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Preface

With kind permission of © Eckart Menzler

This volume is a tribute by several generations of proof theorists to Gerhard
Gentzen, one of the greatest logicians ever to whom we owe the most profound
investigation of the nature of proofs since Aristotle and Frege. The immediate
stimulus for its inception was Gentzen’s 100th birthday in 2009 which was
celebrated with a conference in Leeds and a workshop in Coimbra at which most of
the contributors to this volume spoke.

Gentzen has been described as logic’s lost genius' whom Godel sometimes called
a better logician than himself.? It could be said that Gentzen and Godel arrived,
each in their own exquisite manner, at opposing extremes of a spectrum. Godel
found a very general negative result to the effect that no system embodying a correct

IE. Menzler-Trott: Logic’s Lost Genius: The Life of Gerhard Gentzen (AMS, Providence, 2007).

2@G. Kreisel: Godel’s excursions into intuitionistic logic, in: Godel remembered, (Bibliopolis,
Napoli, 1987) p. 169.
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amount of number theory can prove its own consistency by transferring the trick
of the “Liar’s Paradox” from the context of truth to that of provability. Gentzen,
on the other hand, established the positive result that elementary number theory is
consistent, using at some crucial point the well-orderedness of a certain ordering
called ¢y that sprang from Cantor’s normal form (for presenting ordinals). He also
gave a direct proof that the latter principle is not deducible in this theory, thereby
providing an entirely new proof of a mathematical incompleteness in number theory.

Gentzen can be rightly considered to be the founding father of modern proof
theory. His sequent calculus and natural deduction system beautifully explain the
deep symmetries of logic. They underlie modern developments in computer science
such as automated theorem proving and type theory. This volume’s chapters by lead-
ing proof-theorists attest to Gentzen’s enduring legacy in mathematical logic and
beyond. Their contributions range from philosophical reflections and re-evaluations
of Gentzen’s original consistency proofs and results in proof theory to some of the
most recent developments in this exciting area of modern mathematical logic.
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In Memoriam: Grigori Mints, 1939-2014

%

With kind permission of his wife © Marianna Rozenfeld

When this book was about to be sent to the publisher, we received the very sad news
that Grigori (“Grisha”) Mints had died on 30th May 2014. He was born on 7th June
1939 in Leningrad (now again St. Petersburg).

Grisha was a driving force in proof theory and constructivism and a loyal
promoter of Gentzen-style proof theory. He was the pre-eminent expert on Hilbert’s
epsilon calculus and the leading exponent of the substitution method approach to
proof theory, expanding its range of applications to strong subsystems of arithmetic.
His discovery of the method of continuous cut elimination for infinitary proofs
unearthed the deeper relationship between Gentzen’s reduction steps on finitary
derivations and infinitary proof theory. In pursuit of his wide ranging research
interests, he published three books, ten edited volumes, more than 200 scholarly
papers, and thousands of reviews, with the aid of which he also maintained and
fostered his world spanning network of intellectual contacts through sometimes
difficult years working in the Soviet Union. Vladimir Lifschitz wrote about Grisha':

... his true calling was to study formal proofs in the spirit of pure mathematics in the best
sense of the word: the main project of Grisha’s professional life was to develop a clear,
complete understanding of properties of proofs, so that any possible question about them
will be easy to answer.

Thttps://philosophy.stanford.edu/news/professor-grigori- grisha-mints.
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In this way he can be seen as one of the leading executors of Gentzen’s legacy
and it seems to be more than adequate to dedicate this volume, celebrating Gerhard
Gentzen’s centenary, to the memory of Grisha Mints.
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Gentzen’s Consistency Proof in Context

Reinhard Kahle

1 Introduction

Gentzen’s celebrated consistency proof—or proofs, to distinguish the different
variations he gave'—of Peano Arithmetic in terms of transfinite induction up to
the ordinal® &y can be considered as the birth of modern proof theory. After the
blow which Gddel’s incompleteness theorems gave the original Hilbert Programme,
Gentzen'’s result did not just provide a consistency proof of formalized Arithmetic,
it also opened a new way to deal “positively” with incompleteness phenomena.’
In addition, Gentzen invented, on the way to his result, structural proof theory,
understood as the branch of proof theory studying structural (in contrast to
mathematical) properties of formal systems [79, 111]. With the introduction of
sequent calculus and natural deduction and the corresponding theorems about
cut elimination and normalization, respectively,* he revolutionized the concept of
derivation calculus, fundamental for all further developments of proof theory.

Here, we focus on the aspects of his work related to the quest for consistency
proofs of theories with mathematical content. We like to recall the context in which
the consistency proofs—one may add: “after Godel”—have to be put, and what
might be their mathematical and/or philosophical rationale. For it, we will look

ICf, e.g., [13,87,105], and [114] as well as [97] in this volume.
ZFor the ordinal &, see, for instance, [58] in this volume.

3See, for instance, [90] in this volume.

4See, for instance, [15] and [87] in this volume.

R. Kahle (<)
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4 R. Kahle

back to Hilbert’s (original) programme and the immediate lessons one may learn
from Godel’s theorems. We then consider consistency proofs for Arithmetic, whose
consistency, however, is not really at issue. After discussing the interesting case
of Analysis, we finish with a reflection on modern proof theory as it is guided by
the quest for consistency in the investigation of stronger and stronger mathematical
theories.

2 Hilbert’s Programme

Hilbert’s programme originates from his own second problem in the famous Paris
problem list [45] and, in its mature form, it proposes to carry out consistency proofs
of axioms systems for Arithmetic and Analysis “by finitistic methods.” Hilbert
didn’t specify exactly what he meant by “finitistic methods” and in modern formal
presentations one identifies these methods—following Tait [104]—with primitive-
recursive Arithmetic, PRA. From an abstract point of view, the main issue is that
the consistency of the base theory, in which the consistency proof should be carried
out, is beyond any reasonable doubt; and this should be the case for the finitistic
methods, whatever they are concretely.

The idea of Hilbert’s programme was somehow already conceived with the
question given in 1900, and a first sketch of how a consistency proof could be
performed was given by Hilbert in 1904 in his lecture at the International Congress
of Mathematicians in Heidelberg [47]. It was, however, only the appearance of
Brouwer’s Intuitionism which forced Hilbert to formulate his programme in precise
formal terms.> Finitistic Mathematics should play, in this context, the role of the
part of Mathematics which is beyond any doubt concerning consistency. It was
then the aim to justify the other parts of Mathematics by formal consistency proofs
carried out using only finitistic means. It is worth noting that, with the choice of
finitistic Mathematics as the base, Hilbert was fully in line with the intuitionistic
movement—even on philosophical grounds, and it should not come as a surprise
that he himself was occasionally called an intuitionist.® One can even find a

SFor the development of Hilbert’s programme(s), cf. e.g., [98].
6See Fraenkel [28, p. 154]:

This is the point of view of HILBERT, who, therefore, picks up himself the methodical
starting point of his intuitionist opponents—but for the purpose to deny their thesis; one
could almost characterize him as an intuitionist.

(German original: “Dies etwa ist der Standpunkt HILBERTS, der somit den methodischen
Ausgangspunkt seiner intuitionistischen Gegner — allerdings zum Zweck der Bestreitung ihrer
Thesen — selbst aufnimmt; man konnte ihn geradezu als Intuitionisten bezeichnen.”) Van Dalen
adds to this citation [112, p. 309]: “Although the inner circle of experts in the area (e.g. Bernays,
Weyl, von Neumann, Brouwer) had reached the same conclusion some time before, it was Fraenkel
who put it on record.” See also footnote 18.
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“intuitionistic creed” given by Gentzen in 1938, when he wrote [102, p. 235]:

The most consequential form of delimitation is that represented by the ‘intuitionistic’ point
of view, ...

What separated Hilbert from Brouwer and Weyl was the latter’s attitude to ban “the
other mathematics” from the mathematical discourse. In contrast, he was proposing
to justify by his Beweistheorie Mathematics in all its extensions on the base of
finitistic Mathematics. Here, Hilbert’s programme gained a new aspect: besides
consistency, one could now also demand conservativity of “higher” Mathematics
over finitary Mathematics.®

Without any doubt, Godel’s second incompleteness theorem put an end to
Hilbert’s programme in its original formulation.’ The so-called failure of Hilbert’s
Programme is advocated at several places, maybe most notable by Kreisel [66,
Abstract and p. 352]. But which kind of “failure” was it? Surely, it was the not the
one which was feared by the critics of classical mathematics. When Hermann Weyl
drew on the picture of a “house built on sand” [118, p. 1] he was afraid of possible
inconsistencies which could bring classical mathematics to collapse. Of course,
Godel’s theorems suggest on no account that there would be an inconsistency in
classical mathematics (or even Arithmetic).'”

As far as consistency is concerned, one may compare the situation with the
classical construction problems in Euclidean Geometry. There is no way to trisect an
angle by compass and ruler—but there are other means to do so (for instance, using
a marked ruler). Of course, in the context of a consistency proof, using other means
than finitistic ones will undermine Hilbert’s original philosophical starting point.
But Hilbert was, by no means, a philosophical hardliner. The only piece of written
evidence which we have about Hilbert’s reception of Gddel’s result is the cryptic
short preface in the first volume of the Grundlagen der Mathematik [52], saying
that Godel’s result “shows only that—for more advanced consistency proofs—the
finitistic standpoint has to be exploited in a manner that is sharper [...],’!! ie.,
the philosophical starting point was to change. Bernays and Ackermann provide us
with two additional testimonies that Hilbert soon adapted his “meta-mathematical
standpoint.”

7German original [32, p. 6]: “Die folgerichtigste Art der Abgrenzung ist die durch den ‘intuition-
istischen’ Standpunkt [. .. ] gegebene.”

8We may leave it open here whether Hilbert himself was advocating such a conservativity. The
issue of conservativity can be considered, of course, without reference to historic figures.

°Tt is reported in the Schiitte school that this was also immediately recognized in Gottingen.

10But one may note the puzzling lack of understanding of Russell, expressed in a letter to Leon
Henkin of 1 April 1963, cf. [18, p. 89f].

"Hilbert and Bernays [55, p. VII]. German original: “Jenes Ergebnis zeigt in der Tat auch nur,
daBl man fiir die weitergehenden Widerspruchsfreiheitsbeweise den finiten Standpunkt in einer
schiferen Weise ausnutzen muf, [...].”
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Based on Bernays’s reports, Reid writes about Hilbert’s reaction to Godel’s result
[92, p. 198]: “At first he was only angry and frustrated, but then he began to try to
deal constructively with the problem. Bernays found himself impressed that even
now, at the very end of his career, Hilbert was able to make great changes in his
program.”

Ackermann writes in a letter to Hilbert (August 23rd, 1933)'2: “I was particularly
interested in the new meta-mathematical standpoint which you now adopt and which
was provoked by Godel’s work.”

Unfortunately, we have no sources which explicate in detail Hilbert’s new
standpoint, but it goes without saying that Gentzen’s work was in line with it.!3
In fact, Bernays starts the section heading of the presentation of Gentzen’s proof of
the consistency of Arithmetic in [53, Sect. 5.3] with “Transgression of the previous
methodological standpoint of proof theory.”!#

Thus, with a more “liberal” philosophical position consistency proofs can still be
carried out, addressing Hilbert’s initial concerns. And Gentzen’s consistency proof
was among the first ones which provided such an argument. It was not even the only
one, and Godel gave, as early as 1938, in a talk at Zilsel’s seminar in Vienna, an
interesting overview of possible alternatives to extend Hilbert’s original standpoint
[38, p. 95]":

4. How then shall we extend? (Extension is necessary.) Three ways are known up to now:

1. Higher types of functions (functions of functions of number, etc.)

2. The modal-logical route (introduction of an absurdity applied to universal sentences
and a [notion of] “consequence”).

3. Transfinite induction, that is, inference by induction is added for certain concretely
defined ordinal numbers of the second number class.

Godel himself preferred the first alternative, worked out in [39]; he judged the
second one, which is intuitionistic logic of Brouwer and Heyting augmented by a
modal-like operator B (for German beweisbar), “the worst of the three ways” [38,

2German original [1, p.1f]: “Besonders interessiert hat mich der neue meta-mathematische
Standpunkt, den Sie jetzt einnehmen und der durch die Godelsche Arbeit veranlat worden ist.”
The letter was written after Ackermann visited Gottingen, but didn’t meet Hilbert and spoke only
with Arnold Schmidt, who informed him about “everything” going on in Géttingen.

3Detlefsen, [19] in this volume, however, points out that there are some fundamental differences
between Gentzen’s own philosophical view and Hilbert’s view.
“In German: “Uberschreitung des bisherigen methodischen Standpunkts der Beweistheorie”.

15German original, [38, p. 94]:
4. Wie also erweitern? (Erweiterung nétig.) Drei Wege [sind] bisher bekannt:

1. Hohere Typen von Funktionen (Funktionen [von] Funktionen von Zahlen, etc.)

2. Modalitdtslogischer Weg (Einfiihrung einer Absurditédt auf Allsidtze angewendet und eines
“Folgerns”).

3. Transfinite Induktion, d.h., es wird der Schluf} durch Induktion fiir gewisse konkret definierte
Ordinalzahlen der zweiten Klasse hinzugefiigt.
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p. 103]; the third one is, of course, Gentzen’s way; for a detailed discussion of
(this passage from) Godel talk at Zilsel’s seminar, see [24, p. 120f]. Of course, we
don’tdepend on Godel’s choice; what counts is that there are extensions of Hilbert’s
original standpoint which provide a rationale for modern consistency proofs.

With respect to the second aspect of Hilbert’s Programme—the supposed
conservativity of higher Mathematics over finitistic Mathematics—the “failure”
cannot be denied: there is no way to reduce all higher Mathematics to finitistic
Mathematics; even more: higher Mathematics may prove finitistic statements which
are not provable with pure finitistic methods.'® But let’s draw on a comparison here:
nobody will deny that Columbus failed to find the sea route to India; but he didn’t
sink in the Ocean, he discovered America. In the same way, Hilbert’s Programme,
aiming for consistency and (maybe) conservativity, didn’t sink in inconsistency, but
discovered Non-Conservativity. Exploring this new phenomena in Mathematics is
the driving force of modern proof theory.

3 Consistency Proofs for Arithmetic

Any consistency proof has to rely on some undisputed base. This was clearly stated
by Gentzen, for instance in [31, Sect. 2.31]'7:

Such a consistency proof is once again a mathematical proof in which certain inferences
and derived concepts must be used. Their reliability (especially their consistency) must
already be presupposed. There can be no ‘absolute consistency proof’. A consistency proof
can merely reduce the correctness of certain forms of inference to the correctness of other
forms of inference.

16See, for instance, [75] in this volume.

17German original: “Ein solcher Widerspruchsfreiheitsbeweis wire nun wieder ein mathematischer
Beweis, in dem gewisse Schliisse und Begriffsbildungen verwendet wiirden. Diese miissen als
sicher (insbesondere als widerspruchsfrei) bereits vorausgesetzt werden. Ein ‘absoluter Wider-
spruchsfreiheitsbeweis’ ist also nicht moglich. Ein Widerpruchsfreiheitsbeweis kann lediglich die
Richtigkeit gewisser SchluBweisen auf die Richtigkeit anderer SchluBwiesen zuriickfiihren. Man
wird also verlangen miissen, daf3 in einem Widerspruchsfreiheitsbeweis nur solche Schluweisen
der Theorie, deren Widerspruchsfreiheit man beweist, als erheblich sicherer gelten konnen.”
Similarly in [32]:

In order to carry out a consistency proof, we naturally already require certain techniques
of proof whose reliability must be presupposed and can no longer be justified along these
lines. An absolute consistency proof, i.e., a proof which is free from presuppositions is of
course impossible. [102, p. 237].

German original: “Um einen Widerspruchsfreiheitsbeweis zu fiihren, braucht man natiirlich bereits
gewisse mathematische Beweismittel, deren Unbedenklichkeit man voraussetzen mufl und auf
diesem Wege schliellich nicht weiter begriinden kann. Ein absoluter, d. h. voraussetzungsloser
Widerspruchsfreiheitsbeweis ist selbstverstandlich unmoglich.”
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It is therefore clear that in a consistency proof we can use only forms of inference that count
as considerably more secure than the forms of inference of the theory whose consistency is
to be proven. [102, p. 138]

Hilbert’s original choice for such a base was finitistic Mathematics, and at that
time, this was even identified—by name—with intuitionistic Mathematics in the
Hilbert school.'® Now, taking Heyting’s intuitionistic formalization of Arithmetic
as undisputed base, there was already a consistency proof of classical Arithmetic
given by the double negation interpretation, independently found by Goédel [37]
and Gentzen [33]", and even earlier by Kolmogorov [65]. In his paper Gentzen
expressed explicitly, [102, Sect. 6.1, p. 66f]:%

If intuitionistic arithmetic is accepted as consistent, then the consistency of classical
arithmetic is also guaranteed . ..

But Gentzen was not happy with this kind of consistency proof (cf. the neat
discussion in [102, p. 10f]), and went on to give his celebrated consistency proof in
terms of transfinite induction up to &g. This proof starts from a different base, i.e.,
primitive recursive arithmetic together with transfinite induction up to &o.

Here, we dispense with a presentation of Gentzen’s result which can be found, if
not in Gentzen’s original papers, in the standard proof-theoretic literature.?' Hilbert,
of course, was excited about the proof. But Kreisel [68, p. 121] reports also of
“familiar jokes (for example, by Tarski whose confidence [in the consistency] was
increased by <e, or by Weyl who was astonished that one should use gp-induction
to prove the consistency of ordinary, that is w-induction).”??

Tarski’s “joke” (or a variation of it) is referred in detail in [102, p. 10]:
“Gentzen’s proof of the consistency of arithmetic is undoubtedly a very interesting
metamathematical result, which may prove very stimulating and fruitful. I cannot
say, however, that the consistency of arithmetic is now much more evident to me (at
any rate, perhaps, to use the terminology of the differential calculus more evident
than by an epsilon) than it was before the proof was given” [109, p. 19]. However,
for a “semanticist” like Tarski there cannot be any doubt about the consistency of

18«Concerning the use of the word intuitionistic [. . .], it should be noted that according to Bernays
[[11, p. 502]], the prevailing view in the Hilbert school at the beginning of the 1930s equated
finitism with intuitionism.” [24, p. 117]. See also footnote 6 above.

9This paper was submitted in 1933, but withdrawn by Gentzen when he became known about
Godel’s paper. An English translation appeared in print in 1969, [102, #2], the German version of
the Galley proofs, kept by Paul Bernays, was published only in 1974.

20German original [33, p. 131]: “Wenn man die intuitionistische Arithmetik als widerspruchsfrei
hinnimmt, so ist [... ] auch die Widerspruchsfreiheit der klassischen Arithmetik gesichert."

21 An informal presentation of the main idea of the proof is given, for instance, by Takeuti in [120,
p. 128ff].

22 A well-known proof theorists presumably heard the second joke from Kreisel but confused a “y”
with an “” attributing it—with reference to Kreisel—to “un grand mathématicien frangais” [35,
p- 520, fn. 14]; this confusion is confirmed in [36, pp. 9 and 33] where André Weil is mentioned
by name (without reference to Kreisel).
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Arithmetic from the very onset—otherwise, even the idea of the structure of the
natural numbers would be pointless. We mention this, because on the assumption
of the existence of a structure, any correctness lemma results in a consistency
proof.?

Hermann Weyl’s joke is equally unfair, as it suppresses the whole issue of
Gentzen’s proof, i.e., that the induction up to gy is applied to quantifier-free
formulas, only.?*

Universal quantification—which was eliminated by Gentzen in the induction
schemata—was at the very bottom of Hilbert’s concerns, much more than, for
instance, the tertium-non-datur. Hilbert’s early outline of a consistency proof
in the 1904 Heidelberg talk [47] was criticized by Poincaré with the argu-
ment that, for any such consistency proof, Hilbert would have to reason induc-
tively?®; but justifying induction by induction results in a vicious circle. Only
with the separation of Metamathematics—using “weak” induction—from Mathe-
matics proper—allowing for stronger induction—he developed a tool to respond
to this critics.?® Thus, Gentzen’s use of quantifier-free inductions, though being
transfinite, is fundamentally in line with Hilbert’s concern to address Poincaré’s
objection.?’

Ackermann gave, shortly after Gentzen, a consistency proof for Arithmetic using
Hilbert’s e-substitution method, cf. [2], and its discussion in [53, Sect. 2] and [54,
Supplement V].?® From a historic point of view, it is probably more an adaptation of
Gentzen’s proof to a specific technique favored by Hilbert than a “new” consistency

23Smullyan [100, p. 56] illustrates very well this point in connection with Godel’s (first) incom-
pleteness result, stressing that Godel, by using w-consistency, makes a much weaker assumption
than correctness. The pointlessness of consisteny proofs by semantic methods was well stated by
Shoenfield [96, p. 214]:

The consistency proof for P by means of the standard model [...] does not even increase
our understanding of P, since nothing goes into it which we did not put into P in the first
place.

24For sure, Weyl will have known exactly what’s going on here, and probably also classified his
remark only as a joke.

25See [84], cited in [98, p. 7].

26See, for instance, [10, p. 203]. This separation might have been suggested by Brouwer to Hilbert
in 1909, cf. [112, p. 302]. Sieg [98, p. 27] writes: “Hilbert claims in [[50]], that Poincaré arrived
at ‘his mistaken conviction by not distinguishing these two methods of induction, which are of
entirely different kinds’ and feels that ‘[u]nder these circumstances Poincaré had to reject my

LR

theory, which, incidentally, existed at that time only in its completely inadequate early stages’.

271t is defensible that Hilbert took Poincaré’s critics more serious than, for instance, Brouwer’s, cf.
[61,62]; but since Poincaré died already in 1912, Hilbert had lost him as discussion partner at the
time his programme was worked out.

28This supplement, added to the second edition of [53] and published in 1970, also presents a
consistency proof of Kalmadr, based on an unpublished manuscript of 1938.
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proof.?’ However, the e-substitution method was recently revived by Mints for the

analysis of stronger systems, cf. [4,76,78] and [77] in this volume.

Godel [39] published in 1958 a conceptually different consistency proof, a
worked out version of the idea already mentioned at Zilsel’s seminar in 1938 (see
above) which is based on functionals of higher types, known as Godel’s T (the
theory) or the Dialectica-Interpretation (the interpretation of Arithmetic in 7). This
consistency proof is quite different from Gentzen’s, and it addresses particularly the
finitistic aspect of Hilbert’s programme, as the functionals of higher types can be
considered as fulfilling this aspect.

Even if somebody would not be convinced by any single consistency proof, (s)he
should take into account that here conceptually different approaches—intuitionism;
transfinite induction; functionals of higher type—all lead to the consistency of
Peano Arithmetic. For Church’s thesis sometimes the argument is put forward that
many independent approaches to computability lead to the same class of functions.
We have here a similar phenomenon, where the risk—put forward for Church’s
thesis—of “systematically overlooking something” is even lower, and one gains
some kind of independent evidences for the consistency of Arithmetic.

In any case, as the consistency of Arithmetic is not really at issue, for modern
proof theory Gentzen’s consistency proof must be put in the right perspective.
Macintyre writes in this respect [72, p. 2426]%":

Much nonsense has been pronounced about Gentzen’s work, even by extremely distin-
guished people. Consistency is not really the main issue at all. He did reveal fine structure
in the unprovability of consistency of PA, as a consequence of much deeper general
methodology.

4 Analysis

It should be clear that for Hilbert’s Programme Arithmetic could have been only
an intermediate goal on the way to Analysis. It was, of course, Analysis which
Hermann Weyl had in mind when speaking about a “house built on sand,” it was

2Cf. Bernays in [53, p. VII]:

Currently, W. Ackermann is developing his earlier consistency proof—by use of a sort
of transfinite induction as used by Gentzen—in a way that it obtains validity for the full
numbertheoretic formalism.

German original: “Gegenwirtig ist W. ACKERMANN dabei, seinen friiheren (...) Widerspruchs-
freiheitsbeweis durch Anwendung der transfiniten Induktion in der Art, wie sie von GENTZEN
benutzt wird, so auszugestalten, da} er fiir den vollen zahlentheoretischen Formalismus Giiltigkeit
erhdlt.”

Von Plato writes in [115, end of 1.4.10]: “A second proof of Gentzen’s result was given by an
unwilling Wilhelm Ackermann, after repeated pleadings on the part of Bernays.”

3011 the continuation of the citation, the mentioned fine structure is illustrated by the result about
provably total functions of PA which one can obtain from Gentzen’s work.
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Analysis which Brouwer tried to “revolutionize” (using Weyl’s language) within
his intuitionistic philosophy. Analysis uses at its very base the definition of the real
numbers, a genuine impredicative concept. It was, first of all, Poincaré who put the
use of impredicative concepts into question (though he accepted the real numbers
as such).’’ But also Hilbert’s own student Weyl was advocating a predicative
reconstruction of Mathematics in Das Kontinuum [117], being willing to give up
a large part of traditional Mathematics. Thus, for Hilbert, a consistency proof of
classical Analysis turned now from a “simple question™ of his Paris problem list
into an issue of defense against an intuitionistic “Putschversuch” (as he expressed it
in [49]).

It is known that Godel started from Analysis when he was still trying to fulfill
Hilbert’s programme; Wang [116, p. 654] reports: “In the summer of 1930, Godel
began to study the problem of proving the consistency of analysis. [. .. ] The problem
he set for himself at that time was the relative consistency of analysis to number
theory.” In this context he encountered the incompleteness results which, in turn,
closed this lane of argumentation.

Thus, Gentzen’s consistency proof of Arithmetic is now only a first step, and the
search for a consistency proof of Analysis was started immediately after. We know
that Gentzen was working hard on such a consistency proof even in prison in Prague
just before his premature death in 1945,%? and some remaining notes about this work
are currently in the process of publication [115]. But, it is also clear that he didn’t
reach a final result.

In sharp contrast to intuitionistic Arithmetic, intuitionistic Analysis can hardly be
considered as a base to provide a consistency proof for (classical) Analysis which
would fit Hilbert’s aims. One problem are the additional principles for intuitionistic
Analysis proposed by Brouwer, which are inconsistent in the classical setting. This
makes it doubtful whether intuitionistic Analysis (in Brouwer’s formulation) could
be even considered as more reliable than classical Analysis in itself.??

Szabo in [102, pp. 12-16] gives a short review of other early consistency results,
going beyond Arithmetic, by Fitch, Lorenzen, Takeuti, Schiitte, and Ackermann.
None of them are accepted as fulfilling Hilbert’s requirement on a consistency

31See, for instance, the talk on transfinite numbers given by Poincaré in Géttingen in 1909 in the
presence of Hilbert, included in [85] and translated by Ewald in [22, 22.G] (reprinted in [62]).

328zabo [102, p. viii] refers to the memories of a friend of Gentzen in the prison: “He once confided
in me that he was really quite contented since now he had at last time to think about a consistency
proof for analysis. He was in fact fully convinced that he would succeed in carrying out such a
proof.”

33Here, one can turn Hilbert’s programme upside down and use interpretations of new intuitionistic
principles to justify them on classical grounds; see, for instance, [27, p. 340]. I also remember
a proof theorist, making good use of such principles, but calling them—trained in classical
Mathematics and therefore believing in the standard notion of mathematical truth—*“totally wrong”
(as translation of the German “grob falsch”).
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proof.3* But they had, of course, some impact on the development of proof theory.

The most stimulating proposal was Takeuti’s Fundamental Conjecture, saying
roughly that cut-elimination holds for second-order logic, cf. [107] and the informal
presentation in [120, App. B]. There were soon some proofs of it [86,93, 103, 106],
which, however, rely on set theoretic considerations. Thus, these proofs do not
provide additional reliability.?

Similar concerns regard other approaches, like Girard’s F [34], where the
candidates, used in the normalization proof, are subject to the same foundational
concerns as the theory itself.36:3

Spector [101] introduced bar recursion as a concept which could be used to
extend the Dialectica interpretation to Analysis.>® To serve as a consistency proof,
however, one would rely on bar recursion/bar induction as valid principle. Avigad
and Feferman [8, p. 370f] write in their “Evaluation of Spector’s interpretation”:

Spector was careful not to claim that the generalization of bar induction to higher types,
which he used to justify bar recursion for continuous functionals, should be accepted on
intuitionistic grounds. In fact, he offers the following caveat:

The author believes that the bar theorem is itself questionable, and that until the bar
theorem can be given a suitable foundation, the question whether bar induction is
intuitionistic is premature.

The question of whether bar recursion can be justified on constructive grounds was taken
up in a seminar on the foundations of analysis led by G. Kreisel at Stanford in the summer
of 1963. The seminar’s conclusion, summarized by Kreisel in an ensuing report [[69]], was
that

...the answer is negative by a wide margin, since not even bar recursion of type 2
can be proved consistent [by constructively accepted principles].

3Kreisel, in [67, p. 344], sketches also an extension of “Gddel’s old translation” of a system
for classical Analysis to a specific intuitionistic reformulation of Analysis, involving the general
Comprehension Axiom, which “provides an intuitionistic consistency proof of classical analysis”.
He himself classifies this result as “philosophically [...] not significant at all”, except for “a
reduction to intuitionistic methods of proof”—which he judges a “technical” property. In the
Discussion of this proof he reminds the reader to look for alternatives:

Quite naively, this easy proof in no way reduces the interest of a more detailed proof
theoretic reduction [...]; just as Godel’s original intuitionistic consistency proof for
classical arithmetic Z did not make Gentzen’s reduction superfluous.

33In a discussion of these proofs, Kreisel writes [67, p. 349, footnote 16]: “[I]n terms of consistency
proofs, Tait’s argument would only have proved the consistency of classical analysis in third order
arithmetic!”

36] remember a proof-theorist classifying such a normalization proof as simply “circular.”

37The worst-case scenario was experienced by Martin-Lof, when he realized that the normalization
proof of his first (inconsistent) type theory was carried out in an inconsistent metatheory (see
Setzer’s contribution in this volume [95]).

38For a thorough discussion of Spector’s proof see [26] in this volume. Oliva and Powell [80],
also in this volume, discuss some spin-offs we can get from proof-theoretic analyses in the
neighborhood of Spector’s approach.
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When failing to prove Takeuti’s Fundamental Conjecture by more elementary
means, proof theory turned naturally to Subsystems of Analysis where impressive
results were established. Following the two traditions, called Schiitte-style and
Takeuti-style proof theory, we are able to give today analyses up to T1} comprehen-
sion, cf. the work of Rathjen [88,89] and Arai [5-7], respectively.>* These analyses
of subsystems of Analysis in terms of ordinals are the natural extension of Gentzen’s
consistency proof for Arithmetic. It is particularly rewarding to provide the proof-
theoretic strength of a theory; with ordinals as measure one is able to compare
theories from different formal realms, like set-theoretical ones, type-theoretical
ones, or others like Theories of Inductive Definitions*® and Feferman’s Explicit
Mathematics. In return, these frameworks can help to carry out parts of the proof-
theoretic investigations.*!

The rationale of ordinal analyses—in comparison with the approaches mentioned
above—was recently described by a colleague in the following neat characteriza-
tion:

Something that makes specifically ordinal-theoretical proof-theoretical analyses of a theory

particularly convincing is that in many cases there is a big difference between the

metatheory and the object theory; whereas with normalisation proofs based on Tait-style
computability, or Girard-style ‘candidates’, the meta-theory is (more-or-less) the theory
itself together with a uniform reflection principle. Something would be far wrong if one
couldn’t prove a normalisation theorem for Church’s theory of types in such a metatheory;

but the extra confidence one gets in the principles formulated therein from a normalisation
theorem is tiny.

Let us close this section with the reference to some subprogrammes which grew
out of Gentzen-style proof theory and which reach out for Analysis.

In [23], Feferman gives a comprehensive survey on the “viable rationale” of
reductive proof theory, using examples of “pairs” of frameworks where the first
one is reduced to the second one. Whereas Hilbert’s original hope about the
pair (infinitary, finitary) is limited by Godel’s incompleteness theorems and only
exemplified by reductions to PRA [23, 5.1], one can look at other pairs like
(uncountable infinitary, countable infinitary) [23, 5.2]; (impredicative, predicative)
[23, 5.3]; and (non-constructive, constructive) [23, 5.4].4?

¥See [81, 82, 94, 108] for comprehensive presentations of the background of the respective
developments.

40See, for instance, [14] and [57] in this volume.
4IThis was exemplified, in particular, by Kripke-Platek set theory, cf. e.g., [56,81].

421 the further course of the discussion, Feferman expresses some doubts about current advances
in ordinal analysis with respect to the given rationale [23, p. 80]:

Even if one succeeds in reducing the system (IT3-CA) £ Bl to a constructive system
(whether evidently so or not), one can hardly expect that doing so will appreciably increase
one’s belief in its consistency (if one has any doubts about that in the first place) in view of
the difficulty of checking the extremely complicated technical work needed for its ordinal
analysis.
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Another successful subprogramme is Reverse Mathematics which looks for the
weakest natural subsystem of Analysis which proves a given mathematical theorem,
cf. [99].

Finally, we like to mention Applied Proof Theory, sometimes also promoted
under the name proof mining, which aims to extract additional mathematical
information from an in-depth analysis of proofs in formal systems, cf. [64].

For all these subprogrammes the consistency issue is clearly secondary. But they
all rely on the techniques which were developed to a large extent out of Gentzen’s
methods used for his consistency proofs.

S The Quest for Consistency

It was in an informal conversation, years ago, that two distinguished proof theorists
repeatedly assured each other that, for modern proof theory, “consistency is not
the question.” As a matter of fact, the working mathematician considers ZFC,
Zermelo—Fraenkel set theory including the axiom of choice, being beyond doubt.*3
Let’s have a look at Wiles’s proof of Fermat’s Last Theorem. As it stands, its
formalization seems to require ZFC + some Grothendieck Universes on top [74].
This is an outrageously strong system for a theorem which can be formulated in
Peano Arithmetic. But no Mathematician would raise a minimal doubt about Wiles’s
proofs because it makes use of such a strong theory.

As an expert in set theory, W. Hugh Woodin makes the following “prediction”
[119, p. 453]*:

In the next ten thousand years, there will be no discovery of an inconsistency
in these theories [referring to three equiconsistent theories, including ZFC +
“There exist infinitely many Woodin cardinals”].

And Gaisi Takeuti points out that we cannot even imagine any longer the original
concerns of Hilbert’s times, [120, p. 122]:

In the current day, axiomatic set theory is fully accepted and it is generally acknowledged
that modern mathematics can be carried out in the framework of axiomatic set theory. No
contradiction has arisen in axiomatic set theory, and a sense of security that no contradiction
will arise in it in the future is supported by intuitive consensus. Under the current secure
circumstances one cannot imagine the sense of crises of that earlier time.

“3This is, admittedly, in sharp contrast to the early times of axiomatic set theory, where Poincaré,
for instance, expressed his doubts about Zermelo’s axiomatization of set theory in the following
words, cf. [43, p. 540]:

But even though he has closed his sheepfold carefully, I am not sure that he has not set the
wolf to mind the sheep.

#0f course, this prediction is embedded in a thorough discussion which gives arguments for this
claim. But one may note that Woodin speaks here about the discovery not about the existence of an
inconsistency.
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Feferman, taking up explicitly an anti-platonist position, puts the following
argument forward for the consistency of standard formal theories [23, p. 72]*:

I, for one, have absolutely no doubt that PA and even PA, are consistent, and no genuine
doubt that ZF is consistent, and there seems to be hardly anyone who seriously entertains
such doubts. Some may defend a belief in the consistency of these systems by simply
pointing to the fact that no obvious inconsistencies are forthcoming in them, or that these
systems have been used heavily for a long time without leading to an inconsistency. [...]
My own reason for believing in the consistency of these systems is quite different. Namely,
in the case of PA, we have an absolutely clear intuitive model in the natural numbers,
which in the case of PA; is expanded through the notion of arbitrary subset of the natural
numbers. Finally, ZF has an intuitive model in the transfinite iteration of the power set
operation taken cumulatively. This has nothing to do with a belief in a platonic reality
whose members include the natural numbers and arbitrary sets of natural numbers, and so
on. On the contrary, I disbelieve in such entities. But I have as good a conception of what
arbitrary subsets of natural numbers are supposed to be like as I do of the basic notions
of Euclidean geometry, where I am invited to conceive of points, lines and planes as being
utterly fine, utterly straight, and utterly flat, resp.

With respect to the standard formal theories, used in Mathematics, one may also
cite Kreisel*°:

The doubts about the consistency are more doubtful than the consistency itself.

There is even an ironic corollary to Godel’s second incompleteness theorem with
respect to “proof obligations”: Godel tells us that we cannot prove the (absolute)
consistency of a formal mathematical theory. However, if somebody believes that a
certain theory is inconsistent, (s)he would be committed to prove it, as this would
be, of course, always possible. And such a person needs to be reminded of a word of
Dedekind from 1887: “In science, what is provable should never be believed without
proof.”*’ But for one who believes in the consistency of a theory, Dedekind does not
apply—thanks Godel.

Thus, what should we think of these alleged threats of inconsistencies?

One might argue that the history of Mathematics is full of examples which one
may consider as inconsistencies.** Mathematicians may apply a new concept in a
way which results in false theorems. The simple fact that the supposed theorem

4The argument for the intuitive model of ZF is compared with the situation for Quine’s New
Foundation where the lack of such an intuitive model gives reason to look for a (relative)
consistency proof.

