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Abstract We present methods for removing top-level cuts from a sequent calculus
or Tait-style proof without significantly increasing the space used for storing the
proof. For propositional logic, this requires converting a proof from tree-like to
dag-like form, but at most doubles the number of lines in the proof. For first-
order logic, the proof size can grow exponentially, but the proof has a succinct
description and is polynomial time uniform. We use direct, global constructions
that give polynomial time methods for removing all top-level cuts from proofs. By
exploiting prenex representations, this extends to removing all cuts, with final proof
size near-optimally bounded superexponentially in the alternation of quantifiers in
cut formulas.

1 Introduction

Gentzen’s technique of cut elimination, together with the closely related normaliza-
tion, is arguably the most important construction of proof theory. The importance
of cut elimination lies partly in its connections to constructivity, and indeed cut
elimination is algorithmic and can be carried out effectively. The present paper
focuses on algorithms for cut elimination in the setting of pure propositional logic
and pure first-order logic. We introduce methods for removing top-level cuts from
a proof without significantly increasing the space used for generating the proof.
Of course, it is well known that eliminating top-level cuts can make proof size grow
exponentially, so it requires some special care to describe the resulting proof without
any significant increase in space. For propositional logic, our methods require
converting a proof from tree-like to dag-like form, but at most double the number
of lines in the proof. For first-order logic, the proof size can grow exponentially;
in fact, both the number of lines in the proof and the size of the terms can grow
exponentially. However, our constructions give polynomial size dag representations
for the terms, and succinct descriptions of the proof that give a polynomial time
uniform description of the proof and its terms.
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Along with the small space usage, our cut elimination methods give direct, global
constructions. We define direct, concrete descriptions of the proof that results from
eliminating the top-level cuts. Our construction is “global” in that it operates on the
entire proof and eliminates all top-level cuts at once.

Our constructions synthesize and generalize a number of prior results from
proof complexity and continuous cut elimination. Our immediate motivation arose
from the desire to find global versions of the polynomial time algorithms for the
continuous cut elimination used by Aehlig-Beckmann [1] and Beckmann-Buss [4].
Continuous cut elimination was developed by Mints [11, 12] for the analysis of
higher order logics, and [1] introduced its use for the analysis of bounded arithmetic.
In particular, [1, 4] required polynomial time constructions of proofs. Like Mints,
they create proofs step-by-step and use a special REP (for “repetition” or “repeat”)
inference to slow down the construction of proofs. In contrast, we shall give direct
(not step-by-step) constructions, and avoid the use of a REP inference.

There is extensive prior work giving upper bounds on the complexity of cut
elimination in propositional and first-order logic, including [2, 5–8, 13, 14, 16–18].
Some of the best such bounds measure the complexity of proofs in terms of the
height of proofs [5,7,13,16–18]. Loosely speaking, these results work by removing
top-level connectives from cut formulas, at the cost of exponentiating the height
of the proof, and repeating this to remove all cuts from a proof. Zhang [17] and
Gerhardy [7] bound the height of cut free proofs in terms of the nesting of quantifiers
in cut formulas; namely, if quantifiers are nested to depth d without any intervening
propositional connectives, then cut elimination requires a height increase of only an
exponential stack of 2’s of height d C 2. They further show that cut-elimination can
remove a top-level block of 9 and _ (respectively, 8 and ^) connectives at the cost
of a single exponential increase in proof height.

In contrast, the present paper works with proof size rather than proof height.
Somewhat counterintuitively, blocks of arbitrarily nested 9 and ^ connectives
(respectively, 8 and _ connectives) can be removed all at once, with a single
exponential increase in proof size.

Krajíček [9, 10], Razborov [15], and Beckmann-Buss [3] have given complexity
bounds for reducing the depth (alternation of _’s and ^’s) of formulas in constant
depth propositional Frege or Tait-style proofs. Reducing the depth of formulas
in a proof is essentially equivalent to removing the outermost blocks of like
(propositional) connectives from cut formulas. Krajíček [9] and later Beckmann and
Buss [3] show that the depth of formulas in a constant depth proof can be reduced
from d C 1 to d at the cost of converting the proof from tree-like format to dag-
like format with only a polynomial increase in proof size. Our Theorem 3 below
is similar to Lemma 6 of [3] in this regard, but gives a more explicitly uniform
construction, and works even if there are multiple nested outermost like quantifiers
that need to be eliminated.
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This paper deals with cut elimination for a Tait-style calculus instead of a
Gentzen sequent calculus. In the setting of classical logic, our results all apply
immediately to cut elimination in a Gentzen sequent calculus.1 We assume the
reader has some familiarity with sequent calculi or Tait calculi, but Sect. 2 begins
with formal definitions of our Tait-style proof system, including definitions of proof
size and cut formula complexity. It also describes the basic ideas behind the later
constructions. Section 3 shows that, for tree-like propositional proofs, outermost
like connectives in cut formulas can be removed at the cost of converting the proof
to dag-like form, while at most doubling the number of lines in the proof. Sections 4
and 5 extend this to first-order logic, but now, instead of forming a dag-like proof
of the same size, the number of lines in the proof can become exponentially larger.
However, the exponentially long proof still has a direct, global, polynomial-time
specification. For expository purposes, Sect. 4 first shows how to eliminate all
top-level like quantifiers from cut formulas. Section 5 then combines the earlier
constructions to show how to eliminate all outermost 8 and _ connectives. In light
of the duality of the Tait calculus, this is the same as removing all top-level 9 and
^ connectives. Our constructions use direct methods that reduce the cut-formula
complexity for multiple cuts simultaneously.

So far, we have discussed only the problem of removing the top-level connectives
from cut formulas. Obviously, the process could be iterated to remove all cuts.
Define the alternating quantifier depth of a formula as the maximum number
of alternating blocks of existential and universal quantifiers along any branch in
the tree representation of the formula (with negations pushed to the atoms, but
allowing ^ and _ connectives to appear arbitrarily along the branch). Let aqd.P /

be the maximum alternating quantifier depth of any cut formula in the proof P .
Section 6 proves that it is possible to convert P into a cut free proof of the
same end cedent, with the size of P bounded by 2

jP j
d for d D aqd.P / C O.1/.

Here jP j is the number of lines in P , and the superexponential function 2a
d is

defined by 2a
0 D a and 2a

iC1 D 22a
i . This improves on what can be obtained

straightforwardly using the constructions of Sects. 3–5 or from the prior bounds
obtained by Zhang [17], Gerhardy [7], and Beckmann and Buss [5], since we bound
the height of the stack of two’s in terms of the number of alternations of quantifiers
without regard to intervening ^’s or _’s. The basic idea for the proof in Sect. 6 is
to first modify P so that all cut formulas are in prenex form, and then apply the
results of Sect. 4. The results of Sect. 6 do not depend on either Sects. 3 or 5; but we
do appeal to constructions of [5, 7, 17] to handle removing cuts on quantifier free
formulas.

1Tait systems do not work as well as the Gentzen sequent calculus for non-classical systems such
as intuitionistic logic. Thus our results would need to be modified to apply to intuitionistic logic,
for instance.
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2 Preliminaries

2.1 Tait Calculus

Our first-order Tait system uses logical connectives ^, _, 9 and 8, and a language
of function symbols, constant symbols, and predicate symbols. Terms and atomic
formulas are defined as usual. A literal is either an atomic formula P.Es/ or a
negated atomic formula P.Es/. Formulas are formed using connectives ^, _, 8
and 9. The negation of complex formulas is inductively defined by defining .p/,
B ^ C , B _ C , .9x/A, and .8x/A to be the formulas p, B _ C , B ^ C , .8x/A,
and .9x/A, respectively.

We adopt a convention from the Gentzen sequent calculus and assume that first-
order variables come in two sorts: free variables (denoted with letters a; b; c; : : :) and
bound variables (denoted with letters x; y; : : :). Free variables cannot be quantified
and must appear only freely. A bound variable x may occur in formulas only within
the scope of a quantifier .8x/ or .9x/ that binds it.

A line of a Tait calculus proof, called a cedent, consists of a set of formulas.
The intended meaning of a cedent is the disjunction of its members. The allowable
rules of inference are shown in Fig. 1. It should be noted that an initial cedent A; A

must have A atomic. We allow Tait proofs to be either tree-like or dag-like. The
usual conditions for eigenvariables apply to 8 inferences. The formulas introduced
in the lower cedents of inferences are called the principal formula of the inference:
these are the formulas A ^ B , A _ B , .9x/A.x/, and .8x/A.x/ in Fig. 1. The
formulas eliminated from the upper cedent are called auxiliary formulas: these are
the formulas A, B , A.s/, A.b/, A, and A in the figure. The auxiliary formulas of a
cut inference are called cut formulas. Formulas that appear in the sets � and �i are
called side formulas.

The ^ and cut inferences have two cedents as hypotheses, which are designated
the left and right upper cedents. For a cut inference, we require that the outermost
connective of the left cut formula A not be an ^ or 9 connective; equivalently,
the outermost connective of the right cut formula A is not _ or 8. This restriction
on A’s outermost connective causes no loss of generality, since the order of the upper
cedents can always be reversed. (We sometimes display cuts with upper cedents out
of order, however.) For an ^ inference, the left–right order of the upper cedents is

Fig. 1 The rules of inference
for a Tait system. The lines of
the proof are to be interpreted
as sets of formulas. The
formula A of the axiom rule
must be atomic. The free
variable b of the 8 inference
is called an eigenvariable and
may not occur in the lower
cedent
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dictated by the order of the conjunction; except in the case where A and B are the
same formula, and then the upper cedents are put in some arbitrary left–right order.

The left–right ordering of upper cedents allows us to define the postordering of
the cedents of a tree-like proofs. The postordering of the nodes of a tree T is the
order of the nodes output by the following recursive traversal algorithm: Starting
at the root of T , the traversal algorithm first recursively traverses the child nodes
in left-to-right order, and then outputs the root node. The postorder traversal of the
underlying proof tree induces an ordering of the cedents in the proof.

