA in Japan

In the PISA surveys of mathematical literacy, Japan was in the top position in 2000

(mean score 557), but its rank dropped to 4th in 2003 (mean score 528) and 6th in

2006 (mean score 523). This trend signalled the need for increased emphasis on

mathematics and science in the recent revision of the Courses of Study. New

Courses of Study for the elementary and lower secondary schools were announced

in March 2008, and for upper secondary schools the change came in March 2009.

The new Courses of Study were implemented in 2011 at the elementary school

level, in 2012 at the lower secondary school level, and in 2013 in the upper

secondary school level. In the new Courses of Study, time allocation for mathe-

matics was increased.

In order to disseminate the spirit of the revised curriculum, national achievement

tests and questionnaires were administered to all Grade 6 and Grade 9 students and

their teachers from 2007 onwards. (A sample rather than the whole population was

used in 2010–2012). There are two types of tests for students: one focussing on

basic knowledge and skill, and the other targetting applications of mathematics.

In the second type of test, the students are presented with problems similar to PISA

tasks. These tasks test the ability to apply mathematical knowledge and skills in

real-life situations and further test the ability to execute, evaluate, and modify a

variety of plans to solve a given problem. The decision to disseminate problems like

PISA tasks for all students at Grades 6 and 9 may be intended to change teachers’
beliefs about the teaching of mathematics. On the questionnaires, elementary and

junior high school teachers were asked how often they emphasised the relationship

between mathematics and real-world situations. Possible responses included four
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alternatives: often, sometimes, infrequently and never. The results of this question

from 2007 to 2012 are shown as Tables 11.2 and 11.3 (National Institute for

Educational Policy Research 2013). In 2011, this test was not implemented because

of the great earthquake in the Tohoku area.

Tables 11.2 and 11.3 show that the relationship between mathematics and real-

world situations is treated both in elementary and junior high schools. Teaching

using PISA-type problems is also reported at both levels, although this kind of

teaching is emphasised more in elementary than junior high school level. It is of

concern that more than 40 % of junior high school teachers say that they seldom

treat the relationship between mathematics and real-world situations. Anecdotal

evidence suggests that some junior high school teachers believe that PISA-type

problems do not make students think deeply, and that thinking deeply is better

achieved by using intra-mathematical problems. This may be one of the reasons for

the findings above. Consequently, there is a need for discussion and dissemination

of ideas for encouraging students to think deeply when treating PISA-type

problems.

Summary

It has been argued above that the Framework of PISA provides a meaningful

guideline for practical classroom teaching focused on mathematical modelling.

Three issues have been discussed in this article: choosing problem situations that

people are interested in; fostering specific modelling competencies using PISA-type

problems focusing on distinct phases of modelling; purposes for using mathematics

in a society. Then the implementation of PISA-type problems in Japan has been

briefly discussed. It is expected that because of the new Courses of Study and the

Table 11.2 Grade

6 teachers’ responses to
emphasis on real-world

situations (percent)

Often Sometimes Infrequently Never

2007 8.8 51.4 38.4 1.4

2008 8.2 52.7 37.9 1.1

2009 7.9 54.1 37.0 1.0

2010 7.7 55.1 36.4 0.8

2012 7.4 56.0 35.5 1.0

Table 11.3 Grade

9 teachers’ responses to
emphasis on real-world

situations (percent)

Often Sometimes Infrequently Never

2007 6.6 42.3 48.4 2.4

2008 6.0 43.8 47.3 2.7

2009 6.4 43.6 47.1 2.7

2010 5.9 44.9 46.3 2.8

2012 6.5 49.0 41.6 2.8
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new assessment, more extensive approaches using PISA-type problems and hence

drawing on the PISA Framework may be implemented in classroom teaching in

Japan.
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Chapter 12

The Impact of PISA on Mathematics

Teaching and Learning in Germany

Manfred Prenzel, Werner Blum, and Eckhard Klieme

Abstract In this paper, various consequences of the PISA mathematics results in

Germany are analysed. After a short review of the German PISA mathematics

performance since 2000 the paper focuses on three aspects: fostering professional

development of teachers, implementing educational standards, and providing

empirical evidence by research programs. Altogether, PISA showed a strong impact

on education in Germany and was an important stimulus for the discussion,

reflection and improvement of the quality of mathematics teaching and learning

in Germany as well as for research into mathematics teaching and learning.

Introduction

For decades Germany ignored international comparisons. The participation in such

studies seemed to be superfluous, because almost everybody in this country was

convinced of the high quality of mathematics and science teaching and learning in

German schools. Nevertheless, a few educational researchers believed this accepted

opinion should be challenged. They took the initiative for the participation of

Germany in the Third International Mathematics and Science Study (TIMSS).

The decision to participate in TIMSS was worthwhile, because this assessment led

to relevant insights. In mathematics the German students (Grade 8 secondary level)
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attained 509 points on the TIMSS scale (Beaton et al. 1996; Baumert et al. 1997).

Though this performance did not differ from the international average, Germany was

really shocked—this was a widespread public perception.

This experience, however, was very salutary, with one immediate consequence.

The educational policy authorities of all 16 federal states in Germany agreed to

participate henceforth in international comparisons and in particular in the OECD

Programme for International Student Assessment (PISA). They also decided to

establish regular large scale assessments in Germany that should facilitate compar-

isons of educational outcomes between the federal states. In the first three admin-

istrations of PISA a systematic oversampling of schools and students allowed

alignment of the educational outcomes of the German federal states on the PISA

scale and comparison of performance both from a national and from an interna-

tional perspective. Also, national expert groups extended the assessment frame-

works and added national components to the test and questionnaire design. For

example, the extended mathematics framework (Neubrand 2013) allowed for a

deeper interpretation of the mathematics results in the various PISA cycles and also

the identification of certain “profiles” within Germany. Thus, in Germany PISA

became the renowned indicator for the quality of the school system and a synonym

for top-quality assessment.

A Short History of PISA Mathematics Performance

in Germany

The first PISA cycle (OECD 2001) taught Germany what ‘shock’ really means. At

that time, Germany performed in mathematics (mean score M¼ 490, standard

deviation SD¼ 103) significantly below the international OECD average

(M¼ 500, SD¼ 100). The huge variation in student achievement, in particular

the weak performance on the lower end of the distribution (5th and 10th percentile),

large disadvantages for students with migrant backgrounds, and a very strong

relationship between achievement and social background variables completed the

impression of a real disaster. As all indicators showed severe problems, in news-

papers some experts (especially from the OECD) predicted a dark future for

Germany that could only be prevented by a complete reconstruction of the tradi-

tional school system.

Three years later, however, the picture looked somewhat different (OECD 2004)

when Germany performed in mathematics at the OECD average (M¼ 503).

Table 12.1 shows the further development of mathematics performance in Germany

from PISA 2003 to PISA 2009 (Klieme et al. 2010). Finally in 2009 and 2012,

Germany performed significantly above the OECD average. The students in Ger-

many improved to an even greater extent in science (PISA 2000, M¼ 487; PISA

2009: M¼ 520). The increase in reading literacy has been moderate up to 2009

(PISA 2000: M¼ 484; PISA 2009: M¼ 497).
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Many people attributed Germany’s initial poor performance, among other fac-

tors, to its highly differentiated school system. From age 10, students are placed in

different types of schools with different educational tracks. As basic structures of

this differentiated school system have not been altered since PISA 2000, one can

ask what other factors contributed to the improvement of mathematics performance

(and science performance as well) in Germany during the last decade. Hence, are

there lessons that can be learnt from the PISA history in Germany?

There is one general point that has to be kept in mind before going into details.

The public reaction to PISA was absolutely sensational in Germany. PISA hit the

headlines for weeks after the release of the results, especially after the first PISA

administration in 2001, and this elicited enduring debates on the quality of schools

in Germany. Thus, education moved much more into public attention. To date this

interest and the awareness of the problem is still high. The detailed findings of the

current fifth survey administration (PISA 2012) are awaited with great curiosity. It

cannot be ruled out that this unique historical constellation is a general favourable

condition for initiating and pursuing activities, measures and programs aiming at

the improvement of educational processes and outcomes.

In the following sections, we will describe and discuss in more detail three

reactions to, and consequences of, PISA that seem to have had an impact on the

development of mathematics teaching and learning in Germany and hereby on the

achievement progress attested over the course of the PISA survey administrations.

These approaches represent exemplary efforts and measures at different levels of

the education system aimed at an improvement of teaching and learning

mathematics.

Fostering Professional Development of Teachers

The release of the TIMSS findings in 1997 first drew attention to possible weak-

nesses of mathematics teaching in Germany. The TIMSS Video Study (Stigler and

Hiebert 1997) was especially helpful as it demonstrated vividly a monoculture of

unimaginative mathematics tasks, activities and dialogues in German classrooms,

with a focus on learning facts and procedures that are important for the next written

test. The need for improvement of the prevalent style of mathematics teaching and

learning was obvious, not only to experts from mathematics education, but also for

many teachers, headmasters, supervisors and the authorities in the ministries. In

Co-operation between the federal government and the federal states, a programme

aiming at a prompt increase of the quality of mathematics and science teaching was

Table 12.1 Development of PISA mathematics performance in Germany from 2003 to 2012

PISA 2003 PISA 2006 PISA 2009 PISA 2012

Germany average 503 504 513 514

OECD average 500 498 496 494
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launched (Bund-Länder-Kommission für Bildungsplanung und Forschungs-

förderung 1997). The group of experts that was asked to develop a framework for

this initiative decided to conceptualise a programme for the professional develop-

ment of mathematics and science teachers. A thorough analysis of problem areas in

the processes of mathematics teaching and learning and the underlying conditions

(e.g., curricula, teacher training, teachers working is isolation) lead to the frame-

work for this programme, which is referred to as SINUS (Prenzel et al. 2009).

At the core of the programme were 11 modules for improving teaching and

learning, e.g. advancing the development of a “new culture” of mathematics tasks

aiming at a much broader range of mathematical competencies (Niss 2003), secur-

ing basic understanding, and fostering cumulative learning in mathematics. Elab-

orated recommendations for teachers’ activities contained in these modules helped

the participating teachers to identify strengths and weaknesses of their teaching and

provided examples and ideas for the development of advanced approaches. The

programme intended to engage as many mathematics teachers as possible in

SINUS, with teams in schools working continuously in a “module-oriented” way

on the improvement of tasks, materials, and teaching approaches. Approved

approaches from one team were first distributed and implemented within the school,

and then distributed to other SINUS-schools in regional, and later national, net-

works of schools. The structure of modules helped the teachers to classify, interpret

and integrate materials from other schools into their own teaching context. In the

pilot-phase of the programme all these processes received various kinds of support

from the scientific project staff and the scientific board of mathematics educators

and researchers (e.g., examples of good practice, feedback, guidance, or special

training). Step by step, SINUS produced a huge library of materials that from the

beginning was made available for all interested teachers (via internet) or dissem-

inated widely via manuals, books or teacher magazines.

SINUS started at the end of 1998 with 180 secondary schools and involved about

750 teachers. After a positive evaluation of the pilot phase (using also mathematics

items and questionnaires from PISA) in 2003, the programme was expanded to

1,750 schools with a total of about 7,000 teachers. In 2004 a modified programme

was offered for primary schools with a participation of 850 schools and about 4,500

teachers. Also after the end of the trial phase most of the schools continued the

professional development in SINUS-Teams.

The SINUS programme was accompanied by a number of research projects

(cf. Ostermeier et al. 2010). Besides an evaluation of the acceptance of the

programme (which was high), research studies assessed how the teachers engaged

in the programme and how they collaborated within schools and between schools.

Different types of teachers with different needs for support were identified. Experts

evaluated the materials and products that the teachers had developed. In the pilot

phase the SINUS schools participated voluntarily in PISA 2000 and PISA 2003

(separately to the specified random sample for the official PISA survey). This

design allowed comparisons with the national PISA sample and examined whether

there was a selection effect operating in the recruitment of SINUS schools. The

findings revealed no sampling bias: they were a typical sample of schools in
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Germany. Students from SINUS schools described their mathematics lessons as

much more cognitively challenging compared to students from the national sample.

School and teacher questionnaires provided evidence for far more Co-operation

among teachers in SINUS schools than in the national PISA sample. Student

interest in mathematics as well as their self-concept was higher in SINUS schools.

The mathematics performance tended to be higher especially for the weaker

students. These findings provided evidence for the authorities to continue the

programme for one decade and to scale it up in two phases of dissemination.

Was SINUS relevant to the German progress in PISA reported above? SINUS

started at the end of 1998. In the proximate PISA 2000 assessment, the performance

in mathematics and science was poor in Germany. It could not be expected that the

fresh SINUS programme would have any impact on PISA 2000. But beginning with

PISA 2003 the mathematics and science performance in Germany increased con-

tinuously. At the end, SINUS formally included 15 % of all secondary schools in

Germany. Given the sampling procedures of PISA, however, it is unlikely that the

increase in mathematics achievement can be ascribed only to the better perfor-

mance of SINUS schools. Yet, SINUS did not only affect the schools involved in

the programme. SINUS addressed relevant parts of the mathematics education

community in Germany, and especially the group that is highly engaged in teacher

training, in curriculum development, in publishing articles for teacher magazines or

writing books. During the last decade materials for mathematics teaching and

learning, like textbooks, sets of problems and exercises, recommendations and

curricula, have changed considerably and most of them now reflect the SINUS

modules and the joint philosophy of teaching and learning as well as of professional

collaboration. So it can be assumed that SINUS did not only have an impact on the

schools inside the programme, but also on schools outside the programme. It seems

that both effects together could have been relevant indeed for the mathematics

improvement in Germany over the course of PISA.

Implementing Educational Standards

The findings from PISA 2000 emphasised several additional challenges besides the

average low performance in mathematics and the other domains. The proportion of

very low performing students (on or below proficiency level 1) was nearly one

quarter of the population of 15-year-olds in Germany. As PISA 2000 was already

combined with a national oversampling to support comparison of the federal states

of Germany, PISA revealed substantial differences between these states. In math-

ematics the gap between the best and the lowest performing states amounted to

64 points on the PISA scale (Baumert et al. 2002), which is equivalent to approx-

imately two school years. All together, the PISA picture of Germany showed

pronounced disparities in performance by region, social background, migration

and gender. Also, by comparing PISA test scores to students’ grades it was
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shown that grading standards varied considerably between states, and between

schools within states.

The national supplement to the PISA 2000 mathematics test was based on an

extended framework that aimed at completing the international PISA framework

and at conceptualising mathematical achievement in a broader sense, for instance

by taking into account also ‘technical’ aspects of procedural and factual knowledge,
and by distinguishing between different “types of mathematical activities” (see

Neubrand 2013, for details). By comparing tasks from state assessments in Ger-

many to the international PISA test, it became clear that mathematics teaching in

Germany had a strong focus on technical aspects of mathematics. By building a

comprehensive model of mathematical competency, the national PISA 2000 report

showed that complex modelling and problem solving—whether applied to every-

day contexts or within mathematics—represent the highest level of mathematical

proficiency (Klieme et al. 2001).

As all this was new information for the stakeholders, the lack of educational

monitoring and of quality assurance in Germany became evident from

benchmarking with successful PISA countries. A group of German researchers

familiar with PISA was commissioned by the federal Ministry of Education to

write a framework for the development and implementation of national educational

standards in Germany.

