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Abstract In this paper we show that the existence of !-models of bar induction is
equivalent to the principle saying that applying the Howard–Bachmann operation to
any well-ordering yields again a well-ordering.

1 Introduction

This paper will be concerned with a particular…1
2 statement of the form

WOP.f / W 8X ŒWO.X/ ! WO.f .X//� (1)

where f is a standard proof-theoretic function from ordinals to ordinals and WO.X/
stands for ‘X is a well-ordering’. There are by now several examples of functions
f familiar from proof theory where the statement WOP.f / has turned out to
be equivalent to one of the theories of reverse mathematics over a weak base
theory (usually RCA0). The first explicit example appears to be due to Girard
[7, Theorem 5.4.1] (see also [8]). However, it is also implicit in Schütte’s proof
of cut elimination for !-logic [15] and ultimately has its roots in Gentzen’s work,
namely in his first unpublished consistency proof,1 where he introduced the notion
of a “Reduziervorschrift” [6, p. 102] for a sequent. The latter is a well-founded
tree built bottom-up via “Reduktionsschritte”, starting with the given sequent and
passing up from conclusions to premises until an axiom is reached.

Theorem 1.1 Over RCA0 the following are equivalent:

(i) Arithmetical comprehension.
(ii) 8X ŒWO.X/ ! WO.2X/�.

1The original German version was finally published in 1974 [6]. An earlier English translation
appeared in 1969 [5].
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Another characterization from [7, Theorem 6.4.1], shows that arithmetical com-
prehension is equivalent to Gentzen’s Hauptsatz (cut elimination) for !-logic.
Connecting statements of form (1) to cut elimination theorems for infinitary logics
will also be a major tool in this paper.

There are several more recent examples of such equivalences that have been
proved by recursion-theoretic as well as proof-theoretic methods. These results give
characterizations of the form (1) for the theories ACAC

0 and ATR0, respectively,
in terms of familiar proof-theoretic functions. ACAC

0 denotes the theory ACA0

augmented by an axiom asserting that for any set X the !-th jump in X exists
while ATR0 asserts the existence of sets constructed by transfinite iterations of
arithmetical comprehension. ˛ 7! "˛ denotes the usual " function while ' stands
for the two-place Veblen function familiar from predicative proof theory (cf.
[16]). Definitions of the familiar subsystems of reverse mathematics can be found
in [17].

Theorem 1.2 (Afshari and Rathjen [1]; Marcone and Montalbán [9]) Over
RCA0 the following are equivalent:

(i) ACAC
0 .

(ii) 8X ŒWO.X/ ! WO."X/�.

Theorem 1.3 (Friedman [4]; Rathjen and Weiermann [13]; Marcone and Mon-
talbán [9]) Over RCA0 the following are equivalent:

(i) ATR0.
(ii) 8X ŒWO.X/ ! WO.'X0/�.

There is often another way of characterizing statements of the form (1) by means of
the notion of countable coded !-model.

Definition 1.4 Let T be a theory in the language of second order arithmetic, L2. A
countable coded !-model of T is a set W � N, viewed as encoding the L2-model

M D .N;S;2;C; �; 0; 1; </

with S D f.W /n j n 2 Ng such that M ˆ T when the second order quantifiers are
interpreted as ranging over S and the first order part is interpreted in the standard
way (where .W /n D fm j hn;mi 2 W g with h ; i being some primitive recursive
coding function).

If T has only finitely many axioms, it is obvious how to express M ˆ T

by just translating the second order quantifiers QX : : : X : : : in the axioms by
Qx : : : .W /x : : :. If T has infinitely many axioms, one needs to formalize Tarski’s
truth definition for M. This definition can be made in RCA0 as is shown in [17,
Definitions II.8.3 and VII.2]. Some more details will be provided in Remark 1.9.
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We write X 2 W if 9n X D .W /n.

The alternative characterizations alluded to above are as follows:

Theorem 1.5 Over RCA0 the following are equivalent:

(i) 8X ŒWO.X/ ! WO."X/� is equivalent to the statement that every set is
contained in a countable coded !-model of ACA.

(ii) 8X ŒWO.X/ ! WO.'X0/� is equivalent to the statement that every set is
contained in a countable coded !-model of �1

1-CA (or †11-DC).

Proof See [12, Corollary 1.8]. ut
Whereas Theorem 1.5 has been established independently by recursion-theoretic

and proof-theoretic methods, there is also a result that has a very involved proof and
so far has only been shown by proof theory. It connects the well-known �-function
(cf. [16]) with the existence of countable coded !-models of ATR0.

Theorem 1.6 (Rathjen [12, Theorem 1.4]) Over RCA0 the following are equiva-
lent:

(i) 8X ŒWO.X/ ! WO.�X/�.
(ii) Every set is contained in a countable coded !-model of ATR0.

The tools from proof theory employed in the above theorems involve search trees
and Gentzen’s cut elimination technique for infinitary logic with ordinal bounds.
One could perhaps generalize and say that every cut elimination theorem in ordinal-
theoretic proof theory encapsulates a theorem of this type.

The proof-theoretic ordinal functions that figure in the foregoing theorems are
all familiar from so-called predicative or meta-predicative proof theory. Thus far
a function from genuinely impredicative proof theory is missing. The first such
function that comes to mind is of the Bachmann–Howard type. It was conjectured
in [14] (Conjecture 7.2) that the pertaining principle (1) would be equivalent to
the existence of countable coded !-models of bar induction, BI. The conjecture
is by and large true as will be shown in this paper, however, the relativization of
the Bachmann–Howard construction allows for two different approaches, yielding
principles of different strength. As it turned out, only the strongest one is equivalent
to the existence of !-models of BI. We now proceed to state the main result of this
paper. Unexplained notions will be defined shortly.

Theorem 1.7 Over RCA0 the following are equivalent:

(i) RCA0 C Every set X is contained in a countable coded !-model of BI.
(ii) 8X ŒWO.X/ ! WO.#X/�.

Below we shall refer to Theorem 1.7 as the Main Theorem.
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1.1 A Brief Outline of the Paper

Section 1.2 contains a detailed definition of the theory BI. Section 2 introduces
a relativized version of the Howard–Bachmann ordinal representation system, i.e.
given a well-ordering X, one defines a new well-ordering #X of Howard–Bachmann
type which incorporatesX. Section 3 proofs the direction .i/ ) .ii/ of Theorem 1.7.
With Sect. 4 the proof of Theorem 1.7 .ii/ ) .ii/ commences. It introduces the
crucial notion of a deduction chain for a given set Q � N. The set of deduction
chains forms a tree DQ. It is shown that from an infinite branch of this tree one can
construct a countable coded !-model of BI which contains Q. As a consequence,
it remains to consider the case when DQ does not contain an infinite branch, i.e.
when DQ is a well-founded tree. Then the Kleene–Brouwer ordering of DQ, X, is
a well-ordering and, by the well-ordering principle (ii), #X is a well-ordering, too.
It will then be revealed that DQ can be viewed as a skeleton of a proof D� of the
empty sequent in an infinitary proof system T �

Q
with Buchholz’ �-rule. However,

with the help of transfinite induction over #X it can be shown that all cuts in D�
can be removed, yielding a cut-free derivation of the empty sequent. As this cannot
be, the final conclusion reached is that DQ must contain an infinite branch, whence
there is a countable coded !-model of BI containing Q, thereby completing the
proof of Theorem 1.7 .ii/ ) .i/.

1.2 The Theory BI

In this subsection we introduce the theory BI. To set the context, we fix some
notations. The language of second order arithmetic, L2, consists of free numerical
variables a; b; c; d; : : :, bound numerical variables x; y; z; : : :, free set variables
U; V;W; : : : ; bound set variables X; Y;Z; : : :, the constant 0, a symbol for each
primitive recursive function, and the symbols D and 2 for equality in the first sort
and the elementhood relation, respectively. The numerical terms of L2 are built up
in the usual way; r; s; t; : : : are syntactic variables for them. Formulas are obtained
from atomic formulas s D t , s 2 U and negated atomic formulas : s D t;: s 2 U
by closing under ^;_ and quantification 8x; 9x;8X; 9X over both sorts; so we
stipulate that formulas are in negation normal form.