Axioms (initial cedents) and weakening inferences are ignored when measuring
the size or height of P . Thus, the size, jP j, of a Tait proof P is defined as the number
of _, ^, 8, 9, and cut inferences in P . The height, h.P /, of P is the maximum
number of these kinds of inferences along any branch of P .

The fact that cedents are sets rather than multisets or sequences means that if a
formula is written twice on a line, it appears only once in the cedent. For instance,
in the _ inference, it is possible that A _ B is a member of � . It is also possible that
A (say) appears in � , in which case both A and A _ B appear in the conclusion of
the inference. This latter possibility, however, makes our analysis of cut elimination
more awkward, since we will track occurrences of formulas along paths in the proof
tree. The problem is that there will be an ambiguity about how to track the formula A

in the case where it “splits into two,” for example in an _ inference by both being a
member of � and being used to introduce A _ B . The ambiguity can be avoided by
considering proofs that satisfy the following “auxiliary condition”:

Definition A Tait proof P satisfies the auxiliary condition provided that no
inference has an auxiliary formula also appearing as a side formula. Specifically,
referring to Fig. 1, the auxiliary condition requires the following to hold:

(a) In an _ inference, neither A nor B may occur in � .
(b) In an ^ inference, neither A nor B may occur in �1 or �2.
(c) In an 9 inference, A.s/ may not occur in � .
(d) In a cut inference, neither A nor A may occur in �1 or �2.

Note that the eigenvariable condition already prevents A.b/ from occurring in the
side formulas of a 8 inference.

Lemma 1 Let P be a [tree-like] Tait proof. Then there is a [tree-like] Tait proof P 0
satisfying the auxiliary condition proving the same conclusion as P . Furthermore,
jP 0j � jP j and h.P 0/ � h.P /.

The proof of the lemma is straightforward using the fact that weakening inferences
do not count towards proof size or height.

A path in a proof P is a sequence of one or more cedents occurring in P , with
the .i C 1/st cedent a hypothesis of the inference inferring the i th cedent, for all i .
A branch is a path that starts at the conclusion of P and ends at an initial cedent.

Suppose P is tree-like and satisfies the auxiliary condition. Also suppose a
formula A occurs in two cedents C1 and C2 in P , and let A1 and A2 denote the
occurrences of A in C1 and C2, respectively. We call A1 a direct ancestor of A2

(equivalently, A2 is a direct descendant of A1) provided there is a path in P from



250 S. Buss

C2 to C1 such that the formula A appears in every cedent in the path.2 If A1 is
the principal formula of an inference, or occurs in an axiom, that we say A1 is a
place where A2 is introduced. If A2 is an auxiliary formula, then we say A2 is the
place where A1 is eliminated. In view of the tree-like property of P , every formula
occurring in P either has a unique place where it is eliminated or has a direct
descendant in the conclusion of P . However, due to the implicit use of contraction in
the inference rules, formulas occurring in P may be introduced in multiple places.

The notions of direct descendant and direct ancestor can be generalized to
“descendant” and “ancestor” by tracking the flow of subformulas in a proof. If I
is an ^, _, 9, or 8 inference, then the principal formula of I is the (only) immediate
descendant of each auxiliary formula of I. Then, the “descendant” relation is the
reflective, transitive closure of the union of the immediate descendant and direct
descendant relations. Namely, a formula A0 occurring in P is a descendant of a
formula A occurring in P iff there is a sequence of formula occurrences in P ,
starting with A and ending with A0 such that each formula in the sequence is
the immediate descendant or a direct descendant of the previous formula in the
sequence. We also call A an ancestor of A0.

The definitions of descendant and ancestor apply to formulas that appear in
cedents. Similar notions also apply to subformulas. Suppose A and B are formulas
appearing in cedents with B a descendant of A. Let C be a subformula of A.
We wish to define a unique subformula D of B , such that C corresponds to D.
This unique subformula is intended to be defined in the obvious way, with each
subformula in an upper cedent of an inference corresponding to a subformula in
the lower sequent. Assume P is tree-like and satisfies the auxiliary condition. The
“corresponds” relation is defined by taking the reflexive, transitive closure of the
following conditions.

• The formula A.s/ in an 9 inference corresponds to the subformula A.x/ in the
lower sequent.

• In a 8 inference, the formula A.b/ corresponds to the subformula A.x/.
• In an ^ or _ inference, the formulas A and B in the upper cedent(s) correspond

to the subformulas A and B shown in the lower cedent. Except for an _ inference
in which A and B are the same formula, the auxiliary formula corresponds to the
subformula denoted A in the lower cedent. That is, in this case, the _ inference
is treated as if it were defined as

A; �

A _ B; �

• If C is a subformula of a side formula, namely of a formula A in � , �1, or �2 in
Fig. 1, then C corresponds to the same subformula of the occurrence of A in the
lower cedent.

• If A and B appear in the upper and lower cedent of an inference and A

corresponds to B and if C is the i th subformula of A, then C corresponds to

2This definition works because P satisfies the auxiliary condition.
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the i th subformula D of B , where the subformulas of C and D are ordered (say)
according to the left-to-right positions of their principal connectives.

It is often convenient to assume proofs use free variables in a controlled fashion.
The following definition is slightly weaker than the usual definition, but suffices for
our purposes.

Definition A proof P is in free variable normal form provided that each free
variable b is used at most once as an eigenvariable, and provided that when b is
used as an eigenvariable for inference I, then b appears in P only above I (that
is, each occurrence of b occurs in a cedent reachable from I by some path in P ).
The variables c that appear in P but are not used as eigenvariables are called the
parameter variables of P .

Any tree-like proof P may be put into free variable normal form without increasing
its size or height; furthermore, this can be done while enforcing the auxiliary
condition.

2.2 The Basic Constructions

This section describes the basic ideas and constructions used for the cut-elimination
results obtained in Sects. 3 and 4.

The first important tool is a generalization of the well-known inversion lemmas
for the outermost 8 and _ connectives of a formula. Assume we have a tree-like
proof P , in free variable normal form, that ends with the cedent �; A _ B . Then
there is a proof P 0 of �; A; B , with P 0 also tree-like, and with jP 0j � jP j and
h.P 0/ � h.P /. Similarly, if P ends with �; .8x/A.x/ and t is any term, then there
is a proof P 00 of �; A.t/, with P 00 also tree-like and satisfying the same conditions on
its size and height. The proofs are quite simple: P 0 is obtained from P by replacing
all direct ancestors of A_B with A; B and removing all _ inferences that introduce
a direct ancestor of A _ B . Likewise, if t does not contain any eigenvariables of P ,
then P 00 is formed by replacing all direct ancestors of .8x/A.x/ with A.t/, and
removing the 8 inferences that introduce these direct ancestors and replacing their
eigenvariables with t .

Iterating this construction allows us to formulate an inversion lemma that works
for the entire set of outermost _ and 8 connectives. If B is a subformula of A, we
call B an _8-subformula of A if every connective of A containing B in its scope is
an _ or a 8. Similarly, a connective _ or 8 is said to be _8-outermost if it is not
in the scope of any 9 or ^ connective. Let P be a tree-like proof of �; A, and let
B1; : : : ; Bk enumerate the minimal _8-subformulas of A in left-to-right order. The
subformulas Bi are called the _8-components of A. Note that each Bi is atomic or
has as outermost connective an ^ or an 9.

Lemma 2 Let P , A, B1; : : : ; Bk be as above. Let � be any substitution mapping
free variables to terms. Then there is a proof P 0 of ��; B1�; : : : ; Bk� such that P 0
is tree-like and jP 0j � jP j and h.P 0/ � h.P /.
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Fig. 2 A simple example of _ cut to be eliminated. Q and R are the subproofs deriving the
hypotheses of the cut

Fig. 3 The proof P 0 obtained after eliminating the cut of Fig. 2

The lemma is proved by iterating the inversion lemmas for _ and 8.
Section 3 will give the details how to simplify cuts in a propositional Tait

calculus proof by removing all outermost _ (or, all outermost ^) connectives from
cut formulas. As a preview, we give the idea of the proof, which depends on the
inversion lemma for _. Namely, suppose the proof P ends with a cut on the formula
A _ .B _ C /, as shown in Fig. 2. The right cut formula, in the final line of the
subproof R, is in the dual form A ^ .B ^ C/ of course. Now suppose that in the
subproof R there are the two pictured ^ inferences that introduce the formulas
.B ^ C/ and then A ^ .B ^ C /.

By the inversion lemma for _, the proof Q can be transformed into a proof Q0
of A; B; C; �1 with no increase in size or height. The cut in P can thus be removed
by replacing the ^ inferences in R with cuts to obtain the proof P 0 shown in Fig. 3.
Note that this has replaced the ^ inference introducing B ^ C with two cuts, one
on B and one on C , and replaced the ^ inference introducing A ^ .B ^ C/ with a
cut on A. Overall, two ^ inferences and one cut inference in P have been replaced
by three cut inferences in P 0. More generally, due to contractions, there can be
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Fig. 4 A simple example of cuts using _ and 9 to be eliminated

Fig. 5 The results of eliminating the cuts in Fig. 4

k1 � 1 inferences in P that introduce B ^ C , and k2 � 1 inferences that introduce
A^.B^C/: these k1Ck2 many ^ inferences and the cut inference in P are replaced
by 2k1 C k2 many cut inferences in P 0. Thus the size of P 0 is no more than twice
the size of P . The catch though is that P 0 may now be dag-like rather than tree-like.

Finally, it should be noted that P 0 is obtained from P by moving the subproof Q0
and the subproof deriving A; �3 “rightward and upward” in the proof. This is crucial
in allowing us to remove multiple cuts at once. Intuitively, the final cut of P plus all
the cuts that lie in the subproofs Q or R can be simplified in parallel without any
unwanted “interference” between the different cuts.