This framework (Klieme et al. 2003) differentiated three related components of

educational standards: educational goals, competency models, and corresponding

assessment tasks. The suggestion was to conceptualise educational standards fol-

lowing this structure for all relevant subjects. The notion of competency models

was very much based on the PISA experience. These standards were made oblig-

atory for all federal states and all types of schools. Two different approaches of

evaluation (regular formative evaluation at the school level, and regular assessment

at the national level) were recommended to help provide feedback to teachers and

monitoring information to the authorities.

As a prototype, national educational standards were developed for mathematics

through a collaboration of mathematics educators and well-chosen teachers, con-

ceptually based on the aforementioned mathematical competencies, which are also

the conceptual basis of PISA mathematics (see OECD 2013 and Chaps. 1 and 2 in

this volume). A second day of assessment linked to PISA 2006 was used to test the

quality of standards-related tasks as well as for the scaling of items for a national

mathematics assessment (Prenzel and Blum 2007). All these jobs were finished

successfully. The obligatory national educational standards for mathematics were

established in 2003 for the secondary level and in 2004 for the primary level. In the

following years, standards-based recommendations for mathematics teachers were

published (e.g., Blum et al. 2006) and a national centre for educational quality

(Institut zur Qualitätsentwicklung im Bildungswesen—IQB) was established in

Berlin providing tests for formative evaluation and organising national assessments

based on the standards.

Altogether, these national educational standards certainly help teachers to get a

clear focus on relevant educational goals and to understand the structure of (in our
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case mathematical) competencies and their cumulative development. The illustra-

tion of standards by tasks and the offer of tools for formative assessment support the

teachers to identify strengths and weaknesses in the mathematical competencies of

their students as well as the need for additional or different instructional

approaches. With a longer-term perspective the regular comparative assessments

at the national level are meant to contribute to a convergence of educational

outcomes across the federal states in a positive sense. The intention is to continu-

ously reduce the proportion of low performing students and the disparities in

Germany and thus to raise the level of mathematical proficiency substantially and

sustainably.

Providing Empirical Evidence

The findings of TIMSS did not only alarm stakeholders in Germany, but also groups

of researchers in education. After the decision to participate regularly in future large

scale assessments including PISA, different networks of researchers applied for the

national project management. The commissioned PISA consortia in Germany

included from the beginning distinguished researchers from all relevant fields and

created networks of experts for the different domains (mathematics, science,

reading). In particular for mathematics education as a research field, PISA had a

special impact in Germany (see Bruder et al. 2013). The conceptual developments

in this context contributed to a further development of mathematics education as a

scientific discipline. These networks of experts were also engaged in other activities

like SINUS and the development of standards.

Most important, however, was the development of a research agenda that used

the different PISA survey administrations and samples as an opportunity to imple-

ment systematic research. The intention was manifold. The research ought to help

to validate PISA and to provide additional evidence for the interpretation of the

results of each PISA survey. Moreover, research projects ought to be linked to PISA

to explore new methodological approaches. Finally, extensions of PISA with

additional samples, target groups and follow-up assessments aimed at providing

more solid evidence and at promoting basic educational research. Prenzel (2013)

summarises some of these developments. It was very important to convince the

authorities of the added value of these research programmes in order to get their

approval and as far as possible also financial support. Assuring stakeholders of the

need to support additional research was easier in the first phases of PISA when

plenty of new and surprising information could be provided. In the beginning it was

important to prove baseline information, such as checking that the international

mathematics assessment is also fair from the perspective of German curricula and

traditions. A second day of assessment allowed administering sets of items that

represented different traditions and demands—and latent correlations with the

PISA assessment above 0.90 were indeed found. At present, the expectations

from the authorities tend more and more towards ideas and evidence for political
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decisions and actions that will both boost the performance of the students in

Germany and simultaneously reduce disparities.

No matter how realistic these expectations will prove to be in the end, PISA is by

its purpose and design insufficient for conceptualising educational reforms. To

name but a few shortcomings, the cross-sectional PISA design constrains causal

analyses; and age-based samples and questionnaires are insufficient to analyse the

theoretically most important aspect, that is the quality of teaching processes in

mathematics lessons. Thus, although the PISA tests and questionnaire scales are

based on state of the art in research, the study design does not allow for sound

conclusions on educational effectiveness (Klieme 2012).

With this background, several research initiatives were started in Germany to

foster theory-driven educational research addressing more fundamental scientific

questions. The issue of quality of educational processes and outcomes of schools

was analysed from a systemic multi-level perspective in a priority programme

funded by the German Research Foundation (Prenzel 2007). Quite a number of

research projects in this priority programme were systematically linked to PISA

(e.g., assessment of the impact of teachers’ mathematics competencies, video

studies of mathematics lessons, a longitudinal study of mathematics competencies

before age 15). One example of these research projects was the so-called

COACTIV Study (see Kunter et al. 2013) that proved, in particular, the relevance

of different facets of the professional knowledge of mathematics teachers for

quality instruction and for students’ learning. Baumert et al. (2010) gives more

details.

This 6-year priority programme on the educational quality of schools was

followed by a new priority programme, also funded by the German Research

Foundation, dealing with competence models (Hartig et al. 2008). The projects in

this programme are analysing competence models for assessing individual learning

outcomes in different domains both for students (e.g., student competencies in

various mathematical subdomains, competencies in using pictorial representations,

or cross-curricular problem solving) and for teachers (e.g., teachers’ diagnostic
competence). Projects are also analysing models that are suited for the longitudinal

evaluation of educational processes. In the context of this program, Leutner

et al. (2013) recently published an overview of concepts for modelling both

summative and formative assessments with varying grain size. The priority pro-

gram website provides more information http://kompetenzmodelle.dipf.de/en?set_

language¼en.

Concluding Remarks

In conclusion, PISA did have a strong impact on the public debate in Germany.

Parallel to these public discussions manifold activities were started, and quite a

number of these initiatives were carefully considered, well-orchestrated and sub-

stantiated by relevant research. PISA was an extremely important stimulus for the
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discussion, reflection and improvement of the quality of mathematics teaching and

learning in Germany. Equally crucial was, however, the readiness of the authorities

and the researchers to share their views and to start coordinated, evidence based

programmes like SINUS or the development of educational standards. In gratitude

for the recurrent stimuli from PISA a number of researchers from Germany try to

bring ideas, suggestions and concrete work back to PISA.
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Chapter 13

The Impact of PISA Studies on the Italian

National Assessment System

Ferdinando Arzarello, Rossella Garuti, and Roberto Ricci

Abstract In this chapter we sketch how the discussion that started in Italy with the

disappointing results of the first PISA surveys was the origin of a national assess-

ment program that possibly led to some improvement in the outcomes of mathe-

matics learning. We will also underline similarities and differences between PISA

studies and the Italian program of assessment.

Introduction

Discussion about the PISA program in Italy started, at least for teachers, from the

2003 results when Italy scored below the OECDmean. The teachers most engaged in

innovative programs perceived the results as an alarm bell concerning the state of

teaching and learning in Italian schools at the end of the compulsory cycle of

schooling, which in Italy ends at age 16 years. It is interesting to consider the changes

(if any and of what nature) in the PISA results for mathematics in the subsequent

years. In fact, some elements have not changed. The Italian mean scores (466 in 2003,

483 in 2009) continue to be below the OECD mean and there is a great variability

between the Italian regions. Specifically, while in northern regions there are results

above the OECD mean, the opposite happens in the southern regions. However, as

shown in Fig. 13.1, from 2003 to 2009 in mathematics there was a positive trend, with

an increase of 17 points (0.17 standard deviations). Figure 13.2 shows the mean

scores for five areas, using data assembled from PISA reports. It reveals that this

better performance is due above all to the better results in the southern regions,

particularly from 2006 to 2009. Regions in the Sud area improved by 25 points and

regions in the Sud Isole area improved by 34 points. Even though they remain below

the OECD mean, they show better performance. Let us try to explain this change.
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In-Service Teacher Education About PISA

The Plan for Information and Awareness

Because of the 2003 and 2006 PISA results, the Italian Ministry of Education

(MIUR) in 2008 launched the program ‘Piano di informazione e sensibilizzazione

sull’indagine OCSE-PISA e altre ricerche internazionali’ (‘Plan for information and

Fig. 13.1 Score point change in mean mathematics performance between PISA 2003 and PISA

2009 showing those countries that improved (Adapted from Fig. V.3.1, OECD 2010, p. 60)
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awareness about the OECD-PISA study and other international research’). The
program has been funded with European money and its aim is supporting innova-

tion and quality of teaching in the schools of four southern Italian regions (Calabria,

Campania, Puglia and Sicilia) in order to bridge the gap measured by PISA with

respect to both other Italian regions and to the states of the European Union. They

were chosen because they have a per-capita GDP less than three quarters of the

mean for the European Union. These regions are in the areas Sud and Sud Isole of

Fig. 13.2.

The program started in 2008–2009 and involved the teachers of Italian, mathe-

matics and science in the first 2 years of upper secondary school (Grades 9 and 10)

in all schools in the four regions (altogether 20,000 teachers). The program consists

of a 2-day seminar, and provides materials that the teachers have to study and

discuss together when back in their schools. The main goals of the program are:

• Informing teachers about the OECD-PISA study in a clear and correct way

• Analysing the PISA Framework for mathematics, particularly the structure of

the test and the public items

• Comparing them with the most common didactical practices in Italian

classrooms

• Analysing the results of Italian students in the PISA study.

As the project progressed, it became apparent that the mathematical compe-

tences considered by PISA are not the exclusive concern of the Grade 9 and

10 teachers, whose classes are directly involved in PISA testing, but they must be

built up over longer periods of time, starting from the very beginning of school.

Hence, after 2009 the project was enlarged to the teachers of primary and lower

secondary schools: currently it is targeting teachers of Grades 6 to 8.

The m@t.abel Project

The changes in Italian teaching practices that have been stimulated through PISA

may have been caused also by another project. The m@t.abel project is a big

teacher education program, promoted by the MIUR from 2008. This is an acronym

that in Italian means basic mathematics with e-learning. Teachers were divided into
virtual classes of 20 persons under the guidance of an experienced trainer, to share

the materials of the course (about 80 examples of teaching activities in the class-

rooms) and discuss what happens in their classrooms when they trial the teaching

units of the project. It has involved more than 5,000 teachers from Grades 6 to 10 all

over Italy, included some of the teachers from the same four southern Italian

regions listed above. The main aim of m@t.abel consists in providing examples

of best practices in the classroom, and these are often well aligned with the PISA

Framework. We do not have the space to discuss it here. The reader can find more

information from the project booklet (Arzarello et al. 2012), which makes explicit

the relationships between the Italian project and the PISA study (pp. 22–25).
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Many of the teachers of the other program also participated in this one. They

found in the m@t.abel materials many concrete examples of activities that enacted

in the classroom what is stated theoretically in the PISA Framework. The two

programs have involved almost all teachers in southern Italy, where the change in

PISA results has been more dramatic.

The Italian Assessment System

Over time, an additional topic has been added to those covered by the seminar: the

PISA Framework is now compared with that used by the Italian Assessment System

(SNV: Servizio Nazionale di Valutazione). SNV started its work in 2008 through

annual surveys conducted by the National Evaluation Institute for the School

System (INVALSI) at different school grades. The home page for INVALSI is

http://www.invalsi.it/invalsi/index.php. The INVALSI develops standardised

national tests to assess pupils’ reading comprehension, grammatical knowledge

and mathematics competency, and administers them to the whole population of

primary school students (Grades 2 and 5), lower secondary school students (Grades

6 and 8), and upper secondary school students (Grade 10).

As well as participating in PISA, since 1995 Italy has also participated in the

TIMSS program, which measures students’ competencies in mathematics and

science at Grades 4 and 8. The results of the Italian students have been very

disappointing: especially in 2007 when the ranking of Italy in TIMSS decreased

dramatically. But something new for Italy happened from 2008: from that year all

students in Grade 8 had to face a national final standardised SNV test on reading

and mathematical competence at the end of lower secondary school in addition to

the normal final examination organised by the school. Up to that date, nothing

similar existed. In the next TIMSS testing conducted in 2011, Italy was the country

with the greatest improvement in mean score from 2007 to 2011. With this

improvement, Italy reached the international TIMSS mean.

Of course it is too crude to postulate a cause-effect link between the introduction

of the Italian Assessment System and this tangible improvement. However such a

conjunction is a fact and this event is the only real change that happened in Italian

schools in the period 2007–2012. It is more than an impression that the introduction

of the standardised tests at the end of the lower secondary school has represented a

strong innovative component, which has produced innovation and a revision of the

practices in the schools. Certainly more investigation is needed to understand these

results but there is no doubt that the introduction of standardised tests has been a

strong element to trigger and support the revision of the teaching methods adopted

by teachers in schools. Furthermore the results of PISA 2012 will represent for us a

particular element of interest in order to understand the fallout of the activities

implemented in the schools described above.
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Frameworks for the Italian Assessment System and PISA

The PISA Mathematics Frameworks (OECD 2004, 2013) have certainly influenced

the construction of the Reference Framework for Mathematics of the Italian

Assessment System, SNV. Its investigation aims to take a snapshot of schooling

as a whole: in other words, it is an evaluation of the effectiveness of education

provided by Italian schools. Currently, standardised tests are administered every

year to all students at five grade levels from Grade 2 to 10, and within the next

2 years, to Grade 13 as well. As noted above, the Grade 8 test is included in the final

examination at the end of the first cycle of instruction: its main aim is providing

teachers with a nationally benchmarked tool for the assessment of their students.

The results of a national sample are annually reported, stratified by regions and

disaggregated by gender, citizenship and regularity of schooling. These results are

public, as well as the tests and the marking schemes. However, the results of each

school are sent confidentially to the principal. From 2013, some items are kept

secure and used to anchor the results over time. There are at least three main

differences between SNV tests and PISA surveys: the frequency (annual

vs. triennial), the type of tested population (census vs. sample) and the chosen

population (grade-based vs. age-based students).

The preparation of the SNV items is performed in two steps. A first set of items is

prepared by in-service teachers of all levels, who also classify them according to the

SNV framework (question intent, processes involved, precise links with the

National Guidelines). Subsequently, the SNV National Working Group builds the

test by selecting items so that the test is balanced both from the point of view of

content and of processes. However, the methodological and statistical methods

underpinning SNV and PISA are basically the same. The Reference Framework for

Mathematics in SNV has its roots in the National Guidelines for the Curriculum and

in some teaching practices that have consolidated over the years. Another important

reference is the UMI-CIIM curriculum “Mathematics for the citizen” (Anichini

et al. 2004), which is based on results of mathematics education research and has

deeply influenced both the last formulation of the national curriculum and the m@t.

abel program. “Mathematics for the citizen” explicitly states the necessity of taking

into account

both the instrumental and the cultural function of mathematics. [. . .] Both aspects are

essential for a balanced education. Without its instrumental features, mathematics would be

pure manipulation of signs without meaning; without a global vision mathematics would be

a series of recipes without method and justification. (Anichini et al. 2004, p. 7, translated by

authors)

The SNV Framework defines what type of mathematics is assessed with the

SNV tests and how it is evaluated. It identifies two dimensions along which the

questions are built:

• The mathematical content, divided into four major areas of Numbers, Space and

Figures, Relations and Functions, Data and Forecasts

• The processes that students should activate while solving the questions.
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This subdivision of content into four main areas is now shared at the interna-

tional level: in PISA there are four content categories (Quantity, Space and shape,
Change and relationships, Uncertainty and data) and in TIMSS there are four

content domains (Number, Geometry, Algebra, Data and chance). As one can see,

the differences are minimal and the four areas broadly identify the same categories

of mathematical content, even if one can observe different choices according to

what kind of mathematics the items are assessing. The Italian choice has been to

name areas by the mathematical objects involved and not by the academic name of

the discipline, which has its own well defined epistemological status (e.g. Space and

Figures and not Geometry). This choice by SNV matches the National Curriculum

but is a departure from tradition.

