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Preface

With kind permission of © Eckart Menzler

This volume is a tribute by several generations of proof theorists to Gerhard
Gentzen, one of the greatest logicians ever to whom we owe the most profound
investigation of the nature of proofs since Aristotle and Frege. The immediate
stimulus for its inception was Gentzen’s 100th birthday in 2009 which was
celebrated with a conference in Leeds and a workshop in Coimbra at which most of
the contributors to this volume spoke.

Gentzen has been described as logic’s lost genius1 whom Gödel sometimes called
a better logician than himself.2 It could be said that Gentzen and Gödel arrived,
each in their own exquisite manner, at opposing extremes of a spectrum. Gödel
found a very general negative result to the effect that no system embodying a correct

1E. Menzler-Trott: Logic’s Lost Genius: The Life of Gerhard Gentzen (AMS, Providence, 2007).
2G. Kreisel: Gödel’s excursions into intuitionistic logic, in: Gödel remembered, (Bibliopolis,
Napoli, 1987) p. 169.
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vi Preface

amount of number theory can prove its own consistency by transferring the trick
of the “Liar’s Paradox” from the context of truth to that of provability. Gentzen,
on the other hand, established the positive result that elementary number theory is
consistent, using at some crucial point the well-orderedness of a certain ordering
called "0 that sprang from Cantor’s normal form (for presenting ordinals). He also
gave a direct proof that the latter principle is not deducible in this theory, thereby
providing an entirely new proof of a mathematical incompleteness in number theory.

Gentzen can be rightly considered to be the founding father of modern proof
theory. His sequent calculus and natural deduction system beautifully explain the
deep symmetries of logic. They underlie modern developments in computer science
such as automated theorem proving and type theory. This volume’s chapters by lead-
ing proof-theorists attest to Gentzen’s enduring legacy in mathematical logic and
beyond. Their contributions range from philosophical reflections and re-evaluations
of Gentzen’s original consistency proofs and results in proof theory to some of the
most recent developments in this exciting area of modern mathematical logic.
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In Memoriam: Grigori Mints, 1939–2014

With kind permission of his wife © Marianna Rozenfeld

When this book was about to be sent to the publisher, we received the very sad news
that Grigori (“Grisha”) Mints had died on 30th May 2014. He was born on 7th June
1939 in Leningrad (now again St. Petersburg).

Grisha was a driving force in proof theory and constructivism and a loyal
promoter of Gentzen-style proof theory. He was the pre-eminent expert on Hilbert’s
epsilon calculus and the leading exponent of the substitution method approach to
proof theory, expanding its range of applications to strong subsystems of arithmetic.
His discovery of the method of continuous cut elimination for infinitary proofs
unearthed the deeper relationship between Gentzen’s reduction steps on finitary
derivations and infinitary proof theory. In pursuit of his wide ranging research
interests, he published three books, ten edited volumes, more than 200 scholarly
papers, and thousands of reviews, with the aid of which he also maintained and
fostered his world spanning network of intellectual contacts through sometimes
difficult years working in the Soviet Union. Vladimir Lifschitz wrote about Grisha1:

. . . his true calling was to study formal proofs in the spirit of pure mathematics in the best
sense of the word: the main project of Grisha’s professional life was to develop a clear,
complete understanding of properties of proofs, so that any possible question about them
will be easy to answer.

1https://philosophy.stanford.edu/news/professor-grigori-grisha-mints.
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viii In Memoriam: Grigori Mints, 1939–2014

In this way he can be seen as one of the leading executors of Gentzen’s legacy
and it seems to be more than adequate to dedicate this volume, celebrating Gerhard
Gentzen’s centenary, to the memory of Grisha Mints.
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Gentzen’s Consistency Proof in Context

Reinhard Kahle

1 Introduction

Gentzen’s celebrated consistency proof—or proofs, to distinguish the different
variations he gave1—of Peano Arithmetic in terms of transfinite induction up to
the ordinal2 "0 can be considered as the birth of modern proof theory. After the
blow which Gödel’s incompleteness theorems gave the original Hilbert Programme,
Gentzen’s result did not just provide a consistency proof of formalized Arithmetic,
it also opened a new way to deal “positively” with incompleteness phenomena.3

In addition, Gentzen invented, on the way to his result, structural proof theory,
understood as the branch of proof theory studying structural (in contrast to
mathematical) properties of formal systems [79, 111]. With the introduction of
sequent calculus and natural deduction and the corresponding theorems about
cut elimination and normalization, respectively,4 he revolutionized the concept of
derivation calculus, fundamental for all further developments of proof theory.

Here, we focus on the aspects of his work related to the quest for consistency
proofs of theories with mathematical content. We like to recall the context in which
the consistency proofs—one may add: “after Gödel”—have to be put, and what
might be their mathematical and/or philosophical rationale. For it, we will look

1Cf., e.g., [13, 87, 105], and [114] as well as [97] in this volume.
2For the ordinal "0 see, for instance, [58] in this volume.
3See, for instance, [90] in this volume.
4See, for instance, [15] and [87] in this volume.
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4 R. Kahle

back to Hilbert’s (original) programme and the immediate lessons one may learn
from Gödel’s theorems. We then consider consistency proofs for Arithmetic, whose
consistency, however, is not really at issue. After discussing the interesting case
of Analysis, we finish with a reflection on modern proof theory as it is guided by
the quest for consistency in the investigation of stronger and stronger mathematical
theories.

2 Hilbert’s Programme

Hilbert’s programme originates from his own second problem in the famous Paris
problem list [45] and, in its mature form, it proposes to carry out consistency proofs
of axioms systems for Arithmetic and Analysis “by finitistic methods.” Hilbert
didn’t specify exactly what he meant by “finitistic methods” and in modern formal
presentations one identifies these methods—following Tait [104]—with primitive-
recursive Arithmetic, PRA. From an abstract point of view, the main issue is that
the consistency of the base theory, in which the consistency proof should be carried
out, is beyond any reasonable doubt; and this should be the case for the finitistic
methods, whatever they are concretely.

The idea of Hilbert’s programme was somehow already conceived with the
question given in 1900, and a first sketch of how a consistency proof could be
performed was given by Hilbert in 1904 in his lecture at the International Congress
of Mathematicians in Heidelberg [47]. It was, however, only the appearance of
Brouwer’s Intuitionism which forced Hilbert to formulate his programme in precise
formal terms.5 Finitistic Mathematics should play, in this context, the role of the
part of Mathematics which is beyond any doubt concerning consistency. It was
then the aim to justify the other parts of Mathematics by formal consistency proofs
carried out using only finitistic means. It is worth noting that, with the choice of
finitistic Mathematics as the base, Hilbert was fully in line with the intuitionistic
movement—even on philosophical grounds, and it should not come as a surprise
that he himself was occasionally called an intuitionist.6 One can even find a

5For the development of Hilbert’s programme(s), cf. e.g., [98].
6See Fraenkel [28, p. 154]:

This is the point of view of HILBERT, who, therefore, picks up himself the methodical
starting point of his intuitionist opponents—but for the purpose to deny their thesis; one
could almost characterize him as an intuitionist.

(German original: “Dies etwa ist der Standpunkt HILBERTS, der somit den methodischen
Ausgangspunkt seiner intuitionistischen Gegner — allerdings zum Zweck der Bestreitung ihrer
Thesen — selbst aufnimmt; man könnte ihn geradezu als Intuitionisten bezeichnen.”) Van Dalen
adds to this citation [112, p. 309]: “Although the inner circle of experts in the area (e.g. Bernays,
Weyl, von Neumann, Brouwer) had reached the same conclusion some time before, it was Fraenkel
who put it on record.” See also footnote 18.
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“intuitionistic creed” given by Gentzen in 1938, when he wrote [102, p. 235]7:

The most consequential form of delimitation is that represented by the ‘intuitionistic’ point
of view, . . .

What separated Hilbert from Brouwer and Weyl was the latter’s attitude to ban “the
other mathematics” from the mathematical discourse. In contrast, he was proposing
to justify by his Beweistheorie Mathematics in all its extensions on the base of
finitistic Mathematics. Here, Hilbert’s programme gained a new aspect: besides
consistency, one could now also demand conservativity of “higher” Mathematics
over finitary Mathematics.8

Without any doubt, Gödel’s second incompleteness theorem put an end to
Hilbert’s programme in its original formulation.9 The so-called failure of Hilbert’s
Programme is advocated at several places, maybe most notable by Kreisel [66,
Abstract and p. 352]. But which kind of “failure” was it? Surely, it was the not the
one which was feared by the critics of classical mathematics. When Hermann Weyl
drew on the picture of a “house built on sand” [118, p. 1] he was afraid of possible
inconsistencies which could bring classical mathematics to collapse. Of course,
Gödel’s theorems suggest on no account that there would be an inconsistency in
classical mathematics (or even Arithmetic).10

As far as consistency is concerned, one may compare the situation with the
classical construction problems in Euclidean Geometry. There is no way to trisect an
angle by compass and ruler—but there are other means to do so (for instance, using
a marked ruler). Of course, in the context of a consistency proof, using other means
than finitistic ones will undermine Hilbert’s original philosophical starting point.
But Hilbert was, by no means, a philosophical hardliner. The only piece of written
evidence which we have about Hilbert’s reception of Gödel’s result is the cryptic
short preface in the first volume of the Grundlagen der Mathematik [52], saying
that Gödel’s result “shows only that—for more advanced consistency proofs—the
finitistic standpoint has to be exploited in a manner that is sharper [. . . ],”11 i.e.,
the philosophical starting point was to change. Bernays and Ackermann provide us
with two additional testimonies that Hilbert soon adapted his “meta-mathematical
standpoint.”

7German original [32, p. 6]: “Die folgerichtigste Art der Abgrenzung ist die durch den ‘intuition-
istischen’ Standpunkt [. . . ] gegebene.”
8We may leave it open here whether Hilbert himself was advocating such a conservativity. The
issue of conservativity can be considered, of course, without reference to historic figures.
9It is reported in the Schütte school that this was also immediately recognized in Göttingen.
10But one may note the puzzling lack of understanding of Russell, expressed in a letter to Leon
Henkin of 1 April 1963, cf. [18, p. 89ff].
11Hilbert and Bernays [55, p. VII]. German original: “Jenes Ergebnis zeigt in der Tat auch nur,
daß man für die weitergehenden Widerspruchsfreiheitsbeweise den finiten Standpunkt in einer
schäferen Weise ausnutzen muß, [. . . ].”
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Based on Bernays’s reports, Reid writes about Hilbert’s reaction to Gödel’s result
[92, p. 198]: “At first he was only angry and frustrated, but then he began to try to
deal constructively with the problem. Bernays found himself impressed that even
now, at the very end of his career, Hilbert was able to make great changes in his
program.”

Ackermann writes in a letter to Hilbert (August 23rd, 1933)12: “I was particularly
interested in the new meta-mathematical standpoint which you now adopt and which
was provoked by Gödel’s work.”

Unfortunately, we have no sources which explicate in detail Hilbert’s new
standpoint, but it goes without saying that Gentzen’s work was in line with it.13

In fact, Bernays starts the section heading of the presentation of Gentzen’s proof of
the consistency of Arithmetic in [53, Sect. 5.3] with “Transgression of the previous
methodological standpoint of proof theory.”14

Thus, with a more “liberal” philosophical position consistency proofs can still be
carried out, addressing Hilbert’s initial concerns. And Gentzen’s consistency proof
was among the first ones which provided such an argument. It was not even the only
one, and Gödel gave, as early as 1938, in a talk at Zilsel’s seminar in Vienna, an
interesting overview of possible alternatives to extend Hilbert’s original standpoint
[38, p. 95]15:

4. How then shall we extend? (Extension is necessary.) Three ways are known up to now:

1. Higher types of functions (functions of functions of number, etc.)
2. The modal-logical route (introduction of an absurdity applied to universal sentences

and a �notion of� “consequence”).
3. Transfinite induction, that is, inference by induction is added for certain concretely

defined ordinal numbers of the second number class.

Gödel himself preferred the first alternative, worked out in [39]; he judged the
second one, which is intuitionistic logic of Brouwer and Heyting augmented by a
modal-like operator B (for German beweisbar), “the worst of the three ways” [38,

12German original [1, p.1f]: “Besonders interessiert hat mich der neue meta-mathematische
Standpunkt, den Sie jetzt einnehmen und der durch die Gödelsche Arbeit veranlaßt worden ist.”
The letter was written after Ackermann visited Göttingen, but didn’t meet Hilbert and spoke only
with Arnold Schmidt, who informed him about “everything” going on in Göttingen.
13Detlefsen, [19] in this volume, however, points out that there are some fundamental differences
between Gentzen’s own philosophical view and Hilbert’s view.
14In German: “Überschreitung des bisherigen methodischen Standpunkts der Beweistheorie”.
15German original, [38, p. 94]:

4. Wie also erweitern? (Erweiterung nötig.) Drei Wege �sind� bisher bekannt:

1. Höhere Typen von Funktionen (Funktionen �von� Funktionen von Zahlen, etc.)
2. Modalitätslogischer Weg (Einführung einer Absurdität auf Allsätze angewendet und eines

“Folgerns”).
3. Transfinite Induktion, d.h., es wird der Schluß durch Induktion für gewisse konkret definierte

Ordinalzahlen der zweiten Klasse hinzugefügt.
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p. 103]; the third one is, of course, Gentzen’s way; for a detailed discussion of
(this passage from) Gödel talk at Zilsel’s seminar, see [24, p. 120f]. Of course, we
don’t depend on Gödel’s choice; what counts is that there are extensions of Hilbert’s
original standpoint which provide a rationale for modern consistency proofs.

With respect to the second aspect of Hilbert’s Programme—the supposed
conservativity of higher Mathematics over finitistic Mathematics—the “failure”
cannot be denied: there is no way to reduce all higher Mathematics to finitistic
Mathematics; even more: higher Mathematics may prove finitistic statements which
are not provable with pure finitistic methods.16 But let’s draw on a comparison here:
nobody will deny that Columbus failed to find the sea route to India; but he didn’t
sink in the Ocean, he discovered America. In the same way, Hilbert’s Programme,
aiming for consistency and (maybe) conservativity, didn’t sink in inconsistency, but
discovered Non-Conservativity. Exploring this new phenomena in Mathematics is
the driving force of modern proof theory.

3 Consistency Proofs for Arithmetic

Any consistency proof has to rely on some undisputed base. This was clearly stated
by Gentzen, for instance in [31, Sect. 2.31]17:

Such a consistency proof is once again a mathematical proof in which certain inferences
and derived concepts must be used. Their reliability (especially their consistency) must
already be presupposed. There can be no ‘absolute consistency proof’. A consistency proof
can merely reduce the correctness of certain forms of inference to the correctness of other
forms of inference.

16See, for instance, [75] in this volume.
17German original: “Ein solcher Widerspruchsfreiheitsbeweis wäre nun wieder ein mathematischer
Beweis, in dem gewisse Schlüsse und Begriffsbildungen verwendet würden. Diese müssen als
sicher (insbesondere als widerspruchsfrei) bereits vorausgesetzt werden. Ein ‘absoluter Wider-
spruchsfreiheitsbeweis’ ist also nicht möglich. Ein Widerpruchsfreiheitsbeweis kann lediglich die
Richtigkeit gewisser Schlußweisen auf die Richtigkeit anderer Schlußwiesen zurückführen. Man
wird also verlangen müssen, daß in einem Widerspruchsfreiheitsbeweis nur solche Schlußweisen
der Theorie, deren Widerspruchsfreiheit man beweist, als erheblich sicherer gelten können.”

Similarly in [32]:

In order to carry out a consistency proof, we naturally already require certain techniques
of proof whose reliability must be presupposed and can no longer be justified along these
lines. An absolute consistency proof, i.e., a proof which is free from presuppositions is of
course impossible. [102, p. 237].

German original: “Um einen Widerspruchsfreiheitsbeweis zu führen, braucht man natürlich bereits
gewisse mathematische Beweismittel, deren Unbedenklichkeit man voraussetzen muß und auf
diesem Wege schließlich nicht weiter begründen kann. Ein absoluter, d. h. voraussetzungsloser
Widerspruchsfreiheitsbeweis ist selbstverständlich unmöglich.”



8 R. Kahle

It is therefore clear that in a consistency proof we can use only forms of inference that count
as considerably more secure than the forms of inference of the theory whose consistency is
to be proven. [102, p. 138]

Hilbert’s original choice for such a base was finitistic Mathematics, and at that
time, this was even identified—by name—with intuitionistic Mathematics in the
Hilbert school.18 Now, taking Heyting’s intuitionistic formalization of Arithmetic
as undisputed base, there was already a consistency proof of classical Arithmetic
given by the double negation interpretation, independently found by Gödel [37]
and Gentzen [33]19, and even earlier by Kolmogorov [65]. In his paper Gentzen
expressed explicitly, [102, Sect. 6.1, p. 66f]:20

If intuitionistic arithmetic is accepted as consistent, then the consistency of classical
arithmetic is also guaranteed . . .

But Gentzen was not happy with this kind of consistency proof (cf. the neat
discussion in [102, p. 10f]), and went on to give his celebrated consistency proof in
terms of transfinite induction up to "0. This proof starts from a different base, i.e.,
primitive recursive arithmetic together with transfinite induction up to "0.

Here, we dispense with a presentation of Gentzen’s result which can be found, if
not in Gentzen’s original papers, in the standard proof-theoretic literature.21 Hilbert,
of course, was excited about the proof. But Kreisel [68, p. 121] reports also of
“familiar jokes (for example, by Tarski whose confidence [in the consistency] was
increased by <", or by Weyl who was astonished that one should use "0-induction
to prove the consistency of ordinary, that is !-induction).”22

Tarski’s “joke” (or a variation of it) is referred in detail in [102, p. 10]:
“Gentzen’s proof of the consistency of arithmetic is undoubtedly a very interesting
metamathematical result, which may prove very stimulating and fruitful. I cannot
say, however, that the consistency of arithmetic is now much more evident to me (at
any rate, perhaps, to use the terminology of the differential calculus more evident
than by an epsilon) than it was before the proof was given” [109, p. 19]. However,
for a “semanticist” like Tarski there cannot be any doubt about the consistency of

18“Concerning the use of the word intuitionistic [. . . ], it should be noted that according to Bernays
[[11, p. 502]], the prevailing view in the Hilbert school at the beginning of the 1930s equated
finitism with intuitionism.” [24, p. 117]. See also footnote 6 above.
19This paper was submitted in 1933, but withdrawn by Gentzen when he became known about
Gödel’s paper. An English translation appeared in print in 1969, [102, #2], the German version of
the Galley proofs, kept by Paul Bernays, was published only in 1974.
20German original [33, p. 131]: “Wenn man die intuitionistische Arithmetik als widerspruchsfrei
hinnimmt, so ist [. . . ] auch die Widerspruchsfreiheit der klassischen Arithmetik gesichert."
21An informal presentation of the main idea of the proof is given, for instance, by Takeuti in [120,
p. 128ff].
22A well-known proof theorists presumably heard the second joke from Kreisel but confused a “y”
with an “i” attributing it—with reference to Kreisel—to “un grand mathématicien français” [35,
p. 520, fn. 14]; this confusion is confirmed in [36, pp. 9 and 33] where André Weil is mentioned
by name (without reference to Kreisel).



Gentzen’s Consistency Proof in Context 9

Arithmetic from the very onset—otherwise, even the idea of the structure of the
natural numbers would be pointless. We mention this, because on the assumption
of the existence of a structure, any correctness lemma results in a consistency
proof.23

Hermann Weyl’s joke is equally unfair, as it suppresses the whole issue of
Gentzen’s proof, i.e., that the induction up to "0 is applied to quantifier-free
formulas, only.24

Universal quantification—which was eliminated by Gentzen in the induction
schemata—was at the very bottom of Hilbert’s concerns, much more than, for
instance, the tertium-non-datur. Hilbert’s early outline of a consistency proof
in the 1904 Heidelberg talk [47] was criticized by Poincaré with the argu-
ment that, for any such consistency proof, Hilbert would have to reason induc-
tively25; but justifying induction by induction results in a vicious circle. Only
with the separation of Metamathematics—using “weak” induction—from Mathe-
matics proper—allowing for stronger induction—he developed a tool to respond
to this critics.26 Thus, Gentzen’s use of quantifier-free inductions, though being
transfinite, is fundamentally in line with Hilbert’s concern to address Poincaré’s
objection.27

Ackermann gave, shortly after Gentzen, a consistency proof for Arithmetic using
Hilbert’s "-substitution method, cf. [2], and its discussion in [53, Sect. 2] and [54,
Supplement V].28 From a historic point of view, it is probably more an adaptation of
Gentzen’s proof to a specific technique favored by Hilbert than a “new” consistency

23Smullyan [100, p. 56] illustrates very well this point in connection with Gödel’s (first) incom-
pleteness result, stressing that Gödel, by using !-consistency, makes a much weaker assumption
than correctness. The pointlessness of consisteny proofs by semantic methods was well stated by
Shoenfield [96, p. 214]:

The consistency proof for P by means of the standard model [. . . ] does not even increase
our understanding of P , since nothing goes into it which we did not put into P in the first
place.

24For sure, Weyl will have known exactly what’s going on here, and probably also classified his
remark only as a joke.
25See [84], cited in [98, p. 7].
26See, for instance, [10, p. 203]. This separation might have been suggested by Brouwer to Hilbert
in 1909, cf. [112, p. 302]. Sieg [98, p. 27] writes: “Hilbert claims in [[50]], that Poincaré arrived
at ‘his mistaken conviction by not distinguishing these two methods of induction, which are of
entirely different kinds’ and feels that ‘[u]nder these circumstances Poincaré had to reject my
theory, which, incidentally, existed at that time only in its completely inadequate early stages’.”
27It is defensible that Hilbert took Poincaré’s critics more serious than, for instance, Brouwer’s, cf.
[61, 62]; but since Poincaré died already in 1912, Hilbert had lost him as discussion partner at the
time his programme was worked out.
28This supplement, added to the second edition of [53] and published in 1970, also presents a
consistency proof of Kalmár, based on an unpublished manuscript of 1938.
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proof.29 However, the "-substitution method was recently revived by Mints for the
analysis of stronger systems, cf. [4, 76, 78] and [77] in this volume.

Gödel [39] published in 1958 a conceptually different consistency proof, a
worked out version of the idea already mentioned at Zilsel’s seminar in 1938 (see
above) which is based on functionals of higher types, known as Gödel’s T (the
theory) or the Dialectica-Interpretation (the interpretation of Arithmetic in T ). This
consistency proof is quite different from Gentzen’s, and it addresses particularly the
finitistic aspect of Hilbert’s programme, as the functionals of higher types can be
considered as fulfilling this aspect.

Even if somebody would not be convinced by any single consistency proof, (s)he
should take into account that here conceptually different approaches—intuitionism;
transfinite induction; functionals of higher type—all lead to the consistency of
Peano Arithmetic. For Church’s thesis sometimes the argument is put forward that
many independent approaches to computability lead to the same class of functions.
We have here a similar phenomenon, where the risk—put forward for Church’s
thesis—of “systematically overlooking something” is even lower, and one gains
some kind of independent evidences for the consistency of Arithmetic.

In any case, as the consistency of Arithmetic is not really at issue, for modern
proof theory Gentzen’s consistency proof must be put in the right perspective.
Macintyre writes in this respect [72, p. 2426]30:

Much nonsense has been pronounced about Gentzen’s work, even by extremely distin-
guished people. Consistency is not really the main issue at all. He did reveal fine structure
in the unprovability of consistency of PA, as a consequence of much deeper general
methodology.

4 Analysis

It should be clear that for Hilbert’s Programme Arithmetic could have been only
an intermediate goal on the way to Analysis. It was, of course, Analysis which
Hermann Weyl had in mind when speaking about a “house built on sand,” it was

29Cf. Bernays in [53, p. VII]:

Currently, W. Ackermann is developing his earlier consistency proof—by use of a sort
of transfinite induction as used by Gentzen—in a way that it obtains validity for the full
numbertheoretic formalism.

German original: “Gegenwärtig ist W. ACKERMANN dabei, seinen früheren (. . . ) Widerspruchs-
freiheitsbeweis durch Anwendung der transfiniten Induktion in der Art, wie sie von GENTZEN

benutzt wird, so auszugestalten, daß er für den vollen zahlentheoretischen Formalismus Gültigkeit
erhält.”

Von Plato writes in [115, end of I.4.10]: “A second proof of Gentzen’s result was given by an
unwilling Wilhelm Ackermann, after repeated pleadings on the part of Bernays.”
30In the continuation of the citation, the mentioned fine structure is illustrated by the result about
provably total functions of PA which one can obtain from Gentzen’s work.
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Analysis which Brouwer tried to “revolutionize” (using Weyl’s language) within
his intuitionistic philosophy. Analysis uses at its very base the definition of the real
numbers, a genuine impredicative concept. It was, first of all, Poincaré who put the
use of impredicative concepts into question (though he accepted the real numbers
as such).31 But also Hilbert’s own student Weyl was advocating a predicative
reconstruction of Mathematics in Das Kontinuum [117], being willing to give up
a large part of traditional Mathematics. Thus, for Hilbert, a consistency proof of
classical Analysis turned now from a “simple question” of his Paris problem list
into an issue of defense against an intuitionistic “Putschversuch” (as he expressed it
in [49]).

It is known that Gödel started from Analysis when he was still trying to fulfill
Hilbert’s programme; Wang [116, p. 654] reports: “In the summer of 1930, Gödel
began to study the problem of proving the consistency of analysis. [. . . ] The problem
he set for himself at that time was the relative consistency of analysis to number
theory.” In this context he encountered the incompleteness results which, in turn,
closed this lane of argumentation.

Thus, Gentzen’s consistency proof of Arithmetic is now only a first step, and the
search for a consistency proof of Analysis was started immediately after. We know
that Gentzen was working hard on such a consistency proof even in prison in Prague
just before his premature death in 1945,32 and some remaining notes about this work
are currently in the process of publication [115]. But, it is also clear that he didn’t
reach a final result.

In sharp contrast to intuitionistic Arithmetic, intuitionistic Analysis can hardly be
considered as a base to provide a consistency proof for (classical) Analysis which
would fit Hilbert’s aims. One problem are the additional principles for intuitionistic
Analysis proposed by Brouwer, which are inconsistent in the classical setting. This
makes it doubtful whether intuitionistic Analysis (in Brouwer’s formulation) could
be even considered as more reliable than classical Analysis in itself.33

Szabo in [102, pp. 12–16] gives a short review of other early consistency results,
going beyond Arithmetic, by Fitch, Lorenzen, Takeuti, Schütte, and Ackermann.
None of them are accepted as fulfilling Hilbert’s requirement on a consistency

31See, for instance, the talk on transfinite numbers given by Poincaré in Göttingen in 1909 in the
presence of Hilbert, included in [85] and translated by Ewald in [22, 22.G] (reprinted in [62]).
32Szabo [102, p. viii] refers to the memories of a friend of Gentzen in the prison: “He once confided
in me that he was really quite contented since now he had at last time to think about a consistency
proof for analysis. He was in fact fully convinced that he would succeed in carrying out such a
proof.”
33Here, one can turn Hilbert’s programme upside down and use interpretations of new intuitionistic
principles to justify them on classical grounds; see, for instance, [27, p. 340]. I also remember
a proof theorist, making good use of such principles, but calling them—trained in classical
Mathematics and therefore believing in the standard notion of mathematical truth—“totally wrong”
(as translation of the German “grob falsch”).
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proof.34 But they had, of course, some impact on the development of proof theory.
The most stimulating proposal was Takeuti’s Fundamental Conjecture, saying
roughly that cut-elimination holds for second-order logic, cf. [107] and the informal
presentation in [120, App. B]. There were soon some proofs of it [86, 93, 103, 106],
which, however, rely on set theoretic considerations. Thus, these proofs do not
provide additional reliability.35

Similar concerns regard other approaches, like Girard’s F [34], where the
candidates, used in the normalization proof, are subject to the same foundational
concerns as the theory itself.36;37

Spector [101] introduced bar recursion as a concept which could be used to
extend the Dialectica interpretation to Analysis.38 To serve as a consistency proof,
however, one would rely on bar recursion/bar induction as valid principle. Avigad
and Feferman [8, p. 370f] write in their “Evaluation of Spector’s interpretation”:

Spector was careful not to claim that the generalization of bar induction to higher types,
which he used to justify bar recursion for continuous functionals, should be accepted on
intuitionistic grounds. In fact, he offers the following caveat:

The author believes that the bar theorem is itself questionable, and that until the bar
theorem can be given a suitable foundation, the question whether bar induction is
intuitionistic is premature.

The question of whether bar recursion can be justified on constructive grounds was taken
up in a seminar on the foundations of analysis led by G. Kreisel at Stanford in the summer
of 1963. The seminar’s conclusion, summarized by Kreisel in an ensuing report [[69]], was
that

. . . the answer is negative by a wide margin, since not even bar recursion of type 2
can be proved consistent [by constructively accepted principles].

34Kreisel, in [67, p. 344], sketches also an extension of “Gödel’s old translation” of a system
for classical Analysis to a specific intuitionistic reformulation of Analysis, involving the general
Comprehension Axiom, which “provides an intuitionistic consistency proof of classical analysis”.
He himself classifies this result as “philosophically [. . . ] not significant at all”, except for “a
reduction to intuitionistic methods of proof ”—which he judges a “technical” property. In the
Discussion of this proof he reminds the reader to look for alternatives:

Quite naively, this easy proof in no way reduces the interest of a more detailed proof
theoretic reduction [. . . ]; just as Gödel’s original intuitionistic consistency proof for
classical arithmetic Z did not make Gentzen’s reduction superfluous.

35In a discussion of these proofs, Kreisel writes [67, p. 349, footnote 16]: “[I]n terms of consistency
proofs, Tait’s argument would only have proved the consistency of classical analysis in third order
arithmetic!”
36I remember a proof-theorist classifying such a normalization proof as simply “circular.”
37The worst-case scenario was experienced by Martin-Löf, when he realized that the normalization
proof of his first (inconsistent) type theory was carried out in an inconsistent metatheory (see
Setzer’s contribution in this volume [95]).
38For a thorough discussion of Spector’s proof see [26] in this volume. Oliva and Powell [80],
also in this volume, discuss some spin-offs we can get from proof-theoretic analyses in the
neighborhood of Spector’s approach.
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When failing to prove Takeuti’s Fundamental Conjecture by more elementary
means, proof theory turned naturally to Subsystems of Analysis where impressive
results were established. Following the two traditions, called Schütte-style and
Takeuti-style proof theory, we are able to give today analyses up to …1

2 comprehen-
sion, cf. the work of Rathjen [88,89] and Arai [5–7], respectively.39 These analyses
of subsystems of Analysis in terms of ordinals are the natural extension of Gentzen’s
consistency proof for Arithmetic. It is particularly rewarding to provide the proof-
theoretic strength of a theory; with ordinals as measure one is able to compare
theories from different formal realms, like set-theoretical ones, type-theoretical
ones, or others like Theories of Inductive Definitions40 and Feferman’s Explicit
Mathematics. In return, these frameworks can help to carry out parts of the proof-
theoretic investigations.41

The rationale of ordinal analyses—in comparison with the approaches mentioned
above—was recently described by a colleague in the following neat characteriza-
tion:

Something that makes specifically ordinal-theoretical proof-theoretical analyses of a theory
particularly convincing is that in many cases there is a big difference between the
metatheory and the object theory; whereas with normalisation proofs based on Tait-style
computability, or Girard-style ‘candidates’, the meta-theory is (more-or-less) the theory
itself together with a uniform reflection principle. Something would be far wrong if one
couldn’t prove a normalisation theorem for Church’s theory of types in such a metatheory;
but the extra confidence one gets in the principles formulated therein from a normalisation
theorem is tiny.

Let us close this section with the reference to some subprogrammes which grew
out of Gentzen-style proof theory and which reach out for Analysis.

In [23], Feferman gives a comprehensive survey on the “viable rationale” of
reductive proof theory, using examples of “pairs” of frameworks where the first
one is reduced to the second one. Whereas Hilbert’s original hope about the
pair hinfinitary, finitaryi is limited by Gödel’s incompleteness theorems and only
exemplified by reductions to PRA [23, 5.1], one can look at other pairs like
huncountable infinitary, countable infinitaryi [23, 5.2]; himpredicative, predicativei
[23, 5.3]; and hnon-constructive, constructivei [23, 5.4].42

39See [81, 82, 94, 108] for comprehensive presentations of the background of the respective
developments.
40See, for instance, [14] and [57] in this volume.
41This was exemplified, in particular, by Kripke-Platek set theory, cf. e.g., [56, 81].
42In the further course of the discussion, Feferman expresses some doubts about current advances
in ordinal analysis with respect to the given rationale [23, p. 80]:

Even if one succeeds in reducing the system .…1
2-CA/ ˙ BI to a constructive system

(whether evidently so or not), one can hardly expect that doing so will appreciably increase
one’s belief in its consistency (if one has any doubts about that in the first place) in view of
the difficulty of checking the extremely complicated technical work needed for its ordinal
analysis.
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Another successful subprogramme is Reverse Mathematics which looks for the
weakest natural subsystem of Analysis which proves a given mathematical theorem,
cf. [99].

Finally, we like to mention Applied Proof Theory, sometimes also promoted
under the name proof mining, which aims to extract additional mathematical
information from an in-depth analysis of proofs in formal systems, cf. [64].

For all these subprogrammes the consistency issue is clearly secondary. But they
all rely on the techniques which were developed to a large extent out of Gentzen’s
methods used for his consistency proofs.

5 The Quest for Consistency

It was in an informal conversation, years ago, that two distinguished proof theorists
repeatedly assured each other that, for modern proof theory, “consistency is not
the question.” As a matter of fact, the working mathematician considers ZFC,
Zermelo–Fraenkel set theory including the axiom of choice, being beyond doubt.43

Let’s have a look at Wiles’s proof of Fermat’s Last Theorem. As it stands, its
formalization seems to require ZFC C some Grothendieck Universes on top [74].
This is an outrageously strong system for a theorem which can be formulated in
Peano Arithmetic. But no Mathematician would raise a minimal doubt about Wiles’s
proofs because it makes use of such a strong theory.

As an expert in set theory, W. Hugh Woodin makes the following “prediction”
[119, p. 453]44:

In the next ten thousand years, there will be no discovery of an inconsistency
in these theories [referring to three equiconsistent theories, including ZFC C
“There exist infinitely many Woodin cardinals”].

And Gaisi Takeuti points out that we cannot even imagine any longer the original
concerns of Hilbert’s times, [120, p. 122]:

In the current day, axiomatic set theory is fully accepted and it is generally acknowledged
that modern mathematics can be carried out in the framework of axiomatic set theory. No
contradiction has arisen in axiomatic set theory, and a sense of security that no contradiction
will arise in it in the future is supported by intuitive consensus. Under the current secure
circumstances one cannot imagine the sense of crises of that earlier time.

43This is, admittedly, in sharp contrast to the early times of axiomatic set theory, where Poincaré,
for instance, expressed his doubts about Zermelo’s axiomatization of set theory in the following
words, cf. [43, p. 540]:

But even though he has closed his sheepfold carefully, I am not sure that he has not set the
wolf to mind the sheep.

44Of course, this prediction is embedded in a thorough discussion which gives arguments for this
claim. But one may note that Woodin speaks here about the discovery not about the existence of an
inconsistency.
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Feferman, taking up explicitly an anti-platonist position, puts the following
argument forward for the consistency of standard formal theories [23, p. 72]45:

I, for one, have absolutely no doubt that PA and even PA2 are consistent, and no genuine
doubt that ZF is consistent, and there seems to be hardly anyone who seriously entertains
such doubts. Some may defend a belief in the consistency of these systems by simply
pointing to the fact that no obvious inconsistencies are forthcoming in them, or that these
systems have been used heavily for a long time without leading to an inconsistency. [. . . ]
My own reason for believing in the consistency of these systems is quite different. Namely,
in the case of PA, we have an absolutely clear intuitive model in the natural numbers,
which in the case of PA2 is expanded through the notion of arbitrary subset of the natural
numbers. Finally, ZF has an intuitive model in the transfinite iteration of the power set
operation taken cumulatively. This has nothing to do with a belief in a platonic reality
whose members include the natural numbers and arbitrary sets of natural numbers, and so
on. On the contrary, I disbelieve in such entities. But I have as good a conception of what
arbitrary subsets of natural numbers are supposed to be like as I do of the basic notions
of Euclidean geometry, where I am invited to conceive of points, lines and planes as being
utterly fine, utterly straight, and utterly flat, resp.

With respect to the standard formal theories, used in Mathematics, one may also
cite Kreisel46:

The doubts about the consistency are more doubtful than the consistency itself.

There is even an ironic corollary to Gödel’s second incompleteness theorem with
respect to “proof obligations”: Gödel tells us that we cannot prove the (absolute)
consistency of a formal mathematical theory. However, if somebody believes that a
certain theory is inconsistent, (s)he would be committed to prove it, as this would
be, of course, always possible. And such a person needs to be reminded of a word of
Dedekind from 1887: “In science, what is provable should never be believed without
proof.”47 But for one who believes in the consistency of a theory, Dedekind does not
apply—thanks Gödel.

Thus, what should we think of these alleged threats of inconsistencies?
One might argue that the history of Mathematics is full of examples which one

may consider as inconsistencies.48 Mathematicians may apply a new concept in a
way which results in false theorems. The simple fact that the supposed theorem

45The argument for the intuitive model of ZF is compared with the situation for Quine’s New
Foundation where the lack of such an intuitive model gives reason to look for a (relative)
consistency proof.
46Conveyed by Girard in French [35, p. 525]: “Les doutes quant à la cohérence sont plus douteux
que la cohérence elle-même.”
47German original: “Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt
werden.” cited and translated in [20, p. 97].
48See, for instance, [12]: “Historically speaking, it is of course quite untrue that mathematics is free
from contradiction” and later “[Contradictions] occur in the daily work of every mathematician,
beginner or master of his craft, as the result of more or less easily detected mistakes, [. . . ]”
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is false implies that a proper formalization of the argument will show a formal
inconsistency. However, in most cases, the solution was never a problem: either the
argumentation was dismissed with invalid, or—a little bit more interesting—some
fundamental assumptions about a certain mathematical area were revised which
improved our understanding of the this area.

Euler, for instance, in his famous book on Algebra [21], calculated
p�1p�4 Dp

4 D 2, applying the “general law”
p
a
p
b D p

ab.49 Adding this last “law”
to the axioms of the field of complex numbers, of course, leads to an inconsistent
theory. Such cases are not of much interest because, typically, the wrong assumption
is easy to isolate and to separate from the part which will be kept after a
revision.

But there are some interesting examples of inconsistencies in the history of
Mathematics which transcend such simple instances and which deserve a closer
inspection:

• Cantor’s naive set theory;
• Frege’s Grundgesetze der Arithmetik, and subsequent foundational systems by

Curry, Church, Kreisel, and Martin-Löf;
• Reinhardt cardinals over ZFC.

Cantor’s naive set theory may be based on an unreflected comprehension
principle expressed in Cantor’s famous first characterization of the notion of
set50:

By a ‘set’ we understand every collection to a whole M of definite, well-differentiated
objects m of our intuition or our thought.

It was soon discovered that this characterization allows for inconsistent set
constructions like the set of all cardinals (Cantor 1897, letter to Hilbert [17,
letter 156]), the set of all sets (Cantor 1899, letter to Dedekind [17, letter
163]), or the set of all ordinals (Burali-Forti 1897 [113, pp. 104ff]). It is
worth noting that Cantor himself did not see any problem here, but took the
“paradoxes” just as reductio-ad-absurdum arguments of the inexistence of the
respective sets; in his correspondence with Hilbert he refines, therefore, his
notion of set by distinguishing it as “consistent multiplicities.”51 Thus, for
Cantor it was natural that the (in)consistency of a set construction is verified a

49This example is taken from [20, p. 59].
50German original: “Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten
wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ‘Ele-
mente’ von M genannt werden) zu einem Ganzen.” [16, p. 282]. The translation is from [44,
p. 33].
51In German: “consistente Vielheiten,” letter to Hilbert from May 5th, 1899, [17, letter 160]; as
“finished set” (“fertige Menge”) already in a letter from December 2nd, 1897, [17, p. 390].
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posteriori. Hilbert did not agree with such an approach and demanded an a priori
justification.52

In practical terms, this was done by Zermelo in his axiomatization of set theory
[121].53 On the theoretical side, one finds here one of the motivations for Hilbert
to propose consistency proofs for theories to ensure the meaningfulness of their
mathematical notions.54

Frege’s aim to give a logicist foundation of Mathematics in his Grundgesetze
der Arithmetik [29,30] was destroyed by Russell’s Paradox. It is generally assumed
that Frege’s Basic Law V is responsible for the collapse of the system, but one
may consider alternatives to resolve the problem.55 What is of interest for us, as a
lesson for the history of logic, is that Frege had some kind of justification of his
axioms (one might as well call them meaning explanations). The problem was,
that these were local justifications for the single axioms, but their combination
turns out to be impossible; but it explains at the same time why we can single out
different consistent and meaningful subsystems. The fate of Frege’s system raises
the question to which extent we can trust any philosophical justification programme
based on local justifications (or meaning explanations).56;57 What should provide

52In [47] he writes, [113, p. 131]:

G. Cantor sensed the contradiction just mentioned and expressed this awareness by
differentiating between “consistent” and “inconsistent” sets. But, since in my opinion he
does not provide a precise criterion for this distinction, I must characterize his conception
on this point as one that still leaves latitude for subjective judgment and therefore affords
no objective certainty.

In German (cited in [17, S. 436]): “G. Cantor hat den genannten Widerspruch empfunden
und diesem Empfinden dadurch Ausdruck verliehen, daß er ‘konsistente’ und ‘nichtkonsistente’
Mengen unterscheidet. Indem er aber meiner Meinung nach für diese Unterscheidung kein scharfes
Kriterium aufstellt, muß ich seine Auffassung über diesen Punkt als eine solche bezeichnen, die
dem subjektiven Ermessen noch Spielraum läßt und daher keine objektive Sicherheit gewährt.” An
even stronger statement against Cantor’s approach can be found in a lecture note from 1917, [48],
cf. [59, 60].
53Although this axiomatization has the flaw that its justification is extrinsic where philosophers
would prefer to have an intrinsic one, cf. e.g., the discussion in [73].
54One may note that Cantor’s criterion for a “finished set” also requires a consistency proof, but
somehow locally for the particular construction only. However, as far as we know, Cantor only
took note of the criterion in the negative cases, to dismiss a set construction when it was shown to
be inconsistent.
55For instance, Aczel’s Frege Structures, [3].
56The situation becomes philosophically even more doubtful when such a justification depends, in
addition, on the approval of a “Master”. In this respect, Lorenzen complained about Brouwer [70]:

Unfortunately, the explanation which Brouwer himself offers for this phenomenon [that
some Mathematicians consider the ‘tertium non datur’ as unreliable] is an esoteric issue:
only one who listened the Master himself understands him.

(German original: “Unglücklicherweise ist die Erklärung, die Brouwer selbst für dieses Phänomen
anbietet, eine esoterische Angelegenheit: nur, wer den Meister selber hörte, versteht ihn.”)
57A complementary view on this issue is given by Setzer [95] in this volume.



18 R. Kahle

the evidence for a consistent combination if not a global justification—like a
model—which, then, could also be used directly?

After Frege, there were four more prominent examples of inconsistent foun-
dational systems: Curry’s combinatory logic, Church’s original �-calculus (both
subject to the Kleene-Rosser paradox), Kreisel’s theory of constructions (subject
to the Kreisel-Goodman paradox), and Martin-Löf’s first type theory (subject to
Girard’s paradox). Although these systems represent three quite different
approaches, it appears to us that the problems for all arise from the philosophical
motivation rather than from a formal (logical) inaccuracy in the formalization.58

This suggests the conclusion that philosophical motivations are apparently more
dangerous for formal systems than pure mathematical motivations (as in the case of
ZFC, for instance).

With a Reinhardt cardinal in ZFC we have, however, a completely different
case of inconsistency. A Reinhardt cardinal is a certain large cardinal which was
proposed by William Nelson Reinhardt in his doctoral dissertation in 1967, and
shown to be inconsistent over ZFC by Kenneth Kunen in 1971. To get a glance of the
fate of this cardinal—including its role in the absence of the Axiom of Choice where
no inconsistency is known—one may consult [119, Sect. 20.3]; more information
can be found in [63, Sect. 23]. In a simplified way, one can say that large cardinals
constitute a branch of set theory which tries to settle the Continuum’s Hypothesis on
the basis of “new axioms.”59 It is a fascinating area which—despite in failing so far
to settle ultimately the question of the Continuum’s Hypothesis—produced a large
amount of interesting results. The inconsistency of the Reinhardt cardinal over ZFC
simply puts a bound on what one may add.

What is important for us here is that this inconsistency should not surprise one
particularly. Even less should it raise a minimal doubt about the consistency of
“ordinary reasoning” in Mathematics. To the contrary, large cardinal axioms are,
in some sense, designed to push our axiomatic set theories to its ultimate limit; and
the Reinhardt cardinals simply show that we went beyond this limit. As Kanamori
puts it [63, p. 324]: “ZFC rallies at last to force a veritable Götterdämmerung for
large cardinals!”

As upshot one can say that there is simply no serious threat of inconsistencies
in Mathematics, if one doesn’t approach intentionally its ultimate limits—or
overstretch philosophical demands.

Still, there is an issue of consistency for Analysis—and, a forteriori, for set
theory: the impredicative features might have just not been explored sufficiently to
find a possible contradiction. And the reason for it might be that Mathematics uses
only a very limited part of the formal theories, a part which resides in an innocent,
consistent subsystem; in fact, Reverse Mathematics gives us strong evidence for

58This claim can be substantiated by the fact that it was not possible for any of the systems to
modify it in a way that the original aims of the authors would be preserved.
59A thorough discussion of this issue can be found in [25].
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such a claim. It was Gentzen himself who expressed the general concern in 1938 as
follows, [102, p. 235]:60

Indeed, it seems not entirely unreasonable to me to suppose that contradictions might
possibly be concealed even in classical analysis. The fact that, so for, none have been dis-
covered means very little when we consider that, in practice, mathematicians always work
with a comparatively limited part of the logically possible complexities of mathematical
constructs.

Thus, after recalling his consistency proof for elementary number theory, he
came to the conclusion that “the most important [consistency] proof of all in
practice, that for analysis, is still outstanding” [102, p. 236].61

By pursuing such a consistency proof, modern proof theory developed genuine
techniques not only to achieve consistency results but also to analyze the fine
structure of formal theories relevant for the mathematical practice.62 In terms of
our comparison above, we may say that pursuing the quest for consistency, Gentzen
provided us with the tools to explore and to map the newly discovered land of
unlimited mathematical strength.
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Gentzen’s Anti-Formalist Views

Michael Detlefsen

1 Introduction

In June of 1936 Gentzen gave a lecture at Heinrich Scholz’ seminar in Münster. The
title of the lecture was “Der Unendlichkeitsbegriff in der Mathematik.”1

In this lecture, Gentzen presented a generally optimistic view concerning the
prospects for the future development of Hilbert’s proof-theoretic program to
establish the consistency of classical mathematics. At the same time, curiously,
he expressed sympathy with a challenge to Hilbert’s formalist program that is
reminiscent of some of Brouwer’s criticisms.

This challenge, which I’ll refer to as the Contentualist Challenge, was essentially
this: even if the consistency of classical mathematics were ultimately to be proved
by finitarily acceptable means, this would not be enough to properly found it. Also
necessary, in Gentzen’s view, was the provision of a way to assign contents to the so-
called ideal propositions2 of classical mathematics. Hilbert’s so-called direct proof
of the consistency of arithmetic was neither designed nor equipped to provide such
an assignment. As a result, it was neither designed nor equipped to satisfy conditions
the satisfaction of which Gentzen regarded as necessary for the proper foundation
of classical mathematics.

1The lecture was published in Semesterberichte Münster, WS 1936/37: (65–85). It was translated
into English by M. E. Szabo as “The Concept of Infinity in Mathematics” and included in [19].
2Or what Gentzen generally referred to as actualist propositions.
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Gentzen put what he took to be the crucial point this way:

Even if the consistency were to have been proved, the propositions of actualist mathematics
(die Aussagen der an-sich-Mathematik)3 would remain without sense (sinnlos) and would
therefore, as ever, have to be repudiated (abzulehnen). . . . The whole question of “sense”
(“Sinnes”) does not seem . . . to be ready for a final settlement. . . . The objection against the
sense of actualist propositions must in any case not be taken too lightly; it is not entirely
without merit. [16, p. 74]

Hilbert’s proposed formalist defense of classical mathematics was undertaken for
the purpose of justifying the use of ideal elements in our mathematical reasoning.
This included, in particular, the use of actualist propositions as instruments to aid
the conduct of the “logical” parts of mathematical reasoning.

Hilbert did not, however, propose that these so-called ideal propositions be
preserved as contentual elements of mathematical thinking. He saw them as useful,
perhaps even in some sense “necessary,” for the conduct of logical reasoning. He
did not, however, take their usefulness to consist in their presumably contentual
application in our thinking. Rather, he believed that it is due to their use as ideal
elements in our logical thinking—a use which, generally speaking, is similar in both
character and motive to the use of such devices as negative and complex numbers in
algebra and analysis and points at infinity in projective geometry.

He put the basic point this way:

[M]athematics contains, first, formulas to which correspond contentual (inhaltliche) com-
munications of finitary propositions (mainly numerical equations or inequalities, or more
complex communications composed of these) and which we may call the real propositions
(realen Aussagen) of the theory, and, second, formulas that—just like the numerals of
contentual number theory—in themselves mean nothing but are merely things governed
by our rules and must be regarded as the ideal material (idealen Gebilde) of our theory. [27,
p. 8]

By adjoining the so-called ideal propositions to the real propositions, “we obtain
a system of propositions in which all the simple rules of Aristotelian logic hold
and all the usual methods of mathematical inference are valid” (op. cit., 9). The
development of such a system of “logical” reasoning, Hilbert believed, benefits our
logical reasoning in ways that are generally similar to the ways in which the use
of ideal elements elsewhere in mathematics benefits other parts of mathematical
reasoning. Specifically, it allows us to reason with greater facility to real or
contentual conclusions, and it does so without compromising reliability.

Reasoning which makes use of ideal or actualist propositions is not, however,
reasoning in the traditional sense. That is, it is not reasoning which proceeds from
premises which are judgments having genuine propositional contents to conclusions
(ultimate or transitory) which are likewise judgments having propositional contents
via inferences that represent judgments of logical relationship between genuine
propositions.

3“Actualist mathematics” was a term Gentzen commonly used for classical or traditional mathe-
matics.
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In the view of the critics of formalism (e.g., Frege and Brouwer), this meant that
the reasoning which makes use of the so-called ideal propositions is not, in truth,
genuine reasoning at all. Rather, it is only something which has the syntactical
facade of genuine reasoning. It lacks the genuine contentful premises and the
genuine logical interrelationship of contentual propositions needed for genuine
reasoning.

Hilbert and those in his camp (e.g., Bernays) rejected this traditional conception
of reasoning. More accurately, they rejected the view that legitimate mathemat-
ical reasoning always proceeds according to the traditional contentualist plan.
Sometimes, they maintained, it proceeds in decidedly non-contentualist ways for
decidedly non-contentualist motives. In their view, this reflected an identifying
characteristic of modern scientific thinking generally—namely, that in addition to
a descriptive component, it has as well an idealizational component.

In science we are predominantly if not always concerned with theories that are not
completely given to representing reality, but whose significance (Bedeutung) consists in the
simplifying idealization (vereinfachende Idealisierung) they offer of reality. This idealiza-
tion results from the extrapolation by which the concept formations (Begriffsbildungen) and
basic laws (Grundsätze) of the theory go beyond (überschreitet) the realm of experiential
data (Erfahrungsdaten) and intuitive evidence (anschauliche Evidenz). [29, pp. 2–3]

As Hilbert and Bernays saw it, the aim of science was not simply or only
to describe, but also to idealize and to simplify. Such simplification, however,
sometimes called for the use of “formal” rather than contentual methods of
reasoning. Accordingly, they believed, contentual interpretation is not necessary for
a proper defense of ideal reasoning.

Gentzen suggested a contrary view, giving particular attention to the case of
general set theory in this connection. There he speculated in particular that proof-
theoretical investigations would confirm that non-denumerable cardinalities are
empty appearances (nur leerer Schein), that concepts and sentences concerning
them are contentless, and that mathematicians ought therefore to avoid making use
of them.

I believe that, for example, in general set theory a careful proof-theoretic investigation will
finally show that all powers that go beyond the countable are, in a quite definite sense, only
empty appearances and that one should have the good sense to do without them.4

In an essay published a year later, he put the point more strongly, describing
the question of the content of classical mathematics (or what he called an-sich
mathematics) as “very important” (sehr wichtig) (cf. [18, p. 202]).

4The German was:

Ich glaube, dass z. B. in der allgemeinen Mengenlehre eine sorgfältige beweistheoretische
Untersuchung schliesslich die Ansicht bestätigen wird, dass alle über das Abzählbare
hinausgehenden Mächtigkeiten in ganz bestimmten Sinne nur leerer Schein sind und man
vernünftigerweise auf diese Begriffe wird verzichten müssen. [16, p. 74]
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He thus seems to have sympathized with those critics of formalism who, like
Frege and Brouwer, emphasized the question of whether formalism can adequately
provide for the contentual interpretation of ideal or “actualist” propositions in
mathematics.

It is this seeming affinity of Gentzen’s views with the traditionalist views
of Brouwer and Frege that I find noteworthy. Gentzen, after all, has generally
been described, and generally described himself, as an advocate and promoter of
Hilbert’s ideas in the foundations of mathematics. Hilbert, however, emphasized
that the interpretation of ideal reasoning is not necessary either for the conduct of
mathematical reasoning or for its proper foundation. This raises the question of how
significant the affinities between Gentzen’s and Hilbert’s views really are. This is
the question I want to consider here.

Examination of Gentzen’s views reveals distinct sympathy with the traditional
conception of reasoning as generally consisting in a finite sequence of judgments
arranged according to perceived logical relationships between their contents. He
believed the formalization of mathematical reasoning to be a means of preparing
it for precise metamathematical investigation, but there is little indication that he
saw uninterpreted formal reasoning as playing an important role in mathematical
reasoning. In fact, there are counter-indications.

His formalist sympathies thus seem to have been quite limited. He held only a
version of what I will call Representational Formalism. This is the view that the
formal representation of mathematical reasoning is a legitimate and perhaps even a
valuable tool for purposes of studying certain of its properties (e.g., its consistency).
Whether formal methods have a place in the actual conduct of mathematical
reasoning, on the other hand, is another matter, and one which is not settled by the
possible usefulness of formalization as a representational tool for metamathematical
investigation.

Hilbert too was a Representational Formalist. His formalist convictions went
beyond this, however. In addition to believing in the representational utility of
formal methods, he believed that they have an important role to play in the
actual conduct of mathematical reasoning. He believed, that is, that mathematical
reasoning is partially constituted by the use of formal, non-contentual methods
of reasoning, and he believed as well that the use of such methods has played
an important role in making modern mathematics the successful science that
it is.

In addition to being a Representational Formalist, then, Hilbert was what I will
call a Conductive Formalist. Gentzen was not, or at least not so fully as Hilbert. All
in all, he seems to have accepted the traditional contentualist view of mathematical
reasoning that Hilbert rejected. More specifically, he held that the use of formal
methods in mathematical reasoning can only be fully vindicated by providing a
contentual interpretation for it.

To the extent that this is correct, Gentzen’s formalism was less far-reaching than
Hilbert’s. This, at any rate, is what I will argue here.
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2 The Traditional and Abstract Conceptions
of Axiomatization

Gentzen and Hilbert diverged as regards their views of the basic nature of reasoning.
Gentzen held a more or less traditional contentualist view of reasoning. Hilbert,
on the other hand, rejected the traditional view and emphasized not only the
possibility of non-contentual reasoning, but also its importance to mathematics. He
did not deny that much mathematical reasoning is contentual. Nor did he deny that
contentual reasoning has played an important role, perhaps even a dominant role,
in the development of mathematics. He maintained only that there are also non-
contentual processes of reasoning, and that these have also been important to the
development and success of modern mathematics.

What I am calling the traditional conception of reasoning centered on the idea
that an argument is a finite, logically ordered sequence of judgments. The term
“judgment” here is used in its traditional sense—that is, to signify an attitude of
affirmation taken towards a proposition.

By a “logical ordering” of judgments, I mean an arrangement of the constituent
judgments of an argument according to certain perceived relations of broadly logical
consequence among them. The traditional conception of proof is a specialization of
this view to cases where the constituent judgments making up the proof, or at least
certain of them, may have special epistemic qualifications (e.g., being self-evident)
and the relations of logical consequence which are taken to relate them are perceived
relations of deductive consequence.

The classical source of the traditional view was Aristotle, who presented it as part
of a general account of the nature of reasoning in the Prior Analytics, Bk. I. What
is perhaps the most widely known statement of the view was given in the Posterior
Analytics, however.

[D]emonstrative knowledge must proceed from premisses which are true, primary, imme-
diate, better known than, prior to, and causative of the conclusion. On these conditions only
will the first principles be properly applicable to the fact which is to be proved. Deduction
will be possible without these conditions, but not demonstration; for the result will not be
knowledge.

Posterior Analytics, 71b 20–25

Similar views were expressed throughout the modern era (cf. Locke (cf. [35,
Bk IV, ch. xvii, §4]) and Reid (cf. [41, Essay VII, Of Reasoning, p. 475]), and also
throughout the eighteenth, nineteenth, and early twentieth centuries (cf. [46, ch.I, pt.
3]; [5, pp. 45–46]; [3, §22]; [34, p. 11]; [20, p. 15] and [33, p. 384] for statements
from a variety of different types of works).

Towards the end of the nineteenth century, the traditional conception of proof
gave way to a conception of proof coming from the then-emerging “abstract”
conception of axiomatization. This new conception of axiomatization differed
profoundly from its traditional predecessor.

On the traditional conception of axiomatization, axioms were taken to be true
propositions chosen out of consideration of supposed special properties of certainty
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and/or immediacy and/or explanatory power. Relatedly, proofs were taken to be
finite sequences of judgments the propositional contents of each element of which
were either to be axioms, or to be seen to follow deductively from the contents of
previous elements of the sequence. This is what I will call the traditional view of
proof (TVP).

The abstract conception, by contrast, denied that axioms are certain, self-evident,
or explanatorily basic truths. It denied, in fact, that they are truths at all, or even
that they are propositions.5 Axiomatization on the abstract plan sought to separate
axioms from contents. Hilbert described the basic process he took to effect this
dissociation (in the case of geometry) as follows:

We think (denken) three different systems of things. The things of the first system we call
points and designate them A;B; C : : : . . . The things of the second system we call lines and
designate them a; b; c : : : . . . The things of the third system we call planes and designate
them ˛; ˇ; � : : : . . .
We think (denken) the points, lines and planes in certain mutual relations . . .
The exact (genaue) and for mathematical purposes complete (vollständige) specification of
these relationships is accomplished by the axioms of geometry. [22, ch. 1, §1]6

In axiomatization, in Hilbert’s view, we “think.” We do not observe or intuit and
then express the contents of our observations or intuitions in the axioms we give.
Rather, we “think,” with nothing given prior to or in association with this thinking
to serve as its contents.7

Nor was this thinking taken to have indigenous contents, at least not in any
ordinary sense of the term “contents.” It was not a thinking as of definite objects
standing in definite relations. Rather, the objects and relations of axiomatic thinking
were wholly unspecified, and could be any objects and relations that satisfy the
abstractly thought axioms.

From the abstract point of view, then, axioms were not taken to be propositions
but rather, for some, propositional functions or propositional schemata (cf. [45,
p. 2]; [31, §20]), and for others (e.g., Hilbert) sentences or sentence-schemata. For

5Describing the abstract viewpoint as applied to projective geometry, Whitehead wrote: “The
points mentioned in the axioms are not a special determinate class of entities . . . they are in fact any
entities whatever, which happen to be inter-related in such a manner, that the axioms are true when
considered as referring to those entities and their inter-relations. Accordingly—since the class of
points is undetermined—the axioms are not propositions at all . . . An axiom (in this sense) since it
is not a proposition can neither be true or false.” [45, p. 1].
6That this represented Hilbert’s general conception of axiomatization is indicated by the fact that
he gave a precisely parallel characterization of the axiomatic method in arithmetic in an essay
published the following year (cf. [23, p. 181]).
7The separation of thinking from contents represented in this view is more radical than, but still
reminiscent of the separation indicated by Kant in the first critique: “I can think (denken) whatever
I want, provided only that I do not contradict myself. This suffices for the possibility of the
concept, even though I may not be able to answer for there being, in the sum of all possibilities,
an object corresponding to it. Indeed, something more is required before I can ascribe to such
a concept objective validity, that is, real possibility; the former possibility is merely logical.”
[32, xxvi, note a].
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present purposes, the difference between these alternatives is insignificant. What is
important is that axioms were viewed schematically, or hypothetically—any system
of objects and relations satisfying them would also satisfy the theorems that follow
from them.8

The attributes traditionally taken to characterize axioms (e.g., certainty, self-
evidentness, explanatory depth, unprovability (in some objective or quasi-objective
sense), etc.) do not of course apply to such schemata. Rather, the thinking regarding
choice of axioms for abstract theories seems generally to have been that it should
be driven by considerations of mutual consistency and of their usefulness as starting
points for the efficient deduction of some further body of theorems.9

3 The “Decontentualization” of Proof

The core element of the abstract conception of axiomatization was thus a call
for the separation—or, perhaps more accurately, calls for various separations—of
axiomatic thinking from contents. More specifically for my purposes here, it was
a family of calls for various separations of the conduct of proof from contentual
considerations.

In this connection, it is perhaps useful to distinguish two such separations. One of
these is a separation from contents for purposes of conducting the inferential parts
of proofs. For convenience, I’ll call this Inferential Separation.

The other concerns a separation from contents for purposes of specifying what
the constitutive axioms and rules of inference of a would-be formal proof practice
are. I’ll refer to this as Specificational Separation.

The mature Hilbert, I believe, supported both types of separation. I will now
briefly indicate what I take to be essential to each.

3.1 Inferential Separation

In 1882, Pasch had raised the importance of abstracting away from contents for
purposes of ensuring that the inferential parts of proofs were genuinely deductive in
character.

8Cf. [2, pp. 95–96].
9J.W. Young put the point this way: “[W]hat is the new point of view? The self-evident truth
is entirely banished. There is no such thing. What has taken the place of it? Simply a set of
assumptions concerning the science which is to be developed, in the choice of which we have
considerable freedom. . . . [T]hey are elected for their fitness to serve, and their fitness is very largely
determined by their simplicity, by the ease with which the other propositions may be derived from
them.” [47, p. 52].
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[I]f geometry is to be genuinely deductive, the process of inferring (Process des Folgerns)
must be everywhere independent of the sense (Sinn) of geometrical concepts just as it must
be independent of figures. It is only relations between geometrical concepts that should be
taken into account in the propositions and definitions that are dealt with. In the course of
a deduction . . . it should by no means be necessary to think of the references (Bedeutung)
of the geometrical concepts involved. . . . [I]f it is . . . , the gappiness (Lückenhaftigkeit) of
the deduction and the inadequacy of the . . . proof is thereby revealed unless it is possible to
remove the gaps (Lücke) by modifying the reasoning used. [40, p. 98]

There seem to be both theoretical and practical claims here. On the theoretical
side there is a suggestion that an inference in a geometrical proof can properly
be known to be deductively valid only if its validity can in principle be known
without appealing to the contents of any non-logical term (and, more specifically,
any geometrical term) that occurs, whether explicitly or implicitly, in it (i.e., in its
premises or its conclusion).10

Pasch’s practical suggestion, as I see it, ran parallel to this. It suggested as
a practical criterion of deductive validity that an inference’s validity be practi-
cally establishable without appealing to the sense or referent of any non-logical
term (specifically, the contents of any geometrical term) occurring (explicitly or
implicitly) in it. In other words, it called for the separation of geometrical proof
from geometrical contents for purposes of determining the deductive validity of its
inferential parts. The suggestion seems to be that persistent failure of conscientious
efforts to find such a practical separation of contents from assessments of validity is
indication of a failure of rigor in a proof.11

Hilbert too endorsed a separation of logical reasoning from contents,12 though
neither the separation he proposed nor his reasons for proposing it were identical to
Pasch’s.

3.2 Specificational Separation

Pasch’s proposed separation of contents from geometrical reasoning seems in
significant part to have been a call for rigor. To correctly judge the deductive validity

10Pasch did not of course make use of any precise demarcation of logical from non-logical terms.
He did, though, have a sense of what the geometrical terms or concepts in a proof were, and he
insisted that the validity of a genuinely deductive inference should be knowable without making
use of appeals to the senses or referents of any of the geometrical terms that occur in it.
11Pasch’s call for Inferential Separation of contents from proofs has led some to regard him as the
(or at least a) principal founder of the abstract conception of axiomatization (cf. [39, p. 143]; [42,
pp. 343–344] and [47, p. 51]). As others (cf. [15, pp. 617–618]) have pointed out, though, correctly
in my view, the separation of geometrical reasoning from contents that he proposed is not nearly
so radical as that proposed by Hilbert.
12“[I]n my theory contentual inference (inhaltliche Schließen) is replaced by manipulation of signs
according to rules (äußeres Handeln nach Regeln); in this way the axiomatic method attains that
reliability and perfection that it can and must reach if it is to become the basic instrument of all
theoretical research.” [27, p. 4].
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of a geometrical inference did not, in his view, require appeal to the contents of its
geometrical terms. To make use of such appeals, therefore, was either to use what
one did not recognize was being used, or it was to mistake what is required for
deductive validity. Pasch seems to have seen the former—the use of unrecognized
information in the inferential parts of proofs—as the more insidious threat and the
one protection against which thus required more careful and deliberate efforts.

The use of such information in the conduct of inference constituted a failure
of rigor. Pasch’s call for abstraction from the meanings of geometrical terms for
purposes of conducting the inferential parts of geometrical proofs was intended to
provide protection against such failure.

It is not only in the inferential parts of proofs, however, that use of unrecognized
information may enter. It may also enter in the identification or specification of
axioms and/or rules of inference. It may be avoidance of this type of illicit use
of unrecognized information that Hilbert had in mind when he declared that the
specification of axioms of an axiomatic system should provide an “exact (genaue)
and for mathematical purposes complete (vollständige) specification” [22, ch. 1, §1]
of the objects-as-standing-in-relations that constituted what was thought in a given
axiomatic “thinking” (denken). Here, I’ll focus on the part of the claim concerning
exactness and leave the part concerning completeness for another occasion.

What would constitute a specification of axioms that is “exact” in this sense?
There is nothing I know of in Hilbert’s early writings that clarifies what he had
in mind. In the fuller development of his proof theory, however, he came to the
view that axioms should be syntactically rather than semantically specified. More
accurately, he came to the view that proper specification of axioms consisted in their
being exhibited (i.e., in their being given in terms of their outward appearances)
rather than in their being expressed (i.e., in their being given in terms of semantical
contents). To put it differently, Hilbert’s eventual view seems to have been that only
such things as can be identified by their outward appearances, without application
of semantic interpretation, are exactly specifiable. Accordingly, only formulae, not
propositions, can ultimately satisfy the requirements of exact specification of an
axiomatic thinking (denken).

If this is how Hilbert eventually came to understand the requirement that axioms
be “exactly” specified, then it represents another point at (or another way in) which
at least his mature understanding of axiomatic thinking saw it as involving various
types of “decontentualization.”

4 Decontentualization and Its Discontents

Weyl described the decontentualized conception of proof of Hilbert’s proof theory
as representing a radical departure from the views of his predecessors.

Before Hilbert constructed his proof theory everyone thought of mathematics as a system
of contentual (inhaltliche), meaningful (sinnerfüllte), and evident (einsichtige) truths; this
point of view was the common platform of all discussions. . . . Brouwer, like everyone else,
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required of mathematics that its theorems be (in Hilbert’s terminology) “real propositions,”
meaningful truths. [43, p. 22]13

This may largely have been true, but, as the above remarks concerning the
development of the abstract conception of axiomatization indicate, it’s not entirely
accurate. Pasch’s view of proof, with its distinctive understanding of the require-
ments of inferential rigor, is not adequately captured by it.14 Neither does it
accurately convey the place that abstract views of axiomatization occupied in late
nineteenth and early twentieth century understandings of axiomatic method.15

Be this as it may, contentualist understandings of mathematical proof were
certainly common and influential during the period in which Hilbert developed his
proof-theoretic ideas. Since Gentzen’s understanding of the nature of proof seems
to have been influenced by such views, it seems sensible to briefly survey some of
the more influential contentualist views of proof of Gentzen’s time.

Among these, Brouwer’s are perhaps particularly important because of Gentzen’s
expressed sympathies with intuitionist views of proof. Brouwer stressed his
opposition to non-contentual conceptions of proof in his criticisms of Hilbert’s
program—particularly his criticisms of Hilbert’s idea that to properly found
traditional mathematics is essentially to prove its consistency.16

In Brouwer’s view, to properly found traditional mathematics (or some part of
it), it was necessary to establish it not merely as consistent but as truthful or correct.
What is true, however, is contentful since it is contentual items only that are capable
of being true or false. Proving the syntactical consistency of a theory or inferential

13See [44, p. 640] for a similar statement. See also [7, p. 336]; [8, pp. 490–492] and [10, pp. 2–5]
for related ideas and arguments.
14Neither are the contributions of others with ideas similar to Pasch’s. These contributions
were noted by various early twentieth century writers. The following statement by Young is
characteristic: “The abstract formulation of mathematics seems to date back to the German
mathematician Moritz Pasch. At any rate, he was the first to study in detail the axioms concerning
the order of points on a straight line . . . But to the Italian Giuseppe Peano belongs the credit of
developing this point of view systematically. His idea, which he began to elaborate about 1889, is
to put the whole of mathematics on a purely formal basis . . . ” [47, p. 51].
15Here too Young gave a more accurate description: “The point of view of 50 years ago was very
largely that the foundations of mathematics were axioms; and by axioms were meant self-evident
truths, that is, ideas imposed upon our minds a priori, with which we must necessarily begin any
rational development of the subject. So the axioms dominated our mathematical science, as it were,
by the divine right of the alleged inconceivability of the opposite. And now, what is the new point
of view? The self-evident truth is entirely banished. There is no such thing. What has taken the
place of it? Simply a set of assumptions concerning the science which is to be developed, in the
choice of which we have considerable freedom.” (op. cit., 52).
16Strictly speaking, Hilbert required more than a proof of consistency for the proper foundation of
classical mathematics. He required as well that its uses of ideal methods be “successful”: “[I]f the
question of the justification (Berechtigung) of a procedure (Maßnahme) means anything more than
proving its consistency, it can only mean determining whether the procedure fulfills its promised
purpose. Indeed, success is necessary; here, too, it is the highest tribunal, to which everyone
submits.” [26, p. 163].
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practice could not, therefore, in Brouwer’s view, properly found it since it would not
establish it as correct (richtig).

[T]he formalistic critique . . . in essence comes to this: the language accompanying the
mathematical mental activity is subjected to a mathematical examination. To such an
examination the laws of theoretical logic present themselves as operators acting on primitive
formulas or axioms, and one sets himself the goal of transforming these axioms in such a
way that the linguistic effect of the operators mentioned (which are themselves retained
unchanged) can no longer be disturbed by the appearance of the linguistic figure of
a contradiction. We need by no means despair of reaching this goal,17 but nothing of
mathematical value will thus be gained: an incorrect theory (unrichtige Theorie), even if
it cannot be inhibited by any contradiction that would refute it, is none the less incorrect,
just as a criminal policy is none the less criminal even if it cannot be inhibited by any court
that would curb it. [7, p. 336]18

As Brouwer saw it, then, the fundamental mistake of the formalist was the
failure to appreciate the differences between operations of genuine reasoning and
operations on linguistic items. The latter might resemble the former in certain ways
but, in the end, these could be only superficial similarities. To fail to recognize this
was to fail to see the critical difference between genuine thinking and a mere use of
language—a difference featured in what was perhaps the basic element of Brouwer’s
foundational outlook, the so-called First Act of Intuitionism.

[T]he FIRST ACT OF INTUITIONISM completely separates mathematics from mathe-
matical language, in particular from the phenomena of language which are described by
theoretical logic, and recognizes that intuitionist mathematics is an essentially languageless
activity of the mind . . . [9, pp. 140–141]

Formalism flouted the First Act of Intutionism. More specifically, in the intuition-
ists’ view, it systematically overestimated the importance of language as a vehicle
for the conduct of reasoning. Similarly, as they saw it, it overestimated even the
importance of mathematical language as a means of representing and studying the
properties of mathematical reasoning.

The intuitionists were not the only ones to object to the decontentualizing
tendencies of Hilbert’s abstractionist outlook. Klein, for example, described it as
representing “the death of all science” [33, p. 384].

17At this point Brouwer inserted the following remark in a note: “[T]he unjustified application of
the principle of excluded middle to properties of well-constructed mathematical systems can never
lead to a contradiction . . . ”
18The passage in the German original is on pp. 2–3. It is perhaps worth noting that on Hilbert’s
view, consistency meant consistency with real mathematics. Therefore, if incorrectness is defined
as proving something that is refutable by real means, then proving consistency in Hilbert’s sense
would eliminate the possibility of incorrectness on one natural understanding of that term. Perhaps
on Brouwer’s understanding of “unrichtige,” “richtige” was intended to imply conservativeness—
so that a theory would be incorrect if it proved propositions that are not themselves provable by
real means, and not only if it proved propositions that are refutable by real means. Under certain
conditions, of course, the two understandings extensionally coincide.
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Frege too decried it and he made the contentual nature of genuine proof the focal
point of his disagreements with Hilbert and those others (e.g., Heine and Thomae)
he saw as advocating non-contentualist views of proof.

[A]n inference does not consist of signs. We can only say that in the transition from one
group of signs to a new group of signs, it may look now and then as though we are presented
with an inference. An inference simply does not belong to the realm of signs; rather, it is
the pronouncement of a judgment made in accordance with logical laws on the basis of
previously passed judgments. Each of the premises is a determinate thought recognized as
true; and in the conclusion, too, a determinate thought is recognized as true . . . . [12, p. 387]

In Frege’s view too, then, a proof was a thoroughly contentual affair—
specifically, it was a sequence of judgments the propositional contents of which
must be judged by the prover to stand in certain logical relationships to one another.
Without such logical interrelationship there can be no genuine proof, and unless
the premises and conclusions of proofs have propositional contents, there can be no
genuine logical relationship between them.

5 Hilbert’s Conductive Formalism

As mentioned, Hilbert rejected this traditional contentualist conception of proof
(and, more generally, the traditional contentualist view of reasoning). This should
not, however, lead us to think that he denied the importance, or even the centrality,
of contentual proof to the development of mathematical knowledge. He did not. In
fact, he emphasized the importance of contentual reasoning to mathematics and,
particularly, its indispensability to metamathematics.

Where he thought the opponents of non-contentual reasoning had gone too far
was in their view that mathematical reasoning and proof has and indeed must always
be contentual, or that non-contentual reasoning has played only an insignificant role
in the historical development of our mathematical knowledge. In Hilbert’s view,
mathematical proof has often assumed non-contentual forms, and he believed the
use of such forms to have been and to continue to be invaluable in our attempts to
mitigate various types of complexity and/or inefficiency that commonly limit the
usefulness or even the practical applicability of contentual methods of proof.

Hilbert gave various examples intended to illustrate the usefulness of non-
contentual methods of reasoning in mathematics. These included the introduction
of the imaginary and complex numbers to “simplify the theorems on the existence
and number of roots of an equation” [26, p. 166] and the introduction of elements
at infinity in projective geometry which “make the system of laws of connection as
simple and perspicuous as is possible” (loc. cit.) and which induce the symmetries
behind the dualities of projective geometry “which are so fruitful (fruchtbare)” (loc.
cit.).

What he regarded as the crowning example, though, is the use of the classical
laws of logic to manage what he believed are crippling complexities of non-classical
(specifically, finitary) contentual logical reasoning. Classical methods of logical
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reasoning may not be contentual, but this ought not blind us to the fact that they
may be useful, even, in some sense, indispensable to the practical conduct of (at least
parts of) our logical reasoning.

Hilbert thus urged addition of the so-called ideal propositions [26, p. 174] to real
contentual propositions “in order to maintain the formally simple rules of ordinary
Aristotelian logic” (ibid.).19 To make such an addition was, in his view, a natural
and motivated application of the method of ideal methods in mathematics, a method
which had proved its efficacy and trustworthiness again and again in the history of
mathematics.

Hilbert seems also to have seen the application of ideal methods as pervasive
both in our scientific and in our everyday reasoning.

In our theoretical sciences we are accustomed to the use of formal thought processes
(formaler Denkprozesse) and abstract methods . . . [But] already in everyday life (täglichen
Leben) one uses methods and concept-constructions (Begriffsbildungen) which require a
high degree of abstraction and which only become plain through unconscious application
of the axiomatic method (nur durch unbewußte Anwendung der axiomatischen Methoden
verständlich sind). Examples include the general process of negation and, especially, the
concept of infinity. [28, p. 380]

To try to do without ideal methods in our thinking would thus, in Hilbert’s
view, seriously impair our effectiveness as thinkers. Opposition to their use was,
in Hilbert’s view, largely a result of a failure to recognize that language has valuable
and legitimate non-descriptive uses. Bernays memorably urged this point in offering
his Faustian summary of Hilbert’s formalist viewpoint.

Where concepts fail, a sign appears at just the right time.20 This is the methodological
principle of Hilbert’s theory. [1, p. 16]

Hilbert put the point more forcefully, if perhaps less picturesquely. In his view,
the use of non-contentual (or, more specifically, symbolico-algebraic) methods in
the conduct of our reasoning is indispensable to the fullest practical development
of our mathematical knowledge (cf. [24, pp. 162–163]; [26, p. 162]; [27, pp. 7–
8]). He saw it as reflecting the importance attached to the use of non-descriptive
simplifying idealizations he took to be characteristic of modern science (cf. [29, pp.
2–3]). He believed that we may legitimately take advantage of the benefits of such
simplification without sacrificing security in the contentual parts of our thinking.

19This addition was to be controlled by consistency, of course. On this point, Hilbert thought he
could satisfy even Brouwer and Kronecker. What they did not accept, however, is that controlling
for consistency should be enough to establish a putative body of reasoning as genuine reasoning,
much less as reliable genuine reasoning.
20“Thus even where concepts fail, a word appears at just the right time.”

Goethe, Faust I (Mephistopheles to a student of theology)

The German is: “Denn eben wo Begriffe fehlen, Da stellt ein Wort zur rechten Zeit sich ein.”
Goethe was not endorsing but criticizing such a practice of course. He presented it as a practice
employed by teachers of theology to preserve a facade of contentful thinking where in fact there
were only contentually empty words.
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Hilbert thus embraced what I am calling Conductive Formalism, the view that the
use of non-contentual methods of reasoning has been and continues to be important
to the effective development of our mathematical knowledge. He accepted as well
of course what I call Representational Formalism—that is, the view that the formal
representation of mathematical reasoning is a tool for facilitating the rigorous and
mathematically precise investigation of mathematical reasoning.

As I read him, Gentzen only fully endorsed Representational Formalism. He
seems not to have taken the use of non-contentual methods in mathematics to
qualify as genuine reasoning. In addition, he seems to have taken the provision
of a contentual interpretation for what Hilbert termed “ideal reasoning” (and what
he, Gentzen, termed actualist or an-sich reasoning) as important to its proper
foundation.

In these important respects, then, Gentzen’s views more nearly resembled the
anti-formalist views of Brouwer and Frege than the formalist views of Hilbert.

6 Gentzen’s Conductive Contentualism

Gentzen seems in fact to have gone out of his way both to comply with traditional
contentualist strictures on reasoning and to make clear his endorsement of them.
§9 and §17.3 of [17] provide clear confirmation of this. They are dedicated to
establishing compliance with contentualist demands as regards reasoning to actu-
alist conclusions (more accurately, reasoning to contentual conclusions expressed
by actualist sentences) in number theory.

Gentzen also took pains to show that his consistency proof for number theory
meets all reasonable demands of this type. He was particularly concerned to show
that his consistency proof provides for the finitary interpretation of the actualist
sentences of number theory, and he seems to have seen this as a necessary part of
justifying the use of actualist methods in arithmetic.

The most essential component (wesentlichste Teil) of my consistency proof . . . consists
precisely in its attachment of a finitary sense to actualist propositions (daß den an-sich
Aussagen ein finiter Sinn beigelegt wird), viz. for any given proposition, if it is proven, a
reduction rule (Reduziervorschrift) . . . can be specified, and this fact represents the finitary
sense of the proposition that is obtained precisely through the consistency proof. [17, p.
564]

My point and my claim is not that Gentzen was right to have described his proof
as providing finitary senses for actualist sentences. It is rather that he seems to have
seen it as doing so, and he seems to have seen its doing so as being in some way its
most essential feature.

Gentzen thus seems to have affirmed the traditional view that to be fully justified,
actualist methods must be contentually interpreted.

[E]ven if it should be demonstrated that the disputed forms of inference cannot lead to mutu-
ally contradictory results, these results would nonetheless be propositions without sense
(sinnlose Aussagen) and their investigation therefore a mere recreation (eine Spielerei);
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genuine knowledge (wirkliche Erkenntnisse) can be gained only by means of the unob-
jectionable (unbedenklichen) intuitionist (or finitist, as the case may be) forms of inference
[17, p. 564] (emphases as in text)21

Gentzen then went on to consider what value (Erkenntniswert) (loc. cit.) there
might be in uninterpreted actualist reasoning (i.e., in actualist reasoning which,
though lacking interpretation, nonetheless qualifies as actualist reasoning). He
allowed as how it might have some practical value (praktischer Wert) (ibid.) and
not be entirely useless (nicht ganz zwecklos) (ibid.) as an instrument of thinking.
This was not, however, for him an adequate substitute for its providing a genuine
contentual justification for its conclusion.

This too is similar to the things intuitionists said about the value of actualist
reasoning. We already noted one such point by Brouwer in his concession that actu-
alist reasoning might be “an efficient . . . technique for memorizing mathematical
constructions, and for suggesting them to others” [9, p. 140].22 He even allowed as
how it might be contentually reliable over a certain range of cases.

Suppose that an intuitionist mathematical construction has been carefully described by
means of words, and then, the introspective character of the mathematical construction
being ignored for a moment, its linguistic description is considered by itself and submitted
to a linguistic application of a principle of classical logic. Is it then always possible to
perform a languageless mathematical construction finding its expression in the logico-
linguistic figure in question?
After careful examination one answers this question in the affirmative (if one allows for
the inevitable inadequacy of language as a mode of description) as far as the principles of
contradiction and syllogism are concerned; but in the negative (except in special cases) with
regard to the principle of excluded third . . . [9, p. 140]

What neither Brouwer nor Gentzen was willing to grant, though, and what in the
end seems to have constituted their deepest difference with Hilbert, is that actualist
reasoning might be an acceptable replacement for contentual reasoning were its
syntactical consistency with finitary contentual reasoning to be finitarily proven.

Gentzen’s contentualist convictions seem to have stemmed from a view that non-
contentual “reasoning” is not genuine reasoning at all, that it is fundamentally a
type of game and that it cannot therefore properly be a part of a genuine science of
mathematics (cf. [17, p. 564]).

This was in fact the common attitude of the late nineteenth and early twentieth
centuries. The thinking was that what essentially separates science from a game
is applicability. A genuine science is (at least potentially) applicable. A game is
not. What makes genuine sciences applicable and games not is that the former, in

21Compare this to the remark by Brouwer, quoted earlier, that “even if [actualist reasoning] cannot
be inhibited by any contradiction that would refute it, it is none the less incorrect, just as a criminal
policy is none the less criminal even if it cannot be inhibited by any court that would curb it,” [7,
p. 336] brackets added.
22Gentzen could not have read this text of course. There are, though, earlier texts which express
similar ideas. Cf. [6] and [7] for related, though less firm endorsements of the utility of classical
reasoning as a certain type of instrument to guide our thinking.
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contrast to the latter, express thoughts or contents and, in doing so, they describe the
world and so become applicable to it.

Frege expressed these ideas clearly in the second volume of the Grundgesetze.

Why can one make no application (keine Anwendung machen) of a position (Stellung) of
chess figures? Clearly because it expresses no thought (es keinen Gedanken ausdrückt).
. . . Why can one make applications of arithmetical equalities? Only because they express
thoughts (nur weil sie Gedanken ausdrücken). How could we possibly apply an equation
which expressed nothing, was nothing more than a group of figures (Figurengruppe) to be
transformed (umgewandelt) into another group of figures by certain rules! It is applicability
alone (Anwendbarkeit allein) that raises (erhebt) arithmetic from a game to the rank of
science. Is it a good thing (wohlgetan), then, to exclude from arithmetic that which is
necessary for it to be a science? [11, §91]

Hilbert saw little to justify such thinking. He accepted the idea that mathematics
ought to be applicable. He did not however accept the traditional descriptive
paradigm of application—that application essentially consists in or at least requires
description (i.e., expression of a true thought or content). He adhered instead to the
Berkeleyan idea that, though the application of reasoning to reality may require that
its conclusion be interpretable (i.e., that it admit of interpretation by a true thought
or content), the same is not true of the various steps of reasoning that lead to that
conclusion.

Actualist sentences were in Hilbert’s view instruments of thought and their use
was essentially axiomatic in character—that is, it was completely governed by
explicit (i.e., syntactically stated) rules of usage. By this he seems to have meant
that actualist sentences do not function contentually, and that, accordingly, their
justified use does not require semantical interpretation, be it constructive or actualist
in character.

As Hilbert’s saw it, Brouwer operated with substantially the same scheme of
distinctions and made essentially the same mistakes that Frege did. He assumed
not only that application requires interpretation but also that the rules according to
which the formal operations of ideal reasoning proceed are in some sense convened
or chosen.

This, to Hilbert, was a distorting oversimplification. As he saw it, the rules
according to which time-tested ideal reasoning proceeds are laws according to which
our reasoning most effectively proceeds. We do not merely choose or convene them.
Rather, we experiment with various instruments of reasoning in order to test their
effectiveness, and we subject them to metamathematical investigation to determine
their consistency with the results of real reasoning. Those which survive such
testing represent the accumulated experience and prudence of the larger community
of mathematical reasoners. The discovery and metamathematical vindication of
such laws, in Hilbert’s view, deserved to be made the chief focus of foundational
investigation.

The formula game (Formelspiel) that Brouwer so dismissively judges (wegwerfend urteilt)
has, besides its mathematical value, an important general philosophical significance. For
this formula game is carried out according to certain definite rules, in which the technique
of our thinking is expressed. These rules form a closed system that can be discovered
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and definitively stated. The fundamental idea of my proof theory is none other than to
describe the activity of our understanding, to make a protocol of the rules according to
which our thinking actually proceeds. Thinking (Das Denken), it so happens, parallels
speaking and writing: we form statements and place them one behind another. If any totality
of observations and phenomena deserves to be made the object of a serious and thorough
investigation (ernsten und grundlichen Forschung), it is this one . . . [27, pp. 15–16]

The discovery and metamathematical vindication of formal methods of reasoning
was thus, in Hilbert’s view, far from being a game. It was rather, in a profound sense,
the investigation of the laws of human thinking and, as such, deserved to be made a
chief focus of foundational research in mathematics.

7 Conclusion

Hilbert and Gentzen were not formalists of the same type. Specifically, Hilbert
advocated a version of Conductive Formalism while Gentzen did not. More
specifically, Gentzen held a fairly traditional contentualist view of the nature of
proof while Hilbert rejected such a view, and, indeed emphasized the importance
of the use of non-contentual methods in mathematics to the overall development of
mathematical knowledge.

Hilbert was in fact emphatic on this point. His conviction reflected his observa-
tion of the fruitful uses that had been made of non-contentual methods of reasoning
throughout the history of mathematics. It also reflected his general view of the place
of idealization in mathematics and in modern science generally.

According to this view, scientific mathematics not only does not require interpre-
tation, it does not generally invite it. The reason is the characteristic use it makes of
simplifying idealizations.

The reasoning that stems from such idealizations is not intended to be interpreted
and, generally speaking, it is neither necessary nor desirable that it should be. All
that is required is that it be shown not to conflict with the results of the real or
contentual (i.e., the non-idealizational) parts of the given science.

Such separation of mathematical reasoning from contentual interpretation was a
central element of Hilbert’s formalism.

Gentzen, by contrast, was committed both to a contentualist understanding of
proof and to a view to the effect that to properly found a body of mathematical
reasoning requires providing an interpretation for it. In fact, as noted above, he
described as a key virtue of his consistency proof for classical first-order arithmetic
that it provides finitary senses for actualist propositions (cf. [17, p. 564]).23

23Gentzen in fact raised the possibility of the need for a second type of interpretation for classical
arithmetic—one which provides actualist interpretations of actualist sentences. Cf. [17, p. 565].
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If this is right, then Gentzen cannot plausibly be described as having been a
formalist of the sort Hilbert was. He was not, in particular, a conductive formalist.
He did not emphasize, as Hilbert did, the importance of non-contentual methods as
means of conducting mathematical reasoning. He seems not in fact to have seen the
use of non-contentual methods as constituting genuine reasoning at all. Still less did
he see it as the glory of modern mathematics.
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The Use of Trustworthy Principles in a Revised
Hilbert’s Program

Anton Setzer

Abstract After the failure of Hilbert’s original program due to Gödel’s second
incompleteness theorem, relativized Hilbert’s programs have been suggested. While
most metamathematical investigations are focused on carrying out mathematical
reductions, we claim that in order to give a full substitute for Hilbert’s program, one
should not stop with purely mathematical investigations, but give an answer to the
question why one should believe that all theorems proved in certain mathematical
theories are valid.

We suggest that, while it is not possible to obtain absolute certainty, it is possible
to develop trustworthy core principles using which one can prove the correctness of
mathematical theories. Trust can be established by both providing a direct validation
of such principles, which is necessarily non-mathematical and philosophical in
nature, and at the same time testing those principles using metamathematical
investigations. We investigate three approaches for trustworthy principles, namely
ordinal notation systems built from below, Martin-Löf type theory, and Feferman’s
system of explicit mathematics. We will review what is known about the strength up
to which direct validation can be provided.

1 Reducing Theories to Trustworthy Principles

In the early 1920s Hilbert suggested a program for the foundation of mathematics,
which is now called Hilbert’s program. As formulated in [40], “it calls for a
formalization of all of mathematics in axiomatic form, together with a proof that
this axiomatization of mathematics is consistent. The consistency proof itself was
to be carried out using only what Hilbert called ‘finitary’ methods. The special
epistemological character of finitary reasoning then yields the required justification
of classical mathematics.” Because of Gödel’s second incompleteness theorem,
Hilbert’s program can be carried out only for very weak theories. Because of this
failure (see, e.g., [40, 44]) a relativized Hilbert’s program has been suggested by
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Kreisel (Zach [44] cites [17–19]), and then further developed by Feferman [7–10].
In the approach by Feferman [7, 9], one considers two frameworks F1 and F2. F1
could mean infinitary, F2 finitary, or F1 mean nonconstructive,F2 constructive (see
p. 367 of [7]). Consider for i 2 f1; 2g certain theories Ti formulated in languages
Li corresponding to frameworks Fi . Let ˆ be a primitive recursive subset of the
formulae of L1 \ L2. Let U be a third theory, usually a very weak theory such as
PRA. Then combining [8, 10], we have T1 � T2Œˆ� in U , if there exists a partial
recursive function f such that

1. if p is a proof in T1 of a formula ' in ˆ, then f .p/ is a proof of ' in T2;
2. (1) can be shown in U .

Feferman presents many examples of such reductions.
This program of reductive proof theory gives rise to many interesting connections

between various theories which provides us with a broad picture of mathematical
theories and their relationship. While being very insightful and resulting in lots of
metatheorems, it fails to answer the initial question by Hilbert, namely: do I know
that my original theory T1 is consistent? Or widening it in the sense of Kreisel and
Feferman: If I have proved in theory T1 a mathematical statement, do I know that it
is valid? If we take say a proof of Fermat’s last theorem, do we know that there is
actually no counter example to this theorem? From Gödel’s second incompleteness
theorem it follows that there is no mathematical argument that excludes that there
is at the same time a proof of Fermat’s last theorem in a theory T1 and a counter
example (unless T1 is very weak), without assuming at least the consistency of
another theory of at least equal strength.

Many mathematicians evade this problem and say that all they want is to have
a proof which can be formulated in, for instance, Zermelo–Fraenkel set theory.
However, this is not what mathematics is intended for. Mathematics is not just a
glass bead game in the sense of Hesse [15], a formal game of finding strings of
symbols which follow certain decidable rules. The goal of mathematics is, as any
science, to establish truth about real properties. In case of Fermat’s last theorem, we
want to know whether there are no numbers violating it.

What we can do, in the sense of Kreisel and Feferman, is to reduce T1 to another
theory T2, which is essentially as strong as T1, and then obtain that T2 proves as well
the mathematical theorems of T1 we are interested in. Any mathematical argument
will only reduce T2 further to another theory T3. So in order not to continue going
in circles, we need to reduce T1 to one theory T2 for which we can give reasons why
we believe that everything it proves (possibly restricted to a subset of statements) is
valid.

At this point pure mathematical reasoning ends. No matter what we do, we
cannot obtain absolute certainty. However we can establish trust. Trust does not
mean blind faith. Trust is established by convincing ourselves in the best possible
way that what we trust in does not break. This means that we carefully investigate
the principles underlying T2, examine them, and give an argument why we can trust
them. However, such an analysis can never be done in a purely mathematical way—
if we do this, then we just reduce T2 to a third theory T3, namely the theory in which
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the argument of the correctness of T2 is formulated, and we just have added a new
theory to our chain of theories.

However, what we can do, and many constructive and semi-constructive theories
have been developed for this purpose, is to formulate theories T2 where these
principles are as pure and clean as possible. Then we can carry out two further
steps:

1. We can formulate as precisely as possible an argument why we believe that we
can trust in those principles. Note that this is no longer a purely mathematical
argument. However, making it as precise as possible is a very valuable exercise,
since it could reveal any possible flaws in those principles.

2. Since an argument as in (1) does not have the status of a mathematical theorem,
it can never provide absolute certainty.1 Therefore what is needed is to carry out
additional testing. Note that mathematicians will in many cases still test their
mathematical theorems even if they have proven them, however usually only in
order to detect possible flaws in their proofs.

How do we test a theory?

• We can look at theorems provable in T2 and check whether the theorems actually
are true (e.g. in case of Fermat’s last theorem that there is no counter example).
However, there is one problem, namely that by the results of reverse mathematics
we know that most mathematical theorems require very little proof theoretic
strength. So such tests do not explore the limits of the theory.
Peter Dybjer has in [3] suggested to develop meaning explanations for Martin-
Löf type theory (MLTT) based on the principle that for each judgement of type
theory a test is given. The judgement is valid if it passes all tests. Once carried
out in full ([3] provides only the basic idea) one obtains for every provable
judgements of type theory a test for its validity. Dybjer’s article was a major
inspiration for this part of the article.

• Ordinal analysis, or any other proof theoretic analysis (e.g. normalisation proofs)
is a very strong test, because it tests the theory at its limits. However, this does not
establish absolute certainty. When the author was pointing out to Per Martin-Löf
that Michael Rathjen had told the author that he knows that …1

2-CA is consistent
because he has proof theoretically analysed it, Martin-Löf pointed out that he had
an inconsistent type theory and a normalisation proof of it. The problem was that
the normalisation proof was carried out in an inconsistent theory. So even a cut
elimination or normalisation argument does not guarantee the consistency of the
theory.

1Of course even mathematical theorems can never give absolute certainty as outlined before. One
can think as suggested by one of the referees that a short carefully checked mathematical proof that
uses no controversial principles is the paradigm of practical certainty. However, unless one uses
extremely weak principles, Gödel’s incompleteness theorem applies here as well—even though it
is unlikely that an inconsistency is used, we cannot exclude it.
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Does this mean that we should give up proof theoretical analysis and normalisa-
tion proofs? No, not at all. If a theory is inconsistent, it is likely but not guaranteed
that the inconsistency will be found when analysing it proof theoretically. A proof
theoretic analysis is up to now one of the strongest ways to stretch a theory
to its limits, because it requires to use principles which cannot be reduced to
simpler ones. We can often reduce theories which are more expressive to less
expressive ones of equal strength in such a way that the reduction shows that
they are equiconsistent. However, we cannot reduce a proof theoretic stronger
theory to a weaker one, unless both are inconsistent. A proof theoretic analysis
needs to distinguish theories of different strength and therefore needs to make
use of the principles which are responsible for its strength and which cannot be
reduced to weaker ones.
One reason why a proof theoretic analysis is of big significance was pointed
out by one of the referees of this article, who wrote “Something that makes
specifically ordinal-theoretical proof-theoretical analyses of a theory particularly
convincing is that in many cases there is a big difference between the metatheory
and the object theory; whereas with normalisation proofs based on Tait-style
computability, or Girard-style ‘candidates’, the metatheory is (more-or-less) the
theory itself together with a uniform reflection principle. Something would be
far wrong if one could not prove a normalisation theorem for Church’s theory of
types in such a metatheory; but the extra confidence one gets in the principles
formulated therein from a normalisation theorem is tiny.”

• In general, any metamathematical analysis of a theory is a test of it. It requires
to investigate all axioms and rules of the theory in detail. And if there is an
inconsistency in a theory, there is the possibility that one discovers it when
carrying out this analysis.2 If one does not discover any problem, we know at
least that any derivation of an inconsistency must be increasingly complicated,
since it escaped such a careful analysis. So even if a theory is eventually found
to be inconsistent, it is likely that most proofs carried out in it do not make use
of it, and we can replace them by proofs in a weaker theory, which does not have
this inconsistency.

Therefore there is the need to define mathematical theories in which we can
put our trust and describe as clearly as possible the reasons why we trust in the
consistency of those theories.

1.1 Does the Consistency Problem Matter?

When discussing the problem about consistency, many mathematicians will wonder
why there is a problem. Zermelo–Fraenkel set theory (ZF) has been in use since

2However, we can never be certain since the metatheory in which the analysis is carried out would
be inconsistent as well.
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1922. Most of mathematics can be carried out in extensions of it, and it has been
analysed thoroughly by set theorists.

However, as we know from reverse mathematics, most mathematical proofs can
be carried out in theories which are proof theoretically very weak compared to ZF,
therefore mathematical proofs will not explore the limits of ZF. Metamathematical
investigations have not really stretched theories having the strength of ZF or greater
by themselves, but only investigated such theories relative to other theories of
strength of at least that of ZF. Proof theory has succeeded to analyse in unpublished
form (Arai [1], see as well [2]) theories of strength Kripke–Platek set theory C…1-
Collection CV D L (which embeds .†13 � DC/C BI and .†13 � AC/C BI). In fully
published form Rathjen has analysed [33] the theory of Kripke–Platek set theory
plus the existence of one stable ordinal, which embeds .�1

2 � CA/C .BI/C .…1
2 �

CA/�, where .…1
2 � CA/� is parameter free…1

2 � CA. These theories have strength
well below that of ZF, and already here interesting phenomena were discovered
which were very difficult to harness proof theoretically. Writing down those results
has taken a long time. Most likely the reason why an analysis has been so difficult
is that our technology is not evolved enough to harness that strength. However, as
long as we have not analysed proof theoretically full set theory, it cannot be ruled
out that there is an inconsistency lurking somewhere.3

Martin-Löf said in his talk at the conference “100 years of intuitionism” at Cerisy
([24], p. 254) that we are not certain that set theory is consistent. He stressed his
point using a quote by Woodin.4 He talked as well about the second failure of
Hilbert’s problem, which is due to technical difficulties in reaching …1

2 � CA and
beyond.5

Many mathematicians have experienced that sometimes when they get stuck with
proving a theorem the underlying reason is that the theorem is actually false. This
psychological argument does not prove anything, especially, since when getting
mathematically stuck, often all that is needed is a better idea in order to prove
the theorem. However, it should provide at least for the highly sceptical scientist a
strong motivation to continue with the proof theoretic project. Hilbert said “We need

3And even if we have, a validation argument needs to be carried out.
4“Just as those who study large cardinals must admit the possibility that the notions are not
consistent” [43, p. 330].
5Martin-Löf puts …1

2 � CA on the other side of the “abyss”, because the analysis by Rathjen only
reduces it to some set theoretic ordinal notation system. Rathjen is here following a successful
tradition in the Schütte school of proof theory, and the author believes that this is already the
major step in constructivising this theory. The author does not see at this moment any principal
reason apart from effort and time why the resulting ordinal notation system cannot be proved to
be well-founded in a suitable constructive theory. However, as long as such a reduction to a fully
constructive theory has not been carried out, the analysis by Rathjen remains incomplete, and one
could therefore at this moment in time place …1

2 � CA, as Martin-Löf did, on the other side of the
“abyss”. See however the discussion in Sect. 5 about the limits of constructivism, which indicates
that it might be very difficult to carry out the necessary constructivisation.
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to know, we will know”.6 The future development of proof theory will hopefully
decide whether set theory is consistent or not.7 Of course, even if one ever found an
inconsistency, it most likely has no effect on everyday mathematics (which is often
anyway on the surface carried out in naive set theory, which is inconsistent).

2 Well-Foundedness of Ordinal Notation Systems

Since the work of Gentzen, the main step in proving the consistency of reference
theories in proof theory is ordinal analysis; other theories are then reduced using
various techniques to these reference theories.8 Ordinal analysis amounts to showing
that the consistency of a theory can be shown in PRA C TIqf.˛/. Here PRA
is primitive recursive arithmetic, and TIqf.˛/ is the principle of quantifier free
transfinite induction up to ˛ for a specific ordinal notation system. The formula
TIqf.˛/ is defined as follows: Let '.x/ be a quantifier free formula in the language
of PRA. The formula Prog.'; ˛/, meaning ' is progressive up to ˛, is defined as
8ˇ < ˛:..8� < ˇ:'.�// ! '.ˇ//. Now TIqf.˛/ is the statement that for all such
quantifier-free formulae ' we have that Prog.'; ˛/ implies 8ˇ < ˛:'.ˇ/. We will
in the following sometimes replace in notions such as TIqf.˛/ the ordinal ˛ by an
ordinal notation system .A;</. Here, an ordinal notation system .A;</ is a linearly
ordered set .A;</, such that A is a primitive recursive subset of N and < � A � A
is primitive recursive. So with notations such as TIqf.˛/ we introduce as well for
ordinal notation systems .A;</ the notion TIqf.A;</ for which we write as well
TIqf.A/.

We assume that Tait’s article [41], in which he argues that PRA corresponds to
finitary methods, provides sufficient arguments for validating the proof principles of
PRA. So in order to validate PRA C TIqf.˛/, one needs to validate the principle of
TIqf.˛/. So assume ' is progressive up to ˛. Since ' is quantifier free, it is decidable,
and we get '.ˇ/ _ :'.ˇ/, and can argue indirectly. Assume that for ˇ0 WD ˇ we
have that '.ˇ0/ does not hold. Then by searching through all ordinal notations and
using the decidability of ', we can find recursively an ordinal ˇ1 < ˇ such that
:'.ˇ1/ holds. Continuing we find ˇ2 such that :'.ˇ2/ holds. By continuing his
process we obtain a recursive sequence ˇ0 > ˇ1 > � � � such that :'.ˇi / holds for
all i . Note that this argument requires Markov’s principle, however not as a principle
of our theory, but as a metamathematical principle. Note as well that, if we have any

6German: “Wir müssen wissen. Wir werden wissen.”
7Of course in case of a positive answer a validation argument needs then to be carried out.
8Of course often consistency is shown using normalisation proofs without ordinal analysis,
however, as pointed out before when quoting the referee in Sect. 1.1, in a proof theoretic analysis a
reduction to a quite different (very slim) theory is carried out whereas in normalisation proofs we
usually reduce the consistency to a slight extension of the theory in question, and therefore do not
gain such a deep understanding of the proof theoretically strong principles.
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proof of a theorem which is not correct, it must contain (unless there is a problem
with PRA) a concrete quantifier free ' and a concrete ˇ < ˛ for which the principle
of transfinite induction up to ˇ < ˛ is violated. From ' and ˇ we will then obtain
a concrete infinite descending sequence. So in order to validate our theory, we need
to validate that there is no recursive infinite descending sequence of ordinals < ˛,
which we call NRDS.˛/.

We will look now at the steps towards validating that �0 is well-founded. First
of all, we can rule out an infinite descending recursive descending sequence of
natural numbers and therefore validate NRDS.!/. If we assume NRDS.A;<A/
and NRDS.B;<B/ for linearly ordered sets .A;<A/ and .B;<B/ we can validate
NRDS.A�B;<lex/where<lex is the lexicographic ordering onA�B w.r.t.<A;<B .
For if we had an infinite descending sequence .an; bn/n2N, we immediately see that
a0 �A a1 �A a2 � � � � . Furthermore, for every n we can find m > n s.t. am <A an.
For as long as an D am for n < m we have bn >B bnC1 >B � � � >B bm. This
descending recursive sequence of bi will eventually stop, so there must be anm > n

s.t. am <A an, which we can find recursively. By iterating this we find an infinite
descending sequence .ank /k2! in A, which does not exist. Note that the purpose of
this exercise is not proving in a formal theory TIqf.A � B/ but that we can get a
direct insight into NRDS.A � B/ and therefore of TIqf.A � B/.

Up to now we were working with recursive sequences, which corresponds to
quantifier free induction. Using the validation of well-foundedness of ! and of the
lexicographic ordering on the products, we can validate transfinite induction up to
!n which is provable in PRA which has proof theoretic ordinal !! . In order to
prove transfinite induction up to an ordinal ˛ � !! , quantifier free induction on !
is no longer sufficient. This translates into the non-existence of descending (possibly
non-recursive) sequences in ˛, which we call NDS.˛/. For instance, induction
over arbitrary arithmetical formulae corresponds to non-existence of arithmetically
definable descending sequences in !. Note that NDS.˛/ implies NRDS.˛/ which
as stated before validates TIqf.˛/.

So we will now, instead of validating NRDS.˛/, validate the stronger principle
NDS.˛/, which means we leave a fully constructive approach.9 Even if it is
nonconstructive, we consider it still to be possible to carry out a validation argument
based on this notion. We can in our opinion validate NDS.!/, which means we can
get a direct insight that this principle is valid. Using the same argument as before
we can in our opinion validate that the principle NDS is closed under forming the
lexicographic ordering for the product of two orderings.

Now assume NDS.A;<A/. Consider Adec, the set of finite sequences (or lists)
of elements .a1; : : : ; ak/ of A such that a1 >A � � � >A ak . Let <lex be the
lexicographic ordering on finite sequences of elements in A based on <A. We vali-

9Constructive, if one regards Markov’s principle as constructive.
In fact we will need NDS.A0; <A0/ only for intermediate notation systems .A0; <A0/ used for
validating NDS.˛/. For the final system, NRDS.˛/ is all what is required, which is implied by
NDS.˛/.
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date NDS.Adec; <lex/. Assume a descending sequence .an;0; an;1; : : : ; an;kn�1/n2! .
We immediately see that an;0 is defined (i.e. kn � 1) and weakly descending,
i.e. a0;0 �A a1;0 �A a2;0 �A � � � . Because there is no infinite descending sequence
in A, this sequence must eventually become constant. Assume it is constant from
n D n0 onwards. Then for n � n0 we have that an;1 is defined (i.e. kn � 2)
and forms a descending sequence an0;1 �A an0C1;1 �A an0C2;1 �A � � � in A. That
sequence will eventually become constant for n � n1 for some n1. Therefore an;2
is descending for n � n1 onwards and will become constant for n � n2 for some
n2. By continuing this process we obtain a sequence of natural numbers .ni /i2! and
have an0;0 D an1;0 >A an1;1 D an2;1 >A an2;2 >A � � � . So we obtain an infinite
descending sequence an0;0 >A an1;1 >A � � � in A which does not exist, and have
therefore shown that there is no infinite descending sequence in .Adec; <lex/. Note
that we cannot determine n0; n1; : : : , so NRDS.A/ is not sufficient to carry out this
argument.

This argument validates transfinite induction on .Adec; <lex/. Ordering on ordi-
nals in Cantor Normal Form (CNF) ˛ D !˛1n1 C � � � C !˛knk is the same as the
double lexicographic ordering on ..˛1; n1/; : : : ; .˛k; nk//. Let .A;</ be an ordinal
notation system. Let CNF.A/ be the set of terms obtained by applying once CNF
to elements in A, ordered correspondingly. CNF.A/ is isomorphic to a subset of
..A�.!n0/;<lex/dec; <lex/

10 which in turn is isomorphic to ..A�!;<lex/dec; <lex/.
The order type of CNF.A/ is !˛ , if the order type of A is ˛. This means that, if we
have validated NDS.˛/, we have validated NDS.!˛/.

Therefore we can validate NDS.!n/ and therefore at least TIqf.!n/ where !0 D
!, !nC1 D !!n . Since �0 D supn2! !n we have validated quantifier free transfinite
induction up to all ordinals less than �0.

Gentzen showed that PRA C TIqf.�0/ proves the consistency of PA, which was
considered as a proof of the consistency of PA. The belief that this proof shows
the consistency of PA (in an absolute way) must be based on some argument
which validates PRA C TIqf.�0/, and we have given one such argument. The above
argument has shown the validity of the consistency of PA. Therefore it follows, for
instance, that, if we have shown in PA Fermat’s last theorem, then there can be no
counter example.

In our articles [36, 37] we extended this approach to ordinal notation systems
from below. Up to the strength of .…1

1 � CA/0 we were able to give arguments,
which we regard as a validation of transfinite quantifier-free induction up to those
ordinals. When reaching higher ordinals, the direct insight into the well-foundedness
rests necessarily upon principles of increasing proof theoretic strength. Note that
according to the results of reverse mathematics, most real mathematical theorems
can be shown in .…1

1 � CA/0 , so most of mathematics can be validated by pure
ordinal analysis. Beyond that strength, we could develop ordinal notation systems
from below, but could only give a formal well-foundedness proof, which then needs
to be carried out in another theory of at least equal strength. It is no accident that

10Those sequences ..a1; n1/; : : : ; .ak; nk// s.t.a1 > � � � > ak .
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this happens when moving from .…1
1 � CA/0 to …1

1 � CA, since the argument is
based on the concept of well-foundedness, which is a…1

1-concept, and one needs in
some form a principle, which goes beyond…1

1, in order to validate…1
1 � CA.

3 Martin-Löf Type Theory

With increasing strength, ordinal notation systems for describing the proof theoretic
ordinal of theories become increasingly complicated. Therefore, the complexity of
the well-foundedness proofs for these ordinal notation systems increases as well.
Correspondingly, it becomes increasingly difficult, if possible at all, to validate
the well-foundedness of the ordinal notation system directly. A solution for this
problem is to make a second step and prove the well-foundedness of the ordinal
notation system in a second theory for which one can carry out a validation argument
more directly. Hilbert wanted originally to validate theories involving the infinite by
reducing them to finitary methods. A suitable generalisation of finitary methods are
constructive theories, in which the elements of sets are still finite objects, or terms.
In order to deal with function spaces, we need reduction rules for terms, for instance
nC S.m/ reduces to S.nCm/. This allows to determine elements of function types
as terms which applied to elements of the argument type are elements of the result
type, or reduce to such an element. So infinite objects (full functions) are replaced
by finite objects (programs or terms).

The addition of recursive functions as finitary objects was the motivation of
Gödel in his Dialectica paper [13], where he writes (p. 282, translation p. 245 of
[11]): “It is the second requirement that must be dropped. This fact has hitherto been
taken into account by our adjoining to finitary mathematics parts of intuitionistic
logic and the theory of ordinals. In what follows we shall show that, for the
consistency proof of number theory, we can use, instead, the notion of computable
function of finite type on the natural numbers and certain elementary principles of
construction for such functions.”11

Gödel’s Dialectica interpretation was still referring to classical logic, and is
usually used mainly as a proof theoretical tool rather than being considered as
an approach to obtaining a foundation of mathematics. A more radical approach
was taken in MLTT.12 MLTT is, as Martin-Löf phrased it once to the author (we

11“Es ist die zweite Forderung, welche fallen gelassen werden muss. Dieser Tatsache wurde bisher
dadurch Rechnung getragen, dass man Teile der intuitionistischen Logik und Ordinalzahltheorie
zur finiten Mathematik adjungierte. Im folgenden wird gezeigt, dass man statt dessen für den
Widerspruchsfreiheitsbeweis der Zahlentheorie auch den Begriff der berechenbaren Funktion
endlichen Types über den natürlichen Zahlen und gewisse sehr elementare Konstruktionsprinzipien
für solche Funktionen verwenden kann.”
12The standard reference is Martin-Löf’s book [20]. The article [28] contains a good concise
summary of the rules of MLTT (starting p. 162), however the rules for ! and �, which make
it a partial type theory, the topic of that article, need to be omitted. Another listing can be found
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unfortunately do not remember the precise wording), the most serious attempt to
develop a theory such that we have an insight that all judgements are valid. Those
not familiar with MLTT are often perplexed by the large number of its rules. The
reason for having such a large number of rules is that this theory is not defined so
that it has a shortest description. Instead it is designed so that we can get an insight
into the validity of all provable judgements.

In MLTT we have non-dependent judgements of the form

• a W A for a is of type A,
• a D b W A for a; b are equal elements of type A,
• A W Set for A is a set,
• A D B W Set for A;B are equal sets.

Dependent judgements have the form x1 W A1; : : : ; xn W An ) � where � is a
non-dependent judgement, with free variables in x1; : : : ; xn.

We have as rules

• structural rules (rules for dealing with contexts, assumptions, and the definitional
equalities a D b W A and A D B W Set);

• formation rules (which introduce sets, e.g. conclude N W Set);
• introduction rules (which introduce a canonical element, an element starting with

a constructor, e.g. for N derive 0 W N and from a W N derive S.a/ W N);
• elimination rules, e.g. higher type primitive recursion in case of N,
• equality rules (e.g. deriving that if t.x/ is defined by higher type primitive

recursion into type B.x/, with base case a W B.0/, that t.0/ D a W B.0/);
• and equality versions of the formation, introduction and elimination rules

(e.g. deriving S.a/ D S.a0/ W N from a D a0 W N).

The validation argument for MLTT is done via meaning explanations.13 In meaning
explanations, one determines the meaning of each judgement. Then one validates
for each rule that, if the premises are valid w.r.t. meaning explanations, so is the
conclusion. Therefore all judgements provable are valid.

Elements of sets can be canonical elements, which are formed by the introduction
rules. For instance, S.2 C 2/ is a canonical element of N. Non-canonical elements
are considered by Martin-Löf (see, e.g., [20]) as programs, which evaluate to a
canonical element. Canonical elements are special cases of non-canonical elements,

in the author’s article [35], where everything was made precise in order to be able to carry out a
proof theoretic analysis. Arne Ranta’s book [29] contains a nice introduction to MLTT. Nordström
et al.’s book [26] is an excellent reference for MLTT, and there is the more recent and more concise
handbook version [25].
13We could not find a definite and complete reference to meaning explanations. Martin-Löf’s
articles and book [20–23] introduce meaning explanations when discussing the rules of type theory.
Tasistro’s Ph.D. thesis [42] describes meaning explanations if one uses explicit substitutions (see as
well a short reference in the more accessible article [12]). The author has in [39] given an account
of his understanding of meaning explanation with a variation in order to accommodate coalgebraic
data types defined by their elimination rules.
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which as programs evaluate to themselves. Martin-Löf (private communication)
considers the concept of a program, for which we have a direct insight how it
operates, as crucial for understanding his meaning explanations.

The meaning of A W Set is given by determining what its canonical elements are
and when two canonical elements are equal. The meaning of a W A is that a is a
non-canonical element of A. The meaning of the judgement a D a0 W A is that a; a0
are equal elements ofA, which means that they evaluate to equal canonical elements
of A.

In case of N we have that 0 is a canonical element, and, if n is an element of
N, then S.n/ is a canonical element of it. 0 is equal to 0, and if n;m are two equal
elements of N, then S.n/ and S.m/ are equal canonical elements of it.

The meaning of the judgementA D B W Set is that A and B are equal sets which
means that canonical elements of A are canonical elements of B and vice versa, and
equal canonical elements of A are equal canonical elements of B and vice versa.

For determining the meaning of dependent judgements, we introduce abbrevi-
ations Ex for x1; : : : ; xn, similar for Ea, Ea0 (referring to a0

i ), and Exk for x1; : : : ; xk ,
similar for Eak; Ea0

k . A dependent judgement

x1 W A1; x2 W A2.x1/; : : : ; xn W An.Exn�1/ ) �.Ex/

is valid if for every choice of elements

a1 W A1; a2 W A2.a1/; : : : ; an W An.Ean�1/

the judgement �.Ea/ is valid. One needs as well that for equal elements

a1 D a0
1 W A1; a2 D a0

2 W A2.a1/; : : : ; an D a0
n W An.Ean�1/

the equality judgements in the conclusion holds: If � D .A W Set/ we require that
A.Ea/ D A.Ea0/ W Set holds, in case � D .a W A/ we require that a.Ea/ D a.Ea0/ W A.Ea/
holds. Judgement A D B W Set presupposes A W Set, B W Set, judgement a W A
presupposesA W Set, judgement a D b W A presuppose a W A, b W A. The judgement

x1 W A1; : : : ; xn W An.Exn�1/ ) �.Ex/

presupposesA1 W Set, x1 W A1 ) A2.x1/ W Set, etc., and as well

x1 W A1; : : : ; xn W An.Exn�1/ ) � 0.Ex/

for any presupposition � 0.Ex/ of �.Ex/.
Adding the meaning of the presuppositions of judgements (applied transitively)

to the meaning of a judgement gives the full meaning of the judgement.
Now one can easily validate structural rules, formation rules, introduction rules,

and their equality versions. Elimination rules are more difficult to validate (and
that’s where an increasingly high level of trust is required). In case of N, in the
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simple case where we derive x W N ) t.x/ W B.x/ by primitive recursion, we
validate that t.0/ W B.0/ and if we have x W N and t.x/ W B.x/ are valid, so is
t.S.x// W B.S.x//. Now one sees that for each element of a of N as given by the
meaning explanations t.a/ W B.a/. This holds first for canonical elements, by going
through what we said constitutes a canonical element of N, and checking for each
canonical element a that t.a/ W B.a/ is validated. For non-canonical elements, the
reduction of t.a/ is given by first reducing a to canonical form 0 or S.a0/, and then
applying the reductions corresponding to the base case or induction step. Therefore
the rules are validated as well for non-canonical elements.

The key principle one needs to trust is the correctness of the elimination rules
for the inductively defined sets N, W-type, and universes. We cannot get around
the fact that we cannot prove the consistency of MLTT, so when moving to proof
theoretically stronger principles, one needs to trust the validity of the rules for proof
theoretically stronger sets. We cannot avoid this, but the author believes that one can
trust in the principles involved.

3.1 Induction-Recursion and the Mahlo Universe

The validation of principles works well for concrete inductive-recursively defined
sets, as long as we do not make use of the full logical framework, which allows
to have A W Set or even higher types in the context.14 Therefore, one can validate
Palmgren’s superuniverse ([27], Sect. 3), but not Palmgren’s higher order universes
([27], Sect. 5) or the external Mahlo universe ([4], Sect. 6.3), which reaches at least
the strength of KPM ([4], Sect. 6.4). The strength of Palmgren’s superuniverse is not
known ([30, 31] analyse only the metapredicative version without the W-type), but
substantially exceeds that of MLTT with W and one universe.15 The latter theory
was analysed by Griffor and Rathjen [14] and Setzer [34, 35], and has strength
slightly bigger than Kripke–Platek set theory with one recursively inaccessible, KPI.

For the Mahlo universe we have given meaning explanations in our article [38]
(not yet published). However, we cannot say that the validity of its rules are as fully

14When introducing his version of meaning explanations, the author usually avoids the logical
framework. The reason is that he has not yet found an account of meaning explanations of the
logical framework, which does not consider Set as a Russell style subuniverse of Type, and
which he considers as fully satisfactory. If Set is treated as a universe, one adds considerable
proof theoretic strength. Especially, with the rules for inductive-recursive definitions Set is closed
under the introduction rules of (a Russell style variant of) the internal Mahlo universe. In the
community of MLTT, inductive-recursive definitions is often considered as the limit of what can
be at the moment justified without making use of the Mahlo universe principle. Martin-Löf has
given presentations about how to treat the logical framework without adding additional strength,
however we could not find yet a written account of it needed in order to judge it completely.
15It is easy to conjecture the precise strength, and it would not be difficult albeit time consuming
to analyse the full version of it.
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convincing as they are for inductive-recursive definitions without use of the full
logical framework.

4 Feferman’s System of Explicit Mathematics
and the Extended Predicative Mahlo Universe

In [16] Kahle and the author have published an extended predicative version of
the Mahlo universe. This version is developed in Feferman’s system of explicit
mathematics [5, 6]. It uses the fact that in Feferman’s system one has access to
the collection of all terms, and therefore can form for every term a subuniverse of
the Mahlo universe which is relatively closed under this term considered as a partial
function. In MLTT all objects have a type and are therefore total. Therefore in MLTT
we do not have access to the collection of all terms, which in general are only partial
objects.

We regard this version [16] as being predicative (in an extended sense) and
believe that this theory can be validated. Feferman’s theory has been developed
in second order logic,16 and optimised towards a short and concise theory. While
this makes metamathematical investigations easy and makes it easily accessible
to non-specialists, it causes problems when validating the provable statements.17

It seems however that this is not a principal problem. It should be possible to
present Feferman’s theories in a style which is very close to that of MLTT, and
develop meaning explanations. This way hopefully one could validate the extended
predicative Mahlo universe in the sense of this article.

With [16] we have not reached the limit of this methodology. We have developed
draft versions which reach at least the strength of Kripke–Platek set theory extended
by …3-reflection, and it is likely that we can go far beyond with that strength.

5 The Limit of Constructivism

In [32, Sect. 6] Rathjen introduces assumptions (A0)–(A3) about possible exten-
sions MLTTC of Martin-Löf Type Theory, of which the most important one is
assumption (A3):

(A3) Every inductive definition ˆ W Pow.N/ ! Pow.N/ for generating the
elements of a type A in MLTTC and its pertinent decoding function are

16Not much of second order logic is actually used, its use is mainly for convenience rather than
need.
17We note that this is the opinion of the second author of [16] only, who is the author of the current
article.
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definable by set-theoretic †-formulae. These formulae may contain further sets
as parameters, where these sets correspond to previously defined types.

He shows (Theorem 6.1) that under these assumptions a setM such thatM �1 V is
a model of MLTTC. Here M �1 V means that M is a †1-elementary substructure
of V, where V is the set theoretic universe. This determines a limit to a constructive
program based on MLTT.

In his argument, Rathjen already admits that due to the acceptance of the Mahlo
universe as an acceptable extension of MLTT, a more strict assumption had to
be abandoned, namely that sets are introduced by monotone inductive definitions.
This already indicates that it is very difficult to determine an upper bound for a
constructive program. While it may be difficult to go beyond principle (A3), we
believe that this is only a temporary limitation—it is likely that new constructive
principles will emerge, which will be considered as acceptable but go beyond this
principle. However, drawing this line is of great benefit, since it determines the
requirements a new principle needs to fulfil in order to go beyond that limit.
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Part II
Gentzen’s Consistency Proofs



On Gentzen’s First Consistency Proof
for Arithmetic

Wilfried Buchholz

1 Introduction

If nowadays “Gentzen’s consistency proof for arithmetic” is mentioned, one usually
refers to [3] while Gentzen’s first (published) consistency proof, i.e. [2], is widely
unknown or ignored. The present paper is intended to change this unsatisfactory
situation by presenting [2, IV. Abschnitt] in a slightly modified and modernized
form.

The method from [2] can be roughly summarized as follows: By recursion on the
build-up of d , for each derivation d in a suitably designed finitary proof system Z
of first order arithmetic a family .d Œn�/n2jtp.d/j of reduced Z-derivations is defined
such that

: : :End.d Œn�/ : : : .n 2 jtp.d/j/
End.d/

.where End.d/ denotes the endsequent of d/

forms an inference tp.d/ in cutfree !-arithmetic with repetition rule Rep. Obvi-
ously, if d is a derivation of falsum ?, i.e. if End.d/ D ?, then tp.d/ can only be
an instance of Rep, so that dŒ0� is again a derivation of ?. In a second step, to each
d an ordinal o.d/ < "0 is assigned such that o.d Œn�/ < o.d/ for all n 2 jtp.d/j.
Then the consistency of Z follows by (quantifierfree) transfinite induction up to "0.

Actually Gentzen’s terminology is somewhat different. First (in Sect. 13 of [2])
Gentzen defines reduction steps on sequents. Such a reduction step I may involve
a certain ‘option’ (Wahlfreiheit), so that the result of applying I to a sequent …
actually is a family of sequents

�
I.…; n/

�
n2jIj. Then (in Sect. 14 of [2]) for each
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Z-derivation d (whose endsequent is not an axiom) a reduction step on derivations,
d ,! .d Œn�/n2jIj, is defined such that 8n 2 jIj�End.d Œn�/ D I.End.d/; n/

�
,

where I is a reduction step on sequents, uniquely determined by d . Here, in contrast
to Gentzen, we also regard Rep as a reduction step on sequents—with jRepj D f0g
and Rep.…; 0/ D ….

The outline of the paper is as follows. In Sects. 2 and 3 we repeat relevant parts
of [2] using to a great extent Gentzen’s own words (in the translation by Szabo [5]).
In the course of this we do not hesitate to deviate from the original text (in content
or form) whenever we think it is appropriate or facilitates understanding. The main
point where we deviate from [2] (besides omitting conjunction &) is the following:
In the reduction steps on sequents concerning an antecedent formula 8xF or :A
(13.51, 13.53) we always require that this formula is retained in the reduced sequent
while Gentzen allows to omit it. As a consequence we also have to modify the
reduction steps on atomic Z-derivations (which will be deferred till Sect. 6). In
Sect. 4 we present the main definitions and proofs of Sect. 3 in a more condensed
style (and with some further modifications). This facilitates the work in Sect. 5
where we assign to each Z-derivation d an ordinal o.d/ < "0 and prove that each
reduction step on a derivation d lowers its ordinal, i.e. we prove that o.d Œn�/ < o.d/
for all n 2 jtp.d/j. Our ordinal assignment is essentially that of [4] which on first
sight looks very different from Gentzen’s original assignment in [2], where certain
finite decimal fractions were used as notations for ordinals< "0. But in the appendix
we will show that actually both ordinal assignments are rather closely related. In
Sect. 7 we give an interpretation of Z in an infinitary system Z1. This way we
obtain a semantic explanation for Gentzen’s reduction steps on Z-derivations and
for the ordinal assignment of Sect. 5. Finally, in Sect. 8 we indicate how the approach
of Sects. 4, 5 can easily be adapted to calculi with multisuccedent sequents.

2 Formal Language, Reduction Steps on Sequents

The following symbols will serve for the formation of formulae: Variables (for
natural numbers) which are divided into free and bound variables; the constant 0
and the unary function symbol S (successor); predicate symbols (each of a fixed
arity); the logical connectives :;8.1

Terms are generated from the constant 0 and free variables by iterated application
of S. The terms 0;S0;SS0; : : : are called numerals. In the following we identify
numerals and natural numbers.

Formulas:

1. If P is an n-ary predicate symbol and t1; : : : ; tn are terms, then P t1 : : : tn is a
(prime) formula. If t1; : : : ; tn are numerals, then P t1 : : : tn is called a minimal
formula.

1We omit conjunction ‘&’ in order to keep the focus on the essential things.
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2. If A is a formula, then so is :A.
3. From a given formula we obtain another formula by replacing a free variable by

a bound variable x not yet occurring in the formula and prefixing 8x.

We assume that to each minimal formula a truth value “true” or “false” is
assigned.

We use ? as abbreviation for some fixed false minimal formula (e.g. 0 D S0).
Abbreviation. A 	 B W, either A D B or A;B are both false minimal

formulas.

Remark A 	 ? , A is a false minimal formula.

A sequent is an expression of the form 	!B where 	 is a finite sequence of
formulae.

The formulae in 	 are called the antecedent formulae and B the succedent
formula of the sequent. We also call 	 the antecedent of 	!B .

A formula (sequent) is called closed if no free variable occurs in it.
Abbreviations.

A 2 	 W, A occurs in the sequence 	 .
	 � 	 0 W, for all formulas A, if A 2 	 then A 2 	 0 (e.g. A;B;A;A �
B;B;A;C ).

Definition (Reduction Steps on Sequents)
On a closed sequent … an individual reduction step can be carried out in the

following way.

13.21. Suppose that the succedent formula of the sequent… has the form 8xF.x/.
In that case we replace it by a formula F.n/, i.e. by a formula which results
from F.x/ by the substitution of an arbitrarily chosen numeral n for the
variable x.

13.23. Suppose that the succedent formula of the sequent … has the form :A. In
that case we replace it by the formula ? and, at the same time, adjoin the
formula A to the antecedent of the sequent.

13.4. Suppose that the succedent formula of the sequent … is a true minimal
formula; or: that the succedent formula is a false minimal formula and that
one of the antecedent formulae of … is also a false minimal formula. Then
we say that the sequent … has (or, is in) endform, and no reduction step is
defined.

13.5. Suppose that the succedent formula of … is a false minimal formula, and
that none of the antecedent formulae of … is a false minimal formula. In
that case the following two different kinds of reduction step are permissible
(counterpart of 13.2):

13.51. Suppose that an antecedent formula has the form 8xF.x/. We adjoin a
formula F.k/ (k an arbitrary numeral) to the antecedent.

13.53. Suppose that an antecedent formula has the form :A. We replace the
succedent formula by A.
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In condensed form these reduction steps are described by the following schemata
(reading them bottom-up):

.R8xF.x//
: : : 	!F.n/ : : : .n2N/
	!8xF.x/ I .R:A/

A; 	!?
	!:A I

.Lk8xF.x//
F.k/; 	!C

	!C
with C 	 ? and 8xF.x/ 2 	I

.L0:A/
	!A

	!C
with C 	 ? and :A 2 	:

In the sequel, each of the symbols R8xF , R:A, Lk8xF , L0:A is used as the name of the
respective reduction step (as shown above). But the above schemata can also be read
as inferences in !-arithmetic; therefore, these symbols will also be called inference
symbols. Another reason is that this term has already been used in several previous
publications (e.g., in [1])—and “reduction step symbol” would sound too clumsy.

3 Reduction Steps on Derivations

Definition (The System Z of Pure Number Theory)
Derivable objects of Z are sequents.

The axioms (or initial sequents) of Z will be specified in Sect. 6.
Inference Rules

8-introduction:
	!F.a/

	!8xF.x/ , if the free variable a does not occur in the

conclusion.

:-introduction:
A;	!?
	!:A

complete induction:
	!F.0/ F.a/; 	!F.Sa/

	!F.t/
, if a does not occur in the

conclusion.

chain rule:
	0!A0 : : : : : : 	l!Al

	!C
,

if there exists j � l such that C 	 Aj and 8i � j.	i � 	;A0; : : : ; Ai�1/. In
addition we require that no free variable is vanishing, i.e., that every free variable
occurring in one of the premises 	i!Ai also occurs in the conclusion 	!C .

Abbreviation.
d ` 	!C W, d is a Z-derivation (i.e., a derivation in Z) and the endsequent

of d is 	!C .
A derivation is called closed if its endsequent is closed.
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For each closed derivation d , whose endsequent is not in endform (13.4) we shall
now define the reduction step on d and at the same time prove the following: by such
a step the derivation is transformed into another closed derivation and its endsequent
is thereby modified in the following way: At most one reduction step according to
13.2 or 13.5 is carried out on the sequent. (It may thus happen that an endsequent
remains entirely unchanged.) The reduction step on a derivation is unambiguous,
except in the case in which the endsequent undergoes a transformation according
to a reduction step on sequents involving a choice (13.21); here, the choice may be
made arbitrarily; if this has been done, the reduction step is then also unambiguous.
If the endsequent of d has endform according to 13.4, no reduction step is defined
for this derivation.

Definitions

1. The result of carrying out the reduction step on d is denoted by dŒn� where in
case 13.21, n is the ‘arbitrarily choosen numeral’, and n D 0 otherwise.

2. If the reduction step on d causes a reduction step on the endsequent… of d , then
tp.d/ denotes the name of this latter reduction step2 and tp.d/.…; n/ denotes the
result of applying tp.d/ to …, where n plays the same role as in 1.

3. If the reduction step on d does not change the endsequent of d , we set tp.d/ WD
Rep and Rep.…; n/ WD ….

4. The arity of d is defined by arity.d/WD
8
<

:

N if tp.d/ D R8xF ;
; if the endsequent of d has endform;
f0g otherwise:

Summing up, by recursion on the build-up of d we will define tp.d/ and dŒn�
and simultaneously prove

Theorem 3.1 If d is a closed Z-derivation of …, then dŒn� ` tp.d/.…; n/ for all
n 2 arity.d/.

In the following we assume that d is a closed Z-derivation whose endsequent is
not in endform.

14.21. The axioms of Z are treated later (in Sect. 6).
14.22. We now consider the case where the endsequent is the result of the

application of a rule of inference and we presuppose that for the derivations
of the premises the reduction step has already been defined and the validity
of the associated assertion (i.e. Theorem 3.1) demonstrated.

14.23. Suppose that the endsequent of d is the result of a 8-introduction or a
:-introduction. It (i.e. the endsequent) is then eliminated and its premise
taken for the new endsequent, where, in the case of a 8-introduction, every
occurrence of the free variable a must be replaced throughout the derivation
d0 of this premise by an arbitrarily chosen numeral n.

2Cf. end of Sect. 2.
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The derivation has obviously remained correct, and the endsequent has
become a reduced endsequent in the sense of 13.21 or 13.23.
In other words:

If d D

8
ˆ̂
<

ˆ̂
:

d0.a/

	!F.a/

	!8xF.x/
; then dŒn� WD d0.n/ and tp.d/ WD R8xF.x/:

If d D

8
ˆ̂
<

ˆ̂
:

d0

A; 	!?
	!:A

; then dŒ0� WD d0 and tp.d/ WD R:A:

14.24. Suppose that the endsequent of d is the result of a ‘complete induction’.

d D

8
ˆ̂
<

ˆ̂
:

d0

	!F.0/

d1.a/

F.a/; 	!F.Sa/
	!F.k/

(Since d is closed, the induction term is a numeral k.)

Then we set

dŒ0� WD
8
<

:

d0

	!F.0/

d1.0/

F.0/; 	!F.1/

d1.1/

F.1/; 	!F.2/ : : : : : :

d1.k�1/
F.k�1/; 	!F.k/

	!F.k/

and tp.d/ WD Rep.
14.25. The last case to be considered is that in which the endsequent is the

conclusion of a ‘chain-rule’ inference: d D

8
ˆ̂
<

ˆ̂:

d0

	0!A0: : : : : :

dl

	l!Al

‚!D

The premise whose succedent formula provides the succedent formula of the
endsequent, I shall call the ‘major premise’. If the succedent of the endsequent
is a false minimal formula, we choose as major premise the first premise (in the
given order) whose succedent formula is also a false minimal formula. This does
not change the correctness of the ‘chain-rule’ inference.

So there is a j � l such thatAj 	 D, 8i � j.	i � ‚;A0; : : : ; Ai�1/ and, if Aj
is a false minimal formula then none of A0; : : : ; Aj�1 is a false minimal formula.

From these preliminaries it follows that the major premise	j!Aj can in no case
be in endform (13.4), for otherwise the endsequent ‚!D would obviously also
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have to be in endform, and this was assumed not to be the case. Hence a reduction
step can be carried out on the derivation of the major premise. In respect of this
reduction step, i.e. in respect of tp.dj /, I distinguish four cases (14.251–14.254).

14.251. Suppose that the major premise undergoes a change according to 13.2 in
the reduction step on its derivation dj , i.e. tp.dj / D RAj and Aj D D. In that
case the endsequent is subjected to the appropriate reduction step for sequents
according to 13.2; any choice that arises is to be made arbitrarily. The reduction
step for derivations is then carried out on the derivation dj of the major premise and,
whenever a choice exists, the same choice is to be made as before. The succedent
formulae of both sequents are now the same once again and the ‘chain-rule’
inference is once again correct. Thus, the reduction step for the entire derivation
d is completed.

In other words, tp.d/ WD tp.dj / and

dŒn� WD

8
ˆ̂
<

ˆ̂:

d0

	0!A0. . .

dj Œn�

	j!F.n/ . . .

dl

	l!Al

‚!F.n/

if Aj D D D 8xF.x/I

dŒ0� WD

8
ˆ̂
<

ˆ̂
:

d0

	0!A0. . .

dj Œ0�

A; 	j!? . . .

dl

	l!Al

A;‚!?
if Aj D D D :A:

14.252. Suppose that the major premise undergoes a change according to 13.5 in
the reduction step on its derivation, and the affected antecedent formula B also
occurs in the antecedent of the endsequent, i.e. tp.dj / D LkB with B 2 ‚. In that
case the reduction step is carried out on the derivation of the major premise and the
endsequent is modified according to the corresponding reduction step on sequents
(13.5), so that the ‘chain-rule’ inference becomes again correct.

In other words, tp.d/ WD tp.dj / and

dŒ0� WD

8
ˆ̂
<

ˆ̂:

d0

	0!A0. . .

dj Œ0�

F.k/; 	j!Aj . . .

dl

	l!Al

F.k/;‚!D

if B D 8xF.x/I

dŒ0� WD

8
ˆ̂
<

ˆ̂
:

d0

	0!A0. . .

dj Œ0�

	j!A . . .

dl

	l!Al

‚!A

if B D :A:

14.253. (Principal case) Suppose that the major premise, say �!C , undergoes a
change according to 13.5 in the reduction step on its derivation and that the affected
antecedent formula .V / is a formula that does not occur among the antecedent
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formulae of the endsequent, since it agrees with the succedent formula of an earlier
premise; suppose further that this premise, call it 	!V , undergoes a change during
the reduction step on its derivation which, in that case, must necessarily be a change
according to 13.2. (Since V cannot be a minimal formula.)—Remember that the
endsequent of the whole derivation has the form ‚!D. I shall distinguish two
subcases depending on whether V has the form 8xF.x/ or :A.

Suppose first that V has the form 8xF.x/. In that case an antecedent formula
F.k/ is adjoined in the reduction step according to 13.51 on�!C ; in the reduction
step on 	!8xF.x/which must be carried out according to 13.21, the same symbol
k may be chosen for the numeral to be substituted, so that 	!F.k/ results. We
now form three ‘chain-rule’ inferences: the premises of the first are those of the
original ‘chain-rule’ inference, but with 	!F.k/ in place of 	!8xF.x/; its
conclusion:‚!F.k/. A correct result. The premises of the second are those of the
original ‘chain-rule’ inference, except that �!C is replaced by the sequent that
was reduced according to 13.51; its conclusion: F.k/;‚!D. This is also a correct
‘chain-rule’ inference. The third ‘chain-rule’ inference again yields the endsequent
‚!D from ‚!F.k/ and F.k/;‚!D. Together with each one of the sequents
used we must of course write down the complete derivation of each sequent so that
altogether we now have another correct derivation.

If V has the form :A, then�!C is reduced to�!A, and 	!:A toA;	!?.
We now form, as before, two ‘chain-rule’ inferences with the conclusionsA;‚!?
and ‚!A. With their order interchanged, these two yield by a third ‘chain-rule’
inference again ‚!D. (Note that D, like C and ?, is a false minimal formula.)

In other words,

if dD

8
ˆ̂<

ˆ̂
:
: : :

di

	!V : : :

dj

�!C : : :

‚!D

with major premise�!C , tp.dj /DLkV and V 62‚;

we set tp.d/ WD Rep, while the reduced derivation dŒ0� depends on the form of V .

If V D 8xF.x/, then dŒ0� WD

8
ˆ̂
<

ˆ̂
:

d f0g
‚!F.k/

d f1g
F.k/;‚!D

‚!D

where d f0g WD

8
ˆ̂
<

ˆ̂
:
: : :

di Œk�

	!F.k/: : :

dj

�!C : : :

‚!F.k/

and d f1g WD

8
ˆ̂
<

ˆ̂
:
: : :

di

	!V : : :

dj Œ0�

F.k/;�!C: : :

F .k/;‚!D
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If V D :A, then dŒ0� WD

8
ˆ̂<

ˆ̂
:

d f0g
‚!A

d f1g
A;‚!?
‚!D

where d f0g WD

8
ˆ̂
<

ˆ̂:
: : :

di

	!V : : :

dj Œ0�

�!A: : :

‚!A

and d f1g WD

8
ˆ̂
<

ˆ̂
:
: : :

di Œ0�

A; 	!?: : :
dj

�!C : : :

A;‚!?
14.254. We are still left with the following possibilities: the major premise remains
unchanged in the reduction step on its derivation; or: its change is of the kind
assumed at 14.253, and the premise 	!V remains unchanged in the reduction step
on its derivation.—In both cases we carry out the reduction step on the derivation of
the unchanged remaining premise, and this completes the reduction.

However, if this reduction step on the derivation of the unchanged remaining
premise is according to 14.253, we proceed somewhat differently, namely: we carry
out this reduction step, but without completing the prescribed third ‘chain-rule’
inference; instead, we take the two premises of this ‘chain-rule’ inference and insert
them in place of its conclusion in the sequence of premises of that ‘chain-rule’
inference which concludes the derivation as a whole. This obviously leaves that
‘chain-rule’ inference correct. The endsequent is not changed.