Figure 4 shows a proof P from which the outermost _ and 8 (dually, ^ and 9)
connectives can be removed from cut formulas. The left subproof Q can be inverted
to give a proof Q0 of A.r; s/; B.r; t/; �1, and this is used to form the proof P 0
shown in Fig. 5. In this simple example, an ^ inference, three 9 inferences, and
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the cut inference are replaced by just two cut inferences. As in the _ example,
the proof P 0 is formed by moving (instantiations of) subproofs of P rightward.
In particular, the subproof in P ending with .9y/A.r; y/; �3 has become a proof
of B.r; t/; �1; �3 and has been moved rightward in the proof so as to be cut against
B.r; t/; �6.

The general case of removing quantifiers is more complicated, however. For
instance, there might be multiple places where the formula .9y/A.x; y/ is intro-
duced, using k1 terms s1; : : : ; sk1 . Likewise, there could be k2 terms tj used for
introducing the formula .9y/B.x; y/, and k3 terms r` for introducing the .9x/.
In this case we would need k1k2k3 many inversions of Q, namely, proofs Qi;j;`

of A.r`; si /; B.r`; tj /; �1 for all i � j1, j � k2, and ` � k3. The result is that
P 0 can have size exponential in the size of P ; there is, however, still a succinct
description of P 0 which can be obtained directly from P . This will be described
in Sect. 4.

3 Eliminating Like Propositional Connectives

This section describes how to eliminate an outermost block of propositional
connectives from cut formulas. The construction applies to proofs in first-order
logic.

Definition Suppose B is a subformula occurring in A. Then B is an _-subformula
of A iff B occurs in the scope of only _ connectives. The notion of ^-subformula
is defined similarly.

An _-component (resp., ^-component) of A is a minimal _-subformula (resp.,
^-subformula) of A.

Definition An _/̂ -component of a cut formula in P is an _-component of a left
cut formula in P or an ^-component of a right cut formula in P .

Theorem 3 Let P be a tree-like Tait calculus proof of � . Then there is a dag-like
proof P 0, also of � , such that each cut formula of P 0 is an _/̂ -component of a cut
formula of P , and such that jP 0j � 2 � jP j and hence h.P 0/ � 2 � jP j. Furthermore,
given P as input, the proof P 0 can be constructed by a polynomial time algorithm.

Note that P 0 is obtained by simplifying all the cut formulas in P that have outermost
connective ^ or _.

Without loss of generality, by Lemma 1, P satisfies the auxiliary condition. The
construction of P 0 depends on classifying the formulas appearing in P according
to how they descend to cut formulas. For this, each formula B in P can be put into
exactly one of the following categories (˛)–(� ).

(˛) B has a left cut formula A as a descendant and corresponds to an
_-subformula of A, or
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(ˇ) B has a right cut formula A as a descendant and corresponds to an
^-subformula of A, or

(� ) Neither (˛) nor (ˇ) holds.

Definition Let B be an occurrence of a formula in P , and suppose B is in
category (ˇ) with a cut formula A as a descendant. The formula A is a conjunctionVk

iD1Ci of its k � 1 many ^-components (parentheses are suppressed in the
notation). The formula B is a subconjunction of A of the form

V`
iDmCi where

1 � m � ` � k. The ^-components of A to the right of B are C`C1; : : : ; Ck .
The negations of these, namely C `C1; : : : ; C k , are called the pending implicants
for B .

Each formula B in P will be replaced by a cedent denoted �.B/. For B in
category (˛), �.B/ is the cedent consisting of the _-components of B . For B in
category (ˇ), �.B/ is the (possibly empty) cedent containing the pending implicants
for B . For B in category (� ), �.B/ is the cedent containing just the formula B .

Definition The jump target of a category (ˇ) formula B in P is the first cut or
^ inference below the occurrence of B which has some descendant of B as an
auxiliary formula in its right upper cedent. The jump target will be either:

D; �1 D; �2

�1; �2

or
C; �1 D; �2

C ^ D; �1; �2

(1)

where the formula D is either equal to B (a direct descendant of B) or is of the form
..� � � .B ^ B1/ ^ � � � ^ Bk�1/ ^ Bk/ with k � 1 (since only ^ inferences can operate
on B until reaching the jump target). The left upper cedent of the jump target (that
is, D; �1 or C; �1) is called the jump target cedent. The auxiliary formula of the left
upper cedent, that is D or C , is called the jump target formula.

We shall consistently suppress parentheses when forming disjunctions and
conjunctions. For instance, the formula ..� � � .B ^ B1/ ^ � � � ^ Bk�1/ ^ Bk/ above
would typically be written as just B ^ B1 ^ � � � ^ Bk . It should be clear from the
context what the possible parenthesizations are.

Lemma 4 Suppose B is category (ˇ) formula in P . Let C1; : : : ; Ck be as above,
so B D V`

iDmCi and the pending implicants of B are C `C1; : : : ; C k . Consider B’s
jump target, namely one of the inferences shown in (1), and let E be the jump target
formula, that is, either D or C . Then �.E/ is equal to the cedent C m; : : : ; C k .

Proof If the jump target of B is a cut inference, then D is
Vk

iD1Ci . In this case,
E D D is the formula C 1 _ � � � _ C k , and m D 1. It follows that E is category (˛),
and �.E/ D C 1; : : : ; C k , so the lemma holds. On the other hand, if the jump target
is an ^ inference, then D equals Cm ^ � � � ^ Cr for some r � k, and E D C equalsVm�1

iDj Ci for some 1 � j < m. In this case, E is category (ˇ), and �.E/ again

equals C m; : : : ; C k . ut
Proof (of Theorem 3) The cedents of P 0 are formed by modifying each cedent �

of P to form a new cedent ��, called the �-translation of �. A formula B occurs
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in or below � if it is in � or is in some cedent below � in P . For each � in P , the
cedent �� is defined to include the formulas �.B/ for all formulas B which occur
in or below �.

Theorem 3 is proved by showing that the cedents �� can be put together to form
a valid proof P 0. This requires making the following modifications to P : (1) For
any inference in P that introduces an ^-component of a right cut formula, we must
insert at that point in P 0 a cut on that ^-component using (the �-translation of) its
jump target cedent. (2) When forming P 0, we remove from P every ^ inference that
introduces an ^-subformula of a right cut formula, every _ inference that introduces
an _-subformula of a left cut formula, and every cut inference of P . (3) Weakening
inferences are added as needed. These changes are described in detail below, where
we describe how to combine the cedents �� to form the proof P 0. We consider
separately each possible kind of inference in P .

For the first case, consider the case where � is an initial cedent B; B . (Surpris-
ingly, this is the hardest case of the proof.) Our goal is to show how the cedent ��
is derived in P 0. As a first subcase, suppose neither B nor B is in category (ˇ),
so neither descends to an ^-component of a right cut formula. Since B is atomic,
and B and B are each in category (˛) or (� ), we have �.B/ D B and �.B/ D B ,
respectively. The cedent �� is equal to B; B; ƒ, where ƒ contains the formulas
�.E/ for all formulas E that occur below the cedent B; B . The proof P 0 merely
derives B; B; ƒ from B; B by a weakening inference. (Recall that weakening
inferences do not count towards the size or height of proofs.)

For the second subcase, suppose exactly one of B and B are in category (ˇ).
Without loss of generality, we may assume B is of category (ˇ), and B is not. The
formula B descends to a right cut formula

Vk
iD1Bi , and corresponds uniquely to one

of its ^-components B`. We have 1 � ` � k, and B`C1; : : : ; Bk are the pending
implicants of B D B`. Since B is atomic and not in category (ˇ/, �.B/ D B D B`.
Thus, �� is equal to

B`C1; : : : ; Bk; B`; ƒ: (2)

As before, the cedent ƒ is the set of *-translations of formulas that appear below �

in P .
The jump target for B has the form

D; �1 D; �2
Cut:

�1; �2

or
C; �1 D; �2^:
C ^ D; �1; �2

(3)

By Lemma 4, the �-translation of the upper left cedent has the form

B`; : : : ; Bk; ƒ0 (4)

where ƒ0 contains the formulas �.E/ for all formulas E occurring in or below the
lower cedent of the inference (3). Of course, ƒ0 � ƒ. Thus, in P 0, the cedent �� is
derived from the cedent (4) by a weakening inference.
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In the third subcase, both B and B are in category (ˇ). As in the previous subcase,
�.B/ has the form B`C1; : : : ; Bk , and the �-translation of its jump target cedent has
the form

B`; : : : ; Bk; ƒ0

with B` D B . Likewise, �.B/ has the form B 0
`0C1

; : : : ; B 0
k0 and the �-translation of

B’s jump target cedent has the form

B
0
`0 ; : : : ; B

0
k0 ; ƒ00

where B 0
`0 D B. These two cedents combine with a cut on the formula B to yield

the inference

B`; : : : ; Bk; ƒ0 B
0
`0 ; : : : ; B 0

k0 ; ƒ00

B`C1; : : : ; Bk; B
0
`0C1; : : : ; B

0
k0 ; ƒ0; ƒ00

Since ƒ0; ƒ00 � ƒ, the cedent �� is derivable with one additional weakening
inference. This completes the argument for the case of an initial cedent. Note that
in the first two subcases, the initial cedent is eliminated, while bypassing a cut or ^
inference. In the third subcase, the initial cedent is replaced with a cut inference on
an atomic formula.

For the second case of the proof of Theorem 3, consider a weakening inference

�
�; �

in P . Here, the upper and lower sequents have exactly the same �-translations; that
is, �� is the same as .�; �/�. Thus the weakening inference can be omitted in P 0.