Concerning the processes, we note that the PISA 2012 Framework (OECD 2013)

more so than the PISA 2003 Framework (OECD 2004) moves towards this direc-

tion with a definition of mathematical literacy focused on the mathematisation/

modelling cycle (see Chap. 1 of this volume). In order to choose items and to

analyse results, the SNV study considers the following types of capabilities:

• Knowing and mastering the specific content of mathematics

• Knowing and using algorithms and procedures

• Knowing different forms of representations and passing between them

• Solving problems using strategies within different areas (numerical, geometri-

cal, algebraic, etc.)

• Acknowledging the measurability of objects and phenomena in different con-

texts, using measuring tools, measuring quantities, estimating such measures

• Using typical forms of mathematical reasoning (conjecturing, arguing, verify-

ing, defining, generalising, proving,. . .)
• Using tools, models and representations in the quantitative treatment of infor-

mation from scientific, technological, economic and social environments

• Recognising shapes in space and using them to solve geometric or modelling

problems.

Starting from 2013, SNV adopted a further classification, namely the same used

by PISA (Formulate—Employ—Interpret) in order to allow an easier comparison

of the two surveys. The definition of mathematical literacy in the PISA 2012

Framework (OECD 2013) is centred more on the idea of mathematics as a means

to analyse, interpret and represent real-word situations (the cycle of

mathematisation/modelling). However the framework adopted by SNV assessment

is strictly connected to the national curriculum and includes aspects of mathemat-

ical modelling as in PISA, and aspects of mathematics as a body of knowledge

logically consistent and systematically structured, characterised by a strong cultural

unity (Anichini et al. 2004). The two examples below highlight these aspects. The

SNV Mathematics Framework is a tool in evolution, in the sense that periodic

updates are to be expected, based on experiences from the testing and input from

schools.
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Two Examples from the SNV Study: Mathematical

Modelling and Argumentation

We sketch here two examples in order to highlight similarities and differences

between the SNV and PISA frameworks and in the way mathematics is considered

in the two studies.

The Elongation of a Spring

The first example (see Fig. 13.3) is a question involving mathematical modelling

used in SNV 2011. Two versions with the same stem but differing in the multiple-

choice options offered were used: one for Grade 8 and one for Grade 10. Both items

are within the area Relations and functions and concern mainly the capability of

using tools, models and representations in the quantitative treatment of information
(the seventh capability in the list above). To answer correctly, students must

interpret the meaning of the parameters of the function (L0 and K) in terms of the

physical characteristics of short and hard.

Table 13.1 shows the overall results from the national report (INVALSI 2011). It

is not very surprising that more Grade 8 students than Grade 10 students are correct,

for at least two reasons. First the values of the parameters are different and those for

Grade 8 are easier to compare. Second, it is usual in lower secondary school to

represent physical phenomena through formulas and graphs, while this is generally

done in secondary school only after Grade 10. In Grades 9 and 10 algebra is

Fig. 13.3 Relations and functions items from SNV (2010–2011)

13 The Impact of PISA Studies on the Italian National Assessment System 255



generally taught only at the syntactic level, at most to solve geometric problems and

never to model physical situations, which is left to Grades 11, 12, 13 (Garuti and

Boero 1994).

Natural Numbers: Justifying and Proving

The example in Fig. 13.4 arises in the context of the latest Italian research in

mathematics education (Mariotti 2006; Boero et al. 2007). It somehow condenses

the results of wide research about the approach to argumentation and proof in

mathematics, even with young students. Such research has important implica-

tions in the field of educational research, and also suggests strongly innovative

teaching practices in the classroom. The example is classified in the area Num-

bers and relates to the sixth capability (using typical forms of mathematical
reasoning) in the list above. In this item, Grade 8 students are required to

evaluate arguments about the validity or non-validity of a non-trivial statement:

they must choose the answer that shows the correct justification. This item

requires that the student understands that every even number can be written as

(2n� 1) + 1. In case of the number 2 the formula still holds, but the sum is

between two equal odd numbers.

Table 13.1 Percentage of students choosing each option in the national sample (INVALSI 2011)

Item

Options

OmissionsA B C D

D17 (Grade 8) 58.3a 25.4 7.9 4.3 4.0

D24 (Grade 10) 8.1 33.2 38.1a 8.9 11.8
aCorrect answer

E13. The teacher asks: "An even number greater than 2 can always be written 
as the sum of two different odd numbers?" 
Below are the answers of four students. 
Who has given the correct answer? Justify it properly.

Antonio: Yes, because the sum of two odd numbers is an even number. (44.0%)
Barbara: No, because 6 = 4 + 2. (6.4%)
Carlo: Yes, because I can write it as the odd number that precedes it, 

plus 1.
(34%)*

Daniela: No, because every even number can be written as a sum of two 
equal numbers.

(14.0%)

*correct

Fig. 13.4 Item E13 from SNV (2011–2012) at Grade 8 (with percent choosing each option)
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The chosen distracters correspond to the more frequently observed behaviours of

students in the research quoted above: they all concern students’ understanding and
exploration of the statement. In particular, the distracter A, which had 44 % of

responses, corresponds to an inversion between the thesis and hypothesis: to answer

the question it is not relevant that the sum of two odd numbers is always even. We

consider questions of this type very important since:

• Within a standardised test, they assess verifying mathematical skills that are

typical of the cultural aspect of mathematics;

• They show teachers the possibility of using algebra as a tool for supporting

reasoning and consequently they push teachers towards a change of their prac-

tices as a result of the discussions they have in their schools about the nature of

the highly important SVN tests.

As pointed out above, this type of item is an important stimulus for reflection by

teachers, to consider a new approach to the culture of theorems at school, chal-

lenging normal teaching practices. Usually in Italy (and possibly also in other

countries) the teacher asks the students to understand and repeat proofs of state-

ments he or she has supplied, rather than prove statements. Even more seldom

students are asked to produce conjectures themselves or to justify a statement.

The aim of this type of item is to change teaching practices in the school,

harnessing the strong impact that the SNV tests have on teachers’ practices. In
fact proving activities are not generally common in the first years of Italian

secondary schools, particularly using any algebraic machinery. Most practices in

algebra in Grades 9 and 10 are more concerned with the manipulative aspects of

formulas and not its use as a thinking tool that can support mathematical reasoning

(Arzarello et al. 2001). This appears only later and only in some the more scientif-

ically oriented schools with a stronger mathematics curriculum, when elementary

calculus is introduced.

Discussion

In this chapter we have illustrated how the debate originating from the disappoint-

ing results of Italian students in the 2003 PISA study had a positive impact in the

country. First, it convinced the Ministry of Education to design a national policy for

assessing the quality of teaching in the schools by establishing an Italian Assess-

ment System (SNV). It gradually started a systematic annual census survey at

selected grades. Second, the Ministry promoted seminars about the meaning of

PISA studies and innovative programs for the teaching of mathematics, which

involved a considerable number of Italian mathematics teachers.

We have also illustrated how the SNV framework is strongly but not completely

aligned with that of PISA. A feature of the Italian items, which distinguishes them

from those of PISA, is the presence of items where students are asked about arguing
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and proving in completely intra-mathematical contexts. This is an aspect of math-

ematics that is not part of the OECD’s defined mathematical literacy, but is due to

cultural instances that feature within the Italian curriculum and to the consequent

necessity of testing such competencies.

All these PISA-driven initiatives in Italy are having a positive influence on the

results of the most recent international assessment studies. For example the recently

published results of PISA 2012 (OECD 2014a) confirm a positive trend for Italy,

even though the results are still below the OECD mean (mean score 485, SE 2.0). In

particular they confirm the 2009 improvement for southern regions (see Fig. 13.2

above), even though the differences between the southern and northern regions

remain high.

A wide-ranging study for the reasons of this remarkable change has not yet been

carried out, but, based on our experience and knowledge of what happens in

schools, we provide here a tentative explanation of this phenomenon:

(i) The gradual introduction of SNV from 2008 has called to teachers’ attention
the meaning of standardised international and national assessment systems. At

the beginning, programs to measure reading and mathematical literacy were

almost unnoticed by the majority; but in a short period, school communities

became strongly focussed on them.

(ii) The SNV activities are carried up each year in May for Grades 2, 5, 6 (not

from 2014), 10, and in June for Grade 8. In July the whole country receives a

picture of the macro-situation of Italian schools, since results drawn from a

sample of schools are made public. In October each school knows its own

results. This causes a careful and serious reflection by people working in the

school (teachers, principals, regional and national school officers) and outside

it (families, policy makers). The discussion has shifted from the acceptance or

non-acceptance of the standardised national survey to the relationships

between accountability and improvement (Hargreaves and Braun 2013). As

a consequence also the international surveys, and especially PISA, are con-

sidered and compared with the results of the SNV.

(iii) A further element of synergy between the international and national surveys is

that most of the students who participated to PISA 2012 had also participated

in the Grade 10 SNV survey of that year, and in 2010 had participated in the

Grade 8 national survey, which was part of their final examination at the end of

the first cycle of instruction. For the first time in Italy it has been possible to

compare two standardised surveys for a comparable group of students

(Montanaro 2013). Even though the two surveys have different aims and

frameworks, they have started a useful discussion.

(iv) The programs for updating teachers about the SNV and PISA surveys, pro-

moted by the Ministry of Education, point out more and more the similarities

and differences between the two. Consequently, teachers’ attention has grad-

ually shifted its focus from the overall results to the analysis of their items and

to the scrutiny of the frameworks behind them. There has been a shift in
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concern from “What are the results?” to “How have students responded and

why?” This change in perspective seems to be confirmed by the survey about

teachers’ use of cognitive activation strategies (OECD 2014b), where Italy’s
results on the constructed index are near the OECD mean (�0.10, SE 0.02).

This indicates that teachers are giving a certain attention to students’ thinking
processes. PISA reports the estimated increase in mathematical literacy scores

for each unit increase in this index and for Italy it amounts to 11.3 which is one

of highest among OECD countries.

For all these reasons, signs of a positive change are on the horizon.
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Chapter 14

The Effects of PISA in Taiwan:

Contemporary Assessment Reform

Kai-Lin Yang and Fou-Lai Lin

In Taiwan, PISA used to be an inactive seed
Appears once every three years
Could only be seen in newspapers.
Taiwanese performance in PISA
Seemed to be similar in TIMSS.
Be excellent in mathematics and science literacy
But poor in reading literacy.
After summer 2012, the inactive seed suddenly burst
Into every family with high school students,
Into the minds of all high school teachers,
Into daily conversations of Taiwanese educational community.
Meanwhile, a strange phenomenon arose:
PISA cram schools shot out numerously.
This chapter aims to report the dramatic effects
And investigate the reasons behind.

Abstract Taiwan has always been one of the top ranked countries in PISA, so

initially interest in PISA was mainly concerned with standards monitoring, with

some analysis of how instruction could be improved. However, from 2012, PISA

became a major public phenomenon as it became linked with proposed new school

assessment and competitive entrance to desirable schools. Students, along with

their parents and teachers, worried about the ability to solve PISA-like problems

and private educational providers offered additional tutoring. This chapter reports

and explains these dramatic effects. Increasingly, the PISA concept of mathemat-

ical literacy has been used, along with other frameworks, as the theoretical back-

ground for thinking about future directions for teaching and assessment in schools.

This is seen as part of an endeavour to change the strong emphasis on memorisation

and repetitive practice in Taiwanese schools.
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Background to the Taiwanese Educational System

Before 1967 only elementary school education, for children from 7 to 12 years old,

was compulsory in Taiwan. In order to gain entry to a favoured junior high school,

many 11 and 12 year old students attended after-school classes, often colloquially

called the cram-schools. In Taiwanese, these are called buxiban. In order to release
students from the pressures of competitive entry to limited places in junior high

schools and thereby postpone the time for attending buxiban, in 1968 compulsory

education was extended to 3-year junior high schools (12–15 years old). Besides,

the public believed that the length of compulsory education reflects the modernity

of a country. Therefore, some politicians extended compulsory education to attract

votes. Now, because of the educational policies of our current president, Ying-jeou

Ma, a 12-year compulsory education program that integrates primary education,

junior high, senior high or vocational education will be implemented in 2014.

The Taiwanese Mathematics curriculum for the years of compulsory education

has undergone three reforms in the last three decades. Based on the shift of focus

towards students as knowledge constructors, the first reform was to revise the 1975

Standards of School Mathematics Curriculum to emphasise the manipulation of

concrete materials. Nevertheless, the revised Standard of School Mathematics

Curriculum in 1993 resulted in having the two systems of algorithmic mathematics

and mathematics with manipulatives coexisting in classrooms: the formal taught

methods alongside the child-invented methods, as described by Booth (1981). In

order to complement the defects of previous curriculum, further reforms were still

required.

The second and third reforms included the 2000 Nine-Year School Curriculum,

issued in 1998 and then revised in 2003. The 2000 Nine-Year School Curriculum

was proposed with a basic philosophy of constructivism and it emphasised the value

of children’s own methods. However, after the implementation of this new curric-

ulum in 2002, the seventh grade students did not perform well on the first mathe-

matics examination. Thus some scholars, especially the mathematicians, asked the

Ministry of Education to revise the 2000 mathematics curriculum and a reform

group was formed (Leung et al. 2012). The major differences between the Nine-

Year School Mathematics Curriculum of 2000 and 2003 lay in the quantity and

sequence of the content. The 2000Mathematics Curriculum expected 80 % students

to keep up with the scheduled content, so the content was less, simpler, and flexibly

divided into four learning stages. However, the 2003 Mathematics Curriculum

presupposed that no more than 50 % students would be left behind the scheduled

content. Consequently, the content sequences for each year were listed according to

ability indicators. However, the content was more inflexible and more difficult than

that of 2000.

Buxiban are private schools that offer out-of-school instruction to improve

students’ achievement scores. In Taiwan, buxiban are so popular that they have

become a sunrise industry. The major function of these buxiban is to increase the

possibilities of getting into desirable high schools and universities. These schools
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mainly focus on enhancing students’ academic abilities in mathematics, science,

English, and Chinese writing. For Taiwanese students of Grade 11, it has been

found that attending a buxiban improves educational achievement, and 49 % of

eleventh graders reported they spent several hours each week in buxiban (Chen and

Lu 2009). The main reasons why students go to buxiban include (1) following

established customs of going to buxiban, (2) as a way to make friends, (3) their fears

of getting academically behind classmates who go to buxiban, and (4) unsatisfactory

performance in school examinations.