Let us have a closer look on one of these cases; namely, the case where the
premise �!C (D 	j!Aj ) remains unchanged in the reduction step on its
derivation dj , and where this reduction step is according to 14.253.

Then dj Œ0� D

8
ˆ̂
<

ˆ̂:

dj f0g
	j!B

dj f1g
B;	j!A0

j

	j!Aj

for some B and A0
j 	 Aj 	 D.

We set tp.d/ WD Rep and

dŒ0� WD
8
<̂

:̂

d0

	0!A0

dj�1

: : : 	j�1!Aj�1

dj f0g
	j!B

dj f1g
B; 	j!A0

j

djC1

	jC1 ! AjC1

dl

: : : 	l!Al
‚!D

The definition of the reduction step on a derivation and the proof of Theorem 3.1
are now complete. As an immediate consequence from Theorem 3.1 one obtains

Corollary 3.1 If d ` !?, then dŒ0� ` !?.

Proof By Theorem 3.1 we get dŒ0� ` tp.d/.!?; 0/. Since no reduction step is
applicable to !?, it cannot be that tp.d/ is RA or LkA. Hence tp.d/ D Rep and
thus tp.d/.!?; 0/ D !?. ut
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Remark (Consistency of Z) In Sect. 5 we will assign to each Z-derivation d an
ordinal o.d/ < "0 and prove that o.d Œn�/ < o.d/ whenever dŒn� is defined
(Theorem 5.2). Together with Corollary 3.1 this implies the consistency of Z via
(quantifierfree) induction up to "0.

4 Reduction Steps on Derivations Revisited

In this section we present the contents of Sects. 2, 3 in a more condensed style. In
the course of this we also carry out some minor modifications on Gentzen’s original
approach, namely

• In the reduction steps Lk8xF and L0:A it is no longer required that the succedent C
is a false minimal formula. Accordingly the notion “endform” will be modified,
and the condition “Aj 	 C ” in the chain rule will be replaced by “Aj 2 fC;?g”.

• Each chain-rule inference will now have an explicitly shown rank which is an
upper bound on the ranks of all its cut formulas.

Some preliminary definitions and abbreviations

1. A 	 > W, A is a true minimal formula.
2. 	!C has (or, is in) endform W, C 	 > or 	 contains a false minimal formula.

3. rk.C / WD
(
0 if C is prime;

rk.A/C 1 if C D 8xA or C D :A.
4. If X is a formula or sequent, then FV.X/ denotes the set of all free variables

occurring in X .
5. … ranges over sequents; for … D 	!C we set A;… WD A;	!C and ….A WD
	!A.

6. An inference symbol is an expression of one of the following three kinds:RA with
rk.A/ > 0 or A 	 >, LkA with rk.A/ > 0 or A 	 ?, Rep.

7. For each inference symbol I we define

• its arity jIj WD
8
<

:

N if I D R8xF ;
; if I D RA or I D LkA with rk.A/ D 0;

f0g otherwise;
• the result of applying (the reduction step denoted by) I to … with choice n:

I.…; n/ WD

8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

….F.n/ if I D R8xF ;
F.k/;… if I D Lk8xF ;
A;….? if I D R:A;
….A if I D Lk:A;
… otherwise;
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• the relation I G … (I is permissible for …):

I G 	!C W, I D RC or I D LkA with A 2 	 or I D Rep:

Definition The figure
	0!A0 : : : 	l!Al

	!C
is called a chain-rule inference of

rank r if there exists a j � l such that Aj 2 fC;?g and 8i � j.	i �
	;A0; : : : ; Ai�1/ and 8i < j.rk.Ai / � r/.

Inductive Definition of d ` … (d is a Z-derivation with endsequent…)

1. Atomic derivations (axioms): cf. Sect. 6.
2. If d0 ` 	!F.a/ and a 62 FV.	!8xF.x//, then Ia8xF.x/d0 ` 	!8xF.x/.
3. If d0 ` A;	!?, then I:Ad0 ` 	!:A.
4. If d0 ` 	!F.0/ and d1 ` F.a/; 	!F.Sa/ and a 62 FV.	!F.t//,

then Inda;tF d0d1 ` 	!F.t/.
5. If di ` …i with FV.…i/ � FV.…/ for i D 0; : : : ; l , and

if
…0 : : : …l

…
is a chain-rule inference of rank r , then Kr…d0 : : : dl ` ….

A derivation is called closed iff its endsequent is closed.

Lemma 4.1 Assume …i D 	i!Ai .i D 0; : : : ; j0/ and… D 	!C with
Aj0 2 fC;?g and 8i � j0.	i � 	;A0; : : : ; Ai�1/.

Further, let I0; : : : ; Ij0 be inference symbols such that
8i � j0.Ii G …i & Ii 6G …/.
Then 9i; j; k.i < j � j0 & Ii D RAi & Ij D LkAi & 0 < rk.Ai //.

Proof From Ij0 G …j0 & Ij0 6G … & Aj0 2 fC;?g it follows that Ij0 2 L
(i.e. Ij0 D LkB for some B and k). Hence there exists the least j � j0 such that
Ij 2 L. Assume Ij D LkB . Then LkB G …j & LkB 6G … which impliesB 2 	j n	 �
fA0; : : : ; Aj�1g. So we have Ij D LkAi for some i < j . By minimality of j and since
i < j � j0, we have Ii 62 L and Ii G …i & Ii 6G …, which implies Ii D RAi .
Finally, from RAi G …i and LkAi G …j we conclude .rk.Ai / D 0 ) Ai 	 >/ and
.rk.Ai / D 0 ) Ai 	 ?/, hence rk.Ai / > 0. ut
Definition 4.2 (tp.d/ and dŒn�) For each closed Z-derivation d we now define
an inference symbol tp.d/ and, for each n 2 jtp.d/j, a closed Z-derivation dŒn�.
In the main case 5.1. where d is ‘critical’ we also define the auxiliary derivations
d f0g, d f1g and the formula A.d/. The whole definition proceeds by recursion on the
build-up of d . In parallel we observe that tp.d/ is permissible for … (i.e., tp.d/ G
…) whenever d ` ….

1. d atomic: cf. Sect. 6.
2. d D Ia8xFd0: Then tp.d/ WD R8xF and dŒn� WD d0.a=n/.
3. d D I:Ad0: Then tp.d/ WD R:A and dŒ0� WD d0.
4. d D Inda;kF d0d1 with d0 ` 	!F.0/ and d1 ` F.a/; 	!F.Sa/:
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Then tp.d/ WD Rep and dŒ0� WD Kr	!F.k/d0 d1.a=0/ : : : d1.a=k�1/, where
r WD rk.F /.

5. d D Kr…d0 : : : dl with … D 	!C and di ` …i D 	i!Ai (i � l):
Abbreviation: Kr

…0.i=d
0
1 : : : d

0
m/ WD Kr

…0d0 : : : di�1d 0
1 : : : d

0
mdiC1 : : : dl .

Let j0 be minimal s.t. Aj0 2 fC;?g & 8i � j0. 	i � 	;A0; : : : ; Ai�1 /.
We say that d is critical if 8i � j0.tp.di / 6G …/.

5.1. d critical:
Then due to Lemma 4.1, and since 8i � l.tp.di / G …i/ there exists a pair
.i; j / such that
i < j � j0, tp.di / D RAi , tp.dj / D LkAi (for some k) and 0 < rk.Ai /.
We take the least such pair and set tp.d/ WD Rep and
dŒ0� WD Kr�1… d f0gd f1g where

d f0g WD Kr….A.d/

�
.i=di Œk�/ if Ai D 8xF;
.j=dj Œ0�/ if Ai D :A;

d f1g WD KrA.d/;…

�
.j=dj Œ0�/ if Ai D 8xF;
.i=di Œ0�/ if Ai D :A;

and A.d/ WD
�
F.k/ if Ai D 8xF;
A if Ai D :A:

5.2. d not critical: Let i � j0 be minimal such that tp.di / G ….

5.2.1. di critical:
Then tp.d/ WD Rep and dŒ0� WD Kr

0

….i=dif0g; dif1g/ with r 0 WD
maxfrk.A.di //; rg.

5.2.2. di not critical: Then tp.d/ WD tp.di / and dŒn�WDKrtp.d/.…;n/.i=di Œn�/.

Lemma 4.3 If d ` …, then tp.d/ G ….

Theorem 4.4 For d ` … the following holds:

(a) If d D Kr…d0 : : : dl is critical, then d f0g ` ….A.d/, d f1g ` A.d/;…, and
rk.A.d// < r .

(b) 8n 2 jtp.d/j�dŒn� ` tp.d/.…; n/
�
.

Proof by simultaneous induction on the build-up of d :

(a) The premise “d critical” yields that we are in Case 5.1 of Definition 4.2.
Subcase Ai D 8xF :
By assumption we have d
 ` …
 for all 
 � l . From di ` …i and dj ` …j

together with tp.di / D RAi and tp.dj / D LkAi we get di Œk� ` …i .F.k/ and
dj Œ0� ` F.k/;…j by IH(b).

Since
…0 : : :…i�1…i .F.k/ : : :

….F.k/
and

…0 : : :…j�1 F.k/;…j : : :…j0 : : :

F .k/;…
are

chain inferences of degree r ,
we conclude d f0g ` ….F.k/ and d f1g ` F.k/;…. Further rk.A.d// D
rk.F.k// < rk.Ai / � r .
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Subcase Ai D :A:
Similar to the previous case, only that now dj Œ0� ` …j .A and di Œ0� `
A;…i .?, and we apply the chain inferences

…0 : : : …j�1 …j .A : : :

….A
and

…0 : : : …i�1 A;…i .? : : :

A;…
to obtain d f0g ` ….A and d f1g ` A;….

(b) We follow the case distinction of Definition 4.2.:

1. d atomic: cf. Sect. 6. 2.–4.: Left to the reader.
5. d D Kr…d0 : : : dl :

5.1. d critical: Then tp.d/ D Rep and dŒ0� D Kr�1… d f0gd f1g. By (a) we
have d f0g ` ….A.d/, d f1g ` A.d/;…, and rk.A.d// < r . Hence
dŒ0� ` …, i.e. 8n 2 jtp.d/j.d Œn� ` tp.d/.…; n//.

5.2. d not critical, and i is minimal s.t. tp.di / G …:

5.2.1. di critical: By IH(a) we have, dif0g ` …i .A.di / and di f1g `
A.di /;…i . Further,
…0 : : : …i�1 ….A.di / A.di /;…i …iC1 : : : …l

…

is a chain inference of degree r 0 WD maxfrk.A.di //; rg.
Hence dŒ0� D Kr

0

….i=dif0gdif1g/ ` …, which yields the claim,
since tp.d/ D Rep.

5.2.2. di not critical: Then tp.d/ D tp.di /, and by IH(b) we have
di Œn� ` tp.di /.…i ; n/ for all n 2 jtp.di /j.
Further,

…0 : : : …i�1 tp.di /.…i ; n/ …iC1 : : : …l

tp.di /.…; n/
is a chain

inference of rank r .
Since tp.d/ D tp.di /, we conclude dŒn� D Krtp.d/.…;n/.i=di Œn�/` tp.d/.…; n/ for all n 2 jtp.d/j.

Corollary If d ` !?, then dŒ0� ` !?.

Proof From d ` !? by Lemma 4.3 we get tp.d/ G !?, which implies tp.d/ D
Rep. Now by Theorem 4.4b we conclude dŒ0� ` Rep.!?; 0/, i.e. dŒ0� ` !?.

ut

5 Ordinal Assignment and Termination Proof

In this section we will assign to each Z-derivation d an ordinal o.d/ < "0 and
prove that if d is a closed Z-derivation then o.d Œn�/ < o.d/ for all n 2 jtp.d/j.
The ordinal o.d/ will be defined via the auxiliary notions dg.d/ (degree of d ) and
Qo.d/ (pre-ordinal of d ).3

3This ordinal assignment is essentially that of [4].
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Definition of dg.d/ < ! and Qo.d/; o.d/ < "0
For atomic d cf. Sect. 6.
Otherwise

dg.d/ WD

8
<̂

:̂

dg.d0/ if d D Ia8xF d0 or d D I:Ad0;
maxfdg.d0/�1; dg.d1/�1; rg if d D Inda;tF d0d1 with r WD rk.F /;

maxfdg.d0/�1; : : : ; dg.dl /�1; rg if d D Kr…d0 : : : dl ;

Qo.d/ WD

8
<̂

:̂

Qo.d0/C 1 if d D Ia8xFd0 or d D I:Ad0;
! Qo.d0/#! Qo.d1/C1 if d D Inda;tF d0d1;

! Qo.d0/# : : : #! Qo.dl / if d D Kr…d0 : : : dl ;

o.d/ WD !dg.d/. Qo.d//;where !0.˛/ WD ˛; !nC1.˛/ WD !!n.˛/:

Remark Qo.d.a=t// D Qo.d/ and dg.d.a=t// D dg.d/.

Lemma 5.1 For each closed Z-derivation d the following holds:

(a) If d is not critical, then dg.d Œn�/ � dg.d/ & Qo.d Œn�/ < Qo.d/, for all n 2
jtp.d/j.

(b) If d is critical, then:

(i) dg.d f
g/ � dg.d/ & Qo.d f
g/ < Qo.d/, for 
 D 0; 1.
(ii) dg.d Œ0�/ < dg.d/ & Qo.d Œ0�/ < ! Qo.d/ & rk.A.d// < dg.d/.

Proof by induction on the build-up of d :
Notation: In the following we omit the subscript of Kr….

Assume d ` …. As before we follow the case distinction of Definition 4.2.

1. d atomic: cf. Sect. 6.
2. d D Ia8xFd0: Then tp.d/ D R8xF and dŒn� D d0.a=n/.

So we have dg.d Œn�/ D dg.d0.a=n// D dg.d0/ D dg.d/ and
Qo.d Œn�/ D Qo.d0.a=n// D Qo.d0/ < Qo.d/.

3. d D I:Ad0: similar to 2.
4. d D Inda;kF d0d1:

Then tp.d/ D Rep and dŒ0� D Krd0 d1.a=0/ : : : d1.a=k�1/, where r D rk.F /.
So we have dg.d Œ0�/ � maxfdg.d0/�1; dg.d1/�1; rg D dg.d/ and
Qo.d Œ0�/ D ! Qo.d0/ #! Qo.d1/�k < ! Qo.d0/ #! Qo.d1/C1 D Qo.d/.

5. d D Krd0 : : : dl :

5.1. d critical: Then tp.d/ D Rep and dŒ0� D Kr�1d f0gd f1g where either
d f0g D Kr .i=di Œk�/ & d f1g D Kr .j=dj Œ0�/ or d f0g D Kr .j=dj Œ0�/ &
d f1g D Kr .i=di Œ0�/.
By IH(a), dg.di Œk�/ � dg.di / & Qo.di Œk�/ < Qo.di / and dg.dj Œ0�/ �
dg.dj / & Qo.dj Œ0�/ < Qo.dj /.
This yields dg.d f
g/ � dg.d/ & Qo.d f
g/ < Qo.d/ for 
 D 0; 1.
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Hence dg.d Œ0�/ D maxfdg.d f0g/�1; dg.d f1g/�1; r�1g < dg.d/ and
Qo.d Œ0�/ D ! Qo.df0g/#! Qo.df1g/ < ! Qo.d/.
By Theorem 4.4a we have rk.A.d// < r , thence rk.A.d// < dg.d/.

5.2. d not critical, and i is minimal s.t. tp.di / G …:

5.2.1. di critical: Then tp.d/ D Rep and dŒ0� D Kr
0

.i=dif0gdif1g/
with r 0 D maxfrk.A.di //; rg.
By IH(b) we have dg.dif
g/ � dg.di / & Qo.di f
g/ < Qo.di / for

 D 0; 1,
and also rk.A.di // < dg.di /.
The latter yields r 0 � maxfdg.di /�1; rg � dg.d/. Hence
dg.d Œ0�/ D maxfdg.d0/�1; : : : ; dg.dif0g/�1; dg.dif1g/�1; : : : ;
dg.dl /�1; r 0g �
� maxfdg.d0/�1; : : : ; dg.di /�1; : : : ; dg.dl /�1; r 0g � dg.d/ and
Qo.d Œ0�/ D ! Qo.d0/# : : : #! Qo.di f0g/#! Qo.di f1g/ # : : : #! Qo.dl / <
! Qo.d0/# : : : #! Qo.di / # : : : #! Qo.dl / D Qo.d/.

5.2.2. di not critical: Then tp.d/ D tp.di / and dŒn� D Kr .i=di Œn�/.
By IH(a), dg.di Œn�/ � dg.di / and Qo.di Œn�/ < Qo.di /.
Hence dg.d Œn�/ D maxfdg.d0/�1; : : : ; dg.di Œn�/�1; : : : ; dg.dl /�1;
rg � dg.d/ and
Qo.d Œn�/ D ! Qo.d0/# : : : #! Qo.di Œn�/ # : : : #! Qo.dl / < ! Qo.d0/# : : : #! Qo.di /
# : : : #! Qo.dl / D Qo.d/.

Theorem 5.2 If d is a closed Z-derivation, then o.d Œn�/ < o.d/ for all n 2
jtp.d/j.
Proof By Lemma 5.1 we have Qo.d Œn�/ < !dg.d/�dg.d Œn�/. Qo.d// and thus o.d Œn�/ D
!dg.d Œn�/. Qo.d Œn�// < !dg.d/. Qo.d// D o.d/. ut

6 Treatment of Atomic Derivations

At several places in the preceding sections we had postponed the treatment of atomic
derivations. This will now be caught up.

The logical axioms of Z are all sequents of the following kinds:

• 	!A with A 2 	 .
• 	!F.t/ with 8xF.x/ 2 	 .
• 	!? with A;:A 2 	 .
• 	!A with A atomic and ::A 2 	 .

The mathematical axioms of Z are given by a set of sequents Ax.Z/ satisfying
the following conditions:

• … 2 Ax.Z/ ) ….a=t/ 2 Ax.Z/ and A;… 2 Ax.Z/.
• FV.…/ D ; ) .… 2 Ax.Z/ , … has endform /.
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Definition of the atomic Z-derivations

0. If … 2 Ax.Z/, then Ax0… ` ….
1. If … D 	!C with C 2 	 , then Ax1… ` ….

2.1. If … D 	!F.t/ with 8xF 2 	 , then Ax8xF;t
… ` ….

2.2. If … D 	!? with :A;A 2 	 , then Ax:A;0
… ` ….

3. If … D 	!A with rk.A/ D 0 & ::A 2 	 , then Ax::
… ` ….

Definition of tp.d/ and dŒn� for closed atomic Z-derivations d

0. d D Ax0	!C : Then 	!C has endform, and we set

tp.d/ WD
�

RC if C 	 >;
L0A if C 6	 > and A is the first formula in 	 s.t. A 	 ?.

1. d D Ax1	!C with C 2 	:

1.1. rk.C / D 0: Then tp.d/ WD
�

RC if C 	 >;
L0C if C 	 ?:

1.2. rk.C / > 0: Then tp.d/ WD RC and dŒn� WD AxC;ntp.d/.…;n/.

2. d D AxC;k… : Then tp.d/ WD LkC and dŒ0� WD Ax1tp.d/.…;0/:
3. d D Ax::

	!A:

3.1. A 	 >: Then tp.d/ WD RA.

3.2. A 	 ?: Then tp.d/ WD L0::A and dŒ0� WD I:AAx0A;	!?.

Lemma 6.1 If d ` … with FV.…/ D ; and d atomic, then:
(a) tp.d/ G ….
(b) dŒn� ` tp.d/.…; n/ for all n 2 jtp.d/j.
Proof

(a) Left to the reader.
(b) Abbreviation:…0 WD tp.d/.…; n/.

1.2. d D Ax1… with … D 	!C and C 2 	 & rk.C / > 0:

Then tp.d/ D RC and…0 D
�
	!F.n/ if C D 8xF.x/;
A; 	!? if C D :A:

Hence dŒn� D AxC;n…0 ` …0.
2.1. d D Ax8xF;k

… with … D 	!F.k/: Then tp.d/ D Lk8xF and …0 D
F.k/; 	!F.k/. Hence dŒ0� D Ax1…0 ` …0.

2.2. d D Ax:A;0
… with … D 	!? and A;:A 2 	: Then tp.d/ D L0:A and

…0 D 	!A. Hence dŒ0� D Ax1…0 ` …0.
3.2. d D Ax::

… with … D 	!A, A 	 ?, and ::A 2 	:
Then d 0 WD Ax0A;	!? ` A;	!? and thus dŒ0� D I:Ad 0 ` 	!:A.
Further,…0 D L0::A.…; n/ D 	!:A.
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Definition of dg.d/; Qo.d/; o.d/ for atomic Z-derivations d
dg.d/ WD 0 and o.d/ WD !dg.d/. Qo.d// D Qo.d/, where
Qo.Ax0…/ WD 0, Qo.Ax1	!C / WD 2rk.C /, Qo.AxC;t… / WD 2rk.C /� 1, Qo.Ax::

… / WD 2.

Lemma 6.2 If d is a closed atomic Z-derivation, then o.d Œn�/ < o.d/ for all
n 2 jtp.d/j.
Proof Left to the reader. ut

7 Embedding of Z into an Infinitary System Z1

In this section we give an interpretation of the finitary system Z in an infinitary
system Z1 of !-arithmetic. This way we obtain an explanation of the reduction
steps on Z-derivations and the assignment of ordinals to Z-derivations introduced
in Sects. 4–6.

Derivable objects of Z1 are closed sequents… D 	!C .
The inference symbols of Z1 are:
RA with rk.A/ > 0 or A 	 >, LkA with rk.A/ > 0 or A 	 ?, and CutD for

arbitrary sentencesD.
We set CutD G … for each …, jCutDj WD f0; 1g, CutD.…; 0/ WD ….D and

CutD.…; 1/ WD D;….

rk.I/ WD
(

rk.D/ if I D CutD;
� 1 otherwise:

The following definition introduces the relation d `˛m … which is short for
“ d is a Z1-derivation of … with ordinal height � ˛ and cutrank � m”.

Inductive Definition of d `˛m …
If I is an inference symbol of Z1 with rk.I/ < m, and if
I G … & 8n 2 jIj9˛n < ˛. dn `˛nm I.…; n/ /, then I

�
dn
�
n2jIj `˛m ….

Definition of last.d/: If d D I
�
dn
�
n2jIj, then last.d/ WD I.

Remark If d `˛m …, then last.d/ G ….

Theorem and Definition 7.1 If
…0 : : : …l

…
is a chain inference of rank r �

m, and if di `˛imC1 …i for i D 0; : : : ; l , then there exists a Z1-derivation
d D Kr

….d0; : : : ; dl / `˛m … with ˛ WD !˛0# : : : #!˛l .

Proof by induction on ˛:
Assume … D 	!C and …i D 	i!Ai , and let j0 be minimal such that
Aj0 2 fC;?g & 8i � j0. 	i � 	;A0; : : : ; Ai�1 /.
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1. 8i � j0.last.di / 6G …/. By Lemma 4.1 there is the least pair .i; j / such that
i < j � j0, last.dj / D LkAi (for some k), last.di / D RAi , and 0 < rk.Ai/ � r .
Then di D RAi .din/n and dj D LkAi dj 0.

Let d WD CutD.e0; e1/ with D WD
�
F.k/ if Ai D 8xF;
A if Ai D :A; and

e0WDKr
….D

�
.i=dik/ if AiD8xF;
.j=dj 0/ if AiD:A and e1 WD Kr

D;…

�
.j=dj 0/ if AiD8xF;
.i=di0/ if AiD:A:

The IH yields e0 `˛0

m ….D and e1 `˛00

m D;… with ˛0; ˛00 < ˛.
Since rk.D/ < rk.Ai / � r � m, it follows that d `˛m ….

2. Otherwise:
Let i � j0 be minimal such that last.di / G …, and let I WD last.di /.

2.1. I D CutD: Then di D CutD.di0; di1/ with
di0 `˛i0mC1 …i .D & di1 `˛i1mC1 D;…i & ˛i0; ˛i1 < ˛ & rk.D/ � m.
We set d WD Kr 0

….d0; : : : ; di�1; di0; di1; diC1; : : : ; dl / with
r 0 WD maxfrk.D/; rg � m.
From di0 `˛i0mC1 …i .D & di1 `˛i1mC1 D;…i & ˛i0; ˛i1 < ˛i and d
 `˛
mC1 …


for 
 2 f0; : : : ; lg n fig by IH we obtain d `ˇm … with
ˇ WD !˛0# : : : #!˛i�1#!˛i0#!˛i1#!˛iC1# : : : #!˛l < ˛.

2.2. I 62 Cut: Then d WD I
�
Kr

I.…;n/.i=din/
�
n2jIj, where di D I.din/n2jIj.

Abbreviation Z1 `˛m … W, 9d such that d `˛m ….

Corollary 7.2 Z1 `˛mC1 … ) Z1 `!˛m ….
(Follows from Theorem 7.1 for l D 0.)

Having the operations Kr
… at hand it is now easy to embed Z into the infinitary

system Z1.
Definition of a Z1-derivation d1 for each closed Z-derivation d

1. For atomic d we define d1 WD tp.d/
�
dŒn�1

�
n2jtp.d/j by recursion on o.d/ < !.

Especially, in case d D Ax::
	!A with A 	 ? we have d1 D L0::Ad Œ0�1 D

L0::A.I:AAx0A;	!?/1 D L0::AR:Atp.Ax0A;	!?/ D L0::AR:AL0A.
2. .Ia8xF d0/1 WD R8xF

�
d0.a=n/

1�
n2N.

3. .I:Ad0/1 WD R:Ad1
0 .

4. .Inda;kF d0d1/
1 WD Kr

	!F.k/.d
1
0 ; d1.a=0/

1; : : : ; d1.a=k�1/1/.
5. .Kr…d0 : : : dl /

1 WD Kr
….d

1
0 ; : : : ; d

1
l /.

Theorem 7.3 If d ` … and FV.…/ D ;, then d1 `Qo.d/
dg.d/ ….

Proof by induction on the build-up of d using Theorem 7.1:
Assume … D 	!C .
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1. d atomic: Left to the reader.
2. d D Ia8xFd0: Then C D 8xF and d0.n/ ` 	!F.n/.

By IH, d0.n/1 `Qo.d0/
dg.d0/

	!F.n/ .8n/.
Hence d1 D R8xF .d0.n/1/n2N `Qo.d/

dg.d/ ….
3. d D I:Ad0: Similar to 2.
4. d D Inda;kF d0d1 with d0 ` 	!F.0/, d1 ` F.a/; 	!F.Sa/, and
… D 	!F.k/:
By IH, d1

0 `Qo.d0/
dg.d0/

	!F.0/ and d1.a=n/1 `Qo.d1/
dg.d1/

F .n/; 	!F.Sn/ .8n/.
From this by Theorem 7.1 we obtain d1 D Kr

	!F.k/.d
1
0 ; d1.a=0/

1; : : : ;
d1.a=k�1/1/ `Qo.d/

dg.d/ 	!F.k/, since r � dg.d/ and dg.d0/; dg.d1/ �
dg.d/C1 and ! Qo.d0/#! Qo.d1/# : : : #! Qo.d1/ < ! Qo.d/.

5. d D Kr…d0 : : : dl with di ` …i (i D 0; : : : ; l):
Note that dg.d/ D maxfdg.d0/�1; : : : ; dg.dl /�1; rg and therefore
(1) dg.di / � dg.d/C1, (2) r � dg.d/.

By IH we have d1
i `Qo.di /

dg.di /
…i and therefore, by (1), d1

i `Qo.di /
dg.d/C1 …i (i D

0; : : : ; l). From this by (2) and Theorem 6.1 we conclude

d1 D Kr
….d

1
0 ; : : : ; d

1
l / `˛dg.d/ … with ˛ D ! Qo.d0/ # : : : #! Qo.dl / D Qo.d/.

Corollary 7.4 If d ` … and FV.…/ D ;, then Z1 `o.d/0 ….

Theorem 7.5

(i) If tp.d/ D Rep, then d1 D
�

CutA.d/.d f0g1; d f1g1/ if d critical;
d Œ0�1 otherwise:

(ii) If I WD tp.d/ ¤ Rep, then d1 D I
�
dŒn�1

�
n2jIj.

Proof by induction over the build-up of d , comparing definitions 4.2 and 7.1.

8 Multisuccedent Sequents

The approach of Sects. 4,5 can easily be adapted to calculi with multisuccedent
sequents by generalizing the chain-rule as follows4:

(GCR) The figure
…0 : : : …l

…
is called a (generalized) chain-rule inference of

rank r if … can be derived from (weakenings of) the sequents …0; : : : ;…l by a
finite number of cuts of rank � r .

By adding this rule to the proof system of [3] and taking the ordinal assignment
from Sect. 5 of the present paper a certain simplification of [3] can be achieved,
especially the somewhat unpleasant concept of “Höhenlinie” can be avoided.

4A similar rule is used in [4].
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In the following we review the essential concepts of Sects. 4,5 in a kind of
axiomatic presentation, thereby adjusting everything to the multisuccedent context.
The main ingredient here is Lemma 8.1 which replaces Lemma 4.1. The above rule
(GCR) will be captured by the inductively defined relation “.…0; : : : ;…l/ �r …”.

Definitions A sequent is an expression 	!� where 	 and � are finite (possibly
empty) sequences of formulas.

For … D 	!� we set
L.…/ WD 	 and R.…/ WD �;
A;… WD A;	 ! � and …;A WD 	 ! �;A.

Inference symbols RA, LkA, Rep and their arities are the same as in Sect. 4.
For each inference symbol I, sequent …, and n 2 jIj the sequent I.…; n/ is

defined by

I.…; n/ WD

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

…;F.n/ if I D R8xF ;
F.k/;… if I D Lk8xF ;
A;… if I D R:A;
…;A if I D L0:A;
… otherwise:

The relation I G … is defined by:
RA G … W, A 2 R.…/ ,
LkA G … W, A 2 L.…/ ,
Rep G … W, 0 D 0.
Abbreviation.… � …0 W, L.…/ � L.…0/ & R.…/ � R.…0/.

Inductive Definition of .…0; : : : ;…l/ �r … Let E… WD .…0; : : : ;…l/.

1. If …i � … for some i � l , then E… �r ….
2. If E… �r …;C and E… �r C;… with rk.C / � r , then E… �r ….

Lemma 8.1 (“Existence of a Suitable Cut”) If E… D .…0; : : : ;…l / �r … and
8i � l.Ii G …i & Ii 6G …/, then there are i; j � l such that
Ii D RB & Ij D LkB & rk.B/ � r for some B; k.

Proof by induction over the definition of E… �r …:
From the second premise we conclude 8i � l.…i 6� …/. Together with E… �r …

this implies that there exists a C of rank � r such that E… �r …;C and E… �r C;….

Case 1: 8i � l.Ii 6G …;C/ or 8i � l.Ii 6G C;…/.
Then the claim follows immediately from the IH.

Case 2: Otherwise. Then there exist i; j � l such that Ii G …;C and Ij G C;….
From Ii G …;C & Ii 6G … it follows that Ii D RC .
From Ij G C;… & Ij 6G … it follows that Ij D LkC for some k.
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Assumption 0 D is a set of (derivation) terms, and to each d 2 D there is assigned
a sequent End.d/, an inference symbol tp.d/, and, for each n 2 jtp.d/j, a term
dŒn� 2 D.

Abbreviation d ` … W, d 2 D & End.d/ D ….

Assumption 1 If .…0; : : : ;…l/ �r … and d0 ` …0; : : : ; dl ` …l , then
Kr…d0 : : : dl ` ….

Definitions Assume d D Kr…d0 : : : dl ` … with di ` …i and tp.di / G …i for all
i � l .

• d is critical W, 8i � l.tp.di / 6G …/.
• If d is critical we take the least pair .i; j / such that
i; j � l & tp.di / D RB & tp.dj / D LkB & rk.B/ � r for some B; k
(which exists according to Lemma 8.1), and define

A.d/ WD
�
F.k/ if B D 8xF.x/;
A if B D :A;

d f0g WD Kr…;A.d/

�
.i=di Œk�/ if B D 8xF;
.j=dj Œ0�/ if B D :A;

d f1g WD KrA.d/;…

�
.j=dj Œ0�/ if B D 8xF;
.i=di Œ0�/ if B D :A:

Assumption 2 If d D Kr…d0 : : : dl ` … with di ` …i and tp.di / G …i for all
i � l , then the following holds

(a) If d is critical, then tp.d/ D Rep and dŒ0� D Kr�1
… d f0gd f1g.

(b) If d is not critical and i � l is the least number s.t. tp.di / G …, then

tp.d/ D
�

Rep if di critical;
tp.di / otherwise:

d Œn� D
(

Kr
0

….i=dif0gdif1g/ with r 0 WD maxfrk.A.di //; rg if di critical;

Krtp.d/.…;n/.i=di Œn�/ otherwise:

Assumption 3 There are mappings dg W D ! ! and Qo W D ! On such that such
that for each d D Kr…d0 : : : dl we have dg.d/ D maxfdg.d0/�1; : : : ; dg.dl /�1; rg,
and Qo.d/ D ! Qo.d0/# : : : #! Qo.dl /.

Abbreviations For d 2 D and… WD End.d/ we set:
d 2 D1 W, tp.d/ G … & 8n 2 jtp.d/j�dŒn� ` tp.d/.…; n/

�
,

d 2 D2 W,
�

dg.d Œ0�/ < dg.d/ if d critical;
8n 2 jtp.d/j.dg.d Œn�/ � dg.d// otherwise;

d 2 D3 W,
� Qo.d Œ0�/ < ! Qo.d/ if d critical;

8n 2 jtp.d/j. Qo.d Œn�/ < Qo.d// otherwise:

Theorem 8.2 For 
 D 1; 2; 3 the following holds:
If d D Kr…d0 : : : dl 2 D with d0; : : : ; dl 2 D
 , then d 2 D
 .

Proof Cf. the proofs of Theorem 4.4 and Lemma 5.1. ut
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Appendix

In this appendix we will show how Gentzen’s original ordinal assignment [2,
Sect. 15] can be transformed into the assignment which we have used in Sect. 5.
This transformation consists in essentially four steps.

Step 1: We do not use exactly the same set of decimal fractions as Gentzen
did. Gentzen defined his set of Ordnungszahlen (let’s call it OG) by: OG WD
fn:u W n 2 N & u 2 Mng where M0 WD f1; 11; 111; : : : ; 2g, MnC1 WD
fu00nC1u10nC1 : : : 0nC1ul W l � 0 & u0; : : : ; ul 2 Mn & 0:ul <R � � � <R 0:u0g.
This corresponds to representing ordinals in base 2 Cantor normal form, while
here we shall use base !. Instead of OG we define the set O WD fn:u W n 2
N & u 2 Mng, where M0 WD f1g, MnC1 WD fu00nC1u10nC1 : : : 0nC1ul W l �
0 & u0; : : : ; ul 2 Mn & 0:ul �R � � � �R 0:u0g.

Step 2: We define an embedding of .O; <R/ into the set theoretic ordinals, namely
for each ‘Ordnungszahl’ n:u 2 O we define an ordinal jn:uj 2 On such that
8n:u; m:v 2 O.n:u <R m:v ) jn:uj < jm:vj/ (Lemma 3).

Step 3: We modify Gentzen’s assignment of ‘Ordnungszahlen’ to derivations [2,
Sect. 15.2] according to the alterations made in step 1. For each derivation d we
define its numerus �.d/ 2 N, mantissa �.d/ 2 S

n2NMn, and ‘Ordnungszahl’
Ord.d/ WD �.d/:�.d/ 2 O. Actually we only consider the crucial case where d
ends with a chain-rule inference.

Step 4: We show how the ordinal jOrd.d/j can be defined directly by recursion
on the build-up of d , without referring to the decimal fraction Ord.d/. Then we
compare the involved recursion equations with the corresponding equations in
the definition of Qo.d/, o.d/ in Sect. 5.

Step 1.
Let f0; 1gC denote the set of all finite nonempty words u over the alphabet f0; 1g,
and let
f0; 1g.C/ WD fu 2 f0; 1gC W the first and the last letter of u is 1g.
Further, let 0n denote the word consisting of n zeros. Each expression n:u (with
n 2 N and u 2 f0; 1g.C/) will be identified with the real number denoted by it in the
usual way.

Definition of Mn � f0; 1g.C/
1. M0 WD f1g;
2. MnC1 WD fu00nC1u10nC1 : : : 0nC1ul W l � 0 & u0; : : : ; ul 2 Mn & 0:ul �R

� � � �R 0:u0g.

Further we set M WD S
n2NMn. The elements of M are called mantissas.

Definition h W M ! N, h.u/ WD minfn W u 2 Mng.

Remark Mn � MnC1, and h.u/ is the maximal number of consecutive zeros in u.
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Lemma 1 If u D u00nC1 : : : 0nC1ul 2 MnC1 and v D v00
nC1 : : : 0nC1vk 2 MnC1

with u0; : : : ; ul ; v0; : : : ; vk 2 Mn, then 0:u <R 0:v if, and only if, l < k & 8i �
l.ui D vi/ or 9j � minfl; kg�8i < j.ui D vi / & 0:uj <R 0:vj

�
.

Proof Straightforward. ut
Definition O WD fn:u W n < ! & u 2 Mng (Ordnungszahlen)

Step 2.

Definition of jujn 2 On for u 2 Mn

1. j1j0 WD 0.
2. If u D u00nC1 : : : 0nC1ul 2 MnC1, then jujnC1 WD !ju0jn C � � � C !jul jn .

As usual we set !0.˛/ WD ˛, !nC1.˛/ WD !!n.˛/.

Lemma 2 For u 2 Mn the following holds:

(a) jujnCk D !k.jujn/,
(b) !n.0/ � jujn < !nC1.0/.

Definition For n:u 2 O let jn:uj WD jujn 2 On.

Lemma 3 n:u 2 O & m:v 2 O & n:u <R m:v ) jn:uj < jm:vj.
Proof by induction on the length of u:
Case n < m: Then jn:uj D jujn < !nC1.0/ � !m.0/ � jvjm D jm:vj.
Case n D m: Then 0:u <R 0:v and u; v 2 Mn with n > 0. Hence u D
u00n : : : 0nul 2 Mn and v D v00

n : : : 0nvk 2 Mn with u0; : : : ; ul ; v0; : : : ; vk 2
Mn�1. By Lemma 1 it follows that one of the following two cases applies:

(i) l < k & 8i � l.ui D vi /: Then trivially jujn < jvjn.
(ii) 8i < j.ui D vi / & 0:uj <R 0:vj for some j � minfl; kg:Then 8i 2

fj; : : : ; lg.0:ui <R 0:vj / and thus, by IH, 8i 2 fj; : : : ; lg.jui jn�1 < jvj jn�1/.
Hence jujn D !jv0jn�1 C � � � C !jvj�1jn�1 C !juj jn�1 C � � � C !jul jn�1 <

!jv0jn�1 C � � � C !jvj jn�1 � jvjn.

Step 3.

The following are more or less Gentzen’s own words (in [2, 15.2])—of course with
some alterations enforced by the modifications made in step 1.
To each given derivation d we assign an ‘Ordnungszahl’ Ord.d/ WD �.d/:�.d/ 2
O according to the following recursive rule: (: : :) If the endsequent of d is the
conclusion of a ‘chain-rule’ inference (i.e., if d D Kr…d0 : : : dl ) we consider the
mantissas ui D �.di/ of the ‘Ordnungszahlen’ of the derivations di ; suppose
that 
 is the maximum number of consecutive zeros in all of these mantissas
(i.e., 
 D maxi�l h.ui /). The mantissas are written down from left to right
according to their size (the largest one first) and any two successive mantissas are
seperated by 
C1 zeros. (It may well be that several successive mantissas are equal.)
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The result is the mantissa �.d/ of the ordinal number for the whole derivation;
i.e., �.d/ WD u
.0/0
C1u
.1/0
C1 : : : 0
C1u
.l/ where 
 is an appropriate permu-
tation of f0; : : : ; lg, and ui D �.di/. As the numerus �.d/ we take the least
natural number � whose excess over the maximum number of consecutive zeros
in the mantissa is � 0 and, firstly, is not more than 1 less than the corresponding
excess in any of the ordinal numbers for the derivations of the premises and,
secondly, is not less than the rank of the succedent formula of any one of the
premises preceding the major premise (14.25). W.l.o.g. we may assume here that
l � 1 and therefore h.�.d// D 
C1. So �.d/ is the least number � such that
(i) � � .
C1/ � �.di / � h.ui / � 1 for i D 0; : : : ; l , and (ii) � � .
C1/ � r ,
which amounts to: �.d/ � h.�.d// D max.f�.di / � h.�.di// � 1 W i � lg
[ frg/.
Step 4.

Let h.d/ WD h.�.d//, exc.d/ WD �.d/ � h.d/, andbo.d/ WD j�.d/jh.d/

Then

(1) jOrd.d/j D !exc.d/.bo.d//,
and for d D Kr…d0 : : : dl we have the recursion equations

(2) h.d/ D maxi�l h.di /C 1, and
(3) exc.d/ D max.fexc.di / � 1 W i � lg [ frg/.
(4) bo.d/ D !˛0 # � � � #!˛l with ˛i WD !
�h.di /.bo.di // and 
 WD maxi�l h.di /.

Proof of (1) and (4):

(1) jOrd.d/j D j�.d/:�.d/j D j�.d/j�.d/ D !�.d/�h.d/.bo.d// D !exc.d/.bo.d//.
(4) By definition, �.d/ D u
.0/0
C1 : : : 0
C1u
.l/ with ui D �.di / and 
 D

maxi�l h.di /. Hence 
C1 D h.�.d// D h.d/, bo.d/ D j�.d/j
C1 D
!ju0j
 # � � � #!jul j
 , and jui j
 D j�.di /j
 L:2aD !
�h.di /.j�.di/jh.di //.

Observation: In case that h.�.d0// D � � � D h.�.dl// we have

(5)bo.d/ D !bo.d0/ # � � � #!bo.dl /.
Now compare (1), (3), (5) with the corresponding clauses in the definitions of

o.d/, dg.d/, Qo.d/ in Sect. 5:

(1)’ o.d/ D !dg.d/. Qo.d//
(3)’ dg.d/ D max.fdg.di /�1 W i � lg [ frg/
(5)’ Qo.d/ D ! Qo.d0/# � � � #! Qo.dl /
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Jan von Plato

Abstract Gentzen found his original consistency proof of arithmetic late in 1934.
His work in pure logic was a preliminary to the result. Archival sources show that
the consistency proof was based on an explicit semantic notion of correctness as
reducibility of sequents and a proof that steps of derivation maintain reducibility.
A crucial point in the latter was Gentzen’s Hilfssatz that stated, in analogy to
his famous Hauptsatz, that composition of sequents maintains reducibility. The
Hilfssatz was needed essentially for the case of the rule of complete induction. It
was the point at which Gentzen’s proof superseded standard arithmetic methods
in favour of an induction on well-founded trees, i.e., what came later to be called
bar induction. After criticisms by Bernays and Gödel, the first proof evolved into
one based on transfinite induction. Traces of the Hilfssatz that was founded on
intuitionistic ideas disappeared, and Gentzen developed instead transfinite induction
further into a general ordinal proof theory.

1 The Situation in 1932

Gerhard Gentzen, a student of Paul Bernays, set as his goal in early 1932 “to clear
the consistency problem of mathematics, at least for arithmetic,” as he wrote in a
letter (see Menzler-Trott 2007, p. 31). A perplexing situation regarding consistency
had arisen with the arrival of Gödel’s incompleteness theorem, a result that had
become known during the fall of 1930. It was at once well received, especially
through the forceful endorsement on the part of Johann von Neumann. Bernays had
been in contact with Gödel, to clarify the consequences of the result for Hilbert’s
enterprise of “securing the foundations of mathematics” through a consistency
proof. In fact, the preface Bernays wrote to the first volume of the Grundlagen
der Mathematik, dated March 1934 and published in 1934, tells the following:
The manuscript was in practice finished in 1930, but the whole project had to be
thought through again when Gödel’s result became known: A finitary, “absolutely
reliable” consistency proof of the kind envisaged by Hilbert would not be possible.
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Some, von Neumann as foremost, declared the foundational enterprise dead: The
consistency of mathematics would remain forever unprovable in some absolute
sense. Bernays, instead, sought a way out through intuitionism that he took to go
beyond the Hilbertian finitism. There is no unclarity as to Bernays’ assessment:
Brouwer had it right on all essential points and, especially, the law of excluded
middle has so far (about 1931–1932) no justification beyond finitary situations. As
an aside, the reader of his book may wonder at the appearance of Hilbert’s name as
a co-author, but there were other reasons for that, especially for the second volume
that the expelled Jewish professor Bernays could have never published otherwise in
Nazi-Germany in 1939.

Bernays describes finitism as a categorical build-up of mathematics, in the sense
that nothing is assumed, but everything is built up finitistically from decidable
concepts. Brouwer’s intuitionism brings to this picture the new element that also
hypothetical proofs are considered, and mathematical constructions made on top of
such assumed proofs. Bernays wrote (ibid., p. 43):

The methodological point of “intuitionism” that is at the basis of Brouwer, is formed by
a certain extension of the finitary position [Erweiterung der finiten Einstellung], namely,
an extension in so far as Brouwer allows the introduction of an assumption about the
presence of a consequence, resp. of a proof, even if such a consequence, resp. proof,
is not determined in respect of its visualizable constitution [nicht. . . nach anschaulicher
Beschaffenheit bestimmt]. For example, from Brouwer’s point of view, propositions of the
following forms are allowed: “If proposition B holds under assumption A, also C holds,”
and also: “The assumption that A is refutable leads to a contradiction,” or in Brouwer’s
mode of expression, “the absurdity of A is absurd.”

The essence of intuitionism as given here is that it is permitted to assume
conditionals, and even more simply, the presence of a hypothetical proof. One would
think that this was no novelty in principle, for what are mathematical axioms if not
conditionals that are assumed? Bernays thinks instead that there is no hypothetical
element in the practice of logicism or formalism. In this light, Gentzen’s departure
from these traditions in his setting up of natural deduction in 1932 is the more
remarkable, because the most central idea in natural deduction is to consider
hypothetical inferences.

Bernays proceeds with the discussion in very general terms, the problem being
always how to extend the finitary standpoint, and ends with the conclusion that we
are still far away from even a solution to the consistency problem of arithmetic
(p. 44). The solution was instead much closer than he could imagine, for Gentzen
had it by the end of the year 1934.

2 Groundwork for the Consistency Proof

Gentzen, who was just 22 years old in 1932, would take nothing of the defeatism of
von Neumann. Where his confidence came from is not known, but it got confirmed
in less than a year, by the interpretation of classical Peano arithmetic in intuitionistic



From Hauptsatz to Hilfssatz 91

Heyting arithmetic. It was a result that proved Bernays’ admission by which the help
of Brouwer’s intuitionistic mathematics would be needed to overcome the dead-end
of Hilbert’s Beweistheorie. The consistency proof itself was finished late in 1934.
The steps of events will be described in this section in five installments: (1) The
logical analysis of “actual proofs in mathematics.” (2) The semantical explanation of
the logical forms of propositions used in mathematics, with the subformula property
and normalization as crucial elements. (3) The elimination of indirect proofs through
the Gödel–Gentzen translation. (4) The surfacing of transfinite ordinals. (5) The first
consistency proof, end of 1934.

2.1 Actual Proofs in Mathematics

Gentzen began by a study of how “one actually carries through proofs in mathe-
matics.” He observed that the prevailing method of formally presenting proofs did
not match the practice: Mathematical statements were formalized in the language of
logic, and especially the starting points of proofs, namely the mathematical axioms.
Logic itself was also axiomatized, with axioms such as .A 
 .B 
 C// 
 .B 

.A 
 C//: The “horseshoe” implication symbol was invented by Giuseppe Peano,
just an inverted capital letter C that got later stylized into 
. It reveals what the
above axiom does: If you read 
 as “consequence” (for the C inverted) or “follows”
or “if. . . , then . . . ,” whatever is handiest, you get

If from A it follows that C follows from B , then from B it follows that C follows from A.

Think of A and B as assumptions, and the axiom prescribes that C follows,
whichever the order is in which you take the assumptions A and B .

The rest of the logical axioms have similar intuitive meanings. They were clear to
Frege who mainly invented the axioms. Later his identification of the principles of
proof turned into “symbolic logic,” interpreted as a formal game, and the meaning
of the axioms was by and large forgotten.

There were just two rules of inference in axiomatic logic: From A 
 B and
A to infer B was the propositional one, and universal generalization the other.
In the latter, a universal quantifier could be introduced if a statement was proved
for an arbitrary object, as denoted by an eigenvariable. The precise statement of
conditions for universal generalization was a great achievement of Frege’s.

The application of Frege’s logic to mathematical proofs, as in the work of
Peano and Russell, proceeds through expressing the mathematical axioms with
the language of logic, and in the application of the two principles of proof. Here
is a simple example, the axiomatic theory of equality. The axioms are reflexivity,
symmetry, and transitivity:

a D a; a D b 
 b D a; a D b & b D c 
 a D c:

It is next to impossible to put the logical codification of mathematical proofs in terms
of axiomatic logic into actual use. Say, the expression of transitivity of equality in
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the Euclidean style, a D c& b D c 
 a D b, already has an axiomatic proof that
cannot be shown here because it is too broad to be printed. The proofs are often so
wicked that the only feasible way to construct them would be to do them first in a
calculus of natural deduction, then to apply a translation algorithm into proofs in
axiomatic logic.

When Gentzen started his program in early 1932, he had no difficulty in
putting the ruling axiomatic logical tradition aside. The aim of axiomatic logic
had been dictated by Frege’s and Russell’s doctrine of logicism, by which logical
axioms express the most basic logical truths and logical proofs just add more
truths to the basic stock. The whole notion is empty for Gentzen because, as
emphasized by Franks (2010), pure logic has no subject matter for him. Logical
principles, Gentzen’s rules of proof, show how to move from given assumptions
to a conclusion. Gentzen would grant, at most, that if the assumptions are correct
(richtig), also the conclusion should be.

The conceptual order in Gentzen is different from that of logicism. In the latter,
there cannot be any doubt that logical proofs preserve correctness, because, if we
take the doctrine seriously, such proofs are based on the ultimate notion of logical
truth in a simplest possible manner. The axioms are such truths, and if A 
 B and
A are, also B is. There are no hypotheses, so this inductive argument is strictly local
in character.

In logicism, mathematical truth is subordinate, and perhaps even reducible, to
logical truth. If the reduction succeeds, the foundational problems of mathematics
are solved for good. In Gentzen, instead, the very problem is to find a notion of
correctness, in the first place for arithmetic, that is supported by logical inferences.

By September 1932, Gentzen had finalized his set of logical principles of
proof, what is known as natural deduction (natürliches Schliessen, perhaps more
properly rendered as natural inference, or even natural reasoning). His analysis of
“actual proofs” in mathematics led to intuitionistic logic, a topic well-defined after
Arend Heyting’s axiomatization of 1930 that had the axiomatization of Principia
Mathematica as a basis.

A year later, Heyting explained the logical connectives in terms of proof, or
perhaps better, sufficient conditions for proof: A&B is proved whenever A and
B have been proved separately,A_B is proved whenever one of A and B has been
proved, A 
 B is proved whenever any proof of A turns into some proof of B . For
the quantifiers, 8xA.x/ is proved whenever A.y/ is proved for an arbitrary y, and
9xA.x/ is proved whenever A.a/ is proved for some object a. It was realized soon
that the explanation of implication need not reduce a proof ofA 
 B into something
simpler, for A could have been obtained by any proof.

There is in the collection of stenographic notes that Gentzen wrote a set from
the fall of 1932, some 25 big stenographic pages, with a few pages added in the
next spring and ten more in October 1934. The title is “Formal conception of
the notion of contentful correctness in pure number theory, relation to proof of
consistency” (Die formale Erfassung des Begriffs der inhaltlichen Richtigkeit in der
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reinen Zahlentheorie, Verhältnis zum Widerspuchsfreiheitsbeweis).1 Most of it was
written within a month in October–November, and it was meant to be a groundwork
for systematic formal studies, after the basic structure of mathematical reasoning
had been cleared in September. I abbreviate the manuscript in the same way he did,
as INH. The first task in it is to explain the notion of correctness for intuitionistic
logic, quite similarly to Heyting’s explanations. In the case of A&B and A _ B , a
reduction is achieved, but A 
 B remained problematic.

Bernays was well aware of the problem, namely that in a case of iterated
implications such as .A 
 B/ 
 C , the correctness of C depends on the correctness
of another conditional statement A 
 B . This is a problem of well-foundedness. A
related problem is circularity: If, as in Heyting’s explanation, a proof ofA 
 B takes
any proof of A and gives as a result some proof of B , the notion to be explained,
namely proof, is already assumed.

Once correctness for statements has been explained, it can be applied to
statements in proofs. Here is the lesson from Gentzen’s analysis:

Reduction to Components If A 
 B is provable, it should have a proof that is
somehow made up from the components of A 
 B .

The correctness of a notion of proof with this property would not be circular.
What is the notion Gentzen was searching after? Looking at his rules of natural

deduction, a specific feature of most of the rules strikes the eye:

A B
A&B

&I
A&B
A

&E
A&B
B

&E
A

A _ B _I1 B
A _ B _I2 A 
 B A

B
�E

In the introduction rules, the premisses are subformulas of the conclusion, in the
elimination rules, it is the other way around. There remain the introduction rule
for implication and elimination rule for disjunction that have a schematic character
different from the above:

ŒA�....
B

A 
 B
�I A _ B

ŒA�....
C

ŒB�....
C

C
_E

Intuitionistic propositional logic results when the rule of falsity elimination is
added to these rules: There is a constant proposition called falsity and denoted ?,
with negation defined by :A � A 
 ?, and with the rule ?E by which any formula
can be concluded from ?. Intuitionistic predicate logic is obtained by adding the
quantifier rules:

1I translate inhaltlich as contentful. Gödel suggested in the 1960s “contentual,” but my translation
is at least an English word. Georg Kreisel dislikes it: He told me in July 2010 that one should just
use the word meaning. Inhaltlich, then, would be meaningfully, or perhaps in terms of meaning. I
regret not having asked what he thinks of Gödel’s invented word.
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A.y/

8xA.x/ 8I
8xA.x/
A.t/

8E
A.t/

9xA.x/ 9I 9xA.x/

ŒA.y/�....
C

C
9E

In rules 8I; 9E; y is an eigenvariable.
The introduction rules of Gentzen’s natural deduction are formal versions of

Heyting’s explanations. For the elimination rules, different motivations and criteria
have been presented, as discussed in von Plato (2012).

2.2 Normalization

At this point, in October 1932, the task is to establish a subformula property for
formal proofs, or derivations (Herleitungen), by the new rules of natural deduction.
Going through the combinatorial possibilities, one notices cases such as

....
A

....
B

A&B
&I

A
&E

....

ŒA�....
B

A 
 B
�I

....
A

B
�E

....

There is a local “peak”(Gipfel) in a derivation, A&B or A 
 B , that need not
belong as a part to the conclusion of the whole derivation or some open assumption
the conclusion depends on. These peaks can be eliminated:

....
A

....
B

A&B
&I

A
&E

.... becomes

....
A....

ŒA�....
B

A 
 B
�I

....
A

B
�E

.... becomes

....
A....
B....

There is a subtlety with the second proof transformation: Rule 
 I is displayed
schematically, with an arbitrary number of copies of the open assumption A closed
by the introduction of A 
 B . If A was used n times in the derivation, the
transformed derivation can be presented by the scheme
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....
A n�: : :

....
A....

B....

The derivation of A and what it depends on gets multiplied any number of times.
Things are not so obvious with disjunction (neither with existence, universality

is easy). There are the transformations for _I followed by _E , as in the first of the
I -rules:

....
A

A _ B _I

ŒA�....
C

ŒB�....
C

C
_E

....

....
A....
C....

becomes

There is in addition the possibility that a disjunction or existence elimination
separates an introduction from an elimination, say, ifC is of the formD&E and has
been derived in a minor premiss by rule &I , then to be eliminated by &E applied
to the conclusion. The hidden non-normality is made explicit by a permutative
conversion:

....
A _ B

1

A....
D

....
E

D&E
&I

1

B....
D&E

D&E
_E;1

D
&E1

....

....
A _ B

1

A....
D

....
E

D&E
&I

D
&E1

1

B....
D&E
D

&E1

D
_E;1

....
becomes

Now the I -E pair in the derivation of the first minor premiss can be eliminated.
Gentzen left first out _ and 9, by translatingA_B into :.:A& :B/ and 9xA.x/

into :8x:A.x/. Now he got the normalization theorem for the _; 9-free fragment
of predicate logic:

Normalization Theorem All derivations can be so transformed that no I-rule is
followed by the corresponding E-rule.

The main difficulty in the proof is to give a measure or weight to derivations such
that the elimination of a local peak such as A 
 B (a non-normality) reduces the
weight more than the multiplication of the derivation of A by any number n. It is
known since 2005 that Gentzen solved the problem some time late in 1932 and
included at some stage even a treatment of the rules for disjunction and existence
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with the permutative conversions as in the above example. Namely, I found in
February 2005 a handwritten version of a plan and partial execution of his thesis that
contained as the greatest surprise a detailed proof of normalization for intuitionistic
natural deduction, otherwise attributed to Prawitz (1965) (to which Raggio’s proof
of the same year can be added). An English translation of Gentzens proof, 13 journal
pages, together with my introduction, was published in von Plato (2008).

The thesis manuscript contains a stenographic addition by which the subformula
property of normal derivations is an immediate corollary to normalization:

Subformula Property All formulas in a normal derivation are subformulas of the
conclusion or some open assumption.

Consistency is an immediate consequence of these results: If A& :A were
derivable, also ? would be derivable, and therefore any formula, but ? has no
normal derivation by the subformula property, therefore no derivation at all.

How to extend all of the above to arithmetic, that was the new formulation of the
consistency problem.

2.3 Elimination of Indirect Proofs

The proof of the normalization theorem in two stages, first without _; 9, then for
the full language, bore an unexpected fruit: Gentzen noticed that the principle of
indirect proof could be dispensed with if _ and 9 were absent, subject to a little
adjustment.

Two treatments of negation were given in the thesis manuscript, either as a
primitive notion with separate rules, or as defined by :A � A 
 ?. Even the
printed thesis lists both notions and their respective rules. They are, for the defined
notion, special cases of the implication rules:

ŒA�....?
:A �I :A A

? �E

The rules of primitive negation are:

ŒA�....
B

ŒA�....:B
:A :I :A A

C
:E

Both rules are derivable if the defined notion of negation is used. The introduction
rule is not pure, in the sense that it contains already a negation in a premiss. All
other rules are such that no other connective than the one introduced or eliminated
appears in the rule schemes.
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Gentzen’s thesis manuscript gives transformations to repeated applications of
the primitive rules of negation, but these transformations do not follow any general
pattern for the simplification of derivations. If the transformations are reproduced
with the use of the rules for defined negation, they turn out to be instances of
standard conversion patterns of natural deduction (see von Plato 2012 for a detailed
presentation). In conclusion, the defined notion of negation is the well-behaving
one.

Classical natural deduction results if the rule of indirect proof is added to
intuitionistic logic:

Œ:A�....?
A

DN

The nomenclature DN stands for double negation, which is explained as follows:
If instead of DN rule 
 I is applied, the conclusion is ::A, and double negation
elimination gives the conclusion A.

If the conclusion of rule DN is a premiss in an elimination rule, there is no direct
guarantee for the subformula property. This problem is clear from a text fragment
Gentzen later dated as being from “about January 1933.” It is titled Decision in
classical predicate calculus reducible to decision in intuitionistic calculus with only

 and . /? (There is written F8G above the notation for the universal quantifier ( ),
where the triangles indicate a later addition.) The object of the paper is to translate
derivations in classical natural deduction to derivations by the rules for implication
and universal quantification and with an added constant proposition F that stands
for the false formula (i.e., a fragment of what is called today minimal logic). To
this purpose, Gentzen first transforms the formulas of classical predicate logic into
equivalent ones that contain only implication, universal quantification, and F . The
rules for negation are:

1

ŒA�
B

1

ŒA�
B 
 F
F FE

A 
 F FI1
A 
 F : 
 F

A
“DN ” (law of double negation)RA: REND:

This is directly from the manuscript. Numerical labels identify occurrences of closed
assumptions, RA stands for reductio and REND for something like “reduction of
negation doubled.” The order of premisses in rule FE (“follows-elimination”) was
changed later in the winter of 1932–1933.

The last point is to change every atomic formula into its double negation. Now
derivations can be so transformed that rule DN is applied to the components of
its conclusion. If DN has been applied to conclude an implication B 
 C, the
transformation, again from the manuscript, is:
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1

B
3

B 
 C
C

FE 2

C 
 F
F FE

B 
 C: 
 F FI 3
B 
 C: 
 F W 
 F

F FE

C 
 F : 
 F FI 2

C
DN for C

B 
 C
FI 1

A similar transformation is made if DN is applied to a universally quantified
formula. In the end, DN is applied to double negations of what were atomic formulas
before the transformation added two negations. With four negations at the head of
each atomic formula, rule DN just eliminates two of them, but this can be done
without the classical rule. Therefore, as Gentzen concludes: “It is obvious that the
inference DN can be completely eliminated by these steps.”

The atomic formulas of arithmetic are equations. If they don’t contain free
variables, they are decidable, as Gentzen well understood. Rule DN applied to the
double-negation of a numerical equation n D m has the same force as the law
of excluded middle, n D m _ : n D m, and which of the disjuncts is the case
can be decided. Therefore DN need not be applied to atomic formulas without free
variables. In particular, Gentzen could conclude in January 1933:

Relative Consistency If a contradiction is derivable in classical Peano arithmetic,
it is already derivable in a fragment of intuitionistic Heyting arithmetic.

This was, of course, not Gentzen’s terminology, but the result was clear: As
mentioned, one of the central aims of the Hilbert school had been to “secure
the transfinite arguments of arithmetic.” These contain in particular the indirect
existence proofs, with 9xA.x/ concluded if 8x:A.x/ led to a contradiction.
Gentzen’s result showed that such steps were not a “dubious” component in
arithmetic proofs.

The general conclusion from Gentzen’s result, obtained at the same time by
Gödel, was:

Intuitionistic Consistency The consistency problem of arithmetic has an intuition-
istic sense and, therefore, possibly an intuitionistic solution.

A further conclusion was that intuitionism does indeed go, as described by Bernays
in general terms, beyond Hilbert’s “strictly finitistic methods.”

Gödel seems not to have pursued the idea of an intuitionistic solution to the
consistency problem, even if he reflected on his incompleteness theorems in a talk
of 1933 given in Boston. It is titled “The present situation in the foundations of
mathematics” and got published from a handwritten English manuscript in the third
volume of his Collected Works (1995). He notes (pp. 50–51) that consistency is a
purely syntactic notion, so that “the whole matter becomes merely a combinatorial
question about the handling of symbols according to given rules.” Further, “the
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chief point in the desired proof of freedom from contradiction is that it must be
conducted by perfectly unobjectionable methods.” These methods are codified in
what he calls “system A,” and of which he lists some principles. He then notes that
such—finitistic—methods cannot lead to a proof, so that the hope for a consistency
proof by “Hilbert and his disciples . . . has vanished entirely in view of some recently
discovered facts.” (ibid., p. 52). Next Gödel notes that intuitionism goes clearly
beyond what is finitistic. In particular, he refers (p. 53) to the interpretation of
classical arithmetic in intuitionistic arithmetic as one that gives an intuitionistic
proof of consistency, but adds later that this foundation “is of doubtful value.” Gödel
ends his talk by the remark that “there remains the hope that in future one may find
other and more satisfactory methods of construction beyond the limits of system
A, which may enable us to found classical arithmetic and analysis upon them. This
question promises to be a fruitful field for further investigations.” It seems that only
the appearance of Gentzen’s proof in 1935 made him take this possibility seriously.

2.4 The Surfacing of Transfinite Ordinals

Gentzen found out, probably in early 1933, that his proof idea for the consistency of
intuitionistic arithmetic, therefore also for Peano arithmetic, would not be realizable.
He had added, right at the start when he developed intuitionistic natural deduction,
a rule of induction:

....
A.1/

A.y/....
A.y C 1/

A.t/
CI

The conclusion of CI (for Complete Induction, vollständige Induktion) gives by
rule 8I , when a fresh variable x is chosen for the arbitrary term t , 8xA.x/. As with
indirect proof, there need not remain any trace of the conclusion of CI in any of
the open assumptions or in the endformula of a finished derivation in arithmetic, so
that the subformula property is not guaranteed to hold.2 Neither can one restrict the
induction formula to some specific class of formulas to get a sufficient control over
the structure of derivations.

The first occurrence of transfinite induction in Gentzen is already in 1932, in
INH (date 9.X.):

A new idea: Is it possible to perform appropriate reductions so that one takes the longest
proposition, or a proposition that is of the highest value according to some other assignment

2A notion of normal derivability can be applied even in the absence of the subformula property,
with easy proofs of the disjunction and existence properties, cf. von Plato (2006).
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that is invariant under reductions, and eliminates it in all its places of occurrence, without
multiplying propositions of the same value?
The assignment of values will go into the transfinite with CI’s.

It is not difficult to see where the last comes from: If instead of the universal
generalization of the conclusion of rule CI, a numerical instance A.n/ is concluded
by CI, the derivation should have a lower value than the derivation of 8xA.x/. (This
is mentioned explicitly in the popular article Gentzen 1936a.) The only way out is
that an uppermost CI with a fresh variable in the conclusion has the value !. The
next thing to determine is what happens when there are several nested CI’s. There
are some remarks about the possible ordinal assignments made during the spring of
1933, but nothing definitive: It seems to be a line abandoned for the time being.

With the original aim of Gentzen’s study temporarily lost, he concentrated on
pure classical logic, found his sequent calculus, and proved the famous Hauptsatz,
cut elimination theorem, during the rest of the spring of 1933 (as detailed in von
Plato 2012). Among the sporadic remarks about arithmetic added to the manuscript
INH, March to June 1933, one dated IV.33 states that “the need to use transfinite
induction in the consistency proof seems certain to me.” More statements are found
in the next section.

As to the use of transfinite numbers in a metamathematical context, the prece-
dents contain at least: Hertz (1923), Ackermann (1924), Hilbert (1926), and
Brouwer (1926).

2.5 Consistency, End of 1934

With the thesis finished in May 1933, Gentzen had other things to worry about
than the consistency of arithmetic and analysis. The mathematics department of
Göttingen was in ruins after the Nazi takeover and his professor Bernays fired as a
“non-Aryan.” Gentzen took up his research in 1934, helped by a little scholarship.
One thing he tried was to use type theory as the language of mathematics. A
result from the spring of 1934 is a consistency proof of Hermann Weyl’s system of
predicative analysis. Very little is known about the proof: One letter from Bernays
to Weyl tells that Gentzen was not able to reproduce it without his notes in 1937,
when he met Bernays in Paris (in Menzler-Trott 2007, p. 82). The result seems to
have been a by-product of the attempts at producing a proof of the consistency of
arithmetic, thus, not a strong result. Jean Cavaillès mentions in his book Méthode
axiomatique et formalisme that the method of the consistency proof for arithmetic
“extends without modification to mathematical theories in which the predicates and
functions are decidable or calculable in finitary terms: so for the constructive part
of analysis” (1938, p. 162). Gentzen wrote on 11 December 1935 to Bernays about
the discussions he had with Cavaillès who was visiting Göttingen at the time (see
Menzler-Trott 2007, p. 64).

By the end of 1934, Gentzen had found a proof of consistency of arithmetic.
A letter to Bernays of 12 May 1938 tells about a much later proof, the one that
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became standard through Gentzen (1938b): “How I have obtained the consistency
proof from the methods of proof in my dissertation is, I believe, now somewhat easy
to see in the new version” (Menzler-Trott 2007, p. 95). As we shall see in the end
of Chapter IV, the very first proof used a sequent calculus, instead of the natural
calculus of the 1935 proof submitted for publication in August of that year. There
Gentzen (1936, p. 512) notes that the proof would be simpler, though “less natural,”
if a sequent calculus were used. The analogy to cut elimination that he mentions is
the Hilfssatz to be treated in detail in Chapter IV.

There is even a letter of 11 April 1934 to Bernays by which a consistency proof
by transfinite induction existed already at that time (Menzler-Trott, p. 54). First
Gentzen writes that “the consistency of mathematics is equivalent to the carrying
over of the Hauptsatz of my dissertation from predicate logic to type theory”
(Stufenlogik, second-order logic with an axiom of infinity). He hopes to achieve
such a consistency proof soon “by force,” after which he adds: “It remains to modify
the proof so that only permitted forms of inference are used. I hope to achieve this,
in analogy to arithmetic only, through transfinite numbers.”

It is known also through discussions that Kreisel has had with Bernays that the
use of transfinite induction in the published 1936 proof was, in contrast to the proof
submitted for publication in 1935, a return to “an earlier idea” (as in Kreisel 1987,
p. 174), discarded in favor of the 1935 proof for reasons that are at least to some
extent explained in INH.

3 The Meaning of Consistency

3.1 “Where Is the Gödel-Point Hiding?”

There was, obviously, no easy way to a consistency proof of arithmetic by transfinite
induction. Within a week from the surfacing of the “new idea” of using such
induction, Gentzen in his characteristic manner set already out to determine what
he was actually trying to do: He asked in INH (date 16.X.32) what meaning a
consistency proof can have:

Why is a consistency proof through a coarse contentful explanation,
A&B correct when A correct and B correct, A ! B correct when from the correctness
of A the one of B follows, xAx when A
 correct for all numbers, :A correct when A not
correct,
after Gödel not formal? Does it contain a circularity? One infers: The logical axioms are
correct, the mathematical axioms are correct, inference scheme and substitution give correct
from correct, therefore all things provable are correct.

He asks at one place: “Where is the Gödel-point hiding?” It took him just a few
days more to come to the conclusion that the notion of correctness in arithmetic
transcends what can be expressed and proved in arithmetic (INH, date 21.X.), an
insight usually associated with Tarski:
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I believe I can now see clearly why a consistency proof cannot be formalized through the
giving of a coarse contentful meaning. To wit, because the meaning is not formalizable, and
this naturally always: in the usual formalism, e.g., of Gödel.

Within two days, the proof strategy was clear (INH, date 23.X.):

One shows now through ordinary inferences, i.e., without CI: There is to each proof with
a numerical result a proof with a lower value and the same result. Namely, one shows
existence of a peak, this peak can be reduced. The assignment of values follows according
to 88.3 bottom ff.3 So, the value of a proof is a system of transfinite numbers of the form: a
polynomial in ! with natural coefficients. (To be replaced by !a1 C Œ : : �C !a
 .)

The main inference can be seen as a transfinite induction over a decidable proposition,
namely the proposition: The numerical result is correct.

:::

There must obtain, in my opinion, some kind of a connection between the informal element
in the non-formalizable definition of “correctness” and the non-formalizable (?) transfinite
induction. For both of them seem to make possible a non-formalizable proof of consistency.

The attempts do not lead to any definitive result, and by early November, they peter
out.

The manuscript INH continues by remarks that stem from February, April, and
June 1933. In April, there is a clear division of proofs of consistency into three
types:

1. A “purely-formal” proof.
2. A “semi-contentful” proof.
3. A proof through reducibility.

The ordinal that is needed in a purely formal proof is estimated to be !!
!

. The
published proof of 1936 contains remarks about such a proof (§10.7). The third type
of proof should proceed through the “peak theorem,” i.e., through normalization.

There follow what Gentzen by a later addition indicated as General thoughts
about the proof of consistency:

The idea as a whole: Each proof has a (transfinite) value. Consistency of a system of proofs
can be shown only through a proof that has a higher value than all of these. Therefore the
theorem of Gödel.

The idea became the central one in ordinal proof theory that arose as a gen-
eralization of the proof theory of arithmetic. After the quoted passage, there are
the added words “taken over to WTZ.” That signum stands for something like
Widerspruchsfreiheit transfinite Zahlen (consistency transfinite numbers) and fits
well with the published 1936 consistency proof, but no pages of such a series of
notes are left. They have probably finished in the garbage dump in the 1960s and
1970s in Göttingen, where Gentzen’s manuscripts for his published papers had been
kept.

3The numbers refer to the stenographic series D in which each sheet such as 88 contains four pages,
from 88.1. to 88.4. This series became by sheet 92 renamed INH.



From Hauptsatz to Hilfssatz 103

By June 1933, the consistency problem is formulated in terms of sequent
calculus:

(VI 33) The possibility of a transfinite assignment of values seems almost sure, more or less
on the basis of the reducibility theorem. Let us take the following consideration: Proofs that
become continuously smaller with reduction are assigned values according to the number
of their sequents. . . . One should just be able to classify each proof directly in a correct way.
The best should be to begin with simple calculi.

Now there is a leap to October 1934 when the consistency proof seems already
finished. We read (date X.34):

One must distinguish between the semi-contentful proof that associates to each formula
resp. sequent a semi-contentful concept of correctness, and the proof by the concept of
reducibility that works with reductions of a derivation. This one leads over to the purely-
formal proof that considers only the reductions of a derivation of a contradiction.

It is the semi-contentful proof, or, in Kreisel’s terms, the proof that is partly in
terms of meaning, that would give a true insight into the significance of consistency,
and that Gentzen sets out to write down towards the end of 1934. The passages
of INH from October 1934 contain already references to a series with the signum
WAV that stands for Widerspruchsfreiheit Arithmetik Veröffentlichung (consistency
arithmetic publication) and of which some pages have been preserved. They deal
mainly with the production of sequents with formulas in prenex normal form and
with a variant of Gentzen’s reduction procedure for the classical sequent calculus
LK of the doctoral thesis, to be discussed below. The writing proceeded chapter by
chapter in the spring of 1935, each chapter sent to Bernays as it got ready. The latter
made comments concerning which only Gentzen’s replies have been preserved:
These comments provoked some changes after which Gentzen submitted his long
manuscript, some hundred typewritten pages, to the Mathematische Annalen where
it was received on 11 August 1935. A copy was sent to Weyl.

The quote from X.34 above refers to “the concept of reducibility that works with
reductions of a derivation.” There are two distinct notions that are called reducibility.
One is the syntactic notion of conversion of non-normalities in derivations, and
the analogous situation with the induction rule: The rule has as a conclusion a
numerical instance, and the step is resolved into a number of instances of logical
rules. This notion can be applied also to derivations in sequent calculus, because
of the correspondence between natural and sequent derivations. On the other hand,
Gentzen’s search for a meaning to a consistency proof had led him to a general
semantic notion of reducibility that applies to formulas and sequents. In the
above list of three suggested consistency proofs of April 1933, the second, “semi-
contentful” type uses the semantic notion of reducibility of sequents, the third
instead the syntactic notion of reducibility of derivations. Confusion can be created
when the reducibility of sequents in the semantic sense is applied to the sequents
of a derivation. The aim with the notion of reducibility of sequents was to give a
finitary interpretation to arithmetic. “Finitary” here has to be taken in broad terms,
not in the way of the strict finitism of Hilbert. It turns out that by the end of 1935,
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Gentzen’s variant of finitism encompassed the whole of the second number class,
i.e., the constructive transfinite ordinals.

3.2 Brouwerian Insights

Gentzen’s reduction procedure for sequents is intended as a semantic explanation
of arithmetic. The reduction rules are modeled upon “The mathematics of finite
domains,” the title of Gentzen’s §7, in which the quantifiers can be replaced by
conjunctions and disjunctions, and classical propositional logic dictates what the
conditions of correctness for the formulas are: A&B is correct when both A and
B are correct, :A is correct when A is false, etc. The correctness of the rules of
inference of propositional logic is almost immediate.

Let us note that Gentzen’s view of classical logic is exactly the same as
Brouwer’s: It is the logic of finite domains. This is the second of the “four
insights” in Brouwer’s paper Intuitionistische Betrachtungen über den Formalismus
(Intuitionistic considerations on formalism). It was printed in the Sitzungsberichte
der Preussischen Akademie der Wissenschaften in 1928 and I have more than one
reason to believe that Gentzen had studied it carefully.

Brouwer’s first insight was that “the formalists” have to differentiate between the
generation of theorems in formal systems and the contentful theory of these systems,
and that the latter is based on “the intuitionistic theory of the set of natural numbers.”
The second insight was cited above. The third insight was that excluded middle
equals the assumption of the solvability of every mathematical problem. The fourth
insight is most relevant for Gentzen: “The recognition that a contentful justification
of formalistic mathematics by a proof of its consistency contains a vicious circle.”
This is directly the terminology of Gentzen’s initial ponderings in INH. Brouwer’s
insights are also seen in action in Gentzen (1936a), among others, in: “I believe
that, for example, in the general theory of sets a careful proof theoretic investigation
will finally confirm the opinion that all powers exceeding the countable are, in a
quite definite sense, only empty appearances and one will have to have the good
sense to do without these concepts.” All in all, a trusted disciple, from among “the
formalists” to boot, had emerged as if by itself, to whom the typically Brouwerian
exclamation in the beginning of the Betrachtungen applies:

The acceptance of these insights is only a question of time, because they are the results
of pure reflection and hence contain no disputable element, so that anyone who has once
understood them must accept them.

Gentzen refers to Brouwer’s paper at the very end of his long article. It is, in addition
to the reference to Brouwer’s 1924 paper on the continuity of real functions in
Gentzen (1938a), his only reference to a work of Brouwer’s. He would, instead,
refer freely to Heyting’s formalization of intuitionistic logic. I think these facts just
tell us what Gentzen thought proper to refer to as a Göttingen logician whose future
depends on the opinion of Hilbert, rather than what he was indebted to in his work.
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How could he, who in the spring of 1935 had applied for an assistantship with
Hilbert, have stated the simple truth: The consistency proof of 1935 resolved, in
the words of Bernays, the “contemporary fiasco” of Hilbert’s Beweistheorie, by the
methods of Brouwer’s intuitionistic mathematics. This, namely, is what I am going
to suggest below.

4 The Plan and Circumstances of the Original Proof

4.1 Outline

The bearing idea of Gentzen seems to have been: The consistency of arithmetic is
proved by giving a special semantic explanation of correctness in arithmetic, either
of formulas or of sequents. Next, this notion is applied to formal derivations. Finally,
it is shown that there is no derivation of a contradiction that would be correct in the
semantic sense.

By the above, consistency was a by-product of the more ambitious idea of giving
a constructive semantics to intuitionistic arithmetic. Syntax and semantics have to
match each other, and it has to be laid down what is achieved by a consistency
proof, in particular, that it does not somehow assume what it sets out to prove. In
his discussion of these topics in INH, Gentzen carefully avoids talking about the
traditionally central notion of semantics, namely truth. He talks, like Brouwer, about
correctness (Richtigkeit) and says that a statement holds (gilt).

Bernays had the submitted proof with him when he sailed to New York in
September 1935. On board was Gödel; His position as the king of logicians was
reflected in his status on board, in the first class. I have seen a postcard in the Bernays
collection of the ETH-Zurich in which Gödel requests a meeting with Bernays, for
the fired professor had to travel in a tourist class and could not just like that go
and meet Gödel. During the fall term, the two commented on Gentzen’s proof, but
only the answers of the latter have been preserved. They contain some information,
though in a form that is often bound to frustrate the reader, such as the following
passage from a letter of 11 December 1935 (Menzler-Trott 2007, p. 64):

The possible changes indicated by Gödel were known to me, but are in fact inapplicable
from the finite standpoint because of their impredicative character.

Gentzen answered to the criticisms by changing the semantically based consistency
proof into one that uses the now generally known transfinite induction principle,
with essential changes of large parts of the manuscript sent to the journal in
February 1936. They contained, as mentioned, a turn into an older idea, and various
passages from INH make evident this remark of Bernays, transmitted through
Kreisel’s recollections in (1987, pp. 173–175). By good luck, the proof originally
submitted for publication was preserved by Bernays in the form of galleys. They
were published in English translation in the Szabo edition of Gentzen’s papers in
1969, and in the German original in 1974. Even if Bernays kept the proofs for forty
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years, they have been lost in connection with the 1974 publication in the Archiv
für mathematische Logik und Grundlagenforschung (later Archive for Mathematical
Logic).

The net effect of the criticisms was a proof that mixed elements from the purely
formal and semi-contentful approaches, instead of arriving at the former through
the third proof idea, that of a proof through the syntactic notion of reducibility.
The presentation suffered from these changes, but Gentzen was happy with the
overall result he had found during the fall of 1935, namely, that a clear-cut transfinite
induction can replace his original proof, with a precise “Gödel-point,” the transfinite
ordinal "0 that characterized Peano arithmetic.

4.2 The Setting of the Original Proof

The version submitted in August 1935, referred to here as Gentzen (1935), got
mutilated by the changes Gentzen made. Gentzen (1935) gives a semantics for the
derivability relation in arithmetic, expressed as a sequent A1; : : : ; An !C . There
is just a single conclusion C from the assumptions in the list A1; : : : ; An, instead
of a finite number of possible cases as in the classical sequent calculus LK of the
doctoral thesis Gentzen (1934–35).

When the sequent notation is used, there is a double sense to derivability: The
arrow is like the “vertical dots” in the inference schemes of natural deduction. On
the other hand, there is the notion of derivability of a sequent by the rules of sequent
calculus. Thus, these rules relate derivabilities in the first sense to each other, in the
way exemplified by the left sequent calculus rule for disjunction, say. Disjunction
elimination becomes the sequent rule: If C is derivable from A and from B , it is
derivable from A _ B . With assumptions added, we have the correspondence:

A _ B

ŒA�; 	....
C

ŒB�;�....
C

C
_E Ý

A;	 !C B;�!C

A _ B;	;�!C
L_

There are above the inference line of rule _E two schematic derivations that
are given as two corresponding sequents above the inference line of rule L_. Its
conclusion gives the final situation of derivability of rule _E .

The correspondence goes in the same way for the other rules. For simplicity,
I have taken the situation in which the major premiss of rule _E in natural
deduction is an assumption. The correspondence between natural deduction and
sequent calculus was understood rather well by Gentzen, though not in full (see
my 2012 for an exhaustive treatment).

In Gentzen (1935), a semantics of derivability in the first sense, as represented
by the dots or arrows, is given. Then it is applied to derivability in the second sense.
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The rest of this section is structured as follows: (3) The reduction of sequents.
(4) The calculus NLK. (5) The reduction of derivations in NLK. (6) The consistency
theorem. (7) Consistency: the three first proofs.

4.3 The Reduction of Sequents

The atomic formulas of arithmetic are decidable equalities between numerical
terms. It follows that the whole propositional part of arithmetic is decidable.
Gentzen’s reduction procedure is carried over from the classical propositional
logic of formulas to sequents, as exemplified by the following: If A&B in the
antecedent of a sequent A&B;	!C is false, one of A and B is false, and each
can be tried in turn in the place of A&B . If :A in :A;	 !C is false, it is deleted
and the sequent changed into 	 !A.

Gentzen’s essential idea is to extend the procedure from the finitary domain to
quantified formulas, i.e., to apply the “transfinite sense” of 8xA.x/ in a certain way.
Gentzen calls it “the in-itself sense” (der an-sich Sinn).

A way to think of the reduction procedure is that the correctness of a sequent
	!C is guaranteed if, in whatever way C may have as a consequence a false
claim, it can be shown that some assumption in 	 likewise presupposes a falsity.
Then, whenever the assumptions 	 hold, also C holds. Say, to put it in figurative
terms, we have a sequent of the form 	 ! 8xA.x/& 8xB.x/ and an omniscient
opponent who can reason classically by the in-itself sense of things and to whom
the infinity of the natural numbers is not an obstacle. Such a creature can decide
when 8xA.x/& 8xB.x/ is false in its eyes, with, say, 8xA.x/ a false conjunct,
next to take a falsifying instance A.n/ out of the infinitely many possibilities. Our
task is to show that, even if we don’t have the opponent’s classical and transfinite
capacities, we can make finitarily choices after the opponent’s choices so that some
assumption in 	 turns out false. It is this “finitary sense” that Gentzen is after in his
semantical explanations.

The reduction of sequents is effected by suitable moves in what I, continuing
to speak in suggestive terms of Gentzen’s procedure, call a “falsification game” in
which first certain “S-moves” are taken in the succedents of sequents, followed by
“A-moves” in the antecedent.

S-moves:

SVar. The sequent 	!C has free variables. Numbers are chosen at will to
instantiate these until there are no free variables left.

S&. The sequent is 	!A&B and either 	!A or 	 !B is chosen at will.
S:. The sequent is 	 ! :A and the reduced sequent is A;	 ! 0 D 1.
S8. The sequent is 	 ! 8xA.x/ and some instance 	 !A.n/ is chosen at will.

Order of Precedence: Move SVar comes before the other S-moves.

The S-moves are classical, for the falsifier knows how to end up with the worst
possible case, here, a false equation as a conclusion. Each S-step simplifies the
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succedent of the sequent to be reduced until an equation m D n remains. If the
equation is true, the attempt at falsifying the sequent failed. Otherwise, when no
S-move is applicable and m D n is false, the task is to show that some of the
assumptions must contain a falsity, too. To do this, the following steps can be taken
in the antecedent:

A-moves:

A&. The sequent is A&B;	 !m D n with m D n false. The reduced sequent
is A;A&B;	!m D n or B;A&B;	 !m D n.

A:. The sequent is :A;	 !m D n with m D n false. The reduced sequent is
:A;	 !A.

A8. The sequent is 8xA.x/; 	 !m D n with m D n false. The reduced sequent
is A.k/;8xA.x/; 	 !m D n for some k.

Order of Precedence: S-moves come always before A-moves.

In the first of the A-steps, the conjunction is repeated, for it can happen that one
needs at some later stage also the other conjunct. It would be possible to have a
single move with A;B that replaces A&B with no repetition. The negation step
seems to be classical, in that :A in the antecedent and a falsity in the succedent
does not lead to the intuitionistically derivable ::A in the succedent, but to A;
However, as said, the reasoning in the succedent part is classical.

The aim of the reduction procedure is to ensure that a false formula in the
antecedent part of a sequent can be produced, whenever a false numerical equation
has appeared in the succedent. Note that if a negation at left is reduced, there will be
an S-step, unless it was a negation of an equality. Given a sequent 	 !C , the result
of reduction is, provided the process terminates, a sequent to which no reduction
step applies.

Let us now check that, indeed, the reasoning in the succedent side is classical
even if the domain is infinite:

Let the sequent be 	!A&B . The S-steps should turn out something false out
of the succedent, by which the succedent itself is also false. If that is so, then
:.A&B/ is true, i.e., classically :A _ :B is true. The worst case is produced
by a choice, say :A, that gives a sequent 	 !A with a false succedent. Note
that the conjuncts in A&B may very well be “transfinite,” universally quantified
formulas, and that it need not be decidable which of them is false. This does not
matter, because A-steps have to be such that they apply to any choice that may have
been taken in the succedent.

Let the sequent be 	! 8xA.x/. As above, if the succedent is false, then
:8xA.x/ is true, so classically 9x:A.x/ is true. There is an instance :A.k/ true
“in itself,” and the sequent 	!A.k/ with a false succedent has to be dealt with.

Finally, if the sequent is 	 ! :A, there are no choices and the reduction goes on
with A;	 ! 0 D 1.
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Definition 1 (Irreducibility, Endform, Correctness)

(i) A sequent is irreducible if no reduction move applies to it.
(ii) A sequent 	!m D n is in endform if either m D n is true or there is some

false equality in 	 .
(iii) A sequent 	 !C is correct if for each choice of S-moves there are A-moves

such that 	!C reduces to endform.

We say often simply that a sequent is reducible if it is reducible to endform. The aim
of Gentzen’s consistency proof is to show that all derivable sequents are reducible.
It follows that the sequent ! 0 D 1 is not derivable, because it is irreducible but
not in endform: No atom in the antecedent is false, because there are none.

4.4 The Calculus NLK

As can be seen, the reduction of sequents is an idea independent of a particular
logical calculus. To emphasize this important aspect, I reversed the order of
presentation of the calculus and the reduction procedure from that in Gentzen
(1935). In fact, it is this aspect that made it possible for Gentzen to change the
calculus into another one in the published proof, instead of rewriting the whole
paper (as he perhaps should have done).

The calculus in Gentzen (1935) is what is today called “natural deduction
in sequent calculus style.” It can be found already in the handwritten thesis
manuscript, with the nomenclature NLK where the letters stand for “natürlich-
logistisch klassisch.” NLK is an obvious intermediate stage in the translation from
natural deduction proper into sequent calculus: The idea is simply to display for
each formula occurrence in a natural derivation all the open assumptions the formula
depends on. There is a fundamental difference to sequent calculus proper, because
there are no left rules for conjunction, implication, and universal quantification. To
finish the translation to sequent calculus, Gentzen inserts cuts (see von Plato 2012
for details).

A further aspect of NLK is its classical character: Gentzen knew that classical
logic would not be necessary but used it anyway. My guess is that he did it mainly
for expository purposes, so that his intended general reader of the Mathematische
Annalen would not be put off by a reliance on such esoteric things as intuitionistic
logic. I shall now present the rules of NLK, as they are given in Gentzen’s paper,
except for the fraktur type: These rules are direct translations into the notation of
sequent calculus of the rules of classical natural deduction and the induction rule. In
rules that have more than one premiss, the contexts 	;�; : : : are accordingly added
up in the antecedent of the conclusion. To the assumptions of natural deduction
correspond “logical groundsequents” of the form A!A. Refutation is from the
German Widerlegung, abbreviated Wid below (Table 1).

The rules of inference are given in a linear form of sentences. There is, in fact,
not a single inference line printed in the whole work. Here again, Gentzen perhaps
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Table 1 The rules of Gentzen’s calculus NLK

&-introduction: The sequents 	 !A and �!B give the sequent 	;�!A&B

&-elimination: 	 !A&B gives 	 !A resp. 	 !B

_-introduction: 	 !A gives 	 !A_ B resp. 	!B _ A

_-elimination: 	 !A_ B and A;�!C and B;‚!C give 	;�;‚!C

8-introduction: 	 !A.a/ gives 	 ! 8xA.x/ on the condition that the free variable a does
not occur in 	 nor in 8xA.x/
8-elimination: 	 ! 8xA.x/ gives 	 !A.t/

9-introduction: 	 !A.t/ gives 	 ! 9xA.x/
9-elimination: 	 ! 9xA.x/ and A.a/;�!C give 	;�!C on the condition that the free
variable a does not occur in 	;�; C nor in 9xA.x/
�-introduction: A; 	 !B gives 	!A � B

�-elimination: 	 !A and �!A � B give 	;�!B

Rule of “refutation”: A; 	!B and A;�! :B give 	;�! :A
“Elimination of double negation”: 	 ! ::A gives 	!A

Rule of “complete induction”: 	 !A.0/ and A.x/;�!A.x C 1/ give 	;�!A.t/

wanted to appeal to a general readership, to whom the notation of two-dimensional
proof trees with their inference lines was completely unknown at the time. Those
few specialists who had read his doctoral thesis were an exception.

Formal derivations within Gentzen’s calculus consist of series of sequents, with
the following definition (p. 513):

A derivation consists of a number of sequents in succession, such that each of these is
either a “groundsequent” or results from some previous sequents through a “structural
modification” or a “rule of inference.”

To deal with the explicit listing of the assumptions in the antecedent parts of
sequents, Gentzen adds the following “structural modifications:”

1. Exchange of the order of assumptions in the list.
2. Contraction of two occurrences of an assumption into one.
3. Weakening of an antecedent by the addition of an assumption.
4. Change of a bound variable by a fresh one.

Gentzen writes (pp. 513–514) that these rules are “purely formal in nature and
inconsequential in their content; they have to be mentioned explicitly because of
the peculiarities of the formalism.”

The calculus is completed by adding what Gentzen calls “mathematical ground-
sequents.” They have the form !A, with A a mathematical axiom. The right
axioms are not listed, instead, Gentzen writes that for the consistency proof, it is not
so essential what the mathematical axioms are. He gives as examples the following:

8x x D x; 8x8y.x D y 
 y D x/; 8x8y8z.x D y& y D z 
 x D z/;

8x : x C 1 D x; 8x8y x C y D y C x; 8x8y8z .x C y/C z D x C .y C z/:
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Gentzen was convinced that the rule of induction was the only one that created real
problems for the consistency proof. The rest of the arithmetic principles could be
dealt with in whatever way was easiest. One such was given in the doctoral thesis.
It contains “as an application of the sharpened Hauptsatz” a consistency proof for
induction-free arithmetic (IV §3). Axioms are allowed to appear in the antecedent
parts of sequents in a classical calculus and consistency is proved by the midsequent
theorem. An alternative method was to formulate the axioms as groundsequents with
free parameters, in the form

! a D a; a D b! b D a; a D b; b D c! a D c;

a C 1 D a! ; ! a C b D b C a; ! .aC b/C c D a C .b C c/:

In the consistency proof of 1938, such groundsequents contain after some transfor-
mations only numerical terms, and it can be decided whether they are correct, i.e.,
whether an equation in the succedent is a true numerical equation or an equation in
the antecedent a false one.4

For this presentation, we grant to Gentzen what he presumes, namely, that the
arithmetical principles except that of complete induction will not cause problems.
It will be sufficient to prove the consistency of the system of classical natural
deduction augmented by the rule of complete induction.

The rules of NLK exhibit some strange features: Why does the classical calculus
NLK contain a full set of connectives and quantifiers? Further, there was no
normalization theorem for the classical calculus. How could the ideas about a
meaning explanation through normalization be carried over to a consistency proof
in terms of NLK?

The essential difference of NLK with respect to a proper sequent calculus is
that the elimination rules for conjunction, implication, and universal quantification
operate on the right part of sequents. The corresponding sequent calculus rules
operate on the left, antecedent parts of sequents. Looking at rules _E and 9E , we
notice the following: If the first premiss is a logical groundsequent,A_B!A_B
resp. 9xA.x/! 9xA.x/, and if it is left unwritten, the rules turn out identical to
the left rules of sequent calculus. I have followed this way in my 2009 article, with
an intuitionistic sequent calculus for Heyting arithmetic, and given a proof of its
consistency directly along the lines of Gentzen’s proof.

When Gentzen comes to the proof of consistency in his paragraph 14, he has
already removed the connectives _;
, and 9 by the obvious translations into the
fragment with just &;:, and 8. Even the inferences by the rules for the former
group are transformed in the obvious way. Gentzen notes, at the end of paragraph 12,
that a transformed derivation “is an essentially intuitionistically acceptable number-
theoretic derivation: namely, the ‘elimination of a double negation’ could, where it

4After Gentzen’s times, the axioms have been put aside by various degrees of hand-waving, in the
style of: “It’s all primitive recursively decidable, so why bother?” For a proper proof-theoretical
treatment of the arithmetical axioms, see Siders (2015).
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is used, be replaced by other rules of inference.” We have seen above how this goes
through, in the note of January 1933, and there is even more reason to ask why the
classical rule is kept.

4.5 The Reduction of Derivations

The main part of Gentzen’s original consistency proof consists of a few lemmas that
I state as follows, with some typical cases of the proofs covered:

Lemma 2 Initial sequents A!A are correct.

The proof is by induction on the length of A. Assume SVar-moves to have been
taken, so that there are no free variables. There are four cases of which we show two:

1. A is an equality m D n, and we have m D n!m D n. By the decidability
of numerical equality, if m D n is true, A!A is in endform, and the same if
m D n is false.

2. A is B &C . Then B &C !B &C reduces by S& to B &C !B or to
B &C !C . Case 2.1. Consider the first time when the reduction of B &C !B

by arbitrary S-moves gives a sequent of the form B &C;	!m D n, i.e., the
first time for an A-move. The sequent B !B is reducible by the inductive
hypothesis, so the same sequence of S-moves as for B &C 
 B gives the
reducible sequent B;	 !m D n. Application of A& to B &C;	!mDn

gives B;B &C;	!m D n. When formula B &C in the antecedent is
left intact, the sequent reduces exactly as B;	 !m D n. Case 2.2. If
B &C !B &C is reduced by S& to B &C !C , the proof is as above, with C
in place of B .

We see here in action the method of simulating in A-moves the choices made in the
preceding S-moves. The remaining two cases of A � 8xB.x/ and A � :B are
treated similarly. QED.
I give the rule of composition as the inference scheme:

Composition of two sequents

Comp

Gentzen takes it for granted that derivations can be composed in his calculus NLK.

Lemma 3 (Closure of Derivability Under Composition) If the sequents 	 !D

and D;�!C are derivable in NLK and possible eigenvariables distinct, also the
sequent 	;�!C obtained by composition is derivable in NLK.
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The proof would be straightforward were the calculus intuitionistic, as in von Plato
(2009, lemma 5.2). I have not tried to determine how a proof with Gentzen’s rules
would go through, but let’s assume it does.

Next in Gentzen’s article comes the crucial property of the whole proof of
consistency, one that he named the Hilfssatz in obvious analogy to his famous
Hauptsatz, or cut elimination theorem for predicate logic. It states that composition
preserves the correctness of sequents in the sense of the above definition:

Hilfssatz 4 (Closure of Reducibility Under Composition) If the sequents	 !D

and D;�!C are reducible to endform and possible eigenvariables distinct, their
composition into 	;�!C is reducible to endform.

Proof The proof is by induction on the length of the composition formula D. We
can assume possible free variables to have been removed by SVar.

1. D � m D n. Then the first premiss of Comp reduces to 	� ! 0 D 1, or
	� !m D n if move S: was never applied. Assume S-moves to have been
applied to the conclusion 	;�!C until 	;�;�� ! k D l is produced, in
which k D l can be assumed false and �� consists of those formulas, possibly
none, that applications of S: have brought to the antecedent. Leaving �;��
intact, the sequence of A-moves that reduces 	 !m D n to the endform
	� ! 0 D 1 (or 	!m D n), reduces 	;�;�� ! k D l to an endform.
We note that if 	 !m D n is reducible and m D n false, the equation
0 D 1 can replace m D n: Compose 	!m D n with the sequent in endform
m D n! 0 D 1 to get 	 ! 0 D 1.

2. D � A&B . The composition is

	 !A&B A&B;�!C

	;�!C
Comp

By assumption, 	!A&B is reducible, so both of 	 !A and 	 !B are.
Consider the second premiss A&B;�!C . Either there is no application of
A& to A&B in its reduction and A&B can be removed. Then �!C is
reducible, and therefore also 	;�!C . Else A& is applied at some stage
to a reducible sequent A&B;�� ! 0 D 1 with, say, the reducible sequent
A;A&B;�� ! 0 D 1 as result. We now apply Comp:

	 !A A;A&B;�� ! 0 D 1

A&B;	;�� ! 0 D 1
Comp

By the inductive hypothesis, Comp applied to shorter formulas maintains
reducibility, so A&B;	;�� ! 0 D 1 is reducible. The reduction of 	;�!C

by the arbitrarily chosen S-moves that reduce the premiss A&B;�!C to
A&B;�� ! 0 D 1, gives the sequent 	;�� ! 0 D 1 that is reducible to
endform by the same A-moves as A&B;	;�� ! 0 D 1.
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3. D � 8xA.x/. The composition is

	! 8xA.x/ 8xA.x/;�!C

	;�!C
Comp

By assumption, 	 ! 8xA.x/ is reducible, so 	!A.n/ is reducible for any
choice of n. As in 2, either there is no application of A8 to 8xA.x/ in the
reduction of the second premiss and 8xA can be removed. Then �!C is
reducible, and therefore also 	;�!C . Else A8 is applied at some stage
to a reducible sequent 8xA.x/;�� ! 0 D 1, with the reducible sequent
A.k/;8xA.x/;�� ! 0 D 1 as result. With the instance k also in the first
premiss, application of Comp to the shorter formula A.k/ gives

	 !A.k/ A.k/;8xA.x/;�� ! 0 D 1

8xA.x/; 	;�� ! 0 D 1
Comp

The conclusion is reducible by the inductive hypothesis. The reduction
of 	;�!C by the arbitrarily chosen S-moves that reduce the premiss
8xA.x/;�!C to 8xA.x/;�� ! 0 D 1, gives the sequent 	;�� ! 0 D 1

that is reducible to endform by the same A-moves as 8xA.x/; 	;�� ! 0 D 1.
4. D � :A. The composition is

	! :A :A;�!C

	;�!C
Comp

In the reduction of the second premiss of Comp, if A: is never applied to :A,
it can be deleted and what remains, the sequent �!C , is reducible. Then also
	;�!C is reducible. Otherwise there is a reducible sequent :A;�� ! 0 D 1,
to which in turn A: is applied to give the reducible sequent :A;�� !A.

The first premiss of Comp reduces by S: to A;	! 0 D 1. Application of Comp
to the shorter formula A gives

:A;�� !A A;	 ! 0 D 1

:A;	;�� ! 0 D 1
Comp

The conclusion is reducible by the inductive hypothesis.
As above, if in the reduction of :A;	;�� ! 0 D 1move A: is never applied to

:A, it can be deleted and the remaining sequent 	;�� ! 0 D 1 is reducible. This
is the sequent produced from 	;�!C by the arbitrary initial S-moves that gave
:A;�� ! 0 D 1, so 	;�!C is reducible.

If instead in the reduction of :A;	;�� ! 0 D 1 move A: is applied at
some stage to :A in a reducible sequent :A;	�; ��� ! 0 D 1, the reducible
sequent :A;	�; ��� !A is obtained. Composition with A;	! 0 D 1 gives
:A;	; 	�; ��� ! 0 D 1 that is reducible. Therefore, continuing this analysis, at
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some stage the formula :A in the antecedent of the result of composition must
remain unreduced and can be deleted. The resulting sequent is then reducible. QED.

The proof seems innocent enough, even if the very last steps are a bit tedious.
They bring perhaps to mind methods in proofs of underivability through failed proof
search.

Gentzen tries to persuade the reader of the constructive character of the reduction
procedure by reformulating the Hilfssatz in the following terms (cf. Gentzen 1935,
sec. 14.4 4): “If reduction procedures for 	!D and D; �!C are known, a
reduction procedure for 	;�!C can also be given.” These, however, are just
words; There is no difference of substance to the formulation above.

4.6 The Consistency Theorem

The final component in Gentzen’s consistency proof is to show that the rules of
inference preserve correctness of sequents:

Theorem 5 If the sequent 	 !C is derivable, it reduces to endform.

The proof is by induction on the last step of a derivation. If 	 !C is a logical
groundsequent, it is correct as shown above by the lemma. Otherwise consider the
last rule of the derivation and show that if the premisses reduce to endform, also the
conclusion reduces. The cases are the structural modifications, seven logical rules,
and CI.

Gentzen goes through the two cases for 8. Then he notes that the three
conjunction rules go through similarly. The cases for 8 are:

1. The last rule is 8I . The conclusion is 	 ! 8xA.x/, and it reduces by S8
to 	!A.m/. The premiss 	 !A.y/ is by assumption reducible, with y the
eigenvariable. Rule SVar produces a sequent 	 !A.n/ that is reducible for
any choice of n, in particular, the choice m. Therefore the conclusion of 8I is
reducible.

2. The last rule is 8E . The premiss is 	 ! 8xA.x/. S-moves applied to the
conclusion 	!A.t/ produce the sequent 	!A.m/. The premiss is reducible
for any choice of value for x, therefore 	!A.t/ is reducible by the same A-
moves as for 	 ! 8xA.x/.

Next comes a peculiar turn, when Gentzen writes (14.4 4) that for the two negation
rules and CI, the Hilfssatz is put into use. Namely, the question is: If we leave out
rule CI, should we not get a standard proof of the consistency of classical first-order
logic as a result? Moreover, the classical rule is dispensable in NLK. What has a
principle such as the Hilfssatz to do in this connection?

The situation is clarified in my 2009 paper that uses an intuitionistic calculus and
a normalization theorem. The overall result is contained in the:

Observation With the intuitionistic calculus NLI, the Hilfssatz is needed only for
showing that rule CI preserves the correctness of derivations.
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Gentzen naturally knew the above by the result of his thesis, namely, that if induction
is left out, the proof of consistency can be carried through finitistically in the
tradition of Hilbert’s program. Some logical groundwork had simply remained
undone; Maybe there was some haste for a poor scholarship holder who tried to
secure an academic position in extremely difficult times: Gentzen had in fact applied
for scholarships in Germany, inquired Weyl about the Rockefeller foundation
financing and about a stay in Princeton, and obtained a position as a teacher in a
lyceum in Stralsund in case nothing else worked. Moreover, he had no one to talk
to, with people expelled from Göttingen.

Finally, we look at the crucial step of the consistency proof, namely the case of
rule CI.

3. The last rule is CI. The premisses are 	 !A.1/ and A.y/;�!A.y C 1/, the
conclusion 	;�!A.t/. In its reduction, if t has free variables, application of
Svar gives some numerical term n in place of t . In the second premiss, any
application of rule SVar gives a reducible sequent, so that A.m/;�!A.mC 1/

is derivable and reducible for any m. An n � 1-fold composition of 	 !A.1/

with A.1/;�!A.2/; : : : ; A.n � 1/;�!A.n/ gives

	 !A.1/ A.1/;�!A.2/

	;�!A.2/
Comp

A.2/;�!A.3/

	;�2 !A.3/
Comp

....
	;�n�2 !A.n � 1/ A.n � 1/;�!A.n/

	;�n�1 !A.n/
Comp

Thus, the sequent 	;�n�1 !A.n/ is derivable by the admissibility of compo-
sition and reducible by the Hilfssatz. For the conclusion 	;�!A.t/ of CI,
an S-move reduces it into 	;�!A.n/ and 	;�!A.n/ is reducible because
	;�n�1 !A.n/ is.

By hindsight, we have one more aspect of later calculi of proof search present
in the reduction procedure. Namely, it has to be shown that the rule of contraction
preserves reducibility, and this is secured because there is a possible repetition of a
formula for rules that are not invertible.

With the above lemmas and preparations, consistency can be easily concluded:
As noted above, the sequent ! 0 D 1 is irreducible but not in endform, therefore
it is not derivable.

Corollary 6 The system NLK+CI+arithmetic axioms is consistent.

More is achieved than the unprovability of 0 D 1, namely, it follows that from
derivability follows correctness, or soundness in more recent logical terminology.
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4.7 The Earliest Preserved Consistency Proof

The above account of the consistency proof is essentially based on the preserved
galley proofs of Gentzen’s article in its original 1935 form. We have now a back-
ground against which it is possible to understand recently transcribed stenographic
manuscripts from the fall of 1934. These are, first, the last ten pages of INH, written
in October of that year. Secondly, there is the manuscript BZ, for Beweistheorie der
Zahlentheorie (Proof theory of arithmetic), written between August 1934 and March
1935, with pages 1–6 and 9–12 preserved. The third one is WAV, mentioned already
above, and written around October 1934, but without dates and with the pages 55–
56, 77–80, and 83–86 preserved. It consists of preliminary notes for the preparation
of the final manuscript, judging from the pages that have been preserved as well as
from occasional references to it in the other manuscripts. These notes have direct
connections to the article that Gentzen prepared in the spring of 1935.

There are parts in BZ and WAV that treat the same topic, the preparation of
sequent derivations in which all formulas are in prenex normal form. The proposi-
tional part of arithmetic is decidable, and Gentzen wanted to delimit propositional
steps in derivations to a “finitary” part, above a “transfinite part” that contains steps
of inference with the quantifiers, a separation that follows from the midsequent
theorem for derivations in the classical sequent calculus LK that he used at this
stage. The aim was to have a consistency proof that is “more concentrated on what is
essential” ( WAV, p. 78). One idea in WAV is to minimize the number of proper rules
of inference, through the use of groundsequents, such as A&B!A;A!A _ B ,
and 8xA.x/!A.t/. The reducibility of such sequents follows easily from the
reducibility of initial sequents; Say, when an A-move is met with the first one,A&B

is replaced by A, and then reduction steps can be applied in the antecedent as in the
reduction of A!A.

WAV contains the earliest preserved proof of consistency of arithmetic, detailed
out in three pages and based on the reduction procedure (pp. 78–80). It is titled “the
second proof of correctness (LK consistency proof),” and by this proof, it becomes
further clear that the first proof was also based on the reduction procedure, but with
the intuitionistic sequent calculus LI augmented by the classical sequent ::A!A.
When the classical “symmetric calculus” is used, as Gentzen calls it, the reduction
procedure has to be defined also for disjunction and existence. (He prefers to leave
implication out, because it breaks the symmetry of LK.) The details of the reduction
procedure for symmetric sequents are not spelled out, but it is clear how they are to
be taken: The arbitrary choices (moves by the opponent in my terminology above)
extend now to the antecedent part, with the aim of producing a true numerical
equation at left. Thus, the opponent is able to make a best possible choice in
the case of an antecedent formula 9xA.x/, for a true instance A.t/. Afterwards
the respondent can reply to such a choice in the succedent by choosing the same
instance A.t/. Analogously, the opponent chooses one of the disjuncts in A _ B

in the antecedent, and the respondent in the succedent. Whenever the opponent has
produced a false equation in the succedent or a true equation in the antecedent, the
respondent is in turn, with the aim of producing a false equation in the antecedent
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or a true one in the succedent. Whenever this is the case, a sequent is in endform, a
notion that coincides with the one above for single-succedent sequents.

As before, the proof of consistency proceeds by showing that derivable sequents
reduce to endform. Propositional connectives are handled by logical groundse-
quents, as above, and for conjunction in the succedent by A;B !A&B and
disjunction in the antecedent by the dual A _ B!A;B . The quantifier rules
are straightforward. There remain CI and the crux of the proof, namely that the
composition of sequents in the form of a mix rule (Mischung), or multicut in more
recent terminology, maintains reducibility (WAV, p. 79):

Let the reducibility of both upper sequents be already shown. That for the lower sequent to
be shown. We do a complete induction after the grade of the mix. That is now: The number
of 8 and 9 at the head of the mix formula M.

	 !�.M/ ‚ .M/!ƒ

	 ‚� !��ƒ

The notion of grade indicates that the formulas are in prenex normal form. The proof
that the grade of the mix formula can be lowered ends with the words (WAV, p. 80):
“This somewhat peculiar inference is subjected to detailed criticism in Section IV,”
clearly a reference to the paper Gentzen was writing. In that paper, the proof through
a reduction procedure obtained a third form, through the classical natural calculus
NLK that uses the sequent notation. Thus, what I have called the original proof was
by Gentzen’s count in WAV actually the third one. Moreover, INH and BZ contain
references to a lost series WTZ, clearly for “consistency transfinite numbers,” but
the few indications of ordinals in that attempted proof do not yet contain the Gentzen
ordinal "0 of 1936.

5 Nature and Reception of the Original Proof

Gentzen was obviously happy and content with his original proof. A lot of
work had gone into it, both formal and conceptual: The detailed discussions in
INH, especially, give an indication of the importance of the latter for Gentzen.
Others, however, felt that something was missing: Gentzen (1935) contains general
discussions about the significance of consistency proofs and it even singles out the
Hilfssatz as central, but it does not indicate clearly what the crucial points in the
proof of the latter are. Specifically, the termination of the reduction process is not
treated in precise terms.

5.1 The Problem of Termination of the Reduction Procedure

There has been an extensive correspondence between Gentzen and Bernays about
the consistency proof, as well as some letters between Gentzen and Weyl, and
Gentzen and Van der Waerden. Only the letters of Gentzen to Bernays have
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been preserved. The first of these letters, dated June 23, 1935, was sent from
Gentzen’s hometown Stralsund by the Baltic Sea and included the “final part” of the
consistency paper. It went then on to discuss the suggestions made by Bernays and
notes, among others, that the existence property of arithmetic follows for formulas
9xA.x/, “in case A.x/ is not transfinite.” Towards the end Gentzen writes that he
wanted to discuss in the final chapter transfinite ordinal numbers and their relation to
reduction procedures and construction procedures, and then continues: “In the end,
these things did not seem ripe for a presentation yet but could perhaps find place in
a later separate publication.”

A second letter written three weeks later, 14 July, contains:

I have written in fact nonsense on pp. 75–76; I held my eye on an older form of the notion
of reduction, in which the reduction steps are uniquely determined. The passages could be
corrected more or less as follows: At 15.21, reducibility should be replaced by: ‘There is
a number 
 so that for each series R
 of 
 numbers, a series of at most 
 sequents can
be given such that the first one is Sq, and each of these is formed from the preceding one
through a reduction step, and the last one has endform, and further, the possible choices are
determined through the associated numbers from the series R
 .’ Correspondingly under
15.23: “For each infinite series R of numbers, a finite series of sequents can be given,
the first of which . . . ” as before. – I have, however, cancelled these passages completely,
because they are not fully necessary; perhaps I could give sometime later complete proofs
to both theorems in a special publication.

The uniquely determined sequence of reduction steps should refer to a reduction
procedure for derivations of the false formula 0 D 1.

The above passage is reminiscent of Brouwer’s explanation of bar induction in
his (1924), where the connection to transfinite induction is also made—a pity we
don’t have Gentzen’s proof of his 15.23 preserved. He states quite clearly that the
choice sequences in steps of reduction, represented as sequences of natural numbers,
lead to endform in a finite number of steps. Gentzen’s use of natural numbers in the
description of the reduction procedure brings him very close to Brouwer who in
1924 formulated the bar theorem as follows:

If to each element of a set M a natural number ˇ is associated, M is decomposed by
this association into a well-ordered species S of subsets M˛ , such that each of these is
determined by a finite initial segment of choices. To each element of the same M˛ is
associated the same natural number ˇ˛.

In Gentzen,M consists of the collection of reduction sequences of sequents and the
choices to single reduction steps.

Now there is a big gap in the correspondence, until 4 November, with a four-
page tightly and very orderly written letter sent to Bernays in Princeton, where also
Gödel was. The former, possibly with the help of the latter, had taken up the central
problem of the proof, as can be gathered from Gentzen’s answer:

I have considered all these aspects already myself, including the geometrical image of
branching line segments. You are quite right that the finiteness of even a single reduction
path for the sequent 	;�!C can get grounded on the finiteness of a whole series of
different reduction paths for D; �!C. But this does nothing for my proof idea!
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He then writes that he had added an explanation to the article—it would be in the
end of Sect. 14 (p. 112 of the German version of 1974)—the proofs of which he had
sent back a few days earlier:

Let the following be remarked to avoid misunderstandings: The type of reduction of
D; �!C into D; �� !C� can eventually depend on a choice (14.6 2 1) that takes place
in the reduction of the mix-sequent 	;�!C.5 The same holds of each further step of
reducing back, and, it can be added, the new mix-sequent 	;�� !C� etc. need in no way
always be the reduced one of the preceding sequent (14.6 2 3). So, the number of steps of
proof can be very different, according to the result of the individual choices; the only thing
that is certain is that it is in every case finite. To prove a claim for every possible choice,
it is sufficient to prove it for one specific, arbitrary choice. Therefore it is sufficient in the
entire proof to keep an eye on just one single specific sequence of reductions of the sequent
D; �!C, and thereby on just one single specific finite series of steps of proof.

No second round of proofs is known that would contain this passage. The terminol-
ogy of mix-sequents is that of the doctoral thesis, where cut formulas were called
mix-formulas. This terminology is used also in the consistency proof of October
1934, mentioned above. As to why the termination is not addressed in the paper,
Gentzen writes that “since you don’t seem so far to have said anything concerning
the recognition of the finiteness of the forms of inference, I have left them out of
the consistency proof; also because there would be still one thing and another to
clarify.” Gentzen had obviously a great desire to publish what he had to offer so far.

5.2 The Essence of Gentzen’s Hilfssatz

Gentzen’s letter of 4 November contains a description of what he calls “the essence
of the somewhat peculiar inductive inference” in the Hilfssatz, namely, why the
reduction procedure should terminate:

A proposition 8xF.x/ is proved if each of the infinitely many special cases F.
/ is proved.
Let each of these again be equivalent to a proposition 8xF
.x/, each special case F
.�/ of
these propositions again equivalent to a proposition 8xF
;�.x/, etc. Let the following be
known: Each arbitrary series of specializations 8xF.x/; F.
/ �� 8xF
.x/; F
.�/ ��
8xF
;�.x/; : : : ends after a finite number of components in a formula F
�:::.%/, the
correctness of which is known. To be proved now: 8xF.x/ is correct. To this end, I infer
as follows: The correctness of 8xF.x/ is secured if F.
/ holds for whichever arbitrarily
chosen 
. So let us assume that we had chosen a specific number 
, and it remains just to
prove F.
/. This is �� 8xF
.x/. Now I infer just as before, namely, that to show that
this proposition holds, it suffices to take whichever arbitrarily determined special case, say
F
.�/, etc. This chain of inferences must end after a finite number of steps, because each
arbitrary sequence 8xF.x/; F.
/; F
.�/; : : : had to be finite. Thereby 8xF.x/ is proved.

He says that this is “an analogy” that should be compared to “the image of the
branching sequence of line segments.” The latter can be depicted as follows, with
Gentzen’s example:

5 We saw this situation in the above consistency proof, in the case of rule CI in which A.t/ in the
succedent was reduced to A.n/.
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There is no bound on how many universal quantifiers can occur in a formula, and
therefore a denumerably branching tree of any finite height can occur. Moreover,
the “analogy” begins with a peculiar requirement that each of the infinitely many
instances of 8xF.x/ be proved. Is the analogy an appeal to infinitary proof theory,
or to the infinite capacities of the classical reasoner? “What do you think, now, about
this way of inference? Shouldn’t it be finite?” These are his questions to Bernays,
but he adds at once the parenthetical remark:

If one turns the proof into an indirect one, i.e., begins like this: Assume that 8xF.x/ does
not hold, then there is a counterexample 
 so that F.
/ does not hold, so neither ��
8xF
.x/, etc, then the tertium non datur enters.

Now we can read the suggestion as the choice of a path in a reduction tree that has
a denumerable branching at each node. If there is at least one sequence of choices
such that the topformula F
�:::.%/ gets falsified, we have established :F
�:::.%/. If
not, i.e., if no counterexample was found, proceeding all the way down to the root
of the reduction tree we get that the assumption that 8xF.x/ does not hold is false,
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and a classical step of double negation elimination (the tertium non datur) gives
8xF.x/.

Gentzen is well aware that a new type of proof is about to surface here. One
reason for expecting something new is, naturally, that the proof must go beyond
those that can be justified in arithmetic. Turning now to the reduction rules, we
notice that sequences of moves in the succedent and antecedent can alternate any
number of times, and each block of succedent moves can produce an initial segment
in the Baire space of a denumerably branching tree.

5.3 A Lost Connection: Consistency Proofs and Bar Induction

Gentzen (1935) was received, in a literal sense, by Bernays and Weyl. Parts of
the paper were changed in February 1936, by which the galleys of the original
version had been prepared before that date, and the paper must have gone to print
clearly earlier. In fact, Menzler-Trott (2007, p. 61) reproduces a letter from Gentzen
to Hellmuth Kneser, written 27 October 1935, in which it is stated that the first
galley proofs have already arrived. He also wrote there that Van der Waerden, then
a professor at Leipzig, had commented very positively on the proof.

As mentioned, Cavaillès was in Göttingen in the fall of 1935. His book contains
a discussion of Gentzen’s proof, with a description of the reduction procedure and
the problem of its termination, but along the treatment by transfinite induction of the
published version (1938, pp. 165–170). A letter from Cavaillès to Albert Lautmann
indicates that Gentzen had read the text and “repaired passages where to him I had
oversimplified” (cf. Menzler-Trott, p. 82).

Weyl gave his copy to Stephen Kleene who, by his own telling, got a job from
Wisconsin and gave the copy back after only two days. That was very unfortunate for
the development of proof theory and foundational study in general. It took another
fifteen years before Kleene took up Gentzen’s work, in an article about sequent
calculus (Kleene 1952a), and in the Introduction to Metamathematics. In the latter,
the Hauptsatz is presented in detail and applied to a consistency proof of arithmetic
without the induction rule (p. 463). For the full consistency proof, there is just a
“brief heuristic account of the method used by Gentzen” (p. 476). It is all based on
the published proof. Richard Vesley worked with Kleene on the constructive theory
of ordinals and together they studied Brouwer’s work. He has told me (in an e-
mail of 3 March 2011) that he is sure that they never discussed the extent to which
Gentzen had been influenced by Brouwer’s intuitionistic theory of ordinals.

Bernays (1970) recalled that the main point of criticism was Gentzen’s implicit
use of the fan theorem, a principle of Brouwer’s intuitionistic mathematics, by
which, if all branches of a finitely branching tree are finite, the tree consists of a finite
number of nodes. The same is explained in his prefatory words to the publication of
Gentzen (1935) in 1974 (p. 97):
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A methodical objection was made against the original proof, namely that it used implicitly
a principle usually described today as the “fan theorem,” by which each branching figure
that branches only finitely at each point and in which each thread ends after a finite number
of component parts, can on the whole have only a finite extension.

The fan theorem is a special case of the bar theorem in which latter the branchings
are denumerably infinite. These terminologies are much later than the results, but
it is still a bit strange that Bernays explicitly describes the finite branching, when
Gentzen’s proof clearly has denumerable branching. A detailed proof of Gentzen’s
Hilfssatz can indeed be given by the use of bar induction; It makes Gentzen’s
“peculiar inductive inference” of termination of reduction crystal clear (Siders
and von Plato, this volume). As we saw, Bernays writes that Gentzen’s use of
bar induction was “implicit,” and if so, then he had come to use that principle
independently of Brouwer, which would be remarkable.

In Brouwer (1924) to which Gentzen refers in his (1938a), the bar theorem is
called “the main theorem on well-ordered sets.” The additional remarks in Brouwer
(1924a) make quite explicit the associated principle of transfinite induction on well-
founded trees the bar theorem rests on (p. 645). The theorem was known to Gödel,
and also to von Neumann who also was in Princeton at that time and must have heard
discussions about Gentzen’s result.6 Kreisel had extensive discussions with Bernays
about Gentzen’s original proof, and he writes (1987, p. 173) that “Gödel and von
Neumann criticized the original—posthumously published—version.” There is a
more general principle behind the fan and the bar theorem; In Kreisel (1976, p. 201)
we find stated that both Gödel and von Neumann “naturally knew the theory of
choice sequences that Brouwer had developed systematically, and especially the
problematic assumption (of which Brouwer was particularly proud), namely that all
functions F with arbitrary choice sequences of natural numbers as arguments and
natural numbers as values. . . can be produced inductively. The best-known corollary
is the fan theorem.”

During and after the criticisms by Bernays and Gödel, seconded by von Neumann
and possibly even Weyl (as suggested by a letter of Weyl’s for which see Menzler-
Trott 2007, p. 58), Gentzen laid the foundation of today’s ordinal proof theory: It
can be seen clearly from his letters how this topic emerged in a few months’ time,
with the consequence that the semantical explanation of sequents through a notion
of reducibility and the consistency proof by induction on well-founded trees receded
in the background. By his (1938b), after having closed his new proof of consistency
by a presentation of transfinite induction, he writes that he puts no specific weight
on the notion of reducibility of derivable sequents and ends up with what seems
almost a contradiction in terms: “I resorted to it at the time as one argument against
radical intuitionism.” This paper was the second part of an issue of Heinrich Scholz’

6 I owe the information about von Neumann’s knowledge of Brouwer’s “fundamental theorem on
finite sets” to Dirk van Dalen: He kindly sent me a copy of a letter of von Neumann’s to Brouwer,
from April 1929, that contains a constructive proof of the existence of a winning strategy in chess
by the fan theorem. The letter is found in van Dalen (2011).
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publication series on logic and foundations. The first part was Gentzen’s essay on
The present situation in mathematical foundational research. There he contrasts
the lessons from intuitionism, presumably those of Brouwer’s four insights, against
“radical intuitionism, that rejects as senseless everything in mathematics that does
not correspond to the constructive point of view.” Gentzen became a Brouwerian
intuitionist in 1932 but then found by 1936 that Brouwer’s constructive ordinals
codify intuitionistic principles in more conventional terms, it seems.

The fate of the original proof was that it was simply put aside, just like Gentzen
had put aside his detailed proof of normalization for natural deduction, the former
saved only because Bernays had kept the galley proofs, the latter only because he
had kept Gentzen’s handwritten notes. Gentzen’s use of induction on well-founded
trees had been saved also in another sense, the extent of which is yet to be fully
determined: Namely, as shown by the titles of topics in Gödel’s stenographic notes
in his Arbeitshefte, there are at least 150 pages of work of his on Gentzen’s proof,
with such suggestive titles as Principal lemma of Gentzen’s consistency proof with
choice sequences (Arbeitsheft 11, p. 28). In the earlier Arbeitsheft 4 (p. 39), there is
the title Gentzen with choice sequences. The proof ends on p. 50 with: “Theorem.
Induction Principle. Œ.n/A.ˆn/� 
 A.ˆ/ /: A.const:/ 
 .ˆ/A.ˆ/.” The meaning
is that if from the assumption that every one-step continuation ˆn of a reduction
sequence ˆ has the property A it follows that ˆ has the property A, then from the
base case A.const:/ follows that all reduction sequences have the property A.

A picture starts emerging from a study of Gentzen’s original proof, the letters he
wrote to Bernays, Gödel’s titles in the Arbeitshefte, his “Zilsel” lecture of 1938
and the Yale lecture of 1941, and Kreisel’s recollections: Namely, Gödel’s no-
counterexample interpretation of the Zilsel lecture derives from Gentzen’s original
proof (cf. also Tait 2005). Secondly, concerning the Dialectica-interpretation,
Kreisel (1987, p. 175) writes: “At first Gödel, like von Neumann, was ill at ease
with Gentzen’s use of functionals, albeit of lowest type. But when Gödel returned
to the subject, about 5 years later, he used all finite types.” The connections between
Gentzen’s proof, Gödel, and bar induction are suggestive enough, but the source
materials are at present not sufficiently known for these matters to be discussed in
any conclusive way—so here is where we must rest for now.

Sources and Acknowledgement Prof. Christian Thiel of Erlangen University
received in 1984 two folders of stenographic notes from the sister of Gentzen,
Waltraut Student. They had been left in the Gentzen family’s summer place on
the Baltic island of Rügen in 1944. During a visit to Erlangen in February 2005,
I was able to study the parts Thiel had transcribed, about half of the material
including pages 1–4 of the series BZ. The short manuscripts about natural deduction
from September 1932 and January 1933 caught my interest, and Thiel transcribed
them soon. My numerous visits to Erlangen led to the complete transcription of
INH for Gentzen’s centenary year in 2009. For the correctness of the rest of the
transcriptions, from BZ and WAV as cited in this paper, I am responsible. I also wish
to thank here Bill Howard, Bill Tait, and Thierry Coquand for extensive exchanges
over several years on the theme of Gentzen, Gödel, and bar induction.
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Appendix: Bar Induction in the Proof
of Termination of Gentzens Reduction
Procedure

Annika Siders and Jan von Plato

1 Introduction

We shall give an explicit formulation to the use of bar induction in Gentzen’s
original proof of consistency, as a continuation of the analysis in the preceding essay
about the Hilfssatz, referred to here as HH.

The article Bernays (1970) was the first one to explain in print the ideas in
Gentzen’s original proof of consistency, and it also made clear that the proof
was in the end based on bar induction. There is a review of Bernays’ article by
Joseph Shoenfield in which the latter writes that “the progress made in formalizing
intuitionistic systems in recent years should make it possible to formalize this
proof and thus see exactly what intuitionistic principles are needed to carry it out”
(Mathematical Reviews, MR0276062).

2 Bar Induction in the 1935 Proof

We prove that derivable sequents reduce to endform. As the basic predicateB in the
induction, the property is used that the succedent of a derivable sequent is an atomic
formula, here an equation. For the inductive predicate I , we use the property that a
derivable sequent with an atomic formula as a succedent reduces to endform. For the
proof, we show first that reduction steps in the succedent preserve the derivability
of a sequent:

Lemma If 	 !C is a derivable sequent and an S-move is applied to it, a derivable
sequent is obtained.

A. Siders • J. von Plato
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We go through the possible S-moves in turn:

SVar. If 	!C has free variables, numbers are chosen at will to instantiate these
until there are no free variables left. Derivability is maintained under substitution
so that the reduced sequent is derivable.

S&. The sequent is 	!A&B , and both of the reduced sequents 	 !A and
	 !B are derivable by rule &E .

S:. The sequent is 	 ! :A. The following derivation by the rules of the calculus
NLK shows thatA;	!0 D 1 is derivable, with Wk, Ref, and DN standing for the
rules of weakening, refutation, and elimination of double negation, respectively:

A!A
: 0 D 1;A!A

Wk
	 ! :A

: 0 D 1; 	! :AWk

A;	 ! :: 0 D 1
Ref

A;	 ! 0 D 1
DN

S8. The sequent is 	 ! 8xA.x/, and any instance 	 !A.n/ is derivable by rule
8E . QED.

Theorem Derivable sequents reduce to endform.

For a proof, we go through the four conditions for bar induction:

1. B has to be decidable. This is the case.
2. For any given derivable sequent 	 !C and any sequence of reduction steps,

there is a step in the sequence by which the succedent formula has turned into an
equality. To show this, consider the reductions steps: If there are free variables
in 	!C , move Svar must be applied first, to substitute them by constants.
Thereafter the other S-moves must be applied, each producing a shorter formula
in the succedent until it is an equation.

3. Given a derivable sequent such that each applicable reduction step produces a
sequent that reduces to endform, to show that the sequent before the reduction
reduces to endform. This is immediate.

4. Finally, it has to be shown that if a derivable sequent has been reduced so that it
has the property B , i.e., is of the form 	 !m D n, it is a derivable sequent that
reduces to endform. The derivability part follows by the lemma. The rest is an
induction on the last rule in the derivation of 	!m D n. If m D n is true, the
sequent is in endform. Therefore we may assume m D n to be false.

The possible cases are:

4.1. 	 !m D n is an initial sequent. Then the antecedent is the false equation
m D n and the sequent in endform.

4.2. 	 !m D n is a “mathematical groundsequent,” for which we take the
formulation with free parameters, as in HH, Section IV.4, with all free
variables removed by steps of Svar:

!m D m; n D m!m D n; m D k; k D n!m D n;

kC 1 D k! 0 D 1; ! hCk D kCh; ! .hCk/C l D hC .kC l/:
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The reflexivity groundsequent is in endform and symmetry has a false
antecedent n D m whenever the succedent m D n is false. With transitivity,
if m D n is false, if m D k in the antecedent is true, then k D n in the
antecedent is false and similarly if k D n is true. With k C 1 D k! 0 D 1,
the antecedent is false, and for the rest, the succedent is true.

4.3. The last rule is a logical one. There are the cases &E;8E , and DN.
4.3.1. The last rule is &E:

	!A&m D n
	!m D n

&E

The premiss reduces to endform by assumption, and therefore also the
conclusion. The reduction is similar if the second form of rule &E is applied.

4.3.2. The last rule is 8E:

	! 8x: x D n
	!m D n

8E

The premiss reduces to endform by assumption, and therefore also the
conclusion. The reduction is similar if the right member of the equation was
quantified.

4.3.3. The last rule is DN:

	 ! ::m D n
	 !m D n

DN

The first step of reduction for the premiss gives :m D n; 	! 0 D 1. If step
A: is applied to :m D n, the reduced sequent is :m D n; 	 !mDnwith
a false equation in the succedent. Therefore some other reduction step must
be applied, and if A: is applied at some later stage to :m D n, a similar
useless loop is produced. Therefore :m D n in the antecedent can be left
intact and 	 !m D n reduces to endform by the same steps as the sequent
:mDn; 	! 0 D 1.

4.4. The last rule is CI with 	 � 	 0; 	 00 and the conclusion 	 0; 	 00 !m D n:

	 0 !m D 0 m D x; 	 00 !m D x C 1

	 0; 	 00 !m D n
CI

If m D 0 is false, the conclusion reduces to endform by the same steps as
	 0 !m D 0. Ifm D 0 is true, Svar gives in particular for the second premiss
the reducible sequent m D 0; 	 00 !m D 0C 1 with a false succedent. The
steps of reduction leave the true equationm D 0 intact and apply as well for
the reduction of 	 0; 	 00 !m D n.
By 1–4, the conditions for bar induction are satisfied and all derivable
sequents have the property I , i.e., reduce to endform. QED.
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A Note on How to Extend Gentzen’s Second
Consistency Proof to a Proof of Normalization
for First Order Arithmetic

Dag Prawitz

Abstract The purpose of this note is to show that the normalization theorem can be
proved for first order Peano arithmetic by adapting to natural deduction the method
used in Gentzen’s second consistency proof. Gentzen explained the intuitive idea
behind his proof by informally arguing for the possibility of a normalization theorem
of natural deduction, but what he actually proved was a special case of the Hauptsatz
for a sequent calculus formalization of arithmetic.

To transfer Gentzen’s method to natural deduction, I shall assign his ordinals to
notations for natural deductions that use an explicit operation of substitution. The
idea is first worked out for predicate logic. The main problems reside there and
consist in finding a normalization strategy that harmonizes with the ordinal assign-
ment. The result for predicate logic is then extended to arithmetic without effort, and
thereby full normalization of natural deductions in first order arithmetic is achieved.

1 Introduction

Gentzen’s two most important results, his Hauptsatz (cut elimination theorem) and
his consistency proof for arithmetic, were both clearly inspired by insights that he
got by reflecting on his system of natural deduction. This becomes especially clear
when Gentzen [6]1 explains the basic idea behind his second2 published consistency
proof.

1In the sequel, I shall refer to pages in the original German paper “Neue Fassung des Widerspruchs-
freiheitsbeweises für die reine Zahlentheorie” by writing Gentzen [6] and to pages in the English
translation of the paper in The Collected Papers of Gerhard Gentzen [7] by writing Gentzen [7].
2Counting a first proof of the consistency of elementary number theory that Gentzen withdrew
from publication after its planned publication had advanced as far as to galley proofs (see [7] or
[2]), this is really his third consistency proof.

D. Prawitz (�)
Filosfiska institutionen, Stockholms universitet, Universitetsvaegen 10D, 10691 Stockholm,
Sweden
e-mail: dag.prawitz@philosophy.su.se

© Springer International Publishing Switzerland 2015
R. Kahle, M. Rathjen (eds.), Gentzen’s Centenary,
DOI 10.1007/978-3-319-10103-3_6

131

mailto:dag.prawitz@philosophy.su.se


132 D. Prawitz

In this proof, Gentzen shows that there can be no derivation of a contradiction
in the sequent calculus that he had set up for arithmetic (or elementary number
theory as he called it), because any such derivation would be reducible to a simpler
derivation of the same thing; more precisely, he assigns (transfinite) ordinal numbers
to the derivations and shows that as long as the derivations have any logical
complexity, the ordinals are lowered by suitably chosen reductions of them. Before
going into the technical details of the proof, Gentzen gives a lucid account of why
it should always be possible to simplify such a derivation. The account is given in
the form of an argument that refers to some crucial features of his system of natural
deduction, and runs more or less as follows.3

A contradiction can certainly not arise as long as one only proceeds according
to the rules set up for arithmetical identities or other atomic sentences. A derivation
that ends in a contradiction must therefore contain logically compound sentences.
Somewhere in the derivation there must then appear a sentence of maximal
complexity. In general, the only way in which such a “complexity extremum”
can arise is by a sentence that enters into the derivation by the application of an
introduction inference and is then used in a subsequent elimination inference. But it
is reasonable to assume that one could then as well go directly from the premisses of
the introduction to the conclusion of the elimination. One would thereby remove the
intermediate sentence, standing between the introduction and the elimination, which
is of higher complexity than the surrounding ones. This would lower the peak of the
derivation.

In a footnote, Gentzen remarks at this point: “precisely the same line of thought,
incidentally, underlies the proof of the ‘Hauptsatz’ of my dissertation.” One could
remark, even more to the point, that precisely this line of thought is the idea behind
the normalization theorem of natural deduction, which says precisely that maximum
formulas, that is, formula occurrences that stand as the conclusion of an introduction
inference and as the major premiss of an elimination inference, can be removed from
the deduction.4

Gentzen then goes on saying that in fact, the situation is not as simple as in
the sketched argument, because, in the case of number theory, logically compound
sentences can be inferred not only by the application of logical rules but also by
the use of mathematical induction. Although they can be reduced in an obvious way
when the term t in the inferred sentence A(t) is a numeral (t standing at the relevant
argument place for the induction), no reduction can be made if t is a variable. This
means, he says, that it may not be possible to perform a reduction at the very peak
of the derivation, but he reassures: “It is nonetheless possible in each case to locate
a formula in the derivation which represents a ‘relative extremum’, viz., a formula

3Gentzen [6, pp. 26–28], [7, pp. 261–263].
4It has recently been revealed that Gentzen was not only aware of the possibility of such a theorem,
but that, in an early draft of his dissertation (found in Bernays’ archive, see [27]), he also stated
and proved the theorem for intuitionistic logic, essentially in the way it was later proved (Prawitz
[20]—the independent proof by Raggio [21] is a little different).
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which is introduced by the introduction of its terminal connective and whose further
use in the derivation then consists in the elimination of that connective, and which
is therefore reducible.”

After this beautiful exposition of the underlying idea of his proof, Gentzen
says somewhat disappointingly that the basic idea has been presented against the
background of natural deduction and cannot be more than a superficial indication
of the actual proof, which will be carried out, not for natural deduction, but for the
sequent calculus. Earlier in the paper5 he had motivated his choosing this formalism
instead of natural deduction by giving two reasons. One was the problem in natural
deduction caused by the special position of a classical law of negation that has to
be added to the intuitionistic system, which is, he says, “completely removed in
a seemingly magical way”6 by going over to sequent calculus. The second reason
was that the natural succession of sentences in an informal proof, which is by and
large retained in natural deduction, is replaced in sequent calculus by an artificial
arrangement that can be made with respect to certain aims, which proves to have
technical advantages in the consistency proof. Having made these remarks, Gentzen
proceeds to the precise consistency proof, which turns out to involve a lot of
technical complications.

Gentzen’s proof can be described as establishing the Hauptsatz for the special
case of derivations that end in a contradiction (technically the same as ending in
the empty sequent): It is shown that such derivations, if there were any, would
be reducible to cut free form, which demonstrates that there really are not any.
When Gentzen after having finished his first published consistency proof continued
to work on another version of the proof, his hope was most likely to obtain the
consistency as a corollary of the general Hauptsatz for arithmetic.7

Today we know that the addition of a classical rule to intuitionistic natural
deduction does not need to cause any real problem with respect to normalization,8

and we have a lot of experiences of how to prove normalization theorems. It is
therefore natural to ask if the idea behind Gentzen’s proof could not after all be

5Gentzen [6, pp. 24–25]; Gentzen [7, pp. 259–260].
6Gentzen [7, p. 259]. The German text reads: “ : : : [die Sonderstellung der Negation ist] : : : auf
eine fast wie Zauberei anmutende Weise vollständig behoben”, Gentzen [6, p. 25].
7This presumption is supported by what has been found in Gentzen’s Nachlass by Jan von Plato. It
turns out that at an early stage of the work on his dissertation, Gentzen had expected to obtain the
consistency of arithmetic directly from a normalization theorem for natural deduction. When that
failed, he restricted his dissertation essentially to predicate logic, and then proved the consistency
of arithmetic along other lines. But it is clear that he did not abandon his original idea. A witness
to this is even found in his plans for a book on the foundations of mathematics. In a notebook
concerned with these plans, he writes: “to assimilate the proof of the hillock theorem to the proof
of consistency” (translation by von Plato); “the hillock theorem” is here Gentzen’s name for the
normalization theorem of natural deduction (“der Hügelsatz” in German—but in other contexts
often “der Gipfelsatz”).
8If we choose ?, &, �, and 8 as logical constants, the normalization theorem for classical logic
even takes a simpler form than for intuitionistic logic [20].
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applied directly to natural deductions so as to yield the full normalization theorem
for arithmetic.9 The purpose of this note is to show that the question can be answered
positively.

Proofs of the normalization theorem for natural deductions have already been
given by Jervell [9] and Martin-Löf [13] (and later by Leivant [12]). Their proofs
used quite different means than those of Gentzen, and do not answer the question
whether a normalization theorem for arithmetic can be obtained by combinatorial
means of the kind employed by Gentzen. In other later works, Gentzen’s result has
been reworked and extended, usually by making excursions into infinite derivations
(see Sect. 2.1). In this note, I show how Gentzen’s method can be transferred directly
to natural deduction and how they can then be used to obtain a stronger result, the
full normalization theorem.

This also throws some additional light upon the relation between natural
deduction and sequent calculus. Results for sequent calculus often have analogues
for systems of natural deduction that are more easily established there. It has
therefore been puzzling why Gentzen’s second consistency proof has been so
difficult to carry over to natural deduction. At this point it should be said that
Gentzen was quite right about the second reason that he invoked for preferring
the sequent calculus: it allows a greater flexibility as to how the inferences of a
proof may be ordered. To get the desired result for natural deduction, I have found
it necessary to bring in an explicit operation of substituting one deduction for an
assumption in another deduction, or, what is the same, composing two natural
deductions.10 When such an operation is made explicit in a system of natural
deduction, one gets essentially the same flexibility with respect to the ordering of
inferences as one has in the sequent calculus.