The classes of …1
2- and †1n-formulae are defined as usual (with …1

0 D †10 D
[f…0

n W n 2 Ng). :A is defined by de Morgan’s laws; A ! B stands for :A _ B .
All theories in L2 will be assumed to contain the axioms and rules of classical
two sorted predicate calculus, with equality in the first sort. In addition, it will
be assumed that they comprise the system ACA0. ACA0 contains all axioms of
elementary number theory, i.e. the usual axioms for 0, 0 (successor), the defining
equations for the primitive recursive functions, the induction axiom

8X Œ0 2 X ^ 8x.x 2 X ! x0 2 X/ ! 8x.x 2 X/�;
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and all instances of arithmetical comprehension

9Z 8xŒx 2 Z $ F.x/�;

where F.a/ is an arithmetic formula, i.e. a formula without set quantifiers.
For a 2-place relation � and an arbitrary formula F.a/ of L2 we define

Prog.�; F / WD .8x/Œ8y.y � x ! F.y// ! F.x/� (progressiveness)
TI.�; F / WD Prog.�; F / ! 8xF.x/ (transfinite induction)
WF.�/ WD 8XTI.�; X/ WD
8X.8xŒ8y.y � x ! y 2 X// ! x 2 X� ! 8xŒx 2 X�/ (well-foundedness).

Let F be any collection of formulae of L2. For a 2-place relation � we will write
�2 F , if � is defined by a formulaQ.x; y/ of F via x � y WD Q.x; y/.

Definition 1.8 BI denotes the bar induction scheme, i.e. all formulae of the form

WF.�/ ! TI.�; F /;

where � is an arithmetical relation (set parameters allowed) and F is an arbitrary
formula of L2.

By BI we shall refer to the theory ACA0 C BI.

Remark 1.9 The statement of the main Theorem 1.7 uses the notion of a countable
coded !-model of BI. As the stated equivalence is claimed to be provable in RCA0,
a few comments on how this is formalized in this weak base theory are in order. The
notion of a countable coded !-model can be formalized in RCA0 according to [17,
Definition VII.2.1]. Let M be a countable coded !-model. Since BI is not finitely
axiomatizable we have to quantify over all axioms of BI to express that M ˆ BI.
The axioms of BI (or rather their Gödel numbers) clearly form a primitive recursive
set, Ax.BI/. To express M ˆ � for � 2 Ax.BI/ we use the notion of a valuation
for � from [17, Definition VII.2.1]. A valuation f for � is a function from the set of
subformulae of � into the set f0; 1g obeying the usual Tarski truth conditions. Thus
we write M ˆ �, if there exists a valuation f for � such that f .�/ D 1. Whence
M ˆ BI is defined by 8� 2 Ax.BI/M ˆ �.

2 Relativizing the Howard–Bachmann Ordinal

In this section we show how to relativize the construction that leads to the Howard–
Bachmann ordinal to an arbitrary countable well-ordering. To begin with, mainly
to foster intuitions, we provide a set-theoretic definition working in ZFC. This will
then be followed by a purely formal definition that can be made in RCA0.

Throughout this section, we fix a countable well-ordering X D .X;<X/ without
a maximum element, i.e., an ordered pair X D .X;<X/, where X is a set of natural
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numbers, <X is a well-ordering relation on X , and 8v 2 X 9u 2 X v <X u. We
write jXj for X .

Firstly, we need some ordinal-theoretic background. Let ON be the class of
ordinals. Let AP WD f� 2 ON W 9� 2 ONŒ� D !��g be the class of additive
principal numbers and let E WD f� 2 ON W � D !�g be the class of "-numbers which
is enumerated by the function 	�:"� .

We write ˛ DNF !
˛1C� � �C!˛n if ˛ D !˛1C� � �C!˛n and ˛ > ˛1 � � � �˛n. Note

that by Cantor’s normal form theorem, for every ˛ … E [ f0g, there are uniquely
determined ordinals ˛1; : : : ; ˛n such that ˛ DNF !

˛1 C � � � C !˛n .
Let � WD @1. For u 2 jXj, let Eu be the uth "-number > �. Thus, if u0 is the

smallest element of jXj, then Eu0 is the least "-number > �, and in general, for
u 2 jXj with u0 <X u, Eu is the least "-number 
 such that 8v <X u Ev < 
.

In what follows we shall only be interested in ordinals below supu2X Eu.
Henceforth, unless indicated otherwise, any ordinal will be assumed to be smaller
than that ordinal.

For any such ˛ we define the set E�.˛/ which consists of the "-numbers below
� which are needed for the unique representation of ˛ in Cantor normal form
recursively as follows:

1. E�.0/ WD E�.�/ WD ; and E�.Eu/ WD ; for u 2 jXj.
2. E�.˛/ WD f˛g; if ˛ 2 E \�.
3. E�.˛/ WD E�.˛1/[ � � � [ E�.˛n/ if ˛ DNF !

˛1 C � � � C !˛n .

Let ˛� WD max.E�.˛/ [ f0g/.
We define sets of ordinals CX.˛; ˇ/; C

n
X
.˛; ˇ/, and ordinals #˛ by main

recursion on ˛ < supu2X Eu and subsidiary recursion on n < ! (for ˇ < �) as
follows.

(C0) Eu 2 Cn
X
.˛; ˇ/ for all u 2 jXj.

(C1) f0;�g [ ˇ � Cn
X
.˛; ˇ/.

(C2) �1; : : : ; �n 2 Cn
X
.˛; ˇ/ ^ � DNF !

�1 C � � � C !�n H) � 2 CnC1
X

.˛; ˇ/.
(C3) ı 2 Cn

X
.˛; ˇ/ \ ˛ H) #ı 2 CnC1

X
.˛; ˇ/.

(C4) CX.˛; ˇ/ WD SfCn
X
.˛; ˇ/ W n < !g.

(C5) #˛ WD minf� < � W CX.˛; �/ \� � � ^ ˛ 2 CX.˛; �/g if there exists an
ordinal � < � such that CX.˛; �/ \� � � and ˛ 2 CX.˛; �/. Otherwise #˛
will be undefined.
We will shortly see that #˛ is always defined (Lemma 2.2).

Remark 2.1 The definition of # originated in [10]. An ordinal representation system
based on # was used in [11] to determine the proof-theoretic strength of fragments
of Kripke–Platek set theory and in [13] it was used to characterize the strength of
Kruskal’s theorem.

Lemma 2.2 #˛ is defined for every ˛ < supu2X Eu.

Proof Let ˇ0 WD ˛� C 1. Then ˛ 2 CX.˛; ˇ0/ via (C1) and (C2). Since the
cardinality of CX.˛; ˇ/ is less than � there exists a ˇ1 < � such that CX.˛; ˇ0/\
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� � ˇ1. Similarly there exists for each ˇn < � (which is constructed recursively)
a ˇnC1 < � such that CX.˛; ˇn/ \ � � ˇnC1. Let ˇ WD supfˇn W n < !g. Then
˛ 2 CX.˛; ˇ/ and CX.˛; ˇ/ \� � ˇ < �. Therefore #˛ � ˇ < �. �

Lemma 2.3

1. #˛ 2 E;
2. ˛ 2 CX.˛; #˛/;

3. #˛ D CX.˛; #˛/ \�; and #˛ … CX.˛; #˛/,
4. � 2 CX.˛; ˇ/ () �� 2 CX.˛; ˇ/,
5. ˛� < #˛,
6. #˛ D #ˇ H) ˛ D ˇ;

7.
#˛ < #ˇ () .˛ < ˇ ^ ˛� < #ˇ/ _ .ˇ < ˛ ^ #˛ � ˇ�/

() .˛ < ˇ ^ ˛� < #ˇ/ _ #˛ � ˇ�;
8. ˇ < #˛ () !ˇ < #˛:

Proof (1) and (8) basically follow from closure of #˛ under (C2).
(2) follows from the definition of #˛ taking Lemma 2.2 into account.
For (3), notice that #˛ � CX.˛; #˛/ is a consequence of clause (C1). Since

CX.˛; #˛/ \� � #˛ follows from the definition of #˛ and Lemma 2.2, we arrive
at (3).