Taiwanese Students’ Performance in PISA

Taiwan has participated in PISA since 2006. In mathematics, it was ranked 1 in

2006 (mean score 549) and 5 in 2009 (mean score 543). Taiwanese students were

relatively better in mathematics and science (ranked 12 in 2009) than in reading

(ranked 23 in 2009) although the correlations between the three scores at the level

of the student are very high (0.81–0.85). Although Taiwanese students’ perfor-
mance in mathematics and science literacy is internationally ranked at the top level

(OECD 2009, 2012), the achievement gaps between high and low achievers are

larger than in many other countries, so this is something that needs attention.

Table 14.1 shows the percentage of students at each level of mathematical literacy

in Taiwan and the other countries ranked in the top six for PISA 2009, and also for

Taiwan in PISA 2006. The percentage of students at and below level 1 is larger for

Taiwan than the other high-performing countries. First results from PISA 2012

indicate that this pattern continues.

Although Taiwanese students’ average performance in mathematical literacy is

internationally top-ranked, it is still profitable to study their weaker areas to guide

further improvement. By analysing Taiwanese students’ responses, several places
where improvements might be made have been identified. Firstly, some students

Table 14.1 The percentage of students from high performing countries at different levels of

mathematical literacy in PISA 2009

Nation

Country

rank % below 1 % at level 1

% at levels

2, 3, 4 % at level 5 % at level 6

Taiwan 5 4.2 8.6 58.6 17.2 11.3

Taiwan (2006) 1 3.6 8.3 56.1 20.1 11.8

Finland 6 1.7 6.1 70.5 16.7 4.9

Korea 4 1.9 6.2 66.3 17.7 7.8

Shanghai 1 1.4 3.4 44.7 23.8 26.6

Hong Kong 3 2.6 6.2 60.5 19.9 10.8

Singapore 2 3.0 6.8 54.6 20.0 15.6
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were not familiar with connecting given situations and their descriptions with

figures to make reasonable assumptions, e.g. statistical graphs. Secondly, although

the mathematical models behind problems situated in real-world contexts were not

hard for students, some students were distracted by superfluous but related infor-

mation in a problem. This implied that they were relatively weak in discriminating

relevant and irrelevant information to solve problems in real-world contexts.

Thirdly, some students did not correctly answer estimation problems, which may

result from lack of familiarity with estimating large numbers, computing with

calculators, or thinking of tolerable errors. All of this may arise because Taiwanese

students are often ‘stuffed with a standardised answer’. Fourthly, some students

tended to provide personal interpretations rather than evidence-based explanations

and then their over-inference caused wrong answers. This showed that they did not

understand that valid information would be the basis of strong explanations. The

weaknesses of Taiwanese classroom teaching were revealed by the above-

mentioned features and partially resulted from the strategies teachers used. Due

to the prevalence of multiple-choice tests, many Taiwanese teachers teach students

strategies of deletion and substitution, which can be used for quickly isolating a

correct answer.

Two Literacies for Selecting High Achievers

Taiwan is going to implement a 12-year compulsory education program in 2014. In

general, senior high schools, being compulsory, should have open admission for

junior high school students if they meet the minimum test score and other relevant

requirements. However, the reality is more complex. Currently, senior high schools

are ranked hierarchically according to their students’ entrances scores in the

national examination. The most desirable high schools have the highest scores.

Consequently, the top 15 % of students, in particular, are nearly all gathered into

specific schools. It is not yet certain whether this will continue in the future, or

whether they will be spread among many different schools that all may offer a

special curriculum for high achievers.

Although there is an examination to evaluate the competency of students in

Grade 9, the main assessment goal has traditionally been students’ mastery of

textbook content rather than their ‘learning power’, which is more important.

Learning power is based on thinking and reading, and therefore mathematical

literacy and reading literacy should be assessed. In this context, mathematical

literacy is defined as using mathematical knowledge and skills to identify and

solve situational or mathematical problems, and understanding written text to

reflect on mathematical knowledge included in the Taiwanese curriculum. It is a

new challenge to identify the high achievers in the top 15 % according to their

learning power rather than just their content knowledge. This definition of mathe-

matical literacy has been inspired by the PISA definition and adapted to suit the

purposes of assessment in Taiwan.
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Alternative Assessment Goals and Framework

When we acknowledge that “mandated assessment mediates between the expecta-

tions of the system and their embodiment in classroom practices” (Barnes

et al. 2000, p. 626), we come to realise that the alternative assessment goals for

high achievers should be a tool to reshape school practices. Instead of considering

only a selection function, they should also consider the key purposes of teaching

and learning in compulsory education.

Accordingly, Lin (2012) analysed the consequences of deciding that a major

educational goal was to enhance students’ learning power. He elaborates learning

power in three dimensions: tools, learning methods and dispositions. The three

dimensions of learning power support an analytical approach to assessment reform.

Language and thinking are two necessary tools, while reading and inquiry are two

main learning methods. Dispositions refer to learners’ emotions, attitudes, and

beliefs. This is in accordance with the definition of learning power as

a complex mix of dispositions, lived experiences, social relations, values, attitudes and

beliefs that coalesce to shape the nature of an individual’s engagement with any particular

learning opportunity. (Deakin Crick et al. 2004, p. 247)

Both language and thinking are required in learning different subjects. On the

one hand language, especially as reading literacy, is an interdisciplinary compe-

tency. On the other hand, mathematical literacy supports logical thinking and forms

the basis for pursuing advanced knowledge. Therefore, the assessment goals are to

measure mathematical literacy (how students use the knowledge and skills they

have acquired at school to solve open-ended and reasoning problems) and reading

literacy (how to gain knowledge from reading text in multiple disciplines including

history, geography, civics and science). Students’ dispositions are not included in

this assessment reform because they cannot easily be objectively evaluated and

ranked through a time-limited, paper-and-pencil test.

For the proposed assessment of mathematical literacy, we adopted three com-

ponents from the PISA Mathematics Framework. The first component was mathe-

matical content organised around overarching ideas such as Quantity, Space and
shape, Change and relationships, and Uncertainty (OECD 2004). The second

component was the use of context so that problems are set in various real-world

situations. The third component was mathematical competencies. The mathemati-

cal competencies were considered to be more critical than the other two compo-

nents in order to discriminate the level of mathematical literacy of high achievers.

For this assessment, the most important competencies are problem solving, reason-

ing and proof. (Note that this notion of competencies draws on but is not the same as

that described in Chap. 2 in this volume). Taiwanese students’ performance in PISA

placed about 30 % of students at levels 5 and 6 of mathematical literacy. The feature

of these two levels, as described in the Mathematics Framework (Taiwan PISA

National Center 2011) is being able to handle complex problems and advanced

reasoning. In order to provide an assessment for selection of the very best students,
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we only focused on problem solving and reasoning and proof, which also corre-

spond to the top level of mathematical competence delineated by Jan de

Lange (1999).

Feasibility of this Framework

The feasibility of this framework will be verified by its relevance to the Taiwanese

School Mathematics Curriculum and the empirical validity of selecting high-

achievers. Ideally, assessment tasks should match the expectations of curriculum

documents, syllabuses, or courses of study. Although the framework above is not

directly related to the national curriculum, two components of the framework, the

overarching ideas (now called content categories as in OECD 2013) and the

mathematical competencies fit the spirit of the curriculum. To be more specific,

the national curriculum aspires to connect different mathematics units to different

learning domains inside and outside of mathematics, applying mathematics to daily

life, appreciating the beauty of mathematics, and further cultivating interest in

exploring the essence of mathematics as well as other related disciplines (Ministry

of Education 2003). The PISA content categories are not directly drawn on but are

in reasonable correspondence with the Taiwanese School Mathematics Curriculum.

The mathematical competencies just match its spirit. Only the mathematical models

underlying task situations that are directly within the Taiwanese School Mathemat-

ics Curriculum will be included in the PISA-like assessment. This is so that it can

assess all high-achievers equitably. Even though the mathematical content of the

reformed assessment is constrained by the national school curriculum, the scope of

mathematics is deeper and broader than PISA in order that it can validly select the

top-achievers.

Before proposing this framework, Lin (2011) invited 25 mathematics educators

to help 180 junior high school teachers understand mathematical literacy from the

perspective of PISA and also using the ideas on mathematical proficiency expressed

in the book “Adding It Up” from the United States (National Research Council

2001). The first aim of this collaboration was to help teachers clarify the difference

between mathematics for the promotion of mathematical literacy and the mathe-

matics of examination; a distinction that should be well-known by teachers but

might be easily confused. The features behind the mathematics of examination

include closed problems, one problem with one predetermined answer, precise

information, and problems posed in decorative (but not necessarily realistic) situ-

ations. On the contrary, the features behind mathematics to promote mathematical

literacy included open-ended problems; problems with more than one possible

approach; problems with multiple plausible answers; problems with superfluous

information and ‘productive situations’. Productive situations give clues for stu-

dents to connect a situation with various related mathematical concepts and then to
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produce multiple assumptions or a required transformation between situational and

mathematical worlds.

During the workshop for designing assessment tasks for mathematical literacy,

Lin posed several problems to enhance teachers’ perception of the difference

between mathematics of literacy and mathematics of examination. For example,

he posed the question of estimating the lowest threshold to win an election if eight

representatives are to be chosen from 200 members. In general, teachers automat-

ically answered this question based on the assumption that one member only had

one vote. The discussion of this problem was used to highlight the fact that

assumptions about situations could be implicit and multiple, and that different

answers were plausible depending on the assumptions made.

Then, they cooperatively designed about 180 problems that aimed at assessing

students’ abilities of using conceptual understanding, procedural fluency, strategic

competence, and adaptive reasoning (the elements of mathematical proficiency

from the report of Kilpatrick et al. (National Research Council 2001)) to formulate

mathematical models, provide mathematical answers, explain mathematical

answers in situations, and critique mathematical models or answers. The scope of

the 180 problems differs in several ways to the set of PISA problems. One

difference is that they deliberately connect different mathematical units, for exam-

ple the distance between two points at rectangular coordinates and the Pythagorean

Theorem. To score each question, PISA uses at most three levels (0, 1, 2) whereas

the PISA-like assessment scores are classified into more levels because the math-

ematics content is much more complex than PISA. Moreover, although the scoring

rubric for the assessment is precisely described, it is still a challenge to get

consistent assessment across a large number of teachers.

Another consideration is that mathematical proof is not specifically included in

the PISA items (given its focus derived from the OECD mandate for life skills), but

needs to be included in the reformed assessment in Taiwan. In mathematics, proof

is the rigour and logical connection among mathematical knowledge and this

greatly differs from proofs outside of mathematics. Assessing proof is essential

when the purpose is not only to select the top 15 % of achievers but also to rank

them. Mathematical proof is a special text genre in written discourse (see Pimm and

Wagner 2003), and the ability to read a mathematical proof requires both mathe-

matical knowledge and deductive reasoning (Lin and Yang 2007). On the contrary,

but in accordance with its definition of mathematical literacy, PISA mainly con-

siders plausible reasoning. In Taiwan, a research study showed that 5.7 % of Grade

9 students could give complete arguments to prove that ‘the sum of any two odd

numbers must be even’ and a further 37.2 % could give partial arguments that

included all information but omitted some reasoning (Lin et al. 2004). Around 36 %

of Grade 9 students could construct a correct proof, which required combining

several geometric arguments (Heinze et al. 2004) and 18.8 % of Grade 9 students

were scored in the top level of reading comprehension of geometric proof (Lin and

Yang 2007). Thus, in the Taiwanese situation, items requiring constructing or
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comprehending proof were also considered to be a necessary and viable part of

assessing mathematical literacy of the highest achievers.

Problems Exemplifying Mathematical Literacy

In this section, we provide three problems to exemplify the assessment of mathe-

matical literacy for high achievers. Figure 14.1 shows a problem about the geom-

etry underlying antique architecture. Students are required to actively use rulers to

figure out the scale of this picture and then to estimate the length of the diagonal line

in the innermost layer of the octagon. An adequate solution is to measure the length

of the long diagonal line in Fig. 14.1 with a ruler, then calculate the proportional

scale using the known measurement of 5.5 ft. Measure the length of the short

diagonal line, then calculate the real length using the scale. Figure 14.2 shows an

uncertainty problem concerned with data about buxiban students. Students need to

actively identify one advantage with regard to each buxiban and represent this

advantage with a suitable statistical chart. For one buxiban, the pass rate (as a

percentage) is the highest, for another the absolute number of students passing is the

highest, and the third shows steady improvement. Figure 14.3 shows a paper-

folding problem where students need to prove the obtained triangles are equilateral.

The content of these questions is included in the Taiwanese junior high school

curriculum, and the situations come from students’ life experiences. Nonetheless,

our students are unfamiliar with these kinds of questions due to the need to identify

that some information is superfluous, the need for to make assumptions and the

openness of the potential problem solving strategies.

Here is the Eight Trigrams shaped ceiling 
of Lu-Gang Longshan Temple, the biggest 
ceiling in Taiwan. Its span, the diagonal 
line shown over the outermost layer of the 
octagon, is about 5.5 feet and the height of 
the top centre is about 6.5 feet. It is tiered 
up with five layers, each made of 16 
crossbeams to support the weight of the 
roof eaves. The crossbeams are carved with 
exquisite sculptures from Chinese culture. 
The ceiling is built using nails of wood 
rather than metal. The ceiling is filled with 
the wide and deep wisdom of our ancestors.
Please estimate the length of the diagonal
line in the innermost layer of the octagon.
(1 foot = 12 inches, 1 inch = 2.54 cm)

Fig 14.1 Eight Trigrams shaped ceiling and a problem for Grade 9 students
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PISA: Insanity and Retreat

PISA-like assessment reform has become a storm in Taiwan. Three different types

of ‘PISA insanity’ are illustrated by the news report in Fig. 14.4, which has been

translated by the authors. The news item shows that the effects of PISA-like

assessment are found on parents, on buxiban, and on governmental policies. Parents

are worried about their children’s failure in the entrance examination. Buxiban are

sensitive to the disturbance and take advantage of the assessment reform to make

money. Whether there is any positive effect on students’ learning is still question-

able. The government is advancing several programs for high school teachers to

There are three competitive buxiban in Ting-Sou’s hometown. The number of students 
attending the buxiban and the number of these passing the Basic Competence Test for 
Junior High School Students are shown in the table for the past three years Because of the 
keen competition among these three buxiban, if they ever use any false data, that buxiban 
will be attacked by the other two. Consequently, the buxiban will lose its credit and 
students, and have to pay a fine for false advertisement. Therefore, all the buxiban use real 
data to design favourable flyers for themselves. Please answer the following questions using 
the data in the table.

If you are the publicity manager of one of these buxiban, how would you design a statistical 
chart to highlight the advantage of your company? (Provide an answer for each buxiban.)

Buxiban

96th academic year 97th academic year 98th academic year

Number of 
students

Number 
of passes

Number of 
students

Number 
of passes

Number of 
students

Number 
of passes

P 60 30 65 31 80 32

S 130 40 120 40 125 40

Q 35 12 42 15 39 15

Fig. 14.2 Buxiban advertisement problem

Fig. 14.3 Paper-folding problem
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better understand the PISA-like assessment and to design tasks for developing

students’mathematical literacy. In addition, it is suggested that PISA-like problems

should be included in each regular test. Some teachers agree with this reform but

others do not. The voices querying the reform are continuously represented in mass

media by professors, teacher representatives, parent representatives, and ordinary

people; in particular, some of them expressed concern that different scoring criteria

would result in unfairness. As to the traditional examinations, the scoring codes

referred to one standardised answer with several key steps. The more different

students’ answers and the key steps are, the lower scores would be obtained. In

PISA-like assessment, the scoring codes refer to multiple plausible answers. The

more plausible answers completed, the higher scores would be given until full

marks. That is to say: traditional examinations mainly tested what students had not

comprehended, but PISA-like assessment focuses on what students should have

learned. As a consequence, mathematics teachers may spend more time discussing

their ideas about mathematics, its learning and teaching with each other.