The rest of the paper is organized as follows. In Sect. 2, I explain the problems
that one meets when trying to prove either the normalization theorem or the
Hauptsatz for arithmetic. Gentzen’s assignment of ordinals is shown to be a natural
attempt to deal with one of the major problems (besides allowing transfinite
induction up to a sufficiently high ordinal). Its significance in this respect is most
easily seen if one restricts oneself to predicate logic. The finite ordinal assigned to
a deduction D can then be seen as an estimation of an upper bound on the length
of the normal deduction to which D reduces. The remaining main problems appear
already when one stays within predicate logic and consist essentially in problems

9This question has been raised by several people, but has remained unanswered. Recently, Kanckos
[10, 11] showed that a closed natural deduction of ? in a system for Heyting arithmetic would
reduce to normal form by using vectors from Howard [8], instead of Gentzen’s ordinal assignment.
For my own part, I outlined an approach to a positive answer in lectures at Stockholm University
1979, a conference at Oxford 1980, and one at Siena 1984, and, in more detail, in (professor
Ettore Casari’s Saturday) seminars at Università degli Studi di Firenze 1991. The approach was
not brought to a conclusion at these times, but agreed with the present solution in being built on
the idea of adding an operation of explicit substitution.
10Von Plato [28] has also drawn attention to the key position of this operation (under the name
composition) when comparing natural deductions and sequent calculus derivations.
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about how to harmonize the ordinal assignment with a normalization strategy. In
Sect. 3, it is described how one of these problems can be tackled by bringing in
the explicit substitution operation mentioned above as a technical device. After the
normalization theorem for predicate logic is being proved in this manner in Sect. 4,
the result is extended to arithmetic in Sect. 5 in an effortless way.11 The analogue of
the obstacle that prevented Gentzen’s consistency proof from being a proof of the
general Hauptsatz is overcome here, and full normalization is achieved. In a final
Sect. 6, explicit substitution is considered as an operation of independent interest,
and a normalization theorem is proved for an enriched system of natural deduction
for arithmetic containing explicit substitution as an inference rule.

2 The Problems and How to Overcome Them

2.1 To Find a Suitable Induction Measure

If first order arithmetic is embedded in a suitable infinitary system, for instance,
replacing the rule of induction by the ¨-rule, the normalization theorem or the
Hauptsatz may be proved with the same ease as for first order predicate logic: Using
reductions that replace a maximum formula or cut formula by ones of lower degree,
one can make a primary induction over the maximal degree of the maximum or cut
formulas and a secondary induction over the length of the deduction; in the infinitary
case, the length will be a transfinite ordinal.12

When staying within a finitary system of first order arithmetic with the usual rule
of mathematical induction, such a strategy is not possible, because an 8-reduction
may have the effect that an inference by mathematical induction becomes reducible,
and its reduction may in turn create maximum or cut formulas of higher degree
than the removed one. This is the kind of problem that Gentzen referred to in the
account of the basic idea behind his proof quoted in Sect. 1. One must thus find
another measure to make induction over, and this is what was created by Gentzen’s
assignment of ordinals.13

11After finishing this paper, I have found that Gentzen planned to organize the book mentioned
in footnote 7 in the same way, first treating predicate logic using a finite version of his ordinal
assignment and then extending the result to arithmetic using transfinite ordinals.
12Examples of such systems, essentially like classical sequent calculi, are found in, for instance,
Schütte [25] and Tait [26]. The latter considers not only inference rules with infinitely many
premisses but also infinitely long sentences. Martin-Löf [14] develops an intuitionistic system of
natural deduction of that kind.
13An alternative is to enrich the infinitary system with information allowing one to extract a finitary
normal derivation from the normalized infinitary one, as was first outlined by Mints [15]. This
general idea has later been worked out in more detail and in different ways by Buchholz [3]
and Mints [18]. Another alternative is presented by Mints [16], who defines other reductions and
another ordinal assignment.
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The transfinite ordinals needed to prove the normalization theorem for arith-
metical systems of different strengths come out very naturally in the case of
infinitary systems. In contrast, Gentzen’s ordinal assignment is sometimes deemed
to be somewhat artificial or ad hoc. However, his assignment when adapted to
predicate logic can be understood as a straightforward estimation of the length of
the normal deduction to which a deduction reduces. As will be explained (Sect. 2.3),
the assignment appears as an easily obtained improvement of a better known
bound on how much the length of a deduction increases when normalized.14 In
a subsequent subsection (Sect. 2.4.1), I explain how such an assignment can be
a useful measure to make induction over when one wants to prove that reduction
sequences terminate. The next subsection is only a background to the explanation
of Gentzen’s assignment that follows afterwards.

2.2 An Upper Bound on the Lengths of the Normalized
Deductions

2.2.1 A Well-known Fact

It is well known that the size of a deduction may grow exponentially when
normalized and that there is the following upper bound, where length is used as
a measure of size:

A natural deduction D of length n reduces to a normal deduction of length less
than

22
::
:2
n

the base 2 is to occur d times in the tower

where d > 0 is the highest degree of a maximum formula in D.
Usually I shall write an iterated exponentiation of this kind in the more linear

form 2d(n).
The systems of natural deduction that I consider here are the usual ones but

confined to introduction and elimination rules for &, 
, and 8 and arbitrary rules
for atomic formulas, among which may be the classical rule for falsehood, ?EC,
restricted by the requirement that the conclusion be atomic, which is sufficient
for classical logic (a system called C’ in [20], but ?EC is now restricted). By an
inference rule for atomic formulas, I mean a rule such that the premisses and the
conclusion of an application of the rule are atomic.

14The better known bound is credited to Schütte [25], who noted that the analogue to the fact
stated in Sect. 2.2.1 holds for his infinitary system mentioned in footnote 12; the length n is then
in general a transfinite ordinal. The statement in Sect. 2.2.1 was proved for Gentzen’s intuitionistic
system of natural deduction by Pereira [19]. Cellucci [4] establishes several results concerning how
the length of natural deduction increases by normalization, including negative results on how much
the upper bound can be improved.
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A deduction is normal when it has no maximum formula. The degree of a formula
A, written degr(A), can be defined as the number of constants &, 
, and 8 in A
within the scope of each other (although it is only 
 that matters at the moment);
the definition will be modified in Sect. 6.4. The degree of a deduction is defined as
the highest degree of a maximum formula in the deduction; the degree is 0 if there
are no such occurrences. By the length of a deduction, I understand its number of
nodes or, in other words, the number of formula occurrences.

The normal deduction to which a deduction D reduces will be denoted by jDj. In
order to see how Gentzen’s assignment improves the bound given above slightly, it
is instructive first to see why 2d(n) is an upper bound for the length of jDj, when D
is a deduction of length n and degree d. To this end, I first make the following easy
observation.

2.2.2 Observation Concerning �-Reductions

Given a deduction D of the form shown to the left below, where… is a deduction of
A with length k and† is a deduction of B with length m, the deduction D� shown to
the right, obtained from D by implication reduction, has length less or equal to k � m

ΠD = A

[A]

Σ

B
A ⊃ B
B

Π

[A]D∗ =
Σ

B

The correctness of the observation follows immediately from the fact that there
are less or equal to m occurrences of A in †.

The notation ŒA� in the left figure is used to indicate the formula occurrences
of the form A that stand as free assumptions in † but are bound (discharged) in D
by the 
-introduction exhibited. The right figure is to be understood as denoting
the deduction D� obtained from † by substituting … for each of the assumptions
indicated by ŒA�; in other words, for each such assumption A in †, the deduction…
is put on the top of † in place of A.15

15As long as there is no line under… that separates it from A, the deduction… is taken to include A.
We can choose either to make explicit that … has A as its end-formula by writing

…

A

—sometimes written …=A to keep it on one line—or leave that out, writing just … (in the same
way as we may indicate the free occurrences of x in a formula A by writing A(x) but may also
leave that implicit, writing just A). A linear notation for the result of substituting …=A for the
assumptions ŒA� in † is: …=ŒA�=†.
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2.2.3 Lowering the Degree of a Deduction Stepwise

As we go downwards in a deduction and successively remove by reductions the
maximum formulas of highest degree, the lengths of the obtained deductions may
thus be estimated by successively squaring the previous lengths, which means that
the estimated length grows exponentially. More precisely, the following holds.

A deduction D of degree d > 0 and length n can be reduced to a deduction D0
of degree d 0 < d and length n0 < 2n.

From this follows of course the fact quoted at the beginning of Sect. 2.2.1. The
assertion is easily proved by induction over the number of maximum formulas of
degree d in D. It will be of interest to strengthen the conclusion a little to get: A
deduction of degree d> 0 and length n C 1 (n> 0) can be reduced to a deduction of
degree d 0 < d and length n0 < 2n C 1.

Let D be a deduction of degree d and length n C 1 with a lowermost maximum
formula F of degree d, which is to say that there is no other maximum formula of
degree d below F in D. Let D1 be the part of D (which may coincide with D) whose
end-formula is the formula immediately below F. The crucial case is when F has the
form of an implication A 
 B. Then D1 is of the form shown to the left in the figure
displayed above with the length n1 C 1 D k C m C 2, where k and m are the lengths
of the parts … and † of D1. By the induction assumption (to be applied only when
… or † is of degree d, and then using the first, weaker statement), they reduce to
deductions…0 and †0 of degree less than d and lengths k0 <2k and m0< 2m.

Let D0 be the deduction to which D reduces by carrying out the same reductions
as those by which… and† reduce to…0 and†0. Then D0 has the form shown to the
left below and reduces to the deduction D0� of the form shown to the right below:

D0 D
D0

1

B

D0

D …0

A

ŒA�

†0

B

A � B

B

D0

reduces to D0� D
D0�

1

B

D0

D
…0

ŒA�

†0

B

D0

Applying the observation concerning 
-reductions made above, we get the
following result concerning the length n0�

1 of D0�:

n0�
1 < k

0 �m0 < 2k � 2m D 2kCm < 2kCmC1 C 1 D 2n1 C 1:

The analogue result when F is a conjunction or a universal quantification is
obtained more trivially, since in that case the length decreases when D0 is reduced
to D0�, as seen below for 8:
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D D

….a/

A.a/

8xA.x/
A.t/

D0

reduces to D0 D

…0.a/

A.a/

8xA.x/
A.t/

D0

;

which reduces to D0� D
…0.t /

A.t/

D0

If F is the only lowermost maximum formula in D of degree d and D1 coincides
with D, we have proved what we want. If D1 is a proper part of D, then the length
of D is nC 1 D n1 C 1C p with p > 0, and it holds for the length n0* of D0� that
n0� D n0�

1 C p < 2n1 C 1C p < 2n1Cp C 1 D 2n C 1.
If there are other lowermost maximum formulas Fi of degree d in D besides

F, we repeat the procedure for them. Let there be altogether q> 1 such formulas
whose deductions Di are of the length ni C 1. The length of D is then n C 1 D
n1 C 1C n2 C 1 C � � � C nq C 1 C p, and the deduction we finally arrive at has a
degree less than d and a length less than 2n1 C 1 C 2n2 C 1 C � � � C 2nq C 1 C p,
which is less than 2n C 1, as was to be shown.

2.3 The Gentzen Measure: A Lower Upper Bound—Definition
of Critical Inferences

The bound on the length of the normal deduction given in Sect. 2.2.1 can be
improved as is easily seen by inspecting the proof above. I first consider an example
of this.

Let D be a natural deduction of the following form

C

B
A 
 B

ŒA 
 B;C �

D
C 
 D

.A 
 B/ 
 .C 
 D/

C 
 D
D

where A, B, C, and D are atomic formulas and where there are arbitrarily many
maximum formulas of degree 1 or 2 above the exhibited maximum formula
.A 
 B/ 
 .C 
 D/ and above A 
 B but no other maximum formulas. Let ’,
“, and ” be the number of nodes of the upper parts of D that constitute deductions
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of C, .A 
 B/, and .A 
 B/ 
 .C 
 D/, respectively, and let • be the number of
other nodes of D.

By applying the proof given in Sect. 2.2.3 (rather than the result in Sect. 2.2.1),
it is seen that D reduces to a deduction E of degree 1 and length less than
2“C” C’C •. In E the implication .C 
 D/ is a maximum formula and its
deduction has length less than 2“C” C 1. A second application of the proof gives
that E reduces to a normal deduction F of length less than 2˛C2ˇC�C1C ı-1; which
is to be compared to the bound 22

˛CˇC�Cı
given in Sect. 2.2.1.

This better estimation of the length of F will agree with what I shall call the
Gentzen measure of the deduction D, which will now be defined. It will amount to
a generalization of the example above, and to that end we need Gentzen’s notion of
level (“Höhe”) and level line (“Höhelinie”).

Following Gentzen, we associate to each inference an inference line drawn
between the premiss(es) of the inference and its conclusion. Some inference lines
are level lines. To begin with, in a deduction D of degree d, the inference lines
immediately below the lowermost maximum formulas of degree d are to be level
lines. Thus, in the example above the two formulas A 
 B and .A 
 B/ 

.C 
 D/ stand on a level line.

The idea is that the Gentzen measure to be assigned to a formula occurrence F
standing immediately below one of these level lines is to be an estimation, according
to the proof above, of the length of the deduction of F obtained after having removed
by reductions all maximum formulas of degree d above the level line. Thus, the
measure to be assigned to F should be 2’ C 1, where ’ is the sum of the Gentzen
measures of the premisses (which in this case coincide with the lengths of their
deductions), or, rather, 2j(’) C 1, where d � j is the highest degree of a maximum
formula below F, in order to estimate the length of the deduction when all maximum
formulas of degree higher than d � j above the level line have been eliminated.
When determining the next level line below F, we must take into account that there
may be formulas of degrees less than d that will become maximum formulas as
the result of the reductions that remove the maximum formulas of higher degrees.
We want the Gentzen measure to be an estimation of how much the deduction
expands by reductions that remove not only the original maximum formulas but
also the additional maximum formulas that can arise after those reductions, and so
on. This means that we must pay attention not only to maximum formulas but also to
potential maximum formulas, in other words, formulas that may become maximum
formulas as the result of reductions. In the example above, the occurrence ofC 
 D

under the level line is such a potential maximum formula.
Ideally we should determine which formulas of a deduction D could become

maximum formulas after reductions by only referring to structural properties of D.
I shall not try to do this here,16 but shall instead consider all major premisses of
elimination inferences as potential maximum formulas, only excepting those whose

16Such a definition of potential maximum formula could be given by using ideas presented by Sanz
[22].
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degree is greater than the degree d of D; they are certainly not potential maximum
formulas. In other words, all elimination inferences whose maximum formula is of
degree <d are placed on a par with the ones whose major premiss is a maximum
formula, although this may generate unnecessarily many level lines.17

To have a common term for these inferences, I shall say that an elimination
inference in a deduction D of degree d is critical if its major premiss is either a
maximum formula or has a degree less than d. We shall later enlarge the category of
critical inference, but the notion will also be somewhat narrowed down in Sect. 6.4.
A critical inference is said to be of degree d if its major premiss is of the degree d
(?EC-inferences, having degree 0, are inessential).

The level of a formula occurrence A is now defined as the greatest degree of a
critical inference whose conclusion stands below A; if there is no such inference,
the level of A is 0. An inference line is defined as a level line if the level h of the
formula(s) immediately above the line is (are) higher than the level h0 of the formula
immediately below the line. The difference j D h � h0 will be called the jump at the
level line, and I shall say that the inference in question contains a level line with
jump j. This agrees with the previous explanation, since clearly an inference line is
a level line if and only if it is the inference line of a critical inference of some degree
d such that the degree of each critical inference that stands below (if any) is less
than d. If there are two formulas standing on a level line, they have the same level
h, and h is identical to the degree of the major premiss of the inference in question.

What I am calling the Gentzen measure of a formula occurrence A in a natural
deduction D, written GD.A/, can now be defined. Note that it depends on what
counts as level lines, which in turn depends on what counts as critical inferences.
Note also that it differs from Gentzen’s assignment of ordinals in using 2 instead of
¨ as the base for the exponentiation; thus, the values assigned will be finite ordinals,
instead of transfinite ordinals less than "0. The definition runs as follows:

1. If A is a top-formula of D; GD.A/ D 1.
2. If A is immediately below exactly one formula B, let n be GD.B/. If A is

immediately below two formulas B and C, let n be GD.B/CGD.C /. Then,

(a) GD.A/ D nC 1, provided A is not immediately below a level line, and
(b) GD.A/ D 2j .n/C1, in case A is immediately below a level line with jump j.

The Gentzen measure of the deduction D, written G .D/, is the same as GD.A/,
where A is the end-formula of the deduction D. A normal deduction D has clearly
no level lines, and its length is therefore identical to G .D/.

17In the sequent calculus for predicate logic, the level lines are determined by the actual cuts. An
inference line is a level line if and only if it is the inference line of a cut such that all cuts further
down have lower degree than that cut; the degree of a cut being defined as the degree of its cut
formula. Since maximum formulas are what correspond to cut formulas, one could expect that the
level lines in natural deduction should be similarly determined by the actual maximum formulas,
but this would lead to an entirely wrong notion.
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The already mentioned fact that the Gentzen measure of a deduction D is an
(improved) upper bound on the length of the normal deduction to which it reduces,
in short for any non-normal deductionD, the length of jDj < G .D/, can now easily
be proved by the strategy used in the proof in Sect. 2.2.3, as was illustrated in the
example.18

2.4 The Two Main Problems

2.4.1 How the Gentzen Measure Can Be Used to Prove that Reduction
Sequences Terminate

The fact just stated above does not mean per se that the Gentzen measure can be
used to prove by induction that reduction sequences terminate. When a reduction
increases the length of the deduction, the Gentzen measure of the deduction may
also go up. This surely happens if a maximum formula that stands above a level
line, but not immediately above it, is removed by a length-increasing reduction in
the usual way: the part of the deduction above the level line will expand but the
level line will remain the same, and hence the Gentzen measure of the formula
immediately below the line will increase.

However, Gentzen’s idea was that when a reduction is made with respect to a cut,
the new cuts and their derivations are to be put under the closest level line below the
old cut. Then the part of the derivation under that level line will instead expand, but
that is compensated for by a certain contraction of the part above the level line.

The idea can be illustrated more precisely using the ordinals that Gentzen
assigned to sequents in a derivation, which are like the Gentzen measure defined
above with some differences, the main of which is explained in footnote 17. Say
that S1 is the sequent immediately below a level line with jump 1 in a derivation D
and that ’ is the sum of the ordinals assigned to the sequents immediately above the
line. Then Gentzen assigns ¨’ to S1 and an ordinal ¨’ C “ to the sequent S2 that
stands immediately above the next level line further down. Let D� be a reduction
of D which leaves these level lines unchanged but removes a cut standing higher up
above the first level line, replacing it with cuts of lower degree. If now, following
Gentzen, the new cuts are placed under this first level line, the sequent corresponding
to S1 in D� is assigned a value ¨’* where ’*<’, and the sequent S2 is assigned
a value ¨’* C ”C “ where ” <¨’*, because the new cuts have lower degrees and
their premisses have shorter derivations relative to the cuts that they replace. Thus,
we achieve that the value assigned to S2 in D� is lower than that assigned to S2 in
D, since

!˛
� C � C ˇ < !˛

� C !˛
� C ˇ < !˛

�C1 C ˇ � !˛ C ˇ:

18A similar result was proved for the sequent calculus for predicate logic by Pereira [19].
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In other words, the value assigned to a derivation D is an approximation of the
length of jDj that gets better and better at each reduction—the upper bound gets
successively lower. In this way, it is accomplished that one can prove by induction
over the Gentzen measure that suitably chosen reduction sequences must terminate.

The problem is, however, that not even in sequent calculus can inferences always
be moved around as one may like. What Gentzen showed was that if the end-
sequent is empty, a suitable cut can be found which can be removed by putting
the new cuts replacing it under a level line situated below the old cut. This can be
generalized quite easily to the case when the formulas of the end-sequent contain no
quantifiers,19 but is not easily generalized to the case when quantifiers are involved.
Gentzen seems not to have overcome this problem, and therefore never proved the
general Hauptsatz for arithmetic.

2.4.2 The Problem of �-Reductions

The project to use the Gentzen measure in a proof of the normalization theorem
of natural deduction meets an additional problem. Even when a deduction D does
not expand at an 
-reduction, the Gentzen measure may anyway increase. The
reduction D� of D is formed, as we recall, by putting the deduction of the minor
premiss A of an 
-elimination (
E) of D at the top of the deduction of the major
premiss A 
 B , while the conclusion B of the 
E and the premiss B of the

-introduction (
I) standing above merge into one occurrence of B in D�. What
happens when one is to calculate the Gentzen measure of this occurrence of B in D�
is therefore that the measure of A, which was added to the measure of the premiss B
to get the measure of the conclusion B in D, is instead being put as an exponent in
the expression that was used to calculate the Gentzen measure of the premiss B in
D. This may of course give B in D� a value greater than that given to the conclusion
B in D. Clearly, the restructuring of the deduction that takes place at an 
-reduction
tallies badly with the idea to prove by induction over the Gentzen measure that
reductions terminate. This is in contrast to the situation in the sequent calculus where
the elimination of cuts do not involve any restructuring of the derivation of this kind.

To see how this problem can be overcome, note that describing an 
-reduction
requires the use of a sign for the substitution that takes place at such a reduction.
A description of a deduction that uses a suitable notation for the operation of
substitution may not need to be restructured at reductions in the same way as the
deductions themselves, and can be more flexible as to the order in which inferences
are presented. This opens for the possibility of assigning the Gentzen measure to
such descriptions of deductions rather than to the deductions themselves, and to
achieve in this way that the measure goes down at reductions.

This idea will be described in more detail in Sect. 3. We will have to define
new reductions for the descriptions (Sect. 4.2), and some complications seem then

19A fact noted and used by Scarpellini [23].
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unavoidable. On the other hand, within the framework of natural deduction, it
turns out to be easy to define a strategy for normalization that overcomes what
corresponds to the obstacle to proving a general Hauptsatz mentioned in the
preceding subsection, thereby allowing us to prove a full normalization theorem.

Before developing these ideas further, I shall take up some questions concerning
the relation between natural deduction and the sequent calculus.

2.5 On the Relation Between Natural Deduction
and the Sequent Calculus

One may suggest that the problem to transfer Gentzen’s work on the sequent
calculus for arithmetic to natural deduction could easily be solved by asking what
corresponds in natural deduction to Gentzen’s ordinal assignment. Besides ignoring
the problems discussed above, the suggestion overlooks the fact that there is no
unambiguous answer to the raised question.

Derivations in the sequent calculus (SQ) can be translated to natural deductions
in a straightforward way: an initial sequent A ! A is translated to a deduction
consisting of just A, when a succedent rule has been applied in SQ one applies
the corresponding introduction rule to the end-formula in natural deduction, and
when an antecedent rule has been applied one instead enlarges the natural deduction
upwards by applying the corresponding elimination rule. If the cut rule is applied to
two sequents, one joins together the corresponding natural deductions …=A and
†, where A corresponds to the cut formula, by using the substitution operation
…=A=† (see footnote 15). This may result in A becoming a maximum formula, but
if the derivation in SQ is cut-free, it is translated in this way into a normal natural
deduction.

A derivation in the sequent calculus may accordingly be seen as an instruction for
how to build a corresponding natural deduction by working in two directions, down-
wards and upwards, and joining two deductions by the operation of substitutions in
case cuts have been used in SQ. The instructions given by two different derivations
in SQ may result in the same natural deduction; the order in which the deduction
is to be constructed according to the instructions differs, but the result becomes the
same [20, pp. 90–91].

If one asks about a natural deduction what ordinal Gentzen assigns to the
corresponding derivation in the sequent calculus, the problem is therefore that there
are many derivations with different measures that correspond to a given natural
deduction. One may of course define a particular translation of natural deductions
to derivations in SQ. There are at least two such translation procedures proposed in
the literature. Gentzen [5] defined one that proceeds inductively on how a natural
deduction is constructed downwards: an assumption A is translated to the initial
sequent A ! A, when an introduction rule has been applied in natural deduction the
corresponding succedent rule is applied to the translation into SQ of the deduction(s)
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of the premiss(es), and when an elimination rule is applied, one proceeds from the
translation of the deduction(s) of the premiss(es) by performing a cut with a suitable
sequent that is derived by the use of the corresponding antecedent rule. For instance,
in the case of 
-elimination the left figure below is translated to the right one:

	

…

A

�

†

A 
 B
B

†�
� ! A 
 B

…�
	 ! A B ! B
	;A 
 B ! B

�;	 ! B

The obtained derivation in the sequent calculus will in this way use a cut each time
an elimination rule is used in natural deduction, although the natural deduction may
be normal.

The Gentzen measure defined above for natural deduction turns out to be fairly
close to the ordinal that Gentzen assigns to the derivation in SQ obtained by this
translation procedure (after having replaced ¨ by 2 as the base for exponentiation):
the exponentiations that determine the ordinal that Gentzen assigns to a derivation
depend on the actual cuts (footnote 17), while the exponentiations that determine
the Gentzen measure defined for a natural deduction depend on the elimination
inferences occurring in the deduction, which correspond to cuts according to the
translation procedure. The main difference is caused by eliminations having been
excepted from being counted as critical when their degrees are equal to or higher
than that of the deduction and the major premiss is not a maximum formula.

The structure of the derivation D� obtained by Gentzen’s translation of a natural
deduction D is however quite different from the structure of D since it contains
cuts even when D is normal. Matters are quite different when we come to the
other translation, which is the one that I have used [20, pp. 91–93] in order to
get Gentzen’s Hauptsatz as a corollary of the normal form theorem for natural
deduction. It translates in the same way applications of introduction rules to
applications of succedent rules, but if an elimination rule has been applied at the end
of a natural deduction D, one does not consider its immediate sub-deduction(s), but
goes upwards in the main branch of the deduction. If the deduction is normal, one
reaches a top formula that stands as the major premiss of an elimination inference.
One can then apply the corresponding antecedent rule to the translation(s) of the
sub-deduction(s) of D from which D was obtained by applying the elimination rule.
In this way one obtains a cut free derivation in the sequent calculus.

When generalized to non-normal deductions (as described by [19]), we may hit
upon a maximum formula before reaching the top when going upwards in the main
branch. We then divide the deduction into two shorter parts at this point, letting
the maximum formula belong to both parts, and to the corresponding derivations in
the sequent calculus we apply a cut. The only cuts that will occur in the derivation
obtained by this translation are ones that correspond to maximum formulas in the
natural deduction.

However, if one would take as measure of a natural deduction the ordinal Gentzen
assigned to the derivation in the sequent calculus obtained by this translation, one
may get a quite different measure from the one defined above. It is not easy to see
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how this measure could be defined directly for natural deduction, that is, without
going via the sequent calculus, and it is therefore difficult to say whether it would
be a useful measure.

3 The Substitution Schema

3.1 Two Ways to Understand the Schema

I shall refer to the schema below as the schema or rule of substitution:

…

A

ŒA�

†

B
B

There are two alternative ways in which this schema may be taken.

3.1.1 The Schema as an Inference Rule

It may be understood as stating in the usual schematic way an inference rule that
allows one to infer a conclusion B from the two premisses A and B and to bind
(discharge) at the same time a number of assumptions designated by ŒA�. Given a
deduction … of A from 	 and a deduction † of B from �, we get a new deduction
of B from 	 [ �- fAg if the set ŒA� contains all assumptions of the form A that B
depends on in †, and from 	 [� otherwise.

The rule is trivially derivable in systems of natural deduction: given a deduction
… of A from 	 and a deduction † of B from � we can form a new deduction of B
from 	 [ �- fAg without using the substitution rule by simply substituting … for
the free (undischarged) assumptions A in †, which I have denoted in the above by
writing

…

ŒA�

†

B

or in linear form…=ŒA�=†, where ŒA� refers to the free assumptions A in †.
Although the rule is derivable, one may add it as a new primitive inference rule

for several reasons. One point in doing so is simply that it allows a more compact
way of writing; instead of having to replace each occurrence of A in ŒA� in † by a
copy of …, one writes… only once. It is like counting an expression like Sx/tA as a
formula of the object language, interpreted in the same way as the formula obtained
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by substituting the term t for the variable x in A, and it amounts exactly to this, if
natural deductions are translated to terms in a œ-calculus.20 In this form, the schema
has attracted attention within computer science under the name explicit substitution
after a paper by Abadi et al. [1].

Taking the schema as an inference rule and adding it to a system of natural
deduction, one can give implication reduction the following form

…

A

ŒA�

†

B
A 
 B
B

reduces to …

A

ŒA�

†

B
B

When implication reduction is given this form, it cuts down the length of the
deduction, just as &- and 8-reductions do. This must not deceive us into thinking
that thereby we have got rid of the problem of deductions growing in size when
normalized. As we shall see soon, that an 
-reduction not any longer expands the
deduction is only a temporary gain. The great advantage of giving 
-reduction this
new form in this connection is that it involves no restructuring of the deductions;
the mutual relations between the formula occurrences are kept intact—thereby the
second major problem noted above (Sect. 2.4.2) is overcome.

3.1.2 The Schema Taken as Meta-notation for Substitution

Alternatively, instead of seeing it as a new inference rule, the substitution schema
may be taken as just another notation for substitution, on a par with the other
two notations for substitution that I have been using. If we are only interested
in proving the normalization theorem for the usual systems of natural deduction,
the substitution schema is still of interest, because the syntactical objects that we
get when adding it to the usual notations for applying inference rules are of help
as intermediate objects to show that the usual reductions of natural deductions
terminate. The idea is to assign Gentzen measures to these syntactical objects and
to define reductions for them that lower the measure. The general idea will be
explained more precisely in rest of this section. It will then be used in Sects. 4 and 5
to prove the normalization theorem for the ordinary systems of natural deduction
for predicate logic and Peano arithmetic, respectively.

In the final Sect. 6, I will prove a normalization theorem for an enriched system
of natural deduction that arises when the substitution rule is added as a primitive
inference rule, taken to be of interest in its own right.

20I first learned about adding such a substitution notation to the language of predicate logic in 1960
from Ettore Casari, who studied it in his doctoral thesis at the University of Münster.
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3.2 The Objects to Which the Gentzen Measure Is Assigned

We shall consequently be dealing with syntactical objects that are like usual,
tree-formed natural deductions except for possibly also containing applications of
the schema of substitution. If confusions could arise otherwise, I shall call them
deduction notations, and shall refer to ordinary natural deductions as standard
natural deductions. I use the same syntactical variables to refer to objects in one
of the two domains, and shall speak of just deductions when no ambiguity can arise.

Interpreting the substitution schema in the intended way, a deduction notation
denotes a standard natural deduction. When D stands for a deduction notation,
I shall write #D to refer to the standard natural deduction that it denotes, in other
words, the natural deduction one obtains by carrying out the substitutions indicated
by the instances of the substitution schema that occur in D. The operation # is
defined in the obvious way; the formal details depend on how a standard natural
deduction is defined precisely. This will not be entered into here, but the following
remarks are appropriate. When using the schema of substitution as exhibited in
Sect. 3.1, there must be something indicating for which occurrences of A in †,
one is to substitute …, just as the schema for 
E presupposes that it is told which
assumptions get bound by the inference. Gentzen used numerals to this end, and
in examples below I follow him in this. By not using variables as in the linear
œ-notation for indicating assumptions and the places at which substitutions are to be
made, certain problems are avoided. In particular, although the tree-form used for
presenting deduction notations does not specify the order in which the substitutions
indicated by different applications of the substitution schema are to be carried out,
it is clear that the same result is obtained regardless of what order is chosen.

The terminology commonly employed when speaking about natural deductions
will be used also for deduction notations. I find it convenient to speak as if the
substitution schema stated an inference rule, even if we do not need to adopt that
perspective. Thus, in applications of the substitution schema as displayed Sect. 3.1,
the occurrence of B that appears under the line will be referred to as the conclusion
of the substitution (inference), and A and B above the line will be referred to as
the major and minor premiss, respectively. The top formulas in the deduction †
indicated by ŒA� are said to be assumptions bound by the substitution, although in
the natural deduction that is denoted by the deduction notation, they do not stand as
assumptions. The degree of the major premiss of a substitution counts as the degree
of the substitution.

3.3 The Need of New Reductions

In Sect. 4, new reductions will be defined for the deduction notations, but it is
appropriate to say something about the need of them already now. It must be noted
that use of the substitution schema may conceal maximum formulas. Consider as an
example an 
-reduction where the minor premiss of the removed application of 
E
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is a universal formula, say 8xA(x), inferred by an 8-introduction (8I), and where the
assumptions of the form 8xA(x) that are bound by the likewise removed 
I occur
as premisses in 8-eliminations (8E). In the result of the usual form of 
-reduction,
there will be maximum formulas of the form 8xA(x). When using the new form of

-reduction, 8xA(x) will instead occur as the conclusion of 8I when standing as the
major premiss of the substitution that replaces the 
E, and will occur as the (major)
premisses of 8E when standing as assumptions bound by the substitution.

To normalize the deduction, we must of course remove such hidden maximum
formulas by some form of reductions. When doing this, the single application of the
substitution schema, which may have been designating a number of substitutions of
a deduction …=A.a/=8xA.x/ for different assumptions 8xA(x) from which A(t)
is inferred, will have to be replaced by applications of the substitution schema
for substituting …=A.t/ for different assumptions A(t). Since the term t may vary
with different occurrences of 8xA(x) as assumptions, we shall need as many new
applications of the substitution schema as there are different terms t of this kind.
This will cause the same exponential growth as before.

Making these reductions stepwise, we reduce the left deduction below to the one
at the right:

….a/

A.a/

8xA.x/

(1)

Œ8xA.x/�
A.t/

(2)

Œ8xA.x/�

†

C
(1) (2)

C

….t/

A.t/

….a/

A.a/

8xA.x/

(1)

ŒA.t/;

(2)

8xA.x/�

†

C
(2)

C
(1)

C

The left tree shows a deduction where a substitution with 8xA(x) as the major
premiss binds not only one assumption of the form 8xA(x) marked (1), which
stands as premiss of an 8E with A(t) as conclusion, but also a number of other
assumptions referred to by Œ8xA.x/�, marked (2). In the right tree, the application
of 8E-inference exhibited in the left tree is removed. As an effect A(t) occurs now as
a new assumption, marked (1). It is bound by a second substitution, placed under the
first one, as indicated by the attached numeral (1), while the assumptions Œ8xA.x/�
marked (2) are bound as before by the first one.

Two important points should now be noted. Firstly, the Gentzen measure
(to be defined for deduction notations in the next subsection) decreases at this
reduction, only if the first substitution contains a level line. If it does not, the
new substitution must be placed further down, under the first level line that can
be found further down, just as in the sequent calculus, following Gentzen’s idea
(Sect. 2.4.1).21

21When using induction over the degree of the maximum formulas (Sect. 2.1) instead of the
Gentzen measure, there is of course no need to move the new substitution in this way.
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Secondly, in the right tree, the part represented by † may not be a correct
deduction if taken in isolation, because there may be an 8I in † that has a formula
F(t) as premiss and 8xF(x) as conclusion; in other words, t may be a variable bound
by this 8I, and it being free in A(t) violates the condition for applying 8I. If we
have to put the new substitution under the first level line that can be found below the
original one, the same problem applies to the part of ‚ that stands above this level
line and below the original substitution. This is the exact analogue of the problem
mentioned above that Gentzen met and constituted an obstacle for generalizing his
consistency proof to a proof of the full Hauptsatz (Sect. 2.4.1). This problem will
now be overcome by choosing a normalization strategy that picks out for reduction
the first possible one when going from below in the main thread (as defined below)
whose last inference is an elimination. In that way it will be guaranteed that there
are no introduction inferences at all below A(t).

3.4 The Gentzen Measure Applied to Deduction Notations

In addition to the inferences that have already been designated as critical (Sect. 2.3),
all applications of the substitution schema are counted as critical, regardless of their
degrees. (This means that there is no point any longer in excepting eliminations
of degree greater than the degree of the deduction from being counted as critical;
however, in Sect. 6.4 the notion of critical inference will be narrowed down in
another way.)

Relative to the now extended notion of critical inference, the definitions of level
and level line are exactly as before. Even the definition of the Gentzen measure runs
in the same way with the one difference that in the clause assigning a measure to
the conclusion of a substitution there is no addition of 1; accordingly:

If the sum of the Gentzen measures of the premisses of a substitution is n, the
Gentzen measure of the conclusion is equal to n if the substitution does not contain
a level line, and is equal to 2j(n) when the substitution contains a level line with
jump j.22

3.5 Branches, Threads, and Segments

A branch of a deduction notation is a sequence of formula occurrences that one
gets by first picking out a top-formula and then adding successively the formula
occurrences immediately below until the first formula occurrence is reached that
stands as the minor premiss of an 
E or as the major premiss of a substitution; if no

22However, there would be no harm in adding 1 to n or to 2j(n) in this case too. There is also an
option in the original definition of the Gentzen measure (Sect. 2.3): when assigning a value to a
formula immediately below a level line, it is possible to avoid the addition of 1 to 2j(n).
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such occurrence is reached, the last formula of the branch is the end-formula of the
tree, and we then have a main branch.

A thread of a deduction notation is defined similarly except that the first element
of the sequence is to be a top-formula not bound by a substitution, and that when
we reach the major premiss of a substitution, the next element in the thread is a
formula occurrence standing as an assumption bound by that substitution (if any).
The thread ends when one reaches the minor premiss of an 
E or the major premiss
of a vacuous substitution, or arrives at the end-formula if no such premiss appears.
In the latter case we have a main thread of the deduction. Going in the opposite
direction we find the main thread by going from the end-formula upwards, always
choosing the major premiss at an elimination and the minor premiss at a substitution.
A main thread in a deduction notation D thus corresponds to a main branch in
#D.

There can be consecutive parts of a thread where the elements are occurrences
of the same formula A. It will sometimes be convenient to distinguish between the
different occurrences of A by adding superscripts, A1, A2, and so on. By a segment
of a thread, I understand such a part A1;A2; : : : ; An of a thread that extends as far
as possible, in other words, where for each i< n, Ai is either the major premiss of a
substitution and AiC1 is an assumption bound by the substitution or Ai is the minor
premiss of a substitution and AiC1 is the conclusion of the substitution, and where
A1 is not the conclusion of a substitution or a premiss bound by a substitution while
An is not the minor premiss of a substitution, nor the major premiss of a substitution
that binds an assumption. For instance, the sequences of occurrences of C exhibited
in the last tree displayed above constitute a segment or at least the last part of a
segment that may have a beginning higher up in †. I shall say that a segment is
straight if it is a part of a branch, in which case all of its elements except the last
one are minor premisses of substitutions, and that it is curved if one of its elements
is bound by a substitution.

A segment will be said to be the conclusion of the inference that its first element
is the conclusion of, if any, and to be a top-segment otherwise. It will be said to be
the (major or minor) premiss of the inference that its last element is the (major
or minor) premiss of, if any, and to be an end-segment otherwise. A maximum
segment is a segment that is the conclusion of an introduction and major premiss
of an elimination.

For a deduction notation D without any maximum formula or maximum
segment, it holds obviously that #D is a normal natural deduction in the standard
sense.
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4 Proof of the Normalization Theorem for Predicate Logic
Using the Gentzen Measure

4.1 Main Structure of the Proof

By induction over the Gentzen measure for deduction notations, I shall now prove:
for every deduction notation D, the standard deduction #D reduces to normal form.
Since for a standard natural deductionD, it holds that #D D D, this proves the usual
normalization theorem for standard deductions. I presuppose the usual definition of
what it is for a standard deduction D to reduce immediately to D�; reducibility is
the transitive closure of this relation.

As in the previous sections, I am considering systems of natural deduction for
predicate logic with the usual introduction and elimination rules for ?, &, 
, and 8
and arbitrary inference rules for atomic formulas (see Sect. 2.2.1).23

The proof has two main cases depending on the form of the deduction (notation)
D.24

Case 1 applies when

(i) the end-formula or end-segment of D is the conclusion of an elimination, and
(ii) the main thread of D contains a maximum formula or a maximum segment.

This is the crucial case, and for this case two things will be shown:

(a) that a reduction D� of D can be defined for the last one of the maximum
formulas and maximum segments in the main thread such that #D reduces to
#D�,

(b) that for a reduction D� so defined, G .D�/ < G .D/.

Thus, according to the induction assumption, #D� reduces to normal form. By
the transitivity of the reduction relation and the fact that #D reduces to #D�,
it follows that #D reduces to normal form. The substance of the proof consists
in defining these reductions (Sect. 4.2), and showing that they lower the Gentzen
measure (Sect. 4.3).

Case 2 is the negation of case 1, which means that either (i) the end-formula or
end-segment of D is the conclusion of an introduction inference or of an instance of
an inference rule for atomic formulas, or (ii) the end-formula or end-segment of D
is the conclusion of an elimination inference, but there is no maximum formula or
maximum segment in the main thread, or (iii) the end-formula or the end-segment
is the conclusion of no inference.

23In Gentzen’s consistency proof, the logical constants are :, &, _, 8, and 9. The possibility that
several formulas occur in the succedent is essential there, why the proof does not easily extend to
intuitionistic logic. To include � is of course essential in natural deduction.
24Martin-Löf’s [13] proof of the normalization theorem has two similar main cases, and in this
respect, the main strategy of my proof is the same as his.
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In case (iii), the deduction #D is already normal. In cases (i) and (ii), I consider
the immediate sub-deduction(s) of D or the immediate sub-deduction(s) of the
result D0 of letting the last inference R that is not a substitution commute with
the substitutions below R. They (assuming that they are two) have lower Gentzen
measures than D and hence the standard natural deductions that they denote reduce
to normal form. Letting D� be the standard natural deduction formed from them by
attaching R, it is seen that D� is in normal form and that #D reduces to D�. I return
to some details below after having carried through the tasks of case 1.

4.2 Immediate Reductions Defined for Deduction Notations

4.2.1 Maximum Formulas

For maximum formulas, &- and 8-reductions are as usual, while the usual 
-
reductions are replaced with ones that use substitution, as already shown above
(Sect. 3.1.1).

4.2.2 Straight Maximum Segments

For straight maximum segments the reductions are the obvious ones, indicated by
the deductions below where in each case the deduction (notation) to the right is an
immediate reduction of the one to the left (i D 1 or 2 in the uppermost two figures).

†n

Cn

†2

C2

†1

C1

…1

A1

…2

A2

A1&A2
A1&A2

A1&A2
A1&A2
Ai

†0

†n

Cn

†2

C2

†1

C1

…i

Ai

Ai

Ai

Ai

†0

…1

A

†n

Cn

†2

C2

†1

C1

[A]

…2

B

A � B

A � B

A � B

A � B

B

†0

…1

A

†n

Cn

†2

C2

†1

C1

[A]

…2

B

B

B

B

B

†0
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†n

Cn

†2

C2

†1

C1

….a/

A.a/

8xA.x/
8xA.x/

8xA.x/
8xA.x/
A.t/

†0

†n

Cn

†2

C2

†1

C1

….t/

A.t/

A.t/

A.t/

A.t/

†0

Clearly, if D� is one of these reductions of D, then #D� is an immediate reduction
of #D.

4.2.3 Simplifications

It will be convenient to introduce reductions that remove all vacuous substitutions
and clearly superfluous substitutions where one of the premisses stands as a
top-formula. The three possible cases of deduction notations that contain such
substitutions are shown to the left below, where in the first case no assumption is
bound by the substitution. Deduction notations of one of these forms are said to
reduce immediately to the respective deduction notation shown to the right.

…

A

†

B
B

‚

…

A ŒA�

A

‚

A

ŒA�

†

B
B

‚

†

B

‚

…

A

‚

†

B

‚

I call these reduction simplifications. If D� is a simplification of D, then clearly
#D D #D�.

4.2.4 Immediate Reductions Defined for Maximum Curved Segments

Let D be a deduction with a maximum curved segments A1;A2; : : : ; An that has
been simplified as much as possible according to the above. Then An is the only
element of the segment that stands as a top-formula. I consider first the general case
when A has the form 8xA(x), which was exemplified in Sect. 3.3. D has then the
form exhibited in the figure below.
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…1.a/

A.a/

8xA.x/
8xA.x/

(1)

[8xA.x/]
A.t/

(2)

[8xA.x/]

…2

C1

(1) (2)
C2

…3

F1

…4

F2

F3

…5

The double lines above the major premiss 8xA.x/ of the exhibited substitution in
D indicate the possibility of a number of other substitutions in which 8xA.x/ is the
minor premiss. To distinguish the different occurrences of the formula C (standing
as the minor premiss and as the conclusion of the substitution), they are equipped
with different superscripts.

As was explained above (Sects. 2.4.1 and 3.3), the new substitution that is added
when forming the immediate reduction D� of D must be put under a level line.
The inference from F1 and F2 to F3 is to be the first inference in D below C2

that contains a level line, in case the substitution does not do so; if it does, …3=F1,
…4=F2, and F3 all fall away. The first such inference may be one with only one
premiss, in which case …4=F2 falls away. It is to be noted that the inference may be
another substitution with F2 as major or minor premiss (if F2 is the major premiss
it should really stand to the left of F1 to follow the convention that I have used).
Otherwise D is as already described above (Sect. 3.3).

As was also explained above, leaving out the assumption of 8xA.x/ marked (1)
when forming D� gives rise to a new assumption A(t), and in the general case, t
may be a variable bound by an application of 8I occurring further below, which
would break the restriction on 8I. Therefore, an immediate reduction of D at this
maximum segment is defined only when the following condition is satisfied: if the
term t is or contains a parameter, no 8I-inference in …2 below the formula A(t)
and no 8I-inference in …3 below C2 binds it. This condition is obviously satisfied
because of the normalization strategy of the proof: when we are to make a reduction
of the maximum segment in question, that is when case 1 applies, there are no
introductions in the main thread after this maximum segment.

Given that this condition is satisfied and provided furthermore that there is no
open assumption of…1.a/ that is bound in…3, the immediate reduction D� of D at
this maximum segment takes the following form.
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…1.t/

A.t/

A.t/

…1.a/

A.a/

8xA.x/
8xA.x/

(1)

[A.t/]
(2)

[8xA.x/]

…2

C1

(2)
C2

…3

F1

…4

F2

F 1
3

(1)
F 2
3

…5

When we are to make a reduction of this kind, the normalization strategy
guarantees that the proviso is satisfied to the extent that no 
-introduction in …3

can bind an assumption occurring in …1 .a/, and this can be added to the condition
for the 8-reduction to be defined. But there is nothing to prevent there being a
substitution in …3 below C2 that binds an assumption occurring in …1.a/. If there
is such a substitution, it has to be repeated in the left sub-deduction above so that
also A(t) and hence F 2

3 become independent of this assumption.
Therefore, in case there is an assumption of …1.a/ that is bound in …3 by a

substitution the immediate reductionD� of D becomes more involved and is defined
as follows. Let ‚1=H1;‚2=H2; : : : , and ‚m=Hm be all the deductions that appear
in …3 as the deduction of the major premiss of a substitution whose minor premiss
is a formula occurrence in …3 below C2 or is C2, taken in the order in which they
appear in the deduction D. Then, D� is to have the following form.

‚m

Hm

‚2

H2

‚1

H1

…1.t/

A.t/

A.t/

A.t/

A.t/

A.t/1

…1.a/

A.a/

8xA.x/
8xA.x/

(1)

[A.t/]

(2)

[8xA.x/]

…2

C1

(2)
C2

…3

F1

…4

F2

F 1
3

(1)
F 2
3

…5

Each deduction ‚i=Hi .i < m/ in D� exhibited above is to be the deduction of
the major premiss of a substitution that binds the same assumptions in …1.t/ or in
some ‚j for j< i that the corresponding substitution in …3 binds. Because of these
added substitutions it is guaranteed that F2

3 depends on the same assumptions as F1
3.

Some of these substitutions may be vacuous and may then be left out.
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Note that if the deduction notation D immediately reduces to D� according to the
now defined 8-reduction for curved segments, then #D� is a standard 8-reduction
of #D.

The &-reductions for curved segments are defined analogously and are not
exhibited.

When the formulas of the maximum curved segment to be reduced are occur-
rences of an implication A 
 B , the deduction D has the following form

(1)

ŒA�

…1

B
(1)

A � B

A � B

(2)

ŒA � B�

…2

A

(3)

A � B

B

(4)

ŒA � B�

…3

C1

(2) (3) (4)
C2

…4

F1

…5

F2

F3

…6

where as in the case of 8-reductions the inference line below F1 and F2 is the
first level line below the substitution in question (or is the inference line of that
substitution if it is a level line, in which case …3=F1, …4=F2, and F3 all fall away
as before).

To help the understanding of the general idea behind 
-reductions for curved
segments, I first consider the case when there is no assumption on which the last
formula A of …2 in D depends that is bound by an inference in …3 or …4 and no
assumption in …1 that is bound in …4. The immediate reduction D� of D at this
curved segment then assumes the form:

(1)

ŒA�

…1

B
(1)

A � B

A � B

(2)

ŒA � B�

…2

A
(2)

A

(1)

ŒA�

…1

B

B
(1)

B

(1)

[A]

…1

B
(1)

A � B

A � B

(3)

B

(4)

[A � B]

…3

C1

(4)
C2

…4

F1

…5

F2

F 1
3

(3)
F 2
3

…6
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As indicated in the figure, the exhibited substitution in D binds assumptions of
the form A 
 B marked (2), (3), and (4). The one marked (3) is supposed to be
the last formula in the curved maximum segment in question, and the reduction
D� of D is formed by leaving out the 
E-inference in which it was the major
premiss, which means that in D� the former conclusion B of the cancelled 
E
becomes an assumption instead, now marked (3). It becomes bound by a new
substitution, placed under the level line. The original substitution remains as before
(except, of course, for not binding the assumptions marked (2) or (3) in D). The
deduction of the major premiss of the new substitution is obtained by making use
of the deduction of the major premiss of the original substitution, substituting B
for A 
 B in its end-segment and leaving out the last inference of …1, that is,
the exhibited 
I-inference, which was binding assumptions A in D. In order to
bind these assumptions A in D�, we add another substitution in which we use the
deduction …2 of the minor premiss of the 
E in D; in other words, we move this
deduction from its original position in D to the position as a deduction of the minor
premiss of this substitution. But since the end-formula A of this deduction …2 may
depend on assumptions of the form A 
 B , marked (2), we have to add yet another
substitution in which a copy of the given deduction of A 
 B is used as deduction
of the major premiss.

The proviso stated above can to some extent be taken as a condition for an

-reduction to be defined: no assumption on which the last formula A of …2 in
D depends is to be bound by an 
-introduction in …3 or …4, and no assumption
in …1 is to be bound by an 
-introduction in …4. That this condition is satisfied is
guaranteed by the normalization strategy as in the case of 8-reductions, but again
nothing prevents there being substitutions in …3 or …4 that bind such assumptions.
If there are such substitutions, all substitutions that occur along the main thread
from B to F1 except the one where C1 is the minor premiss have to be added to the
deduction of the major premiss B of the substitution in D� exhibited above.

The general form of an 
-reduction has accordingly to be more involved and is
defined as follows. Let †1=G1;†2=G2; : : : , and †n/Gn be all the deductions that
appear in …3 as the deduction of the major premiss of a substitution whose minor
premiss is a formula occurrence in …3 that is different from C1 and stands below B
or is B, taken in the order in which they appear in …3, and let ‚1=H1;‚2=H2; : : : ,
and ‚m/Hm be all the deductions that appear in …4 as the deduction of the major
premiss of a substitution whose minor premiss is a formula occurrence in…4 below
C2 or is C2, taken in the order in which they appear in …4. Then the immediate
reduction D� of D at the curved maximum segment in question is to have the form
exhibited on the next page.

Each deduction†i=Gi .i < n/ in D� exhibited in the figure is to be the deduction
of the major premiss of a substitution that binds the same assumptions in …2 or in
some†j, j< i, that the corresponding substitution in D was binding. Similarly, each
deduction‚i/Hi (i<m) exhibited in D� is to be the deduction of the major premiss
of a substitution. If the minor premiss is B, the substitution is to bind the same
assumptions in …1 or in some ‚j, j< i, that the corresponding substitution in the
part …3 of D was binding. If the minor premiss is A, the substitution is to bind the
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same assumptions in …2, in some †j, j � n, in …1, or in some ‚j, j< i, that the
corresponding substitution in the part…4 of D was binding. Because of these added
substitutions it is again guaranteed that F2

3 depends on the same assumptions as F1
3.

Some of these substitutions may be vacuous and may then be left out.
It is to be noted again that even in the case of this more involved reduction, #D�

is an 
-reduction of #D as defined for standard natural deduction.

4.3 Verifying That the Reductions Lower the Gentzen Measure

Immediate reductions of deduction notations lower the Gentzen measure regardless
of where they are carried out, and hence any sequence of immediate reductions
will terminate in a deduction notation D for which there is no immediate reduction
defined. This fact does not give us a strong normalization theorem, however, because
D may contain a maximum segment that cannot be removed due to the conditions
stated in the definition of 
- and 8-reductions for curved maximum segments not
being satisfied, and #D will then not be normal. As already explained above, the
maximum formulas and segments must be removed in a certain order laid down
when the main structure of the proof was described. But in the verifications below
of the fact that the reductions lower the Gentzen measure, this order need not be
presupposed.

The verifications are to generalize to the case of arithmetic, and therefore only
arguments that hold also for transfinite ordinals will be used. The verifications are
essentially as in Gentzen’s proof (see also [24] for properties of ordinals that are
essential), but since the reductions are different I shall refer to the facts needed to
see that the measure goes down.

4.3.1 Eliminations of Maximum Formulas

It is easily seen that reductions that eliminate maximum formulas lower the Gentzen
measure since now even 
-reductions shorten the length. As a model for how the
verification goes, I consider in some detail the case when D� is an 
-reduction of
D that eliminates a maximum formula A 
 B . Adding superscripts to the variables
used in the definition of the reduction (Sect. 3.1.1), let B1 and B2 in D be the premiss
of the 
I and the conclusion of the 
E, respectively, and let B1 and B2 in D� be the
minor premiss and the conclusion, respectively, of the substitution that replaces 
E.

Let us first assume that A 
 B in D does not stand on a level line. We note the
following equalities and inequalities:

GD�.B2/ D GD�.A/CGD�.B1/ D
D GD.A/CGD.B

1/ < GD.A/CGD.B
1/C 2 D GD.B

2/:

The first equality holds because the substitution that replaces the 
E-inference
cannot involve a level line when the 
E-inference did not; that the inference
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does not contain a level line means that there is a critical inference of degree
d � degr .A 
 B/ whose conclusion stands below B2 in D, which implies that
A and B2 in D have the same level d—note that since this inference stands below
B2 in D� too and d > deg.A/, both A and B2 in D� have still the same level d.
The second equality holds because nothing is changed in the deduction above any
of A and B1; in particular, the levels remain the same for the reasons just stated. This
lowering of the Gentzen measure of B2 in D� propagates down in the deduction
to the end-formula since neither is there a change in the deduction below B2; in
particular, the levels do not change. Hence, G .D�/ < G .D/.

Let us now assume instead that A 
 B in D stands on a level line with
jump j from level h1 to h2, where h1 D degr .A 
 B/. The substitution that in
D� replaces the 
E then contains a level line if degr(A)> h2, and in any case,
GD�

�
B2
� D 2j�

�
GD�.A/CGD�

�
B1
��

, if we set j* D max(degr(A), h2) � h2 (note
that 20(n) D n). Unlike the previous sub-case, we cannot assert that GD�.A/ D
GD.A/ and GD�

�
B1
� D GD

�
B1
�
, because now the level of A and B1 is changed,

namely from h1 in D to max(degr(A), h2) in D�, and the level of formulas above
A and B1 may drop equally much. The difference of level h1 � max(degr(A), h2),
which may also be written j � j*, can have the effect that new level lines with jumps
� j � j � appear in D� above A or B1 or that the jump of a level line that occurred
already in D above A or B1 increases when passing to D� with at most j � j*.
If so, the Gentzen measure of the formulas immediately below these level lines
will increase, but there is a bound on how much the measure can increase, because
there is a bound on the jumps of the new level lines and on how much the jumps of
old level lines may go up. I satisfy myself here with asserting that for the formula
occurrences F concerned, which stand above A or B1 or are identical to A or B1,
it holds that GD�.F / � 2j�j� .GD.F //, in particular GD�.A/ � 2j�j� .GD.A//
and GD�

�
B1
� � 2j�j�

�
GD

�
B1
��

.
This possible increase of the Gentzen measure of formulas above the original

level line that we find when comparing D and D� is more than compensated for by
the fact that the level line in D is replaced by one with the lower jump j* in D� or
disappears if j* D 0, as is now seen by noting the following facts25:

GD�.B2/ D 2j�.GD�.A/CGD�.B1// �
� 2j� Œ2j�j�.GD.A//C 2j�j�.GD.B

1//� �

25This is a recurring theme in the verifications. An inference containing a level line may also
disappear without being replaced by any new inference, as is the case with the simplifications
(section 4.2.3), which is a special case of the one above. Gentzen [6, p. 41], [7, pp. 281–282] deals
at length with the same phenomenon that occurs when eliminating a cut. It may also happen that
an inference line that was a level line in a deduction D ceases to be a level line in a reduction
D� of D, although the inference remains the same. This may, for instance, be the case when some
elimination inferences are excepted from being counted as critical, as in Sects. 2.3 and 6.4. If the
jump of the level line was j, then for the formulas A immediately above the line it holds again that
GD�.A/ � 2j .GD.A//. But since the line is not a level line in D�, it holds for the formula B
immediately below the line that GD�.B/ � .GD.B//.
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� 2j� Œ2j�j�.GD.A/CGD.B
1//� D

D 2j�Cj�j�.GD.A/CGD.B
1// D 2j .GD.A/CGD.B

1// <

< 2j .GD.A/CGD.B
1/C 1/C 1 D GD.B

2/:

As before, this is sufficient to see that G .D�/ < G .D/.

4.3.2 Eliminations of Straight Maximum Segments

The reasoning for straight maximum segments is essentially the same. Adding
superscripts 1; 2; : : : ; n; n C 1, to the letters used in the definition of 
-reductions
for straight maximum segments, and assuming that j and j* are as above
or that j D j* D 0 if no level lines are involved, we get that GD�

�
BnC1� D

2j� .GD�.A/CGD� .Bn// and that GD�.A/ � 2j�j�GD.A/, and find now
that GD� .Bn/ < 2j�j� .GD ..A 
 B/n//. As above, it then follows that
GD�

�
BnC1� < 2j .GD.A/CGD ..A 
 B/n// < GD

�
B2
�

where B2 in D refers
to the conclusion of the 
E-inference.

4.3.3 Simplifications

That simplifications lower the Gentzen measure is also easy to see. It is trivial if the
eliminated substitution does not contain a level line. If it contains a level line with
jump j, we get in the second of the three cases that GD� .A/ � 2j

�
GD

�
A1
��
<

2j
�
GD

�
A1
�C 1

� D GD
�
A3
�
, where D� is the reduction of D and A1 is the major

premiss while A3 is conclusion of the substitution in D that becomes eliminated
in D�; for the first of these equalities or inequalities, see what was said above
about the general phenomenon that occur when a level line disappears (Sect. 4.3.1
and footnote 25). In the first and third case, we get similarly that GD� .B/ �
2j
�
GD

�
B1
��

< 2j
�
GD.A/CGD.B

1/
� D GD

�
B2
�
, where B1 is the minor

premiss and B2 is the conclusion of the substitution in D.

4.3.4 Eliminations of Curved Maximum Segments

The crucial cases are the 
-, &-, and 8-reductions for maximum curved segments,
since the length of the deduction now increases because of new substitutions inserted
under the previous one. Gentzen’s idea to put the derivations that are added below a
level line (Sect. 2.4.1) comes now into play. As an illustration, consider a case of 8-
reduction where the Gentzen measure of the conclusion F3 under the level line in the
original deductionD is 2n; n being the sum of the Gentzen measures of the premisses
above. In the deduction D� resulting from the reduction, the Gentzen measure of
the corresponding formula F 1

3 will be 2n* where n*< n, because something has
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disappeared from the original deduction above the level line. The Gentzen measure
of the conclusion of the added substitution, F 2

3 , will be 2n* C m where m< 2n*,
assuming that the added substitution does not involve a level line. Hence,

GD�

�
F 2
3

� D 2n
� Cm < 2n

� C 2n
� � 2n

�C1 � 2n D GD .F3/ :

In the case of 
-reduction, the reasoning is similar but a little more complicated. The
verifications below are obtained along this line, there are only some more details,
essentially because we have to pay attention to other possible level lines that may
occur.

In all the cases of reductions that remove curved maximal segments, we want
to see that GD�

�
F 2
3

�
< GD .F3/; letters as in the definitions of the reductions.

Let the exhibited level line in D have a jump j from level h1 to level h2. Then
GD .F3/ D 2j .GD .F1/CGD .F2//, assuming that the inference from F1 and F2

to F3 is a substitution. Otherwise we have to add 1, which case is exactly parallel. As
we recall, F2 may fall away, and F3 may be identical with C2, which only simplify
the verifications.

Consider first the general case of 8-reduction and the sub-case when the new
substitution inference does not contain a level line. In line with the schematic
argument given above, we shall make use of the two facts (1) and (2) stated below:

(1) GD� .F1/C 1 � GD .F1/ and

(2) GD�

�
A.t/1

�
< 2j .GD� .F1/CGD� .F2// :

(1) is consequence of the fact that the sub-deduction of F1 in D� has one node
less than the sub-deduction of F1 in D. (2), or more precisely that GD�

�
A.t/1

�
<

2j
�
GD� .F1/

�
is a consequence of the fact that the deduction of the major premiss

A(t)1 of the last exhibited substitution inference in D� contains at least one node
less than the deduction of F1 in D� and that the levels of its formulas may increase
with at most j—that the levels increase is due to the fact that the formulas do not
stand over the exhibited level line, as the corresponding ones in the deduction of F1

do; the jump of the latter has been assumed to be j D h1 � h2.
From the two facts (1) and (2) and the trivial fact that GD� .F2/ D GD .F2/, we

get the following equalities and inequalities:

GD�

�
F 2
3

� D GD�.A.t/1/C 2j .GD� .F1/CGD� .F2// <

< 2j .GD� .F1/CGD� .F2//C 2j .GD� .F1/CGD� .F2// �
� 2j .GD� .F1/CGD� .F2/C 1/ � 2j .GD .F1/CGD .F2// D
D GD .F3/ :

To verify the other sub-case when the new substitution contains a level line,
we note that its jump must be j0 D deg(A(t)) � h2. The jump of the original
substitution will then go down to j* D j � j0 D h1 � deg(A(t)). Note that j* must still
be greater than 0 and that j0 C j* D j. The fact (2) invoked above is now replaced by
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GD�

�
A.t/1

�
< 2j� .GD� .F1/CGD� .F2//, since the levels decrease with at most

h1 � deg(A(t)) D j*. We then get instead:

GD�.F 2
3 / D 2j 0

h
GD�.A.t/1/C 2j� .GD� .F1/CGD� .F2//

i
<

< 2j 0

�
2j� .GD� .F1/CGD� .F2//C 2j� .GD� .F1/CGD� .F2//

� �
� 2j 0Cj� .GD� .F1/CGD� .F2/C 1/ � 2j .GD .F1/CGD .F2// D
D GD .F3/ :

Consider finally the 
-reductions (the case of &-reduction being analogous to
8-reduction). The deduction D� resulting from the reduction is now considerably
much longer than D, containing not only two new copies of the deduction …1 of
B in D, but also a deduction of A, which may be not much shorter than the given
deduction of F3 in D. It is now crucial that in D� the deduction of the minor premiss
C1 contains at least two nodes less than the corresponding deduction in D.

Given again that the jump of the displayed level line in D is j D h1 � h2, and
that thus GD .F3/ D 2j .GD .F1/CGD .F2//, we define f to be max(degr(B),
h2) � h2. If f > 0, then F 2

3 stands in D� immediately under a level line, and
the jump of the level line under which F 1

3 stands in D� will be h1 � degr(B).
In any case, GD�

�
F 2
3

� D 2f
�
GD�

�
B2
�CGD�

�
F 1
3

��
, and GD�

�
F 1
3

� D
2g .GD� .F1/CGD� .F2//, setting g D h1 � max(degr(B), h2). Note that g> 0
and that f C g D j.

Let k D max(degr(A), max(degr(B), h2)) � max(degr(B), h2). If k> 0, then B2

stands immediately under a level line with jump k, and in any case GD�

�
B2
� D

2k
�
GD�

�
A2
�CGD�

�
B1
��

.
We find that GD�

�
F 2
3

� D 2f
�
2k
�
GD�

�
A2
� C GD�

�
B1
�� C 2g .GD� .F1/C

GD� .F2//
�
. We want to compare the valuesGD�.A2/ andGD�

�
B1
�

withGD .F3/
and the latter value with GD� .F3/.

To this end, consider the value we get if we change the calculation of the Gentzen
measure of F1 in D in the one respect that we leave out from the calculation the
inference from A andA 
 B to B ; more precisely, we let the value of the conclusion
B be the same as that of the minor premiss A (instead of the sum of the values of A
and A 
 B plus 1, which is the Gentzen measure of B since the inference cannot
contain a level line). Call this value ’.

Clearly, GD� .F1/ � ˛ and ˛ C 2 � GD .F1/. Trivially, GD� .F2/ D
GD .F2/. Define m D h1 � max(degr(A), max(degr(B), h2)), and note for later use
that k C m D g. We can now see that GD�

�
A2
� � 2m .˛ CGD .F2// by comparing

the deduction of A2 in D� with the deduction of F3 in D. We first note that all the
inferences that occur in the former occur also in the latter, and that this holds even
if we leave out the inference from A and A 
 B to B in the deduction of F3 in
D. This would imply that GD�

�
A2
� � .˛ CGD .F2//, if we did not have to take

into account that there may be a change with respect to level lines when making
these two computations. We should now recall that the inference from F1 and F2
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to F3 could be a substitution with F2 as the major premiss, in which case ‚m/Hm

is identical to …5=F2. If so, A2 stands immediately under a level line with jump
m, and GD�

�
A2
� � 2m .˛ CGD .F2//. If the inference is not a substitution of this

kind, the level of A2 in D� is anyway max(d(A), max(d(B), h2)), while the level of
F1 in D had the higher level h1. Thus, the difference between the level of A2 in D�
and the level of F1 in D is h1 � m. As we saw above (when verifying the case of

-reduction for maximum formulas in Sect. 4.3.1), this lowering of level with m
can cause an increase of the Gentzen measure from n to at most 2m(n), which gives
again the consequence that GD�

�
A2
� � 2m .˛ CGD .F2//. For the same kind of

reasons, GD�

�
B1
� � 2m .˛ CGD .F2//.

Given these facts, we get

GD�

�
F 2
3

� D
D 2f

�
2k
�
GD�

�
A2
�CGD�

�
B1
��C 2g .GD� .F1/CGD� .F2//

� �
� 2f

�
2k .2m .˛ CGD .F2//C 2m .˛ CGD .F2///C 2g .˛ CGD .F2//

� �
� 2f

�
2k .2m .˛ CGD .F2/C 1//C 2g .˛ CGD .F2//

� D
D 2f

�
2kCm .˛ CGD .F2/C 1/C 2g .˛ CGD .F2//

� D
D 2f

�
2g .˛ CGD .F2/C 1/C 2g.˛ CGD .F2//

�
<2f Œ2g .˛CGD .F2/C 2/� D

D 2fCg .˛ CGD .F2/C 2/ D 2j .˛ CGD .F2/C 2/ �
� 2j .GD .F1/CGD .F2// D GD .F3/ :

4.4 Details of Case 2

In case 2, something more should be said concerning the two sub-cases (i) and
(ii). Most of what is said applies in the same way to these two sub-cases. Consider
first their common sub-case when the end formula A of D does not stand as the
conclusion of a substitution. Let D1 and D2 be the immediate sub-deductions of
D obtained by leaving out the last inference R; if there is only one immediate
sub-deduction of D, disregard what is said about D2. Since G .D1/ < G .D/
and G .D2/ < G .D/, the standard deductions #D1 and #D2 reduce to normal
deductions D�

1 and D�
2 according to the induction assumption. Let D� be the

deduction (D�
1 ;D�

2 =A) obtained by attaching R to D�
1 and D�

2 . The standard
deduction #D is reduced to D� by the reductions that bring #D1 to D�

1 followed
by reductions that bring #D2 to D�

2 . It remains to see that D� is normal, too. This
is obvious in case (i), when R is an application of an introduction rule or a rule
for atomic formulas. In case (ii), when R is an elimination inference, we note that
there was no maximum formula or maximum segment in the main thread of D, and
hence there is no maximum formula or maximum segment in the main thread of
D2, assumed to be the deduction of the major premiss of R, neither any maximum
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formula in the main branch of #D2. The reduction sequence that brings #D2 to D�
2

then does not change anything in the main branch, and hence the last inference of
D�
2 cannot be an introduction.
Consider now the other common sub-case when the end formula of D is the

conclusion of a substitution. Then D has the form of the first deduction shown
below; again, disregard †2/A2 if the end-segment is the conclusion of an inference
rule with only one premiss. Let D0 be the second deduction shown below, obtained
by letting the inference R, which the end-segment is the conclusion of, permute with
the substitutions connected with the end-segment.

…n

Cn

…2

C2

…1

C1

†1

A1

†2

A2

A

A

A

A

…n

Cn

…2

C2

…1

C1

†1

A1

A1

A1

A1

…n

Cn

…2

C2

…1

C1

†2

A2

A2

A2

A2

A

It is possible thatG .D0/ > G .D/, but for the immediate sub-deductions D1 and
D2 of D0 it holds that G .D1/ > G .D/ and G .D2/ > G .D/. Hence, #D1 and #D2

reduce to normal deductions D�
1 and D�

2 . Again, let D� be (D�
1 ;D�

2 =A). As above,
#D0 reduces to D� and D� is normal. Since #D D #D0 we have shown that #D
reduces to normal form.

5 Extension to First Order Arithmetic

5.1 A System for First Order Arithmetic

To extend the normalization result to classical first order Peano arithmetic, I consider
a system of natural deduction obtained by adding the rule of mathematical induction
to a system of natural deduction for predicate logic of the kind considered in
previous section that contains appropriate rules for atomic formulas. I leave open
the exact choice of inference rules for the atomic formulas since it does not matter
for the normalization result, but the language should contain the individual constant
0 and a symbol s for successor. I am following Gentzen in restricting the closed
terms to be the numerals (formed from 0 and s), which means that addition and
multiplication have to be covered by ternary predicates.
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The inference rule of mathematical induction is taken in the following form

A.0/

ŒA.a/�

A.sa/

A.t/

where t is a (closed or open) individual term, and where a is a parameter closed by
the inference (in other words, a should satisfy the conditions of eigenvariables).

5.2 Induction as an Elimination Rule for N

It appears from the work by Martin-Löf [13] that the induction rule could be
understood as the elimination rule for the predicate of being a natural number,
say N.a/, which has as introduction rules the axiom N.0/ and the rule to infer
N.sa/ from N.a/. Then the rule of mathematical induction has N.t/ as a third
premiss, which is here omitted since I have not required that the language should
contain the predicate of being a natural number. If one has such a third premiss, it
counts as a major premiss. Thus, if such a major premiss stands as the conclusion
of an introduction, it is a maximum formula. Its occurrence in a deduction D is
removed by a reduction of D that takes the following form: if the major premiss is
N.0/, then D reduces to the deduction of the first minor premiss A(0); if the major
premiss is N.st/, above which stands a sub-deduction …=N.t/, then D reduces to
a deduction obtained from the deduction of the second minor premiss, the induction
step, by substituting t for a, and by substituting for the assumption A(t) another
application of the induction rule taking …=N.t/ as the deduction of the major
premiss.

What is to count as an appropriate extension of the normalization theorem of
predicate logic to arithmetic is then obvious. Its statement is literally the same as
for predicate logic: every deduction reduces to normal form, i.e. to a deduction that
contains no maximum formula, and hence, cannot be reduced further.

5.3 Reducible Induction Inferences

In the light of Martin-Löf’s work, the induction rule as stated above is to be
seen as an abridged elimination rule. Since its major premiss is left tacit here, we
have to state separately what it is for an induction inference to be reducible. For
convenience, I shall follow Gentzen, and say that an application of the induction
rule is reducible when the term t that is substituted for the parameter a in the
induction formula to get the conclusion A(t) is a numeral and that a deduction of
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the form shown to the left below immediately reduces to …1=A.0/, if n D 0, and to
the deduction shown to the right when n is a numeral distinct from 0.

…1

A.0/

ŒA.a/�

…2.a/

A.sa/

A.t/

†

…1

A.0/

ŒA.0/�

…2.0/

A.s0/

A.s0/

ŒA.s0/�

…2.s0/

A.ss0/

A.ss0/

A.n� 1/

ŒA.n� 1/�

…2.n� 1/

A.n/

A.n/

†

The deduction to the right is obtained by a series of n substitutions (n being used
ambiguously both for numerals and numbers); n � 1 stands of course for the n:th
numeral, counting 0 as the first numeral. A reduction proceeds in this way in one
sweep like in Gentzen’s proof, instead of stepwise as described in Sect. 5.2.

The definition of what counts as an immediate reduction is to be understood in
two ways. It states that a standard natural deduction of the form shown to the left
reduces immediately to the standard natural deduction shown to the right above,
obtained by an iterated operation of substitution. But it also states that a deduction
notation of the form shown to the left reduces immediately to the deduction notation
shown to the right above. If D is a deduction notation of that form, and D� is the
deduction notation that is an immediate reduction of D, then obviously #D� is an
immediate reduction of #D.

A standard natural deduction in arithmetic is defined to be normal when it
contains no maximum formula and no reducible induction inference.

5.4 The Gentzen Measure of Arithmetical Deductions

The degree of an induction inference is the degree of its induction formula A(a).
All induction inferences count as critical. The definitions of level and level line
are then as before. The definition of the Gentzen measure also runs as before with
the difference that ¨ instead of 2 is the base of the iterated exponentiations in
connection with level lines, and that the sum of two Gentzen measures is always
to be understood as the natural sum of ordinals.

Furthermore, there is a new clause for the case that A(t) stands in a deduction
D as the conclusion of an induction inference, which in the same manner as before
depends on whether its inference line is a level line or not: given that GD .A.0// D
˛ and GD .A .sa// D ˇ, where A(0) and A.sa/ are the two premisses of the
induction inference, we define GD .A.t// D ˛ C ˇ � !, if the inference line is
not a level line, andGD .A.t// D !j .˛ C ˇ � !/, if the inference line is a level line
with the jump j.
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5.5 Branches and Threads

In the definitions of branch and thread, we now stipulate that they may also begin
at a conclusion of an induction inference and that they end when a premiss of an
induction inference is reached. Thus, going from below, the first formula of a main
branch or thread is found if one has reached the conclusion of an induction.

5.6 Proof of the Normalization Theorem

It is now very easy to extend the proof of Sect. 4 to arithmetic. Let us first verify
that the Gentzen measure is lowered by a reduction of an induction inference when
the numeral n in the conclusion A(n) is different from 0; the case when n is 0 being
trivial.

Note first of all that if the induction inference in the deduction D does not contain
a level line, then none of the new substitutions in the reduction D� of D contains a
level line, while if the inference contains a level line, then the last, and only the last,
of the new substitutions in D� contains a level line, the jump being the same. Let j
be the jump at the level line that the induction inference contains, if there is such a
level line, and let j be 0 otherwise.

We then find that for the conclusion A(n) of the last exhibited substitution in the
reduction D�

GD� .A.n// D !j .GD� .A.0//CGD� .A.1//C � � � CGD� .A.n/// D
D !j .GD .A.0//CGD .A .sa//C � � � CGD .A .sa/// <

< !j .GD .A.0//CGD.A .sa// � !/ D !f .GD .A.n/// :

Here, the iterated natural sum has n terms, and A(n) in the last term of the identity
refers to the conclusion of the induction inference in D.

It remains to say how the two main cases of the proof are to be defined now.
Case 1 becomes: The end formula or end segment of the deduction (notation) D
is the conclusion of an elimination or of an induction, and the main thread of D
contains a maximum formula, a maximum segment or the conclusion of a reducible
induction inference. As before we locate the last maximum formula or segment in
the main thread, if any, and let D� be the reduction of D performed at that place. If
there is no maximum formula or maximum segment in the main thread, the thread
starts at the conclusion of a reducible induction inference (given how case 1 is now
defined), and we let D� be the reduction of D for this induction inference. As we
have seen G .D�/ < G .D/. By the induction assumption, #D� reduces to normal
form and hence so does #D, since #D reduces to #D�.

Case 2 is still the negation of case 1 as now defined, and the proof in this case
remains the same with the sole addition that in case (ii) is now to be included



170 D. Prawitz

the possibility that the end-formula or end-sequent of the main thread of D is the
conclusion of an induction. The proof goes in the same way.

6 A Normalization Theorem for a System of Natural
Deduction with Explicit Substitution

6.1 Adding the Substitution Schema as an Inference Rule

In the above, the schema of substitution has been used in deduction notations as a
means to prove the normalization theorem for standard systems of natural deduction.
But as noted, the schema may be understood as stating an inference rule in its own
right, which may be added for good reasons to standard systems of natural deduction
(Sect. 3.1.1). When taking this perspective, one naturally asks for a normalization
theorem for such an enriched system of natural deduction, which so far has not been
obtained. This is the theme of this section.

I shall consider the system obtained by adding the substitution rule to the
system for classical first order Peano arithmetic defined in Sect. 5. The first thing
to do is to define additional immediate reductions for this system. To prove the
normalization theorem for it, I shall then make some small changes of previous
definitions.

6.2 Additional Immediate Reductions

To the immediate reductions that were defined for maximum formulas, maximum
segments, and induction inferences occurring in deduction notations and the ones
called simplifications (Sects. 4.2 and 5.3), I add certain permutations of substitutions
with other inferences as immediate reductions. Distinguishing two cases depending
on whether the minor premiss of the substitution is the conclusion of an inference
with one or two premises, they are as indicated below; the last exhibited inference
in the left figures is the substitution inference:

…

A

ŒA�

†

B
C

C

‚

reduces immediately to

…

A

ŒA�

†

B
B
C

‚
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…

A

ŒA�

†1

B1

ŒA�

†2

B2
C

C

‚

reduces immediately to

…

A

ŒA�

†1

B1
B1

…

A

ŒA�

†2

B2
B2

C

‚

6.3 Normal Forms

A deduction that has no immediate reduction cannot contain any substitution
inference, since a substitution inference can always be permuted upwards or be
removed by a simplification. However, an irreducible deduction may still contain
maximum segments because of the restrictions which the reductions defined for
curved maximum segments are provided with. Accordingly, the deductions that we
are now considering are defined as normal when containing no maximum formula
or segment, no reducible induction inference, and no substitution inference, which
is not the same as saying that it has no immediate reduction.

The normalization theorem will be proved by defining a complete normalization
strategy, in contrast to the partial ones defined in Sects. 4 and 5. It generates a
reduction sequence that will be shown to terminate in a normal deduction. The
theorem obviously contains the standard normalization theorem as a special case: if
a sequence of immediate reductions starts from a standard deduction and terminates
in a normal deduction, it also ends in a standard deduction, although the intermediate
deductions may contain applications of the substitution rule.

6.4 Critical Inferences and the Degree of a Formula

The notion of critical inference was introduced as a rough approximation of the class
of inferences whose major premiss is a potential maximum formula (Sect. 2.3). Still
without aiming at an optimal notion of critical inference, I shall narrow down the
previously defined notion, which will be essential for the proof of the normalization
theorem.

To this end, I need the notion of order of threads in a deduction defined as
follows: A main thread has order 0. A thread has order n C 1, if it ends with a minor
premiss of an 
-elimination whose major premiss belongs to a thread of order n, a
major premiss of a vacuous substitution whose minor premiss belongs to a thread
of order n, or a premiss of an induction whose conclusion belongs to a thread of
order n.

The new definition of critical inference in a deduction is then defined by saying
that every substitution inference is critical and that, in addition, an elimination
or induction inference is critical, except when the thread of order n to which its
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conclusion belongs satisfies the condition that there is no maximum formula or
maximum segment in this thread or in a thread of order lower than n and no reducible
induction whose conclusion belongs to this thread or to a thread of order lower than
n. A normal deduction will consequently have no critical inference.

One can safely make these exceptions in the definition of critical, because when
the stated condition is satisfied for a thread of a deduction D, no reduction of D
can have the effect that the major premiss of an elimination in the thread becomes
a maximum formula or that an induction whose conclusion stands in the thread
becomes reducible. An effect of this definition is that a critical inference in a
deduction may cease to be critical after a reduction has been performed, but as we
have seen this is not a problem (Sect. 4.3.2 and footnote 25). What is essential in
order that the Gentzen measure is to decrease at reductions is that the inverse cannot
happen: if an inference is critical in a reduction D� of D, then the corresponding
inference in D must also have been classified as critical.

We also need to redefine the degree of a formula so that atomic formulas get
the degree 1; thus, degr(A) D 1, if A is atomic; degr(8xA) D degr(A) C 1; degr
(A&B) D degr(A 
 B) D max(degr(A),degr(B))C 1. The point of this redefinition is
that we want to show that applications of the substitution rule can be removed by
permutations upwards and that, to this end, we have to take care of the fact that the
deduction may expand exponentially at such permutations even when the formulas
involved are atomic.

6.5 The Normalization Strategy

Deductions will be normalized by first considering a main thread, making reductions
according to the first one of the cases specified below that is applicable. When none
of the cases is applicable to the main threads, one continues with the threads of order
1, and so on. When several choices are open for how to proceed, one can specify as
one pleases which one is to be chosen, so as to get a unique order of reductions.

The precise instruction for how to form a reduction sequence, that is, a sequence
of deductions such that each one reduces to the next one, is as follows: Given that
the last element in the sequence obtained so far is a deduction D, the next deduction
D� in the sequence is obtained by finding a thread in D of some order n such that
one of the instructions (1)–(4) is applicable but none of them is applicable to threads
of order less than n, and then proceed as the first one of the applicable cases says:

1. There is a simplification to make. D� is obtained by making one of them.
2. There is a segment in the thread that stands as the conclusion of an introduction

and after this segment all formula occurrences in the thread, if any, are con-
clusions of introductions. D� is obtained by making a series of commutative
reductions so that the introduction comes to stand under the segment in question;
see Sect. 4.4.
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3. There is a maximum formula, a maximum segment, or the conclusion of a
reducible induction in the thread. D� is got by removing the last maximum
formula or segment in the thread by a reduction or, if there is none, by removing
the induction by a reduction.

4. There is a segment in the thread that stands as the conclusion of an elimination or
an induction and after this segment all formula occurrences in the thread, if any,
are conclusions of eliminations or introductions. D� is got by making a series of
commutative reductions so that the elimination or the induction comes to stand
under the segment in question; the result is again as described graphically in
Sect. 4.4.

We have to show that in case (3) there is a reduction to be made. Given this, it
is clear that when the reduction sequence terminates because none of the cases are
applicable to any thread, the deduction is normal.

It is sufficient to show that when instruction (3) is to be followed by carrying out
an 
- or 8-reduction for a curved maximum segment, the condition stipulated for
such a reduction (Sect. 4.2) is satisfied. Using the same letters as in the definitions
of these reductions, and referring to the assumption A 
 B or 8xA that is bound by
the substitution in question as the assumption D, we have to show that there is no
conclusion E of an introduction inference standing below D and above the exhibited
level line. To this end, note to begin with that such an E would have to belong either
to the same thread of order n as D or to a thread of a lower order. Since cases (1)–(4)
are not to be applicable to threads of order lower than n, there can be no premiss of
a substitution in such threads. The minor premiss C1 and the conclusion C2 of the
substitution at which D is bound must therefore belong to the same thread as D.

Furthermore, from the fact that C1 and C2 belong to the same thread as D and
the facts that cases (1) and (2) are not to be applicable to this thread and that there
is to be no maximum formula or segment in the thread after D, it follows that the
conclusion E cannot stand above C2. Hence, E would have to stand under C1 and
above the level line. For the same reasons as already invoked, the premiss F1 of the
inference that contains the level line and that E stands above or is identical with
cannot be the major premiss of an elimination nor the premiss of a substitution, if it
belongs to the same thread as D. Hence, if F1 belongs to the same thread as D, it must
be the minor premiss of an elimination or of the premiss of an induction in view of
the fact the inference contains a level line. It follows that the conclusion F3 of this
inference that contains the level line must belong to a thread of order lower than
n. But this contradicts that the inference contains a level line: since its conclusion
belongs to a thread whose order is less than n, and which therefore contains no
maximum formula or segment and no reducible induction, the inference cannot be
critical according to the new definition of this notion.

As seen, the instruction of how to form the reduction sequence is such that
when (1) or (3) is applied, the obtained deduction is an immediate reduction of
the preceding one, while when (2) or (4) is applied, the obtained deduction can be
obtained by a sequence of immediate reductions from the preceding one.
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6.6 Verifying That the Gentzen Measure Goes Down
in a Reduction Sequence

The normalization theorem is now obtained by verifying the fact that the Gentzen
measure goes down in the reductions sequences, which must therefore terminate.26

That G .D�/ < G .D/ when D� is obtained from a deduction D according
to instruction (1) or (3) has already been verified in the preceding sections.
Consider now the case when D� is obtained according to instruction (2). I use the
symbols occurring in the graphic description of the case in Sect. 4.4, differentiating
between the different occurrences of the same formula in the displayed segments by
superscripts 1, 2, : : : , n, and n C 1. We first note that the inference line contained in
the lowest exhibited substitution, where Cn is the major premiss, must contain a level
line and that there is no level line further down inD, because all the inferences below
this line are either introductions or their conclusions belong to threads of lower
order than the order of the thread to which AnC1 belongs. Accordingly, its jump
is j D degr(Cn). For the same reasons, the two corresponding substitutions in D�
where Cn is the major premiss are also level lines with the same jump j. Recall that
j � 1 (Sect. 6.4). Let ˛ D max

�
GD� .Cn/CGD�

�
An1
�
; GD� .Cn/CGD�

�
An2
��

.
Clearly, ˛ C 2 � GD .Cn/ C GD .A

n/, because the part of D that ends with An

has at least two nodes more than the part of D� that ends with Ani .i D 1 or 2/.
Consequently, we find that

GD� .A/ D GD�

�
AnC1
1

�CGD�

�
AnC1
2

�C 1 D
D !j

�
GD� .Cn/CGD�

�
An1
��C !j

�
GD� .Cn/CGD�

�
An2
��C 1 �

� !j .˛/C !j .˛/C 1 < !j .˛ C 1/C 1 < !j .˛ C 2/ �
� !j .GD .Cn/CGD .A

n// D GD
�
AnC1� :

Finally, let D� be the reduction obtained from D according to instruction (4).
Since this instruction is applied when the thread in question and threads of lower
order do not contain any maximum formula or segment or the conclusion of a
reducible induction, the elimination or induction inference that is permuted with
the segment in question to get D� is not a critical inference, nor is there a critical
inference below the conclusion Cn. The same reasoning that showed in the preceding
case that GD� .A/ < GD

�
AnC1� therefore applies again.
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A Direct Gentzen-Style Consistency Proof
for Heyting Arithmetic

Annika Siders

1 Introduction

Gerhard Gentzen was the first to give a proof of the consistency of Peano Arithmetic
and in all he worked out four different proofs between 1934 and 1939. The second
proof was published as [1], the third as [2], and the fourth as [3]. The first proof was
published posthumously in English translation in [4] and in the German original
as [5].

A study of the papers Gentzen left behind shows that he worked on yet another
fifth proof between 1939 and 1943. The aim was to rework the 1938 proof with
an intuitionistic sequent calculus, to get a direct proof of the consistency of
intuitionistic Heyting Arithmetic. Gentzen’s attempts are preserved in the form of
close to a hundred large pages of stenographic notes, with the signum BTJZ that
stands for “Proof theory of intuitionistic number theory”.

The aim of this paper is to give a direct Gentzen-style proof of the consistency
of intuitionistic arithmetic. It is based on Gentzen’s classical proof from 1938
formulated by Gaisi Takeuti in [10, ch. 2, § 12]. Takeuti’s proof can be considered
the standard proof today. The proof is carried out by giving a reduction procedure
(as in our Lemma 5.5.1) for every derivation of the empty sequent that represents a
contradiction in the system. By giving every sequent an ordinal it is shown that the
reduction procedure terminates.

Gentzen and Takeuti used semantical arguments to prove a lemma (our
Lemma 5.4.8) stating that there is no so-called simple derivation of the empty
sequent. Their proof is short, but we shall instead show that the lemma can be
proved purely proof-theoretically by formulating the arithmetical axioms as rules
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instead of initial sequents and by considering all possible combinations of these
rules, as in our Lemma 5.4.6.

We shall assume that the reader has basic knowledge of ordinals and refer to [10]
for a more detailed treatment of the subject. For further reading and description of
Gentzen’s manuscripts we also recommend the thorough discussion of Gentzen’s
work found in [9].

2 The Sequent Calculus G0i

A sequent is an expression of the form 	 ! A, where the antecedent 	 is a
(possibly empty) multiset. A multiset is a finite list of formulas where the order
of the formulas does not matter but the multiplicity of the formulas does, in contrast
to ordinary sets. The succedent A is a formula, but can also be empty. The rules
for the intuitionistic sequent calculus G0i, from [7] except that we have no rule of
weakening, are as follows.

Initial sequent:

A;	 ! A

Logical rules:

A;B; 	 ! C

A&B;	 ! C
L&

	 ! A 	 0 ! B

	; 	 0 ! A&B
R&

A;	 ! C B;	 0 ! C

A _ B;	; 	 0 ! C
L_ 	 ! A

	 ! A _ B R_ 	 ! B
	 ! A _ B R_

	 ! A
�A;	 ! L	 A;	 !

	 !�A R	

	 ! A B;	 0 ! C

A 
 B;	; 	 0 ! C
L� A;	 ! B

	 ! A 
 B
R�

A.t=x/; 	 ! C

8xA; 	 ! C
L8

	 ! A.y=x/

	 ! 8xA R8

A.y=x/; 	 ! C

9xA; 	 ! C
L9

	 ! A.t=x/

	 ! 9xA R9
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Structural rules:

A;A; 	 ! C

A;	 ! C
LC

	 ! A A;	 0 ! C

	; 	 0 ! C
Cut

In the quantifier rules the expression A.t=x/means that every free occurrence of
x in A is substituted with the term t . In the rules L9 and R8 the standard variable
restriction holds that y, also called the eigenvariable of the rule, must not be free
in the conclusion of the rule. The formula that is introduced in the conclusion of a
logical rule, for example A&B in the conjunction rules, is the principal formula of
the rule. The formulas that the rule is applied on are the auxiliary formulas. In the
structural rules the principal formula is the formula that the rules are applied on,
in this case A. The formula is also called contraction or cut formula. The multiset
	 in the sequents is called the context of the rule. We use a calculus with arbitrary
contexts in all initial sequents and hence no rule of weakening is needed.

3 Heyting Arithmetic

Definition 3.0.1 A term is the constant 0 or a variable and if t and t 0 are terms then
also s.t/; t C t 0 and t � t 0 are terms. We say that a term is closed if it does not contain
any variable.

We also define numerals inductively in the following way: 0 is a numeral and if
n is a numeral, then also s.n/ is a numeral. Numerals are formal expressions for the
natural numbers and n is n copies of s followed by a 0.

The axioms of Heyting Arithmetic can be formulated as rules of natural
deduction, expanding the logical calculus. Together with an induction rule the
logical and arithmetical rules constitute the system of Heyting Arithmetic (HA).
Negri and von Plato [6] developed the general method for converting mathematical
axioms into rules for the primary purpose of proving cut elimination in systems of
sequent calculus. The specific system for arithmetic was first used by von Plato [8]
to prove the disjunction and existential properties. These rules act on the succedent
part of the sequents and have arbitrary contexts. As a special case we get rules
without premises.

Rules for the equality relation:

	 ! t D t
Ref

	 ! t D t 0
	 ! t 0 D t

Sym

	1 ! t D t 0 	2 ! t 0 D t 00
	1�2 ! t D t 00

Tr
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Recursion rules:

	 ! t C 0 D t
CRec0

	 ! t C s.t 0/ D s.t C t 0/
CRecs

	 ! t � 0 D 0
�Rec0

	 ! t � s.t 0/ D t � t 0 C t
�Recs

Replacement rules:

	 ! t D t 0
	 ! s.t/ D s.t 0/

sRep

	 ! t D t 0
	 ! t C t 00 D t 0 C t 00

CRep1
	 ! t 0 D t 00

	 ! t C t 0 D t C t 00
CRep2

	 ! t D t 0
	 ! t � t 00 D t 0 � t 00 �Rep1

	 ! t 0 D t 00
	 ! t � t 0 D t � t 00 �Rep2

Infinity rules:

	 ! s.t/ D 0

	 ! Inf 1
	 ! s.t/ D s.t 0/
	 ! t D t 0

Inf 2

Induction rule:

	1 ! A.0=x/ A.y=x/; 	2 ! A.sy=x/ A.t=x/; 	3 ! D

	1�3 ! D
Ind

In the arithmetical rules t; t 0 and t 00 are terms. In the induction rule y is the
eigenvariable of the rule and it should not occur free in the conclusion. The induction
formula A is arbitrary.

Definition 3.0.2 A valid derivation in HA is an initial sequent or an arithmetical
rule without premises or is obtained by applying a rule on valid derivations of the
premises of the rule.

The end-piece is inductively defined for any given derivation. The end-sequent
is included in the derivation. If a sequent concluded by a structural rule or Ind is
included in the end-piece, then all the premises of the rule are also included in the
end-piece. An arithmetical or logical rule borders on the end-piece if the conclusion
of the rule is included in the end-piece.

A formula A is a descendant of a formula B if A is in the context of the
conclusion of a rule and B is an identical formula in the context of a premise or
if A is the principal formula of the rule and B is an auxiliary formula in a premise.
Furthermore, if A a descendant of B and B is a descendant of C , then A is a
descendant of C . If A is a descendant of B , then B is a predecessor of A.
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4 The Ordinal of a Derivation

We define the height of a sequent in a derivation.

Definition 4.0.3 (i) The grade of a formula is the number of logical symbols in
the formula. The grade of a Cut or an Ind is the grade of the cut or the induction
formula.

(ii) The height of a sequent S in a derivation P , denoted h.S IP/ or h.S/, is the
maximum of the grades of the cuts and inductions below S in P .

Note that the height of the end-sequent is 0 and that the premises of a rule all have
the same height. If S1 is a sequent under another sequent S2, then h.S1/ 6 h.S2/.

We denote the natural sum of two ordinals� and 
 by �#
. We shall also use the
following notation: for an ordinal ˛ and a natural number n; !n.˛/ is inductively
defined as !0.˛/ � ˛ and !nC1.˛/ � !!n.˛/. Thus, we have

!n.˛/ � ! ���!
˛ 	

n powers of !:

The limit of !n.0/ when n approaches infinity is �0, an ordinal which in some ways
is characteristic for the strength of derivability in Heyting Arithmetic.

We can now give every derivation in HA an ordinal.

Definition 4.0.4 The ordinal of a sequent S in a derivation P , denoted o.S IP/ or
o.S/, is defined inductively as follows:

1. An initial sequent has the ordinal 1.
2. The conclusion of an arithmetical rule without premises has the ordinal 1.
3. If S is the conclusion of a contraction, then the ordinal is the same as the ordinal

of the premise.
4. If S is the conclusion of a one-premise arithmetical or logical rule, where the

ordinal of the premise is �, then o.S/ D �C 1.
5. If S is the conclusion of a two-premise arithmetical or logical rule, where the

ordinals of the premises are � and 
, respectively, then o.S/ D �#
.
6. If S is the conclusion of a cut where the premises have the ordinals� and 
, then
o.S/ D !k�l .�#
/, or

! ���!
�#

)

k � l powers of !;

where k is the height of the premises and l is the height of the conclusion.
7. If S is the conclusion of an induction and the premises have the ordinals �1; �2

and �3 and the height k and the conclusion has the height l , then the ordinal of
the conclusion is o.S/ D !k�lC1.�1#�2#�3/.
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The ordinal of a derivation P , denoted o.P /, is the ordinal of the end-sequent.
Thus, every derivation has an ordinal less than �0.

If the height remains unchanged in a cut, then the ordinal of the conclusion in
case 6 is �#
, whereas the ordinal of the corresponding case 7 is !�1#�2#�3 .

5 The Consistency of Heyting Arithmetic

5.1 The Theorem of Consistency

Definition 5.1.1 A system is said to be inconsistent if the empty sequent ! is
derivable. If the system is not inconsistent, it is consistent.

Theorem 5.1.2 (The Consistency of Heyting Arithmetic) The empty sequent !
is not derivable in HA, that is, HA is consistent.

To prove this theorem we give a reduction procedure for derivations. Assume
that there is a derivation of the empty sequent. We can assume that the arithmetical
rules are applied before logical and structural rules in the derivation. If needed, it is
possible to change the order of the rules according to Lemma 5.2.3, even though this
may increase the ordinal of the derivation. The permutation only has to be performed
once before the reduction procedure. By the reduction procedure we conclude that
if there is a derivation of the empty sequent, then there is a reduced derivation with
a lower ordinal and another reduced derivation and so on. Then we would have an
infinite succession of decreasing ordinals all less than �0, but this is impossible and
the reduction procedure must terminate. Therefore we cannot have a derivation of
the empty sequent. Thus, the system of Heyting Arithmetic, HA, is consistent.

The reduction procedure for derivations is described in Lemma 5.5.1, but before
we give the proof we need some additional results.

5.2 Properties of Derivations

Definition 5.2.1 A thread in a derivation is a sequence of sequents in a derivation,
for which the following holds:

1. It begins with an initial sequent or the conclusion of an arithmetical rule without
premises.

2. Every sequent but the last one is a premise of a rule and the sequent is followed
by the conclusion of that rule.

Lemma 5.2.2 Assume that S1 is a sequent in a derivation P . Let P1 be the
subderivation ending with S1 and let P 0

1 be another derivation ending with S1. Now
let P 0 be the derivation that we get when P 0

1 is substituted for P1 in P .
If o.S1IP 0/ < o.S1IP/, then o.P 0/ < o.P /.
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Proof For every thread in P , passing through S1, we show that the following holds:
If S is a sequent in a thread at or below S1 and if S 0 is the corresponding sequent
to S in P 0, then o.S 0IP 0/ < o.S IP/. According to the assumption the proposition
holds if S D S1. The heights of the sequents below S inP and S 0 in P 0 are the same
and for every ordinal ˛; ˇ and � that satisfy ˛ < ˇ, we have ˛#� < ˇ#� . Thus, the
inequality is retained for every rule applied. If we then let S be the end-sequent of
the derivation, we obtain the inequality for the derivations. ut
Lemma 5.2.3 In a derivation we can permute the order of the rules and first apply
the arithmetical rules and then Ind and the logical and structural rules.

Proof If we have a logical rule followed by an arithmetical rule, then the arithmeti-
cal rule is not applied on the principal formula of the logical rule, since this formula
is compound. Hence we can permute the order of the rules and apply the arithmetical
rule first.

Assume that we have an instance of contraction followed by an arithmetical
rule. If the arithmetical rule is not applied on the contraction formula, then we can
permute the order of the rules. We now consider the case that the arithmetical rule
is applied on the contraction formula. If the arithmetical rule is a one-premise rule,
then we can apply the arithmetical rule on each copy of the formula followed by an
instance of contraction. If, on the other hand, the arithmetical rule has two premises,
that is if the rule is an instance of transitivity, then we can apply transitivity on each
copy of the formula, multiplying the derivation of the other transitivity premise,
and then apply contraction on the principal formula of the transitivity and also on
possible formulas in the context of the multiplied premise.

If we have an instance of Cut followed by an arithmetical rule, then we can
permute the order of the rules and the same holds for an instance of Ind followed by
an arithmetical rule. ut

Note that this change in the order of the rules can increase the ordinal of the
derivation.

Lemma 5.2.4 (i) For an arbitrary closed term t there exists a numeral n such
that ! t D n can be derived without Ind or Cut.

(ii) Let t and t 0 be closed terms for which ! t D t 0 can be derived without Ind or
Cut and let q be an arbitrary term. Now the sequent ! q.t=x/ D q.t 0=x/ is
derivable without Ind or Cut.

(iii) Let t and t 0 be closed terms for which ! t D t 0 can be derived without Ind or
Cut and let q and r be terms. Then the sequent q.t=x/ D r.t=x/ ! q.t 0=x/ D
r.t 0=x/ can be derived without Ind or Cut.

(iv) Let t and t 0 be closed terms for which ! t D t 0 can be derived without Ind or
Cut. Then for an arbitrary formula A the sequent A.t=x/ ! A.t 0=x/ can be
derived without Ind or Cut.

Proof (i) For the constant 0 the proposition holds. Assume that the proposition
holds for the closed terms t and t 0, that is there are n and m, such that !
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t D n and ! t 0 D m can be derived without Ind or Cut. Then the sequent
! s.t/ D s.n/ is derivable with sRep where s.n/ � nC 1.
The sequent ! t C t 0 D nCm can be derived as follows. First we get a
derivation of ! t C t 0 D nCm.

! t D n

! t C t 0 D nC t 0
CRep1

! t 0 D m

! nC t 0 D nCm
CRep2

! t C t 0 D nCm
Tr

Furthermore, if m D 0 we have ! nC 0 D nC 0 with CRec0 since nC 0 �
n. Ifm > 0, that ism D sm0 for somem0, then we have as induction hypothesis
a derivation of ! nCm0 D nCm0.

! nC sm0 D s.nCm0/
CRecs

! nCm0 D nCm0
! s.nCm0/ D s.nCm0/

sRep

! nC sm0 D s.nCm0/
Tr

We now have ! n C m D nCm for every m. With transitivity on the
conclusions of these derivations we get the result ! t C t 0 D nCm.
The sequent ! t � t 0 D n �m is derivable in a similar manner.

(ii) If q is the constant 0 or a variable different from x, then the sequent is derivable
with Ref . If q is the variable x, then we already have the derivation according
to the assumption. Now assume that q � s.q0/ and as induction hypothesis
we have a derivation of ! q0.t=x/ D q0.t 0=x/ that fulfils the requirements.
Then we get ! s.q0.t=x// D s.q0.t 0=x// with sRep. If q � q0 C q00 we get
the following derivation where we write q0.t/ and q00.t/ instead of q0.t=x/ and
q00.t=x/.

! q0.t / D q0.t 0/

! q0.t /C q00.t / D q0.t 0/C q00.t /
CRep1

! q00.t / D q00.t 0/

! q0.t 0/C q00.t / D q0.t 0/C q00.t 0/
CRep2

! q0.t /C q00.t / D q0.t 0/C q00.t 0/
Tr

If q � q0 � q00 the derivation is similar.
(iii) According to (ii) we have derivations of ! q.t/ D q.t 0/ and ! r.t/ D r.t 0/

that fulfil the requirements. We can now construct the derivation:

! q.t/ D q.t 0/
! q.t 0/ D q.t/

Sym
q.t/ D r.t/ ! q.t/ D r.t/

q.t/ D r.t/ ! q.t 0/ D r.t/
Tr ! r.t/ D r.t 0/

q.t/ D r.t/ ! q.t 0/ D r.t 0/
Tr

(iv) The proof is carried out by induction on the complexity of the formula. If A is
an atomic formula, then the proposition is proved in (iii).
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If A � B&C and we as induction hypothesis have that B.t=x/ ! B.t 0=x/
and C.t=x/ ! C.t 0=x/ are derivable without Ind or Cut, then we get the
derivation:

B.t=x/ ! B.t 0=x/ C.t=x/ ! C.t 0=x/
B.t=x/; C.t=x/ ! B.t 0=x/&C.t 0=x/

R&

B.t=x/&C.t=x/ ! B.t 0=x/&C.t 0=x/
L&

Assume that A � 8yB . If x � y, then x is not free in A and A.t=x/ !
A.t 0=x/ is an initial sequent. On the other hand if x is not y, then we have
by induction hypothesis that .B.z=y//.t=x/ ! .B.z=y//.t 0=x/, where x ¤ z,
can be derived without Ind or Cut. Because t and t 0 are closed terms they
do not contain y and we may change the order of the substitutions, that is
.B.z=y//.t=x/ D .B.t=x//.z=y/ and .B.z=y//.t 0=x/ D .B.t 0=x//.z=y/. We
now get the derivation:

.B.t=x//.z=y/ ! .B.t 0=x//.z=y/
8yB.t=x/ ! .B.t 0=x//.z=y/

L8

8yB.t=x/ ! 8yB.t 0=x/ R8

The other cases are similar. ut
In (i) of the lemma, we only state the existence of a numeral that equals the closed

term, not that this numeral is unique. The uniqueness of the numeral is equivalent
to the consistency of simple derivations proved in Lemma 5.4.8.

5.3 Cut Elimination in HA

We shall give a direct proof of cut elimination in the system HA. Note that the Cut
rule is a special case of our induction rule, if the induction formula has no occurrence
of the variable x. In this case the second premise of the induction is an initial sequent
and we have a form of vacuous induction. Thus, cuts can be eliminated by replacing
them with inductions. But as the cut elimination Theorem 5.3.2 shows, we can also
properly eliminate cut.

Definition 5.3.1 The length of a derivation in HA is defined inductively.
An initial sequent has the length 1.
The length of the conclusion of an arithmetical rule without premises is 1.
The length of the conclusion of the rule Sym is the same as the length of the

premise.
The length of the conclusion of a one-premise rule (except Sym), where the

premise has the length ˛ is ˛ C 1.
The length of the conclusion of a two-premise rule, where the premises have the

lengths ˛ and ˇ is ˛ C ˇ.
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The length of the conclusion of Ind, where the premises have the lengths ˛, ˇ
and � is ˛ C ˇ C � .

Theorem 5.3.2 (Cut Elimination in HA) If there is a derivation of the sequent
	 ! D in HA, such that the derivation contains no induction, then we can
transform the derivation into a derivation of the sequent without Cut, without
introducing additional vacuous inductions.

Proof The proof is by induction on the grade of the cut formula with a subinduction
on the length of the derivation. We assume that there are no instances of Cut above
the cut we consider.

We assume that the right cut premise has been derived with n � 1 instances of
contraction on the cut formula, where n > 1. We consider the premise of the first
contraction.

1. Firstly we consider the case that the premise is an initial sequent.

	1 ! A

An; 	2 ! A

A;	2 ! A
LCn�1

	1�2 ! A
Cut

In this case we can add the missing context 	2 in the derivation of the left cut
premise and get the sought derivation without Cut.
We now assume that the premise of the contraction has been derived by a ruleR.

	1 ! A

An; 	2 ! D
R

A;	2 ! D
LCn�1

	1�2 ! D
Cut

If rule R is an instance of Sym we can permute the contractions and the cut
above the Sym. The length of the cut remains unchanged. Thus, we may assume
that R is not Sym.

2. If rule R is an arithmetical rule without premises, then also the conclusion of
the cut is an instance of the same rule.

3. If rule R is an arithmetical one-premise rule, then A is not principal in the rule.
We can then permute the contractions and the cut above the arithmetical rule,
decreasing the length of the cut.

4. Suppose rule R is Tr.

	1 ! A

Ak; 	 0
1 ! t D t 0 Al ; 	 0

2 ! t 0 D t 00

An; 	2 ! t D t 00
Tr

A;	2 ! t D t 00 LCn�1

	1�2 ! t D t 00
Cut
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where 	2 D 	 0
1�2 and n D k C l . We then transform the derivation decreasing

the length of the cuts on A.

	1 ! A

Ak; 	 0
1 ! t D t 0

A;	 0
1 ! t D t 0 LCk�1

	1; 	
0
1 ! t D t 0

Cut
	1 ! A

Al ; 	 0
2 ! t 0 D t 00

A;	 0
2 ! t 0 D t 00 LCl�1

	1; 	
0
2 ! t 0 D t 00

Cut

	21 ; 	2 ! t D t 00
Tr

.... contractions
	1�2 ! t D t 00

5. If rule R is a logical one-premise rule where A is not principal, then we can
permute the contractions and the cut above the rule, decreasing the length of
the cut.

6. If rule R is a logical two-premise rule where A is not principal, then we
transform the derivation as in case 4, decreasing the length of the cuts.

7. Suppose ruleR is a logical rule where A is principal. We consider the rule with
which the left premise of the cut has been derived.

7.1 If the left cut premise is an initial sequent, then the formula A is in 	1. Thus,
we can get the conclusion of the cut by adding the missing context 	1 without
A in the derivation of the right cut premise.

7.2 The left cut premise has not been derived by an arithmetical rule, since the
formula A has logical structure.

7.3 If the left cut premise has been derived by a logical one-premise rule where A
is not principal, then we can permute the cut above the rule.

7.4 If the left cut premise has been derived by a logical two-premise rule where A
is not principal, that is L 
 or L_, then we can in the case of L_ apply Cut
twice, once on each premise of the logical rule and then apply the logical and
in the case of L 
 apply Cut before the rule.

7.5 If the left cut premise has been derived by a logical rule where A is principal,
then we consider the derivation according to the form of the formula. We
consider the case where A is a conjunction B&C .

	 0
1 ! B 	 00

1 ! C

	1 ! B&C
R&

B;C; .B&C/n�1; 	2 ! D

.B&C/n; 	2 ! D
L&

B&C;	2 ! D
LCn�1

	1�2 ! D
Cut

In the derivation

	 0
1 ! B 	 00

1 ! C

	1 ! B&C
R&

B;C; .B&C/n�1; 	2 ! D

B;C;B&C;	2 ! D
LCn�2

B; C; 	1�2 ! D
Cut
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the cut length is shorter. Thus, we have by the induction hypothesis a derivation
of the sequent B;C; 	1�2 ! D without Cut. We now construct the following
derivation, where the grades of the cut formulas are less.

	 0
1 ! B

	 00
1 ! C B;C; 	1�2 ! D

B;	 00
1 ; 	1�2 ! D

Cut

	21 ; 	2 ! D
Cut

.... contractions
	1�2 ! D

The other cases of cut formula are treated in a similar manner.
7.6 If the left cut premise has been derived by a contraction, then we can permute

the cut above the rule.
7.7 If the left cut premise has been derived by Ind, then we can permute the cut

above the rule.
8. If rule R is an instance of contraction, where A is not principal, then we can

permute the contractions and the cut above the rule, decreasing the length of
the cut.

9. Suppose rule R is an instance of Ind.

	1 ! A

Ak; 	 0

1 ! B.0=x/ Al ; B.y=x/; 	 0

2 ! B.sy=x/ Am; B.t=x/; 	 0

3 ! D

An; 	2 ! D
Ind

A; 	2 ! D
LCn�1

	1�2 ! D
Cut

Here we have 	2 D 	 0
1�3 and n D k C l Cm. We transform the derivation as

in case 4, decreasing the length of the cuts on A. ut
This direct proof of cut elimination in Heyting Arithmetic is an extension

of the proof given in [7]. Note that contrary to Gentzen’s original proof of cut
elimination for sequent calculus in his thesis of 1933, our proof is carried out
without introducing any rule of multicut.

5.4 Consistency Proof for Simple Derivations

Definition 5.4.1 A simple derivation is a derivation without free variables and
without Ind that contains only atomic formulas.

Thus, in a simple derivation we have only initial sequents, arithmetical and
structural rules, and in addition there are no compound formulas in the contexts.

Our aim is now to show that there is no simple derivation of the empty sequent,
but first we consider only the case that the derivation does not contain rule Inf 2.
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Definition 5.4.2 We define inductively if the value of a closed term is 0 or 1. The
constant 0 has value 0. A term of the form s.t/ has value 1. A term of the form tC t 0
has value 0 if both t and t 0 have value 0 and otherwise it has value 1. A term of the
form t � t 0 has value 0 if t or t 0 has value 0 and otherwise it has value 1.

According to the definition a closed term has value 0 if it equals 0 and value 1 if
it is greater than 0.

Lemma 5.4.3 There is no simple derivation of the empty sequent without rule Inf 2.

Proof Assume that there is a derivation of the empty sequent without rule Inf 2.
According to Theorem 5.3.2 there is then a derivation of the empty sequent without
Cut (and this new derivation without Cut is also without Inf 2 and Ind). Furthermore,
we note that in a cut-free simple derivation of the empty sequent all sequents have an
empty antecedent, since formulas in the antecedent can only disappear through cut.
Therefore there are no initial sequents or instances of contraction in the derivation,
but only arithmetical rules.

Now, the last rule of the derivation must be Inf 1, because all other rules give as a
conclusion a sequent with a formula in the succedent. Thus, we have a derivation of
the sequent ! s.t/ D 0 for some term t .

In a simple derivation there are only closed terms and therefore every term has a
value. We now prove by induction on the length of the derivation that every sequent
in the derivation of ! s.t/ D 0 has the property that the succedent is a formula
t D t 0 where t and t 0 have the same value.

Base Case of the Induction As stated we have no initial sequents in the derivation
and thus we only consider the conclusions of the arithmetical rules without premises
as the base case. We want to prove that the terms of the principal formula in the
succedent have the same value.

In Ref both terms of the principal formula, t D t , have the same value. In CRec0
the terms t C 0 and t of the principal formula, t C 0 D t , have the same value. In
CRecs the principal formula is of the form t C s.t 0/ D s.t C t 0/. Both t C s.t 0/ and
s.t C t 0/ in CRecs have the value 1. In �Rec0 the principal formula is of the form
t � 0 D 0. The constant 0 has the value 0 and therefore the term t � 0 also has the
same value. In �Recs the principal formula is of the form t � s.t 0/ D t � t 0 C t . If the
term t has the value 1, then both terms t � s.t 0/ and t � t 0 C t have the value 1. If t ,
on the other hand, has the value 0, then both terms have the value 0.

Induction Step Assume as induction hypothesis that the proposition holds for the
premises of an arithmetical rule, that is the terms of the formulas in the succedents
of the premises have the same value.

In Sym we can conclude that if the terms t and t 0 in the formula t D t 0 have the
same value, then the same applies for the formula t 0 D t in the conclusion. In Tr we
can see that if the terms of the formula t D t 0 and t 0 D t 00 have the same values,
then the terms of the formula t D t 00 have the same value. In sRep both terms of the
formula s.t/ D s.t 0/ in the conclusion have the value 1. In CRep1, if the terms of
the formula t D t 0 in the premise have the same value, then also the terms of the
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formula t C t 00 D t 0 C t 00 in the conclusion have the same value. The same holds for
rule CRep2 and the �Rep-rules.

Because all sequents in the derivation have an empty antecedent, rule Inf 1 gives
the empty sequent as the conclusion and thus it can occur only as the last rule in the
derivation.

Thus, we have completed the induction and have proved that in a simple
derivation of the sequent ! s.t/ D 0, all sequents have in the succedent an
equation, where the terms have the same value. On the other hand, the terms s.t/
and 0 have different values. This is a contradiction and therefore there cannot exist
any simple derivation of the empty sequent. ut
Lemma 5.4.4 If we have a derivation of a sequent 	 ! D, then there is a
derivation of the same length of the sequent where all instances of Sym come directly
after arithmetical rules without premises or after initial sequents.

Proof Suppose that we have a premise of Sym derived by a rule that is not an
arithmetical rule without premises. If the rule is a one-premise arithmetical rule,
that is sRep;CRep; �Rep; or Inf 2, we can permute the instance of Sym above the
other rule. If we have two instances of Sym we have a loop and can delete both
rules. If the rule is logical (exceptL_), structural, or an instance of Inf , we can also
permute the Sym above the other rule.

If the rule is an instance of Tr, then the derivation is:

	1 ! t D t 0 	2 ! t 0 D t 00
	1�2 ! t D t 00

Tr

	1�2 ! t 00 D t
Sym

We can then instead apply Sym on each premise followed by Tr.

	2 ! t 0 D t 00
	2 ! t 00 D t 0

Sym
	1 ! t D t 0
	1 ! t 0 D t

Sym

	1�2 ! t 00 D t
Tr

This does not alter the length of the derivation. The case of L_ is similar. ut
Lemma 5.4.5 There is a derivation of the sequent ! 0 � c D 0 (without Inf 2) for
every closed term c.

Proof Firstly we show by induction that for every numeral m we have a derivation
of the sequent ! 0 � m D 0. We can derive ! 0 � 0 D 0 with �Recs. Now assume
that m is sn for some numeral n and we have a derivation of ! 0 � n D 0. We then
get the derivation

! 0 � s.n/ D 0 � nC 0
�Recs

! 0 � nC 0 D 0 � nC 0
CRec0 ! 0 � n D 0

! 0 � nC 0 D 0
Tr

! 0 � s.n/ D 0
Tr
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Thus, the proposition holds for every numeral.
For every closed term c there is a numeral m for which the sequent ! c D m is

derivable (without Inf 2), this according to Lemma 5.2.3(i). We then get the sought
derivation

! c D m
! 0 � c D 0 �m �Rep2 ! 0 �m D 0

! 0 � c D 0
Tr ut

Lemma 5.4.6 If there is a simple derivation of the sequent ! s.t/ D s.t 0/ without
the rule Inf 2, then there is a simple derivation of the sequent ! t D t 0 without Inf 2.

Proof The proof is by induction on the length of the derivation. We assume that
if there is a shorter derivation of some sequent ! s.a/ D s.b/, then we have a
derivation of ! a D b without rule Inf 2.

Assume that we have a simple derivation of a sequent ! s.t/ D s.t 0/ without
Inf 2. We can by Theorem 5.3.2 assume that the derivation is cut free. Thus, every
sequent in the derivation has an empty antecedent. By Lemma 5.4.4 we can assume
that all instances of Sym come directly after arithmetical rules without premises
(note that there are no initial sequents in the derivation because the antecedents are
empty).

We consider the form of the derivation. The last rule can be sRep;Ref ; Sym;
or Tr.

1. Assume that the last rule of the derivation is sRep. The premise of the rule
is ! t D t 0 and we can remove the rule and get the sought derivation.

2. Assume that the last rule is Ref . Then t � t 0 and the sequent ! t D t 0 is
also derivable with Ref .

3. Assume that the last rule is Sym. Since the premise of Sym is derived by
an arithmetical rule without premises the only possibility is that this rule is
Ref . The case is treated as in case 2.

4. The remaining possibility is that the last rule is derived by Tr. We trace up
in the derivation along the left premise until we reach a sequent not derived
by Tr. The derivation is of the form

! s.t/ D a1 ! a1 D a2

! s.t/ D a2
Tr

.... Tr � rules
! s.t/ D an ! an D s.t 0/

! s.t/ D s.t 0/
Tr

(5.4.1)

where n > 1 and the sequent ! s.t/ D a1 is not derived by Tr.
If one of the other Tr-premises ! ai D aiC1 is derived by Tr
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! s.t/ D ai

! ai D a ! a D aiC1
! ai D aiC1

! s.t/ D aiC1

we can change the order of the Tr-rules without altering the length of the
derivation.

! s.t/ D ai ! ai D a

! s.t/ D a ! a D aiC1
! s.t/ D aiC1

Hence we can assume that the derivation is of the form (5.4.1) and that none
of the premises ! ai D aiC1 have been derived by Tr.
If some term ai is of the form s.t 00/, then the sequent ! s.t/ D ai is the
sequent ! s.t/ D s.t 00/. We can then alter the order of the Tr-rules and get
a derivation of the same length.

! s.t/ D s.t 00/

! s.t 00/ D aiC1....
! s.t 00/ D an ! an D s.t 0/

! s.t 00/ D s.t 0/
! s.t/ D s.t 0/

The derivations of the sequents ! s.t/ D s.t 00/ and ! s.t 00/ D s.t 0/ are
shorter and therefore we have derivations of the sequents ! t D t 00 and
! t 00 D t 0. By Tr we get the sought derivation of ! t D t 0.
We can now assume that the derivation has the form (5.4.1) and that no term
ai has the form s.t 00/. We consider the different possibilities to derive the
Tr-premises.

4.1 Assume that one of the premises has been derived by Ref . We now have a
loop in the derivation since the conclusion of the following Tr is the same
as the other premise. We can delete the rule Tr and get a shorter derivation.
Thus, we may assume that no premise has been derived by Ref .

4.2 Assume that two adjacent Tr-premises have been derived by the same
replacement rule CRep1;CRep2; �Rep1; or �Rep2 or that three adjacent Tr-
premises have been derived by two instances of the same replacement rule
with one instance of the other replacement rule in between. As an example
we consider the following derivation.

! s.t/ D a C b
! b D c

! aC b D a C c
CRep2

! s.t/ D a C c
Tr

! c D d
! aC c D a C d

CRep2

! s.t/ D a C d
Tr
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We can then apply Tr on the premises of the replacement rules and get a
shorter derivation.

! s.t/ D aC b

! b D c ! c D d
! b D d

Tr

! a C b D aC d
CRep2

! s.t/ D a C d
Tr

Thus, we can assume that we at most have two adjacent Tr-premises derived
by CRep or �Rep and that these rules have different indexes.

4.3 Assume that some of the Tr-premises have been derived by Sym and CRec0.
We consider the rightmost premise derived in this way. It cannot be the last
Tr-premise ! an D s.t/ since the sequent is of the form ! ai D ai C 0.
Thus, the derivation is of the form

! ai C 0 D ai
CRec0

! ai D ai C 0
Sym

! s.t/ D ai C 0
Tr‹ ! ai C 0 D b

R

! s.t/ D b
Tr

(5.4.2)

where Tr‹ indicates that if ai � s.t/ we have no rule there, but if ai 6� s.t/

we have a Tr-rule there.
Rule R can according to the form of the term be Sym;CRec;CRep1; or
CRep2 and if the rule is Sym, then the premise can be derived by �Recs. We
consider the different alternatives.

4.3.1 Assume that R is CRec0. Then b � ai . If ai � s.t/, then we have derived
an instance of Ref and if ai 6� s.t/, then we have a loop in the derivation
with the sequent ! s.t/ D ai two times. By eliminating the loop we get a
shorter derivation.

4.3.2 Assume that R is CRep1. Now b � c C 0 and the derivation (5.4.2) is

! ai C 0 D ai
CRec0

! ai D ai C 0
Sym

! s.t/ D ai C 0
Tr‹

! ai D c

! ai C 0 D c C 0
CRep1

! s.t/ D c C 0
Tr

We can transform the derivation into a shorter derivation.

! ai D c

! s.t/ D c
Tr‹

! c C 0 D c
CRec0

! c D c C 0
Sym

! s.t/ D c C 0
Tr

4.3.3 Assume that R is Sym and that the premise of this rule is derived by �Recs.
Now ai � 0 � c, b � 0 � s.c/ and the derivation (5.4.2) is
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! s.t/ D 0 � c
! 0 � c C 0 D 0 � c CRec0

! 0 � c D 0 � c C 0
Sym

! s.t/ D 0 � c C 0
Tr

! 0 � s.c/ D 0 � c C 0
�Recs

! 0 � c C 0 D 0 � s.c/ Sym

! s.t/ D 0 � s.c/ Tr

According to Lemma 5.4.5 there is a derivation of the sequent !
0 � s.c/D 0 (without rule Inf 2). With Tr we get a derivation of the sequent
! s.t/ D 0 without Inf 2. Thus, applying Inf 1 we get a derivation of
the empty sequent without Inf 2. This is a contradiction according to
Lemma 5.4.3.

4.3.4 Assume thatR is CRep2. Then b � ai Cc and we have another Tr-premise
to the right derived by a rule R0. The derivation (5.4.2) is

! ai C 0 D ai
CRec0

! ai D ai C 0
Sym

! s.t/ D ai C 0
Tr‹

! 0 D c
! ai C 0 D ai C c

CRep2

! s.t/ D ai C c
Tr ! ai C c D d

R0

! s.t/ D d
Tr

(5.4.3)

Considering the form of the formula ai C c D d the rule R0 can be
Sym;CRec0;CRecs; or CRep1 (note that according to 4.2 the rule cannot
be CRep2) and if it is Sym, then the Sym-premise can only be derived by
�Recs. We consider the different possibilities.

4.3.4.1 Assume that R0 is CRec0. The derivation is treated as in case 4.3.1.
4.3.4.2 Assume that R0 is CRecs. Now c � s.e/ and d � s.ai C e/. The sequent

! 0 D c is then ! 0 D s.e/. This gives a contradiction as in case 4.3.3.
4.3.4.3 Assume that R0 is CRep1. Now d � ai C e and the derivation (5.4.3) is

! ai C 0 D ai
CRec0

! ai D ai C 0
Sym

! s.t/ D ai C 0
Tr‹

! 0 D c

! ai C 0 D ai C c
CRep2

! s.t/ D ai C c
Tr

! ai D e

! ai C c D e C c
CRep1

! s.t/ D e C c
Tr

We can transform the derivation into a shorter derivation.

! ai D e

! e C 0 D e
CRec0

! e D e C 0
Sym

! ai D e C 0
Tr

! 0 D c
! e C 0 D e C c

CRep2

! ai D e C c
Tr

! s.t/ D e C c
Tr‹
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4.3.4.4 Assume thatR0 is Sym and that the Sym-premise has been derived by �Recs.
Now ai � c � e, d � c � s.e/ and the conclusion of derivation (5.4.3) is
! s.t/ D c � s.e/. We get a simple derivation of the sequent ! s.t/ D 0

without Inf 2, since we according to Lemma 5.4.5 have a simple derivation
of the sequent ! 0 � s.e/ D 0.

! s.t/ D c � s.e/

! 0 D c
! c D 0

Sym

! c � s.e/ D 0 � s.e/ �Rep1

! s.t/ D 0 � s.e/ Tr ! 0 � s.e/ D 0

! s.t/ D 0
Tr

This is a contradiction as in case 4.3.3.
We have now treated all the possibilities of ruleR0 and case 4.3.4 is finished.
We have also treated all cases in 4.3 and thus we can assume that no Tr-
premise in derivation (5.4.1) has been derived by Sym and CRec0.

4.4 We consider derivation (5.4.1). The leftmost Tr-premise ! s.t/ D a1
can only be derived by Sym and the premise of Sym by CRecs. The
following Tr-premise can be derived by CRep1;CRep2; Sym; or CRecs
and if it is derived by Sym, then the Sym-premise is derived by �Recs. We
treat the different cases simultaneously, since the derivation will ultimately
have the same form disregarding some Rep-rules and possible instances of
�Recs. According to case 4.2 we can only have two adjacent Tr-premises
derived by the CRep-rules. We assume that we have one premise derived
by CRep1 and one by CRep2. The following Tr-premise can be derived
by CRecs;CRec0; or Sym and �Recs. If it is derived by CRec0 we get a
contradiction as in case 4.3.3. We assume that the premise is derived by
Sym and �Recs. The following two premises can be derived by �Rep1 and
�Rep2 and the next only by �Recs, because if it is derived by �Rec0 we have
a contradiction as in case 4.3.3. Again we can have two CRep-rules and
a number of repetition of the rules �Recs; �Rep1; �Rep2; �Recs;CRep1 and
CRep2. The last Tr-premise is derived by CRecs.

Hence the derivation has the following form (where we have left out the sequent
arrow and unnecessary parentheses):

a C sb D s.a C b/
CRecs

s.a C b/ D a C sb
Sym a D c

a C sb D c C sb
CRep1

s.a C b/ D c C sb
Tr

sb D d

c C sb D c C d
CRep2

s.aC b/ D c C d
Tr

From the rule �Recs we have c � d � e.
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....
s.aC b/ D c C d

d � se D c C d
�Recs

c C d D d � se Sym

s.aC b/ D d � se Tr
d D f

d � se D f � se �Rep1

s.aC b/ D f � se Tr
se D g

f � se D f � g �Rep2

s.aC b/ D f � g Tr

From the rule �Recs we have g � sh.

....
s.aCb/Df � g f � gDf � hCf �Recs

s.aCb/Df � hCf Tr
f � hDc2

f � hCfDc2Cf CRep1

s.aCb/Dc2Cf Tr
fDd2

c2CfDc2Cd2 CRep2

s.aCb/Dc2Cd2 Tr

From the formula s.a C b/ D c2 C d2 we can have a repetition of �Recs and Rep-
rules. If we have n � 1 repetitions, where n > 1, then the end of the derivation is

....
s.a C b/ D cn C dn cn C dn D s.a2 C b2/

CRecs

s.a C b/ D s.a2 C b2/
Tr

(5.4.4)

Here we have cn � a2 and dn � sb2 and also a2 C b2 � t 0.
If we in the derivation have at least one row of the specified rules, that is if

n > 1, then we show that we can derive ci D ciC1 and di D diC1. If we don’t have
all Rep-rules in the derivation, then we have identities instead of equations and the
derivation is shorter.

In the derivation we have subderivations of the formulas di D fi and fi � hi D
ciC1 and we also have the identity ci � di � ei . Since gi � shi and we have a
subderivation of sei D gi , that is sei D shi , we have by the induction hypothesis a
derivation of ei D hi . Thus, we can construct a derivation of ci D ciC1.

di D fi

di � ei D fi � ei
�Rep1

ei D hi

fi � ei D fi � hi
�Rep2

di � ei D fi � hi Tr
fi � hi D ciC1

di � ei D ciC1
Tr

On the other hand, we get di D diC1 with Tr from di D fi and fi D diC1.
With Tr we get derivations of c D cn and d D dn. We now construct a derivation

of t D t 0, that is a C b D a2 C b2. From the subderivation of a D c and the
derivation of c D cn, we get with Tr a derivation of a D cn. Since cn � a2 we now
have a derivation of a D a2.

From the subderivation of sb D d and the derivation of d D dn we get with Tr
a derivation of sb D dn. Since dn � sb2 we have a derivation of sb D sbn and this
derivation is shorter. According to the induction hypothesis we have a derivation of
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b D bn. We now get the sought derivation

a D a2
a C b D a2 C b

CRep1
b D b2

a2 C b D a2 C b2
CRep2

aC b D a2 C b2
Tr

Hence we have treated case 4.4 and also case 4 is finished. ut
Lemma 5.4.7 If there is a simple derivation of the sequent ! t D t 0, then there is
a derivation of the same sequent without rule Inf 2

Proof Assume that the sequent ! t D t 0 is derivable with at least one instance
of Inf 2 in the derivation. Then take an uppermost instance of Inf 2. The premise of
this rule is ! s.u/ D s.v/. According to Lemma 5.4.6 the conclusion of the rule
! u D v is derivable without Inf 2. Thus, we can replace the subderivation with
this derivation without Inf 2. In this way we can remove every instance of Inf 2 in the
derivation. ut
Lemma 5.4.8 There is no simple derivation of the empty sequent.

Proof Assume that we have a simple derivation of the empty sequent. According
to Theorem 5.3.2 there is a cut-free derivation of the sequent. The last rule of this
derivation must be Inf 1 with a premise ! s.t/ D 0 because all other rules give as
the conclusion a sequent with a formula in the succedent. According to Lemma 5.4.7
the premise is derivable without Inf 2. Therefore we also have a derivation of the
empty sequent without Inf 2. This is a contradiction according to Lemma 5.4.3 and
thus there cannot be any simple derivation of the empty sequent. ut

Gentzen and Takeuti use semantical arguments in their proofs of this lemma,
while we managed to complete the proof using purely proof-theoretical means.
Takeuti proves that there is either a false formula in the antecedent of a sequent
in a simple proof or a true formula in the succedent. He needs these semantical
arguments because he has arbitrary initial sequents in his system only specified
by the requirement that they have a true atomic formula with closed terms in
the succedent or a false formula in the antecedent. We managed to remove the
semantical arguments from the lemma through our formulation of the system HA.

5.5 The Reduction Procedure for Derivations

We can now begin to describe the actual reduction procedure for derivations of the
empty sequent. The main idea of the proof is that we first substitute free variables in
the proof. Then according to the form of the derivation we convert inductions or cuts
on compound formulas with predecessors in arithmetical rules or initial sequents. If
this is not possible, then we have a so-called suitable cut. If we have a suitable cut,
then we can introduce cuts on formulas of a lower grade. The problematic case is
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that if there are contractions on the cut formula then we cannot directly convert the
suitable cut into cuts on formulas of lower grade. The problem is solved by the so-
called height lines that are permuted up in the derivation by introducing additional
cuts on formulas of lower grade, lowering the ordinal of the derivation.

Lemma 5.5.1 (Reduction Procedure) If P is a derivation of the empty sequent !
in which the arithmetical rules are applied before the logical and structural rules,
then there exists a derivation, P 0, of the empty sequent, such that the arithmetical
rules are applied before the logical and structural rules and o.P 0/ < o.P /.

Proof The proof describes a reduction procedure where a derivation P is trans-
formed into a derivation P 0 with a lower ordinal. The reduction consists of several
steps which are performed as many times as possible before proceeding to the next
step and the reduction ends when a derivation with a lower ordinal is obtained.

Let P be a derivation of the empty sequent !. We may assume that the
eigenvariables of the rules are different and that an eigenvariable occurs only above
the rule in the derivation.

Step 1. If there are any free variables in the derivation that are not eigenvariables,
then we substitute them with the constant 0. The derivation that we get is also a
valid derivation of the empty sequent and it has the same ordinal as P .

Step 2. If the end-piece of P contains an induction, then we perform the
following reduction. Assume I to be the last induction of the derivation.

....
	1

�1! A.0/

P0.x/....
A.x/; 	2

�2! A.sx/

....
A.t/; 	3

�3! D .l/

	1�3 ! D .k/
I

....!

Here P0.x/ is the subderivation ending with A.x/; 	2 ! A.sx/ and S is the
sequent 	1�3 ! D. The premises of I all have the same height, l . Let k be
the height of the conclusion of the rule and let �i , where i D 1; 2; 3, be the
ordinals of the premises. Now the conclusion has the ordinal o.	1�3 ! DIP/ D
!l�kC1.�1#�2#�3/.

The term t in the third premise of the rule does not contain any free variable
since they were substituted in step 1. Neither does t contain any eigenvariables
because I is the last rule with an eigenvariable in the derivation. Thus, t is a closed
term and there exists a number n, for which the sequent ! t D n is derivable
without inductions or cuts [this according to Lemma 5.2.4(i)]. Therefore we have
a derivation Q of the sequent A.n/ ! A.t/ also without inductions or cuts. This
according to Lemma 5.2.4(iv).

The derivation P can now be reduced to P 0 according to the following principle
if n > 0 (if n equals 0 the corresponding reduction is used but no contractions are
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needed. Instead the missing context 	2 is added in the derivation.) Let P0.m/ be the
derivation that we get from P0.x/ when every occurrence of x is substituted withm
and let … be the derivation:

....
	1 ! A.0/

P0.0/....
A.0/; 	2 ! A.s0/

	1; 	2 ! A.s0/
Cut

P0.1/....
A.s0/; 	2 ! A.ss0/

	1; 	
2
2 ! A.ss0/

Cut

....
	1; 	

n
2 ! A.n/

We reduce P to the following derivation P 0 where … is a subderivation:

…....
	1; 	

n
2 ! A.n/

Q....
A.n/ ! A.t/

	1; 	
n
2 ! A.t/

Cut

....
A.t/; 	3 ! D

	1; 	
n
2 ; 	3 ! D

Cut

.... Contractions
	1�3 ! D....!

All cuts shown in… andP 0 are on formulas of the same grade, so all cut premises
have the same height l . Therefore the ordinals of the premises of the first cut in …
are o.	1 ! A.0/IP 0/ D �1 and o.A.0/; 	2 ! A.s0/IP 0/ D �2. The ordinal
of the conclusion, S 0

1, is then o.S 0
1/ D !l�l .�1#�2/ D �1#�2. The conclusion

of the second cut, S 0
2, then has the ordinal o.S 0

3/ D �1#�2#�2 and so on. If we
write � 
 m D �#�# : : : #�.m times), we get o.S 0

m/ D �1#.�2 
 m/ for every
m D 1; : : : ; n. If we denote the ordinal of Q by q, we have o.A.n/ ! A.t// D
q < ! because Q does not contain any inductions or cuts. Because each of the
ordinals �1; �2 
 n; q; and �3 is less than !�1#�2#�3 , the sum is also less, that is
we have the inequality �1#.�2 
 n/#q#�3 < !�1#�2#�3 . From this follows that
o.S IP 0/ D !k�l .�1#.�2 
 n/#q#�3/ < !l�kC1.�1#�2#�3/ D o.S IP/, that is
o.S IP 0/ < o.S IP/. According to Lemma 5.2.2 we then have o.P 0/ < o.P /.

Thus, if there is an induction in the end-piece we have reduced the derivation.
Otherwise we can assume that the end-piece is free from inductions.

Step 3. Assume that there is a compound formula E in the end-piece of the
derivation. Let I be the cut in the end-piece where the formula disappears.
No predecessor of the formula in the left cut premise can be derived by an
arithmetical rule that borders on the end-piece since the formula E has logical
structure. Now assume that a predecessor of the formula in the right cut premise
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has been derived by an arithmetical rule that borders on the end-piece.

....
	1 ! E

E;	 0
2 ! D0 Arithm:

....
E;	2 ! D .k/

	1�2 ! D .l/
I

....!

Above the arithmetical rule that borders on the end-piece we have only other
arithmetical rules and initial sequents (this according to the assumption made in the
beginning of the proof.) The formula E is therefore not principal in any rule above
the arithmetical rule and it cannot be introduced in an initial sequent as the formula
on both sides either, since no succedent of a sequent above the arithmetical rule can
be compound.

Hence the formula E has been introduced in the context of an arithmetical rule
without premises or in an initial sequent and we can eliminate the formula and trace
down in the derivation deleting the formula in the context of every arithmetical rule.
Thus, we get a derivation of the sequent 	 0

2 ! D0 that is otherwise similar to the
derivation of E;	 0

2 ! D0.
We now divide the reduction into two cases depending on whether we have any

contractions on the formula E between the arithmetical rule that borders on the
end-piece and the cut I where the formula disappears.

Case 1. Assume that there are no contractions on the formula E between the
arithmetical rule and I . We now continue deleting every occurrence of E and
also the cut I , instead adding the missing context 	1 in the antecedent. Thus,
we have a valid derivation of the sequent 	1�2 ! D and the derivation P 0 is as
follows:

	1; 	
0
2 ! D0 Arithm:

....
	1�2 ! D....!

Now in order to calculate the ordinal of the new derivation let S be a sequent
in P above E;	2 ! D and let S 0 be the corresponding sequent in P 0. We then
show by induction on the number of inferences up to E;	2 ! D that the following
inequality holds

!k1�k2.o.S IP// > o.S 0IP 0/; (5.5.1)

where k1 D h.S IP/ and k2 D h.S 0IP 0/ and thus k1 > k2.
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If S is an initial sequent or the conclusion of an arithmetical rule without
premises, then o.S IP/ D o.S 0IP 0/ D 1 and the proposition holds. Now assume
that the sequent S has been derived with a rule and that the claim holds for its
premises. If S has been derived with contraction, the heights and the ordinals of the
conclusions S and S 0 are the same as for the premises and the proposition holds.

If S has been derived with an arithmetical or logical one-premise rule, then the
heights of the conclusions are the same as for the premises. If we let the ordinals of
the premises be ˛ and ˛0, then we get !k1�k2 .o.S IP//D!k1�k2.˛C1/ > !k1�k2.˛/.
Since the claim holds for the premises, that is !k1�k2.˛/ > ˛0, we get
!k1�k2.˛C1/ > ˛0 and furthermore !k1�k2.˛ C 1/ > ˛0 C 1 and the proposition
holds.

If S has been derived with an arithmetical or logical two-premise rule, then
again the heights of the conclusions are the same as for the premises. If we let the
ordinals of the premises be ˛; ˇ and ˛0; ˇ0 we have the following inequalities for
the premises of the rules !k1�k2 .˛/ > ˛0 and !k1�k2.ˇ/ > ˇ0. If k1 D k2, then
we get from the inequalities of the premises ˛ > ˛0 and ˇ > ˇ0 the inequality
!k1�k2.o.S IP// D o.S IP/ D ˛#ˇ > ˛0#ˇ0. On the other hand, if k1 > k2, we get
!k1�k2.˛#ˇ/ > !k1�k2 .˛/ > ˛0 and !k1�k2.˛#ˇ/ > !k1�k2 .ˇ/ > ˇ0. This gives
!k1�k2.˛#ˇ/ > ˛0#ˇ0 and the proposition holds.

If S has been derived with a cut the premises of which have the heightm1 and the
ordinals ˛ and ˇ and S 0 has been derived with a cut the premises of which have the
heightm2 and the ordinals ˛0 and ˇ0, then we have the following inequalities for the
premises !m1�m2.˛/ > ˛0 and !m1�m2.ˇ/ > ˇ0. We then get !k1�k2.o.S IP// D
!k1�k2.!m1�k1 .˛#ˇ// D !m1�k2 .˛#ˇ/ D !m2�k2.!m1�m2.˛#ˇ//. If m1 D m2,
then from the inequalities of the premises ˛ > ˛0 and ˇ > ˇ0 we get the inequality
!m2�k2.!m1�m2.˛#ˇ// D !m2�k2 .˛#ˇ/ > !m2�k2.˛0#ˇ0/. If m1 > m2, then we
get !m1�m2.˛#ˇ/ > !m1�m2.˛/ > ˛0 and !m1�m2.˛#ˇ/ > !m1�m2.ˇ/ > ˇ0. Thus,
we get !m1�m2.˛#ˇ/ > ˛0#ˇ0 and from this follows that !m2�k2.!m1�m2.˛#ˇ// >
!m2�k2.˛0#ˇ0/, that is the proposition holds.