Now consider the case of an ^ inference in P :

A; �1 B; �2

A ^ B; �1; �2

For the first subcase, suppose that A ^ B is in category (˛) or (� ), so �.A ^ B/ is
just A ^ B . In this case, A and B are both in category (� ), so also �.A/ D A and
�.B/ D B . The �-translation of the ^ inference thus becomes

A; ƒ; A ^ B B; ƒ; A ^ B

A ^ B; ƒ

for suitable ƒ, and this is still a valid inference. (The formula A ^ B appears in the
upper cedents since the �-translations of the cedents A; �1 and B; �1 must contain
�.A ^ B/ D A ^ B .)

As the second subcase, suppose A ^ B is category (ˇ), and thus A and B are
also category (ˇ). Expressing the formula B as a conjunction of its ^-components
yields B D B1 ^ B2 ^ � � � ^ Bk for k � 1. Let the pending implicants of A ^ B be
C 1; : : : ; C ` with ` � 0. The formula B has the same pending implicants as A ^ B .
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Similarly, �.A/ is B1; : : : ; Bk; C 1; : : : ; C `. Thus the �-translations of the cedents
in the ^ inference become

B1; : : : ; Bk; C 1; : : : ; C `; ƒ C 1; : : : ; C `; ƒ

C 1; : : : ; C `; ƒ

for suitable ƒ. The dashed line is used to indicate that this is no longer a valid
inference. However, since the lower cedent is the same as the upper right cedent,
this inference can be completely omitted in P 0.

Next consider the case of a cut inference in P :

A; �1 A; �2

�1; �2

Clearly, A is of category (˛), and A is of category (ˇ). Since A has no pending
implicants, �.A/ is the empty cedent; thus, the �-translation of the three cedents has
the form

�.A/; ƒ ƒ

ƒ

The cut inference therefore can be completely omitted in P 0.
Now consider the case of an _ inference in P :

A; B; �

A _ B; �

There are three subcases to consider. First, if A _ B is in category (� ), then so are
A and B . The �-translation of the two cedents has the form

A; B; ƒ; A _ B

A _ B; ƒ
(5)

This of course is a valid inference, and remains in this form in P 0.
The second subcase is when A _ B is category (˛). Expressing A and B as

disjunctions of their _-components yields A D A1 _� � �_Ak and B D B1 _� � �_B`

with k; ` � 1. The �-translation of the _ inference is

A1; : : : ; Ak; B1; : : : ; Bk; ƒ

A1; : : : ; Ak; B1; : : : ; Bk; ƒ

and so this inference can be omitted in P 0.
The third subcase is when A_B is category (ˇ). In this subcase, A and B are both

category (� ). We have �.A/ D A and �.B/ D B . And, �.A _ B/ is C 1; : : : ; C k ,
where the C i ’s are the pending implicants of A _ B , with k � 0. Thus, the �-
translation of the cedents in the _ inference has the form

A; B; ƒ; C 1; : : : ; C k

C 1; : : : ; C k; ƒ
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Of course, this is not a valid inference. Note that the formulas C i must be included
in the upper sequent since they are part of �.A _ B/. From Lemma 4, the upper left
sequent of the jump target of A _ B has �-translation of the form

A _ B; C 1; : : : ; C k; ƒ0;

where ƒ0 � ƒ. The following inferences are used in P 0 to replace the _ inference:

A _ B; C 1; : : : ; C k; ƒ0
A; B; ƒ; C 1; : : : ; C k

A _ B; ƒ; C 1; : : : ; C k
Cut:

C 1; : : : ; C k; ƒ

(6)

This cut is permitted in P 0 since A _ B is an ^-component of a right cut formula
in P . Note that the _ inference in P has been replaced in P 0 with two inferences,
namely a cut and an _ inference.

Now consider the case of a 8 inference in P

A.b/; �

.8x/A.x/; �

This case is handled similarly to the case of an _ inference. The formula A.b/ is
category (� ), so �.A.b// D A.b/. If the formula .8x/A.x/ is category (˛) or (� ),
then �..8x/A.x// D .8x/A.x/. In this case, the �-translation of the 8 inference
gives

A.b/; ƒ; .8x/A.x/

.8x/A.x/; ƒ

for suitable ƒ. This is still a valid inference, and is used as is in P 0. Suppose, on
the other hand, that .8x/A.x/ is category (ˇ). In this case, the �-translation of the
8 inference has the form

A.b/; ƒ; C 1; : : : ; C k

C 1; : : : ; C k; ƒ

where C 1; : : : ; C k are the pending implicants of .8x/A.x/. Note this is not a valid
inference. By Lemma 4, the �-translation of the upper left cedent of the jump target
of .8x/A.x/ is equal to

.9x/A.x/; C 1; : : : ; C k; ƒ0;

where ƒ0 � ƒ. The following inferences are used in P 0 to replace the 8 inference:

.9x/A.x/; C 1; : : : ; C k; ƒ0
A.b/; ƒ; C 1; : : : ; C k

.8x/A.x/; ƒ; C 1; : : : ; C k
Cut:

C 1; : : : ; C k; ƒ

(7)
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Note that since P is in free variable normal form, the variable b does not appear in
the lower cedent of the new 8 inference. The 8 inference in P has been replaced
in P 0 with two inferences: a cut and a 8 inference.

The case of an 9 inference in P is handled in exactly the same way as a
8 inference. We omit the details.

The above completes the construction of P 0 from P . By construction, the
inferences in P 0 are valid. To verify that P 0 is globally a valid proof, we need to
ensure that it is acyclic, so there is no chain of inferences that forms a cycle. This
follows immediately from the fact that the inferences in P 0 respect the postorder
traversal of P . In particular, the upper left cedent of the jump target of a formula B

comes before the cedent containing B in the postorder traversal of P . Therefore, P 0
is well founded.

It is clear that P 0 can be constructed in polynomial time from P . The size of P 0
can be bounded as follows. First, each initial sequent in P can add at most one
cut inference to P 0. Each ^ inference in P can become at most one ^ inference
in P 0. Each _, 8, and 9 inference in P can become up to two inferences in P 0.
Each cut in P is replaced, at least locally, by zero inferences in P 0. Let nAx, nCut,
n^, n_, n8, and n9 denote the numbers of initial sequents, cuts, ^, _, 8, and 9
inferences in P . Then jP j equals nCut Cn^ Cn_ Cn8 Cn9, and jP 0j is bounded by
nAx C n^ C 2.n_ C n8 C n8 C n9/. Since w.l.o.g. there is at least one cut in P and
since nAx D nCut C n^ C 1, it follows that jP 0j � 2 � jP j. Q.E.D. Theorem 3. ut

4 Eliminating Like Quantifiers

We next show how to eliminate the outermost block of quantifiers from cut formulas.

Definition An 9-subformula (resp., 8-subformula) of A is a subformula that is
contained in the scope of only 9 (resp., 8) quantifiers. An 9-component (resp., 8-
component) of A is a minimal 9- or 8-subformula (respectively). A 8/9-component
of a cut formula in P is a 8-component of a left cut formula in P or an 9-component
of a right cut formula in P .

Theorem 5 Let P be a tree-like Tait calculus proof of � . Then there is a dag-like
proof P 0, also of � , such that each cut formula of P 0 is a 8/9-component of a cut
formula of P , and such that jP 0j � 4jP j=5 � .1:32/jP j and h.P 0/ � jP j. As a
consequence of the height bound, P 0 can also be expressed as a tree-like proof of
size � 2jP j. Similarly, h.P 0/ � 2h.P /.

Without loss of generality, P is in free variable normal form and satisfies the
auxiliary condition. Each formula B in P can be put in one of the following
categories (˛)–(� ):

(˛) B has a left cut formula A as a descendant and corresponds to a 8-subformula
of A, or
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(ˇ) B has a right cut formula A as a descendant and corresponds to an 9-
subformula of A, or

(� ) Neither (˛) nor (ˇ) holds.

Definition An 9 inference as shown in Fig. 1 is critical if the auxiliary formula A.s/

does not have an 9 as its outermost connective. The formula A.s/ is also referred
to as 9-critical. If A.s/ is furthermore of category (ˇ), then the 9-jump target of
A.s/ is the cut inference which has a descendant of A.s/ as a (right) cut formula.
The 9-jump target cedent of A.s/ is the upper left cedent of the jump target of A.s/.
This is also referred to as the 9-jump target cedent of the cedent � containing A.s/.

We now come to the crucial new definition for handling cut elimination of
outermost like quantifiers. The intuition is that we want to trace, through the
proof P , a possible branch in the proof P 0. Along with this traced out path, we
also need to keep a partial substitution assigning terms to variables: this substitution
will track the needed term substitution for forming the corresponding cedent in P 0.
First we define an “9-path” and then we define the associated substitution.

Definition A cut inference is called to-be-eliminated if the outermost connective
of the cut formula is a quantifier. An 9-path � through P consists of a sequence of
cedents �1, �2,. . . , �m from P such that �1 is the endsequent of P and such that
for each i < m, one of the following holds:

• �i is the lower cedent of a to-be-eliminated cut inference, and �iC1 is its right
upper cedent, or

• �i is the lower cedent of an inference other than a to-be-eliminated cut, and �iC1

is an upper cedent of the same inference, or
• �i is the upper cedent of an 9-critical inference, and �iC1 is the 9-jump target

cedent of �i .

The 9-path is said to lead to �m.