4Conveyed by Girard in French [35, p. 525]: “Les doutes quant a la cohérence sont plus douteux
que la cohérence elle-méme.”

4TGerman original: “Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt
werden.” cited and translated in [20, p. 97].

48See, for instance, [12]: “Historically speaking, it is of course quite untrue that mathematics is free
from contradiction” and later “[Contradictions] occur in the daily work of every mathematician,
beginner or master of his craft, as the result of more or less easily detected mistakes, [...]”
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is false implies that a proper formalization of the argument will show a formal
inconsistency. However, in most cases, the solution was never a problem: either the
argumentation was dismissed with invalid, or—a little bit more interesting—some
fundamental assumptions about a certain mathematical area were revised which
improved our understanding of the this area.

Euler, for instance, in his famous book on Algebra [21], calculated =1 —4 =
V4 = 2, applying the “general law” avbh = +ab.* Adding this last “law”
to the axioms of the field of complex numbers, of course, leads to an inconsistent
theory. Such cases are not of much interest because, typically, the wrong assumption
is easy to isolate and to separate from the part which will be kept after a
revision.

But there are some interesting examples of inconsistencies in the history of
Mathematics which transcend such simple instances and which deserve a closer
inspection:

* Cantor’s naive set theory;

» Frege’s Grundgesetze der Arithmetik, and subsequent foundational systems by
Curry, Church, Kreisel, and Martin-Lof;

* Reinhardt cardinals over ZFC.

Cantor’s naive set theory may be based on an unreflected comprehension
principle expressed in Cantor’s famous first characterization of the notion of
50
set>:

By a ‘set’ we understand every collection to a whole M of definite, well-differentiated
objects m of our intuition or our thought.

It was soon discovered that this characterization allows for inconsistent set
constructions like the set of all cardinals (Cantor 1897, letter to Hilbert [17,
letter 156]), the set of all sets (Cantor 1899, letter to Dedekind [17, letter
163]), or the set of all ordinals (Burali-Forti 1897 [113, pp. 104ff]). It is
worth noting that Cantor himself did not see any problem here, but took the
“paradoxes” just as reductio-ad-absurdum arguments of the inexistence of the
respective sets; in his correspondence with Hilbert he refines, therefore, his
notion of set by distinguishing it as “consistent multiplicities.”>! Thus, for
Cantor it was natural that the (in)consistency of a set construction is verified a

49This example is taken from [20, p. 59].

30German original: “Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten
wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ‘Ele-
mente’ von M genannt werden) zu einem Ganzen.” [16, p. 282]. The translation is from [44,
p. 331

5 German: “consistente Vielheiten,” letter to Hilbert from May 5th, 1899, [17, letter 160]; as
“finished set” (“fertige Menge”) already in a letter from December 2nd, 1897, [17, p. 390].
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posteriori. Hilbert did not agree with such an approach and demanded an a priori
justification.>?

In practical terms, this was done by Zermelo in his axiomatization of set theory
[121].53 On the theoretical side, one finds here one of the motivations for Hilbert
to propose consistency proofs for theories to ensure the meaningfulness of their
mathematical notions.>*

Frege’s aim to give a logicist foundation of Mathematics in his Grundgesetze
der Arithmetik [29,30] was destroyed by Russell’s Paradox. It is generally assumed
that Frege’s Basic Law V is responsible for the collapse of the system, but one
may consider alternatives to resolve the problem.> What is of interest for us, as a
lesson for the history of logic, is that Frege had some kind of justification of his
axioms (one might as well call them meaning explanations). The problem was,
that these were local justifications for the single axioms, but their combination
turns out to be impossible; but it explains at the same time why we can single out
different consistent and meaningful subsystems. The fate of Frege’s system raises
the question to which extent we can trust any philosophical justification programme
based on local justifications (or meaning explanations).’®3” What should provide

32In [47] he writes, [113, p. 131]:

G. Cantor sensed the contradiction just mentioned and expressed this awareness by
differentiating between “consistent” and “inconsistent” sets. But, since in my opinion he
does not provide a precise criterion for this distinction, I must characterize his conception
on this point as one that still leaves latitude for subjective judgment and therefore affords
no objective certainty.

In German (cited in [17, S. 436]): “G. Cantor hat den genannten Widerspruch empfunden
und diesem Empfinden dadurch Ausdruck verliehen, daf3 er ‘konsistente’ und ‘nichtkonsistente’
Mengen unterscheidet. Indem er aber meiner Meinung nach fiir diese Unterscheidung kein scharfes
Kriterium aufstellt, muf ich seine Auffassung tiber diesen Punkt als eine solche bezeichnen, die
dem subjektiven Ermessen noch Spielraum 148t und daher keine objektive Sicherheit gewéhrt.” An
even stronger statement against Cantor’s approach can be found in a lecture note from 1917, [48],
cf. [59,60].

33 Although this axiomatization has the flaw that its justification is extrinsic where philosophers
would prefer to have an intrinsic one, cf. e.g., the discussion in [73].

34One may note that Cantor’s criterion for a “finished set” also requires a consistency proof, but
somehow locally for the particular construction only. However, as far as we know, Cantor only
took note of the criterion in the negative cases, to dismiss a set construction when it was shown to
be inconsistent.

SSFor instance, Aczel’s Frege Structures, [3].
36The situation becomes philosophically even more doubtful when such a justification depends, in
addition, on the approval of a “Master”. In this respect, Lorenzen complained about Brouwer [70]:

Unfortunately, the explanation which Brouwer himself offers for this phenomenon [that
some Mathematicians consider the ‘tertium non datur’ as unreliable] is an esoteric issue:
only one who listened the Master himself understands him.

(German original: “Ungliicklicherweise ist die Erkldrung, die Brouwer selbst fiir dieses Phinomen
anbietet, eine esoterische Angelegenheit: nur, wer den Meister selber horte, versteht ihn.”)

57A complementary view on this issue is given by Setzer [95] in this volume.
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the evidence for a consistent combination if not a global justification—like a
model—which, then, could also be used directly?

After Frege, there were four more prominent examples of inconsistent foun-
dational systems: Curry’s combinatory logic, Church’s original A-calculus (both
subject to the Kleene-Rosser paradox), Kreisel’s theory of constructions (subject
to the Kreisel-Goodman paradox), and Martin-Lo6f’s first type theory (subject to
Girard’s paradox). Although these systems represent three quite different
approaches, it appears to us that the problems for all arise from the philosophical
motivation rather than from a formal (logical) inaccuracy in the formalization.”®
This suggests the conclusion that philosophical motivations are apparently more
dangerous for formal systems than pure mathematical motivations (as in the case of
ZFC, for instance).

With a Reinhardt cardinal in ZFC we have, however, a completely different
case of inconsistency. A Reinhardt cardinal is a certain large cardinal which was
proposed by William Nelson Reinhardt in his doctoral dissertation in 1967, and
shown to be inconsistent over ZFC by Kenneth Kunen in 1971. To get a glance of the
fate of this cardinal—including its role in the absence of the Axiom of Choice where
no inconsistency is known—one may consult [119, Sect. 20.3]; more information
can be found in [63, Sect. 23]. In a simplified way, one can say that large cardinals
constitute a branch of set theory which tries to settle the Continuum’s Hypothesis on
the basis of “new axioms.”> It is a fascinating area which—despite in failing so far
to settle ultimately the question of the Continuum’s Hypothesis—produced a large
amount of interesting results. The inconsistency of the Reinhardt cardinal over ZFC
simply puts a bound on what one may add.

What is important for us here is that this inconsistency should not surprise one
particularly. Even less should it raise a minimal doubt about the consistency of
“ordinary reasoning” in Mathematics. To the contrary, large cardinal axioms are,
in some sense, designed to push our axiomatic set theories to its ultimate limit; and
the Reinhardt cardinals simply show that we went beyond this limit. As Kanamori
puts it [63, p. 324]: “ZFC rallies at last to force a veritable Gotterdimmerung for
large cardinals!”

As upshot one can say that there is simply no serious threat of inconsistencies
in Mathematics, if one doesn’t approach intentionally its ultimate limits—or
overstretch philosophical demands.

Still, there is an issue of consistency for Analysis—and, a forteriori, for set
theory: the impredicative features might have just not been explored sufficiently to
find a possible contradiction. And the reason for it might be that Mathematics uses
only a very limited part of the formal theories, a part which resides in an innocent,
consistent subsystem; in fact, Reverse Mathematics gives us strong evidence for

38This claim can be substantiated by the fact that it was not possible for any of the systems to
modify it in a way that the original aims of the authors would be preserved.

39 A thorough discussion of this issue can be found in [25].
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such a claim. It was Gentzen himself who expressed the general concern in 1938 as
follows, [102, p. 235]:%°

Indeed, it seems not entirely unreasonable to me to suppose that contradictions might
possibly be concealed even in classical analysis. The fact that, so for, none have been dis-
covered means very little when we consider that, in practice, mathematicians always work
with a comparatively limited part of the logically possible complexities of mathematical
constructs.

Thus, after recalling his consistency proof for elementary number theory, he
came to the conclusion that “the most important [consistency] proof of all in
practice, that for analysis, is still outstanding” [102, p. 236].°"

By pursuing such a consistency proof, modern proof theory developed genuine
techniques not only to achieve consistency results but also to analyze the fine
structure of formal theories relevant for the mathematical practice.%> In terms of
our comparison above, we may say that pursuing the quest for consistency, Gentzen
provided us with the tools to explore and to map the newly discovered land of
unlimited mathematical strength.
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Gentzen’s Anti-Formalist Views

Michael Detlefsen

1 Introduction

In June of 1936 Gentzen gave a lecture at Heinrich Scholz’ seminar in Miinster. The
title of the lecture was “Der Unendlichkeitsbegriff in der Mathematik.”!

In this lecture, Gentzen presented a generally optimistic view concerning the
prospects for the future development of Hilbert’s proof-theoretic program to
establish the consistency of classical mathematics. At the same time, curiously,
he expressed sympathy with a challenge to Hilbert’s formalist program that is
reminiscent of some of Brouwer’s criticisms.

This challenge, which I’ll refer to as the Contentualist Challenge, was essentially
this: even if the consistency of classical mathematics were ultimately to be proved
by finitarily acceptable means, this would not be enough to properly found it. Also
necessary, in Gentzen’s view, was the provision of a way to assign contents to the so-
called ideal propositions® of classical mathematics. Hilbert’s so-called direct proof
of the consistency of arithmetic was neither designed nor equipped to provide such
an assignment. As a result, it was neither designed nor equipped to satisfy conditions
the satisfaction of which Gentzen regarded as necessary for the proper foundation
of classical mathematics.

I'The lecture was published in Semesterberichte Miinster, WS 1936/37: (65-85). It was translated
into English by M. E. Szabo as “The Concept of Infinity in Mathematics” and included in [19].
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Gentzen put what he took to be the crucial point this way:

Even if the consistency were to have been proved, the propositions of actualist mathematics
(die Aussagen der an-sich-Mathematik)® would remain without sense (sinnlos) and would
therefore, as ever, have to be repudiated (abzulehnen). ...The whole question of “sense”
(“Sinnes”) does not seem . . . to be ready for a final settlement. ... The objection against the
sense of actualist propositions must in any case not be taken too lightly; it is not entirely
without merit. [16, p. 74]

Hilbert’s proposed formalist defense of classical mathematics was undertaken for
the purpose of justifying the use of ideal elements in our mathematical reasoning.
This included, in particular, the use of actualist propositions as instruments to aid
the conduct of the “logical” parts of mathematical reasoning.

Hilbert did not, however, propose that these so-called ideal propositions be
preserved as contentual elements of mathematical thinking. He saw them as useful,
perhaps even in some sense “necessary,” for the conduct of logical reasoning. He
did not, however, take their usefulness to consist in their presumably contentual
application in our thinking. Rather, he believed that it is due to their use as ideal
elements in our logical thinking—a use which, generally speaking, is similar in both
character and motive to the use of such devices as negative and complex numbers in
algebra and analysis and points at infinity in projective geometry.

He put the basic point this way:

[M]athematics contains, first, formulas to which correspond contentual (inhaltliche) com-
munications of finitary propositions (mainly numerical equations or inequalities, or more
complex communications composed of these) and which we may call the real propositions
(realen Aussagen) of the theory, and, second, formulas that—just like the numerals of
contentual number theory—in themselves mean nothing but are merely things governed
by our rules and must be regarded as the ideal material (idealen Gebilde) of our theory. [27,

p- 8]

By adjoining the so-called ideal propositions to the real propositions, “we obtain
a system of propositions in which all the simple rules of Aristotelian logic hold
and all the usual methods of mathematical inference are valid” (op. cit., 9). The
development of such a system of “logical” reasoning, Hilbert believed, benefits our
logical reasoning in ways that are generally similar to the ways in which the use
of ideal elements elsewhere in mathematics benefits other parts of mathematical
reasoning. Specifically, it allows us to reason with greater facility to real or
contentual conclusions, and it does so without compromising reliability.

Reasoning which makes use of ideal or actualist propositions is not, however,
reasoning in the traditional sense. That is, it is not reasoning which proceeds from
premises which are judgments having genuine propositional contents to conclusions
(ultimate or transitory) which are likewise judgments having propositional contents
via inferences that represent judgments of logical relationship between genuine
propositions.

3“Actualist mathematics” was a term Gentzen commonly used for classical or traditional mathe-
matics.



Gentzen’s Anti-Formalist Views 27

In the view of the critics of formalism (e.g., Frege and Brouwer), this meant that
the reasoning which makes use of the so-called ideal propositions is not, in truth,
genuine reasoning at all. Rather, it is only something which has the syntactical
facade of genuine reasoning. It lacks the genuine contentful premises and the
genuine logical interrelationship of contentual propositions needed for genuine
reasoning.

Hilbert and those in his camp (e.g., Bernays) rejected this traditional conception
of reasoning. More accurately, they rejected the view that legitimate mathemat-
ical reasoning always proceeds according to the traditional contentualist plan.
Sometimes, they maintained, it proceeds in decidedly non-contentualist ways for
decidedly non-contentualist motives. In their view, this reflected an identifying
characteristic of modern scientific thinking generally—namely, that in addition to
a descriptive component, it has as well an idealizational component.

In science we are predominantly if not always concerned with theories that are not
completely given to representing reality, but whose significance (Bedeutung) consists in the
simplifying idealization (vereinfachende ldealisierung) they offer of reality. This idealiza-
tion results from the extrapolation by which the concept formations (Begriffsbildungen) and
basic laws (Grundsdtze) of the theory go beyond (iiberschreitet) the realm of experiential
data (Erfahrungsdaten) and intuitive evidence (anschauliche Evidenz). [29, pp. 2-3]

As Hilbert and Bernays saw it, the aim of science was not simply or only
to describe, but also to idealize and to simplify. Such simplification, however,
sometimes called for the use of “formal” rather than contentual methods of
reasoning. Accordingly, they believed, contentual interpretation is not necessary for
a proper defense of ideal reasoning.

Gentzen suggested a contrary view, giving particular attention to the case of
general set theory in this connection. There he speculated in particular that proof-
theoretical investigations would confirm that non-denumerable cardinalities are
empty appearances (nur leerer Schein), that concepts and sentences concerning
them are contentless, and that mathematicians ought therefore to avoid making use
of them.

I believe that, for example, in general set theory a careful proof-theoretic investigation will
finally show that all powers that go beyond the countable are, in a quite definite sense, only
empty appearances and that one should have the good sense to do without them.*

In an essay published a year later, he put the point more strongly, describing
the question of the content of classical mathematics (or what he called an-sich
mathematics) as “very important” (sehr wichtig) (cf. [18, p. 202]).

4The German was:

Ich glaube, dass z. B. in der allgemeinen Mengenlehre eine sorgfiltige beweistheoretische
Untersuchung schliesslich die Ansicht bestitigen wird, dass alle iiber das Abzdhlbare
hinausgehenden Michtigkeiten in ganz bestimmten Sinne nur leerer Schein sind und man
verniinftigerweise auf diese Begriffe wird verzichten miissen. [16, p. 74]
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He thus seems to have sympathized with those critics of formalism who, like
Frege and Brouwer, emphasized the question of whether formalism can adequately
provide for the contentual interpretation of ideal or “actualist” propositions in
mathematics.

It is this seeming affinity of Gentzen’s views with the traditionalist views
of Brouwer and Frege that I find noteworthy. Gentzen, after all, has generally
been described, and generally described himself, as an advocate and promoter of
Hilbert’s ideas in the foundations of mathematics. Hilbert, however, emphasized
that the interpretation of ideal reasoning is not necessary either for the conduct of
mathematical reasoning or for its proper foundation. This raises the question of how
significant the affinities between Gentzen’s and Hilbert’s views really are. This is
the question I want to consider here.

Examination of Gentzen’s views reveals distinct sympathy with the traditional
conception of reasoning as generally consisting in a finite sequence of judgments
arranged according to perceived logical relationships between their contents. He
believed the formalization of mathematical reasoning to be a means of preparing
it for precise metamathematical investigation, but there is little indication that he
saw uninterpreted formal reasoning as playing an important role in mathematical
reasoning. In fact, there are counter-indications.

His formalist sympathies thus seem to have been quite limited. He held only a
version of what I will call Representational Formalism. This is the view that the
formal representation of mathematical reasoning is a legitimate and perhaps even a
valuable tool for purposes of studying certain of its properties (e.g., its consistency).
Whether formal methods have a place in the actual conduct of mathematical
reasoning, on the other hand, is another matter, and one which is not settled by the
possible usefulness of formalization as a representational tool for metamathematical
investigation.

Hilbert too was a Representational Formalist. His formalist convictions went
beyond this, however. In addition to believing in the representational utility of
formal methods, he believed that they have an important role to play in the
actual conduct of mathematical reasoning. He believed, that is, that mathematical
reasoning is partially constituted by the use of formal, non-contentual methods
of reasoning, and he believed as well that the use of such methods has played
an important role in making modern mathematics the successful science that
it is.

In addition to being a Representational Formalist, then, Hilbert was what I will
call a Conductive Formalist. Gentzen was not, or at least not so fully as Hilbert. All
in all, he seems to have accepted the traditional contentualist view of mathematical
reasoning that Hilbert rejected. More specifically, he held that the use of formal
methods in mathematical reasoning can only be fully vindicated by providing a
contentual interpretation for it.

To the extent that this is correct, Gentzen’s formalism was less far-reaching than
Hilbert’s. This, at any rate, is what I will argue here.
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2 The Traditional and Abstract Conceptions
of Axiomatization

Gentzen and Hilbert diverged as regards their views of the basic nature of reasoning.
Gentzen held a more or less traditional contentualist view of reasoning. Hilbert,
on the other hand, rejected the traditional view and emphasized not only the
possibility of non-contentual reasoning, but also its importance to mathematics. He
did not deny that much mathematical reasoning is contentual. Nor did he deny that
contentual reasoning has played an important role, perhaps even a dominant role,
in the development of mathematics. He maintained only that there are also non-
contentual processes of reasoning, and that these have also been important to the
development and success of modern mathematics.

What I am calling the traditional conception of reasoning centered on the idea
that an argument is a finite, logically ordered sequence of judgments. The term
“judgment” here is used in its traditional sense—that is, to signify an attitude of
affirmation taken towards a proposition.

By a “logical ordering” of judgments, I mean an arrangement of the constituent
judgments of an argument according to certain perceived relations of broadly logical
consequence among them. The traditional conception of proof is a specialization of
this view to cases where the constituent judgments making up the proof, or at least
certain of them, may have special epistemic qualifications (e.g., being self-evident)
and the relations of logical consequence which are taken to relate them are perceived
relations of deductive consequence.

The classical source of the traditional view was Aristotle, who presented it as part
of a general account of the nature of reasoning in the Prior Analytics, Bk. I. What
is perhaps the most widely known statement of the view was given in the Posterior
Analytics, however.

[D]emonstrative knowledge must proceed from premisses which are true, primary, imme-
diate, better known than, prior to, and causative of the conclusion. On these conditions only
will the first principles be properly applicable to the fact which is to be proved. Deduction
will be possible without these conditions, but not demonstration; for the result will not be
knowledge.

Posterior Analytics, 71b 20-25

Similar views were expressed throughout the modern era (cf. Locke (cf. [35,
Bk IV, ch. xvii, §4]) and Reid (cf. [41, Essay VII, Of Reasoning, p. 475]), and also
throughout the eighteenth, nineteenth, and early twentieth centuries (cf. [46, ch.I, pt.
31 [5, pp. 45-46]; [3, §22]; [34, p. 11]; [20, p. 15] and [33, p. 384] for statements
from a variety of different types of works).

Towards the end of the nineteenth century, the traditional conception of proof
gave way to a conception of proof coming from the then-emerging “abstract”
conception of axiomatization. This new conception of axiomatization differed
profoundly from its traditional predecessor.

On the traditional conception of axiomatization, axioms were taken to be true
propositions chosen out of consideration of supposed special properties of certainty
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and/or immediacy and/or explanatory power. Relatedly, proofs were taken to be
finite sequences of judgments the propositional contents of each element of which
were either to be axioms, or to be seen to follow deductively from the contents of
previous elements of the sequence. This is what I will call the fraditional view of
proof (TVP).

The abstract conception, by contrast, denied that axioms are certain, self-evident,
or explanatorily basic truths. It denied, in fact, that they are truths at all, or even
that they are propositions.” Axiomatization on the abstract plan sought to separate
axioms from contents. Hilbert described the basic process he took to effect this
dissociation (in the case of geometry) as follows:

We think (denken) three different systems of things. The things of the first system we call

points and designate them A, B,C ... ... The things of the second system we call lines and
designate them a,b,c... ... The things of the third system we call planes and designate
thema, B,y......

We think (denken) the points, lines and planes in certain mutual relations ...
The exact (genaue) and for mathematical purposes complete (vollstidndige) specification of
these relationships is accomplished by the axioms of geometry. [22, ch. 1, §11°

In axiomatization, in Hilbert’s view, we “think.” We do not observe or intuit and
then express the contents of our observations or intuitions in the axioms we give.
Rather, we “think,” with nothing given prior to or in association with this thinking
to serve as its contents.’

Nor was this thinking taken to have indigenous contents, at least not in any
ordinary sense of the term ‘“contents.” It was not a thinking as of definite objects
standing in definite relations. Rather, the objects and relations of axiomatic thinking
were wholly unspecified, and could be any objects and relations that satisfy the
abstractly thought axioms.

From the abstract point of view, then, axioms were not taken to be propositions
but rather, for some, propositional functions or propositional schemata (cf. [45,
p- 21; [31, §20]), and for others (e.g., Hilbert) sentences or sentence-schemata. For

SDescribing the abstract viewpoint as applied to projective geometry, Whitehead wrote: “The
points mentioned in the axioms are not a special determinate class of entities . . . they are in fact any
entities whatever, which happen to be inter-related in such a manner, that the axioms are true when
considered as referring to those entities and their inter-relations. Accordingly—since the class of
points is undetermined—the axioms are not propositions at all ... An axiom (in this sense) since it
is not a proposition can neither be true or false.” [45, p. 1].

That this represented Hilbert’s general conception of axiomatization is indicated by the fact that
he gave a precisely parallel characterization of the axiomatic method in arithmetic in an essay
published the following year (cf. [23, p. 181]).

"The separation of thinking from contents represented in this view is more radical than, but still
reminiscent of the separation indicated by Kant in the first critique: “I can think (denken) whatever
I want, provided only that I do not contradict myself. This suffices for the possibility of the
concept, even though I may not be able to answer for there being, in the sum of all possibilities,
an object corresponding to it. Indeed, something more is required before I can ascribe to such
a concept objective validity, that is, real possibility; the former possibility is merely logical.”
[32, xxvi, note a].
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present purposes, the difference between these alternatives is insignificant. What is
important is that axioms were viewed schematically, or hypothetically—any system
of objects and relations satisfying them would also satisfy the theorems that follow
from them.®

The attributes traditionally taken to characterize axioms (e.g., certainty, self-
evidentness, explanatory depth, unprovability (in some objective or quasi-objective
sense), etc.) do not of course apply to such schemata. Rather, the thinking regarding
choice of axioms for abstract theories seems generally to have been that it should
be driven by considerations of mutual consistency and of their usefulness as starting
points for the efficient deduction of some further body of theorems.’

3 The “Decontentualization’ of Proof

The core element of the abstract conception of axiomatization was thus a call
for the separation—or, perhaps more accurately, calls for various separations—of
axiomatic thinking from contents. More specifically for my purposes here, it was
a family of calls for various separations of the conduct of proof from contentual
considerations.

In this connection, it is perhaps useful to distinguish two such separations. One of
these is a separation from contents for purposes of conducting the inferential parts
of proofs. For convenience, I’ll call this Inferential Separation.

The other concerns a separation from contents for purposes of specifying what
the constitutive axioms and rules of inference of a would-be formal proof practice
are. I'll refer to this as Specificational Separation.

The mature Hilbert, I believe, supported both types of separation. I will now
briefly indicate what I take to be essential to each.

3.1 Inferential Separation

In 1882, Pasch had raised the importance of abstracting away from contents for
purposes of ensuring that the inferential parts of proofs were genuinely deductive in
character.

8Cf. [2, pp. 95-96].

°J.W. Young put the point this way: “[W1hat is the new point of view? The self-evident truth
is entirely banished. There is no such thing. What has taken the place of it? Simply a set of
assumptions concerning the science which is to be developed, in the choice of which we have
considerable freedom. . .. [T]hey are elected for their fitness to serve, and their fitness is very largely
determined by their simplicity, by the ease with which the other propositions may be derived from
them.” [47, p. 52].
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[I]f geometry is to be genuinely deductive, the process of inferring (Process des Folgerns)
must be everywhere independent of the sense (Sinn) of geometrical concepts just as it must
be independent of figures. It is only relations between geometrical concepts that should be
taken into account in the propositions and definitions that are dealt with. In the course of
a deduction ... it should by no means be necessary to think of the references (Bedeutung)
of the geometrical concepts involved. ... [I]f it is ..., the gappiness (Liickenhaftigkeit) of
the deduction and the inadequacy of the ... proof is thereby revealed unless it is possible to
remove the gaps (Liicke) by modifying the reasoning used. [40, p. 98]

There seem to be both theoretical and practical claims here. On the theoretical
side there is a suggestion that an inference in a geometrical proof can properly
be known to be deductively valid only if its validity can in principle be known
without appealing to the contents of any non-logical term (and, more specifically,
any geometrical term) that occurs, whether explicitly or implicitly, in it (i.e., in its
premises or its conclusion).'?

Pasch’s practical suggestion, as I see it, ran parallel to this. It suggested as
a practical criterion of deductive validity that an inference’s validity be practi-
cally establishable without appealing to the sense or referent of any non-logical
term (specifically, the contents of any geometrical term) occurring (explicitly or
implicitly) in it. In other words, it called for the separation of geometrical proof
from geometrical contents for purposes of determining the deductive validity of its
inferential parts. The suggestion seems to be that persistent failure of conscientious
efforts to find such a practical separation of contents from assessments of validity is
indication of a failure of rigor in a proof.'!

Hilbert too endorsed a separation of logical reasoning from contents,'? though
neither the separation he proposed nor his reasons for proposing it were identical to
Pasch’s.

3.2 Specificational Separation

Pasch’s proposed separation of contents from geometrical reasoning seems in
significant part to have been a call for rigor. To correctly judge the deductive validity

10Pasch did not of course make use of any precise demarcation of logical from non-logical terms.
He did, though, have a sense of what the geometrical terms or concepts in a proof were, and he
insisted that the validity of a genuinely deductive inference should be knowable without making
use of appeals to the senses or referents of any of the geometrical terms that occur in it.

Pasch’s call for Inferential Separation of contents from proofs has led some to regard him as the
(or at least a) principal founder of the abstract conception of axiomatization (cf. [39, p. 143]; [42,
pp. 343-344] and [47, p. 51]). As others (cf. [15, pp. 617-618]) have pointed out, though, correctly
in my view, the separation of geometrical reasoning from contents that he proposed is not nearly
so radical as that proposed by Hilbert.

12¢[T]n my theory contentual inference (inhaltliche SchlieBen) is replaced by manipulation of signs
according to rules (duBeres Handeln nach Regeln); in this way the axiomatic method attains that
reliability and perfection that it can and must reach if it is to become the basic instrument of all
theoretical research.” [27, p. 4].
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of a geometrical inference did not, in his view, require appeal to the contents of its
geometrical terms. To make use of such appeals, therefore, was either to use what
one did not recognize was being used, or it was to mistake what is required for
deductive validity. Pasch seems to have seen the former—the use of unrecognized
information in the inferential parts of proofs—as the more insidious threat and the
one protection against which thus required more careful and deliberate efforts.

The use of such information in the conduct of inference constituted a failure
of rigor. Pasch’s call for abstraction from the meanings of geometrical terms for
purposes of conducting the inferential parts of geometrical proofs was intended to
provide protection against such failure.

It is not only in the inferential parts of proofs, however, that use of unrecognized
information may enter. It may also enter in the identification or specification of
axioms and/or rules of inference. It may be avoidance of this type of illicit use
of unrecognized information that Hilbert had in mind when he declared that the
specification of axioms of an axiomatic system should provide an “exact (genaue)
and for mathematical purposes complete (vollstindige) specification” [22, ch. 1, §1]
of the objects-as-standing-in-relations that constituted what was thought in a given
axiomatic “thinking” (denken). Here, I’ll focus on the part of the claim concerning
exactness and leave the part concerning completeness for another occasion.

What would constitute a specification of axioms that is “exact” in this sense?
There is nothing I know of in Hilbert’s early writings that clarifies what he had
in mind. In the fuller development of his proof theory, however, he came to the
view that axioms should be syntactically rather than semantically specified. More
accurately, he came to the view that proper specification of axioms consisted in their
being exhibited (i.e., in their being given in terms of their outward appearances)
rather than in their being expressed (i.e., in their being given in terms of semantical
contents). To put it differently, Hilbert’s eventual view seems to have been that only
such things as can be identified by their outward appearances, without application
of semantic interpretation, are exactly specifiable. Accordingly, only formulae, not
propositions, can ultimately satisfy the requirements of exact specification of an
axiomatic thinking (denken).

If this is how Hilbert eventually came to understand the requirement that axioms
be “exactly” specified, then it represents another point at (or another way in) which
at least his mature understanding of axiomatic thinking saw it as involving various
types of “decontentualization.”

4 Decontentualization and Its Discontents

Weyl described the decontentualized conception of proof of Hilbert’s proof theory
as representing a radical departure from the views of his predecessors.
Before Hilbert constructed his proof theory everyone thought of mathematics as a system

of contentual (inhaltliche), meaningful (sinnerfiillte), and evident (einsichtige) truths; this
point of view was the common platform of all discussions. ... Brouwer, like everyone else,
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required of mathematics that its theorems be (in Hilbert’s terminology) “real propositions,”
meaningful truths. [43, p. 22]"3

This may largely have been true, but, as the above remarks concerning the
development of the abstract conception of axiomatization indicate, it’s not entirely
accurate. Pasch’s view of proof, with its distinctive understanding of the require-
ments of inferential rigor, is not adequately captured by it.'* Neither does it
accurately convey the place that abstract views of axiomatization occupied in late
nineteenth and early twentieth century understandings of axiomatic method.'?

Be this as it may, contentualist understandings of mathematical proof were
certainly common and influential during the period in which Hilbert developed his
proof-theoretic ideas. Since Gentzen’s understanding of the nature of proof seems
to have been influenced by such views, it seems sensible to briefly survey some of
the more influential contentualist views of proof of Gentzen’s time.

Among these, Brouwer’s are perhaps particularly important because of Gentzen’s
expressed sympathies with intuitionist views of proof. Brouwer stressed his
opposition to non-contentual conceptions of proof in his criticisms of Hilbert’s
program—particularly his criticisms of Hilbert’s idea that to properly found
traditional mathematics is essentially to prove its consistency.'®

In Brouwer’s view, to properly found traditional mathematics (or some part of
it), it was necessary to establish it not merely as consistent but as truthful or correct.
What is true, however, is contentful since it is contentual items only that are capable
of being true or false. Proving the syntactical consistency of a theory or inferential

13See [44, p. 640] for a similar statement. See also [7, p. 336]; [8, pp. 490-492] and [10, pp. 2-5]
for related ideas and arguments.

14Neither are the contributions of others with ideas similar to Pasch’s. These contributions
were noted by various early twentieth century writers. The following statement by Young is
characteristic: “The abstract formulation of mathematics seems to date back to the German
mathematician Moritz Pasch. At any rate, he was the first to study in detail the axioms concerning
the order of points on a straight line ...But to the Italian Giuseppe Peano belongs the credit of
developing this point of view systematically. His idea, which he began to elaborate about 1889, is
to put the whole of mathematics on a purely formal basis ...” [47, p. 51].

!SHere too Young gave a more accurate description: “The point of view of 50 years ago was very
largely that the foundations of mathematics were axioms; and by axioms were meant self-evident
truths, that is, ideas imposed upon our minds a priori, with which we must necessarily begin any
rational development of the subject. So the axioms dominated our mathematical science, as it were,
by the divine right of the alleged inconceivability of the opposite. And now, what is the new point
of view? The self-evident truth is entirely banished. There is no such thing. What has taken the
place of it? Simply a set of assumptions concerning the science which is to be developed, in the
choice of which we have considerable freedom.” (op. cit., 52).

16Strictly speaking, Hilbert required more than a proof of consistency for the proper foundation of
classical mathematics. He required as well that its uses of ideal methods be “successful”: “[I]f the
question of the justification (Berechtigung) of a procedure (MaBnahme) means anything more than
proving its consistency, it can only mean determining whether the procedure fulfills its promised
purpose. Indeed, success is necessary; here, too, it is the highest tribunal, to which everyone
submits.” [26, p. 163].
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practice could not, therefore, in Brouwer’s view, properly found it since it would not
establish it as correct (richtig).

[Tlhe formalistic critique ...in essence comes to this: the language accompanying the
mathematical mental activity is subjected to a mathematical examination. To such an
examination the laws of theoretical logic present themselves as operators acting on primitive
formulas or axioms, and one sets himself the goal of transforming these axioms in such a
way that the linguistic effect of the operators mentioned (which are themselves retained
unchanged) can no longer be disturbed by the appearance of the linguistic figure of
a contradiction. We need by no means despair of reaching this goal,!” but nothing of
mathematical value will thus be gained: an incorrect theory (unrichtige Theorie), even if
it cannot be inhibited by any contradiction that would refute it, is none the less incorrect,
just as a criminal policy is none the less criminal even if it cannot be inhibited by any court
that would curb it. [7, p. 336]'®

As Brouwer saw it, then, the fundamental mistake of the formalist was the
failure to appreciate the differences between operations of genuine reasoning and
operations on linguistic items. The latter might resemble the former in certain ways
but, in the end, these could be only superficial similarities. To fail to recognize this
was to fail to see the critical difference between genuine thinking and a mere use of
language—a difference featured in what was perhaps the basic element of Brouwer’s
foundational outlook, the so-called First Act of Intuitionism.

[TThe FIRST ACT OF INTUITIONISM completely separates mathematics from mathe-
matical language, in particular from the phenomena of language which are described by
theoretical logic, and recognizes that intuitionist mathematics is an essentially languageless
activity of the mind ... [9, pp. 140-141]

Formalism flouted the First Act of Intutionism. More specifically, in the intuition-
ists’ view, it systematically overestimated the importance of language as a vehicle
for the conduct of reasoning. Similarly, as they saw it, it overestimated even the
importance of mathematical language as a means of representing and studying the
properties of mathematical reasoning.

The intuitionists were not the only ones to object to the decontentualizing
tendencies of Hilbert’s abstractionist outlook. Klein, for example, described it as
representing “the death of all science” [33, p. 384].

17 At this point Brouwer inserted the following remark in a note: “[T]he unjustified application of
the principle of excluded middle to properties of well-constructed mathematical systems can never
lead to a contradiction ...”

8The passage in the German original is on pp. 2-3. It is perhaps worth noting that on Hilbert’s
view, consistency meant consistency with real mathematics. Therefore, if incorrectness is defined
as proving something that is refutable by real means, then proving consistency in Hilbert’s sense
would eliminate the possibility of incorrectness on one natural understanding of that term. Perhaps
on Brouwer’s understanding of “unrichtige,” “richtige” was intended to imply conservativeness—
so that a theory would be incorrect if it proved propositions that are not themselves provable by
real means, and not only if it proved propositions that are refutable by real means. Under certain
conditions, of course, the two understandings extensionally coincide.
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Frege too decried it and he made the contentual nature of genuine proof the focal
point of his disagreements with Hilbert and those others (e.g., Heine and Thomae)
he saw as advocating non-contentualist views of proof.

[A]n inference does not consist of signs. We can only say that in the transition from one

group of signs to a new group of signs, it may look now and then as though we are presented

with an inference. An inference simply does not belong to the realm of signs; rather, it is
the pronouncement of a judgment made in accordance with logical laws on the basis of
previously passed judgments. Each of the premises is a determinate thought recognized as

true; and in the conclusion, too, a determinate thought is recognized as true . ... [12, p. 387]

In Frege’s view too, then, a proof was a thoroughly contentual affair—
specifically, it was a sequence of judgments the propositional contents of which
must be judged by the prover to stand in certain logical relationships to one another.
Without such logical interrelationship there can be no genuine proof, and unless
the premises and conclusions of proofs have propositional contents, there can be no
genuine logical relationship between them.