(4): If �� 2 CX.˛; ˇ/, then � 2 CX.˛; ˇ/ by (C2). On the other hand,
� 2 Cn

X
.˛; ˇ/ H) �� 2 Cn

X
.˛; ˇ/ is easily seen by induction on n.

(5): ˛� 2 CX.˛; #˛/ holds by (4). As ˛� < �, this implies ˛� < #˛ by (3).
(6): Suppose, aiming at a contradiction, that #˛ D #ˇ and ˛ < ˇ. Then

CX.˛; #˛/ � CX.ˇ; #ˇ/; hence ˛ 2 CX.ˇ; #ˇ/ \ ˇ by (2); thence #˛ D #ˇ 2
CX.ˇ; #ˇ/, contradicting (3).

(7): Suppose ˛ < ˇ. Then #˛ < #ˇ implies ˛� < #ˇ by (5). If ˛� < #ˇ, then
˛ 2 CX.ˇ; #ˇ/; hence #˛ 2 CX.ˇ; #ˇ/; thus, #˛ < #ˇ. This shows

.a/ ˛ < ˇ H) .#˛ < #ˇ () ˛� < #ˇ/:

By interchanging the roles of ˛ and ˇ, and employing (6) (to exclude #˛ D #ˇ),
one obtains

.b/ ˇ < ˛ H) .#˛ < #ˇ () #˛ � ˇ�/:

.a/ and .b/ yield the first equivalence of (7) and thus the direction “)” of the
second equivalence. Since #˛ � ˇ� implies #˛ < #ˇ by (5), one also obtains the
direction “(” of the second equivalence. ut
Definition 2.4 Inductive definition of a set OTX.#/ of ordinals and a natural
numberG#˛ for ˛ 2 OTX.#/.

1. 0;� 2 OTX.#/; G#0 WD G#� WD 0; Eu 2 OTX.#/ and G#Eu D 0 for all
u 2 jXj.
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2. If ˛ DNF !˛1 C � � � C !˛n and ˛1; : : : ; ˛n 2 OTX.#/ then ˛ 2 OTX.#/ and
G#˛ WD maxfG#˛1; : : : ; G#˛ng C 1.

3. If ˛ D #˛1 and ˛1 2 OTX.#/ then ˛ 2 OTX.#/ and G#˛ WD G#˛1 C 1:

Observe that according to Lemma 2.3 (1) and (6) the function G# is well-
defined. Each ordinal ˛ 2 OTX.#/ has a unique normal form using the symbols
0;�;C; !; # .

Lemma 2.5 OTX.#/ D SfCX.˛; 0/ W ˛ < supu2X Eug D CX.supu2X Eu; 0/.

Proof Obviously ˇ < supu2X Eu holds for all ˇ 2 OTX.#/.

ˇ 2 OTX.#/ ) ˇ 2 CX.sup
u2X

Eu; 0/

is then shown by induction on G#ˇ.
The inclusion CX.supu2X Eu; 0/ � OTX.#/ follows from the fact that OTX.#/ is

closed under the clauses (Ci) for i D 0; 1; 2; 3. Since X is an ordering without
a maximal element it is also clear that

SfCX.˛; 0/ W ˛ < supu2X Eug D
CX.supu2X Eu; 0/. ut

If for ˛; ˇ 2 OTX.#/ represented in their normal form, we wanted to determine
whether ˛ < ˇ, we could do this by deciding ˛0 < ˇ0 for ordinals ˛0 and ˇ0 that
appear in these representations and, in addition, satisfyG#˛0CG#ˇ0 < G#˛CG#ˇ.
This follows from Lemma 2.3 (7) and the recursive procedure for comparing
ordinals in Cantor normal form. So we come to see that after a straightforward
coding in the natural numbers, we may represent hOTX.#/;<� OTX.#/i via a
primitive recursive ordinal notation system. How this ordinal representation system
can be directly defined in RCA0 is spelled out in the next subsection.

2.1 Defining OT
X
.#/ in RCA0

We shall provide an explicit primitive recursive definition of OTX.#/ as a term
structure in RCA0. Of course formally, terms or strings of symbols have to be
treated as coded by natural numbers since RCA0 only talks about numbers and
sets of numbers. Though, as it is well-known how to do this, we can’t be bothered
with these niceties.

Definition 2.6 Given a well-orderingX D .X;<X/, i.e., an ordered pair X in which
X is a set of natural numbers and<X is a well-ordering relation onX , we define, by
recursion, a binary relational structure #X D .j#X j; </, and a function � W j#X j !
j#X j, in the following way:

1. 0;� 2 j#X j, and 0� WD 0 DW ��.
2. If ˛ 2 j#X j and 0 ¤ ˛ then 0 < ˛.
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3. For every u 2 X there is an element Eu 2 j#X j. Moreover, .Eu/
� WD 0, and

� < Eu. If u; v 2 X and u <X v, then Eu < Ev.
4. For every ˛ 2 j#X j there is an element #˛ 2 j#X j; and we have #˛ < �,
#˛ < Eu for every u 2 X , and .#˛/� WD #˛.

5. If ˛ 2 j#X j and ˛ is not of the form �, Eu, or #ˇ, then !˛ 2 #X and
.!˛/� WD ˛�.

6. If ˛1; : : : ; ˛n 2 j#X j and ˛1 � � � � � ˛n with n � 2, then !˛1C!˛2C� � �C!˛n 2
j#X j and .!˛1 C !˛2 C � � � C !˛n/� WD maxf˛�

i W 1 � i � ng.
7. Let ˛ D !˛1 C � � � C !˛n 2 j#X j and ˇ 2 j#Xj, where ˇ is of one of the forms
#� , �, or Eu.

(i) If ˛1 < ˇ, then !˛1 C � � � C !˛n < ˇ.
(ii) If ˇ � ˛1, then ˇ < !˛1 C � � � C !˛n .

8. If !˛1 C � � � C !˛n; !ˇ1 C � � � C !ˇm 2 j#X j then
!˛1 C � � � C !˛n < !ˇ1 C � � � C !ˇm iff
n < m ^ 8i � n ˛i D ˇi or
9 i � min.n;m/ Œ.8j < i ˛j D ˇj / ^ .˛i < ˇi /�.

9. If ˛ < ˇ and ˛� < #ˇ then #˛ < #ˇ.
10. If #ˇ � ˛� then #ˇ < #˛.

Lemma 2.7

(i) The set j#X j, the relation <, and the function � are primitive recursive in X D
.X;<X/.

(ii) < is a total and linear ordering on j#X j.
Proof Straightforward but tedious. ut

Of course, RCA0 does not prove that < is a well-ordering on j#X j.

3 A Well-Ordering Proof

In this section we work in the background theory

RCA0 C 8X9Y .X 2 Y ^ Y is an !-model of BI/

and shall prove the following statement

8X .WO.X/ ! WO.#X// ;

that is, the part (i) ) (ii) of the main Theorem 1.7. Some of the proofs are similar
to ones in [13, Section 10]. Note that in this theory we can deduce arithmetical
comprehension and even arithmetical transfinite recursion owing to [7] and [12],
respectively.
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Let us fix a well-ordering X D .X;<X/, an arbitrary set Y and a countable
coded !-model A of BI which contains both X and Y as elements. In the sequel
˛; ˇ; �; ı; : : : are supposed to range over #X. < will be used to denote the ordering
on #X. We are going to work informally in our background theory. A set U � N is
said to be definable in A if U D fn 2 N j A ˆ A.n/g for some formula A.x/ of
second order arithmetic which may contain parameters from A.