It is easy to verify that, for �i in � , the 9-path � contains every cedent in P

below �i .
The cedents in an 9-path are in reverse postorder from P . The effect of an 9-

path is to repeatedly traverse up to an 9-critical inference—always going rightward
at to-be-eliminated cuts—and then jump back down to the associated 9-jump
target cedent. The most important information needed to specify the 9-path is the
subsequence of cedents �i1 , �i2 ,. . . , �ik , i1 < i2 < � � � < ik which are 9-critical
and for which �i`C1 is the 9-jump target cedent of �i` . The entire 9-path can be
uniquely reconstructed from this subsequence plus knowledge of the last cedent �m

in � .
There is a substitution �� associated with the 9-path � D h�1; : : : ; �mi. The

domain of �� is the set of free variables appearing in or below �m plus the set of
outermost universally quantified variables occurring in the category (˛) formulas
in �m.
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Definition The definition of �� is by induction on the length of � . First, let
.8xi / � � � .8x`/A be a formula in �m in category (˛) with i � ` such that A does
not have outermost connective 8. Since it is in category (˛), this formula has the
form .8xi / � � � .8x`/A.b1; : : : ; bi�1; xi ; : : : ; x`/, and has a descendant of the form
.8x1/ � � � .8x`/A.x1; : : : ; x`/ which is the left cut formula of a cut inference. Since
the cut is to-be-eliminated, � must reach the upper left cedent by way of a “jump”
from an 9-critical cedent �i 2 � . As pictured, the associated 9-critical formula
must have the form A.s1; : : : ; s`/:

.8xi / � � � .8x`/A.b1; : : : ; bi�1; xi ; : : : ; x`/; �

: : :
::: . .

.

.8x1/ � � � .8x`/A.x1; : : : ; x`/; �1

A.s1; : : : ; s`/; � 0

.9x`/A.s1; : : : ; s`�1; x`/; � 0

: : :
::: . .

.

.9x1/ � � � .9x`/A.x1; : : : ; x`/; �2

�1; �2

Note that the terms s1; : : : ; s` are uniquely determined by � , since they are found by
following the path from the upper right cedent of the cut inference to the cedent �i ,
and setting the si ’s to be the terms used for 9 inferences acting on the descendants
of A.Es/.

Let � 0 be � truncated to end at A.Es/; �. The substitution �� is defined to map
the bound variables xi ; : : : ; x` to the terms si �� 0 ; : : : ; s`�� 0 . (Strictly speaking, the
substitution �� acts on the occurrences of variables, since the same variable may
be used in multiple quantifiers and in different formulas; this is suppressed in the
notation, however.)

For b a free variable appearing in or below �m, the value �� .b/ is defined as
follows. If there is a 8 inference, below �m,

A.b/; �

.8x/A.x/; �

that uses b as an eigenvariable, and if .8x/A.x/ is category (˛), then define ��.b/

to equal the value of �� 0.a/, where � 0 is � truncated to end at the lower cedent of
the 8 inference. For example, in the proof displayed above, ��.bi / D si . Otherwise,
if there is no such 8 inference, define �� .b/ D b.

Definition Let A be a formula appearing in a cedent � of P . Let � be an 9-path
leading to �. Then ��.A/ is defined as follows:

• If A is in category (˛) and has the form A D .8x1/ � � � .8x`/B with ` > 0 and
B not starting with a 8 quantifier, then define ��.A/ to be the formula B�� ,
namely the formula obtained by replacing each xi with ��.xi / and each free
variable b with �� .b/.

• If A is in category (ˇ) and has outermost connective 9, then ��.A/ is the empty
cedent.

• Otherwise ��.A/ is the formula A�� , namely obtained by replacing each free
variable b with �� .b/.
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For A appearing below �, we define ��.A/ to equal �� 0.A/ where � 0 is � truncated
to end at the cedent �0 containing A. The �� -translation, ��.�/, of � is the cedent
containing exactly the formulas ��.A/ for A appearing in or below � in P .

We can now give the proof of Theorem 5. The proof P 0 will be formed from the
cedents ��.�/ where � ranges over the cedents of P , and � ranges over the 9-paths
leading to �. The inferences in P 0 will respect the postordering of P , and P 0 will
be a dag.

As before, we must show how to connect up the cedents ��.�/ to make P 0 into
a valid proof. The argument again splits into cases based on the type of inference
used to infer � in P . The cases of initial cedents, _ inferences, ^ inferences, and
weakenings are all immediate. These inferences remain valid after their cedents are
replaced by their �� -translations, since initial cedents contain only atomic formulas,
and since the �� -translations respect propositional connectives.

Consider the case where � is inferred by a 8 inference in P :

A.b/; �

.8x/A.x/; �

The 9-path � ends at the lower cedent �. Define � 0 to be the 9-path that extends �

by one step to the upper cedent �0. If .8x/A.x/ and A.b/ are not in category (˛),
then �� 0.b/ D b and the inference is still valid since the �� 0-/��-translations of A.b/

and .8x/A.x/ are equal to C.b/ and .8x/C.x/ for C defined by C.b/ D A.b/�� D
A.b/�� 0 . Thus, in this case, the result is still a valid 8 inference. Otherwise, A.b/

and .8x/A.x/ are both in category (˛). In this case, ��.A.b// D ��..8x/A.x//;
the 8 inference has equal upper and lower cedents and is just omitted from P 0.

Now consider the case where � is inferred in P with an 9 inference:

A.s/; �

.9x/A.x/; �

Define � 0 as in the previous case. If A.s/ and .9x/A.x/ are not in category (ˇ),
then the ��-translation leaves the quantifier on x untouched, and the �� 0-/�� -
translation of the inference is still a valid inference in P 0. Otherwise, both formulas
are in category (ˇ). If A.s/ has an 9 as its outmost connective, then �� 0.A.s// and
��..9x/A.x// are both empty, and the �� 0- and �� -translations (respectively) of the
upper and lower cedents are identical, and the 9 inference can be omitted in P 0. If A

does not have an 9 as its outermost connective, then the �� 0-/�� -translations of the
cedents in the inference are

�� 0.A.s//; ƒ

ƒ

where ƒ contains the formulas ��.B/ for all formulas B , other than A.s/, which
occur in or below � in P . The upper left cedent of the 9-jump target of A.s/ has the
form

�1; .8x1/ � � � .8x`/A.x1; : : : ; x`/;
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where x D x` and A.s/ D A.s1; : : : ; s`/ with s corresponding to the term s`. Let
� 00 be the 9-path that extends � 0 by the addition of this upper left cedent. The �� 00-
translation of the upper left cedent has the form

ƒ1; A.s1; : : : ; s`/�� 00 :

Here ƒ1 � ƒ, and A.s1; : : : ; s`/�� 00 is the same as �� 0.A.s//. Hence, a cut inference
gives

ƒ1; A.s1; : : : ; s`/�� 00 �� 0.A.s//; ƒ

ƒ

The 9 inference in P is thus replaced with a cut inference in P 0, but on a formula of
lower complexity than the cut in P .

Finally consider the case of a cut inference in P as shown in Fig. 1 with left cut
formula A and right cut formula A. First suppose it is not a to-be-eliminated cut.
Let �1 and �2 be the 9-paths which extend � by one step to include the upper left or
right cedent of the cut, respectively. Then ��1.A/ and ��2.A/ are complements of
each other, and the cut remains valid in P 0. Otherwise, the cut is to-be-eliminated,
and �2 is again a valid 9-path. The right cut formula A is category (ˇ) and has
outermost connective 9. Thus ��2.A/ is the empty cedent, so the ��2-translation of
the right upper cedent and the �� -translation of the lower cedent are identical. In
this case, the cut can be removed completely from P 0.

The above completes the construction of P 0. The next lemma will be used to
bound its size.

Lemma 6 Let � be a cedent in P . The number of 9-paths � to � in P is
� .1:32/jP j.

Proof Recall that an 9-path � to � can be uniquely characterized by its final
cedent �m D � and its subsequence �i1; : : : ; �ik of cedents which are 9-critical
and have �i`C1 the 9-jump target cedent of �i` . We will bound the number N of
ways to select the 9-critical cedents in this subsequence. For this, we group the
9-critical cedents of P according to their 9-jump target. Let there be m many to-
be-eliminated cut inferences in P , and suppose that the i th such cut has ni many
9-critical cedents associated with it. The i th cut also has at least one 8 inference
associated with it that introduces a 8 quantifier in its left cut formula. Therefore
jP j � Pm

iD1.ni C 2/. Each 9-path � can jump from at most one of the ni 9-critical
cedents associated with the i th cut. It follows that there are at most

Qm
iD1.ni C 1/

many 9-paths; namely, there are at most ni C 1 choices for which one, if any, of i th
cut’s associated 9-critical cedents are included in � .

To upper bound the value N D Qm
iD1.ni C 1/, take the logarithm, and upper

bound
Pm

iD1 ln.ni C 1/ subject to
Pm

iD1.ni C 2/ � jP j. For integer values of x,
.ln x/=.x C 1/ is maximized at x D 4. Thus, ln N � jP j � .ln 4/=5; that is, N �
jP j � 4jP j=5 � .1:32/jP j. ut
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The size bound of Theorem 5 follows immediately from the lemma. Namely, P 0
contains at most one cedent for each path to each cedent � in P , and thus jP 0j �
jP j � .1:32/jP j. The height bound h.P 0/ � jP j follows from the construction of P ,
since paths � traverse cedents of P in reverse postorder, and each ^, _, 9, 8, and
cut inference along � contributes at most inference to P 0. (Note that cuts contribute
an inference only when used as a jump target.) Q.E.D. Theorem 5

The proof P 0 was constructed in a highly uniform way from P . Indeed, P 0 can
be generated with a polynomial time algorithm f that operates as follows: f takes
as input a string w of length � jP j many bits, and outputs whether the string w is an
index for a cedent �w in P 0, and if so, f also outputs: (a) the cedent �w with terms
specified as dags, and (b) what kind of inference is used to derive �w, and (c) the
index w0 or indices w0; w00 of the cedent(s) from which �w is inferred in P 0. For
(a), note that the cedent �w can be written out in polynomial length only if terms
are written as dags (that is, circuits) rather than as trees (that is, as formulas). This
is because the iterated application of substitutions may cause the terms ��.b/ to be
exponentially big when written out as formulas instead of as circuits. Also note that,
although some inferences in P 0 become trivial and are omitted in P 0, we can avoid
using REP inferences in P 0 by the simple convention that indices w that would lead
to REP inferences are taken to not be valid indices. (An example of this would be a
w encoding an 9-path leading to a to-be-eliminated cut.)