If S has been derived with an Ind the premises of which have the height m1

and the ordinals ˛; ˇ and � and S 0 has been derived with an Ind the premises
of which have the height m2 and the ordinals ˛0; ˇ0 and � 0 then we have the
following inequalities for the premises !m1�m2.˛/ > ˛0, !m1�m2.ˇ/ > ˇ0 and
!m1�m2.�/ > � 0. We then have

!k1�k2.o.S IP// D !k1�k2 .!m1�k1C1.˛#ˇ#�//

D !m1�k2C1.˛#ˇ#�/ D !m2�k2C1.!m1�m2.˛#ˇ#�//

> !m2�k2C1.˛0#ˇ0#� 0/ D o.S 0IP 0/

Thus, it has been proved that inequality (5.5.1) holds.
Now let S be the sequent E;	2 ! D and S 0 the corresponding sequent

	1�2 ! D. If we let o.	1 ! EIP/ D �1; o.E; 	2 ! DIP/ D �2; o.	1�2 !
DIP/ D 
 and o.	1�2 ! DIP 0/ D 
0 and also let h.	1�2 ! DIP/ D l and
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h.E; 	2 ! DIP/ D k, then we have l 6 k and h.	1�2 ! DIP 0/ D l . From the
inequality we get

!k�l .�2/ > 
0

and from this follows the inequality


 D !k�l .�1#�2/ > !k�l .�2/ > 
0:

according to Lemma 5.2.2 we can conclude that o.P / > o.P 0/.

Case 2. Assume that there is at least one contraction on the formula E between
the arithmetical rule and I . Let the uppermost contraction be I 0. Recall that
we have a derivation of the sequent 	 0

2 ! D0 that is otherwise similar to the
derivation of E;	 0

2 ! D0. We can now reduce the derivation to the left into the
one on the right by eliminating the contraction.

E;	 0
2 ! D0 Arithm:

....
E;E; 	 00

2 ! D00

E;	 00
2 ! D00 I 0

....
E;	2 ! D....

Ý

	 0
2 ! D0 Arithm:

....
E;	 00

2 ! D00
....

E;	2 ! D....

In this reduction the ordinal is preserved and o.P / D o.P 0/. We now repeat step
3 if we can or continue with step 4 and assume that compound formulas in the
end-piece of P do not have predecessors in arithmetical rules that border on the
end-piece. Therefore these formulas must have predecessors in initial sequents
or logical rules that border on the end-piece.

Step 4. Assume that the end-piece contains an initial sequent D;	 ! D.
Since the end-sequent is empty both formulas D (or rather descendants of both
formulas) must disappear through cuts. Assume that the D in the antecedent is
the first formula to disappear in a cut (the other case is similar). The derivation
P now has the form

....
	1 ! D

D;	 ! D....
D;	2 ! D

	1�2 ! D
Cut

....!
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We can reduce P into a derivation P 0 where the cut has been eliminated by
adding the missing context 	2 in the antecedent of the derivation of the left
premise.
Since both D’s from the sequent D;	 ! D disappear through cuts, we have a
cut on the otherD in the succedent below the sequent 	1�2 ! D. Therefore the
heights of the sequents remain unchanged, while the ordinal of the subderivation
ending with 	1�2 ! D decreases. Thus, we get o.P 0/ < o.P / by Lemma 5.2.2.
We can now proceed to step 5 and can assume that the end-piece does not contain
any initial sequents but only cuts and contractions.

Step 5. To continue the reduction procedure we consider the compound cut
formulas of the end-piece. We want to diminish the ordinal of the derivation
by introducing cuts on shorter formulas. For this we need a suitable cut in the
end-piece.

Definition 5.5.2 A cut in the end-piece of a derivation is a suitable cut if both
copies of the cut formula have predecessors that are principal in logical rules that
border on the end-piece.

Sublemma 5.5.3 Assume that a derivation P fulfils the following requirements:

1. The end-piece of P contains at least one cut on a compound formula.
2. In every cut on a compound formula in the end-piece each copy of the cut

formula has a predecessor in the conclusion of a logical rule that borders on the
end-piece.

3. The principal formula of the logical rule mentioned in (2) has a descendant that
disappears through a cut in the end-piece.

Then P has a suitable cut.

Proof The proof is an induction on the number of cuts on compound cut formulas
in the end-piece.

In the end-piece of P there is at least one cut on a compound formula according
to (1). If there is only one cut, then the cut formulas of both premises have a prede-
cessor in a logical rule bordering on the end-piece according to (2). If the principal
formula of the rule was not the predecessor of the cut formula, then it would accord-
ing to (3) have to disappear through another cut in the end-piece. Thus, the principal
formula has to be the predecessor of the only cut and we have a suitable cut.

Now assume that P has n cuts on compound formulas in the end-piece. As
induction hypothesis we have that any derivation with fewer such cuts has a suitable
cut, provided that the derivation fulfils the stipulated requirements. Let I be the last
of the cuts on some compound formula,D.

P1....
	1 ! D

P2....
D;	2 ! E

	1�2 ! E
I
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If I is a suitable cut, the proposition is proved. Therefore we assume that I is not a
suitable cut. Both cut formulas of the premises have, according to (2) a predecessor
in the conclusion of a logical rule bordering on the end-piece. Since the cut is not
a suitable cut a predecessor of one D is not principal in one of the logical rules.
We may assume that this is the case for the D in the premise 	1 ! D. According
to (3) a descendant of the principal formula in the logical rule disappears through
a cut. If this cut was I , then the principal formula would be D, but then I would
be a suitable cut. Therefore there must be another cut on a compound formula and
this cut is above I in P1 since I was the last cut. Thus, P1 satisfies (1). P1 also
inherits property (2) from P . None of the principal formulas in the logical rules
bordering on the end-piece can disappear through the cut I , since that would make I
a suitable cut, therefore the cuts must be in P1 and P1 fulfils criterion (3). Therefore
the subderivation P1 fulfils all three requirements and according to the induction
hypothesis has a suitable cut. This is also a suitable cut of the derivation P . ut

We now continue to consider the derivation P of the empty sequent. If the
derivation P contained only atomic formulas, then any instances of Ind would be
in the end-piece, but this is not possible since these were reduced in step 2. Hence
the derivation P contains a compound formula, for otherwise the derivation would
be simple which is impossible according to Lemma 5.4.8. Since the end-sequent is
empty and the end-piece does not contain any instances of Ind all formulas in the
end-piece must disappear through cuts. At least one of these formulas has logical
structure. The derivation P therefore satisfies the first criterion in Sublemma 5.5.3.
Assume thatD is a compound formula that disappears though a cut in the end-piece.
The formula D cannot have a predecessor in an arithmetical rule that borders on
the end-piece, since these were treated in step 3. Neither can a predecessor of D
have been introduced in an initial sequent in the end-piece, since these were treated
in step 4. The only remaining possibility is that the formula has a predecessor in
the conclusion of a logical rule bordering on the end-piece. This means that P
satisfies the second criterion in Sublemma 5.5.3. From the fact that the end-sequent
is empty and that there are no inductions in the end-piece we draw the conclusion
that P satisfies the third criterion in Sublemma 5.5.3. Therefore P fulfils all the
requirements of the sublemma and P contains a suitable cut.

Now consider the lowermost suitable cut I and perform the following reduction
according to the form of the cut formula.

Case 1. Assume that the cut formula of the last suitable cut is a conjunction
B&C . Now P has the form
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....
	 00
1 ! B

....
	 000
1 ! C

	 0
1 ! B&C

R&

....
	1

�! B&C

....
B;C; 	 0

2 ! D0

B&C;	 0
2 ! D0 L&

....
B&C;	2


! D .l/

	1�2 ! D
I

....

‚
�! E .k/....!

where 	 0
1 D 	 00

1 ; 	
000
1 and ‚ ! E is the first sequent below I that has a lower

height than the premises of the cut. Such a sequent exists because the height
of the end-sequent is 0 while the cut premises have a height of at least 1. Let
l be the height of the premises of the cut I and let h.‚ ! EIP/ D k.
Then we have k < l . The sequent ‚ ! E must be the conclusion of a cut
since the end-piece only contains contractions and cuts and the conclusion
of a contraction has the same height as the premise. Furthermore, we let
o.	1 ! B&C/ D �; o.B&C;	2 ! D/ D 
 and o.‚ ! E/ D �.

In the derivation of B;C; 	 0
2 ! D0 we can add the formula B&C in the context

and get a derivation of the sequent B&C;B;C; 	 0
2 ! D0. Now let P3 be the

following derivation:

....
	1

�3! B&C

....
B&C;B;C; 	 0

2 ! D0
....

B&C;B;C; 	2

3! D

B;C; 	1�2 ! D
J3

....
B;C;‚ ! E

We take the derivation of 	 00
1 ! B and instead of applying a right conjunction

rule we add the missing formulas 	 000
1 in the context and get a derivation of the

sequent 	 0
1 ! B . Then we apply the cuts and contractions above the left premise of

the cut J3 shown in P3 (this is possible because the descendant of the conjunction
in the succedent disappears through the cut J3 and therefore cannot be principal in
another rule above the cut.) Hence we have constructed a derivation of the sequent
	1 ! B . We again instead of applying the cut J3 add the missing context 	2
and get a derivation of 	1�2 ! B . After this we continue with the same rules
as below P3 applying the same rules on the same formulas if we have a contraction
or a cut on formulas in the antecedent. If we, on the other hand, in P3 have a cut
on the formula in the succedent (that is a cut on the formula in P3 that has been
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replaced by the formula B in the constructed derivation) we instead of applying the
cut add the missing context in the antecedent of the sequent. Thus, we get a valid
derivation of the sequent ‚ ! B and we call this derivation P1. Correspondingly
we construct a derivation of the sequent‚ ! C from the derivationP3 and call this
derivation P2.

We now compose the three derivations into the derivation P 0:

P1....

‚
�1! B

P2....

‚
�2! C

P3....

B;C;‚
�3! E .m2/

B;‚2 ! E .m1/
Cut

‚3 �0! E .k/

Cut

.... contractions
‚ ! E....!

Let m1 be the height of the premises of the cut on the formula B and let m2 be the
height of the premises of the cut on the formula C . The premises of the cut J3 in
P 0 have the height l because all cuts below the premises of the cut I also occur
below J3. And both added cuts have a lower grade than the cut formula B&C .
Furthermore, we have that h.‚3 ! EIP 0/ D k.

Assume that the grade of B is higher than or equal to the grade of C (otherwise
we may exchange the order of the two cuts). Now we have m1 D m2. If k is higher
than the grade of B (and the grade of C ), then we have that k D m1 D m2 and if
not m1 equals the grade of B . In both cases we have k 6 m1.

Let

�0 D o.‚3 ! EIP 0/

�1 D o.‚ ! BIP 0/

�2 D o.‚ ! C IP 0/

�3 D o.B;C;‚ ! EIP 0/

�3 D o.	1 ! B&C IP 0/


3 D o.B&C;B;C; 	2 ! DIP 0/

Then we have that 
3 < 
 since the heights of the sequents above remain unchanged
and a logical rule has been removed. Furthermore, we have that �3 D �.

Now let

S 0
1 S 0

2

S 0 J 0
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be an arbitrary rule between J3 and the sequent B;C;‚ ! E in the subderivation
P3 of P 0 and let

S1 S2
S

J

be the corresponding rule between I and ‚ ! E in P . Let

˛0
1 D o.S 0

1IP 0/ ˛0
2 D o.S 0

2IP 0/ ˛0 D o.S 0IP 0/
˛1 D o.S1IP/ ˛2 D o.S2IP/ ˛ D o.S IP/
k1 D h.S 0

1IP/ D h.S 0
2IP 0/ k2 D h.S 0IP 0/

Then we have that ˛ D ˛1#˛2 if S 0 is not the sequent B;C;‚ ! E and ˛ D
!l�k.˛1#˛2/ if S 0 is the sequent B;C;‚ ! E . On the other hand, we have that
˛0 D !k1�k2.˛0

1#˛
0
2/.

We show by induction on the number of inferences between J3 and S 0 that

˛0 < !l�k2 .˛/ (5.5.2)

if S 0 is not the sequent B;C;‚ ! E .
If J 0 is J3, then we have that

˛0 D !l�k2 .�3#
3/ < !l�k2 .�#
/ D !l�k2 .˛/

because �3 D � and 
3 < 
.
If we assume that the inequality holds for the premises of J 0, that is

˛0
1 < !l�k1 .˛1/ and ˛0

2 < !l�k1.˛2/ then we get that ˛0
1#˛

0
2 is less than

!l�k1 .˛1/#!l�k1 .˛2/, this implies that ˛0
1#˛

0
2 < !l�k1.˛1#˛2/. From this follows

that the inequality holds for the conclusion, because we have

˛0 D !k1�k2.˛0
1#˛

0
2/ < !k1�k2.!l�k1 .˛1#˛2// D !l�k2 .˛1#˛2/ D !l�k2 .˛/:

Thus, it is proved that the inequality (5.5.2) holds.
The inequality (5.5.2) holds for the premises of the cut that gives the sequent

B;C;‚ ! E . The premises have the height l D k2 and if we denote the ordinals of
the premises ˛0

1 and ˛0
2 and for the corresponding premises in P ˛1 and ˛2, we get

from the inequalities of the premises that ˛0
1 < !l�l .˛1/ D ˛1 and ˛0

2 < !l�l .˛2/ D
˛2 hold. From this follows that �3 D !l�m2.˛0

1#˛
0
2/ < !l�m2.˛1#˛2/ D !l�m2.�/,

if we let � D !l�k.�/.
Then remains to calculate corresponding inequalities for the ordinals of the other

subderivationsP1 and P2. We consider the derivationP1. There are two possibilities
to consider, namely, that the last cut above the sequent ‚ ! E in P3 has been
eliminated in the construction of P1 and the possibility that there is a corresponding
cut above the sequent‚ ! B in P1. We show that in both cases �1 6 �3.
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Assume that there is a corresponding cut in P1. The conclusion of the cut in P3
has the heightm2, the premises have the height l > m2 and the cut formula has the
grade l . The cut formula of the cuts between J3 and the cut in question have a grade
lower or equal to l . Thus, all heights remain unchanged when the cuts are removed
in P1. And we conclude that �1 6 �3.

Now assume for the other case that the last cut above the sequent ‚ ! B has
been eliminated. This means that the heights of the corresponding sequents in P1
and P3 are no longer equal. We define the notion height difference to be able to
inductively prove the inequality we want.

Definition 5.5.4 Let the premises of a cut or an induction have the height g and the
conclusion the height h. The height difference of the cut or the induction is g�h for
the cut and g�hC1 for the induction. The height difference between two sequents in
a derivation is the sum of the height differences for all cuts and inductions between
the two sequents.

The height difference between two sequents is equal to the height of the
uppermost sequent, minus the height of the lowermost sequent, plus the number
of inductions between the sequents.

Let S be a sequent in P3 with the ordinal ˛ and S 0 the corresponding sequent in
P1 with the ordinal ˛0. We show by induction that

˛0 6 !h�h0 .˛/ (5.5.3)

where h is the height difference between S and the conclusion of the subderivation
P3, that is B;C;‚ ! E and h0 is the height difference between S 0 and the
conclusion of the subderivation P1, that is ‚ ! B .

The expression is well defined if h > h0. The sequents B;C;‚ ! E and ‚ !
B have the same height m1 D m2 and the number of inductions between S and
B;C;‚ ! E and between S 0 and ‚ ! B is the same. Since the cut formulas
below S 0 also occur below S we have that the height of S is greater or equal to the
height of S 0. This means that h > h0 and the expression is well defined. We can now
proceed to proving the inequality (5.5.3).

If S is an initial sequent or the conclusion of an arithmetical rule without
premises, then ˛0 D ˛ D 1 and the inequality holds regardless of the size of h� h0.

Assume that the inequality holds for the premise of a one-premise rule. Let the
height difference under the premise in P3 be h and in P1 h0 and let the ordinals of
the premises be ˛ and ˛0, respectively. The height differences under the conclusions
are the same. If the rule is a contraction, the inequality of the premises is preserved.
If the rule is logical or arithmetical, then we get ˛0 6 !h�h0.˛/ < !h�h0.˛C 1/ and
from this ˛0 C 1 6 !h�h0 .˛ C 1/.

Assume that the inequality holds for the premises of a two-premise arithmetical
or logical rule, that is ˛0

1 6 !h�h0.˛1/ and ˛0
2 6 !h�h0.˛2/ hold. Here ˛1 and ˛2 are

the ordinals of the premises in P3 and ˛0
1 and ˛0

2 are the ordinals of the premises in
P1. The height differences under the premises, h and h0, are the same as under the
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conclusion. We then get ˛0 D ˛0
1#˛

0
2 6 !h�h0 .˛1/#!h�h0.˛2/ 6 !h�h0 .˛1#˛2/ D

!h�h0.˛/.
Assume that the inequality holds for the premises of a cut in P3, that is ˛0

1 6
!h�h0.˛1/ and ˛0

2 6 !h�h0.˛2/ hold. If the cut has been eliminated in P1, then S 0
has the ordinal ˛0

1. Let the height difference of the cut be g in P3. Now the height
difference under S is h � g and we get the inequality ˛0 D ˛0

1 6 !h�h0.˛1/ <

!h�h0.˛1#˛2/ D !.h�g/�h0.!g.˛1#˛2// D !.h�g/�h0.˛/. On the other hand, if
the cut also occurs in P1, in other words if it has not been eliminated, we let the
height difference in P1 be g0. Now the height difference under S is h � g and
under S 0 h0 � g0 and we get the inequality for the conclusion ˛0 D !g0.˛0

1#˛
0
2/ 6

!g0.!h�h0 .˛1/#!h�h0.˛2// 6 !g0.!h�h0 .˛1#˛2// D !g0Ch�h0�g.!g.˛1#˛2// D
!.h�g/�.h0�g0/.˛/.

Lastly assume that the inequality holds for the premises of an instance of
Ind, that is ˛0

1 6 !h�h0.˛1/, ˛0
2 6 !h�h0 .˛2/ and ˛0

3 6 !h�h0.˛3/. Let
the height difference for the induction in P1 be g0 and in P3 g. Now the
height difference under S is h � g and under S 0 h0 � g0 and we get the
inequality ˛0 D !g0.˛0

1#˛
0
2#˛

0
3/ 6 !g0.!h�h0 .˛1/#!h�h0.˛2/#!h�h0.˛3// 6

!g0.!h�h0 .˛1#˛2#˛3// D !g0Ch�h0�g.!g.˛1#˛2#˛3// D !.h�g/�.h0�g0/.˛/.
Thus, it has been proved that the inequality holds. Now let S be the sequent

B;C;‚ ! E and S 0 the sequent‚ ! B . Then the height differences h and h0 are
0 and we get �1 6 !h�h0 .�3/ D �3.

Regardless of if the last cut has been eliminated we thus have �1 6 �3.
Correspondingly we get �2 6 �3. Using the inequality �3 < !l�m2.�/ and the
fact that m1 D m2 we then get �1#�2#�3 < !l�m1.�/, since l > m1. Further-
more, we get that �0 D !m1�k.�1#.!m2�m1.�2#�3/// D !m1�k.�1#�2#�3/ <
!m1�k.!l�m1.�// D !l�k.�/ D �.

From the inequality�0 < �we get according to Lemma 5.2.2 that o.P / > o.P 0/.

Case 2. Assume that the cut formula of the last suitable cut is 8xB.x/. The
derivation P then has the form

....
	 0
1 ! B.y=x/

	 0
1 ! 8xB.x/ R8

....
	1 ! 8xB.x/

....
B.t=x/; 	 0

2 ! D0

8xB.x/; 	 0
2 ! D0 L8

....
8xB.x/; 	2 ! D

	1�2 ! D
I

....
‚ ! E....!

where the sequent‚ ! E is defined in the same way as in case 1.
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From the derivation of the sequent B.t=x/; 	 0
2 ! D0

2 we get a derivation of the
sequent 8xB.x/; B.t=x/; 	 0

2 ! D0
2 by adding a formula in the context. Let P2 be

the following derivation:

....
	1 ! 8xB.x/

....
8xB.x/; B.t=x/; 	 0

2 ! D0
....

8xB.x/; B.t=x/; 	2 ! D

B.t=x/; 	1�2 ! D
J2

....
B.t=x/;‚ ! E

We can get a derivation of the sequent 	 0
1 ! B.t=x/ from the derivation of

	 0
1 ! B.y=x/ by substituting y with t . We then apply the rules between the logical

rule and J2 inP2 to the sequent	 0
1 ! B.t=x/ (this is possible because the quantified

formula in the succedent of the sequents in P2 is not principal in any rule above the
cut J2). We now have a derivation of the sequent 	1 ! B.t=x/ and can instead
of applying the cut add the missing context in the antecedent and get a derivation
of 	1�2 ! B.t=x/. Then we apply the cuts and contractions below the cut J2
on formulas in the antecedent. If we have a cut on the succedent, that is on the
formula that has been replaced with B.t=x/, we just add the missing context in the
antecedent and eliminate the cut. Thus, we obtain a valid derivation of the sequent
‚ ! B.t=x/ and we call this derivation P1.

Now we can join the two derivations together into one derivation P 0

P1....
‚ ! B.t=x/

P2....
B.t=x/;‚ ! E

‚2 ! E
Cut

.... contractions
‚ ! E....!

The ordinal calculations are similar to the ones in case 1 and for the other cases of
cut formulas the proofs are also similar.

Thus, we have reduced the derivation P into a derivationP 0 with a lower ordinal
and the proof of Lemma 5.5.1 is finished. We can conclude that the derivation P 0
also fulfils the requirement that all arithmetical rules are applied before the logical
and structural rules. This makes it possible to repeat the reduction and get a sequence
of decreasing ordinals. ut

With the proof of the reduction procedure finished we also have a proof of the
consistency Theorem 5.1.2.
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Some of the essential features of our proof are: Cut elimination is proved directly,
without Gentzen’s rule of multicut; the arithmetical axioms are treated purely
syntactically; all rules with several premises have independent contexts and no rule
of weakening is used. It is hoped that a comparison of our proof with Gentzen’s
notes in his series BTJZ will eventually show at what point his attempts failed.
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Gentzen’s Original Consistency Proof
and the Bar Theorem

W.W. Tait

The story of Gentzen’s original consistency proof for first-order number theory
[9],1 as told by Paul Bernays [1, 9], [11, Letter 69, pp. 76–79], is now familiar:
Gentzen sent it off to Mathematische Annalen in August of 1935 and then withdrew
it in December after receiving criticism and, in particular, the criticism that the
proof used the Fan Theorem, a criticism that, as the references just cited seem
to indicate, Bernays endorsed or initiated at the time but later rejected. That
particular criticism is transparently false, but the argument of the paper remains
nevertheless invalid from a constructive standpoint. In a letter to Bernays dated
November 4, 1935, Gentzen protested this evaluation; but then, in another letter
to him dated December 11, 1935, he admits that the ‘critical inference in my
consistency proof is defective’. The defect in question involves the application of
proof by induction to certain trees, the “reduction trees” for sequents (see below
and § 1), of which it is only given that they are well-founded. No doubt because
of his desire to reason “finitistically,” Gentzen nowhere in his paper explicitly
speaks of reduction trees, only of reduction rules that would generate such trees;
but the requirement of well-foundedness, that every path taken in accordance
with the rule terminates, of course makes implicit reference to the tree. Gentzen
attempted to avoid the induction; but as he ultimately conceded, the attempt was
unsatisfactory.

1The paper first appeared in print via an appendix to the translation of [5] in [8]. A somewhat
revised version of it is presented in [1] and the full text, together with an introduction by Bernays,
in [9].
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Brouwer’s Bar Theorem has generally been cited as what is needed to repair
the argument.2 The Bar Theorem does indeed suffice to close the gap between the
well-foundedness of a reduction tree and proof by induction on it, but we will see
that Brouwer’s argument for the Bar Theorem in the context in question involves an
argument for the claim that a proof of the well-foundedness of a reduction tree
for a sequent can only be based on having the corresponding deduction tree of
the sequent. The deduction tree in question is obtained by reading the reduction
tree, which is constructed “bottom-up,” as “top-down.” Deduction trees are built up
inductively and so proof by induction on them is valid. Moreover, given a deduction
tree for a sequent, the corresponding reduction tree can be constructed; but the
converse is constructively invalid. So—and this is the main point of this paper—the
gap in Gentzen’s argument is filled, not by the Bar Theorem, but by taking as the
basic notion that of a deduction tree in the first place rather than that of a reduction
tree. These deduction trees are well-known objects, namely cut-free deductions in a
formalization of first-order number theory in the sequent calculus with the !-rule.

The formalization of number theory in the original paper as well as in the
1936 paper ultimately takes as the logical constants :;^ and 8. Deductions are
of sequents of the form 	 ` A, whereA is a formula and 	 a possibly null sequence
of formulas. The rules of inference are the natural deduction rules: the introduction
and elimination rules for the logical constants are only for the succedent formula (so
that a deduction of the sequent 	 ` A corresponds to a deduction of A in natural
deduction whose assumption formulas are all in 	). I will refer to this system as the
formal system of first-order number theory in natural deduction. The precise details
don’t really concern us, since the non-trivial parts of Gentzen’s argument do not
really concern these natural deductions.

His consistency argument in the original version aims at showing that a natural
deduction of a sequent 	 ` A is a code for constructing a reduction tree for the
sequent. Since there is no reduction tree for the sequent ` 1 D 2, for example,
consistency is implied. As we noted and will see, reduction trees can be replaced
everywhere in the argument by the corresponding deduction trees.

In the 1936 version of the consistency proof, the notion of a reduction tree
plays no role in the proof of consistency: that proof is obtained by means of the
notion of a reduction procedure for deductions of sequents in the formal system
of first-order number theory in natural deduction and an assignment of ordinals to
these deductions such that each reduction step results in a decrease in ordinal. A
reduction tree for a deduced sequent, along with an ordinal measure of the height
of the subtrees, simply falls out of the proof. Of course, the assignment of ordinals
to the subtrees allows the reduction tree to be identified with the corresponding
deduction tree (since induction on the tree can be expressed by induction on the
ordinals).

2Could Bernays’ references to the “Fan Theorem,” all over 30 years later, have been the result of a
confusion of the Fan Theorem with the Bar Theorem?
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In the original paper, on the contrary, the notion of a reduction rule for a sequent
plays an essential role: the non-trivial part of the argument—and the source of
difficulty—is Gentzen’s argument for his Lemma. As we noted, the corresponding
deduction trees are cut-free deductions in the formal system of first-order number
theory in the sequent calculus with the !-rule; and the Lemma states (in terms of
deduction trees) that cuts in that system can be eliminated.

So if one takes Gentzen’s Lemma to be the focal point of the original paper on
consistency, it is [6] rather than [5] that is the real sequel to the original paper. It
is there that he formalizes first-order number theory in the sequent calculus; and,
although he does not prove cut-elimination for the system obtained by adding the
!-rule, the argument leads directly to that result. Indeed—and this is the secondary
point of my paper—one may think of contemporary infinitary proof theory as the
product of Gentzen’s Lemma (understood as being about deduction trees rather than
reduction tree) and his earlier Hauptsatz for propositional logic in the framework of
the sequent calculus [4], where the former shows the way to extend the latter to
infinite conjunctions and disjunctions.

Cut-elimination with the !-rule was finally explicitly proved by Lorenzen [14]
and Schütte [15]. Lorenzen’s proof applied to ramified analysis of finite order but
does not supply ordinal bounds. Schütte’s proof applies to a variant formalization
of the sequent calculus and supplies the ordinal bounds. [18] contains a unified
treatment of Schüttes’ result and his later papers on cut-elimination for ramified
analysis [16, 17] with the !-rule, using a simplified form of the sequent calculus.3

Although the notion of a reduction rule played no part in the consistency proof
in [5], it should be noted that it retained a conceptual/philosophical role. Gentzen
not only wanted a proof of consistency, he wanted a way to understand the truth
of a sentence of number theory that is in some sense “finitary” but at the same
time supported classical reasoning in number theory. In this respect, the original
paper and the 1936 paper go beyond the original Hilbert program of finding
finitary consistency proofs for formal systems. Indeed, Gödel’s incompleteness
theorems would seem to demand such an extension. Consistency of a particular
formal system is of less interest when we know that the system, if consistent,
is also incomplete. A “finitist” interpretation of classical mathematical proposi-
tions that guarantee their consistency transcends any particular formal system.
Gentzen’s candidate for such an interpretation was this: A is true precisely if
we can state a “reduction rule” for ` A, i.e. a rule for constructing a reduction
tree.4

3See [2] for a detailed description of the relation between Gentzen’s 1938 consistency proof and
Schütte’s 1951 result.
4The rule is, in itself, just a rule for constructing a certain tree—I call it a “pre-reduction rule”
below. It is a reduction rule in virtue of the tree being well-founded. So, to know that A is true
would mean, not simply to possess the rule, but also to know that the tree is well-founded. One
might have some difficulty in labelling knowledge of this kind as “finitary.”
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Like Gödel, Gentzen had discovered the double negation interpretation of
classical first-order number theory in the corresponding intuitionistic version. If
from a “finitist” point of view one were satisfied with the intuitionistic system, i.e.
Heyting arithmetic, this result would provide the desired interpretation—and would
certainly diminish the significance of a consistency proof for a finitist. But, also like
Gödel in [10], Gentzen rejected the intuitionistic conception of logic as presented by
Heyting as non-finitist. The difficulties they had with it centred on the intuitionistic
meaning of implication. The “circularity” that Gentzen found in Heyting’s account
of the meaning of ! in propositions A ! B , where A contains ! [5, Sect. 11.1],
disappears when one adopts the type-theoretic approach of Curry-Howard. But,
of course, when A contains !, its proofs are no longer to be understood as
concrete finitary objects on the type-theoretic conception; rather they themselves
are already objects of higher type and so it would be a stretch to regard proofs of
A ! B , i.e. operations transforming proofs of A into proofs of B , as in any sense
“finitist.”

Gentzen’s interpretation of the sentences of arithmetic in terms of reduction rules
has a somewhat alien flavour. But it evolved into two different and more homely
interpretations of classical reasoning in number theory: the no-counterexample
interpretation in the hands of Gödel [10]5 and Kreisel [12,13] and a game-theoretic
interpretation by Coquand [3], according to which a reduction rule is a winning
strategy in a certain two-person game. These two interpretations are discussed in
[19, 20] and I will not discuss them here.

1. Reduction Rules. A sequent is of the form 	 ` A, where 	 is a set
of formulas and A is a formula. Gentzen defines the notion of a reduction
rule for sequents of arbitrary formulas. If free variables occur in formulas in
the sequent, the reductions of the sequent begin with replacing one of them
throughout the sequent by an arbitrarily chosen numeral. If the sequent consists
just of sentences and some formula in it contains a closed term f .t1; : : : ; tn/,
then a reduction consists in replacing such a term by the numeral Nk for its
value. We can eliminate these reduction steps by considering only sequents of
sentences and by identifying the sentence A.f .t1; : : : ; tn// with A. Nk/. Since the
reductions of sequents of sentences yield only sequents of sentences, we can also
cut down on the number of forms of sentences that must be treated separately
by treating A ^ B and 8xA.x/ as special cases of conjunctive sentences

V
i Ai :

namely

A0 ^A1 D
^

i<2

Ai 8xA.x/ D
^

i<!

A.Ni/:

5That Gödel had anticipated the no-counterexample interpretation in these notes was first noticed
by C. Parsons and W. Sieg in their introductory note.
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Concerning the atomic sentences, Gentzen included only decidable sentences, i.e.
built up from N0, the successor function constant, constants for other computable
functions and decidable relation constants.6 We will write

?

to denote any false atomic sentence, such as 1 D 2 (Gentzen’s favourite): they are
interchangeable.

A sequent 	 ` A of sentences is called an axiom sequent just in case either A is
a true atomic sentence or it is a false atomic sentence and 	 contains a false atomic
sentence. The rules of inference we will consider are

V�R

and
V�L

for
V

; and : � R

and : �L

for :. The explicitly listed composite sentence in the conclusion of an inference is
called its principal sentence.

Definition A pre-reduction rule R for a sequent 	 ` A of sentences effectively
determines, for each n, the R-admissible sequences h	0 ` A0; : : : ; 	n ` Ani of
sequents of sentences as follows:

• h	 ` Ai is the only R-admissible sequence of length 1.

6When in [7] he comes to the problem of determining the bound on the provable ordinals, he needs
to essentially redo the argument for the case that the atomic formulas also include t 2 V , where V
stands for an indeterminate set of numbers and t a numerical term. But it is obvious how to treat
this extension. The atomic sentences must be extended to include the expressions n 2 V and the
axiom sets, defined below, has to be extended to include sequents of the form 	; n 2 V ` n 2 V .
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• All R-admissible sequences of length n C 2 are one-element extensions of R-
admissible sequences of length nC1. Let h	 ` A; : : : ;� ` Bi beR-admissible.
We specify its R-admissible one-element extensions.

– If � ` B is an axiom sequent, then there are no R-admissible extensions.
– If � consists only of true atomic sentences and B is a false atomic sentence,

then h	 ` A; : : : ;� ` B;� ` Bi is its only R-admissible one-element
extension.

– Otherwise R determines an inference with conclusion � ` B and h	 `
A; : : : ;� ` B;‚ ` C i is R-admissible for every premise ‚ ` C of that
inference.

A pre-reduction rule R for 	 ` A is a reduction rule for 	 ` A iff every !-
sequence h	 ` A;� ` B;‚ ` C; : : :i of sequents of sentences contains a finite
initial segment that is not R-admissible. ut

Our definition of a sequent 	 ` A differs from Gentzen’s in that, for him, 	
is a sequence of sentences rather than a set. But that makes no difference in the
definition of a reduction rule. Notice that the inferences specified above have the
property that the antecedent of the conclusion is a subset of the antecedent of each
premise. Gentzen also allows another form of both 8 �L and : �L, namely

and

But, since adding a sentence to the antecedent of each premise and the conclusion
of any inference in our sense is again an inference, it is clear that a reduction rule
for 	 ` A in the wider sense of Gentzen can be transformed into one in our sense.

Let R be a reduction rule for 	 ` A, where 	 ` A is not an axiom sequent. Then
there is a unique inference

such that the R-admissible sequences of length 2 are precisely h	 ` A;	i ` Aii of
length 2. The principal sentence of this inference is called the principal sentence of
R and the sequents 	i ` Ai are called the reducts of 	 ` A determined by R.

If R is a pre-reduction rule for 	 ` A, the reduction tree TR for 	 determined by
R has as its nodes the R-admissible sequences, where, for nodes � and 
, � <TR 

means that � is a proper initial segment of the R-admissible sequence 
. The root
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of the tree is of course the one-element sequence h	 ` Ai. The condition that the
pre-reduction rule R be a reduction rule is precisely that TR be a well-founded tree.

Let h	 ` A; : : : ;� ` Bi be anR-admissible sequence.R determines a reduction
rule R0 for� ` B: the R0-admissible sequences are just those h� ` B : : : ;‚ ` C i
such that h	 ` A; : : : ;� ` B : : : ;‚ ` C i is R-admissible. We say in this case
that R0 is a reduction sub-rule of R. Note that TR0 is isomorphic to the subtree
TR;� D f
j� �TR 
g, where � D h	 ` A; : : : ;� ` Bi. We will sometimes
confuse the two.

Given the reduction rule R for 	 ` A and a set ‚ of sentences, we may obtain
a reduction rule R0 for 	 [‚ ` A: the R0 admissible sequences are the sequences
h	 [‚ ` A; : : : ;� [‚ ` Bi such that h	 ` A; : : : ;� ` Bi is R-admissible. TR0

is of course isomorphic to TR and we will sometimes confuse them.
Let R be a reduction rule for the sequent 	 ` A of sentences. To each node

h	 ` A; : : : ;� ` Bi of TR assign the sequent� ` B . Then the connection between
the assignments to successive nodes is given by the rules of inference. Note that
when

V
i Ai D 8xA.x/ the rule for conjunctions is the !-rule. Since TR is well-

founded, every path upward through it terminates in an axiom set. Moreover, the
root of TR, the bottom-most node h	 ` Ai, is assigned 	 ` A. Thus, from a
classical point of view, TR is a cut-free deduction of 	 ` A in a sequent calculus
formalization of first-order number theory with the !-rule.

2. Induction on Trees. From a constructive standpoint the situation is more
complicated. Deductions are top-down, starting with axiom sequents and passing
from premises to conclusion and finally to the sequent deduced. In this form, proof
by induction on the deduction tree (or on its height) is fully justified. But reduction
trees for 	 ` A are built bottom-up, starting with 	 ` A and passing up from
conclusion to premises and finally to axiom sets. They are to be well-founded,
but that does not constructively justify the principle of induction applied to them.
That is exactly the problem that Gentzen failed to avoid in the original consistency
proof.

We say that a property P defined on the nodes of a connected tree T is T -
inductive if P.
/ for every 
 immediately above � implies P.�/. The principle of
induction on T states that every T -inductive property defined on its nodes holds for
all of its nodes.

If a tree T satisfies the principle of induction, then it is well-founded. (For the
property P.�/ of a node � of T that the subtree T� D f
 2 T j � �T 
g is
well-founded is an inductive property.) Classically, we can easily infer from the
well-foundedness of a tree T that it satisfies the principle of induction. If not, choose
an inductive property P which is not possessed by every node of T and, having
defined �0 < : : : < �n where the �i do not have the property P , the inductiveness
of P implies that there is a �nC1 > �n which also fails to have P . Iterating this
construction, we obtain an infinite path of nodes up through the tree that do not have
the propertyP . Constructively, however, this argument of course fails: from the fact
that �n does not have P it follows from the inductiveness of P that it is not the case
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that all successor nodes � of �n have the property P ; but that does not imply that
there exists such a successor node which does not have P .

Call a tree inductive if it is in the least class I of connected trees such that
whenever 0 � ˛ � ! and Ti 2 I for all i < ˛, then the connected tree with
whose immediate subtrees are precisely the Ti is inductive. Inductive trees obviously
satisfy the principle of induction.

One example is the constructive ordinals of the second number class. Let T0 and
T1 be connected trees. T0 � T1 means that T0 is a substructure of T1, i.e. that each
node of T0 is a node of T1 and that � <T0 
 implies � <T1 
. T0 � T1 means
that T0 � .T1/� for some node � in T1 other than its root. 0 is the one-node tree
with node ;, ˛ C 1 is the connected tree with root f˛g and whose only immediate
subtree is ˛, and when ˛n � ˛nC1 for each n, limn ˛n is the connected tree with root
f˛n j n < !g and whose immediate subtrees are the distinct ˛n. ˛ C ˇ is defined as
usual by induction on ˇ:

˛ C 0 D ˛ ˛ C .ˇ C 1/ D .˛ C ˇ/C 1 ˛ C lim
n
ˇn D lim

n
.˛ C ˇn/:

We can always assign ordinal bounds jT j on the height of an inductive tree T ,
with jT 0j < jT j when T 0 is a proper subtree of T : let Ti for i < ˛ be its immediate
subtrees and assume jTi j is defined for each i < ˛. If ˛ < ! set jT j D jT0j C � � � C
jT˛�1j C 1. Otherwise, jT j D limn.jT0j C � � � C jTnj C 1/: Conversely, let T be any
tree and suppose that we have assigned an ordinal jT�j to each subtree T� of T so
that jT�j < jT
 j when � <T 
. Then T satisfies the principle of induction, since it
can be reduced to the principle of induction on the ordinals.

The immediately relevant example of inductive trees is given by what we are
calling the deduction trees. If 	 ` A is an axiom sequent, then a one-node tree with
node 	 ` A is a deduction tree. If 	 ` A is the conclusion of an inference and Di

is a deduction of the i th premise, i < ˛, then the tree with root fDi j i < ˛g and
immediate subtrees Di .i < ˛/ is a deduction of 	 ` A.7

Corresponding to the notion of a reduction rule, we also have the notion of a
deduction rule for 	 ` A. Such a rule R determines a deduction tree DR for 	 ` A
as follows: if 	 ` A is an axiom sequent then DR is the one-node tree with node
	 ` A. Otherwise, R determines an inference with the conclusion 	 ` A and a
deduction rule Ri for each premise 	i ` Ai of the inference. DR is a tree with root
fDRi j i < ˛g and immediate subtrees DRi .

A deduction rule R for 	 ` A determines a reduction rule R0 for 	 ` A as
follows. The construction is by induction on DR. If 	 ` A is an axiom set, h	 ` Ai
is R0-admissible. Otherwise, R0 determines an inference with conclusion 	 ` A

and a deduction rule R0 for each premise 	i ` Ai . The R0-admissible sequences

7It is not excluded that some premise of an inference is identical with the conclusion. Therefore,
we have to distinguish the node of a deduction tree from the sequent attached to it. For simplicity,
I have defined the nodes of deduction trees to be in general infinitary objects. The finitist will want
to replace these with suitable codes.
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are of the form h	 ` A;	i ` Ai ; : : : ; � ` Bi such that h	i ` Ai ; : : : ; � ` Bi is
R0
i -admissible. Notice that the converse construction, of a deduction rule R from a

reduction rule R0, is not constructively valid, since induction on TR0 is not valid.
While we are on the subject of induction on trees, let me mention a construction

to which we will refer below. Suppose T0 and T1 are trees. We define T D T0 � T1
as follows: its nodes are � D .�0; �1/, where �e is a node of Te .

� <T 
 () Œ�0 <T0 
0 & �1 �T1 
1� or Œ�0 �T0 
0 & �1 <T1 
1:�

Observe that, if both T0 and T1 satisfy the principle of induction, then so does T0�T1.

3. Gentzen’s Lemma. The only non-trivial step in Gentzen’s demonstration that
a reduction rule for a sequent can be extracted from a natural deduction of it is the
proof of the following, which we formulate in terms of sets rather than sequents:

Lemma [9, Sects. 14.44 and 14.6]. If there are reduction rules R0 for 	;D ` C and
R1 for 	 ` D, then there is a reduction rule for 	 ` C .

The proof of the Lemma is familiar if we think of deductions rather than
reductions. It proceeds by induction on the rank jDj of D, where jAj D 0 when
A is atomic and

j:Aj D jAj C 1 j
^

i

Ai j D sup
i

.jAi j C 1/:

The inductive assumption is that the Lemma holds for all B with jBj < jDj, and
then we want to conclude from this that it holds also forD. The proof of this involves
an induction within the induction on the rank of A; namely an induction on the tree
TR0 . In the original paper, Gentzen tried to avoid this induction, and so I will put
each case of its application below in square brackets.

Case 1. 	;D ` C is an axiom sequent. ThenC is atomic. If it is true, then 	 ` C
is an axiom sequent. So assume C is false. If D is also a false atomic sentence,
then the reduction rule R0

1 for 	 is obtained replacingD by C in R1.
Case 2. 	;D ` C is not an axiom sequent.

Case 2a. D is not the principal sentence of R0. Then the reducts of 	;D ` C

determined by R0 have the form 	i ;D ` Ci with the proper sub-reduction
rule Ri0. [By induction on TR0 , we may assume that there is a reduction rule
Ri for 	i ; 	 ` Ci . The R-reduction tree for 	 ` C has as its immediate
sub-trees the TRi .]

Case 2b. D is the principal sentence of R0. Thus, C D ?.
Case 2bi. D D :E . Then the unique reduct is 	;D ` E . [By the induction

hypothesis, we may assume that there is a reduction rule R0 for 	 ` E .]
R1 reduces 	 ` D to 	;E ` C with immediate sub-rule R0

1. jEj < jDj
and so by induction on jDj applied to R0 and R0

1, there is a reduction rule
R for 	 ` C .
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Case 2bii. D D V
i Di and R0 reduces 	;D ` C to 	;D;Dj ` C

with corresponding sub-reduction rule R0
0. [By induction on TR0 , we may

assume that there is a reduction rule R0 for 	;Dj ` C .] The reducts of
	 ` D determined by R1 are the 	 ` Di for each i , with sub-reduction
rules Ri1. Since jDj j < jDj, the induction hypothesis on rank applied to
R0 and Rj1 yields R. ut

As we indicated, the square-bracketed parts of the argument, explicitly invoking
induction on TR0 , do not appear in Gentzen’s original paper. His argument rather is
as follows: with the rule R1 for 	 ` D fixed, we reduce the problem of finding a
reduction rule for 	 ` C to that of finding one for a reduct 	 0 ` C 0 of 	;D ` C

as determined by R0. If 	 0;D ` C 0 is not an axiom sequent, then we reduce this
problem of finding a reduction rule for 	 00 ` C 00, where 	 00;D ` C 00 is a reduct of
	 0;D ` C 0 as determined by R0—and so on:

Continuing in this way, we must reach the end in finitely many steps, i.e. the completion of
the proof. [8, Sect. 14.63]

This may sound convincing as a constructive argument until we ask: how many
steps? Of course there is no answer to this because it depends upon which path we
take. In particular, if we reach stage n and C .n/ in 	.n/;D ` C .n/ is of the formV
i Ci , then the n C 1st stage 	.n/;D ` Cj depends on the “free choice” of j .

In the November 4, 1935 letter to Bernays, Gentzen seems to have been arguing
that, because the choice of j is free, we are really thinking about a generic path
h	;D ` C;	 0;D ` C 0; : : :i through TR0 which therefore presumably has a generic
finite length x. 	.x/ ` C .x/ has a reduction rule and so, working backward, has
	 ` C . But as we noted in the introductory remarks, Gentzen soon gave up on this
argument.

4. The Bar Theorem. Gentzen’s reference to “free choices” seems to point to
Brouwer’s function theory; but Gentzen seems to have ignored the one feature of
Brouwer’s theory that would ground his argument: the Bar Theorem. Whether or
not he explicitly rejected it, he certainly did not employ it in his argument. The
setting for the Bar Theorem is the notion of a spread law.

Definition A spread law S effectively determines, for each n, the S -admissible
sequences ha0; : : : ; ani of elements of a decidable set M as follows:

• S determines for which a 2 M the one-element sequence hai is S -admissible.
• All S -admissible sequences of length n C 2 are one-element extensions of
S -admissible sequences of length n C 1. Given the S -admissible sequence
ha0; : : : ; ani, S determines for which a 2 M ha0; : : : ; an; ai is S -admissible.

Moreover, it is required that every S -admissible sequence have a proper extension.
We will consider only connected spread laws S , i.e. such that there is exactly one
one-element S -admissible sequence ha0i, called its root. ut

If S satisfies all the conditions of being a spread law except the condition that
every S -admissible sequence have an S -admissible extension, we can turn it into a



Gentzen’s Original Consistency Proof and the Bar Theorem 223

spread law S# by the condition that every S -admissible sequence is S#-admissible
and, if ha; : : : ; bi is either maximal S -admissible or contains #, then ha; : : : ; b; #i is
S#-admissible.

Let S be a spread law. An S -sequence is an !-sequence ha; b; : : :i such that each
finite initial segment is S -admissible. ŒS� denotes the set of all S -sequences. A bar
on S is a set B of S -admissible sequences such each � 2 ŒS� has an initial segment
in B . When B is decidable, we can assume that the initial segment is unique. TS is
the tree of S -admissible sequences.
Bar Theorem. If

(i) B is a decidable bar on the connected spread S with root ha0i,
(ii) Every element of B has the property P ,

(iii) P is inductive on TS ,

then P.ha0i/. ut
We can apply the Bar Theorem to validate the induction on TR0 in the proof of

Gentzen’s Lemma. The spread law S in this case is R#
0. So we have a connected

spread with root 	;D ` C . The assertion that R0 is a reduction rule for 	;D ` C

and in particular is well-founded implies that the set ŒR0� of maximalR0-admissible
sequences is a decidable bar on S . (Here we are using the fact that a reduction rule
is to be effective.) Let P be the property of S -admissible sequences 
 that, if 
 is
the R0-admissible sequence h	;D ` C; : : : ; 	 0;D ` C 0i, then there is a reduction
rule for 	 0; 	 ` C 0. Every element h	 ` C; : : : ; 	 0 ` C 0i of the bar ŒR0� has the
propertyP , since 	 0D ` C 0 is an axiom sequent. (If C 0 is a true atomic sentence or
	 0 contains a false atomic sentence other than D, 	 0; 	 ` C 0 is an axiom set. If C 0
andD are both false atomic, a reduction rule for 	 0; 	 ` C 0 is easily obtained from
the reduction rule R1 for 	 ` D.) Gentzen proved that P is inductive on TS . So by
the Bar Theorem, h	;D ` C i has the property P , i.e. 	 ` C has a reduction rule.

But a cynic might wonder at Brouwer’s magic: simply by calling ŒR#
0� a “spread”

he could conclude from the fact that TR0 is well-founded that it satisfies the induction
principle. But let’s look at Brouwer’s argument for the Bar Theorem. It begins with
the doctrine that a proof of such an implication consists in a method of transforming
a proof of the antecedent [conditions (i)–(iii)] into a proof of the conclusion.
(This simply reflects the intuitionistic meaning of implication.) Now consider the
condition .i/. We say that B bars the S -admissible sequence 
 if each � 2 ŒS� of
which 
 is an initial segment has an initial segment inB . So condition .i/ states that
B bars ha0i. Brouwer argues—and this is the crucial step—that ultimately the only
way to prove that B bars ha0i is by using the axioms

B bars 


for each 
 2 B and the inferences:
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where the 
i are all the S -admissible one-element extensions of 
 . Thus, to have a
proof that B is a bar on S is to have an (in general infinitary) deduction tree D using
just these axioms and inferences. So then, using the conditions (ii) and (iii) of the
Bar Theorem, the proof of its conclusion is obtained by replacing the property “B
bars x” by the property P.x/ in the deduction. This is proved by induction on D.
This is permissible because deductions, unlike reduction trees, satisfy the principle
of induction.

Of course, in our case we concluded (i), i.e. that ŒR0� is a bar on S D R#
0, not

by such a deduction of the statement that ŒR0� bars h	;D ` C i, but from the fact
that TR0 is well-founded. But, whether or not one finds the crucial step in Brouwer’s
argument for the Bar Theorem convincing in general, its application in this instance
requires that the proof of well-foundedness of TR0 ultimately be a deduction D in the
above sense that ŒR0� is a bar on R#

0. This is what is presupposed by an application
of the Bar Theorem to the proof of Gentzen’s Lemma.

But now let D0 be obtained by replacing

ŒR0� bars h	;D ` C; : : : ; 	 0;D ` C 0i

throughout D by

	 0;D ` C 0

Then D0 is a deduction tree for 	;D ` C . Indeed, it is just the R0-reduction tree
TR0 read top-down. So the application of the Bar Theorem already presupposes a
deduction tree for 	;D ` C . Thus:
It was not the Bar Theorem that Gentzen needed; it was the switch from the basic
notion of a reduction tree to that of a deduction tree. Reading the above proof of the
Lemma with R0 and R1 understood as rules for deduction rather than of reduction,
the square bracketed inductions are valid.

5. Cut-elimination. Staying within the domain of deduction trees then, rather
than reduction trees, Gentzen’s Lemma is constructively valid. If we add to the rules
of inference given in § 1 the cut rule

then we have one formalization of the rules of inference for first-order number
theory with the!-rule.D is called the cut-formula of this cut. Call deductions in this
system deduction trees with cuts. By Gentzen’s Lemma, every deduction tree with
cuts can be reduced to one without cuts. Simply iterate the operation of eliminating
the top-most cuts.

In terms of ordinal bounds on the height of the trees, this is not the most efficient
way to eliminate cuts. The more efficient method is essentially the transfinite version
of Gentzen’s Hauptsatz for first-order logic in the sequent calculus. The cut-degree
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of a deduction is the least ordinal greater than the rank jDj ofD for all cut-formulas
D in it [where jAj D 0 for atomicA, j:Aj D jAjC1, and jVi Ai j D lubi .jAi jC1/].
If ˛ is the height of the given deduction of 	 ` A and its cut-degree is somem < !,
the bound we get on the height of the cut-free deduction is 2˛m, where 2˛0 D ˛ and
2˛nC1 D 22

˛
n . The efficient proof proceeds by eliminating cuts of maximum rank

m C 1, replacing them with cuts of maximum rank m at the cost of increasing the
height of the deduction from ˛ to 2˛. (If the cut-degree is !, then the bound is �˛ .)
The bound we get from Gentzen’s Lemma is higher.

6. The Sequent Calculus and the Set Calculus. If we were to admit an arbitrary
sentence B in the rule of

V�L

instead of restricting it to B D ?, the rules of inference would be the natural cut-
free rules for first-order number theory with the !-rule with the logical constants
8;^;:. This would of course imply a greater freedom for a reduction rule R for
	 ` A. Namely the reducts of � ` B could be of the form �0 ` B even when
B is composite, and not just of the form � ` B 0. So, faced with an admissible
h	 ` A; : : : ;� ` Bi, where B is composite, R could choose the one-element
extension h	 ` A; : : : ;� ` B;�0 ` Bi rather than being restricted to one of the
form h	 ` A; : : : ;� ` B;� ` B 0i. By induction on the sentence B , it is easy to
see that for all B , if there is a reduction rule for 	;

V
i Ai ; Aj ` B , then there is one

for 	;
V
i ; Ai ` B . So the general case of the inference is derivable from the special

case.

But why did Gentzen restrict reductions to the case B D ?? The answer is that
it leads to a simpler proof of his main lemma—or more accurately, in view of the
gap in his argument, it seems fair to answer rather than it made it easier for him to
convince himself that there was no gap. Let D D V

i Di , R0 be a reduction rule
for 	;D ` C and R1 a reduction rule for � ` D and suppose that R0 chooses
the reduct 	;D;Dj ` C . By induction (which we have now justified by replacing
the reduction trees by the corresponding deduction trees) we obtain a reduction rule
for 	;Dj ;� ` C: Now, on Gentzen’s more restricted notion of reduction, the only
possible reductions of � ` D are all the sequents � ` Di , including the case of
� ` Dj : So now the cut is reduced to the simpler cut-formula Dj . But with the
more liberal notion of a reduction, the reduct of� ` D thatR1 chooses might be of
the form�0 ` D. Clearly, in this case, the proof that cuts can be eliminated involves
more symmetry between R0, the deduction of 	;D ` C and R1, the deduction of
� ` D. In fact it requires induction, not on TR0 , but on TR0 �TR1 . Gentzen’s attempt
to avoid/disguise the induction would certainly have been even less plausible in this
case.

The symmetry that is revealed by taking the more general form of
V

-elimination
is made even more evident with two changes in the formalization. One is a change
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in the logical constants, replacing negation : by disjunction _ and existential
quantifier 9, except we will admit negation of atomic formulas. Classically at least,
ifA is atomic, the choice betweenA and :A as more basic is arbitrary. We will refer
to them both as prime sentences. Similarly, there is no ground for treating :Vi Ai
as more logically complex than

V
i Ai : for it is expressed by

W
i :Ai , where

A0 _A1 WD
_

i<2

Ai 9xA.x/ WD
_

i<!

A.Ni/:

So henceforth, sentences will be built up from prime sentences by means of
W

andV
. The complement NA of a sentence A is defined by

NA WD :A :A WD A

if A is atomic and

_

i

Ai WD
^

i

Ai
^

i

Ai WD
_

i

Ai

So negation is no longer a logical constant: it is only used to arbitrarily mark one of
two complementary prime sentences.

The other change is this: there is no reason in the classical sequence calculus to
restrict sequents to one succedent; but moreover, there is no reason to retain sequents
at all. The sequent A1; : : : ; Am ` B1; : : : ; Bn has the same classical meaning as
` A1; : : : ; Am;B1; : : : ; Bn, and so we may as well just take as the units of deduction
the corresponding sets fA1; : : : ; Am;B1; : : : ; Bng the set fA1; : : : ; Am;B1; : : : ; Bng
understood as expressing the disjunction of its elements. In place of axiom sequents,
we now have axiom sets, i.e. sets of sentences containing a true prime sentence.

The rules of inference now take the simple form:

and

and the cut-rule takes the form
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where A is called the cut-formula. Gentzen’s Lemma now takes the form that,
given cut-free deduction D0 of 	;A and D1 of 	; NA, there is a deduction of
	 involving only cuts with cut-formulas of rank < jAj. The argument is again
essentially Gentzen’s, except that symmetry demands again that the proof must
be by induction on D0 � D1 rather than on just one of the trees De . Indeed, the
proof is just an extension of Gentzen’s proof of his Hauptsatz for propositional
logic in the framework of the sequent calculus to the case of infinite disjunctions
and conjunctions.

Acknowledgements My understanding of the philosophical background of Gentzen’s work on
consistency was enhanced by reading the unpublished manuscript “On the Intuitionistic Back-
ground of Gentzen’s 1936 Consistency Proof and Its Philosophical Aspects” by Yuta Takahashi.
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Goodstein’s Theorem Revisited

Michael Rathjen

Abstract Prompted by Gentzen’s 1936 consistency proof, Goodstein found a close
fit between descending sequences of ordinals < "0 and sequences of integers, now
known as Goodstein sequences. This chapter revisits Goodstein’s 1944 paper. In
light of new historical details found in a correspondence between Bernays and
Goodstein, we address the question of how close Goodstein came to proving an
independence result for PA. We also present an elementary proof of the fact that
already the termination of all special Goodstein sequences, i.e. those induced by the
shift function, is not provable in PA. This was first proved by Kirby and Paris in
1982, using techniques from the model theory of arithmetic. The proof presented
here arguably only uses tools that would have been available in the 1940s or 1950s.
Thus we ponder the question whether striking independence results could have been
proved much earlier? In the same vein we also wonder whether the search for strictly
mathematical examples of an incompleteness in PA really attained its “holy grail”
status before the late 1970s. Almost no direct moral is ever given; rather, the paper
strives to lay out evidence for the reader to consider and have the reader form their
own conclusions. However, in relation to independence results, we think that both
Gentzen and Goodstein are deserving of more credit.

1 History

This paper grew out of a Goodstein lecture that I gave at the Logic Colloquium
2012 in Manchester. The lecture touched on many of Goodstein’s papers, though,
this chapter will just be concerned with his best known result [7] from 1944.
Whilst reading [7], I formed the overwhelming impression that Goodstein came
very close to proving an independence result. Recent archival searches by Jan von
Plato have brought to light a remarkable correspondence between Goodstein and
Bernays. These letters confirm that this impression was not unfounded. Goodstein’s
paper [7] originally bore the title “A note on Gentzen’s theorem”, thereby referring
to Gentzen’s 1936 paper [5] which proved the consistency of first order number
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theory1 by transfinite induction up to the ordinal "0. He sent it to Church in
1942 for publication in the JSL. Church sent the paper to Bernays for refereeing.
Bernays then contacted Goodstein directly and included a long list of remarks and
suggestions in his letter [2] dated 1 September 1942. As a result of these comments,
Goodstein altered his paper considerably and also changed the title to “On the
restricted ordinal theorem”. By the latter he meant the proposition that every strictly
descending sequence of ordinals below "0 is necessarily finite. As Gentzen [5]
showed, this implies the consistency of first order number theory. Crucially in his
paper Goodstein proved that this statement is equivalent to a statement P about
integers, now known as the termination of Goodstein sequences. From Bernays’
letter it is clear that the original version of Goodstein’s paper contained a claim about
the unprovability of P in number theory. Bernays in his letter correctly pointed out
that P , being of …1

1 form, is not a statement that can be formalized in Gentzen’s
system of first order number theory as it talks about all descending sequences.

The system A cannot be exactly the system denoted by Gentzen as “reine Zahlentheorie”,
since this one contains no function variables and so your theorem P is not expressible in it.
However the Gentzen proof surely can be extended to the case that free function variables
are added to the considered formal system. [2]

Unfortunately Goodstein then removed the entire passage about the unprovability
of P . He could have followed Bernays’ suggestion or he could have found an
independence result for PA proper by scrutinizing Gentzen’s proof which only
utilizes the termination of primitive recursive sequences of ordinals.2 The latter
principle is expressible in the language of PA and (in light of Goodstein’s own work)
can be shown to be equivalent to the termination of primitive recursive Goodstein
sequences (see Theorem 2.8).

Barwise [1] in the Handbook of Mathematical Logic added an editor’s note to
the famous paper by Paris and Harrington [11]:

Since 1931, the year Gödel’s Incompleteness Theorems were published, mathematicians
have been looking for a strictly mathematical example of an incompleteness in first-order
Peano arithmetic, one which is mathematically simple and interesting and does not require
the numerical coding of notions from logic. The first such examples were found early in
1977, when this Handbook was almost finished.

Barwise describes the problem of finding a natural mathematical incompleteness
in Peano arithmetic almost as a “holy grail problem” of mathematical logic. As
Goodstein almost found a mathematical example in the 1940s one wonders whether
this problem was perceived as so important back then.3 In his paper Goodstein
identifies as his main objective to determine which initial cases of Gentzen’s

1First order number theory or reine Zahlentheorie as it was called by Gentzen is essentially the
same system as what is nowadays called Peano arithmetic, PA.
2This statement may be a bit too strong since it assumes that Goodstein had penetrated the details
of Gentzen’s rather difficult paper [5].
3In view of the impact Hilbert’s problem list had on mathematics and of how Hilbert’s work
and ideas furnished the young Gödel with problem to solve, one might guess that if one of the
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restricted ordinal theorem can be proven by finistist means. Here initial cases refer
to the ordinals (in Goodstein’s notation) #n (#0 D !, #kC1 D !#k ) and the
pertaining assertions P.n/ that all descending sequences below #n are necessarily
finite. Interestingly enough, Goodstein claimed that “P.n/ is capable of a finite
constructive proof for any assigned n” [7, p. 39]. Bernays referred to this claim
in his letter from 29 September 1943 [3] when he wrote “I think, that the
methodological difficulties appearing already in the case of !!

!
, . . . , will induce

you to speak in a more reserved form about it.” Bernays’ criticism was very justified,
indeed, but this time Goodstein did not heed his advice.

In the next section we give an account of Goodman’s theorem and illuminate its
origins in Gentzen’s work. We also give two independence results from PA that by
and large can be credited to Gentzen (Theorem 2.8) and Goodstein (Theorem 2.9),
respectively. We leave it to the reader to assay whether they meet Barwise’s criteria
of being mathematically simple and interesting and not requiring the numerical
coding of notions from logic.

In the last section we give an elementary proof of Kirby’s and Paris’ 1982 result
[9] that the termination of special Goodstein sequences induced by the shift function
is not provable in PA. Yet another proof was presented by Cichon [4] in 1983. Our
main technique consists in making descending sequences of ordinals < "0 slow.
We like to think that this elementary proof could have been found in the 1940s or
at least 1950s. Such a thought could be considered to be unfair to the logicians
who, after a lot of hard technical work, established this independence result. This
is not our intention and we like to stress that their techniques were certainly not
available before the 1970s. On the other hand, we definitely think that Goodstein
and Gentzen deserve at least some credit for “their” independence results. Another
question that seems to be relevant in this context is the following: could it be that
the problem of finding statements independent from PA did not occupy centre stage
in mathematical logic before the 1970s, thereby accounting for their late arrival?4

2 Cantor Normal Forms

Let "0 be the least ordinal ˇ such that !ˇ D ˇ. Every ordinal 0 < ˛ < "0 can be
written in a unique way as

˛ D !˛1 � k1 C � � � C !˛n � kn (1)

luminaries of mathematical logic had declared the importance of this problem in the 1940s, the
young ones would have leapt at this chance and followed Gentzen’s and Goodstein’s lead.
4For what it’s worth, here is some anecdotal evidence. Around 1979, Diana Schmidt proved that
Kruskal’s theorem elementarily implies that the ordinal representation system for 	0 is well-
founded [12]. She even wrote (p. 61) that she didn’t know of any applications of her result to
proof theory. This is quite surprising since in conjunction with proof-theoretic work of Feferman
and Schütte from the 1960s it immediately implies the nowadays celebrated result that Kruskal’s
theorem is unprovable in predicative mathematics.
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where ˛ > ˛1 > � � � > ˛n and 0 < k1; : : : ; kn < !. This we call the Cantor
normal form of ˛. By writing ˛ DNF !

˛1 � k1 C � � � C !˛n � kn we shall convey
that (1) obtains.

The ordinals ˛i with ˛i ¤ 0 can also be written in Cantor normal form with
yet smaller exponents. As this process terminates after finitely many steps every
ordinal < "0 can be represented in a unique way as a term over the alphabet
!;C; �; 0; 1; 2; 3; : : : which we call its complete Cantor normal form.

In what follows we identify ordinals < "0 with their representation in complete
Cantor normal form. Henceforth, unless indicated otherwise, ordinals are assumed
to be smaller than "0 and will be denoted by lowercase Greek letters. By j˛j we
denote the length of ˛ in complete Cantor normal form (viewed as a string of
symbols). More precisely, if ˛ DNF !

˛1 � k1 C � � � C !˛n � kn we define

j˛j D maxfj˛1j; : : : ; j˛nj; k1; : : : ; kng C 1:

By C.˛/ we denote the highest integer coefficient that appears in ˛, i.e. inductively
this can be defined by letting C.0/ D 0 and

C.˛/ D maxfC.˛1/; : : : ;C.˛n/; k1; : : : ; kng

where ˛ DNF !
˛1 � k1 C � � � C !˛n � kn.

There is a similar Cantor normal form for positive integersm to any base b with
b � 2, namely we can expressm uniquely in the form

m D bn1 � k1 C � � � C bnr � kr (2)

where m > n1 > � � � > nr � 0 and 0 < k1; : : : ; kr < b. As each ni > 0 is itself
of this form we can repeat this procedure, arriving at what is called the complete
b-representation of m. In this way we get a unique representation of m over the
alphabet 0; 1; : : : ; b;C; �.

For example 7 625 597 485 157D 327 � 1C 34 � 2C 31 � 2C 30 � 2 D 33
3 C 33C1 �

2C 31 � 2C 2.

Definition 2.1 Goodstein [7] defined operations mediating between ordinals < "0
and natural numbers.

For naturals m > 0 and c � b � 2 let Sbc .m/ be the integer resulting from m

by replacing the base b in the complete b-representation ofm everywhere by c. For
example S34.34/ D 265, since 34 D 33 C 3 � 2C 1 and 44 C 4 � 2C 1 D 265.

For any ordinal ˛ and natural b � 2 with b > C.˛/ let OT!b .˛/ be the
integer resulting from ˛ by replacing ! in the complete Cantor normal form of
˛ everywhere by b. For example

OT!3 .!!C1 C !2 � 2C ! � 2C 1/ D 33C1 C 32 � 2C 3 � 2C 1 D 106:
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Conversely, for naturals m � 1 and b � 2 let Tb!.m/ be the ordinal obtained
from the complete b-representation of m by replacing the base b everywhere with
!. Thus T3!.106/ D !!C1 C !2 � 2C ! � 2C 1 and

T3!.34/ D T4!.S
3
4.34// D T4!.265/ D !! C ! � 2C 1:

We also set Tb!.0/ D 0 and OT!b .0/ WD 0.

Goodstein’s main insight was that given two ordinals ˛; ˇ < "0 one could replace
the base ! in their complete Cantor normal forms by a sufficiently large number
b and the resulting natural numbers OT!b .˛/ and OT!b .ˇ/ would stand in the same
ordering as ˛ and ˇ. This is simply a consequence of the fact that the criteria for
comparing ordinals in Cantor normal form are the same as for natural numbers in
base b-representation, as spelled out in the next lemma.

Lemma 2.2

(i) Let ˛ DNF !
˛1 � k1 C � � � C !˛r � kr and ˇ DNF !

ˇ1 � l1 C � � � C !ˇs � ks . Then
˛ < ˇ if and only if either of the following obtains:

1. There exists 0 < j � min.r; s/ such that ˛i D ˇi and ki D li for i D
1; : : : ; j � 1 and ˛j < ˇj , or ˛j D ˇj and kj < lj .

2. r < s and ˛i D ˇi and ki D li hold for all 1 � i � r .

(ii) Let b � 2, n D ba1 � k1 C � � � C bar � kr and m D ba
0

1 � l1 C � � � C ba
0

s � ls be
b-representations of integers n and m, respectively. Then n < m if and only if
either of the following obtains:

1. There exists 0 < j � min.r; s/ such that ai D a0
i and ki D li for i D

1; : : : ; j � 1 and aj < a0
j , or aj D a0

j and kj < lj .
2. r < s and ai D a0

i and ki D li hold for all 1 � i � r .

Lemma 2.3 Let m; n; b be naturals, b � 2, and ˛; ˇ be ordinals with
C.˛/;C.ˇ/ < b.

(i) OT!b .Tb!.m// D m.
(ii) Tb!. OT!b .˛// D ˛.

(iii) ˛ < ˇ , OT!b .˛/ < OT!b .ˇ/.
(iv) m < n , Tb!.m/ < Tb!.n/.

Proof (i) and (ii) are obvious. (iii) and (iv) follow from Lemma 2.2. ut
Definition 2.4 Given any natural numberm and non-decreasing function

f W N ! N

with f .0/ � 2 define

m
f
0 D m; : : : ;m

f
iC1 D Sf .i/f .iC1/.m

f
i /�� 1
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where k �� 1 is the predecessor of k if k > 0, and k �� 1 D 0 if k D 0.
We shall call .mf

i /i2N a Goodstein sequence. Note that a sequence .mf
i /i2N is

uniquely determined by f once we fix its starting pointm D m
f
0 .

The case when f is just a shift function has received special attention. Given
any m we define m0 D m and miC1 WD SiC2iC3.mi/�� 1 and call .mi/i2N a special
Goodstein sequence. Thus .mi/i2N D .m

id2
i /i2N, where id2.x/ D x C 2. Special

Goodstein sequences can differ only with respect to their starting points. They give
rise to a recursive function fgood defined as follows: fgood.m/ is the least i such that
mi D 0 where .mi/i2N is the special Goodstein sequence starting with m0 D m.

Theorem 2.5 (Goodstein 1944) Every Goodstein sequence terminates, i.e. there
exists k such that mf

i D 0 for all i � k.

Proof If mf
i ¤ 0 one has

Tf .i/! .m
f
i / D Tf .iC1/! .Sf .i/f .iC1/.m

f
i // > Tf .iC1/! .m

f
iC1/

by Lemma 2.3(iv) since Sf .i/f .iC1/.m
f
i / D m

f
iC1 C 1. Hence, as there are no infinitely

descending ordinal sequences, there must exist a k such that mf

k D 0. ut
The statement of the previous theorem is not formalizable in PA. However,

the corresponding statement about termination of special Goodstein sequences is
expressible in the language of PA as a…2 statement. It was shown to be unprovable
in PA by Kirby and Paris in 1982 [9] using model-theoretic tools. The latter article
prompted Cichon [4] to find a different (short) proof that harked back to older
proof-theoretic work of Kreisel’s [10] from 1952 which identified the so-called
< "0-recursive functions as the provably recursive functions of PA. Other results
pivotal to [4] were ordinal-recursion-theoretic classifications of Schwichtenberg
[13] and Wainer [16] from around 1970 which showed that the latter class of
recursive functions consists exactly of those elementary in one of the fast growing
functions F˛ with ˛ < "0. As F"0 eventually dominates any of these functions it is
not provably total in PA. Cichon verified that F"0 is elementary in the function fgood

of Definition 2.4. Thus termination of special Goodstein sequences is not provable
in PA.

Returning to Goodstein, he established a connection between sequences of
natural numbers and descending sequences of ordinals. Inspection of his proof
shows that, using the standard scale of reverse mathematics, it can be carried out
in the weakest system, RCA0, based on recursive comprehension (see [15]).

Theorem 2.6 (Goodstein 1944) Over RCA0 the following are equivalent:

(i) Every Goodstein sequence terminates.
(ii) There are no infinitely descending sequences of ordinals

"0 > ˛0 > ˛1 > ˛2 > � � � :
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Of course, when we speak about ordinals < "0 in RCA0 we mean Cantor normal
forms.

Proof “(ii))(i)” follows from Theorem 2.5. For the converse, assume (i) and,
aiming at a contradiction, suppose we have a strictly descending sequence of
ordinals "0 > ˛0 > ˛1 > ˛2 > � � � . Define a function f W N ! N by letting
f .i/ D maxfC.˛0/; : : : ;C.˛i /g C 1. f is non-decreasing. Let m WD OT!f .0/.˛0/. We
claim that

OT!f .i/.˛i / � m
f
i (3)

and to this end use induction on i . It’s true for i D 0 by definition. Inductively
assume mf

i � OT!f .i/.˛i /. Then

Sf .i/f .iC1/.m
f
i / � Sf .i/f .iC1/. OT!f .i/.˛i //

and hence

Sf .i/f .iC1/.m
f
i / � Sf .i/f .iC1/. OT!f .i/.˛i // D OT!f .iC1/.˛i / > OT!f .iC1/.˛iC1/ (4)

where the last inequality holds by Lemma 2.3(iii) since ˛iC1 < ˛i and

C.˛iC1/;C.˛i / < f .i C 1/:

From (4) we conclude that mf
iC1 D Sf .i/f .iC1/.m

f
i /�� 1 � OT!f .iC1/.˛iC1/, furnishing

the induction step.
Since mf

k D 0 for a sufficiently large k, (3) yields that OT!f .k/.˛k/ D 0, and hence
˛k D 0, contradicting ˛k > ˛kC1. ut

Whereas it’s not possible to speak about arbitrary Goodstein sequences in PA,
one can certainly formalize the notion of a primitive recursive sequence of naturals
in this theory. As a result of the proof of the previous Theorem we have:

Corollary 2.7 Over PA the following are equivalent:

(i) Every primitive recursive Goodstein sequence terminates.
(ii) There are no infinitely descending primitive recursive sequences of ordinals

"0 > ˛0 > ˛1 > ˛2 > � � � :

A very coarse description of Gentzen’s result [5] one often finds is that he showed
that transfinite induction up to "0 suffices to prove the consistency of first order
number theory (also known as Peano arithmetic, PA). What Gentzen actually did
is much more subtle. He defined a reduction procedure on derivations (proofs) and
showed that if successive application of a reduction step on a given derivation always
leads to a non-reducible derivation in finitely many steps, then the consistency of
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PA follows. The latter he ensured by assigning ordinals to derivations in such a way
that a reduction step applied to a reducible derivation results in a derivation with
a smaller ordinal. Let us explain in more detail how this is done in the later [6]
which uses the sequent calculus. Firstly, he defined an assignment ord of ordinals to
derivations of PA such for every derivationD of PA in his sequent calculus, ord.D/
is an ordinal < "0. He then defined a reduction procedure R such that wheneverD
is a derivation of the empty sequent in PA then R.D/ is another derivation of the
empty sequent in PA but with a smaller ordinal assigned to it, i.e.

ord.R.D// < ord.D/: (5)

Moreover, both ord and R are primitive recursive functions and only finitist means
are used in showing (5). As a result, if PRWO."0/ is the statement that there are no
infinitely descending primitive recursive sequences of ordinals below "0, then the
following are immediate consequences of Gentzen’s work.

Theorem 2.8 (Gentzen 1936, 1938)

(i) The theory of primitive recursive arithmetic, PRA, proves that PRWO."0/
implies the consistency of PA.

(ii) Assuming that PA is consistent, PA does not prove PRWO."0/.

Proof For (ii), of course, one invokes Gödel’s second incompleteness theorem. ut
So it appears that an attentive reader could have inferred the following from [5–7]

in 1944:

Theorem 2.9 Termination of primitive recursive Goodstein sequences is not prov-
able in PA.

Proof Use Theorem 2.8(ii) and Corollary 2.7. ut

3 Slowing Down

The key to establishing that already termination of special Goodstein sequences
is beyond PA is to draw on Theorem 2.8 and to show that infinite descending
sequences can be made slow. This technology was used in a paper by Simpson
[14, Lemma 3.6] where it is credited to Harvey Friedman. It would be good to know
where this padding technique was used for the first time.

Definition 3.1 Addition of ordinals ˛Cˇ is usually defined by transfinite recursion
on ˇ. For ordinals given in complete Cantor normal form addition can be defined
explicitly. We set ˛ C 0 WD ˛ and 0 C ˛ WD ˛. Now let ˛; ˇ be non-zero ordinals,
where ˛ DNF !

˛1 �k1C� � �C!˛r �kr and ˇ DNF !
ˇ1 � l1C� � �C!ˇs � ls. If ˛1 < ˇ1,

then ˛ C ˇ WD ˇ. Otherwise there is a largest 1 � i � r such that ˛i � ˇ1. If
˛i D ˇ1, then

˛C ˇ WD !˛1 � k1 C � � � C !˛i�1 � ki�1 C !ˇ1 � .ki C l1/C !ˇ2 � l2 C � � � C !ˇls � ls:
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If ˛i > ˇ1, then

˛ C ˇ WD !˛1 � k1 C � � � C !˛i � ki C !ˇ1 � l1 C � � � C !ˇls � ls:

With the help of addition we can also explicitly define multiplication !˛ � ˇ as
follows: !˛ � 0 WD 0. If ˇ DNF !

ˇ1 � l1 C � � � C !ˇs � ls then

!˛ � ˇ WD !˛Cˇ1 � l1 C � � � C !˛Cˇs � ls:

We shall use ! � ˇ to stand for !1 � ˇ.

Next we recall an elementary result that was known in the 1950s (e.g. [8]).

Lemma 3.2 For a function ` W N ! N define `0.l/ D l and `kC1.l/ D `.`k.l//.
The Grzegorczyk hierarchy .fl /l2N is generated by the functions f0.n/ D nC1 and
flC1.n/ D .fl /

n.n/.
For every primitive recursive function h of arity r there is an n such h.Ex / �

fn.max.2; Ex // holds for all Ex D x1; : : : ; xr .

Proof The proof proceeds by induction on the generation of primitive recursive
function, using properties of the hierarchy .fl /l2N. It is straightforward but a bit
tedious. We shall give it in the appendix. ut
Lemma 3.3 (PA) Let f W N ! N be primitive recursive. Then there exists a
primitive recursive function g W N2 ! !! such that

(1) g.n;m/ > g.n;mC 1/ wheneverm < f.n/.
(2) There exists a constantK such jg.n;m/j � K � .nCmC 1/ holds for all n;m.

Proof By Lemma 3.2 is suffices to show this for any f D fl in the hierarchy
.fl /l2N. We will actually obtain a 0 < k < ! such that g W N2 ! !k . To find g we
proceed by induction on l .

Base Case: f .n/ D nC 1. Define g by

g.n;m/ D .nC 2/�� m:

Induction Step: Let g W N2 ! !k satisfy the conditions (1) and (2) for f , and let
f 0 be defined by diagonalizing over f , i.e. f 0.k/ D f k.k/, where f 0.l/ D l and
f kC1.l/ D f .f k.l//. If m < f 0.n/ define g0.n;m/ by letting

g0.n;m/ D !k � .n � i/C g.f i .n/; j /;

where i and j are the unique integers such that

m D f .n/C f 2.n/C � � � C f i .n/C j;

i < n and j < f iC1.n/. If m � f 0.n/ set g0.n;m/ D 0.
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We first show that g0 satisfies requirement (1) for f 0. So suppose m < f 0.n/.
Let m D f .n/C f 2.n/C � � � C f i .n/C j with j < f iC1.n/. We distinguish two
cases. If also j C 1 < f iC1.n/, then

g0.n;mC1/ D !k �.n�i/Cg.f i .n/; jC1/ < !k �.n�i/Cg.f i .n/; j / D g0.n;m/

holds by the inductive assumption on g and f since j < f .f i .n//. The other
possible case is that j C 1 D f iC1.n/ and then we have

g0.n;mC 1/ D !k � .n � .i C 1//C g.f iC1.n/; 0/ < !k � .n � i/C g.f i .n/; j /

D g0.n;m/

since !k � .n � .i C 1//C ! � !k � .n � i/ as k > 0.
g0 also satisfies requirement (2) for f 0 since

jg0.n;m/j � constant � nC constant � .f i .n/CmC 1/

� constant � .nCmC 1/: ut
Corollary 3.4 (PA) From a given primitive recursive strictly descending sequence
"0 > ˇ0 > ˇ1 > ˇ2 > � � � one can construct a slow primitive recursive strictly
descending sequence "0 > ˛0 > ˛1 > ˛2 > � � � , where slow means that there is a
constantK such that

j˛i j � K � .i C 1/

holds for all i .

Proof By the previous Lemma let g W N
2 ! !! be chosen such that g.n;m/ >

g.n;m C 1/ for every m < jˇnC1j and jg.n;m/j � K � .n Cm C 1/ holds for all
n;m. Now set

˛j D !! � ˇn C g.n;m/

where j D jˇ0j C jˇ1j C � � � C jˇnj Cm form < jˇnC1j. For such j one computes
that

j˛j j � constant � jˇnj C constant � .nCmC 1/

� constant � .j C 1/:

We also need to determine ˛i for i < jˇ0j. For instance let

˛i D !! � ˇ0 C jˇ0j C 1 � i
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for i < jˇ0j. Clearly we can choose a constantK0 such that j˛i j � K0 � .i C 1/ for
i < jˇ0j. ut
Theorem 3.5 (PA) Let "0 > ˛0 > ˛1 > ˛2 > � � � be a slow primitive recursive
descending sequence of ordinals, i.e. there is a constantK such that j˛i j � K �.iC1/
for all i . Then there exists a primitive recursive descending sequence "0 > ˇ0 >

ˇ1 > ˇ2 > � � � such that C.ˇr / � r C 1 for all r .

Proof Obviously K > 0. Let !0 D 1 and !nC1 D !!n . As ˛0 < "0 we find s < !

such that ! � ˛0 < !s and K < s. Now put

ˇj WD
K�1�jX

iD0
!s�i

for j D 0; : : : ; K � 1, and

ˇK�.nC1/Ci WD ! � ˛n C .K � i/

for n < ! and 0 � i < K . By construction, ˇr > ˇrC1 for all r . As C.!r / D 1 for
all r , one has C.ˇj / D 1 for all j D 0; : : : ; K � 1. Moreover, as C.˛n/ � j˛nj �
K � .nC 1/, it follows that

C.ˇK�.nC1/Ci / D C.! � ˛n C .K � i// � K � .nC 1/C 1;

since multiplying by ! increases the coefficients by at most 1. As a result, C.ˇr / �
r C 1 for all r . ut
Lemma 3.6 (PA) Let "0 > ˇ0 > ˇ1 > ˇ2 > � � � be a primitive recursive
descending sequence of ordinals such that C.ˇn/ � n C 1. Then the special
Goodstein sequence .mi/i2N with m0 D OT!2 .ˇ0/ and miC1 D SiC2iC3.mi /�� 1 does
not terminate.

Proof We claim that

mk � OT!kC2.ˇk/ (6)

holds for all k.
For k D 0 this holds by definition. Assume this to be true for i , i.e. mi �

OT!iC2.ˇi /. Let ı D TiC2! .mi/. Since C.ˇi / < i C 2 it follows from Lemma 2.3(iii)
that ı � ˇi , and hence ı > ˇiC1. As C.ı/;C.ˇiC1/ < i C 3 it follows from
Lemma 2.3(iii) that OT!iC3.ı/ > OT!iC3.ˇiC1/. Thus, since

miC1 D SiC2iC3.mi/�� 1 D OT!iC3.ı/�� 1;

we arrive at miC1 � OT!iC3.ˇiC1/ as desired.
Equation (6) entailsmk ¤ 0 for all k. ut
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In sum, what we have done amounts to an elementary proof of the following
result due to Kirby and Paris [9, Theorem 1(ii)]:

Corollary 3.7 The statement that any special Goodstein sequence terminates is not
provable in PA.

Proof Let GS be the statement that every special Goodstein sequence terminates.
Arguing in PA and assuming GS, we obtain from Lemma 3.6, Theorem 3.5 and
Corollary 3.4 that there is no infinite primitive recursive descending sequence
of ordinals below "0, i.e. PRWO."0/. However, by Theorem 2.8 the latter is not
provable in PA. ut
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Appendix

It remains to prove Lemma 3.2. To this end the following is useful.

Lemma A.1 Recall that for a function h W N ! N we defined h0.l/ D l and
hkC1.l/ D h.hk.l//. Also recall that the hierarchy .fl /l2N is generated by the
functions f0.n/ D n C 1 and flC1.n/ D .fl /

n.n/. We shall write f n
l rather

than .fl /n.
Let f be any of the functions fl in this hierarchy. Then f satisfies the following

properties:

(i) f .x/ � x C 1 if x > 0.
(ii) f z.x/ � x for all x; z.

(iii) If x < y then f .x/ < f .y/ and f z.x/ < f z.y/.
(iv) flC1.x/ � fl.x/ whenever x > 0.

Proof (i)–(iii) will be proved simultaneously by induction on l . (i) and (iii) are
obvious for f D f0 and (ii) follows via a trivial induction on z. Now assume that
(i)–(iii) hold for fk and l D k C 1. For x > 0 one then computes

fl .x/ D f x
k .x/ D fk.f

x�1
k .x// � fk.x/ � x C 1

using the properties for fk . (ii) follows from this by induction on z. As to (iii), note
that

fl.x C 1/ D f xC1
k .x C 1/ D fk.f

x
k .x C 1// > fk.f

x
k .x// � f x

k .x/ D fl.x/;

using the properties for fk , and thus (iii) follows by straightforward inductions on
y and z.
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If x > 0, then flC1.x/ D f x
l .x/ D fl.f

x�1
l .x// � fl.x/ by (ii) and (iii). ut

Proof of Lemma 3.2 We want to prove that for or every primitive recursive function
h of arity r there is an n such h.Ex / � fn.max.2; Ex // holds for all Ex D x1; : : : ; xr .

We show this by induction on the generation of the primitive recursive functions.
Clearly for all n we have h.Ex/ � fn.max.2; Ex // by Lemma A.1(i) if h is any of the
initial functions x 7! 0, Ex 7! xi , and x 7! x C 1.

Now let h be defined by h.Ex / D g.'1.Ex /; : : : ; 's.Ex // and assume that the
assertion holds for g; '1; : : : ; 's . By Lemma 3.2(iv) we can then pick an n such
that g. Ey / � fn.max.2; Ey // and 'i .Ex / � fn.max.2; Ey // hold for all Ey; Ex and
1 � i � s. As a result,

h.Ex / � fn.max.2; fn.max.2; Ex //// D fn.fn.max.2; Ex /// D
f 2
n .max.2; Ex // � f max.2;Ex /

n .max.2; Ex // D fnC1.max.2; Ex //;

showing that fnC1 is a majorant for h.
Now suppose h is defined by primitive recursion from g and ' via h.Ex; 0/ D

g.Ex / and h.Ex; yC1/ D '.Ex; y; h.Ex; y// and that fn majorizes g and ', i.e. g.Ex / �
fn.max.2; Ex // and '.Ex; y; z/ � fn.max.2; Ex //. We claim that

h.Ex; y/ � fn.max.2; Ex; y//: (7)

We prove this by induction on y. For y D 0 we have h.Ex; y/ D g.Ex / �
fn.max.2; Ex // D f 1

n .max.2; Ex //. For the induction step we compute

h.Ex; y C 1/ D '.Ex; y; h.Ex; y// � fn.max.2; Ex; y; h.Ex; y///
� fn.max.2; Ex; y; f yC1

n .max.2; Ex; y//// D fn.f
yC1
n .max.2; Ex; y///

D f yC2
n .max.2; Ex; y//

where the second “�” uses the inductive assumption and the penultimate “D” uses
Lemma A.1.

From the claim (7) we get with Lemma A.1, letting w D max.2; Ex; y/, that

h.Ex; y/ � f yC1
n .max.2; Ex; y// � f wC1

n .w/ D fn.f
w
n .w// D fn.fnC1.w//

� fnC1.fnC1.w// D f 2
nC1.w/ � f w

nC1.w/ D fnC2.w/:

As a result, h.Ex; y/ � fnC2.max.2; Ex; y//. ut
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Cut Elimination In Situ

Sam Buss

Abstract We present methods for removing top-level cuts from a sequent calculus
or Tait-style proof without significantly increasing the space used for storing the
proof. For propositional logic, this requires converting a proof from tree-like to
dag-like form, but at most doubles the number of lines in the proof. For first-
order logic, the proof size can grow exponentially, but the proof has a succinct
description and is polynomial time uniform. We use direct, global constructions
that give polynomial time methods for removing all top-level cuts from proofs. By
exploiting prenex representations, this extends to removing all cuts, with final proof
size near-optimally bounded superexponentially in the alternation of quantifiers in
cut formulas.

1 Introduction

Gentzen’s technique of cut elimination, together with the closely related normaliza-
tion, is arguably the most important construction of proof theory. The importance
of cut elimination lies partly in its connections to constructivity, and indeed cut
elimination is algorithmic and can be carried out effectively. The present paper
focuses on algorithms for cut elimination in the setting of pure propositional logic
and pure first-order logic. We introduce methods for removing top-level cuts from
a proof without significantly increasing the space used for generating the proof.
Of course, it is well known that eliminating top-level cuts can make proof size grow
exponentially, so it requires some special care to describe the resulting proof without
any significant increase in space. For propositional logic, our methods require
converting a proof from tree-like to dag-like form, but at most double the number
of lines in the proof. For first-order logic, the proof size can grow exponentially;
in fact, both the number of lines in the proof and the size of the terms can grow
exponentially. However, our constructions give polynomial size dag representations
for the terms, and succinct descriptions of the proof that give a polynomial time
uniform description of the proof and its terms.
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Along with the small space usage, our cut elimination methods give direct, global
constructions. We define direct, concrete descriptions of the proof that results from
eliminating the top-level cuts. Our construction is “global” in that it operates on the
entire proof and eliminates all top-level cuts at once.

Our constructions synthesize and generalize a number of prior results from
proof complexity and continuous cut elimination. Our immediate motivation arose
from the desire to find global versions of the polynomial time algorithms for the
continuous cut elimination used by Aehlig-Beckmann [1] and Beckmann-Buss [4].
Continuous cut elimination was developed by Mints [11, 12] for the analysis of
higher order logics, and [1] introduced its use for the analysis of bounded arithmetic.
In particular, [1, 4] required polynomial time constructions of proofs. Like Mints,
they create proofs step-by-step and use a special REP (for “repetition” or “repeat”)
inference to slow down the construction of proofs. In contrast, we shall give direct
(not step-by-step) constructions, and avoid the use of a REP inference.

There is extensive prior work giving upper bounds on the complexity of cut
elimination in propositional and first-order logic, including [2, 5–8, 13, 14, 16–18].
Some of the best such bounds measure the complexity of proofs in terms of the
height of proofs [5,7,13,16–18]. Loosely speaking, these results work by removing
top-level connectives from cut formulas, at the cost of exponentiating the height
of the proof, and repeating this to remove all cuts from a proof. Zhang [17] and
Gerhardy [7] bound the height of cut free proofs in terms of the nesting of quantifiers
in cut formulas; namely, if quantifiers are nested to depth d without any intervening
propositional connectives, then cut elimination requires a height increase of only an
exponential stack of 2’s of height d C 2. They further show that cut-elimination can
remove a top-level block of 9 and _ (respectively, 8 and ^) connectives at the cost
of a single exponential increase in proof height.

In contrast, the present paper works with proof size rather than proof height.
Somewhat counterintuitively, blocks of arbitrarily nested 9 and ^ connectives
(respectively, 8 and _ connectives) can be removed all at once, with a single
exponential increase in proof size.

Krajíček [9, 10], Razborov [15], and Beckmann-Buss [3] have given complexity
bounds for reducing the depth (alternation of _’s and ^’s) of formulas in constant
depth propositional Frege or Tait-style proofs. Reducing the depth of formulas
in a proof is essentially equivalent to removing the outermost blocks of like
(propositional) connectives from cut formulas. Krajíček [9] and later Beckmann and
Buss [3] show that the depth of formulas in a constant depth proof can be reduced
from d C 1 to d at the cost of converting the proof from tree-like format to dag-
like format with only a polynomial increase in proof size. Our Theorem 3 below
is similar to Lemma 6 of [3] in this regard, but gives a more explicitly uniform
construction, and works even if there are multiple nested outermost like quantifiers
that need to be eliminated.
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This paper deals with cut elimination for a Tait-style calculus instead of a
Gentzen sequent calculus. In the setting of classical logic, our results all apply
immediately to cut elimination in a Gentzen sequent calculus.1 We assume the
reader has some familiarity with sequent calculi or Tait calculi, but Sect. 2 begins
with formal definitions of our Tait-style proof system, including definitions of proof
size and cut formula complexity. It also describes the basic ideas behind the later
constructions. Section 3 shows that, for tree-like propositional proofs, outermost
like connectives in cut formulas can be removed at the cost of converting the proof
to dag-like form, while at most doubling the number of lines in the proof. Sections 4
and 5 extend this to first-order logic, but now, instead of forming a dag-like proof
of the same size, the number of lines in the proof can become exponentially larger.
However, the exponentially long proof still has a direct, global, polynomial-time
specification. For expository purposes, Sect. 4 first shows how to eliminate all
top-level like quantifiers from cut formulas. Section 5 then combines the earlier
constructions to show how to eliminate all outermost 8 and _ connectives. In light
of the duality of the Tait calculus, this is the same as removing all top-level 9 and
^ connectives. Our constructions use direct methods that reduce the cut-formula
complexity for multiple cuts simultaneously.

So far, we have discussed only the problem of removing the top-level connectives
from cut formulas. Obviously, the process could be iterated to remove all cuts.
Define the alternating quantifier depth of a formula as the maximum number
of alternating blocks of existential and universal quantifiers along any branch in
the tree representation of the formula (with negations pushed to the atoms, but
allowing ^ and _ connectives to appear arbitrarily along the branch). Let aqd.P /
be the maximum alternating quantifier depth of any cut formula in the proof P .
Section 6 proves that it is possible to convert P into a cut free proof of the
same end cedent, with the size of P bounded by 2jP j

d for d D aqd.P / C O.1/.
Here jP j is the number of lines in P , and the superexponential function 2ad is
defined by 2a0 D a and 2aiC1 D 22

a
i . This improves on what can be obtained

straightforwardly using the constructions of Sects. 3–5 or from the prior bounds
obtained by Zhang [17], Gerhardy [7], and Beckmann and Buss [5], since we bound
the height of the stack of two’s in terms of the number of alternations of quantifiers
without regard to intervening ^’s or _’s. The basic idea for the proof in Sect. 6 is
to first modify P so that all cut formulas are in prenex form, and then apply the
results of Sect. 4. The results of Sect. 6 do not depend on either Sects. 3 or 5; but we
do appeal to constructions of [5, 7, 17] to handle removing cuts on quantifier free
formulas.

1Tait systems do not work as well as the Gentzen sequent calculus for non-classical systems such
as intuitionistic logic. Thus our results would need to be modified to apply to intuitionistic logic,
for instance.
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2 Preliminaries

2.1 Tait Calculus

Our first-order Tait system uses logical connectives ^, _, 9 and 8, and a language
of function symbols, constant symbols, and predicate symbols. Terms and atomic
formulas are defined as usual. A literal is either an atomic formula P.Es/ or a
negated atomic formula P.Es/. Formulas are formed using connectives ^, _, 8
and 9. The negation of complex formulas is inductively defined by defining .p/,
B ^ C , B _ C , .9x/A, and .8x/A to be the formulas p, B _ C , B ^ C , .8x/A,
and .9x/A, respectively.

We adopt a convention from the Gentzen sequent calculus and assume that first-
order variables come in two sorts: free variables (denoted with letters a; b; c; : : :) and
bound variables (denoted with letters x; y; : : :). Free variables cannot be quantified
and must appear only freely. A bound variable x may occur in formulas only within
the scope of a quantifier .8x/ or .9x/ that binds it.

A line of a Tait calculus proof, called a cedent, consists of a set of formulas.
The intended meaning of a cedent is the disjunction of its members. The allowable
rules of inference are shown in Fig. 1. It should be noted that an initial cedent A;A
must have A atomic. We allow Tait proofs to be either tree-like or dag-like. The
usual conditions for eigenvariables apply to 8 inferences. The formulas introduced
in the lower cedents of inferences are called the principal formula of the inference:
these are the formulas A ^ B , A _ B , .9x/A.x/, and .8x/A.x/ in Fig. 1. The
formulas eliminated from the upper cedent are called auxiliary formulas: these are
the formulas A, B , A.s/, A.b/, A, and A in the figure. The auxiliary formulas of a
cut inference are called cut formulas. Formulas that appear in the sets 	 and 	i are
called side formulas.

The ^ and cut inferences have two cedents as hypotheses, which are designated
the left and right upper cedents. For a cut inference, we require that the outermost
connective of the left cut formula A not be an ^ or 9 connective; equivalently,
the outermost connective of the right cut formula A is not _ or 8. This restriction
onA’s outermost connective causes no loss of generality, since the order of the upper
cedents can always be reversed. (We sometimes display cuts with upper cedents out
of order, however.) For an ^ inference, the left–right order of the upper cedents is

Fig. 1 The rules of inference
for a Tait system. The lines of
the proof are to be interpreted
as sets of formulas. The
formula A of the axiom rule
must be atomic. The free
variable b of the 8 inference
is called an eigenvariable and
may not occur in the lower
cedent
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dictated by the order of the conjunction; except in the case where A and B are the
same formula, and then the upper cedents are put in some arbitrary left–right order.

The left–right ordering of upper cedents allows us to define the postordering of
the cedents of a tree-like proofs. The postordering of the nodes of a tree T is the
order of the nodes output by the following recursive traversal algorithm: Starting
at the root of T , the traversal algorithm first recursively traverses the child nodes
in left-to-right order, and then outputs the root node. The postorder traversal of the
underlying proof tree induces an ordering of the cedents in the proof.

Axioms (initial cedents) and weakening inferences are ignored when measuring
the size or height ofP . Thus, the size, jP j, of a Tait proofP is defined as the number
of _, ^, 8, 9, and cut inferences in P . The height, h.P /, of P is the maximum
number of these kinds of inferences along any branch of P .

The fact that cedents are sets rather than multisets or sequences means that if a
formula is written twice on a line, it appears only once in the cedent. For instance,
in the _ inference, it is possible that A_B is a member of 	 . It is also possible that
A (say) appears in 	 , in which case both A and A _ B appear in the conclusion of
the inference. This latter possibility, however, makes our analysis of cut elimination
more awkward, since we will track occurrences of formulas along paths in the proof
tree. The problem is that there will be an ambiguity about how to track the formulaA
in the case where it “splits into two,” for example in an _ inference by both being a
member of 	 and being used to introduce A_ B . The ambiguity can be avoided by
considering proofs that satisfy the following “auxiliary condition”:

Definition A Tait proof P satisfies the auxiliary condition provided that no
inference has an auxiliary formula also appearing as a side formula. Specifically,
referring to Fig. 1, the auxiliary condition requires the following to hold:

(a) In an _ inference, neither A nor B may occur in 	 .
(b) In an ^ inference, neither A nor B may occur in 	1 or 	2.
(c) In an 9 inference, A.s/ may not occur in 	 .
(d) In a cut inference, neither A nor A may occur in 	1 or 	2.

Note that the eigenvariable condition already prevents A.b/ from occurring in the
side formulas of a 8 inference.

Lemma 1 Let P be a [tree-like] Tait proof. Then there is a [tree-like] Tait proof P 0
satisfying the auxiliary condition proving the same conclusion as P . Furthermore,
jP 0j � jP j and h.P 0/ � h.P /.

The proof of the lemma is straightforward using the fact that weakening inferences
do not count towards proof size or height.

A path in a proof P is a sequence of one or more cedents occurring in P , with
the .i C 1/st cedent a hypothesis of the inference inferring the i th cedent, for all i .
A branch is a path that starts at the conclusion of P and ends at an initial cedent.

Suppose P is tree-like and satisfies the auxiliary condition. Also suppose a
formula A occurs in two cedents C1 and C2 in P , and let A1 and A2 denote the
occurrences of A in C1 and C2, respectively. We call A1 a direct ancestor of A2
(equivalently, A2 is a direct descendant of A1) provided there is a path in P from
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C2 to C1 such that the formula A appears in every cedent in the path.2 If A1 is
the principal formula of an inference, or occurs in an axiom, that we say A1 is a
place where A2 is introduced. If A2 is an auxiliary formula, then we say A2 is the
place where A1 is eliminated. In view of the tree-like property of P , every formula
occurring in P either has a unique place where it is eliminated or has a direct
descendant in the conclusion ofP . However, due to the implicit use of contraction in
the inference rules, formulas occurring in P may be introduced in multiple places.

The notions of direct descendant and direct ancestor can be generalized to
“descendant” and “ancestor” by tracking the flow of subformulas in a proof. If I
is an ^, _, 9, or 8 inference, then the principal formula of I is the (only) immediate
descendant of each auxiliary formula of I. Then, the “descendant” relation is the
reflective, transitive closure of the union of the immediate descendant and direct
descendant relations. Namely, a formula A0 occurring in P is a descendant of a
formula A occurring in P iff there is a sequence of formula occurrences in P ,
starting with A and ending with A0 such that each formula in the sequence is
the immediate descendant or a direct descendant of the previous formula in the
sequence. We also call A an ancestor of A0.

The definitions of descendant and ancestor apply to formulas that appear in
cedents. Similar notions also apply to subformulas. Suppose A and B are formulas
appearing in cedents with B a descendant of A. Let C be a subformula of A.
We wish to define a unique subformula D of B , such that C corresponds to D.
This unique subformula is intended to be defined in the obvious way, with each
subformula in an upper cedent of an inference corresponding to a subformula in
the lower sequent. Assume P is tree-like and satisfies the auxiliary condition. The
“corresponds” relation is defined by taking the reflexive, transitive closure of the
following conditions.

• The formula A.s/ in an 9 inference corresponds to the subformula A.x/ in the
lower sequent.

• In a 8 inference, the formula A.b/ corresponds to the subformula A.x/.
• In an ^ or _ inference, the formulas A and B in the upper cedent(s) correspond

to the subformulasA andB shown in the lower cedent. Except for an _ inference
in which A and B are the same formula, the auxiliary formula corresponds to the
subformula denoted A in the lower cedent. That is, in this case, the _ inference
is treated as if it were defined as

A;	

A _ B;	
• If C is a subformula of a side formula, namely of a formula A in 	 , 	1, or 	2 in

Fig. 1, then C corresponds to the same subformula of the occurrence of A in the
lower cedent.

• If A and B appear in the upper and lower cedent of an inference and A

corresponds to B and if C is the i th subformula of A, then C corresponds to

2This definition works because P satisfies the auxiliary condition.
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the i th subformulaD of B , where the subformulas of C andD are ordered (say)
according to the left-to-right positions of their principal connectives.

It is often convenient to assume proofs use free variables in a controlled fashion.
The following definition is slightly weaker than the usual definition, but suffices for
our purposes.

Definition A proof P is in free variable normal form provided that each free
variable b is used at most once as an eigenvariable, and provided that when b is
used as an eigenvariable for inference I, then b appears in P only above I (that
is, each occurrence of b occurs in a cedent reachable from I by some path in P ).
The variables c that appear in P but are not used as eigenvariables are called the
parameter variables of P .

Any tree-like proof P may be put into free variable normal form without increasing
its size or height; furthermore, this can be done while enforcing the auxiliary
condition.

2.2 The Basic Constructions

This section describes the basic ideas and constructions used for the cut-elimination
results obtained in Sects. 3 and 4.

The first important tool is a generalization of the well-known inversion lemmas
for the outermost 8 and _ connectives of a formula. Assume we have a tree-like
proof P , in free variable normal form, that ends with the cedent 	;A _ B . Then
there is a proof P 0 of 	;A;B , with P 0 also tree-like, and with jP 0j � jP j and
h.P 0/ � h.P /. Similarly, if P ends with 	; .8x/A.x/ and t is any term, then there
is a proofP 00 of	;A.t/, withP 00 also tree-like and satisfying the same conditions on
its size and height. The proofs are quite simple: P 0 is obtained from P by replacing
all direct ancestors of A_B with A;B and removing all _ inferences that introduce
a direct ancestor of A _ B . Likewise, if t does not contain any eigenvariables of P ,
then P 00 is formed by replacing all direct ancestors of .8x/A.x/ with A.t/, and
removing the 8 inferences that introduce these direct ancestors and replacing their
eigenvariables with t .

Iterating this construction allows us to formulate an inversion lemma that works
for the entire set of outermost _ and 8 connectives. If B is a subformula of A, we
call B an _8-subformula of A if every connective of A containing B in its scope is
an _ or a 8. Similarly, a connective _ or 8 is said to be _8-outermost if it is not
in the scope of any 9 or ^ connective. Let P be a tree-like proof of 	;A, and let
B1; : : : ; Bk enumerate the minimal _8-subformulas of A in left-to-right order. The
subformulas Bi are called the _8-components of A. Note that each Bi is atomic or
has as outermost connective an ^ or an 9.

Lemma 2 Let P , A, B1; : : : ; Bk be as above. Let 
 be any substitution mapping
free variables to terms. Then there is a proof P 0 of 	
;B1
; : : : ; Bk
 such that P 0
is tree-like and jP 0j � jP j and h.P 0/ � h.P /.
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Fig. 2 A simple example of _ cut to be eliminated. Q and R are the subproofs deriving the
hypotheses of the cut

Fig. 3 The proof P 0 obtained after eliminating the cut of Fig. 2

The lemma is proved by iterating the inversion lemmas for _ and 8.
Section 3 will give the details how to simplify cuts in a propositional Tait

calculus proof by removing all outermost _ (or, all outermost ^) connectives from
cut formulas. As a preview, we give the idea of the proof, which depends on the
inversion lemma for _. Namely, suppose the proofP ends with a cut on the formula
A _ .B _ C/, as shown in Fig. 2. The right cut formula, in the final line of the
subproof R, is in the dual form A ^ .B ^ C/ of course. Now suppose that in the
subproof R there are the two pictured ^ inferences that introduce the formulas
.B ^ C/ and then A ^ .B ^ C/.

By the inversion lemma for _, the proof Q can be transformed into a proof Q0
of A;B;C; 	1 with no increase in size or height. The cut in P can thus be removed
by replacing the ^ inferences in R with cuts to obtain the proof P 0 shown in Fig. 3.
Note that this has replaced the ^ inference introducing B ^ C with two cuts, one
on B and one on C , and replaced the ^ inference introducing A ^ .B ^ C/ with a
cut on A. Overall, two ^ inferences and one cut inference in P have been replaced
by three cut inferences in P 0. More generally, due to contractions, there can be
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Fig. 4 A simple example of cuts using _ and 9 to be eliminated

Fig. 5 The results of eliminating the cuts in Fig. 4

k1 � 1 inferences in P that introduce B ^ C , and k2 � 1 inferences that introduce
A^.B^C/: these k1Ck2 many ^ inferences and the cut inference in P are replaced
by 2k1 C k2 many cut inferences in P 0. Thus the size of P 0 is no more than twice
the size of P . The catch though is that P 0 may now be dag-like rather than tree-like.

Finally, it should be noted that P 0 is obtained fromP by moving the subproofQ0
and the subproof derivingA;	3 “rightward and upward” in the proof. This is crucial
in allowing us to remove multiple cuts at once. Intuitively, the final cut of P plus all
the cuts that lie in the subproofs Q or R can be simplified in parallel without any
unwanted “interference” between the different cuts.

Figure 4 shows a proof P from which the outermost _ and 8 (dually, ^ and 9)
connectives can be removed from cut formulas. The left subproofQ can be inverted
to give a proof Q0 of A.r; s/; B.r; t/; 	1, and this is used to form the proof P 0
shown in Fig. 5. In this simple example, an ^ inference, three 9 inferences, and
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the cut inference are replaced by just two cut inferences. As in the _ example,
the proof P 0 is formed by moving (instantiations of) subproofs of P rightward.
In particular, the subproof in P ending with .9y/A.r; y/; 	3 has become a proof
of B.r; t/; 	1; 	3 and has been moved rightward in the proof so as to be cut against
B.r; t/; 	6.

The general case of removing quantifiers is more complicated, however. For
instance, there might be multiple places where the formula .9y/A.x; y/ is intro-
duced, using k1 terms s1; : : : ; sk1 . Likewise, there could be k2 terms tj used for
introducing the formula .9y/B.x; y/, and k3 terms r` for introducing the .9x/.
In this case we would need k1k2k3 many inversions of Q, namely, proofs Qi;j;`

of A.r`; si /; B.r`; tj /; 	1 for all i � j1, j � k2, and ` � k3. The result is that
P 0 can have size exponential in the size of P ; there is, however, still a succinct
description of P 0 which can be obtained directly from P . This will be described
in Sect. 4.

3 Eliminating Like Propositional Connectives

This section describes how to eliminate an outermost block of propositional
connectives from cut formulas. The construction applies to proofs in first-order
logic.

Definition Suppose B is a subformula occurring in A. Then B is an _-subformula
of A iff B occurs in the scope of only _ connectives. The notion of ^-subformula
is defined similarly.

An _-component (resp., ^-component) of A is a minimal _-subformula (resp.,
^-subformula) of A.

Definition An _/̂ -component of a cut formula in P is an _-component of a left
cut formula in P or an ^-component of a right cut formula in P .

Theorem 3 Let P be a tree-like Tait calculus proof of 	 . Then there is a dag-like
proof P 0, also of 	 , such that each cut formula of P 0 is an _/̂ -component of a cut
formula of P , and such that jP 0j � 2 � jP j and hence h.P 0/ � 2 � jP j. Furthermore,
given P as input, the proof P 0 can be constructed by a polynomial time algorithm.

Note thatP 0 is obtained by simplifying all the cut formulas in P that have outermost
connective ^ or _.

Without loss of generality, by Lemma 1, P satisfies the auxiliary condition. The
construction of P 0 depends on classifying the formulas appearing in P according
to how they descend to cut formulas. For this, each formula B in P can be put into
exactly one of the following categories (˛)–(� ).

(˛) B has a left cut formula A as a descendant and corresponds to an
_-subformula of A, or
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(ˇ) B has a right cut formula A as a descendant and corresponds to an
^-subformula of A, or

(� ) Neither (˛) nor (ˇ) holds.

Definition Let B be an occurrence of a formula in P , and suppose B is in
category (ˇ) with a cut formula A as a descendant. The formula A is a conjunctionVk
iD1Ci of its k � 1 many ^-components (parentheses are suppressed in the

notation). The formula B is a subconjunction of A of the form
V`
iDmCi where

1 � m � ` � k. The ^-components of A to the right of B are C`C1; : : : ; Ck .
The negations of these, namely C`C1; : : : ; C k , are called the pending implicants
for B .

Each formula B in P will be replaced by a cedent denoted 
.B/. For B in
category (˛), 
.B/ is the cedent consisting of the _-components of B . For B in
category (ˇ), 
.B/ is the (possibly empty) cedent containing the pending implicants
for B . For B in category (� ), 
.B/ is the cedent containing just the formula B .

Definition The jump target of a category (ˇ) formula B in P is the first cut or
^ inference below the occurrence of B which has some descendant of B as an
auxiliary formula in its right upper cedent. The jump target will be either:

D;	1 D; 	2
	1; 	2

or
C;	1 D; 	2
C ^D;	1; 	2 (1)

where the formulaD is either equal to B (a direct descendant ofB) or is of the form
..� � � .B ^B1/^ � � � ^Bk�1/^Bk/ with k � 1 (since only ^ inferences can operate
on B until reaching the jump target). The left upper cedent of the jump target (that
is,D;	1 or C;	1) is called the jump target cedent. The auxiliary formula of the left
upper cedent, that is D or C , is called the jump target formula.

We shall consistently suppress parentheses when forming disjunctions and
conjunctions. For instance, the formula ..� � � .B ^ B1/ ^ � � � ^ Bk�1/ ^ Bk/ above
would typically be written as just B ^ B1 ^ � � � ^ Bk . It should be clear from the
context what the possible parenthesizations are.

Lemma 4 Suppose B is category (ˇ) formula in P . Let C1; : : : ; Ck be as above,
so B D V`

iDmCi and the pending implicants of B are C`C1; : : : ; C k . Consider B’s
jump target, namely one of the inferences shown in (1), and let E be the jump target
formula, that is, either D or C . Then 
.E/ is equal to the cedent Cm; : : : ; C k .

Proof If the jump target of B is a cut inference, then D is
Vk
iD1Ci . In this case,

E D D is the formula C1 _ � � � _ Ck , and m D 1. It follows that E is category (˛),
and 
.E/ D C1; : : : ; C k , so the lemma holds. On the other hand, if the jump target
is an ^ inference, thenD equals Cm ^ � � � ^ Cr for some r � k, and E D C equalsVm�1
iDj Ci for some 1 � j < m. In this case, E is category (ˇ), and 
.E/ again

equals Cm; : : : ; C k . ut
Proof (of Theorem 3) The cedents of P 0 are formed by modifying each cedent �
of P to form a new cedent ��, called the 
-translation of �. A formula B occurs
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in or below � if it is in � or is in some cedent below � in P . For each � in P , the
cedent �� is defined to include the formulas 
.B/ for all formulas B which occur
in or below �.

Theorem 3 is proved by showing that the cedents�� can be put together to form
a valid proof P 0. This requires making the following modifications to P : (1) For
any inference in P that introduces an ^-component of a right cut formula, we must
insert at that point in P 0 a cut on that ^-component using (the 
-translation of) its
jump target cedent. (2) When formingP 0, we remove fromP every ^ inference that
introduces an ^-subformula of a right cut formula, every _ inference that introduces
an _-subformula of a left cut formula, and every cut inference of P . (3) Weakening
inferences are added as needed. These changes are described in detail below, where
we describe how to combine the cedents �� to form the proof P 0. We consider
separately each possible kind of inference in P .

For the first case, consider the case where � is an initial cedent B;B . (Surpris-
ingly, this is the hardest case of the proof.) Our goal is to show how the cedent ��
is derived in P 0. As a first subcase, suppose neither B nor B is in category (ˇ),
so neither descends to an ^-component of a right cut formula. Since B is atomic,
and B and B are each in category (˛) or (� ), we have 
.B/ D B and 
.B/ D B ,
respectively. The cedent �� is equal to B;B;ƒ, where ƒ contains the formulas

.E/ for all formulas E that occur below the cedent B;B . The proof P 0 merely
derives B;B;ƒ from B;B by a weakening inference. (Recall that weakening
inferences do not count towards the size or height of proofs.)

For the second subcase, suppose exactly one of B and B are in category (ˇ).
Without loss of generality, we may assume B is of category (ˇ), and B is not. The
formulaB descends to a right cut formula

Vk
iD1Bi , and corresponds uniquely to one

of its ^-components B`. We have 1 � ` � k, and B`C1; : : : ; Bk are the pending
implicants of B D B`. Since B is atomic and not in category (ˇ/, 
.B/ D B D B`.
Thus,�� is equal to

B`C1; : : : ; Bk; B`;ƒ: (2)

As before, the cedentƒ is the set of *-translations of formulas that appear below�

in P .
The jump target for B has the form

D;	1 D; 	2
Cut:

	1; 	2
or

C;	1 D; 	2^:
C ^D;	1; 	2 (3)

By Lemma 4, the 
-translation of the upper left cedent has the form

B`; : : : ; Bk;ƒ
0 (4)

where ƒ0 contains the formulas 
.E/ for all formulas E occurring in or below the
lower cedent of the inference (3). Of course,ƒ0 � ƒ. Thus, in P 0, the cedent�� is
derived from the cedent (4) by a weakening inference.
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In the third subcase, bothB andB are in category (ˇ). As in the previous subcase,

.B/ has the formB`C1; : : : ; Bk , and the 
-translation of its jump target cedent has
the form

B`; : : : ; Bk;ƒ
0

with B` D B . Likewise, 
.B/ has the form B 0
`0C1; : : : ; B

0
k0 and the 
-translation of

B’s jump target cedent has the form

B
0
`0 ; : : : ; B

0
k0 ; ƒ

00

where B 0
`0 D B. These two cedents combine with a cut on the formula B to yield

the inference

B`; : : : ; Bk;ƒ
0 B

0
`0 ; : : : ; B 0

k0 ; ƒ
00

B`C1; : : : ; Bk; B
0
`0C1; : : : ; B

0
k0 ; ƒ0; ƒ00

Since ƒ0; ƒ00 � ƒ, the cedent �� is derivable with one additional weakening
inference. This completes the argument for the case of an initial cedent. Note that
in the first two subcases, the initial cedent is eliminated, while bypassing a cut or ^
inference. In the third subcase, the initial cedent is replaced with a cut inference on
an atomic formula.

For the second case of the proof of Theorem 3, consider a weakening inference

	
	;�

in P . Here, the upper and lower sequents have exactly the same 
-translations; that
is, 	� is the same as .	;�/�. Thus the weakening inference can be omitted in P 0.

Now consider the case of an ^ inference in P :

A;	1 B; 	2
A ^ B;	1; 	2

For the first subcase, suppose that A ^ B is in category (˛) or (� ), so 
.A ^ B/ is
just A ^ B . In this case, A and B are both in category (� ), so also 
.A/ D A and

.B/ D B . The 
-translation of the ^ inference thus becomes

A;ƒ;A ^ B B;ƒ;A ^ B
A ^ B;ƒ

for suitable ƒ, and this is still a valid inference. (The formula A ^ B appears in the
upper cedents since the 
-translations of the cedents A;	1 and B;	1 must contain

.A ^ B/ D A ^ B .)

As the second subcase, suppose A ^ B is category (ˇ), and thus A and B are
also category (ˇ). Expressing the formula B as a conjunction of its ^-components
yields B D B1 ^ B2 ^ � � � ^ Bk for k � 1. Let the pending implicants of A ^ B be
C1; : : : ; C ` with ` � 0. The formula B has the same pending implicants as A ^ B .
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Similarly, 
.A/ is B1; : : : ; Bk; C 1; : : : ; C `. Thus the 
-translations of the cedents
in the ^ inference become

B1; : : : ; Bk; C 1; : : : ; C `;ƒ C 1; : : : ; C `;ƒ

C 1; : : : ; C `;ƒ

for suitable ƒ. The dashed line is used to indicate that this is no longer a valid
inference. However, since the lower cedent is the same as the upper right cedent,
this inference can be completely omitted in P 0.

Next consider the case of a cut inference in P :

A;	1 A; 	2
	1; 	2

Clearly, A is of category (˛), and A is of category (ˇ). Since A has no pending
implicants, 
.A/ is the empty cedent; thus, the 
-translation of the three cedents has
the form


.A/;ƒ ƒ

ƒ

The cut inference therefore can be completely omitted in P 0.
Now consider the case of an _ inference in P :

A;B; 	

A _ B;	
There are three subcases to consider. First, if A _ B is in category (� ), then so are
A and B . The 
-translation of the two cedents has the form

A;B;ƒ;A _ B
A _ B;ƒ (5)

This of course is a valid inference, and remains in this form in P 0.
The second subcase is when A _ B is category (˛). Expressing A and B as

disjunctions of their _-components yieldsA D A1_� � �_Ak and B D B1_� � �_B`
with k; ` � 1. The 
-translation of the _ inference is

A1; : : : ; Ak; B1; : : : ; Bk;ƒ

A1; : : : ; Ak; B1; : : : ; Bk;ƒ

and so this inference can be omitted in P 0.
The third subcase is whenA_B is category (ˇ). In this subcase,A andB are both

category (� ). We have 
.A/ D A and 
.B/ D B . And, 
.A _ B/ is C1; : : : ; C k ,
where the C i ’s are the pending implicants of A _ B , with k � 0. Thus, the 
-
translation of the cedents in the _ inference has the form

A;B;ƒ;C 1; : : : ; C k

C 1; : : : ; C k;ƒ
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Of course, this is not a valid inference. Note that the formulas C i must be included
in the upper sequent since they are part of 
.A _ B/. From Lemma 4, the upper left
sequent of the jump target of A _ B has 
-translation of the form

A _ B;C 1; : : : ; C k;ƒ
0;

whereƒ0 � ƒ. The following inferences are used in P 0 to replace the _ inference:

A _ B;C 1; : : : ; C k;ƒ
0

A;B;ƒ;C 1; : : : ; C k

A _ B;ƒ;C 1; : : : ; C k
Cut:

C1; : : : ; C k;ƒ

(6)

This cut is permitted in P 0 since A _ B is an ^-component of a right cut formula
in P . Note that the _ inference in P has been replaced in P 0 with two inferences,
namely a cut and an _ inference.

Now consider the case of a 8 inference in P

A.b/; 	

.8x/A.x/; 	
This case is handled similarly to the case of an _ inference. The formula A.b/ is
category (� ), so 
.A.b// D A.b/. If the formula .8x/A.x/ is category (˛) or (� ),
then 
..8x/A.x// D .8x/A.x/. In this case, the 
-translation of the 8 inference
gives

A.b/;ƒ; .8x/A.x/
.8x/A.x/;ƒ

for suitable ƒ. This is still a valid inference, and is used as is in P 0. Suppose, on
the other hand, that .8x/A.x/ is category (ˇ). In this case, the 
-translation of the
8 inference has the form

A.b/;ƒ;C 1; : : : ; C k

C 1; : : : ; C k;ƒ

where C1; : : : ; C k are the pending implicants of .8x/A.x/. Note this is not a valid
inference. By Lemma 4, the 
-translation of the upper left cedent of the jump target
of .8x/A.x/ is equal to

.9x/A.x/; C 1; : : : ; C k;ƒ
0;

whereƒ0 � ƒ. The following inferences are used in P 0 to replace the 8 inference:

.9x/A.x/; C 1; : : : ; C k;ƒ
0

A.b/;ƒ;C 1; : : : ; C k

.8x/A.x/;ƒ;C 1; : : : ; C k
Cut:

C1; : : : ; C k;ƒ

(7)
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Note that since P is in free variable normal form, the variable b does not appear in
the lower cedent of the new 8 inference. The 8 inference in P has been replaced
in P 0 with two inferences: a cut and a 8 inference.

The case of an 9 inference in P is handled in exactly the same way as a
8 inference. We omit the details.

The above completes the construction of P 0 from P . By construction, the
inferences in P 0 are valid. To verify that P 0 is globally a valid proof, we need to
ensure that it is acyclic, so there is no chain of inferences that forms a cycle. This
follows immediately from the fact that the inferences in P 0 respect the postorder
traversal of P . In particular, the upper left cedent of the jump target of a formula B
comes before the cedent containingB in the postorder traversal of P . Therefore,P 0
is well founded.

It is clear that P 0 can be constructed in polynomial time from P . The size of P 0
can be bounded as follows. First, each initial sequent in P can add at most one
cut inference to P 0. Each ^ inference in P can become at most one ^ inference
in P 0. Each _, 8, and 9 inference in P can become up to two inferences in P 0.
Each cut in P is replaced, at least locally, by zero inferences in P 0. Let nAx, nCut,
n^, n_, n8, and n9 denote the numbers of initial sequents, cuts, ^, _, 8, and 9
inferences in P . Then jP j equals nCut Cn^ Cn_ Cn8 Cn9, and jP 0j is bounded by
nAx C n^ C 2.n_ C n8 C n8 C n9/. Since w.l.o.g. there is at least one cut in P and
since nAx D nCut C n^ C 1, it follows that jP 0j � 2 � jP j. Q.E.D. Theorem 3. ut

4 Eliminating Like Quantifiers

We next show how to eliminate the outermost block of quantifiers from cut formulas.

Definition An 9-subformula (resp., 8-subformula) of A is a subformula that is
contained in the scope of only 9 (resp., 8) quantifiers. An 9-component (resp., 8-
component) of A is a minimal 9- or 8-subformula (respectively). A 8/9-component
of a cut formula in P is a 8-component of a left cut formula in P or an 9-component
of a right cut formula in P .

Theorem 5 Let P be a tree-like Tait calculus proof of 	 . Then there is a dag-like
proof P 0, also of 	 , such that each cut formula of P 0 is a 8/9-component of a cut
formula of P , and such that jP 0j � 4jP j=5 � .1:32/jP j and h.P 0/ � jP j. As a
consequence of the height bound, P 0 can also be expressed as a tree-like proof of
size � 2jP j. Similarly, h.P 0/ � 2h.P /.

Without loss of generality, P is in free variable normal form and satisfies the
auxiliary condition. Each formula B in P can be put in one of the following
categories (˛)–(� ):

(˛) B has a left cut formulaA as a descendant and corresponds to a 8-subformula
of A, or
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(ˇ) B has a right cut formula A as a descendant and corresponds to an 9-
subformula of A, or

(� ) Neither (˛) nor (ˇ) holds.

Definition An 9 inference as shown in Fig. 1 is critical if the auxiliary formulaA.s/
does not have an 9 as its outermost connective. The formula A.s/ is also referred
to as 9-critical. If A.s/ is furthermore of category (ˇ), then the 9-jump target of
A.s/ is the cut inference which has a descendant of A.s/ as a (right) cut formula.
The 9-jump target cedent of A.s/ is the upper left cedent of the jump target of A.s/.
This is also referred to as the 9-jump target cedent of the cedent� containing A.s/.

We now come to the crucial new definition for handling cut elimination of
outermost like quantifiers. The intuition is that we want to trace, through the
proof P , a possible branch in the proof P 0. Along with this traced out path, we
also need to keep a partial substitution assigning terms to variables: this substitution
will track the needed term substitution for forming the corresponding cedent in P 0.
First we define an “9-path” and then we define the associated substitution.

Definition A cut inference is called to-be-eliminated if the outermost connective
of the cut formula is a quantifier. An 9-path � through P consists of a sequence of
cedents �1, �2,. . . , �m from P such that �1 is the endsequent of P and such that
for each i < m, one of the following holds:

• �i is the lower cedent of a to-be-eliminated cut inference, and �iC1 is its right
upper cedent, or

• �i is the lower cedent of an inference other than a to-be-eliminated cut, and�iC1
is an upper cedent of the same inference, or

• �i is the upper cedent of an 9-critical inference, and �iC1 is the 9-jump target
cedent of �i .

The 9-path is said to lead to �m.

It is easy to verify that, for �i in � , the 9-path � contains every cedent in P
below�i .

The cedents in an 9-path are in reverse postorder from P . The effect of an 9-
path is to repeatedly traverse up to an 9-critical inference—always going rightward
at to-be-eliminated cuts—and then jump back down to the associated 9-jump
target cedent. The most important information needed to specify the 9-path is the
subsequence of cedents �i1 , �i2 ,. . . , �ik , i1 < i2 < � � � < ik which are 9-critical
and for which �i`C1 is the 9-jump target cedent of �i` . The entire 9-path can be
uniquely reconstructed from this subsequence plus knowledge of the last cedent�m

in � .
There is a substitution 
� associated with the 9-path � D h�1; : : : ; �mi. The

domain of 
� is the set of free variables appearing in or below �m plus the set of
outermost universally quantified variables occurring in the category (˛) formulas
in �m.
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Definition The definition of 
� is by induction on the length of � . First, let
.8xi / � � � .8x`/A be a formula in �m in category (˛) with i � ` such that A does
not have outermost connective 8. Since it is in category (˛), this formula has the
form .8xi / � � � .8x`/A.b1; : : : ; bi�1; xi ; : : : ; x`/, and has a descendant of the form
.8x1/ � � � .8x`/A.x1; : : : ; x`/ which is the left cut formula of a cut inference. Since
the cut is to-be-eliminated, � must reach the upper left cedent by way of a “jump”
from an 9-critical cedent �i 2 � . As pictured, the associated 9-critical formula
must have the form A.s1; : : : ; s`/:

.8xi / � � � .8x`/A.b1; : : : ; bi�1; xi ; : : : ; x`/; 	
: : :
::: . .

.

.8x1/ � � � .8x`/A.x1; : : : ; x`/; 	1

A.s1; : : : ; s`/; 	
0

.9x`/A.s1; : : : ; s`�1; x`/; 	 0

: : :
::: . .

.

.9x1/ � � � .9x`/A.x1; : : : ; x`/; 	2
	1; 	2

Note that the terms s1; : : : ; s` are uniquely determined by � , since they are found by
following the path from the upper right cedent of the cut inference to the cedent�i ,
and setting the si ’s to be the terms used for 9 inferences acting on the descendants
of A.Es/.

Let � 0 be � truncated to end at A.Es/; 	. The substitution 
� is defined to map
the bound variables xi ; : : : ; x` to the terms si
� 0 ; : : : ; s`
� 0 . (Strictly speaking, the
substitution 
� acts on the occurrences of variables, since the same variable may
be used in multiple quantifiers and in different formulas; this is suppressed in the
notation, however.)

For b a free variable appearing in or below �m, the value 
�.b/ is defined as
follows. If there is a 8 inference, below�m,

A.b/; 	

.8x/A.x/; 	
that uses b as an eigenvariable, and if .8x/A.x/ is category (˛), then define 
�.b/
to equal the value of 
� 0.a/, where � 0 is � truncated to end at the lower cedent of
the 8 inference. For example, in the proof displayed above, 
�.bi / D si . Otherwise,
if there is no such 8 inference, define 
�.b/ D b.

Definition Let A be a formula appearing in a cedent � of P . Let � be an 9-path
leading to �. Then 
�.A/ is defined as follows:

• If A is in category (˛) and has the form A D .8x1/ � � � .8x`/B with ` > 0 and
B not starting with a 8 quantifier, then define 
�.A/ to be the formula B
� ,
namely the formula obtained by replacing each xi with 
�.xi / and each free
variable b with 
�.b/.

• If A is in category (ˇ) and has outermost connective 9, then 
�.A/ is the empty
cedent.

• Otherwise 
�.A/ is the formula A
� , namely obtained by replacing each free
variable b with 
�.b/.
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ForA appearing below�, we define 
�.A/ to equal 
� 0.A/ where � 0 is � truncated
to end at the cedent�0 containingA. The 
� -translation, 
�.�/, of� is the cedent
containing exactly the formulas 
�.A/ for A appearing in or below� in P .

We can now give the proof of Theorem 5. The proof P 0 will be formed from the
cedents 
�.�/ where� ranges over the cedents of P , and � ranges over the 9-paths
leading to �. The inferences in P 0 will respect the postordering of P , and P 0 will
be a dag.

As before, we must show how to connect up the cedents 
�.�/ to make P 0 into
a valid proof. The argument again splits into cases based on the type of inference
used to infer � in P . The cases of initial cedents, _ inferences, ^ inferences, and
weakenings are all immediate. These inferences remain valid after their cedents are
replaced by their 
� -translations, since initial cedents contain only atomic formulas,
and since the 
� -translations respect propositional connectives.

Consider the case where� is inferred by a 8 inference in P :

A.b/; 	

.8x/A.x/; 	
The 9-path � ends at the lower cedent �. Define � 0 to be the 9-path that extends �
by one step to the upper cedent �0. If .8x/A.x/ and A.b/ are not in category (˛),
then 
� 0.b/ D b and the inference is still valid since the 
� 0-/
�-translations ofA.b/
and .8x/A.x/ are equal toC.b/ and .8x/C.x/ forC defined byC.b/ D A.b/
� D
A.b/
� 0 . Thus, in this case, the result is still a valid 8 inference. Otherwise, A.b/
and .8x/A.x/ are both in category (˛). In this case, 
�.A.b// D 
�..8x/A.x//;
the 8 inference has equal upper and lower cedents and is just omitted from P 0.

Now consider the case where � is inferred in P with an 9 inference:

A.s/; 	

.9x/A.x/; 	
Define � 0 as in the previous case. If A.s/ and .9x/A.x/ are not in category (ˇ),
then the 
�-translation leaves the quantifier on x untouched, and the 
� 0-/
� -
translation of the inference is still a valid inference in P 0. Otherwise, both formulas
are in category (ˇ). If A.s/ has an 9 as its outmost connective, then 
� 0.A.s// and

�..9x/A.x// are both empty, and the 
� 0- and 
� -translations (respectively) of the
upper and lower cedents are identical, and the 9 inference can be omitted in P 0. If A
does not have an 9 as its outermost connective, then the 
� 0-/
� -translations of the
cedents in the inference are


� 0.A.s//;ƒ

ƒ

where ƒ contains the formulas 
�.B/ for all formulas B , other than A.s/, which
occur in or below� in P . The upper left cedent of the 9-jump target of A.s/ has the
form

	1; .8x1/ � � � .8x`/A.x1; : : : ; x`/;
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where x D x` and A.s/ D A.s1; : : : ; s`/ with s corresponding to the term s`. Let
� 00 be the 9-path that extends � 0 by the addition of this upper left cedent. The 
� 00-
translation of the upper left cedent has the form

ƒ1;A.s1; : : : ; s`/
� 00 :

Hereƒ1 � ƒ, andA.s1; : : : ; s`/
� 00 is the same as 
� 0.A.s//. Hence, a cut inference
gives

ƒ1;A.s1; : : : ; s`/
� 00 
� 0.A.s//;ƒ

ƒ

The 9 inference in P is thus replaced with a cut inference in P 0, but on a formula of
lower complexity than the cut in P .

Finally consider the case of a cut inference in P as shown in Fig. 1 with left cut
formula A and right cut formula A. First suppose it is not a to-be-eliminated cut.
Let �1 and �2 be the 9-paths which extend � by one step to include the upper left or
right cedent of the cut, respectively. Then 
�1.A/ and 
�2.A/ are complements of
each other, and the cut remains valid in P 0. Otherwise, the cut is to-be-eliminated,
and �2 is again a valid 9-path. The right cut formula A is category (ˇ) and has
outermost connective 9. Thus 
�2.A/ is the empty cedent, so the 
�2-translation of
the right upper cedent and the 
� -translation of the lower cedent are identical. In
this case, the cut can be removed completely from P 0.

The above completes the construction of P 0. The next lemma will be used to
bound its size.

Lemma 6 Let � be a cedent in P . The number of 9-paths � to � in P is
� .1:32/jP j.

Proof Recall that an 9-path � to � can be uniquely characterized by its final
cedent �m D � and its subsequence �i1; : : : ; �ik of cedents which are 9-critical
and have �i`C1 the 9-jump target cedent of �i` . We will bound the number N of
ways to select the 9-critical cedents in this subsequence. For this, we group the
9-critical cedents of P according to their 9-jump target. Let there be m many to-
be-eliminated cut inferences in P , and suppose that the i th such cut has ni many
9-critical cedents associated with it. The i th cut also has at least one 8 inference
associated with it that introduces a 8 quantifier in its left cut formula. Therefore
jP j � Pm

iD1.ni C 2/. Each 9-path � can jump from at most one of the ni 9-critical
cedents associated with the i th cut. It follows that there are at most

Qm
iD1.ni C 1/

many 9-paths; namely, there are at most ni C 1 choices for which one, if any, of i th
cut’s associated 9-critical cedents are included in � .

To upper bound the value N D Qm
iD1.ni C 1/, take the logarithm, and upper

bound
Pm

iD1 ln.ni C 1/ subject to
Pm

iD1.ni C 2/ � jP j. For integer values of x,
.lnx/=.x C 1/ is maximized at x D 4. Thus, lnN � jP j � .ln 4/=5; that is, N �
jP j � 4jP j=5 � .1:32/jP j. ut
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The size bound of Theorem 5 follows immediately from the lemma. Namely, P 0
contains at most one cedent for each path to each cedent � in P , and thus jP 0j �
jP j � .1:32/jP j. The height bound h.P 0/ � jP j follows from the construction of P ,
since paths � traverse cedents of P in reverse postorder, and each ^, _, 9, 8, and
cut inference along � contributes at most inference to P 0. (Note that cuts contribute
an inference only when used as a jump target.) Q.E.D. Theorem 5

The proof P 0 was constructed in a highly uniform way from P . Indeed, P 0 can
be generated with a polynomial time algorithm f that operates as follows: f takes
as input a string w of length � jP j many bits, and outputs whether the string w is an
index for a cedent�w in P 0, and if so, f also outputs: (a) the cedent�w with terms
specified as dags, and (b) what kind of inference is used to derive �w, and (c) the
index w0 or indices w0;w00 of the cedent(s) from which �w is inferred in P 0. For
(a), note that the cedent �w can be written out in polynomial length only if terms
are written as dags (that is, circuits) rather than as trees (that is, as formulas). This
is because the iterated application of substitutions may cause the terms 
�.b/ to be
exponentially big when written out as formulas instead of as circuits. Also note that,
although some inferences in P 0 become trivial and are omitted in P 0, we can avoid
using REP inferences in P 0 by the simple convention that indices w that would lead
to REP inferences are taken to not be valid indices. (An example of this would be a
w encoding an 9-path leading to a to-be-eliminated cut.)

This means of course that there is a polynomial space algorithm that lists out the
proof P 0.

5 Eliminating and/Exists and or/Forall Blocks

This section gives an algorithm for eliminating outermost blocks of _/8 (equiva-
lently, ^/9) connectives from cut formulas, where the _ and 8 (resp., ^ and 9)
connectives can be arbitrarily interspersed.

Definition A subformula B of A is an _8-subformula of A if B is in the scope
of only _ and 8 connectives. The _8-components of A are the minimal _8-
subformulas of A. The ^9-subformulas and ^9-components of A are defined
similarly.

An _8/^9-component of a cut formula in P is either an _8-component of a left
cut formula of P or an ^9-component of a right cut formula of P .

Theorem 7 Let P be a tree-like Tait calculus proof of 	 . Then there is a dag-like
proof P 0, also of 	 , such that each cut formula of P 0 is an ^9=_8-component
of a non-atomic cut formula of P , and such that jP 0j � 4jP j=5 � .1:32/jP j and
h.P 0/ � jP j. Consequently, P 0 can also be expressed as a tree-like proof of size
� 2jP j.

Note that all cuts in P are simplified in P 0. The atomic cuts in P are eliminated
when forming P 0. However, new cuts are added on ^9/_8-components of cuts
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in P , and some of these might be cuts on atomic formulas. If all cut formulas in P
are atomic, then P 0 is cut free.

W.l.o.g., P is in free variable normal form and satisfies the auxiliary condition.
Each formula B in P can be put in one of the following categories (˛)–(� ):

(˛) B has a left cut formula A as a descendant and corresponds to an _8-
subformula of A, or

(ˇ) B has a right cut formula A as a descendant and corresponds to an ^9-
subformula of A, or

(� ) Neither (˛) nor (ˇ) holds.

Definition The jump target of a category (ˇ) formula B occurring in P is the first
cut or ^ inference below the cedent containing B that has some descendant of B
as the auxiliary formula D in its right upper cedent. The jump target will again be
of the form (1). Its right auxiliary formula D has a unique subformula B 0 which
corresponds to B . B 0 occurs only in the scope of 9 connectives and ^ connectives,
and only in the first argument of ^ connectives. (The last part holds since otherwise
the jump target would be an ^ inference higher in the proof.) The jump target cedent
is defined as before.

Suppose a category (ˇ) formula B has descendant D as the right auxiliary
formula of its jump target. Let the ^9-components of D be Dm; : : : ;Dk in left-
to-right order. The ^9-components of B in left-to-right order can be listed as
Bm; : : : ; B`, with each Bi corresponding to Di , with 1 � m � ` � k. The formulas
D`C1; : : : ;Dk are the pending implicants of B . The pending quantifiers of B are
the quantifiers .9x/ which appear to the right of the subformula D` in D and are
outermost connectives of ^9-subformulas ofD. Let B 0 be the subformula ofD that
corresponds to B; the current quantifiers of B are the quantifiers .9x/ in D which
contain B 0 in their scope.

The pending implicants of B will be used similarly as in the proof of Theorem 3,
but first we need to define ^9-paths and substitutions 
� similarly to the proof of
Theorem 5. Now, 
� must also map the pending quantifier variables to terms.

Definition An upper cedent � of an ^ or 9 inference is critical if the auxiliary
formula in � is either atomic or has outermost connective _ or 8.

Definition A cut inference in P is non-atomic if its cut formulas are not atomic. An
^9-path � through P consists of a sequence �1; : : : ; �m of cedents from P such
that �1 is the end cedent of P and such that, for each i < m, one of the following
holds:

• �i is the lower cedent of non-atomic cut inference, and �iC1 is its right upper
cedent, or

• �i is the lower cedent of an inference other than a non-atomic cut, and �iC1 is
an upper cedent of the same inference, or

• �i is a critical upper cedent of an ^ or 9 inference with auxiliary formula A, and
�iC1 is the jump target cedent of A.
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The next definition of 
� is more difficult than in the proof of Theorem 5 because
the substitution has to act also on the pending implicants of category (ˇ).

Definition Let � be ^9-path as above. The domain of the substitution 
� is: the free
variables appearing in or below �m, the variables of the _8-outermost quantifiers
of each category (˛) formula in �m, and the variables of the pending quantifiers of
each category (ˇ) formula in �m.3 The definition of 
� is defined by induction on
the length of � . For � containing just the end cedent, 
� is the identity mapping
with domain the parameter variables of P . Otherwise, let � 0 be the initial part of �
up through the next-to-last cedent �m�1 of � , and suppose 
� 0 is already defined.
There are several cases to consider.

(a) Suppose �m�1 and �m are the lower cedent and an upper cedent of some
inference other than a 8 inference. The 
� is same as 
� 0 .

(b) Suppose �m�1 and �m are the lower cedent and an upper cedent of a 8 infer-
ence as shown in Fig. 1. If the principal formula .8x/A.x/ is category (˛),
then 
� extends 
� 0 by letting 
�.b/ D 
� 0.x/ where .8x/ is the quantifier
introduced by the 8 inference. Otherwise, 
�.b/ D b. And, 
� is equal to 
� 0

for all other variables in its domain.
(c) Otherwise, �m is the jump target cedent of �m�1. Suppose the jump target is

an ^ inference

C;	1 D; 	2
C ^D;	1; 	2

For b a free variable in C;	1, the value 
�.b/ is defined to equal 
� 0.b/.
Similarly, for any pending quantifier .9x/ of any category (ˇ) formula in 	1
and for any _8-outermost quantifier .8x/ of any category (˛) formula in 	1,
set 
�.x/ D 
� 0.x/.

We also must define the action of 
� on the pending quantifiers of the
category (ˇ) formulaC . LetD1 be the first (leftmost) ^9-component ofD. The
cedent�m�1 has the formB1; 	3 whereB1 is an ancestor ofD and corresponds
to D1. Write D1 D D1.x1; : : : ; xj / where .9x1/; : : : ; .9xj / are the current
quantifiers for D1. Then B1 D B1.s1; : : : ; sj / where the si ’s are the terms used
for 9 inferences acting on descendants ofB1. The .9xi /’s are pending quantifiers
of C , and 
�.xi / is defined to equal si
� 0 . The rest of the pending quantifiers
of C are the pending quantifiers of B1 in the cedent �m�1: for these variables,

� is defined to equal the value of 
� 0 .