5 Hilbert’s Conductive Formalism

As mentioned, Hilbert rejected this traditional contentualist conception of proof
(and, more generally, the traditional contentualist view of reasoning). This should
not, however, lead us to think that he denied the importance, or even the centrality,
of contentual proof to the development of mathematical knowledge. He did not. In
fact, he emphasized the importance of contentual reasoning to mathematics and,
particularly, its indispensability to metamathematics.

Where he thought the opponents of non-contentual reasoning had gone too far
was in their view that mathematical reasoning and proof has and indeed must always
be contentual, or that non-contentual reasoning has played only an insignificant role
in the historical development of our mathematical knowledge. In Hilbert’s view,
mathematical proof has often assumed non-contentual forms, and he believed the
use of such forms to have been and to continue to be invaluable in our attempts to
mitigate various types of complexity and/or inefficiency that commonly limit the
usefulness or even the practical applicability of contentual methods of proof.

Hilbert gave various examples intended to illustrate the usefulness of non-
contentual methods of reasoning in mathematics. These included the introduction
of the imaginary and complex numbers to “simplify the theorems on the existence
and number of roots of an equation” [26, p. 166] and the introduction of elements
at infinity in projective geometry which “make the system of laws of connection as
simple and perspicuous as is possible” (loc. cit.) and which induce the symmetries
behind the dualities of projective geometry “which are so fruitful (fruchtbare)” (loc.
cit.).

What he regarded as the crowning example, though, is the use of the classical
laws of logic to manage what he believed are crippling complexities of non-classical
(specifically, finitary) contentual logical reasoning. Classical methods of logical
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reasoning may not be contentual, but this ought not blind us to the fact that they
may be useful, even, in some sense, indispensable to the practical conduct of (at least
parts of) our logical reasoning.

Hilbert thus urged addition of the so-called ideal propositions [26, p. 174] to real
contentual propositions “in order to maintain the formally simple rules of ordinary
Aristotelian logic” (ibid.)."® To make such an addition was, in his view, a natural
and motivated application of the method of ideal methods in mathematics, a method
which had proved its efficacy and trustworthiness again and again in the history of
mathematics.

Hilbert seems also to have seen the application of ideal methods as pervasive
both in our scientific and in our everyday reasoning.

In our theoretical sciences we are accustomed to the use of formal thought processes
(formaler Denkprozesse) and abstract methods ... [But] already in everyday life (tiglichen
Leben) one uses methods and concept-constructions (Begriffsbildungen) which require a
high degree of abstraction and which only become plain through unconscious application
of the axiomatic method (nur durch unbewufite Anwendung der axiomatischen Methoden
verstindlich sind). Examples include the general process of negation and, especially, the
concept of infinity. [28, p. 380]

To try to do without ideal methods in our thinking would thus, in Hilbert’s
view, seriously impair our effectiveness as thinkers. Opposition to their use was,
in Hilbert’s view, largely a result of a failure to recognize that language has valuable
and legitimate non-descriptive uses. Bernays memorably urged this point in offering
his Faustian summary of Hilbert’s formalist viewpoint.

Where concepts fail, a sign appears at just the right time.?° This is the methodological
principle of Hilbert’s theory. [1, p. 16]

Hilbert put the point more forcefully, if perhaps less picturesquely. In his view,
the use of non-contentual (or, more specifically, symbolico-algebraic) methods in
the conduct of our reasoning is indispensable to the fullest practical development
of our mathematical knowledge (cf. [24, pp. 162-163]; [26, p. 162]; [27, pp. 7-
8]). He saw it as reflecting the importance attached to the use of non-descriptive
simplifying idealizations he took to be characteristic of modern science (cf. [29, pp.
2-3]). He believed that we may legitimately take advantage of the benefits of such
simplification without sacrificing security in the contentual parts of our thinking.

19This addition was to be controlled by consistency, of course. On this point, Hilbert thought he
could satisfy even Brouwer and Kronecker. What they did not accept, however, is that controlling
for consistency should be enough to establish a putative body of reasoning as genuine reasoning,
much less as reliable genuine reasoning.

20«Thus even where concepts fail, a word appears at just the right time.”
Goethe, Faust I (Mephistopheles to a student of theology)

The German is: “Denn eben wo Begriffe fehlen, Da stellt ein Wort zur rechten Zeit sich ein.”
Goethe was not endorsing but criticizing such a practice of course. He presented it as a practice
employed by teachers of theology to preserve a facade of contentful thinking where in fact there
were only contentually empty words.
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Hilbert thus embraced what I am calling Conductive Formalism, the view that the
use of non-contentual methods of reasoning has been and continues to be important
to the effective development of our mathematical knowledge. He accepted as well
of course what I call Representational Formalism—that is, the view that the formal
representation of mathematical reasoning is a tool for facilitating the rigorous and
mathematically precise investigation of mathematical reasoning.

As I read him, Gentzen only fully endorsed Representational Formalism. He
seems not to have taken the use of non-contentual methods in mathematics to
qualify as genuine reasoning. In addition, he seems to have taken the provision
of a contentual interpretation for what Hilbert termed “ideal reasoning” (and what
he, Gentzen, termed actualist or an-sich reasoning) as important to its proper
foundation.

In these important respects, then, Gentzen’s views more nearly resembled the
anti-formalist views of Brouwer and Frege than the formalist views of Hilbert.

6 Gentzen’s Conductive Contentualism

Gentzen seems in fact to have gone out of his way both to comply with traditional
contentualist strictures on reasoning and to make clear his endorsement of them.
§9 and §17.3 of [17] provide clear confirmation of this. They are dedicated to
establishing compliance with contentualist demands as regards reasoning to actu-
alist conclusions (more accurately, reasoning to contentual conclusions expressed
by actualist sentences) in number theory.

Gentzen also took pains to show that his consistency proof for number theory
meets all reasonable demands of this type. He was particularly concerned to show
that his consistency proof provides for the finitary interpretation of the actualist
sentences of number theory, and he seems to have seen this as a necessary part of
justifying the use of actualist methods in arithmetic.

The most essential component (wesentlichste Teil) of my consistency proof ...consists
precisely in its attachment of a finitary sense to actualist propositions (daf den an-sich
Aussagen ein finiter Sinn beigelegt wird), viz. for any given proposition, if it is proven, a
reduction rule (Reduziervorschrift) ...can be specified, and this fact represents the finitary
sense of the proposition that is obtained precisely through the consistency proof. [17, p.
564]

My point and my claim is not that Gentzen was right to have described his proof
as providing finitary senses for actualist sentences. It is rather that e seems to have
seen it as doing so, and he seems to have seen its doing so as being in some way its
most essential feature.

Gentzen thus seems to have affirmed the traditional view that to be fully justified,
actualist methods must be contentually interpreted.

[E]ven if it should be demonstrated that the disputed forms of inference cannot lead to mutu-

ally contradictory results, these results would nonetheless be propositions without sense
(sinnlose Aussagen) and their investigation therefore a mere recreation (eine Spielerei);
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genuine knowledge (wirkliche Erkenntnisse) can be gained only by means of the unob-
jectionable (unbedenklichen) intuitionist (or finitist, as the case may be) forms of inference
[17, p. 564] (emphases as in text)?!

Gentzen then went on to consider what value (Erkenntniswert) (loc. cit.) there
might be in uninterpreted actualist reasoning (i.e., in actualist reasoning which,
though lacking interpretation, nonetheless qualifies as actualist reasoning). He
allowed as how it might have some practical value (praktischer Wert) (ibid.) and
not be entirely useless (nicht ganz zwecklos) (ibid.) as an instrument of thinking.
This was not, however, for him an adequate substitute for its providing a genuine
contentual justification for its conclusion.

This too is similar to the things intuitionists said about the value of actualist
reasoning. We already noted one such point by Brouwer in his concession that actu-
alist reasoning might be “an efficient ...technique for memorizing mathematical
constructions, and for suggesting them to others” [9, p. 140].> He even allowed as
how it might be contentually reliable over a certain range of cases.

Suppose that an intuitionist mathematical construction has been carefully described by
means of words, and then, the introspective character of the mathematical construction
being ignored for a moment, its linguistic description is considered by itself and submitted
to a linguistic application of a principle of classical logic. Is it then always possible to
perform a languageless mathematical construction finding its expression in the logico-
linguistic figure in question?

After careful examination one answers this question in the affirmative (if one allows for
the inevitable inadequacy of language as a mode of description) as far as the principles of
contradiction and syllogism are concerned; but in the negative (except in special cases) with
regard to the principle of excluded third ... [9, p. 140]

What neither Brouwer nor Gentzen was willing to grant, though, and what in the
end seems to have constituted their deepest difference with Hilbert, is that actualist
reasoning might be an acceptable replacement for contentual reasoning were its
syntactical consistency with finitary contentual reasoning to be finitarily proven.

Gentzen’s contentualist convictions seem to have stemmed from a view that non-
contentual “reasoning” is not genuine reasoning at all, that it is fundamentally a
type of game and that it cannot therefore properly be a part of a genuine science of
mathematics (cf. [17, p. 564]).

This was in fact the common attitude of the late nineteenth and early twentieth
centuries. The thinking was that what essentially separates science from a game
is applicability. A genuine science is (at least potentially) applicable. A game is
not. What makes genuine sciences applicable and games not is that the former, in

2ICompare this to the remark by Brouwer, quoted earlier, that “even if [actualist reasoning] cannot
be inhibited by any contradiction that would refute it, it is none the less incorrect, just as a criminal
policy is none the less criminal even if it cannot be inhibited by any court that would curb it,” [7,
p. 336] brackets added.

22Gentzen could not have read this text of course. There are, though, earlier texts which express
similar ideas. Cf. [6] and [7] for related, though less firm endorsements of the utility of classical
reasoning as a certain type of instrument to guide our thinking.
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contrast to the latter, express thoughts or contents and, in doing so, they describe the
world and so become applicable to it.
Frege expressed these ideas clearly in the second volume of the Grundgesetze.

Why can one make no application (keine Anwendung machen) of a position (Stellung) of
chess figures? Clearly because it expresses no thought (es keinen Gedanken ausdriickt).
... Why can one make applications of arithmetical equalities? Only because they express
thoughts (nur weil sie Gedanken ausdriicken). How could we possibly apply an equation
which expressed nothing, was nothing more than a group of figures (Figurengruppe) to be
transformed (umgewandelt) into another group of figures by certain rules! It is applicability
alone (Anwendbarkeit allein) that raises (erhebt) arithmetic from a game to the rank of
science. Is it a good thing (wohlgetan), then, to exclude from arithmetic that which is
necessary for it to be a science? [11, §91]

Hilbert saw little to justify such thinking. He accepted the idea that mathematics
ought to be applicable. He did not however accept the traditional descriptive
paradigm of application—that application essentially consists in or at least requires
description (i.e., expression of a true thought or content). He adhered instead to the
Berkeleyan idea that, though the application of reasoning to reality may require that
its conclusion be interpretable (i.e., that it admit of interpretation by a true thought
or content), the same is not true of the various steps of reasoning that lead to that
conclusion.

Actualist sentences were in Hilbert’s view instruments of thought and their use
was essentially axiomatic in character—that is, it was completely governed by
explicit (i.e., syntactically stated) rules of usage. By this he seems to have meant
that actualist sentences do not function contentually, and that, accordingly, their
justified use does not require semantical interpretation, be it constructive or actualist
in character.

As Hilbert’s saw it, Brouwer operated with substantially the same scheme of
distinctions and made essentially the same mistakes that Frege did. He assumed
not only that application requires interpretation but also that the rules according to
which the formal operations of ideal reasoning proceed are in some sense convened
or chosen.

This, to Hilbert, was a distorting oversimplification. As he saw it, the rules
according to which time-tested ideal reasoning proceeds are laws according to which
our reasoning most effectively proceeds. We do not merely choose or convene them.
Rather, we experiment with various instruments of reasoning in order to test their
effectiveness, and we subject them to metamathematical investigation to determine
their consistency with the results of real reasoning. Those which survive such
testing represent the accumulated experience and prudence of the larger community
of mathematical reasoners. The discovery and metamathematical vindication of
such laws, in Hilbert’s view, deserved to be made the chief focus of foundational
investigation.

The formula game (Formelspiel) that Brouwer so dismissively judges (wegwerfend urteilt)
has, besides its mathematical value, an important general philosophical significance. For
this formula game is carried out according to certain definite rules, in which the technique
of our thinking is expressed. These rules form a closed system that can be discovered
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and definitively stated. The fundamental idea of my proof theory is none other than to
describe the activity of our understanding, to make a protocol of the rules according to
which our thinking actually proceeds. Thinking (Das Denken), it so happens, parallels
speaking and writing: we form statements and place them one behind another. If any totality
of observations and phenomena deserves to be made the object of a serious and thorough
investigation (ernsten und grundlichen Forschung), it is this one ... [27, pp. 15-16]

The discovery and metamathematical vindication of formal methods of reasoning
was thus, in Hilbert’s view, far from being a game. It was rather, in a profound sense,
the investigation of the laws of human thinking and, as such, deserved to be made a
chief focus of foundational research in mathematics.

7 Conclusion

Hilbert and Gentzen were not formalists of the same type. Specifically, Hilbert
advocated a version of Conductive Formalism while Gentzen did not. More
specifically, Gentzen held a fairly traditional contentualist view of the nature of
proof while Hilbert rejected such a view, and, indeed emphasized the importance
of the use of non-contentual methods in mathematics to the overall development of
mathematical knowledge.

Hilbert was in fact emphatic on this point. His conviction reflected his observa-
tion of the fruitful uses that had been made of non-contentual methods of reasoning
throughout the history of mathematics. It also reflected his general view of the place
of idealization in mathematics and in modern science generally.

According to this view, scientific mathematics not only does not require interpre-
tation, it does not generally invite it. The reason is the characteristic use it makes of
simplifying idealizations.

The reasoning that stems from such idealizations is not intended to be interpreted
and, generally speaking, it is neither necessary nor desirable that it should be. All
that is required is that it be shown not to conflict with the results of the real or
contentual (i.e., the non-idealizational) parts of the given science.

Such separation of mathematical reasoning from contentual interpretation was a
central element of Hilbert’s formalism.

Gentzen, by contrast, was committed both to a contentualist understanding of
proof and to a view to the effect that to properly found a body of mathematical
reasoning requires providing an interpretation for it. In fact, as noted above, he
described as a key virtue of his consistency proof for classical first-order arithmetic
that it provides finitary senses for actualist propositions (cf. [17, p. 564]).%

23Gentzen in fact raised the possibility of the need for a second type of interpretation for classical
arithmetic—one which provides actualist interpretations of actualist sentences. Cf. [17, p. 565].
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If this is right, then Gentzen cannot plausibly be described as having been a
formalist of the sort Hilbert was. He was not, in particular, a conductive formalist.
He did not emphasize, as Hilbert did, the importance of non-contentual methods as
means of conducting mathematical reasoning. He seems not in fact to have seen the
use of non-contentual methods as constituting genuine reasoning at all. Still less did
he see it as the glory of modern mathematics.
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The Use of Trustworthy Principles in a Revised
Hilbert’s Program

Anton Setzer

Abstract After the failure of Hilbert’s original program due to Godel’s second
incompleteness theorem, relativized Hilbert’s programs have been suggested. While
most metamathematical investigations are focused on carrying out mathematical
reductions, we claim that in order to give a full substitute for Hilbert’s program, one
should not stop with purely mathematical investigations, but give an answer to the
question why one should believe that all theorems proved in certain mathematical
theories are valid.

We suggest that, while it is not possible to obtain absolute certainty, it is possible
to develop trustworthy core principles using which one can prove the correctness of
mathematical theories. Trust can be established by both providing a direct validation
of such principles, which is necessarily non-mathematical and philosophical in
nature, and at the same time testing those principles using metamathematical
investigations. We investigate three approaches for trustworthy principles, namely
ordinal notation systems built from below, Martin-Lof type theory, and Feferman’s
system of explicit mathematics. We will review what is known about the strength up
to which direct validation can be provided.

1 Reducing Theories to Trustworthy Principles

In the early 1920s Hilbert suggested a program for the foundation of mathematics,
which is now called Hilbert’s program. As formulated in [40], “it calls for a
formalization of all of mathematics in axiomatic form, together with a proof that
this axiomatization of mathematics is consistent. The consistency proof itself was
to be carried out using only what Hilbert called ‘finitary’ methods. The special
epistemological character of finitary reasoning then yields the required justification
of classical mathematics.” Because of Godel’s second incompleteness theorem,
Hilbert’s program can be carried out only for very weak theories. Because of this
failure (see, e.g., [40,44]) a relativized Hilbert’s program has been suggested by
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Kreisel (Zach [44] cites [17-19]), and then further developed by Feferman [7—10].
In the approach by Feferman [7, 9], one considers two frameworks F; and F,. F|
could mean infinitary, J, finitary, or | mean nonconstructive, F, constructive (see
p- 367 of [7]). Consider for i € {1, 2} certain theories 7; formulated in languages
L; corresponding to frameworks ;. Let ® be a primitive recursive subset of the
formulae of £; N L,. Let U be a third theory, usually a very weak theory such as
PRA. Then combining [8, 10], we have 71 < T>[®] in U, if there exists a partial
recursive function f such that

1. if p is a proofin T} of a formula ¢ in ®, then f(p) is a proof of ¢ in T5;
2. (1) can be shown in U.

Feferman presents many examples of such reductions.

This program of reductive proof theory gives rise to many interesting connections
between various theories which provides us with a broad picture of mathematical
theories and their relationship. While being very insightful and resulting in lots of
metatheorems, it fails to answer the initial question by Hilbert, namely: do I know
that my original theory 77 is consistent? Or widening it in the sense of Kreisel and
Feferman: If I have proved in theory 77 a mathematical statement, do I know that it
is valid? If we take say a proof of Fermat’s last theorem, do we know that there is
actually no counter example to this theorem? From Godel’s second incompleteness
theorem it follows that there is no mathematical argument that excludes that there
is at the same time a proof of Fermat’s last theorem in a theory 7 and a counter
example (unless 7 is very weak), without assuming at least the consistency of
another theory of at least equal strength.

Many mathematicians evade this problem and say that all they want is to have
a proof which can be formulated in, for instance, Zermelo—Fraenkel set theory.
However, this is not what mathematics is intended for. Mathematics is not just a
glass bead game in the sense of Hesse [15], a formal game of finding strings of
symbols which follow certain decidable rules. The goal of mathematics is, as any
science, to establish truth about real properties. In case of Fermat’s last theorem, we
want to know whether there are no numbers violating it.

What we can do, in the sense of Kreisel and Feferman, is to reduce 7 to another
theory 75, which is essentially as strong as 77, and then obtain that 7, proves as well
the mathematical theorems of 77 we are interested in. Any mathematical argument
will only reduce T further to another theory 73. So in order not to continue going
in circles, we need to reduce 77 to one theory 7, for which we can give reasons why
we believe that everything it proves (possibly restricted to a subset of statements) is
valid.

At this point pure mathematical reasoning ends. No matter what we do, we
cannot obtain absolute certainty. However we can establish trust. Trust does not
mean blind faith. Trust is established by convincing ourselves in the best possible
way that what we trust in does not break. This means that we carefully investigate
the principles underlying 75, examine them, and give an argument why we can trust
them. However, such an analysis can never be done in a purely mathematical way—
if we do this, then we just reduce 7> to a third theory 73, namely the theory in which
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the argument of the correctness of 7, is formulated, and we just have added a new
theory to our chain of theories.

However, what we can do, and many constructive and semi-constructive theories
have been developed for this purpose, is to formulate theories 7, where these
principles are as pure and clean as possible. Then we can carry out two further
steps:

1. We can formulate as precisely as possible an argument why we believe that we
can trust in those principles. Note that this is no longer a purely mathematical
argument. However, making it as precise as possible is a very valuable exercise,
since it could reveal any possible flaws in those principles.

2. Since an argument as in (1) does not have the status of a mathematical theorem,
it can never provide absolute certainty.' Therefore what is needed is to carry out
additional testing. Note that mathematicians will in many cases still test their
mathematical theorems even if they have proven them, however usually only in
order to detect possible flaws in their proofs.

How do we test a theory?

* We can look at theorems provable in 7, and check whether the theorems actually

are true (e.g. in case of Fermat’s last theorem that there is no counter example).
However, there is one problem, namely that by the results of reverse mathematics
we know that most mathematical theorems require very little proof theoretic
strength. So such tests do not explore the limits of the theory.
Peter Dybjer has in [3] suggested to develop meaning explanations for Martin-
Lof type theory (MLTT) based on the principle that for each judgement of type
theory a test is given. The judgement is valid if it passes all tests. Once carried
out in full ([3] provides only the basic idea) one obtains for every provable
judgements of type theory a test for its validity. Dybjer’s article was a major
inspiration for this part of the article.

* Ordinal analysis, or any other proof theoretic analysis (e.g. normalisation proofs)
is a very strong test, because it tests the theory at its limits. However, this does not
establish absolute certainty. When the author was pointing out to Per Martin-Lof
that Michael Rathjen had told the author that he knows that H%-CA is consistent
because he has proof theoretically analysed it, Martin-Lof pointed out that he had
an inconsistent type theory and a normalisation proof of it. The problem was that
the normalisation proof was carried out in an inconsistent theory. So even a cut
elimination or normalisation argument does not guarantee the consistency of the
theory.

'Of course even mathematical theorems can never give absolute certainty as outlined before. One
can think as suggested by one of the referees that a short carefully checked mathematical proof that
uses no controversial principles is the paradigm of practical certainty. However, unless one uses
extremely weak principles, Godel’s incompleteness theorem applies here as well—even though it
is unlikely that an inconsistency is used, we cannot exclude it.
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Does this mean that we should give up proof theoretical analysis and normalisa-
tion proofs? No, not at all. If a theory is inconsistent, it is likely but not guaranteed
that the inconsistency will be found when analysing it proof theoretically. A proof
theoretic analysis is up to now one of the strongest ways to stretch a theory
to its limits, because it requires to use principles which cannot be reduced to
simpler ones. We can often reduce theories which are more expressive to less
expressive ones of equal strength in such a way that the reduction shows that
they are equiconsistent. However, we cannot reduce a proof theoretic stronger
theory to a weaker one, unless both are inconsistent. A proof theoretic analysis
needs to distinguish theories of different strength and therefore needs to make
use of the principles which are responsible for its strength and which cannot be
reduced to weaker ones.

One reason why a proof theoretic analysis is of big significance was pointed
out by one of the referees of this article, who wrote “Something that makes
specifically ordinal-theoretical proof-theoretical analyses of a theory particularly
convincing is that in many cases there is a big difference between the metatheory
and the object theory; whereas with normalisation proofs based on Tait-style
computability, or Girard-style ‘candidates’, the metatheory is (more-or-less) the
theory itself together with a uniform reflection principle. Something would be
far wrong if one could not prove a normalisation theorem for Church’s theory of
types in such a metatheory; but the extra confidence one gets in the principles
formulated therein from a normalisation theorem is tiny.”

* In general, any metamathematical analysis of a theory is a test of it. It requires
to investigate all axioms and rules of the theory in detail. And if there is an
inconsistency in a theory, there is the possibility that one discovers it when
carrying out this analysis.” If one does not discover any problem, we know at
least that any derivation of an inconsistency must be increasingly complicated,
since it escaped such a careful analysis. So even if a theory is eventually found
to be inconsistent, it is likely that most proofs carried out in it do not make use
of it, and we can replace them by proofs in a weaker theory, which does not have
this inconsistency.

Therefore there is the need to define mathematical theories in which we can
put our trust and describe as clearly as possible the reasons why we trust in the
consistency of those theories.

1.1 Does the Consistency Problem Matter?

When discussing the problem about consistency, many mathematicians will wonder
why there is a problem. Zermelo—Fraenkel set theory (ZF) has been in use since

2However, we can never be certain since the metatheory in which the analysis is carried out would
be inconsistent as well.
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1922. Most of mathematics can be carried out in extensions of it, and it has been
analysed thoroughly by set theorists.

However, as we know from reverse mathematics, most mathematical proofs can
be carried out in theories which are proof theoretically very weak compared to ZF,
therefore mathematical proofs will not explore the limits of ZF. Metamathematical
investigations have not really stretched theories having the strength of ZF or greater
by themselves, but only investigated such theories relative to other theories of
strength of at least that of ZF. Proof theory has succeeded to analyse in unpublished
form (Arai [1], see as well [2]) theories of strength Kripke—Platek set theory +1I1;-
Collection +V = L (which embeds (£} — DC) + Bl and (£} — AC) + BI). In fully
published form Rathjen has analysed [33] the theory of Kripke—Platek set theory
plus the existence of one stable ordinal, which embeds (A} — CA) + (BI) + (I1} —
CA)~, where (I} — CA)~ is parameter free 1} — CA. These theories have strength
well below that of ZF, and already here interesting phenomena were discovered
which were very difficult to harness proof theoretically. Writing down those results
has taken a long time. Most likely the reason why an analysis has been so difficult
is that our technology is not evolved enough to harness that strength. However, as
long as we have not analysed proof theoretically full set theory, it cannot be ruled
out that there is an inconsistency lurking somewhere.?

Martin-Lof said in his talk at the conference “100 years of intuitionism” at Cerisy
([24], p. 254) that we are not certain that set theory is consistent. He stressed his
point using a quote by Woodin.* He talked as well about the second failure of
Hilbert’s problem, which is due to technical difficulties in reaching 1} — CA and
beyond.’

Many mathematicians have experienced that sometimes when they get stuck with
proving a theorem the underlying reason is that the theorem is actually false. This
psychological argument does not prove anything, especially, since when getting
mathematically stuck, often all that is needed is a better idea in order to prove
the theorem. However, it should provide at least for the highly sceptical scientist a
strong motivation to continue with the proof theoretic project. Hilbert said “We need

3 And even if we have, a validation argument needs to be carried out.

#<Just as those who study large cardinals must admit the possibility that the notions are not
consistent” [43, p. 330].

>Martin-Lof puts TT} — CA on the other side of the “abyss”, because the analysis by Rathjen only
reduces it to some set theoretic ordinal notation system. Rathjen is here following a successful
tradition in the Schiitte school of proof theory, and the author believes that this is already the
major step in constructivising this theory. The author does not see at this moment any principal
reason apart from effort and time why the resulting ordinal notation system cannot be proved to
be well-founded in a suitable constructive theory. However, as long as such a reduction to a fully
constructive theory has not been carried out, the analysis by Rathjen remains incomplete, and one
could therefore at this moment in time place Hé — CA, as Martin-Lof did, on the other side of the
“abyss”. See however the discussion in Sect. 5 about the limits of constructivism, which indicates
that it might be very difficult to carry out the necessary constructivisation.
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to know, we will know”.% The future development of proof theory will hopefully
decide whether set theory is consistent or not.” Of course, even if one ever found an
inconsistency, it most likely has no effect on everyday mathematics (which is often
anyway on the surface carried out in naive set theory, which is inconsistent).

2  Well-Foundedness of Ordinal Notation Systems

Since the work of Gentzen, the main step in proving the consistency of reference
theories in proof theory is ordinal analysis; other theories are then reduced using
various techniques to these reference theories.® Ordinal analysis amounts to showing
that the consistency of a theory can be shown in PRA + TI%(«). Here PRA
is primitive recursive arithmetic, and TI%(«) is the principle of quantifier free
transfinite induction up to « for a specific ordinal notation system. The formula
TI%(«) is defined as follows: Let ¢(x) be a quantifier free formula in the language
of PRA. The formula Prog(¢, o), meaning ¢ is progressive up to «, is defined as
VB < a.((Vy < B.o(y)) — ¢(B)). Now TI¥(«) is the statement that for all such
quantifier-free formulae ¢ we have that Prog(g, «) implies Vf < a.¢(B). We will
in the following sometimes replace in notions such as TI%(«) the ordinal « by an
ordinal notation system (A, <). Here, an ordinal notation system (A, <) is a linearly
ordered set (A, <), such that A4 is a primitive recursive subset of Nand < € A4 x A
is primitive recursive. So with notations such as TI% () we introduce as well for
ordinal notation systems (4, <) the notion TI¥(4, <) for which we write as well
TI(A).

We assume that Tait’s article [41], in which he argues that PRA corresponds to
finitary methods, provides sufficient arguments for validating the proof principles of
PRA. So in order to validate PRA + TI%(«), one needs to validate the principle of
TI% (). So assume g is progressive up to . Since ¢ is quantifier free, it is decidable,
and we get ¢(B) V —¢(B), and can argue indirectly. Assume that for Sy := B we
have that ¢(By) does not hold. Then by searching through all ordinal notations and
using the decidability of ¢, we can find recursively an ordinal 8; < S such that
—¢(B1) holds. Continuing we find 8, such that —¢(f,) holds. By continuing his
process we obtain a recursive sequence By > f; > --- such that —¢(8;) holds for
all i. Note that this argument requires Markov’s principle, however not as a principle
of our theory, but as a metamathematical principle. Note as well that, if we have any

%German: “Wir miissen wissen. Wir werden wissen.”
7Of course in case of a positive answer a validation argument needs then to be carried out.

80f course often consistency is shown using normalisation proofs without ordinal analysis,
however, as pointed out before when quoting the referee in Sect. 1.1, in a proof theoretic analysis a
reduction to a quite different (very slim) theory is carried out whereas in normalisation proofs we
usually reduce the consistency to a slight extension of the theory in question, and therefore do not
gain such a deep understanding of the proof theoretically strong principles.
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proof of a theorem which is not correct, it must contain (unless there is a problem
with PRA) a concrete quantifier free ¢ and a concrete 8 < « for which the principle
of transfinite induction up to B < « is violated. From ¢ and B8 we will then obtain
a concrete infinite descending sequence. So in order to validate our theory, we need
to validate that there is no recursive infinite descending sequence of ordinals < «,
which we call NRDS(«).

We will look now at the steps towards validating that ¢ is well-founded. First
of all, we can rule out an infinite descending recursive descending sequence of
natural numbers and therefore validate NRDS(w). If we assume NRDS(A, <4)
and NRDS(B, <p) for linearly ordered sets (A, <4) and (B, <p) we can validate
NRDS(A x B, <jex) Where <j¢ is the lexicographic ordering on AX B w.r.t. <4, <p.
For if we had an infinite descending sequence (a,, b,),en, we immediately see that
ag >4 ay >4 ap > ---. Furthermore, for every n we can find m > n s.t. a,, <4 a,.
For as long as a, = a, forn < m we have b, >p b,+1 >p -+ >p b,. This
descending recursive sequence of b; will eventually stop, so there must be anm > n
s.t. a, <4 a,, which we can find recursively. By iterating this we find an infinite
descending sequence (a,, )ree in A, which does not exist. Note that the purpose of
this exercise is not proving in a formal theory TI9(A x B) but that we can get a
direct insight into NRDS (A x B) and therefore of TI9'(4 x B).

Up to now we were working with recursive sequences, which corresponds to
quantifier free induction. Using the validation of well-foundedness of @ and of the
lexicographic ordering on the products, we can validate transfinite induction up to
o" which is provable in PRA which has proof theoretic ordinal w®. In order to
prove transfinite induction up to an ordinal @ > w®, quantifier free induction on @
is no longer sufficient. This translates into the non-existence of descending (possibly
non-recursive) sequences in «, which we call NDS(«). For instance, induction
over arbitrary arithmetical formulae corresponds to non-existence of arithmetically
definable descending sequences in w. Note that NDS(«) implies NRDS(«) which
as stated before validates TI9 («).

So we will now, instead of validating NRDS(«), validate the stronger principle
NDS(«), which means we leave a fully constructive approach.” Even if it is
nonconstructive, we consider it still to be possible to carry out a validation argument
based on this notion. We can in our opinion validate NDS(w), which means we can
get a direct insight that this principle is valid. Using the same argument as before
we can in our opinion validate that the principle NDS is closed under forming the
lexicographic ordering for the product of two orderings.

Now assume NDS(A, <4). Consider Agec, the set of finite sequences (or lists)
of elements (aj,...,ar) of A such that a; >4 --- >4 ai. Let <jx be the
lexicographic ordering on finite sequences of elements in A based on < 4. We vali-

Constructive, if one regards Markov’s principle as constructive.

In fact we will need NDS(A’, <) only for intermediate notation systems (A4’, <4/) used for
validating NDS(«). For the final system, NRDS(«) is all what is required, which is implied by
NDS(«).
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date NDS(Adec, <1ex). Assume a descending sequence (a,.0.dn.1, - - 0nk,—1)ncw-
We immediately see that a,( is defined (i.e. k, > 1) and weakly descending,
1.e.dpp >4 A10 >4 A20 >4 ---. Because there is no infinite descending sequence
in A, this sequence must eventually become constant. Assume it is constant from
n = no onwards. Then for n > ny we have that a, is defined (i.e. k, > 2)
and forms a descending sequence @, 1 >4 dny+1.1 =4 Ang+2.1 >4 -+ in A. That
sequence will eventually become constant for n > n; for some n;. Therefore a, »
is descending for n > n; onwards and will become constant for n > n, for some
n,. By continuing this process we obtain a sequence of natural numbers (#;); ¢, and
have a,,0 = an,0 >4 Gn1 = Gny1 >4 Any,2 >4 -+-. SO we obtain an infinite
descending sequence a,,o >4 dn,.1 >4 -+ in A which does not exist, and have
therefore shown that there is no infinite descending sequence in (Agec, <iex)- NOte
that we cannot determine n¢, 7y, . .., S0 NRDS(A) is not sufficient to carry out this
argument.

This argument validates transfinite induction on (Agec, <iex). Ordering on ordi-
nals in Cantor Normal Form (CNF) ¢ = w%'n; + --- + w*ny is the same as the
double lexicographic ordering on ((¢1,71), ..., (o, ni)). Let (A, <) be an ordinal
notation system. Let CNF(A) be the set of terms obtained by applying once CNF
to elements in A, ordered correspondingly. CNF(A) is isomorphic to a subset of
(Ax (@ \0), <lex)decs <lex) 10 which in turn is isomorphic to ((A X ®, <iex)decs <lex)-
The order type of CNF(A) is w®, if the order type of A4 is «. This means that, if we
have validated NDS(«), we have validated NDS(w%).

Therefore we can validate NDS(w),) and therefore at least Tqu(a)n) where wy =
W, Wy1 = 0. Since €y = sup, ¢, w, we have validated quantifier free transfinite
induction up to all ordinals less than «.

Gentzen showed that PRA + TI% (¢y) proves the consistency of PA, which was
considered as a proof of the consistency of PA. The belief that this proof shows
the consistency of PA (in an absolute way) must be based on some argument
which validates PRA + TI4(¢;), and we have given one such argument. The above
argument has shown the validity of the consistency of PA. Therefore it follows, for
instance, that, if we have shown in PA Fermat’s last theorem, then there can be no
counter example.

In our articles [36, 37] we extended this approach to ordinal notation systems
from below. Up to the strength of (H% — CA)( we were able to give arguments,
which we regard as a validation of transfinite quantifier-free induction up to those
ordinals. When reaching higher ordinals, the direct insight into the well-foundedness
rests necessarily upon principles of increasing proof theoretic strength. Note that
according to the results of reverse mathematics, most real mathematical theorems
can be shown in (H% — CA)o , so most of mathematics can be validated by pure
ordinal analysis. Beyond that strength, we could develop ordinal notation systems
from below, but could only give a formal well-foundedness proof, which then needs
to be carried out in another theory of at least equal strength. It is no accident that

10Those sequences ((a1,7n1), ..., (ax,ny)) s.ta; > -+ > a.
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this happens when moving from (H} — CA)p to H} — CA, since the argument is
based on the concept of well-foundedness, which is a H%-concept, and one needs in
some form a principle, which goes beyond 1!, in order to validate H} — CA.

3 Martin-Lof Type Theory

With increasing strength, ordinal notation systems for describing the proof theoretic
ordinal of theories become increasingly complicated. Therefore, the complexity of
the well-foundedness proofs for these ordinal notation systems increases as well.
Correspondingly, it becomes increasingly difficult, if possible at all, to validate
the well-foundedness of the ordinal notation system directly. A solution for this
problem is to make a second step and prove the well-foundedness of the ordinal
notation system in a second theory for which one can carry out a validation argument
more directly. Hilbert wanted originally to validate theories involving the infinite by
reducing them to finitary methods. A suitable generalisation of finitary methods are
constructive theories, in which the elements of sets are still finite objects, or terms.
In order to deal with function spaces, we need reduction rules for terms, for instance
n + S(m) reduces to S(n + m). This allows to determine elements of function types
as terms which applied to elements of the argument type are elements of the result
type, or reduce to such an element. So infinite objects (full functions) are replaced
by finite objects (programs or terms).

The addition of recursive functions as finitary objects was the motivation of
Godel in his Dialectica paper [13], where he writes (p. 282, translation p. 245 of
[11]): “Itis the second requirement that must be dropped. This fact has hitherto been
taken into account by our adjoining to finitary mathematics parts of intuitionistic
logic and the theory of ordinals. In what follows we shall show that, for the
consistency proof of number theory, we can use, instead, the notion of computable
function of finite type on the natural numbers and certain elementary principles of
construction for such functions.”!!