This means of course that there is a polynomial space algorithm that lists out the
proof P 0.

5 Eliminating and/Exists and or/Forall Blocks

This section gives an algorithm for eliminating outermost blocks of _/8 (equiva-
lently, ^/9) connectives from cut formulas, where the _ and 8 (resp., ^ and 9)
connectives can be arbitrarily interspersed.

Definition A subformula B of A is an _8-subformula of A if B is in the scope
of only _ and 8 connectives. The _8-components of A are the minimal _8-
subformulas of A. The ^9-subformulas and ^9-components of A are defined
similarly.

An _8/^9-component of a cut formula in P is either an _8-component of a left
cut formula of P or an ^9-component of a right cut formula of P .

Theorem 7 Let P be a tree-like Tait calculus proof of � . Then there is a dag-like
proof P 0, also of � , such that each cut formula of P 0 is an ^9=_8-component
of a non-atomic cut formula of P , and such that jP 0j � 4jP j=5 � .1:32/jP j and
h.P 0/ � jP j. Consequently, P 0 can also be expressed as a tree-like proof of size
� 2jP j.

Note that all cuts in P are simplified in P 0. The atomic cuts in P are eliminated
when forming P 0. However, new cuts are added on ^9/_8-components of cuts
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in P , and some of these might be cuts on atomic formulas. If all cut formulas in P

are atomic, then P 0 is cut free.
W.l.o.g., P is in free variable normal form and satisfies the auxiliary condition.

Each formula B in P can be put in one of the following categories (˛)–(� ):

(˛) B has a left cut formula A as a descendant and corresponds to an _8-
subformula of A, or

(ˇ) B has a right cut formula A as a descendant and corresponds to an ^9-
subformula of A, or

(� ) Neither (˛) nor (ˇ) holds.

Definition The jump target of a category (ˇ) formula B occurring in P is the first
cut or ^ inference below the cedent containing B that has some descendant of B

as the auxiliary formula D in its right upper cedent. The jump target will again be
of the form (1). Its right auxiliary formula D has a unique subformula B 0 which
corresponds to B . B 0 occurs only in the scope of 9 connectives and ^ connectives,
and only in the first argument of ^ connectives. (The last part holds since otherwise
the jump target would be an ^ inference higher in the proof.) The jump target cedent
is defined as before.

Suppose a category (ˇ) formula B has descendant D as the right auxiliary
formula of its jump target. Let the ^9-components of D be Dm; : : : ; Dk in left-
to-right order. The ^9-components of B in left-to-right order can be listed as
Bm; : : : ; B`, with each Bi corresponding to Di , with 1 � m � ` � k. The formulas
D`C1; : : : ; Dk are the pending implicants of B . The pending quantifiers of B are
the quantifiers .9x/ which appear to the right of the subformula D` in D and are
outermost connectives of ^9-subformulas of D. Let B 0 be the subformula of D that
corresponds to B; the current quantifiers of B are the quantifiers .9x/ in D which
contain B 0 in their scope.

The pending implicants of B will be used similarly as in the proof of Theorem 3,
but first we need to define ^9-paths and substitutions �� similarly to the proof of
Theorem 5. Now, �� must also map the pending quantifier variables to terms.

Definition An upper cedent � of an ^ or 9 inference is critical if the auxiliary
formula in � is either atomic or has outermost connective _ or 8.

Definition A cut inference in P is non-atomic if its cut formulas are not atomic. An
^9-path � through P consists of a sequence �1; : : : ; �m of cedents from P such
that �1 is the end cedent of P and such that, for each i < m, one of the following
holds:

• �i is the lower cedent of non-atomic cut inference, and �iC1 is its right upper
cedent, or

• �i is the lower cedent of an inference other than a non-atomic cut, and �iC1 is
an upper cedent of the same inference, or

• �i is a critical upper cedent of an ^ or 9 inference with auxiliary formula A, and
�iC1 is the jump target cedent of A.
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The next definition of �� is more difficult than in the proof of Theorem 5 because
the substitution has to act also on the pending implicants of category (ˇ).

Definition Let � be ^9-path as above. The domain of the substitution �� is: the free
variables appearing in or below �m, the variables of the _8-outermost quantifiers
of each category (˛) formula in �m, and the variables of the pending quantifiers of
each category (ˇ) formula in �m.3 The definition of �� is defined by induction on
the length of � . For � containing just the end cedent, �� is the identity mapping
with domain the parameter variables of P . Otherwise, let � 0 be the initial part of �

up through the next-to-last cedent �m�1 of � , and suppose �� 0 is already defined.
There are several cases to consider.

(a) Suppose �m�1 and �m are the lower cedent and an upper cedent of some
inference other than a 8 inference. The �� is same as �� 0 .

(b) Suppose �m�1 and �m are the lower cedent and an upper cedent of a 8 infer-
ence as shown in Fig. 1. If the principal formula .8x/A.x/ is category (˛),
then �� extends �� 0 by letting �� .b/ D �� 0.x/ where .8x/ is the quantifier
introduced by the 8 inference. Otherwise, �� .b/ D b. And, �� is equal to �� 0

for all other variables in its domain.
(c) Otherwise, �m is the jump target cedent of �m�1. Suppose the jump target is

an ^ inference

C; �1 D; �2

C ^ D; �1; �2

For b a free variable in C; �1, the value �� .b/ is defined to equal �� 0.b/.
Similarly, for any pending quantifier .9x/ of any category (ˇ) formula in �1

and for any _8-outermost quantifier .8x/ of any category (˛) formula in �1,
set ��.x/ D �� 0.x/.

We also must define the action of �� on the pending quantifiers of the
category (ˇ) formula C . Let D1 be the first (leftmost) ^9-component of D. The
cedent �m�1 has the form B1; �3 where B1 is an ancestor of D and corresponds
to D1. Write D1 D D1.x1; : : : ; xj / where .9x1/; : : : ; .9xj / are the current
quantifiers for D1. Then B1 D B1.s1; : : : ; sj / where the si ’s are the terms used
for 9 inferences acting on descendants of B1. The .9xi /’s are pending quantifiers
of C , and ��.xi / is defined to equal si �� 0 . The rest of the pending quantifiers
of C are the pending quantifiers of B1 in the cedent �m�1: for these variables,
�� is defined to equal the value of �� 0 .

(d) Suppose that �m is the left upper cedent of the jump target of �m�1, and the
jump target is a cut inference

D; �1 D; �2

�1; �2

3As before, strictly speaking, a variable might be quantified at multiple places, and � acts on
variables according to how they are bound by a quantifier, but we suppress this in the notation.
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Let � 0 be as before, and set �� .b/ D �� 0.b/ for all free variables of the lower
cedent. For any pending quantifier .9x/ of any category (ˇ) formula in �1 and
for any _8-outermost quantifier .8x/ of any category (˛) formula in �1, set
��.x/ D �� 0.x/. Now, let D1 D D1.x1; : : : ; xj / and B1 D B1.s1; : : : ; sj / as
in the previous case. Consider any _8-outermost quantifier .8y/ of D. If y is
one of the xi ’s, define ��.y/ D si �� 0 . Otherwise, .9y/ is a pending quantifier
of D1, and a pending quantifier of B1 in �m�1, and we define ��.y/ D �� 0.y/.

Definition Suppose A is a formula occurring in cedent � in P , and � is an ^9-path
leading to �. The formula ��.A/ is defined as follows:

• If A is category (ˇ), then ��.A/ is the cedent containing the formulas B�� for
each pending implicant B of A.

• If A is category (˛), then ��.A/ is the cedent containing B�� for each
_8-component B of A.

• Otherwise ��.A/ is A�� .

The notation ��.A/ is extended to apply also to A appearing in a cedent �0 below
the cedent �. Let � 0 be the initial subsequence of � leading to �0. Then define
��.A/ D �� 0.A/. The �� -translation of � consists of the formulas ��.A/ such that
A appears in or below � in P .

The next lemma is analogous to Lemma 4.

Lemma 8 Suppose B is a category (ˇ) formula in a cedent � in P , and let �

be an ^9-path to �. Also suppose B does not have outermost connective ^ or 9.
Let C 1; : : : ; C m be the pending implicants of B . Let �0 be B’s jump target cedent,
and E be the auxiliary formula in �0. Then there is an ^9-path � 0 to �0 such that
�� 0.E/ equals the cedent B�� ; C 1��; : : : ; C m�� .

Proof The jump target of B is either a cut or an ^ inference as shown in (1), with B

corresponding to the first ^9-component C0 of D. The remaining ^9-components
of D are C1,. . . ,Cr where 0 � r � m. Of course, their negations are (some of the)
pending implicants of B .

Suppose the jump target is a non-atomic cut inference. Then we have r D m.
Since B does not have outermost connective ^ or 9 and since the cut formula D is
non-atomic, B is not the same as D. Consider the lowest direct descendant of B;
it appears in a cedent �00, and is the auxiliary formula of an 9 inference, or the left
auxiliary formula of an ^ inference. In either case, �00 is critical. Let � 00 be the ^9-
path consisting of the initial part of � to �00. Set � 0 to be the ^9-path that follows
� 00 and then jumps from �00 to the upper left cedent �0 of the jump target. The left
cut formula E is equal to D, and the _8-components of E are C 0; : : : ; C m. The
cedent �� 0.E/ consists of the formulas C i �� 0 . For i D 0, �� 0 was defined so that
C0�� 0 D B�� . Likewise, for i > 0, we have Ci�� 0 D Ci�� 00 . Also, by cases (a)
and (b) of the definition of �� , we have Ci �� 00 D Ci�� . Thus the lemma holds.
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Second, suppose the jump target is a cut on an atomic formula. The right cut
formula is equal to B of course; the left cut formula E is equal to B . Letting � 0 be
as above, �� 0.E/ is equal to B�� 0 D B�� as desired.