(d) Suppose that �m is the left upper cedent of the jump target of �m�1, and the
jump target is a cut inference

D;	1 D; 	2
	1; 	2

3As before, strictly speaking, a variable might be quantified at multiple places, and 
 acts on
variables according to how they are bound by a quantifier, but we suppress this in the notation.
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Let � 0 be as before, and set 
�.b/ D 
� 0.b/ for all free variables of the lower
cedent. For any pending quantifier .9x/ of any category (ˇ) formula in 	1 and
for any _8-outermost quantifier .8x/ of any category (˛) formula in 	1, set

�.x/ D 
� 0.x/. Now, let D1 D D1.x1; : : : ; xj / and B1 D B1.s1; : : : ; sj / as
in the previous case. Consider any _8-outermost quantifier .8y/ of D. If y is
one of the xi ’s, define 
�.y/ D si 
� 0 . Otherwise, .9y/ is a pending quantifier
ofD1, and a pending quantifier of B1 in �m�1, and we define 
�.y/ D 
� 0.y/.

Definition SupposeA is a formula occurring in cedent� in P , and � is an ^9-path
leading to �. The formula 
�.A/ is defined as follows:

• If A is category (ˇ), then 
�.A/ is the cedent containing the formulas B
� for
each pending implicant B of A.

• If A is category (˛), then 
�.A/ is the cedent containing B
� for each
_8-component B of A.

• Otherwise 
�.A/ is A
� .

The notation 
�.A/ is extended to apply also to A appearing in a cedent �0 below
the cedent �. Let � 0 be the initial subsequence of � leading to �0. Then define

�.A/ D 
� 0.A/. The 
� -translation of � consists of the formulas 
�.A/ such that
A appears in or below � in P .

The next lemma is analogous to Lemma 4.

Lemma 8 Suppose B is a category (ˇ) formula in a cedent � in P , and let �
be an ^9-path to �. Also suppose B does not have outermost connective ^ or 9.
Let C1; : : : ; Cm be the pending implicants of B . Let �0 be B’s jump target cedent,
and E be the auxiliary formula in �0. Then there is an ^9-path � 0 to �0 such that

� 0.E/ equals the cedent B
�; C 1
�; : : : ; Cm
� .

Proof The jump target of B is either a cut or an ^ inference as shown in (1), with B
corresponding to the first ^9-component C0 of D. The remaining ^9-components
of D are C1,. . . ,Cr where 0 � r � m. Of course, their negations are (some of the)
pending implicants of B .

Suppose the jump target is a non-atomic cut inference. Then we have r D m.
Since B does not have outermost connective ^ or 9 and since the cut formula D is
non-atomic, B is not the same as D. Consider the lowest direct descendant of B;
it appears in a cedent �00, and is the auxiliary formula of an 9 inference, or the left
auxiliary formula of an ^ inference. In either case, �00 is critical. Let � 00 be the ^9-
path consisting of the initial part of � to �00. Set � 0 to be the ^9-path that follows
� 00 and then jumps from �00 to the upper left cedent �0 of the jump target. The left
cut formula E is equal to D, and the _8-components of E are C0; : : : ; Cm. The
cedent 
� 0.E/ consists of the formulas C i
� 0 . For i D 0, 
� 0 was defined so that
C0
� 0 D B
� . Likewise, for i > 0, we have Ci
� 0 D Ci
� 00 . Also, by cases (a)
and (b) of the definition of 
� , we have Ci
� 00 D Ci
� . Thus the lemma holds.
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Second, suppose the jump target is a cut on an atomic formula. The right cut
formula is equal to B of course; the left cut formula E is equal to B . Letting � 0 be
as above, 
� 0.E/ is equal to B
� 0 D B
� as desired.

Now suppose the jump target is an ^ inference, as in (1), where E D C . If D
is atomic, then D is a direct descendant of B (possibly even the same occurrence
as B). In this case, let �00 be the cedent containingD (the upper right cedent of the
^ inference), let � 00 be the initial part of � 0 leading to �00, and let � 0 be � 00 plus the
upper left cedent�0. (Note that�0 is the jump target cedent ofD.) Then, the pending
implicants ofC in�0 areD D B andC1; : : : ; Cm. We haveD
� 0 D D
� 00 D D
�
and also Ci
� 0 D Ci
� 00 D Ci
� , so the lemma holds. Now suppose D is not
atomic. Then define � 0, � 00, and �00 exactly as in the case above where jump target
of B was a cut inference. The pending implicants of C are C0; : : : ; Cm, and, as
before, we have C0
� 0 D B
� 00 D B
� and Ci
� 0 D Ci
� 00 D Ci
� , satisfying
the conditions of the lemma. ut
Proof (of Theorem 7) The proof combines the constructions from the proofs of the
two previous theorems. For each cedent� inP and each ^9-path leading to�, form
the cedent�� as the 
�-translation of�. Our goal is to show that these cedents can
be combined to form a valid proof P 0. The proof splits into cases to handle the
different kinds of inferences in P separately. In each case, we have a cedent � and
an ^9-path � leading to �, and need to show how �� is derived in P 0.

For the first case, consider an initial cedent � of the form B;B in P . As the
first subcase, suppose neither B nor B is category (ˇ). Then �� is the cedent
B
�;B
� ;ƒ where ƒ is the cedent of formulas 
�.E/ for E a formula appearing
below � in P . This is obtained in P 0 by applying a weakening to the initial cedent
B
�;B
� .

For the second subcase, suppose B is category (ˇ) and B is not. The formula B
has a right cut formula as descendant, and corresponds to the `th ^9-component
D` of D. Let the pending implicants of B be D`C1; : : : ;Dk . By Lemma 8, there is
an ^9-path � 0 to the upper left cedent �0 of the jump target such that the auxiliary
formula E in �0 has 
� 0.E/ equal to B
�;D`
� ; : : : ;Dk
� . Thus, �� and .�0/� 0

are

B
�;D`C1
� ; : : : ;Dk
�;ƒ

and

B
�;D`C1
� ; : : : ;Dk
�;ƒ
0

where ƒ0 � ƒ. In P 0, the first cedent is derived from the second by a weakening
inference.

In the third subcase, both B and B are category (ˇ). We have 
�.B/ still equal
to D`C1
� ; : : : ;Dk
� , and now 
�.B/ is equal to D

00
`00C1
� ; : : : ;D

00
k00
� with the
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D
00
i ’s the k00 pending implicants of B. Using Lemma 8 twice, we have ^9-paths � 0

and � 00 leading to cedents�0 and�00 such that .�0/� 0

and .�00/� 00

(respectively) are

B
�;D`C1; : : : ;Dk
� ;ƒ
0

and

B
�;D
00
`00C1; : : : ;D

00
k00
�;ƒ

00

whereƒ0; ƒ00 � ƒ. In P 0, using a cut and then a weakening gives�� as desired.
Second, consider the (very simple) case where the cedent � is inferred by a

weakening inference

�0
�

where� � �0. The path � to� can be extended by one more cedent to be a path � 0
to the cedent �0. The cedents �� and .�0/� 0

are identical. Thus the weakening
inference in P is just omitted in P 0.

Now consider the case where � is the lower cedent of an ^ inference in P :

A;	1 B; 	2
A ^ B;	1; 	2

Let �1 and �2 be the left and right upper cedents, respectively, and let �1 and �2
be the ^9-paths obtained by adding �1 or �2, respectively, to the end of � . First,
suppose A ^ B is category (˛) or (� ), so 
�.A ^ B/ is .A ^ B/
� . Then A and B
are both category (� ), and 
�1.A/ D A
�1 D A
� and 
�2.B/ D B
�2 D B
� .
Thus, in P 0, the ^ inference becomes

A
�;ƒ; .A ^ B/
� B
�;ƒ; .A ^ B/
�
.A ^ B/
�;ƒ

and this is still a valid ^ inference.
For the second subcase, suppose A ^ B , thus A and B , are category (ˇ). The

formulaB in�2 has the same pending implicants C1; : : : ; C ` as the formulaA^B
in �. Also, C i
�2 D C i
� . Thus �� is the same as .�2/

�2 . This means that the
^ inference can be omitted in P 0.

Next consider the case where � is the lower cedent of a cut in P :

A;	1 A; 	2
	1; 	2

Let �1 and �2 be the left and right upper cedents, respectively, and �1 and �2 be
the extensions of � to �1 and �2. The occurrence of A is category (ˇ) of course,
and 
�2.A/ is the empty cedent. Thus, the cedents�� and .�2/

�2 are identical, and
the cut inference may be omitted from P 0.
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Next consider the case where � is the lower cedent of an _ inference:

A;B; 	

A _ B;	
In this, and the remaining cases, let �0 be the upper cedent of the inference, and let
� 0 be � extended to the cedent �0. For the _ inference, 
� 0 is identical to 
� . As
a first subcase, suppose A _ B is category (� ), and thus A and B are as well. In
this subcase, 
�.A _ B/ D .A _ B/
� , 
� 0.A/ D A
� , and 
� 0.B/ D B
� . The

� -translation of the two cedents thus forms a valid _ inference in P 0.

The second subcase is whenA_B ,A, andB are category (˛). LettingA1; : : : ; Ak
be the _8-components of A, and B1; : : : ; Bk0 be those of B , the 
� -translation of
the _ inference has the form

A1
�; : : : ; Ak
�; B1
�; : : : ; Bk0
�;ƒ

A1
�; : : : ; Ak
�; B1
�; : : : ; Bk0
�;ƒ

and this can be omitted from P 0.
The third subcase is whenA_B is category (ˇ). ThenA andB are category (� ),

and 
.A/ D A
� and 
.B/ D B
� . Also, 
.A _ B/ is C1
�; : : : ; C k
� , where the
C i ’s are the pending implicants of A_B . Thus, the 
� -translation of the cedents in
the _ inference has the form

A
�;B
�;ƒ;C 1
� ; : : : ; C k
�

C1
�; : : : ; C k
�;ƒ
(8)

Of course, this is not a valid inference. Let �00 be the upper left cedent of the jump
target of A _ B . From Lemma 8, there is an ^9-path � 00 leading to �00 so that the

� 00-translation of �00 is

.A _ B/
� ; C 1
�; : : : ; C k
�;ƒ
0

whereƒ0 � ƒ. In P 0, this cedent and the upper cedent of (8) are combined with an
_ inference and a cut to yield the lower cedent of (8), similarly to what was done
in (6).

Now consider the case where � is the lower cedent of a 8 inference

A.b/; 	

.8x/A.x/; 	
First suppose .8x/A.x/ is category (� ), so 
�..8x/A.x// D .8x/A.x/
� D
.8x/A.x/
� 0 . The formulaA.b/ is category (� ) and 
� 0.b/ D b, thus 
� 0.A.b// D
A.b/
� . The 8 inference of P becomes

A.b/
�;ƒ; .8x/A.x/
�
.8x/A.x/
� ;ƒ

and this forms a valid 8 inference in P 0.
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For the second subcase, suppose that .8x/A.x/ is category (ˇ). Hence, A.b/
is category (� ). This case is similar to the third subcase for _ inferences above.
We have 
�..8x/A.x// equal to C1
�; : : : ; C k
� where the C i ’s are the pending
implicants of .8x/A.x/. And, 
�.A.b// equals A.b/
� ; note 
�.b/ D b. Thus, the

� 0-/
�-translation of the cedents in the 8 inference has the form

A.b/
�;ƒ;C 1
�; : : : ; C k
�

ƒ;C 1
�; : : : ; C k
�
(9)

which is not a valid inference. Let �00 be the upper left cedent of the jump target
of .8x/A.x/. By Lemma 8, there is an ^9-path � 00 leading to �00 so that the 
� 00-
translation of �00 is

.8x/A.x/
�; C 1
� ; : : : ; C k
� ;ƒ
0

whereƒ0 � ƒ. In P 0, this cedent and the upper cedent of (9) are combined with an
8 inference and a cut to yield the lower cedent of (9), similarly to what was done
in (7).

For the third subcase, suppose that .8x/A.x/ is category (˛), so A.b/ is also
category (˛). By definition, 
� 0.b/ D 
�.x/. Thus, 
� 0.A.b// D A.b/
� 0 D
A.x/
� . Also, 
�..8x/A.x// D A.x/
� . Therefore, in P 0, the 8 inference
becomes trivial with�� and .�0/� 0

equal to each other; so, this inference is omitted
from P 0.

Finally, consider the case where� is the lower cedent of an 9 inference

A.s/; 	

.9x/A.x/; 	
Note that 
� 0 is the same as 
� . For the first subcase, suppose .9x/A.x/ is either
category (˛) or .�/, so A.s/ is category (� ). This gives 
� 0.A.s// D A.s/
� 0 D
A.s/
� . And, since its outermost connective is 9, 
�..9x/A.x// D .9x/A.x/
� .
The 9 inference in P becomes, in P 0,

A.s/
� ;ƒ; .9x/A.x/
�
.9x/A.x/
� ;ƒ

which is a valid 9 inference.
For the second subcase, suppose .9x/A.x/ and hence A.s/ are category (ˇ).

The two formulas have the same pending implicants, C1; : : : ; C k , for k � 0. Thus,

� 0.A.s// and 
�..9x/A.x// are both equal to the cedent C1
�; : : : ; C k
� . That is
to say,�� and .�0/� 0

are identical, and thus the 9 inference can be omitted fromP 0.
The above completes the construction of P 0 from P . The discussion at the end

of the proof of Theorem 5 applies equally well to the P 0 just constructed, and P 0 is
again polynomial time uniform. ut
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6 Bounds on Eliminating All Cuts

This section gives bounds on eliminating all cuts from a proof. The bound obtained
has the form 2

jP j
dCO.1/, where d is the maximum quantifier alternation of cut formulas

in P . The first-order formula classes †i and …i are defined as usual by counting
alternations of quantifiers, allowing propositional connectives to appear arbitrarily.
Namely, †0 D …0 is the set of quantifier free formulas; and, using Bachus-Naur
notation,

†i WWD †i�1j…i�1j†i ^†i j†i _†i j:…i j.9x/†i
…i WWD …i�1j†i�1j…i ^…i j…i _…i j:†i j.8x/…i

The alternating quantifier depth (aqd) of a cut is the minimum i > 0 such that one
cut formula is in †i and the other is in …i . The alternation quantifier depth of a
proof P , denoted aqd.P /, is the maximum aqd of any cut in P .

Theorem 9 Let P be a tree-like proof, and let d D aqd.P /. There is a cut free
proof P 0 with the same end cedent as P with the size of P 0 bounded by jP 0j �
2

jP j
dCO.1/.

The proof of the theorem depends only on Theorem 5, not on Theorems 3 and 7.
We also use upper bounds on eliminating cuts on quantifier free formulas as can be
found in [5, 7, 17].

Proof It is helpful to briefly review the well-known fact that the size of formulas
appearing in the tree-like proof P can be bounded by the number of inferences
in P plus the size of the formulas in the end cedent of P . For this, recall that
any formula B appearing in P has a unique descendent A such that A either is a
cut formula or is in the end cedent of P . In addition, B corresponds to a unique
subformula C of A. Let C be a non-atomic subformula of a formulaD in P which
has a cut formula as descendant. If there is some ancestor B of D such that B
corresponds to C and such that B is a principal formula of a logical inference, then
leave C unchanged. If there is no such ancestor D, then mark C for deletion. Now
replace every maximal subformula C in P marked for deletion with an arbitrary
atomic formula, say with dDd for d some new free variable. The proof remains a
valid proof (since only atomic formulas are allowed in initial cedents), and its end
cedent is unchanged. Clearly, in the resulting proof, every cut formula has number
of logical connectives bounded by the total number of ^, _, 9, and 8 inferences
in P . Without loss of generality, we assume this is true of the proof P itself.

The main step in proving Theorem 9 is to convertP into a proof in which all cuts
are in prenex form. As a preliminary step, we show that we may assume w.l.o.g. that
no cut formula in P has multiple quantifiers on the same bound variable, or in other
words, that the bound variables in a cut formula are distinct. Towards this end, for
each cut inference in P , with formulas A and A as its cut formulas, rename the
bound variables in A so that the quantifiers in A use distinct bound variables. This
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also renames the bound variables ofA of course. Furthermore, ifB is a formula with
descendent A or A, this induces a renaming of the bound variables in B according
to the renaming of bound variables in the subformula of A or A that corresponds
to B . By applying these renamings to all such formulasB , and repeating for all cuts
in P , we obtain a proof with the same end cedent as P such that bound variables
are never reused in cut formulas.4 So, we may assume w.l.o.g. that P satisfies this
property.

Now, for each cut in P , with cut formulas A and A, choose an arbitrary prenex
form A0 for A so that the aqd of A0 is � aqd.P /. The formula A0 is obtained
by choosing an ordering of the quantifiers in A which respects the scope of the
quantifiers, and then using standard prenex operations to move the quantifiers out to
the front of the formula in the chosen order. The prenex form .A/0 of A is chosen
with the same ordering and thus equals A0.

Let B be any formula in P with a cut formula A as descendent. The quantifiers
of A are ordered as just discussed to form its prenex form A0. Since B corresponds
to a subformula of A, this induces an ordering on the quantifiers of B; the prenex
form B 0 of B is defined using this induced ordering. On the other hand, if B has a
descendent in the end cedent of P , the formula B 0 is defined to be equal to B . For
any cedent � in P , define�0 to contain exactly the formulas B 0 for B 2 �.

The proof P 0 will contain the cedents �0 for all � 2 P . However, the ^ and _
inferences in P may no longer be valid in P 0. Cuts, weakenings, and quantifier
inferences of P do remain valid in P 0. In addition, since only atomic formulas are
allowed initial cedents, the initial cedents of P are unchanged in P 0.

In order to make P 0 a valid proof, we must replace the ^ and _ inferences of P
with some new subproofs and cuts. The next lemma gives the key construction
needed for this.

Lemma 10 Let B ^ C be the principal formula of an ^ inference in P with a cut
formula as descendent. The auxiliary formulas of the inference are B and C . Let
B 0, C 0, and .B ^ C/0 be their prenex forms in P 0. Then the cedent

B 0; C 0; .B ^ C/0 (10)

has a cut free proof of length linear in the lengths of B and C . Similarly, if B _ C
is the principal formula of an _ inference of P , then the cedents

B 0; .B _ C/0 and C 0; .B _ C/0 (11)

have cut free proofs of length linear in the lengths of B and C .

Proof Let B 0 and C 0 have the forms Q1B0 and Q2C0 where Q1 and Q2 denote
blocks of zero or more quantifiers and where B0 and C0 are quantifier free. The

4The same construction could also rename bound variables in the end cedent of P , but this would
then change the end cedent.
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formula .B ^C/0 or .B _ C/0 will have the form Q.B0 ^C0/ or Q.B0 _C0/. Here
the quantifier block Q is obtained by arbitrarily interleaving (or, “shuffling”) the two
blocks Q1 and Q2.

We claim that, for any quantifier blocks Q1 and Q2, and any block Q obtained as
a shuffle of Q1 and Q2, the cedents (10) and (11) have tree-like, cut free proofs with
size equal to the number of logical connectives in the cedents being proved. This is
proved by induction on the number of quantifiers in Q.

The base case of the induction is when Q is empty, and B and C are quantifier
free. As is well known (and easy to verify) there are proofs of the cedents B0;B0
andC0; C0 with sizes equal to twice the number of logical connectives in B0 andC0,
respectively. These two cedents plus a single ^ or _ inference suffices to derive any
of the cedents in (10) or (11).

For the induction step, suppose that Q contains at least one quantifier. The
first quantifier can have the form .9x/ or .8x/ and is also the first quantifier
of either Q1 or Q2. For instance, suppose .9x/ is the outermost quantifier of Q
and Q1. Writing B0 D B0.x/ to show the occurrences of the bound variable x,
and replacing occurrences of x with a new free variable a, the induction hypothesis
gives derivations of the cedents

Q�
1 B0.a/;Q�.B0.a/ _ C0/ and Q2C0;Q�.B0.a/ _ C0/

or

Q�
1 B0.a/;Q2C0;Q�.B0.a/ ^ C0/

where Q�
1 and Q� are the blocks Q1 and Q minus the first quantifier 9x. For the _

case, the derivation

Q2C0;Q�.B0.a/ _ C0/
Q2C0; .9x/Q�.B0.x/ _ C0/

gives the desired derivation of Q2C0;Q.B0 _ C0/; and the derivation

Q�
1 B0.a/;Q�.B0.a/ _ C0/

Q�
1 B0.a/; .9x/Q�.B0.x/ _ C0/

.8x/Q�
1 B0.x/; .9x/Q�.B0.x/ _ C0/

gives the desired derivation of Q1B0;Q.B0 _ C0/. Note that the second inference
is a 8 inference; by the assumption of distinctness of bound variables, the
eigenvariable a does not appear in C0.

A similar argument works for the ^ case. The cases where outermost quantifier
of Q is .8x/ are also similar. ut
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We can now complete the proof of Theorem 9. The proof P 0 is formed from
the cedents �0 defined above. Using the cedents �0 maintains the validity of all
inferences except for some of the _ and ^ inferences. InP 0 these inferences become

B 0; 	 0
1 C 0; 	 0

2

.B ^ C/0; 	1; 	2
and

B 0; C 0; 	
.B _ C/0; 	

and these are no longer valid if their principal formula contains quantifiers and has
a cut formula as descendent. However, the ^ inference can be simulated by using
two cuts against the cedent B 0; C 0; .B ^ C/0 given by Lemma 10. Likewise, the
_ inference can be simulated by using two cuts with the cedents B 0; .B _ C/0 and
C 0; .B _ C/0. This process replaces one inference in P with two cuts in P 0; in
addition, P 0 must contain the derivations of the cedents as given by Lemma 10.
Since the formulas .B ^ C/0 and .B _ C/0 have cut formulas as descendents, their
sizes are bounded by jP j as discussed at the beginning of the proof. Therefore, the
size of jP 0j can be bounded by jP 0j � 3jP j2, since the size of the proofs from
Lemma 10 is strictly less than 3jP j.

The proof P 0 has all cut formulas in †d or …d , where d D aqd.P /. It suffices
to assume d > 0. Applying Theorem 5 d times gives a tree-like proof P 00 with the

same end cedent, in which all cut formulas are quantifier free, with h.P 00/ � 2
3jP j2
d�1 .

Now, applying Theorem 8 of [5] and the discussion from the end of Sect. 4 of [5], we

get a proofP 000 of the same end cedent with height bounded by h.P 000/ � 2jP j23jP j2
d�1 ,

such that all cut formulas in P 000 are atomic. Then, applying Lemma 7 of [5], we get
another proof P 0000 again with the same end cedent, which is cut free, and has height

bounded by 2h.P
000/C1. In particular, the size of P 0000 is less than 2h.P

000/C1
2 .

Therefore, jP 0000j < 2
jP j
dC2, at least for jP j > 7. For d > 0, this gives jP 0000j <

2
jP j
dC2 for jP j > 7. This completes the proof of Theorem 9. ut

The size bound on P 000 is not optimal; we expect that even 2jP j
dC1 might work.
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Spector’s Proof of the Consistency of Analysis

Fernando Ferreira

1 Introduction

The editors of this volume asked me to present and discuss Clifford Spector’s
proof of the consistency of analysis. It is only fitting that, in a volume dedicated
to Gerhard Gentzen, known for his epoch-making consistency proof of Peano
arithmetic PA, Spector’s proof of consistency of analysis is discussed. Gentzen’s
approach to consistency proofs has been systematically developed and generalized
by the German school of proof theory (Schütte, Pohlers, Buchholz, Jäger, Rathjen,
etc.) and others. For all its successes (and there were many), the approach is still
very far from providing a proof of the consistency of full second-order arithmetic
PA2 (analysis). There are quite serious difficulties in analyzing systems above
…1
2-comprehension. In the words of Michael Rathjen in [32], the more advanced

analyses “tend to be at the limit of human tolerance.” How is it, then, that Spector
was able to provide a proof of the consistency of analysis? What kind of proof
is it? Spector’s proof follows quite a different blueprint from Gentzen’s. It does not
reduce PA2 to finististic arithmetic together with the postulation of the well-ordering
of a sufficiently long primitive recursive ordinal notation system. Instead, it reduces
(in a finitary manner) the consistency of analysis to the consistency of a certain
quantifier-free finite-type theory. The epistemological gain, if there is one, rests in
the evidence for the consistency of Spector’s quantifier-free theory.

The proof of Spector was published posthumously in 1962 (Spector died young
of acute leukemia). It is a descendant of Gödel’s interpretation of PA in 1958, in
which it was shown that PA is interpretable in Gödel’s quantifier-free finite-type
theory T. In the last paragraph of his paper [11], Gödel writes that “it is clear
that, starting from the same basic idea, one can also construct systems that are
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much stronger than T, for example by admitting transfinite types or the sort of
inference that Brouwer used in proving the ‘fan theorem’.” Spector took up the latter
suggestion. The Brouwerian kind of inference that Gödel is presumably referring to
is the bar theorem (a corollary of which is the ‘fan theorem’). Brouwer’s justification
of the bar theorem is object of controversy (see [3] for Brouwer’s own rendition and
[37] for a modern defense and references) and not really formulated in a workable
form. Following Stephen Kleene’s enunciation in [21], the bar theorem is nowadays
admitted in intuitionistic mathematics in the form of an axiom scheme known as bar
induction. Spector follows this approach and advances two moves: he generalizes
bar induction to finite types and, in a bold stroke, introduces a corresponding
principle of definition known as (Spector’s) bar recursion. In his own words, “bar
recursion is a principle of definition and bar induction a corresponding principle
of proof.” One cannot but think of a parallel with ordinary recursion and ordinary
induction. Spector’s quantifier-free finite-type theory adjoins to Gödel’s T new
constants for the bar recursors and accepts the pertinent equations that characterize
them. He is then able to show that analysis is interpretable in this extension of
Gödel’s T.

This paper is organized as follows. In the next section, we review Gödel’s
dialectica interpretation of 1958. We describe a direct interpretation of PA into
T, instead of Gödel’s own which relies on the interpretation of Heyting arithmetic
accompanied by a double negation translation of classical logic into intuitionistic
logic. The direct interpretation is very simple and was first described by Joseph
Shoenfield in his well-known textbook [34]. Section 3 and 5 introduce bar recursion.
In the first of these sections, we discuss bar recursion from the set theoretic point
of view. As opposed to standard treatments of bar recursion, we take some time
doing this. We have in mind the reader unfamiliar with bar recursion but comfortable
with the basics of set theory. One of the aims of this paper is to explain Spector’s
proof to a logician not trained in proof theory or constructive mathematics. Two
set-theoretic discussions are made. The first focuses on well-founded trees and their
ordinal heights. The second has the advantage of immediately drawing attention to
the principle of dependent choices, a principle which plays an important role in the
discussions of bar recursion. Armed with the set-theoretic understanding, in Sect. 5
we finally discuss bar recursion from an intuitionistic point of view.

The interim Sect. 4 introduces Spector’s quantifier-free theory with the bar recur-
sive functionals of finite type. It also briefly mentions the two main models of this
theory. Sections 6 and 7 are the heart of the paper. They present the interpretation
of analysis into Spector’s theory. The original proof is based on the interpretation of
the so-called classical principle of numerical double negation shift (principle F in
Spector’s paper), and this is sufficient to interpret full second-order comprehension.
The technical matter boils down to solving a certain system of equations in finite-
type theory, and the bar recursive functionals permit the construction of a solution.
The solution of these equations is ad hoc (Paulo Oliva was, nevertheless, able to find
a nice motivation for it in [31]). The interpretation of bar induction is more natural
because bar induction and bar recursion go hand in hand, in a way similar to that
of induction and recursion in Gödel’s dialectica interpretation (see the discussion
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in [7]). Moreover, it provides additional information. We owe to William Howard
in [14] the interpretation of bar induction into Spector’s theory. Our paper develops
Howard’s strategy directly for the classical setting.

The paper includes a short appendix. It discusses a sort of perplexity caused
by the existence of the term model of Spector’s theory, a structure whose infinite
numerical sequences are all recursive. How can bar recursion hold in such a classical
structure when models of bar recursion are usually associated with producing non-
recursive objects? The answer lies in the failure of quantifier-free choice in the term
model and reveals a little of the subtlety of Spector’s interpretation.

The main body of the paper finishes with an epilogue in which Spector’s
consistency proof is briefly assessed. We hope that this writing is able to convey
to the uninitiated a little of the depth and beauty of Spector’s proof of consistency,
and also that the expert finds some interest in the paper.

2 Gödel’s Dialectica Interpretation of 1958

David Hilbert did not precisely define what finitary mathematics is, but a very
influential thesis of William Tait [39] identifies finitism with the quantifier-free
system of primitive recursive arithmetic. This theory concerns only one sort of
objects: the natural numbers. These are, in the Hilbertian terms as exposed by Gödel
in his 1958 paper, “in the last analysis spatiotemporal arrangements of elements
whose characteristics other than their identity or nonidentity are irrelevant.” Gödel
considers an extension of finitism (the work concerns, as its title says, “a hitherto
unutilized extension of the finitary standpoint”), viz. a certain quantifier-free, many-
sorted, theory. Its “axioms (. . . ) are formally almost the same as those of primitive
recursive number theory, the only exception being that the variables (other than
those on which induction is carried out), as well as the defined constants, can be
of any finite type over the natural numbers” (quoted from [11]). The variables
are supposed to range over the so-called computable functionals of finite type (a
primitive notion for Gödel). This is the crux of the extension: the requirement that
the value of the variables be concrete (“spatiotemporal arrangements”) is dropped,
and certain abstracta are accepted.

The current literature has some very clear descriptions and explanations of
Gödel’s theory T. Easily available sources are Avigad and Feferman’s survey in [1]
and Kohlenbach’s monograph [25]. The latter source includes a detailed treatment of
Spector’s bar recursive interpretation (different from the one presented here). In the
present section, we briefly highlight the main features of T but the reader is referred
to the above sources for details and pointers to the literature. The quantifier-free
language T of T has infinitely many sorts (variable ranges), one for each finite type
over the natural numbers. These types are syntactic expressions defined inductively:
N (the base type) is a finite type; if � and 
 are finite types, then � ! 
 is a
finite type. These are all the types. It is useful to have the following (set-theoretic)
interpretation in mind: the base type N is the type constituted by the natural numbers
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N, whereas � ! 
 is the type of all (total) set-theoretic functions of objects of type
� to objects of type 
 . To ease reading, we often omit brackets and associate the
arrows to the right. For example, N ! N ! N means N ! .N ! N/. T has a
denumerable set of variables x
 , y
 , z
 , etc. for each type 
 . When convenient, we
omit the type scripts. There are two kinds of constants:

(a) Logical constants or combinators. For each pair of types 
; � there is a logical
constant …
;� of type 
 ! � ! 
 . For each triple of types ı; 
; � there is a
logical constant †ı;
;� of type .ı ! 
 ! �/ ! .ı ! 
/ ! .ı ! �/.

(b) Arithmetical constants. The constant 0 of type N. The successor constant S of
type N ! N. For each type 
 , there is a recursor constant R
 of type N !

 ! .
 ! N ! 
/ ! 
 .

Constants and variables of type 
 are terms of type 
 . If t is a term of type 
 ! �

and q is a term of type 
 , then one can form a new term, denoted by App.t; q/, of
type � (t is said to be applied to q). These are all the terms. We write tq or t.q/ for
App.t; q/. We also write t.q; r/ instead of .t.q//.r/. In general, t.q; r; : : : ; s/ stands
for .: : : ..t.q//.r// : : :/.s/.

The intended meaning of these constants is given by certain identities. There
are the identities for the combinators: ….x; y/ is x and †.x; y; z/ is x.z; yz/. The
identities for the combinators make possible the definition of lambda terms within
Gödel’s T: given a term t
 and a variable x� , there is a term q��
 (denoted by the
lambda notation �x:t) whose variables are all those of t other than x, such that,
for every term s of type � , one has the identity between qs and t Œs=x� (the notation
‘Œs=x�’ indicates the substitution of the variable x by the term s in the relevant
expression). For the recursors, we have the following identities: R.0; y; z/ is y and
R.Sx; y; z/ is z.R.x; y; z/; x/. These identities formulate definitions by recursion.

We have been speaking loosely about identities because there are subtle issues
concerning the treatment of equality in functional interpretations: consult [40] and
[1] for discussions. (These issues surface because extensional equality suffers from
a serious shortcoming with respect to the dialectica interpretation, viz: the axiom of
extensionality, i.e., the postulation that extensional equality enjoys substitution salva
veritate fails to be interpretable. This was shown by Howard in [15].) We adopt the
following minimal treatment: there is only the symbol for equality between terms
of the base type N, and the formulas of T are defined as Boolean combinations
of equalities of the form t D q, where t and q are terms of type N. How are the
identities for the combinators and recursors to be formulated within this framework?
They give rise to certain axiom schemes. For instance, the axioms for the recursors
are given by the equivalences AŒR.0; y; z/=w� $ AŒy=w� and AŒR.Sx; y; z/=w� $
AŒz.R.x; y; z/; x/=w�, where A is any formula of T with a distinguished variable w.

The axioms of T are the axioms of classical propositional calculus, the axioms
of equality x D x and x D y ^ AŒx=w� ! AŒy=w� (A is any formula of T ,
and x, y and w are of type N, of course), the schemata coming from the identities
of combinators and recursors and, finally, the usual arithmetical axioms for the
constants 0 and S , namely: Sx ¤ 0 and Sx D Sy ! x D y. There are also two
rules. The rule of substitution that allows to infer AŒs
=x� from A and the rule of
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induction that, from A.0/ and A.xN/ ! A.Sx/ allows the inference of A.x/ (in
both rules, A can be any formula of T ).

We have described Gödel’s quantifier-free, many-sorted, system T. Gödel
showed that it is possible to interpret Heyting arithmetic (and, hence, Peano
arithmetic) into T in a finitistic way. This result entails that the consistency of
PA is finitistically reducible to the consistency of a natural extension of finitism. In
the sequel, we describe Gödel’s result. We formulate a direct interpretation of an
extension (to finite types) of PA into T. The extension, which we denote by PA! , is
a quantifier version of T. Its language L! is obtained from T by adding quantifiers
for each type. Formulas of L! can now be constructed in the usual way by means
of quantification. Note that the quantifier-free fragment of L! is constituted exactly
by the formulas of T . PA! is formulated in classical logic. Its axioms consist of the
universal closures of the axioms of T and the induction scheme constituted by the
universal closures of

A.0/ ^ 8xN.A.x/ ! A.Sx// ! 8xA.x/

whereA can be any formula of L! . There is (now) no (need for the) substitution rule
nor (the) induction rule. PA! can be considered an extension of first-order arithmetic
PA because both sum and product can be defined using the recursors. As an aside,
it is now possible to define equality x D
 y in higher types by 8F 
�0.Fx D Fy/.
With this Leibnizian definition, we have the usual properties of equality (reflexivity,
symmetry, transitivity and substitution salva veritate, but not that it coincides with
extensional equality).

We are now ready to define an interpretation of PA! into T. As noted in the
introduction, this interpretation is due to Shoenfield in [34]. Like all functional
interpretations, it consists of a trade-off between quantifier complexity and higher
types. Since the logic is classical, we may assume that the primitive logical
connectives are disjunction, negation and universal quantifications.

Definition To each formula A of the language L! we assign formulas AS and AS

so that AS is of the form 8x9yAS.x; y/, with AS.x; y/ a quantifier-free formula of
L! , according to the following clauses:

1. AS and AS are simply A, for atomic formulas A.

If we have already interpretations of A and B given by 8x9yAS.x; y/ and
8z9wBS.z;w/ (respectively), then we define:

2. .A _ B/S is 8x; z9y;w.AS.x; y/ _ BS.z;w//.
3. .:A/S is 8f 9x:AS.x; f x/.
4. .8uA.u//S is 8u8x9yAS.x; y; u/.

In the above, the underlined variables denote tuples of variables (possibly
empty). In the sequel, we omit the underlining. For example, .:A/S is written as
8f 9x:AS.x; fx/. The formulas AS are the matrices of AS. For instance, .:A/S
is :AS.x; fx/. There is a principle of choice that plays a fundamental role in
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Shoenfield’s interpretation. It is the quantifier-free axiom of choice in all finite types,
denoted by AC!

qf:

8x
9y�Aqf.x; y/ ! 9f 
��8xAqf.x; fx/

where 
 and � are any types and Aqf is a quantifier-free formula. This principle
is called the characteristic principle of Shoenfield’s interpretation because of the
following result:

Proposition (Characterization of Shoenfield’s Interpretation) For any formula
A of L! , the theory PA! C AC!

qf proves the equivalenceA $ AS.

The proposition is easy to prove by induction on the complexity of A. All the
clauses of Shoenfield’s translation, with the exception of negation, give rise to
classically equivalent formulas. The choice principle AC!

qf is exactly what is needed
to deal with the negation clause. We are now ready to state Gödel’s result of 1958
in the form that is most convenient for us:

Theorem (After Gödel and Shoenfield) Let A be a sentence of L! . If PA! C
AC!

qf ` A, then there are closed terms t (of appropriate types) of T such that
T ` AS.x; tx/.

The proof is not difficult, but it is delicate at some points. One works with a
suitable axiomatization of classical logic (the one given by Shoenfield in [34] is
specially convenient) and with the usual axioms of arithmetic (it is simpler to work
with an induction rule instead). It can be shown that the axioms are interpretable and
that the rules of inference preserve the interpretation. Roughly, the logical part of
the calculus is dealt by the combinators whereas the recursors are used to interpret
induction. The quantifier-free axiom of choice is interpretable (essentially) because
of the way that the clause of negation is defined. The remaining axioms are universal
and, therefore, trivially interpretable. This is an obviously finitistic proof.

3 What is Bar Recursion? Set-Theoretic Considerations

Let C and D be non-empty sets, and let F W C<N 7! D, G W C<N �DC 7! D and
Y W CN 7! N be given functions (here, C<N denotes the set of all finite sequences
of elements of C ). We introduce some notation. First, we distinguish an element
0C of C . Given s 2 C<N, denote by jsj the length of s D hs0; s1; : : : ; sjsj�1i;
if s; t 2 C<N, s 
 t is the concatenation of s with t . For i � jsj, let sji be the
sequence hs0; : : : ; si�1i. To each finite sequence s 2 C<N, we denote by Os the
infinite sequence of CN which prolongs s by zeroes. More precisely: Os.i/ D si ,
for i < jsj; Os.i/ D 0C , for i � jsj. Finally, for x 2 CN and i a natural number, x.i/
is the finite sequence hx.0/; : : : ; x.i � 1/i.
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A function B from C<N to D is defined by bar recursion from F , G and Y if it
satisfies the following equality:

B.s/ D
(
F.s/ if 9i � jsj .Y.bsji / � i/;

G.s; �w:B.s 
 hwi// otherwise:

(The knowledgeable reader will notice that the above definition is slightly different
from Spector’s definition. The present definition has the advantage of having the
functional Y directly related to a certain tree—as will be discussed below.) The
above specification does not always define a total function. Take, for instance, the
functional Y W NN 7! N given by

Y.x/ D
�
0 if 8k .x.k/ ¤ 0/;

i C 1 if x.i/ D 0 ^ 8k < i .x.k/ ¤ 0/:

Then, with appropriate F and G, we could consider

B.sN
<N
/ D

(
0 if 9i � jsj .Y.bsji / � i/;

1C B.s 
 h1i/ otherwise

but it is easy to argue that B is not defined on the empty sequence hi.
There is a simple condition on the function Y whose validity ensures that B is

always defined. Consider the tree

TY WD fs 2 C<N W 8i � jsj.Y.bsji / > i/g.

(This set is a tree because whenever s 
 t 2 TY then s 2 TY .) We say that the tree
TY is well founded if 8x 2 CN9i .x.i/ … TY /, i.e., 8x 2 CN9i .Y.bx.i// � i/. We
call the latter condition, Spector’s condition for Y .

Theorem Let Y W CN 7! N be given. The function Y satisfies Spector’s condition
if, and only if, there is a map hgt from TY into the ordinals such that, whenever s is
a strict subsequence of t , then hgt.t/ < hgt.s/.

Proof Suppose that there is an order inverting map hgt as above. Let x 2 CN be
given and assume, in view of a contradiction, that 8i .x.i/ 2 TY /. Since, for each
natural number i , x.i/ is a strict subsequence of x.i C 1/, then hgt.x.i C 1// <

hgt.x.i//. This gives an infinite descending sequence of ordinals, a contradiction.
Now, let us assume that Y satisfies Spector’s condition, i.e., that the tree TY

is well founded. Suppose, in order to reach a contradiction, that there is no order
inverting map from TY into the ordinals. This assumption implies that TY ¤ ;.
Given s 2 TY , let TY =s be ft 2 C<N W s 
 t 2 TY g. Note that TY =s is a non-empty
tree. Consider the subset T � TY constituted by the finite sequences s 2 TY such
that TY =s is a tree for which there is no order inverting map to the ordinals. Since
hi 2 TY and TY D TY =hi, we have hi 2 T . Moreover, it is clear that T is a subtree
of TY . We claim that T has no endnodes, i.e., we show that if s 2 T then there is
w 2 C such that s 
 hwi 2 T . Suppose not. Then there is s 2 T such that, for each
w 2 C , we can find an ordinal ˛w and an order inverting map hw from TY =.s 
 hwi/
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into ˛w. Let ˛ D supw2C .˛w C 1/ (the axiom of replacement of Zermelo-Fraenkel
set theory is being used in this argument), and define

h.t/ WD
�
˛ if t D hi;
hw.q/ if t D hwi 
 q

for all t 2 TY =s. By construction, h is an order inverting function from TY =s into
the ordinals. This is a contradiction.

Now, since T is a non-empty tree without endnodes, then T has an infinite path,
i.e., there is a function x W N 7! T such that, for all natural numbers i , x.i/ 2 T .
This path is actually also a path through TY , contradicting Spector’s condition for Y .

ut
If Y satisfies Spector’s condition, the above theorem permits to justify bar

recursive definitions by transfinite recursion. In order to see this, note that if s 2 TY ,
w 2 C and s 
 hwi 2 TY , then we have hgt.s 
 hwi/ < hgt.s/. So B.s/ is defined
by G.s; �w:B.s 
 hwi//, an operation that only uses values of B at points of TY of
smaller ordinal height than s (the points outside TY pose no problem).

There are two important conditions that easily ensure Spector’s condition for the
function Y . One is the continuity condition:

8x 2 CN9k 2 N8y 2 CN .y.k/ D x.k/ ! Y.x/ D Y.y//:

The other is the (weaker) bounding condition:

8x 2 CN9n 2 N8i 2 N Y.bx.i// < n:

As we will briefly discuss in the next section, these two conditions are related to
important structures for bar recursion. However, the bounding condition seems to
be more fundamental (see [8]).

We saw that bar recursion is a form of definition by transfinite recursion on
well-founded trees. We used set-theoretic arguments at will. The existence of the
bar recursive functionals for well-founded Y is, nevertheless, amenable to a more
elementary set theoretic treatment. It is sufficient to be able to form certain subsets
of Z � C<N �D and to use the following principle of dependent choices:

8s 2 C<N9w 2 C A.s; s 
 hwi/ ! 9x 2 CN8i 2 NA.x.i/; x.i C 1//

for suitable predicates A. (This principle ensures that there are “enough” infinite
sequences around.) Let us briefly see why this is so.

Suppose that Y satisfies Spector’s condition. A setZ � C<N�D is a partial bar
function, and we write P.Z/, if Z is a partial function (i.e., whenever .s; d / 2 Z

and .s; d 0/ 2 Z then d D d 0) and, for all s 2 C<N with s 2 dom.Z/, either
s … TY ^Z.s/ D F.s/ or

s 2 TY ^ 8w 2 C .s 
 hwi 2 dom.Z/ ^Z.s/ D G.s; �w:Z.s 
 hwi///.
We claim that if P.Z/ and P.W / then P.Z [ W /. First, observe that it is easy

to argue that if s 2 dom.Z/ \ dom.W / and Z.s/ ¤ W.s/ then there exists w 2 C
such that s 
 hwi 2 dom.Z/ \ dom.W / and Z.s 
 hwi/ ¤ W.s 
 hwi/. Now, if Z
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and W are not compatible at a certain given sequence s 2 C<N, then (by the above
observation) there must exist an infinite path x 2 CN such that x.jsj/ D s and, for
all natural numbers i � jsj, x.i/ 2 dom.Z/ \ dom.W / and Z.x.i// ¤ W.x.i//.
Of course, the existence of this path requires the principle of dependent choices.
Clearly, we have 8i .x.i/ 2 TY / and this contradicts the well-foundedness of TY .

Let U WD SfZ W P.Z/g. By the discussion above, it is clear that P.U /. Note,
also, thatC<NnTY � dom.U /. If we show thatU is a total function, i.e., defined for
every s 2 C<N, then U is the bar functional that we want. The following fact is easy
to prove: if s 2 C<N and, for all w 2 C , s 
 hwi 2 dom.U /, then s 2 dom.U /. If
s … TY , there is nothing to prove. If s 2 TY , then P.U [f.s; G.s; �w:U.s
hwi///g/.
By the maximality of U , s 2 dom.U /. Now, to see thatU is a total function assume,
in order to get a contradiction, that there is a sequence s 2 C<N such that s …
dom.U /. Using the above fact and dependent choices, it is easy to obtain x 2 CN

such that, for all natural numbers i , if i � jsj, then x.i/ … dom.U /. This entails
8i .x.i/ 2 TY /, contradicting the well-foundedness of TY .

4 Spector’s Quantifier-Free Theory for Bar Recursion

In [36], Spector introduces a logic-free theory of computable functionals of finite
type (called †4 in Spector’ paper). In this section, we describe a quantifier-free
variant of †4 building on Gödel’s quantifier-free theory T described in Sect. 2. The
terms of the language of Spector’s theory include the terms of T together with those
obtained by term application from new constants B
;� of type

.
<N ! �/ ! .
<N ! �
 ! �/ ! ..N ! 
/ ! N/ ! 
<N ! �;

one for each pair of types 
; � . We are casually using the type 
<N of finite
sequences of elements of type 
 even though this is not a primitive type of
our language. It is nevertheless possible to deal with finite sequences via a pair
consisting of an infinite sequence and a natural number (whose intended meaning
is to signal the truncation of the infinite sequence at the length of the given natural
number). We will not worry about these technical issues in here. Let us denote the
extended quantifier-free language by TBR. Its formulas are built as in Gödel’s T, only
now with new terms coming from the bar constants. The theory T C BR includes
the rule of induction (and substitution) for the new formulas and the quantifier-free
bar axioms (naturally) associated with the following equality:

B
;� .F;G; Y /.s/ D
(
F.s/ if 9i � jsj.Y.bsji / � i/;

G.s; �w:B
;� .F;G; Y /.s 
 hwi// otherwise

where, of course, F , G, Y and s are variables of types 
<N ! � , 
<N ! �
 ! � ,
.N ! 
/ ! N and 
<N, respectively. As noted in the previous section, the above
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definition of bar recursion is not quite the same as Spector’s. It is easy to see that our
theory is included in Spector’s theory. We do not know if they are the same theory.

We saw that the set-theoretical structure is not a model of T C BR. This is one
of the main differences between Gödel’s T and Spector’s T C BR: the former,
but not the latter, has the usual set-theoretic interpretation. This is due to the fact
that definitions by ordinary number recursion are always available set-theoretically
whereas definitions by bar-recursion depend on a certain well-foundedness con-
dition (Spector’s condition). Spector’s theory enjoys the astonishing property that
every functional whose type is of the form .N ! 
/ ! N automatically satisfies
Spector’s condition (cf. Kreisel’s trick in Sect. 6). The property of well-foundedness
is unconditionally associated with certain functionals, unlike in ordinary settings
where one must always explicitly hypothesize conditions for it. This feature
is related to certain intuitionistic ideas according to which uniform continuity
automatically holds for real-valued functions defined on a closed bounded interval.

The first rigorous proofs that certain structures are models of Spector’s T C BR
only appeared in the early seventies. If we put aside the term model (see [42]
or [30]), Bruno Scarpellini’s proof in [33] that the structure of all sequentially
continuous functionals is a model of T C BR is, to my knowledge, the first such
rigorous proof. Spector’s condition of the pertinent functionals is assured by the
continuity condition mentioned in the previous section. Together with the fact that
all functions with domain the (discrete topological) space of the natural numbers
are sequentially continuous, it ensures—as we saw—that bar recursive functionals
can be defined (one has also to check that they are sequentially continuous). Anne
Troelstra shows in [42] that the structures ICF! and ECF! of the intensional
(respectively, extensional) continuous functionals are models of T C BR (it can be
proven that the extensional structure is isomorphic to Scarpellini’s model—cf. [19]).
These structures, based on continuity assumptions, are natural to consider because
they flow from the very intuitionistic ideas that were at the source of Spector’s
interpretation (see the next section). In 1985, Marc Bezem presents a quite different
model. Bezem’s structure [2] uses the so-called strongly majorizable functionals and
admits discontinuous functionals. Spector’s condition of the pertinent functionals
is assured by the bounding condition mentioned in the previous section. Since all
infinite sequences of (strongly) majorizable functionals are, themselves, strongly
majorizable (i.e., are in Bezem’s model), bar recursive functionals can be defined
(of course, one must also check that the functionals so obtained are strongly
majorizable). All rigorous proofs that some structures are models of Spector’s theory
appeared quite some years after 1962. This fact is a source of amazement for me,
and it tells much about the spell of intuitionism among some logicians at the time.

As in the case of Gödel’s T, we can extend the quantifier-free language of the
theory T C BR to a quantificational language L!BR and consider the corresponding
quantificational theory PA! C AC!

qf C BR. This theory consists of PA! C AC!
qf,

allowing now for the new formulas in the schemata of induction and quantifier-free
choice, together with the new bar axioms.
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Theorem (Soundness Theorem for Bar Recursion) Let A be a sentence of the
language of L!BR. If PA! C AC!

qf C BR ` A, then there are closed terms (of
appropriate types) of TBR such that T C BR ` AS.x; tx/.

Proof The proof of the soundness of Shoenfield’s interpretation needs hardly any
additional work because the new bar axioms are universal closures of quantifier-free
formulas and, hence, are automatically interpreted (by themselves). ut

5 What is Bar Recursion? Brouwerian Considerations

Spector’s paper is entitled “Provably recursive functionals of analysis: a consistency
proof of analysis by an extension of principles formulated in current intuition-
istic mathematics.” According to Georg Kreisel in p. 161 of [29], the long title
incorporates contributions by Spector, Gödel and Kreisel himself. Be that as it
may, the catchword ‘extension’ is common to the title of Gödel’s paper of 1958.
Spector’s paper, like Gödel’s, tries to reduce the consistency of a classical theory
to the acceptance of an extension of a certain foundational framework: Hilbert’s
finitism in Gödel’s paper, Brouwer’s intuitionism in Spector’s case. Furthermore,
both extensions share a similar pattern: they follow Gödel’s cherished idea of
“gain(ing) knowledge abstractly by means of notions of higher type” (quoted from
Gödel’s [11]).

A form of bar induction commonly accepted in intuitionistic mathematics is
monotone bar induction. In the following, we formulate this principle in the
language of finite-type arithmetic L! . The type 
 and the formulas P andQ below
are unrestricted (note that, in Brouwerian intuitionism, 
 must be the type N of the
natural numbers): If

Hyp1. 8xN�
9kNP.x.k//

Hyp2. 8s
<N8i � jsj.P.sji / ! P.s//

Hyp3. 8s
<N
.P.s/ ! Q.s//

Hyp4. 8s
<N
.8w
Q.s 
 hwi/ ! Q.s//

then Q.hi/.
It is easy to argue that this principle is set-theoretically true (contrast this fact

with bar recursion). Suppose thatQ.hi/ is false. Then, by Hyp4, there is w0 such that
:Q.hw0i/. By Hyp 4 again, there is w1 with :Q.hw0;w1i/. We can continue this
process and get a sequence w of elements of type 
 such that 8k 2 N:Q.w.k//.
Of course, a form of dependent choices is needed to arrive at this conclusion. By
Hyp3, 8k 2 N:P.w.k//. This contradicts Hyp1. Notice that the monotonicity
condition Hyp2 was not used in the argument. Even though Hyp2 is not needed to
justify classically the principle of bar induction, without Hyp2 the principle is not
intuitionistically acceptable (because it would entail the lesser limited principle of
omniscience, a weaker form of excluded middle also rejected by the intuitionists:
cf. exercise 4.8.11 in [41]).
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Together with a continuity argument, the above principle of bar induction proves
(intuitionistically) the existence of the bar recursive functionals. Take F , G and
Y as in the previous section. Let P.s


<N
/ be 9i � jsj.Y.bsji / � i/ and define

Q.s

<N
/ by:

9B8t
<N
Œ.P.s 
 t/ ^ B.s 
 t/ D F.s 
 t// _

.:P.s 
 t/ ^ B.s 
 t/ D G.s 
 t; �w
 :B.s 
 t 
 hwi///�
where the variables have appropriate types. It is clear that Hyp2 and Hyp3 hold. The
verification of Hyp4 uses an intuitionistically admissible form of choice. Hyp1 is
true by appealing to the continuity of the functional Y (this is the only place in the
argument which is not set-theoretically sound). Therefore, we can conclude Q.hi/,
i.e., that there exists the bar functional B.F;G; Y /. It is also not difficult to prove
(by bar induction) that this functional is unique.

We have shown that bar recursion of type 
 reduces intuitionistically to bar
induction of the same type (with the aid of a principle of continuity). Can bar
recursion of finite type be constructively justified? The matter was taken up in a
seminar on the foundations of analysis led by Kreisel at Stanford in the summer of
1963, and a report [27] circulated. The answer was that “for the precise formulation
in this report of constructive principles implicit in known intuitionistic mathematics,
the answer is negative by a wide margin (. . . ).” What are these principles? They
“concern primarily functionals of finite and transfinite types, free choice sequences,
and generalized inductive definitions.” The story of the accomplishments of the
seminar and of the ensuing work over the next years is long-winded. To cut through
the fog, I believe that it is fair to say that the proof-theoretic strength of the
principles of intuitionistic mathematics considered by Kreisel lies at the level of
the theory ID1 of non-iterated monotone inductive definitions. They are enough
to justify bar recursion of type N (i.e., when 
 is N) and perhaps (by slightly
stronger theories) also of type N ! N (see Sect. 7 of [18]), but not more. The
results were certainly disillusioning. Kreisel confides in [28] that “when I originally
considered the extension of [Spector] to analysis I believed that the particular notion
of functional of finite type there described could be proved by intuitionistic methods
to satisfy [the functional interpretation of analysis]. Put differently, I thought that
the existing intuitionistic theory of free choice sequences, especially if one uses the
formally powerful continuity axioms, was of essentially the same proof theoretic
strength as full classical analysis!” (italics as in the original). As we now know, ID1

has the proof-theoretic strength of…1
1-comprehension without set parameters and it

is a far cry from full second-order comprehension.
Note, however, that the answer is negative as measured against existing intu-

itionistic theory. The title of Spector’s paper explicitly mentions an extension of
principles formulated in current intuitionistic mathematics. We believe that the
benefits of Spector’s consistency proof have to be judged on its own terms: against
the intuitionistic plausibility of the extension proposed. In the Stanford report,
Kreisel writes that, according to Gödel, “if one finds Brouwer’s argument for the bar
theorem conclusive then one should accept the generalization in Spector’s paper.”
(Interestingly, it is added that “nothing much was intended to follow from this
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because [Gödel] does not find Brouwer’s argument conclusive.” In the same vein,
Spector says in his paper that the bar theorem is itself questionable and in need of
a suitable foundation.) I see in Gödel’s opinion the implication that a conclusive
argument for the bar theorem would generalize to bar induction in finite types. It
would be expedient if the specialists who are convinced by Brouwer’s argument
could give their assessment of its possible generalization to higher types. There is
also the other leg of the argument, the one regarding the continuity condition. In an
intuitionistic setting, continuity is a consequence of Brouwer’s doctrine about choice
sequences. Their analogue in Spector’s framework are sequences of higher type
functionals (vis-à-vis sequences of concrete natural numbers). Do choice sequences
of higher-order abstracta make sense for the ‘creating subject’?

6 Bar Recursion Entails Bar Induction (in the Presence
of Quantifier-Free Choice)

We prove a result that is preparatory for interpreting analysis in Spector’s T C BR,
viz. that a certain simplified form of bar induction is a consequence of PA!CAC!

qfC
BR. The next proposition is instrumental in showing this. It says that, in the presence
of BR, functionals of type Y .N�
/�N automatically satisfy Spector’s condition:

Proposition (Kreisel’s trick [26]) For any type 
 , the theory PA! CBR proves the
sentence 8Y .N�
/�N8xN�
9iN .Y.bx.i// � i/.

Proof Fix Y and x. DefineW W 
<N ! N by bar recursion in the following way:

W.s/ WD
(
0 if 9i � jsj .Y.bsji / � i/;

1CW.s 
 hx.jsj/i/ otherwise

and let h.k/ WD W.x.k//. By definition, it is clear that

h.k/ D
(
0 if 9i � k .Y.bx.i// � i/;

1C h.k C 1/ otherwise:

Let k be given. Clearly, if h.k/ ¤ 0 and i � k, then h.0/ D i C h.i/. In
particular, if h.k/ ¤ 0, h.0/ D k C h.k/. Instantiating k by h.0/, we can conclude
that if h.h.0// ¤ 0 then h.0/ D h.0/ C h.h.0//. Therefore, h.h.0// D 0. By
definition of h, we conclude that 9i � h.0/ .Y.bx.i// � i/. ut

Given a type 
 and an existential formula P.s/ with a distinguished variable s of
type 
<N, we consider the following simplified version of monotone bar induction,
denoted by BI�9 : From the three hypotheses

H1. 8xN�
9kNP.x.k//
H2. 8s
<N8i � jsj .P.sji / ! P.s//

H3. 8s
<N
.8w
P.s 
 hwi/ ! P.s//

one can conclude P.hi/.
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Theorem (After Howard) The theory PA! C AC!
qf C BR proves BI�9 .

Proof Let P.s/ be the existential statement 9a�Pqf.s; a/, where s has type 
<N and
Pqf is a quantifier-free formula. Assume the hypotheses of bar-induction. By the first
hypothesis, 8x9k; aPqf.x.k/; a/. By AC!

qf, there are functionals Y W .N ! 
/ ! N
andH W .N ! 
/ ! � such that

H̃1. 8x Pqf.x.Yx/;Hx/.

By the second hypothesis, 8s8i � jsj8a9b.Pqf.sji ; a/ ! Pqf.s; b//. Hence, by
AC!

qf, there is a functional F W 
<N ! N ! � ! � such that

H̃2. 8s8i � jsj8a .Pqf.sji ; a/ ! Pqf.s; F.s; i; a///.

By AC!
qf, it is easy to see that 8s; f 
��9w; b .Pqf.s 
 hwi; f w/ ! Pqf.s; b// is

equivalent to the last hypothesis of bar induction. Using AC!
qf to witness w and b

and then disregarding the witness of w, there is G W 
<N ! .
 ! �/ ! � such
that

H̃3. 8s; f .8wPqf.s 
 hwi; f w/ ! Pqf.s; G.s; f ///.

Let us define, by bar-recursion, the following functional:

B.s/ WD
(
F.s; Y.csji0 /;H.csji0 // if 9i � jsj .Y.bsji / � i/;

G.s; �w:B.s 
 hwi// otherwise

where i0 is the least number i such that Y.bsji / � i .
We claim that, for all s of type 
<N, if 9i � jsjY.bsji / � i , then Pqf.s;Bs/. In

fact, by H̃1, we have Pqf.csji0 .Y.csji0 //;H.csji0 //. Since Y.csji0 / � i0 � jsj, the finite

sequence csji0 .Y.csji0 // is actually the sequence sj
Y.bsji0 /

. Hence,Pqf.sj
Y.bsji0 /

;H.csji0 //.
Using H̃2, we get Pqf.s; F.s; Y.csji0 /;H.csji0 ///, that is, Pqf.s;Bs/.

Secondly, we claim that, for all s of type 
<N, if 8i � jsjY.bsji / > i , then

8wPqf.s 
 hwi; B.s 
 hwi// ! Pqf.s;Bs/:

To see this, suppose that 8wPqf.s 
 hwi; B.s 
 hwi//. Let f WD �w:B.s 

hwi/. With this notation, we have 8wPqf.s 
 hwi; f w/. By H̃3, we conclude that
Pqf.s; G.s; f //, that is, Pqf.s;Bs/.

Of course, the above two claims entail that, for every s of type 
<N,

8wPqf.s 
 hwi; B.s 
 hwi// ! Pqf.s;Bs/:

Therefore,

8s Œ:Pqf.s;Bs/ ! 9w:Pqf.s 
 hwi; B.s 
 hwi//�:
By AC!

qf, there is a functional T W 
<N ! 
 such that

8s Œ:Pqf.s;Bs/ ! :Pqf.s 
 hT si; B.s 
 hT si//�:
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We now define, by recursion, a functional z of type N ! 
 according to the
following clause: z.k/ D T .hz.0/; z.1/; : : : ; z.k � 1/i/. Note that z.0/ D T .hi/. By
construction, we have

:Pqf.z.k/; B.z.k/// ! :Pqf.z.k C 1/; B.z.k C 1///;

for every natural number k.
Suppose, in order to reach a contradiction, that the conclusion of bar-induction

fails, i.e., that :P.hi/. Therefore, 8a:Pqf.hi; a/. In particular, :Pqf.z.0/; B.z.0///.
By induction, we get :Pqf.z.k/; B.z.k///, for all kN. This contradicts the fact that,

by Kreisel’s trick, there is iN such that Y.bz.i// � i and, hence, by the first claim
above, that Pqf.z.i/; B.z.i///. ut

We finish this section with a discussion concerning equality. At a certain point of
the previous argument, we apparently used the axiom of extensionality. The finite

sequences csji0 .Y.csji0// and sj
Y.bsji0 /

are extensionally equal. As a result, we used the

implication

Pqf.csji0 .Y.csji0//;H.csji0 // ! Pqf.sjY.bsji0 /;H.
csji0 //;

which amounts to a substitution salva veritate. Actually, by carefully defining the
notion of finite sequence, this implication can be justified without any extensionality
assumptions, and the theorem above is correct as it stands (i.e., based on the
minimal theory PA!). There are alternatives, though: one way out is not to worry
about the precise definition of finite sequences and simply admit in our theory the

universal statements j � i � jsj ^ ˆ.bsji .j // ! ˆ.sjj /. Granted, this is an ad
hoc maneuver (but quite an admissible one). A more systematic way of getting
the desired universal statements is to include in our base theory a so-called weak
extensionality rule. This is the choice of Spector in his original paper. In [25],
Kohlenbach follows this route and the reader is directed to this reference for a
thorough discussion of this rule.

7 The Interpretation of Analysis

Analysis, a.k.a. full second-order arithmetic PA2, is the extension of first-order
arithmetic PA to a language L2 with a new sort of (second-order) variables for sets
of natural numbers, a new kind of atomic formulas taking the form ‘t 2 X ’, where
t is a first-order term and X is a second-order variable, and whose axioms include
the full comprehension scheme:

9X8x .x 2 X $ A.x//
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where A is any formula of L2 (first and second-order parameters are allowed).
Induction in PA2 can be stated by the single axiom

8X.0 2 X ^ 8x.x 2 X ! Sx 2 X/ ! 8x.x 2 X//.
Given that we have full comprehension, induction actually applies to every formula
of the second-order language. The language L2 can be embedded into L! by letting
the number variables run over arguments of type N, letting the set variables run over
variables of type N ! N subjected to a process of normalization (so that they take
values in f0; 1g), and by interpreting t 2 X by X.t/ D 0.

We need three definitions within L! :

Definition The principle of full numerical comprehension CAN is the following
scheme:

9f N�N8xN.fx D 0 $ A.x//

where A is any formula.

Definition The principle of dependent choices DC! is the following scheme:

8x
9y
A.x; y/ ! 8u
9f N�
 .f 0 D u ^ 8kA.f k; f .k C 1///;

where 
 is any type and A is any formula. The restriction of the above principle to
universal formulas A is denoted by DC!

8.

Definition The principle of numerical choice ACN;! is the following scheme:

8k9x
A.k; x/ ! 9f N�
8k A.k; f k/;
where 
 is any type and A is any formula. The restriction of this principle when 

is the type of natural numbers N is denoted by ACN;N.

Proposition (Easy Facts)

1. PA! C BI�9 ` DC!
8.

2. PA! C AC!
qf C DC!

8 ` DC! .

3. PA! C DC! ` ACN;! .
4. PA! C ACN;N ` CAN.

Proof Let A.x
 ; y
 / be a universal formula such that 8x9yA.x; y/. Fix u
 . We
must show that there is f W N ! 
 such that f 0 D u and 8kA.f k; f .kC1//. Take
v
 such that A.u; v/ and define the following existential formula P.s
<N/:

P.s/ WD 9i � jsj:A..hu; vi 
 s/i ; .hu; vi 
 s/iC1/.
By the choice of v, it is clear that :P.hi/. We claim that the hypotheses H2 and

H3 of BI�9 hold for P . This is straightforward for H2 and not so difficult to verify
for H3. Suppose that, for a given s
<N one has 8wP.s 
 hwi/. This means that, for
all w
 , either

9i � jsj:A..hu; vi 
 s 
 hwi/i ; .hu; vi 
 s 
 hwi/iC1/
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or :A..hu; vi 
 s 
 hwi/jsjC1; .hu; vi 
 s 
 hwi/jsjC2/. The first disjunct is equivalent
to P.s/ whereas the second is equivalent to :A.z;w/, where z D v if jsj D 0 and
z D sjsj�1 otherwise. By the arbitrariness of w, one has P.s/ _ 8w:A.z;w/. This
entails P.s/ and, therefore, the verification of H3 is finished.

By BI�9 , we must conclude that H1 fails for P . Therefore,

9xN�
8k8i � k A..hu; vi 
 x.k//i ; .hu; vi 
 x.k//iC1/.
It is now clear that the function

f .k/ WD
8
<

:

u if k D 0;

v if k D 1;

x.k � 1/ if k � 2

satisfies f 0 D u and 8kA.f k; f .k C 1//.
We have just proved the first easy fact. (This argument is basically in the appendix

of [14].) In order to prove the second fact, take A.x
 ; y
 / any formula such
that 8x9yA.x; y/ and fix u
 . By Proposition 2, the formula A.x; y/ is equivalent
to 8w9zAS.w; z; x; y/ for w and z of appropriate types. Using AC!

qf, A.x; y/ is
equivalent to 9h8wAS.w; hw; x; y/. By hypothesis, and inserting a dummy variable
g (of the same type as h), we have

8x; g9y; h8wAS.w; hw; x; y/.

Since AS is quantifier-free, we are in the conditions of application of DC!
8.

Therefore, there are f N�
 and appropriate l such that f .0/ D u and

8k8wAS.w; l.k C 1/w; f k; f .k C 1//.

We conclude that 8kA.f k; f .k C 1//.
Let us now consider the third fact. Suppose that 8k9x
A.k; x/. Fix u such that

A.0; u/. Clearly, 8k; x9n; y .n D k C 1 ^ A.n; y//. By DC! , there are f N�
 and
gN�N such that f .0/ D u, g.0/ D 0 and 8k.g.k C 1/ D g.k/ C 1 ^ A.g.k C
1/; f .k C 1///. It is clear, by induction, that 8k.gk D k/. It easily follows that
8kA.k; f k/.

The proof of the fourth fact is well known. Take an arbitrary formula A.kN/.
Clearly, 8k9n..n D 0^A.k//_ .n D 1^ :A.k///. By ACN;N, there is f N�N such
that, for all kN, A.k/ if, and only if, f k D 0. ut

Howard’s theorem of the previous section, together the above facts, entails that
DC! is a consequence of the theory PA! C AC!

qf C BR. We highlight the following
result:

Corollary The theory PA! C AC!
qf C BR proves CAN.

By the above corollary, PA2 can be considered a subtheory of PA! C AC!
qf C

BR. For ease of reading, in the next theorem we identify a formula of L2 with its
translation into L! .
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Theorem (After Spector) Let A be a sentence of the language of second-order
arithmetic. If PA2 ` A, then there are closed terms t (of appropriate types) of TBR

such that T C BR ` AS.x; tx/.

Proof Suppose that PA2 ` A. By the discussion above, PA! C AC!
qf C BR ` A. By

the soundness theorem of Sect. 4, the result follows. ut
Note that the above proof is finitistic. Therefore, by considering the formula A

to be 0 D 1, this theorem shows that the consistency of analysis is finitistically
reducible to the consistency of Spector’s quantifier-free theory T C BR.

Let us finish this section with some remarks concerning subsystems of T C BR.
The restriction of TCBR to bar recursion of type N is very-well understood (see the
next section), and it has played a fruitful role in the foundations of mathematics. For
instance, Kohlenbach gave in [23] a particularly perspicuous analysis of arithmetical
comprehension based on the bar-recursorBN;N�N.

8 Epilogue

Spector’s consistency proof is a beautiful and sophisticated piece of work. It
provides a surprising way of replacing the comprehension principles of analysis
by forms of transfinite recursion. But, as a consistency proof, does it command
any epistemological conviction? In Sect. 5, we defended that the most promising
argument for a possible epistemological gain provided by Spector’s proof is still
the original intended one: to rely on an extension of the principles of Brouwerian
intuitionism by considering the generalization of bar induction to finite types. It
is nevertheless an almost universal conviction that Brouwer’s argument for the bar
theorem is inconclusive, let alone its possible extension to higher types. With no
conclusive arguments for the extension, nothing much is attained.

Other readings of Spector’s proof are possible. Spector’s proof reduces the
comprehension principles of analysis to the termination of some effective processes
(viz, to the normalization of the closed terms of TBR). This is no mean achievement.
The postulation of the normalization of the closed terms of TBR is sufficient to prove
(modulo some weak arithmetic) the consistency of analysis. Proofs of normalization
for the terms of TBR do exist in the literature (they, in fact, guarantee the existence
of the term model). The first such proof is, to my knowledge, due to Tait in [38].
Of necessity (by Gödel’s second incompleteness theorem), these proofs use proof-
theoretic power stronger than the power of analysis. Tait’s proof is not ordinal
informative. However, the situation is different for some subclasses of TBR. There
are proofs of the normalization of the terms of Gödel’s T by the method of assigning
to them ordinals less than �0 (see [40] for references), therefore providing another
route to Gentzen’s proof of the consistency of PA. Moreover, Helmut Vogel and
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Howard gave in [44], [16] and [17] a detailed ordinal analysis of bar recursion of
type N. As far as we are aware, ordinal analyses of stronger forms of bar recursion
have not been pursued.

The most important benefits of Spector’s proof probably lie elsewhere. Not in
consistency proofs but in applications to the extraction of computational information
from ordinary proofs of mathematics. The methods of Kohlenbach’s proof mining
(conveniently reported in [25]) can be applied to full second-order arithmetic
because of the work of Spector. Kohlenbach, as a matter of course, works with
systems with full second-order comprehension. In more recent studies, bar recursion
has also been extended to new types, used to interpret—for instance—abstract
normed spaces (see [24] and [10]). Even though the uses of bar recursion have
not yet shown up in an essential way in the analyses of ordinary mathematical
proofs, the situation can—in principle—change. Kohlenbach’s methods are also
deeply interwoven with questions of uniformity (i.e., the obtaining of bounds
independent from some parameters), including a set-theoretic false uniform bound-
edness principle. These methods are possible within analysis because of the
majorizability of the bar recursive constants. Majorizability considerations have
played an important role in the removal of ideal elements (conservation results).
The paramount example is the elimination of weak König’s lemma (fan theorem)
for theories without arithmetical comprehension: see [35] and [22]. The bounded
functional interpretation of Ferreira and Oliva [9] can be seen as a thorough
exploitation of majorizability properties. It was first defined for arithmetic but
it extends to analysis via bar recursion (cf. [5] and [4]). The relations between
functional interpretations, majorizability, uniformity results, elimination of ideal
elements, extraction of computational information and the role of some classically
false principles constitute a fascinating topic in the foundations of mathematics. My
paper [6] includes a general discussion on these issues.

Appendix

Let TK be a Kleene binary tree, i.e., a primitive recursive infinite tree of finite binary
sequences with no infinite recursive path (Kleene introduced such an example in
[20]). The form of bar induction described in Sect. 6 can be used to prove that TK
has an infinite path. This can be seen by considering the existential statement

P.sf0;1g<N
/ WD 9lN.l � jsj ^ 8t f0;1g<N

.js 
 t j D l ! s 
 t … TK//.
(The universal quantification on the finite binary sequence t can be considered
bounded because the length of t does not exceed l .) Both H2 and H3 hold but, since
Kleene’s tree is infinite, the conclusion P.hi/ fails. Therefore, H1 must fail and
this readily entails that there is an infinite path through TK . By the choice of TK ,
this infinite Boolean sequence is not recursive. A close inspection of the proof of
Howard’s theorem in Sect. 6 shows that the amount of quantifier-free choice needed
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to prove the required bar induction is just ACN�f0;1g;N
qf (the meaning of this notation

should be clear). This amount of choice justifies the existence of a functional Y of
type .N ! f0; 1g/ ! N with the property that 8xN!f0;1g.x.Yx/ … TK/, and this
fact is sufficient to pull the proof through.

It is the combination of bar recursion and quantifier-free choice that is responsible
for the introduction of non-recursive Boolean sequences in models of PA! (via
forms of bar induction or, what is classically the same thing, via dependent choices).
The lack of just one of these ingredients may result in the failure of introducing non-
recursive sequences. For instance, the structure HRO! of the hereditarily recursive
operations is a case where ACN�f0;1g;N

qf is available but BR fails. On the other hand,

the term model is a case where BR holds but ACN�f0;1g;N
qf fails. Both structures only

have recursive Boolean sequences.
Interestingly, the soundness theorem for bar recursion applies to the theory

with the combination of quantifier-free choice and bar recursion (see the end of
Sect. 4). Hence, bar induction is available and the theory proves the existence of non-
recursive Boolean sequences (of course, only a very restricted form of bar recursion
is needed for obtaining infinite paths through infinite binary recursive trees but, as
we saw, unrestricted bar recursion even proves full second-order comprehension).
From the soundness theorem, one easily shows that PA!CAC!

qfCBR is conservative
over PA! C BR with respect to sentences which, in prenex normal form, have
quantifier prefix 89. The existence of an infinite path through Kleene’s tree TK
is a statement of quantifier prefix 98, and the conservation result does not apply.
Spector’s interpretation is subtle indeed.
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Climbing Mount "0

Herman Ruge Jervell

Abstract Gentzen showed in his Habilitation that transfinite induction up to
any ordinal < "0 is provable in first order arithmetic—and made a constructive
justification of how to reach any ordinal< "0. In his analysis Gentzen used ordinals
in Cantor normal form. We shall look at ordinals as given by finite trees and then
see how the climbing up to "0 can be justified there with methods from first order
arithmetic, and methods to use where we climb above it.

1 Gödel’s Incompleteness

Gödel showed with his incompleteness theorem [2] that in any reasonable elemen-
tary theory of arithmetic A there are undecidable sentences G with

6`A G and 6`A :G:

The Gödel sentence G can be written as

:Provable.A; 0 D 1/:

There are usually three requirements of the theory A
Language: The language should be rich enough to code formulas, proofs and

provability in the system. Gödel had to include C and � to be able to do
the coding. Provability is coded in such a way that “something is provable”
can be coded as an existential sentence—a sentence with existential quantifiers
outermost and only connectives and bounded quantifiers inside.

Strength: The formal system should be strong enough to derive all true existential
sentences. Usually we include in the system induction over quantifier free
formulas—a fairly weak requirement.

Consistency: The system is consistent and !-consistent.
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These requirements are quite robust—we can make Gödel theorems for any
reasonable elementary theory of a data structure.

One problem is that the undecidable sentences do not give any information about
the reasonable theory—the requirements are only sufficient to simulate provability
within the system. For another theory T of some other datastructure we use a similar
Gödel sentence :Provable.T ; 0 D 1/. The only difference is that we simulate
provability in T .

2 Gentzen’s Result

In Gödel’s argument there is no analysis of the theory A involved. This was done by
Gentzen for first order arithmetic PA—also called Peano arithmetic. We can write
Gentzen’s result in a simplified way as

Theorem 1 (Gentzen) Let TI denote transfinite induction. Then in first order
arithmetic, A, for any ordinal

.`PA TI ˛/ , ˛ < "0:

Gentzen proved ) with his 1936 proof of the consistency of first order arithmetic
[3]. Then with his 1943 Habilitation [4] he showed (. Gentzen’s result gives an
analysis of first order arithmetic. The scheme derived from the Gödel sentence is
TI "0 and Gentzen’s result combines a logical statement about provability on the left-
hand side and a combinatorial statement on the right-hand side. It was the first and
still one of the best mathematical incompleteness in first order arithmetic. Compare
it with [10].

3 Schemes and Formulas

In the formulation of Gentzen’s result we must distinguish between schemes and
formulas. The Gödel sentence is a formula and not a scheme. From Gentzen’s work
we get a particular formulaG and where we cannot prove `PA TI"0G—and hence
not the scheme `PA TI"0. On the other hand we can prove the scheme up to "0 by a
climbing argument. There we require two transformations—one of ordinals ˛ 7! ˛�

and the other one of formulas F 7! F � such that the following argument can be
carried through

• Assume we have TIPA˛

• Let F be any formula
• We can prove that TIPA˛

�F follows from TIPA˛F
�

• By assumption TIPA˛F
� and hence TIPA˛

�F

• Hence we get the scheme TIPA˛
�
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Gentzen’s theorem talks about “any ordinal ˛”. This is made precise by using
ordinal notations. For ordinals< "0 we can do this as follows:

!: The order type of natural numbers.
!! : The order type of !-sequences of natural numbers with finite support ordered

by inverse lexicographical ordering. Finite support means that the sequences are
0 except for finitely many places.

!!
!
: The order type of !!-sequences of natural numbers with finite support

ordered by inverse lexicographical ordering.

. . .

. . .

It is straightforward to represent this within arithmetic and also to take the limit
of these ordertypes. The limit is the ordertype "0.

Gentzen’s result gives the Gödel sentence for first order arithmetic—we can
remember it as the scheme TI."0/.

The proof of Gentzen’s result is quite involved. For the )-part we use some kind
of cut elimination. There are essentially two proofs

– Schütte showed [11] that we could embed a derivation in first order arithmetic
into a derivation in !-arithmetic of height< !2. In !-arithmetic we can perform
the ordinary cut-elimination and we end up with a cut-free proof of length < "0.
Novikov had similar results earlier [9].

– Gentzen considered the Endstück of a derivation of a quantifier free sentence in
first order arithmetic. In such a derivation one could perform cut-elimination with
a process controlled by ordinals < "0. Annika Kanckos has given an improved
version of this proof in the present volume [7].

We shall here consider the (-part.

4 Formal Theories of Arithmetic

In 1923 Thoralf Skolem published his investigations in a formal system for
arithmetic [12]. There he introduced a system based on the following

– there is an underlying datastructure—like the unary numbers with 0 s and <,
– we can build and name new terms using primitive recursion,
– the logic is first order predicate logic with equality,
– we have the basic axioms for the datastructure,
– we have as axioms the recursion equations for the primitive recursive terms,
– we have induction for quantifier free formulas.

This is clearly a general construction—we can build such systems for all usual
datastructures. We call them primitive recursive arithmetic PRA. A better name
could have been Skolem arithmetic.
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PRA is the usual starting system for proof theoretic investigations. It is
sufficiently strong to do all the codings required for Gödels incompleteness theorem.

Gentzen analyzed what is called first order arithmetic or Peano arithmetic PA.
It consists of PRA and in addition induction over arbitrary formulas—not only the
quantifier free ones.

5 Finite Trees as Ordinals

The ordinal notations give a way to break down an ordinal into smaller ordinals.
This is important in the proof of Gentzen’s theorem. Gentzen used in his proof a
variant of iterated lexicographical orderings mentioned above. We shall here give a
proof using finite trees. The trees are built up from the empty tree, �, using finite
and ordered branching.

From Kruskals theorem [8] we know that the finite trees are well quasi ordered
with respect to topological embedding. This means that any linear extension of the
finite trees ordered by topological embedding is a well ordering. And in such a linear
extension we can talk about the ordinal of a tree.

In previous papers [5, 6] we have shown how to order finite trees with ordered
branchings. We have the finite trees defined by

T WW �j.T /j.T ; T /j.T ; T ; T /j � � �

and write them with the root down. Here is the tree ..�; .�; �///

For a finite tree ˛ 2 T we write h˛i for the sequence of immediate subtrees. The
branchings are ordered from left to right. And then have the following abbreviations

˛ � hˇi: ˛ is either equal to or < some element in hˇi.
h˛i < ˇ: All elements from h˛i are < ˇ.
h˛i < hˇi: The sequence h˛i is< the sequence hˇi in the inverse lexicographical

ordering. In this ordering we have as the first priority the length of the two
sequences and for sequences of equal length we look at the rightmost place where
they differ.
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We define the ordering of trees

˛ < ˇ , ˛ � hˇi _ .h˛i < ˇ ^ h˛i < hˇi/

We have developed this theory in previous papers [5, 6]. Let us note the
following—proved in primitive recursive arithmetic PRA

– The ordering is decidable.
– The ordering is a total linear ordering.
– The least element in the ordering is the empty tree—�.
– The equality in the ordering is the ordinary equality of (ordered) trees.
– Successor is given by �x:.x/—we tack on a unary branch below the root.
– Monotonicity: For the usual tree functions ˛ < ˇ ) F.˛/ < F.ˇ/.
– Embedding: If tree ˛ can be topologically embedded in ˇ, then ˛ < ˇ.
– Approximations: To each tree ˛ we can build the set of all trees < ˛ in a simple

way. Below we give examples of these approximations.

It may be easier to grasp the ordering by looking at a decision tree for the
ordering. Say we want to decide the ordering between ˛ and ˇ

We start at the top—and first look at whether ˛ � hˇi or ˇ � h˛i. In those cases
we get either ˛ < ˇ or ˛ > ˇ. Else we go through the middle branch and look at the
inverse lexicographical ordering of h˛i and hˇi. The ordering itself is an extension
of an embedding relation using also inverse lexicographical ordering.

By Kruskals theorem it follows immediately that the ordering is a well ordering.
And the tree ordering has an ordinal. This ordinal is what is called the small Veblen
ordinal. It also follows that to any ordinal less than the small Veblen ordinal there is
a unique finite tree corresponding to it. But to get more insight we must look at the
approximations of the finite trees.
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6 Approximating Trees

The approximation theorem [5]—proved in PRA—gives a natural way of breaking
down a tree.

For the tree .˛; ˇ/ we construct the following approximating set D

– � 2 D.
– For each ˛� < ˛ we have .˛�; ˇ/ 2 D.
– D is closed under

– �x:.x/,
– �x:.x; ˇ�/ for any ˇ� < ˇ.

There are similar constructions for arbitrary finite branching [5].
We then have

� < .˛; ˇ/ , � 2 D:

For the case that ˇ D � D 0 there are no ˇ� < ˇ and the last condition does not
apply. We only require that D is closed under the successor �x:.x/.

Using the approximation theorem we can calculate some ordinals

� D 0

.�/ D 1

..�// D 2

.�; �/ D !

..�/; �/ D ! � 2
..�; �/; �/ D !2

.�; .�// D !!

.�; .�; �// D !.!
!/

In [5] we proved that for trees with unary and binary branching we have

.˛/ D ˛ C 1

.˛; �/ D ! � .1C ˛/

.�; ˛/ D !!
˛

For trees with more branching we get a similar result but have to take fix points
of the functions on the right into consideration. Using this we get [5]
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.�; �; �/ D "0

..�/; �; �/ D "1

.�; .�/; �/ D �0 the first critical "-number

.�; �; .�// D 	0

In this paper we are first interested in how to climb up to "0. This is ana-
lyzed here by giving appropriate proofs of transfinite inductions in first order
arithmetic.

7 Transfinite Induction

We define the following for predicates F in the language of first order logic

PROG.F / W 8x:.8y < x:Fy ! Fx/ the predicate F is progressive

TI.F; ˛/ W PROG.F / ! 8x < ˛:Fx transfinite induction up to ˛

TI ˛ W TI.F; ˛/ for any predicate F

Observe the following simple facts about transfinite inductions

˛ < ˇ ^ TI ˇ ) TI ˛

TI ˛ ) TI .˛/

8 Climbing Up to !!

We are going to prove

TI ˛ ) TI .˛; �/:

We define addition of a natural number to a tree by

.ˇ/0 D ˇ;

.ˇ/nC1 D ..ˇ/n/:
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Or as a picture

For the climbing up to .˛; �/ the crucial observation is that for ˛ > 0

� < .˛; �/ , 9ˇ < ˛:9n < !:� D ..ˇ; �//n:

We can write this out in a more perspicuous way

We have a comb of length ˛ and each tooth is of length !. To compare two points
there we first check which tooth they are on and if they are on the same tooth we
check how high up they are on the tooth. We get .˛; �/ 	 ! � .1C ˛/.

We have already TI .�; �/. This is just a version of ordinary induction. We assume

PROGF and TI ˛ where ˛ > 0

and want to prove

8ˇ < ˛:8n < !:F .ˇ/n:

The quantifiers are proved by TI ˛ and TI !, respectively.
Assume ˇ < ˛ and 8� < ˇ:8n < !:F .�/n.
Assume n < ! and 8m < n:F .ˇ/m.
Then 8x < .ˇ/n:F x by the two assumptions about F .
By PROGF : F .ˇ/n and we get PROG�n < !:F .ˇ/n.
By TI ! : 8n < !:F .ˇ/n and we get PROG�ˇ < ˛:8n < !:F .ˇ/n.
By TI ˛ : 8ˇ < ˛:8n < !:F .ˇ/n and we are done.
We have just used …1 inductions in the proof—and it can be done within PRA.
This gives the (-part of the well known theorem

Theorem 2 Let TI denote transfinite induction. Then in PRA for any ordinal ˛

` TI ˛ , ˛ < !!:
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9 Reaching !!

We have climbed up to any ordinal< !! but have not reached !! itself. Let us see
how this is done. We explain this with a similarity between defining the primitive
recursive functions and defining the Ackermann function [1]. At the core of the
Ackermann function is the higher order iteration function

it W N ! ..N ! N / ! .N ! N //

defined by

it nf D f n:

Gerhard Gentzen used in his Habilitation [4] a similar construction to define the
limits up to !! and—as we shall see in the next section—to any ordinal < "0. We
want to iterate a construction involving the function �˛ : .˛; �/. We introduce the
more general notation

.�/0ˇ D �;

.�/nC1
ˇ D ..�/nˇ; ˇ/:

Here we are interested in .˛/n0 . Given a predicate F with PROGF . We then
introduce the first order variant of operation to be iterated

F ? W 8y:.8z < y Fz ! 8z < .y/10 Fz/:

Assume F ?. We then get using iteration of the ! for any n < !

8y:.8z < y Fz ! 8z < .y/n0 Fz/:

Or using TI ! with a …2 induction formula

8y:8n < ! : .8z < y Fz ! 8z < .y/n0 Fz/:

Note that

˛ < !! $ 9n < ! :˛ < .0/n0:

And we have proved

TI ! ) TI !!:
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10 Climbing Up to "0

Note that .�; ˛/ 	 !!
˛

[5]. Now we want to prove

TI ˛ ) TI .�; ˛/:

We use the function .˛/nˇ introduced in the previous section. Here is a picture

of .˛/3ˇ

We use the approximation for ˛ > 0

ˇ < .�; ˛/ $ 9˛� < ˛ : 9n < ! : ˇ < .�/n˛� :

Assume we have a predicate F with PROGF . As before we introduce a new
predicate but now with an extra argument

F ? x W 8y:.8z < y :Fz ! 8z < .y/1x :Fz/:

We can iterate the conditional more times and we get for any n < !

F ? x ! 8y:.8z < y :Fz ! 8z < .y/nx :Fz/:

Using TI ! we also get

F ? x ! 8y:8n < !:.8z < y :Fz ! 8z < .y/nx :Fz/:

Using this we get PROGF ?—and by using TI ˛.

8z < .�; ˛/ :Fz:

So

TI ˛ ) TI .�; ˛/:

Let us look closer at the steps.

– The new predicate F ? has a higher quantifier complexity than F .
– If F is …n, then F ? is …nC1.
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– In the crucial iteration we needed the extra quantifiers—we first picked a y to
get .y/1x , and then substituted this for y to get .y/2x and so on. We used both
elimination and introduction in the 8y repeatedly.

So now we are able to climb up to any ordinal< "0 using !-induction with more
and more complicated induction formulae.

11 Problems with "0

There are some stumbling blocks in reaching "0

– we have used the schema TI ˛ instead of the formula TI ˛ F . This is no problem.
We can easily replace the schema with appropriate formulae. Below we shall not
bother with this replacement where it is obvious how it is done,

– to get higher TI ˇ we iterate the process which takes a proof of ` TI ˛ into a
proof of ` TI .�; ˛/. There is no uniformity in the process,

– we really want to iterate the proof of the conditional ` TI ˛ ! TI .�; ˛/—in
other words we want the axiom and not the rule.

We see that whenever we iterate the rule ` TI ˛ ) ` TI .�; ˛/ we need more
and more quantifiers in the inductionformulae.

12 Coding Logic

The trick now is to consider codes of proofs instead of proofs. We have

– a standard coding of terms, formulae, proofs, etc.—this is done within Skolem
arithmetic.

– To each formula F we have a †1-formula �F meaning “there is a coded proof
of the code of F ”.

And we have

Theorem 3 (Formal †1 completeness) For proofs in systems which contain
PRA, and for †1-formulae F the following is provable in PRA

` F ! �F:

We always have

` F ) ` �F

for any formula F . Formal †1 completeness provides a formal analogue for †1-
formulae. It doesn’t hold for arbitrary…1-formulae. The converse, �F ! F , called



312 H.R. Jervell

†1-reflection, is also not provable (takeF to be 0D1 and use Gödel’s theorem). This
gives the idea for a hierarchy of systems. We define systems for arithmetic Hi by

– the language of the systems is the language of PRA,
– H0 is ordinary first order arithmetic PA,
– �i is provability within Hi ,
– HiC1 is Hi extended with axioms �iF ! F for all formulae F .

13 Reaching "0

We get arbitrary close to "0 by iterating ˛ 7! .�; ˛/. Now we have shown in H0 the
rule

` TI ˛ ) ` TI .�; ˛/:

We can transform this into a proof in H0 of the †1-formula

` �.TI ˛ ! TI .�; ˛//:

But then we have in H1

` TI ˛ ! TI .�; ˛/:

Then using the same trick as in proving TI !! above, we get in H1

` TI "0:

14 Up Through the "-Numbers

As before we use the approximation theorem to write down the set E of all trees
below .˛; �; �/
– � is in E .
– .˛�; �; �/ is in E for any ˛� < ˛.
– E is closed under the functions

– �x: .x/,
– �x:�y: .x; y/.
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And we see that we in fact get the "-numbers. For example, we get

"1 D ..�/; �; �/:

The climbing in the "-numbers is easy. We work within H1. There we can express
the transformation

` TI ˛ ) ` TI .˛; �; �/

as a conditional and then use the same arguments as in climbing up to !! . This can
be done within H1. Reaching !! will then correspond to reaching .�; .�/; �/—the
first critical "-number.

15 Up Through the Critical "-Numbers

We enumerate the fix points of the "-numbers with .�; ˛; �/. The set F of all trees
below it is given by

– � is in F .
– F is closed under the functions

– �x: .x/,
– �x:�y: .x; y/,
– �x: .x; ˛�; �/ for any ˛� < ˛.

Within H1 we do the iteration as we did for "0 to climb up to

.�; "0; �/ D .�; .�; �; �/; �/:

To get beyond that we had to use the higher Hi .

Theorem 4 Assume ` TI ˛ is done in Hi . Then ` TI .�; ˛; �/ in HiC1.

16 Reaching �0

	0 is the first fix point of the critical "-numbers. So
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or as the limit of

We get it by iterating the operation

˛ 7! .�; ˛; �/:

Now we have shown

`Hi TI ˛ ) `HiC1
TI .�; ˛; �/:

Now we find a system where we can prove

` �.TI ˛ ! TI .�; ˛; �//:

And then we can reach 	0 and prove

TI 	0:

17 Going Beyond �0

There is no reason to stop at 	0. It is the limit to how far we get with the Hi ’s.
We must look out for other systems which can capture the iterations which we have
used so far. It is easy to write down the approximations for the 	-numbers .�; �; ˛/.
It is the set G of all trees given by

– � is in G.
– G is closed under the functions

– �x: .x/,
– �x:�y: .x; y/,
– �x:�y: .x; y; ˛�/ for any ˛� < ˛.

But to analyze it and go further we need more systems.
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Semi-Formal Calculi and Their Applications

Wolfram Pohlers

1 Introduction

By a semi-formal system we understand a proof system which includes infinitary
inference rules. The use of inference rules with infinitely many premises was
already suggested by David Hilbert in his paper “Die Grundlegung der elementaren
Zahlentheorie” [6] and was later systematically used by Kurt Schütte in his work on
proof theory. The heigths of proof trees in a semi-formal system are canonically
measured by ordinals. Therefore, in contrast to Gentzen’s original approach,
ordinals enter proof theoretic research via semi-formal systems in a completely
canonical way.

In this paper we will, however, not talk about applications of semi-formal systems
to proof theory but indicate that there are also many applications outside of ordinal
analysis. Our intention is to show that semi-formal systems provide a versatile
tool that can be applied to obtain a series of results in a very uniform way. These
applications will comprise results about the structure theory of infinite countable
structures. The key property for these applications is the Boundedness Theorem,
a variant of a theorem that has already been proved by Gerhard Gentzen in his
seminal paper [3]. Gentzen himself suspected there that this theorem has further
reaching applications (cf. Note 5.13 below). In Sect. 5 we try to indicate some of
such possible applications.
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2 Abstract Logical Languages

2.1 Syntax

To obtain as much generality as possible, we start with a very general notion of
logical language.

Definition 2.1 The basic symbols of a logical language comprise

• Constants for individuals and predicates of finite arity,
• Variables for individuals and predicates of finite arity,
• Symbols for functions mapping tuples of individuals to individuals,
• Logical operators. Every operator possesses an arity which is an index set I .

Some of the operators may bind variables.
• Terms are built up from constants and variables for individuals by function

symbols in the familiar way.
• Atomic formulas are built up from terms by constants or variables for predicates.
• If hF�j � 2 I i is a sequence of L-formulas and O is a logical operator of arity I ,

then .OhF�j � 2 I i/ is a well-formed L-formula. If O binds a variable x then x is
no longer free (i.e. bound) in .OhF�j � 2 I i/

We will use the language L in Tait style. That is, there is no logical operation for
negation. Instead we require that for every predicate variableX , for every predicate
constant P and every logical operation O there are the dual symbols Xc , P c and
the dual operation Oc . For every L-formula F its dual formula F c is inductively
defined by

• .Xt1; : : : ; tn/
c D .Xct1; : : : ; tn/ and .P t1; : : : ; tn/c D .P ct1; : : : ; tn/,

• ..Xct1; : : : ; tn//
c D .Xt1; : : : ; tn/ and ..P ct1; : : : ; tn//

c D .P t1; : : : ; tn/,
• .OhF�j � 2 I i/c D Och.F�/c j � 2 I i,
• .OchF�j � 2 I i/c D Oh.F�/c j � 2 I i.
We divide the formulas of L into three types

• Formulas without type,
• Formulas in

V
-type ,

• Formulas in
W

-type ,

satisfying the requirement that all formulas without type are atomic.1

Definition 2.2 We call an abstract logical language L decorated if every formula
F of L is equipped with a characteristic sequence CS.F / which is a sequence of
subformulas of F satisfying the conditions:

1Observe, however, that atomic formulas may well belong to a type. Cf., e.g., Definition 2.10
below.
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(C0) If CS.F / D hF�j � 2 I i, then CS.F c/ D hF c
� j � 2 I i,

(C1) there is a complexity measure rnk.F / such that rnk.G/ is less than rnk.F / for
all formulas in G 2 CS.F /,

(C2) the formulas in CS.F / must not contain free variables that are not free in F .

Definition 2.3 An abstract language is countable iff the set of its terms and
formulas is countable (and thus every characteristic sequence in a decorated
language contains at most countably many formulas).

Let A be an admissible structure in the sense of Barwise [1] and L a decorated
language that is �1-definable in A. The admissible fragment LA of L consists of

• the set ft j t is an L-term and t 2 Ag,
• the set fF jF is an L-formula, F 2 A and CS.F / 2 Ag
and satisfies the condition that

• F 2 LA entails CS.F / 2 LA.

2.2 Semantics for L

Let L be an abstract language. The signature of L is the set of function—and
predicate constants of L together with their arities. An L-structure M is a non void
set jMj together with a function �M that matches the signature of L. That is

• cM 2 jMj for every constant c of L,
• for every k-ary function symbol f of L the interpretation fM is a function
fM W jMjk �! jMj,

• for every k-ary predicate constant P of L it is PM � jMjk, where .P c/M is
supposed to be the complement of PM.

An M-assignment is a map ˆ that assigns

• an element ˆ.x/ 2 jMj to every individual variable x,
• a set ˆ.X/ � jMjk for every predicate variable of arity k with the proviso that
ˆ.Xc/ is the complement of ˆ.X/.

Definition 2.4 Let L be a decorated abstract language, M an L-structure and ˆ
an M-assignment. For every L-term t we then obtain in the canonical way an
evaluation tMŒˆ� 2 jMj. We define the relationM ˆ F Œˆ� saying that the structure
M satisfies the formula F under the assignment ˆ inductively by the following
clauses:

• If F has no type, then F is an atomic formula .Rt1; : : : ; tn/ or .Xt1; : : : ; tn/
and we define M ˆ F Œˆ� if the tuple .tM1 Œˆ�; : : : t

M
n Œˆ�/ is in RM or ˆ.X/,

respectively.
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• If F is in
V

-type, we define

– M ˆ F Œˆ� iff M ˆ GŒˆ� for all G 2 CS.F /.

• If F is in
W

-type, we define

– M ˆ F Œˆ� iff M ˆ GŒˆ� for some G 2 CS.F /.

2.3 The Verification Calculus

Definition 2.5 Let L be a decorated abstract logical language. Then there is a
canonical verification calculus

˛

L
� for finite sequences � of L-formulas and

ordinals ˛ which is defined by the following clauses. We write �;F instead of
� [ fF g.

(Ax) If fF;F cg � � for a formula F without type, then
˛

L
� holds true for all

ordinals ˛.
(
V

) If F 2 � \V
-type ,

˛G

L
�;G and ˛G < ˛ holds true for all G 2 CS.F /,

then
˛

L
�.

(
W

) If F 2 � \ W
-type and

˛0

L
�;	 holds true for some finite subset 	 �

CS.F /, then
˛

L
� holds true for all ˛ > ˛0.

We call the formula(s) F [and F c in a clause (Ax)] the main-formula(s) of the
respective clause.

There are some simple observations that follow directly from the definition of the
verification calculus.

Lemma 2.6 (Monotonicity)
˛

L
�, ˛ � ˇ and� � 	 imply

ˇ

L
	 .

Lemma 2.7 (
V

-inversion) F 2 V-type and
˛

L
�;F imply

˛

L
�;G for all G 2

CS.F /

Lemma 2.8 (
W

-exportation) If F 2 W
-type and CS.F / is finite, then

˛

L
�;F

implies
˛

L
�;CS.F /.

The proofs of all these lemmas are straightforward by induction on ˛.

Lemma 2.9 (Tautology) Let rnk.F / denote the complexity of F . Then
2�rnk.F /

L
�;F; F c holds true for all finite sets � of L-formulas.

Proof Straightforward by induction on the complexity rnk.F / of the
formula F . ut
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2.4 The Language LM

Not all logical languages are decorated. Examples are first order languages in the
familiar sense.2 To decorate a first order language we have to equip every formula
with a characteristic sequence. It is obvious how to do that for formulas whose
outmost logical operation is ^ and _. It is less obvious for the first order quantifiers.
Defining CS..Qx/F.x// D hF.x/i would violate (C2) in Definition 2.2.

We call an abstract language semi-decorated if all but its first order formulas
possess a characteristic sequence.

In order to decorate a semi-decorated language L we need a structure that
matches the signature of L.

Definition 2.10 (The Language LM) Let L be a semi-decorated language and
M an L-structure. We extend L to the language LM by adding a constant m for
every element m 2 jMj. This allows us to dispense with free individual variables.
Therefore there are only closed terms in LM. For simplicity we identify LM-terms
that obtain the same values in M. Therefore we may w.l.o.g. assume that all terms
have the formm for some m 2 jMj.

Any L-structure M canonically extends to an LM-structure MM by defining
mMM WD m for all m 2 jMj. We mostly identify M and MM. Only if we want to
emphasize that we are talking about LM-formulas we will write MM.

To fully decorate LM we make the following definitions.

• If G.Ex/ is an L-formula in
V

-type (
W

-type), where Ex D x1; : : : ; xn are all the
individual variables occurring in G, then for every tuple Em 2 jMjn the formula
G. Em/ belongs to

V
-type (

W
-type) of LM.

• For every decorated L-formula F we translate CS.F / into the language LM

by replacing formulas G.Ex/ 2 CS.F / by the sequence hG. Em/j Em 2 jMjni, i.e.
CS.F / in the extended language becomes hG. Em/jG.Ex/ 2 CS.F / ^ Em 2 jMjni.
Defining rnk.G. Em// WD rnk.G.Ex// we extend the complexity measure to the
language LM.

• We extend the
V

-type beyond the
V

-type of L by including all sentences that
are in the diagram of M, i.e., the true atomic sentences of LM and all formulas
the outmost logical symbol of which is ^ or 8.

• We extend the
W

-type beyond the
W

-type of L by including all false atomic
sentences and all formulas whose outmost logical symbol is _ or 9.

• All atomic formulas have empty characteristic sequences.
• It is CS.F1 ı � � � ı Fn/ D hF1; : : : ; Fni if ı is one of the operators ^ of _.
• It is CS..Qx/F.x// D hF.s/j s 2 jMji for Q 2 f8; 9g.3

2That is, languages that comprise a complete set of Boolean operations, first order variables and the
first order quantifiers 8 and 9 (either explicitly or by definition) together with a set of non-logical
symbols and—possibly—a set of free predicate variables.
3This ensures that the semantics defined in Definition 2.4 coincides with the usual semantics for
first order languages.
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Theorem 2.11 Let L be a semi-decorated language and M an L-structure. Then
˛

LM
� implies M ˆ W

�Œˆ� for all M-assignmentsˆ.

Proof We prove the lemma by induction on ˛.
If the last clause in the definition of

˛

LM
� is according to (Ax), then there is

an atomic formula such that fF;F cg 2 �. This immediately implies M ˆ W
�Œˆ�

for any M-assignmentˆ.
If the last clause is according to (

V
), then there is a formula F 2 V

-type \�.
If CS.F / D ;, then F is an atomic sentence in the diagram of M. Hence
M ˆ W

�Œˆ� for any assignment ˆ. If F ' V hG�j � 2 I i,4 we have premises
˛�

LM
.
W
� _ G�/Œˆ� for ˛� < ˛. By induction hypothesis we thus either have

M ˆ W
�Œˆ� or M ˆ G�Œˆ� for all � 2 I . In the latter case we get M ˆ F Œˆ� and,

since F 2 � also M ˆ W
�Œˆ�.

The remaining case follows similarly from the induction hypothesis. ut
Let F be an L-formula which does not contain logical operators that bind predicate
variables but contains the predicate variables X1; : : : ; Xn free. We then call the
formula .8X1/ : : : .8Xn/F.X1; : : : ; Xn/ a …1

1-sentence of L. We clearly have
M ˆ .8X1/ : : : .8Xn/F.X1; : : : ; Xn/ in the sense of full second order logic iff
M ˆ F Œˆ� for every M-assignmentˆ. Therefore we obtain the next theorem as an
immediate consequence of Theorem 2.11.

Theorem 2.12 Let L be a semi-decorated language and M an L-structure. Then
˛

LM
F.X1; : : : ; Xn/ implies M ˆ .8X1/ : : : .8Xn/F.X1; : : : ; Xn/.

There is also a trivial inversion of Theorem 2.11.

Theorem 2.13 Let L be a semi-decorated language, M an L-structure and F an
LM-sentence that is valid in M, i.e., M ˆ F . Then there is an ˛ � rnk.F / such
that

˛

LM
F .

Proof Straightforward by induction on rnk.F /. ut
Remark 2.14 Theorem 2.13 is in fact a triviality which is essentially a remake of
the truth definition for F . Nonetheless there are situations where verifications of
sentences yield useful information. This is, e.g., the case in the ordinal analyses of
subsystems of set theory. (cf. [10, 11]).

Here we will, however, not talk about ordinal analyses. The first challenge is to
check if the opposite direction in Theorem 2.12 also holds true. We are going to
show that in a more general setting.

4We write F ' V hG�j � 2 I i to indicate that F is in
V

-type and CS.F / D hG�j � 2 I i. Similarly
we use F ' W hG�j � 2 I i.
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2.5 L-Consequences

Definition 2.15 (L-consequence) Let L be an abstract language, F an L-formula
and T a set of L-formulas. We say that F is L-derivable from T or, synonymously,
that F is an L-consequence of T , if for every L-structure M and every M-
assignment ˆ, that satisfies all the formulas in T , we also have M ˆ F Œˆ�. We
denote L-consequence by T ˆL F .

Now let L be a decorated language. To extend the definition of a verification calculus
to a verification calculus T

˛

L
� for L-consequences we keep the old rules. i.e.,

•
˛

L
� extends to T

˛

L
�

and augment it by a theory rule

(T -rule) if T
˛0

L
�;F c then T; F

˛

L
� for all ˛ > ˛0.

The (T -rule) looks a bit weird at first sight. One would expect a rule saying that
T

˛

L
� iff T \ � is not void. Such a rule is in fact permissible. With the help of

Lemma 2.9 and the theory rule we get easily

if F 2 � \ T then T
2�rnk.F /C1
L

�: (1)

As a triviality we remark

˛

L
� , ; ˛

L
�: (2)

Lemma 2.16 Let L be a (semi-)decorated language and M an L-structure. Then
LM is a decorated language and T

˛

LM
� implies M ˆ W

�Œˆ� for all M-
assignmentsˆ that satisfy all formulas in T .

Proof The proof is essentially that of Theorem 2.11. We assume M ˆ GŒˆ� for all
G 2 T and show M ˆ W

�Œˆ� by induction on ˛. The only new case is that of

a theory rule T0
˛0

LM
�;F c ) T0; F

˛

LM
�. Since F 2 T we have M ˆ F Œˆ�

by hypothesis which implies M 6ˆ F cŒˆ�. By induction hypothesis we also have
M ˆ .

W
� _ F c/Œˆ�. Hence M ˆ W

�Œˆ�. ut
A possibility to read Lemma 2.16 is

T
˛

LM
F ) T ˆLM F (3)

although the latter notion is still quite narrow5 and needs to be more elaborated.
(That will be done in Sect. 4.3).

5It only says that every M-assignment ˆ that satisfies all formulas in T also satisfies F in M.
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Nevertheless there is the question for the opposite direction in (3) which we are
going to address in the next section.

3 Search Trees

3.1 The Syntactical Main Lemma

In the following section we concentrate on countable decorated languages. In such
languages the characteristic sequences CS.F / D hG�j � 2 I i are countable. We may
therefore assume that I is always a countable index set and thus carries a well-
ordering of order-type !.

Definition 3.1 Let L be a countable decorated language, T a countable and � a
finite sequence of L-formulas. We fix an enumeration of the formulas in T and
define the search tree SL

T;� together with a label function � W SL
T;� �! L<! by the

following clauses [we write �s instead of �.s/].

(root) h i 2 SL
T;� and �h i WD �.

For the following clauses we assume s 2 SL
T;� such that �s is not a logical axiom

according to (Ax).
The redex of a finite sequence �s of L-formulas is the leftmost formula that

possesses a type. We obtain the reduced sequence �r
s by discharging the redex in

�s .

(id) If �s has no redex, then s_h0i 2 SL
T;� and �s_h0i WD �s; F�

c where F� is the
first formula in T that has not occurred in

S
tvs �t .

(
V

) If F is the redex of�s and F ' V hG�j � 2 I i, then s_h�i 2 SL
T;� for all � 2 I

and�s_h�i WD �r
s ;G�.

(
W

) If F is the redex of �s and F ' W hG�j � 2 I i, then s_h0i 2 SL
T;� and

�s_h0i WD �r
s ;G; F; F�

c whereG is the first formula in CS.F / and F� the first
formula in T that have not yet occurred in

S
tvs �t .

Lemma 3.2 (Syntactical Main Lemma) Let L be a decorated language, T a
countable and � a finite set of L-formulas. If the search tree SL

T;� is well-founded

of ordertype ˛, then there is a subset T0 of T such that T0
˛

L
�.

If L is an A-admissible fragment LA and the set T is †-definable in A, then T0
and ˛ can be chosen A-finite.

Proof Let SL
T;� be well-founded and s a node in SL

T;�. Let jsj denote the ordertype
of s in SL

T;�. By induction on jsj we then easily obtain the existence of a set Ts � T

such that Ts
jsj
L
�s .
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To prove the addendum we show that for all s 2 SL
T;� there is a set Ts 2 A and

an ordinal ˛s 2 A such that Ts
˛s

L
�s . The only delicate case is clause (

V
) in the

definition of the search tree. There we obtain by induction hypothesis for all � 2 I a
set T� � T and an ordinal ˛� 2 A such that T� 2 A and T�

˛�

L
�s;G�. Since I 2 A

we obtain by †-collection and union a set Ts 2 A such that Ts
˛�

L
�s;G� for all

� 2 I and by †-collection and �0-separation an ordinal ˛s such that ˛� < ˛s for all
� 2 I . By a clause .

V
/ it then follows Ts

˛s

L
�s . ut

3.2 The Semantical Main Lemma

The semantic counterpart of the Syntactical Main Lemma is the Semantical Main
Lemma which needs an L-structure in its formulation.

Lemma 3.3 (Semantical Main Lemma) Let L be a (semi-)decorated language,
M a countable L-structure, T a countable and� a finite set of LM-formulas. If the
search tree SLM

T;� is not well-founded, then there is an M-assignmentˆ that verifies
all the formulas in T but falsifies the formulas in �.

Proof Let f be an infinite path in SLM
T;� and �f WD S

s2f �s. Since f is infinite
we have F c in �f for every F 2 T . We define an assignment

ˆ.X/ WD f.m1; : : : ; mk/j .Xcm1; : : : ; mk/ does not occur in �f g

and prove M 6ˆ F Œˆ� for all F 2 �f by induction on the complexity of F .
For atomic formulas .Xm1; : : : ; mk/ we cannot have .Xcm1; : : : ; mk/ 2 �f since
otherwise f would be finite. Hence M 6ˆ F Œˆ�. If F is an atomic sentence, it
cannot be in the diagram of M since in this case f would be finite. For formulas
F ' V hG�j � 2 I i there is at least oneG� in�f . Hence M 6ˆ G�Œˆ� which implies
M 6ˆ F Œˆ�. For formulas F ' W hG�j � 2 I i we secured by the definition of the
search tree that all G� occur in �f . Hence M 6ˆ G�Œˆ� for all � 2 I by induction
hypothesis and this implies M 6ˆ F Œˆ�. ut
From the Syntactical- and Semantical Main Lemma we obtain also the opposite
direction in (3).

Lemma 3.4 Let L be a countable (semi-)decorated language and M a countable
L-structure and F an L-formula. For a countable set T of LM-formulas, we then
have T ˆLM F iff there is a subset T0 of T and a countable ordinal ˛ such that
T0

˛

LM
F .

If LM is an A-admissible fragment and T is †-definable in A, then ˛ and T0
can be chosen A-finite.
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Proof One direction is (3). For the other direction assume T0 6 ˛LM
F for all subsets

T0 � T and all countable ordinals ˛ (all T0 2 A and all ˛ 2 A in case that
LM is an A-admissible fragment). By the Syntactical Main Lemma SLM

T;F cannot be
well-founded. Therefore there is by the Semantical Main Lemma an M-assignment
which satisfies all the formulas in T but falsifies F . Hence T 6ˆLM F . ut
As a consequence of Lemma 3.4 we obtain a completeness theorem for …1

1-
sentences.

Theorem 3.5 Let L be a countable (semi-)decorated language andF an L-formula
containing at most the predicate variables X1; : : : ; Xn. For any countable L-
structure M we get M ˆ .8X1/ : : : .8Xn/F iff there is countable ordinal ˛ such
that

˛

LM
F .

Proof One direction is Theorem 2.12. The opposite direction follows immediately
from the Semantical Main Lemma. ut
We use the verification calculus to define the LM truth-complexity of a…1

1-sentence.

Definition 3.6 For a …1
1-sentence .8X1/ : : : .8Xn/F we define

tcLM..8X1/ : : : .8Xn/F / WD
8
<

:

min f˛j ˛

LM
F g if this exists;

jMj
C

otherwise

where A denotes the cardinality of a set A and �C the first cardinal bigger than �.

Using this notion Theorem 3.5 can be reread as

Theorem 3.7 Let L be a countable semi-decorated language and M a countable
L-structure. Then M ˆ F holds true for a…1

1-sentence F iff tcLM.F / < !1, where
!1 denotes the first uncountable ordinal.

3.3 The Term-Model

In order to fully decorate a semi-decorated language L we need an L-structure. To
deal with pure logic, i.e., logic not talking about special structures, we need a most
general structure. The following section will show that the term-model for a semi-
decorated language provides such a most general structure.

Definition 3.8 Let L be a semi-decorated language with identity symbol �. Its
term-model TL is defined by

• The domain jTLj is the set ft j t is an L-termg.
• For any individual constant c we define cTL WD c.
• For a function symbol we put f TL.t1; : : : ; tn/ D .f t1; : : : ; tn/.
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• �TL WD f.s; s/j s 2 jTLjg.
• The other relation constants remain uninterpreted i.e., they are treated as relation

variables.6

Remark 3.9 There is a, in fact important, difference between the language L
and LTL (which we are going to denote more briefly by LT). According to
our agreement to dispense with free individual variables in languages LM there
are no free individual variables in LT. The term-model TL is clearly also an
L-structure. Therefore also L-formulas can be interpreted in TL. The meanings
of the L-formula F.x/ and that of the LT-formula F.x/ are, however, different.
Provided that F.x/ does not contain additional predicate variables it has a fixed
truth value in TL whereas F.x/ needs an assignment for x to obtain a truth value in
TL (cf. Lemma 3.13 below).

Observe moreover that the characteristic sequences of the formulas in the language
LT only depend on L. Therefore we commonly write T

˛

L
� instead of T

˛

LT
�

even for semi-decorated languages L.
Similarly the search tree for sequences of LT formulas only depends on L.

Therefore we also write SL
T;� instead of SLT

T;�.

Definition 3.10 Let L be a semi-decorated language and M an L-structure. By
an M-translation we understand a map � that transfers LT-formulas into LM-
formulas. To every constant t we assign an element �.t/ of jMj. By F � we denote
the LM-formula that is obtained from F by replacing every constant t by �.t/. For

a set T of LT-formulas we denote by T � the set fF � jF 2 T g.
We call a translation � adequate if

CS.F �/ D ˝
G� jG 2 CS.F /

˛

holds true for every formula F the outmost logical operation of which is not a first
order quantifier,

Lemma 3.11 (Substitution Lemma) Let L be a semi-decorated language and
M be an L-structure. Then T

˛

L
� implies T �

˛

LM
�� for all adequate M-

translations �.

Proof The proof is a straightforward induction on ˛ using the fact that � is adequate.
The only case that needs some care is that of .

V
/-rule whose critical formula is a

first order formula .8x/F.x/. There we have the premises T
˛t

L
�;F.t/ for all L-

terms t . W.l.o.g. we may assume that T [� does not contain all L-terms. Then we
obtain T

˛t

L
�;F.t/ for a term t not occurring in T [�. By induction hypothesis

we get T  
˛t

LM
� ;F.t/ for all adequate translations  which coincide with �

6Which means that there are many term-models according to the interpretation of the relation
constants.
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but for the value  .t /. That means, however, that we have T �
˛t

LM
��; F �.m/ for

all m 2 jMj. Since ˛t < ˛ and CS..8x/F.x/�/ D hF �.m/jm 2 jMji we get
T �

˛

LM
��; .8x/F.x/� by an inference .

V
/. ut

As a corollary of Lemma 3.11 we obtain

Corollary 3.12 Let L be a semi-decorated language, � and 	 finite and T an
arbitrary set of LT-formulas. Then T

˛

L
�;	.t/ for an LT-term t that does neither

occur in T nor in � implies T
˛

L
�;	.s/ for any L-term s.

Proof Just apply the Substitution Lemma to the structure TL. ut
Lemma 3.13 Let L be a semi-decorated language. For every L-formula F there
is a canonical LT-formula F which is obtained from F by “underlining” all L-
terms occurring in F . For an L-structure M and an M-assignmentˆ we obtain an
adequate translation from LT into LM by defining �.t/ WD tMŒˆ� such that

M ˆ F Œˆ� iff MM ˆ F �Œˆ�: (4)

Conversely we obtain for every LT-formula F an L-formula F by stripping all the
underlines. By putting ˆ.x/ WD x we may extend any TTL-assignment ˆ for the
language LT to an TL-assignment ˆ for the language L such that tTL Œˆ� D tTTL

for any L-term t and

TL ˆ F Œˆ� iff TTL ˆ F Œˆ�: (5)

Proof The proof is straightforward. Observe, however, that LM is a decorated
language which means that the satisfaction relation in an LM-structure is defined
according to Definition 2.4. In the case that F is a formula .8x/G.x/ we therefore
have to argue as follows: We have M ˆ .8x/G.x/Œˆ� iff M ˆ F.x/Œ‰� for all
M-assignments that coincide with ˆ but for ‰.x/. By induction hypothesis this
is equivalent to MM ˆ G.x/�Œ‰�. By choice of ‰ this holds true iff we have
MM ˆ G.m/�Œˆ� for allm 2 jMj and, since CS..8x/G.x// D hG.m/jm 2 jMji,
this is equivalent to MM ˆ .8x/G.x/�Œˆ�. A similar argument is needed in the
proof of the second claim. ut
As a first application of term-models we obtain a generalization of Lemma 3.4.

Theorem 3.14 (Completeness Theorem) Let L be a countable semi-decorated
language and T a countable set of L-formulas. Then we have T ˆL F iff there
is a subset T0 � T and a countable ordinal ˛ such that T 0

˛

L
F .
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If LT is an A-admissible fragment and T a†-definable set of LT-formulas, then
T0 and ˛ can be chosen A-finite.

Proof Assume first T
˛

L
F , let M be an L-structure and ˆ an M-assignment that

satisfies all the formulas in T . By the Substitution Lemma (Lemma 3.11) we get
T ˆ

˛

LM
Fˆ and by Lemma 2.16 MM ˆ FˆŒˆ�, i.e., M ˆ F Œˆ� by (4). Hence

T ˆL F .
For the opposite direction assume T 0 6 ˛

L
F for all countable ordinals ˛ and all

T0 � T (˛; T0 2 A for the addendum). By the Syntactical Main Lemma SL
T ;F cannot

be well-founded and by the Semantical Main Lemma there is a TTL -assignment ˆ
that verifies all formulas in T but falsifies F . By (5) ˆ then verifies all formulas in
T and falsifies F . Hence T 6ˆL F . ut
Let L be a semi-decorated language and M an adequate L-structure. We call an L-
formula F valid in M, if M ˆ F Œˆ� for all M-assignments ˆ. An L-formula F is
valid iff it is valid in all L-structures.

As a corollary to the Completeness Theorem we obtain

Corollary 3.15 An L formula F is valid iff ˆF and this holds true iff there is a
countable ordinal ˛ such that

˛

L
F .

As another immediate consequence of the Completeness Theorem we obtain the
permissibility of the cut-rule in the verification calculus.

Theorem 3.16 (Permissibility of Cuts) Let L be a decorated language. If
˛

L
�;F

and
ˇ

L
�;F c there is a countable ordinal � such that

�

L
�.

Proof From
˛

L
�;F and

ˇ

L
�;F c we obtain by the correctness direction of

Theorem 3.14 ˆ W
�_F and ˆ W

�_F c . Hence ˆ W
� and by the completeness

direction of Theorem 3.14 it follows
�

L

W
� for some countable ordinal � . The

claim now follows by
W

-exportation (Lemma 2.8). ut
The next theorem shows that the term-model can in fact be regarded as the most
general model.

Theorem 3.17 Let L be a semi-decorated language. An L-formula is valid iff it is
valid in the term-model of L.

Proof If F is valid, then F is also valid in the term-model. If F is not valid, then
by Corollary 3.15 we have 6 ˛

L
F for all countable ordinals ˛. By the Syntactical

Main Lemma the search tree SL
F cannot be well-founded. By the Semantical Main

Lemma there is an TTL -assignmentˆ that falsifies F . By (5) ˆ is a TL-assignment
that falsifies F . Hence F is not valid in the term-model. ut



330 W. Pohlers

3.4 Admissible Fragments

Let L D LA be a countable semi-decorated admissible fragment. If the L-terms
form a set in A, which is at least the case if A satisfies infinity,7 the language
LT of the term-model is a decorated admissible language. Therefore we can apply
Theorem 3.14 to reobtain a famous theorem. Our tacit hypothesis for the rest of this
section is that the L-terms form a set in A.

Theorem 3.18 (Barwise Compactness Theorem) Let LA be an A-admissible
fragment of a countable semi-decorated language L and T a set of LA-formulas
that is †-definable in A. Then T ˆLA

F iff there is an A finite subset T0 � T such
that T0 ˆLA

F .

Proof From T ˆLA
F and the fact that LT is an A-fragment we get by

Theorem 3.14 an A-finite set T 0 � T such that T 0
˛

LA

F for some ordinal ˛ 2 A.
Again by Theorem 3.14 this entails T0 ˆLA

F . ut
Summing up our hitherto obtained results we get two theorems.

Theorem 3.19 (Barwise Completeness Theorem) Let L be a countable A-
admissible fragment of a semi-decorated language and T a set of L-formulas
that is †-definable in A. Then the following claims are equivalent.

1. T ˆL F .
2. .9˛/ŒT ˛

L
F �.

3. A ˆ .9˛/ŒT ˛

L
F �.

Theorem 3.20 Let L be a countable A-admissible fragment of a semi-decorated
language and T a set of L-formulas that is †-definable on A. Then T is consistent
iff every A-finite subset of T is consistent.

Proof For the non-trivial direction assume that T is inconsistent. This is the case
iff there is a formula F in T such that T ˆL F c . By Theorem 3.18 there is an
A-finite subset T0 � T such that T0 ˆL F c . Then T0 [ fF g is still A-finite and
inconsistent. ut

4 Applications to Logic

In the following section we study the applicability of the previous section to logics.
We do that in an exemplary way and start with the most natural test case, first order
logic.

7Cf. [1, III, Proposition 1.4].



Semi-Formal Calculi and Their Applications 331

4.1 First Order Logic

First order languages are semi-decorated languages. They share the special feature
that their verification calculi can be replaced by finite verification calculi. This fact
is due to Corollary 3.12 of the Substitution Lemma.

Definition 4.1 Let L be a first order language (with free predicate variables) and T
its term-model. If we define the complexity rnk.F / in the familiar way, we obtain
LT as a fully decorated language. We modify the verification calculus to a calculus
T

˛

L
� by keeping the rules (Ax),

�W�
and the (T-rule) and modifying

�V�
to

�V�
If F 2 �\V-type , T

˛G

L
�;G, ˛G < ˛ for all G 2 CS.F / and the outmost

logical symbol of F is not a universal quantifier, then T
˛

L
� holds true.

(8) If .8x/F.x/ 2 � and T
˛0

L
�;F.t/ for some L-term t such that t does not

occur in the formulas of T [�, then T
˛

L
� holds true for all ˛ > ˛0.

It is immediate from Definition 4.1 that ˛ in T
˛

L
� can always be chosen finite.

Lemma 4.2 Let L be a first order language and T an arbitrary, � a finite set of
LT-formulas. Then T

˛

L
� and T

˛

L
� are equivalent.

Proof Clearly T
˛

L
� implies T

˛

L
�. For the opposite direction we show

T
˛

L
� ) T

˛

L
� by induction on ˛. The only critical case is that of an inference

according to .8/. Here we have the premise T
˛0

L
�;F.t/ for some term t such that

t neither occurs in T nor in�. Hence T
˛0

L
�;F.t/ by induction hypothesis. From

Corollary 3.12 we then get T
˛0

L
�;F.s/ for all L-terms s. Using an inference

�V�

this yields T
˛

L
�. ut

Remark 4.3 The modified verification calculus
˛

L
� with empty set T is the

familiar cut-free one-sided sequent calculus à la Tait.

Combining Theorem 3.14 and Lemma 4.2 we obtain the completeness theorem for
first order logic.

Theorem 4.4 (Correctness and Completeness for First Order Logic) Let L be a
first order language and T be a countable set of L-formulas. Then T ˆL F holds
true iff there is a finite subset T0 � T and a finite ordinal n such that T

n

L
F .

The fraternal twin of first order completeness is the Compactness Theorem for first
order logic.

Theorem 4.5 A countable set of first order formulas is consistent iff all its finite
subsets are consistent.

Proof The proof is that of Theorem 3.20. Here we can, however, replace A-finite by
finite. ut
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Remark 4.6 It is well known that the Compactness—and the Completeness Theo-
rem for first order logic hold also for arbitrary, not only for countable sets T . The
restriction “countable” is the price we have to pay for the generality of our approach.
For admissible fragments, for example, the hypothesis “countable” is indispensable.

As a consequence of Theorem 3.17 we get the term-model as the most general model
for first order logic.

Theorem 4.7 A first order formula is valid iff it is valid in the term-model.

Combining Theorems 3.5 and 4.4 and Lemma 4.2 we obtain

Theorem 4.8 Every logically valid …1
1-sentence has a finite truth complexity.

4.2 Second Order Logics

The language L2 of second order logic above L is obtained from L by allowing
quantifications over predicate variables. To simplify notations we restrict ourselves
to unary predicate variables.8 We then talk about second order quantifiers. To obtain
the semantics for L2-languages we start with an L-structure M D .jMj; : : : / and
extend it to an L2-structure M2 D .jMj;S; : : : / by adding a domain S � Pow.jMj/
for the second order quantifiers. An M2-assignment ˆ assigns an element ˆ.x/ 2
jMj to every first order (i.e. individual) variable x and a set ˆ.X/ 2 S to every
second order (i.e. predicate) variableX . We say that M ˆ .QX/F.X/Œˆ� iff M2 ˆ
F.X/Œ‰� for all (Q D 8) or some (Q D 9) M2-assignments‰ which coincide with
ˆ but for the value ‰.X/.

Due to different semantics there are three kinds of second order logic.

• Weak second order logic which is characterized by the fact that the domain of the
second order quantifiers may be any subset of Pow.jMj/.

• Simple second order logic for which the domain of the second order quantifiers
is the class of all L2-definable subsets of jMj.

• Full second order logic for which the domain of the second order quantifiers is
the full power set of jMj.

4.2.1 Weak Second Order Logic

To obtain a term model for weak second order logic L2 we have to extend the term-
model TL by the second order domain S WD fX jX is a second order variableg to the

8For full generality we need a domain Sk 
 Pow
�jMj�k for every quantifier on k-ary predicate

variables. The restriction to unary predicate variables is in fact only a matter of simplifying
notations.
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term-model T2L. If L is countable and semi-decorated, the language L2
T2L

becomes a

countable decorated language extending LTL by putting formulas .8X/F.X/ intoV
-type and dually formulas .9X/F.X/ into

W
-type and defining

• CS..QX/F.X// WD hF.X/jX is a second order variablei.

Therefore all the results of Sect. 3.1 and Definition 4.1 carry over to weak second
order logic.9 We leave it to the reader to transfer the results.

4.2.2 Simple Second Order Logic

To obtain a term model for simple second order logic sL2 over a semi-
decorated logic L we have to extend the term model TL by the set S WD
ffx jF.x/gjF is an L2-formulag and consequently

• CS..QX/F.X// D hF.fx jG.x/g/jG is an L2-formulai.

But here we also have to decorate the formulas s 2 fx jF.x/g and their duals s …
fx jF.x/g that are new in the language of the term-model. We put

• CS.s 2 fx jF g.x// WD hF.s/i.

Observe that simple second order logic is already pretty strong. It allows for full
comprehension. If we denote the term-model for sL2 by T2, we get

T2 ˆ .9X/.8x/Œ.Xx/ $ F.x/� (6)

for every L2-formula F.x/.
Although T2 is a countable structure the decoration via T2 violates—at least

prima facie—condition (C1). It is not immediately clear how to define a complexity
that satisfies (C1). It follows from the work of Takeuti [14] that the results of
Sect. 3 cannot be easily extended to sL2. According to [14] cut eliminability as
in Theorem 3.16 for sL2 would imply the consistency of second order arithmetic
with full comprehension. A theory the ordinal analysis of which is still one of the
biggest challenges.

This, however, does not exclude the possibility that results for sL2 similar to
those in Sect. 3 can be obtained using stronger means. The only result for which
condition (C1) is essential is the Semantical Main Lemma. Schütte in [12] used
search trees to show that cut elimination for simple type theory is equivalent to
the fact that every partial valuation for simple type theory is extensible to a total
valuation and Tait used this result in [13] to prove cut-elimination for simple second
order logic by showing that partial valuations can be extended to valuations in !-

9This is of course not surprising because weak first order logic is in fact nothing but a two sorted
first order logic.
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models. It seems possible that similar techniques may be used to prove a variation
of the Semantical Main Lemma. We have not yet checked that.

Also an attempt to use Girards “canditats de reducibilité” [4] might yield some
results similar to those in Sect. 3.

4.2.3 Full Second Order Logic

The only possibility to decorate full second order logic via “term-models” we can
imagine is to define CS..QX/F.X// WD hF.S/jS � jTji. This, however, yields not
a countable decorated language. Therefore there is, as far as we can see it now, no
way to treat full second order languages. There are, however, logics in between first
order (or weak second order) logic and full second order logic which are feasible
and are treated in the next sections.

4.3 M-Logic

A possible way to read Lemma 2.16 is Eq. (3) in which we find the notion
T ˆLM F . This notion is not yet well elaborated. To elaborate this notion further
we have to specify the notion of an LM-structure. Clearly MM is an LM-structure.
To obtain a wider class of LM-structures we extend the language LM by a new
unary predicate symbol M, the intended meaning of which is the domain jMj of
the structure M, and allowing free individual variables. Call this extended language
LC
M.

Definition 4.9 Let L be a semi-decorated language and M an L-structure. An LC
M-

structure N is called an L-M-structure iff

• MN D jMj,
• mN D m for all m 2 jMj,
• MM is a substructure of N�LM.

We say that a formula F is a consequence of a set T of LC
M-formulas in M-logic

(written as T ˆL
M F ) iff for every L–M-structure N and every N-assignment ˆ

that verifies all the formulas in T we also have N ˆ F Œˆ�.
Commonly the basic language L is the first order language L.M/ of a given

structure. Instead of L.M/-M-structures we then talk about M-structures and write
T ˆM F instead of T ˆL.M/

M F .

Although LM is a fully decorated language we must not regard LC
M as fully

decorated. It is not even semi-decorated since there are new formulas .Mt/ and
.Mct/ which are not yet decorated with characteristic sequences. These formulas—
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let us write .t 2 M/ and .t … M/ instead of .Mt/ and Mc t/—are not regarded as
atomic but we put

• all formulas .t 2 M/ in
W

-type and dually
• formulas .t … M/ in

V
-type ,

define

• CS.t 2 M/ WD ht � mjm 2 jMji.
and assign a complexity larger than rnk.t � m/ to the formulas t 2 M and t … M.10

Having made these definitions we may regard LC
M as a semi-decorated language.

To fully decorate it we need an LC
M-structure N. According to Definition 2.10 the

language .LC
M/N is then a fully decorated language.

To deal with “pureM-logic” we have to introduce a term-model for LC
M. Observe

that there are constants m for m 2 jMj in LC
M. Sometimes it is useful to strip

the underlines. We therefore denote by s the LC
M-term that is obtained from s by

stripping all the underlines. Clearly s is not an LC
M-term.

Definition 4.10 Let L be an abstract language and M an L-structure. The term-
model TLM for LC

M is defined by the following items.

• The domain is the set of all LC
M-terms.

• f TLM .t1; : : : ; tk/ WD .f t1; : : : ; tk/.
• �TLM WD f.s; s/j s is an LC

M-termg.
• For everym 2 jMj we definemTLM WD m.
• It is MTLM D fs j s 2 jMjg and McTLM D fs j s … jMjg.
• The diagram of TLM comprises all sentences of the form .Rm1; : : : ; mk/ for

which .Rm1; : : : ; mk/ is in the diagram of M.
• Relation constants different from � and M remain uninterpreted and are treated

as relation variables. Observe, however, the extension of the diagram above.11

Using the standard complexity definition for rnk.F / the language LTM (which we
will briefly call LM

T ) is now fully decorated12 and thus defines a verification calculus

T
˛

LM
T
�
�
in case that L is the first order language of M we briefly write T

˛

M
�
�
.

We can transfer the notions and results of Sect. 3.3 to the term-model of M-logic.
For translations in Definition 3.10 we clearly have to require that m� D m for all
m 2 jMj. Transferring the results we get the following theorems.

10rnk.t 2 M/ D rnk.t … M/ D 1 will work in most cases, especially in the case that the basis
language is the first order language of M.
11According to this extension M and Mc are interpreted by the definition of CS.t 2 M/ and CS.t …
M/, respectively.
12Observe the peculiarity that for m 2 jMj we have a constant m in LC

M and thus a constant m

in LM
T . The interpretation of m in the extended model .TLM /TLM

is m and the interpretation of
m in TLM is m. Thus .Rm

1
; : : : ; m

k
/ belongs to the diagram of .TLM/TLM

iff .Rm1; : : : ; mk/

belongs to the diagram of TM iff .Rm1; : : : ; mk/ belongs to the diagram of M.
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Theorem 4.11 Let L be a semi-decorated countable language, M a countable L-
structure and T a countable set of LM-formulas. Then T ˆL

M F holds true iff there

is a subset T0 � T and a countable ordinal ˛ such that T0
˛

LM
T
F .

For a structure M let HYPM denote the least admissible structure above M and
defineO.M/ WD o.HYPM/ as the least ordinal which does not belong to HYPM.13

Since jMj 2 HYPM the language LM
T WD L.M/MT is a HYPM-admissible

fragment. Therefore we can refine Theorem 4.11 to

Theorem 4.12 Let M be a countable structure and T a countable set of LM-
formulas that is †-definable in HYPM. Then T ˆM F holds true iff there is an
ordinal ˛ < O.M/ and an HYPM-finite subset T0 of T such that T0

˛

LM
F .

The standard application for M-logic is !-logic where the basic structure is the
standard structure N of natural numbers. In this case Theorem 4.12 reads that
T ˆN F for a…1

1-definable set of formulas holds true iff there is an ordinal ˛ below
!CK
1 —the first ordinal that cannot be represented by a recursive well-ordering on the

natural numbers—and a subset T0 � T that is �1
1-definable such that T0

˛

LN

F .

The calculus
˛

LN

� corresponds to a cut-free one-sided sequent calculus with !-
rule. Theorem 4.12, or rather Theorem 3.5 applied to L.N/N, the extended first
order logic of the standard structure of natural numbers, is then a version of the
!-completeness theorem which is originally due to Henkin [5] and Orey [9].

4.4 Infinitary Logic L�;!

A logic that is essentially stronger than first order logic but is still in some sense
treatable is infinitary logic L�;! . The language L�;! is an extension of first order
logic that allows for the formation of infinitely long disjunctions and conjunctions
provided that they contain only a finite number of free variables. To be more precise
the formation rules besides those of first order logic are

• If hF�j � < � < �i is sequence of L�;!-formulas which contains only a finite num-
ber of free individual variables, then

V hF�j � < � < �i and
W hF�j � < � < �i

are L�;!-formulas.

The semantics for L�;! is the obvious extension of the semantics for first order logic.
Putting infinite conjunctions in

V
-type and infinite disjunctions in

W
-type and

defining

• CS.OhF�j � < �i/ WD hF�j � < �i where O is one of the operators
V

or
W

.

L�;! becomes a semi-decorated language. For any L-structure M we can rewrite
Theorems 2.12 and 2.13 as

13Cf. [1, II Sect. 5].
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Theorem 4.13 Let F be an .L�;!/M-formula whose second order variables are all

in the listX1; : : : ; Xk then
˛

.L�;! /M
F implies Mˆ .8X1/ : : : .8Xk/F.X1; : : : ; Xk/.

and

Theorem 4.14 A .L�;!/M-sentence F is valid in an L-structure M iff there is an

ordinal ˛ � rnk.F / such that
˛

.L�;! /M
F .

Theorem 3.5 now reads as

Theorem 4.15 Let M be a countable L-structure and F be an .L!1;!/M-formula
whose second order variables all occur in the list X1; : : : ; Xk . Then we have
M ˆ .8X1/ : : : .8Xk/F.X1; : : : ; Xk/ iff there is a countable ordinal ˛ such that
˛

.L!1;! /M
F .

The hypothesis of countability in Theorem 4.15 is indispensable. There are coun-
terexamples for languages L�;! with � > !1 (cf., e.g., [10, Exercise 8.2.3]).

Clearly all the other results about countable admissible fragments of L!1;! and
L!1;!-consequences carry over. We leave the exact formulation to the reader.

4.5 Logic for Inductive Definitions

There are more examples for logical languages that are semi-decorable. We will
not be able to treat all of them (probably we do not even know all of them).
Examples which are certainly important are languages for inductive definitions and
their generalizations, languages with the game quantifier Â. Here we will only treat a
language for one non-iterated inductive definition. We will not treat languages with
the game quantifier. This is an interesting topic with wide reaching consequences as
indicated in [7] which we leave for further studies.

4.5.1 A Brief Recapitulation of Inductive Definitions

To describe logics for inductive definitions we need some facts about inductive
definitions which we will sketch roughly. For a profound study of inductive
definitions visit [8] or (better and) [1].

Let L be a (semi-) decorated language and F.X; x1; : : : ; xn/ an X -positive L-
formula14 whereX is an n-ary predicate variable. This defines a monotone operator

	F W Pow.jMjn/ �! Pow.jMjn/

14An L-formula is X positive if the dual variable Xc does not occur in the Tait version of L.
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on every L-structure M by setting

	F .S/ WD f.m1; : : : ; mn/ 2 jMjnjM ˆ F ŒS;m1; : : : ; mn�g:

We call such an operator a positively definable inductive definition (or positive
inductive definition for short) of M. The operator 	F possesses a least fixed-point
(the fixed-point) IF satisfying

	F .IF / D IF and .8X/Œ	F .X/ � X ! IF � X�:

The fixed-point is thus…1
1-definable by the formula

IF D fExj .8X/Œ.8 Ey/ŒF.X; Ey/ ! .X Ey/� ! .X Ex/�g: (7)

If L is the first order language L.M/ of a structure M we call the slices of fixed-
points of L.M/ positively definable inductive definitions the positive-inductively
definable relations of M.

The stages of an inductive definition 	F are recursively defined by

I ˛F WD 	F .I
<˛
F / for I<˛F WD

[

�<˛

I
�
F :

Because of the monotonicity of the operator 	F the stages of a monotone inductive
definition are increasing, i.e.,

˛ < ˇ ) I ˛F � I
ˇ
F :

By cardinality reasons there is therefore an ordinal � < jMj
C

such that I<�F D I �F .
The least such ordinal is the closure ordinal of the inductive definition 	F , denoted
by kF k. For an element En 2 IF we define its inductive norm by

jEnjF WD min f�j En 2 I �F g:

It is then easy to see that

IF D I
kF k
F andkF k WD sup fjEnjF C 1j En 2 IF g: (8)

4.5.2 The Language LID

Let L be a (semi-)decorated language. For every X -positive formula
F.X; x1; : : : ; xn/ we introduce an n-ary predicate constant IF . Again we write
t 2 IF instead of .IF t/ and .t … IF / instead of .IF ct/. An LID-structure is an
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L-structure in which IF is interpreted as the fixed-point of the monotone operator
	F defined by F.X; x1; : : : ; xn/.

To (semi-)decorate LID we put formulas of the form .Et 2 IF / into
W

-type and
dually all formulas .Et … IF / in

V
-type and define

• CS.Et 2 IF / D hF.IF ; Et /i.

Using the standard complexity definition for formulas this obviously violates
condition (C1).

However, we easily see that for any LID-structure M we still have

M ˆ Et 2 IF Œ‰� iff M ˆ GŒ‰� for some G 2 CS.Et 2 IF /

and

M ˆ Et … IF Œ‰� iff M ˆ GŒ‰� for all G 2 CS.Et … IF /:

This entails that the verification calculus
˛

LID
� is sound for all LID-structures.

To obtain also completeness for countable LID-structures M we transfer Sect. 3.1
to the language LID. In doing so we observe that condition (C1) is only needed in
the proof of the Semantical Main Lemma. We thus have to check the Semantical
Main Lemma for countable LID.M/. So we modify the proof of the Semantical
Main Lemma (Lemma 3.3) as follows.