PISA Assessment for Entrance Examination in Keelung and Greater Taipei: 
Parents Are Much More Worried than Students

•   The Chairman of the Secondary School Parents Association in Taipei, 
Mr Young-Jia Hsu, has criticised some buxiban that take advantage of the 
panic and anxiety of parents and students to recruit students into PISA 
training sessions. No matter what the effects are, this situation is similar to 
fraud.
•   The reporter visited several buxiban with PISA training sessions in Taipei and
found the cost is about NTD$650-850 per lesson, which is up to10% higher than 
general courses at the buxiban.  

•   The Deputy Chief of Department of Education, Taipei City Government, Dr
Ching-Huang Feng states that the Comprehensive Assessment Program for Junior 
High School Students includes the traditional five courses in the assessment. If the 
special high school admission examination takes the same courses as well, 
Taiwanese secondary teaching will follow our old route only emphasising 
memorisation and repeated practice. However, the Keelung and Greater Taipei 
regions will include literacy courses in the assessment as has been publicised 
widely. Without this, it would be difficult to make any change. Therefore, the 
Department of Education, Taipei City Government has requested schools to 
include literacy questions in general assessments for Grade 7 and 8 students, in the 
hope that students will gradually become familiar with questions of this kind, and 
so be confident when participating in the special high school admission 
examination.

Fig. 14.4 Article from the China Times of 1 January 2013 (Lin et al. 2013)
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Several months ago, we were all preparing for the PISA-like assessment.

However, in the Taipei City Council in April 2013, regional delegates rejected

the proposed assessment reform based on mathematical literacy and reading liter-

acy for selecting the top students, and we suppose there may be progressive

transition to the PISA-like assessment. There were multiple factors in the opposi-

tion. Most people felt the move was too hasty and there had been inadequate

support. When news of this assessment reform was publicised, the database of

sample questions was embryonic, and the scoring criteria and the exact time for

executing the assessment were still uncertain. Some people oppose the whole idea

of selection to the ‘star schools’ and think students should attend local schools in the
compulsory years of education. As students concentrate on only mathematics and

reading literacy, teachers of other subjects in the buxiban have fewer students and

so oppose the reform, and even teachers of the newly assessed subjects are against it

because it does not match their regular teaching. The last straw was doubt about the

fairness of the reformed assessment. Taiwanese are used to being ‘force-stuffed’
with a standardised answer to a standardised problem; we did not believe open-

ended problems could make a fair assessment. In a diploma-driven traditional

society like Taiwan, there is always great public concern about assessment.

Reflection

After reflecting on the failure of the assessment, we agree that it is important to

align assessment with classroom teaching and learning. However, the premise for

such incorporation lies in whether classroom teaching and learning are appropriate

to enhance students’ learning power. Based on the fate of this reform, we confess

that the national assessment reform was not supported across the system. Failure

demonstrated that sometimes political issues are much more influential than the

assessment, teaching and learning. Assuming optimistically that the PISA-like

assessment has been postponed rather than cancelled, our preparations for it

continue. For example, the National Academy for Educational Research, the Cur-

riculum & Instruction Consulting Team of Ministry of Education, and the National

Science Council will continue with projects to develop students’ mathematical

literacy. Through longer term projects of developing and implementing a new

educational system in harmony with the goals of assessment reform, we believe

the concern about reform will be eased, the beliefs about the fairness of

non-traditional assessment will build up, and the uncertainty surrounding the new

assessments will be eliminated. We are also confident that the emergence of the

alternative assessments will be beneficial to improve and not undermine our

classroom teaching and learning. Hopefully, after a further 3 years of effort in

preparation for PISA-like assessment, it will be successfully implemented and it
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will stimulate our education to focus on developing students’ learning power rather
than teaching just for examinations.

In 2009, Grek wrote

The construction of PISA with its promotion of orientations to applied and lifelong learning

has powerful effects on curricula and pedagogy in participating nations, and promotes the

responsible individual and self-regulated subject. (Grek 2009, p. 35)

She noted that PISA data were applied to justify changes or provide support for

domestic and European policy-making processes to different extents in different

countries: from the PISA-promotion of the UK, the PISA-shock of Germany to the

PISA-surprise of Finland. Like these Western European countries, Taiwan is

experiencing the effects of PISA. In the past, PISA data was applied to check

whether Taiwanese students were retaining their top ranking. Now, PISA’s theo-
retical background and assessment Framework strongly influence thinking about

examinations and teaching in schools.
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Chapter 15

PISA’s Influence on Thought and Action

in Mathematics Education
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José Luis Lupiáñez, Kyung Mee Park, Hannah Perl, Abolfazl Rafiepour,

Luis Rico, Franck Salles, and Zulkardi Zulkardi

Abstract This chapter contains short descriptions from contributors in ten coun-

tries (Chile, Denmark, France, Indonesia, Iran, Israel, Korea, Singapore, Spain and

USA) about some ways in which the PISA Framework and results have influenced
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thinking and action about mathematics education. In many countries, the PISA

results have been a call to action, and have stimulated diverse projects aimed at

improving results, principally for teacher education but also some involving stu-

dents. PISA resources, including the released items, have been used as a basis for

assessment as well as for teacher development. Some countries have established

national assessments with noticeable consistency with PISA ideas. In many coun-

tries, PISA’s concept of mathematical literacy, with its analysis of what makes

mathematics education useful for most future citizens, has been extremely influen-

tial in curriculum review and also for improving teaching and learning. Countries

have also incorporated or adopted the way that PISA describes mathematical

competence through the fundamental mathematical capabilities.

Introduction

The aim of this chapter is to review some of the ways in which PISA has influenced

thinking aboutmathematics education in a variety of countries around theworld, and to

document some of the actions that have followed from this influence. The chapter

consists of ten separate, short pieces that are contributed by citizens of various

countries. This collection is designed to complement the more substantial contribu-

tions from Germany, Italy, Japan, and Taiwan in the earlier chapters of this volume.

Invitations to contribute to this chapter were issued to peoplewhowere likely to be in a

position to make a sound judgement, sometimes because of their involvement with the

national team implementing PISA or sometimes because of their long term involve-

ment with curriculum and teaching issues more generally or for their other special

interest. However, these are generally personal pieces and do not represent all the

action or opinions in a country, nor are they definitive evaluations of the local influence

of PISA. Instead they are personal reflections (some more so than others) written from

the point of view of people involved in various ways with the national agendas. To

assist in interpretation, the sections begin with a very brief description of the contri-

butors’ local roles. Contributions are presented alphabetically by country name.
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In drawing conclusions about the extent of influence of PISA around the world, it

is important for readers to know that contributions were not solicited or selected

from countries where PISA was known to have been especially influential. It is also

relevant that everyone who was invited to contribute had something to report about

their country.

When the contributions are reviewed as a set, it is evident that PISA has had a

substantial influence on both thought and action in many countries. The country

ranking and the mean scores of students and their distribution have been important,

sometimes to affirm national directions as in the case of Singapore, but more often

as a stimulus to action especially where student performance has been lower than

expected. The type of action taken is varied. In some countries, including Spain,

international assessment has been supplemented by new forms of national assess-

ment, sometimes based around a PISA-like framework. In Chile, the methodology

of PISA assessment has also been used as a model for improving national assess-

ment. Many countries have begun new teacher education projects, designed to

promote mathematics education that better equips students for their futures in

response to lessons learned from PISA. Some countries, including France and

Denmark, have used the resources provided by PISA in these and other projects,

especially using PISA items as a model for assessment items or a source of ideas for

more complex items that share a PISA philosophy. Greater complexity and depth,

and a fuller assessment of all phases of the modelling process is possible when

items are to be used away from the very demanding context of the multi-country,

multi-language, tightly-timed PISA survey. Some contributions, including those

from Iran and Indonesia, also highlight classroom activities for students.

These contributions also show the impact of the PISA Mathematics Framework

on thinking about the goals of mathematics education and the conceptualisation of

the mathematics curriculum. A strong theme is the desire and need in many

countries to give more emphasis to PISA’s mathematical literacy with its emphasis

on mathematics for all citizens across all parts of their lives. However, it is also the

case that there has been considerable thought generated about the adequacy of

mathematical literacy as a goal of mathematics education and how this can or

should be balanced in a school mathematics curriculum with attention to intra-

mathematical goals such as mathematical structure and attention to mathematics as

a discipline studied for its own interest and beauty. Several contributions, including

from Israel and Korea, report on the thinking stimulated by PISA ideas within

curriculum review processes. For example, in Korea, a new series of textbooks

gives more attention to contexts through a ‘story-telling’ approach that presents real
or fantasy contexts to motivate and illustrate mathematical principles. This reso-

nates with the ‘educational modelling’ approach outlined by Stacey in Chap. 3.

Fundamental debate about the nature and goals of a good mathematics curriculum

has also been a feature of the response in the USA.

An important aspect of the impact of PISA on thought about mathematics

education has come through the prominence that PISA has given to mathematical

competencies (called the fundamental mathematical capabilities in the PISA 2012

framework). Several contributions, including from Spain, report how these have
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been used to guide curriculum and assessment, and how the competency view,

described more fully by Niss in Chap. 2 of the present volume, has been consistent

with other influential initiatives in the early years of this century. The contributions

from France, Indonesia and Chile also record the incorporation of PISA-like

mathematical competencies in revised curriculum priorities.

In summary, these reports show that since its inception, PISA has had substantial

influence on developments in mathematics education through the monitoring of

performance, by the resources produced, and through the stimulus to fundamental

reconsideration of the goals of mathematics education that is offered by the various

components of the PISA mathematics framework.

Chile

About the Contributor

Felipe Almuna is currently a Ph.D. student in Mathematics Education at The

University of Melbourne. After a career as a secondary and tertiary mathematics

teacher in Chile he decided to undertake further studies in mathematics education.

In 2010 he was awarded his master degree at The University of Melbourne,

studying how the context influences students’ approaches to PISA-like problems

and winning the John and Elizabeth Robertson Prize for best research essay. In

2011 and 2012, he worked again as a teacher in Chile. His doctoral research is

studying the relationship between contextualisation of mathematical problems and

students’ performance.

PISA: A Referent for Improvement

Chile has participated in four PISA survey administrations. Participation in the

2000 administration was delayed until 2001, and then the country participated

normally in 2006, 2009, and 2012. The PISA 2009 survey ranked Chile in 49th

place for mathematics among 65 participating countries and in the second place in

the Latin American region after the partner country Uruguay. The mean score of

421 points is 75 points (three quarters of a standard deviation) below the OECD

average of 496 points (OECD 2010b).

Aside from the rankings, the PISA 2009 mathematics results revealed that less

than 1 % of Chilean students reach the highest level of proficiency in mathematics

with scores higher than 669 points, and 51 % of students perform at or below the

lowest level of proficiency with scores between 358 and 420 points (OECD 2010b).

These results confirm that Chile still lags behind the OECD average and that there

remains considerable action to be taken in matters related to education. At the time
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of writing, the first PISA 2012 results are available, showing an average score of

423, a small but statistically significant improvement.

Chile is taking steps designed to improve the quality of education; raising

educational standards in Chile is “high on both the public and government agenda”

(OECD 2010b, p. 87). In this way, the PISA results have been used as a referent to

monitor variations of the educational goals in order to advocate policy change,

promote educational research, and learn lessons from the PISA survey

methodology.

In this vein, the national mathematics curriculum implemented in the 2000s has

been reviewed. Since 2009 a greater emphasis on the notion of mathematical

competency and mathematical reasoning (Solar et al. 2011) is observable in

it. This curricular review in mathematics has taken into account revisions and

analyses of curricula from OECD countries as well as frameworks and evidence

from TIMSS and PISA (Ministerio de Educación 2009).

In addition, PISA has also started to influence educational research in Chile. In

2011 the Research and Development Office (FONIDE, standing for its Spanish

acronym), a section of the Ministry of Education, launched a special round of grants

for researching the impact of PISA in Chile and 25 % of the participating projects

were related to PISA mathematics.

PISA assessment also has been influential in the improvement of the national

assessment in Chile (SIMCE for its acronym in Spanish). PISA has been used as a

best-practice guide to adapt existing assessments, in guiding methodological

changes in SIMCE “improving procedure, manuals, item construction, statistical

analysis and keeping records” (Breakspear 2012, p. 22).

Final Remarks

As Chile did not take part in the PISA 2003 survey (where the main focus was on

mathematics) comparison in mathematics is only possible between the 2006 and

2009 survey administrations. The results show that since 2006 the results in

mathematics did not change significantly. Hence, the influence of PISA mathemat-

ics in Chile has not yet been greatly evident. However, PISA mathematics has been

a referent for the latest curriculum review in Chile. In 2009, the release of the PISA

results in both reading and mathematics produced an immediate public concern.

The analysis of the results of PISA has also been taken into account by policy

makers when discussing the quality of the educational system in Chile. The PISA

survey has offered to Chile an opportunity to raise critical questions about the

learning outcomes, distribution of learning opportunities, skills and competencies

that the Chilean educational system provides to students to equip them for today’s
globalised world.
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Denmark

About the Contributor

Lena Lindenskov is from the Department of Education at Aarhus University in

Denmark. She has worked in the Danish PISA Consortium since 1998 responsible

for the mathematical literacy part. Lena also was the Danish representative in the

PISA 2003 Mathematics Forum.

Alignment with Educational Goals of Denmark

From a Danish perspective, the Mathematics Framework from PISA 2000 has been

of great interest, as it seems to be more applicable to the Danish mathematics

education than the TIMSS survey. Mathematics in use, in everyday life, and for

active citizenship is a priority for compulsory education in Denmark. The PISA

definition of mathematical literacy and its further description seem to be in line with

the intended goals and guidelines of Danish schools. Also the fundamental math-

ematical capabilities (OECD 2013a) underlying the mathematical processes resem-

ble what is known in Denmark as the concept of the eight mathematical

competencies, which are described by Niss (2003) and also in Chap. 2 of this

volume. The concept was incorporated into national teaching guidelines from 2003

and into the national curriculum from 2009 as described in the Fælles Mål [English:

Common Goals] (Ministry of Education 2003, 2009). The concept has been

discussed in teacher training courses and applied in developmental projects and

research around Denmark.

As the PISA Framework is in line with Danish educational goals, one might

expect relatively high Danish performance. Throughout the PISA surveys 2000–

2012, Danish students performed above the OECD average in mathematical liter-

acy with means of 514, 514, 513, 503, 500 while the mean scores in reading literacy

and science literacy did not differ from the OECD average.