Godel’s Dialectica interpretation was still referring to classical logic, and is
usually used mainly as a proof theoretical tool rather than being considered as
an approach to obtaining a foundation of mathematics. A more radical approach
was taken in MLTT.'2 MLTT is, as Martin-Lof phrased it once to the author (we

1“Eg ist die zweite Forderung, welche fallen gelassen werden muss. Dieser Tatsache wurde bisher
dadurch Rechnung getragen, dass man Teile der intuitionistischen Logik und Ordinalzahltheorie
zur finiten Mathematik adjungierte. Im folgenden wird gezeigt, dass man statt dessen fiir den
Widerspruchsfreiheitsbeweis der Zahlentheorie auch den Begriff der berechenbaren Funktion
endlichen Types iiber den natiirlichen Zahlen und gewisse sehr elementare Konstruktionsprinzipien
fiir solche Funktionen verwenden kann.”

2The standard reference is Martin-L6f’s book [20]. The article [28] contains a good concise
summary of the rules of MLTT (starting p. 162), however the rules for @ and €2, which make
it a partial type theory, the topic of that article, need to be omitted. Another listing can be found
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unfortunately do not remember the precise wording), the most serious attempt to
develop a theory such that we have an insight that all judgements are valid. Those
not familiar with MLTT are often perplexed by the large number of its rules. The
reason for having such a large number of rules is that this theory is not defined so
that it has a shortest description. Instead it is designed so that we can get an insight
into the validity of all provable judgements.

In MLTT we have non-dependent judgements of the form

* a: Aforaisoftype A,

* a=b: Afora,b are equal elements of type A4,
e A : Setfor A isa set,

e A = B :Setfor A, B are equal sets.

Dependent judgements have the form x; : A;,...,x, : A, = 6 where 0 is a
non-dependent judgement, with free variables in xy, ..., X,.
‘We have as rules

* structural rules (rules for dealing with contexts, assumptions, and the definitional
equalitiesa = b : Aand A = B : Set);

» formation rules (which introduce sets, e.g. conclude N : Set);

* introduction rules (which introduce a canonical element, an element starting with
a constructor, e.g. for N derive 0 : N and from a : N derive S(a) : N);

* elimination rules, e.g. higher type primitive recursion in case of N,

* equality rules (e.g. deriving that if #(x) is defined by higher type primitive
recursion into type B(x), with base case a : B(0), that 1(0) = a : B(0));

e and equality versions of the formation, introduction and elimination rules
(e.g. deriving S(a) = S(a’) : N froma = a’ : N).

The validation argument for MLTT is done via meaning explanations.'? In meaning
explanations, one determines the meaning of each judgement. Then one validates
for each rule that, if the premises are valid w.r.t. meaning explanations, so is the
conclusion. Therefore all judgements provable are valid.

Elements of sets can be canonical elements, which are formed by the introduction
rules. For instance, S(2 + 2) is a canonical element of N. Non-canonical elements
are considered by Martin-Lof (see, e.g., [20]) as programs, which evaluate to a
canonical element. Canonical elements are special cases of non-canonical elements,

in the author’s article [35], where everything was made precise in order to be able to carry out a
proof theoretic analysis. Arne Ranta’s book [29] contains a nice introduction to MLTT. Nordstrom
et al.’s book [26] is an excellent reference for MLTT, and there is the more recent and more concise
handbook version [25].

13We could not find a definite and complete reference to meaning explanations. Martin-Lf’s
articles and book [20-23] introduce meaning explanations when discussing the rules of type theory.
Tasistro’s Ph.D. thesis [42] describes meaning explanations if one uses explicit substitutions (see as
well a short reference in the more accessible article [12]). The author has in [39] given an account
of his understanding of meaning explanation with a variation in order to accommodate coalgebraic
data types defined by their elimination rules.
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which as programs evaluate to themselves. Martin-Lof (private communication)
considers the concept of a program, for which we have a direct insight how it
operates, as crucial for understanding his meaning explanations.

The meaning of A : Set is given by determining what its canonical elements are
and when two canonical elements are equal. The meaning of a : A is that a is a
non-canonical element of A. The meaning of the judgementa = a’ : A is that a, a’
are equal elements of A, which means that they evaluate to equal canonical elements
of A.

In case of N we have that O is a canonical element, and, if n is an element of
N, then S(n) is a canonical element of it. 0 is equal to 0, and if n, m are two equal
elements of N, then S(n) and S(m) are equal canonical elements of it.

The meaning of the judgement A = B : Set is that A and B are equal sets which
means that canonical elements of A are canonical elements of B and vice versa, and
equal canonical elements of A are equal canonical elements of B and vice versa.

For determining the meaning of dependent judgements, we introduce abbrevi-
ations X for xi,...,x,, similar for @, a’ (referring to a!), and X for xi,..., Xz,
similar for dy, d; . A dependent judgement

X1 A xy  Aa(x), o X A (Xmy) = 0(X)
is valid if for every choice of elements
ay: Ay as: Ax(ay), ... a0 Ap(dy—1)
the judgement () is valid. One needs as well that for equal elements
ay=aj: A,ay =ay: As(ay),....ay = al, : Ay(dn—1)
the equality judgements in the conclusion holds: If 6 = (A : Set) we require that
A(a) = A(a’) : Set holds, in case 6 = (a : A) we require that a(d) = a(a@’) : A(@)

holds. Judgement A = B : Set presupposes A : Set, B : Set, judgement a : A
presupposes A : Set, judgementa = b : A presuppose a : A, b : A. The judgement

X1 AL Xy An()_én—l) = 9()?)
presupposes A; : Set, x| : A} = A(x;) : Set, etc., and as well
X1 AL Xy An()_én—l) = 9/()_5)

for any presupposition 6’(X) of 6(X).

Adding the meaning of the presuppositions of judgements (applied transitively)
to the meaning of a judgement gives the full meaning of the judgement.

Now one can easily validate structural rules, formation rules, introduction rules,
and their equality versions. Elimination rules are more difficult to validate (and
that’s where an increasingly high level of trust is required). In case of N, in the
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simple case where we derive x : N = #(x) : B(x) by primitive recursion, we
validate that #(0) : B(0) and if we have x : N and #(x) : B(x) are valid, so is
t(S(x)) : B(S(x)). Now one sees that for each element of @ of N as given by the
meaning explanations #(a) : B(a). This holds first for canonical elements, by going
through what we said constitutes a canonical element of N, and checking for each
canonical element a that ¢(a) : B(a) is validated. For non-canonical elements, the
reduction of #(a) is given by first reducing a to canonical form 0 or S(a’), and then
applying the reductions corresponding to the base case or induction step. Therefore
the rules are validated as well for non-canonical elements.

The key principle one needs to trust is the correctness of the elimination rules
for the inductively defined sets N, W-type, and universes. We cannot get around
the fact that we cannot prove the consistency of MLTT, so when moving to proof
theoretically stronger principles, one needs to trust the validity of the rules for proof
theoretically stronger sets. We cannot avoid this, but the author believes that one can
trust in the principles involved.

3.1 Induction-Recursion and the Mahlo Universe

The validation of principles works well for concrete inductive-recursively defined
sets, as long as we do not make use of the full logical framework, which allows
to have A : Set or even higher types in the context.'* Therefore, one can validate
Palmgren’s superuniverse ([27], Sect. 3), but not Palmgren’s higher order universes
([27], Sect. 5) or the external Mahlo universe ([4], Sect. 6.3), which reaches at least
the strength of KPM ([4], Sect. 6.4). The strength of Palmgren’s superuniverse is not
known ([30,31] analyse only the metapredicative version without the W-type), but
substantially exceeds that of MLTT with W and one universe.'> The latter theory
was analysed by Griffor and Rathjen [14] and Setzer [34, 35], and has strength
slightly bigger than Kripke—Platek set theory with one recursively inaccessible, KPI.

For the Mahlo universe we have given meaning explanations in our article [38]
(not yet published). However, we cannot say that the validity of its rules are as fully

“When introducing his version of meaning explanations, the author usually avoids the logical
framework. The reason is that he has not yet found an account of meaning explanations of the
logical framework, which does not consider Set as a Russell style subuniverse of Type, and
which he considers as fully satisfactory. If Set is treated as a universe, one adds considerable
proof theoretic strength. Especially, with the rules for inductive-recursive definitions Set is closed
under the introduction rules of (a Russell style variant of) the internal Mahlo universe. In the
community of MLTT, inductive-recursive definitions is often considered as the limit of what can
be at the moment justified without making use of the Mahlo universe principle. Martin-L6f has
given presentations about how to treat the logical framework without adding additional strength,
however we could not find yet a written account of it needed in order to judge it completely.

3Tt is easy to conjecture the precise strength, and it would not be difficult albeit time consuming
to analyse the full version of it.
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convincing as they are for inductive-recursive definitions without use of the full
logical framework.

4 Feferman’s System of Explicit Mathematics
and the Extended Predicative Mahlo Universe

In [16] Kahle and the author have published an extended predicative version of
the Mahlo universe. This version is developed in Feferman’s system of explicit
mathematics [5, 6]. It uses the fact that in Feferman’s system one has access to
the collection of all terms, and therefore can form for every term a subuniverse of
the Mahlo universe which is relatively closed under this term considered as a partial
function. In MLTT all objects have a type and are therefore total. Therefore in MLTT
we do not have access to the collection of all terms, which in general are only partial
objects.

We regard this version [16] as being predicative (in an extended sense) and
believe that this theory can be validated. Feferman’s theory has been developed
in second order logic,'® and optimised towards a short and concise theory. While
this makes metamathematical investigations easy and makes it easily accessible
to non-specialists, it causes problems when validating the provable statements.!’
It seems however that this is not a principal problem. It should be possible to
present Feferman’s theories in a style which is very close to that of MLTT, and
develop meaning explanations. This way hopefully one could validate the extended
predicative Mahlo universe in the sense of this article.

With [16] we have not reached the limit of this methodology. We have developed
draft versions which reach at least the strength of Kripke—Platek set theory extended
by ITs-reflection, and it is likely that we can go far beyond with that strength.

5 The Limit of Constructivism

In [32, Sect. 6] Rathjen introduces assumptions (A0)—(A3) about possible exten-
sions MLTT™ of Martin-L6f Type Theory, of which the most important one is
assumption (A3):

(A3) Every inductive definition ® : Pow(N) — Pow(N) for generating the
elements of a type A in MLTTT and its pertinent decoding function are

16Not much of second order logic is actually used, its use is mainly for convenience rather than
need.

17We note that this is the opinion of the second author of [16] only, who is the author of the current
article.
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definable by set-theoretic X-formulae. These formulae may contain further sets
as parameters, where these sets correspond to previously defined types.

He shows (Theorem 6.1) that under these assumptions a set M such that M <; V is
amodel of MLTT'. Here M <; V means that M is a 3 |-elementary substructure
of V, where V is the set theoretic universe. This determines a limit to a constructive
program based on MLTT.

In his argument, Rathjen already admits that due to the acceptance of the Mahlo
universe as an acceptable extension of MLTT, a more strict assumption had to
be abandoned, namely that sets are introduced by monotone inductive definitions.
This already indicates that it is very difficult to determine an upper bound for a
constructive program. While it may be difficult to go beyond principle (A3), we
believe that this is only a temporary limitation—it is likely that new constructive
principles will emerge, which will be considered as acceptable but go beyond this
principle. However, drawing this line is of great benefit, since it determines the
requirements a new principle needs to fulfil in order to go beyond that limit.
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Part 11
Gentzen’s Consistency Proofs



On Gentzen’s First Consistency Proof
for Arithmetic

Wilfried Buchholz

1 Introduction

If nowadays “Gentzen’s consistency proof for arithmetic” is mentioned, one usually
refers to [3] while Gentzen’s first (published) consistency proof, i.e. [2], is widely
unknown or ignored. The present paper is intended to change this unsatisfactory
situation by presenting [2, IV. Abschnitt] in a slightly modified and modernized
form.

The method from [2] can be roughly summarized as follows: By recursion on the
build-up of d, for each derivation d in a suitably designed finitary proof system Z
of first order arithmetic a family (d [1]),ejip(a)| of reduced Z-derivations is defined
such that

...End(d[n])...(n € |tp(d)|)
End(d)

(where End(d) denotes the endsequent of d)

forms an inference tp(d) in cutfree w-arithmetic with repetition rule Rep. Obvi-
ously, if d is a derivation of falsum L, i.e. if End(d) = L, then tp(d) can only be
an instance of Rep, so that d [0] is again a derivation of L. In a second step, to each
d an ordinal o(d) < & is assigned such that o(d [n]) < o(d) for all n € |tp(d)]|.
Then the consistency of Z follows by (quantifierfree) transfinite induction up to .

Actually Gentzen’s terminology is somewhat different. First (in Sect. 13 of [2])
Gentzen defines reduction steps on sequents. Such a reduction step Z may involve
a certain ‘option’ (Wahlfreiheit), so that the result of applying Z to a sequent IT

actually is a family of sequents (Z(IT,n)), ciz)- Then (in Sect. 14 of [2]) for each
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Z-derivation d (whose endsequent is not an axiom) a reduction step on derivations,
d — (d[n])nefz), is defined such that Vn € |I|(End(d [n]) = Z(End(d), n)),
where 7 is a reduction step on sequents, uniquely determined by d . Here, in contrast
to Gentzen, we also regard Rep as a reduction step on sequents—with |Rep| = {0}
and Rep(1I1, 0) = II.

The outline of the paper is as follows. In Sects. 2 and 3 we repeat relevant parts
of [2] using to a great extent Gentzen’s own words (in the translation by Szabo [5]).
In the course of this we do not hesitate to deviate from the original text (in content
or form) whenever we think it is appropriate or facilitates understanding. The main
point where we deviate from [2] (besides omitting conjunction &) is the following:
In the reduction steps on sequents concerning an antecedent formula VxF or —A4
(13.51, 13.53) we always require that this formula is retained in the reduced sequent
while Gentzen allows to omit it. As a consequence we also have to modify the
reduction steps on atomic Z-derivations (which will be deferred till Sect. 6). In
Sect.4 we present the main definitions and proofs of Sect.3 in a more condensed
style (and with some further modifications). This facilitates the work in Sect.5
where we assign to each Z-derivation d an ordinal o(d) < &¢ and prove that each
reduction step on a derivation d lowers its ordinal, i.e. we prove that o(d [n]) < o(d)
for all n € |tp(d)|. Our ordinal assignment is essentially that of [4] which on first
sight looks very different from Gentzen’s original assignment in [2], where certain
finite decimal fractions were used as notations for ordinals < g¢. But in the appendix
we will show that actually both ordinal assignments are rather closely related. In
Sect.7 we give an interpretation of Z in an infinitary system Z°°. This way we
obtain a semantic explanation for Gentzen’s reduction steps on Z-derivations and
for the ordinal assignment of Sect. 5. Finally, in Sect. 8 we indicate how the approach
of Sects. 4, 5 can easily be adapted to calculi with multisuccedent sequents.

2 Formal Language, Reduction Steps on Sequents

The following symbols will serve for the formation of formulae: Variables (for
natural numbers) which are divided into free and bound variables; the constant 0
and the unary function symbol S (successor); predicate symbols (each of a fixed
arity); the logical connectives —, V.!

Terms are generated from the constant 0 and free variables by iterated application
of S. The terms 0, S0, SSO0, ... are called numerals. In the following we identify
numerals and natural numbers.

Formulas:

1. If P is an n-ary predicate symbol and ¢,,...,1, are terms, then Pt ...1, is a
(prime) formula. If #1,...,7, are numerals, then Pt ...¢, is called a minimal
Sformula.

'We omit conjunction ‘&’ in order to keep the focus on the essential things.
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2. If A is a formula, then so is —A.
3. From a given formula we obtain another formula by replacing a free variable by
a bound variable x not yet occurring in the formula and prefixing Vx.

We assume that to each minimal formula a truth value “true” or “false” is
assigned.

We use L as abbreviation for some fixed false minimal formula (e.g. 0 = SO0).

Abbreviation. A ~ B :& either A = B or A, B are both false minimal
formulas.

Remark A~ 1 < A is afalse minimal formula.

A sequent is an expression of the form I'— B where I' is a finite sequence of
formulae.

The formulae in T" are called the antecedent formulae and B the succedent
formula of the sequent. We also call I' the antecedent of I'— B.

A formula (sequent) is called closed if no free variable occurs in it.

Abbreviations.

A el :& Aoccursin the sequence I'.
I' C T’ :& forall formulas A, if A € T'then A € T/ (e.g. A,B,A, A C
B,B,A,C).

Definition (Reduction Steps on Sequents)
On a closed sequent IT an individual reduction step can be carried out in the
following way.

13.21. Suppose that the succedent formula of the sequent IT has the form Vx F(x).
In that case we replace it by a formula F(n), i.e. by a formula which results
from F(x) by the substitution of an arbitrarily chosen numeral n for the
variable x.

13.23. Suppose that the succedent formula of the sequent IT has the form —A. In
that case we replace it by the formula L and, at the same time, adjoin the
formula A to the antecedent of the sequent.

13.4. Suppose that the succedent formula of the sequent IT is a true minimal
formula; or: that the succedent formula is a false minimal formula and that
one of the antecedent formulae of IT is also a false minimal formula. Then
we say that the sequent IT has (or, is in) endform, and no reduction step is
defined.

13.5. Suppose that the succedent formula of IT is a false minimal formula, and
that none of the antecedent formulae of IT is a false minimal formula. In
that case the following two different kinds of reduction step are permissible
(counterpart of 13.2):

13.51. Suppose that an antecedent formula has the form VxF(x). We adjoin a
formula F (k) (k an arbitrary numeral) to the antecedent.

13.53. Suppose that an antecedent formula has the form —A. We replace the
succedent formula by A.
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In condensed form these reduction steps are described by the following schemata
(reading them bottom-up):

R )...F—>F(n)...(nEN). R )A,F—)J_.
VO TR Y F(x) ’ R
i Fk), I'-C
(LVXF(X))T with C &~ 1 and VxF(x) € T;
0 '—-A4
L2, withC ~ L and =4 € T".
r-cC

In the sequel, each of the symbols Ry, r, R-4, L’{,x P L2 4 is used as the name of the
respective reduction step (as shown above). But the above schemata can also be read
as inferences in w-arithmetic; therefore, these symbols will also be called inference
symbols. Another reason is that this term has already been used in several previous
publications (e.g., in [1])—and “reduction step symbol” would sound too clumsy.

3 Reduction Steps on Derivations

Definition (The System Z of Pure Number Theory)
Derivable objects of Z are sequents.

The axioms (or initial sequents) of Z will be specified in Sect. 6.
Inference Rules

'—>F
V-introduction: —>—(a) , if the free variable a does not occur in the
'-VxF(x)
conclusion.
troducti A, T'—1
—-introduction: ——
I'—>—-4
I'—-F(@© F(a),T—=F(S
complete induction: ~>FO) = 1568) = F(Sa) , if @ does not occur in the
conclusion.
. Fy—A4g ...... I—A;
chain rule:

r-C ’
if there exists j </ suchthat C ~ A4; and Vi < j(I'; € I', 4o,...,Ai—1). In
addition we require that no free variable is vanishing, i.e., that every free variable
occurring in one of the premises I'; — A; also occurs in the conclusion '—C.

Abbreviation.

d -T—C :& disa Z-derivation (i.e., a derivation in Z) and the endsequent
ofdisI'—>C.

A derivation is called closed if its endsequent is closed.
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For each closed derivation d, whose endsequent is not in endform (13.4) we shall
now define the reduction step on d and at the same time prove the following: by such
a step the derivation is transformed into another closed derivation and its endsequent
is thereby modified in the following way: At most one reduction step according to
13.2 or 13.5 is carried out on the sequent. (It may thus happen that an endsequent
remains entirely unchanged.) The reduction step on a derivation is unambiguous,
except in the case in which the endsequent undergoes a transformation according
to a reduction step on sequents involving a choice (13.21); here, the choice may be
made arbitrarily; if this has been done, the reduction step is then also unambiguous.
If the endsequent of d has endform according to 13.4, no reduction step is defined
for this derivation.

Definitions

1. The result of carrying out the reduction step on d is denoted by d[n] where in
case 13.21, n is the ‘arbitrarily choosen numeral’, and n = 0 otherwise.

2. If the reduction step on d causes a reduction step on the endsequent IT of d, then
tp(d) denotes the name of this latter reduction step® and tp(d )(I1, ) denotes the
result of applying tp(d) to I1, where n plays the same role as in 1.

3. If the reduction step on d does not change the endsequent of d, we set tp(d) :=
Rep and Rep(I1,n) := II.

N iftp(d) = Ryxr,
4. The arity of d is defined by arity(d):= { @ if the endsequent of d has endform,
{0} otherwise.

Summing up, by recursion on the build-up of d we will define tp(d) and d [n]
and simultaneously prove

Theorem 3.1 If d is a closed Z-derivation of 11, then d[n] - tp(d)(I1,n) for all
n € arity(d).

In the following we assume that d is a closed Z-derivation whose endsequent is
not in endform.

14.21. The axioms of Z are treated later (in Sect. 6).

14.22. We now consider the case where the endsequent is the result of the
application of a rule of inference and we presuppose that for the derivations
of the premises the reduction step has already been defined and the validity
of the associated assertion (i.e. Theorem 3.1) demonstrated.

14.23. Suppose that the endsequent of d is the result of a V-introduction or a
—-introduction. It (i.e. the endsequent) is then eliminated and its premise
taken for the new endsequent, where, in the case of a V-introduction, every
occurrence of the free variable a must be replaced throughout the derivation
dy of this premise by an arbitrarily chosen numeral 7.

2Cf. end of Sect. 2.



68 W. Buchholz

The derivation has obviously remained correct, and the endsequent has
become a reduced endsequent in the sense of 13.21 or 13.23.
In other words:

do(a)
fd =1 g -thendfn]:=do(n) andtp(d) = Rverco.
F'->VxF(x)
do
1td = { 4 [y «then d[0] := do and tp(d) := Ros.
I'—-—-4

14.24. Suppose that the endsequent of d is the result of a ‘complete induction’.

do di(a)
|

|
d = ' —F(0) F(a),T'— F(Sa)
I'—F(k)

(Since d is closed, the induction term is a numeral k.)

Then we set
dy di(0) di (1) di(k—1)

d[o] := F—>|F(O) F(O),F|—>F(1) F(l),l"l—>F(2) ...... F(k—l),lr‘—>F(k)
I'—F(k)

and tp(d) := Rep.
14.25. The last case to be considered is that in which the endsequent is the

conclusion of a ‘chain-rule’ inference: d = T

The premise whose succedent formula provides the succedent formula of the
endsequent, I shall call the ‘major premise’. If the succedent of the endsequent
is a false minimal formula, we choose as major premise the first premise (in the
given order) whose succedent formula is also a false minimal formula. This does
not change the correctness of the ‘chain-rule’ inference.

Sothereisa j <[IsuchthatA; ~ D,Vi < j(I'; € ©, Ao,...,Ai—1) and,if 4;
is a false minimal formula then none of Ay, ..., A;_; is a false minimal formula.

From these preliminaries it follows that the major premise I'; — A ; can in no case
be in endform (13.4), for otherwise the endsequent ® — D would obviously also
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have to be in endform, and this was assumed not to be the case. Hence a reduction
step can be carried out on the derivation of the major premise. In respect of this
reduction step, i.e. in respect of tp(d; ), I distinguish four cases (14.251-14.254).

14.251. Suppose that the major premise undergoes a change according to 13.2 in
the reduction step on its derivation d;, i.e. tp(d;) = Ry; and A; = D. In that
case the endsequent is subjected to the appropriate reduction step for sequents
according to 13.2; any choice that arises is to be made arbitrarily. The reduction
step for derivations is then carried out on the derivation d; of the major premise and,
whenever a choice exists, the same choice is to be made as before. The succedent
formulae of both sequents are now the same once again and the ‘chain-rule’
inference is once again correct. Thus, the reduction step for the entire derivation
d is completed.
In other words, tp(d) := tp(d;) and

do djn] d
| | L
dInl =1 1ry>d,... Tj>F@) ... Ty>4, f4; =D =VYxF(x):;
®—F(n)
d() d][()] d[
) | I I .
dl0]:= 1 ry>Ap... AT;—>L.. .T)—>4, f4;=D=-4.
A,0—_L

14.252. Suppose that the major premise undergoes a change according to 13.5 in
the reduction step on its derivation, and the affected antecedent formula B also
occurs in the antecedent of the endsequent, i.e. tp(d;) = L]j5 with B € ©. In that
case the reduction step is carried out on the derivation of the major premise and the
endsequent is modified according to the corresponding reduction step on sequents
(13.5), so that the ‘chain-rule’ inference becomes again correct.

In other words, tp(d) := tp(d;) and

do d;[0] d
| | I
d01:=\ Ty Ao... F(k).T;—>A;...Tj—>A4, i B=VYxXF&);
Fk).0=>D
do d;[0] d,
| | L
d01:= | Ty Ay... Tj—A.. .Tj—>4, i B="4
®O—>A4

14.253. (Principal case) Suppose that the major premise, say A—C, undergoes a
change according to 13.5 in the reduction step on its derivation and that the affected
antecedent formula (V') is a formula that does not occur among the antecedent
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formulae of the endsequent, since it agrees with the succedent formula of an earlier
premise; suppose further that ¢his premise, call it 'V, undergoes a change during
the reduction step on its derivation which, in that case, must necessarily be a change
according to 13.2. (Since V cannot be a minimal formula.)—Remember that the
endsequent of the whole derivation has the form ®— D. I shall distinguish two
subcases depending on whether V' has the form Vx F(x) or —A.

Suppose first that V' has the form Vx F(x). In that case an antecedent formula
F (k) is adjoined in the reduction step according to 13.51 on A—C; in the reduction
step on I'— Vx F'(x) which must be carried out according to 13.21, the same symbol
k may be chosen for the numeral to be substituted, so that '— F(k) results. We
now form three ‘chain-rule’ inferences: the premises of the first are those of the
original ‘chain-rule’ inference, but with I'— F(k) in place of '—>VxF(x); its
conclusion: ®— F (k). A correct result. The premises of the second are those of the
original ‘chain-rule’ inference, except that A—C is replaced by the sequent that
was reduced according to 13.51; its conclusion: F(k), ®— D. This is also a correct
‘chain-rule’ inference. The third ‘chain-rule’ inference again yields the endsequent
®—D from ®— F (k) and F(k), ®— D. Together with each one of the sequents
used we must of course write down the complete derivation of each sequent so that
altogether we now have another correct derivation.

If V has the form — A, then A—C isreducedto A—A,and'—>—Ato A, '— 1.
We now form, as before, two ‘chain-rule’ inferences with the conclusions A, ®— L
and ®— A. With their order interchanged, these two yield by a third ‘chain-rule’
inference again ®— D. (Note that D, like C and L, is a false minimal formula.)

In other words,

4 d
if d= ...F—|>V. ' .A—|>C. _ with major premise A—C, tp(d;)=L}, and V &0,
®—D

we set tp(d) := Rep, while the reduced derivation d[0] depends on the form of V.

d{0} d{1}
If V = VxF(x), then d[0] := ®—>|F(k) F(k), |®—>D
®—D
di[k] dj
where d{0}:= ¢ 1"—>|F(k)... A—|>C,,,
O—F (k)
d; dj [O]
| I
and dil}:= 9 -y, Fk),A—C...

F(k),0—=D
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d{o}  d{1}
If V = —A, then d[0] := @—I>A A ®I—>J_
®—D
d,‘ deOI
I I
where d{0}:=9 Ty AsA .
O®—A
d;[0] dj
| I
and dilji=y 4Tl A>C...

A,0—1
14.254. We are still left with the following possibilities: the major premise remains
unchanged in the reduction step on its derivation; or: its change is of the kind
assumed at 14.253, and the premise I'— V remains unchanged in the reduction step
on its derivation.—In both cases we carry out the reduction step on the derivation of
the unchanged remaining premise, and this completes the reduction.

However, if this reduction step on the derivation of the unchanged remaining
premise is according to 14.253, we proceed somewhat differently, namely: we carry
out this reduction step, but without completing the prescribed third ‘chain-rule’
inference; instead, we take the two premises of this ‘chain-rule’ inference and insert
them in place of its conclusion in the sequence of premises of that ‘chain-rule’
inference which concludes the derivation as a whole. This obviously leaves that
‘chain-rule’ inference correct. The endsequent is not changed.

Let us have a closer look on one of these cases; namely, the case where the
premise A—C (= I';—A;) remains unchanged in the reduction step on its
derivation d;, and where this reduction step is according to 14.253.

di{0y  di{l}

[ [
Then d,[0] = r,—B B.T;—>4, for some B and A, ~ A; ~ D.

Fj—>Aj
We set tp(d) := Rep and
do i 40y di{1} dj4 d
— I I I I I I
d[O]_ FO—)A()...ijl—>Aj71 F]—)B B,F]—>A,/ Fj+1—>Aj+1...F1—)A1

®—=D
The definition of the reduction step on a derivation and the proof of Theorem 3.1
are now complete. As an immediate consequence from Theorem 3.1 one obtains
Corollary 3.1 Ifd - — L, thend[0] F — L.

Proof By Theorem 3.1 we get d[0] F tp(d)(—L,0). Since no reduction step is
applicable to — L, it cannot be that tp(d) is R4 or L¥. Hence tp(d) = Rep and
thus tp(d)(—L,0) = — L. O
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Remark (Consistency of Z) In Sect.5 we will assign to each Z-derivation d an
ordinal o(d) < & and prove that o(d[n]) < o(d) whenever d[n] is defined
(Theorem 5.2). Together with Corollary 3.1 this implies the consistency of Z via
(quantifierfree) induction up to &.

4 Reduction Steps on Derivations Revisited

In this section we present the contents of Sects. 2, 3 in a more condensed style. In
the course of this we also carry out some minor modifications on Gentzen’s original
approach, namely

* In the reduction steps L]\‘,x p and LY, 4 itis no longer required that the succedent C
is a false minimal formula. Accordingly the notion “endform” will be modified,
and the condition “4; ~ C” in the chain rule will be replaced by “4; € {C, L}”.

* Each chain-rule inference will now have an explicitly shown rank which is an
upper bound on the ranks of all its cut formulas.

Some preliminary definitions and abbreviations

1. A~ T :& Ais atrue minimal formula.

2. I'—C has (or, is in) endform :<> C =~ T or I" contains a false minimal formula.

0 if C is prime,

k(A) + 1if C =VxAor C = —A.

4. If X is a formula or sequent, then FV(X) denotes the set of all free variables
occurring in X .

5. TI ranges over sequents; for [1 = I'>C we set A, I1 := A,'—C and [1-4 :=
I'—A.

6. An inference symbol is an expression of one of the following three kinds:R 4 with
rk(A) > 0or A ~ T, LK withrk(4) >0or 4~ L, Rep.

7. For each inference symbol Z we define

N ifZ = Rvyr,
e itsarity|Z] ;= {0 ifZ =R, orZ = L withrk(4) =0,
{0} otherwise,
* the result of applying (the reduction step denoted by) Z to IT with choice n:

3. 1k(C) :=

IM.F(n) if Z = Ry,r,
F(k),if T = LK,
I(M,n) := § A, H-L if T = Roy,
MmA ifZ =Lk,

I1 otherwise,
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e therelation Z <« IT1 (Z is permissible for IT):
I4T—=C & I=RcorZ=Lwithdel or Z=Rep.

F0—>A() F1—>A1
I'-C

rank r if there exists a j < [ such that A; € {C,L} and Vi < j{I; C

T, Ag,...,A;—1) and Vi < j(tk(A4;) < r).

Definition The figure

is called a chain-rule inference of

Inductive Definition of d I IT (d is a Z-derivation with endsequent IT)

. Atomic derivations (axioms): cf. Sect. 6.
.IfdyFT—F(a)anda € FV(I'->VxF(x)), then IVxF(V)dO FT—VxF(x).
Ifdog A, T— 1, thenl-4dy - T'——A.
.Ifdg-T—F(0)andd, + F(a),T—F(Sa) anda ¢ FV(I'—> F(¢)),
then Ind}' dody F T'— F(2).
5. If d; F T1; with FV(I1;) € FV(II) fori = 0,...,[, and
Ty

N |
if TI is a chain-rule inference of rank r, then Khdy...d; = I1.

AW N =

A derivation is called closed iff its endsequent is closed.

Lemma 4.1 Assume Il; =T;—A; (i =0,..., jo) and I1 = I'—C with
Aj() € {C, J_} and Vi < jo(ri CT, A,..., Ai—l)~

Further, let Zo, . .., Z, be inference symbols such that
Vi < joZ; « II; &Z; # 10).
Then 3. j. k(i < j < jo & Ti = Ry, & Z; = LK & 0 < 1k(4))).

Proof From Z;, <« Il;) & Z;, # I1 & Aj, € {C, 1} it follows that Z;, € L

(i.e. Z;, = L% for some B and k). Hence there exists the least j < jjo such that
Z; e L. Assume Z; = L%. Then L% < IT; & LY « 1 which implies B € T; \T' €
{Ao,... j—1}- So we haveI = Lk for somei < j.By minimality of j and since

i < j =< jo,wehaveZ ¢LandI < II; & I; « I1, which implies Z; = Ry;.
Finally, from R4, < II; and L]jli < IT; we conclude (tk(4;) =0 = A4; ~ T) and
(rk(4;) =0 = A; ~ 1), hence rk(A,-) > 0. O

Definition 4.2 (p(d) and d[n]) For each closed Z-derivation d we now define
an inference symbol tp(d) and, for each n € |tp(d)]|, a closed Z-derivation d [n].
In the main case 5.1. where d is ‘critical’ we also define the auxiliary derivations
d {0}, d {1} and the formula A(d ). The whole definition proceeds by recursion on the
build-up of d. In parallel we observe that tp(d) is permissible for IT (i.e., tp(d) <
IT) whenever d + II.

1. d atomic: cf. Sect. 6.

2. d =1I{, pdo: Thentp(d) := Ry.r and d[n] := do(a/n).

3. d =1.4dy: Thentp(d) := R-4 and d[0] := dp.

4. d = Ind%* dyd, with dy - T— F(0) and d; - F(a), T— F(Sa):
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Then tp(d) := Rep and d[0] := K?_>F(k)d0 di(a/0)...d (a/k—1), where
r:=rk(F).

5.d = K'ﬁd()d[ withIT =T—C and d; - II; = I'; = A4; (i< l)
Abbreviation: K, (i/d] ...d;) =Ky, do...di—d{...d,dit:...d;.
Let jo be minimal s.t. 4;, € {C, L} & Vi < jo(I; €T, Ao,...,4i—1).
We say that d is critical if Vi < jo(tp(d;) A T1).

5.1. d critical:
Then due to Lemma 4.1, and since Vi < I(tp(d;) < II;) there exists a pair
(i, j) such that
i <j < jo.to(di) = Ry, tp(d)) = LY (for some k) and 0 < rk(4;).
We take the least such pair and set tp(d) := Rep and
d[0] := K5 1d {0}d {1} where
| G/diIK)) if A; = VxF,
101 = K | o 4, o,
(/d;[0]) if 4; = VxF,
(i/d;[0]) if A; = —A,
F(k)if A; = VxF,
A if A = —A.
5.2. d not critical: Let i < jj be minimal such that tp(d;) < II.

5.2.1. d; critical:
Then tp(d) := Rep and d[0] := K"l-}(i/di{O},di{l}) with r/ =
max{rk(A(d;)),r}.
5.2.2. d; not critical: Then tp(d) := tp(d;) and d[n]::Kt’p(d)(n’n)(i/di [7]).
Lemma 4.3 Ifd F 11, thentp(d) <« II.
Theorem 4.4 For d = I1 the following holds:
(a) Ifd = Kqdy...d; is critical, then d{0} = IL.A(d), d{1} = A(d).Il, and
k(A(d)) < r.
(b) ¥n € tp(d)|(d[n] F tp(d)(TT.n) ).

Proof by simultaneous induction on the build-up of d:

d{l} =Ky n {

and A(d) := {

(a) The premise “d critical” yields that we are in Case 5.1 of Definition 4.2.
Subcase A; = VxF:
By assumption we have d, - II, forall v < /. From d; - I1; and d; - II;
together with tp(d;) = Ry, and tp(d;) = L’jll_ we get d;[k] - II;-F (k) and
d;[0] = F(k),I1; by IH(b).
Since Ooy... I, ;- F(k) ... and Oo... 00 F(k), IT; ... 1T, ... are

I1.F (k) F(k), 11

chain inferences of degree r,
we conclude d{0} + II.F(k) and d{1} + F(k),II. Further tk(A(d)) =
rk(F(k)) <rk(4;) <r.
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Subcase A; = —A:
Similar to the previous case, only that now d;[0] F II;-A and d;[0] ~

LI 044 ...
A, TI;-L, and we apply the chain inferences {_[114 / and
Iy ... Iy A IT;-L ... .
0 Xn to obtain d {0} - TT-A and d {1} - A, TI.

(b) We follow the case distinction of Definition 4.2.:

1. d atomic: cf. Sect. 6. 2.—4.: Left to the reader.

5.d = Kiydy.