Definition 3.1

1. Acc WD f˛ < � j A ˆ WO.<� ˛/g;
2. M WD f˛ W E�.˛/ � Accg;
3. ˛ <� ˇ W () ˛; ˇ 2 M ^ ˛ < ˇ:

Lemma 3.2 ˛; ˇ 2 Acc H) ˛ C !ˇ 2 Acc:

Proof Familiar from Gentzen’s proof in Peano arithmetic. The proof just requires
ACA0. (cf. [16, VIII.§ 21 Lemma 1]). ut
Lemma 3.3 Acc D M \� .WD f˛ 2 M j ˛ < �g/:
Proof If ˛ 2 Acc, then E�.˛/ � Acc as well; hence, ˛ 2 M \�. If ˛ 2 M \�,
then E�.˛/ � M \�, so ˛ 2 Acc follows from Lemma 3.2. ut
Lemma 3.4 Let U be A definable. Then

8˛ < � \ M Œ8ˇ < ˛ ˇ 2 U ! ˛ 2 U � ! Acc � U :

Proof This follows readily from the assumption that A is a model of BI. ut
Definition 3.5 Let Prog�.X/ stand for

.8˛ 2 M/Œ.8ˇ <� ˛/.ˇ 2 X/ �! ˛ 2 X�:

Let Acc� WD f˛ 2 M W #˛ 2 Accg:
Lemma 3.6 If U is A definable, then

Prog�.U / ! �;�C 1 2 U :

Proof This follows from Lemmas 3.3 and 3.4. ut
Lemma 3.7 Prog�.Acc�/:

Proof Assume ˛ 2 M and .8ˇ <� ˛/.ˇ 2 Acc�/: We have to show that #˛ 2
Acc: It suffices to show

ˇ < #˛ H) ˇ 2 Acc: (2)

We shall employ induction onG#.ˇ/, i.e., the length of (the term that represents) ˇ.
If ˇ 62 E , then (2) follows easily by the inductive assumption and Lemma 3.2.
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Now suppose ˇ D #ˇ0: According to Lemma 2.3 it suffices to consider the
following two cases:

Case 1: ˇ � ˛�. Since ˛ 2 M; we have ˛� 2 E�.˛/ � AccI therefore, ˇ 2 Acc:
Case 2: ˇ0 < ˛ and ˇ�

0 < #˛: As the length of ˇ�
0 is less than the length of ˇ,

we get ˇ�
0 2 AccI thus, E�.ˇ0/ � Acc; therefore ˇ0 2 M: By the assumption at

the beginning of the proof, we then get ˇ0 2 Acc�I hence, ˇ D #ˇ0 2 Acc. ut
Definition 3.8 For every A definable set U we define the “Gentzen jump”

U j WD f� j 8ı ŒM \ ı � U ! M \ .ı C !�/ � U �g:

Lemma 3.9 Let U be A definable.

(i) � 2 U j ) M \ !� � U .
(ii) Prog�.U / ) Prog�.U

j /.

Proof (i) is obvious. (ii) M \ .ı C !�/ � U is to be proved under the assumptions
(a) Prog�.U /, (b) � 2 M ^ M \ ��U j and (c) M \ ı�U . So let �2 M \ .ıC!�/.

1. � < ı: Then � 2 U is a consequence of (c).
2. � D ı: Then � 2 U follows from (c) and (a).
3. ı < � < ıC!� : Then there exist �1; : : : ; �k < � such that � D ıC!�1C� � �C!�k

and �1 � � � � � �k . � 2 M implies �1; : : : ; �k 2 M \ � . Through applying (b)
and (c) we obtain M \ .ıC!�1/ � U . By iterating this procedure we eventually
arrive at ı C !�1 C � � � C !�k 2 U , so � 2 U holds.

ut
Corollary 3.10 Let I.ı/ be the statement that Prog�.V / ! ı 2 M ^ ı \ M � V

holds for all A definable sets V . Assume I.ı/. Let ı0 WD ı and ınC1 WD !ın . Then

I.ın/
holds for all n.

Proof We use induction on n. For n D 0 this is the assumption. Now suppose
I.ın/ holds. Assume Prog�.U / for an A definable U . By Lemma 3.9 we conclude
Prog�.U

j / and hence ın 2 U j and ın \ M � U j . As clearly M \ 0 � U we
get !ın \ M � U . Since Prog�.U / entails ı 2 M we also have ınC1 2 M. Thus
ınC1 2 M ^ ınC1 \ M � U , showing I.ınC1/. ut

Let !0.˛/ WD ˛ and !nC1.˛/ WD !!n.˛/.

Proposition 3.11 I.Eu/ holds for all u 2 jXj.
Proof Noting that in our background theory X is a well-ordering, we can use
induction on X. Note also that I.Eu/ is a statement about all definable sets in
A which is not formalizable in A itself. However, in our background theory
quantification over all these sets is first order expressible and therefore transfinite
induction along <X is available.
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First observe that we have I.� C 1/ by Lemma 3.6. Let u0 be the <X -least
element of jXj. We have Eu0 2 M and for every � < Eu0 there exists n such that
� < !n.�C 1/. As a result, using Corollary 3.10, we have

Prog�.U / ! Eu0 \ M � U

for every A definable set U .
Now suppose that u 2 jXj is not the <X -least element and for all v <X u we

have I.Ev/. As for every ı < Eu there exists v <X u and n such that ı < !n.Ev/,
the inductive assumption together with Corollary 3.10 yields

Prog�.U / ! Eu \ M � U :

Eu 2 M is obvious. ut
Proposition 3.12 For all ˛, I.˛/.
Proof We proceed by the induction on the term complexity of ˛. Clearly, I.0/.
By Lemma 3.6 we conclude that I.�/. Proposition 3.11 entails that I.Eu/ for all
u 2 jXj.

Now let ˛ D !˛1 C � � � C !˛n be in Cantor normal form. Inductively we
have I.˛1/; : : : ; I.˛n/. Assume Prog�.U /. Then Prog�.U

j / by Lemma 3.9(ii),
and hence ˛1 \ M � U j ; : : : ; ˛n \ M � U j and ˛1; : : : ; ˛n 2 M. The latter
implies ˛1 2 U j ; : : : ; ˛n 2 U j . Using the definition of U j repeatedly we conclude
˛ \ M � U . Moreover, ˛ 2 M since ˛1; : : : ; ˛n 2 M.

Now suppose that ˛ D #ˇ. Inductively we have I.ˇ/. By Lemma 3.7 we
conclude that ˇ 2 Acc�, and hence ˛ 2 Acc. From Prog�.U / we obtain by
Lemma 3.4 that � 2 U for all � � ˛. As a result, I.˛/. ut
Corollary 3.13 #X is a well-ordering.

With the previous Corollary, the proof of Theorem 1.7 (i))(ii) is finally accom-
plished.

4 Deduction Chains

From now on we will be concerned with the part (ii) ) (i) of the main Theorem 1.7.
An important tool will be the method of deduction chains. Given a sequent � and a
set Q � N, deduction chains starting at � are built by systematically decomposing
� into its subformulas, and adding additionally at the nth step the formulas :An and
: NQ. Nn/, where .An j n 2 N/ is an enumeration of the axioms of the theory BI, and
NQ. Nn/ is the atom Nn 2 U0 if n 2 Q and Nn … U0 otherwise. The set of all deduction

chains that can be built from the empty sequent with respect to a given set Q forms
the tree DQ. There are two scenarios to be considered.
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(i) If there is an infinite deduction chain, i.e. DQ is ill-founded, then this readily
yields a model of BI that containsQ.

(ii) If each deduction chain is finite, then this yields a derivation of the empty
sequent, ?, in a corresponding infinitary system with an !-rule. The depth of
this derivation is bounded by the order-type ˛ of the Kleene–Brouwer ordering
of DQ. By the well-ordering principle, transfinite induction up to E˛C1 is
available, which allows to transform this proof into a cut-free proof of ? whose
depth is less than #E˛C1.

As the second alternative is impossible, the first yields the desired model.

Definition 4.1

1. We let U0; U1; : : : ; Um; : : : be an enumeration of the free set variables of L2 and,
given a closed term t , we write tN for its numerical value.

2. Henceforth a sequent will be a finite list of L2-formulae without free number
variables.

3. A sequent � is axiomatic if it satisfies at least one of the following conditions:

(a) � contains a true literal, i.e., a true formula of either of the forms
R.t1; : : : ; tn/ or :R.t1; : : : ; tn/, where R is a predicate symbol in L2 for a
primitive recursive relation and t1; : : : ; tn are closed terms.

(b) � contains formulae s 2 U and t … U for some set variableU and terms s; t
with sN D tN.

4. A sequent is reducible if it is not axiomatic and contains a formula which is not
a literal.

Definition 4.2 For Q � N we define

NQ.n/ ,
(

Nn 2 U0 if n 2 Q;
Nn … U0 otherwise:

For some of the following theorems it is convenient to have a finite axiomatiza-
tion of arithmetical comprehension.