Now suppose the jump target is an ^ inference, as in (1), where E D C . If D

is atomic, then D is a direct descendant of B (possibly even the same occurrence
as B). In this case, let �00 be the cedent containing D (the upper right cedent of the
^ inference), let � 00 be the initial part of � 0 leading to �00, and let � 0 be � 00 plus the
upper left cedent �0. (Note that �0 is the jump target cedent of D.) Then, the pending
implicants of C in �0 are D D B and C 1; : : : ; C m. We have D�� 0 D D�� 00 D D��

and also Ci �� 0 D Ci�� 00 D Ci �� , so the lemma holds. Now suppose D is not
atomic. Then define � 0, � 00, and �00 exactly as in the case above where jump target
of B was a cut inference. The pending implicants of C are C 0; : : : ; C m, and, as
before, we have C0�� 0 D B�� 00 D B�� and Ci �� 0 D Ci�� 00 D Ci �� , satisfying
the conditions of the lemma. ut
Proof (of Theorem 7) The proof combines the constructions from the proofs of the
two previous theorems. For each cedent � in P and each ^9-path leading to �, form
the cedent �� as the ��-translation of �. Our goal is to show that these cedents can
be combined to form a valid proof P 0. The proof splits into cases to handle the
different kinds of inferences in P separately. In each case, we have a cedent � and
an ^9-path � leading to �, and need to show how �� is derived in P 0.

For the first case, consider an initial cedent � of the form B; B in P . As the
first subcase, suppose neither B nor B is category (ˇ). Then �� is the cedent
B��; B�� ; ƒ where ƒ is the cedent of formulas ��.E/ for E a formula appearing
below � in P . This is obtained in P 0 by applying a weakening to the initial cedent
B��; B�� .

For the second subcase, suppose B is category (ˇ) and B is not. The formula B

has a right cut formula as descendant, and corresponds to the `th ^9-component
D` of D. Let the pending implicants of B be D`C1; : : : ; Dk . By Lemma 8, there is
an ^9-path � 0 to the upper left cedent �0 of the jump target such that the auxiliary
formula E in �0 has �� 0.E/ equal to B�� ; D`�� ; : : : ; Dk�� . Thus, �� and .�0/� 0

are

B�� ; D`C1�� ; : : : ; Dk��; ƒ

and

B�� ; D`C1�� ; : : : ; Dk��; ƒ0

where ƒ0 � ƒ. In P 0, the first cedent is derived from the second by a weakening
inference.

In the third subcase, both B and B are category (ˇ). We have ��.B/ still equal
to D`C1�� ; : : : ; Dk�� , and now ��.B/ is equal to D

00
`00C1�� ; : : : ; D

00
k00�� with the
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D
00
i ’s the k00 pending implicants of B. Using Lemma 8 twice, we have ^9-paths � 0

and � 00 leading to cedents �0 and �00 such that .�0/� 0

and .�00/� 00

(respectively) are

B�� ; D`C1; : : : ; Dk�� ; ƒ0

and

B�� ; D
00
`00C1; : : : ; D

00
k00��; ƒ00

where ƒ0; ƒ00 � ƒ. In P 0, using a cut and then a weakening gives �� as desired.
Second, consider the (very simple) case where the cedent � is inferred by a

weakening inference

�0
�

where � � �0. The path � to � can be extended by one more cedent to be a path � 0
to the cedent �0. The cedents �� and .�0/� 0

are identical. Thus the weakening
inference in P is just omitted in P 0.

Now consider the case where � is the lower cedent of an ^ inference in P :

A; �1 B; �2

A ^ B; �1; �2

Let �1 and �2 be the left and right upper cedents, respectively, and let �1 and �2

be the ^9-paths obtained by adding �1 or �2, respectively, to the end of � . First,
suppose A ^ B is category (˛) or (� ), so ��.A ^ B/ is .A ^ B/�� . Then A and B

are both category (� ), and ��1.A/ D A��1 D A�� and ��2.B/ D B��2 D B�� .
Thus, in P 0, the ^ inference becomes

A�� ; ƒ; .A ^ B/�� B��; ƒ; .A ^ B/��

.A ^ B/��; ƒ

and this is still a valid ^ inference.
For the second subcase, suppose A ^ B , thus A and B , are category (ˇ). The

formula B in �2 has the same pending implicants C 1; : : : ; C ` as the formula A ^ B

in �. Also, C i ��2 D C i �� . Thus �� is the same as .�2/
�2 . This means that the

^ inference can be omitted in P 0.
Next consider the case where � is the lower cedent of a cut in P :

A; �1 A; �2

�1; �2

Let �1 and �2 be the left and right upper cedents, respectively, and �1 and �2 be
the extensions of � to �1 and �2. The occurrence of A is category (ˇ) of course,
and ��2.A/ is the empty cedent. Thus, the cedents �� and .�2/

�2 are identical, and
the cut inference may be omitted from P 0.
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Next consider the case where � is the lower cedent of an _ inference:

A; B; �

A _ B; �

In this, and the remaining cases, let �0 be the upper cedent of the inference, and let
� 0 be � extended to the cedent �0. For the _ inference, �� 0 is identical to �� . As
a first subcase, suppose A _ B is category (� ), and thus A and B are as well. In
this subcase, ��.A _ B/ D .A _ B/�� , �� 0.A/ D A�� , and �� 0.B/ D B�� . The
�� -translation of the two cedents thus forms a valid _ inference in P 0.

The second subcase is when A_B , A, and B are category (˛). Letting A1; : : : ; Ak

be the _8-components of A, and B1; : : : ; Bk0 be those of B , the �� -translation of
the _ inference has the form

A1��; : : : ; Ak��; B1��; : : : ; Bk0��; ƒ

A1��; : : : ; Ak��; B1��; : : : ; Bk0��; ƒ

and this can be omitted from P 0.
The third subcase is when A_B is category (ˇ). Then A and B are category (� ),

and �.A/ D A�� and �.B/ D B�� . Also, �.A _ B/ is C 1��; : : : ; C k�� , where the
C i ’s are the pending implicants of A _ B . Thus, the �� -translation of the cedents in
the _ inference has the form

A�� ; B��; ƒ; C 1�� ; : : : ; C k��

C 1��; : : : ; C k��; ƒ
(8)

Of course, this is not a valid inference. Let �00 be the upper left cedent of the jump
target of A _ B . From Lemma 8, there is an ^9-path � 00 leading to �00 so that the
�� 00-translation of �00 is

.A _ B/�� ; C 1��; : : : ; C k��; ƒ0

where ƒ0 � ƒ. In P 0, this cedent and the upper cedent of (8) are combined with an
_ inference and a cut to yield the lower cedent of (8), similarly to what was done
in (6).

Now consider the case where � is the lower cedent of a 8 inference

A.b/; �

.8x/A.x/; �

First suppose .8x/A.x/ is category (� ), so ��..8x/A.x// D .8x/A.x/�� D
.8x/A.x/�� 0 . The formula A.b/ is category (� ) and �� 0.b/ D b, thus �� 0.A.b// D
A.b/�� . The 8 inference of P becomes

A.b/��; ƒ; .8x/A.x/��

.8x/A.x/�� ; ƒ

and this forms a valid 8 inference in P 0.
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For the second subcase, suppose that .8x/A.x/ is category (ˇ). Hence, A.b/

is category (� ). This case is similar to the third subcase for _ inferences above.
We have ��..8x/A.x// equal to C 1��; : : : ; C k�� where the C i ’s are the pending
implicants of .8x/A.x/. And, ��.A.b// equals A.b/�� ; note ��.b/ D b. Thus, the
�� 0-/��-translation of the cedents in the 8 inference has the form

A.b/��; ƒ; C 1��; : : : ; C k��

ƒ; C 1��; : : : ; C k��

(9)

which is not a valid inference. Let �00 be the upper left cedent of the jump target
of .8x/A.x/. By Lemma 8, there is an ^9-path � 00 leading to �00 so that the �� 00-
translation of �00 is

.8x/A.x/��; C 1�� ; : : : ; C k�� ; ƒ0

where ƒ0 � ƒ. In P 0, this cedent and the upper cedent of (9) are combined with an
8 inference and a cut to yield the lower cedent of (9), similarly to what was done
in (7).

For the third subcase, suppose that .8x/A.x/ is category (˛), so A.b/ is also
category (˛). By definition, �� 0.b/ D ��.x/. Thus, �� 0.A.b// D A.b/�� 0 D
A.x/�� . Also, ��..8x/A.x// D A.x/�� . Therefore, in P 0, the 8 inference
becomes trivial with �� and .�0/� 0

equal to each other; so, this inference is omitted
from P 0.

Finally, consider the case where � is the lower cedent of an 9 inference

A.s/; �

.9x/A.x/; �

Note that �� 0 is the same as �� . For the first subcase, suppose .9x/A.x/ is either
category (˛) or .�/, so A.s/ is category (� ). This gives �� 0.A.s// D A.s/�� 0 D
A.s/�� . And, since its outermost connective is 9, ��..9x/A.x// D .9x/A.x/�� .
The 9 inference in P becomes, in P 0,

A.s/�� ; ƒ; .9x/A.x/��

.9x/A.x/�� ; ƒ

which is a valid 9 inference.
For the second subcase, suppose .9x/A.x/ and hence A.s/ are category (ˇ).