..d]l

5.1. d critical: Then tp(d) = Rep and d[0] = K[;'d{0}d{1}. By (a) we
have d{0} + I1-A(d), d{1} - A(d), I, and rk(A(d)) < r. Hence
d[0] - I1,i.e. Vn € |tp(d)|(d[n] F tp(d)(I1, n)).

5.2. d not critical, and i is minimal s.t. tp(d;) < IT:

5.2.1.

5.2.2.

d; critical: By IH(a) we have, d;{0} F I1;"A(d;) and d;{1} F
A(d;), I1;. Further,
Ho Hi—l H-A(d,) A(d,-),l'[,- Hi+l H[
I1

is a chain inference of degree r’' := max{rk(A(d;)), r}.
Hence d[0] = K}I (i/d;{0}d;{1}) | T1, which yields the claim,
since tp(d) = Rep.
d; not critical: Then tp(d) = tp(d;), and by IH(b) we have
di[n] F tp(d;)(I1;,n) for all n € |tp(d;)|.

[y ... Ii—y tp(di)(IT;,n) Mgy ... TN

tp(d;)(I1, n)
inference of rank r.
Since tp(d) = tp(d;), we conclude d[n] = Ktrp(d)(l'[,n)(i/di [7])
F tp(d)(I1, n) for all n € |tp(d)|.

Further, is a chain

Corollary Ifd - — 1, then d[0] F — L.

Proof From d = —_L by Lemma 4.3 we get tp(d) < —_L, which implies tp(d) =
Rep. Now by Theorem 4.4b we conclude d[0] - Rep(—L,0), i.e. d[0] - — L.

O

5 Ordinal Assignment and Termination Proof

In this section we will assign to each Z-derivation d an ordinal o(d) < &y and
prove that if d is a closed Z-derivation then o(d[n]) < o(d) for all n € |tp(d)]|.
The ordinal o(d) will be defined via the auxiliary notions dg(d) (degree of d) and
0(d) (pre-ordinal of d).?

3This ordinal assignment is essentially that of [4].
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Definition of dg(d) < w and 0(d), o(d) < &
For atomic d cf. Sect. 6.
Otherwise

dg(dy) ifd =1y, pdo or d = 1-4d,,
dg(d) := { max{dg(do)—1,dg(d)—1,r} ifd = Ind‘;tdodl with r := rk(F),
max{dg(do)—1,...,dg(d;)—1,r}if d =Kpdy...d;,
0(dp) +1 ifd =1, pdo ord =1-4dy,
0(d) := { @O F if d = Ind%' dod,
wOl# . #0OU) if d = Kiydy...d),

0(d) := wqga)(0(d)). where wo (@) := o, wy41(ex) 1= @@,

Remark 0(d(a/t)) = 0(d) and dg(d(a/t)) = dg(d).
Lemma 5.1 For each closed Z-derivation d the following holds:

(a) If d is not critical, then dg(d[n]) < dg(d) & 0(d[n]) < o(d), foralln €

to(d).
(b) Ifd is critical, then:

(i) dg(d{v}) < dg(d) & 0(d{v}) < 0(d), forv =0, 1.
(ii) dg(d[0]) < dg(d) & 0(d[0]) < w°¥) & rk(A(d)) < dg(d).
Proof by induction on the build-up of d:

Notation: In the following we omit the subscript of Kf;.
Assume d  T1. As before we follow the case distinction of Definition 4.2.

—_—

. d atomic: cf. Sect. 6.
2. d =T, pdo: Thentp(d) = Ry.r and d[n] = do(a/n).
So we have dg(d [n]) = dg(do(a/n)) = dg(dy) = dg(d) and
0(d[n]) = 6(do(a/n)) = 6(dy) < 0(d).
. d = I-4dy: similar to 2.
4. d = Ind* dod;:
Thentp(d) = Repand d[0] = K'dyd;(a/0)...d(a/k—1), where r = 1k(F).
So we have dg(d[0]) < max{dg(dy)—1,dg(d;)—1,r} = dg(d) and
o(d[0) = @00) # (,00dD) Jo  ,0(do) # (,0(d)+1 — o(d).
5.d =K'dy...d:

5.1. d critical: Then tp(d) = Rep and d[0] = K'~'d {0}d {1} where either
d{0} = K'(i/di[k]) & d{1} = K'(j/d;[0]) or d{0} = K'(j/d;[0]) &
d{1} = K (i/d;[0)). i )

By IH(a), dg(d;[k]) = dg(di) & O(di[k]) < 0(d;) and dg(d;[0]) =
dg(d;) & 0(d;[0]) < O(dj).
This yields dg(d{v}) < dg(d) & 0(d{v}) < o(d) forv =0, 1.

W
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5.2.

Hence dg(d [0]) = max{dg(d{0})—1,dg(d{1})—1,r—1} < dg(d) and
0(d[0]) = wO@{0D#0W@{lh « (o),

By Theorem 4.4a we have rk(A(d)) < r, thence rk(A(d)) < dg(d).

d not critical, and i is minimal s.t. tp(d;) < I1:

5.2.1.

5.2.2.

d; critical: Then tp(d) = Rep and d[0] = K’ (i /d;{0}d;{1})

with ' = max{rk(A(d;)), r}.

By IH(b) we have dg(d;{v}) < dg(d;) & 0(d;{v}) < 0o(d;) for
v=20,1,

and also tk(A(d;)) < dg(d;).

The latter yields ' < max{dg(d;)—1,r} < dg(d). Hence

dg(d[0]) = max{dg(do)—1.....dg(di{0})—1,dg(d;i{1})—1,...,
dg(d)—1.r'} =

< max{dg(do)—1,...,dg(d;)—1,...,dg(d;))—1,r'} < dg(d) and
0(d[0]) = wOl0# . #wO@i{ONg#OillD gt 440D <

@O0 # | # @O 0O = (d).

d; not critical: Then tp(d) = tp(d;) and d [n] = K" (i/d;[n]).

By IH(a), dg(d;[n]) < dg(d;) and 0(d;[n]) < O(d;).

Hence dg(d[n]) = max{dg(do)—1,...,dg(d;[n])—1,...,dg(d))—1,
r} < dg(d) and

o0(d[n]) = O . #OUlD g | #00d) < OUY 0
#.. #0O =06(d).

Theorem 5.2 If d is a closed Z-derivation, then o(d[n]) < o(d) for all n €

tp(d)].

Proof By Lemma 5.1 we have 0(d [n]) < ®wag(d)—dg(a[n))(0(d)) and thus o(d[n]) =
wagan) (0(d[n])) < waga)(0(d)) = o(d). o

6 Treatment of Atomic Derivations

At several places in the preceding sections we had postponed the treatment of atomic
derivations. This will now be caught up.
The logical axioms of Z are all sequents of the following kinds:

e '>A withd eT.

e I'>F(t) withVxF(x) eT.

e '>1 withA,—-A€eT.

¢ I'>A with A atomic and ——A4 € I".

The mathematical axioms of Z are given by a set of sequents Ax(Z2) satisfying
the following conditions:

e I[MeAx(2) = I(a/t) € Ax(Z) and A, I1 € Ax(Z).
« FV(II) =0 = (II € Ax(Z) < II has endform).
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Definition of the atomic Z-derivations

0. If TT € Ax(Z2), then A%, F TI.
1. If IT = I'—C with C € T, then Axj; - .
2.1. If T = T— F(t) with VxF € T, then Ax*™ + TI.
2.2. If TT = T— L with =4, A € T, then Axg™* - TI.
3. If T = I'— A with rk(4) = 0 & =—A € T, then Ax;;~ F TI.

Definition of tp(d) and d [1] for closed atomic Z-derivations d

0.d= AX(ll_>C: Then I'—C has endform, and we set
o) = nENEE T |
LY if C % T and A is the first formulain I s.t. A ~ L.
1. d = Ax{_ with C € T:

RcifC ~ T,

Lo if C ~ L.

1.2. 1k(C) > 0: Then tp(d) := R¢c and d[n] := AXth’(]Zi)(n,n)-
2. d = AXg": Then tp(d) := L% and d[0] := AX{y 4 r1.0)-
3. d = AXpD

1.1. tk(C) = 0: Thentp(d) := %

3.1. A~ T:Then tp(d) := Ry.

3.2. A~ L:Then tp(d) :=L%_, and d[0] := I-4AX] 1, | .

Lemma 6.1 [fd - I1 with FV(I1) = @ and d atomic, then:
(a)tp(d) <« T1.
(b) d[n] - tp(d)(I1,n) foralln € |tp(d)|.

Proof

(a) Left to the reader.
(b) Abbreviation: T := tp(d)(I1, n).

12. d = Ax;; with T = T'—-C and C € T & 1k(C) > 0:
I'->Fn)if C =VxF(x),
Then tp(d) = R¢ and TT' = A,F—fJ_)ifC:—-A.()
Hence d[n] = AxS) - TT.
21.d = AXFF with T = T'—F(k): Then tp(d) = L% . and T =
F(k),T— F (k). Hence d[0] = Axyy, - TT.
22.d = Axg"® with T = I'—>_1 and 4,—A4 € T: Then tp(d) = L%, and
" = T'—A. Hence d[0] = Axjy, - IT'.
32.d =AX] with T =T—A, A~ L ,and ——A4 € T:
Thend’ := AXr_,, F A, T—_L and thus d[0] = I-4d’ - T —>—A.
Further, T1' = L% _ ,(IT,n) = T >—A.
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Definition of dg(d), 0(d), o(d) for atomic Z-derivations d
dg(d) := 0 and o(d) := wage(q)(0(d)) = 0(d), where
O(AXY) 1= 0, B(AX}_ ) := 2tk(C), B(AXS") := 2rk(C) — 1, B(AX ") := 2.

Lemma 6.2 If d is a closed atomic Z-derivation, then o(d[n]) < o(d) for all
n € |tp(d).

Proof Left to the reader. O

7 Embedding of Z into an Infinitary System Z*°

In this section we give an interpretation of the finitary system Z in an infinitary
system Z°° of w-arithmetic. This way we obtain an explanation of the reduction
steps on Z-derivations and the assignment of ordinals to Z-derivations introduced
in Sects. 4-6.

Derivable objects of Z%° are closed sequents [T = '—C.

The inference symbols of Z°° are:

R4 with tk(4) > Qor 4 ~ T, L]j1 with rk(4) > O or A ~ L, and Cutp for
arbitrary sentences D.

We set Cutp < II for each I1, |Cutp| := {0, 1}, Cutp(I1,0) := II.D and
Cutp(1,1) := D, II.

&(D) = { k(D) if I = Cuty.

— 1 otherwise.
The following definition introduces the relation 9 5, IT which is short for
“0 is a Z%°-derivation of Tl with ordinal height < o and cutrank < m”.

Inductive Definition of 0 -, I1
If Z is an inference symbol of Z°° with rk(Z) < m, and if
Z< & Vn€l|Z|3a, <a(d, F& Z(I1,n)), then Z(0,) o T1.

ne|Z|  m

Definition of last(d): If o = Z(0,) then last(0) := Z.

ne|z|’
Remark If 0 =9, I1, then last(d) « II.

Iy ... I1
Theorem and Definition 7.1 If OT[

m, and if 0; I—fn“H Il; fori = 0,...,1, then there exists a Z°°-derivation
0= K50@0,...,0) F5 T with o 1= o*# ... #0®.

is a chain inference of rank r <

Proof by induction on «:
Assume [T = I'—C and I1; = I'; > A4;, and let j, be minimal such that
Ajo € {C,J_} & Vi < jo(I; €T, Ao, ..., Aizy).
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1. Vi < jo(last(d;) « II). By Lemma 4.1 there is the least pair (i, j) such that
i <j < jolast(®d;) = L’jll_ (for some k), last(d;) = Ry,, and 0 < rk(4;) <r.
Then 0, = RA,. (ain)n and Dj = L]fqiajo.

F(k)if A; = VxF,

d
A ifd =—d,

Let 0 := Cutp (e, ;) with D := %

e r (i/o,-k) ifAi:V)CF, (j/aj()) ifA,':VXF,
0-—

D (j/050) if Ai=—A (i/vi0) if A;=—A.
The IH yields ¢ F% TI-D and ¢, F% D, T with &, &’ < a.
Since tk(D) < rk(A4;) < r < m, it follows that 0 % TI.

2. Otherwise:
Leti < jy be minimal such that last(d;) < IT, and let Z := last(d;).

2.1. Z = Cutp: Thend; = CUtD(Oio,Dil) with
00 l_;xy;(_)i_l I1,-D & 0;; l—oy;il’_l D, I, & .01 <a & I'k(D) < m.
We set 0 := KF (0, - - ., 0i—1,i0, i1, i1, - - -, 07) With
r’ := max{rk(D), r} < m.

From 0;¢ l—oyz[_)’_l I1;-D & 0;4 }_zﬁl-l

forv € {0,...,/}\ {i} by IH we obtain 0 HB I with
B = w®#. . Ho¥H#Ho%#e i ot # | H#oY < a.
2.2. 7 ¢ Cut: Then 0 := I(’Crz(n,n)(i/ai"))ne\zp where 9; = Z(0in)ne|z)-

and ¢y 1= K %

D, TI; & oo, i1 < a; and D, I—%“H II,

Abbreviation Z°° =% TI :4 30 such thato =2 II.

Corollary 7.2 Z®¥F2 | T1 = Z® % 11
(Follows from Theorem 7.1 forl = 0.)

Having the operations K at hand it is now easy to embed Z into the infinitary

system Z°°.

Definition of a Z°°-derivation d *° for each closed Z-derivation d

1. For atomic d we define d* := tp(d)(d [n]oo)ne|tp(d)|
Especially, in case d = AX{S 4 with A ~ L we have d® = L°_,d[0]>° =
L0 (-sAX o )® = L0 Roatp(AX ) = L% R-4LY.

2. (I§ . pdo)® := Rvxr (do(a/n)oo)neN.

by recursionon o(d) < w.

3. (I—.Ado)oo = R—.Adé)o.

4. (Ind‘j,’ka’odl)oo = Kt pay(dg®, di(a/0)®, ... di(a/k=1)%).
5. (Kgdo...d)%® := K(dg®,....d>™).

Theorem 7.3 Ifd =TT and FV(I1) = 0, then d™ 5, TI.
Proof by induction on the build-up of d using Theorem 7.1:
Assume [T =T'—C.
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1. d atomic: Left to the reader.
2.d =15, pdo: Then C = VxF and do(n) = I'— F(n).

By IH, do(n)® Fou) T—F(n) (Yn).

Hence d% = Ry.r(do(n)®)nex Fogy T
. d = I-4dy: Similar to 2.
4.d = Ind%*ded, with dy - T—F(0), dy + F(a).T—F(Sa), and
1 = I'— F(k):
By IH, dg° F3“O) T F(0) and d; (a/n)>® F3). F(n), T— F(Sn) (Vn).

: dg(do) ; dg(d1)
From this by Theorem 7.1 we obtain d*° = /Cf«_)F(k)(dé’o,dl(a/O)w,...,

dy(a/k—1)>) Fg’;f;) I'— F(k), since r < dg(d) and dg(dy),dg(d)) <

dg(d)+1 and w® @0 #P@# | #0 @) < @),
5.d = K'hdod[ withd; HT1; i =0,...,]):
Note that dg(d) = max{dg(dy)—1,...,dg(d;)—1, r} and therefore
(1) dg(d;) = dg(d)+1,  (2)r = dg(d). .
By IH we have d>® I—gé‘(lfz ) I1; and therefore, by (1), d* I—gé‘(l;)) o i =
0,...,/). From this by (2) and Theorem 6.1 we conclude

d% = Kpy(d®.....df) oy T with e = %@ # . #0900 = &(d).

W

Corollary 7.4 Ifd F IT1 and FV(I1) = @, then Z*° |_g(d) L

Theorem 7.5
Cuta)(d{0}*°, d{1}*) if d critical,
d[o]>° otherwise.

(ii) If T:=1tp(d) # Rep, then d* = T(d[n]*)

(i) If tp(d) = Rep, then d*° =

n€|Zl’

Proof by induction over the build-up of d, comparing definitions 4.2 and 7.1.

8 Multisuccedent Sequents

The approach of Sects.4,5 can easily be adapted to calculi with multisuccedent
sequents by generalizing the chain-rule as follows*:

HO e H[ . . . .
(GCR) The figure is called a (generalized) chain-rule inference of

rank r if I1 can be derived from (weakenings of) the sequents 1y, ..., I1; by a
finite number of cuts of rank < r.

By adding this rule to the proof system of [3] and taking the ordinal assignment
from Sect.5 of the present paper a certain simplification of [3] can be achieved,
especially the somewhat unpleasant concept of “Hohenlinie” can be avoided.

4A similar rule is used in [4].
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In the following we review the essential concepts of Sects.4,5 in a kind of
axiomatic presentation, thereby adjusting everything to the multisuccedent context.
The main ingredient here is Lemma 8.1 which replaces Lemma 4.1. The above rule
(GCR) will be captured by the inductively defined relation “(I1y, ..., I1;) I, I1”.

Definitions A sequent is an expression I'—=A where I and A are finite (possibly
empty) sequences of formulas.

For IT = I'—> A we set

L(IT) := I'" and R(IT) := A;

ATl :=A T - AandIl,A:=T1T — A, A.

Inference symbols Ry, L]fp Rep and their arities are the same as in Sect. 4.
For each inference symbol Z, sequent I1, and n € |Z| the sequent Z(IT, n) is
defined by

I0, F(n) if Z = Ryyr,
F(k), Iif T = L% .
I(M,n):=4 A, 11  ifZ = Ry,
ma ifZ=L",,
IT otherwise.

The relation Z <« IT is defined by:

Rs <« II :& AeRID),

LXK <« e AelL(D),

Rep< IT ;& 0=0.

Abbreviation. T1 C T1' :< L(IT) C L(IT") & R(IT) € R(IT").

Inductive Definition of (I, ..., 1)) I, IT Let IT := (I, ..., II,).

1. If II; C I1 for some i </, then II -, II. 3
2. I+, TI,C and I I, C, IT with rk(C) < r, then IT I, IT.

Lemma 8.1 (“Existence of a Suitable Cut”) If o= (Mo, ..., ;) I+, I and
Vi <I(Z; « I; &Z; « M), then there are i, j < such that
Z. = Rp & IZ; = LY & tk(B) < r for some B, k.

Proof by induction over the definition of I+,
From the second premise we conclude Vi < [(T1; £ IT). Together with IT I, TI
this implies that there exists a C of rank < r such that IT I, IT, C and IT I, C, II.

Casel: Vi <I(Z, A TI,C)or Vi <I(Z; £ C,T0).
Then the claim follows immediately from the IH.

Case 2: Otherwise. Then there existi, j </ suchthatZ; < II,C andZ; <« C,II.
FromZ; <« T1,C & Z; « Il it follows that Z; = Rc.
FromZ; < C,T1 & Z; # I it follows that Z; = L% for some k.
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Assumption 0 D is a set of (derivation) terms, and to each d € D there is assigned
a sequent End(d), an inference symbol tp(d), and, for each n € |tp(d)|, a term
d[n] € D.

Abbreviation d FI1 :& d € D & End(d) = I1.

Assumption 1 If (ITg,...,I1;) I+, II and dy + Ty,...,d; F TI;, then
Khdo...d = 1I1.

Definitions Assume d = Kdy...d; = I1 with d; = I1; and tp(d;) < II; for all
i <l.
e d iscritical ;& Vi <I(tp(d;) « II).
o Ifd is critical we take the least pair (7, j) such that
i,j <1&tp(d;) =Rp &tp(d;) = L% & rk(B) < r for some B,k
(which exists according to Lemma 8.1), and define
| F(k)if B =VxF(x),
Ald) = { A if B=-A4,
(i/dilk]) it B =VxF,
(j/d;[0]) if B = —A,
(j/d;[0]) it B = VxF,
1} := K, /
4= Kan { (i/d;[0]) if B =—A.

Assumption 2 If d = Kfdy...d; = I1 with d; = I1; and tp(d;) < II; for all
i <, then the following holds

(a) If d is critical, then tp(d) = Rep and d[0] = K 'd{0}d {1}.
(b) If d is not critical and i < [ is the least number s.t. tp(d;) < II, then
__ | Rep if d; critical,
tp(d) = { tp(d;) otherwise.

K"l-} (i/d;{0}d;{1}) with r’ := max{rk(A(d;)), r} if d; critical,
Ktrp(d)(n,n)(i/di [n]) otherwise.
Assumption 3 There are mappings dg : D — @ and 0 : D — On such that such
that for each d = K[;dp ... d; we have dg(d) = max{dg(do)—1,...,dg(d;)—1,r},
and 0(d) = WO . #xOd),
Abbreviations For d € D and I1 := End(d) we set:

d €Dy & tp(d) < I1 & Vn € |tp(d)|(d[n] F tp(d)(I1, n)),

dg(d[0]) < dg(d) if d critical,
deD, :
€5 { Vn € |tp(d)|(dg(d[n]) < dg(d)) otherwise,

o(d[0]) < w®@ if d critical,
Vn € |tp(d)|(0(d[n]) < 0(d)) otherwise.
Theorem 8.2 Forv = 1,2, 3 the following holds:
Ifd =KpLdy...d € Dwithdy,...,d; €D, thend € D,.

d{0} := K a) {

d[n] =

d € D; :¢>{

Proof Cf. the proofs of Theorem 4.4 and Lemma 5.1. O
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Appendix

In this appendix we will show how Gentzen’s original ordinal assignment [2,
Sect. 15] can be transformed into the assignment which we have used in Sect.5.
This transformation consists in essentially four steps.

Step I:  We do not use exactly the same set of decimal fractions as Gentzen
did. Gentzen defined his set of Ordnungszahlen (let’s call it Og) by: Og =
{nu:n e N & u € M,} where My := {1, 11, 111,...,2}, M, 4+, :=

{up0" 1y 0" 0"y il >0 & ug, ..., up €M, & 0wy <g -+ <g 0.up).
This corresponds to representing ordinals in base 2 Cantor normal form, while
here we shall use base w. Instead of Og we define the set O := {n.u : n €

N & u € M,}, where My := {1}, M,41 = {uo0" Tl 0" 0"y 2 1 >
0&ug,...,us € M, & 0.y <g --- < O.up}.

Step 2:  We define an embedding of (O, <) into the set theoretic ordinals, namely
for each ‘Ordnungszahl’ n.u € O we define an ordinal |n.u| € On such that
Vinu,mve On.u<g myv= |nu| <|m.v]) (Lemma 3).

Step 3:  We modify Gentzen’s assignment of ‘Ordnungszahlen’ to derivations [2,
Sect. 15.2] according to the alterations made in step 1. For each derivation d we
define its numerus p(d) € N, mantissa u(d) € \J, ey Mn, and ‘Ordnungszahl’
Ord(d) := p(d).u(d) € O. Actually we only consider the crucial case where d
ends with a chain-rule inference.

Step 4:  We show how the ordinal |Ord(d)| can be defined directly by recursion
on the build-up of d, without referring to the decimal fraction Ord(d). Then we
compare the involved recursion equations with the corresponding equations in
the definition of 0(d), o(d) in Sect. 5.

Step 1.

Let {0, 1} 1 denote the set of all finite nonempty words u over the alphabet {0, 1},
and let

{0, 1YF) := {u € {0, 1} T : the first and the last letter of u is 1}.

Further, let 0" denote the word consisting of n zeros. Each expression n.u (with
n € Nand u € {0, 1}'™) will be identified with the real number denoted by it in the
usual way.

Definition of M, < {0, 1}("

1. My :={1};
2. Mn+l = {u00”+1u10”+1...0”+1u1 l>0&uy,....,uy € M, & Ouy <p
“++ <g O.up}.

Further we set M := |, ey M,. The elements of M are called mantissas.
Definition h : M — N, h(u) := min{n : u € M,}.

Remark M, € M, 4, and h(u) is the maximal number of consecutive zeros in u.
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Lemmal Ifu = uo0"*t' ... 0" w € M,y and v = vo0" ... 0" o, € M, 4y
with ug, ..., u;,v9,...,0 € M,, then O.u <g 0.v if, and only if, | < k & Vi <
I =v;) or 3j <min{l,k}(VYi < j(u; = v;) & 0.uj <g 0.v;).

Proof Straightforward. O
Definition O := {n.u:n < w & u € M,} (Ordnungszahlen)

Step 2.

Definition of |u|, € On for u € M,

1. |1]p:= 0.
2. Ifu=up0" ... 0"y € M, 1y, then |u|,y; = ol 4. gluln

As usual we set wo(@) 1= &, Wy41() := @@,
Lemma 2 For u € M, the following holds:

(a) |ulprr = or(|uly),
(b) wn(o) = Iuln < wn+1(0)~

Definition Forn.u € O let |n.u| := |ul, € On.
Lemma3 nuc O&mveO &nu<gmuv = |nul <|m.u|.

Proof by induction on the length of u:

Case n < m: Then |n.u| = |ul, < Wy+1(0) < 0, (0) < |v]y = |m.v|.
Case n = m: Then O.u <g O.v and u,v € M, with n > 0. Hence u =
ug0"...0"uy; € M, and v = vy0"...0"v, € M, with ugy,...,u;,vg,..., v, €

M, ;. By Lemma 1 it follows that one of the following two cases applies:

(1) I <k & Vi <I(u; = v;): Then trivially |ul, < |v|,.

(i) Vi < j(ui = vi) & O.u; <g 0.v; for some j < min{/,k}:Then Vi €
{j, ey l}(Ou, <R O.Uj) and thus, by IH, Vi € {j, ey l}(|ui|n_1 < |Uj|,,_1).

Hence |u|, = wlvol—1 oo plvi—thmr ol oo lel—r <
wvol—1 .o plvjl— < |v|,.
Step 3.

The following are more or less Gentzen’s own words (in [2, 15.2])—of course with
some alterations enforced by the modifications made in step 1.

To each given derivation d we assign an ‘Ordnungszahl’ Ord(d) := p(d).u(d) €
O according to the following recursive rule: (...) If the endsequent of d is the
conclusion of a ‘chain-rule’ inference (i.e., if d = Kpdy...d;) we consider the
mantissas u; = ju(d;) of the ‘Ordnungszahlen’ of the derivations d;; suppose
that v is the maximum number of consecutive zeros in all of these mantissas
(ie., v = max;< h(u;)). The mantissas are written down from left to right
according to their size (the largest one first) and any two successive mantissas are
seperated by v+1 zeros. (It may well be that several successive mantissas are equal.)
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The result is the mantissa j+(d) of the ordinal number for the whole derivation;
i€, u(d) = uy©)0" M up)0' ... 0" u, ) where o is an appropriate permu-
tation of {0,...,1}, and u; = u(d;). As the numerus p(d) we take the least
natural number p whose excess over the maximum number of consecutive zeros
in the mantissa is > 0 and, firstly, is not more than 1 less than the corresponding
excess in any of the ordinal numbers for the derivations of the premises and,
secondly, is not less than the rank of the succedent formula of any one of the
premises preceding the major premise (14.25). W.l.o.g. we may assume here that
[ > 1 and therefore h(u(d)) = v+1. So p(d) is the least number p such that
i) p— (v+1) = p(d;)) —h(u;) — 1 fori =0,...,],and (ii) p — (v+1) > r,
which amounts to: p(d) — h(u(d)) = max({p(d;) — h(u(d;)) =1 : i < I}
U{r}).

Step 4.

Let h(d) := h(u(d)), exc(d) := p(d) —h(d), and 0(d) := |1u(d)n(a)
Then

(1) [Ord(d)| = wexc(d)(d(d)),
and for d = Kf;dy . .. d; we have the recursion equations
(2) h(d) = max;<; h(d;) + 1, and
3) exc(d) = max({exc(d;) —1:i <1} U{r}).
(4) 0(d) = W™ # -+ #w* with &; := wy_n;)(0(d;)) and v := max, <; h(d;).

Proof of (1) and (4):

(1) [0rd(d)| = |p(d).ju(d)| = |1(d)p(a) = @p(a)—n(a)(O(d)) = Wexe(a)(0(d)).

(4) By definition, u(d) = us)0"*' ... 0" uyq) with u; = p(d;) and v =
max; < h(d;). Hence v+1 = h(u(d)) = h(d), o(d) = |u(d)|,+1 =
ol # - okl and Jurly = |(dn)ly "2 v (110 Inap).

Observation: In case that h(u(dy)) = --- = h(u(d;)) we have
(5)0(d) = W) # ... # Ol
Now compare (1), (3), (5) with the corresponding clauses in the definitions of

o(d), dg(d), 0(d) in Sect. 5:

(1) o(d) = wae(a)(0(d))
(3) dg(d) = max({dg(d;)—1:i <1} U{r})
(5) 0(d) = W4 ... #¢0d)
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From Hauptsatz to Hilfssatz

Jan von Plato

Abstract Gentzen found his original consistency proof of arithmetic late in 1934.
His work in pure logic was a preliminary to the result. Archival sources show that
the consistency proof was based on an explicit semantic notion of correctness as
reducibility of sequents and a proof that steps of derivation maintain reducibility.
A crucial point in the latter was Gentzen’s Hilfssatz that stated, in analogy to
his famous Hauptsatz, that composition of sequents maintains reducibility. The
Hilfssatz was needed essentially for the case of the rule of complete induction. It
was the point at which Gentzen’s proof superseded standard arithmetic methods
in favour of an induction on well-founded trees, i.e., what came later to be called
bar induction. After criticisms by Bernays and Gdédel, the first proof evolved into
one based on transfinite induction. Traces of the Hilfssatz that was founded on
intuitionistic ideas disappeared, and Gentzen developed instead transfinite induction
further into a general ordinal proof theory.

1 The Situation in 1932

Gerhard Gentzen, a student of Paul Bernays, set as his goal in early 1932 “to clear
the consistency problem of mathematics, at least for arithmetic,” as he wrote in a
letter (see Menzler-Trott 2007, p. 31). A perplexing situation regarding consistency
had arisen with the arrival of Godel’s incompleteness theorem, a result that had
become known during the fall of 1930. It was at once well received, especially
through the forceful endorsement on the part of Johann von Neumann. Bernays had
been in contact with Godel, to clarify the consequences of the result for Hilbert’s
enterprise of “securing the foundations of mathematics” through a consistency
proof. In fact, the preface Bernays wrote to the first volume of the Grundlagen
der Mathematik, dated March 1934 and published in 1934, tells the following:
The manuscript was in practice finished in 1930, but the whole project had to be
thought through again when Godel’s result became known: A finitary, “absolutely
reliable” consistency proof of the kind envisaged by Hilbert would not be possible.
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Some, von Neumann as foremost, declared the foundational enterprise dead: The
consistency of mathematics would remain forever unprovable in some absolute
sense. Bernays, instead, sought a way out through intuitionism that he took to go
beyond the Hilbertian finitism. There is no unclarity as to Bernays’ assessment:
Brouwer had it right on all essential points and, especially, the law of excluded
middle has so far (about 1931-1932) no justification beyond finitary situations. As
an aside, the reader of his book may wonder at the appearance of Hilbert’s name as
a co-author, but there were other reasons for that, especially for the second volume
that the expelled Jewish professor Bernays could have never published otherwise in
Nazi-Germany in 1939.

Bernays describes finitism as a categorical build-up of mathematics, in the sense
that nothing is assumed, but everything is built up finitistically from decidable
concepts. Brouwer’s intuitionism brings to this picture the new element that also
hypothetical proofs are considered, and mathematical constructions made on top of
such assumed proofs. Bernays wrote (ibid., p. 43):

The methodological point of “intuitionism” that is at the basis of Brouwer, is formed by
a certain extension of the finitary position [Erweiterung der finiten Einstellung], namely,
an extension in so far as Brouwer allows the introduction of an assumption about the
presence of a consequence, resp. of a proof, even if such a consequence, resp. proof,
is not determined in respect of its visualizable constitution [nicht...nach anschaulicher
Beschaffenheit bestimmt]. For example, from Brouwer’s point of view, propositions of the
following forms are allowed: “If proposition B holds under assumption A, also C holds,”
and also: “The assumption that A is refutable leads to a contradiction,” or in Brouwer’s
mode of expression, “the absurdity of A is absurd.”

The essence of intuitionism as given here is that it is permitted to assume
conditionals, and even more simply, the presence of a hypothetical proof. One would
think that this was no novelty in principle, for what are mathematical axioms if not
conditionals that are assumed? Bernays thinks instead that there is no hypothetical
element in the practice of logicism or formalism. In this light, Gentzen’s departure
from these traditions in his setting up of natural deduction in 1932 is the more
remarkable, because the most central idea in natural deduction is to consider
hypothetical inferences.

Bernays proceeds with the discussion in very general terms, the problem being
always how to extend the finitary standpoint, and ends with the conclusion that we
are still far away from even a solution to the consistency problem of arithmetic
(p. 44). The solution was instead much closer than he could imagine, for Gentzen
had it by the end of the year 1934.

2  Groundwork for the Consistency Proof

Gentzen, who was just 22 years old in 1932, would take nothing of the defeatism of
von Neumann. Where his confidence came from is not known, but it got confirmed
in less than a year, by the interpretation of classical Peano arithmetic in intuitionistic
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Heyting arithmetic. It was a result that proved Bernays’ admission by which the help
of Brouwer’s intuitionistic mathematics would be needed to overcome the dead-end
of Hilbert’s Beweistheorie. The consistency proof itself was finished late in 1934.
The steps of events will be described in this section in five installments: (1) The
logical analysis of “actual proofs in mathematics.” (2) The semantical explanation of
the logical forms of propositions used in mathematics, with the subformula property
and normalization as crucial elements. (3) The elimination of indirect proofs through
the Godel-Gentzen translation. (4) The surfacing of transfinite ordinals. (5) The first
consistency proof, end of 1934.

2.1 Actual Proofs in Mathematics

Gentzen began by a study of how “one actually carries through proofs in mathe-
matics.” He observed that the prevailing method of formally presenting proofs did
not match the practice: Mathematical statements were formalized in the language of
logic, and especially the starting points of proofs, namely the mathematical axioms.
Logic itself was also axiomatized, with axioms such as (A D (B D C)) D (B D
(A D C)). The “horseshoe” implication symbol was invented by Giuseppe Peano,
just an inverted capital letter C that got later stylized into D. It reveals what the
above axiom does: If you read D as “consequence” (for the C inverted) or “follows”
or “if..., then ...,” whatever is handiest, you get

If from A it follows that C follows from B, then from B it follows that C follows from A.

Think of A and B as assumptions, and the axiom prescribes that C follows,
whichever the order is in which you take the assumptions A and B.

The rest of the logical axioms have similar intuitive meanings. They were clear to
Frege who mainly invented the axioms. Later his identification of the principles of
proof turned into “symbolic logic,” interpreted as a formal game, and the meaning
of the axioms was by and large forgotten.

There were just two rules of inference in axiomatic logic: From A D B and
A to infer B was the propositional one, and universal generalization the other.
In the latter, a universal quantifier could be introduced if a statement was proved
for an arbitrary object, as denoted by an eigenvariable. The precise statement of
conditions for universal generalization was a great achievement of Frege’s.

The application of Frege’s logic to mathematical proofs, as in the work of
Peano and Russell, proceeds through expressing the mathematical axioms with
the language of logic, and in the application of the two principles of proof. Here
is a simple example, the axiomatic theory of equality. The axioms are reflexivity,
symmetry, and transitivity:

a=a, a=bDODb=a, a=b&b=cDa=c.

It is next to impossible to put the logical codification of mathematical proofs in terms
of axiomatic logic into actual use. Say, the expression of transitivity of equality in
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the Euclidean style, a = ¢ &b = ¢ D a = b, already has an axiomatic proof that
cannot be shown here because it is too broad to be printed. The proofs are often so
wicked that the only feasible way to construct them would be to do them first in a
calculus of natural deduction, then to apply a translation algorithm into proofs in
axiomatic logic.

When Gentzen started his program in early 1932, he had no difficulty in
putting the ruling axiomatic logical tradition aside. The aim of axiomatic logic
had been dictated by Frege’s and Russell’s doctrine of logicism, by which logical
axioms express the most basic logical truths and logical proofs just add more
truths to the basic stock. The whole notion is empty for Gentzen because, as
emphasized by Franks (2010), pure logic has no subject matter for him. Logical
principles, Gentzen’s rules of proof, show how to move from given assumptions
to a conclusion. Gentzen would grant, at most, that if the assumptions are correct
(richtig), also the conclusion should be.

The conceptual order in Gentzen is different from that of logicism. In the latter,
there cannot be any doubt that logical proofs preserve correctness, because, if we
take the doctrine seriously, such proofs are based on the ultimate notion of logical
truth in a simplest possible manner. The axioms are such truths, and if A D B and
A are, also B is. There are no hypotheses, so this inductive argument is strictly local
in character.

In logicism, mathematical truth is subordinate, and perhaps even reducible, to
logical truth. If the reduction succeeds, the foundational problems of mathematics
are solved for good. In Gentzen, instead, the very problem is to find a notion of
correctness, in the first place for arithmetic, that is supported by logical inferences.

By September 1932, Gentzen had finalized his set of logical principles of
proof, what is known as natural deduction (natiirliches Schliessen, perhaps more
properly rendered as natural inference, or even natural reasoning). His analysis of
“actual proofs” in mathematics led to intuitionistic logic, a topic well-defined after
Arend Heyting’s axiomatization of 1930 that had the axiomatization of Principia
Mathematica as a basis.