Let M be a countable L-structure and f an infinite path in the search tree
SLID.M/
T;� . We define an M-assignmentˆ as in the proof of Lemma 3.3 and interpret

the new constants IF by I<˛F for all countable ordinals ˛. By G˛ we denote that all
constants IF in G are interpreted by I<˛F .

By main-induction on ˛ and side induction on the complexity of the formula
G we then prove that for all formulas G 2 �f we get M 6ˆ G˛Œˆ� for all ˛.
The only new cases are that the redex is a formula Et 2 IF or Et … IF . In the
first case the formula F.IF ; Et / belongs to �f and we get by induction hypothesis

M 6ˆ F.I
<�
F ; Et /Œˆ� for all � < ˛. This entails M 6ˆ Et 2 I

�
F Œˆ� for all � < ˛.

Hence M 6ˆ Et 2 I<˛F Œˆ�.
In the second case the formula F.IF ; Et /c belongs to �f . By induction hypothe-

sis we therefore have M ˆ F.I
<�
F ; Et /Œˆ� for some � < ˛. Hence M ˆ Et 2 I �F �

I<˛F and we have M 6ˆ Et … I<˛F .

Since IF D I
<kFk
F we may choose ˛ D kF k to make M an LID-structure for

which we have M 6ˆ G for all G 2 �. ut
Summing up we have shown that the Semantical Main Lemma holds true for the

language LID which implies that all the results of Sect. 3 also hold for the language
LID.
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5 Applications to Structure Theory

Definition 5.1 Let M be a structure. By L.M/ we denote the first order language
of M. We already assumed some familiarity with the usual complexity hierarchy of
formulas. As a reminder: The �0

0-formulas are obtained from atomic formulas by
the Boolean operations and bounded quantification. A †0n-formula has a �0

0-matrix
in front of which there are n alternating blocks of quantifiers starting with a block
of existential quantifier. …0

n-formulas are the dual of †0n-formulas. A formula F is
said to be �0

n in M if there are a †0n-formula F† and a …0
n-formula F… such that

M ˆ .8x1/ : : : .8xn/ŒF…$F†$F �

where all the free individual variables occurring in F are listed in x1; : : : ; xn.
By�1

0 we denote the set of all first order formulas.…1
1-formulas are�1

0-formulas
preceded by a block of second order universal quantifier. †11-formulas are the dual
of …1

1-formulas.

Theorem 3.5 shows the close connection between semi-formal systems and …1
1-

sentences. In this section we will show that there are applications to the structure
theory of countable structures concerning the …1

1-sentences that are valid over this
structure.

Observe, however, that by validity of a …1
1-sentence over a structure M we

understand validity in the sense of full second order logic. The second order
quantifies are supposed to vary over the full subset of the domain of M. In this
sense our structures are all ˇ-structures, i.e., …1

1-sentences are absolute for M.
There is an obvious observation connecting …1

1-relations over an infinite count-
able structure and relations that are †1-definable in HYPM. First we observe that
the relation

˛

LM
� is definable by †-recursion in HYPM. Therefore we obtain

M ˆ .8X/F.X/ iff HYPM ˆ .9˛/� ˛

LM
F.X/

�
(9)

from which we immediately obtain the following theorem.

Theorem 5.2 Any …1
1-relation that is valid over an infinite countable structure M

is †01-definable in HYPM.

As a corollary to Theorem 5.2 we obtain that the relations that are�1
1-definable over

M are already members of HYPM.

Remark 5.3 The opposite direction of Theorem 5.2 holds true even without the
hypothesis of countability. For countable structures M there is also a proof of the
opposite direction using semi-formal systems. Since this is the weaker result we just
give a rough indication how such a proof could work. Spelling out the details would
leads us too far away.
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The key point is to define a semi-decorated language for the relativized con-
structible hierarchy L˛.M/.15 Since HYPM D L˛.M/ for ˛ D O.M/ and
M is countable we have an enumeration T of all the elements of L˛.M/ and
may use it to define CS..Qx/F.x// D hF.s/j s 2 T i for LHYPM

-formulas the
quantifier of which is supposed to range over HYPM. Using search trees we prove a

completeness theorem saying that HYPM ˆ F.X/ iff HYPM ˆ �
.9ˇ/ ˇ

LHYPM

F
�
X
��

for†01-sentences F (this is needed to secure that ˇ is an element of HYPM. For…-
formulas this would fail.). Now we need a translation of the languages to construct

a formula F 0.X/ which allows us to convert
ˇ

LHYPM

F.X/ into
ˇ0

LM
F 0.X/.16 Using the

Correctness Theorem for
˛

LM
this finally implies M ˆ .8X/F 0.X/.

We will not pursue these aspects of structure theory further but concentrate on
characteristic ordinals of structures in which semi-formal systems have some
advantages.

5.1 Characteristic Ordinals of a Structure

Definition 5.4 Let M be a structure. There is a series of ordinals that are character-
istic for M. By an ordering we mean a binary transitive relation that is irreflexive.

• 
in.M/ (�in.M/, ıin.M/)) is the supremum of the ordertypes of well-founded
orderings that are †in– (…i

n–, �i
1–) definable in M, where i 2 f0; 1g and

n 2 f0; 1g in case that i D 1.
• ı10.M/ (D 
10 .M/ D �10 .M/) is the supremum of all ordertypes of well-founded

orderings that are L.M/-definable in M.
• o.M/ is the least ordinal that does not belong to M. This definition only makes

sense for structures in which ordinals are definable. An ordinal ˛ is admissible
iff ˛ D o.A/ for an admissible structure A.

• O.M/ D o.HYPM/ where HYPM is the least admissible structure A for which
we have jMj 2 A (cf. [1, II.5.8] for details). The ordinal O.M/ is the next
admissible above o.M/.

• �M is the supremum of the truth-complexities of …1
1-sentences that are valid

in M.

Note 5.5 The ordinal which is genuinely connected to semi-formal systems is �M.

According to our definition of the truth-complexity17 we always get �M D jMj
C

15Cf. [10, Sect. 11.9] for the definition of a semi-decorated language for the constructible hierarchy
L˛ .
16Cf. [1] for the use of extended first order- and extended …1

1-formulas.
17Since we are working with the first order logic L.M/ of M as basis language we denote from
now on truth complexity briefly by tcM.F / instead of tcL.M/M .F /.
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for structures for which the verification calculus is not complete. So �M is only
an interesting ordinal for countable structures. It is still unclear to us if there is
a modification of the definition of �M which is also meaningful for uncountable
structures. For example

�M WD sup.ftcM.F /jM ˆ F g \ jMj
C
/:

Section 5.4 hides a hint that this might be a sensible definition.

In the following we study the connection of �M to the other characteristic ordinals
on countable structures. First notice that �M is apparently a strict supremum.

Whenever we have
˛

L.M/
F we obviously obtain

˛C1
L.M/

F _ G for any L.M/-

formulaG.

Remark 5.6 As an aside we want to mention that the characteristic ordinals
for structures are closely connected to proof theoretic ordinals for axiom
systems.

Because of how we interpret second order quantification M is always a ˇ-
structure, i.e., a structure that is absolute for…1

1-sentences. Therefore we can replace
the phrase “�-is well-founded” by “M ˆ Wf .�/”, e.g.,

ıin D sup fotyp.�/j � is a �i
n-definable ordering andM ˆ Wf .�/g:

For a theory T we define analogously

kT k WD sup fotyp.�/j � is a �0
0-definable ordering andT Wf .�/g:

The ordinal kT k is known as the proof-theoretic ordinal of T .
Similarly we may define

kT k…1
1

WD sup ftc
�
.8X/F �jT F g:

The computation of these ordinals is called an ordinal analysis of T . Proof theoretic
ordinals are always ordinals below !CK

1 while their model-theoretic counterparts
are commonly much bigger. For “standard” axiom systems T comprising Peano
arithmetic directly or via interpretation the ordinals kT k and kT k…1

1
coincide.

Therefore it makes no sense to define proof theoretical ordinals, e.g. kT k�0n
analogously to ı0n.M/, etc. There is, however, a notion of a …0

2-ordinal of a theory
T which is much more sophisticated and needs a notation systems for ordinals. We
will not mention any details, since ordinal analyses are not among the aims of this
paper.
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5.2 The Boundedness Theorem

The central theorem that connects characteristic ordinals and semi-formal systems
is the Boundedness Theorem which goes back to Gentzen [3] although Gentzen did
not work with semi-formal systems. An (essential) improvement of the theorem is
due to Beckmann [2].

Because of the centrality of the Boundedness Theorem and to improve the
readability of the paper we are going to reprove it although there is a detailed proof
in [10] which, however, uses slightly different notations.

To prepare the Boundedness Theorem we recall the fact that every element in the
field of a well-founded ordering � possesses an ordertype otyp�.x/ which is the
strict supremum of the ordertypes of all its predecessors.

Definition 5.7 Let � be a binary well-founded relation. For a set X � field.�/ let
O.X/ WD fotyp�.x/j x 2 Xg. Let encX enumerate the complement of O.X/.
Define

R˛�.X/ WD X [ fy 2 field.�/j otyp�.y/ � encX .˛/g (10)

and let

R<0� .X/ WD fXg and R<˛� .X/ WD
[

�<˛

R
�
�.X/ for ˛ > 0:

We easily get

encX[fxg.˛/ � encX .˛ C 1/; (11)

hence

R˛�.X [ fxg/ � R˛C1� .X/ [ fxg: (12)

The inequality (11) is trivial for x 2 X . For x … X let otyp�.x/ D encX .�/. Then
enc
X[fxg.�/ D encX .�C 1/.
If � is transitive, then there is also a recursive characterization of the set R˛�.X/.

Lemma 5.8 Let � be a well-founded ordering. Then

R˛�.X/ D R<˛� .X/ [ fyj .8x � y/Œx 2 R<˛� .X/�g:

Proof For the direction from left to right let y 2 R˛�.X/. The claim is trivial for
y 2 X . So assume y … X , otyp�.y/ � encX .˛/ and x � y. If x 2 X , then we
trivially have x 2 R<˛� .X/. If x … X , then otyp�.x/ D encX .ˇ/ for some ˇ < ˛.
Hence x 2 R<˛� .X/.
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For the opposite direction we show

.8x � y/Œx 2 R<˛� .X/� ) otyp�.y/ � encX.˛/ (i)

by �-induction. For z � y we get .8x � z/Œx 2 R<˛� .X/� by transitivity
of �. Hence otyp�.z/ � encX.˛/ by induction hypothesis. If z … X , we get
otyp�.z/ < encX.˛/ by z 2 R<˛� .X/. If z 2 X , we cannot have otyp�.z/ D encX .˛/,
hence otyp�.z/ < encX.˛/. So we have otyp�.z/ < encX.˛/ for all z � y and thus
otyp�.y/ � encX.˛/. ut
We will now study well-founded binary relations �. Well-foundedness is expressed
by the formula

.8x/Œ.8y � x/.y 2 X/ ! x 2 X� ! .8x 2 field �/.x 2 X/:

The premise in this implication expresses that the relation � is progressive what we
are going to abbreviate by Prog.X;�/. In Tait style well-foundedness of the binary
relation � is thus expressed by

Wf .�/ W, Prog.X;�/c _ .8x 2 field �/.x 2 X/:

Lemma 5.9 (Boundedness Lemma) Let M be a countable structure, � an L.M/

definable well-founded ordering and �.X/ a finite set of X -positive L.M/-
formulas. If

˛

M
Prog.X;�/c ; s1 … X; : : : ; sn … X;�.X/;

then

M ˆ
_
�.X/Œˆ�

for any M assignmentˆ that assigns the set R<˛� .fsM1 Œˆ�; : : : ; sMn Œˆ�g/ to X .

Proof The proof is by induction on ˛. The cases that the main-formula of the last
clause belong to �.X/ follow directly from the induction hypothesis and the X -
positivity of the formulas in �.X/.

If the main formula of the last clause is Prog.X;�/c , we have the premise

˛0

M
Prog.X;�/c; .8y � s/.y 2 X/ ^ s … X; s1 … X; : : : ; sn … X;�.X/

for some L.M/-term s. By
V

-inversion (Lemma 2.7) this entails

˛0

M
Prog.X;�/c ; .8y � s/.y 2 X/; s1 … X; : : : ; sn … X;�.X/ (i)
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and

˛0

M
Prog.X;�/c ; s … X; s1 … X; : : : ; sn … X;�.X/: (ii)

Now assume M 6ˆ W
�Œˆ�. Applying the induction hypothesis to (i) we get

.8y � sMŒˆ�/Œy 2 R<˛0� .fsM1 Œˆ�; : : : ; sMn Œˆ�g/�

which by Lemma 5.8 implies

sMŒˆ� 2 R˛0� .fsM1 Œˆ�; : : : ; sMn Œˆ�g/: (iii)

Applying the induction hypothesis to (ii) implies

M ˆ
_
�.X/ŒR<˛0� .fsM1 Œˆ�; : : : ; sMn Œˆ�; sMŒˆ�g/�

which by (12) implies

M ˆ
_
�.X/ŒR<˛� .fsM1 Œˆ�; : : : ; sMn Œˆ�g/ [ fsMŒˆ�g�: (iv)

However, (iii) and (iv) show that we in fact have M ˆ W
�.X/Œˆ�. ut

An immediate consequence of the Boundedness Lemma is the Boundedness
Theorem.

Theorem 5.10 (Boundedness Theorem) Let M be a countable structure and �
an L.M/-definable well-founded ordering. Then otyp.�/ � tcM.Wf .�//.
Proof Let ˛ D tcM.Wf .�//. If ˛ D !1, we are done. Otherwise we obtain

˛

M
Prog.X;�/c ; .8x 2 field.�//.x 2 X/

by
W

-exportation (Lemma 2.8). This entails .8x 2 field.�//.x 2 R<˛� .;// by the
Boundedness Lemma. Hence otyp�.x/ < enc;.˛/ for all x in the field of �. Since
enc;.˛/ D ˛ this entails otyp�.x/ < ˛ for all x 2 field.�/. ut
It is easy to see that Theorem 5.10 can be extended to †11-definable well-founded
orderings. If m � n is defined by the †11-sentence M ˆ .9Y /G.Y;m; n/, we have
n 2 field.�/ iff there is a set S � jMj such that

.9x/ŒG.S; n; x/ _G.S; x; n/�:
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From
˛

M
Prog.X;�/c ; .8x 2 field.�//.x 2 X/ we then get by Lemma 5.9

:..9x/ŒG.S; n; x/ _G.S; x; n/�/ _ n 2 R<˛� .;/

for every n. Hence otyp.�/ � ˛.
There is even an extension of the Boundedness Theorem to definable classes of

well-founded orderings.

Theorem 5.11 (Extended Boundedness Theorem) Let M be a countable
structure and P a †11-definable class of well-founded orderings on jMj. Then
sup fotyp.�/j �2 Pg � �M.

Proof Let Y 2 P iff .9Z/G.Y;Z/. Then .8Y /ŒY 2 P ! Wf .Y /� is a …1
1-

sentence. If M ˆ .8Y /ŒY 2 P ! Wf .Y /�, there is an ˛ < �M such that

˛

M
G.Y;Z/c;Prog.X; Y /c; .8x 2 field.Y //Œx 2 X�: (i)

If � is a well-ordering in P there is a set S � jMj such that M ˆ G.�; S/. By the
Boundedness Lemma we get from (i)

M ˆ G.�; S/c _ .8x 2 field.�//Œx 2 R<˛� .;/�:

Hence otyp.�/ � ˛ < �M for all �2 P . ut
Corollary 5.12 If � is a well-ordering that is†11-definable on a countable structure
M, then otyp.�/ is less than �M.

Proof Let P WD fY jY is a linear order and .8x/.8y/Œ.x; y/ 2 Y ! x � y�g.
Then P is a †11-definable class and �2 P . Thus otyp.�/ < �M by the proof of the
theorem. ut
Note 5.13 The Boundedness Lemma is based on the results in Sect. 3 of [3].
Gentzen’s result in our terminology is otyp.�/ � !tcN.Wf .�// for a well-ordering �.
This can easily be improved to otyp.�/ � 2tcN.Wf .�// (which makes not too much
difference for infinite ordinals). The sharper bound tcN.Wf .�// is due to Beckmann.

The hypothesis of transitivity in the Boundedness Lemma is indispensable.
Without transitivity Lemma 5.8 fails (cf. [10, Exercise 6.7.6]). In Lemma 5.26 below
we have to deal with relations that are not transitive and get the weaker bound 2˛.

Apparently Gentzen himself already observed that the Boundedness Theorem
might have further reaching consequences. In his paper [3] he writes on page 159
“Diese Ergebnisse lassen sich noch wesentlich verschärfen; ich hoffe später einmal
näheres hierüber veröffentlichen zu können.” which roughly means “these results
can still be essentially sharpened; I hope to be able to say more about it in a later
publication”.

In many cases the bound given by the Boundedness Theorem is the sharp bound. To
clarify that we prove a lemma.
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Lemma 5.14 Let � be a well-ordering that is†11-definable in a countable structure
M such that the sentences .m � n/c in the diagram of M uniformly have a truth
complexity � ˇ. Then we get

˛n

M
Prog.X;�/c; n 2 X

for ˛n WD ˇ C 4 � .otyp�.n/C 1/.

Proof We use �-induction. By induction hypothesis and Theorem 2.13 we have

˛m

M
Prog.X;�/c ; .m � n/c;m 2 X

for all m 2 jMj. Using a clause .
W
/ and .

V
/ we obtain

ˇn

M
Prog.X;�/c; .8x/Œ.x � n/ ! x 2 X�

for ˇn D ˇ C 4 � otyp�.n/C 2. By clause (Ax) we have

0

M
Prog.X;�/c; .8x/Œ.x � n/ ! x 2 X�; n … X; n 2 X

and obtain by a clause .
V
/

ˇnC1
M

Prog.X;�/c ; .8x/Œ.x � n/ ! x 2 X� ^ n … X; n 2 X

and finally by a clause .
W
/

ˇnC2
M

Prog.X;�/c; n 2 X: ut

As a consequence of Lemma 5.14 we obtain

Theorem 5.15 Let � be a well-ordering that is †11-definable on a countable
structure M and assume tcM..m � n/c/ is uniformly less or equal to ˇ for all
atomic sentences .m � n/c that are valid in M. If the ordertype of � is a limit
ordinal, then otyp.�/ � tcM.Wf .�// � ˇ C otyp.�/.
Proof Let ˛ WD tcM.Wf .�//. Then we have

˛

M
Prog.X;�/c ; .8x 2 field.�//Œx 2 X�;

hence otyp.�/ � ˛ by the Boundedness Theorem 5.10. Since otyp.�/ is a limit
ordinal we obtain from Lemma 5.14 ˛ � ˇ C otyp.�/. ut
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If the relation � is L.M/-definable, then tcM..m � n/c/ � rnk.m � n// holds
true for all .m � n/c in the diagram of M by Theorem 2.13. Since all first order
sentences in L.M/M have finite rank we get the following corollary.

Corollary 5.16 Let M be a countable structure. For any L.M/-definable well-
ordering of limit ordertype we have otyp.�/ D tcM.Wf .�//.

5.3 Definable Ordinals, the Next Admissible and �M

There is a series of consequences of the Boundedness Theorem for the characteristic
ordinals of countable structures.

Theorem 5.17 Let M be an infinite countable structure then

ı00.M/ � ı0n.M/ � ı10.M/ � 
11 .M/ � �M � O.M/:

Proof The first three inequalities are obvious. The fourth one follows from the
Boundedness Theorem (Theorem 5.10). The last one follows from Theorem 4.12.

ut
A natural question to ask is under which condition the � in Theorem 5.17 can be
sharpened to D.

A reinspection of Definition 3.1 shows that for a finite sequence � of L.N/-
formulas the search-tree SL.N/

� can be defined by course-of-values recursion and
thus is primitive-recursively definable. This entails that the tree ordering on a well-
founded search tree SL.N/

� is primitive-recursively definable. Therefore we obtain for
the standard structure of arithmetic

Theorem 5.18 ı00.N/ D �N. Hence ı00.N/ D ı10.N/ D 
11 .N/ D �N.

Proof By Theorem 5.17 it suffices to show �N � ı00.N/. If ˛ < �N, then there
is a …1

1-sentence .8X/F.X/ that is valid in N such that ˛ � tcN..8X/F.X//.
Then SL.N/

F .X/ is well-founded and ˛ is less than or equal to the ordertype of SL.N/
F .X/.

Since SL.N/
F .X/ is primitive-recursively definable its ordertype is less than ı00.N/. Hence

�N � ı00.N/: ut
We did not check which are the minimal conditions under which the search tree
becomes definable in a structure. We certainly need some kind of coding machinery.

A structure is acceptable in the sense of [8] if it allows for an elementarily
definable coding machinery. In an acceptable structure the search tree becomes
elementarily definable. By the same argument as in the proof of Theorem 5.18 we
therefore obtain the next theorem.

Theorem 5.19 Let M be an acceptable structure. Then ı10.M/ D �M. Hence
ı10.M/ D 
11 .M/ D �M.
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The relation between �M andO.M/ is established by the next theorem. According
to [1] we say that a relation is A-recursively definable on an admissible structure A
iff it is �0

1-definable on A.

Theorem 5.20 Let M be an infinite countable structure that allows for a HYPM-
recursively definable pairing function. Then 
11 .M/ D �M D O.M/.

Proof The �-direction is Theorem 5.17. For the proof of the opposite inequality we
have to borrow results from [1]. By [1, VI.4.12] we know that the structure HYPM

is projectible into M . Thus by [1, V.5.9.] we have

O.M/ D sup fotyp.�/j �� jMj2^ �2 HYPM ^ Wf .�/g:

By [1, IV.3.4] we obtain that every relation � in HYPM is †11-definable (even�1
1-

definable) in M. HenceO.M/ � 
11 .M/ � �M. ut
Corollary 5.21 Let M be an acceptable structure. Then ı10.M/ D ı11.M/ D

11 .M/ D �M D O.M/.

Recall that an ordinal ˛ is admissible if ˛ D o.A/ for an admissible structure A.

Corollary 5.22 The Kleene ordinal !CK
1 is the first admissible ordinal above !.

Proof For the proof just recall that !CK
1 D ı01.N/ and apply Corollary 5.21. ut

Remark 5.23 It follows from Theorem 5.20 that for structures M that allow for
a HYPM-recursive pairing the ordinal �M is admissible and thus an ordinal with
strong closure properties, including the closure under powers to the basis 2. As we
will see later (cf. Lemma 5.28 below) closure under 2-powers is of some importance.

If M is the trivial structure with equality as the only relation symbol, we
apparently have �M D !. This ordinal is closed under powers to the basis 2. We
do not know if there are structures whose…1

1-ordinal is not closed under 2-powers.
Our conjecture is that this holds true for almost all structures.

5.4 �M and Inductive Definitions

We already touched inductive definitions in Sect. 4.5.1. Here we start with an
arbitrary structure M and regard the semi-decorated first order language L.M/.

Putting jEnjF WD jMj
C

for En … IF we obtain the stage comparison relations

Em �� En W, j EmjF � jEnjG;
Em �� En W, j EmjF < jEnjG:
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The most important theorem in the theory of inductive definitions is the Stage
Comparison Theorem which says that the stage comparison relations are positive-
inductively definable in M.

Due to this theorem there is a characteristic ordinal which is very important for
the structure theory of the sets that are positive-inductively definable in M.

Definition 5.24 Let M be a structure. We define the ordinal �M of M as the
supremum of the closure ordinals of positive inductions that are L.M/-definable
in M (cf. [8]).

The ordinal �M is characteristic for the structure theory of M in so far that a
positive-inductively definable relation is hyperelementary (i.e. the relation and its
complement are inductively definable) iff its closure ordinal is less than �M. Details
are in [8] and [1]

Remark 5.25 Again there is a proof theoretic counterpart of the ordinal �M. For a
theory in the language of inductive logic (cf. Sect. 4.5) we define

�T WD sup fjnjF jT n 2 IF g:

To establish the connection between �M and �M we have to modify the Bounded-
ness Theorem. We introduce the abbreviations

ClF .X/ W, .8Ex/ŒF.X; Ex/ ! Ex 2 X�;

FEt1;:::; Etn .X; Ex/ W, F.X; Ex/ _ Ex D Et1 _ � � � _ Ex D Etn
and prove

Et 2 I ˛F ) I
ˇ
F

Et
� I

˛Cˇ
F (13)

by induction on ˇ. From Ex 2 I
ˇ
F

Et
we get F.I<ˇF

Et
; Ex/ _ Ex D Et . If Ex D Et 2

I ˛F � I
˛Cˇ
F , we are done. Otherwise we have F.I<ˇF

Et
; Ex/ and obtain by induction

hypothesis and X -positivity F.I<˛Cˇ
F ; Ex/ which implies Ex 2 I ˛Cˇ

F . ut
Now we prove a variation of the boundedness lemma.

Lemma 5.26 (Stage Lemma) Let F.X; Ex/ be anX -positive formula and� a finite
set of X -positive L.M/-formulas. Then

˛

L.M/
ClF .X/

c; Et1 … X; : : : ; Etn … X;�.X/

implies
W
�ŒI<2

˛

F
Et1 ;:::; Etn

�.

Proof The proof is by induction on ˛. The cases that the main-formula of the last
clauses belongs to �.X/ follow easily from the induction hypothesis and the X -
positivity of the formulas in �.X/. Let 	 WD fEt1 … X; : : : ; Etn … Xg: If the main-
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formula is ClF .X/
c , we have the premise

˛0

L.M/
ClF .X/

c; F.X; Et / ^ Et … X;	;�.X/ (i)

for some tuple Et of L.M/-terms. From (i) we get by
V

-inversion

˛0

L.M/
ClF .X/

c; F.X; Et /; 	;�.X/ (ii)

and

˛0

L.M/
ClF .X/

c; 	; Et … X;�.X/: (iii)

Assuming :W�ŒI<2
˛

F
Et1;:::; Etn

� we get Et 2 I 2˛0F
Et1 ;:::;Etn

from (ii) and
W
�ŒI<2

˛0

F
Et1;:::;Etn;Et

� from (iii)

by induction hypothesis. Using (13) and the X -positivity of the formulas in �.X/
we thus have

W
�ŒI<2

˛0C2˛0
F

Et1 ;:::;Etn
�. Since 2˛0 C2˛0 � 2˛ this contradicts our assumption.

ut
By (7) we have En 2 IF iff .8X/ŒClF .X/ ! En 2 X� and define

tcM.En 2 IF / WD tcM..8X/ŒClF .X/ ! En 2 X�/ (14)

and

tcM.IF / WD sup
�ftcM.En 2 IF /C 1j n 2 jMjg \ jMj

C
/: (15)

The counterpart of the Boundedness Theorem is the following Stage Theorem.

Theorem 5.27 (Stage Theorem) Let F.X; Ex/ be an X -positive L.M/-formula.
Then jEt jF < 2tcM.t2IF / holds true for all Et 2 IF . Hence kF k � 2tcM.IF /.

Proof Let Et 2 IF and ˛ WD tcM.Et 2 IF /. Then we have
˛

L.M/
ClF .x/

c; Et 2 X:
By the Stage Lemma it follows M ˆ Et 2 I<2˛F . Hence jEt jF < 2˛ . ut
As a corollary to Theorem we get

Corollary 5.28 For any countable structure M we have �M � 2�
M

. If �M is
closed under powers to the basis 2 this means �M � �M.18

There is also an “inversion” of Lemma 5.26.

Lemma 5.29 Let F.X; n/ be anX -positive L.M/-formula without further relation

variables. If M ˆ F.I<˛G ; n/, then
�

L.M/
ClG.X/

c; F.X; n/ holds true for � D ! �
˛ C rnk.F /.

18Cf. Remark 5.23.
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Proof We prove the lemma by main induction on ˛ with side induction on rnk.F /.
Observe first, that rnk.F / is always finite.

If F is a formula in which X does not occur, then we get the claim by
Theorem 2.13.

For composed formulas F.X; n/ we obtain the claim directly from the side
induction hypothesis.

If finally F.I<˛G ; n/ is the formula n 2 I<˛G , then there is a ˇ < ˛ such that

M ˆ n 2 I
ˇ
G , i.e., M ˆ G.I

<ˇ
G ; n/. By main induction hypothesis we thus have

�

L.M/
ClG.X/

c; G.X; n/ for � D ! � ˇC rnk.G.X; n//. Together with axiom (Ax)
0

L.M/
ClG.X/

c; n … X; n 2 X we get
!�.ˇC1/
L.M/

ClG.X/
c; n 2 X . ut

Since rnk.n 2 X/ D 0 we obtain as a corollary to Lemma 5.29 and Theorem 5.27

tc
�En 2 IF

� � ! � jEnjF � ! � 2tc
�

En2IF
�

(16)

and

tc
�
IF
� � ! � kF k � ! � 2tc

�
IF

�
: (17)

Up to now we know that �M � �M. Inequality (17) is not sufficient to establish also
the opposite inequality since we do not know if every…1

1-sentence that is valid in M
is already expressible as a fixed point of an X -positive operator. Therefore we have
to study the connection between …1

1-relations and positive-inductively definable
relations on M further. We will, however, not go too much into details. The reader
who wants to know more is advised to consult [1, Sect. VI].

It follows from Definition 2.5 that the relation
˛

M
� is inductively defined and

˛ an upper bound for the stage of this inductive definition. However, it is not clear
that this is an inductive definition over an arbitrary structure M. What is lacking
is enough coding machinery to express formulas and their characteristic sequences
in M. In acceptable structures M this coding machinery is available. However, the
hypothesis of acceptability is even too strong.

It is clear that
˛

M
� is an inductive definition over the structure HFM, the

hereditarily finite sets over M (cf. [1, Sect. II. 2]). But even this is too strong.
Barwise in [1, II. Definition 2.7] introduces the notion of an extended first order
language over M as a sublanguage L.HFM/. This language allows quantifiers
over urelements (i.e., the elements of jMj), bounded quantifiers and unbounded
existential quantifiers and is closed under the positive Boolean operations _ and ^.
It is then easy to see that

˛

M
� is inductively definable by an X -positive formula

that is extended first order over M. Barwise (cf. [1, IV. Definition 3.7]) calls that
extended inductively definable on M or inductive� on M.

By Theorem 3.5 we therefore obtain the following theorem.
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Theorem 5.30 Let M be a countable infinite structure. Then every …1
1-relation on

M is extended inductive on M.

Let ��M denote the supremum of the closure ordinals of all inductive� definitions
on M. Then we have the following theorem.

Theorem 5.31 Let M be a countable infinite structure. Then �M � �M � ��M.

Proof From M ˆ .8X/F.X/ we get by Theorem 3.5
˛

M
F.X/ for ˛ D

tcM.F.X//. Since ˛ is an upper bound for the stage in the inductive definition
of

˛

M
F.X/ we have ˛ � ��M. ut

According to [1, VI. Theorem 3.11] we have

O.M/ D ��M;

hence

�M � �M � O.M/ D ��M

for countable infinite structures M. By [1, VI. Theorem 4.1] the relations which
are inductive� on a structure M coincide with the inductive relations on M if M
has an inductive pairing. Hence �M equals ��M on such structures and we get the
following theorem.

Theorem 5.32 For an infinite countable structure M with inductive pairing we
have �M D 
11 .M/ D �M D O.M/.

Proof Since �M equals the supremum of the ordertype of all well-founded order-
ings which are coinductively definable on M and every coinductive relation is
†11-definable we have

�M � 
11 .M/ � �M � O.M/ D ��M D �M

and thus equality. ut
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Part IV
Developments



Proof Theory for Theories of Ordinals III:
…N -Reflection

Toshiyasu Arai

Abstract This paper deals with a proof theory for a theory TN of …N -reflecting
ordinals using a system Od.…N/ of ordinal diagrams. This is a sequel to the previous
one (Arai, Ann Pure Appl Log 129:39–92, 2004) in which a theory for…3-reflecting
ordinals is analysed proof-theoretically.

1 Prelude

This is a sequel to the previous ones [3, 4]. Namely our aim here is to give finitary
analyses of finite proof figures in a theory for …N -reflecting ordinals, [11] via cut-
eliminations as in Gentzen–Takeuti’s consistency proofs, [7, 12]. Throughout this
paper N denotes a positive integer such that N � 4.

Let T be a theory of ordinals. Let � denote the (individual constant correspond-
ing to the) ordinal !CK

1 . We say that T is a …�
2 -sound theory if

8…2 A.T ` A� ) A�/:

Definition 1.1 (…�
2 -Ordinal of a Theory) Let T be a …�

2 -sound and recursive
theory of ordinals. For a sentenceA let A˛ denote the result of replacing unbounded
quantifiers Qx .Q 2 f8; 9g/ in A by Qx < ˛. Define the…�

2 -ordinal jT j…�
2

of T by

jT j…�
2
WD inff˛ � !CK

1 W 8…2 sentence A.T ` A� ) A˛/g < !CK
1 :

Roughly speaking, the aim of proof theory for theories T of ordinals is to describe
the ordinal jT j…�

2
. This gives…�

2 -ordinal of an equivalent theory of sets, cf. [3].
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Let KP…N denote the set theory for…N -reflecting universes. KP…N is obtained
from the Kripke–Platek set theory with the Axiom of Infinity by adding the axiom:
for any …N formula A.u/

A.u/ ! 9z.u 2 z &Az.u//:

In [6] we introduced a recursive notation system Od.…N / of ordinals, which we
studied first in [1]. An element of the notation system is called an ordinal diagram
(henceforth abbreviated by o.d.). The system is designed for proof theoretic study of
theories of …N -reflection. We [6] showed that for each ˛ < � in Od.…N / KP…N

proves that the initial segment of Od.…N / determined by ˛ is a well ordering.
Let TN denote a theory of …N -reflecting ordinals. The aim of this paper is to

show an upper bound theorem for the ordinal jTN j…�
2

:

Theorem 1.1 8…2 A.TN ` A� ) 9˛ 2 Od.…N / j �A˛/.
Combining Theorem 1.1 with the result in [6] mentioned above yields the:

Theorem 1.2 jKP…N j�…2
DjTN j�…2

D the order type of Od.…N / j �.

Proof theoretic study for …N -reflecting ordinals via ordinal diagrams was first
obtained in a handwritten note [2].

For an alternative approach to ordinal analyses of set theories, see Rathjen’s
papers [8–10].

Let us mention the contents of this paper.
In Sect. 2 a preview of our proof-theoretic analysis for…N -reflection is given. As

in [4] inference rules .c/
˛1 are added to analyse an inference rule .…N -rfl/ saying the
universe of the theory TN is …N -reflecting. A chain is defined to be a consecutive
sequence of rules .c/.

In Sect. 2.1 we expound that chains have to merge each other for a proof theoretic
analysis of TN forN � 4. An ordinal diagram in the system Od.…N/ defined in [6]
may have its Q part, which has to obey complicated requirements. In Sect. 2.2 we
explain what parts correspond to the Q part in proof figures.

In Sect. 3 the theory TN for …N -reflecting ordinals is defined. In Sect. 4 let us
recall briefly the system Od.…N / of ordinal diagrams (abbreviated by o.d.’s) in [6].

In Sect. 5 we extend TN to a formal system TNc. The language is expanded so
that individual constants c˛ for o.d.’s ˛ 2 Od.…N / j � are included. Inference rules
.c/
˛1 are added. Proofs in TNc defined in Definition 5.8 are proof figures enjoying
some provisos and obtained from given proofs in TN by operating rewriting steps.
Some lemmata for proofs are established. These are needed to verify that rewritten
proof figures enjoy these provisos. To each proofP in TNc an o.d. o.P / 2 Od.…N / j
� is attached. Then the Main Lemma 5.1 is stated as follows: If P is a proof in TNc,
then the endsequent of P is true.

In Sect. 6 the Main Lemma 5.1 is shown by a transfinite induction on o.P / 2
Od.…N/ j �.

This paper relies heavily on the previous ones [3, 4].
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General Conventions Let .X;</ be a quasiordering. Let F be a function F W X 3
˛ 7! F.˛/ � X . For subsets Y;Z � X of X and elements ˛; ˇ 2 X , put

1. ˛ � ˇ , ˛ < ˇ or ˛ D ˇ,
2. Y j ˛ D fˇ 2 Y W ˇ < ˛g,
3. Y < Z W, 9ˇ 2 Z8˛ 2 Y.˛ < ˇ/,
4. Y < ˇ W, Y < fˇg , 8˛ 2 Y.˛ < ˇ/; ˛ < Z W, f˛g < Z,
5. Z � Y W, 8ˇ 2 Z9˛ 2 Y.ˇ � ˛/,
6. ˇ � Y W, fˇg � Y , 9˛ 2 Y.ˇ � ˛/; Z � ˛ W, Z � f˛g,
7. F.Y / D SfF.˛/ W ˛ 2 Y g.

2 A Preview of Proof-Theoretic Analysis

In this section a preview of our proof-theoretic analysis for …N -reflection is given.
Let us recall briefly the system Od.…N / of o.d.’s in [6]. The main constructor

in Od.…N / is to form an o.d. dq
 ˛ from a symbol d and o.d.’s in f
; ˛g [ q,
where 
 denotes a recursively Mahlo ordinal and q D Q.d

q

 ˛/ a finite sequence

of quadruples of o.d.’s called Q part of dq
 ˛. By definition we set dq
 ˛ < 
 . Let
� �2 ı denote the transitive closure of the relation � D d

q

ı ˛ for some q and ˛, and
�2 its reflexive closure. Then the set f� W 
 �2 �g is finite and linearly ordered by
�2 for each 
 .

An o.d. of the form � D d
q

 ˛ is introduced in proof figures only when

an inference rule .…N -rfl/ for …N -reflection is resolved by using an inference
rule .c/�.
q in � D d

q

 ˛ includes some data sti .�/; rgi .�/ for 2 � i < N . stN�1.�/ is an

o.d. less than "�C1 and rgN�1.�/ D � , while sti .�/; rgi .�/ for i < N � 1 may be
undefined. If these are defined, then we write rgi .�/ #, etc. and � D rgi .�/ is an
o.d. such that � �i �, where � �i ı is a transitive closure of the relation pdi .�/ D ı

on o.d.’s such that �iC1��i and �2 is the same as one mentioned above. q also
includes data pdi .�/. stN�1.�/ is defined so that

� �N�1 �)stN�1.�/ < stN�1.�/: (1)

In Sect. 2.2 we explain what parts correspond to the Q part in proof figures.
A theory TN for …N -reflection is formulated in Tait’s logic calculus, i.e., one-

sided sequent calculus and 	;� : : : denote a sequent, i.e., a finite set of formulae.
TN has the inference rule .…N -rfl/:

	;A :9zAz; 	

	
.…N -rfl/

where A � 8xN9xN�1 � � � Qx1B with a bounded formula B .
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So .…N -rfl/ says A ! 9zAz.1

To deal with the inference rule .…N -rfl/ we introduce new inference rules .c/
�
and .†i /
 .1 � i � N/ as in [4]:

	;ƒ


	;ƒ�
.c/
�

whereƒ is a set of…N -sentences as above,ƒ
 D fA
 W A 2 ƒg, the side formulae
	 consists solely of †
1 -sentences and � is of the form d

q

 ˛.

	;:A
 A
 ;ƒ

	;ƒ
.†i/




where A is a †i sentence. Although this rule .†i/
 is essentially a .cut/ inference,
we need to distinguish between this and .cut/ to remember that a .…N -rfl/ was
resolved.

When we apply the rule .c/
� it must be the case:

any instance term ˇ < 
 for the existential quantifiers 9xN�i < 
.i :odd/

in A
 � 8xN < 
9xN�1 < 
 � � � Qx1 < 
B is less than �: (2)

As in [4] an inference rule .…N -rfl/ is resolved by forming a succession of rules
.c/’s, called a chain, which grows downwards in proof figures. We have to pinpoint,
for each .c/, the unique chain, which describes how to introduce the .c/. To retain
the uniqueness of the chain, i.e., not to branch or split a chain, we have to be careful
in resolving rules with two uppersequents. Our guiding principles are:

(ch1) For any
A


A�
.c/
� with � D d

q

 ˛, if an o.d. ˇ is substituted for an existential

quantifier 9y < 
 in A
 , i.e., ˇ is a realization for 9y < 
 , then ˇ < � ,
cf. (2), and

(ch2) Resolving rules having several uppersequents must not branch a chain.

2.1 Merging Chains

As contrasted with [4] for …3-reflection we have to merge chains here. Let us
explain this phenomenon.

We omit side formulae in this subsection.

1For simplicity we suppress the parameter. Correctly 8u.A.u/ ! 9z.u < z &Az.u///.
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1. First resolve a .…N -rfl/ in the left figure, and resolve the .†N /
 J0 to the right
figure with a †N�1 A1:

A
A


.c/�
 :A

.†N /


 J0

A
A
 :A
;:A
1

:A
1
A1
A
1

.c/�
 I0

J1 .†N�1/


with A � 8xN9xN�18xN�2A3; 
 D d˛� ˛, where A3 � 9xN�3A4 is a †N�3-
formula and ˛ denotes the o.d. attached to the uppersequentA of .c/�
 .

2. Second resolve a .…N -rfl/ above the .c/�
 I0 and a .†N / as in 1):

:A
1

P1
A1; B

A
1 ; B

 .c/

�



QI0
B
 .†N�1/


B�

:A
1
A1;:B� ;:B�

1

A
1 ;:B� ;:B�
1

:B� ;:B�
1

:B�
1

:A
1
A1; B1
A
1 ; B



1

.c/�


B

1

J1

B�
1

.c/
� I1

Fig: 1

with a � D d

 ˇ and a †N�1 B1 � 9yN�18yN�2B3, where 
 denotes the o.d.
attached to the subproof P1 ending with the uppersequentA1;B of .c/�
 QI0.
After that resolve the .†N�1/
 J1:

:A
1

P2
A1; B

A
1 ; B



QI0
B


B� :B� ;:B�
1

:B�
1

:A
1
A1; B1; A2
A
1 ; B



1 ; A



2

B

1 ; A



2

A
A
 :A
;:A
2

:A
2
J 0
0

B

1

B�
1

Then resolve the .†N /
 J 0
0 :

:A
1

P3
A1; B

A
1 ; B



QI0
B


B� :B� ;:B�
1

:B�
1

B

1 ; A



2

:A
2 ;: QA
1

.…N -rfl/H....QA1
QA
1
.c/�
 I

0
0

:A
2
B

1

.†N�2/
 J2

B�
1

.c/
� I1

K

3. Thirdly resolve a .…N -rfl/H above the .c/�
 I
0
0. One cannot resolve the

.…N -rfl/H by introducing a .c/
� with � < � . Let me explain the reason.
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Suppose that we introduce a new .c/
� I
0
1 with � D d

�

 � immediately above the

.†N�2/
 J2 as in [4]. Then the new .c/
� I
0
1 is introduced after the .c/
� I1 and so

� D d
�

 � < � . Hence a new .†N /

� K 0 is introduced below the .†N�1/� K:

:B�
1

B

1 ; A



2

:A
2 ;: QA
1
QA1;D

QA
1 ;D

.c/�


:A
2 ;D


:A
2 ;D�
.c/
� I

0
1

B

1 ;D

� J2

B�
1 ;D

� .c/


� I1

D� K :D�

K 0 Fig:2

with D � 8zN9zN�18zN�2D3. Nevertheless this does not work, because
:A2 � 9xN�38xN�4:A4 is a †N�2 sentence with N � 2 � 2. Namely the
principle (ch1) may break down for the .c/
� I

0
1 since any o.d. ı < 
 , i.e.,

possibly ı � � may be an instance term for the existential quantifier 9xN�3
in A2 � 8xN�29xN�3A4 and may be substituted for the variable xN�3 in :A
2 .
Only we know that such a ı is less than 
 and comes from the left upper part
of J2.

4. Therefore the chain for H has to connect or merge with the chain I0 � I1 for B:

:A
1

P4
A1; B

A
1 ; B



QI0
B


B� I
0
1 :B� ;:B�

1

:B�
1

B

1 ; A



2

A
A


I 00
0 :A
;:A
2 ;: QA
1

:A
2 ;: QA
1
J 0
0

QA1;D
QA
1 ;D


I 0
0

:A
2 ;D


B

1 ;D


 J2

B�
1 ;D

� I1

D�

D�
.c/�� I2

Fig. 3
with � D d

�
� � and a .†N /� with the cut formula D� follows this figure as in

Fig. 2, where � denotes the o.d. attached to the uppersequent QA1;D of .c/�
 I
0
0.

.†N�2/
 J2 is a merging point for chains I0 � I1 and I 0
0 � I1 � I2.

The principle (ch1) for the new .c/�� I2 will be retained for the simplest case
N D 4 as in [4]. The problem is that the proviso (1) may break down: it may be
the case 
 D stN�1.�/ � stN�1.�/ D � since we cannot expect the upper part of
.c/�
 I

0
0 is simpler than the one of .c/�
 QI0.

In other words a new succession I 0
0�I1�I2 of collapsing starts. This is required

to resolve†
N�2 sentence :A
2 .N �2 � 2/ and hence 
 has to be…N�1-reflecting.
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If this chain I 0
0 � I1 � I2 would grow downwards as in …3-reflection, i.e., in a

chain I 0
0� I1 � I2 � � � �� In, In would come only from the upper part of I 0

0, then the
proviso (1) would suffice to kill this process. But the whole process may be iterated:
in Fig. 3 another succession I 00

0 � I1 � I2 � I3 may arise by resolving the .†N /
 J 0
0.

Nevertheless still we can find a reducing part, that is, the upper part of the .c/�� I2:
the upper part of the .c/�� I2 becomes simpler in the step I2 � I3. Furthermore in the
general case N > 4 merging processes could be iterated, vz. the merging point
.†N�2/
 J2 may be resolved into a .†N�3/�1 , which becomes a new merging point
to analyse a †N�3 sentence A�13 where �1 � � is a …N�2-reflecting and so on.
Therefore in Od.…N / the Q part of an o.d. may consist of several factors:

.�; ˛; q D f
i ; �i ; �i W i 2 In.�/g/ 7! dq� ˛ D �

with �N�1 D rgN�1.�/ D � . In.�/ denotes a set such that

N � 1 2 In.�/ � fi W 2 � i � N � 1g:

We set for i 2 In.�/:

sti .�/ D 
i ; rgi .�/ D �i ; pdi .�/ D �i :

If i 62 In.�/, set

pdi .�/ D pdiC1.�/; sti .�/ ' sti .pdi .�//; rgi .�/ ' rgi .pdi .�//:

Also these are defined so that pd2.�/ D � for � D d
q
� ˛.

For the o.d. � D d
q
� � in Fig. 3, In.�/ D fN � 2;N � 1g; stN�1.�/ D �;

pdN�1.�/ D 
; rgN�2.�/ D � D pdN�2.�/; stN�2.�/ D � D st2.�/.
Thus 
i D sti .�/ corresponds to the upper part of a .c/rgi .�/ while �N�1 D

pdN�1.�/ indicates that the first, i.e., uppermost merging point for a chain ending
with a .c/� is a rule .†N�2/�N�1 , e.g., the rule J2 in Fig. 3. Note that stN�1.�/ D
� < stN�1.pdN�1.�//, cf. (1). �i D rgi .�/ is an o.d. such that there exists a .c/�i in
the chain for .c/�. We will explain how to determine the rule .c/rgi .�/, i.e., the point
to which we direct our attention in Sect. 2.2.

The case In.�/ D fN � 1g corresponds to the case when a .c/pdN�1.�/
� is

introduced without merging points, i.e., as a resolvent of a .…N -rfl/ above the top
of the chain whose bottom is a .c/pdN�1.�/. The case In.�/ D fN � 2;N � 1g
corresponds to the case when a .c/pd2.�/

� .pd2.�/ D pdN�2.�// is introduced with a
merging point .c/pdN�1.�/.

In Fig. 3 a new succession with a merging point .c/�� I2 arises by resolving a

.†N /
� below the .c/
� I

0
1, i.e., QI0 � I 0

1 � I2 � I3 .c/
�
� for a � with a � D stN�1.�/.

But in this case we have

� D stN�1.�/ < stN�1.�/ D 
:
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stN�1.�/ corresponds to the upper part P1 of a .c/�
 QI0 in Fig. 1, when the .c/
� was
originally introduced. This part P1 is unchanged up to Fig. 3:
P1 D P2 D P3 D P4. Roughly speaking, QI0 � I 0

1 � I3 can be regarded as a
…N�1 resolving series I0 � I1 � I3. This prevents the new merging points from
going downwards unlimitedly.

2.2 The Q Part of an Ordinal Diagram

In this subsection we explain how to determine the Q part q of � D d
q

 ˛ from a

proof figure when an inference rule .c/
� is introduced.
In general such a .c/
� is formed when we resolve an inference rule .…N -rfl/H :

.... CnmC1

	mC1
p

.	 0
p/
mC1 .c/


p

pC1

J mC1
p

....
	mC1
nm

.	 0
nm
/mC1 .c/


nm

nmC1

J mC1
nm

.... CnmC1

ˆm;:Am

.…N -rfl/H....
	0

	 0
0

.c/�
1 J0

....
	p

	 0
p

.c/

p

pC1

Jp

....
	nm

	 0
nm

.c/

nm

nmC1

Jnm
....

Am;‰m
ˆm;‰m

.†im/

nmC1 Km

.... CnmC1

	nmC1

	 0
nmC1

.c/

nmC1 JnmC1

....
	n�1
	 0
n�1

.c/
n�1

 Jn�1

Fig: 4

where R D J0; : : : ; Jn�1 denotes a series of rules .c/

p

pC1

Jp with � D 
0; 
 D 
n.
.…N -rfl/H is resolved into a .c/
� Jn and a .†N /� below Jn�1.

This series R is divided into intervals fRm D Jnm�1C1; : : : ; Jnm W m � lg with
an increasing sequence n�1 C 1 D 0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ of
numbers so that

1. R0 D J0; : : : ; Jn0 is a chain Cn0 leading to Jn0 .
2. For m < l RmC1 D JnmC1; : : : ; JnmC1

is a tail of a chain CnmC1
D

JmC1
0 ; : : : ; J mC1

nm
; JnmC1; : : : ; JnmC1

leading to JnmC1
such that the chain CnmC1



Proof Theory for Theories of Ordinals III: …N -Reflection 365

passes through the left side of an inference rule .†im/

nmC1 Km with 2 � im <

N � 1, Jnm is above the right uppersequent Am;‰m and JmC1
nm

is above the left
uppersequent ˆm;:Am of Km, resp. Am is a †im sentence. Each rule JmC1

p for

p � nm is again an inference rule .c/

p

pC1

. Km will be a merging point of chains
CnmC1

and a new chain C� D J0; : : : ; Jn�1; Jn leading to .c/� Jn.
3. There is no such a merging point below Jn�1, viz. there is no .†k/
 with 1 <
k < N �1 such that Jn�1 is in the right upper part of the inference rule and there
exists a chain passing through its left side.

Set N � 1 2 In.�/; rgN�1.�/ D � and stN�1.�/ is the o.d. attached to the
upper part of .c/� J0, where by the upper part we mean the part after resolving
.…N -rfl/H .

First consider the case l D 0, i.e., there is no merging point for the new chain C�
leading to the new Jn. Then set In.�/ D fN � 1g and pdN�1.�/ D 
 .

Suppose l > 0 in what follows. Then set pdN�1.�/ D 
n0C1, i.e., pdN�1.�/ is
the superscript of the first uppermost merging point .†i0/


n0C1 K0.
In any cases we have stN�1.�/ < stN�1.pdN�1.�//, cf. (1). sti .�/ always

corresponds to the upper part of a .c/rgi .�/ in the chain C� for i 2 In.�/.

The Simplest Case N D 4

Here suppose N D 4 and we determine the Q part of �. First set 2 2 In.�/, vz.
In.�/ D f2; 3g and pd2.�/ D 
 . It remains to determine the o.d. rg2.�/. In other
words to specify a rule .c/
q Jq with rgi .�/ D 
q .

Note that im D 2 for any m with 0 < m � l since 2 � im < N � 1 D 3 in this
case. There are two cases to consider. First suppose there is a p < n such that

1. p > n0, i.e., 
pC1 �2 
n0C1 D pd3.�/ and
2. 2 2 In.
pC1/, i.e., there was a merging point of the chain leading to .c/
pC1

Jp .

Then pick the minimal q satisfying these two conditions, viz. the uppermost rule
.c/


q

qC1

Jq below the first uppermost merging point .†i0/

n0C1 K0 with 2 2 In.
qC1/.

Then set

Case 1 rg2.�/ D rg2.
qC1/.

Otherwise set

Case 2 rg2.�/ D 
 D pd2.�/.

Consider the first case Case 1 rg2.�/ D rg2.
qC1/ ¤ pd2.�/. From the definition
we see rg2.�/ D rg2.
qC1/ D pd2.
qC1/ D 
q . We have 
q D rg2.�/ �3 pd3.�/ D

n0C1. This follows from the minimality of q, i.e., 8t Œn0 < t < q ! 2 62 In.
tC1/�
and hence 8t Œn0 < t < q ! 
t D pd2.
tC1/ D pd3.
tC1/�.
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Furthermore q is minimal, i.e, 
q is maximal in the following sense:

8t Œn0 < t < n.$ pd2.�/ D 
 �2 
tC1 �2 pd3.�//& rg2.
tC1/ #
! rg2.
tC1/ �2 
q� (3)

In general we have the following fact.

Proposition 2.1 Let C D J0; : : : ; Jn�1 be a chain leading to a .c/
n�1

n

Jn�1. Each

Jp is a rule .c/

p

pC1

with 
0 D � . Suppose that 2 2 In.
n/ and the chain passes
through the left side of a .†2/
p K for a p with 0 < p < n so that Jp�1 is in the left
upper part of K and Jp is belowK . Then 
q D rg2.
n/ �2 
p , i.e., q � p.

.... C
	p�1
	 0
p�1

.c/

p�1

p Jp�1

....
ˆ;:A
p

....
A
p ;‰

ˆ;‰
.†2/


p K

.... C
	p

	 0
p

.c/
p Jp

....
	n�1
	 0
n�1

.c/
n�1

 Jn�1

This means that when in Fig. 4 a .†3/
t K3 .0 < t � n/ in the new chain C� D
J0; : : : ; Jn�1; Jn leading to .c/
� Jn is to be resolved into a .†2/
t K2, then t � q,
i.e., rg2.�/ D 
q �2 
t . In other words any .†3/
t with q < t � n, equivalently
.†3/


t which is below .c/
q Jq has to wait to be resolved, until the chain C� will
disappear by inversion.

For example consider, in Fig. 4, an inference rule .†3/

t K3 for t D

nmC1 C 1. Its right cut formula is a †

t
3 sentence C
t and a descendent

of a †3 sentence C : a series of sentences from C to C
t are in the chain
CnmC1

D JmC1
0 ; : : : ; J mC1

nm
; JnmC1; : : : ; JnmC1

leading to JnmC1
. Then the chain

CnmC1
passes through the left side of the inference rule .†im/


nmC1 Km and hence
K3 will not be resolved until Km will be resolved and its right upper part will
disappear since we always perform rewritings of proof figure on the rightmost
branch. But then the chain C� will disappear by inversion since it passes through the
right side of Km. In this way we see Proposition 2.1, cf. Lemma 5.7 in Sect. 5 for a
full statement and a detailed proof.

Equation (3) is seen from Proposition 2.1 and the minimality of q. Thus we have
shown, cf. the conditions .DQ:1/ for Od.…4/ in [6] or Sect. 4,

rg2.
/ D rg2.pd2.�// �2 rg2.�/ �3 pd3.�/
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and

8t Œrg2.pd2.�// �2 
t �2 
q)rg2.
t / �2 
q�:

Furthermore we have

st2.�/ < st2.
pC1/ < 
C
q (4)

for the maximal p, vz. for the latest .c/
pC1
Jp with rg2.
pC1/ D 
q & 2 2

In.
pC1/.
Let m < l denote the number such that nm < q � nmC1, i.e., Jq is a member of

the tail RmC1 D JnmC1; : : : ; JnmC1
of the chain CnmC1

. Then from Proposition 2.1
we see that Jp is also a member of RmC1 and further that Jq is a member of a
chain Cp leading to Jp . Thus the upper part of .c/
q Jq corresponding to st2.�/ is a
result of performing several non-void rewritings to the upper part of a .c/
q which
determined st2.
pC1/ when .c/
pC1

Jp was introduced originally. This yields (4).
Thus we have established the conditions .DQ:1/ in [6] or Sect. 4 for the newly

introduced �.
Why we choose such a 
q as rg2.�/? First introducing 
q D rg2.�/ is meant

to express the fact that 
q is (iterated) …3-reflecting and it is responsible to †

q
2

sentences occurring above a .c/
q . Therefore even if there exists a 
pC1 above
pd3.�/, i.e., p � n0 such that 2 2 In.
pC1/, we ignore these in determining
rg2.�/. Second in the Case 1 the reason why we chose 
q as the uppermost one
is explained by Proposition 2.1: any .†3/
t in the new chain C� will not be resolved
for q < t � n until the chain C� will disappear by inversion. Hence any 
q1 with
rg2.
p1C1/ D 
q1 �2 
q for some p1 � nwill not be rg2.�/ for � �2 � in the future.
This means that a collapsing series f.c/� W rg2.�/ D 
q1g expressing the fact that

q1 is …3-reflecting is killed by introducing � such that � �2 
q1 �2 
q D rg2.�/.
Therefore once we introduce such a �, then we can ignore rg2.
p1C1/ D 
q1 between
rg2.�/ and �.

The General Case N > 4

Here supposeN > 4 and we determine theQ part of �, i.e., determine the set In.�/
and o.d.’s pdi .�/; rgi .�/ for i 2 In.�/ by referring Fig. 4.

First set i0 2 In.�/ where i0 denotes the number such that the first merging point
is a .†i0/


n0C1 K0. Now let us assume inductively that for k0 � 0 we have specified
merging points fKmk W k � k0g so that 0 D m0 < � � � < mk0 , N � 1 > im0 >

� � � > imk0 � 2 and 8m8k < k0Œmk < m < mkC1 ! im � imk �, and have set
fimk W k � k0g � In.�/. Namely Km0; : : : ; Kmk0

is a series of merging points going
downwards with decreasing indices imk and Kmk is the uppermost merging point
with imk < imk�1

.im�1 WD N � 1/.
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If there exists an m < l such that mk0 < m& imk0 > im � 2, then let m denote
the minimal one, vz. the uppermost merging point Km below the latest one Kmk0
with imk0 > im, and set im 2 In.�/. Otherwise set

In.�/ D fimk W k � k0g [ fN � 1g:

This completes a description of the set

In.�/ D fN � 1 D im�1g [ fimk W 0 � k � k1g
D fN � 1 D im�1 > im0 > � � � > imk1 g:

Observe that for i < N � 1

i 2 In.�/ , 9m < lŒim D i & 8p < m.ip � i/�:

Now set pdimk .�/ D 
nmkC1
C1 for �1 � k � k1 with mk1C1 WD l , vz. the

merging pointKmk chosen for imk 2 In.�/ is a .†imk /
pdimk�1

.�/ for 0 � k � k1 and
pd2.�/ D pdimk1

.�/ D 
nlC1 D 
n D 
 . Observe that for any i with 2 � i � N � 1
there exists anm.i/ � l such that pdi .�/ D 
nm.i/C1 and thism.i/ is the minimalm
for which im < i .

It remains to determine the o.d.’s rgi .�/ for N � 1 ¤ i D imk 2 In.�/. As in
the case N D 4 there are two cases to consider. First suppose there is a p < n such
that

1. � �i 
pC1 �i 
nmkC1 D pdimk�1
.�/ D pdiC1.�/ and

2. i 2 In.
pC1/.

Then pick the minimal p satisfying these two conditions, vz. the uppermost rule
.c/
pC1

Jp below the merging point .†i /pdiC1.�/ Kmk with 
pC1 �i pdiC1.�/& i 2
In.
pC1/. Then set

Case 1 rgi .�/ WD 
q WD rgi .
pC1/.

Otherwise set

Case 2 rgi .�/ D pdi .�/.

In general we have the following fact.

Proposition 2.2 Let C D J0; : : : ; Jn�1 be a chain leading to a .c/
n�1

n

Jn�1. Each
Jp is a rule .c/


p

pC1

with 
0 D � . Suppose that the chain passes through the left side
of a .†j /
p K for a p with 0 < p < n and a j � i so that Jp�1 is in the left upper
part of K and Jp is below K . Then 
n �i 
p and if further N � 1 ¤ i 2 In.
n/,
then 
q D rgi .
n/ �i 
p , cf. the figure in Proposition 2.1.

Let us explain this Proposition 2.2 using the new chain C� D J0; : : : ; Jn�1; Jn
leading to .c/
� Jn, cf. Fig. 4. When a .†jC1/
t KjC1 .0 < t � n/ in the new chain
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C� is to be resolved, a .†j /
s Kj is introduced at a point below KjC1. The point
and s � t is determined as the lowest position as far as we can lower a rule .†j /
t ,
cf. Definition 5.5 in Sect. 5. For example when KjC1 is the rule .†im/


nmC1 Km in
Fig. 4, let m1 denote the minimal m1 such that im1 < im and we introduce a new
.†im�1/
nm1C1 .s D nm1C1/ between the rules .c/
nm1C1

Jnm1 and .†im1 /

nm1C1 Km1 .

Observe that the new .†im�1/ together with .†im2 /Km2 .m < m2 < m1/ by
inversion will be merging points for the next chain leading to a .c/�.

Let us consider the case when the .†im�1/
nm1C1 is the rule .†j /

p K in

Proposition 2.2: j D im � 1&p D nm1C1. Also put pdi .�/ D 
nm.i/C1, where
m.i/ denotes the minimal m.i/ such that im.i/ < i . Then i � j D im � 1.
By Proposition 2.3 below we see that im < im3 for any m3 < m, i.e., any
merging point .†im3 /Km3 above .†im/K

jC1 D Km has larger index since we
are assuming that Km is to be resolved. Therefore m.i/ � m1, i.e., the merging
point .†im.i/ /


nm.i/C1 Km.i/ determining pdi .�/ is equal to or below the merging point
.†im1 /


nm1C1 Km1 . In the former case we have pdi .�/ D 
nm.i/C1 D 
nm1C1 D 
p
and hence � �i 
p . In the latter case we have im3 � i for m1 � m3 < m.i/. Thus
we see � �i 
p inductively. This shows the first half of Proposition 2.2.

Now assume N � 1 ¤ i 2 In.
n/ and show rgi .�/ �i 
p . Consider the Case 1,
vz. 
q D rgi .�/ ¤ pdi .�/. Let p0 denote the minimal p0 such that � �i 
p0C1 �i

pdiC1.�/ and i 2 In.
p0C1/. By the definition we have 
q D rgi .�/ D rgi .
p0C1/.
Let m.i C 1/ < m.i/ denote the number such that pdiC1.�/ D 
nm.iC1/C1. Then

by i 2 In.�/ we have im.iC1/ D i � im1 , i.e., m1 � m.i C 1/ < m.i/ and hence
pdiC1.�/ � 
nm1C1 D 
p . On the other hand we have � �i 
q D rgi .�/ by the
definition and � �i 
p by the first half of the Proposition 2.2. Hence it suffices to
show 
q � 
p since the set f� W � �i �g is linearly ordered by �i . Now we see

q D rgi .�/ D rgi .
p0C1/ �i pdiC1.�/ inductively, i.e., by using Proposition 2.2
for smaller parts. Thus we get 
q �i pdiC1.�/ � 
p . This shows the second half of
Proposition 2.2.

Further we have the following fact.

Proposition 2.3 Let C D J0; : : : ; Jn�1 be a chain leading to a .c/
n�1

n

Jn�1. Each
Jk is a rule .c/
k
kC1

with 
0 D � . Suppose that the chain C passes through the left

side of a .†j /
p K lw for a p with 0 < p < n so that Jp�1 is in the left upper part
of K lw and Jp is below K lw. Let D D I0; : : : ; Im�1 .m � p/ be a chain leading to
a .c/
m�1


m
Im�1. Each Ik is a rule .c/�k�kC1

such that �k D 
k for 0 � k < minfn;mg.
Suppose that the chain D passes through the left side of a .†i/
k Kup for a k with
0 < k < p so that Ik�1 is in the left upper part ofKup and Ik is belowKup. Further
assume the rule .c/
p Ip�1 is in the right upper part of .†j /
p K lw and i � j .

Then the upperKup foreruns the lowerK lw, i.e., analyses ofKup have to precede
ones of K lw.

Let us explain Proposition 2.3 by referring Fig. 4: C is the new chain C�, K lw

is the new .†im�1/
nm1C1 which is resulted from .†im/

nmC1 Km with m D l � 1,

i.e., the resolved rule Kl�1 is the lowest merging point. Then K lw is a .†im�1/

with m1 D l . Further D is the chain CnmC1

D JmC1
0 ; : : : ; J mC1

nm
; JnmC1; : : : ; JnmC1
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leading to the last member .c/
 Jn�1 .n � 1 D nmC1 D nl/ of the series R. Then
the last member .c/
 Jn�1 is in the right upper part of .†im�1/
 K lw. Let I be a rule
.†iC1/� such that the chain D passes through its right side. Suppose the rule I in
the chain D is resolved and produces a .†i/
k Kup for a k with 0 < k < n so that
the chain D passes through the left side of Kup.

.

.

.

.
…;:B

.

.

.

.
D

B;ƒ; C �
m

…;ƒ; C �
m

.†iC1/
�

.

.

.

.
D

ˆm; C

nmC1
m

.

.

.

.
C

:C

nmC1
m ; ‰m;:C


nmC1

ˆm; ‰m;:C

nmC1

.†im /

nmC1 Km

.

.

.

.
D;C

	n�1;:C

n�1

	 0

n�1;:C



.c/
n�1

 Jn�1

.

.

.

.
ˆ;:C 


.

.

.

.
…;:B

.

.

.

.
D

B; C � ; ƒ

C � ;…;ƒ
.†iC1/

� I

.

.

.

.
C 
nmC1 ; ˆm

C 
nmC1 ; ˆm; ‰m.
.
.
.

D
C 
n�1 ; 	n�1

C 
 ; 	 0

n�1

.c/
n�1

 Jn�1

.

.

.

.
C 
 ; ‰

ˆ;‰
.†im�1/


 K lw

.

.

.

.
C

	n

	 0

n

.c/
� Jn

Fig. 5
where :Am � C


nmC1
m � 8x < 
nmC1C0.x/ and C
nmC1 � C0.˛/ for an ˛ <


nmC1.

.... D; C
	n�1;:C
n�1

	 0
n�1;:C


.c/
n�1

 Jn�1

....
ˆ;:C


....
…;:B

.... D
B;C � ;ƒ;B�

1

C � ;…;ƒ;B�
1

.†iC1/� I
.... D

C
k ;ƒ1; B

k
1

....
…;:B�

1

:B�
1 ;…;ƒ....

:B
k
1 ;…1

C 
k ;ƒ1;…1
.†i/


k Kup

.... D
C
n�1 ; 	n�1
C 
 ; 	 0

n�1
.c/
n�1


 Jn�1
....

C
;‰

ˆ;‰
.†im�1/
 K lw

.... C
	n

	 0
n

.c/
� Jn

Fig. 6
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We show, in Fig. 6, no ancestor of the right cut formula C
 of K lw is in the right
upper part of Kup in order to see that Kup foreruns K lw. It suffices to see that, in
Fig. 5, no ancestor of the right cut formula C
 of K lw is in the left upper part of the
resolved rule .†iC1/� I . Any ancestor of the right cut formula C
 of K lw comes
from the left cut formula :Am � C


nmC1
m of .†im/


nmC1 Km and any ancestor of the
latter is in the chain D, which in turn passes through the right side of .†iC1/� I .
Thus any ancestor of the right cut formula C
 of K lw is in the right upper part of I
in Fig. 5, a fortiori, in the left upper part ofKup in Fig. 6. This shows Proposition 2.3.

For full statements and proofs of Propositions 2.2, 2.3, see Lemmata 5.7, the
proviso (uplw) in Definition 5.8 in Sect. 5 and the case M7.2 in Sect. 6.

From Propositions 2.2, 2.3 we see that the conditions .DQ:1/ for Od.…N / in [6]
or Sect. 4 are enjoyed with respect to the Q part of � as for the case N D 4. A set-
theoretic meaning and a wellfoundedness proof of Od.…N / are derived from these
conditions on o.d.’s as we saw in [5, 6].

Consider a rule .†j / in the chain C� for j � i 2 In.�/ which is below
.†im.i//

pdi .�/ Km.i/ .im.i/ < i/. Then from Proposition 2.3 we see that analyses of
such a .†j / have to follow ones of the rule .†im.i/ /

pdi .�/ Km.i/. Thus when such
a reversal happens, the lower rule with greater indices .j > im.i// is dead and
we can ignore it. The o.d. pdi .�/ and the rule .c/pdi .�/ Jnm.i/ is the predecessor of
the o.d. � and the rule .c/� with respect to i : any member .c/� of the chain C�
with � < � < pdi .�/ is irrelevant to the fact that pdi .�/ and rgi .�/ are iterated
…i -reflecting. But the member may be relevant to …j -reflection for j < i . This
motivates the definitions of In.�/ and pdi .�/. A series �n �i �n�1 �i � � � �i

�0 expresses a possible stepping down for the fact that �0 is an iterated …i -
reflecting ordinal. Degrees of iterations are measured by an ordinal 
 < �C with
� D rgi .�0/; 
 D sti .�0/ (and by predecessors of rgi .�0/) as we saw in [5, 6].
Therefore we search only for o.d.’s 
pC1 with � �i 
pC1 in determining the o.d.
rgi .�/ D rgi .
pC1/.

In the Case 1 the reason why we chose 
q as the uppermost one is explained by
Propositions 2.2, 2.3 as in the case N D 4.

Now details follow.

3 The Theory TN for …N -Reflecting Ordinals

In this section a theory TN of …N -reflecting ordinals is defined.
Let T0 denote the base theory defined in [3]. L1 denotes the language of

T0. Recall that L1 D L0 [ fRA; RA
< W A is a �0 formula in L0 [ fXgg with

L0 D f0; 1;C;�; �; q; r;max; j; ./0; ./1;D; <g. RA; RA
< are predicate constants for

inductively defined predicates. The axioms and inference rules in T0 are designed
for this language L1.

The language L.TN / of the theory TN is defined to be L1 [ f�g with an
individual constant�.
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The axioms of TN are the same as for the theory T3 in [4], i.e., are obtained from
those of T22 in [3] by deleting the axiom 	;Ad.�/: Thus the axioms 	;ƒf for the
closure of� under the function f in L0 are included as mathematical axiom in TN .

The inference rules in TN are obtained from T0 by adding the following rules
.…N -rfl/ and .…�

2 -rfl/.

	;A :9z.t0 < z ^Az/; 	

	
.…N -rfl/

where A � 8xN9xN�1 � � � Qx1B.xN ; xN�1; : : : ; x1; t0/ is a …N formula.

	;A� :9z.t < z < � ^ Az/; 	 	; t < �

	
.…�

2 -rfl/

where A � 8x9yB.x; y; t/ is a …2 formula.
Concepts related to proof figures, principal or auxiliary formulae, pure variable

condition, branch, etc. are defined exactly as in Section 2 of [3].

4 The System Od.…N / of Ordinal Diagrams

In this section first let us recall briefly the system Od.…N / of ordinal diagrams
(abbreviated by o.d.’s) in [6].

Let 0; ';�;C; � and d be distinct symbols. Each o.d. in Od.…N / is a finite
sequence of these symbols. ' is the Veblen function.� denotes the first recursively
regular ordinal !CK

1 and � the first …N -reflecting ordinal.
The set Od.…N / is classified into subsets R;SC;P according to the intended

meanings of o.d.’s. P denotes the set of additive principal numbers, SC the set of
strongly critical numbers and R the set of recursively regular ordinals (less than or
equal to �). If � > 
 2 R, then 
C denotes the next recursively regular diagram
to 
 .

Recall that K˛ denotes the finite set of o.d.’s defined as follows.

1. K0 D ;.
2. K.˛1 C � � � C ˛n/ D SfK˛i W 1 � i � ng.
3. K'˛ˇ D K˛ [Kˇ.
4. K˛ D f˛g otherwise, i.e., ˛ 2 SC.

Definition 4.1 1. D
 .˛/ � D
 .

(a) D
 .˛/ D ; if ˛ 2 f0;�; �g.
(b) D
 .˛/ D D
 .K˛/ if ˛ 62 SC.
(c) If ˛ 2 D� ,
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D
 .˛/ D
8
<

:

D
 .f�g [ c.˛// if � > 
;
f˛g [ D
 .c.˛// if � D 
;

D
 .�/ if � < 
:

2. B
 .˛/ D maxfb.ˇ/ W ˇ 2 D
 .˛/g.
3. B>
.˛/ D maxfB� .˛/ W � > 
g.

For an o.d. ˛ set

˛C D minf
 2 R [ f1g W ˛ < 
g:

For 
 2 R, D
 � SC denotes the set of o.d.’s of the form � D d
q

 ˛ with a

(possibly empty) list q, where the following condition has to be met:

B>
.f
; ˛g [ q/ < ˛ (5)

˛ is the body of dq
 ˛.
If q is not empty, then dq
 ˛ 2 DQ by definition. ItsQ partQ.dq
 ˛/ D q D 
��j

denotes a sequence of quadruples 
m�m�mjm of length l C 1 .0 � l/ such that

1. 2 � j0 < j1 < � � � < jl D N � 1;

2. �l D �; �m 2 R j � .m < l/& 
 � �m .m � l/;

3. 
l 2 Od.…N /,


 D � ) 
l � ˛ (6)

and

m < l ) 
m < �
C
m ; (7)

4. �0 D 
; �m 2 f�g [ DQ; 
 � �m .m � l/ and

�l D � ) 
 D �: (8)

From q D Q.�/ define

1. inj .�/ D stj .�/rgj .�/ (a pair) and pdj .�/: Given j with 2 � j < N , put
m D minfm � l W j � jmg.

2. pdj .�/ D �m.
3. 9m � l.j D jm/: Then stj .�/ D 
m; rgj .�/ D �m.
4. Otherwise: inj .�/ D inj .pdj .�// D inj .�m/. If inj .�m/ D ;, then set stj .�/ ";

rgj .�/ ".
5. In.�/ D fjm W m � lg.
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Observe that

� < ˇ 2 q D Q.�/ ) ˇ D 
l D stN�1.�/: (9)

The relation ˛ �i ˇ is the transitive closure of the relation pdi .˛/ D ˇ.
In [6] we impose several conditions on a diagram of the form � D d

q

 ˛ to be in

Od.…N/. For ˛ 2 Od.…N /; q � Od.…N /& 
 2 R n f�g, � D d
q

 ˛ 2 Od.…N / if

the following conditions are fulfilled besides (5);

.DQ:1/ Assume i 2 In.�/. Put � D rgi .�/. Then

.DQ:11/ ini .rgi .�// D ini .pdiC1.�//, rgi .�/ �i pdiC1.�/ and pdi .�/ ¤
pdiC1.�/ if i < N � 1.
Also pdi .�/ �i rgi .�/ for any i .

.DQ:12/ One of the following holds:
.DQ:12:1/ rgi .�/ D pdi .�/&B>�.sti .�// < b.˛1/ with � � ˛1 2 D� .
.DQ:12:2/ rgi .�/ D rgi .pdi .�//& sti .�/ < sti .pdi .�//.
.DQ:12:3/ rgi .pdi .�// �i �&

8�.rgi .pdi .�// �i � �i � ! rgi .�/ �i �/& sti .�/ < sti .
1/ with


1 D minf
1 W rgi .
1/ D �& pdi .�/ �i 
1 �i �g

and such a 
1 exists.

.DQ:2/

8� � rgi .�/.K�sti .�/ < �/ (10)

for i 2 In.�/.

We set Q.d
˛/ D ;, i.e., d;

 ˛ D d
˛.

The order relation ˛ < ˇ on D
 is defined through finite setsK�˛ for � 2 R; ˛ 2
Od.…N/, and the latter is defined through the relation ˛ � ˇ, which is the transitive
closure of the relation ˛ 2 Dˇ . Thus ˛ �2 ˇ , ˛ � ˇ.

For � D d
q
� ˛ c.�/ D f�; ˛g [ q and

K
� D
�
K
.f�g [ c.�// D K
f�; ˛g [ q; 
 < �;

K
�; � < 
 & � 6� 
:

The following Proposition 4.1 is shown in [6].

Proposition 4.1 1. The finite set f� W 
 �i �g is linearly ordered by �i .
In the following assume � D rgi .�/ #.

2. � �i rgi .�/.
3. � �i 
 �i � & ini .�/ D ini .�/)ini .�/ D ini .
/.
4. � �i � �i rgi .�/)rgi .�/ �i rgi .�/.



Proof Theory for Theories of Ordinals III: …N -Reflection 375

Definition 4.2 For o.d.’s ˛; 
 with 
 2 R,

K
 .˛/ WD maxK
˛:

The following lemmata are seen as in [3].

Lemma 4.1 Suppose B>�.˛i / < ˛i for i D 0; 1, and ˛0 < ˛1. Then

� > �)d�˛i 2 Od.…N /& d�˛0 < d�˛1:

Lemma 4.2 For ˛; ˇ; 
 2 Od.…N / with 
 2 Rj� assume 8� < �ŒB� .ˇ/ �
B� .˛/�, and put � D maxfB�.ˇ/;B>
.f
; ˛g/g C !ˇ . Then B>
.f
; �; � C
K
 .˛/g/ < � , and hence (5) is fulfilled for d
�; d
.� C K
 .˛// 2 Od.…N /.

5 The System TNc

In this section we extend TN to a formal system TNc. The universe �.TN / of the
theory TN is defined to be the o.d. � 2 Od.…N /. The language is expanded so that
individual constants c˛ for o.d.’s ˛ 2 Od.…N / j � are included. Inference rules
.c/
 are added. To each proof P in TNc an o.d. o.P / 2 Od.…N / j � is attached.
Chains are defined to be a consecutive sequence of rules .c/. Proofs in TNc defined
in Definition 5.8 are proof figures enjoying some provisos and obtained from given
proofs in TN by operating rewriting steps. Some lemmata for proofs are established.
These are needed to verify that rewrited proof figures enjoy these provisos.

The language LNc of TNc is obtained from the language L.TN / by adding
individual constants c˛ for each o.d. ˛ 2 Od.…N/ such that 1 < ˛ < � & ˛ ¤ �.
We identify the constant c˛ with the o.d. ˛.

In what follows A;B; : : : denote formulae in LNc and 	;�; : : : sequents in LNc.
The axioms of TNc are obtained from those of TN as in [3].
Complexity measures deg.A/; rk.A/ of formulae A are defined as in [3] by

replacing the universe �.T22/ D � by �.TN / D � .
Also the sets �


0 ;†


i of formulae are defined as in [3]. Recall that for a bounded

formula A and a multiplicative principal number ˛ � � , we have A 2 �˛ ,
deg.A/ < ˛.

Definition 5.1

degN .A/ WD
�

deg.A/CN � 1 if A is a bounded formula;
deg.A/ otherwise:

Note that

degN .A/ 62 f˛ C i W i < N � 1; ˛ < � is a limit o.d.g:
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The inference rules of TNc are obtained from those of TN by adding the following
rules .h/˛ .˛ 2 f˛ W � � ˛ < � C !g [ f0;�g/, .c…2/

�
˛1

, .c†1/�˛1 , .c…N /


� ,

.c†N�1/
� for each 
 2 R � Od.…N /& 
 ¤ � and .†i /
 for each 
 2 R �
Od.…N/& 
 62 f�;�g and i D 1; 2; : : : ; N . The rule .h/˛, .c…2/

�
˛1

and .c†1/�˛1
are the same as in [4]. We write .w/ for .h/0.

1.

	;A


	;A�
.c…N /



�

where

(a) A � 8xN9xN�1 � � � Qx1B is a …N -sentence with a �� -matrix B ,
(b) � 2 D
 with the body ˛ D b.�/ of the rule and
(c) the formula A� in the lowersequent is the principal formula of the rule and

the formula A
 in the uppersequent is the auxiliary formula of the rule, resp.
Each formula in 	 is a side formula of the rule.

2.

	;ƒ


	;ƒ� .c†N�1/
�

where

(a) ƒ is a nonempty set of unbounded…N -sentences with �� -matrices.
(b) � 2 D
 with the body ˛ D b.�/ of the rule and
(c) each formula in 	 is a side formula of the rule.

3.

	;:A
 A
 ;ƒ

	;ƒ
.†i /




where 1 � i � N and A
 is a genuine †
i -sentence, i.e., A
 2 †
i and A
 62
…

i�1 [†
i�1.

A
 [:A
 ] is said to be the right [left] cut formula of the rule .†i /
 , resp.

The rules .c…2/
� and .c…N / are basic rules but not the rules .h/˛, .c†1/�,

.c†N�1/
 and .†i/
 .
A preproof in TNc is a proof in TNc in the sense of [3], i.e., a proof tree built

from axioms and inference rules in TNc. The underlying tree Tree.P / of a preproof
P is a tree of finite sequences of natural numbers such that each occurrence of a
sequent or an inference rule receives a finite sequence. The root (empty sequence)
. / is attached to the endsequent, and in an inference rule

a 
 .0; 0/ W ƒ0 � � � a 
 .0; n/ W ƒn

a W 	 .r/ a 
 .0/
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where .r/ is the name of the inference rule. Finite sequences are denoted by Roman
letters a; b; c; : : : ; I; J;K; : : :. Roman capitals I; J;K; : : : denote exclusively infer-
ence nodes. We will identify the attached sequence a with the occurrence of a
sequent or an inference rule.

Let P be a preproof and � < � C ! an o.d. in Od.…N /. For each sequent
a W 	 .a 2 Tree.P //, we assign the height h� .aIP/ < � C ! of the node a with
the base height � in P as in [3] except we replace �.T22/ D � by �.TN / D � and
replace deg.A/ by degN .A/.

Then the height h.aIP/ of a in P is defined to be the height with the base height
� D 0:

h.aIP/ WD h0.aIP/:

A pair .P; �/ of a preproof P and an o.d. � is said to be height regulated if
it enjoys the conditions in [3], or equivalently in [4, Definition 5.4]. For the rules
.†i /


 , this requires the condition: If a W 	 is the lowersequent of a rule .†i /
 a 

.0/ .1 � i � N/ in P , then h�.aIP/ � 
 C i � 2 if i D N � 1;N . Otherwise
h�.aIP/ � 
 C i � 1.

Therefore for the uppersequent a 
 .0; k/ W ƒ of a .†i/
 we have h�.a 

.0; k/IP/ D 
 C i � 1. Note that this implies that there are no nested rules .†i /
 ,
i.e., there is no .†i /
 below any .†i /
 for i � N � 1.

A preproof is height regulated iff .P; 0/ is height regulated.
Let P be a preproof and � < � C !. Assume that .P; �/ is height regulated.

Then the o.d o�.aIP/ 2 O.…N / assigned to each node a in the underlying tree
Tree.P / of P is defined exactly as in [4].

Furthermore for � 2 R \ Od.…N /, o.d.’s B�;� .aIP/;Bk�;� .aIP/ 2 O.…N / are
assigned to each sequent node a such that h� .aIP/ � � 2 R as in [4]. Namely

B�;� .aIP/ WD

8
ˆ̂<

ˆ̂
:

� � o�.aIP/
if h�.aIP/ D � D �;

maxfB�.o� .aIP//;B>� .f�g [ .aIP//g C !o� .aIP/
if h�.aIP/ < �:

Bk�;� .aIP/ WD B�;� .aIP/C K� .aIP/;

B�.aIP/ [Bk� .aIP/] denotes B�;0.aIP/ [Bk�;0.aIP/], resp.
Then propositions and lemmata (Rank Lemma 7.3, Inversion Lemma 7.9, etc.)

in Section 9 of [3] and Replacement Lemma 5.15 in [4] hold also for TNc.
Lemma 4.2 yields o�.aIP/ 2 Od.…N / for each node a 2 Tree.P / if .P; �/ is

height regulated and � < � C !.
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Definition 5.2 Let T be a branch in a preproof P and J a rule .†i/
 .

1. Left branch: T is a left branch of J if

(a) T starts with a lowermost sequent 	 such that h.	/ � � ,
(b) each sequent in T contains an ancestor of the left cut formula of J and
(c) T ends with the left uppersequent of J .

2. Right branch: T is a right branch of J if

(a) T starts with a lowermost sequent 	 such that 	 is a lowersequent of a basic
rule whose principal formula is an ancestor of the right cut formula of J and

(b) T ends with the right uppersequent of J .

Chains in a preproof are defined as in Definition 6.1 of [4] when we replace
..c…3/; .†3//, ..c†2/; .†2// by ..c…N /; .†N //, ..c†N�1/; .†N�1//. For defini-
tions related to chains such as starting with, top, branch of a chain, passing
through, see Definition 6.1 of [4]. Also rope sequence of a rule, the end of a rope
sequence and the bar of a rule are defined as in Definition 6.2 of [4]. Moreover
a chain analysis for a preproof together with the bottom of a rule is defined as in
Definition 6.3 of [4].

Definition 5.3 Q part of a chain and the i -origin.

1. Let C D J0; J
0
0; : : : ; Jn; J

0
n be a chain starting with a .c/
 Jn. Put

(a) In.C/ WD In.Jn/ WD In.
/.
(b) ini .C/ WD ini .Jn/ WD ini .
/ for 2 � i < N .
(c) sti .C/ WD sti .Jn/ WD sti .
/; rgi .C/ WD rgi .Jn/ WD rgi .
/

where sti .C/ " & rgi .C/ " if sti .
/ " & rgi .
/ ".
(d) Jk is the i -origin of the chain C or the rule Jn if Jk is a rule .c/� with � D

rgi .
/ #.
(e) Jk is the i -predecessor of Jn, denoted by Jk D pdi .Jn/ or

i -predecessor of the chain C, denoted by Jk D pdi .C/ if Jk is a rule .c/�
with � D pdi .
/.

Definition 5.4 Knot and rope.
Assume that a chain analysis for a preproof P is given and by a chain we mean a
chain in the chain analysis.

1. i -knot: Let K be a rule .†i/
 .1 � i � N � 2/. We say that K is an i -knot if
there are an uppermost rule .c/
 Jlw below K and a chain C such that Jlw is a
member of C and C passes through the left side of K .
The rule Jlw is said to be the lower rule of the i -knotK . The member .c/
 Jul of
the chain C is the upper left rule ofK and a rule .c/
 Jur which is above the right
uppersequent of K is an upper right rule of K if such a rule .c/
 Jur exists.
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.... C
	;:A


....
A
;ƒ

	;ƒ
.†i/


 K
....
�

�0 uppermost .c/
 Jlw 2 C
....

2. A rule is a knot if it is an i -knot for some i > 1.

Remark Note that a 1-knot .†1/ is not a knot by definition.

3. Let K be a knot, Jlw the lower rule of K and Jur an upper right rule of K . Then
we say that K is a knot of Jur and Jlw.

4. Let Cn D J0; : : : ; Jn be a chain starting with Jn andK a knot.K is a knot for the
chain Cn or the rule Jn if

(a) the lower rule Jlw of K is a member Jk .k < n/ of Cn,
(b) Cn passes through the right side of K , and
(c) for any k < n the chain Ck starting with Jk does not pass through the right

side ofK .

The knot K is a merging rule of the chain Cn and the chain Ck starting with the
lower rule Jlw D Jk .

.... Ck
	;:A


.... Cn
A
 ;ƒ

	;ƒ
.†i/


 K

....
�k

�0
k

uppermost .c/
 Jlw D Jk 2 Cn
....
�n

�0
n

Jn

5. A series RJ0 D J0; : : : ; Jn�1 .n � 1/ of rules .c/ is said to be the rope starting
with J0 if there is an increasing sequence of numbers (uniquely determined)

0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ (11)

for which the following hold:

(a) each Jnm is the bottom of Jnm�1C1 for m � l .n�1 D �1/,
(b) there is an uppermost knot Km such that Jnm is an upper right rule and JnmC1

is the lower rule of Km form < l , and
(c) there is no knot whose upper right rule is Jnl D Jn�1.
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We say that the rule Jn�1 is the edge of the rope RJ0 or the edge of the rule J0. For
a rope the increasing sequence of numbers (11) is called the knotting numbers of
the rope.

Remark These knots Km are uniquely determined for a proof defined below.

6. Let K�1 be an i�1-knot .i�1 � 1/ and J0 the lower rule of K�1. The left rope
K�1R of K�1 is inductively defined as follows:

(a) Pick the lowermost rule .c/ Jn0 such that the chain C starting with Jn0 passes
through the left side of the i�1-knot K�1 and J0 is a member of C. Let 0R D
I0; : : : ; Iq be the part of the chain C with J0 D I0 & Jn0 D Iq .

(b) If there exists an uppermost knotK0 such that Jn0 is an upper right rule ofK0,
then K�1R is defined to be a concatenation:

K�1R D 0R_
K0R

where K0R denotes the left rope of K0.
(c) Otherwise. Set:

K�1R D 0R:

Therefore for the left rope K�1R D J0; : : : ; Jn�1 of K�1 there exists a uniquely
determined increasing sequence of numbers (11) such that:

(a) each Jnm is the lowermost rule .c/ such that the chain C starting with Jnm
passes through the left side of the im�1-knot Km�1 and Jnm�1C1 is a member
of C .n�1 D �1/ for m � l ,

(b) there is an im-knotKm .im > 1/ such that Jnm is an upper right rule and JnmC1
is the lower rule of Km form < l , and

(c) there is no knot whose upper right rule is Jnl D Jn�1. ( K�1 is the i�1-knot
whose lower rule is J0.)

These numbers (11) are called the knotting numbers of the left rope and each
knot Km .m < l/ a knot for the left rope.
By the left rope J0R of the lower rule J0 of K�1 we mean the left rope K�1R of
K�1.

When a rule .†iC1/
 K .0 < i < N/ is resolved, we introduce a new rule
.†i /


nm.iC1/C1 at a sequent ˆ, which is defined to be the resolvent of K and a

nm.iC1/C1 � 
 defined as follows.

Definition 5.5 Resolvent
Let K be a rule .†iC1/
 .0 < i < N/. The resolvent of the rule K is a sequent

a W ˆ defined as follows: let K 0 denote the lowermost rule .†iC1/
 below or equal
to K and b W ‰ the lowersequent of K 0.

Case 1 The case when there exists an .i C 1/-knot .†iC1/
 which is between an
uppersequent of K and b W ‰: Pick the uppermost such knot .†iC1/
 K�1 and
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let K�1R D J0; : : : ; Jn�1 denote the left rope of K�1. Each Jp is a rule .c/

p

pC1

.
Let

0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ (11)

be the knotting numbers of the left rope K�1R andKm an im-knot .†im/

nmC1 of

Jnm and JnmC1 form < l . Put

m.i C 1/ D maxfm W 0 � m � l & 8p 2 Œ0;m/.i C 1 � ip/g: (12)

Then the resolvent a W ˆ is defined to be the uppermost sequent a W ˆ below
Jnm.iC1/

such that h.aIP/ < 
nm.iC1/C1 C i .
Case 2 Otherwise: Then the resolvent aˆ is defined to be the sequent b W ‰.

Definition 5.6 Let J and J 0 be rules in a preproof such that both J and J 0 are one
of rules .†i / .1 � i � N � 1/ and J is above the right uppersequent of J 0. We say
that J foreruns J 0 if any right branch T of J 0 is left to J , i.e., there exists a merging
rule K such that T passes through the left side of K and the right uppersequent of
K is equal to or below the right uppersequent of J .

....
	0;:A
0

A
1.... right branch T of J 0
	1;:B

	2;:C C;ƒ2

	2;ƒ2

.†j / J
....

B;ƒ1

	1;ƒ1
K

....
A
0;ƒ0

	0;ƒ0
.†i /


0 J 0

If J foreruns J 0, then resolving steps of J precede ones of J 0. In other words,
we have to resolve J in advance in order to resolve J 0.

Definition 5.7 Let R D J0; : : : ; Jn�1 denote a series of rules .c/. Each Jp is a
rule .c/


p

pC1

Assume that J0 is above a rule .†i /
 I and 
 D 
p for some p with
0 < p � n. Then we say that the series R reaches to the rule I .

In a proof defined in the next definition, if a series R D J0; : : : ; Jn�1 reaches to
the rule .†i /
 I , then either R passes through I in case p < n, or the subscript 
n
of the last rule .c/
n�1


n
Jn�1 is equal to 
 , i.e., Jn�1 is a lowermost rule .c/ above I .

Definition 5.8 Proof
Let P be a preproof. Assume a chain analysis for P is given. The preproof

P together with the chain analysis is said to be a proof in TNc if it satisfies the
following conditions besides the conditions (pure), (h-reg), (c:side), (c:bound),
(next), (h:bound), (ch:pass) (a chain passes through only rules .c/; .h/; .†i / .i <
N/), (ch:left), which are the same as in [4]:
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(st:bound) Let C be a chain, i 2 In.C/ and a W 	 be the uppersequent of the
iorigin of the chain C. Then

(st:bound1) Let i D N � 1. Then

o.aIP/ � stN�1.C/:

(st:bound2) Let i < N � 1 and � D rgi .C/. Then for an ˛

sti .C/ D d�C˛

and

B�.aIP/ � ˛:

(ch:link) Linking chains: Let C D J0; J
0
0; : : : ; Jn; J

0
n and D D I0; I

0
0; : : : ; Im; I

0
m

be chains such that Ji is a rule .c/�i�iC1
and Ii a rule .c/
i
iC1

. Assume that branches
of these chains intersect. Then one of the following three types must occur (cf.
[4] for Type1 (segment) and Type2 (jump)):

Type1 (segment): One is a part of the other, i.e.,

n � m& Ji D Ii

or vice versa.

Assume that there exists a merging rule K such that C passes through the left
side of K and D the right side of K . Then by (ch:left) the merging rule K is a
.†l /

�j for some j � n and some l with 1 � l � N � 2.

Type2 (jump): The case when there is an i � m so that

1. J 0
j�1 is aboveK and Jj is belowK ,

2. Ii is aboveK ,
3. I 0

i is below J 0
n and

4. 
iC1 < �nC1.

Type3 (merge): The case when �j D 
j . Then it must be the case:

1. l > 1,
2. I 0

j�1 and J 0
j�1 are rules .†N�1/�j aboveK , and

3. n < m& JjCk D IjCk & J 0
jCk D I 0

jCk for any k with
j � j C k � n.

That is to say, C and D share the part from Jj D Ij to Jn D In , the right
chain D has to be longer n < m than the left chain C and the merging rule K
is not a rule .†1/.
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If Type2 (jump) or Type3 (merge) occurs for chains C and D, then we say that
D foreruns C, since the resolving of the chain D precedes the resolving of the
chain C.

....
ˆj�1;:A�jj�1

....
A
�j
j�1;‰j�1

ˆj�1;‰j�1
.†N�1/�j J 0

j�1
.... C

ˆ;:A�j

....
…;:B
j

....
B
j ; �

…;�
.†N�1/
j I 0

j�1
.... D

A�j ;‰

ˆ;‰
.†l/

�j K

....
	j

	 0
j

.c†N�1/
�j
�jC1

Jj D .c†N�1/

j

jC1

Ij

....
	n

....
ˆn;:A�nC1

n

	 0
n

.c†N�1/�n�nC1
Jn D .c†N�1/
n
nC1

In

....
A
�nC1
n ; ‰n

ˆn;‰n
.†N�1/�nC1 J 0

n D .†N�1/
nC1 I 0
n

....
	m

	 0
m

.c/

m

mC1

I 0
m Type3

(ch:Qpt) Let C D J0; : : : ; Jn be a chain with a .c/

p

pC1

Jp .p � n/ and put � D

nC1. Then by (ch:link) there exists a uniquely determined increasing sequence
of numbers

0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ (11)

such that for eachm < l there exists an im-knot .†im/

nmC1 Km .2 � im � N�2/

for the chain C. (The im-knotKm is the merging rule of the chain C and the chain
starting with the rule JnmC1, cf. Type3 (merge).) These numbers are called the
knotting numbers of the chain C.
Then pdi .�/; In.�/; rgi .�/ have to be determined as follows:

1. For 2 � i < N ,

pdi .�/ D 
nm.i/C1

with

m.i/ D maxfm W 0 � m � l & 8p 2 Œ0;m/.i � ip/g (13)
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that is to say,

Jnm.i/ D pdi .Jn/:

2. For 2 � i < N � 1

i 2 In.C/ D In.�/ , 9p 2 Œ0;m.i//.ip D i/

, 9p 2 Œ0; l/.ip D i & 8q < p.iq > i//
, m.i/ > m.i C 1/ D minfm < l W im D ig:

And by the definition N � 1 2 In.C/ D In.�/.
3. For i 2 In.C/& i ¤ N � 1,

(a) The case when there exists a q such that

9pŒnm.i/ � p � q > nm.iC1/ & � �i 
pC1 & 
q D rgi .
pC1/�: (14)

Then

rgi .�/ D 
q

where q denotes the minimal q satisfying (14).
(b) Otherwise.

rgi .�/ D pdi .�/ D 
nm.i/C1:

(lbranch) Any left branch of a .†i / is the rightmost one in the left upper part of
the .†i/.

(forerun) Let J lw be a rule .†j /
 . Let RJ0 D J0; : : : ; Jn�1 denote the rope
starting with a .c/ J0. Assume that J0 is above the right uppersequent of J lw

and the series RJ0 reaches to the rule J lw. Then there is no merging rule K , cf.
the figure below, such that

1. the chain C0 starting with J0 passes through the right side of K , and
2. a right branch T of J lw passes through the left side of K .

ˆ;:A

.... T
	;:B

.... C0
B;ƒ

	;ƒ
K

....
	0

	 0
0

.c/ J0
.... RJ0

A;‰

ˆ;‰
.†j /


 J lw
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(uplw) Let J lw be a rule .†j /
 and J up an i -knot .†i /
0 .1 � i; j � N/. Let J0
denote the lower rule of J up. Assume that the left rope J upR D J0; : : : ; Jn�1 of
J up reaches to the rule J lw. Then

(uplwl) if J up is above the left uppersequent of J lw, then j < i < N .

.... C0
	;:B

....
B;ƒ

	;ƒ
.†i /


0 J up

....
	0

	 0
0

.c/
0 J0
.... J upR

ˆ;:A
....

A;‰

ˆ;‰
.†j /


 J lw

H) j < i

where C0 denotes the chain starting with J0, and
(uplwr) if J up is above the right uppersequent of J lw and i � j � N , then the

rule .†i /
0 J up foreruns the rule .†j /
 J lw, cf. Proposition 2.3 in Sect. 2.2.
In other words if there exists a right branch T of J lw as shown in the following
figure, then j < i .

.... C0
	;:B

.... T
B;ƒ

	;ƒ
.†i /


0 J up

....
	0

....
ˆ;:A

	 0
0

.c/
0 J0
....

…;:C
.... T

C;�

…;�
9K

.... J upR
A;‰

ˆ;‰
.†j /


 J lw

5.1 Decipherment

These provisos for a preproof to be a proof are obtained by inspection to rewrite
proof figures. We decipher only additional provisos from [4].

(ch:link) Now a new type of linking chains, Type3 (merge) enters, cf. Sect. 2.1.
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For a chain D D I0; I
0
0; : : : ; Im; I

0
m and a member In .n < m/ of D let C D

J0; J
0
0; : : : ; Jn; J

0
n denote the chain starting with Jn D In. Then there are two

possibilities:

Type1 (segment) C is a part I0; : : : ; In of D and hence the tops I0 and J0 are
identical.

Type3 (merge) The branch of C is left to the branch of D.

(st:bound), (ch:Qpt) By these provisos we see that an o.d. � is in Od.…N / for
a newly introduced rule .c/�, cf. Propositions 2.2, 2.3 in Sect. 2.2, Lemma 5.8
below and the case M5.2 in Sect. 6.

(uplwl) By the proviso we see that a preproof P 0 which is resulted from a proof
P is again a proof with respect to the proviso (ch:Qpt), cf. Lemma 5.7.2.

(uplwr), (forerun), (lbranch) By these provisos we see that a preproofP 0 which
is resulted from a proofP by resolving a rule .†iC1/ is again a proof with respect
to the provisos (forerun) and (uplw), cf. Proposition 2.3 in Sect. 2.2, the case
M7.2 in Sect. 6, Lemmas 5.5 and 5.4.

In the following any sequent and any rule are in a fixed proof.
As in the previous paper [4] we have the following lemmata. Lemma 5.1 follows

from the provisos (h-reg) and (ch:link) in Definition 5.8, Lemma 5.2 from (h-reg)
and (c:bound1) and Lemma 5.3 from (h-reg).

Lemma 5.1 Let J be a rule .c/
 and J 0 the trace .†N�1/
 of J . Let J1 be a rule
.c/
 below J 0. If there exists a chain C to which both J and J1 belong, then J1 is
the uppermost rule .c/
 below J and there is no rule .c/ between J 0 and J1.

Lemma 5.2 Let Jtop be a rule .c/� . Let ˆ denote the bar of Jtop. Assume that the
branch T from Jtop to ˆ is the rightmost one in the upper part of ˆ. Then no chain
passes through ˆ.

Lemma 5.3 Let J be a rule .c/ and b W ˆ the bar of the rule J . Then there is no
.cut/ I with b � I � J nor a right uppersequent of a .†N / I with b � I 
 .1/ � J

between J and b W ˆ.

The following lemma is used to show that a preproof P 0 which results from a
proof P by resolving a rule .†j / J lw is again a proof with respect to the proviso
(uplwl), cf. the Claim 6.6 in the case M7 in the next subsection.

Lemma 5.4 Let J lw be a rule .†j /. Assume that there exists a right branch T of
J lw such that T is the rightmost one in the upper part of J lw. Then there is no i -knot
.†i / J

up above the right uppersequent of J lw such that i � j and the left rope J upR
of J up and J up reaches to J lw.

Proof Suppose such a rule J up exists. By (uplwr) the rule J up foreruns J lw. Thus
the branch T would not be the rightmost one.
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	;:A

‰;:B
.... T

B;ˆ

‰;ˆ
.†i/ J

up

....
A;ƒ

	;ƒ
.†j / J

lw

�

The following lemma is used to show that a preproof P 0 which results from a
proof P by resolving a .†iC1/ is a proof with respect to the proviso (uplwr), and
to show a newly introduced rule .†i/ in such a P 0 does not split any chain, cf. the
Claim 6.6 in the case M7.

Lemma 5.5 Let J be a rule .†iC1/
0 .0 < i < N/ and b W ˆ the resolvent of J .
Assume that the branch T from J to b is the rightmost one in the upper part of b.
Then every chain passing through b passes through the right side of J .

Proof Let a
.0/ denote the lowermost rule .†iC1/
0 below or equal to J , and a W ‰
the lowersequent of a 
 .0/. The sequent a W ‰ is the uppermost sequent below J

such that h.aIP/ < 
0 C i by (h-reg).

Case 2. b D a: If a chain passes through a and a left side of a .†iC1/
0 K�1 with
a � K�1 � J , then the chain would produce an .i C 1/-knotK�1.

Case 1. Otherwise: Then there exists an .i C 1/-knot .†iC1/
0 with
a � K�1 � J . Let .†iC1/
 K�1 denote the uppermost such knot and K�1R D
J0; : : : ; Jn�1 the left rope of K�1. Each Jp is a rule .c/


p

pC1

. Let

0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ (11)

be the knotting numbers of the left rope K�1R andKm an im-knot .†im/

nmC1 of Jnm

and JnmC1 form < l . Put

m.i C 1/ D maxfm W 0 � m � l & 8p 2 Œ0;m/.i C 1 � ip/g: (12)

Then the resolvent b W ˆ is the uppermost sequent b W ˆ below Jnm.iC1/
such that

h.bIP/ < 
nm.iC1/C1 C i:

Put

m D m.C1/; 
 D 
nmC1:

Assume that there is a chain C passing through b. As in Case 2 it suffices to show
that the chain C passes through the right side of K�1. Assume that this is not the
case. Let .c/�

�0 K denote the lowermost member of C which is above b.
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Claim 5.1 K is on the branch T .

Proof of Claim 5.1 Assume that this is not the case. Then we see that there exists
a merging rule .†j /�

0

I and a member .c/�
0

K 0 of C such that the chain C passes
through the left side of I . K 0 � b � I and hence h.K 0IP/ D �0 � 
 . We see
�0 D 
 from (h-reg).

Supposem D l . Then by the definition of the left rope K�1R, the rule .†j /�
0

I is
not a knot, i.e., j D 1. But then h.I 
.1/IP/ D h.K 0IP/ D 
 , and hence I � b. A
contradiction. Thereforem < l and im � i . This meansKm 
 .1/ � b � I . On the
other hand, we have 1 � i < j by b � I , and by Lemma 5.1 K 0 is the uppermost
rule .c/
 below .†j /


 I . Therefore .†j /�
0

I would be a knot below Jnm . On the
other side, Km is the uppermost knot below Jnm . This is a contradiction.

…

…0 .c/
�

 K 2 C

.... C
	0;:A0

J....
A0;ƒ0

	0;ƒ0

.†j /

 I

	1;:A1

....
b W ˆ....
A1;ƒ1

	1;ƒ1
.†im/


 Km

....
�

�0 .c/
 K 0 2 C

�

Then as in the proof of Lemma 7.13 of [4] we see that K D Jnm , i.e., .c/��0 K

and .c/
nm
 Jnm coincide. Consider the chain Cm starting with .c/
nm
 Jnm . Then by
(ch:link) either Cm is a segment of C by Type1(segment), or C foreruns Cm by
Type3(merge). Since .c/
nm
 Jnm is the lowest one such that Cm passes through
the left side of Km�1 and Jnm�1C1 is a member of Cm, Type1(segment) does not
occur. In Type3(merge) Km�1 has to be the merging rule of Cm and C since, again,
.c/


nm

 Jnm is the lowest one, and the branch T is the rightmost one. Therefore C

passes through the right side of Km�1. If m D 0, then we are done. Otherwise we
see the chain C and the chain Cm�1 starting with .c/


nm�1

 Jnm�1 has to share the rule

.c/

nm�1

 Jnm�1 . As above we see that C passes through the right side of Km�2, and

so forth. �
Lemma 5.6 Let C D J0; : : : ; Jn be a chain with rules .c/


p

pC1

Jp for p � n, and
.†j /


p K .p < n/ a rule such that C passes through the right side of K and the
chain Cp stating with Jp passes through the left side of K . Further let R D KR D
Jp; : : : ; Jq�1 .q � n/ denote the left rope of the j -knotK . Then the chain Cq starting
with Jq is a part of the chain C D Cn, Cq � C. Therefore any knot for the chain C is
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below Jq and q < n, and in particular, if K is a knot for the chain C, then b D n,
cf. Definition 5.4.3.

Proof Suppose q < n. By Definition 5.4.6 there is no knot of Jq�1 and Jq . Let Iq
denote a knot such that the chain Cq�1 starting with Jq�1 passes through the left side
of Iq . c � b. From the definition of a left rope we see that the chain Cq starting with
Jq does not pass through the left side of the knot Iq . Therefore by (ch:link) Type1
(segment) the chain Cq must be a part of the chain C, Cq � C, i.e., the top of the
chain Cq is the top J0 of C.

.... Cp
ˆp;:Ap

.... Cq � C
Ap;‰p

ˆp;‰p
.†j /


p K

....
	p

.... Cq�1
ˆq�1;:Aq�1

	 0
p

.c/
p Jp

.... R
Aq�1; ‰q�1

ˆq�1; ‰q�1
Iq

.... R
	q�1
	 0
q�1

.c/
q Jq�1
.... Cq
	q

	 0
q

.c/
q Jq

.... C
	n

	 0
n

Jn

�

The following Lemma 5.7 is a preparation for Lemma 5.8. From Lemma 5.8 we
see that an o.d. � is in Od.…N / for a newly introduced rule .c/�, cf. the case M5.2
in the next subsection.

In the following Lemma 5.7, J denotes a rule .c/� and C D J0; : : : ; Jn the chain
starting with Jn D J . Each Jp is a rule .c/


p

pC1

for p � n with 
nC1 D �.
K denotes a rule .†j /
a .j � N � 2; 0 < a � n/ such that the chain C passes

throughK . If C passes through the left side ofK , then j � N �2 holds by (ch:left).
Ja�1 denotes the lowermost member .c/
a of C aboveK ,K � Ja�1.
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Let

0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ (11)

be the knotting numbers of the chain C, cf. (ch:Qpt), andKm an im-knot .†im/

nmC1

of Jnm and JnmC1 for m < l . Let m.i/ denote the number

m.i/ D maxfm W 0 � m � l & 8p 2 Œ0;m/.i � ip/g: (13)

Lemma 5.7 (cf. Proposition 2.2 in Sect. 2.2.)

1. Let m � m.i/. Then

i � im�1 & 
nmC1 �i 
nm�1C1:

2. Assume that C passes through the left side of the rule K , i.e., K 
 .0/ � Ja�1.
Then Ja�1 is the upper left rule of K . Let i � j .

(a) � �i 
a,
and hence

(b) the i -predecessor of J is equal to or below Ja�1, and
(c) if Kp is an ip-knot .†ip / for the chain C aboveK , then j < ip .

....
ˆp;:Ap

.... C
Ap;‰p

ˆp;‰p
.†ip /


npC1 Kp

....
	a�1
	 0
a�1

.c/
a Ja�1
.... C

ˆ;:A
....

A;‰

ˆ;‰
.†j /


a K
....
	n

	 0
n

.c/
n� Jn D J H) � �j 
a & j < ip

3. Let Jb�1 be a member of C such that � �i 
b for an i with 2 � i � N � 2. Let
Cb�1 denote the chain starting with Jb�1. Assume that the chain Cb�1 intersects
C of Type3 (merge) in (ch:link) and .†j /K is the merging rule of Cb�1 and C.
Then i � j .
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.... Cb�1
ˆ;:A

.... C
A;‰

ˆ;‰
.†j /K

....
	b�1
	 0
b�1

.c/
b Jb�1
.... C
	n

	 0
n

.c/
nC1
Jn

& 
nC1 �i 
b H) i � j

4. Assume that C passes through the left side of the rule K , i.e., K 
 .0/ � Ja�1.
Let i � j .
Assume that the i -origin Jq of C is not below K , i.e., 
q D rgi .�/ # )q < a.
Then

8b 2 .a; nC 1�f� �i 
b �i 
a ! i 62 In.
b/g

and hence

8b 2 .a; nC 1�f� �i 
b �i 
a ! ini .J / D ini .Jb�1/ D ini .Ja�1/ , i.e.,

ini .�/ D ini .
b/ D ini .
a/g:

In particular by Lemma 5.7.2 we have

� �i 
a & ini .J / D ini .Ja�1/ , i.e., ini .�/ D ini .
a/:

5. Assume that C passes through the left side of the rule K . Let Jb�1 be a member
of C such that Jb�1 is below K , i.e., a < b, and assume that 
nC1 �i 
 WD 
b
for an i � j . If 
q D rgi .
/ # )q < a, then

8d 2 .a; b�f
 �i 
d �i 
a ! i 62 In.
d /g

and


 �i 
a:

Hence

8d 2 .a; b�f
 �i 
d �i 
a ! ini .
d / D ini .
a/g & ini .
/ D ini .
a/:
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The following figure depicts the case 
q D rgi .
/ #:

.... C
	q

	 0
q

.c/rgi .
/ Jq

.... C
ˆ;:A

....
A;‰

ˆ;‰
.†j /


a K

....
	b�1
	 0
b�1

.c/
 Jb�1
.... C
	n

	 0
n

.c/
nC1
Jn

6. Assume that the chain C passes through the left side of the rule K . For an i � j

assume that there exists a q such that

9pŒn � p � q � a& � �i 
pC1 & 
q D rgi .
pC1/�:

Pick the minimal such q0 and put � D 
q0 . Then

(a) 8d 2 .a; q0�f
q0 �i 
d �i 
a ! i 62 In.
d /g and ini .Ja�1/ D ini .Jq0�1/,
i.e., ini .
a/ D ini .�/ and � �i 
a.

(b) 8t Œ� �i 
t �i �)rgi .
t / �i ��.

7. Assume that C passes through the left side of the rule K . Let Jb�1 be a member
of C such that Jb�1 is below K , i.e., a < b and � �i 
 WD 
b for an i � j .
Suppose rgi .
/ # and put 
q D rgi .
/. If the member .c/
q Jq is below K , i.e.,
a � q, then for sti .
/ D d



C

q
˛, cf. (st:bound),

B
q .cIP/ � ˛

for the uppersequent c W 	q of the rule Jq .

Proof First we show Lemmata 5.7.1 and 5.7.2 simultaneously by induction on the
number of sequents betweenK and J .

Proof of Lemma 5.7.1 By the definition of the number m.i/ we have i � im�1.
Since the chain Cnm starting with Jnm passes through the left side of the im�1-knot
Km�1, we have the assertion 
nmC1 �i 
nm�1C1 by IH on Lemma 5.7.2.
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.... Cnm
ˆm�1;:Am�1 Am�1; ‰m�1

ˆm�1; ‰m�1
.†im�1 /


nm�1C1 Km�1
....
	nm

	 0
nm

.c/
nmC1
Jnm

This shows Lemma 5.7.1. �

Proof of Lemma 5.7.2 By (ch:Qpt) we have

pdi .�/ D 
nm.i/C1 and Jnm.i/ D pdi .J /:

Claim 5.2 a � nm.i/ C 1, i.e., Jnm.i/C1 � K .

Proof of Claim 5.2 If m.i/ D l , then a � n D nl C 1. Assume

m.i/ < l ¤ 0& a > nm.i/ C 1:

Then the im.i/-knot .†im.i//

nm.i/C1 Km.i/ is above the left uppersequent of K , K 


.0/ � Km.i/, and j � i > im.i/. Consider the left rope Km.i/R D Jnm.i/C1; : : : ; Jb�1
of the knot Km.i/ for the chain C. Then by Lemma 5.6 we have b D n. Therefore
Km.i/R reaches to the rule K . Thus by (uplwl) we have i � j < im.i/. This is a
contradiction. �

By Claim 5.2 we have Lemma 5.7.2b.

Case 1 a D nm.i/ C 1: This means that the i -predecessor Jnm.i/ of J is the rule
Ja�1, and pdi .�/ D 
a.

Case 2 a < nm.i/ C 1: This means that Jnm.i/ � K . Put

m1 D minfm � m.i/ W a < nm C 1g: (15)

Then Jnm1 is the uppermost rule Jnm below K . The chain Cnm1 starting with Jnm1
passes through the left side of the knot .†im1�1 /


nm1�1C1 Km1�1. If K � Km1�1,
then Cnm1 passes through the left side of K .

.... Cnm1
ˆ;:A

....
A;‰

ˆ;‰
.†j /


a K
....

	nm1

	 0
nm1

.c/
nm1C1
Jnm1
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And by the minimality of m1, if Km1�1 � K , then Ja�1 D Jnm1�1 , i.e.,
a D nm1�1 C 1.

....
	a�1
	 0
a�1

Ja�1 D Jnm1�1

.... C
ˆ;:A

....
A;‰

ˆ;‰
.†j /


a K

.... Cnm1
ˆm1�1;:Am1�1

.... C
Am1�1; ‰m1�1

ˆm1�1; ‰m1�1
.†im1�1 /


a Km1�1
.... Cnm1

	nm1

	 0
nm1

.c/
nm1C1
Jnm1

By Lemma 5.7.1 we have pdi .�/ D 
nm.i/C1 �i 
nm1C1. Once again by IH we
have 
nm1C1 �i 
a. Thus we have shown Lemma 5.7.2a, � �i 
a. �
Proof of Lemma 5.7.2c j < ip: This is seen from (uplwl) as in the proof of the
Claim 5.2 since in this case we have l ¤ 0.

A proof of Lemma 5.7.2 is completed. �

Proof of Lemma 5.7.3 The chain Cb�1 passes through the left side of K and C the
right side of K . By (ch:Qpt) we have

pdi .
nC1/ D 
nm.i/C1 and Jnm.i/ D pdi .Jn/:

If K is a Km for an m < l , then the assertion i � j D im follows from (13) since
b � 1 � nm.i/ by 
nC1 �i 
b , and hence m < m.i/.

Otherwise let m � m.i/ denote the number such that nm > b � 1 > nm�1,
i.e., Jb�1 is between Km�1 and Jnm . Then K is below Km�1 and the rule K is the
merging rule of Cb�1 and the chain Cnm starting with Jnm , i.e., Cnm passes through
the right side of K .
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.... Cb�1
ˆ;:A

.... Cnm
ˆm�1;:Am�1

.... C
Am�1; ‰m�1

ˆm�1; ‰m�1
Km�1

.... Cnm; C
A;‰

ˆ;‰
.†j /K

....
	b�1
	 0
b�1

.c/
b Jb�1
....
	nm

	 0
nm

.c/
nmC1
Jnm

By IH it suffices to show that 
nmC1 �i 
b and this follows from


nC1 �i 
nmC1 (16)

since the set f� W 
nC1 �i �g is linearly ordered by �i , Proposition 4.1.1. Now (16)
follows from (13) and Lemma 5.7.2a, i.e,


nC1 �i pdi .
nC1/ D 
nm.i/C1 �i � � � �i 
nm�1C1 �i 
nmC1:

This shows Lemma 5.7.3. �

Proof of Lemma 5.7.4 by induction on the number of sequents between K and J .
By Claim 5.2 we have a � nm.i/ C 1.

Case 1 a D nm.i/ C 1: This means that the i -predecessor Jnm.i/ of J is the rule
Ja�1 and pdi .�/ D 
a. By Lemma 5.7.2c we have ip > j � i for any p < m.i/.
On the other side by (ch:Qpt)

i 2 In.C/ D In.�/ , 9p 2 Œ0;m.i//.ip D i/: (17)

Hence i 62 In.�/. Thus ini .
a/ D ini .pdi .�// D ini .�/.
Case 2 a < nm.i/ C 1: This means that Jnm.i/ is below K . Let m1 denote the

number (15) defined in the proof of Lemma 5.7.2.

Claim 5.3 For each m 2 .m1;m.i/� the i -origin of Jnm is not below Km�1, i <
im�1, i 62 In.�/, 
nmC1 �i 
nm�1C1 and 8b 2 .nm�1 C 1; nm C 1�f
nmC1 �i 
b �i


nm�1C1 ! i 62 In.
b/g and

8b 2 .nm�1 C 1; nm C 1�f
nmC1 �i 
b �i 
nm�1C1 ! i 62 In.
b/g
8b 2 .nm�1 C 1; nm C 1�f
nmC1 �i 
b �i 
nm�1C1 !
ini .Jnm/ D ini .Jb�1/ D ini .Jnm�1 / , i.e.,

ini .
nmC1/ D ini .
b/ D ini .
nm�1C1/g (18)
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Proof of Claim 5.3 First we show i < im�1. By Lemma 5.7.1 we have i � im�1.
Assume i D im�1 for some m 2 .m1;m.i/�. Pick the minimal such m2. Then by
(ch:Qpt), (17) we have i 2 In.�/ and hence rgi .�/ #. By Lemma 5.7.2c we have

p < m1)ip > j � i: (19)

Here p < m1 means that Kp is aboveK . Thus by (ch:Qpt)

m.i C 1/ D maxfm W 0 � m � l & 8p 2 Œ0;m/.i C 1 � ip/g D m2 � 1 � m1;

i.e.,

Jnm2�1 D pdiC1.J /& 
nm2�1C1 D pdiC1.�/& nm2�1 � nm1 � a:

On the other hand by (ch:Qpt) we have for the i -origin Jq of C, i.e., 
q D rgi .�/,

nm2�1 D nm.iC1/ < q � nm.i/ C 1:

Thus Jq is below Jnm2�1 and hence by a � nm2�1 the i -origin Jq is below K . This
contradicts our hypothesis.

ˆm2�1;:Am2�1

ˆ;:A A;‰

ˆ;‰
K

....
	nm2�1

	 0
nm2�1

.c/pdiC1.�/ Jnm2�1

....
Am2�1; ‰m2�1

ˆm2�1; ‰m2�1
.†i /Km2�1

....
	q

	 0
q

.c/rgi .�/ Jq

....
	nm.i/

	 0
nm.i/

.c/pdi .�/ Jnm.i/

Thus we have shown i < im�1 for anym 2 .m1;m.i/�. From this, (19) and (17) we
see i 62 In.�/ and hence

ini .�/ D ini .pdi .�// D ini .
nm.i/C1/:
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In particular, if rgi .�/ #, then 
q D rgi .�/ D rgi .
nm.i/C1/, i.e., the i -origin of
Jnm.i/ equals to the i -origin Jq of J . Therefore the i -origin of Jnm.i/ is not below K

and a fortiori not below the im.i/�1-knot Km.i/�1. Also the chain starting with Jnm.i/
passes through the left side ofKm.i/�1 and i � im.i/�1. Thus by IH we have (18) for
m D m.i/. We see similarly that for each m 2 .m1;m.i/� the i -origin of Jnm is not
belowKm�1 and (18).

Thus we have shown Claim 5.3. �

From Claim 5.3 we see

8b 2 .nm1 C 1; nC 1�f� �i 
b �i 
nm1C1 ! i 62 In.
b/g

and hence

8b 2 .nm1 C 1; nC 1�f� �i 
b �i 
nm1C1 !
ini .J / D ini .Jb�1/ D ini .Jnm1 /, i.e., ini .�/ D ini .
b/ D ini .
nm1C1/g:

Further

8m 2 .m1;m.i/�f� �i 
nmC1 �i 
nm�1C1 �i 
nm1C1g:

Once more by IH we have, cf. figures in the proof of Lemma 5.7.2, Case 2.,

nm1C1 �i 
a and

8b 2 .a; nm1 C 1�f
nm1C1 �i 
b �i 
a ! i 62 In.
b/g

and hence

8b 2 .a; nm1 C 1�f
nm1C1 �i 
b �i 
a !
ini .Jnm1 / D ini .Jb�1/ D ini .Ja�1/, i.e., ini .
nm1C1/ D ini .
b/ D ini .
a/g:

Thus we have shown Lemma 5.7.4. �

Proof of Lemma 5.7.5 by induction on the number of sequents betweenK and Jb�1.
Let Cb D I0; : : : ; Ib�1 denote the chain starting with Jb�1 D Ib�1. Each rule

Ip is again a rule .c/

p

pC1

. Chains Cb and C intersect in a way described as Type1
(segment) or Type3 (merge) in (ch:link). If the chain Cb passes through the left
side of K , then the i -origin Iq of Cb is above K if it exists, and hence the assertion
follows from Lemma 5.7.4.

Otherwise there exists a merging rule .†l/
c I below K such that the chain Cb
passes through the left side of I and C the right side of I .
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.... C
ˆ;:A

....
A;‰

ˆ;‰
K

....
	c�1

.... Cb
…;:B

	 0
c�1

.c/
c Jc�1
.... C

B;�

…;�
.†l/


c I
....

	b�1
	 0
b�1

.c/
 Jb�1

Then by Lemma 5.7.3 we have i � l . The i -origin Iq of Cb is not below I . Therefore
by Lemma 5.7.4 we have

8d 2 .c; b�f
 �i 
d �i 
c ! i 62 In.
d /g

and


 �i 
c :

Hence

8d 2 .c; b�f
 �i 
d �i 
c ! ini .
d / D ini .
c/g:

In particular

ini .
c/ D ini .
/& 
 �i 
c: (20)

Now consider the member Jc�1 of C. Jc�1 is again below K , 
nC1 �i 
c and
rgi .
c/ ' rgi .
/ by (20). Thus by IH we have

8d 2 .a; c�f
c �i 
d �i 
a ! i 62 In.
d /g

and


c �i 
a:

Therefore

8d 2 .a; c�f
c �i 
d �i 
a ! ini .
d / D ini .
a/g:
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This shows Lemma 5.7.5. �

Proof of Lemma 5.7.6 Pick a p0 so that n � p0 � q0, � �i 
p0C1 and rgi .
p0C1/ D

q0 D �.

....
	a�1
	 0
a�1

.c/
a Ja�1
.... C

ˆ;:A
....

A;‰

ˆ;‰
.†j /


a K
....
	q0

	 0
q0

.c/� Jq0 .rgi .
p0C1/ D �/

....
	p0

	 0
p0

.c/
p0C1
Jp0

....
	n

	 0
n

.c/� Jn

Lemma 5.7.6a. First note that � �i 
p0C1 �i rgi .
p0C1/ D � by Proposition 4.1.2
(or by the proviso (ch:Qpt)) and hence � �i �. Thus the assertion follows from
Lemma 5.7.5 and the minimality of q0.

Lemma 5.7.6b. Suppose rgi .
t / 6�i � for a t with � �i 
t �i �. Put 
b D rgi .
t /.
Then by Propositions 4.1.1 and 4.1.2 we have � D 
q0 �i 
b and b < q0 < t & q0 �
a. Hence by the minimality of q0 we have b < a.

....
	b

	 0
b

.c/
b Jb .
b D rgi .
t //
.... C

ˆ;:A
....

A;‰

ˆ;‰
.†j /


a K

....
	q0

	 0
q0

.c/� Jq0

....
	t�1
	 0
t�1

.c/
t Jt�1
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Thus by Lemma 5.7.5 we have

ini .
a/ D ini .
t /:

From this and Lemma 5.7.6a we have

ini .
a/ D ini .
t / D ini .�/& 
t �i � �i 
a: (21)

Case 1 t � p0: Then 
p0C1 �i 
t �i � D rgi .
p0C1/ by Proposition 4.1.1. By
Proposition 4.1.4 we would have 
b D rgi .
t / �i �. Thus this is not the case.
Alternatively we can handle this case without appealing Proposition 4.1.4 as
follows. Let p0 denote the minimal p0 such that

n � p0 � q0 & � �i 
p0C1 & rgi .
p0C1/ D 
q0 D �:

Then by (ch:Qpt) we have � D rgi .
p0C1/ D pdi .
p0C1/ and hence this is not
the case, i.e., p0 < t .

Case 2 p0 < t : Then 
t �i 
p0C1 �i �. By (21) and Proposition 4.1.3,
or by Lemma 5.7.5 we would have ini .
p0C1/ D ini .�/. In particular � D
rgi .
p0C1/ D rgi .�/ but rgi .�/ is a proper subdiagram of �. This is a
contradiction.

This shows Lemma 5.7.6b. �
Proof of Lemma 5.7.7 by induction on the number of sequents betweenK and Jb�1.

Case 1 Jq is the i -origin of Jb�1, i.e., Jq is a member of the chain starting
with .c/
 Jb�1: By the proviso (st:bound) we can assume i 62 In.
/. Then
ini .
/ D ini .pdi .
// D ini .Jp/ with Jp D pdi .Jb�1/& a � b � 1 < p by
Lemma 5.7.2. In particular rgi .
/ D rgi .pdi .
//. IH and sti .pdi .
// D sti .
/
yields the lemma.

Case 2 Otherwise: First note that 
nC1 ¤ 
 and 
nC1 �i 
 . By (ch:Qpt) we
have

pdi .
nC1/ D 
nm.i/C1 and Jnm.i/ D pdi .Jn/:

Also 
nm.i/C1 �i 
 and hence 
nm.i/C1 � 
 . Let m1 denote the number such that

m1 D minfm W 
nmC1 � 
g � m.i/:

Then the rule .c/
 Jb�1 is a member of the chain Cnm1 starting with Jnm1 and
Jb�1 is below .†im1�1 / Km1�1. Also the chain Cnm1 passes through the left side of
the knot Km1�1. By m1 � m.i/ and Lemma 5.7.1 we have 
nm.i/C1 �i 
nm1 and
hence

i � im1�1 & 
nm1 �i 
: (22)
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Case 2.1 Jq is belowKm1�1, i.e., 
q � 
nm1�1C1, i.e., nm1�1 < q: By IH and (22)
we get the assertion.

Case 2.2 Otherwise: By Lemma 5.7.5 and (22) we have

ini .
/ D ini .
nm1C1/& 
 �i 
nm1C1:

Hence sti .
/ D sti .
nm1C1/& rgi .
/ D rgi .
nm1C1/. IH and sti .
nm1C1/ D
sti .
/ yield the lemma. �

Lemma 5.8 Let R D J0; : : : ; Jn�1 denote the rope starting with a top .c/� J0.
Each Jp is a rule .c/


p

pC1

. Let

0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ (11)

be the knotting numbers of the rope R, and Km an im-knot .†im/

nmC1 of Jnm W and

JnmC1 for m < l . For 2 � i < N let m.i/ denote the number

m.i/ D maxfm W 0 � m � l & 8p 2 Œ0;m/.i � ip/g: (13)

Note that im � N � 2 by (p10). Also put (cf. (ch:Qpt))

1.

pdi D 
nm.i/C1:

2.

i 2 In , 9p 2 Œ0;m.i//.ip D i/:

3. For i 2 In .i ¤ N � 1/,
Case 1 The case when there exists a q such that

9pŒnm.i/ � p � q > nm.iC1/ & pdi �i 
pC1 & 
q D rgi .
pC1/�: (23)

Then

rgi D 
q

where q denotes the minimal q satisfying (23).
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Case 2 Otherwise.

rgi D pdi D 
nm.i/C1:

1. For each i 2 In we have

(a) ini .rgi / D ini .pdiC1/& pdi �i rgi �i pdiC1 & pdi ¤ pdiC1.
(b) 8t Œrgi .pdi / �i 
t �i rgi)rgi .
t / �i rgi �.
(c) Either rgi D pdi or rgi .pdi / �i rgi .

2. Assume i 2 In & 
q WD rgi ¤ pdi , i.e., Case 1 occurs. Then

B
q .cIP/ � ˛

for the uppersequent c W 	q of the rule Jq , sti .
pC1/ D d



C

q
˛ and p denotes a

number such that

nm.i/ � p � q > nm.iC1/ & pdi D 
nm.i/C1 �i 
pC1 & 
q D rgi .
pC1/:

Proof Lemma 5.8.1.
Let i 2 In, and put 
q0 D rgi & 
p0 D pdi & 
r D pdiC1. By the definition

we have p0 D nm.i/ C 1& r D nm.iC1/ C 1, m.i/ > m.i C 1/& im.iC1/ D i ,
p0 � q0 � r and 
p0 �i 
q0 . Also

8p 2 Œm.i C 1/;m.i//.i � ip/:

From this and Lemma 5.7.1 we see

8p 2 Œm.i C 1/;m.i//.
npC1C1 �i 
npC1/: (24)

On the other hand, we have by the definition of rgi D 
q0

:9q < q09pŒp0 � 1 � p � q > r � 1& pdi �i 
pC1 & 
q D rgi .
p/�: (25)

Case 2. Then pdi D rgi , i.e., p0 D q0, and Lemma 5.8.1b vacuously holds.
Lemma 5.8.1a, ini .
q0 / D ini .
r /& 
q0 �i 
r , follows from (24) and
Lemma 5.7.4 with (25).

Case 1. Let m denote the number such that

m.i/ � m > m.i C 1/& nm � q0 > nm�1 (26)

i.e., the rule .c/
q0 Jq0 is a member of the chain Cnm starting with Jnm .

Claim 5.4 Let p1 denote the minimal p1 such that 
p0 �i 
p1C1 and 
q0 D
rgi .
p1C1/. Then p1 � nm & 
nmC1 �i 
p1C1.
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.... Cnm
ˆm�1;:Am�1

....
Am�1; ‰m�1

ˆm�1; ‰m�1
Km�1

....
	q0

	 0
q0

.c/rgi .
p1C1/ Jq0
....
	p1

	 0
p1

.c/
p1C1
Jp1

....
	nm

	 0
nm

.c/
nmC1
Jnm

Proof of Claim 5.4 Let m1 denote the number such that

m.i/ � m1 > m.i C 1/& nm1 � p1 > nm1�1:

Then by (24), pdi �i 
nm1C1 and pdi �i 
p1C1 we have 
nm1C1 �i 
p1C1. It remains
to show m D m1. Assume m < m1. Then by Lemma 5.7.5 and q0 < nm1�1 C 1 we
would have ini .
nm1�1C1/ D ini .
p1C1/ and hence rgi .
nm1�1C1/ D rgi .
p1C1/ D

q0 . This contradicts the minimality of p1 by (24).

.... Cnm
ˆm�1;:Am�1

....
Am�1; ‰m�1

ˆm�1; ‰m�1
Km�1

....
	q0

	 0
q0

.c/rgi .
p1C1/ Jq0
....
	nm

	 0
nm

Jnm

.... Cnm1
ˆm1�1;:Am1�1

....
Am1�1; ‰m1�1

ˆm1�1; ‰m1�1
.†im1�1 /


nm1�1 Km1�1
....
	p1

	 0
p1

.c/
p1C1
Jp1

....
	nm1

	 0
nm1

Jnm1
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This shows Claim 5.4. �

By the minimality of q0 and Claim 5.4 q0 is the minimal q such that

9pŒnm � p � q � nm�1 C 1& 
nmC1 �i 
pC1 & 
q D rgi .
pC1/�:

Hence by Lemma 5.7.6 we have

ini .
nm�1C1/ D ini .
q0/& 
q0 �i 
nm�1C1 (27)

and

8t Œ
nmC1 �i 
t �i 
q0)rgi .
t / �i 
q0 �: (28)

Lemma 5.8.1. By (27) it suffices to show that

ini .
nm�1C1/ D ini .pdiC1/& 
nm�1C1 �i pdiC1:

This follows from (24) and Lemma 5.7.4 with (25).
Lemma 5.8.1b and 5.8.1c. In view of (28) it suffices to show the

Claim 5.5 
p0 �i 
t �i 
nmC1)rgi .
t / �i 
q0 .

Proof of Claim 5.5. By induction on t with p0 > t > nm C 1.
Let m2 � m denote the number such that nm2C1 � t > nm2 . Then the chain

Cnm2C1
starting with Jnm2C1

passes through the left side of the rule .†im2 /

nm2C1 Km2 .

.... Cnm2C1

ˆm2;:Am2

....
Am2;‰m2

ˆm2;‰m2
.†im2 /


nm2C1 Km2

....
	t�1
	 0
t�1

.c/
t Jt�1
....

	nm2C1

	 0
nm2C1

.c/
nm2C1C1
Jnm2C1

We have


nm2C1C1 �i 
t �i 
nm2C1 (29)

by (24). Put 
b D rgi .
t /. It suffices to show b � q0.
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First consider the case when b � nm2 . Then by (29) and Lemma 5.7.5 we have
ini .
t / D ini .
nm2C1/ and rgi .
t / D rgi .
nm2C1/. Thus IH when m2 > m and (28)
whenm2 D m yield b � q0.

Next suppose b > nm2 . Let q1 � b denote the minimal q � b such that

9pŒnm2C1 � p � q � nm2 C 1& 
nm2C1
�i 
pC1 & 
q D rgi .
pC1/�:

The pair .p; q/ D .t � 1; b/ enjoys this condition.
Then by Lemma 5.7.6 we have 
q1 �i 
nm2C1. Thus 
b �i 
q1 �i 
nm2C1 �i


nmC1 �i 
q0 . This shows Claim 5.5. �
Lemma 5.8.2.

First observe that as in (22) in the proof of Lemma 5.7.7,

8m � m.i/Œ
nm.i/C1 �i 
nmC1� (30)

Put

m1 D minfm W p � nmg
m2 D minfm W q � nmg:

Then the rule Jp [Jq] is a member of the chain Cnm1 [Cnm2 ] starting with Jnm1
[starting with Jnm2 ], resp. and m.i C 1/ < m2 � m1 � m.i/.

Claim 5.6 (cf. Claim 5.4.) There exists a p0 such that

ini .
pC1/ D ini .
p0C1/& 
nm2C1 �i 
p0C1 & nm2 � p0 > nm2�1;

i.e., the rule Jp0 is a member of the chain Cnm2 starting with Jnm2 .

Proof of Claim 5.6 1. The case m1 D m2: By (30) and 
nm.i/C1 �i 
pC1 we have


nm1C1 �i 
pC1: (31)

Set p0 D p.
2. The case m2 < m1: By (31) and Lemma 5.7.5 we have

ini .
pC1/ D ini .
nm1�1C1/ D � � � D ini .
nm2C1/

and


pC1 �i 
nm1�1C1 �i � � � �i 
nm2C1:

Set p0 D nm2 .
This shows the Claim 5.6. �
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By Claim 5.6 and Lemma 5.7.7 we conclude rgi .
pC1/ D rgi .
p0C1/ and

B
q .cIP/ � b.sti .
p0C1// D b.sti .
pC1// D ˛: �

Main Lemma 5.1 If P is a proof, then the endsequent of P is true.

In the next section we prove the Main Lemma 5.1 by a transfinite induction on
o.P / 2 Od.…N / j �.

Assuming the Main Lemma 5.1 we see Theorem 1.1 as in [4], i.e., attach .h/� ,
.c…2/

� and .h/� as last rules to a proof P0 of A� in TN .

.... P0
A�

A�
.h/�

A˛
.c…2/

�
˛

A˛
.h/�

P

6 Proof of Main Lemma

Throughout this section P denotes a proof with a chain analysis in TNc and r W 	rdx
the redex of P .

M1. The case when r W 	rdx is a lowersequent of an explicit basic rule J .
M2. The case when r W 	rdx is a lowersequent of an .ind/ J .
M3. The case when the redex r W 	rdx is an axiom.

These are treated as in [3, 4].
By virtue of M1-3 we can assume that the redex r W 	rdx of P is a lowersequent of
a rule J D r 
 .0/ such that J is one of the rules .…�

2 -rfl/, .…N -rfl/ or an implicit
basic rule.

M4. J is a .…�
2 -rfl/. As in [3] introduce a .c/�d�˛ and a .cut/.

M5. J is a .…N -rfl/.
M5.1. There is no rule .c/� below J .

....
	;A

....
:9z.t < z ^Az/; 	

r W 	 J
....

a W ˆ
a0 W ƒ .h/�

P

where a W ˆ denotes the uppermost sequent below J such that h.aIP/ D � . The
sequent a0 W ƒ is the lowersequent of the lowermost .h/� .
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Let P 0 be the following:

....
	
	;A

.w/
....

a1 W ˆ;A
ˆ;A


.c…N /
�

 J0

ƒ;A

.h/�

.... z WD 


:A
; 	
:A
; 	 .w/

....:A
;ˆ
:A
;ˆ .w/

:A
;ƒ .h/�

a0 W ƒ .†N�1/
 J 0
0 P 0

where the o.d. 
 in the new .c…N /
�

 J0 is defined to be


 D dq�˛ with q D 
��N � 1; 
 D o.a1IP 0/ and ˛ D � � o.a1IP 0/C K�.aIP/:

Namely In.
/ D fN � 1g, stN�1.
/ D 
 and pdN�1.
/ D rgN�1.
/ D � .
Then as in [4] we see that ˆ � �
 , ˛ < Bk�.aIP/& 
 < o.a0IP/, 
 2

Od.…N/ and o.a0IP 0/ < o.a0IP/. Hence o.P 0/ < o.P /. Moreover in P , no
chain passes through a0 W ƒ, and the new .†N /


 J 0
0 does not split any chain.

M5.2. There exists a rule .c/� J0 below J .
Let R D J0; : : : ; Jn�1 denote the rope starting with J0. The rope R need not to
be a chain as contrasted with [4]. Each rule Jp is a .c/


p

pC1

. Put 
 D 
n.

....
	;A

....
:9z.t < z ^ Az/; 	

r W 	 J
....
	0

a0	
0
0

.c/�
1 J0

....
ai W 	i
	 0
i

.c/
i
iC1
Ji

....
an�1 W 	n�1
	 0
n�1

.c/
n�1

 Jn�1

....
an W 	n .†N�1/
 J 0

n�1
....

a W ˆ P
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where an W 	n denotes the lowersequent of the trace .†N�1/
 J 0
n�1 of Jn�1, and

a W ˆ the bar of the rule .c/
 Jn�1. Let .†N�1/
iC1 J 0
i denote the trace of Ji for

0 � i < n. Put

h WD h.aIP/:

By Lemma 5.2 there is no chain passing through the bar a W ˆ.
Let P 0 be the following:

....
	;A....

al0 W 	0;A
	 0
0; A


1
J l0

....
ali W 	i ; A
i
	 0
i ; A


iC1
J li

....
aln�1 W 	n�1; A
n�1

	 0
n�1; A


J ln�1
....

aln W 	n;A

	n; A

�
.c…N/



� Jn

....
ˆ;A�

....:A�; 	....
ar0 W :A�; 	0

:A�; 	 0
0

J r0
....

ari W :A�; 	i
:A�; 	 0

i

J ri
....

arn�1 W :A�; 	n�1

:A�; 	 0
n�1

J rn�1
....

arn W :A�; 	n
:A�; 	n .w/ J rn

....:A�;ˆ
a W ˆ .†N /

� J 0
n P 0

For the proviso (lbranch) in P 0, any ancestor of the left cut formula of the new
.†N /

� J 0
n is a genuine…�

N -formulaA� for a � with � � � . The formula A� is not in
the branch T from r W 	 to a W ˆ in P since no genuine …�

N -formula with � > �

is on the rightmost branch T . Therefore any left branch of the new .†N /
� J 0

n is the
rightmost one in the left upper part of the J 0

n in P 0.
In P 0, a new chain J l0 ; : : : ; J

l
n�1; Jn starting with the new Jn is in the chain

analysis for P 0 and � D d
q

 ˛ 2 D
 is determined as follows:

b.�/ D ˛ D
maxfB�.o.alnIP 0//;B>
.f
g [ .anIP//g C!o.a

l
nIP 0/ C maxfK
 .anIP/;K
 .h/g;

rgN�1.�/ D � and stN�1.�/ D o.al0IP 0/.
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Let

0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ (11)

be the knotting numbers of the rope R and Km an im-knot .†im/

nmC1 of Jnm and

JnmC1 for m < l . Let m.i/ denote the number

m.i/ D maxfm W 0 � m � l & 8p 2 Œ0;m/.i � ip/g: (13)

Then pdi .�/; In.�/; rgi .�/; sti .�/ are determined so as to enjoy the provisos
(ch:Qpt) and (st:bound).