Actions Following

The PISA performances of Danish students have had a big impact on educational

and political debate and decisions, as noted by Egelund (2008). New critical

questions were raised about the level of performance and about social-economic,

ethnic and gender equity factors, considering that Denmark is a rich state with a

strong emphasis on social welfare. Following an international OECD review in

2004 (Mortimore et al. 2004), national tests were introduced in several subjects, for

example, in Grades 3 and 6 mathematics. For the first time the national teacher

280 K. Stacey et al.

http://dx.doi.org/10.1007/978-3-319-10121-7_2


guidelines for mathematics in 2003 and 2009 included sections on students with

special needs, influenced by several factors including the PISA results. They

showed that although the number of low performers is small relative to international

figures, in a national context the number is considered to be too high.

As PISA items are well described, the Danish mathematics team for PISA

decided to investigate how released items can be used by teachers for formative

assessment of their students and as ideas that they can develop into learning

activities. We made secondary analyses of the student answers to released PISA-

items based on single item statistics, together with an in-depth analysis of the

written work of large samples of Danish students in PISA 2003. The results were

published on the web with the title 15 Mathematics Tasks in PISA (Lindenskov and

Weng 2010). Our aim was to present rich descriptions and examples of how Danish

students answer mathematics tasks when they participate in PISA surveys. We

wanted to give descriptions that were rich enough for teachers to be able to relate

them to their own practice. We looked into four PISA units in Space and shape, two
units in Change and relationship, five units in Uncertainty and four units in

Quantity. The items in these units covered all levels of difficulty.

The itemM145 Cubes, as shown in Fig. 15.1, is categorised as Space and shape.
The difficulty level is low, and student answers are coded in PISA just with one

digit as full credit (in this case the correct answer of 1, 5, 4, 2, 6, 5 in order) or no

credit for any other answer. (For further information about coding, see Chap. 9 by

Fig. 15.1 PISA released item Cubes M145Q01 (OECD 2006)
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Sułowska in this volume.) We looked more deeply into 110 Danish student

answers. We found three kinds of incorrect answers, and we created three second

digit codes. Some students copied the numbers shown on the dice (answering 6, 2,

3, 5, 1, 2) another group mirrored them (answering 5, 1, 2, 6, 2, 3), while a third

group made calculation errors. The two first types of answers indicate conceptual

misunderstanding of ‘the opposite side of a cube’, despite the algebraic rule of the
sum being given as a hint, and the third one indicates arithmetic problems. In

assessment for learning we suggest the use of tasks likeM145 Cubes in order to find
indicators of students’ thinking.

It is our general impression that for items with short answers, the most

interesting information for teachers is the different types of incorrect answers.

Concerning items with extended answers, it is also interesting for teachers to look

into the different types of correct answers. The unit M179 Robberies (shown in

Fig. 15.2) is classified in Uncertainty. The difficulty level is high. Full credit

answers are coded in PISA with three double digit codes. Partial credit answers

are coded with two double digit codes. No credit answers are coded with four

Fig. 15.2 PISA released item Robberies M179Q01 (OECD 2006)

282 K. Stacey et al.



double digit codes. OECD (2006) gives full details of the coding criteria. All nine

double digit codes are represented among the Danish student answers, which we

looked into further. We saw that the full and partial credit answers were longer

than the no credit answers. We saw that more everyday knowledge and less

mathematical knowledge were used in the no credit answers than in the other

answers. The diversity of the answers—in addition to being correct, partially

correct or incorrect—shows the complexity of the item, and it seems that M179

Robberies motivates students to engage in interpretation and in reasoning. Here

are some examples of answers given by students in Denmark, translated by the

contributor.

• Some development has taken place. We see more robberies, but not in any strong

sense. It has grown with approx. eight robberies (found from the graph), and that

is not very much. The journalist has exaggerated, but when you look at the graph

it looks bad, but the ‘titles’ are close to each other, that is why a growth of eight

robberies looks very big.

• Such a small growth may be random, and next year you may have a marked

decline in robberies. So I think the interpretation is unreasonable.

• I don’t think nine robberies is a very big growth.

• What do you mean? It is reasonable, but how can I show it?

• Reasonable. I suppose so, but you cannot precisely see how many burglaries

there were in 1998. It would have been better with a line diagram.

• It would have been easier if you had shown it on a circle diagram instead.

• Yes, there is an increase, so it is a fine interpretation, but she is not reasonable

when she says it is a huge increase.

• No, because it is not a huge increase, but you know journalists can say anything.

• No, it looks huge in the illustration; you see the relative height of the two

columns, but looking at the numbers only an increase of about 9.

In our view, secondary analyses of this kind can support development of

mathematics education away from looking at mathematical tasks as something

that should be finalised with one right answer as quickly as possible towards

looking at mathematical tasks as initiators for problem posing, problem solving,

reasoning and communication. We have observed an interest among teachers in the

secondary analyses we made. We have observed students’ interest as well. Some

successful students were interested in looking at different student answers, includ-

ing those from other countries, while weaker performing students said they were

afraid that they would get confused.

Although the concept of mathematical literacy in PISA is regarded as in line

with main ideas for mathematics education in the compulsory years of schooling in

Denmark, critical questions are frequently raised in the debate on the value of

mathematics in PISA. For example, there is debate on whether PISA measures give

valid indications of the level and structure of 15 years olds’ readiness for acting and
reflecting on mathematics in use.
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France

About the Contributors

Franck Salles and Jean-François Chesné work together at the DEPP in Paris. Franck

Salles works both as a mathematics teacher in secondary school and as a research

fellow at the office for students’ assessment, DEPP, Ministry of Education. Franck

has shared the position of National ProgramManager of PISA for France, and is the

French National Centre mathematics expert for PISA 2012. Jean-François Chesné

joined the DEPP, Ministry of Education, working on assessment after a career as a

secondary mathematics teacher and at the University Paris 12 where he was in

charge of initial training for mathematics trainee teachers and professional devel-

opment for in-service teachers. He heads the office of the evaluation of educational

activities and experimentation. He conducts research on teaching practices and

students’ skills in mathematics in compulsory schooling. He was a member of a

national jury for the recruitment of mathematics teachers and is a textbook author.

The Common Core of Knowledge and Skills
and Complex Assessment

Unlike some other OECD countries, France did not experience a ‘PISA Shock’ after
the first results of PISA from the year 2000. Nonetheless, PISA led to questioning of

the adequacy of what is taught in French schools, especially in respect to how

students use their knowledge in real-life situations. Thus, at an institutional level,

PISA has had an influence in shifting the nature of knowledge towards a more

applied and useful one.

In 2006, the law addressing the future of schooling in France amended the lower

secondary curricula and established a common core of knowledge and skills
(Legifrance 2006). This reform explicitly states that it was based both on recom-

mendations of the European Union regarding ‘key competences for lifelong learn-
ing’ (European Communities 2007) and on the PISA Framework. PISA’s notion of

mathematical literacy is underlying the common core as is clear from its definition:

knowledge and skills which are necessary to master at the end of compulsory education in

order to successfully continue training, build one’s personal and professional future and

play a successful part in society. (Legifrance 2006, ANNEX)

As a result, skills and competencies connected with pure content have come to

play a new and important part in curricula.

In mathematics, the core outlines skills such as reasoning, communicating,
implementing, handling information, which are employed in four clusters of content

(numbers and operations, geometry, measurement, data handling/uncertainty).
This is very similar to the fundamental mathematical capabilities and the content

284 K. Stacey et al.



categories of the PISA 2012 Mathematics Framework (OECD 2013a) and its

predecessors.

From 2008, new official instructions for mathematics teachers require devel-

oping and assessing students’ skills within complex tasks through various con-

texts (MENJVA/DGESCO 2011). In addition to examining students’ final

productions, teachers must pay specific attention to their intermediate processes,

partial reasoning, and spoken or written communication. This emphasis on rea-

soning and communicating is not only in geometry, as it often used to be, but also

in arithmetic and algebra (MENJVA/DGESCO 2009a). Documents published by

the Ministry of Education (see for example, MENJVA/DGERSCO 2009a, b) are

often based on PISA released items. Figure 15.3 displays a PISA item M547

Staircase which was released after the PISA 2003 main survey (OECD 2006). The

difficulty of the item is at Level 2, just above the boundary of Level 1. Figure 15.4

shows an adaptation (MENJVA/DGESCO 2011), illustrating the possibility of

proposing a classical geometry problem in a real-life context. The French instruc-

tions translate as:

For a staircase to conform to regulations, the height of each step must be between 17 cm and

20 cm. Does the staircase shown in the diagram meet these regulations? Show all of your

working, even those paths which were not successful.

In the adaptation, the mathematical task has been made considerably more

complex than the quite simple original, which involved only dividing the total

height by the number of steps and ignoring the redundant information of 400 cm

depth. In the new item, the given data was modified, Pythagoras’s theorem is likely

to be used, metres are to be converted into centimetres, and the question requires

that the final value is tested to see if it fits in the specified range. As with many PISA

Fig. 15.3 PISA released item M547 Staircase (OECD 2006)
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items, an alternative solution method is also possible, in this case involving scale

drawing, and this makes the item accessible to more students. These modifications

make it a complex task meeting official standards.

One cannot claim that these directions have had wide and direct influence on

actual teaching practices in France. This very innovative reform was not

followed by widespread national teacher training. The evolution of teaching

practices is a slow and complex process in the centralised French educational

system and still today, most teachers are not familiar with PISA. However,

intermediate institutions have been strongly influenced. Teacher trainers often

mention PISA, its Framework, items and their coding guidelines during initial

courses about the core. Textbook editors update mathematics textbooks to

include more and more PISA-like common core situations. And last but not

least, national inspectors are gradually modifying national examinations to

include more complex tasks in context, and are valuing partial reasoning and

different forms of communication.

Indonesia

About the Contributor

Professor Zulkardi is a lecturer in the Department of Mathematics Education in the

Faculty of Teacher Training and Education, Sriwijaya University, South Sumatra,

Indonesia. In 2002 he got his PhD on realistic mathematics education from the

Netherlands. One of his supervisors was Professor Dr Jan de Lange, the first Chair

of the PISA Mathematics Expert Group. Since then, Zulkardi has been involved in

Fig. 15.4 Adapted Staircase Item (MENJVA/DGESCO 2011, p. 4)
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many projects related to PISA, some of which are discussed in this contribution.

Since 2008, he has been the Vice President of the Indonesian Mathematical Society

for Education and in this capacity he started the first international journal on

mathematics education in Indonesia called IndoMS-JME (jims-b.org).

General Influence of PISA Mathematics in Indonesia

As do many governments that participate in PISA, the Indonesia government uses

PISA to monitor the performance of the educational system. The purpose of this

contribution is to present information and describe the ways in which PISA

mathematics has influenced the thought and action of some groups of people in

Indonesia. These groups are the central government, teacher educators and the

PMRI team (Realistic Mathematics Education, Indonesia).

Since the PISA survey was first launched by the OECD in 2000, Indonesia has

participated but its results, especially in mathematics, have been low, with some

instability. First, in 2000, Indonesia was ranked 39 of 41 countries in mathematics.

Then in 2003, the rank was 38 of 40 countries and in 2006, 50 of 57 countries. In

2009 it decreased to 61 of 65, and to 64 from 65 in PISA 2012 (although the mean

score was the same).

Figure 15.5 shows the mean scores for mathematics, science and reading for

Indonesia for the first four PISA assessments. One can see that there has been a

steady increase in mean scores for the reading scale since 2000. The 2009 mean for

science shows a drop of 10 points from a fairly stable level in the previous three
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Fig. 15.5 Indonesia’s mean PISA scores for 2000–2009 for mathematics, science and reading

literacy (Stacey 2011)
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assessments. The mathematics score has been more unstable. A different way of

interpreting the data is that it has been steady, except for a relatively high score in

2006 (Stacey 2011).

PISA and RME in Indonesia

In July 2000, Professor Jan de Lange from the Freudenthal Institute in the Nether-

lands was invited as a keynote speaker in the National Conference on Mathematics

at the Institute of Technology in Bandung. He presented new issues on mathematics

education in the world, including PISA and Realistic Mathematics Education

(RME). He also explained that the goals of mathematics education had changed

from its earlier focus on mastering basic skills of mathematics with few applica-

tions. The new goals of mathematics education were to help students become good

problem solvers and smart citizens.

A year later, the Freudenthal Institute and the National Centre for School

Improvement (APS) both from the Netherlands, helped a group of Indonesian

mathematicians and teacher educators headed by Professor R. K. Sembiring to set

about reforming mathematics education in Indonesia. They adapted the Dutch

instructional theory of Realistic Mathematics Education (RME) to its Indonesian

version called PMRI (Pendidikan Matematika Realistik Indonesia). The PMRI

project formally started in 2001 in four teacher education institutions and 12 pri-

mary schools in Java. By 2013, PMRI has been disseminated to the 23 of 33 prov-

inces in Indonesia. More information about the project of PMRI can be seen at the

PMRI portal http://p4mri.net and in the article by Sembiring et al. (2010).

In a 2007 national seminar on mathematics education in Palembang, Professor

Fasli Jalal, the Director General of Higher Education presented, on behalf of the

Minister of National Education of Indonesia, the PISA results for 2003 and 2006 on

mathematics education. He urged the participants of the conference who were

mostly school mathematics teachers, to learn from PISA results by improving the

instructional quality and using PISA problems that had been released and were

available on the web (OECD 2006, 2013b). Although that was only a suggestion,

some people, including the contributor, were inspired to infuse the PISA spirit and

use PISA problems in assessment and for research projects.

Zulkardi (2010) stated that there is a gap between the content of curriculum in

Indonesia and the problems that were tested in the PISA mathematics. He also

analysed the mathematics problems in the National Examination (UN). He found

some mathematics problems were different to PISA. Most of the problems in the

UN were in the low and middle difficulty levels of PISA. Therefore, he suggested to

the government that some PISA-type problems should be included in the next UN

so that students and teachers will be aware of the problems and these will automat-

ically guide students to learn how to do PISA problems.

The Indonesian government has also used PISA results as one of several

arguments for changing the mathematics curriculum to the new Curriculum 2013.
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The PISA mathematics scores in 2009 show that the vast majority of Indonesian

students are only able to understand mathematics up to level 3 of PISA, while

significant proportions of students in many other countries reach levels 5 and

6. Therefore, it is assumed that the materials and the process of learning in

Indonesia differ from those in developed OECD countries. Using PISA results as

one of the arguments, the government of Indonesia changed the curriculum and the

new curriculum was implemented starting from July 2013 at Years 1, 4, 7 and 10.

The curriculum aims to include more problem solving, modelling and reasoning for

mathematics and to use more information and communications technology for

content and teaching delivery.

PISA for Students and Teachers

Kontes Literasi Matematika (KLM) is a national contest of mathematical literacy

for high school students that began in 2010 (Widjaja 2011). The first KLM was

initiated by the present contributor, Zulkardi, at Sriwijaya University working with

about 200 junior high school students. The KLM contest begins by participants

solving PISA-type problems in a written test, which is graded by a committee.

Then, about 20 % of participants are chosen to compete in the semi-final, where

participants have to explain their solutions or strategies in solving the problem.

Lastly, from three finalists, the champion of mathematics in the province is

selected.

In 2011, the second KLM was conducted in seven big cities namely Medan,

Palembang, Jakarta, Yogyakarta, Surabaya, Banjarmasin and Makassar. In 2012,

the contest added five new cities: Padang, Semarang, Malang, Kupang and Ambon.