A year later, Heyting explained the logical connectives in terms of proof, or
perhaps better, sufficient conditions for proof: A & B is proved whenever A and
B have been proved separately, A v B is proved whenever one of A and B has been
proved, A D B is proved whenever any proof of A turns into some proof of B. For
the quantifiers, VxA(x) is proved whenever A(y) is proved for an arbitrary y, and
JdxA(x) is proved whenever A(a) is proved for some object a. It was realized soon
that the explanation of implication need not reduce a proof of A D B into something
simpler, for A could have been obtained by any proof.

There is in the collection of stenographic notes that Gentzen wrote a set from
the fall of 1932, some 25 big stenographic pages, with a few pages added in the
next spring and ten more in October 1934. The title is “Formal conception of
the notion of contentful correctness in pure number theory, relation to proof of
consistency” (Die formale Erfassung des Begriffs der inhaltlichen Richtigkeit in der
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reinen Zahlentheorie, Verhiiltnis zum Widerspuchsfreiheitsbeweis).! Most of it was
written within a month in October—November, and it was meant to be a groundwork
for systematic formal studies, after the basic structure of mathematical reasoning
had been cleared in September. I abbreviate the manuscript in the same way he did,
as INH. The first task in it is to explain the notion of correctness for intuitionistic
logic, quite similarly to Heyting’s explanations. In the case of A& B and AV B, a
reduction is achieved, but A D B remained problematic.

Bernays was well aware of the problem, namely that in a case of iterated
implications such as (4 D B) D C, the correctness of C depends on the correctness
of another conditional statement A D B. This is a problem of well-foundedness. A
related problem is circularity: If, as in Heyting’s explanation, a proof of A O B takes
any proof of A and gives as a result some proof of B, the notion to be explained,
namely proof, is already assumed.

Once correctness for statements has been explained, it can be applied to
statements in proofs. Here is the lesson from Gentzen’s analysis:

Reduction to Components I[f A D B is provable, it should have a proof that is
somehow made up from the components of A O B.

The correctness of a notion of proof with this property would not be circular.
What is the notion Gentzen was searching after? Looking at his rules of natural
deduction, a specific feature of most of the rules strikes the eye:

A B, A&B . A&B . A I B vi, ADB AD

A& B A B AvB'" AVB B

E

In the introduction rules, the premisses are subformulas of the conclusion, in the
elimination rules, it is the other way around. There remain the introduction rule
for implication and elimination rule for disjunction that have a schematic character
different from the above:

[4] (4] [B]
}_E? AV B C C
Y

Intuitionistic propositional logic results when the rule of falsity elimination is
added to these rules: There is a constant proposition called falsity and denoted _L,
with negation defined by =4 = A D L, and with the rule L E by which any formula
can be concluded from _L. Intuitionistic predicate logic is obtained by adding the
quantifier rules:

'T translate inhaltlich as contentful. Godel suggested in the 1960s “contentual,” but my translation
is at least an English word. Georg Kreisel dislikes it: He told me in July 2010 that one should just
use the word meaning. Inhaltlich, then, would be meaningfully, or perhaps in terms of meaning. 1
regret not having asked what he thinks of Godel’s invented word.
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[A()]

A(y) VxA(x) A1) IxA(x) C
VxA() A0 5 Team C

E

Inrules VI,3E, y is an eigenvariable.

The introduction rules of Gentzen’s natural deduction are formal versions of
Heyting’s explanations. For the elimination rules, different motivations and criteria
have been presented, as discussed in von Plato (2012).

2.2 Normalization

At this point, in October 1932, the task is to establish a subformula property for
formal proofs, or derivations (Herleitungen), by the new rules of natural deduction.
Going through the combinatorial possibilities, one notices cases such as

. [4]
A B B
&1 DI
A&B ', ADB A_,

There is a local “peak”(Gipfel) in a derivation, A& B or A D B, that need not
belong as a part to the conclusion of the whole derivation or some open assumption
the conclusion depends on. These peaks can be eliminated:

(4]

A B . B A

A&B : A>B> 4, :

A A B B
becomes : : becomes

There is a subtlety with the second proof transformation: Rule D I is displayed
schematically, with an arbitrary number of copies of the open assumption A closed
by the introduction of A D B. If A was used n times in the derivation, the
transformed derivation can be presented by the scheme
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Amoa

B

The derivation of 4 and what it depends on gets multiplied any number of times.

Things are not so obvious with disjunction (neither with existence, universality
is easy). There are the transformations for VI followed by V E, as in the first of the
I -rules:

A L 4

C

becomes

There is in addition the possibility that a disjunction or existence elimination
separates an introduction from an elimination, say, if C is of the form D & E and has
been derived in a minor premiss by rule &/, then to be eliminated by & E applied
to the conclusion. The hidden non-normality is made explicit by a permutative
conversion:

becomes

1 1
A 1 A 1
P B P B
5 D _E E&I ; D E&I ;
AVB D&E D&E : D&E,, D&E,,
D&E ., ’ AVB D : :
| D VE.1

D

Now the I-E pair in the derivation of the first minor premiss can be eliminated.

Gentzen left first out v and 3, by translating AV B into —=(—A & —B) and Ix A(x)
into =Vx—A(x). Now he got the normalization theorem for the Vv, 3-free fragment
of predicate logic:

Normalization Theorem All derivations can be so transformed that no I-rule is
followed by the corresponding E-rule.

The main difficulty in the proof is to give a measure or weight to derivations such
that the elimination of a local peak such as A D B (a non-normality) reduces the
weight more than the multiplication of the derivation of A by any number n. It is
known since 2005 that Gentzen solved the problem some time late in 1932 and
included at some stage even a treatment of the rules for disjunction and existence
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with the permutative conversions as in the above example. Namely, I found in
February 2005 a handwritten version of a plan and partial execution of his thesis that
contained as the greatest surprise a detailed proof of normalization for intuitionistic
natural deduction, otherwise attributed to Prawitz (1965) (to which Raggio’s proof
of the same year can be added). An English translation of Gentzens proof, 13 journal
pages, together with my introduction, was published in von Plato (2008).

The thesis manuscript contains a stenographic addition by which the subformula
property of normal derivations is an immediate corollary to normalization:

Subformula Property All formulas in a normal derivation are subformulas of the
conclusion or some open assumption.

Consistency is an immediate consequence of these results: If A & —A were
derivable, also L would be derivable, and therefore any formula, but L has no
normal derivation by the subformula property, therefore no derivation at all.

How to extend all of the above to arithmetic, that was the new formulation of the
consistency problem.

2.3 Elimination of Indirect Proofs

The proof of the normalization theorem in two stages, first without Vv, 3, then for
the full language, bore an unexpected fruit: Gentzen noticed that the principle of
indirect proof could be dispensed with if v and 3 were absent, subject to a little
adjustment.

Two treatments of negation were given in the thesis manuscript, either as a
primitive notion with separate rules, or as defined by =4 = A D L. Even the
printed thesis lists both notions and their respective rules. They are, for the defined
notion, special cases of the implication rules:

(4]

EN -4 A,

—A 4

The rules of primitive negation are:

[4] (4]
B —-:B —A A
—a ! c 7

Both rules are derivable if the defined notion of negation is used. The introduction
rule is not pure, in the sense that it contains already a negation in a premiss. All
other rules are such that no other connective than the one introduced or eliminated
appears in the rule schemes.
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Gentzen’s thesis manuscript gives transformations to repeated applications of
the primitive rules of negation, but these transformations do not follow any general
pattern for the simplification of derivations. If the transformations are reproduced
with the use of the rules for defined negation, they turn out to be instances of
standard conversion patterns of natural deduction (see von Plato 2012 for a detailed
presentation). In conclusion, the defined notion of negation is the well-behaving
one.

Classical natural deduction results if the rule of indirect proof is added to
intuitionistic logic:

[-4]
i DN

The nomenclature DN stands for double negation, which is explained as follows:
If instead of DN rule D [ is applied, the conclusion is =—A, and double negation
elimination gives the conclusion A.

If the conclusion of rule DN is a premiss in an elimination rule, there is no direct
guarantee for the subformula property. This problem is clear from a text fragment
Gentzen later dated as being from “about January 1933.” It is titled Decision in
classical predicate calculus reducible to decision in intuitionistic calculus with only
D and ()? (There is written >V < above the notation for the universal quantifier ( ),
where the triangles indicate a later addition.) The object of the paper is to translate
derivations in classical natural deduction to derivations by the rules for implication
and universal quantification and with an added constant proposition F that stands
for the false formula (i.e., a fragment of what is called today minimal logic). To
this purpose, Gentzen first transforms the formulas of classical predicate logic into
equivalent ones that contain only implication, universal quantification, and . The
rules for negation are:

1 1
(2 [
B BOF .
) F . ADF.DF . .
RA: ASF FI1 REND: — DN (law of double negation)

This is directly from the manuscript. Numerical labels identify occurrences of closed
assumptions, RA stands for reductio and REND for something like “reduction of
negation doubled.” The order of premisses in rule FE (“follows-elimination) was
changed later in the winter of 1932—-1933.

The last point is to change every atomic formula into its double negation. Now
derivations can be so transformed that rule DN is applied to the components of
its conclusion. If DN has been applied to conclude an implication B D €, the
transformation, again from the manuscript, is:
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FE 2
QﬁD]—"FE

;FI?)
B5OCDF BOEDODF:DF
F

s

COF.DF

1 3
B BOCE
¢

E
FI2

DN for ¢
FI1

BDOC

A similar transformation is made if DN is applied to a universally quantified
formula. In the end, DN is applied to double negations of what were atomic formulas
before the transformation added two negations. With four negations at the head of
each atomic formula, rule DN just eliminates two of them, but this can be done
without the classical rule. Therefore, as Gentzen concludes: “It is obvious that the
inference DN can be completely eliminated by these steps.”

The atomic formulas of arithmetic are equations. If they don’t contain free
variables, they are decidable, as Gentzen well understood. Rule DN applied to the
double-negation of a numerical equation n = m has the same force as the law
of excluded middle, » = m Vv —n = m, and which of the disjuncts is the case
can be decided. Therefore DN need not be applied to atomic formulas without free
variables. In particular, Gentzen could conclude in January 1933:

Relative Consistency If a contradiction is derivable in classical Peano arithmetic,
it is already derivable in a fragment of intuitionistic Heyting arithmetic.

This was, of course, not Gentzen’s terminology, but the result was clear: As
mentioned, one of the central aims of the Hilbert school had been to “secure
the transfinite arguments of arithmetic.” These contain in particular the indirect
existence proofs, with 3xA(x) concluded if Vx—A(x) led to a contradiction.
Gentzen’s result showed that such steps were not a “dubious” component in
arithmetic proofs.

The general conclusion from Gentzen’s result, obtained at the same time by
Godel, was:

Intuitionistic Consistency The consistency problem of arithmetic has an intuition-
istic sense and, therefore, possibly an intuitionistic solution.

A further conclusion was that intuitionism does indeed go, as described by Bernays
in general terms, beyond Hilbert’s “strictly finitistic methods.”

Godel seems not to have pursued the idea of an intuitionistic solution to the
consistency problem, even if he reflected on his incompleteness theorems in a talk
of 1933 given in Boston. It is titled “The present situation in the foundations of
mathematics” and got published from a handwritten English manuscript in the third
volume of his Collected Works (1995). He notes (pp. 50-51) that consistency is a
purely syntactic notion, so that “the whole matter becomes merely a combinatorial
question about the handling of symbols according to given rules.” Further, “the
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chief point in the desired proof of freedom from contradiction is that it must be
conducted by perfectly unobjectionable methods.” These methods are codified in
what he calls “system A,” and of which he lists some principles. He then notes that
such—finitistic—methods cannot lead to a proof, so that the hope for a consistency
proof by “Hilbert and his disciples . . . has vanished entirely in view of some recently
discovered facts.” (ibid., p. 52). Next Godel notes that intuitionism goes clearly
beyond what is finitistic. In particular, he refers (p. 53) to the interpretation of
classical arithmetic in intuitionistic arithmetic as one that gives an intuitionistic
proof of consistency, but adds later that this foundation “is of doubtful value.” Godel
ends his talk by the remark that “there remains the hope that in future one may find
other and more satisfactory methods of construction beyond the limits of system
A, which may enable us to found classical arithmetic and analysis upon them. This
question promises to be a fruitful field for further investigations.” It seems that only
the appearance of Gentzen’s proof in 1935 made him take this possibility seriously.

2.4 The Surfacing of Transfinite Ordinals

Gentzen found out, probably in early 1933, that his proof idea for the consistency of
intuitionistic arithmetic, therefore also for Peano arithmetic, would not be realizable.
He had added, right at the start when he developed intuitionistic natural deduction,
a rule of induction:

A()

A() AG + 1)
A0)

The conclusion of CI (for Complete Induction, vollstindige Induktion) gives by
rule V7, when a fresh variable x is chosen for the arbitrary term 7, VxA(x). As with
indirect proof, there need not remain any trace of the conclusion of CI/ in any of
the open assumptions or in the endformula of a finished derivation in arithmetic, so
that the subformula property is not guaranteed to hold.? Neither can one restrict the
induction formula to some specific class of formulas to get a sufficient control over
the structure of derivations.

The first occurrence of transfinite induction in Gentzen is already in 1932, in
INH (date 9.X.):

A new idea: Is it possible to perform appropriate reductions so that one takes the longest
proposition, or a proposition that is of the highest value according to some other assignment

2 A notion of normal derivability can be applied even in the absence of the subformula property,
with easy proofs of the disjunction and existence properties, cf. von Plato (2006).
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that is invariant under reductions, and eliminates it in all its places of occurrence, without
multiplying propositions of the same value?
The assignment of values will go into the transfinite with CI’s.

It is not difficult to see where the last comes from: If instead of the universal
generalization of the conclusion of rule CI, a numerical instance A(n) is concluded
by CI, the derivation should have a lower value than the derivation of VxA(x). (This
is mentioned explicitly in the popular article Gentzen 1936a.) The only way out is
that an uppermost CI with a fresh variable in the conclusion has the value w. The
next thing to determine is what happens when there are several nested CI’s. There
are some remarks about the possible ordinal assignments made during the spring of
1933, but nothing definitive: It seems to be a line abandoned for the time being.

With the original aim of Gentzen’s study temporarily lost, he concentrated on
pure classical logic, found his sequent calculus, and proved the famous Hauptsatz,
cut elimination theorem, during the rest of the spring of 1933 (as detailed in von
Plato 2012). Among the sporadic remarks about arithmetic added to the manuscript
INH, March to June 1933, one dated IV.33 states that “the need to use transfinite
induction in the consistency proof seems certain to me.” More statements are found
in the next section.

As to the use of transfinite numbers in a metamathematical context, the prece-
dents contain at least: Hertz (1923), Ackermann (1924), Hilbert (1926), and
Brouwer (1926).

2.5 Consistency, End of 1934

With the thesis finished in May 1933, Gentzen had other things to worry about
than the consistency of arithmetic and analysis. The mathematics department of
Gottingen was in ruins after the Nazi takeover and his professor Bernays fired as a
“non-Aryan.” Gentzen took up his research in 1934, helped by a little scholarship.
One thing he tried was to use type theory as the language of mathematics. A
result from the spring of 1934 is a consistency proof of Hermann Weyl’s system of
predicative analysis. Very little is known about the proof: One letter from Bernays
to Weyl tells that Gentzen was not able to reproduce it without his notes in 1937,
when he met Bernays in Paris (in Menzler-Trott 2007, p. 82). The result seems to
have been a by-product of the attempts at producing a proof of the consistency of
arithmetic, thus, not a strong result. Jean Cavailles mentions in his book Méthode
axiomatique et formalisme that the method of the consistency proof for arithmetic
“extends without modification to mathematical theories in which the predicates and
functions are decidable or calculable in finitary terms: so for the constructive part
of analysis” (1938, p. 162). Gentzen wrote on 11 December 1935 to Bernays about
the discussions he had with Cavailles who was visiting Gottingen at the time (see
Menzler-Trott 2007, p. 64).

By the end of 1934, Gentzen had found a proof of consistency of arithmetic.
A letter to Bernays of 12 May 1938 tells about a much later proof, the one that
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became standard through Gentzen (1938b): “How I have obtained the consistency
proof from the methods of proof in my dissertation is, I believe, now somewhat easy
to see in the new version” (Menzler-Trott 2007, p. 95). As we shall see in the end
of Chapter IV, the very first proof used a sequent calculus, instead of the natural
calculus of the 1935 proof submitted for publication in August of that year. There
Gentzen (1936, p. 512) notes that the proof would be simpler, though “less natural,”
if a sequent calculus were used. The analogy to cut elimination that he mentions is
the Hilfssatz to be treated in detail in Chapter IV.

There is even a letter of 11 April 1934 to Bernays by which a consistency proof
by transfinite induction existed already at that time (Menzler-Trott, p. 54). First
Gentzen writes that “the consistency of mathematics is equivalent to the carrying
over of the Hauptsatz of my dissertation from predicate logic to type theory”
(Stufenlogik, second-order logic with an axiom of infinity). He hopes to achieve
such a consistency proof soon “by force,” after which he adds: “It remains to modify
the proof so that only permitted forms of inference are used. I hope to achieve this,
in analogy to arithmetic only, through transfinite numbers.”

It is known also through discussions that Kreisel has had with Bernays that the
use of transfinite induction in the published 1936 proof was, in contrast to the proof
submitted for publication in 1935, a return to “an earlier idea” (as in Kreisel 1987,
p. 174), discarded in favor of the 1935 proof for reasons that are at least to some
extent explained in INH.

3 The Meaning of Consistency

3.1 “Where Is the Godel-Point Hiding?”’

There was, obviously, no easy way to a consistency proof of arithmetic by transfinite
induction. Within a week from the surfacing of the “new idea” of using such
induction, Gentzen in his characteristic manner set already out to determine what
he was actually trying to do: He asked in INH (date 16.X.32) what meaning a
consistency proof can have:

Why is a consistency proof through a coarse contentful explanation,

A & B correct when 2l correct and B correct, 20 — ‘B correct when from the correctness
of 2 the one of B follows, x Ax when Av correct for all numbers, =2l correct when 2l not
correct,

after Godel not formal? Does it contain a circularity? One infers: The logical axioms are
correct, the mathematical axioms are correct, inference scheme and substitution give correct
from correct, therefore all things provable are correct.

He asks at one place: “Where is the Godel-point hiding?” It took him just a few
days more to come to the conclusion that the notion of correctness in arithmetic
transcends what can be expressed and proved in arithmetic (INH, date 21.X.), an
insight usually associated with Tarski:
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I believe I can now see clearly why a consistency proof cannot be formalized through the
giving of a coarse contentful meaning. To wit, because the meaning is not formalizable, and
this naturally always: in the usual formalism, e.g., of Godel.

Within two days, the proof strategy was clear (INH, date 23.X.):

One shows now through ordinary inferences, i.e., without CI: There is to each proof with
a numerical result a proof with a lower value and the same result. Namely, one shows
existence of a peak, this peak can be reduced. The assignment of values follows according
to 88.3 bottom ff.*> So, the value of a proof is a system of transfinite numbers of the form: a
polynomial in w with natural coefficients. (To be replaced by w® 4+ [..] + w®.)

The main inference can be seen as a transfinite induction over a decidable proposition,
namely the proposition: The numerical result is correct.

There must obtain, in my opinion, some kind of a connection between the informal element
in the non-formalizable definition of “correctness” and the non-formalizable (?) transfinite
induction. For both of them seem to make possible a non-formalizable proof of consistency.

The attempts do not lead to any definitive result, and by early November, they peter
out.

The manuscript INH continues by remarks that stem from February, April, and
June 1933. In April, there is a clear division of proofs of consistency into three

types:

1. A “purely-formal” proof.
2. A “semi-contentful” proof.
3. A proof through reducibility.

The ordinal that is needed in a purely formal proof is estimated to be w®”. The
published proof of 1936 contains remarks about such a proof (§10.7). The third type
of proof should proceed through the “peak theorem,” i.e., through normalization.

There follow what Gentzen by a later addition indicated as General thoughts
about the proof of consistency:

The idea as a whole: Each proof has a (transfinite) value. Consistency of a system of proofs
can be shown only through a proof that has a higher value than all of these. Therefore the
theorem of Godel.

The idea became the central one in ordinal proof theory that arose as a gen-
eralization of the proof theory of arithmetic. After the quoted passage, there are
the added words “taken over to WTZ.” That signum stands for something like
Widerspruchsfreiheit transfinite Zahlen (consistency transfinite numbers) and fits
well with the published 1936 consistency proof, but no pages of such a series of
notes are left. They have probably finished in the garbage dump in the 1960s and
1970s in Gottingen, where Gentzen’s manuscripts for his published papers had been
kept.

3The numbers refer to the stenographic series D in which each sheet such as 88 contains four pages,
from 88.1. to 88.4. This series became by sheet 92 renamed INH.
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By June 1933, the consistency problem is formulated in terms of sequent
calculus:

(VI33) The possibility of a transfinite assignment of values seems almost sure, more or less
on the basis of the reducibility theorem. Let us take the following consideration: Proofs that
become continuously smaller with reduction are assigned values according to the number
of their sequents. . .. One should just be able to classify each proof directly in a correct way.
The best should be to begin with simple calculi.

Now there is a leap to October 1934 when the consistency proof seems already
finished. We read (date X.34):

One must distinguish between the semi-contentful proof that associates to each formula
resp. sequent a semi-contentful concept of correctness, and the proof by the concept of
reducibility that works with reductions of a derivation. This one leads over to the purely-
formal proof that considers only the reductions of a derivation of a contradiction.

It is the semi-contentful proof, or, in Kreisel’s terms, the proof that is partly in
terms of meaning, that would give a true insight into the significance of consistency,
and that Gentzen sets out to write down towards the end of 1934. The passages
of INH from October 1934 contain already references to a series with the signum
WAV that stands for Widerspruchsfreiheit Arithmetik Veroffentlichung (consistency
arithmetic publication) and of which some pages have been preserved. They deal
mainly with the production of sequents with formulas in prenex normal form and
with a variant of Gentzen’s reduction procedure for the classical sequent calculus
LK of the doctoral thesis, to be discussed below. The writing proceeded chapter by
chapter in the spring of 1935, each chapter sent to Bernays as it got ready. The latter
made comments concerning which only Gentzen’s replies have been preserved:
These comments provoked some changes after which Gentzen submitted his long
manuscript, some hundred typewritten pages, to the Mathematische Annalen where
it was received on 11 August 1935. A copy was sent to Weyl.

The quote from X.34 above refers to “the concept of reducibility that works with
reductions of a derivation.” There are two distinct notions that are called reducibility.
One is the syntactic notion of conversion of non-normalities in derivations, and
the analogous situation with the induction rule: The rule has as a conclusion a
numerical instance, and the step is resolved into a number of instances of logical
rules. This notion can be applied also to derivations in sequent calculus, because
of the correspondence between natural and sequent derivations. On the other hand,
Gentzen’s search for a meaning to a consistency proof had led him to a general
semantic notion of reducibility that applies to formulas and sequents. In the
above list of three suggested consistency proofs of April 1933, the second, “semi-
contentful” type uses the semantic notion of reducibility of sequents, the third
instead the syntactic notion of reducibility of derivations. Confusion can be created
when the reducibility of sequents in the semantic sense is applied to the sequents
of a derivation. The aim with the notion of reducibility of sequents was to give a
finitary interpretation to arithmetic. “Finitary” here has to be taken in broad terms,
not in the way of the strict finitism of Hilbert. It turns out that by the end of 1935,
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Gentzen’s variant of finitism encompassed the whole of the second number class,
i.€., the constructive transfinite ordinals.

3.2 Brouwerian Insights

Gentzen’s reduction procedure for sequents is intended as a semantic explanation
of arithmetic. The reduction rules are modeled upon “The mathematics of finite
domains,” the title of Gentzen’s §7, in which the quantifiers can be replaced by
conjunctions and disjunctions, and classical propositional logic dictates what the
conditions of correctness for the formulas are: A & B is correct when both A and
B are correct, —A is correct when A is false, etc. The correctness of the rules of
inference of propositional logic is almost immediate.

Let us note that Gentzen’s view of classical logic is exactly the same as
Brouwer’s: It is the logic of finite domains. This is the second of the “four
insights” in Brouwer’s paper Intuitionistische Betrachtungen iiber den Formalismus
(Intuitionistic considerations on formalism). It was printed in the Sitzungsberichte
der Preussischen Akademie der Wissenschaften in 1928 and I have more than one
reason to believe that Gentzen had studied it carefully.

Brouwer’s first insight was that “the formalists™ have to differentiate between the
generation of theorems in formal systems and the contentful theory of these systems,
and that the latter is based on “the intuitionistic theory of the set of natural numbers.”
The second insight was cited above. The third insight was that excluded middle
equals the assumption of the solvability of every mathematical problem. The fourth
insight is most relevant for Gentzen: “The recognition that a contentful justification
of formalistic mathematics by a proof of its consistency contains a vicious circle.”
This is directly the terminology of Gentzen’s initial ponderings in INH. Brouwer’s
insights are also seen in action in Gentzen (1936a), among others, in: “I believe
that, for example, in the general theory of sets a careful proof theoretic investigation
will finally confirm the opinion that all powers exceeding the countable are, in a
quite definite sense, only empty appearances and one will have to have the good
sense to do without these concepts.” All in all, a trusted disciple, from among “the
formalists” to boot, had emerged as if by itself, to whom the typically Brouwerian
exclamation in the beginning of the Betrachtungen applies:

The acceptance of these insights is only a question of time, because they are the results
of pure reflection and hence contain no disputable element, so that anyone who has once
understood them must accept them.

Gentzen refers to Brouwer’s paper at the very end of his long article. It is, in addition
to the reference to Brouwer’s 1924 paper on the continuity of real functions in
Gentzen (1938a), his only reference to a work of Brouwer’s. He would, instead,
refer freely to Heyting’s formalization of intuitionistic logic. I think these facts just
tell us what Gentzen thought proper to refer to as a Gottingen logician whose future
depends on the opinion of Hilbert, rather than what he was indebted to in his work.
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How could he, who in the spring of 1935 had applied for an assistantship with
Hilbert, have stated the simple truth: The consistency proof of 1935 resolved, in
the words of Bernays, the “contemporary fiasco” of Hilbert’s Beweistheorie, by the
methods of Brouwer’s intuitionistic mathematics. This, namely, is what I am going
to suggest below.

4 The Plan and Circumstances of the Original Proof

4.1 Outline

The bearing idea of Gentzen seems to have been: The consistency of arithmetic is
proved by giving a special semantic explanation of correctness in arithmetic, either
of formulas or of sequents. Next, this notion is applied to formal derivations. Finally,
it is shown that there is no derivation of a contradiction that would be correct in the
semantic sense.

By the above, consistency was a by-product of the more ambitious idea of giving
a constructive semantics to intuitionistic arithmetic. Syntax and semantics have to
match each other, and it has to be laid down what is achieved by a consistency
proof, in particular, that it does not somehow assume what it sets out to prove. In
his discussion of these topics in INH, Gentzen carefully avoids talking about the
traditionally central notion of semantics, namely truth. He talks, like Brouwer, about
correctness (Richtigkeit) and says that a statement holds (gilr).

Bernays had the submitted proof with him when he sailed to New York in
September 1935. On board was Godel; His position as the king of logicians was
reflected in his status on board, in the first class. [ have seen a postcard in the Bernays
collection of the ETH-Zurich in which Godel requests a meeting with Bernays, for
the fired professor had to travel in a tourist class and could not just like that go
and meet Godel. During the fall term, the two commented on Gentzen’s proof, but
only the answers of the latter have been preserved. They contain some information,
though in a form that is often bound to frustrate the reader, such as the following
passage from a letter of 11 December 1935 (Menzler-Trott 2007, p. 64):

The possible changes indicated by Godel were known to me, but are in fact inapplicable
from the finite standpoint because of their impredicative character.

Gentzen answered to the criticisms by changing the semantically based consistency
proof into one that uses the now generally known transfinite induction principle,
with essential changes of large parts of the manuscript sent to the journal in
February 1936. They contained, as mentioned, a turn into an older idea, and various
passages from INH make evident this remark of Bernays, transmitted through
Kreisel’s recollections in (1987, pp. 173—175). By good luck, the proof originally
submitted for publication was preserved by Bernays in the form of galleys. They
were published in English translation in the Szabo edition of Gentzen’s papers in
1969, and in the German original in 1974. Even if Bernays kept the proofs for forty
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years, they have been lost in connection with the 1974 publication in the Archiv
fiir mathematische Logik und Grundlagenforschung (later Archive for Mathematical
Logic).

The net effect of the criticisms was a proof that mixed elements from the purely
formal and semi-contentful approaches, instead of arriving at the former through
the third proof idea, that of a proof through the syntactic notion of reducibility.
The presentation suffered from these changes, but Gentzen was happy with the
overall result he had found during the fall of 1935, namely, that a clear-cut transfinite
induction can replace his original proof, with a precise “Godel-point,” the transfinite
ordinal g that characterized Peano arithmetic.

4.2 The Setting of the Original Proof

The version submitted in August 1935, referred to here as Gentzen (1935), got
mutilated by the changes Gentzen made. Gentzen (1935) gives a semantics for the
derivability relation in arithmetic, expressed as a sequent Ay, ..., A, — C. There
is just a single conclusion C from the assumptions in the list Ay, ..., A,, instead
of a finite number of possible cases as in the classical sequent calculus LK of the
doctoral thesis Gentzen (1934-35).

When the sequent notation is used, there is a double sense to derivability: The
arrow is like the “vertical dots” in the inference schemes of natural deduction. On
the other hand, there is the notion of derivability of a sequent by the rules of sequent
calculus. Thus, these rules relate derivabilities in the first sense to each other, in the
way exemplified by the left sequent calculus rule for disjunction, say. Disjunction
elimination becomes the sequent rule: If C is derivable from A and from B, it is
derivable from A v B. With assumptions added, we have the correspondence:

[AL.T [B],A
AVB C C . AT—>C BA=C,
C v ~ AVBT.A—>C '

There are above the inference line of rule VE two schematic derivations that
are given as two corresponding sequents above the inference line of rule LV. Its
conclusion gives the final situation of derivability of rule VE.

The correspondence goes in the same way for the other rules. For simplicity,
I have taken the situation in which the major premiss of rule VE in natural
deduction is an assumption. The correspondence between natural deduction and
sequent calculus was understood rather well by Gentzen, though not in full (see
my 2012 for an exhaustive treatment).

In Gentzen (1935), a semantics of derivability in the first sense, as represented
by the dots or arrows, is given. Then it is applied to derivability in the second sense.
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The rest of this section is structured as follows: (3) The reduction of sequents.
(4) The calculus NLK. (5) The reduction of derivations in NLK. (6) The consistency
theorem. (7) Consistency: the three first proofs.

4.3 The Reduction of Sequents

The atomic formulas of arithmetic are decidable equalities between numerical
terms. It follows that the whole propositional part of arithmetic is decidable.
Gentzen’s reduction procedure is carried over from the classical propositional
logic of formulas to sequents, as exemplified by the following: If A& B in the
antecedent of a sequent A & B, " — C is false, one of A and B is false, and each
can be tried in turn in the place of A& B.If A in —=A, " — C is false, it is deleted
and the sequent changed into ' — A.

Gentzen’s essential idea is to extend the procedure from the finitary domain to
quantified formulas, i.e., to apply the “transfinite sense” of YxA(x) in a certain way.
Gentzen calls it “the in-itself sense” (der an-sich Sinn).

A way to think of the reduction procedure is that the correctness of a sequent
I' - C is guaranteed if, in whatever way C may have as a consequence a false
claim, it can be shown that some assumption in I" likewise presupposes a falsity.
Then, whenever the assumptions I' hold, also C holds. Say, to put it in figurative
terms, we have a sequent of the form I' - VxA(x) & VxB(x) and an omniscient
opponent who can reason classically by the in-itself sense of things and to whom
the infinity of the natural numbers is not an obstacle. Such a creature can decide
when VxA(x) & VxB(x) is false in its eyes, with, say, YxA(x) a false conjunct,
next to take a falsifying instance A(n) out of the infinitely many possibilities. Our
task is to show that, even if we don’t have the opponent’s classical and transfinite
capacities, we can make finitarily choices affer the opponent’s choices so that some
assumption in I" turns out false. It is this “finitary sense” that Gentzen is after in his
semantical explanations.

The reduction of sequents is effected by suitable moves in what I, continuing
to speak in suggestive terms of Gentzen’s procedure, call a “falsification game” in
which first certain “S-moves” are taken in the succedents of sequents, followed by
“A-moves” in the antecedent.

S-moves:

SVar. The sequent I' — C has free variables. Numbers are chosen at will to
instantiate these until there are no free variables left.

S&. The sequent is I' — A & B and either I' — A or I' — B is chosen at will.

S—.  The sequentis I' — —A and the reduced sequent is A,I' -0 = 1.

SV. The sequent is ' — VxA(x) and some instance I' — A(n) is chosen at will.

Order of Precedence: Move SVar comes before the other S-moves.

The S-moves are classical, for the falsifier knows how to end up with the worst
possible case, here, a false equation as a conclusion. Each S-step simplifies the
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succedent of the sequent to be reduced until an equation m = n remains. If the
equation is true, the attempt at falsifying the sequent failed. Otherwise, when no
S-move is applicable and m = n is false, the task is to show that some of the
assumptions must contain a falsity, too. To do this, the following steps can be taken
in the antecedent:

A-moves:

A&. The sequentis A& B,T' —m = n with m = n false. The reduced sequent
isA, A& B, ' >m=norB,A& B, ' ->m = n.

A—. The sequent is —A,I' —>m = n with m = n false. The reduced sequent is
—A,T — A.

AV. The sequentis VxA(x),I' > m = n with m = n false. The reduced sequent
is A(k),VxA(x), T —m = n for some k.

Order of Precedence: S-moves come always before A-moves.

In the first of the A-steps, the conjunction is repeated, for it can happen that one
needs at some later stage also the other conjunct. It would be possible to have a
single move with A, B that replaces A & B with no repetition. The negation step
seems to be classical, in that —A in the antecedent and a falsity in the succedent
does not lead to the intuitionistically derivable —=—A in the succedent, but to 4;
However, as said, the reasoning in the succedent part is classical.

The aim of the reduction procedure is to ensure that a false formula in the
antecedent part of a sequent can be produced, whenever a false numerical equation
has appeared in the succedent. Note that if a negation at left is reduced, there will be
an S-step, unless it was a negation of an equality. Given a sequent I — C, the result
of reduction is, provided the process terminates, a sequent to which no reduction
step applies.

Let us now check that, indeed, the reasoning in the succedent side is classical
even if the domain is infinite:

Let the sequent be I' — A & B. The S-steps should turn out something false out
of the succedent, by which the succedent itself is also false. If that is so, then
—(A & B) is true, i.e., classically =4 Vv —B is true. The worst case is produced
by a choice, say —A, that gives a sequent I' — A with a false succedent. Note
that the conjuncts in A & B may very well be “transfinite,” universally quantified
formulas, and that it need not be decidable which of them is false. This does not
matter, because A-steps have to be such that they apply to any choice that may have
been taken in the succedent.

Let the sequent be ' — VxA(x). As above, if the succedent is false, then
—VxA(x) is true, so classically Ix—A(x) is true. There is an instance —A (k) true
“in itself,” and the sequent I' — A(k) with a false succedent has to be dealt with.

Finally, if the sequent is I' — — A, there are no choices and the reduction goes on
with A, -0 = 1.
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Definition 1 (Irreducibility, Endform, Correctness)

(i) A sequent is irreducible if no reduction move applies to it.
(i) A sequent I' - m = n is in endform if either m = n is true or there is some
false equality in T'.
(iii) A sequent I' — C is correct if for each choice of S-moves there are A-moves
such that I' — C reduces to endform.

We say often simply that a sequent is reducible if it is reducible to endform. The aim
of Gentzen’s consistency proof is to show that all derivable sequents are reducible.
It follows that the sequent — 0 = 1 is not derivable, because it is irreducible but
not in endform: No atom in the antecedent is false, because there are none.

4.4 The Calculus NLK

As can be seen, the reduction of sequents is an idea independent of a particular
logical calculus. To emphasize this important aspect, I reversed the order of
presentation of the calculus and the reduction procedure from that in Gentzen
(1935). In fact, it is this aspect that made it possible for Gentzen to change the
calculus into another one in the published proof, instead of rewriting the whole
paper (as he perhaps should have done).

The calculus in Gentzen (1935) is what is today called “natural deduction
in sequent calculus style.” It can be found already in the handwritten thesis
manuscript, with the nomenclature NLK where the letters stand for “natiirlich-
logistisch klassisch.” NLK is an obvious intermediate stage in the translation from
natural deduction proper into sequent calculus: The idea is simply to display for
each formula occurrence in a natural derivation all the open assumptions the formula
depends on. There is a fundamental difference to sequent calculus proper, because
there are no left rules for conjunction, implication, and universal quantification. To
finish the translation to sequent calculus, Gentzen inserts cuts (see von Plato 2012
for details).