Lemma 4.3 ACA0 can be axiomatized via a single …1
2 sentence 8XC.X/.

Proof [17, Lemma VIII.1.5]. ut
Definition 4.4 In what follows, we fix an enumeration of A1; A2; A3; : : : of all the
universal closures of instances of (BI). We also put A0 WD 8X C.X/, where the
latter is the sentence that axiomatizes arithmetical comprehension.

Definition 4.5 Let Q � N. A Q-deduction chain is a finite string

�0; �1; : : : ; �k
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of sequents �i constructed according to the following rules:

1. �0 D : NQ.0/; :A0.
2. �i is not axiomatic for i < k.
3. If i < k and �i is not reducible, then

�iC1 D �i ; : NQ.i C 1/; :AiC1:

4. Every reducible �i with i < k is of the form

� 0
i ; E; �

00
i

where E is not a literal and � 0
i contains only literals. E is said to be the redex

of �i .
Let i < k and �i be reducible. �iC1 is obtained from �i D � 0

i ; E; �
00
i as

follows:

(a) If E 	 E0 _E1, then

�iC1 D � 0
i ; E0; E1; �

00
i ; : NQ.i C 1/; :AiC1:

(b) If E 	 E0 ^E1, then

�iC1 D � 0
i ; Ej ; �

00
i ; : NQ.i C 1/; :AiC1

where j D 0 or j D 1.
(c) If E 	 9xF.x/, then

�iC1 D � 0
i ; F . Nm/; � 00

i ; : NQ.i C 1/; :AiC1; E

where m is the first number such that F. Nm/ does not occur in �0; : : : ; �i .
(d) If E 	 8xF.x/, then

�iC1 D � 0
i ; F . Nm/; � 00

i ; : NQ.i C 1/; :AiC1
for some m.

(e) If E 	 9XF.X/, then

�iC1 D � 0
i ; F .Um/; �

00
i ; : NQ.i C 1/; :AiC1; E

where m is the first number such that F.Um/ does not occur in �0; : : : ; �i .
(f) If E 	 8XF.X/, then

�iC1 D � 0
i ; F .Um/; �

00
i ; : NQ.i C 1/; :AiC1

where m is the first number such that Um does not occur in �i .
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The set of Q-deduction chains forms a tree DQ labeled with strings of sequents.
We will now consider two cases.

Case I: DQ is not well-founded. Then DQ contains an infinite path P. Now define
a set M via

.M/i D fk j Nk … Ui occurs in Pg:

Set M D .NI f.M/i j i 2 Ng;2;C; �; 0; 1; </.
For a formula F , let F 2 P mean that F occurs in P, i.e. F 2 � for some � 2 P.
Claim: Under the assignment Ui 7! .M/i we have

F 2 P ) M ˆ :F: (3)

The Claim will imply that M is an !-model of BI. Also note that .M/0 D Q, thus
Q is in M. The proof of (3) follows by induction on F using Lemma 4.6 below. The
upshot of the foregoing is that we can prove Theorem 1.7 under the assumption that
DQ is ill-founded for all sets Q � N.

Lemma 4.6 Let Q be an arbitrary subset of N and DQ be the corresponding
deduction tree. Moreover, suppose DQ is not well-founded. Then DQ has an infinite
path P. P has the following properties:

1. P does not contain literals which are true in N.
2. P does not contain formulas s 2 Ui and t … Ui for constant terms s and t such

that sN D tN.
3. If P contains E0 _E1, then P contains E0 and E1.
4. If P contains E0 ^E1, then P contains E0 or E1.
5. If P contains 9xF.x/, then P contains F. Nn/ for all n.
6. If P contains 8xF.x/, then P contains F. Nn/ for some n.
7. If P contains 9XF.X/, then P contains F.Um/ for all m.
8. If P contains 8XF.X/, then P contains F.Um/ for some m.
9. P contains :C.Um/ for all m.

10. P contains : NQ.m/ for all m.

Proof Standard. ut
Corollary 4.7 If DQ is ill-founded, then there exists a countable coded !-model of
BI which containsQ.

For our purposes it is important that Corollary 4.7 can be proved in T0 WD
RCA0C8X .WO.X/ ! WO.#X//. To this end we need to show that the semantics
of !-models can be handled in the latter theory, i.e. for every formula F of L2
there exists a valuation for F in the sense of [17, VII.2.1]. It is easily seen that the
principle 8X .WO.X/ ! WO.#X// implies

8X .WO.X/ ! WO."X//
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(see [1, Definition 2.1]) and thus, by [1, Theorem 4.1], T0 proves that every set is
contained in an !-model of ACA. Now take an !-model containing DQ and an
infinite branch of DQ. In this !-model we find a valuation for every formula by [17,
VII.2.2]. And hence Corollary 4.7 holds in the model, but then it also holds in the
world at large by absoluteness.

5 Proof of the Main Theorem: The Hard Direction Part 2

The remainder of the paper will be devoted to ruling out the possibility that for
some Q, DQ could be a well-founded tree. This is the place where the principle
8X .WO.X/ ! WO.#X// in the guise of cut elimination for an infinitary proof
system enters the stage. Aiming at a contradiction, suppose that DQ is a well-
founded tree. Let X be the Kleene–Brouwer ordering on DQ (see [17, Definition
V.1.2]). Then X is a well-ordering. In a nutshell, the idea is that a well-founded DQ

gives rise to a derivation of the empty sequent (contradiction) in an infinitary proof
system.

5.1 Majorization and Fundamental Functions

In this section we introduce the concepts of majorization and fundamental function.
They are needed for carrying through the ordinal analysis of bar induction. More
details can be found in [13, Section 4] and [3, I.4] to which we refer for proofs. The
missing proofs are actually straightforward consequences of Definition 2.6.

Definition 5.1 1. ˛ C ˇ means ˛ < ˇ and #˛ < #ˇ.
2. ˛ E ˇ W () .˛ C ˇ _ ˛ D ˇ/:

Lemma 5.2 1. ˛ C ˇ ^ ˇ C � H) ˛ C � .
2. 0 < ˇ < "0 H) ˛ C ˛ C ˇ.
3. ˛ < ˇ < � H) ˛ C ˇ.
4. ˛ C ˇ H) ˛ C 1 E ˇ:

5. ˛ C ˇ H) #˛ C #ˇ:

6. ˛ D ˛0 C 1 H) #˛0 C #˛:

Lemma 5.3 ˛ C ˇ; ˇ < !�C1 H) !� C ˛ C !� C ˇ:

Corollary 5.4 !˛ � n C !˛ � .nC 1/:

Lemma 5.5 ˛ C ˇ H) !˛ � n C !ˇ:

Definition 5.6 Let D� WD .OTX.#/ \�/ [ f�g. A function f W D� ! OTX.#/

will be called a fundamental function if it is generated by the following clauses:

F1. Id W D� ! D� with Id.˛/ D ˛ is a fundamental function.



Well-Ordering Principles and Bar Induction 549

F2. If f is a fundamental function, � 2 OTX.#/ and f .�/ < !�C1, then !� C f

is a fundamental function, where .!� C f /.˛/ WD !� C f .˛/ for all ˛ 2 D�:

F3. If f is a fundamental function, then so is !f with .!f /.˛/ WD !f.˛/ for all
˛ 2 D�.

Lemma 5.7 Let f be a fundamental function and ˇ � �.

(i) If ˛ < ˇ, then f .˛/ < f .ˇ/.
(ii) If ˛ C ˇ, then f .˛/ C f .ˇ/.

(iii) .f .ˇ//� � max..f .0//�; ˇ�/.

Proof (i) is obvious by induction on the generation of fundamental functions.
(ii) also follows by induction on the generation of fundamental functions, using

Lemmas 5.3 and 5.5.
(iii) as well follows by induction on the generation of fundamental functions.

ut
Lemma 5.8 For every fundamental function f we have f .#.f .0/// C f .�/.