For the last 2 years, the grand championship of KLM has been conducted at the

National Training Centre of Mathematics Education in Yogyakarta. The winners

from each city participate in this national competition.

PISA results have slowly influenced the curriculum of mathematics education in

teacher education. For instance, PISA has been part of the content in an assessment

course at the Department of Mathematics Education Graduate Program at Sriwijaya

University in Palembang. In this course student teachers learn what PISA problems

are and how to design PISA problems using real-life contexts from Indonesia.

Based on that course, some student teachers are doing research projects about

how to design PISA-like problems.

Information About PISA

PISA was seen as newsworthy as soon as the national scores were released. For

instance, Kompas, the biggest newspaper in Indonesia, has always published the

PISA ranking, along with expert commentary on the PISA results and their
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implications for future leaders of Indonesia. Two sample articles are “70 % of

Indonesian students will find it difficult to live in the twenty first century” (Erlangga

2012) and “Why Indonesian students have low achievement” (Nurfuadah 2013).

However, little action followed their comments.

PISA mathematics in Indonesia has also featured in IndoMS-JME (http://jims-b.

org) the Indonesian Mathematical Society Journal on Mathematics Education. One
good article is an invited article written by Kaye Stacey (2011). Several other

IndoMS-JME articles about PISA problems have been contributed by Zulkardi’s
research students (i.e. Kamaliyah et al. 2013). There is also a supplementary book

(Wardhani and Rumiati 2011) on instrument evaluation for mathematics achieve-

ment that draws on both PISA and TIMSS, which has been prepared in the context

of the project BERMUTU. In addition to the journal and news, the contributor has

also designed a blog (http://pisaindonesia.wordpress.com/) that provides informa-

tion about PISA Indonesia, PISA released problems, PISA-type problems and links

to other blogs relating to PISA.

Summary

In summary, thinking about mathematics education has been substantially

influenced in Indonesia by the ideas championed by the Freudenthal Institute and

elsewhere about the need for realistic mathematics education. These ideas have

been well publicised and made concrete by the PISA tests. Indonesia’s poor results
provide a challenge to the nation, which is being addressed in part by using PISA

items as models for teaching and learning.

Iran

About the Contributors

Professor Zahra Gooya and Dr. Abolfazl Rafiepour are active contributors to

mathematics education in Iran. Zahra Gooya from Shahid Beheshti University is

the first mathematics educator to have had an in-depth influence on mathematics

education in Iran. A celebration of her 20 years of contribution was recently

organised by her colleagues. She has often written about international studies in

the national journal, and many teachers have become familiar with these interna-

tional developments through this path. Dr. Abolfazl Rafiepour, previously a sec-

ondary school mathematics teacher, was one of the first students to start a master of

mathematics education under Professor Gooya in 2001. His master and doctoral

theses analysed TIMSS data. In addition to his other work at Shahid Bahonar
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University of Kerman, he is now director of Kerman Mathematics House, the

second one to be established in Iran.

The Influence of PISA in Iran

Iran has participated in TIMSS since 1995, but not in PISA. Even though it has not

participated as a country in PISA surveys, the PISA study has had a considerable

influence on mathematics education research in Iran. This contribution documents

some of the actions and changing thought that is evident in the work of teachers,

mathematics education researchers, student activities and textbooks.

A number of master degree research studies from primary to tertiary levels have

concentrated on mathematical modelling and applications, which is one of the focal

points of PISA. Some papers are in Persian (or Farsi, the official language in Iran)

including Ahmadi and Rafiepour (2013), Faramarzpour and Rafiepour (2013) and

Karimianzadeh and Rafiepour (2012). There are also some papers in English that

focus on modelling and applications from the Iranian students point of view, such as

Rafiepour et al. (2012), Rafiepour and Abdolahpour (2013) and Rafiepour and

Stacey (2009). There have also been presentations at the annual Iranian Conference

on Mathematics Education, including in 2012 papers by Abdolahpour, Rafiepour

and Fadaie on the level of mathematical modelling competence of students and by

Esmaili, Esmaili and Rafiepour on the effect of different types of problems on

students’ emotions.

In addition, many interested graduate students have produced papers based on

modelling activities that they have conducted with school children and have

presented them at mathematics education conferences in Iran. Almost all these

graduate students are mathematics teachers and they work voluntarily with students

providing extra-curricular activities in the Mathematics Houses across Iran. Their

main purpose is to bridge the gap between school and real-life mathematics and to

promote mathematical literacy.

Since 2004, the first 10 days of the eighth month of the Iranian (Jalali) calendar

(22–31 October) have been named the “Mathematics Decade” by the Iranian

Mathematics Society. During this time, all Mathematics Houses are actively

involved in out-of-school activities to promote mathematical literacy. Many stu-

dents, teachers and ordinary people visit the Mathematics Houses and other related

organisations and get involved with mathematical activities. To give an example, in

2011 and 2012, the Kerman Mathematics House used some of the PISA released

items (OECD 2006, 2013b) related to modelling and applications during Mathe-

matics Decade. Students were actively engaged in doing mathematics and enjoying

it. The main purpose of these modelling activities was preparing students for using

their mathematical knowledge together with their daily experiences to solve real-

world problems.

Another effect of PISA is that policy makers claim that it has influenced the

direction of change in the new national mathematics textbooks. However, the
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reality of this claim has been questioned by Gooya (2013) and Hasanpour and

Gooya (2013). Their view is that mathematical literacy and real-life activities are

not promoted only by the inclusion of real objects and phenomena in textbooks, but

“realistic mathematics education” situations must be created where students are

involved in solving problems in genuine real-world contexts. This will include

some modelling activities. The present contributors have examined the way in

which the new mathematics textbooks for Grade 9 students might cultivate math-

ematical literacy (Rafiepour et al. 2012).

To sum up, school mathematics in Iran has been implicitly influenced by the

PISA rationale via different genuine activities that are designed and carried out by

some mathematics teachers and educators. Presenting this new direction for math-

ematics education has created new opportunities for young researchers as well as

bringing some hope for the former generation to think more seriously about the

feasibility of what Freudenthal preached a long time ago about ‘Realistic Mathe-

matics Education’. At the formal policy level, despite the claims, nothing much has

yet been done to address the deeper issues of mathematical literacy.

Israel

About the Contributor

Dr. Hannah Perl works for the Ministry of Education in Israel. She served for many

years as the highly-respected Chief Inspector for Mathematics in the Ministry of

Education, where all major decisions about mathematics, including curriculum,

testing, and teachers, were her responsibility. She is now the head of the science

division in the pedagogical secretariat of the Ministry, which includes supervision

of all science and mathematics education. She has undertaken various research

projects including very interesting research with graphing calculators long before

the use of technological tools was in the headlines.

The Influence of PISA on Mathematics Education in Israel

In Israel, mathematics has always been an obligatory part of the school curricula

beginning in kindergarten and continuing throughout the 12 grades of the school

system. One of the traditional arguments in support of this decision (among other

important ones) has been that mathematics, because of its abstractness and special

reasoning tools, is a universal means for describing the world around us and thus

constitutes a necessary ingredient of every student’s problem solving tools. It was

believed that equipping students with these tools suffices to ensure that they would

be able use them whenever necessary to solve problems in a variety of contexts.
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Although the middle school and high school curriculum stated the importance of

developing students’ ability to decide when and how to use mathematical concepts,

actual teaching practices in schools emphasised traditional mathematical skills and

understanding and did not implement the developing of students’ ability to apply

their mathematical knowledge to solve authentic problems in a wide range of

situations.

The results of international surveys and assessments such as TIMSS and PISA

have underscored the fact that the ability to identify and apply mathematics when it

is needed does not develop by itself, even in mathematically oriented students, and

has to be taught explicitly to both mathematically strong students and those who are

not mathematically inclined. Thus mathematics education policy makers and cur-

riculum developers in Israel were challenged to re-examine the mathematics cur-

ricula (Grades 7–12) and to rethink it in terms of the content, skills, processes and

contexts that have the potential to bring our students to achieve mathematical

literacy as defined by PISA.

There was a debate regarding the role of mathematical literacy in teaching

mathematics to all students. It became necessary to answer the questions “What

mathematics should be taught?”, “To whom?” and “How?” The utilitarian approach

was important but not acceptable as the main or only organising theme of the

curriculum. Other traditional considerations that were considered equally important

were teaching mathematics for intellectual pleasure, noticing the aesthetics of

mathematics and appreciating it as an important cultural achievement of mankind,

understanding abstract structures, solving pure mathematical problems, and devel-

oping high order thinking skills. The Mathematics Professional Advising Commit-

tee to the Ministry of Education revised the middle school curriculum taking all

these aspects into consideration.

In middle schools (Grades 7–9) mathematical literacy has become a part of the

new curriculum for all students. Curriculum developers and textbook writers have

broadened their traditional approach to school mathematics and realised that it is

possible to find meaningful, interesting and authentic applications that are mathe-

matically challenging for different grade levels and students’ capabilities. Formal

mathematics competency was not abandoned but reduced in size and relegated to

the higher grade levels. It was also understood that in order for students to

effectively deal with these new tasks, teaching practices must change and learners

will have to be taught in new ways that, hopefully, will raise the learning and

teaching standards and also support intellectual enjoyment for all. Resources were

made available to implement these changes. They included the design of new

teaching and learning materials, teacher professional development and the appoint-

ment of school instructors to assist teachers in the classrooms.

In high school (Grades 9–12) a new mathematics curriculum is currently under

development. Mathematical literacy will be taught to all students but in different

ways at different levels depending on students’ mathematical abilities and inclina-

tions. Students who are not mathematically inclined will focus on mathematical

literacy with higher mathematics content so that they will be able to autonomously

engage a wide range of real-life mathematical and basic statistical situations. For
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mathematically oriented students the concept of mathematical literacy will be

broadened to include not only real-life situations but tasks that are more complex

and abstract and which integrate a larger range of topics (including applications to

other scientific disciplines), the reading of advanced mathematical texts and use of

higher level mathematics concepts and competencies. Levels of performance will

be in accordance to the six levels defined in the proficiency scale descriptions of the

PISA Framework.

All mathematics curricula will incorporate use of twenty first century technology

both in learning and assessment. Details of the curriculum changes in the middle

school can be found (in Hebrew) on Israel’s Ministry of Education website: http://

cms.education.gov.il/EducationCMS/Units/Mazkirut_Pedagogit/Matematika/

ChativatBeinayim/.

Korea

About the Contributor

Kyungmee Park is a professor at Hongik University in Korea, teaching pre-service

teachers. She was a member of the PISA Mathematics Expert Group from 1998 to

2004, and worked as a researcher at the Korean Institute of Curriculum and

Evaluation, responsible for PISA 2000 in Korea. She is involved in mathematics

curriculum and textbook development, writes mathematical columns in several

daily newspapers, and has contributed to the popularisation of mathematics for

the general public.

Impact on Mathematics Curriculum

The impact of PISA on mathematics education in Korea can be discussed in the two

aspects of curriculum and textbooks. The Korean Institute of Curriculum and

Evaluation (KICE), which is responsible for the development of mathematics

curriculum in Korea, was heavily influenced by OECD’s DeSeCo project (Rychen

and Salganik 2003). DeSeCo is an abbreviation of ‘Definition and Selection of Key
Competencies’. Over 3 years, KICE attempted to similarly identify key competen-

cies for Koreans of the future (KICE 2009). As a result, ten core competencies were

identified: creativity, problem solving, communication skills, information

processing, interpersonal relations, self-management, basic learning skills (liter-

acy), citizenship, global awareness and vocational development. These competen-

cies suggested directions for constructing national curriculum. However, the new

mathematics curriculum of Korea announced in 2011 did not explicitly mention
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these key competencies. Instead, it emphasised the processes of doing mathematics.

The mathematics curriculum states:

Crucial capabilities required for members of a complex, specialised, and pluralistic future

society are believed to be fostered by learning and practising mathematical processes,

including mathematical problem solving, communication, and reasoning. (Ministry of

Education, Science, and Technology 2011, p. 2)

In fact, problem solving, communication, and reasoning had already been men-

tioned in the previous mathematics curriculum, but the 2011 curriculum put more

emphasis on them and intends to implement these three mathematical processes in

the content. This emphasis can be interpreted as an influence of OECD DeSeCo and

PISA. In particular, the mathematical processes are part of the mathematical

competencies presented in the PISA 2009 Mathematics Framework (OECD 2010a).

Impact on Textbooks

The 2011 national mathematics curriculum emphasises contextual learning from

which students can grasp mathematical concepts and make connections with their

everyday lives. Thus the new textbooks developed for this curriculum include more

real-life contexts. In addition, a ‘story-telling textbook’ was introduced as a proto-

type for mathematics textbooks. Story-telling mathematics textbooks have already

been developed and are being used in Grades 1 and 2 from 2013. In the middle

school and high school, the story-telling approach has been recommended to be

adopted for textbooks and sample chapters have been prepared.

Here is an example. The chapter on “Measuring Length” in Grade 2 is called

“The emperor’s new clothes” (MEST 2013). The plot for the story is to make

clothes for the King to wear on his birthday. Students play the role of the king and

tailors, and they come to see the necessity of having standard units for measurement

because otherwise the measurements vary from one tailor to another. Students

naturally acquire the concept of standardised units through problem solving in

this fairy tale. By learning mathematics through story-telling textbooks, students

are expected to understand a concept in conjunction with a story that provides a

practical impetus for and application of the concept. In the meantime, mathematical

processes such as problem solving, communication, and reasoning are naturally

embedded in each chapter (Kwon 2013).

Figure 15.6 shows three pages from the chapter “Measuring Length”. On page

134, two tailors measure the length of the arms of King by using their palms. The

male tailor on the left says “two palms” and female tailor says “three palms”. Here,

students are expected to think about the problems caused by these arbitrary body

units to measure length. On page 137, students measure objects in the classroom

using various body units. Before the metric system, body units such as feet were

prevalent. Through this activity, students indirectly experience the historical devel-

opment of measuring units. On page 150, the king and the tailors agree to introduce
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the centimetre to measure length as a standard unit. Students are expected to

appreciate this uniform unit, which can be used in any place without confusion.

The PISA assessment takes a broad approach to measuring knowledge, skills and

attitudes, moving beyond the school-based approach towards the use of knowledge

in everyday tasks and challenges. Thus, despite often using fantasy settings, the

story-telling textbooks are putting into practice the context-oriented nature of the

OECD PISA philosophy.

Singapore

About the Contributor

Professor Berinderjeet Kaur is a professor of mathematics education and Head of

the Centre for International Comparative Studies at the National Institute of Edu-

cation in Singapore. Since 1995, she has been involved in the secondary analysis of

TIMSS data for Singapore and other countries. She was the mathematics consultant

to TIMSS 2011 and is presently a member of the Mathematics Expert Group for

PISA 2015.

Affirmation of Mastery and Directions

Singapore participates in international studies to benchmark itself internationally

and to learn from best practices of other education systems. Singapore has partic-

ipated in TIMSS since 1995 for both Grades 4 and 8. The results of every

administration of TIMSS for Singapore have affirmed that students have mastery

of content knowledge according to international standards. In addition they are

Fig. 15.6 Sample pages from story-telling textbook (MEST 2013) (Reproduced with permission)
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highly proficient in the application of their knowledge and in reasoning with their

mathematics.