A further aspect of NLK is its classical character: Gentzen knew that classical
logic would not be necessary but used it anyway. My guess is that he did it mainly
for expository purposes, so that his intended general reader of the Mathematische
Annalen would not be put off by a reliance on such esoteric things as intuitionistic
logic. I shall now present the rules of NLK, as they are given in Gentzen’s paper,
except for the fraktur type: These rules are direct translations into the notation of
sequent calculus of the rules of classical natural deduction and the induction rule. In
rules that have more than one premiss, the contexts I', A, ... are accordingly added
up in the antecedent of the conclusion. To the assumptions of natural deduction
correspond “logical groundsequents” of the form A — A. Refutation is from the
German Widerlegung, abbreviated Wid below (Table 1).

The rules of inference are given in a linear form of sentences. There is, in fact,
not a single inference line printed in the whole work. Here again, Gentzen perhaps
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Table 1 The rules of Gentzen’s calculus NLK

&-introduction: The sequents I' — A and A — B give the sequent ', A > A& B
&-elimination: ' — A & B gives ' — A resp. [ = B

V-introduction: ' — A givesI' —> AV Bresp. ' > BV 4

V-elimination: ' - AV Band A,A—C and B,® - C give [, A, - C

V-introduction: T’ — A(a) gives I' = YxA(x) on the condition that the free variable a does
not occur in T nor in VxA(x)

V-elimination: T — VxA(x) gives T — A(t)
-introduction: T — A(t) gives ' = Ix A(x)

J-elimination: T — Ix A(x) and A(a), A — C give I', A — C on the condition that the free
variable a does not occur in T', A, C nor in x A(x)

D-introduction: A,T — B givesI'—> A D B

D-elimination: T —Aand A—> A D B give [, A— B

Rule of “refutation”: A,I' — B and A, A ——B give ', A —>—A

“Elimination of double negation”: I' ———A gives ' > A4

Rule of “complete induction™: T — A(0) and A(x), A = A(x 4+ 1) give I', A = A(t)

wanted to appeal to a general readership, to whom the notation of two-dimensional
proof trees with their inference lines was completely unknown at the time. Those
few specialists who had read his doctoral thesis were an exception.

Formal derivations within Gentzen’s calculus consist of series of sequents, with
the following definition (p. 513):

A derivation consists of a number of sequents in succession, such that each of these is

either a “groundsequent” or results from some previous sequents through a “structural
modification” or a “rule of inference.”

To deal with the explicit listing of the assumptions in the antecedent parts of
sequents, Gentzen adds the following “structural modifications:”

1. Exchange of the order of assumptions in the list.

2. Contraction of two occurrences of an assumption into one.

3. Weakening of an antecedent by the addition of an assumption.
4. Change of a bound variable by a fresh one.

Gentzen writes (pp. 513-514) that these rules are “purely formal in nature and
inconsequential in their content; they have to be mentioned explicitly because of
the peculiarities of the formalism.”

The calculus is completed by adding what Gentzen calls “mathematical ground-
sequents.” They have the form — A, with A a mathematical axiom. The right
axioms are not listed, instead, Gentzen writes that for the consistency proof, it is not
so essential what the mathematical axioms are. He gives as examples the following:

Vxx=x, VxVy(x=yDy=x), VxVyVix=y&y=2zDx =y,
Vx—-x+1=x, VxVyx+y=y+x, VxVyVz(x+y)+z=x+(y+2).
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Gentzen was convinced that the rule of induction was the only one that created real
problems for the consistency proof. The rest of the arithmetic principles could be
dealt with in whatever way was easiest. One such was given in the doctoral thesis.
It contains “as an application of the sharpened Hauptsatz” a consistency proof for
induction-free arithmetic (IV §3). Axioms are allowed to appear in the antecedent
parts of sequents in a classical calculus and consistency is proved by the midsequent
theorem. An alternative method was to formulate the axioms as groundsequents with
free parameters, in the form

—a=a, a=b—->b=a, a=bb=c—a=c,

a+l=a— , —>a+b=b+a, —>@+b)+c=a+b+c).

In the consistency proof of 1938, such groundsequents contain after some transfor-
mations only numerical terms, and it can be decided whether they are correct, i.e.,
whether an equation in the succedent is a true numerical equation or an equation in
the antecedent a false one.*

For this presentation, we grant to Gentzen what he presumes, namely, that the
arithmetical principles except that of complete induction will not cause problems.
It will be sufficient to prove the consistency of the system of classical natural
deduction augmented by the rule of complete induction.

The rules of NLK exhibit some strange features: Why does the classical calculus
NLK contain a full set of connectives and quantifiers? Further, there was no
normalization theorem for the classical calculus. How could the ideas about a
meaning explanation through normalization be carried over to a consistency proof
in terms of NLK?

The essential difference of NLK with respect to a proper sequent calculus is
that the elimination rules for conjunction, implication, and universal quantification
operate on the right part of sequents. The corresponding sequent calculus rules
operate on the left, antecedent parts of sequents. Looking at rules VE and 3E, we
notice the following: If the first premiss is a logical groundsequent, AV B— AV B
resp. AxA(x) — IxA(x), and if it is left unwritten, the rules turn out identical to
the left rules of sequent calculus. I have followed this way in my 2009 article, with
an intuitionistic sequent calculus for Heyting arithmetic, and given a proof of its
consistency directly along the lines of Gentzen’s proof.

When Gentzen comes to the proof of consistency in his paragraph 14, he has
already removed the connectives Vv, D, and 3 by the obvious translations into the
fragment with just &, —, and V. Even the inferences by the rules for the former
group are transformed in the obvious way. Gentzen notes, at the end of paragraph 12,
that a transformed derivation “is an essentially intuitionistically acceptable number-
theoretic derivation: namely, the ‘elimination of a double negation’ could, where it

4 After Gentzen’s times, the axioms have been put aside by various degrees of hand-waving, in the
style of: “It’s all primitive recursively decidable, so why bother?” For a proper proof-theoretical
treatment of the arithmetical axioms, see Siders (2015).
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is used, be replaced by other rules of inference.” We have seen above how this goes
through, in the note of January 1933, and there is even more reason to ask why the
classical rule is kept.

4.5 The Reduction of Derivations

The main part of Gentzen’s original consistency proof consists of a few lemmas that
I state as follows, with some typical cases of the proofs covered:

Lemma 2 [nitial sequents A — A are correct.

The proof is by induction on the length of A. Assume SVar-moves to have been
taken, so that there are no free variables. There are four cases of which we show two:

1. A is an equality m = n, and we have m = n—m = n. By the decidability
of numerical equality, if m = n is true, A — A is in endform, and the same if
m = n is false.

2. Ais B&C. Then B&C — B&C reduces by S& to B&C — B or to
B & C — C.Case 2.1. Consider the first time when the reductionof B & C — B
by arbitrary S-moves gives a sequent of the form B& C,I' ->m = n, i.e., the
first time for an A-move. The sequent B — B is reducible by the inductive
hypothesis, so the same sequence of S-moves as for B&C D B gives the
reducible sequent B,I' =m = n. Application of A& to B&C,I' ->m=n
gives B,B&C,I'—->m = n. When formula B &C in the antecedent is
left intact, the sequent reduces exactly as B,I'—->m = n. Case 2.2. If
B & C — B & C isreduced by S& to B & C — C, the proof is as above, with C
in place of B.

We see here in action the method of simulating in A-moves the choices made in the
preceding S-moves. The remaining two cases of A = VxB(x) and A = —B are
treated similarly. QED.
I give the rule of composition as the inference scheme:

Composition of two sequents

'-D DA—->C
A —>C

Comp

Gentzen takes it for granted that derivations can be composed in his calculus NLK.

Lemma 3 (Closure of Derivability Under Composition) If the sequents I' — D
and D, A — C are derivable in NLK and possible eigenvariables distinct, also the
sequent I', A — C obtained by composition is derivable in NLK.
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The proof would be straightforward were the calculus intuitionistic, as in von Plato
(2009, lemma 5.2). I have not tried to determine how a proof with Gentzen’s rules
would go through, but let’s assume it does.

Next in Gentzen’s article comes the crucial property of the whole proof of
consistency, one that he named the Hilfssatz in obvious analogy to his famous
Hauptsatz, or cut elimination theorem for predicate logic. It states that composition
preserves the correctness of sequents in the sense of the above definition:

Hilfssatz 4 (Closure of Reducibility Under Composition) Ifthe sequents I' — D
and D, A — C are reducible to endform and possible eigenvariables distinct, their
composition into I, A — C is reducible to endform.

Proof The proof is by induction on the length of the composition formula D. We
can assume possible free variables to have been removed by SVar.

1. D = m = n. Then the first premiss of Comp reduces to I'* -0 = 1, or
I'*—-m = n if move S— was never applied. Assume S-moves to have been
applied to the conclusion I', A — C until T, A, A* -k = [ is produced, in
which k = [ can be assumed false and A* consists of those formulas, possibly
none, that applications of S— have brought to the antecedent. Leaving A, A*

intact, the sequence of A-moves that reduces I' >m = n to the endform
I''—=0=1(rI - m=n), reduces I', A, A* - k = [ to an endform.
We note that if ' ->m = n is reducible and m = n false, the equation

0 = 1 can replace m = n: Compose I' —m = n with the sequent in endform
m=n—-0=1togetI' -0 =1.
2. D = A& B. The composition is

'>4&B A&B,A—C
NA—C

Comp

By assumption, I' — A & B is reducible, so both of ' - A4 and I' — B are.
Consider the second premiss A & B, A — C. Either there is no application of
A& to A& B in its reduction and A & B can be removed. Then A — C is
reducible, and therefore also I'; A — C. Else A& is applied at some stage
to a reducible sequent A & B, A* —0 = 1 with, say, the reducible sequent
A, A& B, A* — 0 =1 as result. We now apply Comp:

'-A4 A A&B,A*—0=1
A& B, TA*—>0=1

Comp

By the inductive hypothesis, Comp applied to shorter formulas maintains
reducibility, so A & B,T', A* — 0 = 1 is reducible. The reduction of ', A - C
by the arbitrarily chosen S-moves that reduce the premiss A & B,A — C to
A& B,A*—0 = 1, gives the sequent I', A* —0 = 1 that is reducible to
endform by the same A-movesas A& B, [, A* -0 = 1.
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3. D = VxA(x). The composition is

' >VxA(x) VxA(x),A—C
'A—=>C

Comp

By assumption, I' - VxA(x) is reducible, so I' — A(n) is reducible for any
choice of n. As in 2, either there is no application of AV to VxA(x) in the
reduction of the second premiss and VxA can be removed. Then A — C is
reducible, and therefore also I, A — C. Else AV is applied at some stage
to a reducible sequent VxA(x), A* —0 = 1, with the reducible sequent
A(k),VxA(x), A* -0 = 1 as result. With the instance k also in the first
premiss, application of Comp to the shorter formula A (k) gives

L= A() AK). YxARX). A" —>0=1
VxA(x),[,A* >0 =1 o

The conclusion is reducible by the inductive hypothesis. The reduction

of I''A— C by the arbitrarily chosen S-moves that reduce the premiss

VxA(x),A—C to YxA(x), A* >0 = 1, gives the sequent ', A* >0 = 1

that is reducible to endform by the same A-moves as VxA(x), [, A* -0 = L.
4. D = —A. The composition is

T'—-—-4 —-A A—=C
T'A—=>C

Comp

In the reduction of the second premiss of Comp, if A— is never applied to —A4,
it can be deleted and what remains, the sequent A — C, is reducible. Then also
I', A — C is reducible. Otherwise there is a reducible sequent =4, A* -0 =1,
to which in turn A— is applied to give the reducible sequent =4, A* — A.

The first premiss of Comp reduces by S—to A, I' — 0 = 1. Application of Comp
to the shorter formula A gives

—A,A*—>A4 AT —-0=1
—A T A*>0=1

Comp

The conclusion is reducible by the inductive hypothesis.

As above, if in the reduction of =4, I', A* — 0 = 1 move A— is never applied to
—A, it can be deleted and the remaining sequent I', A* — 0 = 1 is reducible. This
is the sequent produced from I', A — C by the arbitrary initial S-moves that gave
—-A,A*—>0=1,s0T, A— C isreducible.

If instead in the reduction of =4, T, A* -0 = 1 move A— is applied at
some stage to —A in a reducible sequent —=A4,'*, A** -0 = 1, the reducible
sequent —A, ', A** — A is obtained. Composition with A,I' >0 = 1 gives

—A,T,T* A** —0 = 1 that is reducible. Therefore, continuing this analysis, at
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some stage the formula —A in the antecedent of the result of composition must
remain unreduced and can be deleted. The resulting sequent is then reducible. QED.

The proof seems innocent enough, even if the very last steps are a bit tedious.
They bring perhaps to mind methods in proofs of underivability through failed proof
search.

Gentzen tries to persuade the reader of the constructive character of the reduction
procedure by reformulating the Hilfssatz in the following terms (cf. Gentzen 1935,
sec. 14.44): “If reduction procedures for I' =% and ©, A — € are known, a
reduction procedure for I', A — € can also be given.” These, however, are just
words; There is no difference of substance to the formulation above.

4.6 The Consistency Theorem

The final component in Gentzen’s consistency proof is to show that the rules of
inference preserve correctness of sequents:

Theorem 5 [f the sequent I' — C is derivable, it reduces to endform.

The proof is by induction on the last step of a derivation. If I' — C is a logical
groundsequent, it is correct as shown above by the lemma. Otherwise consider the
last rule of the derivation and show that if the premisses reduce to endform, also the
conclusion reduces. The cases are the structural modifications, seven logical rules,
and CI.

Gentzen goes through the two cases for V. Then he notes that the three
conjunction rules go through similarly. The cases for V are:

1. The last rule is VI. The conclusion is I' - VxA(x), and it reduces by SV
to I' - A(m). The premiss ' — A(y) is by assumption reducible, with y the
eigenvariable. Rule SVar produces a sequent I' — A(n) that is reducible for
any choice of n, in particular, the choice m. Therefore the conclusion of V1 is
reducible.

2. The last rule is VE. The premiss is ' - VxA(x). S-moves applied to the
conclusion I' — A(¢) produce the sequent I' — A(m). The premiss is reducible
for any choice of value for x, therefore I' — A(¢) is reducible by the same A-
moves as for ' — VxA(x).

Next comes a peculiar turn, when Gentzen writes (14.44) that for the two negation
rules and CI, the Hilfssatz is put into use. Namely, the question is: If we leave out
rule CI, should we not get a standard proof of the consistency of classical first-order
logic as a result? Moreover, the classical rule is dispensable in NLK. What has a
principle such as the Hilfssatz to do in this connection?

The situation is clarified in my 2009 paper that uses an intuitionistic calculus and
a normalization theorem. The overall result is contained in the:

Observation With the intuitionistic calculus NLI, the Hilfssatz is needed only for
showing that rule CI preserves the correctness of derivations.
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Gentzen naturally knew the above by the result of his thesis, namely, that if induction
is left out, the proof of consistency can be carried through finitistically in the
tradition of Hilbert’s program. Some logical groundwork had simply remained
undone; Maybe there was some haste for a poor scholarship holder who tried to
secure an academic position in extremely difficult times: Gentzen had in fact applied
for scholarships in Germany, inquired Weyl about the Rockefeller foundation
financing and about a stay in Princeton, and obtained a position as a teacher in a
lyceum in Stralsund in case nothing else worked. Moreover, he had no one to talk
to, with people expelled from Géttingen.

Finally, we look at the crucial step of the consistency proof, namely the case of
rule CI.

3. The last rule is CI. The premisses are I' — A(1) and A(y), A — A(y + 1), the
conclusion I', A — A(¢). In its reduction, if ¢ has free variables, application of
Svar gives some numerical term n in place of ¢. In the second premiss, any
application of rule SVar gives a reducible sequent, so that A(m), A — A(m + 1)
is derivable and reducible for any m. An n — 1-fold composition of I" — A(1)
with A(1),A - A(2),...,A(n — 1), A — A(n) gives

F—>A4(1) A(1).,A—>A4Q)
T, A AQ2) o AQ2).A—AB)
omp

T, A2 A(3)

LA™ 5 A(n—1)  A(n—1),A— A(n) .
omp
I, A" = A®n)

Thus, the sequent I', A”~! — A(n) is derivable by the admissibility of compo-
sition and reducible by the Hilfssatz. For the conclusion I', A — A(t) of CI,
an S-move reduces it into I', A - A(n) and I', A — A(n) is reducible because
I, A" = A®n) is.

By hindsight, we have one more aspect of later calculi of proof search present
in the reduction procedure. Namely, it has to be shown that the rule of contraction
preserves reducibility, and this is secured because there is a possible repetition of a
formula for rules that are not invertible.

With the above lemmas and preparations, consistency can be easily concluded:
As noted above, the sequent — 0 = 1 is irreducible but not in endform, therefore
it is not derivable.

Corollary 6 The system NLK+CI+arithmetic axioms is consistent.

More is achieved than the unprovability of 0 = 1, namely, it follows that from
derivability follows correctness, or soundness in more recent logical terminology.
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4.7 The Earliest Preserved Consistency Proof

The above account of the consistency proof is essentially based on the preserved
galley proofs of Gentzen’s article in its original 1935 form. We have now a back-
ground against which it is possible to understand recently transcribed stenographic
manuscripts from the fall of 1934. These are, first, the last ten pages of INH, written
in October of that year. Secondly, there is the manuscript BZ, for Beweistheorie der
Zahlentheorie (Proof theory of arithmetic), written between August 1934 and March
1935, with pages 1-6 and 9-12 preserved. The third one is WAV, mentioned already
above, and written around October 1934, but without dates and with the pages 55—
56, 77-80, and 83-86 preserved. It consists of preliminary notes for the preparation
of the final manuscript, judging from the pages that have been preserved as well as
from occasional references to it in the other manuscripts. These notes have direct
connections to the article that Gentzen prepared in the spring of 1935.

There are parts in BZ and WAV that treat the same topic, the preparation of
sequent derivations in which all formulas are in prenex normal form. The proposi-
tional part of arithmetic is decidable, and Gentzen wanted to delimit propositional
steps in derivations to a “finitary” part, above a “transfinite part” that contains steps
of inference with the quantifiers, a separation that follows from the midsequent
theorem for derivations in the classical sequent calculus LK that he used at this
stage. The aim was to have a consistency proof that is “more concentrated on what is
essential” ( WAV, p. 78). One idea in WAV is to minimize the number of proper rules
of inference, through the use of groundsequents, suchas A& B — A, A— AV B,
and VxA(x) — A(t). The reducibility of such sequents follows easily from the
reducibility of initial sequents; Say, when an A-move is met with the first one, A & B
is replaced by A, and then reduction steps can be applied in the antecedent as in the
reduction of A — A.

WAV contains the earliest preserved proof of consistency of arithmetic, detailed
out in three pages and based on the reduction procedure (pp. 78—80). It is titled “the
second proof of correctness (LK consistency proof),” and by this proof, it becomes
further clear that the first proof was also based on the reduction procedure, but with
the intuitionistic sequent calculus LI augmented by the classical sequent =——A4 — A.
When the classical “symmetric calculus” is used, as Gentzen calls it, the reduction
procedure has to be defined also for disjunction and existence. (He prefers to leave
implication out, because it breaks the symmetry of LK.) The details of the reduction
procedure for symmetric sequents are not spelled out, but it is clear how they are to
be taken: The arbitrary choices (moves by the opponent in my terminology above)
extend now to the antecedent part, with the aim of producing a true numerical
equation at left. Thus, the opponent is able to make a best possible choice in
the case of an antecedent formula IxA(x), for a true instance A(¢). Afterwards
the respondent can reply to such a choice in the succedent by choosing the same
instance A(z). Analogously, the opponent chooses one of the disjuncts in A v B
in the antecedent, and the respondent in the succedent. Whenever the opponent has
produced a false equation in the succedent or a true equation in the antecedent, the
respondent is in turn, with the aim of producing a false equation in the antecedent
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or a true one in the succedent. Whenever this is the case, a sequent is in endform, a
notion that coincides with the one above for single-succedent sequents.

As before, the proof of consistency proceeds by showing that derivable sequents
reduce to endform. Propositional connectives are handled by logical groundse-
quents, as above, and for conjunction in the succedent by A, B— A& B and
disjunction in the antecedent by the dual A v B — A, B. The quantifier rules
are straightforward. There remain CI and the crux of the proof, namely that the
composition of sequents in the form of a mix rule (Mischung), or multicut in more
recent terminology, maintains reducibility (WAV, p. 79):

Let the reducibility of both upper sequents be already shown. That for the lower sequent to
be shown. We do a complete induction after the grade of the mix. That is now: The number
of V and 3 at the head of the mix formula 1.

T>A) OO —A
FO* > A*A

The notion of grade indicates that the formulas are in prenex normal form. The proof
that the grade of the mix formula can be lowered ends with the words (WAV, p. 80):
“This somewhat peculiar inference is subjected to detailed criticism in Section IV,”
clearly a reference to the paper Gentzen was writing. In that paper, the proof through
a reduction procedure obtained a third form, through the classical natural calculus
NLK that uses the sequent notation. Thus, what I have called the original proof was
by Gentzen’s count in WAV actually the third one. Moreover, INH and BZ contain
references to a lost series WTZ, clearly for “consistency transfinite numbers,” but
the few indications of ordinals in that attempted proof do not yet contain the Gentzen
ordinal gy of 1936.

5 Nature and Reception of the Original Proof

Gentzen was obviously happy and content with his original proof. A lot of
work had gone into it, both formal and conceptual: The detailed discussions in
INH, especially, give an indication of the importance of the latter for Gentzen.
Others, however, felt that something was missing: Gentzen (1935) contains general
discussions about the significance of consistency proofs and it even singles out the
Hilfssatz as central, but it does not indicate clearly what the crucial points in the
proof of the latter are. Specifically, the termination of the reduction process is not
treated in precise terms.

5.1 The Problem of Termination of the Reduction Procedure

There has been an extensive correspondence between Gentzen and Bernays about
the consistency proof, as well as some letters between Gentzen and Weyl, and
Gentzen and Van der Waerden. Only the letters of Gentzen to Bernays have
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been preserved. The first of these letters, dated June 23, 1935, was sent from
Gentzen’s hometown Stralsund by the Baltic Sea and included the “final part” of the
consistency paper. It went then on to discuss the suggestions made by Bernays and
notes, among others, that the existence property of arithmetic follows for formulas
dxA(x), “in case A(x) is not transfinite.” Towards the end Gentzen writes that he
wanted to discuss in the final chapter transfinite ordinal numbers and their relation to
reduction procedures and construction procedures, and then continues: “In the end,
these things did not seem ripe for a presentation yet but could perhaps find place in
a later separate publication.”
A second letter written three weeks later, 14 July, contains:

I have written in fact nonsense on pp. 75-76; I held my eye on an older form of the notion
of reduction, in which the reduction steps are uniquely determined. The passages could be
corrected more or less as follows: At 15.21, reducibility should be replaced by: ‘There is
a number v so that for each series R, of v numbers, a series of at most v sequents can
be given such that the first one is Gq, and each of these is formed from the preceding one
through a reduction step, and the last one has endform, and further, the possible choices are
determined through the associated numbers from the series R,. Correspondingly under
15.23: “For each infinite series R of numbers, a finite series of sequents can be given,
the first of which ...” as before. — I have, however, cancelled these passages completely,
because they are not fully necessary; perhaps I could give sometime later complete proofs
to both theorems in a special publication.

The uniquely determined sequence of reduction steps should refer to a reduction
procedure for derivations of the false formula 0 = 1.

The above passage is reminiscent of Brouwer’s explanation of bar induction in
his (1924), where the connection to transfinite induction is also made—a pity we
don’t have Gentzen’s proof of his 15.23 preserved. He states quite clearly that the
choice sequences in steps of reduction, represented as sequences of natural numbers,
lead to endform in a finite number of steps. Gentzen’s use of natural numbers in the
description of the reduction procedure brings him very close to Brouwer who in
1924 formulated the bar theorem as follows:

If to each element of a set M a natural number f is associated, M is decomposed by
this association into a well-ordered species S of subsets M,, such that each of these is
determined by a finite initial segment of choices. To each element of the same M, is
associated the same natural number f,,.

In Gentzen, M consists of the collection of reduction sequences of sequents and the
choices to single reduction steps.

Now there is a big gap in the correspondence, until 4 November, with a four-
page tightly and very orderly written letter sent to Bernays in Princeton, where also
Godel was. The former, possibly with the help of the latter, had taken up the central
problem of the proof, as can be gathered from Gentzen’s answer:

I have considered all these aspects already myself, including the geometrical image of
branching line segments. You are quite right that the finiteness of even a single reduction
path for the sequent I, A — € can get grounded on the finiteness of a whole series of
different reduction paths for ©, A — €. But this does nothing for my proof idea!
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He then writes that he had added an explanation to the article—it would be in the
end of Sect. 14 (p. 112 of the German version of 1974)—the proofs of which he had
sent back a few days earlier:

Let the following be remarked to avoid misunderstandings: The type of reduction of
D, A — € into D, A* — €* can eventually depend on a choice (14.62 1) that takes place
in the reduction of the mix-sequent I', A — .5 The same holds of each further step of
reducing back, and, it can be added, the new mix-sequent I', A* — €* etc. need in no way
always be the reduced one of the preceding sequent (14.62 3). So, the number of steps of
proof can be very different, according to the result of the individual choices; the only thing
that is certain is that it is in every case finite. To prove a claim for every possible choice,
it is sufficient to prove it for one specific, arbitrary choice. Therefore it is sufficient in the
entire proof to keep an eye on just one single specific sequence of reductions of the sequent
9, A — €, and thereby on just one single specific finite series of steps of proof.

No second round of proofs is known that would contain this passage. The terminol-
ogy of mix-sequents is that of the doctoral thesis, where cut formulas were called
mix-formulas. This terminology is used also in the consistency proof of October
1934, mentioned above. As to why the termination is not addressed in the paper,
Gentzen writes that “since you don’t seem so far to have said anything concerning
the recognition of the finiteness of the forms of inference, I have left them out of
the consistency proof; also because there would be still one thing and another to
clarify.” Gentzen had obviously a great desire to publish what he had to offer so far.

5.2 The Essence of Gentzen’s Hilfssatz

Gentzen’s letter of 4 November contains a description of what he calls “the essence
of the somewhat peculiar inductive inference” in the Hilfssatz, namely, why the
reduction procedure should terminate:

A proposition Y x F(x) is proved if each of the infinitely many special cases F(v) is proved.
Let each of these again be equivalent to a proposition Vx F, (x), each special case F, (i) of
these propositions again equivalent to a proposition VxF, ,(x), etc. Let the following be
known: Each arbitrary series of specializations VxF(x), F(v) DC VxF,(x), F,(n) DC
VxF,,(x),... ends after a finite number of components in a formula F,, (o), the
correctness of which is known. To be proved now: VY x F(x) is correct. To this end, I infer
as follows: The correctness of VYxF(x) is secured if F(v) holds for whichever arbitrarily
chosen v. So let us assume that we had chosen a specific number v, and it remains just to
prove F(v). This is DC VxF,(x). Now I infer just as before, namely, that to show that
this proposition holds, it suffices to take whichever arbitrarily determined special case, say
F,(w), etc. This chain of inferences must end after a finite number of steps, because each
arbitrary sequence Yx F(x), F(v), F, (i), ... had to be finite. Thereby Vx F(x) is proved.

He says that this is “an analogy” that should be compared to “the image of the
branching sequence of line segments.” The latter can be depicted as follows, with
Gentzen’s example:

3 We saw this situation in the above consistency proof, in the case of rule CI in which A(t) in the
succedent was reduced to A(n).
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Fypu..(0)

N

N

Fv(ﬂ) = VXFU./L(X)

N

F(w) =VxF,(x)

N

VxF(x)

There is no bound on how many universal quantifiers can occur in a formula, and
therefore a denumerably branching tree of any finite height can occur. Moreover,
the “analogy” begins with a peculiar requirement that each of the infinitely many
instances of Vx F(x) be proved. Is the analogy an appeal to infinitary proof theory,
or to the infinite capacities of the classical reasoner? “What do you think, now, about
this way of inference? Shouldn’t it be finite?”” These are his questions to Bernays,
but he adds at once the parenthetical remark:

If one turns the proof into an indirect one, i.e., begins like this: Assume that Vx F(x) does
not hold, then there is a counterexample v so that F(v) does not hold, so neither DC
VxF,(x), etc, then the tertium non datur enters.

Now we can read the suggestion as the choice of a path in a reduction tree that has
a denumerable branching at each node. If there is at least one sequence of choices
such that the topformula F,,. (o) gets falsified, we have established = F,, (o). If
not, i.e., if no counterexample was found, proceeding all the way down to the root
of the reduction tree we get that the assumption that Vx F (x) does not hold is false,



122 J. von Plato

and a classical step of double negation elimination (the tertium non datur) gives
VxF(x).

Gentzen is well aware that a new type of proof is about to surface here. One
reason for expecting something new is, naturally, that the proof must go beyond
those that can be justified in arithmetic. Turning now to the reduction rules, we
notice that sequences of moves in the succedent and antecedent can alternate any
number of times, and each block of succedent moves can produce an initial segment
in the Baire space of a denumerably branching tree.

5.3 A Lost Connection: Consistency Proofs and Bar Induction

Gentzen (1935) was received, in a literal sense, by Bernays and Weyl. Parts of
the paper were changed in February 1936, by which the galleys of the original
version had been prepared before that date, and the paper must have gone to print
clearly earlier. In fact, Menzler-Trott (2007, p. 61) reproduces a letter from Gentzen
to Hellmuth Kneser, written 27 October 1935, in which it is stated that the first
galley proofs have already arrived. He also wrote there that Van der Waerden, then
a professor at Leipzig, had commented very positively on the proof.

As mentioned, Cavaillés was in Gottingen in the fall of 1935. His book contains
a discussion of Gentzen’s proof, with a description of the reduction procedure and
the problem of its termination, but along the treatment by transfinite induction of the
published version (1938, pp. 165-170). A letter from Cavailles to Albert Lautmann
indicates that Gentzen had read the text and “repaired passages where to him I had
oversimplified” (cf. Menzler-Trott, p. 82).

Weyl gave his copy to Stephen Kleene who, by his own telling, got a job from
Wisconsin and gave the copy back after only two days. That was very unfortunate for
the development of proof theory and foundational study in general. It took another
fifteen years before Kleene took up Gentzen’s work, in an article about sequent
calculus (Kleene 1952a), and in the Introduction to Metamathematics. In the latter,
the Hauptsatz is presented in detail and applied to a consistency proof of arithmetic
without the induction rule (p. 463). For the full consistency proof, there is just a
“brief heuristic account of the method used by Gentzen” (p. 476). It is all based on
the published proof. Richard Vesley worked with Kleene on the constructive theory
of ordinals and together they studied Brouwer’s work. He has told me (in an e-
mail of 3 March 2011) that he is sure that they never discussed the extent to which
Gentzen had been influenced by Brouwer’s intuitionistic theory of ordinals.

Bernays (1970) recalled that the main point of criticism was Gentzen’s implicit
use of the fan theorem, a principle of Brouwer’s intuitionistic mathematics, by
which, if all branches of a finitely branching tree are finite, the tree consists of a finite
number of nodes. The same is explained in his prefatory words to the publication of
Gentzen (1935) in 1974 (p. 97):
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A methodical objection was made against the original proof, namely that it used implicitly
a principle usually described today as the “fan theorem,” by which each branching figure
that branches only finitely at each point and in which each thread ends after a finite number
of component parts, can on the whole have only a finite extension.

The fan theorem is a special case of the bar theorem in which latter the branchings
are denumerably infinite. These terminologies are much later than the results, but
it is still a bit strange that Bernays explicitly describes the finite branching, when
Gentzen’s proof clearly has denumerable branching. A detailed proof of Gentzen’s
Hilfssatz can indeed be given by the use of bar induction; It makes Gentzen’s
“peculiar inductive inference” of termination of reduction crystal clear (Siders
and von Plato, this volume). As we saw, Bernays writes that Gentzen’s use of
bar induction was “implicit,” and if so, then he had come to use that principle
independently of Brouwer, which would be remarkable.

In Brouwer (1924) to which Gentzen refers in his (1938a), the bar theorem is
called “the main theorem on well-ordered sets.” The additional remarks in Brouwer
(1924a) make quite explicit the associated principle of transfinite induction on well-
founded trees the bar theorem rests on (p. 645). The theorem was known to Godel,
and also to von Neumann who also was in Princeton at that time and must have heard
discussions about Gentzen'’s result.® Kreisel had extensive discussions with Bernays
about Gentzen’s original proof, and he writes (1987, p. 173) that “Godel and von
Neumann criticized the original—posthumously published—version.” There is a
more general principle behind the fan and the bar theorem; In Kreisel (1976, p. 201)
we find stated that both Godel and von Neumann “naturally knew the theory of
choice sequences that Brouwer had developed systematically, and especially the
problematic assumption (of which Brouwer was particularly proud), namely that all
functions F with arbitrary choice sequences of natural numbers as arguments and
natural numbers as values. . . can be produced inductively. The best-known corollary
is the fan theorem.”

During and after the criticisms by Bernays and Godel, seconded by von Neumann
and possibly even Weyl (as suggested by a letter of Weyl’s for which see Menzler-
Trott 2007, p. 58), Gentzen laid the foundation of today’s ordinal proof theory: It
can be seen clearly from his letters how this topic emerged in a few months’ time,
with the consequence that the semantical explanation of sequents through a notion
of reducibility and the consistency proof by induction on well-founded trees receded
in the background. By his (1938b), after having closed his new proof of consistency
by a presentation of transfinite induction, he writes that he puts no specific weight
on the notion of reducibility of derivable sequents and ends up with what seems
almost a contradiction in terms: “I resorted to it at the time as one argument against
radical intuitionism.” This paper was the second part of an issue of Heinrich Scholz’

61 owe the information about von Neumann’s knowledge of Brouwer’s “fundamental theorem on
finite sets” to Dirk van Dalen: He kindly sent me a copy of a letter of von Neumann’s to Brouwer,
from April 1929, that contains a constructive proof of the existence of a winning strategy in chess
by the fan theorem. The letter is found in van Dalen (2011).
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publication series on logic and foundations. The first part was Gentzen’s essay on
The present situation in mathematical foundational research. There he contrasts
the lessons from intuitionism, presumably those of Brouwer’s four insights, against
“radical intuitionism, that rejects as senseless everything in mathematics that does
not correspond to the constructive point of view.” Gentzen became a Brouwerian
intuitionist in 1932 but then found by 1936 that Brouwer’s constructive ordinals
codify intuitionistic principles in more conventional terms, it seems.

The fate of the original proof was that it was simply put aside, just like Gentzen
had put aside his detailed proof of normalization for natural deduction, the former
saved only because Bernays had kept the galley proofs, the latter only because he
had kept Gentzen’s handwritten notes. Gentzen’s use of induction on well-founded
trees had been saved also in another sense, the extent of which is yet to be fully
determined: Namely, as shown by the titles of topics in Goédel’s stenographic notes
in his Arbeitshefte, there are at least 150 pages of work of his on Gentzen’s proof,
with such suggestive titles as Principal lemma of Gentzen’s consistency proof with
choice sequences (Arbeitsheft 11, p. 28). In the earlier Arbeitsheft 4 (p. 39), there is
the title Gentzen with choice sequences. The proof ends on p. 50 with: “Theorem.
Induction Principle. [(n)20(®,)] D A(P) ). A(const.) D (P)A(P).” The meaning
is that if from the assumption that every one-step continuation ®, of a reduction
sequence P has the property 2 it follows that ® has the property 2, then from the
base case 2 (const.) follows that all reduction sequences have the property 2.

A picture starts emerging from a study of Gentzen’s original proof, the letters he
wrote to Bernays, Godel’s titles in the Arbeitshefte, his “Zilsel” lecture of 1938
and the Yale lecture of 1941, and Kreisel’s recollections: Namely, Godel’s no-
counterexample interpretation of the Zilsel lecture derives from Gentzen’s original
proof (cf. also Tait 2005). Secondly, concerning the Dialectica-interpretation,
Kreisel (1987, p. 175) writes: “At first Godel, like von Neumann, was ill at ease
with Gentzen’s use of functionals, albeit of lowest type. But when Godel returned
to the subject, about 5 years later, he used all finite types.” The connections between
Gentzen’s proof, Godel, and bar induction are suggestive enough, but the source
materials are at present not sufficiently known for these matters to be discussed in
any conclusive way—so here is where we must rest for now.

Sources and Acknowledgement Prof. Christian Thiel of Erlangen University
received in 1984 two folders of stenographic notes from the sister of Gentzen,
Waltraut Student. They had been left in the Gentzen family’s summer place on
the Baltic island of Riigen in 1944. During a visit to Erlangen in February 2005,
I was able to study the parts Thiel had transcribed, about half of the material
including pages 1—4 of the series BZ. The short manuscripts about natural deduction
from September 1932 and January 1933 caught my interest, and Thiel transcribed
them soon. My numerous visits to Erlangen led to the complete transcription of
INH for Gentzen’s centenary year in 2009. For the correctness of the rest of the
transcriptions, from BZ and WAV as cited in this paper, [ am responsible. I also wish
to thank here Bill Howard, Bill Tait, and Thierry Coquand for extensive exchanges
over several years on the theme of Gentzen, Godel, and bar induction.
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Appendix: Bar Induction in the Proof
of Termination of Gentzens Reduction
Procedure

Annika Siders and Jan von Plato

1 Introduction

We shall give an explicit formulation to the use of bar induction in Gentzen’s
original proof of consistency, as a continuation of the analysis in the preceding essay
about the Hilfssatz, referred to here as HH.