1. pdi .�/ D 
nm.i/C1 for 2 � i < N . Note that pdi .�/ ¤ � D 
0 since n0 � 0, cf.
the condition (8) in Sect. 4 which says that pdN�1.�/ D � , 
 D � .

2. N � 1 2 In.�/ and i 2 In.�/ , 9p 2 Œ0;m.i//.ip D i/ for 2 � i < N � 1.
3. Let i 2 In.�/& i ¤ N � 1. q denotes a number determined as follows.

Case 1 The case when there exists a q such that

9pŒnm.i/ � p � q > nm.iC1/ & � �i 
pC1 & 
q D rgi .
pC1/�: (14)

Then q denotes the minimal q satisfying (14). Note that � �i 
pC1 is
equivalent to pdi .�/ D 
nm.i/C1 �i 
pC1.

Case 2 Otherwise. Then set q D nm.i/ C 1.

In each case set rgi .�/ D 
q WD � for the number q, and sti .�/ D d�C˛i for

˛i D B�.a
l
q IP 0/

where alq denotes the uppersequent 	q;A
q of J lq in the left upper part of
.†N /

� J 0
n in P 0.

By Lemma 4.2 we have B>�C.˛i / � B>�.˛i / < ˛i , and hence sti .�/ 2
Od.…N /.

Obviously the provisos (ch:Qpt) and (st:bound) are enjoyed for the new chain
J l0 ; : : : ; J

l
n�1; Jn.

Observe that, cf. (9) in Sect. 4,

� < ˇ 2 q D Q.�/ ) ˇ D stN�1.�/:

Claim 6.1 � D d
q

 ˛ 2 Od.…N /.

Proof of Claim 6.1 (5) B>
.f
; ˛g[q/ < ˛: By Lemma 4.2 we have B>
.f
; ˛g/ <
˛. It suffices to see B>
.q/ < ˛. By the definition we have fpdi .�/; rgi .�/ W i 2
In.�/g � f
p; 
C

p W p � ng. On the other hand, we have B>
.f
p; 
C
p W p � ng/ �

B>
.
/.
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We have B>
.stN�1.�// � B>
.˛/. Finally for sti .�/ D d�C˛i with i < N � 1,
we have B>
.sti .�// � B>
.f
; ˛i g/ [ f˛i g, and B>
.f
; ˛i g/ � B>
.f
; ˛g/ and
˛i < ˛.
.DQ:12/:

Case 2 This corresponds to .DQ:12:1/, � D rgi .�/ D pdi .�/. Let ˛1 denote the
diagram such that � � ˛1 2 D� . Then

˛1 D 
nm.i/C2 .pdi .�/ D 
nm.i/C1 & 
nC1 D �/:

We have by Lemma 4.2 and (c:bound2),

B>
.B�.anm.i/C1IP// < B�.anm.i/C1IP/ � b.˛1/:

On the other, hand we have for sti .�/ D d�C˛i

B>�.sti .�// � B>�.f�; ˛i g/ � B>
.B�.anm.i/C1IP//:

Thus B>�.sti .�// < b.˛1/.
Case 1 This corresponds to .DQ:12:2/, rgi .�/ D rgi .pdi .�// or to .DQ:12:3/,

rgi .pdi .�// �i � by Lemma 5.8.1. Let p denote the maximal p such that

rgi .
pC1/ D 
q D rgi .�/& pdi .�/ �i 
pC1:

sti .�/ < sti .pdi .�// for the case .DQ:12:2/ and sti .�/ < sti .
pC1/ for the case
.DQ:12:3/ follow from Lemma 5.8.2 since for rgi .
pC1/ D 
q D rgi .�/

b.sti .�// D B
q .a
l
q IP 0/ < B
q .aq IP/ � b.sti .
pC1//

and hence by Lemmata 4.1 and 4.2

sti .�/ < sti .
pC1/:

.DQ:11/ and .DQ:12:3/: These follow from Lemma 5.8.1.
.DQ:2/: 8� � rgi .�/.K�sti .�/ < �/. For � � � D rgi .�/ and sti .�/ D d�C˛i ,

we have K�.sti .�// D K�f�; ˛i g � K� .a
l
q IP 0/ < � as in the case M6.2 in [4]. �

As in the case M6.2 in [4] we see that o.P 0/ < o.P /.
We have to verify that P 0 is a proof. The provisos other than (uplwl) are seen to

be satisfied as in the case M5.2 of [4]. For the proviso (forerun) see Claim 6.3 in
the subcase M7.2 below. It suffices to see that P 0 enjoys the proviso (uplwl) when
the lower rule J lw is the new .†N /

� J 0
n. For example, the left rope KmR of the im-

knot .†im/

nmC1 Km of Jnm and JnmC1 ends with the rule .c/
 Jn�1. We show the

following claim.
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Claim 6.2 Any left rope J upR of a knot J up in the left upper part of the new
.†N /

� J 0
n does not reach to J 0

n.

Proof of Claim 6.2 Consider the original proof P . By Lemma 5.2 there is no chain
passing through the bar a W ˆ and hence it suffices to see that there is no rule .c/
�
above a W ˆ. First observe that we have � < � for any rules .c/� and .†i /� which
are between .…N -rfl/ J and a W ˆ. Thus there is no rule .c/
� on the branch T0 from
.c/� J0 to a W ˆ. Consider another branch T above a W ˆ and suppose that there is
a rule .c/
� I on T . We can assume that the merging rule K of T and T0 is below
J0 and hence the rule K is a .†i /� . By the proviso (h-reg) (cf. Definition 5.4.4 in
[4]) we have � � 
 , i.e., K is between .c/
n�1


 Jn�1 and a W ˆ. Then we have seen
� < � and hence the trace .†N�1/� I0 of .c/
� I is below K by the proviso (h-reg).
Therefore the chain stating with the trace I0 passes through the left side of K . This
is impossible by the proviso (ch:left).

‰2

‰0
2

.c/
� I

.... T
‰1;:C �

	n�1
	 0
n�1

.c/
n�1

 Jn�1

.... T0
C � ;ˆ1

‰1;ˆ1
.†i /

� K

....
‰0;:B�

....
B�;ˆ0

‰0;ˆ0
.†N�1/� I0

.... T ; T0
a W ˆ P

In what follows we assume that r 
 .0/ D J is a basic rule. Let v 
 .0/ D I denote
the vanishing cut of r 
 .0/ D J . v 
 .0/ D I is either a .†i / or a .cut/.

M6. I is a .†N /
 .

....
	;A


....
˛ < 
;ƒ0

....
:A
N�1.˛/;ƒ0

9x < 
:A
N�1.x/;ƒ0
.b9/ J

....:A
;ƒ
v W 	;ƒ .†N /


 I
P

where A � 8xAN�1.x/ is a …N formula.
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Assuming ˛ < 
 let P 0 be the following:

....
	;A


....
:A
N�1.˛/;ƒ0

:A
;ƒ0;:A
N�1.˛/
.w/

....
:A
;ƒ;:A
N�1.˛/

	;ƒ;:A
N�1.˛/

....
	;A
N�1.˛/

v W 	;ƒ .†N�1/
 IN�1
P 0

where the preproof ending with 	;A
N�1.˛/ is obtained from the left upper part
of I in P by inversion.

As in the case M6 of [4] we see that o.vIP 0/ < o.vIP/.
For the proviso (lbranch) in P 0, cf. the case M5.2. We verify that P 0 is a proof

with respect to the proviso (uplw).
The proviso (uplwl) when the lower rule J lw is the new .†N�1/
 IN�1: Consider

the original proof P . By Lemma 5.3 no left rope in the right upper part of .†N /
 I
reaches to I . Also by (uplwl) with the lower rule J lw D I there is no left rope of an
i -knot J up reaching to I .

The proviso (uplwr) when the lower rule J lw is the new .†N�1/
 IN�1: As above
there is no left rope of an i -knot J up reaching to I .

The proviso (uplwr) when the upper rule J up is the .†N�1/
 IN�1:
.†N�1/
 IN�1 is not an .N � 1/-knot since there is no chain passing through
.†N /


 I by (ch:pass).
For the proviso (forerun) see Claim 6.3 in the subcase M7.2 below.

M7. I is a .†iC1/
 with 1 � i < N � 1.
Then J is either an .9/ or a .b9/. Let u0 W ‰ denote the uppermost sequent below
I such that h.u0IP/ < 
 C i . Also let u W ˆ denote the resolvent of I , cf.
Definition 5.5.

M7.1 u0 D u.

....
	;:A
iC1

....
˛ < �;ƒ0

....
A�i .˛/;ƒ0

A�iC1;ƒ0
x

....
A
iC1;ƒ

	;ƒ
.†iC1/
 I

....
u W ‰ P

where AiC1 � 9yAi .y/ is a †iC1 formula. Also if x is an .9/, then � D � and
the left upper part of the true sequent ˛ < �;ƒ0 is absent. Anyway 
 � � .
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Assuming ˛ < � and then ˛ < 
 by (c:bound), let P 0 be the following:

....
	;:A
iC1

....
A�i .˛/;ƒ0

A�iC1; A�i .˛/;ƒ0
.w/

....
A
iC1; A
i .˛/;ƒ

A
i .˛/; 	;ƒ....
‰;A
i .˛/

....
	;:A
i .˛/
	;ƒ;:A
i .˛/

.w/
....

:A
i .˛/;‰
u W ‰ .†i/




P 0

It is easy to see that o.uIP 0/ < o.uIP/. For the proviso (lbranch) in P 0, cf. the
case M5.2. To see that P 0 is a proof with respect to the provisos (forerun), (uplw),
cf. the subcase M7.2 below.

M7.2 Otherwise.
Let K denote the lowermost rule .†iC1/
 below or equal to I . Then u0 W ‰ is
the lowersequent of K by (h-reg). There exists an .i C 1/-knot .†iC1/
 which
is between an uppersequent of I and u0 W ‰. Pick the uppermost such knot
.†jC1/
 K�1 and let K�1R D J0; : : : ; Jn�1 denote the left rope ofK�1. Each Jp
is a rule .c/


p

pC1

with 
 D 
0. Let

0 � n0 < n1 < � � � < nl D n � 1 .l � 0/ (11)

be the knotting numbers of the left rope K�1R andKm an im-knot .†im/

nmC1 of Jnm

and JnmC1 form < l . Put

m.i C 1/ D maxfm W 0 � m � l & 8p 2 Œ0;m/.i C 1 � ip/g: (12)

Then the resolvent u W ˆ is the uppermost sequent u W ˆ below Jnm.iC1/
such that

h.uIP/ < 
nm.iC1/C1 C i:

In the following figure of P the chain CnmC1
starting with JnmC1

passes through the
left side of Km.
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.... Tl
	;:A
iC1

˛ < �;ƒ0 A�i .˛/;ƒ0

A�iC1;ƒ0
J

....
A
iC1;ƒ

v W 	;ƒ .†
iC1/ I
.... T1
	0

	 0
0

.c/

1 J0

.... CnmC1

…m;:Bm

....
	nm

	 0
nm

.c/

nm

nmC1

Jnm
....

Bm;�m

…m;�m
.†im/


nmC1 Km

....
	nmC1
	 0
nmC1

.c/

nmC1

nmC2

JnmC1
....

	nmC1

	 0
nmC1

.c/

nmC1

nmC1C1

JnmC1

....
	nm.iC1/

	 0
nm.iC1/

.c/

nm.iC1/

nm.iC1/C1

Jnm.iC1/

.... T1
u W ˆ P
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Assuming ˛ < � and then ˛ < 
n � 
nm.i/C1, let P 0 be the following:

....
	;:A
iC1

A�i .˛/;ƒ0

A�iC1;ƒ0;A�i .˛/
.w/

....
A
iC1;ƒ; A
i .˛/

	;ƒ;A
i .˛/
I l

....
	0;A



i .˛/

	 0
0; A


1
i .˛/

J l0

.... ClnmC1

…m;:Bm

....
	nm;A


nm
i .˛/

	 0
nm
; A


nmC1

i .˛/
J lnm

....
Bm;�m;A


nmC1

i .˛/

…m;�m;A

nmC1

i .˛/
Kl
m

....
	nmC1; A
nmC1

i .˛/

	 0
nmC1; A


nmC2

i .˛/
J lnmC1

....
	nmC1

; A

nmC1

i .˛/

	 0
nmC1

; A

nmC1C1

i .˛/
J lnmC1

....
	nm.iC1/

; A

nm.iC1/

i .˛/

	 0
nm.iC1/

; A

nm.iC1/C1

i .˛/

J lnm.iC1/

....

ˆ;A

nm.iC1/C1

i .˛/

.... Tr
	;:A
i .˛/

vr W :A
i .˛/; 	;ƒ
.w/

.... T r
1 � Tr

:A
i .˛/; 	0
:A
1i .˛/; 	 0

0....
:A
nmi .˛/; 	nm

:A
nmC1

i .˛/; 	 0
nm

.... CrnmC1

…m;:Bm

....
:A
nmC1

i .˛/; Bm;�m

:A
nmC1

i .˛/;…m;�m....
:A
nmC1

i .˛/; 	nmC1
:A
nmC2

i .˛/; 	 0
nmC1

....
:A
nmC1

i .˛/; 	nmC1

:A
nmC1C1

i .˛/; 	 0
nmC1....

:A
nm.iC1/

i .˛/; 	nm.iC1/

:A
nm.iC1/C1

i .˛/; 	 0
nm.iC1/.... T r

1 � Tr
u 
 .1/ W :A
nm.iC1/C1

i .˛/;ˆ

u W ˆ Ii
P 0

Here Ii denotes a .†i /

nm.iC1/C1 .

It is straightforward to see o.uIP 0/ < o.uIP/. We show P 0 is a proof.
First by Lemma 5.5, in P every chain passing through the resolvent u W ˆ passes

through the right side of I and, by inversion, the right upper part of I disappears
in P 0. Hence the new .†i /


nm.iC1/C1 Ii does not split any chain. For the proviso
(lbranch) in P 0, cf. the case M5.2.
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Claim 6.3 The proviso (forerun) holds for the lower rule J lw D Ii in P 0.

Proof of Claim 6.3 Consider a right branch Tr of Ii . We show that there is no
rule K such that Tr passes through the left side of K and h.aIP 0/ < � with the
lowersequent a of K . The assertion follows from this and (h-reg). The ancestors of

the right cut formula :A
nm.iC1/C1

i .˛/ of Ii comes from the left cut formula :A
iC1
of I in P . Let T r

1 denote the branch in P 0 from the lowersequent vr W :A
i .˛/; 	;ƒ
of the new .w/ to the right uppersequent u 
 .1/ W :A
nm.iC1/C1

i .˛/;ˆ of Ii . Also let
Tl denote a (the) left branch of I in P . There exists a (possibly empty) branch T0
such that Tr D T _

0 T _
l T r

1 . By (lbranch) any left branch Tl of I is the rightmost one
in the left upper part of I . Therefore there is no rule K such that Tr passes through
the left side of K and h.aIP 0/ < � with the lowersequent a of K . �

Claim 6.4 The proviso (uplwr) holds for the upper rule J up D Ii in P 0.

Proof of Claim 6.4 Suppose that Ii is a knot. Then there exists a chain C1 starting
with an I1 such that C1 passes through the left side of Ii . This chain comes from a
chain in P which passes through u W ˆ. Call the latter chain in P C1 again. Further
assume that, inP 0, the left rope IiR of Ii reaches to a rule .†j /� J lw with i � j . Let
I2 denote the lower rule of Ii . We have to show Ii foreruns J lw. It suffices to show
that, in P , any right branch T of J lw passes through the right side of I if the branch
T passes through u W ˆ. Since, by inversion, the right upper part of I disappears in
P 0, for such a branch T there exists a unique branch T 0 corresponding to it in P 0 so
that T 0 passes through the left side of Ii and hence T 0 is left to Ii .

....
	lw;:Clw

....
	;:A
iC1

.... T
A
iC1;ƒ

	;ƒ
.†iC1/
 I

....
u W ˆ.... T
Clw; ƒlw

	lw; ƒlw
.†j /

� J lw

P

....
	lw;:Clw

....
	;:A
iC1

.... T 0
A
iC1;ƒ;A
i .˛/

	;ƒ;A
i .˛/
I l

....
ˆ;A


nm.i/C1

i .˛/

....
:A
nm.i/C1

i .˛/;ˆ

u W ˆ Ii
.... T 0

Clw; ƒlw

	lw; ƒlw
J lw

P 0



Proof Theory for Theories of Ordinals III: …N -Reflection 417

Case 1. The case when, in P , there exists a member I3 of the chain C1 such that
I3 is between u W ˆ and J lw, and the chain C3 starting with I3 passes through the
resolvent u W ˆ in P : Then by Lemma 5.5 the chain C3 passes through the right
side of I . The rope RI3 starting with I3 in P corresponds to a part (a tail) of the
left rope IiR in P 0. Thus by the assumption the rope RI3 also reaches to J lw in
P . Hence by (forerun) there is no merging rule K such that

1. the chain C3 starting with I3 passes through the right side of K , and
2. the right branch T of J lw passes through the left side ofK .

Therefore the right branch T of J lw passes through the right side of I in P .

....
	;:A
iC1

.... C3; T 0
A
iC1;ƒ;A
i .˛/

	;ƒ;A
i .˛/
I l

....
ˆ;A


nm.i/C1

i .˛/

....
:A
nm.i/C1

i .˛/;ˆ

u W ˆ Ii
....
�2

�0
2

I2

....
	lw;:Clw

....
�3

�0
3

I3
.... RI3 � IiR

Clw; ƒlw

	lw; ƒlw
J lw

P 0

Case 2. Otherwise: First we show the following claim:

Claim 6.5 In P , we have m.i C 1/ < l for the number of knots l in (11), and I2
is the lower rule of the im.iC1/-knot Km.iC1/. Let Km.iC1/

R denote the left rope of
Km.iC1/ in P . Then Km.iC1/

R reaches to J lw.

Proof of Claim 6.5 In P 0, the lower rule I2 of the knot Ii is a member of the chain
C1 starting with I1 and passing through the left side of Ii . Further I2 is above J lw

since the left rope IiR of Ii is assumed to reach to J lw in P 0, cf. Definition 5.7.
Since we are considering when Case 1 is not the case, in P , I1 is below J lw and
the chain C2 starting with I2 does not pass through u W ˆ, and hence chains C1 and
C2 intersect as Type3 (merge) in (ch:link). In other words, there is a knot below
u W ˆ whose upper right rule is .c/
nm.iC1/C1

Jnm.iC1/
. This means that the knot is the

im.iC1/-knot Km.iC1/. Thus we have shown that m.i C 1/ < l and I2 is the lower
rule of the im.iC1/-knotKm.iC1/.
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Next we show that the left rope Km.iC1/
R ofKm.iC1/ reaches to J lw in P . Suppose

this is not the case. Let .c/�4 I4 denote the lowest (last) member of the left rope
Km.iC1/

R. Then � < �4 for the rule .†j /� J lw. By � < �4, the next member .c/�4 I5
of the chain C1 is above J lw. Since we are considering when Case 1 is not the case,
the chain C5 starting with I5 does not pass through u W ˆ. By Definition 5.4.6 of
left ropes and (ch:link) there would be a knotK 0 whose lower rule is I5 and whose
upper right rule is I4. This is a contradiction since I4 is assumed to be the last
member of the left rope Km.iC1/

R. This shows Claim 6.5.
In the following figure note that u W ˆ is above Km.iC1/ by (h-reg) and the

definition of the resolvent u W ˆ.

.... C1
u W ˆ.... C2 D Cnm.iC1/C1

…m.iC1/;:Bm.iC1/
....

Bm.iC1/; �m.iC1/
…m.iC1/; �m.iC1/

.†im.iC1/
/

nm.iC1/C1 Km.iC1/

....
�2

�0
2

.c/

nm.iC1/C1 I2

.... C5
…;:B

....
�4

�0
4

.c/�4 I4

....
B;�

…;�
K 0

....
�5

....
	lw;:Clw

�0
5

.c/�4 I5
....

Clw; ƒlw

	lw; ƒlw
.†j /

� J lw

.... C1
�1

�0
1

I1

P

�
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By Claim 6.5, (uplwr) and im.iC1/ � i � j , Km.iC1/ foreruns J lw in P .
Therefore the right branch T of J lw is left to Km.iC1/. Also by (h-reg) Km.iC1/
is below u W ˆ. Hence T does not pass through u W ˆ in this case. This shows
Claim 6.4. In the following figure C2 denotes the chain starting with I2.

....
	lw;:Clw

.... C2
…m.iC1/;:Bm.iC1/

u W ˆ....
Bm.iC1/; �m.iC1/

…m.iC1/; �m.iC1/
.†im.iC1/

/

nm.iC1/C1 Km.iC1/

....
�2

�0
2

I2
.... Km.iC1/

R
Clw; ƒlw

	lw; ƒlw
J lw

P

ut
Claim 6.6 The proviso (uplw) holds for the lower rule J lw D Ii in P 0.

Proof of Claim 6.6 Let J up be a j -knot .†j / above Ii . LetH0 denote the lower rule
of J up. Assume that the left rope J upR D H0; : : : ;Hk�1 of J up reaches to the rule
Ii . We show

i < j

even if J up is in the right upper part of Ii . Consider the corresponding rule J up in P .

Case 1 Either J up is I or between I and u W ˆ: If either J up is I or an im-knot
Km with m < m.i C 1/, then i < i C 1 D j or i < im D j by (12), resp.
Otherwise J up is between Km�1 and Jnm for some m with 0 � m � m.i C 1/.
Then the rule J up is the merging rule of the chain Cnm starting with Jnm and the
chain CH0 starting with H0 so that Cnm passes through the right side of J up and
CH0 the left side of J up. Hence by (ch:link) Type3 (merge) the rule Hk�1 is
above Jnm and the left rope H0R does not reach to Ii . Thus this is not the case.
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.... Cnm
…m�1;:Bm�1 Bm�1;�m�1

…m�1;�m�1
Km�1

.... CHq
�;:C

.... Cnm
C;‰

�;‰
J up

....
ƒq

ƒ0
q

Hq

....
ƒk�1
ƒ0
k�1

Hk�1
....
	nm

	 0
nm

Jnm

whereHq denotes the lowermost member of H0R such that the chain CHq starting
withHq passes through the left side of J up. By (ch:link) Type3 (merge) the rule
Hq is above Jnm and so on.

Case 2 J up is in the right upper part of I : Then the left rope H0R reaches to I .
Hence by Lemma 5.4, i.e., by (uplwr) we have i < i C 1 < j .

Case 3 J up is in the left upper part of I : Then the left rope H0R reaches to I .
Hence by (uplwl) we have i < i C 1 < j .

Case 4 Otherwise: Then there exists a rule K such that J up is in the left upper
part of K and K is between I and ˆ. By (h-reg), (ch:pass) K is a rule .†p/� .
The left rope H0R D H0; : : : ;Hk�1 reaches to K . Hence by (uplwl) we have

p < j (32)

....
�;:C

....
C;‰

�;‰
J up

....
	K;:D

....
	;:A
iC1

....
A
iC1;ƒ

	;ƒ
.†
iC1/ I

....
D;ƒK

	K;ƒK
.†p/

� K
....
ˆ
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Case 4.1 Hk�1 is below K: Let K 0 denote the uppermost knot such that K 0 is
equal to or below K , and there exists a member of H0R such that the chain
starting with the member passes through the left side of K 0. Let Hq be the
lowermost member of H0R such that the chain CHq starting with Hq passes
through the left side of K 0. If there exists a member of H0R such that the chain
starting with the member passes through the left side ofK , thenK 0 is equal toK .

J up
.... CHq

	K;:D
....

D;ƒK

	K;ƒK
.†p/

� K D K 0
....
�q

�0
q

Hq

Otherwise K 0 is below K and it is a knot for the left rope H0R. Let Hq�1 denote
the lowermost member of H0R aboveK . Then Hq�1 is an upper right rule of the
knot K 0 and K 0 is a rule .†p0/� with

p0 � p (33)

by (h-reg).

J up
....

�q�1

�0
q�1

Hq�1

....
	K;:D

I....
D;ƒK

	K;ƒK

.†p/
� K

.... CHq
	K0 ;:D0

....
D0; ƒK0

	K0 ; ƒK0

.†p0/� K 0
....
�q

�0
q

Hq
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By Lemma 5.1 the uppermost member of CHq below K 0 is the lower rule of the
knot K 0. By (32), (33) and Case 1 it suffices to show that the left rope K0R D
G0; : : : ; Gk0 of K 0 reaches to Ii , i.e., to show the last member Gk0 is equal to or
below the rule Hk�1. Then we will have i < p0 � p < j .
Let G0 D Hq0 .q0 � q/ denote the lower rule of K 0 and Gk1 the lowermost
member of K0R such that the chain CGk1 starting withGk1 passes through the left
side of K 0. Then by (ch:link) Gk1 is equal to or below Hq .

Case 4.1.1 Gk1 D Hq : Then Gk0 D Hk�1, i.e., Gq1�q0 D Hq1 for any q1 with
q0 � q1 < k.

.... CHq
	K0 ;:D0

....
D0; ƒK0

	K0 ; ƒK0

K 0
....
ƒq0

ƒ0
q0

Hq0 D G0

....
ƒq

ƒ0
q

Hq D Gk1

.... CHq1
	K1;:D1

....
D1;ƒK1

	K1;ƒK1

K1

....
ƒqC1
ƒ0
qC1

HqC1 D GqC1�q0
....
ƒq1

ƒ0
q1

Hq1 D Gq1�q0

whereK1 is a knot ofHqC1 D GqC1�q0 andHq D Gk1 with qC1�q0 D k1C1.
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Case 4.1.2 Otherwise: Then by (ch:link) Gk1 is already below Hk�1.

.... CHq
	mg;:Dmg

.... CGk1
Dmg; ƒmg

	mg; ƒmg
Kmg

....
	K0 ;:D0 D0; ƒK0

	K0 ; ƒK0

K 0
....
ƒq0

ƒ0
q0

Hq0 D G0

....
ƒq

ƒ0
q

Hq D Gq�q0
.... CHq1

	K1;:D1

....
D1;ƒK1

	K1;ƒK1

K1

....
ƒqC1
ƒ0
qC1

HqC1 D GqC1�q0
....
ƒq1

ƒ0
q1

Hq1 D Gq1�q0
....

ƒk�1
ƒ0
k�1

Hk�1 D Gk�1�q0
....

ƒk1Cq0
ƒ0
k1Cq0

Gk1

whereKmg is a merging rule of the chain CHq starting withHq and the chain CGk1
starting with Gk1 . Since the chain CHqC1

starting with the lower rule HqC1 D
GqC1�q0 of K1 passes through the left side of K1, Gk1 is not equal to HqC1 and
hence is below HqC1 and so on.

Case 4.2 Hk�1 is above K: Then Hk�1 is a rule .c/
nm.iC1/C1
and K is a rule

.†p/

nm.iC1/C1 . Let d W 	K;:D denote an uppersequent ofK . By (h-reg) and the

definition of the sequent u W ˆ we have 
nm.iC1/C1 C i � h.d IP/ � 
nm.iC1/C1 C
p � 1. Thus by (32) we get i � p � 1 < j .
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J up
....

ƒk�1
ƒ0
k�1

.c/
nm.iC1/C1
Hk�1

....
d W 	K;:D

....
	nm.iC1/

	 0
nm.iC1/

.c/

nm.iC1/

nm.iC1/C1

Jnm.iC1/

....
D;ƒK

	K;ƒK
.†p/


nm.iC1/C1 K

…m.iC1/;:Bm.iC1/

....
.̂...

Bm.iC1/; �m.iC1/
…m.iC1/; �m.iC1/

.†im.iC1/
/

nm.iC1/C1 Km.iC1/

where the im.iC1/-knotKm.iC1/ disappears whenm.i C 1/ D l in (12).

This shows Claim 6.6. �
M8. I is a .†1/
 .

This is treated as in the case M8 of [4].

Other cases are easy.
This completes a proof of the Main Lemma 5.1.
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A Proof-Theoretic Analysis of Theories
for Stratified Inductive Definitions

Gerhard Jäger and Dieter Probst

Abstract In this article we study subsystems SID
 of the theory ID1 in which fixed
point induction is restricted to properly stratified formulas.

1 Introduction

Several years ago Leivant presented a conceptually interesting form of stratified
complete induction that can be roughly described as follows: Let T be some weak
base theory about the natural numbers with the constant 0 and the unary successor
function S . In the extension T � of T we have, for every natural number i , a fresh
unary relation symbols Ni and the axiom

8x.Ni.x/ $ .x D 0 _ 9y.x D S.y/ ^Ni.y///;

stating that Ni has the usual closure properties of the natural numbers. The new
aspect is that in T � complete induction is restricted to a form of stratified induction.
For all natural numbers i and all formulas AŒu�,

AŒ0� ^ 8x.AŒx� ! AŒS.x/�/ ! 8x.Ni .x/ ! AŒx�/;

provided that AŒu� does not contain relation symbols Nj with j � i . As a simple
consequence, T � proves 8x.NiC1.x/ ! Ni.x//, and so the sequence .Ni W i 2 N/

provides finer and finer approximations of the “real” natural numbers.
Leivant is interested in this system in connection with Nelson’s predicative

arithmetic and his own research on systems tailored for representing feasible
complexity classes. See Leivant [14, 15] for all details. Wainer and Williams [22]
begin from a similar standpoint and analyze inductive definitions over a predicative
arithmetic.

G. Jäger (�) • D. Probst
Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse 10, 3012
Bern, Switzerland
e-mail: jaeger@iam.unibe.ch; probst@iam.unibe.ch

© Springer International Publishing Switzerland 2015
R. Kahle, M. Rathjen (eds.), Gentzen’s Centenary,
DOI 10.1007/978-3-319-10103-3_15

425

mailto:jaeger@iam.unibe.ch
mailto:probst@iam.unibe.ch


426 G. Jäger and D. Probst

In this article, we apply Leivant’s idea in the context of inductive definitions: we
study an analogous stratification of the fixed point induction axioms of the theory
ID1 of one inductive definition, incontrovertibly one of the best studied theories
at the borderline between predicative and impredicative proof theory. There exist
numerous articles on ID1, good introductory texts are, for example, Buchholz et al.
[7] and Pohlers [16].

The language L.ID1/ of ID1 is the extension of the language L of first order
arithmetic by a new (unary) relation symbol PA for every X positive arithmetic
formula AŒX; x�. The axioms of ID1 are the axioms of Peano arithmetic PA with the
schema of complete induction for all L.ID1/ formulas plus the fixed point axioms

8x.PA.x/ $ AŒPA; x�/ (Fix)

and the axioms for fixed point induction

8x.AŒB; x� ! BŒx�/ ! 8x.PA.x/ ! BŒx�/; (FI)

where BŒu� ranges over all L.ID1/ formulas. Together, they formalize that PA

represents the least definable fixed point of the monotone operator 	A defined by

	A.M/ WD fn 2 N W N ˆ AŒM; n�g

for any M � N. The proof-theoretic ordinal of ID1 is the Bachmann–Howard
ordinal �"�C10.

Currently studied subsystems of ID1 with classical logic are obtained by weak-
ening fixed point induction .FI/. For instance, in ID� .FI/ is restricted to formulas
positive in the fixed point constants, and bID1 is obtained by dropping .FI/
completely. Both systems are significantly weaker than ID1 and have the proof-
theoretic ordinal '"00; see, e.g., Aczel [2], Afshari and Rathjen [3], Feferman [9],
Friedman [10], Probst [17].

In contrast to these approaches, the subsystems of ID1 studied in this article are
obtained by a stratification of the fixed point axioms .FI/. The idea is simple: Let
� be a primitive recursive wellordering of order type 
, given from outside. For any
X positive arithmetic AŒX; x� and any ˛ � 
 we add a fresh unary relation symbol
PA
˛ to the language L and consider the fixed point axiom

.8a � 
/8x.PA
a .x/ $ AŒPA

a ; x�/; (FixŒ
�)

stating that any PA
a with a � 
 is a fixed point of AŒX; x�. However, instead of .FI/

we only permit stratified fixed point induction

.8a � 
/.8x.AŒB; x� ! BŒx�/ ! 8x.PA
a .x/ ! BŒx�//; (SI Œ
�)
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where now the formula BŒu� must not speak about any PA
b with a � b. Call the

resulting theory SID
 . Analogous to the Leivant case, we now have 8x.PA
b .x/ !

PA
a .x// for all a � b � 
, provable in SID
 , and the sequence of relations .PA

a W
a � 
/ thus provides a decreasing approximation of the least fixed point of the
operator 	A.

Obviously, all SID1C
 contain bID1. However, for finite 
, the theories SID
 are
surprisingly weak. As shown in Ranzi and Strahm [18], SID1;SID2; : : : have the
same strength and are all proof-theoretically equivalent to the fixed point theory bID1.

The first interesting increase of strength happens when we move to SID! and
at the limit ordinals later. In the following we present a complete proof-theoretic
analysis of the theories SID
 and obtain the following result: Given an ordinal 
 >
0, we write it as


 D !˛m C � � � C !˛1 with ˛1 � � � � � ˛m;

let ".
/ be the least "-number greater than 
 and define

ƒ
 WD '˛m.: : : .'˛1".
// : : :/:

Then 'ƒ
0 is the proof-theoretic ordinal of SID
 . This implies, for example, that
we need all stratifications less than "0 in order to reach the strength of bID2, i.e.
SID<"0 � bID2.

Very much in the spirit of Gentzen-style proof theory, the lower bounds are
established by carrying out wellordering proofs within the systems SID
 . For
determining the upper bounds, we use a combination of various forms of cut
elimination and asymmetric interpretations. For obtaining the full picture and since
it is needed for the general reduction, we also sketch the finite case, using an
approach slightly different from that in [18].

2 Ordinal-Theoretic Preliminaries

Every theory SID
 is based on stratifications of inductive definitions along a
primitive recursive wellordering of order type 
. In order to concentrate on the
essential proof-theoretic aspects of the theories SID
 and to make our approach
as perspicuous as possible we fix a specific primitive recursive wellordering � of
order type 	0 right in advance and iterate stratifications along its initial segments.

It will become evident that � and 	0 could be replaced by ordinal notations
system generated, for example, from the ternary Veblen functions (cf. Jäger and
Strahm [12]), the Veblen functions of all finite arities, Schütte’s Klammersymbole
(cf. Schütte [20]), Feferman’s � functions (cf. Aczel [1] and Buchholz [4]), or
Buchholz’s functions (cf. Buchholz [5]). The choice of � and	0 is only motivated
by notational simplicity.
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The standard notation system up to the Feferman–Schütte ordinal 	0 is provided
by the usual Veblen hierarchy .'˛ W ˛ 2 On/ of ordinal functions from On to On,
inductively defined as follows:

(1) '0ˇ WD !ˇ ,
(2) if ˛ > 0, then '˛ enumerates f� 2 On W .8� < ˛/.'�� D �/g.

	0 is the least ordinal ˛ with '˛0 D ˛. We write

LI WD f!� W 0 < � < 	0g and AP WD f!� W � < 	0g

for the sets of limit numbers and additive principal numbers less than 	0; the
ordinals � with !� D � are called "-numbers. Also, we set for all ordinals ˛,

"˛ WD '1˛ and ".˛/ D least element of f� > ˛ W !� D �g:

Hence ".˛/ is the least "-number greater than ˛. From now on we expect that the
reader is familiar with ordinal computations and the basic properties of the Veblen
hierarchy; all relevant details can be found, for example, in Pohlers [16] and Schütte
[21]. In particular, there are two important decomposition properties:

(D.1) For any ordinal ˛ > 0 there are uniquely determined ˛1; : : : ; ˛m such that
˛ D !˛m C � � � C !˛1 and ˛1 � � � � � ˛m.

(D.2) For any "-number ˛ < 	0 there are uniquely determined ˇ and � such that
˛ D 'ˇ� , 0 < ˇ < ˛, and � < ˛.

Making use of these decompositions, we inductively assign a fundamental sequence
.˛Œn� W n < !/ to any limit number less than 	0:

(FS.1) If ˛ D !˛m C � � � C !˛1 with 0 < ˛1 � � � � � ˛m and !˛1 < ˛, then

˛Œn� WD !˛m C � � � C !˛1 Œn�:

(FS.2) If ˛ D !ˇC1, then ˛Œn� WD !ˇn.
(FS.3) If ˛ D !ˇ with ˇ < ˛ and ˇ 2 LI, then ˛Œn� WD !ˇŒn�.
(FS.4) If ˛ D '.ˇ C 1/0, then ˛Œ0� WD 0 and ˛ŒnC 1� WD 'ˇ˛Œn�.
(FS.5) If ˛ D '.ˇ C 1/.� C 1/, then

˛Œ0� WD '.ˇ C 1/� C 1 and ˛ŒnC 1� WD 'ˇ˛Œn�:

(FS.6) If ˛ D 'ˇ0 with ˇ 2 LI, then ˛Œn� WD 'ˇŒn�0.
(FS.7) If ˛ D 'ˇ.� C 1/ with ˇ 2 LI, then

˛Œ0� WD 'ˇ� C 1 and ˛ŒnC 1� WD 'ˇŒn�˛Œn�:

(FS.8) If ˛ D 'ˇ� with � 2 LI, then ˛Œn� WD 'ˇ�Œn�.
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As it is easy to check, for all ˛ 2 LI and n < ! we have ˛Œn� < ˛Œn C 1� < ˛ and
˛ D sup.f˛Œn� W n < !g/.

Decomposition (D1) is used once more. Given 
 > 0, we write it as 
 D !˛m C
� � � C !˛1 with ˛1 � � � � � ˛m. Depending on this presentation of 
, we inductively
define a sequence of ordinals 
0; : : : ; 
m by


0 WD ".
/ and 
iC1 WD '˛iC1
i

and then set

ƒ
 WD 
m:

To finish the definition of ƒ we set ƒ0 WD 1. As we will see, the ordinalsƒ
 play a
crucial role in the proof-theoretic analysis of the theories SID
 .

Simple computations show that, for example, ƒn D "0 for all 0 < n < !,
ƒ! D ""0 , ƒ!C! D """0 , ƒ"˛ D '"˛"˛C1 for all ˛, and ƒ'˛ˇ D '.'˛ˇ/"'˛ˇC1 for
all ˛ > 1 and all ˇ. The following lemma is immediate from the definition of ƒ
 .

Lemma 1 If 
 D �C k for some k < !, then ".
/ D ".�/; if, in addition, � > 0,
then ƒ
 D ƒ�.

In the textbooks by Pohlers and Schütte it is also explained in detail that there exists
a primitive recursive wellordering � on the natural numbers corresponding to the
ordinals less than 	0; m � n is written iff m � n or m D n.

Each natural number codes exactly one ordinal less than 	0, and given an n 2 N,
we write ot.n/ for this ordinal; ot.n/ is called the order type of n with respect to �.
The inverse of ot, let us call it nr, assigns a natural number nr.˛/ to any ˛ < 	0.
The sets fnr.�/ W � 2 LIg and fnr.�/ W � 2 APg are primitive recursive subsets of
the natural numbers.

Furthermore, for all ordinal functions f on .	0;</ such as addition, multipli-
cation, exponentiation, ", ', fundamental sequences, ƒ, : : : there exist primitive
recursive functions fcode acting on .N;�/ that correspond to these ordinal opera-
tions. Without loss of generality we can assume that ot.0/ D 0.

3 The Theories SID�

In the following we let L denote our language of first order arithmetic. It includes
number variables a; b; c; d; u; v;w; x; y; z (possibly with subscripts), symbols for
all primitive recursive functions and relations as well as the unary relation symbol
W . This relation symbol W plays the role of an anonymous relation variable with
no specific meaning. Its role will become clear in Definition 2 below. Furthermore,
there is a symbol � for forming negative literals. When dealing with primitive
recursive functions and relations we often write the same expression for the
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primitive recursive function (relation) and for the associated function (relation)
symbol.

The number terms p; q; r; s; t (possibly with subscripts) of L are defined as usual;
in particular, the numeral associated with the natural number n is denoted by Nn.
The positive literals of L are all expressions of the form R.s1; : : : ; sn/ where R is
a symbol for an n-ary primitive recursive relation and all expressions W.s/. The
negative literals of L are all expressions �E such that E is a positive literal of L.
Infix notation is used whenever convenient, and .s D t/ stands for RD.s; t/ if RD
is the symbol for primitive recursive equality.

The formulas A;B;C;D (possibly with subscripts) of L are generated from the
positive and negative literals of L by closing against disjunctions, conjunctions as
well as existential and universal number quantifications. The negation :A of an L
formula A is defined by making use of De Morgan’s laws and the law of double
negation; the remaining logical connectives are abbreviated as usual. We will often
omit parentheses and brackets whenever there is no danger of confusion. Also, we
frequently make use of the vector notation Ee as shorthand for a finite string e1; : : : ; en
of expressions whose length is not important or evident from the context.

Suppose now that Ea D a1; : : : ; an and Es D s1; : : : ; sn. Then AŒEs=Ea � is the L
formula that is obtained from the L formula A by simultaneously replacing all
free occurrences of the variables Ea by the L terms Es (in order to avoid collision
of variables, a renaming of bound variables may be necessary). If the L formula A
is written as BŒEa �, then we often simply write BŒEs � instead of AŒEs=Ea �; variants of
this notation will be self-explaining.

If X is a fresh unary relation symbol, we let L.X/ denote the extension of L
by X ; i.e. expressions of the forms X.s/ and �X.s/ are additional literals. Given a
formula AŒX� of L.X/ and a formula BŒu� of L, we write AŒfxWBŒx�g� to indicate
the result of substituting BŒs� for each occurrence of X.s/ and :BŒs� for each
occurrence of �X.s/ in AŒX� (again, bound variables are renamed if necessary).
If L0 is a language extending L, then L0.X/ is defined accordingly.

We will be interested in determining the proof-theoretic ordinals of the theories
SID
 . For this purpose we fix the auxiliary notions of progressiveness and transfinite
induction. Given a primitive recursive relation C, an L term s, and a formula AŒa�
of L (or of some extension of L to be introduced later), we set:

ProgŒC; fxWAŒx�g� WD 8x..8y C x/AŒy� ! AŒx�/;

TIŒC; fxWAŒx�g� WD ProgŒC; fxWAŒx�g� ! 8xAŒx�;

TIŒC; s; fxWAŒx�g� WD ProgŒC; fxWAŒx�g� ! .8x C s/AŒx�:

In the following we often work with the primitive recursive wellordering � intro-
duced in the previous section and thus, for instance, simply write ProgŒfxWAŒx�g� for
ProgŒ�; fxWAŒx�g� and TIŒs; fxWAŒx�g� for TIŒ�; s; fxWAŒx�g�.
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Definition 2 Let T be a theory formulated in L or an extension of L.

1. An ordinal ˛ is called provable in T iff there exists a primitive recursive
wellordering C of order type ˛ such that T ` TIŒC; fxWW.x/g�.

2. The proof-theoretic ordinal jT j of T is the least ordinal that is not provable in T .

We call an L.X/ formula X positive if it has no subformulas of the form �X.s/.
An X positive L.X/ formula that contains at most the variable x free is called an
inductive operator form, and we let AŒX; x� range over such forms.

From now on 
 always stands for an ordinal less than 	0, and N
 denotes the
numeral nr.
/ corresponding to the element nr.
/ 2 OT. For the formulation of the
theories SID
 we add to the first order language L a new unary relation symbol PA

for every inductive operator form AŒX; x� and call this new language LS . We write
PA
s .t/ for PA.hs; ti/ and PA�s.t/ for .t D h.t/0; .t/1i ^ .t/0 � s ^ PA.t//, where

h:;:i denotes a primitive recursive pairing function with the associated primitive
recursive projection functions .:/0 and .:/1. Also, AŒPA

a ; b� and AŒPA�a; b� are short
for AŒfxWPA

a .x/g; b� and AŒfxWPA�a.x/g; b�, respectively.
We express the closure of an LS formula BŒa� under the inductive operator form

AŒX; x� by the formula

ClAŒfaWBŒa�g� WD 8x.AŒfaWBŒa�g; x� ! BŒx�/:

For formulating stratified fixed point induction, a further shorthand notation is
useful. Given a number variable u, we call an LS formula A bounded by u iff all
relation symbolsPA occur inA only in the formPA�u.t/ or �PA�u.t/. More formally,
BLS.u/ is the collection of LS formulas inductively generated as follows:

.B:1/ All atomic formulas of L as well as all formulas PA�u.t/ and �PA�u.t/

belong to BLS.u/ (for all inductive operator forms AŒX; x�).
.B:2/ If A andB belong to BLS.u/, then .A_B/ and .A^B/ belong to BLS.u/.
.B:3/ If A belongs to BLS.u/ and x is a number variable different from u, then

9xA and 8xA belong to BLS.u/.

Therefore, if a is an element of OT , then the formulas in BLS.a/ are LS formulas
in which only stratifications less than a play a role.

Every theory SID
 is formulated in the language LS for stratified inductive
definitions. Its axioms and rules of inference are the usual axioms and rules of
inference of first order logic, the usual equality axioms formulated for all LS
formulas plus the following four classes of non-logical axioms.

I. Peano axioms. All axioms of Peano arithmetic PA with the schema of
complete induction for all formulas of LS .

II. Transfinite induction up to 
. For all formulas AŒu� of LS :

TIŒ N
; fxWAŒx�g�: (TIŒ
�)
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III. Fixed point axioms. For all inductive operator forms AŒX; x�:

.8a � N
/8x.PA
a .x/ $ AŒPA

a ; x�/: (FixŒ
�)

IV. Stratified fixed point induction. For all inductive operator forms AŒX; x� and
all formulas BŒu; v� from BLS.u/:

.8a � N
/.ClAŒfxWBŒa; x�g� ! 8x.PA
a .x/ ! BŒa; x�//: (SIŒ
�)

The theories SID
 have the important property that the stratifications of the fixed
points form a weakly decreasing sequence of relations.

Lemma 3 For all inductive operator forms AŒX; x� we can prove in SID
 that

.8a; b � N
/8x.a � b ^ PA
b .x/ ! PA

a .x//:

Proof We define BŒu; v;w� WD .v � u ^ PA�u.hv;wi//. Obviously, this formula
belongs to BLS.u/ and SID
 proves

a � b � N
 ! 8x.PA
a .x/ $ BŒb; a; x�/:

In view of .FixŒ
�/ and .SIŒ
�/ our assertion follows immediately. ut
Besides the theories SID
 , also their unions are of some interest. If 
 > 0, we write
SID<
 for the union of the theories SID� with � < 
,

SID<
 WD
[

�<


SID�:

In the following sections we will show that jSID
 j D 'ƒ
0. The theory SID0

contains neither fixed point axioms nor axioms for stratified fixed point induction
and simply is a variant of Peano arithmetic PA. The theories SID
 for 
 > 0

are more interesting. Here are some specific examples of theories and their proof-
theoretic ordinals:

• jSID1j D jSID<! j D '"00,
• jSID!j D jSID<!C!j D '""00 and jSID!C!j D '"""0 0,
• jSID<!! j D '.'!0/0 and jSID!! j D '.'!"0/0,
• jSID<"0 j D '.'"00/0 and jSID"0 j D '.'"0"1/0,
• jSID<	0 j D 	0.
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4 Lower Proof-Theoretic Bound for SID�

The lower bounds of the theories SID
 will be established by carrying out
wellordering proofs within the theories SID
 . To increase readability we shall use
in our formal language LS the ordinal-theoretic functions f on .	0;</ introduced
in Sect. 2 instead of their primitive recursive analogues fcode on .OT;�/. We also
write ˛ instead of nr.˛/ in terms and formulas of LS . Thus, for instance s C t , !s ,
'!0 are to be considered as terms of LS and .8x � !!/.9y � !/.x � !y/ is to
be considered as a formula of LS . LI and AP are used as relation symbols for the
sets of (the codes of) the limit numbers and additive principal numbers below 	0.

For the following considerations, the provably accessible parts of the relation �
play the decisive role. We only need the inductive operator form

ApŒX; x� WD .8y � x/X.y/:

Then, given any LS formula BŒu�, the closure assertion ClApŒfxWBŒx�g� simply
means ProgŒfxWBŒx�g�. For all number terms s and t we introduce as abbreviations:

ACsŒt � WD PAp
s .t/;

AC�sŒt � WD PAp
�s .t/;

ACsŒt � WD .8x � s/ACxŒt �:

Thus ACs describes the intersection of all stratifications of the inductive operator
form ApŒX; x� less than s. As we can easily conclude from Lemma 3 these
intersections have the following property.

Lemma 4 We can prove in SID
 that

8a.a � N
 ! 8x.ACaC1Œx� $ ACaŒx�//:

Recall some notation: If the number terms s and t code the ordinal ˛ and the number
n < !, respectively, then sŒt � codes the nth component of the fundamental sequence
of ˛. The following useful observation is directly implied by the fixed point axioms.

Lemma 5 We can prove in SID
:

1. a � N
 ^ .8x � !/ACaŒsŒx��/ ! ACaŒs�.
2. a � N
 ^ .8x � !/ACaŒsŒx��/ ! ACaŒs�.

After these preparatory remarks we now turn to the wellordering proofs. We begin
with considering a property of the stratifications ACa that will turn out to be central
for what follows.
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Lemma 6 We can prove in SID
 that

a C 1 � N
 ^ ACaC1Œb� ! ACaŒ!
b�:

Proof Working in SID
 , we fix an a such that a C 1 � N
. Then define

AŒx� WD 8z.ACaŒz� ! ACaŒz C !x�/:

We show

.8y � x/AŒy� ! AŒx�: (1)

for an arbitrary x by distinguishing the following cases.

(i) For x D 0 or LI.x/, assertion (1) is an immediate consequence of the closure
properties of ACa or of the previous lemma.

(ii) Now assume that x D y C 1 for some y. Then complete induction yields

AŒy� ^ ACaŒz� ! .8e � !/ACaŒz C !ye�;

and we conclude

AŒy� ^ ACa.z/ ! ACaŒz C !yC1�:

This establishes (1) also in this case and finishes the proof of this auxiliary
consideration. We further observe that the formula

BŒu; v;w� WD v � u ^ 8z.AC�uŒhv; zi� ! AC�uŒhv; z C !wi�/

belongs to BLS.u/ and that

8x.AŒx� $ BŒa C 1; a; x�/: (2)

From (1) we have ProgŒfxWAŒx�g�, i.e. ClApŒfx W BŒa C 1; a; x�g�, hence stratified
fixed point induction implies

ACaC1Œb� ! BŒa C 1; a; b�

and thus

ACaC1Œb� ! 8z.ACaŒz� ! ACaŒz C !b�/

according to (2) and the definition ofA. For z D 0 this is the assertion of our lemma.
ut
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We continue with introducing a formula, depending on 
, that describes a specific
property of stratifications of the accessible parts with respect to the Veblen
functions,

A
Œu� WD 8x8y.x C !u � N
 ^ ACxC!u Œy� ! ACxC!u
Œ'uy�/:

The following two lemmas isolate some technical properties that will be needed in
the proofs of Theorem 9 and Corollary 10 below.

Lemma 7 We can prove in SID
 that

A
Œs� ^ s � r ^ t C !r � N
 ! 8x.ACtC!r Œx� ! ACtC!r Œ'sx�/:

Proof Assume A
Œs�, s � r , and t C !r � N
 and pick an x such that ACtC!r Œx�.
Now we distinguish the following cases:

(i) r D p C 1. Choose an arbitrary u � !. Then t C !pu C !s � t C !r , and so
ACtC!r Œx� implies ACtC!puC!s Œx�. Using the assumption A
Œs�, we conclude
that ACtC!puC!s Œ'sx�, hence also ACtC!puŒ'sx�. So we have shown that

.8u � !/ACtC!puŒ'sx�:

In view of Lemma 5 this implies ACtC!r Œ'sx�.
(ii) r 2 LI. Again we choose an arbitrary u � ! and observe that now t C !rŒu� C

!s � t C !r . Because of ACtC!r Œx� we thus have ACtC!rŒu�C!s Œx�, and the

assumption A
Œs� implies ACtC!rŒu�C!s Œ'sx�, hence also ACtC!rŒu� Œ'sx�. This
means that we have

.8u � !/ACtC!rŒu� Œ'sx�;

and again a simple application of Lemma 5 yields ACtC!r Œ'sx�.

Since for r D 0 nothing is to show, the proof of our assertion is complete. ut
Lemma 8 We can prove in SID
 that

.8z � r/A
Œz� ^ 0 � r ^ t C !r � N
 ! ProgŒfxWACtC!r Œ'rx�g�:

Proof For any a we show that under the assumptions .8z � r/A
Œz�, 0 � r , and
t C !r � N
,

.8x � a/ACtC!r Œ'rx� ! ACtC!r Œ'ra�: (3)

For this purpose, fix an arbitrary a and consider the fundamental sequence .'ra/Œu�,
for u � !, of 'ra. By complete induction on u, making essential use of the previous
lemma, we then show
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.8x � a/ACtC!r Œ'rx� ! .8u � !/ACtC!r Œ.'ra/Œu��: (4)

In this proof a case distinction with respect to 'ra is carried through. We discuss
one case and leave the others to the reader. So assume r D p C 1 and a D b C 1.
Then .'ra/Œ0� D 'rb C 1 and .'ra/Œu C 1� D 'p.'ra/Œu�. Clearly,

.8x � a/ACtC!r Œ'rx� ! ACtC!r Œ.'ra/Œ0��: (5)

Applying Lemma 7, we also obtain

ACtC!r Œ.'ra/Œu�� ! ACtC!r Œ.'ra/Œu C 1��: (6)

Assertion (4) is immediate from (5) and (6) by complete induction. All other cases
are similar.

So we have (4). But this completes the proof of our lemma since (3) is an
immediate consequence of (4) and Lemma 5. ut
Theorem 9 The theory SID
 proves ProgŒfzWA
Œz�g�.
Proof Given any a, we have to show in SID
 that

.8z � a/A
Œz� ! A
Œa�:

If a D 0, then A
Œa� follows immediately from Lemmas 4 and 6. So let 0 � a and
assume .8z � a/A
Œz�. In view of the previous lemma we have

8x.x C !a � N
 ! ProgŒfzWACxC!a Œ'az�g�/:

Since ACxC!a Œ'az� is (equivalent to) a formula bounded by x C !a, stratified fixed
point induction yields

8x.x C !a � N
 ! 8y.ACxC!a Œy� ! ACxC!a Œ'ay�//;

and this formula is equivalent to A
Œa�. This completes the proof of this lemma. ut
Corollary 10 The theory SID
 proves

t C !r � N
 ^ 0 � r ! ProgŒfxWACtC!r Œ'rx�g�:

Proof Since transfinite induction up to 
 is available in SID
 , the previous theorem
gives us .8z � N
/A
Œz�. By Lemma 8 this implies what we want. ut
Theorem 11 Let 
 be a limit number. If ˛ < ƒ
 , then SID
 proves AC!Œ N̨ � for the
code N̨ of ˛.

Proof Since 
 is a limit ordinal, there are uniquely determined ordinals 
1; : : : ; 
m
such that 
 D !
m C � � � C !
1 and 1 � 
1 � � � � � 
m. Pick an arbitrary ˛ < ƒ
 .
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Then simple ordinal computation shows that there exists an ordinal ˇ < ".
/ for
which

˛ < '
m.'
m�1.: : : .'
1ˇ/ : : :/: (7)

Since SID
 comprises transfinite induction up to 
, standard proof-theoretic tech-
niques yield

TIŒ Ň; fxWAŒx�g� (8)

for all LS formulas AŒu� where Ň is the code of ˇ.
For i D 1; : : : ; m we let si be the code of 
i , and for j D 0; : : : ; m � 1 we

let tj be the code of !
m C � � � C !
jC1 . Then we define, for i D 1; : : : ; m and
j D 1; : : : ; m � 1:

Bi Œu� WD ACti�1 Œ'siu� and Cj Œu� WD ACtj Œu�:

With these notations we have immediately that, for i D 1; : : : ; m � 1,

8x.Bi Œx� ! CiŒ'six�/: (9)

By Corollary 10 we also know that

ProgŒfxWBi Œx�g� (10)

for all i D 1; : : : ; m. As in previous proofs we observe that every formula BjC1Œu�,
for j D 1; : : : ; m� 1, is (equivalent to) a formula bounded by tj such that stratified
fixed point induction implies

8x.Ci Œx� ! BiC1Œx�/ (11)

for i D 1; : : : ; m � 1. Now we proceed as follows. From (8) and (10) we obtain
B1Œ Ň�, and then iterative applications of (9) and (11) lead to

BmŒ'sm�1.: : : .'s1 Ň/ : : :/�; i.e. to ACtm�1 Œ'sm.: : : .'s1 Ň/ : : :/�:

Since ! � !sm D tm�1 and in view of (7) we finally conclude that AC!Œ N̨ �, as
desired. ut
Now the stage is set for determining the lower proof-theoretic bounds of SID
 . For
finite 
, the situation is trivial. In the transfinite cases, the previous theorem and
some methods of predicative proof theory do the job.
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Theorem 12 'ƒ
0 � jSID
 j.
Proof SID0 is equivalent to Peano arithmetic PA, and ƒ0 D "0. If 
 is finite and
greater than 0, then SID
 contains the theory bID1, whose proof-theoretic ordinal is
'"00 (cf.,e.g., Aczel [2] or Feferman [9]), and ƒ
 D '"00. So the theorem is clear
for 
 < !.

Let us turn to the more interesting situation and assume that 
 D �Cn for some
limit number � and some n < !. Then ƒ
 D ƒ�, and given any ordinal ˛ < ƒ
 ,
the previous theorem yields

SID
 ` AC!Œ N̨ � (12)

for the code N̨ of ˛. Consider an arbitrary formula AŒu; v� belonging to BLS.u/.
Because of the axioms about stratified fixed point induction we have

SID
 ` .8a � N
/.ProgŒfzWAŒa; z�g� ! 8x.ACaŒx� ! AŒa; x�//: (13)

In particular, if we write 1 for the code of the ordinal 1 � !, then (13) implies

SID
 ` 8x.AC1Œx� ! TIŒx; fzWAŒ1; z�g�/:

Together with (12) we thus have

SID
 ` TIŒ N̨ ; fxWAŒ1; x�g� (14)

for all formulas AŒu; v� from BLS.u/.
The following is a standard result of predicative proof-theory, rephrased in the

terminology of this article:

Let r be a closed number term. If SID
 ` TIŒr; fzWAŒ1; z�g� for all formulas AŒu; v� from
BLS .u/, then SID
 ` TIŒ'r0; fzWBŒz�g� for all formulas BŒv� of L.

This assertion is proved in detail in Buchholz [6] for the theory bID1, but since SID


contains bID1 it transfers without problems. Applying this result to (14) yields

SID
 ` TIŒ' N̨0; fzWBŒz�g�

for all L formulasBŒv�, hence, in particular, SID
 ` TIŒ' N̨0; fxWW.x/g�. Therefore,
'˛0 is provable in SID
 .

We have shown that for any ˛ < ƒ
 the ordinal '˛0 is provable in SID
 . This
implies the assertion 'ƒ
0 � jSID
 j. ut
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5 Upper Proof-Theoretic Bound for SID�

In this section we establish the (sharp) upper proof-theoretic bounds of the theories
SID
 . Our strategy is similar to that used in Jäger et al. [13] for the proof-theoretic
analysis of transfinitely iterated fixed point theories.

We first introduce auxiliary semiformal systems H
 , in which the theories SID


can be embedded. The ordinal analysis of these H
 via the methods of partial
cut elimination and asymmetric interpretation finally yields the desired result. To
simplify the notation, we assume from now on that in SID
 we work with one
inductive operator form AŒX; x� only; the generalization of everything to a finite
number of such forms is obvious.

The language L1 extends the basic first order language L by unary relation
symbols PA

<˛ , PA
˛ , and Q<˛

A for all ordinals ˛ < 	0. In the systems H
 the relation
symbolsPA

<˛ and PA
˛ will be used to deal with the stratifications PA�a and PA

a of the
theories SID
 , whereas the sets defined by the Q<˛

A represent the initial stages

I<˛A D
[

�<˛

fn 2 N W N ˆ AŒI
<�

A ; n�g

of the inductive definition that is associated with the inductive operator form AŒX; x�
up to the ordinals ˛ < 	0.

Definition 13 The formulas .A;B; C;A0; B0; C0; : : : / of L1 together with their
lengths are inductively generated as follows:

1. Every closed literal of L is an L1 formula of length 0.
2. If t is a closed number term and ˛ < 	0, then PA

<˛.t/ and �PA
<˛.t/ are L1

formulas of length 1.
3. If t is a closed number term and ˛ < 	0, then PA

˛ .t/ and �PA
˛ .t/ are L1

formulas of length 0.
4. If t is a closed number term and ˛ < 	0, then Q<˛

A .t/ and �Q<˛
A .t/ are L1

formulas of length 0.
5. If A is an L1 formula of length m and if B is an L1 formula of length n, then
.A _ B/ and .A ^ B/ are L1 formulas of length max.m; n/C 1.

6. If AŒ0� is an L1 formula of lengthm, then 9xAŒx� and 8xAŒx� are L1 formulas
of length mC 1.

L1 formulas of length 0 are called L1 literals. Clearly, as in the language L, a
literal of the form �E acts as negation of the literalE , the negations :A of arbitrary
L1 formulas A are defined by making use of De Morgan’s laws plus the law of
double negation, and the remaining logical connectives are abbreviated as usual.

For the later proof-theoretic considerations we assign two ordinals to any L1
formula A: its level lev.A/ provides a bound of the stratifications of the fixed point
occurring in A, and its stage stg.A/ informs us about the maximal ˛ for which
Q<˛

A .t/ or :Q<˛
A .t/ is a subformula of A.
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Definition 14 The level lev.A/ and the stage stg.A/ of an L1 formula A are
inductively defined as follows:

1. If A is a closed literal of L, then lev.A/ WD stg.A/ WD 0.
2. If A is of the form PA

<˛.t/ or :PA
<˛.t/, then

lev.A/ WD ˛ and stg.A/ WD 0:

3. If A is of the form PA
˛ .t/ or :PA

˛ .t/, then

lev.A/ WD ˛ C 1 and stg.A/ WD 0:

4. If A is of the formQ<˛
A .t/ or :Q<˛

A .t/, then

lev.A/ WD 0 and stg.A/ WD ˛:

5. If A is of the form .B _ C/ or .B ^ C/, then

lev.A/ WD max.lev.B/; lev.C // and stg.A/ WD max.stg.B/; stg.C //:

6. If A is of the form 9xBŒx� or 8xBŒx�, then

lev.A/ WD lev.BŒ0�/ and stg.A/ WD stg.BŒ0�/:

If 
 < 	0, we write L
 for the collection of all L1 formulas of levels less than or
equal to 
.

Observe that L1 formulas do not contain free number variables. As a consequence,
any number term t occurring in an L1 formula has a specific numerical value tN,
and we denote two L1 literals as numerically equivalent iff they are syntactically
identical modulo number terms of the same value.

Furthermore, we write pairŒt � iff the closed number term t codes a pair, i.e. iff
tN is equal to h.tN/0; .tN/1i. Finally, we extend the function ot mentioned in Sect. 2
to all closed number terms by setting ot.t/ WD ot.tN/. Hence ot.t/ is the unique
ordinal less than 	0 that is associated with the closed number term t with respect to
the wellordering �.

Every semiformal system H
 is formulated as a Tait-style calculus for finite
subsets .�;…;†;�0;…0;†0; : : : / of L
 . If � � L
 and A 2 L
 , then �;A is
shorthand for � [ fAg; similarly for expressions such as �;A;B and �;…;A.
Every system H
 comprises the following axioms and rules of inference.

I. Axioms, group 1. For all finite � � L
 , all numerically equivalent literals
A;B 2 L
 , and all true literals C of L:

�; :A; B and �; C:
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II. Axioms, group 2. For all finite � � L
 , all ˛ � 
, all closed number terms
s such that pairŒs� is false, and all closed number terms t such that pairŒt � is
true and ˛ � ot..t/0/:

�; :PA
<˛.s/ and �; :PA

<˛.t/:

III. Induction axioms. For all finite� � L
 , all ˛ < 
, all closed number terms
t , and all formulas BŒ0� 2 L˛:

�; :ClAŒB�; :PA
˛ .t/; BŒt �:

IV. Stage axioms. For all finite � � L
 , all ˛ � ˇ < 	0, and all closed number
terms s; t that have the same value:

�; :Q<˛
A .s/; Q

<ˇ

A .t/:

V. Fixed point rules, group 1. For all finite � � L
 , all ˛ < ˇ � 
, and all
closed number terms t such that pairŒt � is true and ot..t/0/ D ˛:

�; PA
˛ ..t/1/

�; PA
<ˇ.t/

and
�; :PA

˛ ..t/1/

�; :PA
<ˇ.t/

:

VI. Fixed point rules, group 2. For all finite � � L
 , all ˛ < 
, and all closed
number terms t :

�; AŒPA
˛ ; t �

�; PA
˛ .t/

and
�; :AŒPA

˛ ; t �

�; :PA
˛ .t/

:

VII. Stage rules. For all finite � � L
 , all ˛ < ˇ < 	0, and all closed number
terms t :

�; AŒQ<˛
A ; t �

�; Q
<ˇ

A .t/
and

�; :AŒQ
<�

A ; t � for all � < ˇ

�; :Q<ˇ

A .t/
:

VIII. Propositional rules. For all finite � � L
 and all A;B 2 L
 :

�; A; B

�; A _ B and
�; A �; B

�; A ^ B :

IX. Quantifier rules. For all finite � � L
 and all AŒs� 2 L
 :

�; AŒs�

�; 9xAŒx� and
�; AŒt� for all closed number terms t

�; 8xAŒx� :
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X. Cut rules. For all finite � � L
 and all A 2 L
 :

�; A �; :A
�

;

where the formulas A and :A are called the cut formulas of this cut.
Before turning to the proof-theoretic analysis of the systems H
 , we need some

further auxiliary notions. We first fix the collection of those formulas that still may
be used as cuts after partial cut elimination has been carried through.

Definition 15 Simp
 is defined to be the subset of L
 that comprises L0, all L1
formulas of levels less than 
, and all elements of L
 of the formPA

˛ .t/ and :PA
˛ .t/

for ˛ < 
.

According to this definition, Simp0 D L0. Hence Simp
 is an interesting set of
formulas only for 
 > 0. Now, depending on Simp
 , we introduce a complexity
measure for all formulas in L
 that measures their complexities “above” Simp
 .
This is the measure to be used for partial cut elimination.

Definition 16 The 
-rank rk
.A/ of anA 2 L
 is inductively defined as follows:

1. If A 2 Simp
 , then rk
.A/ WD 0.
2. If A is a formula PA

<
.t/ or :PA
<
.t/, then rk
.A/ WD 1.

3. If A does not belong to Simp
 and is of the form .B _ C/ or .B ^ C/, then
rk
.A/ WD max.rk
.B/; rk
.C //C 1.

4. If A does not belong to Simp
 and is of the form 9xBŒx� or 8xBŒx�, then
rk
.A/ WD rk
.BŒ0�/C 1.

Obviously, the 
-rank of any A 2 L
 is finite and less than or equal to the length of
A, and rk
.A/ D 0 iff A 2 Simp
 ; also rk
.A/ D rk
.:A/ for any A 2 L
 . Since
Simp0 D L0 we have rk0.A/ D 0 for all A 2 L0.

Definition 17 We define H

˛

.
;m;n/
� for all finite � � L
 , all m; n < !, and all

ordinals ˛; 
 < 	0 by induction on ˛.

1. If � is an axiom of H
 , then we have H

˛

.
;m;n/
� for all m; n < ! and all

˛; 
 < 	0.
2. If H


˛i

.
;m;n/
�i and ˛i < ˛ for every premise �i of a fixed point rule, a stage

rule, a propositional rule, or a quantifier rule of H
 , then we have H

˛

.
;m;n/
�

for the conclusion� of this rule.
3. Under the assumptions

• H

˛0

.
;m;n/
�;A and ˛0 < ˛,

• H

˛1

.
;m;n/
�;:A and ˛1 < ˛,

• stg.A/ < 
 , rk
.A/ < m, and the length of A is less than n

we have H

˛

.
;m;n/
�.

In addition, H

<˛

.
;m;n/
� means H


ˇ

.
;m;n/
� for some ˇ < ˛.
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Thus H

˛

.
;m;n/
� states that there exists a proof of � in the system H
 whose

depth is bounded by ˛ such that any cut formula in this proof is of stage less than 
 ,
of 
-rank smaller than m, and of length smaller than n. Consequently, H


˛

.
;1;n/
�

implies that there is a proof of � in H
 with all its cut formulas belonging to the set
Simp
 .

It is easy to verify that the axioms and rules of H
 and the notion of 
-rank are
tailored in such a way that all cuts but the ones from Simp
 can be eliminated. The
following lemma, whose proof is left to the reader, is shown by standard proof-
theoretic methods. You may also consult Ranzi and Strahm [18] for a similar result.

Lemma 18 For all ordinals ˛; 
 < 	0, all m; n < !, and all finite � � L
 we
have

H

˛

.
;mC2;n/ � H) H

!˛

.
;mC1;n/ �:

Since !n.˛/ < ".˛/ for all n < !, the previous lemma immediately yields the
following partial cut elimination result for the systems H
 .

Theorem 19 (Partial Cut Elimination) For all ˛; 
 < 	0, all m; n < !, and all
finite � � L
 we have

H

˛

.
;mC1;n/ � H) H

<".˛/

.
;1;n/
�:

Our next aim is a reduction result for H
C1: if a finite � � L
 is provable in H
C1,
then it can already be proved in H
 . To show this reduction theorem and several
other properties of the systems H
 , several auxiliary lemmas are needed.

Lemma 20 If A and B are numerically equivalent elements of L
 of length k, then

we have H

2k

.0;0;0/
:A; B .

Lemma 21 Let X be a fresh unary relation symbol and C ŒX� an X positive L.X/
formula of length k (in the usual sense); in addition, assume that �;AŒu�; BŒu� �
L
 , ˛; 
 < 	0, andm; n < !. If

H

˛

.
;m;n/
�; :AŒt�; BŒt �

for all closed number terms t , then we have

H

˛C2k
.
;m;n/

�; :C ŒfxWAŒx�g�; C ŒfxWBŒx�g�:

Lemma 22 Let BŒu� be any element of L
 . Then we have for all ˛ < 	0 and all
closed number terms t that

H

!˛

.0;0;0/
:ClAŒfxWBŒx�g�; :Q<˛

A .t/; BŒt �:
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Proof We show this assertion by induction on ˛. In the case ˛ D 0 we simply use
the appropriate right stage rule. Given any 0 < ˛ < 	0, the induction hypothesis
yields

H

!�

.0;0;0/
:ClAŒfxWBŒx�g�; :Q<�

A .t/; BŒt �:

for all � < ˛ and all closed number terms t . Now we apply the previous lemma and
conclude

H

<!�C!
.0;0;0/

:ClAŒfxWBŒx�g�; :AŒQ
<�

A ; t �; AŒB; t �:

Making use of Lemma 20 and some propositional rules we thus have

H

<!�C!
.0;0;0/

:ClAŒfxWBŒx�g�; :AŒQ
<�

A ; t �; AŒB; t � ^ :BŒt�; BŒt �:

By an existential quantification over t we therefore obtain

H

<!�C!
.0;0;0/

:ClAŒfxWBŒx�g�; :AŒQ
<�

A ; t �; BŒt �:

Since !� C ! � !˛ for all � < ˛, a final application of a right stage rule implies
what we want. ut
We write L�


C1 for the collection of all A 2 L
C1 that do not contain subformulas of
the form PA

<
C1.t/ or :PA
<
C1.t/. For the following considerations it is convenient

(and sufficient) to restrict our attention to such formulas.

Definition 23 Assume ˛; ˇ < 	0.

1. For any A 2 L�

C1 we define the set Var
.A; ˛; ˇ/ of the .˛; ˇ/-variants of A

with respect to 
 by induction on the build-up of A as follows:

(a) If A 2 L
 , then A belongs to Var
.A; ˛; ˇ/.
(b) If A is the formula :PA


 .t/ and � � ˛, then :Q<�

A .t/ belongs to
Var
.A; ˛; ˇ/.

(c) If A is the formula PA

 .t/ and ˇ � �, then Q<�

A .t/ belongs to Var
.A; ˛; ˇ/.
(d) If A is the formula .B0 _ B1/ and Ci 2 Var
.Bi ; ˛; ˇ/ for i D 0; 1, then also

.C0 _ C1/ belongs to Var
.A; ˛; ˇ/.
(e) If A is the formula .B0 ^ B1/ and Ci 2 Var
.Bi ; ˛; ˇ/ for i D 0; 1, then also

.C0 ^ C1/ belongs to Var
.A; ˛; ˇ/.
(f) If A is the formula 9xBŒx� and C Œ0� 2 Var
.BŒ0�; ˛; ˇ/, then also 9xC Œx�

belongs to Var
.A; ˛; ˇ/.
(g) If A is the formula 8xBŒx� and C Œ0� 2 Var
.BŒ0�; ˛; ˇ/, then also 8xC Œx�

belongs to Var
.A; ˛; ˇ/.

2. Now let � be a finite subset of L�

C1. We call a finite … � L
 an .˛; ˇ/-variant

of � with respect to 
 iff for every A 2 � there exists a B 2 … such that
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B 2 Var
.A; ˛; ˇ/. The set of all .˛; ˇ/-variants of�with respect to 
 is denoted
by Var
.�; ˛; ˇ/.

For A 2 L�

C1 any .˛; ˇ/-variant of A with respect to 
 is an asymmetric

interpretation ofA: (i) every occurrence of a negative literal �PA

 .t/ inA is replaced

by �Q<�

A .t/ for some � � ˛ and (ii) every occurrence of a positive literal PA

 .t/ in

A is replaced by Q<�

A .t/ for some � � ˇ. This form of asymmetric interpretation is
instrumental for the reduction of H
C1 to H
 , as carried through now.

The method of asymmetric interpretation belongs to the standard repertoire of
predicative proof theory. One of its first applications is in Schütte [21], but it has
been used in numerous other contexts since then; cf., for example, Cantini [8], Jäger
[11], or Rathjen [19]. Ranzi and Strahm [18] also proves a similar result.

Lemma 24 For all ˛; ˇ; 
 < 	0, all n < !, all � � max.
; ˇ C !˛/, all finite
� � L�


C1, and all … 2 Var
.�; ˇ; ˇ C !˛/ we have that

H
C1
˛

.
;1;n/
� H) H


!ˇC!2˛
.�;n;n/

…:

Proof We proceed by induction on ˛ and distinguish the following cases.

(i) If � is an axiom of group 1 or group 2, or a stage axiom, then our assertion is
obvious. If � is an induction axiom, then … is either an induction axiom, or
we simply apply Lemma 22.

(ii) � is the conclusion of a fixed point rule whose main formula belongs to L
 ,
the conclusion of a propositional rule, the conclusion of a quantifier rule, or
the conclusion of a cut whose cut formulas belong to L
 . Then our assertion
immediately follows from the induction hypothesis.

(iii) � is the conclusion of a left group 2 fixed point rule of the form

†; AŒPA

 ; t �

†; PA

 .t/

:

In this case … is of the form …0;Q<�

A .t/ with …0 2 Var
.�; ˇ; ˇ C !˛/ and
ˇ C !˛ � � , and there exists a ı < ˛ such that

H
C1
ı

.
;1;n/
†; AŒPA


 ; t �:

Hence the induction hypothesis implies

H

!ˇC!2ı
.�;n;n/

…0; AŒQ<ˇC!ı
A ; t �:

Since !ˇ C !2ı C 2 � !ˇ C !2˛ and ˇ C !ı < ˇ C !˛ � � , it follows
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H

!ˇC!2˛
.�;n;n/

…0; Q<�

A .t/

by a left stage rule.
(iv) � is the conclusion of a right group 2 fixed point rule of the form

†; :AŒPA

 ; t �

†; :PA

 .t/

:

Now… is of the form…0;:Q<�

A .t/ with…0 2 Var
.�; ˇ; ˇC!˛/ and � � ˇ,
and there exists a ı < ˛ such that

H
C1
ı

.
;1;n/
†; :AŒPA


 ; t �:

If � D 0, then our assertion is immediate by an application of a right stage
rule. Otherwise, we obtain in view of the induction hypothesis that

H

!ˇC!2ı
.�;n;n/

…0; :AŒQ
<�
A ; t �

for all � < � . Consequently, since !ˇ C !2ı C 2 � !ˇ C !2˛ , we have

H

!ˇC!2˛
.�;n;n/

…0; :Q<�

A .t/

by a left stage rule.
(v) � is the conclusion of a cut of the form

�; PA

 .t/ �; :PA


 .t/

�
:

Then there exist �; ı < ˛ such that

H
C1
�

.
;1;n/
�; PA


 .t/; (15)

H
C1
ı

.
;1;n/
�; :PA


 .t/: (16)

From (15) we conclude with the induction hypothesis that

H

!ˇC!2�
.�;n;n/

…; Q
<ˇC!�
A .t/: (17)

Since ˇC!� C!ı < ˇC!˛ , we have… 2 Var
.�; ˇC!� ; ˇC!� C!ı/. Hence
we obtain from (16) by means of the induction hypothesis that

H

!.ˇC!� /C!2ı

.�;n;n/
…; :Q<ˇC!�

A .t/: (18)
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Since !ˇC!2� < !.ˇC!�/C!2ı < !ˇC!2˛ , stg.Q<ˇC!�
A .t// < � , and both,

the 
-rank and the length of Q<ˇC!�
A .t/, are smaller than n, a cut applied to (17)

and (18) yields

H

!ˇC!2˛
.�;n;n/

…:

Since now all possible cases have been covered, the proof of our lemma is
completed. ut
The following reduction theorem for the systems H
C1 is an immediate consequence
of Theorem 19 and the previous lemma.

Theorem 25 (Reduction) For all finite � � L
 , all ˛; 
 < 	0, and all n < ! we
have that

H
C1
˛

.
;n;n/
� H) H


<".˛/

.
C!˛;1;n/ �:

In a next step we turn to the reduction of systems H
 for limit ordinals 
. We are
interested in finding out what it means that a finite � � L� for � < 
 is provable
in H
 . The following lemma gives the correct answer.

Lemma 26 For all ˛; ˇ; 
 < 	0, all � with 0 < � < 	0, all ı < !� , all n < !,
and all finite� � LˇCı we have that

HˇC!�
˛

.
;1;n/
� H) HˇCı

'�˛

.'�.
C˛/;1;n/ �:

Proof We prove this assertion by main induction on � and side induction on ˛. If
� is an axiom of HˇC!� , then it is also an axiom of HˇCı and our claim is trivially
satisfied. If � is the conclusion of a rule different from a cut rule, our claim is
immediate from the induction hypothesis. Finally, if � is the conclusion of a cut
rule, then there exist ˛0; ˛1 < ˛ and a formula A 2 SimpˇC!� such that

HˇC!�
˛0

.
;1;n/
�; A and HˇC!�

˛1

.
;1;n/
�; :A: (*)

Now we distinguish whether � D 1, � is a successor ordinal greater than 1, or � is
a limit ordinal.

(i) � D 1. In this case ı is smaller than !. SinceA 2 SimpˇC! , we know that there
exists a natural number m � ı for which � � LˇCm and A;:A 2 LˇCm. By
the side induction hypothesis we obtain from (*) that

HˇCm
'�˛0

.'�.
C˛0/;1;n/ �; A and HˇCm
'�˛1

.'�.
C˛1/;1;n/ �; :A;

and a cut yields
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HˇCm
�

.�;n;n/
�

for � WD max.'�˛0; '�˛1/ C 1 and � WD max.'�.
 C ˛0/; '�.
 C ˛1//.
Finitely many applications of Theorem 25 therefore yield

HˇCı
�

.'.�.
C˛/;1;n/ �

for some � < '�˛. This proves our claim for the case � D 1.
(ii) � D � C 1 for some � � 1. Now ı D !�m C � for some m < ! and

� < !�. From A 2 SimpˇC!�C1 we now conclude that there exist a natural
number k > m such that � � LˇC!�k and A;:A 2 LˇC!�k . Therefore the
side induction hypothesis applied to (*) yields

HˇC!�k
'�˛0

.'�.
C˛0/1;n/ �; A and HˇC!�k
'�˛1

.'�.
C˛1/1;n/ �; :A;

and a cut gives us

HˇC!�k
�

.�;n;n/
�

for � WD max.'�˛0; '�˛1/ C 1 and � WD max.'�.
 C ˛0/; '�.
 C ˛1/. In
view of Theorem 19 we have

HˇC!�k
�

.�;1;n/
�

for some � < ".�/. For i < ! we now set

�0 WD �; �iC1 WD '��i and �0 WD �; �iC1 WD '�.�i C �i /:

Then k �m applications of the main induction hypothesis yield

HˇC!�.k�1/
�1

.�1;1;n/
�;

HˇC!�.k�2/
�2

.�2;1;n/
�;

:::

HˇC!�.mC1/
�k�m�1

.�k�m�1;1;n/
�;

HˇC!�mC�
�k�m

.�k�m;1;n/
�:

In these reductions we have successively replaced the ˇ of the main induction
hypothesis by

ˇ C !�.k � 1/; ˇ C !�.k � 2/; : : : ; ˇ C !�.mC 1/; ˇ C !�m:
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In addition, observe that �i < '�˛ and �i < '�.
 C ˛/ for all i < !. Hence
we have shown that

HˇCı
'�˛

.'�.
C˛/;1;n/ �;

as desired, finishing the treatment of this case.
(iii) � is a limit number. Because of A 2 SimpˇC!� we know that there exists a

� < � satisfying � � LˇC!� and A;:A 2 LˇC!� . Thus the side induction
hypothesis applied to (*) asserts that

HˇC!�
'�˛0

.'�.
C˛0/;1;n/ �; A and HˇC!�
'�˛1

.'�.
C˛1/;1;n/ �; :A:

For � WD max.'�˛0; '�˛1/C 1 and � WD max.'�.
 C ˛0/; '�.
 C ˛1// we
deduce by a cut that

HˇC!�
�

.�;n;n/
�:

As before, by making use of Theorem 19, we find a � < ".�/ such that

HˇC!�
�

.�;1;n/
�

Now we are in the position to apply the main induction hypothesis and conclude

HˇCı
'��

.'�.�C�/;1;n/ �:

Since '�� < '�˛ and '�.� C �/ < '.
 C ˛/, this establishes our claim, finishing
the proof of case (iii) and also the verification of our lemma. ut
Theorem 27 Assume that � is a finite subset of L0 and H


<".
/

.0;n;n/
� for some

n < !. Then there exist ˛; ˇ < ƒ
 such that H0
˛

.ˇ;1;n/
�.

Proof We first observe that 
 can be uniquely written as


 D !
m C � � � C !
1 C k

with k < ! and ordinals 
1 � � � � � 
m � 
. Set � WD !
m C � � � C !
1 . By our
assumptions we know that there exists an ordinal � < ".
/ for which

H�Ck
�

.0;n;n/
�:

In view of (k applications of) Theorem 25 this implies

H�
ı

.�;1;n/
� (19)
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for suitable ı; � < ".
/. By induction on i we now define for all natural numbers i
such that 0 � i � m � 1:

�0 WD ".�/ and �iC1 WD '
iC1�i ;

0 WD ı and 
iC1 WD '
iC1
i ;
�0 WD � and �iC1 WD '
iC1.�i C 
i /:

A simple induction on i then shows for all i � m that


i < �i and �i < �i : (20)

In view of Lemma 1 and the choice of � we also know that

ƒ
 D ƒ� D �m: (21)

It remains to apply Lemma 26 several times. More precisely, starting off from (19)
and making use of Lemma 26 repeatedly we obtain

H0C!
mC:::C!
1

0

.�0;1;n/
�;

H0C!
mC:::C!
2

1

.�1;1;n/
�;

:::

H0C!
m

m�1

.�m�1;1;n/
�;

H0

m

.�m;1;n/
�:

Because of (20) and (21) the last line immediately gives us our assertion for ˛ WD 
m
and ˇ WD �m. ut
This theorem provides a reduction of the systems H
 to H0 with respect to all finite
� � L0. To complete the proof-theoretic analysis of the H
 we now turn to complete
cut elimination for H0. To this end we first assign a rank rk.A/ to any A 2 L0.

Definition 28 The rank rk.A/ of an A 2 L0 is inductively defined as follows:

1. If A is a closed literal of L, then rk.A/ WD 0.
2. If A is of the form PA

<0.t/ or :PA
<0.t/, then rk.A/ WD 1.

3. If A is of the formQ<˛
A .t/ or :Q<˛

A .t/, then rk.A/ WD !˛.
4. If A is of the form .B _ C/ or .B ^ C/, then

rk.A/ WD max.rk.B/; rk.C //C 1:

5. If A is of the form 9xBŒx� or 8xBŒx�, then rk.A/ WD rk.BŒ0�/C 1.
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By straightforward induction on the build-up of the formulas in L0 we can easily
verify a close relationship between their stages and ranks.

Lemma 29 If A is a formula from L0 of length n and stg.A/ D ˛, then rk.A/ <
!˛ C n.

If we restrict ourselves to the system H0, then (obviously) the ranks of the cut
formulas are the appropriate parameters for measuring the complexities of cuts;
levels and lengths of cut formula are no longer interesting. To make this precise, we
introduce a slightly modified notion of derivability within H0.

Definition 30 We define H0
˛



� for all finite � � L0 and all ordinals ˛; 
 < 	0

by induction on ˛.

1. If � is an axiom of H0, then we have H

˛



� for all ˛; 
 < 	0.

2. If H0
˛i



�i and ˛i < ˛ for every premise �i of a stage rule, a propositional

rule, or a quantifier rule or a cut of H0 whose cut formulas have rank less than 
 ,
then we have H0

˛



� for the conclusion� of this rule.

Thus H0
˛

0
�means that� is cut-free provable in the system H0. Our two methods

of measuring derivations in H0 are, of course, closely linked. In particular, we can
easily transform the former into the latter. The proof of the following lemma is
trivial by induction on ˛.

Lemma 31 For all ˛; ˇ < 	0, all n < !, and all finite � � L0 we have that

H0
˛

.ˇ;n;n/
� H) H0

˛

!ˇCn �:

The last step in our proof-theoretic analysis of the systems H
 is complete cut
elimination for H0 with respect to our new derivability relation. However, it is easy
to check that the assignment of ranks and the rules of inference are tailored such that
the methods of predicative proof theory yield full cut elimination for H0. Therefore
we omit the proof of the following theorem and refer to the standard literature, for
example, Pohlers [16] or Schütte [21].

Theorem 32 For all ˛; ˇ; � < 	0 and all finite� � L0 we have that

H0
˛

ˇC!� � H) H0
'�˛

ˇ
�:

From Theorem 27, Lemma 31, Theorem 32 and the fact that '�� < 'ƒ
0 for all
� < ƒ
 and � < 'ƒ
0 we deduce the following key result.

Corollary 33 Assume that � is a finite subset of L0 and H

<".
/

.0;n;n/
� for some

n < !. Then there exists an ˛ < 'ƒ
0 such that H0
˛

0
�.

This corollary brings us very close to the desired computation of the upper proof-
theoretic bounds of the theories SID
 . It now remains only to embed the theories
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SID
 into the systems H
 . The following lemma deals with transfinite induction
within H
 .

Lemma 34 For all ˛ < 	0, all closed number terms t such that ot.t/ D ˛, and all
AŒ0� 2 L
 we have:

1. H

<!˛C!
.0;0;0/

:ProgŒ�; fxWAŒx�g�; AŒt �.
2. H


!˛C!
.0;0;0/

ProgŒ�; fxWAŒx�g� ! .8x � t/AŒx�.

Proof As to be expected, we prove the first assertion by induction on ˛. Let t be
a closed term such that ot.t/ D ˛. We first consider all closed number terms r for
which ˛ � ot.r/. In this case r 6� t is a true closed literal, hence

H

0

.0;0;0/
:ProgŒ�; fxWAŒx�g�; r 6� t; AŒr�: (22)

Secondly, if s is a closed number term for which ot.s/ D � < ˛, then the induction
hypothesis implies

H

!�C!
.0;0;0/

:ProgŒ�; fxWAŒx�g�; s 6� t; AŒs�: (23)

By some simple applications of propositional and quantifier rules, (22) and (23)
yield

H

!˛C3
.0;0;0/

:ProgŒ�; fxWAŒx�g�; .8x � t/AŒx�:

Making use of Lemma 20, we can continue with

H

<!˛C!
.0;0;0/

:ProgŒ�; fxWAŒx�g�; .8x � t/AŒx� ^ :AŒt�; AŒt �

and obtain

H

!˛C!
.0;0;0/

:ProgŒ�; fxWAŒx�g�; AŒt �

by a further application of a quantifier rule, as desired. This completes the proof of
the first assertion. The second assertion is a simple consequence of the first. ut
The embedding of SID
 into H
 can now be defined straightforwardly: To each
closed formula A in the language LS of SID
 we associate its interpretation A.
/,
given by replacing all subexpressions PA.t/ and �PA.t/ of A by PA

<
.t/ and
:PA

<
.t/, respectively. Based on this translation of the closed LS formulas into
formulas belonging to L
 , we can formulate our embedding theorem.

Theorem 35 (Embedding) Let A be a closed formula of LS and further assume

SID
 ` A. Then we have H

<".
/

.0;n;n/
A.
/ for some n < !.
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Proof Since !
 C ! < ".
/, the previous lemma takes care of the axioms about
transfinite induction up to 
. The translations of (the universal closures of) all other
axioms of SID
 are obviously provable in H
 and closure under the translations of
the inference rules of SID
 is guaranteed; always respecting the required bounds.

ut
The previous embedding theorem and Corollary 33 finally provide the reduction of
SID
 with respect to all closed L formulas to the cut-free part of the system H0.

Theorem 36 (Final Reduction) If A is a closed L formula and SID
 ` A, then
there exists an ˛ < 'ƒ
0 such that H0

˛

0
A.

Corollary 37 jSID
 j D 'ƒ
0.

Proof 'ƒ
0 � jSID
 j is Theorem 12. To show jSID
 j � 'ƒ
0 assume that
SID
 proves TIŒC; fxWW.x/g� for some primitive recursive wellordering C. By
Theorem 33 we have an ˛ < 'ƒ
0 such that H0

˛

0
TIŒC; fxWW.x/g�. Standard

boundedness techniques as presented, for example, in Pohlers [16] and Schütte [21]
then imply that the order-type of C is less than or equal to !˛ < 'ƒ
0. Hence
every ordinal provable in SID
 is smaller than 'ƒ
0. ut
This finishes our proof-theoretic analysis of the theories SID
 . Of course, this result
also provides the proof-theoretic ordinals of the systems SID<
 , namely

jSID<
 j D sup.f'ƒ�0 W � < 
g/:

The proof-theoretic ordinals of some important such theories have been mentioned
in Sect. 3.
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Classifying Phase Transition Thresholds
for Goodstein Sequences and Hydra Games

Frederik Meskens and Andreas Weiermann

Abstract A classification of the phase transition thresholds behind the Kirby
Paris style independence results about Goodstein sequences and hydras is
given. Moreover earlier phase transition results by Kent and Hodgson are
improved.

The article is intended to be suitable for teaching purposes and just requires basic
familiarity with the standard classification of the provably recursive functions of PA
and its fragments in terms of the Hardy functions.

1 Introduction

This article is part of a general program on classifying phase transitions for
independence results for (sub-)systems of Peano Arithmetic. The basic idea is to
investigate parameterized assertions Ar (where r is a rational number parameter)
which are provable for small parameter values in a given formal system S under
consideration and which become unprovable in S (but still remain true) for large
parameter values. We moreover assume that Ar is monotone in the sense that
when r ranges from small to large values there is only once a transition from S -
provability to S -unprovability. Classifying the resulting threshold for the transition
from provability to unprovability may shed light on the general question: What
makes a true assertion A unprovable from Peano Arithmetic? For Friedman’s
miniaturization FKTr of Kruskal’s theorem [10] the critical threshold value � for
the phase transition (in its logarithmic formulation a la [9]) has approximate value
0:639578 : : : (which is currently not known to be rational, irrational, algebraic or
transcendental) [11].
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In a more general context, as for example in this article, we shall assume that
A depends on a number-theoretic function parameter f (which is assumed to be
elementary recursive).

We shall work under the assumption that Af is always true for any f and
provable if f is very slow growing. Moreover we may assume similarly as above
that if Af is provable in Peano Arithmetic (which will be abbreviated by PA) and g
is eventually dominated by f then Ag is provable in PA, too. Moreover we assume
that Af becomes unprovable in PA if f grows reasonably fast.

In this article we consider such phase transitions for the Kirby Paris principles
about Goodstein sequences and Hydra games [7]. In case of Goodstein sequences
preliminary results have already been obtained by Kent and Hodgson [6]. In this
paper we improve their results and give simultaneously a treatment of the Hydra
games, too. Moreover we investigate the situation for fragments of arithmetic.

Our results will finally show that in our context there will always be a
sharp threshold function which can be expressed in terms of functions like
C; �;�; exp2; log2; expx2 .y/; logx2.y/ (where the upper index denotes the number of
function iterations and the lower index denotes the base to which the function under
consideration refers) and functions from the hierarchy .H�1

˛ /˛6"0 . The hierarchy
.H�1

˛ /˛6"0 consists in this context of a scale of slow growing functions which are
given by inverse functions of functions from the Hardy hierarchy .H˛/˛6"0 of fast
growing functions. In practice most functions of the form H�1

˛ (for ˛ reasonably
large) grow so slow that they cannot be distinguished by computer calculations from
constant functions. Nevertheless PA is able to prove the unboundedness of H�1

˛ for
˛ < "0. When ˛ increases the speed ofH�1

˛ becomes slower and slower and finally
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H�1
"0

grow so slow that PA is unable to prove its unboundedness (althoughH�1
"0

, in
theory, still is unbounded).

If we are going to measure the phase transition in more general terms, then sharp
threshold functions will no longer exist. Instead the fine structure of the threshold
region will form a dense lattice which has similar properties as the lattice of honest
elementary degrees considered by Kristiansen et al. [8].

This article requires only basic familiarity with the classification of the provably
recursive functions of Peano arithmetic and is therefore a natural follow-up of the
article Classifying the provably total functions of PA [12]. The classification of the
provably recursive functions of PA is of course standard and can be found in many
sources as, e.g., in [4] or [5]. What basically is needed for the phase transition results
concerning PA studied in this paper is just the result that

PA ° 8x9yH"0 .x/ D y:

This article is also intended and, in fact, already proved useful for teaching
purposes.1

2 Preliminaries

2.1 Definitions

To keep the paper short we assume the usual standard association between the
Hydras and ordinal numbers which is, for example, explained in detail in the original
source by Kirby and Paris [7] or in Buchholz’s seminal paper [1]. A step in the hydra
game for hydra ˛ at time x then corresponds in stepping down from ˛ to ˛Œx� with
respect to the standard system of fundamental sequences for the ordinals below "0.

(If not mentioned otherwise positive integers are denoted by small Latin letters
and ordinals not exceeding "0 will be denoted by small Greek letters.)

For simplicity we assume that hydras are represented by ordinals in Cantor
normal form. Let us introduce some standard notations.

Definition 1 For 0 < ˛; ˇ; � < "0 and ! > j > i > 2, define

1. ˛ DNF !
˛1 C � � � C !˛n if ˛ D !˛1 C � � � C !˛n and ˛1 > � � � > ˛n.

2. NF.ˇ; �/ if ˇ DNF !
ˇ1 C � � � C !ˇm; � DNF !

�1 C � � � C !�n and ˇm > �1.
3. ˛ DCNF !

˛1m1 C � � � C !˛nmn if ˛ D !˛1m1 C � � � C !˛nmn; ˛1 > � � � >
˛n and m1; : : : ; mn 2 N n f0g.

4. If ˛ DCNF !
˛1m1 C � � � C !˛nmn, then we define the maximal coefficient as

mc.˛/ WD maxfmc.˛i /;mi ji D 1; : : : ; ng with mc.0/ WD 0:

1The second author has used the main results of this paper repeatedly during lectures on selected
chapters from proof theory.
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5. If a D ia1m1 C � � � C ianmn with a1 > � � � > an and i > mk > 0, then
a.i 7! j / WD j a1.i 7!j /m1 C � � � C j an.i 7!j /mn, else a.i 7! j / WD a.

Since we will work several times with exponential towers and iterated logarithms
it is convenient to agree also on the following notations.

Definition 2 For ˛; ˇ < "0 and nonnegative integers h we define:

6. ˛0.ˇ/ WD ˇ; ˛hC1.ˇ/ WD ˛˛h.ˇ/,
!h WD !h.1/; 2h WD 2h.1/,

7. j0j WD 1; ji j WD dlog2.i C 1/e if i > 0,
ji jh WD i if h D 0; ji jhC1 WD jji jhj:
Then, of course, ji j is the binary length of i and ji jh stands for the h-times iterated

binary length function.
Let us moreover recall the standard assignment of fundamental sequences for

ordinals below "0.

Definition 3 If ˛ 2 f0; 1g then ˛Œk� WD 0, if 1 < ˛ < "0 then write
˛ DNF !

˛1 C � � � C !˛n and

˛Œk� WD

8
ˆ̂
<

ˆ̂
:

!˛1 C � � � C !˛n�1 if ˛n D 0;

!˛1 C � � � C !˛n�1 � .k C 1/ if ˛n 62 Lim;

!˛1 C � � � C !˛nŒk� if ˛n 2 Lim:

Finally put "0Œk� WD !k: (As common we write Lim for the class of limit ordinals.)

For technical reasons (to guarantee the so-called Bachmann condition [2]) we
put !˛C1Œk� D !˛ � .k C 1/. Our results will also hold (modulo some obvious
modifications) for the choice!˛C1Œk� D !˛ �k and not too exotic variations thereof.

To fix the context we moreover recall some well-known definitions and lemmata
from subrecursive hierarchy theory. In order to find the phase transition for the
Hydra game (Q-steps) we will consider a more complex and a simpler version.
The simpler version will be a Friedman style slowly well orderedness assertion with
respect to a norm provided by the maximal coefficient (mc.�/) [10] and the more
complex corresponds to the termination of the Goodstein sequences (P -steps). In
the sequel let f denote a given weakly increasing elementary recursive function
f W N ! N.

Definition 4 (Predecessor Operations) For ordinals ˛ and � 2 Lim define:

Pf
x .0/ D 0; P f

x .˛ C 1/ D ˛; P f
x .�/ D Pf

x .�Œf .x/�/;

Qf
x .0/ D 0; Qf

x .˛ C 1/ D ˛; Qf
x .�/ D �Œf .x/�:
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If f .i/ D id.i/ D i we write Rx.˛/ instead of Rfx .˛/ for R 2 fP;Qg; and if there
is no confusion possible, we omit the brackets as well.

The stepping down relation on the ordinal numbers defined byP andQ is written
as follows:

Definition 5 For R 2 fP;Qg, define:

1. ˛ �R;0
f ˛.

2. ˛ �R;n
f ˇ W, ˛ > ˇ and ˇ D R

f
n : : : R

f
1 ˛ with n > 1.

3. ˛ �R
f ˇ W, 9n > 0.˛ �R;n

f ˇ/,

4. ˛ �R
k ˇ W, ˛ �R

f ˇ where f is a constant function with value k,

5. ˛ <R
k ˇ W, ˛ �R

k ˇ or ˛ D ˇ where k > 0.

Note that ˛ �R
k ˇ yields ˛Œk� �R

k ˇ and Rfn ˇ D Rf.n/ˇ.

Definition 6 (Hydra Steps)

˛f;0 WD ˛;

˛f;iC1 WD ˛f;i Œ1C f .i/�:

The Hydra principle (Hf ) is the assertion .8˛/.9i/˛f;i D 0:

Clearly the Hydra principle is closely connected to iterating the operator Q.
Schematically, we arrive in step k at

˛f;k D .: : : .˛Œ1C f .0/�/ : : :/Œ1C f .k � 1/�:

Definition 7 (Goodstein Sequences) Let m > 2.

mf;0 WD m

mf;iC1 WD mf;i .1C f .i/ 7! 1C f .i C 1//� 1:

The Goodstein principle (Gf ) is the assertion .8m/.9i/mf;i D 0:

In Lemma 7 we prove (following [3]) that Goodstein sequences are intrinsically
connected to the operator P .

2.2 Sub- and Superprocesses for the Goodstein Principle

In this paragraph we shall prove that the Goodstein sequences form a subprocess
of the Hydra games. Moreover we will see that a Friedman style slowly well
orderedness principle with respect to the maximal coefficient is a canonical exten-
sion of the standard Hydra game with hydra ˛ for a nondecreasing function f if
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mc.˛/ 6 f .1/. This follows from the observation

mc.˛Œx�/ � max.mc.˛/; x C 1/; (1)

which is a consequence of Definitions 1.4 and 3.
We investigate first some basic arithmetic of the predecessor operators. Note that

a first indication for proving that the Goodstein process is not lasting longer than a
corresponding Hydra battle is given in assertion 2 of the next lemma.

Lemma 1 Let ˛; ˇ; � < "0 andR 2 fP;Qg. Then the following assertions hold:

1. ˛ > 0 ) ˛ <Q
x 1, and ˛ <P

x 0,
2. ˛ �P

x ˇ ) ˛ �Q
x ˇ,

3. NF.�; ˇ/ and ˇ > 0 ) R
f
x .� C ˇ/ D � CR

f
x ˇ,

4. NF.�; ˛/ and ˛ �R;m
x ˇ ) � C ˛ �R;m

x � C ˇ,
5. x > 1 and ˛ �R;m

x ˇ ) .9n > m/
�
!˛ �R;n

x !ˇ
�
.

Proof Assertions 1 and 2 follow by induction on ˛. For assertion 3 write
ˇ DNF !

ˇ1 C � � � C !ˇm and apply Definition 4. Assertion 4 follows from
assertion 3. Assertion 5 follows from assertions 1 and 4 by induction on ˛. ut

Now we shall prove the assertion that

x 6 y; � 2 Lim ) �Œy� <R
z �Œx� (2)

for z > 0 andR 2 fP;Qg. This follows by induction once it is proved for y D xC1
and the latter case is dealt with in the next Lemma. Assertion 4 of the next lemma
gives a generalization of assertion 2 of Lemma 1.

Lemma 2 Let ˛; ˇ; � < "0 and y > 0. Then the following assertions hold:

1. y > 0 and � 2 Lim ) �Œx C 1� <Q
y �Œx�C 1,

2. ˛ <Q
x ˇ �P;m

x � ) .9n > m/
�
˛ �P;n

x �
�
,

3. y > 0 and � 2 Lim ) �Œx C 1� �P
y �Œx�,

4. ˛ > 0 and y > x > 0 ) ˛ <Q
y Px˛ C 1.

Proof Note that assertions 1 and 4 imply their strict versions if ‘C1’ is omitted.
Assertion 1 is proved by induction on �. Indeed, if we write

� DNF !
�1 C � � � C !�n;

then because of Definition 3 and assertion 4 of Lemma 1 it suffices to prove

!�n Œx C 1� �Q
y !

�nŒx�C 1:
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If �n 2 Lim, then the induction hypothesis yields �nŒx C 1� <Q
y �nŒx� C 1, and

therefore

!�nŒx C 1� D !�nŒxC1� �Q
y !

�nŒx�C1 <Q
y !

�n Œx�C 1;

using assertion 5 of Lemma 1. Suppose now �n D ˛C1. By assertion 1 of Lemma 1
we obtain !˛ <Q

y 1, and this yields

!�nŒx C 1� D !˛.x C 2/ D !˛.x C 1/C !˛ <Q
y !

˛.x C 1/C 1 D !�nŒx�C 1;

by assertion 4 of Lemma 1.
Assertion 2 is also proved by induction on ˛. For the non trivial case we suppose

˛ ¤ ˇ. Then ˛Œx� <Q
x ˇ �P;m

x � which implies, by induction hypothesis, the
existence of an n > m such that

˛Œx� �P;n
x �:

This yields ˛ �P;k
x � with k D nC 1 if ˛ 62 Lim and with k D n if ˛ 2 Lim since

Px˛ D Px˛Œx�.
Proof of assertion 3. From assertion 1 it follows that �Œx C 1� <Q

y �Œx� C 1.
Because of �Œx�C 1 �P

y �Œx� assertion 2 yields �Œx C 1� �P
y �Œx�.

Assertion 4 is proved by induction on ˛ using assertion 1. The assertion is trivial
for ˛ 62 Lim. If ˛ 2 Lim, then

˛ �Q
y ˛Œy� <Q

y ˛Œx� <Q
y Px˛Œx�C 1 D Px˛ C 1:

Here the second inequality follows from assertion 1 by iteration iff y > x (equality
holds iff x D y), and the last inequality follows by the induction hypothesis. ut

The reader may wonder why in the previous lemma the assertions 1 and 4
are stated with a ‘C1’. The reason is that later in a critical step of the proof of
Proposition 2 we need a remainder that is still big enough (expressed in terms of
!-towers, see Corollary 2) to allow for an estimation of the number of needed steps
of descents.

Lemma 3 Let ˛; ˇ < "0, R 2 fP;Qg and f; g W N ! N non decreasing functions.
Then the following assertions hold

1. ˛ �R
x ˇ; x 6 y ) ˛ �R

y ˇ,

2. 8i W g.i/ 6 f .i/; ˛ �R;m
g ˇ ) .9n > m/

�
˛ �R;n

f ˇ
�

.

Proof Assertion 1 is proved by induction on ˛ and follows from ˛ �R
y ˛Œy� <R

y

˛Œx� <R
y ˇ. The second inequality holds because of Eq. (2) if ˛ 2 Lim (equality

holds otherwise) and the last one follows from the induction hypothesis.
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Assertion 2 is proved by induction on m. Assume that ˛ �R;m
g ˇ. Then there

exists a ˇ0 such that ˛ <R;m�1
g ˇ0 and ˇ D Rg.m/ˇ0. The induction hypothesis

yields an n0 > m � 1 such that ˛ <R;n0

f ˇ0. We have to show that there exists an
n > n0 such that

ˇ D Rf.n/Rf.n�1/ : : : Rf.n0C1/ˇ0:

The assumption yields

f .n/ > � � � > f .n0 C 1/ > g.m/

for all n > n0 > m. Put

zi WD f .n0 C i/:

It suffices to show the relation Rz1ˇ0 �R
z1

ˇ and the implication
Rzi : : : Rz1ˇ0 �R

zi ˇ ) RziC1
Rzi : : : Rz1ˇ0 �R

ziC1
ˇ.

Note first that ˇ D Rg.m/ˇ0, hence ˇ0 �R
g.m/ ˇ. Since g.m/ 6 z1 assertion 1

yields ˇ0 �R
z1 ˇ:

Now assume that Rzi : : : Rz1ˇ0 �R
zi
ˇ. Then by assertion 1 we have

Rzi : : : Rz1ˇ0 �R
ziC1

ˇ:

This gives

RziC1
Rzi : : : Rz1ˇ0 <R

ziC1
ˇ:

ut
Now we’re able to prove that Goodstein sequences form a subsystem (subse-

quence) of the Hydra games.

Corollary 1 If f is nondecreasing and ˛ �P
f ˇ, then ˛ �Q

f ˇ.

Proof The assertion follows essentially from Lemma 2.3. We show the implication

˛ �P;m
f ˇ H) 9n > m;˛ �Q;n

f ˇ

by induction on m. Assume that ˛ �P;m
f ˇ. Then there exists ˇ0 such that

˛ �P;m�1
f ˇ0
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and ˇ D Pf.m/ˇ0: The induction hypothesis yields the existence of an n0 > m � 1

such that ˛ �Q;n0

f ˇ0. We claim the existence of an n > n0 such that

Qf.n/ : : : Qf.n0C1/ˇ0 D ˇ:

Let

zi WD f .n0 C i/

It suffices to show the relation Qz1ˇ0 �z1 ˇ and the implication Qzi : : : Qz1ˇ0 �Q
zi

ˇ ) QziC1
Qzi : : : Qz1ˇ0 �R

ziC1
ˇ.

First we have ˇ0 �P
f .m/ ˇ hence ˇ0 �Q

f.m/ ˇ according to assertion 2 of Lemma 1.

Since z1 > f .m/ we obtain ˇ0 �Q
z1 ˇ and henceQz1ˇ0 <Q

z1 ˇ.
Now assume Qzi : : : Qz1ˇ0 �Q

zi ˇ. Assertion 1 of Lemma 3 yields

Qzi : : : Qz1ˇ0 �Q
ziC1

ˇ

henceQziC1
: : : Qz1ˇ0 <Q

ziC1 ˇ. ut
We conclude this paragraph with some useful estimates for reductions of !-

towers of an ordinal ˛.

Corollary 2 Let ˛ < "0. Then the following assertions hold:

1. !˛C1 �Q
xC1 !˛2,

2. !˛C1 �Q
xC1 !˛ C 1,

3. !hC1.˛ C 1/ �Q
xC1 !hC1.˛/C !hC1 if ˛ > 0,

4. x > 0 ) !hC1 �P
xC1 !h.

Proof Assertion 1 is a direct consequence of assertions 1 and 4 of Lemma 1. Indeed,
we have

!˛C1 �Q
xC1 !

˛.x C 2/ D !˛2C !˛x �Q
xC1 !

˛2:

Assertion 2 follows from assertion 1 by the assertions 1 and 4 of Lemma 1.
Assertion 3 is proved by induction on h. First note that an iteration of assertion 5

of Lemma 1 yields

˛ �Q
x ˇ ) !h.˛/ �Q

x !h.ˇ/: (3)

Then note that the induction hypothesis implies

!h.˛ C 1/ �Q
xC1 !h.˛/C 1 (4)
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by assertion 1 of Lemma 1. Further we have

!!h.˛C1/ �Q
xC1 !

!h.˛/C1 �Q
xC1 !

!h.˛/2 D !hC1.˛/2 �Q
xC1 !hC1.˛/C !hC1:

The first inequality is obtained by assertion 5 of Lemma 1 applied to (4); the second
one by assertion 1 and last one by (3).

Assertion 4 follows from ! �P
xC1 1 and assertion 5 of Lemma 1. ut

2.3 Subrecursive Hierarchies and Counting Functions

Here we recall the standard subrecursive hierarchies which can be used to measure
provability strengths with regard to provably recursive functions. Of prime impor-
tance is here the Hardy hierarchy .H˛/˛<"0 . We also recall the definition of the slow
growing hierarchy x 7! Gx.˛/ which is used for counting purposes.

Definition 8 Let f be a nondecreasing function, ˛; � 6 "0 with � 2 Lim. Define
G; g;H; h as

Gx.0/ WD 0 Gx.˛ C 1/ WD Gx.˛/C 1 Gx.�/ WD Gx.�Œx�/

gx.0/ WD 0 gx.˛ C 1/ WD gx.˛/C 1 gx.�/ WD gx.�Œx�/C 1

H
f
0 .x/ WD x H

f
˛C1.x/ WD Hf

˛ .x C 1/ H
f

� .x/ WD H
f

�Œf .x/�.x/

h
f
0 .x/ WD x h

f
˛C1.x/ WD hf˛ .x C 1/ h

f

� .x/ WD h
f

�Œf .x/�.x C 1/:

Again we suppress the superscript f in the definitions of Hf

� and hf� for � 6 "0
and f D id.
Recall that the AckermannfunctionA is defined as A.n/ WD An.n/, where for k > 0

the .k C 1/th approximation is defined as AkC1.n/ WD A
.nC1/
k .n/ (where the upper

index denotes iteration) and where A0.n/ WD nC 1.

Some elementary but crucial properties of G; g;H; h for counting lengths of
stepping down processes are provided by the following lemma.

Lemma 4 Let 0 < ˛ < "0, then

1. min
˚
i W ˛ �P;i

x 0

 D Gx.˛/,

2. min
n
i W ˛ �Q;i

x 0
o

D gx.˛/,

3. min
n
i > x W Pf

i�1 : : : P
f
x ˛ D 0

o
D H

f
˛ .x/,

4. min
n
i > x W Qf

i�1 : : : Q
f
x ˛ D 0

o
D h

f
˛ .x/.

Proof All four assertions are proved by induction on ˛. ut
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Note that from the previous lemma it follows thatGx.˛/ D H
f
˛ .1/ and gx.˛/ D

h
f
˛ .1/ where f .i/ D x. It also follows that Hf

˛ .x/ and hf˛ .x/ are nondecreasing
functions.

In the following lemma we prove that the Hydra games and Goodstein sequences
don’t differ that much, although their definitions imply huge differences in their
counting functions (a P -step can contain many Q-steps). This is formalized in
the ‘C1’ in the definition of h compared with H which makes big differences
because of recursion, but both functions bound each other. This means that their
phase transitions will be closely related.

Lemma 5 Let ˛; ˇ < "0 and f be a nondecreasing function, then

1. NF.˛; ˇ/ ) H
f
˛

�
H
f

ˇ .x/
�

D H
f

˛Cˇ.x/,

2. F 2 fH;hg; ˛ <Q

f.x/ ˇ ) F
f
˛ .x/ > F

f

ˇ .x/,

3. Hf
˛ .x C 1/ > h

f
˛ .x/ > H

f
˛ .x/ if f is strictly increasing.

4. Hf
!˛ .x/ > H

f
˛ .x/.

5. A.n/ D H!n.n/ 6 H!! .n/.

Proof All assertions are proved by induction on ˛, for example we proveHf
˛ .x C

1/ > h
f
˛ .x/. Indeed, we have

Hf
˛ .x C 1/ D H

f

˛Œf .xC1/�.x C 1/ > H
f

˛Œf .x/�C1.x C 1/

> h
f

˛Œf .x/�C1.x/ D h
f

˛Œf .x/�.x C 1/ D hf˛ .x/:

The first inequality holds by assertion 2 (by assertion 1 of Lemma 2 the condition
is satisfied), the second inequality by the induction hypothesis; equalities hold by
definition. For a proof of the last assertion one first proves Ad.n/ D H!d .n/ for
all n. ut

The last lemma of this section is a useful tool for proving unprovability results. In
order to prove provability we use a bound on the complexity of the hydra game with
maximal coefficients for a constant function. For this we need a relation betweenG
and g. The required properties are contained in the following lemma.

Lemma 6 Let ˛; ˇ < "0, then

1. GxC1.˛/ > gx.˛/ > Gx.˛/

2. ˛ < ˇ;mc.˛/ 6 x; ˇ 62 Lim ) ˛ 6 ˇŒx C 1� and
˛ < ˇ;mc.˛/ 6 x; ˇ 2 Lim ) ˛ < ˇŒx C 1�,

3. #f˛ < ˇ W mc.˛/ 6 xg 6 GxC1.ˇ/,
4. Gx.˛/ D ˛.! 7! x C 1/,
5. ˛ < ˇ; mc.˛/ 6 x ) H˛.x/ < Hˇ.x/ and Gx.˛/ < Gx.ˇ/.
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Proof Assertion 1 is proved by induction on x. Assertion 2 is proved by induction
on ˇ, assertion 3 is proved by induction on ˇ using assertion 2. Assertion 4 is proved
by induction on ˛. Assertion 5 is proved by induction on ˛. ut

3 Phase Transitions

In this section we will prove that the phase transition thresholds for the Good-
stein sequences, the standard Hydra games and the Friedman-style slowly well-
foundedness of "0 with regard to the maximal coefficient norm are the same. So,
by the previous discussion it is sufficient to prove a sufficiently good lower bound
of unprovability for the Goodstein sequences and a sufficiently good upper bound
of provability for the Friedman style slowly well-foundedness of "0 with regard
to maximal coefficients. Proving (un)provability is done by determining whether
the step counting function is provably recursive in the Hardy hierarchy. These
statements are formalized in the following well known theorem.

Theorem 1 Let T denote a standard primitive recursive Kleene predicate for the
enumeration of the partial recursive functions. Let U be the corresponding primitive
recursive function (producing the output of a terminating computation). Within the
language of PA the T predicate is then of complexity †1. Let ˆe.m/ WD U.minfn W
T .e;m; n/g/. If ˆe is provably recursive in the sense that PA ` 8x9yT .e; x; y/,
then there exists an ˛ < "0 such thatˆe is primitive recursive in and bounded by h˛ .
The function h"0 therefore eventually dominates every provably recursive function of
PA. Moreover for ˛ < "0 the functions h˛;H˛; g˛ andG˛ are all provably recursive
in PA (and they are eventually dominated by the function h"0).

Let us now investigate appropriate sub- and superprocesses for the Hydra game.

Definition 9 Define for a number-theoretic function f the assertions .G0
f /; .H0

f /;

.MCf / as

.G0
f / W,.8K/.9M/

�
!K �P;M

f 0
�

.H0
f / W,.8K/.9M/

�
!K �Q;M

f 0
�

.MCf / W,.8K/.9M/.8˛0; : : : ; ˛M 6 !K/

..8i 6 M/.mc.˛i / 6 K C f .i// ) .9i < M/.˛iC1 > ˛i //:

Corollary 3

PA ` .MCf / ) PA ` .H0
f / ) PA ` .G0

f /:

Proof The first implication follows from Eq. (1). The second one follows from
Lemmas 5.3 and 4. ut
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Lemma 7 1. PA ` .Gf / $ .G0
f /.

2. PA ` .Hf / $ .H0
f /.

Proof The second assertion is immediate since each ˛ < "0 is smaller than some
!K . For a proof of the first assertion we recall from [3] that

Gx.Px˛/ D Px.Gx˛/ (5)

holds for ˛ < "0: (A proof can be done by induction on ˛.) Moreover we note that
if ˛ D mf;i .f .i/C 1 7! !/, then

mf;i D Gf.i/.˛/:

Moreover by definition we have

mf;iC1 D ˛.! 7! f .i C 1/C 1/� 1

D Pf.iC1/˛.! 7! f .i C 1/C 1/

D Pf.iC1/Gf.iC1/.˛/:

Assume now that .8m/.9i/.m/f;i D 0/: From this assumption let us prove the
assertion (G0

f ) by elementary means. Let us assume that f .0/ D 1 and that

e.m/ WD 2m:

Then

PA ` .8m/.9i/.e.m/f;i D 0/:

Let for givenm > 2

˛.m/ WD e.m/.2 7! !/ D !m:

By induction on i we show now

e.m/f;i D Gf.i/
�
Pf.i/ : : : Pf .1/˛.m/

�
:

Indeed, e.m/f;0 D Gf.0/˛.m/ holds due to f .0/ D 1, and for i > 0 we have

e.m/f;i D Pf.i/e.m/f;i�1.f .i � 1/C 1 7! f .i/C 1/

D Pf.i/Gf.i�1C1/
�
Pf.i�1/ : : : Pf .1/˛.m/

�

D Gf.i/
�
Pf.i/ : : : Pf .1/˛.m/

�
:
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The second equality holds by induction hypothesis and Lemma 7, the last one by
Eq. (5). Therefore

minfi W e.m/f;i D 0g D min
n
i W ˛.m/ �P;i

f 0
o
:

and we are done. The argument is clearly reversible and so from (G0
f ) we can also

obtain (Gf ) by elementary means. ut
Note that it suffices to prove termination of the processes under consideration for

ordinals of the form !K . Also note that because of assertion 3 of Lemma 5 it does
not matter if the step counting function is primitive recursive in a function from
.h˛/˛<"0 or from .H˛/˛<"0 .

In the following paragraphs we will recall a well-known basic result, we will
provide an improvement and we’ll classify the phase transition.

3.1 Unprovable Versions

The strategy we use to prove unprovability is to adjust the given ordinal by making
a sufficiently big omega tower of it. Iteration will let the step counting function
“explode”, so that it dominates the functionK 7! H!K .1/.

Proposition 1 Let f D id, then

1. PA ° .Gf /.
2. PA ° .G0

f /.
3. PA ° .Hf /.
4. PA ° .H0

f /.
5. PA ° .MCf /.

Proof We only have to proof the second assertion. Suppose this assertion would be
false, then

PA ` .8K/.9M/
�
!2KC1 �P;M

id 0
�

hence also

PA ` .8K/.9M/
�
!2K C ! �P;M

id 0
�
:

Thus the function k 7! minm W !2k C ! �P;m
id 0 is provably recursive in PA and by

Theorem 1 we find an ˛ < "0 such that for all K there is an M < h˛.K/ such that

!2K C ! �P;M
id 0:
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This yields by the definition of the Hardy functions that for all K we would have
H!2KC!.1/ < h˛.K/. On the other hand, we have by Corollary 2.4

!2K C ! �P
1 !2K �P

2 !2K�1 �P
3 � � � �P

KC1 !K:

This yieldsH!K .K C 1/ 6 H!2KC!.1/ and this implies that

H"0.K/ � H!K.K C 1/ < h˛.K/

holds for all K , yielding a contradiction since H"0 eventually dominates h˛ . ut
Proposition 2 Let h > 0 and f .i/ WD ji jh. For a given ordinal ˛ define ˇ WD
!hC1.˛/C !hC1. Then there exists an i > H˛.1/ such that ˇ �P;i

f !hC1.0/.

Proof We already know that min
n
i W ˛ �P;i�1

id 0
o

D H˛.1/ DW L.

By definition we have f .i/ > 1 for all i . Further we have

ˇ �P
1 !hC1.˛/C P1!hC1
:::

�P
1 !hC1.˛/C P1 : : : P1„ ƒ‚ …

2h.2/

!hC1

D !hC1.˛/;

since by Lemmas 4.1 and 6.4 min
n
i W !hC1 �P;i

1 0
o

D G1 .!hC1/ D 2h.2/. So

there exists i1 > 2h.2/ such that ˇ �P;i1
1 !hC1.˛/.

Define ˛0 WD ˛; ˛k WD Pk˛k�1. We now prove by induction that

!hC1.˛k�2/ �P;ik
k !hC1.˛k�1/; for some ik > .k C 1/h.k C 1/; (6)

for all k D 2; : : : ; L C 1. Since ik > .k C 1/h.k C 1/ we have for all i > ik that
f .i/ > k C 1. Further we obtain

!hC1.˛k�1/ <Q

kC1 !hC1.Pk˛k�1 C 1/

�Q

kC1 !hC1.˛k/C !hC1

�P
kC1 !hC1.˛k/C PkC1!hC1
:::

�P
kC1 !hC1.˛k/C PkC1 : : : PkC1„ ƒ‚ …

.kC2/h.kC2/
!hC1

D !hC1.˛k/;
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again since

min
n
i W !hC1 �P;i

kC1 0
o

D GkC1 .!hC1/ D .k C 2/h.k C 2/:

(In the previous calculation the first inequality is obtained by applying assertion 4 of
Lemma 2 to assertion 5 of Lemma 1, the second one by assertion 2 of Corollary 2.)
This implies by assertion 2 of Lemma 2 that there exists an ikC1 > .kC 2/h.kC 2/

such that

!hC1.˛k�1/ �P;ikC1

kC1 !hC1.˛k/:

Now define the function g as g.i/ D k if ik�1 < i 6 ik (where i0 WD 0) and
defineM WD PL

kD1 ik . Equation (6) yields

ˇ �P;M
g !hC1.˛L/ D !h:

Because g.i/ 6 f .i/ for all i we have by Lemma 3.2 ˇ �P;m
f !h for some m >

M > L. ut
To describe the threshold function for the phase transition resulting from the

Hydra game it is useful to work with functional inverses of the Hardy functionsH˛ .
These are defined as follows:

H�1
˛ .i/ D minfm > 0 W H˛.m/ > ig:

Then obviously H�1
˛ .H˛.i// D i since H˛ is strictly increasing. Moreover, for

large ˛ the functionH�1
˛ grows very slow and is elementary recursive.

Lemma 8 Let f .i/ D ji jH�1
"0
.i/ and m > 2. Let ˛ D !mC1.!m/ C !mC1 and let

i0 D H!m.1/. Then ˛ �P;i0
f ı for some ı > !m.

Proof Let fm.i/ WD ji jm. For i 6 i0 we have

H�1
"0
.i/ 6 H�1

"0
.i0/ 6 m

since H!m.1/ 6 H"0.m/. Thus

ji jH�1
"0
.i/ > fm.i/

for all i 6 i0. Then by Proposition 2 there exists an j0 > i0 such that

˛ �P;j0
fm

!m:

Assertion 2 of Lemma 3 implies ˛ �P;i0
f ı for some ı > !m since f .i/ > fm.i/ for

i 6 i0. ut
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Theorem 2 (Phase Transition, Unprovable Version) Let

f .i/ WD ji jH�1
"0
.i/:

Then the following assertions hold:

1. PA ° .Gf /.
2. PA ° .G0

f /.
3. PA ° .Hf /.
4. PA ° .H0

f /.
5. PA ° .MCf /.

Proof We need only to prove the first assertion. We prove assertion 1 by contradic-
tion. Assume PA ` .Gf /. Let

e.m/ WD 22mC1 C 2mC1:

Then

PA ` .8m/.9i/.e.m/f;i D 0/:

Let for givenm > 2

˛.m/ WD e.m/.2 7! !/ D !2mC1 C !mC1:

Then we see as in the proof of Lemma 7 that

e.m/f;i D Gf.i/
�
Pf.i/ : : : Pf .1/˛.m/

�
:

This yields by Lemma 8

minfi W e.m/f;i D 0g D min
n
i W ˛.m/ �P;i

f 0
o

> H!m.1/:

Since m 7! H!m.1/ is not provably recursive in PA we obtain a contradiction. ut

3.2 Provable Versions

In assertion 3 of Lemma 6 we proved implicitly a first provable version for the
Friedman style assertion MCf for constant functions f . This observation is used to
prove more general provable versions by stating an upper bound M for the lengths
of descending sequences. The argument goes roughly as follows: if the function f
is nondecreasing, then we have the constant function f .M/ as a majorization for
f . Then we can apply assertion 2 of Lemma 3 and use the formula of assertion 4 of
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Lemma 6 to show that if M is chosen sufficiently big and if f does not grow too
quickly that then the number of possible descents is less thanM .

We start with a useful inequality.

Lemma 9 Let n; k > 0. Then .2n/k.1/ 6 2nC2.k�1/.

Proof This is proved by induction on k by carefully dealing with the exponents
involved. ut

As an improvement we consider the superlogarithm.

Proposition 3 Let f .i/ D log�.i/ D minfd W ji jd 6 2g, then

1. PA ` .Gf /.
2. PA ` .G0

f /.
3. PA ` .Hf /.
4. PA ` .H0

f /.
5. PA ` .MCf /.

Proof We only need to prove the last assertion. Let K > 3 be given. Suppose that

!K > ˛n > � � � > ˛0
with mc.˛i / 6 K C f .i/. We show (within PA) that

n < M.K/ WD 23�K:

M.K/ as a function of K is provably recursive in PA. Assume, for a contradiction
that n > M.K/:

Then we have ˛M.K/ > � � � > ˛0 with mc.˛i / 6 K C f .i/. Thus mc.˛i / 6
K C f .M.K// for all i 6 M.K/. Hence

M.K/ 6 #f˛ < !K W mc.˛/ < K C f .M.K//g
6 !K.! 7! K C log�.M.K//C 1/

D !K.! 7! K C 3 �K C 1/

D .4 �K C 1/K

< 23�K
D M.K/;

a contradiction. The last inequality follows from .4 � K C 1/K.1/ 6 .2K/K.1/ 6
2KC2K�2 6 23�K which is a consequence of Lemma 9. ut
Theorem 3 (Phase Transition, Provable Version) Let ˛ < "0 and put

f˛.i/ D ji jH�1
˛ .i/:
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Then the following holds

1. PA ` .Gf˛ /.
2. PA ` .G0

f˛ /.
3. PA ` .Hf˛ /.
4. PA ` .H0

f˛ /.
5. PA ` .MCf˛ /.

Proof We only prove the last assertion. If ˛ < !, then f˛.i/ 6 ˛ for all i and we’re
done by Lemma 6.3. Now assume ˛ > ! and let ˇ WD !˛C4 � 2. SupposeK is given
and suppose

!K > ˛n > � � � > ˛0
with mc.˛i / 6 K C f˛.i/. Put

M.K/ WD 2H˛.Hˇ.K//:

We claim that n < M.K/. For, assume otherwise. Then we have ˛M.K/ > � � � > ˛0
with mc.˛i / 6 K C f˛.i/. Then

mc.˛i / 6 K C f˛.M.K// (7)

for all i 6 M.K/. This inequality looks obvious but a proof needs a moment’s
reflection since f˛ is not weakly increasing. This could of course be dealt with by
replacing f˛ by a monotone variant. But a direct argument is available, too. To prove
the inequality (7) note the following monotonicity property of f˛:

f˛.i/ D ji jl 6 jH˛.l C 1/� 1jl D f˛.H˛.l C 1/� 1/

for all natural numbers l and all i 2 fH˛.l/; : : : ;H˛.l C 1/ � 1g. Luckily (7) then
follows easily since each H˛.l C 1/ is much bigger thanH˛.l/ and moreover since

jH˛.l C 1/� 1jl 6 j2H˛.lC1/jlC1:

We now claim

M.K/ 6 #f˛ < !K W mc.˛/ < K C f˛.M.K//g
6 !K.! 7! K C f˛.M.K//C 1/

D
 

K C 1C ˇ
ˇ2H˛.Hˇ.K//

ˇ
ˇ
H�1
˛

�
2
H˛.Hˇ.K//

�

!

K

.1/

6
�
K C 1C ˇ

ˇ2H˛.Hˇ.K//
ˇ
ˇ
H!˛ .K/

�

K
.1/

D �
K C 1C 2H˛.Hˇ.K//�H!˛ .K/

�
K
.1/
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< 2H˛.Hˇ.K//

D M.K/;

which would yield a contradiction.
The third inequality follows from H�1

˛

�
2H˛.Hˇ.K//

�
> H!˛ .K/, which is

equivalent with 2H˛.Hˇ.K// > H˛.H!˛ .K// which in fact is obvious. The inequality

�
K C 1C 2H˛.Hˇ.K//�H!˛ .K/

�
K
.1/ < 2H˛.Hˇ.K//

follows by a simple and elementary side calculation (which is left to the reader). ut
Theorem 4 For every h 2 N let fh.i/ WD ji jji jh . Let ˛ < "0. Then

x 7! minfi > x W Qf
1 : : :Q

f
x ˛ D 0g

is elementary recursive.

Proof This is proved likewise as in the previous theorems with M.K/ chosen to be
22hK . ut

4 Results Concerning the Fragments of PA

In the last section we consider restricted versions of hydra principles which are
related to the fragments I†n of Peano arithmetic where the induction scheme is
restricted to formulas of quantifier complexity†n. The corresponding independence
results follow basically from the following result I†n ° 8x9yH!nC1

.x/ D y which
is treated in full detail, e.g., in [5] or [4]. (An adaptation of the methods from [12]
to the fragments I†n offers of course no problems and is left as an exercise.)

Definition 10 Define for a function f the assertions .G0n
f /; .H

0n
f /; .MCnf / as

.G0n
f / W,.8K/.9M/

�
!n.K/ �P;M

f 0
�

.H0n
f / W,.8K/.9M/

�
!n.K/ �Q;M

f 0
�

.MCnf / W,.8K/.9M/.8˛0; : : : ; ˛M 6 !n.K//

..8i 6 M/.mc.˛i / 6 K C f .i// ) .9i < M/.˛iC1 > ˛i //:

For the principles (Gn
f ) and (Hn

f ) there exist corresponding combinatorial
principles where the base representation of the numbers involved stops at hight n
and where the hydras are bounded in hight by n (i.e. they are smaller than !nC1).
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Corollary 4

I†n ` .MCnf / ) I†n ` .H0n
f / ) I†n ` .G0n

f /:

Proof Similarly as before. ut
Proposition 4 Let f D id, then

1. I†n ° .G0n
f /,

2. I†n ° .H0n
f /,

3. I†n ° .MCnf /.

Proof Similarly as before. ut
Lemma 10 Assume n > 1

1. If � < !n.m/ and � is a limit, then Qx.!n.m/ � �/ D !n.m/ � .Qx�/:

2. If R 2 fP;Qg and ˛ < !n.m/ and ˛ �R;k
x ˇ, then there is an ` > k such that

!n.m/ � ˛ �R;`
x !n.m/ � ˇ:

Proof The first assertion follows by case distinction based on the Cantor normal
form of �. The second assertion follows by using the first assertion. ut
Proposition 5 Let m > 1 and n > 1 and f .i/ WD b m

pji jn�1c. For a given ordinal
˛ < !n.m/ define ˇ WD !n.m/ � ˛ C !n.m/. Then there exists an i > H˛.1/ and
some ı > 0 such that ˇ �P;i

f ı.

Proof We already know min
n
i W ˛ �P;i

id 0
o

D H˛.1/ DW L.

By definition we have f .i/ > 1 for all i . Further we have

ˇ �P
1 !n.m/ � ˛ C P1!n.m/

:::

�P
1 !n.m/ � ˛ C P1 : : : P1„ ƒ‚ …

2n.m/

!n.m/

D !n.m/ � ˛;

since by Lemmas 4.1 and 6.4 min
n
i W !n.m/ �P;i

1 0
o

D G1 .!n.m// D 2n.m/. So

there exists i1 > 2 such that ˇ �P;i1
1 !n.m/ � ˛.

Define ˛0 WD ˛; ˛k WD Pk.˛k�1/. We now prove by induction that

!n.m/ � .˛k�2/ �P;ik
k !n.m/ � .˛k�1/; for some ik > .k C 1/n.m/; (8)

for k D 2; : : : ; L C 1. Because ik > .k C 1/n.m/ we have for all i > ik that
f .i/ > k C 1 since .k C 1/n.m/ > 2n�1..k C 1/m/ Further we obtain
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!n.m/ � ˛k�1 <Q

kC1 !n.m/ � .Pk˛k�1 C 1/

�Q

kC1 !n.m/ � ˛k C !n.m/

�P
kC1 !n.m/ � ˛k C PkC1.!n.m//

:::

�P
kC1 !n.m/ � ˛k C PkC1 : : : PkC1„ ƒ‚ …

.kC2/n.m/
!n.m/

D !n.m/ � ˛k;

again since min
n
i W !n.m/ �P;i

kC1 0
o

D GkC1 .!n.m// D .k C 2/n.m/. (In the

previous calculation the first inequality is obtained by applying assertion 4 of
Lemma 2 to assertion 5 of Lemma 1, is obtained by applying assertion 4 of Lemma 2
to assertion 2 of Lemma 10.) This implies by assertion 3 of Lemma 2 that there exists
an ikC1 > .k C 2/n.m/ such

!n.m/ � ˛k�1 �P;ikC1

kC1 !n.m/ � ˛k:

Now define the function g as g.i/ D k if ik�1 < i � ik and define M WDPL
kD1 ik . Equation (8) yields

ˇ �P;M
g !n � .˛L�1/ > 0:

Because g.i/ 6 f .i/ for all i we have by assertion 2 of Lemma 3 that ˇ �P;m
f ı for

some m > M > L and some ı > 0. ut
Lemma 11 Let f .i/ D H�1

!nC1
.i/
pji jn�1, n > 1 andm > 2. Let ˛ D !n.m/�!n.m/C

!n.m/. Let i0 WD H!n.m/.1/. Then ˛ �P;i0
f ı for some ı > 0.

Proof Let fm.i/ WD m
pji jn�1. For i 6 i0 we have

H�1
!nC1

.i/ 6 H�1
!nC1

.i0/ 6 H�1
!nC1

.H!n.mC1/.m// 6 H�1
!nC1

.H!nC1
.m// 6 m:

Thus H�1
!nC1

.i/
pji jn�1 > fm.i/ for all i 6 i0. Then by Proposition 5 there exists

j0 > i0 and some ı0 > 0 such ˛ �P;j0
fm

ı0. Assertion 2 of Lemma 3 yields ˛ �P;i0
f ı

(Just step down i0 steps with f where f .i/ > fm.i/.) ut
Theorem 5 (Phase Transition, Unprovable Version) Let

f .i/ D H�1
!nC1

.i/
p

ji jn�1:
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Then the following holds:

1. I†n ° .G0n
f /,

2. I†n ° .H0n
f /,

3. I†n ° .MCnf /.

Proof Similarly as before. ut
Theorem 6 (Phase Transition, Provable Version) Let ˛ < !nC1 and put

f˛.i/ D H�1
˛ .i/
p

ji jn�1:

Then the following holds:

1. I†n ` .G0n
f /,

2. I†n ` .H0n
f /,

3. I†n ` .MCnf /.

Proof Similarly as before. ut
FINAL REMARKS: The results of this paper do hold for larger ordinals than

"0, e.g. for 	0. Let � be a proof-theoretic ordinal for which an assignment of
canonical fundamental sequences (with Bachmann property) is given. Assume that
T is a natural subsystem of (second order) analysis containing primitive recursive
arithmetic. Assume that the proof-theoretic ordinal of T is � and that a profound
ordinal analysis of T has been given so that for any ˛ < � we have T `
8x9yH˛.x/ D y but T ° 8x9yH�.x/ D y. Let f˛ WD .i 7! Gi.�ŒH

�1
˛ .i/�//�1.

We expect that the proof given in this paper will then typically generalize to yield

˛ < � () T ` Hf˛ () T ` Gf˛

for the corresponding (parameterized) versions of the Hydra games [1] or Goodstein
sequences [13]. (Note that the inverse function of i 7! Gi.!k/ corresponds to
a suitably iterated logarithm so that the general case is in accordance with the
results of this paper.) Through this characterization one then will, for example,
be able to obtain a new and purely combinatorial characterization of Wainer’s
first subrecursively inaccessible ordinal  0�! in terms of phase transitions for the
Buchholz hydra game [1].
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Non-deterministic Epsilon Substitution Method
for PA and ID1

Grigori Mints

Abstract We define a new simplified non-deterministic substitution process for PA
and give a simple termination proof. Then the proof is extended to ID1.

1 Introduction

The substitution method introduced for first order arithmetic by D. Hilbert (cf. [4])
employs a formulation where quantifiers are defined in terms of the �-symbol
�xF Œx� read “the least x satisfying F Œx�”. Corresponding axioms are critical
formulas

F Œt� ! F Œ�xF Œx��: (1)

The essential part of an arithmetical proof is a finite sequenceE of critical formulas.
The goal of the epsilon substitution process is to find a solution, i.e., �-substitution
of numbers n1; : : : ; nk for �-terms e1; : : : ; ek

S � .e1; n1/; : : : ; .ek; nk/

making true all critical formulas in E W E ,!S TRUE, where ,!S iteratively
replaces ei by ni .

Such a solution provides finitist reduction for proofs of quantifier free sentences
and computes numerical instances for provable existential (†01-) formulas. A
solution is found by successive updates, that is adding new values .e; n/ if the
substitution S accumulated by the current stage is not yet a solution. The update
process terminates, when a solution is obtained.

The first termination proof for the substitution method for the first order
arithmetic PA was given by W. Ackermann [1]. The definition and termination
proof was extended to stronger predicative systems in [9, 10]. An extension to the
impredicative case of arithmetical inductive definitions ID1 was outlined in [7] and
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completed in [2]. This formulation and its extension to other subsystems of analysis
used complicated notation system for proof-theoretic ordinals. It is not clear how
to extend it to subsystems of analysis which do not have a transparent ordinal
treatment.

The goal of the present paper is to give a new much simplified formulation of the
epsilon substitution method for ID1 in the hope it allows extension to much stronger
systems.

Simplification is achieved due to a modification of the substitution method. The
standard reduction step introduced by W. Ackermann not only replaces the default
value 0 of the term �xF Œx� in the current substitution S by the “correct” value n,
but also deletes from S all values of complexity (rank) greater than the complexity
of �xF .

Instead we define a non-deterministic update process where several values for
one and the same �-term are tried in parallel, although each particular update uses
only one of these values. This allows to give a short (non-effective) termination
proof for PA.

The system ID1 contains a new predicate I introduced by an inductive definition

In $ AŒI; n� (2)

where A is an arithmetical formula containing I only positively. The corresponding
inductive generation free expands In to AŒI; n�, analyses AŒI; n� (causing infinite
branching when A begins with 8), expands arising occurrences of Im, etc., until
true quantifier tree formulas are achieved. Formally this process is reflected in the
transfinite induction axiom

8x.AŒF; x� ! F Œx�/ ! .It ! F Œt�/: (3)

The main new idea in the present extension to ID1 is the update for the case when
this axiom is false under given substitution S , i.e.,

8x.AŒF; x� ! F Œx�/ ,!S TRUE; (4)

but

In ,!S TRUE; F Œn� ,!S FALSE: (5)

The update tries to “disprove” In, that is to find an infinite path in the inductive
generation tree for In. The conflict in (5) between the truth-values of In and F Œn� is
propagated one step further in the inductive generation tree by finding a “preceding”
point m in the tree with the same conflict between Im and F Œm�. The step from n

to m can be made locally due to a special feature of the �-language (all quantifiers
are already Skolemized) and special normal form of the inductive definition. In the
(non-effective) termination proof for ID1 this results in an infinite path for In.
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The main new tool in termination proofs is a new notion of a model for �-calculus
similar to Henkin’s models for second order logic in the sense that not all axioms (in
our case, critical formulas) implicit in the principal model are required to be true.