The two formulas have the same pending implicants, C 1; : : : ; C k , for k � 0. Thus,
�� 0.A.s// and ��..9x/A.x// are both equal to the cedent C 1��; : : : ; C k�� . That is
to say, �� and .�0/� 0

are identical, and thus the 9 inference can be omitted from P 0.
The above completes the construction of P 0 from P . The discussion at the end

of the proof of Theorem 5 applies equally well to the P 0 just constructed, and P 0 is
again polynomial time uniform. ut
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6 Bounds on Eliminating All Cuts

This section gives bounds on eliminating all cuts from a proof. The bound obtained
has the form 2

jP j
dCO.1/, where d is the maximum quantifier alternation of cut formulas

in P . The first-order formula classes †i and …i are defined as usual by counting
alternations of quantifiers, allowing propositional connectives to appear arbitrarily.
Namely, †0 D …0 is the set of quantifier free formulas; and, using Bachus-Naur
notation,

†i WWD †i�1j…i�1j†i ^ †i j†i _ †i j:…i j.9x/†i

…i WWD …i�1j†i�1j…i ^ …i j…i _ …i j:†i j.8x/…i

The alternating quantifier depth (aqd) of a cut is the minimum i > 0 such that one
cut formula is in †i and the other is in …i . The alternation quantifier depth of a
proof P , denoted aqd.P /, is the maximum aqd of any cut in P .

Theorem 9 Let P be a tree-like proof, and let d D aqd.P /. There is a cut free
proof P 0 with the same end cedent as P with the size of P 0 bounded by jP 0j �
2

jP j
dCO.1/.

The proof of the theorem depends only on Theorem 5, not on Theorems 3 and 7.
We also use upper bounds on eliminating cuts on quantifier free formulas as can be
found in [5, 7, 17].

Proof It is helpful to briefly review the well-known fact that the size of formulas
appearing in the tree-like proof P can be bounded by the number of inferences
in P plus the size of the formulas in the end cedent of P . For this, recall that
any formula B appearing in P has a unique descendent A such that A either is a
cut formula or is in the end cedent of P . In addition, B corresponds to a unique
subformula C of A. Let C be a non-atomic subformula of a formula D in P which
has a cut formula as descendant. If there is some ancestor B of D such that B

corresponds to C and such that B is a principal formula of a logical inference, then
leave C unchanged. If there is no such ancestor D, then mark C for deletion. Now
replace every maximal subformula C in P marked for deletion with an arbitrary
atomic formula, say with dDd for d some new free variable. The proof remains a
valid proof (since only atomic formulas are allowed in initial cedents), and its end
cedent is unchanged. Clearly, in the resulting proof, every cut formula has number
of logical connectives bounded by the total number of ^, _, 9, and 8 inferences
in P . Without loss of generality, we assume this is true of the proof P itself.

The main step in proving Theorem 9 is to convert P into a proof in which all cuts
are in prenex form. As a preliminary step, we show that we may assume w.l.o.g. that
no cut formula in P has multiple quantifiers on the same bound variable, or in other
words, that the bound variables in a cut formula are distinct. Towards this end, for
each cut inference in P , with formulas A and A as its cut formulas, rename the
bound variables in A so that the quantifiers in A use distinct bound variables. This
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also renames the bound variables of A of course. Furthermore, if B is a formula with
descendent A or A, this induces a renaming of the bound variables in B according
to the renaming of bound variables in the subformula of A or A that corresponds
to B . By applying these renamings to all such formulas B , and repeating for all cuts
in P , we obtain a proof with the same end cedent as P such that bound variables
are never reused in cut formulas.4 So, we may assume w.l.o.g. that P satisfies this
property.

Now, for each cut in P , with cut formulas A and A, choose an arbitrary prenex
form A0 for A so that the aqd of A0 is � aqd.P /. The formula A0 is obtained
by choosing an ordering of the quantifiers in A which respects the scope of the
quantifiers, and then using standard prenex operations to move the quantifiers out to
the front of the formula in the chosen order. The prenex form .A/0 of A is chosen
with the same ordering and thus equals A0.

Let B be any formula in P with a cut formula A as descendent. The quantifiers
of A are ordered as just discussed to form its prenex form A0. Since B corresponds
to a subformula of A, this induces an ordering on the quantifiers of B; the prenex
form B 0 of B is defined using this induced ordering. On the other hand, if B has a
descendent in the end cedent of P , the formula B 0 is defined to be equal to B . For
any cedent � in P , define �0 to contain exactly the formulas B 0 for B 2 �.

The proof P 0 will contain the cedents �0 for all � 2 P . However, the ^ and _
inferences in P may no longer be valid in P 0. Cuts, weakenings, and quantifier
inferences of P do remain valid in P 0. In addition, since only atomic formulas are
allowed initial cedents, the initial cedents of P are unchanged in P 0.

In order to make P 0 a valid proof, we must replace the ^ and _ inferences of P

with some new subproofs and cuts. The next lemma gives the key construction
needed for this.

Lemma 10 Let B ^ C be the principal formula of an ^ inference in P with a cut
formula as descendent. The auxiliary formulas of the inference are B and C . Let
B 0, C 0, and .B ^ C /0 be their prenex forms in P 0. Then the cedent

B 0; C 0; .B ^ C /0 (10)

has a cut free proof of length linear in the lengths of B and C . Similarly, if B _ C

is the principal formula of an _ inference of P , then the cedents

B 0; .B _ C /0 and C 0; .B _ C /0 (11)

have cut free proofs of length linear in the lengths of B and C .

Proof Let B 0 and C 0 have the forms Q1B0 and Q2C0 where Q1 and Q2 denote
blocks of zero or more quantifiers and where B0 and C0 are quantifier free. The

4The same construction could also rename bound variables in the end cedent of P , but this would
then change the end cedent.
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formula .B ^ C /0 or .B _ C /0 will have the form Q.B0 ^ C0/ or Q.B0 _ C0/. Here
the quantifier block Q is obtained by arbitrarily interleaving (or, “shuffling”) the two
blocks Q1 and Q2.

We claim that, for any quantifier blocks Q1 and Q2, and any block Q obtained as
a shuffle of Q1 and Q2, the cedents (10) and (11) have tree-like, cut free proofs with
size equal to the number of logical connectives in the cedents being proved. This is
proved by induction on the number of quantifiers in Q.

The base case of the induction is when Q is empty, and B and C are quantifier
free. As is well known (and easy to verify) there are proofs of the cedents B0; B0

and C 0; C0 with sizes equal to twice the number of logical connectives in B0 and C0,
respectively. These two cedents plus a single ^ or _ inference suffices to derive any
of the cedents in (10) or (11).

For the induction step, suppose that Q contains at least one quantifier. The
first quantifier can have the form .9x/ or .8x/ and is also the first quantifier
of either Q1 or Q2. For instance, suppose .9x/ is the outermost quantifier of Q
and Q1. Writing B0 D B0.x/ to show the occurrences of the bound variable x,
and replacing occurrences of x with a new free variable a, the induction hypothesis
gives derivations of the cedents

Q�
1 B0.a/;Q�.B0.a/ _ C0/ and Q2C0;Q�.B0.a/ _ C0/

or

Q�
1 B0.a/;Q2C0;Q�.B0.a/ ^ C0/

where Q�
1 and Q� are the blocks Q1 and Q minus the first quantifier 9x. For the _

case, the derivation

Q2C0;Q�.B0.a/ _ C0/

Q2C0; .9x/Q�.B0.x/ _ C0/

gives the desired derivation of Q2C0;Q.B0 _ C0/; and the derivation

Q�
1 B0.a/;Q�.B0.a/ _ C0/

Q�
1 B0.a/; .9x/Q�.B0.x/ _ C0/

.8x/Q�
1 B0.x/; .9x/Q�.B0.x/ _ C0/

gives the desired derivation of Q1B0;Q.B0 _ C0/. Note that the second inference
is a 8 inference; by the assumption of distinctness of bound variables, the
eigenvariable a does not appear in C0.

A similar argument works for the ^ case. The cases where outermost quantifier
of Q is .8x/ are also similar. ut
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We can now complete the proof of Theorem 9. The proof P 0 is formed from
the cedents �0 defined above. Using the cedents �0 maintains the validity of all
inferences except for some of the _ and ^ inferences. In P 0 these inferences become

B 0; � 0
1 C 0; � 0

2

.B ^ C /0; �1; �2

and
B 0; C 0; �

.B _ C /0; �

and these are no longer valid if their principal formula contains quantifiers and has
a cut formula as descendent. However, the ^ inference can be simulated by using
two cuts against the cedent B 0; C 0; .B ^ C /0 given by Lemma 10. Likewise, the
_ inference can be simulated by using two cuts with the cedents B 0; .B _ C /0 and
C 0; .B _ C /0. This process replaces one inference in P with two cuts in P 0; in
addition, P 0 must contain the derivations of the cedents as given by Lemma 10.
Since the formulas .B ^ C /0 and .B _ C /0 have cut formulas as descendents, their
sizes are bounded by jP j as discussed at the beginning of the proof. Therefore, the
size of jP 0j can be bounded by jP 0j � 3jP j2, since the size of the proofs from
Lemma 10 is strictly less than 3jP j.

The proof P 0 has all cut formulas in †d or …d , where d D aqd.P /. It suffices
to assume d > 0. Applying Theorem 5 d times gives a tree-like proof P 00 with the

same end cedent, in which all cut formulas are quantifier free, with h.P 00/ � 2
3jP j2
d�1 .

Now, applying Theorem 8 of [5] and the discussion from the end of Sect. 4 of [5], we

get a proof P 000 of the same end cedent with height bounded by h.P 000/ � 2jP j23jP j2
d�1 ,

such that all cut formulas in P 000 are atomic. Then, applying Lemma 7 of [5], we get
another proof P 0000 again with the same end cedent, which is cut free, and has height

bounded by 2h.P 000/C1. In particular, the size of P 0000 is less than 2
h.P 000/C1
2 .

Therefore, jP 0000j < 2
jP j
dC2, at least for jP j > 7. For d > 0, this gives jP 0000j <

2
jP j
dC2 for jP j > 7. This completes the proof of Theorem 9. ut

The size bound on P 000 is not optimal; we expect that even 2
jP j
dC1 might work.
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