Proof Since #.f .0// < �, we clearly have f .#.f .0/// < f .�/. Since 0 C �

and f is a fundamental function, we have #.f .0// < #.f .�// by Lemma 5.7
(ii). Invoking Lemma 5.7 (iii), the latter entails that .f .#.f .0////� < #.f .�//,
so that in conjunction with f .#.f .0/// < f .�/ it follows that #.f .#.f .0//// C
#.f .�//. As a result, f .#.f .0/// C f .�/. ut

5.2 The Infinitary Calculus T �
Q

The calculus T �
Q

to be introduced stems from [13, Section 6]. We fix a set Q � N.

Let LQ2 be the language of second order arithmetic augmented by a unary predicate
NQ. The formulas of T �

Q
arise from LQ2 -formulas by replacing free numerical

variables by numerals, i.e. terms of the form 0; 00; 000; : : : Especially, every formula
A of T �

Q
is an LQ2 -formula. We are going to measure the length of derivations by

ordinals. We are going to use the set of ordinals OTX.#/ of Sect. 3.

Definition 5.9

1. A formula B is said to be weak if it belongs to …1
0 […1

1.
2. Two closed terms s and t are said to be equivalent if they yield the same value

when computed.
3. A formula is called constant if it contains no set variables. The truth or falsity of

such a formula is understood with respect to the standard structure of the integers.
4. 0 WD 0, mC 1 WD m0.
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In the sequent calculus T �
Q

below we shall use the following rules of inference:

.^/ ` �;A and ` �;B H) ` �;A ^ B;

._/ ` �;Ai H) ` �;A0 _ A1 if i 2 f0; 1g;

.82/ ` �;F.U / H) ` �;8XF.X/;

.91/ ` �;F.t/ H) ` �; 9xF.x/;

.Cut/ ` �;A and ` �;: A H) ` �;
where in .82/ the free variable U is not to occur in the conclusion.

The most important feature of sequent calculi is cut-elimination. To state this fact
concisely, let us introduce a measure of complexity, gr.A/, the grade of a formula
A, for LQ2 -formulae.

Definition 5.10

1. gr.A/ D 0 if A is a prime formula or negated prime formula.
2. gr.8XF.X// D gr.9XF.X// D ! if F.U / is arithmetic.
3. gr.A ^ B/ D gr.A _ B/ D maxfgr.A/; gr.B/g C 1.
4. gr.8xH.x// D gr.9xH.x// D gr.H.0//C 1.
5. gr.8XG.X// D gr.9XG.X// D gr.G.U //C 1; if G is not arithmetic.

Definition 5.11 Inductive definition of T �
Q

˛

% � for ˛ 2 OTX.#/ and %<!C!.

1. If A is a true constant prime formula or negated prime formula and A 2 � , then
T �
Q

˛

% �:

2. If n 2 Q and t is a closed term with value n and NQ.t/ is in � , then T �
Q

˛

% �:

3. If n … Q and t is a closed term with value n and : NQ.t/ is in � , then T �
Q

˛

% �:

4. If � contains formulas A.s1; : : : ; sn/ and :A.t1; : : : ; tn/ of grade 0 or !, where
si and ti .1 � i � n/ are equivalent terms, then T �

Q

˛

% �:

5. If T �
Q

ˇ

% �i and ˇ C ˛ hold for every premiss �i of an inference .^/; ._/;
.91/; .82/ or .Cut/ with a cut formula having grade < %, and conclusion � , then
T �
Q

˛

% �:

6. If T �
Q

˛0

% �; F.U / holds for some ˛0 C ˛ and a non-arithmetic formula F.U /

(i.e., gr.F.U // � !/, then T �
Q

˛

% �; 9XF.X/ :
7. .!-rule/. If T �

Q

ˇ

% �;A.m/ is true for every m < !, 8xA.x/ 2 � , and ˇ C ˛,

then T �
Q

˛

% � :

8. (�-rule). Let f be a fundamental function satisfying

(a) f .�/ E ˛;

(b) T �
Q

f .0/

% �;8XF.X/ , where 8XF.X/ 2 …1
1, and

(c) T �
Q

ˇ

0
„;8XF.X/ implies T �

Q

f .ˇ/

% „; � for every set of weak formulas
„ and ˇ < �.
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Then T �
Q

˛

% � holds.

Remark 5.12 The derivability relation T �
Q

˛

% � is from [13] and is modelled upon

the relation PB� ˛

n F of [3], the main difference being the sequent calculus setting
instead ofP - andN -forms and a different assignment of cut-degrees. The allowance
for transfinite cut-degrees will enable us to deal with arithmetical comprehension.

Remark 5.13 If one ruminates on the definition of the derivability predicate
T �
Q

˛

% „ the question arises whether it is actually a proper inductive definition.
The critical point is obviously the condition (c) of the �-rule. Note that

T �
Q

ˇ

0
„;8XF.X/ occurs negatively in clause (c). However, since ˇ < �, the

pertaining derivation does not contain any applications of the �-rule. Thus the
definition of T �

Q

˛

% „ proceeds via an iterated inductive definition. First one
defines a derivability predicate without involvement of the �-rule via an ordinary
inductive definition, and in a second step defines T �

Q

˛

% � inductively referring to
the first derivability predicate in the �-rule.

It will actually be a non-trivial issue how to handle such inductive definitions in
a weak background theory.

Lemma 5.14

1. T �
Q

˛

ı
� & � � � & ˛ E ˇ & ı � % H) T �

Q

ˇ

% � ;

2. T �
Q

˛

% �;A ^ B H) T �
Q

˛

% �;A & T �
Q

˛

% �;B;

3. T �
Q

˛

% �;A _ B H) T �
Q

˛

% �;A;B

4. T �
Q

˛

% �; F.t/ H) T �
Q

˛

% �; F.s/ if t and s are equivalent,

5. T �
Q

˛

% �;8xF.x/ H) T �
Q

˛

% �; F.s/ for every term s.

6. If T �
Q

˛

% �;8XG.X/ and gr.G.U // � !, then T �
Q

˛

% �;G.U / .

Proof Proceed by induction on ˛. These can be carried out straightforwardly. (5)
requires (4). As to (6), observe that 8XG.X/ cannot be the main formula of an
axiom. �
Lemma 5.15 T �

Q

2�˛
0
�;A.s1; : : : ; sk/;:A.t1; : : : ; tk/ if ˛ � gr.A.s1; : : : ; sk//

and si and ti are equivalent terms.

Proof Proceed by induction on gr.A.s1; : : : ; sk//. Crucially note that if
gr.A.s1; : : : ; sk// D ! then �;A.s1; : : : ; sk/;:A.t1; : : : ; tk/ is an axiom according
to Definition 5.11 clause (4). ut
Lemma 5.16

1. T �
Q

2m

0
:.0 2 U /; .9x/Œx 2 U ^ :.x0 2 U /�;m 2 U ;

2. T �
Q

!C5
0

8XŒ0 2 X ^ 8x.x 2 X ! x0 2 X/ ! 8x.x 2 X/�:
Proof For (1) use induction on m. (2) is an immediate consequence of (1) using
Lemma 5.14 (1), the !-rule, ._/, and .82/. ut
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Definition 5.17 For formulasF.U / andA.a/, F.A/ denotes the result of replacing
each occurrence of the form e 2 U in F.U / by A.e/. The expression F.A/ is
a formula if the bound variables in A.a/ are chosen in an appropriate way, in
particular, if F.U / and A.a/ have no bound variables in common.

Lemma 5.18 Suppose ˛ < � and let �.U / D fF1.U /; : : : ; Fk.U /g be a set of
weak formulas such that U doesn’t occur in 8XFi.X/ .1 � i � k/. For an
arbitrary formula A.a/ we then have:

T �
Q

˛

0
�.U / H) T �

Q

�C˛
0

�.A/ :

Proof Proceed by induction on ˛. Suppose �.U / is an axiom. Then either �.A/
is an axiom too, or T �

Q

!C!
0

�.A/ can be obtained through use of Lemma 5.15.

Therefore T �
Q

�C˛
0

�.A/ by Lemma 5.14 (1). If T �
Q

˛

0
�.U / is the result of an

inference, then this inference must be different from .92/, .Cut/, and the .�� rule/
since�.U / consists of weak formulas, the derivation is cut-free and ˛ < �. For the
remaining possible inference rules the assertion follows easily from the induction
hypothesis. ut
Lemma 5.19 Let �;8XF.X/ be a set of weak formulas. If T �

Q

˛

0
�;8XF.X/ and

˛ < �, then T �
Q

˛

0
�; F.U / .