The article Bernays (1970) was the first one to explain in print the ideas in
Gentzen’s original proof of consistency, and it also made clear that the proof
was in the end based on bar induction. There is a review of Bernays’ article by
Joseph Shoenfield in which the latter writes that “the progress made in formalizing
intuitionistic systems in recent years should make it possible to formalize this
proof and thus see exactly what intuitionistic principles are needed to carry it out”
(Mathematical Reviews, MR0276062).

2 Bar Induction in the 1935 Proof

We prove that derivable sequents reduce to endform. As the basic predicate B in the
induction, the property is used that the succedent of a derivable sequent is an atomic
formula, here an equation. For the inductive predicate I, we use the property that a
derivable sequent with an atomic formula as a succedent reduces to endform. For the
proof, we show first that reduction steps in the succedent preserve the derivability
of a sequent:

Lemma If I' — C is a derivable sequent and an S-move is applied to it, a derivable
sequent is obtained.

A. Siders ¢ J. von Plato
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We go through the possible S-moves in turn:

Svar. IfI" — C has free variables, numbers are chosen at will to instantiate these
until there are no free variables left. Derivability is maintained under substitution
so that the reduced sequent is derivable.

S&. The sequent is I' - A & B, and both of the reduced sequents I' — A and
I' — B are derivable by rule & E.

S—. The sequentis I' = —A. The following derivation by the rules of the calculus
NLK shows that A, '—0 = 1 is derivable, with Wk, Ref, and DN standing for the
rules of weakening, refutation, and elimination of double negation, respectively:

A— A Wi ' >-4
-0=1,A—-4 -0=1,'>-4
AT —->—-—0=1
AT —-0=1

Wk
Ref

DN

SV. Thesequentis I' - VxA(x), and any instance I' — A(n) is derivable by rule
VE. QED.

Theorem Derivable sequents reduce to endform.
For a proof, we go through the four conditions for bar induction:

1. B has to be decidable. This is the case.

2. For any given derivable sequent I' — C and any sequence of reduction steps,
there is a step in the sequence by which the succedent formula has turned into an
equality. To show this, consider the reductions steps: If there are free variables
in I' - C, move Svar must be applied first, to substitute them by constants.
Thereafter the other S-moves must be applied, each producing a shorter formula
in the succedent until it is an equation.

3. Given a derivable sequent such that each applicable reduction step produces a
sequent that reduces to endform, to show that the sequent before the reduction
reduces to endform. This is immediate.

4. Finally, it has to be shown that if a derivable sequent has been reduced so that it
has the property B, i.e., is of the form I' —m = n, it is a derivable sequent that
reduces to endform. The derivability part follows by the lemma. The rest is an
induction on the last rule in the derivation of I' - m = n. If m = n is true, the
sequent is in endform. Therefore we may assume m = n to be false.

The possible cases are:

4.1. I' > m = n is an initial sequent. Then the antecedent is the false equation
m = n and the sequent in endform.

42. ' ->m = n is a “mathematical groundsequent,” for which we take the
formulation with free parameters, as in HH, Section IV.4, with all free
variables removed by steps of Svar:

—-m=m, n=m—-m=n, m=k,k=n—->m=n,

k+1l=k—=0=1 —h+k=k+h —Gh+k)+1=h+k+]).
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4.3.

4.3.1.

4.3.2.

4.3.3.

4.4.

The reflexivity groundsequent is in endform and symmetry has a false
antecedent n = m whenever the succedent m = n is false. With transitivity,
if m = n is false, if m = k in the antecedent is true, then k = n in the
antecedent is false and similarly if k = n is true. Withk +1 =k -0 =1,
the antecedent is false, and for the rest, the succedent is true.

The last rule is a logical one. There are the cases & E, V E, and DN.

The last rule is & E:

F'>A&m=n &E
'->m=n

The premiss reduces to endform by assumption, and therefore also the

conclusion. The reduction is similar if the second form of rule & E is applied.

The lastrule is VE:

'>Vx.x=n
Tom=n ©

The premiss reduces to endform by assumption, and therefore also the

conclusion. The reduction is similar if the right member of the equation was

quantified.

The last rule is DN:

F>—-—m=n
Tom=n

The first step of reduction for the premiss gives =m = n, [’ -0 = 1. If step
A—is applied to —m = n, the reduced sequentis —m = n, ' —m = n with
a false equation in the succedent. Therefore some other reduction step must
be applied, and if A— is applied at some later stage to —m = n, a similar
useless loop is produced. Therefore =m = n in the antecedent can be left
intact and I' —m = n reduces to endform by the same steps as the sequent
-m=n,I'—>0=1.

The last rule is CI with I' = I/, T'” and the conclusion I/, ' — m = n:

IM>m=0 m=x,T""->m=x+1
I'T" >m=n

CI

If m = 0 is false, the conclusion reduces to endform by the same steps as
I'"—m = 0.If m = 0is true, Svar gives in particular for the second premiss
the reducible sequent m = 0, —m = 0 + 1 with a false succedent. The
steps of reduction leave the true equation m = 0 intact and apply as well for
the reduction of I'', ' — m = n.

By 1-4, the conditions for bar induction are satisfied and all derivable
sequents have the property /, i.e., reduce to endform. QED.
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A Note on How to Extend Gentzen’s Second
Consistency Proof to a Proof of Normalization
for First Order Arithmetic

Dag Prawitz

Abstract The purpose of this note is to show that the normalization theorem can be
proved for first order Peano arithmetic by adapting to natural deduction the method
used in Gentzen’s second consistency proof. Gentzen explained the intuitive idea
behind his proof by informally arguing for the possibility of a normalization theorem
of natural deduction, but what he actually proved was a special case of the Hauptsatz
for a sequent calculus formalization of arithmetic.

To transfer Gentzen’s method to natural deduction, I shall assign his ordinals to
notations for natural deductions that use an explicit operation of substitution. The
idea is first worked out for predicate logic. The main problems reside there and
consist in finding a normalization strategy that harmonizes with the ordinal assign-
ment. The result for predicate logic is then extended to arithmetic without effort, and
thereby full normalization of natural deductions in first order arithmetic is achieved.

1 Introduction

Gentzen’s two most important results, his Hauptsatz (cut elimination theorem) and
his consistency proof for arithmetic, were both clearly inspired by insights that he
got by reflecting on his system of natural deduction. This becomes especially clear
when Gentzen [6]' explains the basic idea behind his second? published consistency
proof.

'In the sequel, I shall refer to pages in the original German paper “Neue Fassung des Widerspruchs-
freiheitsbeweises fiir die reine Zahlentheorie” by writing Gentzen [6] and to pages in the English
translation of the paper in The Collected Papers of Gerhard Gentzen [7] by writing Gentzen [7].

2Counting a first proof of the consistency of elementary number theory that Gentzen withdrew
from publication after its planned publication had advanced as far as to galley proofs (see [7] or
[2]), this is really his third consistency proof.
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In this proof, Gentzen shows that there can be no derivation of a contradiction
in the sequent calculus that he had set up for arithmetic (or elementary number
theory as he called it), because any such derivation would be reducible to a simpler
derivation of the same thing; more precisely, he assigns (transfinite) ordinal numbers
to the derivations and shows that as long as the derivations have any logical
complexity, the ordinals are lowered by suitably chosen reductions of them. Before
going into the technical details of the proof, Gentzen gives a lucid account of why
it should always be possible to simplify such a derivation. The account is given in
the form of an argument that refers to some crucial features of his system of natural
deduction, and runs more or less as follows.>

A contradiction can certainly not arise as long as one only proceeds according
to the rules set up for arithmetical identities or other atomic sentences. A derivation
that ends in a contradiction must therefore contain logically compound sentences.
Somewhere in the derivation there must then appear a sentence of maximal
complexity. In general, the only way in which such a “complexity extremum”
can arise is by a sentence that enters into the derivation by the application of an
introduction inference and is then used in a subsequent elimination inference. But it
is reasonable to assume that one could then as well go directly from the premisses of
the introduction to the conclusion of the elimination. One would thereby remove the
intermediate sentence, standing between the introduction and the elimination, which
is of higher complexity than the surrounding ones. This would lower the peak of the
derivation.

In a footnote, Gentzen remarks at this point: “precisely the same line of thought,
incidentally, underlies the proof of the ‘Hauptsatz’ of my dissertation.” One could
remark, even more to the point, that precisely this line of thought is the idea behind
the normalization theorem of natural deduction, which says precisely that maximum
formulas, that is, formula occurrences that stand as the conclusion of an introduction
inference and as the major premiss of an elimination inference, can be removed from
the deduction.*

Gentzen then goes on saying that in fact, the situation is not as simple as in
the sketched argument, because, in the case of number theory, logically compound
sentences can be inferred not only by the application of logical rules but also by
the use of mathematical induction. Although they can be reduced in an obvious way
when the term ¢ in the inferred sentence A(f) is a numeral (¢ standing at the relevant
argument place for the induction), no reduction can be made if 7 is a variable. This
means, he says, that it may not be possible to perform a reduction at the very peak
of the derivation, but he reassures: “It is nonetheless possible in each case to locate
a formula in the derivation which represents a ‘relative extremum’, viz., a formula

3Gentzen [6, pp. 26-28], [7, pp. 261-263].

“Tt has recently been revealed that Gentzen was not only aware of the possibility of such a theorem,
but that, in an early draft of his dissertation (found in Bernays’ archive, see [27]), he also stated
and proved the theorem for intuitionistic logic, essentially in the way it was later proved (Prawitz
[20]—the independent proof by Raggio [21] is a little different).
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which is introduced by the introduction of its terminal connective and whose further
use in the derivation then consists in the elimination of that connective, and which
is therefore reducible.”

After this beautiful exposition of the underlying idea of his proof, Gentzen
says somewhat disappointingly that the basic idea has been presented against the
background of natural deduction and cannot be more than a superficial indication
of the actual proof, which will be carried out, not for natural deduction, but for the
sequent calculus. Earlier in the paper® he had motivated his choosing this formalism
instead of natural deduction by giving two reasons. One was the problem in natural
deduction caused by the special position of a classical law of negation that has to
be added to the intuitionistic system, which is, he says, “completely removed in
a seemingly magical way”® by going over to sequent calculus. The second reason
was that the natural succession of sentences in an informal proof, which is by and
large retained in natural deduction, is replaced in sequent calculus by an artificial
arrangement that can be made with respect to certain aims, which proves to have
technical advantages in the consistency proof. Having made these remarks, Gentzen
proceeds to the precise consistency proof, which turns out to involve a lot of
technical complications.

Gentzen’s proof can be described as establishing the Hauptsatz for the special
case of derivations that end in a contradiction (technically the same as ending in
the empty sequent): It is shown that such derivations, if there were any, would
be reducible to cut free form, which demonstrates that there really are not any.
When Gentzen after having finished his first published consistency proof continued
to work on another version of the proof, his hope was most likely to obtain the
consistency as a corollary of the general Hauptsatz for arithmetic.”

Today we know that the addition of a classical rule to intuitionistic natural
deduction does not need to cause any real problem with respect to normalization,’
and we have a lot of experiences of how to prove normalization theorems. It is
therefore natural to ask if the idea behind Gentzen’s proof could not after all be

SGentzen [6, pp. 24-25]; Gentzen [7, pp. 259-260].

5Gentzen [7, p. 259]. The German text reads: “... [die Sonderstellung der Negation ist] ... auf
eine fast wie Zauberei anmutende Weise vollstindig behoben”, Gentzen [6, p. 25].

"This presumption is supported by what has been found in Gentzen’s Nachlass by Jan von Plato. It
turns out that at an early stage of the work on his dissertation, Gentzen had expected to obtain the
consistency of arithmetic directly from a normalization theorem for natural deduction. When that
failed, he restricted his dissertation essentially to predicate logic, and then proved the consistency
of arithmetic along other lines. But it is clear that he did not abandon his original idea. A witness
to this is even found in his plans for a book on the foundations of mathematics. In a notebook
concerned with these plans, he writes: “to assimilate the proof of the hillock theorem to the proof
of consistency” (translation by von Plato); “the hillock theorem” is here Gentzen’s name for the
normalization theorem of natural deduction (“der Hiigelsatz” in German—but in other contexts
often “der Gipfelsatz”).

81f we choose L, &, D, and V as logical constants, the normalization theorem for classical logic
even takes a simpler form than for intuitionistic logic [20].
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applied directly to natural deductions so as to yield the full normalization theorem
for arithmetic.” The purpose of this note is to show that the question can be answered
positively.

Proofs of the normalization theorem for natural deductions have already been
given by Jervell [9] and Martin-Lof [13] (and later by Leivant [12]). Their proofs
used quite different means than those of Gentzen, and do not answer the question
whether a normalization theorem for arithmetic can be obtained by combinatorial
means of the kind employed by Gentzen. In other later works, Gentzen’s result has
been reworked and extended, usually by making excursions into infinite derivations
(see Sect. 2.1). In this note, I show how Gentzen’s method can be transferred directly
to natural deduction and how they can then be used to obtain a stronger result, the
full normalization theorem.

This also throws some additional light upon the relation between natural
deduction and sequent calculus. Results for sequent calculus often have analogues
for systems of natural deduction that are more easily established there. It has
therefore been puzzling why Gentzen’s second consistency proof has been so
difficult to carry over to natural deduction. At this point it should be said that
Gentzen was quite right about the second reason that he invoked for preferring
the sequent calculus: it allows a greater flexibility as to how the inferences of a
proof may be ordered. To get the desired result for natural deduction, I have found
it necessary to bring in an explicit operation of substituting one deduction for an
assumption in another deduction, or, what is the same, composing two natural
deductions.'” When such an operation is made explicit in a system of natural
deduction, one gets essentially the same flexibility with respect to the ordering of
inferences as one has in the sequent calculus.

The rest of the paper is organized as follows. In Sect. 2, I explain the problems
that one meets when trying to prove either the normalization theorem or the
Hauptsatz for arithmetic. Gentzen’s assignment of ordinals is shown to be a natural
attempt to deal with one of the major problems (besides allowing transfinite
induction up to a sufficiently high ordinal). Its significance in this respect is most
easily seen if one restricts oneself to predicate logic. The finite ordinal assigned to
a deduction D can then be seen as an estimation of an upper bound on the length
of the normal deduction to which D reduces. The remaining main problems appear
already when one stays within predicate logic and consist essentially in problems

9This question has been raised by several people, but has remained unanswered. Recently, Kanckos
[10, 11] showed that a closed natural deduction of L in a system for Heyting arithmetic would
reduce to normal form by using vectors from Howard [8], instead of Gentzen’s ordinal assignment.
For my own part, I outlined an approach to a positive answer in lectures at Stockholm University
1979, a conference at Oxford 1980, and one at Siena 1984, and, in more detail, in (professor
Ettore Casari’s Saturday) seminars at Universita degli Studi di Firenze 1991. The approach was
not brought to a conclusion at these times, but agreed with the present solution in being built on
the idea of adding an operation of explicit substitution.

10Von Plato [28] has also drawn attention to the key position of this operation (under the name
composition) when comparing natural deductions and sequent calculus derivations.



A Note on How to Extend Gentzen’s Second Consistency Proof to a Proof. . . 135

about how to harmonize the ordinal assignment with a normalization strategy. In
Sect. 3, it is described how one of these problems can be tackled by bringing in
the explicit substitution operation mentioned above as a technical device. After the
normalization theorem for predicate logic is being proved in this manner in Sect. 4,
the result is extended to arithmetic in Sect. 5 in an effortless way.!! The analogue of
the obstacle that prevented Gentzen’s consistency proof from being a proof of the
general Hauptsatz is overcome here, and full normalization is achieved. In a final
Sect. 6, explicit substitution is considered as an operation of independent interest,
and a normalization theorem is proved for an enriched system of natural deduction
for arithmetic containing explicit substitution as an inference rule.

2 The Problems and How to Overcome Them

2.1 To Find a Suitable Induction Measure

If first order arithmetic is embedded in a suitable infinitary system, for instance,
replacing the rule of induction by the w-rule, the normalization theorem or the
Hauptsatz may be proved with the same ease as for first order predicate logic: Using
reductions that replace a maximum formula or cut formula by ones of lower degree,
one can make a primary induction over the maximal degree of the maximum or cut
formulas and a secondary induction over the length of the deduction; in the infinitary
case, the length will be a transfinite ordinal.'?

When staying within a finitary system of first order arithmetic with the usual rule
of mathematical induction, such a strategy is not possible, because an V-reduction
may have the effect that an inference by mathematical induction becomes reducible,
and its reduction may in turn create maximum or cut formulas of higher degree
than the removed one. This is the kind of problem that Gentzen referred to in the
account of the basic idea behind his proof quoted in Sect. 1. One must thus find
another measure to make induction over, and this is what was created by Gentzen’s
assignment of ordinals."3

" After finishing this paper, I have found that Gentzen planned to organize the book mentioned
in footnote 7 in the same way, first treating predicate logic using a finite version of his ordinal
assignment and then extending the result to arithmetic using transfinite ordinals.

12Examples of such systems, essentially like classical sequent calculi, are found in, for instance,
Schiitte [25] and Tait [26]. The latter considers not only inference rules with infinitely many
premisses but also infinitely long sentences. Martin-Lof [14] develops an intuitionistic system of
natural deduction of that kind.

13 An alternative is to enrich the infinitary system with information allowing one to extract a finitary
normal derivation from the normalized infinitary one, as was first outlined by Mints [15]. This
general idea has later been worked out in more detail and in different ways by Buchholz [3]
and Mints [18]. Another alternative is presented by Mints [16], who defines other reductions and
another ordinal assignment.
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The transfinite ordinals needed to prove the normalization theorem for arith-
metical systems of different strengths come out very naturally in the case of
infinitary systems. In contrast, Gentzen’s ordinal assignment is sometimes deemed
to be somewhat artificial or ad hoc. However, his assignment when adapted to
predicate logic can be understood as a straightforward estimation of the length of
the normal deduction to which a deduction reduces. As will be explained (Sect. 2.3),
the assignment appears as an easily obtained improvement of a better known
bound on how much the length of a deduction increases when normalized.'* In
a subsequent subsection (Sect. 2.4.1), I explain how such an assignment can be
a useful measure to make induction over when one wants to prove that reduction
sequences terminate. The next subsection is only a background to the explanation
of Gentzen’s assignment that follows afterwards.

2.2 An Upper Bound on the Lengths of the Normalized
Deductions

2.2.1 A Well-known Fact

It is well known that the size of a deduction may grow exponentially when
normalized and that there is the following upper bound, where length is used as
a measure of size:

A natural deduction D of length n reduces to a normal deduction of length less
than

on

2% the base 2 is to occur d times in the tower

where d > 0 is the highest degree of a maximum formula in D.

Usually I shall write an iterated exponentiation of this kind in the more linear
form 2,(n).

The systems of natural deduction that I consider here are the usual ones but
confined to introduction and elimination rules for &, D, and V and arbitrary rules
for atomic formulas, among which may be the classical rule for falsehood, LEc,
restricted by the requirement that the conclusion be atomic, which is sufficient
for classical logic (a system called C* in [20], but LEc is now restricted). By an
inference rule for atomic formulas, I mean a rule such that the premisses and the
conclusion of an application of the rule are atomic.

“The better known bound is credited to Schiitte [25], who noted that the analogue to the fact
stated in Sect. 2.2.1 holds for his infinitary system mentioned in footnote 12; the length »n is then
in general a transfinite ordinal. The statement in Sect. 2.2.1 was proved for Gentzen’s intuitionistic
system of natural deduction by Pereira [19]. Cellucci [4] establishes several results concerning how
the length of natural deduction increases by normalization, including negative results on how much
the upper bound can be improved.
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A deduction is normal when it has no maximum formula. The degree of a formula
A, written degr(A), can be defined as the number of constants &, D, and V in A
within the scope of each other (although it is only D that matters at the moment);
the definition will be modified in Sect. 6.4. The degree of a deduction is defined as
the highest degree of a maximum formula in the deduction; the degree is O if there
are no such occurrences. By the length of a deduction, I understand its number of
nodes or, in other words, the number of formula occurrences.

The normal deduction to which a deduction D reduces will be denoted by |D|. In
order to see how Gentzen’s assignment improves the bound given above slightly, it
is instructive first to see why 2,4(n) is an upper bound for the length of |D|, when D
is a deduction of length n and degree d. To this end, I first make the following easy
observation.

2.2.2 Observation Concerning O-Reductions
Given a deduction D of the form shown to the left below, where IT is a deduction of

A with length k and ¥ is a deduction of B with length m, the deduction D* shown to
the right, obtained from D by implication reduction, has length less or equal to k- m

[4] -
I é D* = 41
D= 4 458 g

The correctness of the observation follows immediately from the fact that there
are less or equal to m occurrences of A in X.

The notation [A] in the left figure is used to indicate the formula occurrences
of the form A that stand as free assumptions in ¥ but are bound (discharged) in D
by the D-introduction exhibited. The right figure is to be understood as denoting
the deduction D* obtained from X by substituting IT for each of the assumptions
indicated by [A]; in other words, for each such assumption A in X, the deduction IT
is put on the top of X in place of A."

15 As long as there is no line under IT that separates it from A, the deduction IT is taken to include A.
We can choose either to make explicit that IT has A as its end-formula by writing

I
A

—sometimes written IT/A to keep it on one line—or leave that out, writing just IT (in the same
way as we may indicate the free occurrences of x in a formula A by writing A(x) but may also
leave that implicit, writing just A). A linear notation for the result of substituting IT/A for the
assumptions [A4] in ¥ is: I1/[A]/ X.
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2.2.3 Lowering the Degree of a Deduction Stepwise

As we go downwards in a deduction and successively remove by reductions the
maximum formulas of highest degree, the lengths of the obtained deductions may
thus be estimated by successively squaring the previous lengths, which means that
the estimated length grows exponentially. More precisely, the following holds.

A deduction D of degree d > 0 and length n can be reduced to a deduction D’
of degree d’ < d and length n’ < 2".

From this follows of course the fact quoted at the beginning of Sect. 2.2.1. The
assertion is easily proved by induction over the number of maximum formulas of
degree d in D. It will be of interest to strengthen the conclusion a little to get: A
deduction of degree d > 0 and length n + 1 (n > 0) can be reduced to a deduction of
degree d’ < d and lengthn’ < 2" + 1.

Let D be a deduction of degree d and length n + 1 with a lowermost maximum
formula F of degree d, which is to say that there is no other maximum formula of
degree d below F in D. Let D; be the part of D (which may coincide with D) whose
end-formula is the formula immediately below F. The crucial case is when F has the
form of an implication A D B. Then D; is of the form shown to the left in the figure
displayed above with the length n; + 1 =k + m + 2, where k and m are the lengths
of the parts IT and ¥ of D;. By the induction assumption (to be applied only when
IT or ¥ is of degree d, and then using the first, weaker statement), they reduce to
deductions T1” and X’ of degree less than d and lengths k’ < 2% and m’ < 2™.

Let D’ be the deduction to which D reduces by carrying out the same reductions
as those by which IT and X reduce to IT" and X’. Then D’ has the form shown to the
left below and reduces to the deduction D' of the form shown to the right below:

4] o
/
i > DI* [ A]
/ ! m B /5% !
D= p = ] B reducesto D" = p =
DO B DO B
Do Do

Applying the observation concerning D-reductions made above, we get the
following result concerning the length n* of D'*:

ny <k'-m' < 2k.om = oktm coktmAl L —om
The analogue result when F is a conjunction or a universal quantification is

obtained more trivially, since in that case the length decreases when D’ is reduced
to D’*, as seen below for V:
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M(a) ' (a)
A(a) A(a)
D = VxA(x) reducestoD = VxA(x) ,
A AW
Dy Doy
()
which reduces to D™* = 4(r)
Dy

If F is the only lowermost maximum formula in D of degree d and D; coincides
with D, we have proved what we want. If D is a proper part of D, then the length
of Disn+1=mn;+ 1+ p with p > 0, and it holds for the length n’* of D™ that
n*=nf+p <2+ 1l4+p<2MtP 41 =2"41.

If there are other lowermost maximum formulas F; of degree d in D besides
F, we repeat the procedure for them. Let there be altogether g > 1 such formulas
whose deductions D; are of the length n; + 1. The length of D is thenn + 1 =
ni+1+ny+1+---+n, + 1+ p, and the deduction we finally arrive at has a
degree less than d and a length less than 2"t + 1 + 2" + 1 4 ... + 2" + 1 4 p,
which is less than 2" + 1, as was to be shown.

2.3 The Gentzen Measure: A Lower Upper Bound—Definition
of Critical Inferences

The bound on the length of the normal deduction given in Sect. 2.2.1 can be
improved as is easily seen by inspecting the proof above. I first consider an example
of this.

Let D be a natural deduction of the following form

[A D B,C]
: _D
B CoD
: ADB (ADB)D(CDD)
C CoD

D

where A, B, C, and D are atomic formulas and where there are arbitrarily many
maximum formulas of degree 1 or 2 above the exhibited maximum formula
(AD B) D (C D D) and above A O B but no other maximum formulas. Let o,
B, and y be the number of nodes of the upper parts of D that constitute deductions
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of C, (A D B),and (A D B) D (C D D), respectively, and let § be the number of
other nodes of D.

By applying the proof given in Sect. 2.2.3 (rather than the result in Sect. 2.2.1),
it is seen that D reduces to a deduction & of degree 1 and length less than
267 4 o +8. In & the implication (C D D) is a maximum formula and its
deduction has length less than 28%Y 4 1. A second application of the proof gives
that & reduces to a normal deduction .% of length less than 2021 s -1, which
is to be compared to the bound 227" given in Sect. 2.2.1.

This better estimation of the length of .% will agree with what I shall call the
Gentzen measure of the deduction D, which will now be defined. It will amount to
a generalization of the example above, and to that end we need Gentzen’s notion of
level (“Hohe”) and level line (“Hohelinie™).

Following Gentzen, we associate to each inference an inference line drawn
between the premiss(es) of the inference and its conclusion. Some inference lines
are level lines. To begin with, in a deduction D of degree d, the inference lines
immediately below the lowermost maximum formulas of degree d are to be level
lines. Thus, in the example above the two formulas A D B and (A D B) D
(C D D) stand on a level line.

The idea is that the Gentzen measure to be assigned to a formula occurrence F
standing immediately below one of these level lines is to be an estimation, according
to the proof above, of the length of the deduction of F obtained after having removed
by reductions all maximum formulas of degree d above the level line. Thus, the
measure to be assigned to F should be 2* 4 1, where a is the sum of the Gentzen
measures of the premisses (which in this case coincide with the lengths of their
deductions), or, rather, 2;(a) + 1, where d —j is the highest degree of a maximum
formula below F, in order to estimate the length of the deduction when all maximum
formulas of degree higher than d —j above the level line have been eliminated.
When determining the next level line below F, we must take into account that there
may be formulas of degrees less than d that will become maximum formulas as
the result of the reductions that remove the maximum formulas of higher degrees.
We want the Gentzen measure to be an estimation of how much the deduction
expands by reductions that remove not only the original maximum formulas but
also the additional maximum formulas that can arise after those reductions, and so
on. This means that we must pay attention not only to maximum formulas but also to
potential maximum formulas, in other words, formulas that may become maximum
formulas as the result of reductions. In the example above, the occurrence of C O D
under the level line is such a potential maximum formula.

Ideally we should determine which formulas of a deduction D could become
maximum formulas after reductions by only referring to structural properties of D.
I shall not try to do this here,'® but shall instead consider all major premisses of
elimination inferences as potential maximum formulas, only excepting those whose

16Such a definition of potential maximum formula could be given by using ideas presented by Sanz
[22].
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degree is greater than the degree d of D; they are certainly not potential maximum
formulas. In other words, all elimination inferences whose maximum formula is of
degree <d are placed on a par with the ones whose major premiss is a maximum
formula, although this may generate unnecessarily many level lines.'’

To have a common term for these inferences, I shall say that an elimination
inference in a deduction D of degree d is critical if its major premiss is either a
maximum formula or has a degree less than d. We shall later enlarge the category of
critical inference, but the notion will also be somewhat narrowed down in Sect. 6.4.
A critical inference is said to be of degree d if its major premiss is of the degree d
(LEc-inferences, having degree 0, are inessential).

The level of a formula occurrence A is now defined as the greatest degree of a
critical inference whose conclusion stands below A; if there is no such inference,
the level of A is 0. An inference line is defined as a level line if the level h of the
formula(s) immediately above the line is (are) higher than the level /’ of the formula
immediately below the line. The difference j = h — &’ will be called the jump at the
level line, and I shall say that the inference in question contains a level line with
jump j. This agrees with the previous explanation, since clearly an inference line is
a level line if and only if it is the inference line of a critical inference of some degree
d such that the degree of each critical inference that stands below (if any) is less
than d. If there are two formulas standing on a level line, they have the same level
h, and A is identical to the degree of the major premiss of the inference in question.

What I am calling the Gentzen measure of a formula occurrence A in a natural
deduction D, written Gp(A), can now be defined. Note that it depends on what
counts as level lines, which in turn depends on what counts as critical inferences.
Note also that it differs from Gentzen’s assignment of ordinals in using 2 instead of
o as the base for the exponentiation; thus, the values assigned will be finite ordinals,
instead of transfinite ordinals less than (. The definition runs as follows:

1. If A is a top-formula of D, Gp(A4) = 1.
2. If A is immediately below exactly one formula B, let n be Gp(B). If A is
immediately below two formulas B and C, let n be Gp(B) + Gp(C). Then,

(a) Gp(A) =n + 1, provided A is not immediately below a level line, and
(b) Gp(A) =2;(n)+1,incase A is immediately below a level line with jump ;.

The Gentzen measure of the deduction D, written G (D), is the same as Gp(A),
where A is the end-formula of the deduction D. A normal deduction D has clearly
no level lines, and its length is therefore identical to G (D).

7n the sequent calculus for predicate logic, the level lines are determined by the actual cuts. An
inference line is a level line if and only if it is the inference line of a cut such that all cuts further
down have lower degree than that cut; the degree of a cut being defined as the degree of its cut
formula. Since maximum formulas are what correspond to cut formulas, one could expect that the
level lines in natural deduction should be similarly determined by the actual maximum formulas,
but this would lead to an entirely wrong notion.
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The already mentioned fact that the Gentzen measure of a deduction D is an
(improved) upper bound on the length of the normal deduction to which it reduces,
in short for any non-normal deduction D, the length of |D| < G (D), can now easily
be proved by the strategy used in the proof in Sect. 2.2.3, as was illustrated in the
example.'8

2.4 The Two Main Problems

2.4.1 How the Gentzen Measure Can Be Used to Prove that Reduction
Sequences Terminate

The fact just stated above does not mean per se that the Gentzen measure can be
used to prove by induction that reduction sequences terminate. When a reduction
increases the length of the deduction, the Gentzen measure of the deduction may
also go up. This surely happens if a maximum formula that stands above a level
line, but not immediately above it, is removed by a length-increasing reduction in
the usual way: the part of the deduction above the level line will expand but the
level line will remain the same, and hence the Gentzen measure of the formula
immediately below the line will increase.

However, Gentzen’s idea was that when a reduction is made with respect to a cut,
the new cuts and their derivations are to be put under the closest level line below the
old cut. Then the part of the derivation under that level line will instead expand, but
that is compensated for by a certain contraction of the part above the level line.

The idea can be illustrated more precisely using the ordinals that Gentzen
assigned to sequents in a derivation, which are like the Gentzen measure defined
above with some differences, the main of which is explained in footnote 17. Say
that §; is the sequent immediately below a level line with jump 1 in a derivation D
and that o is the sum of the ordinals assigned to the sequents immediately above the
line. Then Gentzen assigns w* to S; and an ordinal ®* + P to the sequent S, that
stands immediately above the next level line further down. Let D* be a reduction
of D which leaves these level lines unchanged but removes a cut standing higher up
above the first level line, replacing it with cuts of lower degree. If now, following
Gentzen, the new cuts are placed under this first level line, the sequent corresponding
to Sy in D* is assigned a value ®*" where o* <a, and the sequent S, is assigned
a value 0*" +y + B where y < ®*", because the new cuts have lower degrees and
their premisses have shorter derivations relative to the cuts that they replace. Thus,
we achieve that the value assigned to S, in D* is lower than that assigned to S; in
D, since

w“*+y+,3<a)°‘*+a)°‘*+,3<w°‘*+l+,3§a)°‘+,3.

18 A similar result was proved for the sequent calculus for predicate logic by Pereira [19].
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In other words, the value assigned to a derivation D is an approximation of the
length of |D| that gets better and better at each reduction—the upper bound gets
successively lower. In this way, it is accomplished that one can prove by induction
over the Gentzen measure that suitably chosen reduction sequences must terminate.

The problem is, however, that not even in sequent calculus can inferences always
be moved around as one may like. What Gentzen showed was that if the end-
sequent is empty, a suitable cut can be found which can be removed by putting
the new cuts replacing it under a level line situated below the old cut. This can be
generalized quite easily to the case when the formulas of the end-sequent contain no
quantifiers,'” but is not easily generalized to the case when quantifiers are involved.
Gentzen seems not to have overcome this problem, and therefore never proved the
general Hauptsatz for arithmetic.

2.4.2 The Problem of D-Reductions

The project to use the Gentzen measure in a proof of the normalization theorem
of natural deduction meets an additional problem. Even when a deduction D does
not expand at an D-reduction, the Gentzen measure may anyway increase. The
reduction D* of D is formed, as we recall, by putting the deduction of the minor
premiss A of an D-elimination (DE) of D at the top of the deduction of the major
premiss A D B, while the conclusion B of the DE and the premiss B of the
D-introduction (DI) standing above merge into one occurrence of B in D*. What
happens when one is to calculate the Gentzen measure of this occurrence of B in D*
is therefore that the measure of A, which was added to the measure of the premiss B
to get the measure of the conclusion B in D, is instead being put as an exponent in
the expression that was used to calculate the Gentzen measure of the premiss B in
D. This may of course give B in D* a value greater than that given to the conclusion
B in D. Clearly, the restructuring of the deduction that takes place at an D-reduction
tallies badly with the idea to prove by induction over the Gentzen measure that
reductions terminate. This is in contrast to the situation in the sequent calculus where
the elimination of cuts do not involve any restructuring of the derivation of this kind.

To see how this problem can be overcome, note that describing an D-reduction
requires the use of a sign for the substitution that takes place at such a reduction.
A description of a deduction that uses a suitable notation for the operation of
substitution may not need to be restructured at reductions in the same way as the
deductions themselves, and can be more flexible as to the order in which inferences
are presented. This opens for the possibility of assigning the Gentzen measure to
such descriptions of deductions rather than to the deductions themselves, and to
achieve in this way that the measure goes down at reductions.

This idea will be described in more detail in Sect. 3. We will have to define
new reductions for the descriptions (Sect. 4.2), and some complications seem then

19A fact noted and used by Scarpellini [23].
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unavoidable. On the other hand, within the framework of natural deduction, it
turns out to be easy to define a strategy for normalization that overcomes what
corresponds to the obstacle to proving a general Hauptsatz mentioned in the
preceding subsection, thereby allowing us to prove a full normalization theorem.

Before developing these ideas further, I shall take up some questions concerning
the relation between natural deduction and the sequent calculus.

2.5 On the Relation Between Natural Deduction
and the Sequent Calculus

One may suggest that the problem to transfer Gentzen’s work on the sequent
calculus for arithmetic to natural deduction could easily be solved by asking what
corresponds in natural deduction to Gentzen’s ordinal assignment. Besides ignoring
the problems discussed above, the suggestion overlooks the fact that there is no
unambiguous answer to the raised question.

Derivations in the sequent calculus (SQ) can be translated to natural deductions
in a straightforward way: an initial sequent A — A is translated to a deduction
consisting of just A, when a succedent rule has been applied in SQ one applies
the corresponding introduction rule to the end-formula in natural deduction, and
when an antecedent rule has been applied one instead enlarges the natural deduction
upwards by applying the corresponding elimination rule. If the cut rule is applied to
two sequents, one joins together the corresponding natural deductions IT/A and
%, where A corresponds to the cut formula, by using the substitution operation
I1/A/ X (see footnote 15). This may result in A becoming a maximum formula, but
if the derivation in SQ is cut-free, it is translated in this way into a normal natural
deduction.

A derivation in the sequent calculus may accordingly be seen as an instruction for
how to build a corresponding natural deduction by working in two directions, down-
wards and upwards, and joining two deductions by the operation of substitutions in
case cuts have been used in SQ. The instructions given by two different derivations
in SQ may result in the same natural deduction; the order in which the deduction
is to be constructed according to the instructions differs, but the result becomes the
same [20, pp. 90-91].

If one asks about a natural deduction what ordinal Gentzen assigns to the
corresponding derivation in the sequent calculus, the problem is therefore that there
are many derivations with different measures that correspond to a given natural
deduction. One may of course define a particular translation of natural deductions
to derivations in SQ. There are at least two such translation procedures proposed in
the literature. Gentzen [5] defined one that proceed