Although the first administration of PISA was in 2000, Singapore did not

participate in PISA until 2009. As Singapore is a small country with only about

170 secondary schools, support must be obtained from all the schools as such

international benchmarking studies require the participation of at least 150 schools.

The results of PISA 2009 Mathematics showed that Singapore was ranked

second to Shanghai. The positive outcome affirmed that 15-year-olds in Singapore

were able to apply reason and transfer their knowledge of mathematics in new,

unfamiliar contexts, and demonstrate the ability to think critically and solve real-

life problems. This outcome has affirmed that the systemic adoption of the “Think-

ing Schools, Learning Nation” vision (Goh 1997) for all schools in Singapore has

had the desired and valued impact where students are acquiring the knowledge and

skills necessary for the workplace.

Irrespective of the results in TIMSS and PISA, the mathematics school curric-

ulum is revised every 6 years. The revision is guided by global developments, the

needs of and feedback from stakeholders (including teachers and school leaders), as

well as developments in the teaching, learning and assessment of mathematics. This

allows the curriculum and resulting classroom practices and assessment modes to

be revised periodically so that they remain relevant for students and for the

economy.

Spain

About the Contributors

Luis Rico, José Luis Lupiáñez and Rosa M. Caraballo all work at the University of

Granada in Spain. Dr Rico has been Professor of Didactics of Mathematics at the

University since 1992, where he leads the Research Group on Didactics of Math-

ematics. He was member of the Mathematics Expert Group for PISA 2003. His

main subjects of research are the design and development of mathematics curric-

ulum, quality of mathematics training programs and quality indicators for mathe-

matics education. In 2012 he was awarded the Social Sciences Research Prize “Ibn-

Al-Khatib”, by the Government of Andalusia. Dr Jose Luis Lupiáñez is a lecturer at

the Mathematics Education Department of the University of Granada (Spain) where

he teaches prospective primary and secondary teachers. His research focuses on

teachers’ learning processes, mathematics teacher training, mathematical compe-

tences and learning expectations. Rosa M. Caraballo, a Puerto Rican research

student at the University of Granada, completed a master’s dissertation on Spanish

National Assessment tests in 2010, which are based on the PISA Mathematics

Framework. Her doctoral dissertation is on mathematical tasks to assess mathemat-

ical literacy.
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Mathematical Competency and the Spanish Curriculum

In 2006 the Spanish Education Fundamental Act (LOE, its Spanish acronym) was

first passed and it remains in force. The Act proposed an evolution of the educa-

tional orientation in Spain and improvements to be followed in the succeeding

years. The LOE responds, first, to the social changes of recent decades and to the

demands of Spanish citizens for a general and democratic education. Second, it

attends to the trend towards high quality education, which is acclaimed by the

countries of the European Union in their agreements since the late twentieth century

(Ministerio de Educación y Ciencia 2006).

As a definite and innovative tool, the Act introduced the concept of competency

at all educational levels in the curriculum taking an inherently wide general

conception. The Act defines curriculum as “the set of objectives, key competencies,

pedagogic methods and assessment criteria outlined for each one of the subject

areas the law regulates” (Ministerio de Educación y Ciencia 2006, p. 17166).

The LOE was grounded on the concept of lifelong learning. Education is

perceived as an ongoing and dynamic learning process of progressive qualification.

Everyone should have the opportunity to learn throughout life, in and out of the educational

system in order to acquire, update, add to and expand his or her competencies, knowledge,

abilities, aptitudes and skills for personal and professional development. (p. 17166)

Following the LOE provisions, the education system aims to provide students

with the knowledge and skills necessary to perform effectively in the society of

which they are part, in mathematics as well as in other subjects. Key competencies

set these expectations for learning and training based on the DeSeCo (OECD 2005)

and the Eurydice Projects (Unidad Europea de Eurydice 2002).

The Spanish curriculum does not use mathematical literacy; instead it uses the

(parallel) term mathematical competency. The reason for this change of name is

discussed in Chap. 1 of the present volume. Mathematical competency is consid-

ered to be one of the main basic learning expectations of the whole Spanish

educational system. It should be understood as similar to mathematical literacy as

defined by PISA Mathematics Frameworks for 2003 and 2012 (OECD 2003,

2013a), and the associated ideas of Niss (2002).

Diagnostic Assessments

On lifelong learning and basic competencies development, the LOE stipulates that

diagnostic assessments of key competencies will be carried out at the end of the

fourth course of primary education and the second year of compulsory secondary

education (Ministerio de Educación y Ciencia 2006). They are preliminary and

complementary to the PISA assessment; it is expected they will provide useful

information to establish the progress of key competencies, especially the mathe-

matics one as the law regulates.
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It is important to stress that the objective of these assessments is not to determine

whether, and to what degree, the intended curriculum has been implemented.

Rather, it aims to know the students’ ability to apply their acquired learning when

facing tasks that require them to cope with real-life situations. In addition, changes

in the curriculum and key competencies introduced by the LOE, allocate priority to

learning expectations. Figure 15.7 summarises the main goals of the general

assessments.

Competencies and Mathematical Literacy Assessment

For mathematics in particular, diagnostic evaluations serve as training for the

mathematical literacy evaluation that will take place at the end of the compulsory

period through PISA. Here we can establish links between mathematical compe-

tency development and mathematical literacy at the end of compulsory education.

In order to assess mathematics competency, diagnostic assessments consider

three dimensions: (1) the situations and contexts in which the competency is

applied, (2) the processes that enable the student to apply the acquired knowledge

to the contexts, and (3) the curricular content embedded in the full range of

students’ knowledge and skills. Of these three dimensions, the description of the

contexts and processes are shared with the PISA Framework, whilst the content is

described in terms of traditional curriculum areas rather than the overarching ideas
of the PISA 2003 Framework (and the content categories of PISA 2012

Framework).

The link between PISA assessments and quality indicators for the Spanish

education system is based on the notion of competency as a central concept (Rico

2011). There is a quality indicator (R2.2) for the second year of secondary school

that is measured by the overall results achieved in the mathematical competency in

Provides information on the
degree of acquisition of key

competencies

Contributes to improving the
quality and equity of

education

Shows transparency and
efficiency of the education

system

Guides educational policy
analysis

Diagnostic evaluation of
education system

(Ministerio de Educación
y Ciencia 2006)

Fig. 15.7 Main goals of diagnostic evaluations of the Spanish education system
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the general diagnostic evaluation described above. The indicator for age 15 in

mathematics (R3.2) is determined by the results of the international PISA study.

Because it is included in the Education Quality Indicators, together with the

national and regional diagnostic tests (Instituto de Evaluación 2011), the PISA

assessment is very important in the Spanish educational system.

PISA Results

Spain has participated in all five PISA assessments that have been conducted so far.

Table 15.1 presents the number of participating Spanish students and their average

score in the four PISA assessments from 2000 to 2009, in the three main key

competencies. The OECD average score was initially set at 500 with a standard

deviation of 100. All of the average scores for Spain are below the OECD average,

including the score (484) for PISA 2012. With a standard deviation of 100, approx-

imately two thirds of students across the OECD score between 400 and 600. The

number of students tested has been increasing in successive PISA administrations

because of a desire to obtain reliable estimates of the performance of regional

communities within Spain.

The poor performance of Spanish students in recent international comparative

assessments, including PISA, has created widespread public concern. As a

response, deep curriculum reforms were requested. In recent years, the results

have systematically generated a major media debate that has often placed political

blame on the incumbent government and emphasised the more negative aspects

(Aunión 2007; Dı́az and Suárez 2010). Notwithstanding, critical analysis that

highlights achievements in addition to detecting deficiencies has been also carried

out. Moreover, outcomes have been analysed from a constructive point of view

(Recio 2010). As stressed by Rico:

You have to understand and explain why Spanish results in PISA assessments are not

satisfactory and therefore, channel the discussion towards the adoption of radical, urgent

and appropriate measures to improve the curriculum and teacher training in mathematics.

(Rico 2011 p. 10)

Recently, the Spanish Federation of Teachers of Mathematics organised a

meeting aimed to study the design, organisation and impact of national and

Table 15.1 Number of participating Spanish students and their average scores in PISA

assessments

Year

Average score

Number of students Reading Mathematics Science

2000 6,214 493 476 491

2003 18,000 481 485 487

2006 20,000 461 480 488

2009 26,000 481 483 488
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international assessments in Spanish mathematics education. They found that poor

coordination of the various professional and government sectors involved in this

process have great impact on the teaching and learning of mathematics.

Final Remarks

The impact of PISA has affected the foundation and organisation of the compulsory

mathematics curriculum in Spain. The results of the evaluations raise questions

about the quality of the system and show weak approaches to incorporating core

competencies in school practice. Social concern is evident and the interest of

parents and teachers to adopt corrective measures is strong. As in other countries,

there has been no questioning of the learning model established by PISA.

There are favourable conditions for improving the institutional assessment

system, involving both the general public and professional sectors. We must

remember that PISA does not evaluate students or teachers; PISA provides indica-

tors on the quality of the system. Everything is ready to improve the level of

Spanish mathematics education.

United States of America

About the Contributor

Solomon ‘Sol’ Garfunkel is an American mathematician who has dedicated his

career to mathematics education. Since 1980, he has been the executive director of

the Consortium for Mathematics and Its Applications (COMAP), an award winning

non-profit organisation that creates learning environments where mathematics is

used to investigate and model real issues in our world. One acclaimed product is

“For All Practical Purposes: An Introduction to Contemporary Mathematics”, a

television series and now textbook. Dr Garfunkel was a member of the PISA 2012

Mathematics Expert Group. In 2009, he was awarded the Glenn Gilbert National

Leadership Award from the National Council of Supervisors of Mathematics.

An American Reminisces on PISA

First, to put this reminiscence in context, I should state that I was a ‘math warrior’,
from what I regard as the losing side of the ‘math wars’ that raged in the United

States especially during the 1990s and continue to some extent today. For readers

unfamiliar with these issues, Schoenfeld (2004) provides a history of the debate and
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Harwell et al. (2009) is one reference discussing the hotly contested differences

over approaches to mathematics curriculum and teaching.

My background in mathematics education is in curriculum reform. I have been

involved in the creation of literally hundreds of modules, textbooks, and one

comprehensive 4-year secondary school curriculum. All of these exemplify the

importance and centrality of mathematical applications and modelling. They are

about teaching mathematics through its contemporary use. And they are in the spirit

of the 1989 NCTM standards. Without rehashing the issues of the ‘math wars’, it is
fair to say that the approach of the 1989 NCTM standards has now been supplanted

in the U.S.A. by the new Common Core State Standards in Mathematics (CCSSM

2010). While applications and modelling get a nod in these standards, they are

certainly not as central as arithmetic and algebraic fluency and the exposition of

mathematical structure. I have been an outspoken critic of the CCSSM, although I

am working with a number of organisations to make standards implementation go

as smoothly as possible—for our students’ sake. One such group is Achieve (www.
achieve.org), a non-profit organisation set up to provide technical assistance and

research capacity to U.S. states on educational reform, especially standards, assess-

ments, curriculum and accountability systems. I have consulted for Achieve on a

number of projects. I am usually seen to be on the philosophical ‘left’, balancing off
other consultants who occupy space on the philosophical ‘right’.

Now, I have kept up with PISA and the work of the Mathematics Expert Group

(MEG) through personal friends and colleagues since 2003. As a consequence I was

aware that PISA had come in for some criticism from some members of the

mathematics research community for not being ‘mathematical’ enough. This crit-
icism by and large came from conservative ‘math warriors’, and clearly the OECD’s
PISA Secretariat was sensitive to their comments. Achieve was brought in to assist

the international contractors with the preparation of the Framework for mathemat-

ical literacy for 2012, as well as conducting an international consultation on the

earlier and proposed frameworks and external validation of the alignment of the

final item pool to the agreed framework and the presence of explicit mathematics.

Moreover, the newly constituted MEG for 2012 included three U.S. members. This

high representation of one country was unprecedented and certainly left the impres-

sion that the OECD felt the need for stronger U.S. involvement.

It is worth noting that this U.S. interest in PISA is a relatively new phenomenon.

In 2003 I all but begged the National Science Foundation (NSF) to look at

disaggregated PISA data to investigate whether students who had gone through

the comprehensive reform curricula funded by NSF had significantly different

results from other students. These curricula had been aligned directly to the

NCTM Standards and thus were geared to improving mathematical literacy. NSF

showed no interest at the time. Mostly this was because PISA was not on the

U.S. radar in the way that TIMSS was.

However, when the 2003 PISA survey results were announced, the situation

changed. Critics of the reform movement and the NCTM Standards were quick to

use the mediocre U.S. results as ‘proof’ that those standards and the curricula that

were designed to embody them were a failure. And therein lay an unintended
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consequence. Up to that point, as I indicated, PISA was far from a U.S. household

name. In fact, it had pretty much been dismissed by the right because it measured

mathematical literacy, which was in their eyes not as important as mathematical

skills. Much more credibility was given to comparisons in curriculum-based

assessments, i.e. assessments that are designed around systematic testing of specific

mathematical topics taught in schools. But in emphasising the poor results on the

PISA survey, PISA itself became emphasised and its importance in the U.S.A. grew

from there.

Between 2003 and 2012 we have seen the rise of a new reform movement in the

U.S.A. culminating in the CCSSM. And therefore, to some extent the shoe is now

on the other foot. When the PISA 2003 results were announced it was clearly unfair

to blame the poor U.S. results on the reform curricula at that time, mainly because

they had not achieved significant market penetration above the elementary school

level. At this time it would be foolish to blame any poor results in the 2012 survey

on the policies of the current U.S. administration. But such logic seldom rules in

political debates. I think it is safe to predict that any poor results in PISA 2012 will

be blamed not on policies of the prior administration but unfairly on the current

U.S. government, and possibly on CCSSM despite its very recent implementation.

Given the new-found importance of PISA results in the U.S.A., I believe that

there was a move to make PISA a more curriculum-based assessment. The minutes

of the first meeting of the 2012 MEG highlight directions from the PISA Secretariat

to make the mathematics involved in solving PISA tasks explicit, that authentic

tasks were desirable but that these contexts should not constrain the level of

mathematical competencies assessed, and that task difficulty should be driven by

the mathematics involved and not the complexity of the task context. I believe that

the inclusion of three MEG members from the U.S.A. and the involvement of

Achieve were meant to be steps to move PISA mathematics in accordance with

those directions. That a final product evidently acceptable to all stakeholders was

achieved is a testament to the MEG members, old and new, to the intellectual

leadership of ACER, and to Achieve as well.
I found the first meeting of the MEG somewhat tense. But with each subsequent

meeting, the MEG came closer and closer to consensus. At our final meeting in

Heidelberg in October 2012, MEG member after MEG member spoke to the

integrity of the process and the intellectual achievement of the 2012 Mathematics

Framework. Given the diversity of the membership and the politically charged

atmosphere in which we began, this was no mean feat. I think that it is fair to say

that all members believe in and appreciate the importance of promoting mathemat-

ical literacy, in the sense of the new Framework definition, throughout the world.

We understand that PISA is not a horse race, no matter how the results may be

viewed or used. With the change of international contractor for PISA 2015 leading

to the exit of ACER from the field and the increased involvement of organisations

whose core businesses often involve the commercial publication of textbooks, it is

our sincere hope that the essential spirit of PISA can be maintained as it was with

the 2012 MEG.
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