Proof Use induction on ˛. Note that 8XF.X/ cannot be a principal formula of an
axiom, since 9X:F.X/ does not surface in such a derivation. Also, due to ˛ <

�, the derivation doesn’t involve instances of the �-rule. Therefore the proof is
straightforward. �

The role of the �-rule in our calculus T �
Q

is enshrined in the next lemma.

Lemma 5.20 T �
Q

��2
0

9XF.X/;:F.A/ for every arithmetic formula F.U / and
arbitrary formula A.a/.

Proof Let f .˛/ WD �C ˛ with dom.f / WD f˛ 2 OT. / W ˛ � �g: Then

T �
Q

f .0/

0
8X:F.X/; 9XF.X/;:F.A/ (4)

according to Lemma 5.15. For ˛ < � and every set of weak formulas ‚, we have
by Lemmas 5.18 and 5.19,

T �
Q

˛

0
‚;8X:F.X/ H) T �

Q

f .˛/

0
‚;:F.A/:

Therefore, by Lemma 5.14 (1),

T �
Q

˛

0
‚;8X:F.X/ H) T �

Q

f .˛/

0
‚; 9XF.X/;:F.A/: (5)

The assertion now follows from (4) and (5) by the �-rule. �
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Corollary 5.21 T �
Q

��2C1
! 9X 8y .y 2 X $ B.y// for every arithmetic formula

B.a/.

Proof Owing to Lemma 5.20 we have

T �
Q

��2
0

9X 8y .y 2 X $ B.y//; :8y .B.y/ $ B.y// : (6)

As Lemma 5.15 yields T �
Q

k

0
8y .B.y/ $ B.y// for some k < !, cutting with (6)

yields T �
Q

��2C1
! 9X 8y .y 2 X $ B.x// . ut

Corollary 5.22 For every arithmetic relation � (parameters allowed) and arbi-
trary formula A.a/ we have T �

Q

��2C!
0

8 EX 8Ex.WF.�/ ! TI.�; A// where the

quantifiers 8 EX 8Ex bind all free variables in WF.�/ ! TI.�; A/.
Proof By Lemma 5.20 we have T �

Q

��2
0

:.WF.�//0; .TI.�; A//0 where 0 denotes
any assignment of free numerical variables to numerals. Hence

T �
Q

��2C2
0

.WF.�/ ! TI.�; A//0

by two applications of ._/. Applying the !-rule the right number of times followed
by the right number of .82/ inferences, one arrives at the desired conclusion. ut

5.3 The Reduction Procedure for T �
Q

Below we follow [13, Section 7].

Lemma 5.23 Let C be a formula of grade %. Suppose C is a prime formula or of
either form 9XH.X/; 9xG.x/ or A_B . Let ˛ D !˛1 C � � � C!˛k with ı � !˛k �
� � � � !˛1: Then we have T �

Q

˛

% �;:C & T �
Q

ı

% �; C H) T �
Q

˛Cı
% �; � :

Proof We proceed by induction on ı.

1. Let �;C be an axiom. Then there are three cases to consider.
1.1. � is an axiom. Then so is �;� . Hence T �

Q

˛Cı
% �; � :

1.2. C is a true constant prime formula or negated prime formula. A straightforward

induction on ˛ then yields T �
Q

˛

% � , and thus T �
Q

˛Cı
% �; � by Lemma 5.14

(1).
1.3. C 	 A.s1; : : : ; sn/ and � contains a formula :A.t1; : : : ; tn/ where si and ti

are equivalent terms. From T �
Q

˛

% �;:A.s1; : : : ; sn/ one receives

T �
Q

˛

% �;:A.t1; : : : ; tn/ by use of Lemma 5.14 (4). Thence T �
Q

˛Cı
% �; �

follows by use of Lemma 5.14 (1), since :A.t1; : : : ; tn/ 2 � .
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2. Suppose C 	 A _ B and T �
Q

ı0

% �; C;A0 with A0 2 fA;Bg and ı0 C ı.
Inductively we get

T �
Q

˛Cı0
% �; �;A0 : (7)

Next use Lemma 5.14 (2) on T �
Q

˛

% �;:A ^ :B to obtain

T �
Q

˛Cı0
% �; �;:A0 : (8)

Whence use a cut on (7) and (8) to get the assertion.

3. Suppose C 	 9xG.x/ and T �
Q

ı0

% �; C;G.t/ with ı0 C ı. Inductively we get

T �
Q

˛Cı0
% �; �;G.t/ : (9)

By Lemma 5.14 (1) and (5), we also get

T �
Q

˛Cı0
% �; �;:G.t/ I (10)

thus (9) and (10) yield T �
Q

˛Cı
% �; � by .Cut/.

4. Suppose the last inference was .92/ with principal formula C . Then C 	
9XH.X/ and T �

Q

ı0

% �; C;H.U / for some ı0 C ı and gr.H.U // � !.
Inductively we get

T �
Q

˛Cı0
% �; �;H.U /: (11)

By Lemma 5.14 (1) and (6) we also get

T �
Q

˛Cı0
% �; �;:H.U /: (12)

From (11) and (12) we obtain

T �
Q

˛Cı
% �; �:

5. Let T �
Q

ı

% �; C be derived by the �-rule with fundamental function f . Then
the assertion follows from the I. H. by the �-rule using the fundamental
function ˛ C f .

6. In the remaining cases the assertion follows from the I. H. used on the premises
and by reapplying the same inference. �
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Lemma 5.24 T �
Q

˛

�C1 � H) T �
Q

!˛

� �:

Proof We proceed by induction on ˛. We only treat the crucial case when
T �
Q

˛0

�C1 �;D and T �
Q

˛0

�C1 �;:D , where ˛0 C ˛, and gr.D/ D �. Inductively

this becomes T �
Q

!˛0

� �;D and T �
Q

!˛0

� �;:D: Since D or :D must be one of

the forms exhibited in Lemma 5.23, we obtain T �
Q

!˛0C!˛0
� � by Lemma 5.23. As

!˛0 C !˛0 C !˛ , we can use Lemma 5.14 (1) to get the assertion. ut
Theorem 5.25 (Collapsing Theorem) Let � be a set of weak formulas. We have

T �
Q

˛

! � H) T �
Q

#˛

0
�:

Proof We proceed by induction on ˛. Observe that for ˇ < ı < �, we always have
ˇ C ı:

1. If � is an axiom, then the assertion is trivial.
2. Let T �

Q

˛

! � be the result of an inference other than .Cut/ and �-rule. Then we

have T �
Q

˛0

! �i with ˛0 C ˛ and �i being the i -th premiss of that inference.

˛0 C ˛ implies #˛0 C #˛. Therefore T �
Q

#˛0

0
�0 by the I. H., hence T �

Q

#˛

0
�

by reapplying the same inference.
3. Suppose T �

Q

˛

! � results by the �-rule with respect to a …1
1-formula 8XF.X/

and a fundamental function f . Then f .�/ E ˛ and

T �
Q

f .0/

! �;8XF.X/; (13)

and, for every set of weak formulas„ and ˇ < �,

T �
Q

ˇ

0
„;8XF.X/ H) T �

Q

f .ˇ/

! „; �: (14)

The I. H. used on (13) supplies us with T �
Q

#.f .0//

0
�;8XF.X/ . Hence with

„ D � we get

T �
Q

f .#.f .0///

! � (15)

from (14). Now Lemma 5.8 ensures that f .ˇ/ C f .�/, where ˇ D #.f .0//.
So using the I. H. on (15), we obtain

T �
Q

#.f .ˇ//

0
� ; (16)

thus T �
Q

#˛

0
� as f .ˇ/ C ˛.
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4. Suppose T �
Q

˛0

! �;A and T �
Q

˛0

! �;:A , where ˛0 C ˛ and gr.A/ < !.

Inductively we then get T �
Q

#˛0

0
�;A and T �

Q

#˛0

0
�;:A: Let gr.A/ D n � 1.

Then (Cut) yields

T �
Q

ˇ1

n � (17)

with ˇ1 D .#˛0/ C 1. Applying Lemma 5.24, we get T �
Q

!ˇ1

n�1 � , and by
repeating this process we arrive at

T �
Q

ˇn

0
� ;

where ˇkC1 WD !ˇk .1 � k < n/. Since #˛0 < #˛, we have ˇn < #˛I thus,

T �
Q

#˛

0
�: ut

5.4 Embedding DQ into T �
Q

Assuming that DQ is well-founded tree, the objective of this section is to embed DQ

into T �
Q

, so as to obtain a contradiction. Let X be the Kleene–Brouwer ordering of

DQ. We write DQ

�
� if � is the sequent attached to the node � in DQ.

Theorem 5.26 DQ
�
„ ) 9k < ! T �

Q

E�Ck
! „ .

Proof We proceed by induction on � , i.e., the Kleene–Brouwer ordering of DQ.
Suppose � is an end-node of DQ. Then „ must be axiomatic and therefore is an

axiom of T �
Q

, and hence T �
Q

E�
! „ .

Now assume that � is not an end-node of DQ. Then „ is not axiomatic.
If „ is not reducible, then there is a node �0 immediately above � in DQ such

that DQ
�0
„;: NQ.i/;:Ai for some i . Inductively we have

T �
Q

E�0Ck0
! „;: NQ.i/;:Ai

for some k0 < !. We also have T �
Q

0

0
NQ.i/ and, using Corollaries 5.21 (if i D 0)

and 5.22 (if i > 0), T �
Q

��2C!
! Ai . Thus, noting that � � 2C ! C E�0 C k0, and by

employing two cuts we arrive at

T �
Q

E�0Ck0C2
!Cn „
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for some n < !. By Lemma 5.24 we get T �
Q

!n.E�0Ck0C2/
! „ , and hence T �

Q

E�
! „

since !n.E�0 C k0 C 2/ C E� .
Now suppose that „ is reducible.„ will be of the form

„0; E; „00

where E is not a literal and„0 contains only literals.
First assume E to be of the form 8x F.x/. Then, for each m, there is a node �m

immediately above � in DQ such that

DQ
�n
„0; F . Nm/;„00;: NQ.i/;:Ai

for some i . Inductively we have

T �
Q

E�mCkm
! „0; F . Nm/;„00;: NQ.i/;:Ai

for all m, where km < !. We also have T �
Q

0

0
NQ.i/ and, using Lemma 5.22,

T �
Q

��2C!
0

Ai . Thus, noting that� � 2C! C E�m Ckm, and by employing two cuts
there is an n such that

T �
Q

E�mCkmC2
!Cn „0; F . Nm/;„00

holds for all m. By Lemma 5.24 we get

T �
Q

!n.E�mCkmC2/
! „0; F . Nm/;„00

for all m. Whence

T �
Q

E�
! „0; F . Nm/;„00

since !n.E�m C km C 2/ C E� . A final application of the !-rule yields

T �
Q

E�C1
! „0;8x F.x/; F. Nm/;„00

i.e., T �
Q

E�C1
! „ .

IfE is a redex of another type but not of the form 9XB.X/withB.U / arithmetic,
then one proceeds in a similar way as in the previous case.

Now assume E to be of the form 9X B.X/ with B.U / arithmetic. Then there is
a node �0 immediately above � in DQ such that

DQ
�0
„0; B.U /;„00;: NQ.i/;:Ai
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for some i and set variable U . Inductively we have

T �
Q

E�0Ck0
! „0; B.U /;„00;: NQ.i/;:Ai

for some k0 < !. We also have T �
Q

0

0
NQ.i/ and, using Lemma 5.22, T �

Q

��2C!
0

Ai .
Thus, noting that � � 2 C ! C E�0 C k0, and by employing two cuts there is an n
such that

T �
Q

E�0Ck0C2
!Cn „0; B.U /;„00:

By Lemma 5.24 we get

T �
Q

!n.E�0Ck0C2/
! „0; B.U /;„00: (18)

Lemma 5.20 yields

T �
Q

��2
0

9XB.X/;:B.U /: (19)

Cutting B.U / and :B.U / out of (18) and (19) we arrive at

T �
Q

!n.E�0Ck0C2/C1
! „0; 9XB.X/;„00:

Since !n.E�0 Ck0C2/C1 C E� we get T �
Q

E�
! „0; 9XB.X/;„00 , i.e., T �

Q

E�
! „ .

ut
Below ; stands for the empty sequent and �0 denotes the bottom node of DQ

which is the maximum element of the pertaining Kleene–Brouwer ordering.

Corollary 5.27 If DQ is well-founded, then T �
Q

#.!n.E�0Cm//
0

; for some n;m < !.

Proof We have DQ
�0 : NQ.0/;:A0 . Thus there is a k < ! such that

T �
Q

E�0Ck
! : NQ.0/;:A0

holds by Theorem 5.26. We also have T �
Q

0

0
NQ.0/ and, using Corollary 5.22,

T �
Q

��2C!
0

A0 . Thus, noting that � � 2 C ! C E�0 C k, and by employing two
cuts we arrive at

T �
Q

E�0CkC2
!Cn ;
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for some n < !. Via Lemma 5.24 we deduce T �
Q

!n.E�0CkC2/
! ; , so that by

Theorem 5.25 we conclude T �
Q

#.!n.E�0Cm//
0

; with m D k C 2. ut
Corollary 5.28 DQ is not well-founded.

Proof If DQ were well-founded, we would have

T �
Q

#.!n.E�0Cm//
0

; (20)

for some n;m < ! by Corollary 5.27. But a straightforward induction on ˛ < �

shows that

T �
Q

˛

0
� ) � ¤ ;;

yielding that (20) is impossible. ut
It remains to show that the result of Corollary 5.28 is provable in ACA0 from

8X .WO.X/ ! WO.#X// :

Let S be the theory ACA0 plus the latter axiom. The main issue is how to formalize
the derivability predicate T �

Q

˛


 � in the background theory S. We elaborated earlier
in Remark 5.13 that this seems to require an iterated inductive definition, something
apparently not available in S. However, all we need is a fixed point not a proper
inductive definition, i.e., to capture the notion of derivability in T �

Q
without the �-

rule it suffices to find a predicate D of ˛; 
; � such that

.
/ D.˛; 
; �/ if and only if ˛ 2 j#Xj, 
 � ! C !, � is a sequent, and either �
contains an axiom of T �

Q
or � is the conclusion of an inference of T �

Q
other than

.�/ with premisses .�i /i2I such that for every i 2 I there exists ˇi C ˛ with
D.ˇi ; 
; �i /, and if the inference is a cut it has rank < 
.

.
/ can be viewed as a fixed-point axiom which together with transfinite induction
for #X defines T �

Q
-derivability (without .�/-rule) implicitly.

How can we find a fixed point as described in .
/? As it turns out, it follows
from [12] that S proves that every set is contained in a countable coded !-model
of the theory ATR0. It is also known that ATR0 proves the †11 axiom of choice,
†11-AC (see [17, Theorem V.8.3]). Moreover, in ACA0 C †11-AC one can prove
for every P -positive arithmetical formula A.u; P / that there is a †11 formula F.u/
such that 8xŒF.x/ $ A.x; F /�, where A.x; F / arises from A.x; P / by replacing
every occurrence of the form P.t/ in the first formula by F.t/. This is known as
the Second Recursion Theorem (see [2, V.2.3]). Arguing in S, we find a countable
coded ! model B with X 2 B such that B is a model of ATR. As a result, there is
a predicate D definable in B that satisfies .
/. As a result, D is a set in S. To obtain
the full derivability relation T �

Q

˛


 � we have to take the�-rule into account. We do
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this by taking a countable coded !-model C of ATR that contains both X and D. We
then define an appropriate fixed point predicate D� using the clauses for defining
T �
Q

˛


 � and D for the negative occurrences in the �-rule.
The upshot is that we can formalize all of this in S.

Remark 5.29 When giving talks about the material of this article, the first author
was asked what the proof-theoretic ordinal of the theories that Theorem 1.7 is
concerned with might be. He conjectures that it is the ordinal

#.'2.�C 1//

(or  .'2.� C 1// in the representation system based on the  -function; see [13,
Section 3]), i.e. the collapse of the first fixed point of the epsilon function above�.
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