Less significant new feature is the treatment of needed primitive recursive
functions: their values are automatically used in computations. This fact is formally
reflected in the definition of the standard completion NS of a substitution S .

To simplify presentation we consider a particular but still universal inductively
defined set: constructive ordinals.

In Sect. 2 we recall standard notions and elementary results concerning �-
calculus, cf. [6, 9]. Then �-models for PA are defined and the update process
described. Non-effective termination proof for PA is presented in Sect. 3. In Sect. 4
we reproduce a specially simple normal form for inductive definition of constructive
ordinals and define an �-formulation ID1�.S1/ of our system. Then updates are
defined and termination proof for the update process in ID1�.S1/ is given.

The results of this paper were presented in July 2009 at the Gentzen Centenary
Workshop, a part of the Leeds Symposium on Proof Theory and Constructivism,
two-week symposium held in the Research Visitors Centre of the School of
Mathematics at Leeds. Good working environment during that Symposium allowing
ample time for discussions was helpful in refining the results. I especially appreciate
discussions with G. Jäger. Continuous communication with W. Buchholz, T. Arai
and H. Towsner influenced this paper in many essential respects. The work by two
anonymous referees improved presentation and gave a much more distinct form to
basic constructions and proofs.

2 Non-deterministic Substitution Method: PA�

2.1 �-Models for the First Order Arithmetic

The language of the first order arithmetical system PA� has the constant 0, successor
function S and all primitive recursive predicates including equality D, as well as
Boolean connectives, say !;:.

Formulas and �-terms �xF Œx� for variables x and formulas F Œx� are defined
simultaneously. Quantifiers are defined after that, and these definitions determine a
translation F � of the arithmetical formulas with quantifiers into �-language:

.9xF Œx�/� WD F �Œ�xF �Œx��I .8xF Œx�/� WD F �Œ�x:F �Œx��:

The terms are �-terms, numerals Sn0 and expressions Snt where t is a variable or
an �-term and n � 0.

Closed �-term is canonical if it does not have proper closed �-subterms.

Example The term �x.x D �y.y 6D x// is canonical while �x.x D �y.y 6D 5// is
not canonical.
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Definition 2.1 TRUE.FALSE/ denotes the set of all true (false) closed �-free
formulas.

Definition 2.2 rk.t/ D 0 if t does not contain �.
For a canonical closed term t � �xF Œx; t1Œx�; : : : ; tkŒx�� where t1Œx�; : : : ; tkŒx�

are all subterms containing only x free,

rk.t/ WD max.rk.t1Œ0�/; : : : ; rk.tkŒ0�//C 1:

For a non-canonical closed term t Œs1; : : : ; sn� where s1; : : : ; sn are all closed
proper �-subterms,

rk.t Œs1; : : : ; sn�/ WD max.rk.s1/; : : : ; rk.sk/; rk.t Œ0; : : : ; 0�//:

rk.F / for a closed formula F is the maximum of ranks of closed �-subterms of F .

The values of �-terms and formulas in the standard model are defined in a familiar
way.

Definition 2.3 (The Principal �-Model)

P.�xF Œx�/ WD �nF Œn�

where �xF Œx� is canonical and �nF Œn� is the least natural number n satisfying
F Œn�, if such an n exists, 0 otherwise. For a closed non-canonical term we define

P.�xF Œx; �yB�/ WD P.�xF Œx;P.�yB/�/:

if x is not free in �yB . Similarly for formulas:

P.F / 2 fTRUE;FALSEg; P.F Œ�yB�/ WD P.F ŒP.�yB/�/:

Truth values for closed �-free formulas are already determined by Definition 2.1.

We consider (in analogy with Henkin models for the second order logic) more
general models.

Let Eps be the set of all canonical �-terms. The predecessor function is defined
by pd.nC 1/ D nI pd.0/ D 0.

Definition 2.4 (�-Model) An �-model is a mapping M W Eps ! N such that

either M.�xF Œx�/ D �xM.F Œx�/ or M.�xF Œx�/ D 0

and

M.�x.n D Sx// D pd.n/:
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Values of closed non-canonical terms and truth values of formulas are computed
from inside as for the principal model P , for example:

M.�xF Œx; �yBŒy��/ WD M.�xF Œx;M.�yBŒy�/�/:

For a closed formula F we write M ˆ F if M.F / D > (true).
Critical formulas are closed formulas

F Œt� ! F Œ�xF Œx�� (6)

and

t 6D 0 ! t D S.�x.t D Sx//: (7)

Define

pd.t/ WD �x.t D Sx/: (8)

In fact also formulas

F Œt� ! �xF Œx� � t (9)

and

pd.St/ D t; pd.0/ D 0 (10)

will be satisfied in our models. Note that always

P ˆ Cr; for a critical formula Cr

while for an arbitrary M this may be false if M.�xF Œx�/ D 0.
E denotes a fixed (but arbitrary) finite system of critical formulas. M.E/means

M.&E/.
Let `pD denote derivability in the quantifier free fragment of arithmetic without

induction, that is from classical tautologies and all instances of axioms for equality
(also for �-terms), defining equations for primitive recursive predicates and axioms
for the successor.

Lemma 2.5 If RŒx� is �-free, E `pD R.�xRŒx�/ and M ˆ E ,
then M ˆ RŒn� where n D �xRŒx�.
In particular if PA ` R for a closed �-free formula R, then R is true.

The idea of this statement goes back to Hilbert.
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2.2 The Update Process

We assume a fixed finite system E of critical formulas.

Definition 2.6 A sequent is a finite set of components of the form

.e; n/

where e is a canonical �-term, n is a natural number.
�-substitution (or simply substitution) is a sequent where different components

.e; n/ have different e’s.
We treat an �-substitution as a function from Eps to N and use domS for

fe W .e; n/ 2 S for some ng.

Comment. .e; n/ means e D n. We don’t have in this paper (as opposed to
[9], for example), explicit components .e; ‹/. In a sequent we don’t assume e’s in
different components to be different, so for example

.�xx D 5; 3/; .�x.x D 5/; 5/

is a legal sequent.

Definition 2.7 (Default Completion) NS for a sequent S means the result of adding
to S the default values

.�x.Sn D Sx/; n/; .�x.0 D Sx/; 0/;

.e; 0/ for all remaining terms e … domS:

Comment. The values for the predecessor function pd (cf. (7, 10) reflect a new
treatment of primitive recursive functions (compared to [9]). Since NS is infinite, it is
not a substitution. Nevertheless we sometimes treat it as a substitution, for example
in Definition 2.10.

For a given substitution S computations under S go by replacing �-terms
according to S .

Definition 2.8 If .e; n/ 2 S , then t Œe� ,!S tŒn� for any term or formula t .
We use the same symbol ,!S for multi-step reduction.
A ,!S TRUE.FALSE/ means that A reduces to a true (false) �-free closed

formula.

Lemma 2.9 Every term or formula t has a unique normal (irreducible) form jt jS
with respect to reduction ,!S . When S has values for all needed subterms (for
example, S D NU for some substitution U ) then jt j NS is a numeral for a closed term
t and jF j NS is in TRUE or FALSE for a closed formula F .

Proof Standard. ut
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Definition 2.10 Let l D �CyF Œy� for an expression F Œy� mean F Œl� &
.8k < l/:F Œk�. Such an l is obviously unique if it exists.

A substitution S is correct if for every .�xF Œx�; n/ 2 S

n D �Cm.F Œm�/ ,!S TRUE/:

A solution for a system E of critical formulas is a correct substitution S making
E true:

E ,!S TRUE:

Note that NS is used instead of S in checking for a solution.

Definition 2.11 (The Update Relation) Let T be a sequent, S � T a substitution
and for some critical formula (6) we have

.F Œt � ! F Œ�xF Œx��/ ,! NS FALSE;

that is

F Œt� ,! NS TRUE but F Œ�xF Œx�� ,! NS FALSE:

Then the corresponding update adds to the sequent T the component

.�xjF Œx�j NS ; n/ (11)

where

n D �Cm � jt j NS.F Œm� ,! NS TRUE/ (12)

unless (11) 2 T .
In this case let C.S;Cr/ denote the component (11) for the critical formula (6).

Let E be a (finite or infinite) set of critical formulas.

Definition 2.12 The non-deterministic update process is the result of generating all
possible updates using some fair procedure unless a solution is obtained as a subset
of the generated sequent.

In more detail, let T0 D ; (empty substitution). Fix some enumeration

.S1;Cr1/; : : : ; .Sk;Crk/; : : : (13)

of all pairs .S;Cr/ where S is a correct substitution and Cr 2 E is a critical formula
such that Cr ,! NS FALSE.
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If Ti is already generated and there is a solution S � Ti (that is, E ,! NS TRUE),
then the process terminates. Otherwise take the first pair .Sk;Crk/ in (13) for which
an update is not yet in T , then make the update (11), that is

TiC1 WD Ti [ fC.Sk;Crk/g:

Let T D S
i Ti .

Comments.

1. An alternative would be to take TiC1 to be

Ti [ fC.S;Cr/ W correct S � Ti & Cr 2 E & Cr ,! NS FALSEg:

2. We call this update process non-deterministic to distinguish it from the deter-
ministic process defined by W. Ackermann [1] and extensions of this definition
to the second-order case. In our set-up the pool T of possible values of �-terms
is formed by adding all “locally needed” values C.S;Cr/ in arbitrary order. The
enumeration (13) is fixed only for bookkeeping. In this respect our process is
similar to a proof-search based on Herbrand Theorem or Gentzen-style calculus
(cf., for example, [5]) for classical predicate logic.

Definition 2.13 We say that T is closed under updates if for any correct S � T

and any Cr 2 E such that Cr ,! NS FALSE we have C.S;Cr/ 2 T .

3 Non-effective Termination Proof for PA

Let’s use notation jt jM for an �-modelM similarly to notation jt jS for a substitution
S W jt jM is the result of replacing all maximal occurrences of closed subterms s in
t by M.s/. If t is a closed term, then jt jM is a natural number.

Definition 3.1 A restriction M # U of an �-model M to a set U of closed terms
or formulas is a substitution S consisting of all M-values needed for computation
of all expressions in U . It is defined inductively.

If �xF Œx� is a closed subterm of some expression in U and M.�xF Œx�/ 6D 0

then

.�xjF Œx�jM;M.�xF Œx�// 2 S:

If .�xGŒx�;m/ 2 S , �xF Œx� is a closed subterm of a formulaGŒ0�& : : :&GŒm�

and M.�xF Œx�/ 6D 0, then again .�xjF Œx�jM;M.�xF Œx�// 2 S .
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Lemma 3.2 For every �-model M and every set U of expressions M # U is
a correct substitution that agrees with M: for every component .�xF Œx�; n/ 2
M # U

M.�xF Œx�/ D n: (14)

Proof Equality (14) is a part of the definition of M # U . After this correctness of
M # U follows from correctness of M. ut

For a closed formula F let’s write M ˆ F for M.F / D >.
For every sequent T closed under updates let’s define a model M extracted from

this sequent.

Definition 3.3 For a canonical term �xF Œx�

M.�xF Œx�/ WD

8
ˆ̂
<

ˆ̂
:

n if .�xF Œx�; n/ 2 T and �Cm.M ˆ F Œm�/ D n

or �xF Œx� � pd.Sn/;

0 if 8n:..�xF Œx�; n/ 2 T &M ˆ F Œn�/:

In fact this is a definition by recursion on rk.�xF Œx�/, but M is not arithmetical
even if T is recursively enumerable. When rk.�xF Œx�/ D 1 the formula F Œm� does
not contain � and its truth value is computable outright. When rk.�xF Œx�/ > 1, for-
mulas F Œm� have smaller rank, therefore the values M.F Œm�/ are already defined.

Lemma 3.4 M ˆ E .

Proof By definition of M for canonical �-terms e we have

If M.e/ D n 6D 0 then .e; n/ 2 T . (15)

If .�xF Œx�; n/ 2 T and n D �Cm.M ˆ F Œm�/, then n D M.�xF Œx�/. (16)

Take a critical formula Cr 2 E of the form F Œt� ! F Œ�xF Œx��.
Denote

e WD �xF Œx�; e� WD M.�xF Œx�/; t� WD M.t/:

Let

S WD M # Cr:

S � T by (15). We need to prove Cr ,! NS TRUE, since then M ˆ Cr and we
are done. If F Œt� ,! NS TRUE, F Œ�xF Œx�� ,! NS FALSE, take the minimal n � t�
such that F Œn� ,! NS TRUE. Since S contains all needed values of M, in particular
t� D jt j NS , this implies

n D �Cm.M.F Œm�/ D >/: (17)
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Since all possible updates are eventually performed, the update to S and Cr adds to
T the component .�xjF Œx�j NS ; n/. Together with (17) and �xjF Œx�j NS � �xjF Œx�jM
this implies by (16) n D M.�xF Œx�/, and hence M.Cr/ D > as required.

Critical formulas (7) are true in M since pd has correct value in M. ut
Theorem 3.5 Non-deterministic update process always terminates in a solving
substitution.

Proof Since M ˆ E take the restriction S WD M # E . Then S � T and E ,! NS
TRUE. ut

4 A Substitution Method for ID1.S1/

We extend the results and proofs in Sects. 2, 3 from PA to ID1. To simplify
presentation we consider a particular but still universal set. The next subsection
coincides with corresponding subsection in [8].

4.1 Inductive Definition of Constructive Ordinals

A typical inductively defined set is the set S1 of constructive ordinals introduced by
A. Church and S. Kleene (cf. [3,11]). Every other arithmetically inductively defined
set is primitive recursive in S1. Let’s describe one particularly simple inductive
definition of S1. The author has not found exactly this description in the literature.

Definition 4.1 n 2 S1 iff

n D 0 _ 9e.n D 2e & e 2 S1/ _ 9e.n D 3 � 5e & 8x9y.T .e; x; y/& U.y/ 2 S1//

where the last disjunct means that the e-th partial recursive function is total and all
its values are in S1.

Consider for every n the following primitive recursive tree Tn whose nodes are
finite sequences of natural numbers. Every node is labeled by a natural number.

The root ; is labeled by n.
If the node a is labeled by 0, then a is the leaf node: it has no predecessors.
If the node a is labeled by 2e , then the immediate predecessor a 
 h0i of a is

labeled by e and no node a 
 hk C 1i is in the tree (and similarly below when only
one predecessor is labeled).

If the node a is labeled by 3�5e, then its immediate predecessor at the node a
hxi
is labeled by 3 � 5e � 7xC1.

If the node a is labeled by 3 � 5e � 7xC1, then the immediate predecessor a 
 h0i is
labeled by 3 � 5e � 7xC1 � 111.
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If the node a is labeled by 3 � 5e � 7xC1 � 11yC1 and T .e; x; y/ is false, then the
immediate predecessor a 
 h0i is labeled by 3 � 5e � 7xC1 � 11yC2.

If the node a is labeled by 3 � 5e � 7xC1 � 11yC1 and T .e; x; y/ is true, then the
immediate predecessor a 
 h0i is labeled by U.y/.

If the node a is labeled by a number m > 0 that does not have one of the forms
above, then the immediate predecessor a
h0i of a is labeled by the same numberm.

Lemma 4.2 n 2 S1 iff Tn is well-founded.

Proof 1. If Tn is well-founded, then n 2 S1. This is proved by transfinite induction
on Tn. In more detail we prove that
every node with a label 0, 2e, 3 � 5e is in S1, and
for every node with a label 3 � 5e � 7xC1 � 11yC1 such that T .e; x; y/ is true, U.y/
is in S1, and
for every node with a label 3 � 5e � 7xC1 � 11yC1 such that T .e; x; y/ is false, there
is an y0 > y such that T .e; x; y0/ is true.
Note that every label has one of these forms since otherwise it generates infinite
branch in the tree.

2. If n 2 S1, then Tn is well-founded. Proved similarly by transfinite induction on
the inductive definition of S1.

ut
Definition 4.3

p.n; l/ WD

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

e if n D 2e;

n � 7lC1 if n D 3 � 5e;
n � 11 if n D 3 � 5e � 7xC1;
n � 11 if n D 3 � 5e � 7xC1 � 11yC1 & :T .e; x; y/;
U.y/ if n D 3 � 5e � 7xC1 � 11yC1 & T .e; x; y/;

0 otherwise;

R.n/ W� .9e � n/.9x � n/.9y � n/

.n D 2e _ n D 3 � 5e _ n D 3 � 5e � 7xC1 _ n D 3 � 5e � 7xC1 � 11yC1/:

Let WF mean “well-founded”.

Lemma 4.4 Tn 2 WF $ Œn D 0 _ .Rn & 8l.Tp.n;l/ 2 WF//�, and hence relation
Tn 2 WF can be given by the inductive definition

In $ .n D 0 _ .R.n/& 8lIp.n; l// (18)

and n 2 S1 is defined inductively by Lemma 4.2.

Proof By cases in the definition of Tn: they are listed by R.n/. ut
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4.2 System ID1�.S1/

Add to the language of PA� a new unary predicate I and to the list of axioms a new
axiom

.AŒI; t �/� ! It (19)

and the axiom schema of transfinite induction

.8x.AŒF; x� ! F Œx�//� ! .It ! F Œt�/: (20)

where AŒI; x� � .x D 0 _ .R.x/& 8yIp.x; y/// is a formula from (18).
We express the primitive recursive function p.x; y/ via the graph P of this

function:

p.s; t/ WD �zP.s; t; z/

and include into ID1�.S1/ the axiom

P.s; t; u/ ! p.s; t/ D u: (21)

Let’s denote

BŒI; y; x� W� .x D 0 _ .RŒx� & Ip.x; y///;

e.t/ WD �y:BŒI; y; t �I e.F; t/ WD �y:BŒF; y; t �:

Then we have

.AŒI; x�/� � BŒI; e.x/; x�;

the axiom (19) becomes

BŒI; e.x/; x� ! Ix;

and the schema (20) becomes first

.AŒF;X� ! F ŒX�/ ! .It ! F Œt�/;
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where X WD �x:.AŒF; x� ! F Œx�/, then

.BŒF; e.F;X/;X� ! F ŒX�/ ! .It ! F Œt�/:

Note that the value e.n/ D k is expressed by the formula

:BŒI; k;m� ^ 8l < kBŒI; l; n�
which does not depend on other �-terms except p.n; k/, and it is monotonic with
respect to NI : if :BŒI; k; n� computes to TRUE using only given finite number of
values of the complement NI of I (and true values of p.n; l/) then by monotonicity
the same computation works for any extension of this set of values respecting
�zP.x; y; z/ D p.x; y/.

Definition 4.5 A term �xAŒx� is canonical if it is closed and does not contain
proper closed �-subterms or expressions It with a constant term t .

Definition 4.6 Components are expressions of the form

.e; n/; NIn;
where e is a canonical �-term, n, l are natural numbers.

A sequent is a set of components.
�-substitution or simply substitution is a finite sequent with components of the

form

.e; n/; NIn;
such that the terms e in different components .e; n/ are different.

Definition 4.7 Computation under given substitution S (and the symbols ,!S ,
jF jS , etc.) is defined by the same clauses as for PA plus the clauses:

If NIn 2 S then In ,!S FALSE:

The default completion NS of the substitution S is the result of adding components

.pd.0/; 0/; .pd.Sn/; n/; .�zP.m; n; z/; k/ for k D p.m; n/

and .e; 0/ for all remaining canonical �-terms not in domS , as well as components
In for all n such that NIn 62 S .

For computations with NS one more clause is added to Definition 2.8:

If In 2 NS then In ,! NS TRUE.

Our definition of NS makes true all critical formulas of the form (7), (21).
Note that the components NIn and canonical terms e.n/ are preserved even when

arithmetical �-terms change value.
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4.3 Updates for ID1�.S1/

As in the case of PA (Sect. 2.2) we assume a fixed systemE of critical formulas and
are looking for a substitution S solving this system, that is such that

Cr ,! NS TRUE

for all critical formulas Cr 2 E .
Note that below all computations are done for NS , not just S . In particular In 2 NS

for all n except when already NIn 2 S .
Let T be a sequent (called current sequent below) which does not contain as a

subset any solving substitution and S � T be a correct substitution. S falsifies some
critical formulas in the system E to be solved. We define a corresponding update,
that is a component or components to be added to the sequent T unless they are
there already.

The update for the arithmetical critical formula F Œt� ! F Œ�xF Œx�� and
substitution S is defined as before (Definition 2.11): the component .�xjF Œx�j NS ; n/
is added with

n D .�Cm � jt j NS/.F Œm� ,! NS TRUE/:

There are no special updates for axioms of the form

AŒI; t � ! It:

They are in fact implicit in the Definition of �-model for ID1�.S1/, cf. (32) below.

4.3.1 Update for Transfinite Induction Axioms

Cr denotes below the critical formula

.8x.AŒF; x� ! F Œx�//� ! .It ! F Œt�/; (22)

and we assume that

Cr ,! NS FALSE; (23)

that is for n WD jt j NS

.8x.AŒF; x� ! F Œx�/� ,! NS TRUE; (24)
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but

In ,! NS TRUE; F Œn� ,! NS FALSE: (25)

Denote l WD je.F; n/j NS .
Recall that intuitively NIn $ 9y:BŒI; y; n� $ :BŒI; e.n/; n�:

1. If

BŒI; l; n� ,! NS FALSE;

then the update adds to the current sequent T the components

NIn; .e.n/; k/ .all k � l/

and no other update applies to the axiom (22) with the substitution S .
2. Assume BŒI; l; n� ,! NS TRUE, still with (23), (24), (25) and

.AŒF; n� ! F Œn�/� ,! NS FALSE:

Recall that In ,! NS TRUE means by our default convention that In … domS and
In 2 NS .

The update adds to the current sequent T the component

.�x:j.AŒF; x� ! F Œx�/� j NS ; n0/

where n0 WD .�m � n/..AŒF;m� ! F Œm�/� ,! NS FALSE/.
Note. This has the effect of updating for a virtual critical formula

.8x.AŒF; x� ! F Œx�//� ! .AŒF; n� ! F Œn�/

or more precisely

:.AŒF; n� ! F Œn�/ ! :.AŒF;X� ! F ŒX�/

for X WD �x:.AŒF; x� ! F Œx�/. In view of (24) this update makes true formula

.AŒF; n0� ! F Œn0�/� :

3. Assume that T contains a correct substitution S , and for the critical formula (22)
denoted below by Cr and for

n WD jt j NS ; l WD je.F; n/j NS
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we have

Cr ,! NS FALSE BŒI; l; n� ,! NS TRUE

and

.AŒF; n� ! F Œn�/� ,! NS TRUE: (26)

Ifm WD p.n; l/ D 0, no update applies to the axiom (22) with the substitution S .
If m 6D 0, note that F Œn� ,! NS FALSE (cf. (25)) and (26) imply

AŒF; n� � BŒF; e.F; n/; n� ,! NS FALSE;

so we have

BŒF; l; n� ,! NS FALSE; BŒI; l; n� ,! NS TRUE: (27)

We have n 6D 0 since

AŒF; 0� � 0 D 0 _ .R.0/& F Œp.0; l/�/ ,! NS TRUE:

Recall that

BŒI; l; n� � .n D 0 _ .R.n/& Ip.n; l///;

BŒF; l; n� � .n D 0 _ .R.n/& F Œp.n; l/�//:

The relations (27) and n 6D 0 imply form D p.n; l/ that

Im ,! NS TRUE; F Œm� ,! NS FALSE: (28)

The update adds to T the components

NIn and .e.n/; k/ .for all k � l/; (29)

NIm and .e.m/; k/ .for all k � je.F;m/j NS/: (30)

This completes the definition of update.

4.4 Termination Proof for ID1

We extend the definitions of the Sect. 3 from PA to ID1.
Eps denotes now the set of all canonical �-terms in the language of ID1, and

Can WD Eps [ fIn W n 2 Ng:
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Definition 4.8 (The Principal –-Model) The principal (standard) model is defined
in a familiar way: Let I be the least fixed point of the inductive definition given by
the formula A. Define:

P.In/ WD InI P.�xF Œx�/ D �nP.F Œn�/:

Definition 4.9 (–-Model) An �-model is a mapping M W Can ! N [ f>;?g such
that

M.�xF Œx�/ D �Cx.M.F Œx�/ D >/ or M.�xF Œx�/ D 0 (31)

and

M.In/ D ? implies M.BŒI; e.n/; n�/ D ?: (32)

The definitions for non-canonical expressions are as before (Definition 2.4).
For a closed formula A we write M ˆ A if M.A/ D >. Note that always

P ˆ Cr; for every critical formula Cr

while for an arbitrary �-model M this may be false both for arithmetical critical
formulas and for transfinite induction axioms. However all closed critical formulas
of the form (7), (21) and

AŒI; t � ! It; i.e., BŒI; e.t/; t � ! It

are true in every �-model.
`pD denotes as before derivability in the quantifier free fragment of arithmetic

without induction containing now the predicate symbol I but no special axioms for
this symbol.

We have as before:

Lemma 4.10 If RŒx� is �; I -free, S is solving for all critical formulas in E and
E `pD R.�xRŒx�/,

then `pD RŒn�, in particular RŒn� 2 TRUE where n D j�xRŒx�jS .

The update process is defined (with the new notion of update) exactly as in the
Definition 2.12.

Definition 4.11 The non-deterministic update process is the result of generating all
possible updates using some fair procedure unless a solution is obtained as a subset
of the generated sequent.

Definition 4.12 A path for a sequent T is a sequence

n1; n2; : : : (33)
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(finite or infinite) of positive natural numbers nk > 0 such that there exists a
sequence flkg of natural numbers such that for every k (except possibly the last
element of the sequence) either

R.nk/ 2 FALSE & 8l.nkCl D nk/ (34)

or,

NInk; .e.nk/;m/ 2 T for all m � lk (35)

and

nkC1 D p.nk; lk/; R.nk/ 2 TRUE: (36)

A sequence flkg satisfying (35)–(36) is called a witness for the path (33).

Define

inf.n/ W� there is an infinite path for T containing n.

Note 1 Any infinite path (33) for a sequent T is an infinite path in the tree Tn1
(Sect. 4.1), and hence inf.n/ implies n 62 S1.

Theorem 4.13 The update process terminates in a solution after a finite number of
steps.

Proof Let T be a sequent closed under updates. Let’s define an �-model extracted
from T .

Define the rank rk0 of �-terms and formulas exactly as before (Definition 2.2). In
other words rk0.In/ D 0 and only nesting of variables bound by � is important.

Define

M. NIn/ D > W� . NIn 2 T & inf.n//:

Note that the computation of M.BŒI; l; n�/ D ? needs only values of NIn-
components and values of p.x; y/. On the other hand, M is at best bool.†11/.

Now define for the terms e.n/

M.e.n// D
(
l if l D �Cy..e.n/; y/ 2 T & M.BŒI; y; n�/ D ?/,
0 if 8y:..e.n/; y/ 2 T & M.BŒI; y; n�/ D ?/.

For all remaining canonical �-terms define the values exactly as in Definition 3.3
taking into consideration that the values of all I -formulas are already defined. In
more detail:
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Definition 4.14 For a canonical term �xF Œx�

M.�xF Œx�/ WD
(
n if �Cm..�xF Œx�;m/ 2 T & M.F Œm�/ D >/ D n,

0 if 8m:..�xF Œx�;m/ 2 T & M.F Œm�/ D >/.

In fact this is a recursion on rk0.�xF Œx�/.

Lemma 4.15 1. If M. NIn/ D >, then NIn 2 T ;
If M.�xF Œx�/ D n > 0 for a canonical �xF Œx�, then .�xF Œx�; n/ 2 T .

2. M is an �-model.

Proof The condition 1 is a part of our definition for In and for canonical �-terms.
Condition (31) is the part of the definition of M.
Let’s check the condition (32). Assume M.In/ D ?. Then there is an infinite

path (33) with n1 D n and suitable witness flkg. Note that n 6D 0 since : inf.n/.
If R.n/ 2 FALSE, then BŒI; e.n/; n� � .n D 0 _ .R.n/& Ip.n; e.n//// is false

for any value of e.n/.
Assume now that R.n/ 2 TRUE so that (35), (36) hold for k D 1. In particular

n2 D p.n; l1/ also belongs to the same infinite path, hence M.Ip.n; l1// D ?,
NIp.n; l1/ 2 T by (35) and

M.BŒI; l1; n�/ D M.n D 0 _ Ip.n; l1// D ?:

Together with .e.n/; k/ 2 T for all k � l1 this implies M.e.n// � l1, with
M.BŒI; e.n/; n�/ D ? as required. ut
Definition 4.16 Extend the Definition 3.1 of restriction to ID1�.S1/ to include all
components Ip, :Ip needed for computations of M-values for the formulas or terms
in question. A restriction M # U of an �-model M to a set U of closed terms or
formulas is a substitution S consisting of all M-values needed for computation of
all expressions in U .

By Lemma 4.15.1 we have S � T for every restriction S of M.

Lemma 4.17 M ˆ E:

Proof The proof for arithmetical critical formulas is the same as before.
Critical formulas

AŒI; t � ! It

are true by (32).
Consider now a critical formula

Cr W� .8x.AŒF; x� ! F Œx�//� ! .It ! F Œt�/: (37)
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Let

n WD M.t/; l WD M.e.F; n//; m WD p.n; l/:

Denote CrŒz� WD .8x.AŒF; x� ! F Œx�//� ! .I z ! F Œz�/ and assume

M ˆ :CrŒn�; (38)

that is

M ˆ .AŒF;X� ! F ŒX�/; M ˆ In; M ˆ :F Œn�; (39)

where X WD �x:.AŒF; x� ! F Œx�/. We prove that

M ˆ :CrŒm�: (40)

Let

U WD fe.F; n/g [ fBŒI; l; n�g [
f.AŒF;X� ! F ŒX�/ ! .AŒF; n� ! F Œn�/g [ fAŒF; k� ! F Œk� W k � M.X/g [

fF Œm�g

and take S WD M # U . ut
Lemma 4.18 Assume M ˆ :CrŒn�. Then the following hold.

1. n 6D 0.
2. R.n/ 2 TRUE, cf. (36).
3. Only case 4.3.1.1 of the update is applicable, and NIn 2 T , NIm 2 T .

Proof M ˆ AŒF;X� ! F ŒX� implies X D 0, since otherwise M ˆ
:.AŒF;X� ! F ŒX�/ by correctness. Therefore M ˆ AŒF;X� � .X D 0 _
.R.X/& Ip.X; e.X////, and hence M ˆ F ŒX�, that is M ˆ F Œ0�. By (39),

n 6D 0:

The elements e.F; n/ and BŒI; l; n� in U ensure that l D je.F; n/j NS and (since
Ip.n; l/ is a subformula of BŒI; n; l�)

BŒI; l; n� ,! NS FALSE iff M.BŒI; l; n�/ D ?;
Ip.n; l/ ,! NS FALSE iff M.Ip.n; l// D ?:

If update 4.3.1.1 is applicable to S , we have BŒI; l; n� ,! NS FALSE and (since
R.n/ 2 TRUE) also Ip.n; l/ � Im ,! NS FALSE, so M.BŒI; l; n�/ D ?, M.Im/ D
?. The update 4.3.1.1 adds to T components NIn and .e.n/;m/ form � l (as needed
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for (35)). By M.Im/ D ? there is an infinite path for m D p.n; l/. Adding n
in front of this path and l1 D l in front of the witness we get the infinite path
for n proving M.In/ D ?, a contradiction with (39). Hence update 4.3.1.1 is not
applicable.

The next two elements of the list U show that update 4.3.1.2 is not applicable,
cf. the proof of Lemma 3.4.

Hence the update 4.3.1.3 is applicable. ut
The implication

8n9l.M ˆ :CrŒn� ! M ˆ :CrŒp.n; l/�/

will show by induction that for every k there exists a path n D n1; : : : ; nk in T
such that M ˆ :CrŒni � and niC1 D p.ni ; li / for all suitable i � k. This in turn
implies that there is an infinite path in T beginning with n, and hence M ˆ :In by
Lemma 4.18, contradicting (39).

Towards (40) note that the update 4.3.1.3 adds to T (for m D p.n; l/)
components (29), (30). Moreover, since F Œm� 2 U we have M.F Œm�/ D ? since
F Œm� ,! NS FALSE by (28). As in the case of the update 4.3.1.1 M.Im/ D > since
otherwise inf.m/ implying inf.n/ which contradicts (39). Together with (39) this
implies (40) as required. ut
Theorem 4.19 The non-deterministic update process always terminates in a solu-
tion.

Proof Since M ˆ E , take the restriction of M that was used in the computation.
It is a (finite) solving substitution contained in M, hence in T . ut
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A Game-Theoretic Computational
Interpretation of Proofs in Classical Analysis

Paulo Oliva and Thomas Powell

Abstract It has been shown by Escardó and the first author that a functional
interpretation of proofs in analysis can be given by the product of selection
functions, a mode of recursion that has an intuitive reading in terms of the
computation of optimal strategies in sequential games. We argue that this result has
genuine practical value by interpreting some well-known theorems of mathematics
and demonstrating that the product gives these theorems a natural computational
interpretation that can be clearly understood in game theoretic terms.

1 Introduction

Over the last century, mathematicians and computer scientists have become increas-
ingly interested in understanding the computational content of mathematical proofs.
A central feature of modern mathematics is the use of non-constructive methods
that allow us to reason about infinitary objects without providing any computational
justification. In the 1920s Hilbert’s program broadly addressed the task of under-
standing non-constructive mathematics in computational terms, which led to the
development of important proof-theoretic techniques such as cut-elimination, the "-
method and proof interpretations. These were used to obtain significant foundational
results such as relative consistency proofs for arithmetic [15] and analysis [27].

In recent decades these metamathematical devices whose roots lie in foun-
dational problems have been employed more directly towards the extraction of
programs from non-constructive proofs. This shift of emphasis has its origins in
the fundamental work of Kreisel on the “unwinding” of proofs [19, 20], and has
now become the focus of a considerable amount of research in logic and computer
science.
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Among the most powerful tools for extracting constructive information from
proofs are proof interpretations, which include Freidman’s A-translation with
realizability [7,13] and Gödel’s Dialectica interpretation [15]. The latter in particular
is central to the highly successful proof mining program (see Kohlenbach [18]), in
which the analysis of proofs using the monotone Dialectica interpretation has led to
the development of general meta-theorems guaranteeing the extraction of effective
uniform bounds from theorems in analysis.

While proof interpretations have been widely applied for both foundational
purposes and to obtain numerical information from theorems in mathematics,
the qualitative (computational) behaviour of their output has received relatively
little attention. Indeed, the operational semantics of programs extracted from even
relatively simple classical proofs are often very difficult to understand. This is
mainly due to two factors:

1. Higher-order computation. Even when computing a witness of type N the
constructions involved will work on higher types, usually types 1 and 2. Gödel’s
primitive recursor itself even for the lowest type is already an object of type 2.

2. Syntactic nature of proof interpretations and translations. Extracted pro-
grams tend to be hidden beneath a complex layer of syntax that generally
accompanies formal translations on proofs.

Moreover, relatively little work has gone into addressing these issues because more
often than not proof interpretations are a means to an end—be it a consistency proof
or the extraction of a uniform bound—and a qualitative understanding of their output
is simply irrelevant.

Nevertheless, the idea of stripping functional interpretations of their syntax and
appreciating how they work from a mathematical perspective is an interesting one.
It has been observed by Gaspar and Kohlenbach [14, 18] that the kind of logical
manipulations carried out by the Dialectica interpretation is closely related to the
so-called correspondence principle between “soft” and “hard” analysis discussed
by Tao in [28,29]. In this sense one could potentially view functional interpretations
as devices that transform classical proofs into constructive proofs of a “finitized”
form of the original theorem, although actually translating their output into what a
mathematician would consider a proof is far from straightforward.

In recent work [8, 11, 23] the authors and Escardó have sought to address this
problem and better understand programs extracted by the Dialectica interpretation.
There it is shown that the Dialectica interpretation of the key combination of
classical logic and countable choice can be realised by the product of selection
functions (as opposed to Spector’s bar recursion [27] or modified bar recursion
[3, 5, 6]), an intuitive mode of computation that can be characterised as computing
optimal strategies in a very general class of sequential games.

Consider, for instance, an 98-theorem 9xX8yY A.x; y/, with A.x; y/ a decid-
able predicate, and x and y having types X and Y respectively. We want to think
of the type of possible witnesses X as a set of available moves, and Y as the set
of possible outcomes of a game. Note that such game only has one round (and one
player!), and the choice of the outcome y W Y is thought of as being determined



A Game-Theoretic Computational Interpretation of Proofs in Classical Analysis 503

by some external “environment”. Such environment would map each move x to an
outcome y. The predicate A.x; y/ is then understood as prescribing what are the
good outcomes y given any particular move x, i.e. it describes the goal of the player
in the game by describing which outcomes are good for each choice of move. Hence,
the theorem 9xX8yY A.x; y/ says that there exists a move x for which all possible
outcomes y are considered good, a sort of “winning move”.

Now, if the theorem has been proven classically, such a move can be shown
to exist without it being explicitly given, or it might be that such x is not even
effectively computable in the other parameters of the formula A.x; y/. What we
should do then is to consider the “constructive” equivalent of the theorem via the
negative translation, namely ::9xX8yY A.x; y/. With the help of the quantifier-
free axiom of choice and the Markov principle, this can also be put in the form 98,
and in fact that is precisely what the Dialectica interpretation does. In this case we
would obtain the (classically) equivalent theorem

9".X!Y /!X8pX!Y A."p; p."p//:

Although x W X might not be effectively computable, it turns out that the selection
function " W .X ! Y / ! X is. Moreover, we can extend our game-theoretic reading
and view p W X ! Y as a mapping from moves to outcomes. What the selection
function " does is to pick, for any given such mapping p, a move x D "p whose
corresponding outcome according to p, namely y D px is a good outcome for x. In
other words, if we have access to the “environment” p W X ! Y that calculates the
outcome of the game for a given move x, then we can effectively compute a move
whose corresponding outcome is a good one.

Now suppose we are given a countable family of 98-predicates 9x8yAn.x; y/
interpreted by a sequence of selection functions ."n/. From 8n9x8yAn.x; y/, by
countable choice, there exists a sequence f W N ! X satisfying 8n; yAn. fn; y/.
The Dialectica interpretation of ::9f 8n; yAn. fn; y/ states that for any given
functions q W XN ! Y and ! W XN ! N there exists a functional f such that

A!f .f .!f /; qf /:

Therefore, thinking of each An.x; y/ as prescribing the “good” pairs of move-
outcome for round n, the task of giving a computational interpretation to countable
choice corresponds to finding, in ."n/, a sequence of moves f which leads to an
outcome y D qf that is considered good at round n D !f .

We will see that the product of the selection functions ."n/ calculates such an f ,
and this construction can be viewed as the calculation of an optimal strategy in a
sequential game whose “goal” at round n—given by the selection function "n—is
to pick a move which leads to a good outcome according to An.

The aim of this article is to demonstrate that, in practice, program extraction
using the product of selection functions and its game-theoretic semantics leads to
a much better appreciation of the constructive content of proofs in analysis. We
illustrate this using a few well-known classical theorems that have been extensively
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analysed by proof theorists. In particular we include a detailed analysis of a proof
of the Bolzano–Weierstrass theorem, the interpretation of which is by no means
trivial, but from which we are nevertheless able to extract a program that can be
given a clear description in the language of sequential games.

In the course of the paper our aim is to portray the Dialectica interpretation as
an intelligent translation whose output can be read and understood in mathematical
terms. As such we endeavour to phrase the higher type functionals that arise from
the interpretation using a more informal vocabulary. This approach owes a lot to
the aforementioned work by Gaspar and Kohlenbach, and it is hoped that our work
will complement theirs in forming another small step towards understanding the
mathematical significance of proof interpretations.

2 Preliminaries

We work in the language of Peano (and Heyting) arithmetic in all finite types PA!

(HA! , respectively). The finite types T contain a basic type N and wheneverX; Y 2
T then X ! Y 2 T, i.e.

T D fN;N ! N; .N ! N/ ! N; : : :g:

Closely related to PA! is Gödel’s system T of primitive recursive functionals of
finite type. This quantifier-free calculus is essentially primitive recursive arithmetic
PRA with the schema of recursion extended to all types X 2 T, i.e.

Rn.h/.g/
XD
(
g if n D 0;

hn.Rn�1.h/.g// if n > 0:
(1)

For full details of these theories the reader is referred to [1]. Technically by PA!

(HA!) we refer to the weakly extensional variants of arithmetic in all finite types,
since full extensionality is not sound under the Dialectica interpretation. However,
we make no such restriction in the verifying system T.

Notation We make informal use of types like B � f0; 1g, Q, finite sequences types
X�, etc. as elements of these types can be encoded as elements of a suitable type in
T. We also make use of the following abbreviations:

• 0X is the constant zero functional of type X .
• s 
 t is the concatenation of sequences s W X� and t W X�.
• s 
 ˛ is also used for the concatenation of sequences s W X� and ˛ W XN.
• s � t for “s is a prefix of t”.
• Os � s 
 0X

N

the infinite extension of a finite sequence s W X� with 0’s.
• Œ˛�.n/ � h˛0; : : : ; ˛.n � 1/i is the initial segment of ˛ of length n.
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• �n � N : '.n/ is the bounded search operator that returns the least n � N

satisfying the decidable predicate '.n/ if one exists, or N otherwise.
• Given a functional f W X ! .Y ! Z/ and an x W X , we often write fx for the

functional f .x/ of type Y ! Z.

2.1 The Dialectica Interpretation

We assume that the reader is familiar with Gödel’s Dialectica interpretation (details
of which are covered in full in [1, 18]), although we recall below a few basic facts
to familiarise the reader with our notation and terminology.

The Dialectica interpretation maps formulas A of some specified theory S to a
quantifier-free formula jAjxy (whose free variables are x, y and the free variables of
A) definable in some specified quantifier-free system of functionals F. The canonical
instance of this mapping is when S is HA! and F is Gödel’s system T.

In jAjxy we have that x and y stand for (possibly empty) tuples of objects of finite
type. We think of x as the witnessing variables and y as the challenge variables. The
intuition is that A is logically equivalent to 9x8yjAjxy . The translation is formally
defined as follows:

Definition 1 (Gödel’s Dialectica Interpretation) For atomic formulas P we set
jP j WD P , with x and y both empty tuples. Assuming that we have already defined
jAjxy and jBju

v, we define

jA ^ Bjx;vy;w WD jAjxy ^ jBjv
w;

jA _ Bjx;v;by;w WD .b D 0 ^ jAjxy/ _ .b D 1 ^ jAjv
w/;

jA ! Bjf;gx;w WD jAjxgxw ! jBjfx
w ;

j8zA.z/jfy;z WD jA.z/jfz
y ;

j9zA.z/jx;zy WD jA.z/jxy:

We say that S is (Dialectica) interpreted in F if whenever S ` A we can construct
some t 2 F such that F ` jAjty .

In order to interpret classical theories, the Dialectica interpretation is typically
composed with a negative translation1 .�/N to form the so-called ND interpretation.
In the remainder of the paper, by the functional interpretation of a formula A we
specifically mean its ND interpretation, i.e. jAN jxy . Hence, a classical theory T has
a functional interpretation in F if whenever T ` A we can construct some t 2 F
satisfying F ` jAN jty .

1As in [18] we adopt Kuroda’s variant of the negative translation.



506 P. Oliva and T. Powell

In his original paper on the Dialectica interpretation, Gödel proved that Peano
arithmetic has a functional interpretation in system T. Later, Spector extended
Gödel’s result to classical analysis by realizing the Dialectica interpretation of the
negative translation of the axiom of countable choice

AC0 W 8n9xXAn.x/ ! 9f XN8nAn. fn/

with a novel form of recursion called Spector bar recursion SBR. It was later shown
[16, 21] that even dependent choice2

DC W 8sX�9xXAs.x/ ! 9f XN8nAŒf �.n/. fn/

could be interpreted using bar recursion. To summarise:

Theorem 2

(a) PA! has a functional interpretation in T (Gödel [15]).
(b) PA! C AC0 and even PA! C DC have a functional interpretation in T C SBR

(Spector [27], and also [16, 21]).

The main purpose of this paper is to show that these soundness theorems
can be reformulated in terms of the product of selection functions, and that this
reformulation is better suited towards understanding the behaviour of programs
extracted by the Dialectica interpretation.

2.2 Outline of Article

We begin in Sect. 3 by introducing the product of selection functions and showing
that it can be characterised as an operation that computes optimal strategies in
sequential games.

In the main part of the paper we then discuss how the language of selection
functions is well suited to capturing the way in which the Dialectica interpretation
works, and in particular the product of selection functions directly interprets
countable choice.

We then present a short case study (Sect. 6) in which we extract a program from
a proof of the Bolzano–Weierstrass theorem via the product of selection functions
and demonstrate that our program has a clear game-theoretic semantics.

We conclude by briefly discussing some of the problems we face in gaining
a more intuitive understanding of functional interpretations, and outline some
potential directions for further research.

2In these papers DC is given in a slightly different form to ours.
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3 Selection Functions

This and the following sections constitute a brief overview of work that is presented
in full elsewhere, e.g. the reader is referred to the original paper [9] or a recent
survey [11] for a more detailed treatment.

A selection function is defined to be any element of type .X ! R/ ! X (as in
[9] we abbreviate this type as JRX ). Closely related to selection functions " W JRX
is the notion of a quantifier � W .X ! R/ ! R. A quantifier � is attained by a
selection function " if �.p/ D p."p/, for all p W X ! R. Note that any selection
function defines a quantifier, which we denote by ".p/ D p."p/. Hence, a quantifier
� is attainable if � D " for some selection function ". The intuition is to view " as
a selector that given a function p W X ! R picks a particular element of x D "p of
X such that p.x/ attains �.p/, as the following examples illustrate.

Example 3

(a) The canonical example of a selection function and its associated quantifier is
when R forms a set of truth values, e.g. R D B. Hilbert’s epsilon term of type
X , "X W JBX is a selection function which attains the usual existential quantifier
9X for predicates over type X , since by definition we have

9xX p.x/ , p."Xp/:

(b) By the mean value theorem there exists a selection function " W JŒ0;1�R such that
for any continuous function p W Œ0; 1� ! R we have

Z 1

0

p.x/dx D p."p/:

Hence, " W .Œ0; 1� ! R/ ! Œ0; 1� attains the quantifier
R 1
0

W .Œ0; 1� ! R/ ! R.
(c) Assume we are given a position in a game where we have to pick a move in X ,

and a quantifier � that given a map p W X ! R which assigns to each potential
move an outcome in R, determines the best possible outcome. A strategy for
that position can be defined by a selection function " W JRX that for each p
selects a move ".p/ that attains the best outcome �.p/.

The theory of selection functions and quantifiers forms the basis of [9–11]. One of
the main achievements of these papers has been to define a product operation on
selection functions (along with a corresponding operation on quantifiers which we
do not discuss further here). They demonstrate that the product of selection functions
is an extremely versatile construction that appears naturally in several different
areas of mathematics and computer science, such as fixed point theory (Bekič’s
lemma), algorithms (backtracking), game theory (backward induction) and, as we
also discuss in Sect. 5, proof theory.
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In the remainder of the section we define (following [9]) the product of selection
functions, and explain in the following section how this procedure can be best
understood via the computation of optimal strategies in a certain class of sequential
games.

Definition 4 (Binary Product of Selection Functions [9]) Given a selection func-
tion " W JRX , a family of selection functions ıx W JRY and a predicate q W X � Y !
R, let

AŒxX �
YWD ıx.�y:q.x; y//;

a
XWD ".�x:q.x; AŒx�//:

The binary product "˝ı of " and ı is another selection function, of type JR.X�Y /,
defined by

."˝ ı/.q/
X�YWD ha;AŒa�i:

If ı is independent of x, we call this the simple product of selection functions.
The general case is then by comparison called the dependent product of selection
functions.

The binary product constructs a composite selection function on the typeX � Y
in the natural way:

Example 5 Continuing from Example 3 we have:

(a) The product of epsilon operators "X ˝ "Y is an epsilon operator of type X � Y
in the sense that

9xX9yY q.x; y/ , q.."X ˝ "Y /.q//:

(b) For " W JŒ0;1�R as in Example 3 (b), we have

Z 1

0

Z 1

0

q.x; y/ dxdy D q.."˝ "/.q//

where q W Œ0; 1�2 ! R is a given continuous function.
(c) Given strategies "0, "1 for each round in a two round sequential game with

outcome function q W X0 � X1 ! R, then ."0 ˝ "1/.q/ forms a strategy for
the game which is “compatible” with the local strategies "0 and "1. This key
instance of the product is discussed in more detail in Sect. 4.

As described in [9], we can iterate the binary product of selection functions
a finite or an unbounded number of times, where the length of the iteration is
dependent on the output of the product in the following sense.
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Definition 6 (Iterated Product of Selection Functions [9]) Suppose we are given
a family of selection functions ."s W JRX/s2X� . The explicitly controlled unbounded
product of the selection functions "s is defined by the recursion schema

EPS!
s ."/

JRX
ND
(

0 if !.Os/ < jsj;
"s ˝ �x:EPS!

s�x."/ otherwise
(2)

where s W X� and ! W XN ! N.

The functional! acts as a control, terminating the procedure once it has produced
a sequence s satisfying !.Os/ < jsj. The unbounded product is total in any model of
bar recursion, which in particular must admit Spector’s condition:

8!XN!N; ˛X
N9n

�
!.1Œ˛�.n// < n

�
:

These include the models of continuous functionals and the majorizable functionals.
On the other hand, when ! is a constant function, say !˛ D n, this corresponds to
a finite iteration of the binary product and this restricted instance of the product is
definable in system T.

By unwinding the definition of the binary product in (2) we obtain an equivalent
equation

EPS!s ."/.q/
XND
(

0 if !.Os/ < jsj;
as 
 EPS!s�as ."/.qas / otherwise

(3)

where as D "s.�x:EPS!
s�x."/.qx// and qx.˛/ D q.x 
 ˛/. Recall that

EPS!s�x."/.qx/ abbreviates qx.EPS!
s�x."/.qx//.

For fixed !; " and q one can think of EPS!
s ."/.q/ as computing an infinite

extension to any given finite sequence s. The key property of EPS is that the infinite
extension of an initial segment Œ˛�.n/ of a previous infinite extension ˛ is identical
to the original infinite extension. Formally:

Lemma 7 (cf. [27], Lemma 1) Let ˛ D EPS!s ."/.q/. For all n,

˛ D Œ˛�.n/ 
 EPS!s�Œ˛�.n/."/.qŒ˛�.n//: (4)

Proof By induction on n. If n D 0, this follows by the definition of ˛. Assume (4)
holds for n, we wish to show it also holds for nC 1. Consider two cases.

(a) If !.s 
 Œ˛�.n/ 
 0/ < jsj C n, then EPS!s�Œ˛�.n/."/.qŒ˛�.n// D 0X
N

. By induction
hypothesis ˛ D Œ˛�.n/ 
 0, so that ˛.n/ D 0X . Therefore ˛ D Œ˛�.n C 1/ 
 0,
which, by extensionality, implies

!.s 
 Œ˛�.n C 1/ 
 0/ D !.s 
 Œ˛�.n/ 
 0/ < jsj C n < jsj C nC 1:
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Hence, EPS!s�Œ˛�.nC1/."/.qŒ˛�.nC1// D 0X
N

so that

Œ˛�.nC 1/ 
 EPS!s�Œ˛�.nC1/."/.qŒ˛�.nC1// D Œ˛�.nC 1/ 
 0 D Œ˛�.n/ 
 0 D ˛:

(b) If !.s 
 Œ˛�.n/ 
 0/ � jsj C n, then

˛
.IH/D Œ˛�.n/ 
 EPS!

s�Œ˛�.n/."/.qŒ˛�.n//
(3)D Œ˛�.n/ 
 c 
 EPS!s�Œ˛�.n/�c."/.qŒ˛�.n/�c/;

where c D "s�Œ˛�.n/.�x:EPS!
s�Œ˛�.n/�x."/.qs�Œ˛�.n/�x//. Hence, ˛.n/ D c.

Therefore

˛ D Œ˛�.nC 1/ 
 EPS!s�Œ˛�.nC1/."/.qŒ˛�.nC1//:
ut

This lemma is the main building block behind the proof of the following
fundamental theorem about EPS.

Theorem 8 (Main Theorem on EPS) Let q W XN ! R and ! W XN ! N and
" W X� ! JRX be given. Define

˛
XND EPS!h i."/.q/;

ps.x/
RD EPS!s�x."/.qs�x/:

For n � !.˛/ we have

˛.n/
XD "Œ˛�.n/.pŒ˛�.n//;

q˛
RD "Œ˛�.n/.pŒ˛�.n//:

(5)

Proof Assume n � !.˛/. First we argue that

.
/ n � !.Œ˛�.n/ 
 0/:

Otherwise, assuming n > !.Œ˛�.n/ 
 0/ we would have, by Lemma 7, that ˛ D
Œ˛�.n/ 
 0. And hence, n > !.Œ˛�.n/ 
 0/ D !.˛/ � n, which is a contradiction.
Hence, we have that

˛.n/
L7D EPS!Œ˛�.n/."/.qŒ˛�.n//.0/

(3)C.�/D "Œ˛�.n/.�x:EPS!
Œ˛�.n/�x."/.qŒ˛�.n/�x//

D "Œ˛�.n/.pŒ˛�.n//;
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by the definition of ps . For the second equality, we have

q˛
L7D qŒ˛�.nC1/.EPS!Œ˛�.nC1/."/.qŒ˛�.nC1///

D pŒ˛�.n/.˛.n//

D "Œ˛�.n/.pŒ˛�.n//;

where the last equality uses that ˛.n/ D "Œ˛�.n/.pŒ˛�.n// as previously shown. ut
Theorem 8 characterises the product of selection functions as computing a

sequence ˛ that forms a kind of sequential equilibrium between the selection
functions—expressed by the Eq. (5)—up to a point !˛ parametrised by ˛ itself.
The significance of the product is that such equilibria appear naturally in a variety
of contexts. In the following we outline perhaps the most illuminating of these
contexts, namely the theory of sequential games.

4 Sequential Games and Optimal Strategies

One of the most remarkable properties of EPS is that it computes optimal strategies
in a certain class of sequential games. The reader is encouraged to consult [11] in
conjunction with the relatively concise discussion here.

As in this article we only consider games (in the sense of [11]) where the
quantifiers are attainable, we shall incorporate this restriction in the definition of
the game itself.

Definition 9 (Sequential Games of Unbounded Length, [11]) The type of a game
is given by a pair .X;R/ where

• X is the set of possible moves at each round.
• R is the set of possible outcomes of the game.

A finite sequence s W X� shall be thought of as a position in the game determined
by the first jsj moves. An infinite sequence ˛ W XN is called a play of the game. An
unbounded sequential game of type .X;R/ is a triple ."; q; !/ where

• "s W JRX determines the optimal move at position s.
• q W XN ! R determines, given a play ˛ W XN, the outcome of the game.
• ! W XN ! N determines the relevant part of a play.

The function q is called the outcome function, whereas ! is called the control
function. Given a play ˛, all moves ˛.i/ for i � !˛ are relevant moves. In general, a
position s is called relevant if jsj � ! Os, i.e. if in a canonical extension of the current
position s the current move is considered a relevant move. Games with a finite, fixed
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number of rounds can be viewed as the special case of an unbounded game in which
! is constant.

We shall only consider infinite plays which are obtained by some canonical
extension of a finite play s. Therefore, we think of these as finite games of
unbounded length.

The intuition behind Definition 9 is as follows. We think of the selection
functions "s as specifying at position s what an optimal move at that point would
be if we knew the final outcome corresponding to each of the candidate moves. The
selection function takes this mapping X ! R of moves to outcomes and tells us
what an optimal move would be in that particular case.

A strategy in such game is simply a function next W X� ! X which determines
for each position s what the next move next.s/ should be. To follow a strategy from
position s means to play all following moves according to the strategy, i.e. we obtain
a sequence of moves ˛.0/; ˛.1/; : : : as

˛.i/ D next.s 
 Œ˛�.i � 1//:

We call this the strategic extension of s. The strategic extension of the empty play is
called the strategic play.

Definition 10 (Optimal Strategies) A strategy is said to be optimal3 if the move
played at each relevant position s is the one recommended by the selection function
"s , i.e.

next.s/ D "s.�x:q.s 
 x 
 ˇ// (6)

where ˇ is the strategic extension of s 
 x.

The main result of [11] is that the product of selection functions computes
optimal strategies:

Theorem 11 ([11]) Given a game ."; q; !/, the strategy

next.s/
XD �

EPS!s ."/.qs/
�
.0/ (7)

is optimal, and, moreover,

˛
XND EPS!s ."/.qs/ (8)

is the strategic extension of s, i.e. ˛.n/ D next.s 
 Œ˛�.n//.

3This is a stronger notion than the one introduced in [11] for the more general case where the
quantifiers are not necessarily attainable.
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Proof We have that

˛.n/
(8)D EPS!s ."/.qs/.n/

L7D EPS!s�Œ˛�.n/."/.qs�Œ˛�.n//.0/
(7)D next.s 
 Œ˛�.n//;

which proves the second claim. Hence, assuming s is a relevant position, i.e.
.
/ !.Os/ � jsj we Have

next.s/
(7)D �

EPS!s ."/.qs/
�
.0/

(3)C.�/D "s.�x:EPS!
s�x."/.qs�x//

D "s.�x:q.s 
 x 
 ˇ//

where ˇ D EPS!s�x."/.qs�x/, by the claim just proven above, is the strategic
extension of s 
 x. Hence, we have shown (6). ut

Therefore in this sense the main Theorem 8 characterises EPS as a procedure
that computes an optimal strategy in the game defined by ."; q; !/. We now show
that the product also appears naturally in proof theory, with the advantage that it can
be related back to the language of sequential games.

5 The Dialectica Interpretation of Classical Proofs

We now show how selection functions and their product are intrinsically connected
to the functional interpretation of classical proofs. The key observation is that the
language of selection functions elegantly captures the way in which the Dialectica
interpretation treats double negations in negative-translated formulas. In particular
their product directly interprets the double negation shift, which lies behind the
negative translation of the axiom of countable choice.

This means that in many cases the algorithms extracted from classical proofs can
be easily phrased in the intuitive language of sequential games. Moreover, though
couched in the language of higher type recursive functionals, these games often have
a natural informal reading in terms of strategic set-theoretic constructions, making
the mathematical meaning of the extracted program more perspicuous.
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5.1 Interpreting †2-Theorems

Suppose are given a †2-theorem A � 9xX8yY A0.x; y/ where A0 is decidable.
The negative translation of A is equivalent4 to ::9x8yA0.x; y/, and therefore its
functional interpretation is given by

jAN j"p D A0."p; p."p//:

In other words, the Dialectica interpretation interprets double negations in front of
a †2 formula with a selection function " W JY X . If the predicateA0.x; y/ is thought
of as prescribing “good” outcomes y for a particular move x as described in Sect. 1,
then " implements a strategy that selects a move x D "p whose outcome with
respect to the mapping p is good.

Thus under the functional interpretation we have the following correspondence:

†2 � Theorems 7! Selection functions

The elimination of double negations in an arbitrary negated formula is essentially a
(albeit complex) modular iteration of this process, suggesting to us that selection
functions and modes of recursion based on selection functions lie behind the
functional interpretation of classical proofs in a fundamental way.

There are several ways of characterising the selection function " interpreting
A. For †2-theorems Kreisel’s no counterexample interpretation coincides with the
functional interpretation and in this sense the constructive interpretation of A is
a selection function " that refutes an arbitrary “counterexample” functions p. We
illustrate this in the following example, which demonstrates how selection functions
are fundamental to the functional interpretation of pure classical logic.

Example 12 (Law of Excluded Middle) Consider the following simple reformula-
tion of the law of excluded middle for †1-formulas, better known as the drinkers
paradox:

DP W 9xX.9yP.y/ ! P.x//: (9)

Note that DP is intuitionistically equivalent to the †2 theorem 9x8y.P.y/ !
P.x//. We ineffectively justify the principle by defining

x WD
(
y for some y satisfying P.y/;

0X if no such y exists:

4Assuming stability of atomic formulas.
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On the other hand, we can effectively justify the principle with the selection function

"p WD
(
p.0/ if P.p.0//;

0 if :P.p.0//
(10)

that witnesses its functional interpretation:

jDPj"p D P.p."p// ! P."p/: (11)

The drinkers paradox is essentially the law of excluded middle applied to the †1-
formula 9yP.y/, i.e.

9bB.b D 0 $ 9yP.y//

where the boolean b is given by P.x/. The mapping p W X ! X in the functional
interpretation of DP can be seen as a counterexample function that attempts to
witness :DP, i.e.

8x.P.px/ ^ :P.x//: (12)

The constructive version of the law of excluded middle given by its functional
interpretation is the statement that for any p there exists an element x refuting (12),
i.e.

8p9x.:P.px/ _ P.x//:

The selection function " above witnesses this statement.

One can alternatively view the selection function " interpretingA as an algorithm
that produces an arbitrary large approximation to the ineffective object x satisfying
8yA0.x; y/. In fact, when Y D N the formula A is equivalent to 9xX8y8i �
yA0.x; i/. Hence, the functional interpretation of A is equivalent to the existence of
a selection functions " satisfying

8p 8i � p."p/A0."p; i/:

In this context p is a function specifying, for each choice of x, which values y
are required to satisfy A0.x; y/ in some given situation. The selection function "
should return an “approximation” x for which we have 8i � p.x/A0.x; i/. Hence,
x does not need to be a “real” witness to A, but only an approximation which is
good enough relative to the function p. This reading is closer to the notion of
a “finitization” of as discussed by Tao in [28], in the sense that we interpret the
qualitative statement that there exists some x with the global property 8yA0.x; y/ by
the quantitative statement that there exist approximations x with the local property
8i � p.x/A0.x; i/ for arbitrary p.
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Example 13 (Convergence and Metastability) The functional interpretation of
Cauchy convergence

8k9n8m8i; j 2 Œn; nCm� .kxi � xj k � 2�k/

(where i 2 Œn; n Cm� is shorthand for n � i � nC m) is a sequence of selection
functions ."k/ that satisfy

8k; p 8i; j 2 Œ"kp; "kp C p."kp/� .kxi � xj k � 2�k/: (13)

In other words, the Cauchy convergence property is equivalent to the existence of a
sequence of selection functions "k that compute regions of approximate stability, or
metastability, of size specified by p.

This reformulation of convergence plays a key role in ergodic theory, where one
obtains quantitative versions of convergence theorems by extracting explicit bounds
on "kp that are highly uniform with respect to .xn/. A simple example is the so-
called finite convergence principle discussed in [18,28], where one can easily show
that given k and p a bounded monotone sequence

0 � x0 � x1 � � � � � 1

experiences a period of metastability bounded uniformly by Qp.2k/.0/ for Qp.n/ WD
n C p.n/. A more involved example of this phenomenon is the quantitative mean
ergodic theorem of Avigad et al. in [2].

5.2 Interpreting the Axiom of Choice

Classical predicate logic in all finite types PL! can be extended to encompass most
of mathematics through the addition of choice principles. In particular the principle
of finite choice

FC W 8n � N9xXAn.x/ ! 9sX�8n � NAn.sn/

is known to be equivalent to induction [24] and therefore we can define full Peano
arithmetic (assuming a minimal amount of arithmetic) as PA! WD PL! C FC, while
the further addition of countable choice AC0 or dependent choice DC yields a theory
sufficient to formalise a large portion of analysis.

Thus a key part of understanding the computational content of classical proofs is
to understand the computational interpretation of countable choice principles in the
presence of classical logic.

Let us first consider an instance of AC0 for …1-formulas:

…1-AC0 W 8n9xX8yY 'n.x; y/ ! 9f N!X8n; y'n. fn; y/;
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for decidable 'n. Its negative translation is equivalent to

8n::9x8y'n.x; y/ ! ::9f 8n; y'n. fn; y/;

and its Dialectica interpretation is equivalent (using just Markov’s principle, which
is admitted by the Dialectica interpretation) to the statement5

8"; q; !9f .8n; p'n."np; p."np// ! 8i � !f 'i. fi; qf //: (14)

This constructive interpretation of AC0 asks for a selection function F " W JY�NX
N

producing an approximation to the sequence f , given selection functions " inter-
preting its premise. Such a selection function can be given by

F ".q; !/ WD EPS!hi."/.q/:

We now prove in detail that the product of selection functions directly realises the
functional interpretation of the axiom of choice.

Theorem 14 The following hold:

(a) The functional interpretation of the schema of finite choice FC is directly
witnessed by the finite simple product of selection functions (i.e. ! a constant
function).

(b) The functional interpretation of the schema of countable choice AC0 is directly
witnessed by the (unbounded) simple product of selection functions.

(c) The functional interpretation of the schema of dependent choice DC (see
Sect. 2.1) is directly witnessed by the dependent product of selection functions.

Proof We prove (c), parts (a) and (b) both being simple cases of this (proofs which
can nevertheless be found in [12] and [8], respectively). Since As.x/ is equivalent
to 9 Qx QX8yjAs.x/N jQx

y it suffices to interpret DC for †2-formulas

†2-DC W 8sX�9xX ; Qx QX8yjAs.x/N jQx
y ! 9f XN8n9 Qx QX8yjAŒf �.n/. fn/N jQx

y:

Moreover, by adding a dummy variable t of type QX� and concatenating the types
X , QX this follows directly from an instance of …1-DC i.e.

…1-DC W 8sX�

; t
QX�9x; Qx8yjAs.x/N jQx

y ! 9f XN

; Qf QXN8n; yjAŒf �.n/. fn/N j Qf n
y :

5Note that we are replacing the standard conclusion '!f .f .!f /; qf / with a stronger variant
8i � !f 'i .f i; qf /. This is not essential as one can, given an !, define Q!.f / D �i �
!.f /:'i .f i; qf / so that ' Q!f .f . Q!f /; qf / implies 8i � !f 'i .f i; qf /. We prefer the version
8i � !f 'i .f i; qf / since (1) we can directly realise, and (2) it makes the interpretation more
intuitive by viewing !f as a bound up to which the play f is required to be “optimal”.
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Therefore it suffices to deal with…1-DC, which in general has a negative translation
equivalent to

…1-DCN W 8sX�::9xX8yAs.x; y/ ! ::9f 8n; yAŒf �.n/. fn; y/:

The Dialectica interpretation of …1-DCN is equivalent to

j…1-DCN jF;p;s";!;q � As."sp; p."sp// ! AŒF �.!F /.F.!F /; qF/; (15)

omitting, for the sake of readability, the parameters "; ! and q from the functions
F; p and s. In fact, these parameters ."; !; q/ define a sequential game in the sense
of Definition 9. Let

F D EPS!h i."/.q/;

ps.x/ D EPS!s�x."/.qs�x/:

By Theorem 8 we have that F and p WD pŒF �.!F / and s WD ŒF �.!F / are such that
"sp D F.!F / and p."sp/ D qF, and hence, clearly witness jDCN jF;p;s";!;q . ut

Theorem 14 proves that under the functional interpretation we have a mapping

Choice principles 7! Product of selection functions

At first glance it may seem strange that an operation that computes optimal strategies
in sequential games is related to the axiom of choice is this manner. But if we take
a closer look, the game theoretic behaviour of (14) becomes clear. The selection
functions "n which realise the premise of (14) can be seen as a collection of
strategies each witnessing the†2-theorems .An/. The Dialectica interpretation calls
for a procedure that takes these pointwise strategies and produces a co-operative
selection function F that witnesses 8nAn. Such a procedure is provided naturally
by the product of selection functions.

In the following examples we illustrate how the interpretation of theorems that
make direct use of the axiom of choice can be given an intuitive game-theoretic
constructive interpretation by the product of selection functions.

Example 15 (Arithmetic Comprehension) We first give a realizer for the functional
interpretation of arithmetic comprehension for †01-formulas, which states that for
any †1-predicate ' over N there exists a set X with

8n.n 2 X , 9y '.n; y//:

Computing such X is in general not possible. We can, however, try to compute an
“approximation” to X . For instance, we might ask for an QX which only works for a
finite number of n’s, or an approximation which only checks the existence of y’s up
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to a certain bound (possibly depending on the approximating set QX ). We call these
calibrations of the “size” and “depth” of X , respectively.

Arithmetic comprehension follows from the formal statement

9f N!N8n.9y '.n; y/ ! 9k < fn '.n; k//;

where we define X WD fn j 9k < fn '.n; k/g. Again, we cannot (in general)
effectively construct f and thus neither X , as the above is a direct consequence
of countable choice applied the non-constructive statement

8n9xN.9y '.n; y/ ! 9k < x '.n; k//: (16)

But this is just a collection of instances of DP applied to the formulas Pn.x/ WD
9k < x '.n; k/. Therefore defining the sequence of selection functions ."n/ by

"np WD
(
p.0/ if 9k < p.0/ '.n; k/;
0 if 8k < p.0/ :'.n; k/

we have

9k < p."np/ '.n; k/ ! 9k < "np '.n; k/

for any n, p, and thus by Theorem 8, for any counterexample functionals !, q,
setting F WD EPS!hi."/.q/ we have

8i � !F.9k < qF '.i; k/ ! 9k < Fi '.i; k// (17)

which is equivalent to the functional interpretation of †1-CA. So what is the game-
theoretic interpretation of our realizer F ? If we unravel (17), we see that we are
essentially constructing a finite set

XF WD fi � !F j 9k < Fi '.i; k/g

that serves as an approximation to X with the property that if i � !F has a witness
for ' bounded by qF then we must have i 2 XF . In this sense ! and q can be read
as set functions that calibrate the size and depth, respectively, of an approximation
to X .

The set XF is constructed as an optimal play in the game ."; q; !/. The job of the
selection functions at round n is to decide whether or not to include the number n
in the approximation, given that it has already made this decision for f0; : : : ; n�1g.
Its default is to omit n by playing 0, but if the resulting outcome pn.0/ bounds some
witness to n, it instead adds n and steals this witness as justification.

Therefore in this scenario the product of selection functions forms an intuitive
set-theoretic construction, starting with the empty set and strategically adding
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elements until it reaches the desired approximation. When interpreting a theorem
that makes use of arithmetic comprehension as a lemma, we can simply plug in our
realizer and impart its game theoretic meaning to better understand the realizer of
the main theorem.

Some simple examples of well-known existence theorems that can be given a
direct constructive interpretation using this instance of the product can be found
in, e.g., Simpson [26], such as the existence of maximal ideals in countable
commutative rings or torsion subgroups in countable abelian groups. A more
involved consequence of arithmetic comprehension using a more complex game,
the Bolzano–Weierstrass theorem, will be discussed in the next section.

Example 16 (No Injection .N ! N/ ! N) Following [22] we show that a higher
type instance of the product that produces a sequence of functions can be used
to effectively prove that there is no injection ‰ W .N ! N/ ! N in any model
of functionals in which the unbounded product exists. This time we consider the
drinkers paradox applied to the formulas Pn.f N!N/ WD .n D ‰f /. Defining

"np WD
(
p.0/ if n D ‰.p.0//;

0N
N

if n ¤ ‰.p.0//;

we have

8n; p.n D ‰.p."np// ! n D ‰."np//:

Let also qF
N!NWD �k:.Fk.k/ C 1/, i.e. qF is the diagonalisation of F , a function

that differs from each Fk at point k. Finally, let !F D ‰.qF/, and define F WD
EPS!hi."/.q/. By Theorem 8 and the property of "n above, we obtain

8n � !F.n D ‰.qF/ ! n D ‰.Fn//: (18)

Hence, taking n D !F D ‰.qF/ in (18) we get

‰.qF/ D ‰.F‰.qF//:

But by the definition of q the functions qF and F‰.qF/ differ at position ‰.qF/.
Therefore, we have effectively constructed two functions ˛ D qF and ˇ D F‰.qF/

such that ‰.˛/ D ‰.ˇ/ but ˛ ¤ ˇ, hence witnessing the non-injectivity of ‰.
How is one supposed to think of the construction above as an optimal strategy

in a game? Let us consider the game where at each round n we must play a
function Fn W NN. The outcome function qF is the diagonalisation of the sequence
of functions (i.e. moves) Fn played at each round n. Hence, qF differs from Fn, for
all n. The control function !F says that the only relevant move in infinite play F
is the move at round n D ‰.qF/. Finally, we must say what the “goal” of the game
is. That follows from a definition of what a good strategy is, which in turn can be
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described by the selection functions "n giving the local strategies at each stage n.
From the selection functions "n above, it follows that a good strategy behaves as
follows: Observe what outcome one obtains by playing a default value 0 at round
n. We will obtain an outcome r W NN such that either ‰.r/ D n or ‰.r/ ¤ n. If
‰.r/ ¤ n, then we know that the current round is not relevant, and hence it is
safe to play the default value 0. On the other hand, if ‰.r/ D n we have in fact
found a value for ‰�1 at point n, namely the outcome r . So, we play r at round n.
In this way, we construct a sequence Fn such that either Fn is an inverse of ‰ at
point n, or Fn has a default value 0 but the round n is not relevant in the play F (as
!.F / D ‰.qF/ ¤ n). In the play F which one obtains by following the strategy
we will have the desired property that the move at the relevant round n D ‰.qF/,
i.e. ˛ D Fn, and the outcome ˇ D qF both map to n, but must be distinct since ˇ
differs from all Fn.

5.3 The Product Versus Standard Modes of Recursion

A consequence of Theorem 14, and the fact that classical arithmetic and analysis
can be formulated as classical logic plus finite and countable choice, respectively, is
that the functional interpretation of classical proofs can be given entirely in terms of
the product of selection functions. In fact we can reformulate Theorem 2 as follows:

Theorem 17

(a) PA! has a functional interpretation in primitive recursive arithmetic plus the
finite product of selection functions (see [12] for details).

(b) PA! C AC0 and even PA! C DC have a functional interpretation in primitive
recursive arithmetic plus the unbounded product of selection functions.

It is natural then to ask how the product compares to those modes of recursion
typically used in the functional interpretation of arithmetic and analysis.

Gödel’s primitive recursive functionals of finite type [15] are the computational
analogue of induction. In a similar fashion the finite product of selection functions
can be seen as a computational analogue of finite choice, which is known to be
equivalent to induction [24]. In [12] it is shown that the finite product is in fact
equivalent to Gödel’s primitive recursors over (a very weak fragment of ) primitive
recursive arithmetic, and thus offers an alternative construction of system T.

Countable choice and dependent choice are typically interpreted using Spector’s
bar recursion [27]. By Theorem 14 (b) and (c) we see that these are also interpreted
by the unbounded product, and in [8] it is shown that bar recursion is primitive
recursively equivalent to the unbounded product. The whole picture is sketched in
Fig. 1.

Of course our point here is that the advantage of using the product as opposed to
the other modes of recursion is that it has a highly intuitive semantics, and witnesses
extracted using the product often have a clear game-theoretic meaning. This is in
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Fig. 1 Functional
interpretation of arithmetic
and analysis

Induction
[15]

[24]

Primitive recursion

[12]

Finite choice
[12]

Finite product

Unbounded product

[9]Countable / dependent choice

[8]

[27]

Spector’s bar recursion

stark contrast to other methods, particularly Spector’s bar recursion, which are often
very difficult to comprehend on a semantic level.

6 Interpreting the Bolzano–Weierstrass Theorem

In this section we present a case study in which we formally extract a realizer for
the functional interpretation of the Bolzano–Weierstrass theorem using the product
of selection functions.

The constructive content of this theorem has been studied before, and in
particular a detailed analysis using the Dialectica interpretation and Spector’s bar
recursion is given in [25].

Our aim here is to show that, even though the Bolzano–Weierstrass theorem is
relatively complex from a logical point of view, one can extract from its proof a
program whose behaviour can be clearly understood, at least on an informal level,
in terms of optimal strategies in sequential games.

As in [25] we analyse a formal proof of the theorem which combines countable
choice with weak König’s lemma—the statement that all infinite binary trees T have
an infinite branch:

WKL W 8n9sBn T .s/ ! 9˛8n T .Œ˛�.n//

where T .s/ is a boolean tree predicate, i.e. a prefix-closed predicate on finite
sequences of 0’s and 1’s. We write B

� for finite sequences of booleans, and B
n for

sequences of booleans of length n. We use the product of selection functions only to
interpret the instance of countable choice used in the proof, as this forms the core of
the extracted algorithm. Rather than also giving a detailed game-theoretic analysis
of WKL using the product of selection functions (as done in [23]), for simplicity we
make use of Howard’s well-known realizer of WKL via binary bar recursion [17]
and focus solely on the computational semantics of the main instance of countable
choice.
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6.1 The Bolzano–Weierstrass Theorem

The Bolzano–Weierstrass theorem states that any bounded sequence in R
n has a

convergent subsequence. Here we restrict ourselves to sequences of rational .xi / in
the unit interval Œ0; 1�, as our analysis can be readily generalised. In the language of
formal analysis, this instance of the Bolzano–Weierstrass theorem can be written as

BW.xi / W 9aBN

; bN
N8n.bn < b.nC 1/ ^ xbn 2 IŒa�.n//;

where for a finite sequence of booleans s we define the interval

Is WD
2

4
jsj�1X

iD0

si

2iC1
;

jsj�1X

iD0

si

2iC1
C 1

2jsj

3

5

for jsj > 0 and Ihi WD Œ0; 1�. We remark that for an infinite sequence a W BN we have
IŒa�.n/ � IŒa�.m/ whenever n � m, and this will be used later.

Intuitively, the infinite boolean sequence a encodes a limit point

a� WD
1X

iD0

ai

2iC1

of the sequence .xi /, and b defines a subsequence converging to this limit point,
where jxbn � a�j � 2�n for all n. However, a detailed formalisation of BW would
require us to make this intuition precise relative to some appropriate encoding of the
real numbers, as in [25].

The functional interpretation of the Bolzano–Weierstrass theorem is given by

jBW.xi /jA;B D 8n �  AB.Bn < B.nC 1/ ^ xBn 2 IŒA�.n//;

where, to easy readability, we are omitting the dependency of A and B on  .
Intuitively, the interpreted theorem states that there exist arbitrary large finite
approximationsB to a convergent subsequence, in the sense that jxBn � A�j � 2�n
for all n �  AB.

6.2 A Proof of BW.xi /

Assume an infinite sequence of rationals .xi /i2N is fixed. Let us prove theorem
BW.xi /, i.e.

9aBN

; bN
N8n.bn < b.nC 1/^ xbn 2 IŒa�.n//
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directly using WKL and AC0. We define the predicate T by

T .sB
�

; k/ WD jsj < k ^ 9i 2 .jsj; k� �xi 2 Is
�
; (19)

where i 2 .jsj; k� is shorthand for jsj < i � k.

Lemma 18 By countable choice AC0 there exists a function ˇ W N ! N such that

8n; sBn.9kT.s; k/ ! T .s; ˇn//: (20)

Proof By the drinkers paradox we have

8n; sBn9l.9kT.s; k/ ! T .s; l//:

By bounded collection over the finite quantifier 8s 2 B
n, and using the fact that T

has the monotonicity property T .s; k/ ! T .s; k C l/ we have

8n9L8sBn.9kT.s; k/ ! T .s; L//: (21)

Finally, by countable choice we obtain ˇ satisfying (20). ut
For the rest of the section let ˇ be a (classically constructed) function satisfy-

ing (20). For now we want to think of ˇ as given to us as an oracle. We will then
show how one can effectively construct an approximation of ˇ which is good enough
for the purposes of the proof.

Corollary 19 Define T ˇ.s/ WD T .s; ˇ.jsj//. We have

(a) 9kT.s; k/ $ T ˇ.s/, for all n and sB
n
.

(b) T ˇ.s/ is a decidable tree predicate (given the oracle ˇ).

Proof (a) Trivial. (b) T ˇ.s/ is clearly decidable in the given oracle ˇ and the
sequence .xi /. It remains to see that it is prefix-closed. Observe that T .s 
 t;
ˇ.js 
 t j// ! T .s; ˇ.js 
 t j//, by the definition of T and the fact that Is�t � Is .
Also, by (20), T .s; ˇ.js 
 t j// ! T .s; ˇ.jsj//. Combining the two we have
T ˇ.s 
 t/ ! T ˇ.s/. ut

Hence, given such decidable binary tree predicate T ˇ.s/, if we can show that it
has branches of arbitrary length then, by weak König’s lemma, we have:

Lemma 20 The tree T ˇ has an infinite branch. That is there exists a sequence
a W BN such that

8n �n < ˇn ^ 9i 2 .n; ˇn��xi 2 IŒa�.n/
��

„ ƒ‚ …
T ˇ.Œa�.n//

: (22)
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Proof This follows from WKL applied to T ˇ, once we have shown that the tree
T ˇ.s/ has branches of arbitrary length n. To see that, fix n and let s, with jsj D n,
be the index of the interval Is which contains xnC1. This always exists as for each n
the set .Is/s W Bn covers the unit interval. Then, clearly we have

jsj < nC 1 ^ xnC1 2 Is
which implies T .s; nC 1/. By (20) we obtain T .s; ˇ.jsj// � T ˇ.s/. ut

For future reference, we define the function h W N ! B
� as that which, for each n,

carries out a bounded search for the least s 2 B
n such that xnC1 2 Is . This function

is primitive recursive in .xi / by decidability of xi 2 Is , and satisfies T .hn; n C 1/

for all n.

Theorem 21 (Bolzano–Weierstrass) Given a sequence of rationals .xi /i2N, there
exists a W BN and b W NN such that

8n.bn < b.nC 1/ ^ xbn 2 IŒa�.n//: (23)

Proof Let a be as in Lemma 20. Define b by

b0 WD 0 (24)

b.nC 1/ WD �i 2 .bn C 1; ˇ.bn C 1/�
�
xi 2 IŒa�.bnC1/

�
:

By (22), some i 2 .bn C 1; ˇ.bn C 1/� satisfying xi 2 IŒa�.bnC1/ always exists.
Clearly we have bn < b.nC 1/. Also xb0 2 Ih i and xb.nC1/ 2 IŒa�.bnC1/ � IŒa�.nC1/,
since bn C 1 � nC 1 for all n by induction on n. ut

6.3 Lemma 18 via the Product of Selection Functions

The main ineffective step in the proof above is the existence of the oracle ˇ in
Lemma 18. To give a computational interpretation of BW we want to be able to
produce an approximation to ˇ in counterexample functions !; q W NN ! N for n
and k in (20), respectively, i.e.

8!; q9ˇ8n � !ˇ8sBn .T .s; qˇ/ ! T .s; ˇn//: (25)

First we need to find selection functions ın W NN ! N witnessing the functional
interpretation of (21):

9ı8n; p8sBn.T .s; p.ınp// ! T .s; ınp//: (26)
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Since (21) is just the drinkers paradox combined with bounded collection, appropri-
ate selection functions are constructed in a similar manner to (10), but with some
additional primitive recursion.

Lemma 22 Let the selection function ın W .N ! N/ ! N be defined as

ınp WD pi .0/ (27)

where

i D �j � 2n.8sBn.T .s; pjC1.0// ! T .s; pj .0////:

and � is the bounded search operator. Then ı witnesses (26).

Proof Note that (26) holds by definition once we show that the bounded search finds
some i � 2n satisfying the given predicate. If this were not the case, then we would
end up with a sequence s0; : : : ; s2n in B

n such that

T .si ; p
iC1.0// ^ :T0.si ; pi .0//:

But this would imply that the si form 2n C 1 distinct elements of Bn, which is a
contradiction. ut
Theorem 23 Given ! W NN ! N and q W NN ! N let ˇ W NN be defined as

ˇ WD EPS!hi.ı/.q/;

with ı as in (27). Then ˇ witnesses (25).

Proof By Lemma 22, the ın as defined in (27) are such that

8n; p8sBn.T .s; p.ınp// ! T .s; ınp//:

For n � !ˇ and p D pŒˇ�.n/, by Theorem 8 we have ˇn D ınp and qˇ D p.ınp/,
from which we can conclude 8sBn.T .s; qˇ/ ! T .s; ˇn//. ut

6.4 A Realizer for BW.xi /

Finally, we show how the instance of the product of selection functions in
Theorem 23, used to interpret the crucial Lemma 18, forms the basis of an algorithm
for constructing approximations to BW. We first interpret Lemma 20, making use of
Howard’s realizer for WKL using a weak, binary form of bar recursion, full details
of which can be found in [17].
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Lemma 24 For any counterexample function ' W BN � N
N ! N there exist ˇ W NN

and A W BN satisfying

8n � 'Aˇ
�
n < ˇn ^ 9i 2 .n; ˇn� �xi 2 IŒA�.n/

��

„ ƒ‚ …
T .ŒA�.n/;ˇn/

: (28)

Proof Assume ' W BN � N
N ! N given. For any given � W NN let N� W B� ! N be

defined via Howard’s binary bar recursion as

N�.t/ WD
(
0 if 9s � t .'.Os; �/ < jsj/;
1C maxfN�.t 
 0/;N �.t 
 1/g otherwise:

It is quite easy to show that N�.h i/ is a minimum length for branches t which
guarantees that '.Os; �/ < jsj holds for some prefix s � t . In other words, for any
branch t of length N�.h i/ we must have 9s � t .'.Os; �/ < jsj/. We first construct
ˇ as in Theorem 23 where we explicitly define counterexamples ! and q as

!� WD N�.h i/ q� WD N�.h i/C 1

to obtain

8n � Nˇ.h i/ 8sBn.T .s;N ˇ.h i/C 1/ ! T .s; ˇn//: (29)

Let N D Nˇ.h i/ for ˇ as just defined. Hence, we have that for any t such that
jt j � N there is some s � t with '.Os; ˇ/ < jsj. We then define

A WD Os; where s D �s � h.N / .'.Os; ˇ/ < jsj/

where h is defined after the proof of Lemma 20. Now, by the definition of h we have

N < N C 1 ^ 9i 2 .N;N C 1�.xi 2 IhN/„ ƒ‚ …
T .h.N /;NC1/

:

Also, for n � '.A; ˇ/ D '.Os; ˇ/ we must have n < jsj since '.Os; ˇ/ < jsj, and
hence ŒA�.n/ � ŒA�.jsj/ D s � h.N /. Therefore, since T .h.N /;N C 1/ holds
we also have T .ŒA�.n/;N C 1/. Finally, by (29) and the fact that n � N we get
T .ŒA�.n/; ˇn/, and so we have proved (28). ut

We are in a position now to effectively witness an approximation to the Bolzano–
Weierstrass theorem, i.e. realise the functional interpretation of (23).

Theorem 25 For any counterexample function  W BN � N
N ! N there exists

A W BN and B W NN satisfying
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8n �  AB.Bn < B.nC 1/^ xBn 2 IŒA�.n//„ ƒ‚ …
jBW.xi /jA;B 

:

Proof For arbitrary A, ˇ let bA;ˇ be defined as

bA;ˇ0 WD 0; (30)

bA;ˇ.nC 1/ WD �i 2 .bA;ˇnC 1; ˇ.bA;ˇnC 1/�
�
xi 2 IŒa�.bA;ˇnC1/

�
; else bA;ˇnC 1:

and define ' W BN � N
N ! N by '.A; ˇ/ WD bA;ˇ. .A; bA;ˇ//. Then by Lemma 24

there exists A W BN and ˇ W NN satisfying (28). Define B WD bA;ˇ. Then clearly
xB0 D x0 2 Ihi, and for n <  AB we have (now dropping the parameters on bA;ˇ)

Bn C 1 D bn C 1 < b. AB/C 1

and hence Bn C 1 � b. AB/ D 'Aˇ. Therefore by (28) 9i 2 .BnC1; ˇ.BnC1/�
.xi 2 IŒA�.BnC1//. But this implies that xB.nC1/ 2 IŒA�.BnC1/ � IŒA�.nC1/. Hence,
xBn 2 IŒA�.n/ for all n �  AB, and since Bi < B.iC1/ for all i by definition, we’re
done. ut

6.5 Understanding the Realizer for BW.xi /

The main component of our realizer is the construction of a sufficiently good
approximation to the function ˇ, whose job is to determine which intervals Is are
inhabited by some xi with i > jsj. This approximation forms an optimal play in
the sequential game given by ."; q; !/, where the role of the selection function "n is
fixed: namely to decide which intervals in the partition of size 2n to include in the
approximation.

Given that an initial segment Œˇ�.n/ has already been suggested, the strategy
implemented by "n is to initially try to include no intervals in .Is/jsjDn in the
approximation by proposing that ˇ.n/ D y0 D 0 and then testing whether or not
9i 2 .n; q.Œˇ�.n/ 
 y0 
 �0/�.xi 2 Is/ holds for some s of length n, where �0 is the
optimal continuation of Œˇ�.n/ 
 y0. If it does, then the proposed value is not good
enough, as the selection function has discovered some intervals inhabited by the xi .

It therefore changes its mind and instead proposes ˇ.n/ D y1 D q.Œˇ�.n/ 
 y0 

�0/. It then tests whether or not 9i 2 .n; q.Œˇ�.n/ 
 y1 
 �1/�.xi 2 Is/ holds for
some s not already discovered, and if so reflects this new discovery by updating to
ˇ.n/ D y2 D q.Œˇ�.n/ 
 y1 
 �1/, and so on. Eventually, this process terminates on
the i th update for some i � 2n, and we have

9i 2 .n; q.Œˇ�.n/ 
 yi 
 �i /�.xi 2 Is/ ! 9i 2 .n; yi �.xi 2 Is/
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for all s 2 B
n, and so ˇ.n/ D yi is a sufficiently good approximation for ˇ at

point n. The remaining parameters ! and q for the game are built using Howard’s
realizer for WKL to ensure that this approximation to ˇ has discovered enough
information about the distribution of .xi / that it has already found an approximation
to a convergent subsequence relative to  (which in turn takes the form of an
intermediate counterexample function ').

While a lot more could certainly be said about the behaviour of our realizer,
our aim here has been simply to convince the reader that while constructing a
realizer for the functional interpretation of the Bolzano–Weierstrass theorem takes
a reasonable amount of work, the game theoretic intuition behind the product of
selection functions allows us to gain a better understanding of the key operational
features of this realizer. We leave a more detailed analysis of the extracted algorithm
to future work.

7 Further Remarks

In this article we have shown that the language of selection functions and sequential
games underlies the Dialectica interpretation of classical proofs in a fundamental
way, and we have used the product of selection functions to construct a concise and
intuitive computational interpretation of some well-known theorems.

Our motivation has been a more qualitative understanding of functional inter-
pretations, as a response to the fact that formal proof-theoretic methods are
becoming increasingly relevant in modern mathematics. We have shown that the
product of selection functions is a fundamental construction behind the Dialectica
interpretation of classical proofs, and we hope to have convinced the reader that in
practice it leads to extracted programs that have an expressive reading in terms of
optimal strategies in sequential games.

There is a lot of work to be done towards understanding formal proof-theoretic
techniques in mathematical terms, and the question of adapting and refining
functional interpretations so that they can be seen as intelligent translations on
mathematical proofs as opposed to just syntactic translations on logic sentences
forms a very interesting area of research. The authors believe that there are several
potentially fruitful avenues for further research.

One is to explore in more detail the link between the Dialectica interpretation
and the closely related “correspondence principle” implicitly used in areas like
ergodic theory. In particular, the finitary version of theorems discussed by Tao
in [28, 29] are strictly speaking related to the monotone variant of the Dialectica
interpretation, which extracts uniform bounds, or majorants, for realizers of the
interpretation. It would be interesting to try to gain an understanding of how the
product of selection functions can be used to extract realizers for the monotone
interpretation and therefore produce constructive proofs of theorems that can truly
be seen as “finitizations” in the sense of Tao.
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Another interesting issue is the efficiency of the product of selection functions
in producing a realizer. For instance, a quick analysis of Example 16 shows that if
‰.�n:0/ D ‰.�n:1/, our program potentially misses this obvious counterexample
and eventually produces a much more elaborate one. This highlights the fact that
while the product is indeed an intuitive realizer for the axiom of choice, it is far from
optimal and refinements of the procedure or even completely different recursion
schemata may be more suited to interpreting specific principles, such as the schema
of open recursion proposed by Berger in [4] for the realizability interpretation of the
minimal bad sequence argument.

A related question is the efficiency of the Dialectica interpretation itself, and
the comparison of extracted programs to those obtained using other proof inter-
pretations such as modified realizability. In particular, the modified realizability
interpretation of choice has an interesting realizer given by Berardi et al. [3] that
was also shown to have a natural game theoretic reading.

We conclude with the remark that our paper belongs to a larger body of recent
work on the theory of selection functions and sequential games by the first author
and M. Escardó, starting with [9] and surveyed in [11]. Particularly relevant
is [23], in which the product of selection functions is used to extract a game
theoretic realizer for Ramsey’s theorem. This can be seen as an extended case study
illustrating the methods employed here.

Acknowledgements The first author gratefully acknowledges support of the Royal Society (grant
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Well-Ordering Principles and Bar Induction

Michael Rathjen and Pedro Francisco Valencia Vizcaíno

Abstract In this paper we show that the existence of !-models of bar induction is
equivalent to the principle saying that applying the Howard–Bachmann operation to
any well-ordering yields again a well-ordering.

1 Introduction

This paper will be concerned with a particular…1
2 statement of the form

WOP.f / W 8X ŒWO.X/ ! WO.f .X//� (1)

where f is a standard proof-theoretic function from ordinals to ordinals and WO.X/
stands for ‘X is a well-ordering’. There are by now several examples of functions
f familiar from proof theory where the statement WOP.f / has turned out to
be equivalent to one of the theories of reverse mathematics over a weak base
theory (usually RCA0). The first explicit example appears to be due to Girard
[7, Theorem 5.4.1] (see also [8]). However, it is also implicit in Schütte’s proof
of cut elimination for !-logic [15] and ultimately has its roots in Gentzen’s work,
namely in his first unpublished consistency proof,1 where he introduced the notion
of a “Reduziervorschrift” [6, p. 102] for a sequent. The latter is a well-founded
tree built bottom-up via “Reduktionsschritte”, starting with the given sequent and
passing up from conclusions to premises until an axiom is reached.

Theorem 1.1 Over RCA0 the following are equivalent:

(i) Arithmetical comprehension.
(ii) 8X ŒWO.X/ ! WO.2X/�.

1The original German version was finally published in 1974 [6]. An earlier English translation
appeared in 1969 [5].

M. Rathjen (�) • P.F. Valencia Vizcaíno
School of Mathematics, University of Leeds, Leeds LS2 JT, England
e-mail: M.Rathjen@leeds.ac.uk

© Springer International Publishing Switzerland 2015
R. Kahle, M. Rathjen (eds.), Gentzen’s Centenary,
DOI 10.1007/978-3-319-10103-3_19

533

mailto:M.Rathjen@leeds.ac.uk


534 M. Rathjen and P.F. Valencia Vizcaíno

Another characterization from [7, Theorem 6.4.1], shows that arithmetical com-
prehension is equivalent to Gentzen’s Hauptsatz (cut elimination) for !-logic.
Connecting statements of form (1) to cut elimination theorems for infinitary logics
will also be a major tool in this paper.

There are several more recent examples of such equivalences that have been
proved by recursion-theoretic as well as proof-theoretic methods. These results give
characterizations of the form (1) for the theories ACAC

0 and ATR0, respectively,
in terms of familiar proof-theoretic functions. ACAC

0 denotes the theory ACA0

augmented by an axiom asserting that for any set X the !-th jump in X exists
while ATR0 asserts the existence of sets constructed by transfinite iterations of
arithmetical comprehension. ˛ 7! "˛ denotes the usual " function while ' stands
for the two-place Veblen function familiar from predicative proof theory (cf.
[16]). Definitions of the familiar subsystems of reverse mathematics can be found
in [17].

Theorem 1.2 (Afshari and Rathjen [1]; Marcone and Montalbán [9]) Over
RCA0 the following are equivalent:

(i) ACAC
0 .

(ii) 8X ŒWO.X/ ! WO."X/�.

Theorem 1.3 (Friedman [4]; Rathjen and Weiermann [13]; Marcone and Mon-
talbán [9]) Over RCA0 the following are equivalent:

(i) ATR0.
(ii) 8X ŒWO.X/ ! WO.'X0/�.

There is often another way of characterizing statements of the form (1) by means of
the notion of countable coded !-model.

Definition 1.4 Let T be a theory in the language of second order arithmetic, L2. A
countable coded !-model of T is a set W � N, viewed as encoding the L2-model

M D .N;S;2;C; �; 0; 1; </

with S D f.W /n j n 2 Ng such that M ˆ T when the second order quantifiers are
interpreted as ranging over S and the first order part is interpreted in the standard
way (where .W /n D fm j hn;mi 2 W g with h ; i being some primitive recursive
coding function).

If T has only finitely many axioms, it is obvious how to express M ˆ T

by just translating the second order quantifiers QX : : : X : : : in the axioms by
Qx : : : .W /x : : :. If T has infinitely many axioms, one needs to formalize Tarski’s
truth definition for M. This definition can be made in RCA0 as is shown in [17,
Definitions II.8.3 and VII.2]. Some more details will be provided in Remark 1.9.
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We write X 2 W if 9n X D .W /n.

The alternative characterizations alluded to above are as follows:

Theorem 1.5 Over RCA0 the following are equivalent:

(i) 8X ŒWO.X/ ! WO."X/� is equivalent to the statement that every set is
contained in a countable coded !-model of ACA.

(ii) 8X ŒWO.X/ ! WO.'X0/� is equivalent to the statement that every set is
contained in a countable coded !-model of �1

1-CA (or †11-DC).

Proof See [12, Corollary 1.8]. ut
Whereas Theorem 1.5 has been established independently by recursion-theoretic

and proof-theoretic methods, there is also a result that has a very involved proof and
so far has only been shown by proof theory. It connects the well-known 	-function
(cf. [16]) with the existence of countable coded !-models of ATR0.

Theorem 1.6 (Rathjen [12, Theorem 1.4]) Over RCA0 the following are equiva-
lent:

(i) 8X ŒWO.X/ ! WO.	X/�.
(ii) Every set is contained in a countable coded !-model of ATR0.

The tools from proof theory employed in the above theorems involve search trees
and Gentzen’s cut elimination technique for infinitary logic with ordinal bounds.
One could perhaps generalize and say that every cut elimination theorem in ordinal-
theoretic proof theory encapsulates a theorem of this type.

The proof-theoretic ordinal functions that figure in the foregoing theorems are
all familiar from so-called predicative or meta-predicative proof theory. Thus far
a function from genuinely impredicative proof theory is missing. The first such
function that comes to mind is of the Bachmann–Howard type. It was conjectured
in [14] (Conjecture 7.2) that the pertaining principle (1) would be equivalent to
the existence of countable coded !-models of bar induction, BI. The conjecture
is by and large true as will be shown in this paper, however, the relativization of
the Bachmann–Howard construction allows for two different approaches, yielding
principles of different strength. As it turned out, only the strongest one is equivalent
to the existence of !-models of BI. We now proceed to state the main result of this
paper. Unexplained notions will be defined shortly.

Theorem 1.7 Over RCA0 the following are equivalent:

(i) RCA0 C Every set X is contained in a countable coded !-model of BI.
(ii) 8X ŒWO.X/ ! WO.#X/�.

Below we shall refer to Theorem 1.7 as the Main Theorem.
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1.1 A Brief Outline of the Paper

Section 1.2 contains a detailed definition of the theory BI. Section 2 introduces
a relativized version of the Howard–Bachmann ordinal representation system, i.e.
given a well-ordering X, one defines a new well-ordering #X of Howard–Bachmann
type which incorporatesX. Section 3 proofs the direction .i/ ) .ii/ of Theorem 1.7.
With Sect. 4 the proof of Theorem 1.7 .ii/ ) .ii/ commences. It introduces the
crucial notion of a deduction chain for a given set Q � N. The set of deduction
chains forms a tree DQ. It is shown that from an infinite branch of this tree one can
construct a countable coded !-model of BI which contains Q. As a consequence,
it remains to consider the case when DQ does not contain an infinite branch, i.e.
when DQ is a well-founded tree. Then the Kleene–Brouwer ordering of DQ, X, is
a well-ordering and, by the well-ordering principle (ii), #X is a well-ordering, too.
It will then be revealed that DQ can be viewed as a skeleton of a proof D� of the
empty sequent in an infinitary proof system T �

Q
with Buchholz’ �-rule. However,

with the help of transfinite induction over #X it can be shown that all cuts in D�
can be removed, yielding a cut-free derivation of the empty sequent. As this cannot
be, the final conclusion reached is that DQ must contain an infinite branch, whence
there is a countable coded !-model of BI containing Q, thereby completing the
proof of Theorem 1.7 .ii/ ) .i/.

1.2 The Theory BI

In this subsection we introduce the theory BI. To set the context, we fix some
notations. The language of second order arithmetic, L2, consists of free numerical
variables a; b; c; d; : : :, bound numerical variables x; y; z; : : :, free set variables
U; V;W; : : : ; bound set variables X; Y;Z; : : :, the constant 0, a symbol for each
primitive recursive function, and the symbols D and 2 for equality in the first sort
and the elementhood relation, respectively. The numerical terms of L2 are built up
in the usual way; r; s; t; : : : are syntactic variables for them. Formulas are obtained
from atomic formulas s D t , s 2 U and negated atomic formulas : s D t;: s 2 U
by closing under ^;_ and quantification 8x; 9x;8X; 9X over both sorts; so we
stipulate that formulas are in negation normal form.

The classes of …1
2- and †1n-formulae are defined as usual (with …1

0 D †10 D
[f…0

n W n 2 Ng). :A is defined by de Morgan’s laws; A ! B stands for :A _ B .
All theories in L2 will be assumed to contain the axioms and rules of classical
two sorted predicate calculus, with equality in the first sort. In addition, it will
be assumed that they comprise the system ACA0. ACA0 contains all axioms of
elementary number theory, i.e. the usual axioms for 0, 0 (successor), the defining
equations for the primitive recursive functions, the induction axiom

8X Œ0 2 X ^ 8x.x 2 X ! x0 2 X/ ! 8x.x 2 X/�;
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and all instances of arithmetical comprehension

9Z 8xŒx 2 Z $ F.x/�;

where F.a/ is an arithmetic formula, i.e. a formula without set quantifiers.
For a 2-place relation � and an arbitrary formula F.a/ of L2 we define

Prog.�; F / WD .8x/Œ8y.y � x ! F.y// ! F.x/� (progressiveness)
TI.�; F / WD Prog.�; F / ! 8xF.x/ (transfinite induction)
WF.�/ WD 8XTI.�; X/ WD
8X.8xŒ8y.y � x ! y 2 X// ! x 2 X� ! 8xŒx 2 X�/ (well-foundedness).

Let F be any collection of formulae of L2. For a 2-place relation � we will write
�2 F , if � is defined by a formulaQ.x; y/ of F via x � y WD Q.x; y/.

Definition 1.8 BI denotes the bar induction scheme, i.e. all formulae of the form

WF.�/ ! TI.�; F /;

where � is an arithmetical relation (set parameters allowed) and F is an arbitrary
formula of L2.

By BI we shall refer to the theory ACA0 C BI.

Remark 1.9 The statement of the main Theorem 1.7 uses the notion of a countable
coded !-model of BI. As the stated equivalence is claimed to be provable in RCA0,
a few comments on how this is formalized in this weak base theory are in order. The
notion of a countable coded !-model can be formalized in RCA0 according to [17,
Definition VII.2.1]. Let M be a countable coded !-model. Since BI is not finitely
axiomatizable we have to quantify over all axioms of BI to express that M ˆ BI.
The axioms of BI (or rather their Gödel numbers) clearly form a primitive recursive
set, Ax.BI/. To express M ˆ � for � 2 Ax.BI/ we use the notion of a valuation
for � from [17, Definition VII.2.1]. A valuation f for � is a function from the set of
subformulae of � into the set f0; 1g obeying the usual Tarski truth conditions. Thus
we write M ˆ �, if there exists a valuation f for � such that f .�/ D 1. Whence
M ˆ BI is defined by 8� 2 Ax.BI/M ˆ �.

2 Relativizing the Howard–Bachmann Ordinal

In this section we show how to relativize the construction that leads to the Howard–
Bachmann ordinal to an arbitrary countable well-ordering. To begin with, mainly
to foster intuitions, we provide a set-theoretic definition working in ZFC. This will
then be followed by a purely formal definition that can be made in RCA0.

Throughout this section, we fix a countable well-ordering X D .X;<X/ without
a maximum element, i.e., an ordered pair X D .X;<X/, where X is a set of natural
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numbers, <X is a well-ordering relation on X , and 8v 2 X 9u 2 X v <X u. We
write jXj for X .

Firstly, we need some ordinal-theoretic background. Let ON be the class of
ordinals. Let AP WD f� 2 ON W 9� 2 ONŒ� D !��g be the class of additive
principal numbers and let E WD f� 2 ON W � D !�g be the class of "-numbers which
is enumerated by the function ��:"� .

We write ˛ DNF !
˛1C� � �C!˛n if ˛ D !˛1C� � �C!˛n and ˛ > ˛1 � � � �˛n. Note

that by Cantor’s normal form theorem, for every ˛ … E [ f0g, there are uniquely
determined ordinals ˛1; : : : ; ˛n such that ˛ DNF !

˛1 C � � � C !˛n .
Let � WD @1. For u 2 jXj, let Eu be the uth "-number > �. Thus, if u0 is the

smallest element of jXj, then Eu0 is the least "-number > �, and in general, for
u 2 jXj with u0 <X u, Eu is the least "-number � such that 8v <X u Ev < �.

In what follows we shall only be interested in ordinals below supu2X Eu.
Henceforth, unless indicated otherwise, any ordinal will be assumed to be smaller
than that ordinal.

For any such ˛ we define the set E�.˛/ which consists of the "-numbers below
� which are needed for the unique representation of ˛ in Cantor normal form
recursively as follows:

1. E�.0/ WD E�.�/ WD ; and E�.Eu/ WD ; for u 2 jXj.
2. E�.˛/ WD f˛g; if ˛ 2 E \�.
3. E�.˛/ WD E�.˛1/[ � � � [ E�.˛n/ if ˛ DNF !

˛1 C � � � C !˛n .

Let ˛� WD max.E�.˛/ [ f0g/.
We define sets of ordinals CX.˛; ˇ/; C

n
X
.˛; ˇ/, and ordinals #˛ by main

recursion on ˛ < supu2X Eu and subsidiary recursion on n < ! (for ˇ < �) as
follows.

(C0) Eu 2 Cn
X
.˛; ˇ/ for all u 2 jXj.

(C1) f0;�g [ ˇ � Cn
X
.˛; ˇ/.

(C2) �1; : : : ; �n 2 Cn
X
.˛; ˇ/ ^ � DNF !

�1 C � � � C !�n H) � 2 CnC1
X

.˛; ˇ/.
(C3) ı 2 Cn

X
.˛; ˇ/ \ ˛ H) #ı 2 CnC1

X
.˛; ˇ/.

(C4) CX.˛; ˇ/ WD SfCn
X
.˛; ˇ/ W n < !g.

(C5) #˛ WD minf� < � W CX.˛; �/ \� � � ^ ˛ 2 CX.˛; �/g if there exists an
ordinal � < � such that CX.˛; �/ \� � � and ˛ 2 CX.˛; �/. Otherwise #˛
will be undefined.
We will shortly see that #˛ is always defined (Lemma 2.2).

Remark 2.1 The definition of # originated in [10]. An ordinal representation system
based on # was used in [11] to determine the proof-theoretic strength of fragments
of Kripke–Platek set theory and in [13] it was used to characterize the strength of
Kruskal’s theorem.

Lemma 2.2 #˛ is defined for every ˛ < supu2X Eu.

Proof Let ˇ0 WD ˛� C 1. Then ˛ 2 CX.˛; ˇ0/ via (C1) and (C2). Since the
cardinality of CX.˛; ˇ/ is less than � there exists a ˇ1 < � such that CX.˛; ˇ0/\
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� � ˇ1. Similarly there exists for each ˇn < � (which is constructed recursively)
a ˇnC1 < � such that CX.˛; ˇn/ \ � � ˇnC1. Let ˇ WD supfˇn W n < !g. Then
˛ 2 CX.˛; ˇ/ and CX.˛; ˇ/ \� � ˇ < �. Therefore #˛ � ˇ < �. �

Lemma 2.3

1. #˛ 2 E;
2. ˛ 2 CX.˛; #˛/;

3. #˛ D CX.˛; #˛/ \�; and #˛ … CX.˛; #˛/,
4. � 2 CX.˛; ˇ/ () �� 2 CX.˛; ˇ/,
5. ˛� < #˛,
6. #˛ D #ˇ H) ˛ D ˇ;

7.
#˛ < #ˇ () .˛ < ˇ ^ ˛� < #ˇ/ _ .ˇ < ˛ ^ #˛ � ˇ�/

() .˛ < ˇ ^ ˛� < #ˇ/ _ #˛ � ˇ�;
8. ˇ < #˛ () !ˇ < #˛:

Proof (1) and (8) basically follow from closure of #˛ under (C2).
(2) follows from the definition of #˛ taking Lemma 2.2 into account.
For (3), notice that #˛ � CX.˛; #˛/ is a consequence of clause (C1). Since

CX.˛; #˛/ \� � #˛ follows from the definition of #˛ and Lemma 2.2, we arrive
at (3).

(4): If �� 2 CX.˛; ˇ/, then � 2 CX.˛; ˇ/ by (C2). On the other hand,
� 2 Cn

X
.˛; ˇ/ H) �� 2 Cn

X
.˛; ˇ/ is easily seen by induction on n.

(5): ˛� 2 CX.˛; #˛/ holds by (4). As ˛� < �, this implies ˛� < #˛ by (3).
(6): Suppose, aiming at a contradiction, that #˛ D #ˇ and ˛ < ˇ. Then

CX.˛; #˛/ � CX.ˇ; #ˇ/; hence ˛ 2 CX.ˇ; #ˇ/ \ ˇ by (2); thence #˛ D #ˇ 2
CX.ˇ; #ˇ/, contradicting (3).

(7): Suppose ˛ < ˇ. Then #˛ < #ˇ implies ˛� < #ˇ by (5). If ˛� < #ˇ, then
˛ 2 CX.ˇ; #ˇ/; hence #˛ 2 CX.ˇ; #ˇ/; thus, #˛ < #ˇ. This shows

.a/ ˛ < ˇ H) .#˛ < #ˇ () ˛� < #ˇ/:

By interchanging the roles of ˛ and ˇ, and employing (6) (to exclude #˛ D #ˇ),
one obtains

.b/ ˇ < ˛ H) .#˛ < #ˇ () #˛ � ˇ�/:

.a/ and .b/ yield the first equivalence of (7) and thus the direction “)” of the
second equivalence. Since #˛ � ˇ� implies #˛ < #ˇ by (5), one also obtains the
direction “(” of the second equivalence. ut
Definition 2.4 Inductive definition of a set OTX.#/ of ordinals and a natural
numberG#˛ for ˛ 2 OTX.#/.

1. 0;� 2 OTX.#/; G#0 WD G#� WD 0; Eu 2 OTX.#/ and G#Eu D 0 for all
u 2 jXj.
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2. If ˛ DNF !˛1 C � � � C !˛n and ˛1; : : : ; ˛n 2 OTX.#/ then ˛ 2 OTX.#/ and
G#˛ WD maxfG#˛1; : : : ; G#˛ng C 1.

3. If ˛ D #˛1 and ˛1 2 OTX.#/ then ˛ 2 OTX.#/ and G#˛ WD G#˛1 C 1:

Observe that according to Lemma 2.3 (1) and (6) the function G# is well-
defined. Each ordinal ˛ 2 OTX.#/ has a unique normal form using the symbols
0;�;C; !; # .

Lemma 2.5 OTX.#/ D SfCX.˛; 0/ W ˛ < supu2X Eug D CX.supu2X Eu; 0/.

Proof Obviously ˇ < supu2X Eu holds for all ˇ 2 OTX.#/.

ˇ 2 OTX.#/ ) ˇ 2 CX.sup
u2X

Eu; 0/

is then shown by induction on G#ˇ.
The inclusion CX.supu2X Eu; 0/ � OTX.#/ follows from the fact that OTX.#/ is

closed under the clauses (Ci) for i D 0; 1; 2; 3. Since X is an ordering without
a maximal element it is also clear that

SfCX.˛; 0/ W ˛ < supu2X Eug D
CX.supu2X Eu; 0/. ut

If for ˛; ˇ 2 OTX.#/ represented in their normal form, we wanted to determine
whether ˛ < ˇ, we could do this by deciding ˛0 < ˇ0 for ordinals ˛0 and ˇ0 that
appear in these representations and, in addition, satisfyG#˛0CG#ˇ0 < G#˛CG#ˇ.
This follows from Lemma 2.3 (7) and the recursive procedure for comparing
ordinals in Cantor normal form. So we come to see that after a straightforward
coding in the natural numbers, we may represent hOTX.#/;<� OTX.#/i via a
primitive recursive ordinal notation system. How this ordinal representation system
can be directly defined in RCA0 is spelled out in the next subsection.

2.1 Defining OT
X

.#/ in RCA0

We shall provide an explicit primitive recursive definition of OTX.#/ as a term
structure in RCA0. Of course formally, terms or strings of symbols have to be
treated as coded by natural numbers since RCA0 only talks about numbers and
sets of numbers. Though, as it is well-known how to do this, we can’t be bothered
with these niceties.

Definition 2.6 Given a well-orderingX D .X;<X/, i.e., an ordered pair X in which
X is a set of natural numbers and<X is a well-ordering relation onX , we define, by
recursion, a binary relational structure #X D .j#X j; </, and a function � W j#X j !
j#X j, in the following way:

1. 0;� 2 j#X j, and 0� WD 0 DW ��.
2. If ˛ 2 j#X j and 0 ¤ ˛ then 0 < ˛.
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3. For every u 2 X there is an element Eu 2 j#X j. Moreover, .Eu/
� WD 0, and

� < Eu. If u; v 2 X and u <X v, then Eu < Ev.
4. For every ˛ 2 j#X j there is an element #˛ 2 j#X j; and we have #˛ < �,
#˛ < Eu for every u 2 X , and .#˛/� WD #˛.

5. If ˛ 2 j#X j and ˛ is not of the form �, Eu, or #ˇ, then !˛ 2 #X and
.!˛/� WD ˛�.

6. If ˛1; : : : ; ˛n 2 j#X j and ˛1 � � � � � ˛n with n � 2, then !˛1C!˛2C� � �C!˛n 2
j#X j and .!˛1 C !˛2 C � � � C !˛n/� WD maxf˛�

i W 1 � i � ng.
7. Let ˛ D !˛1 C � � � C !˛n 2 j#X j and ˇ 2 j#Xj, where ˇ is of one of the forms
#� , �, or Eu.

(i) If ˛1 < ˇ, then !˛1 C � � � C !˛n < ˇ.
(ii) If ˇ � ˛1, then ˇ < !˛1 C � � � C !˛n .

8. If !˛1 C � � � C !˛n; !ˇ1 C � � � C !ˇm 2 j#X j then
!˛1 C � � � C !˛n < !ˇ1 C � � � C !ˇm iff
n < m ^ 8i � n ˛i D ˇi or
9 i � min.n;m/ Œ.8j < i ˛j D ˇj / ^ .˛i < ˇi /�.

9. If ˛ < ˇ and ˛� < #ˇ then #˛ < #ˇ.
10. If #ˇ � ˛� then #ˇ < #˛.

Lemma 2.7

(i) The set j#X j, the relation <, and the function � are primitive recursive in X D
.X;<X/.

(ii) < is a total and linear ordering on j#X j.
Proof Straightforward but tedious. ut

Of course, RCA0 does not prove that < is a well-ordering on j#X j.

3 A Well-Ordering Proof

In this section we work in the background theory

RCA0 C 8X9Y .X 2 Y ^ Y is an !-model of BI/

and shall prove the following statement

8X .WO.X/ ! WO.#X// ;

that is, the part (i) ) (ii) of the main Theorem 1.7. Some of the proofs are similar
to ones in [13, Section 10]. Note that in this theory we can deduce arithmetical
comprehension and even arithmetical transfinite recursion owing to [7] and [12],
respectively.
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Let us fix a well-ordering X D .X;<X/, an arbitrary set Y and a countable
coded !-model A of BI which contains both X and Y as elements. In the sequel
˛; ˇ; �; ı; : : : are supposed to range over #X. < will be used to denote the ordering
on #X. We are going to work informally in our background theory. A set U � N is
said to be definable in A if U D fn 2 N j A ˆ A.n/g for some formula A.x/ of
second order arithmetic which may contain parameters from A.

Definition 3.1

1. Acc WD f˛ < � j A ˆ WO.<� ˛/g;
2. M WD f˛ W E�.˛/ � Accg;
3. ˛ <� ˇ W () ˛; ˇ 2 M ^ ˛ < ˇ:

Lemma 3.2 ˛; ˇ 2 Acc H) ˛ C !ˇ 2 Acc:

Proof Familiar from Gentzen’s proof in Peano arithmetic. The proof just requires
ACA0. (cf. [16, VIII.§ 21 Lemma 1]). ut
Lemma 3.3 Acc D M \� .WD f˛ 2 M j ˛ < �g/:
Proof If ˛ 2 Acc, then E�.˛/ � Acc as well; hence, ˛ 2 M \�. If ˛ 2 M \�,
then E�.˛/ � M \�, so ˛ 2 Acc follows from Lemma 3.2. ut
Lemma 3.4 Let U be A definable. Then

8˛ < � \ M Œ8ˇ < ˛ ˇ 2 U ! ˛ 2 U � ! Acc � U :

Proof This follows readily from the assumption that A is a model of BI. ut
Definition 3.5 Let Prog�.X/ stand for

.8˛ 2 M/Œ.8ˇ <� ˛/.ˇ 2 X/ �! ˛ 2 X�:

Let Acc� WD f˛ 2 M W #˛ 2 Accg:
Lemma 3.6 If U is A definable, then

Prog�.U / ! �;�C 1 2 U :

Proof This follows from Lemmas 3.3 and 3.4. ut
Lemma 3.7 Prog�.Acc�/:

Proof Assume ˛ 2 M and .8ˇ <� ˛/.ˇ 2 Acc�/: We have to show that #˛ 2
Acc: It suffices to show

ˇ < #˛ H) ˇ 2 Acc: (2)

We shall employ induction onG#.ˇ/, i.e., the length of (the term that represents) ˇ.
If ˇ 62 E , then (2) follows easily by the inductive assumption and Lemma 3.2.
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Now suppose ˇ D #ˇ0: According to Lemma 2.3 it suffices to consider the
following two cases:

Case 1: ˇ � ˛�. Since ˛ 2 M; we have ˛� 2 E�.˛/ � AccI therefore, ˇ 2 Acc:
Case 2: ˇ0 < ˛ and ˇ�

0 < #˛: As the length of ˇ�
0 is less than the length of ˇ,

we get ˇ�
0 2 AccI thus, E�.ˇ0/ � Acc; therefore ˇ0 2 M: By the assumption at

the beginning of the proof, we then get ˇ0 2 Acc�I hence, ˇ D #ˇ0 2 Acc. ut
Definition 3.8 For every A definable set U we define the “Gentzen jump”

U j WD f� j 8ı ŒM \ ı � U ! M \ .ı C !�/ � U �g:

Lemma 3.9 Let U be A definable.

(i) � 2 U j ) M \ !� � U .
(ii) Prog�.U / ) Prog�.U

j /.

Proof (i) is obvious. (ii) M \ .ı C !�/ � U is to be proved under the assumptions
(a) Prog�.U /, (b) � 2 M ^ M \ ��U j and (c) M \ ı�U . So let �2 M \ .ıC!�/.

1. � < ı: Then � 2 U is a consequence of (c).
2. � D ı: Then � 2 U follows from (c) and (a).
3. ı < � < ıC!� : Then there exist �1; : : : ; �k < � such that � D ıC!�1C� � �C!�k

and �1 � � � � � �k . � 2 M implies �1; : : : ; �k 2 M \ � . Through applying (b)
and (c) we obtain M \ .ıC!�1/ � U . By iterating this procedure we eventually
arrive at ı C !�1 C � � � C !�k 2 U , so � 2 U holds.

ut
Corollary 3.10 Let I.ı/ be the statement that Prog�.V / ! ı 2 M ^ ı \ M � V

holds for all A definable sets V . Assume I.ı/. Let ı0 WD ı and ınC1 WD !ın . Then

I.ın/

holds for all n.

Proof We use induction on n. For n D 0 this is the assumption. Now suppose
I.ın/ holds. Assume Prog�.U / for an A definable U . By Lemma 3.9 we conclude
Prog�.U

j / and hence ın 2 U j and ın \ M � U j . As clearly M \ 0 � U we
get !ın \ M � U . Since Prog�.U / entails ı 2 M we also have ınC1 2 M. Thus
ınC1 2 M ^ ınC1 \ M � U , showing I.ınC1/. ut

Let !0.˛/ WD ˛ and !nC1.˛/ WD !!n.˛/.

Proposition 3.11 I.Eu/ holds for all u 2 jXj.
Proof Noting that in our background theory X is a well-ordering, we can use
induction on X. Note also that I.Eu/ is a statement about all definable sets in
A which is not formalizable in A itself. However, in our background theory
quantification over all these sets is first order expressible and therefore transfinite
induction along <X is available.
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First observe that we have I.� C 1/ by Lemma 3.6. Let u0 be the <X -least
element of jXj. We have Eu0 2 M and for every � < Eu0 there exists n such that
� < !n.�C 1/. As a result, using Corollary 3.10, we have

Prog�.U / ! Eu0 \ M � U

for every A definable set U .
Now suppose that u 2 jXj is not the <X -least element and for all v <X u we

have I.Ev/. As for every ı < Eu there exists v <X u and n such that ı < !n.Ev/,
the inductive assumption together with Corollary 3.10 yields

Prog�.U / ! Eu \ M � U :

Eu 2 M is obvious. ut
Proposition 3.12 For all ˛, I.˛/.

Proof We proceed by the induction on the term complexity of ˛. Clearly, I.0/.
By Lemma 3.6 we conclude that I.�/. Proposition 3.11 entails that I.Eu/ for all
u 2 jXj.

Now let ˛ D !˛1 C � � � C !˛n be in Cantor normal form. Inductively we
have I.˛1/; : : : ; I.˛n/. Assume Prog�.U /. Then Prog�.U

j / by Lemma 3.9(ii),
and hence ˛1 \ M � U j ; : : : ; ˛n \ M � U j and ˛1; : : : ; ˛n 2 M. The latter
implies ˛1 2 U j ; : : : ; ˛n 2 U j . Using the definition of U j repeatedly we conclude
˛ \ M � U . Moreover, ˛ 2 M since ˛1; : : : ; ˛n 2 M.

Now suppose that ˛ D #ˇ. Inductively we have I.ˇ/. By Lemma 3.7 we
conclude that ˇ 2 Acc�, and hence ˛ 2 Acc. From Prog�.U / we obtain by
Lemma 3.4 that � 2 U for all � � ˛. As a result, I.˛/. ut
Corollary 3.13 #X is a well-ordering.

With the previous Corollary, the proof of Theorem 1.7 (i))(ii) is finally accom-
plished.

4 Deduction Chains

From now on we will be concerned with the part (ii) ) (i) of the main Theorem 1.7.
An important tool will be the method of deduction chains. Given a sequent 	 and a
set Q � N, deduction chains starting at 	 are built by systematically decomposing
	 into its subformulas, and adding additionally at the nth step the formulas :An and
: NQ. Nn/, where .An j n 2 N/ is an enumeration of the axioms of the theory BI, and
NQ. Nn/ is the atom Nn 2 U0 if n 2 Q and Nn … U0 otherwise. The set of all deduction

chains that can be built from the empty sequent with respect to a given set Q forms
the tree DQ. There are two scenarios to be considered.
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(i) If there is an infinite deduction chain, i.e. DQ is ill-founded, then this readily
yields a model of BI that containsQ.

(ii) If each deduction chain is finite, then this yields a derivation of the empty
sequent, ?, in a corresponding infinitary system with an !-rule. The depth of
this derivation is bounded by the order-type ˛ of the Kleene–Brouwer ordering
of DQ. By the well-ordering principle, transfinite induction up to E˛C1 is
available, which allows to transform this proof into a cut-free proof of ? whose
depth is less than #E˛C1.

As the second alternative is impossible, the first yields the desired model.

Definition 4.1

1. We let U0; U1; : : : ; Um; : : : be an enumeration of the free set variables of L2 and,
given a closed term t , we write tN for its numerical value.

2. Henceforth a sequent will be a finite list of L2-formulae without free number
variables.

3. A sequent 	 is axiomatic if it satisfies at least one of the following conditions:

(a) 	 contains a true literal, i.e., a true formula of either of the forms
R.t1; : : : ; tn/ or :R.t1; : : : ; tn/, where R is a predicate symbol in L2 for a
primitive recursive relation and t1; : : : ; tn are closed terms.

(b) 	 contains formulae s 2 U and t … U for some set variableU and terms s; t
with sN D tN.

4. A sequent is reducible if it is not axiomatic and contains a formula which is not
a literal.

Definition 4.2 For Q � N we define

NQ.n/ ,
(

Nn 2 U0 if n 2 Q;
Nn … U0 otherwise:

For some of the following theorems it is convenient to have a finite axiomatiza-
tion of arithmetical comprehension.

Lemma 4.3 ACA0 can be axiomatized via a single …1
2 sentence 8XC.X/.

Proof [17, Lemma VIII.1.5]. ut
Definition 4.4 In what follows, we fix an enumeration of A1; A2; A3; : : : of all the
universal closures of instances of (BI). We also put A0 WD 8X C.X/, where the
latter is the sentence that axiomatizes arithmetical comprehension.

Definition 4.5 Let Q � N. A Q-deduction chain is a finite string

	0; 	1; : : : ; 	k
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of sequents 	i constructed according to the following rules:

1. 	0 D : NQ.0/; :A0.
2. 	i is not axiomatic for i < k.
3. If i < k and 	i is not reducible, then

	iC1 D 	i ; : NQ.i C 1/; :AiC1:

4. Every reducible 	i with i < k is of the form

	 0
i ; E; 	

00
i

where E is not a literal and 	 0
i contains only literals. E is said to be the redex

of 	i .
Let i < k and 	i be reducible. 	iC1 is obtained from 	i D 	 0

i ; E; 	
00
i as

follows:

(a) If E � E0 _E1, then

	iC1 D 	 0
i ; E0; E1; 	

00
i ; : NQ.i C 1/; :AiC1:

(b) If E � E0 ^E1, then

	iC1 D 	 0
i ; Ej ; 	

00
i ; : NQ.i C 1/; :AiC1

where j D 0 or j D 1.
(c) If E � 9xF.x/, then

	iC1 D 	 0
i ; F . Nm/; 	 00

i ; : NQ.i C 1/; :AiC1; E

where m is the first number such that F. Nm/ does not occur in 	0; : : : ; 	i .
(d) If E � 8xF.x/, then

	iC1 D 	 0
i ; F . Nm/; 	 00

i ; : NQ.i C 1/; :AiC1
for some m.

(e) If E � 9XF.X/, then

	iC1 D 	 0
i ; F .Um/; 	

00
i ; : NQ.i C 1/; :AiC1; E

where m is the first number such that F.Um/ does not occur in 	0; : : : ; 	i .
(f) If E � 8XF.X/, then

	iC1 D 	 0
i ; F .Um/; 	

00
i ; : NQ.i C 1/; :AiC1

where m is the first number such that Um does not occur in 	i .



Well-Ordering Principles and Bar Induction 547

The set of Q-deduction chains forms a tree DQ labeled with strings of sequents.
We will now consider two cases.

Case I: DQ is not well-founded. Then DQ contains an infinite path P. Now define
a set M via

.M/i D fk j Nk … Ui occurs in Pg:

Set M D .NI f.M/i j i 2 Ng;2;C; �; 0; 1; </.
For a formula F , let F 2 P mean that F occurs in P, i.e. F 2 	 for some 	 2 P.
Claim: Under the assignment Ui 7! .M/i we have

F 2 P ) M ˆ :F: (3)

The Claim will imply that M is an !-model of BI. Also note that .M/0 D Q, thus
Q is in M. The proof of (3) follows by induction on F using Lemma 4.6 below. The
upshot of the foregoing is that we can prove Theorem 1.7 under the assumption that
DQ is ill-founded for all sets Q � N.

Lemma 4.6 Let Q be an arbitrary subset of N and DQ be the corresponding
deduction tree. Moreover, suppose DQ is not well-founded. Then DQ has an infinite
path P. P has the following properties:

1. P does not contain literals which are true in N.
2. P does not contain formulas s 2 Ui and t … Ui for constant terms s and t such

that sN D tN.
3. If P contains E0 _E1, then P contains E0 and E1.
4. If P contains E0 ^E1, then P contains E0 or E1.
5. If P contains 9xF.x/, then P contains F. Nn/ for all n.
6. If P contains 8xF.x/, then P contains F. Nn/ for some n.
7. If P contains 9XF.X/, then P contains F.Um/ for all m.
8. If P contains 8XF.X/, then P contains F.Um/ for some m.
9. P contains :C.Um/ for all m.

10. P contains : NQ.m/ for all m.

Proof Standard. ut
Corollary 4.7 If DQ is ill-founded, then there exists a countable coded !-model of
BI which containsQ.

For our purposes it is important that Corollary 4.7 can be proved in T0 WD
RCA0C8X .WO.X/ ! WO.#X//. To this end we need to show that the semantics
of !-models can be handled in the latter theory, i.e. for every formula F of L2
there exists a valuation for F in the sense of [17, VII.2.1]. It is easily seen that the
principle 8X .WO.X/ ! WO.#X// implies

8X .WO.X/ ! WO."X//
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(see [1, Definition 2.1]) and thus, by [1, Theorem 4.1], T0 proves that every set is
contained in an !-model of ACA. Now take an !-model containing DQ and an
infinite branch of DQ. In this !-model we find a valuation for every formula by [17,
VII.2.2]. And hence Corollary 4.7 holds in the model, but then it also holds in the
world at large by absoluteness.

5 Proof of the Main Theorem: The Hard Direction Part 2

The remainder of the paper will be devoted to ruling out the possibility that for
some Q, DQ could be a well-founded tree. This is the place where the principle
8X .WO.X/ ! WO.#X// in the guise of cut elimination for an infinitary proof
system enters the stage. Aiming at a contradiction, suppose that DQ is a well-
founded tree. Let X be the Kleene–Brouwer ordering on DQ (see [17, Definition
V.1.2]). Then X is a well-ordering. In a nutshell, the idea is that a well-founded DQ

gives rise to a derivation of the empty sequent (contradiction) in an infinitary proof
system.

5.1 Majorization and Fundamental Functions

In this section we introduce the concepts of majorization and fundamental function.
They are needed for carrying through the ordinal analysis of bar induction. More
details can be found in [13, Section 4] and [3, I.4] to which we refer for proofs. The
missing proofs are actually straightforward consequences of Definition 2.6.

Definition 5.1 1. ˛ C ˇ means ˛ < ˇ and #˛ < #ˇ.
2. ˛ E ˇ W () .˛ C ˇ _ ˛ D ˇ/:

Lemma 5.2 1. ˛ C ˇ ^ ˇ C � H) ˛ C � .
2. 0 < ˇ < "0 H) ˛ C ˛ C ˇ.
3. ˛ < ˇ < � H) ˛ C ˇ.
4. ˛ C ˇ H) ˛ C 1 E ˇ:

5. ˛ C ˇ H) #˛ C #ˇ:

6. ˛ D ˛0 C 1 H) #˛0 C #˛:

Lemma 5.3 ˛ C ˇ; ˇ < !�C1 H) !� C ˛ C !� C ˇ:

Corollary 5.4 !˛ � n C !˛ � .nC 1/:

Lemma 5.5 ˛ C ˇ H) !˛ � n C !ˇ:

Definition 5.6 Let D� WD .OTX.#/ \�/ [ f�g. A function f W D� ! OTX.#/

will be called a fundamental function if it is generated by the following clauses:

F1. Id W D� ! D� with Id.˛/ D ˛ is a fundamental function.
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F2. If f is a fundamental function, � 2 OTX.#/ and f .�/ < !�C1, then !� C f

is a fundamental function, where .!� C f /.˛/ WD !� C f .˛/ for all ˛ 2 D�:

F3. If f is a fundamental function, then so is !f with .!f /.˛/ WD !f.˛/ for all
˛ 2 D�.

Lemma 5.7 Let f be a fundamental function and ˇ � �.

(i) If ˛ < ˇ, then f .˛/ < f .ˇ/.
(ii) If ˛ C ˇ, then f .˛/ C f .ˇ/.

(iii) .f .ˇ//� � max..f .0//�; ˇ�/.

Proof (i) is obvious by induction on the generation of fundamental functions.
(ii) also follows by induction on the generation of fundamental functions, using

Lemmas 5.3 and 5.5.
(iii) as well follows by induction on the generation of fundamental functions.

ut
Lemma 5.8 For every fundamental function f we have f .#.f .0/// C f .�/.

Proof Since #.f .0// < �, we clearly have f .#.f .0/// < f .�/. Since 0 C �

and f is a fundamental function, we have #.f .0// < #.f .�// by Lemma 5.7
(ii). Invoking Lemma 5.7 (iii), the latter entails that .f .#.f .0////� < #.f .�//,
so that in conjunction with f .#.f .0/// < f .�/ it follows that #.f .#.f .0//// C
#.f .�//. As a result, f .#.f .0/// C f .�/. ut

5.2 The Infinitary Calculus T �
Q

The calculus T �
Q

to be introduced stems from [13, Section 6]. We fix a set Q � N.

Let LQ2 be the language of second order arithmetic augmented by a unary predicate
NQ. The formulas of T �

Q
arise from LQ2 -formulas by replacing free numerical

variables by numerals, i.e. terms of the form 0; 00; 000; : : : Especially, every formula
A of T �

Q
is an LQ2 -formula. We are going to measure the length of derivations by

ordinals. We are going to use the set of ordinals OTX.#/ of Sect. 3.

Definition 5.9

1. A formula B is said to be weak if it belongs to …1
0 […1

1.
2. Two closed terms s and t are said to be equivalent if they yield the same value

when computed.
3. A formula is called constant if it contains no set variables. The truth or falsity of

such a formula is understood with respect to the standard structure of the integers.
4. 0 WD 0, mC 1 WD m0.
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In the sequent calculus T �
Q

below we shall use the following rules of inference:

.^/ ` 	;A and ` 	;B H) ` 	;A ^ B;

._/ ` 	;Ai H) ` 	;A0 _ A1 if i 2 f0; 1g;

.82/ ` 	;F.U / H) ` 	;8XF.X/;

.91/ ` 	;F.t/ H) ` 	; 9xF.x/;

.Cut/ ` 	;A and ` 	;: A H) ` 	;
where in .82/ the free variable U is not to occur in the conclusion.

The most important feature of sequent calculi is cut-elimination. To state this fact
concisely, let us introduce a measure of complexity, gr.A/, the grade of a formula
A, for LQ2 -formulae.

Definition 5.10

1. gr.A/ D 0 if A is a prime formula or negated prime formula.
2. gr.8XF.X// D gr.9XF.X// D ! if F.U / is arithmetic.
3. gr.A ^ B/ D gr.A _ B/ D maxfgr.A/; gr.B/g C 1.
4. gr.8xH.x// D gr.9xH.x// D gr.H.0//C 1.
5. gr.8XG.X// D gr.9XG.X// D gr.G.U //C 1; if G is not arithmetic.

Definition 5.11 Inductive definition of T �
Q

˛

% 	 for ˛ 2 OTX.#/ and %<!C!.

1. If A is a true constant prime formula or negated prime formula and A 2 	 , then
T �
Q

˛

% 	:

2. If n 2 Q and t is a closed term with value n and NQ.t/ is in 	 , then T �
Q

˛

% 	:

3. If n … Q and t is a closed term with value n and : NQ.t/ is in 	 , then T �
Q

˛

% 	:

4. If 	 contains formulas A.s1; : : : ; sn/ and :A.t1; : : : ; tn/ of grade 0 or !, where
si and ti .1 � i � n/ are equivalent terms, then T �

Q

˛

% 	:

5. If T �
Q

ˇ

% 	i and ˇ C ˛ hold for every premiss 	i of an inference .^/; ._/;
.91/; .82/ or .Cut/ with a cut formula having grade < %, and conclusion 	 , then
T �
Q

˛

% 	:

6. If T �
Q

˛0

% 	; F.U / holds for some ˛0 C ˛ and a non-arithmetic formula F.U /

(i.e., gr.F.U // � !/, then T �
Q

˛

% 	; 9XF.X/ :
7. .!-rule/. If T �

Q

ˇ

% 	;A.m/ is true for every m < !, 8xA.x/ 2 	 , and ˇ C ˛,

then T �
Q

˛

% 	 :

8. (�-rule). Let f be a fundamental function satisfying

(a) f .�/ E ˛;

(b) T �
Q

f .0/

% 	;8XF.X/ , where 8XF.X/ 2 …1
1, and

(c) T �
Q

ˇ

0
„;8XF.X/ implies T �

Q

f .ˇ/

% „; 	 for every set of weak formulas
„ and ˇ < �.
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Then T �
Q

˛

% 	 holds.

Remark 5.12 The derivability relation T �
Q

˛

% 	 is from [13] and is modelled upon

the relation PB� ˛

n F of [3], the main difference being the sequent calculus setting
instead ofP - andN -forms and a different assignment of cut-degrees. The allowance
for transfinite cut-degrees will enable us to deal with arithmetical comprehension.

Remark 5.13 If one ruminates on the definition of the derivability predicate
T �
Q

˛

% „ the question arises whether it is actually a proper inductive definition.
The critical point is obviously the condition (c) of the �-rule. Note that

T �
Q

ˇ

0
„;8XF.X/ occurs negatively in clause (c). However, since ˇ < �, the

pertaining derivation does not contain any applications of the �-rule. Thus the
definition of T �

Q

˛

% „ proceeds via an iterated inductive definition. First one
defines a derivability predicate without involvement of the �-rule via an ordinary
inductive definition, and in a second step defines T �

Q

˛

% 	 inductively referring to
the first derivability predicate in the �-rule.

It will actually be a non-trivial issue how to handle such inductive definitions in
a weak background theory.

Lemma 5.14

1. T �
Q

˛

ı
	 & 	 � � & ˛ E ˇ & ı � % H) T �

Q

ˇ

% � ;

2. T �
Q

˛

% 	;A ^ B H) T �
Q

˛

% 	;A & T �
Q

˛

% 	;B;

3. T �
Q

˛

% 	;A _ B H) T �
Q

˛

% 	;A;B

4. T �
Q

˛

% 	; F.t/ H) T �
Q

˛

% 	; F.s/ if t and s are equivalent,

5. T �
Q

˛

% 	;8xF.x/ H) T �
Q

˛

% 	; F.s/ for every term s.

6. If T �
Q

˛

% 	;8XG.X/ and gr.G.U // � !, then T �
Q

˛

% 	;G.U / .

Proof Proceed by induction on ˛. These can be carried out straightforwardly. (5)
requires (4). As to (6), observe that 8XG.X/ cannot be the main formula of an
axiom. �
Lemma 5.15 T �

Q

2�˛
0
	;A.s1; : : : ; sk/;:A.t1; : : : ; tk/ if ˛ � gr.A.s1; : : : ; sk//

and si and ti are equivalent terms.

Proof Proceed by induction on gr.A.s1; : : : ; sk//. Crucially note that if
gr.A.s1; : : : ; sk// D ! then 	;A.s1; : : : ; sk/;:A.t1; : : : ; tk/ is an axiom according
to Definition 5.11 clause (4). ut
Lemma 5.16

1. T �
Q

2m

0
:.0 2 U /; .9x/Œx 2 U ^ :.x0 2 U /�;m 2 U ;

2. T �
Q

!C5
0

8XŒ0 2 X ^ 8x.x 2 X ! x0 2 X/ ! 8x.x 2 X/�:
Proof For (1) use induction on m. (2) is an immediate consequence of (1) using
Lemma 5.14 (1), the !-rule, ._/, and .82/. ut
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Definition 5.17 For formulasF.U / andA.a/, F.A/ denotes the result of replacing
each occurrence of the form e 2 U in F.U / by A.e/. The expression F.A/ is
a formula if the bound variables in A.a/ are chosen in an appropriate way, in
particular, if F.U / and A.a/ have no bound variables in common.

Lemma 5.18 Suppose ˛ < � and let �.U / D fF1.U /; : : : ; Fk.U /g be a set of
weak formulas such that U doesn’t occur in 8XFi.X/ .1 � i � k/. For an
arbitrary formula A.a/ we then have:

T �
Q

˛

0
�.U / H) T �

Q

�C˛
0

�.A/ :

Proof Proceed by induction on ˛. Suppose �.U / is an axiom. Then either �.A/
is an axiom too, or T �

Q

!C!
0

�.A/ can be obtained through use of Lemma 5.15.

Therefore T �
Q

�C˛
0

�.A/ by Lemma 5.14 (1). If T �
Q

˛

0
�.U / is the result of an

inference, then this inference must be different from .92/, .Cut/, and the .�� rule/
since�.U / consists of weak formulas, the derivation is cut-free and ˛ < �. For the
remaining possible inference rules the assertion follows easily from the induction
hypothesis. ut
Lemma 5.19 Let 	;8XF.X/ be a set of weak formulas. If T �

Q

˛

0
	;8XF.X/ and

˛ < �, then T �
Q

˛

0
	; F.U / .

Proof Use induction on ˛. Note that 8XF.X/ cannot be a principal formula of an
axiom, since 9X:F.X/ does not surface in such a derivation. Also, due to ˛ <

�, the derivation doesn’t involve instances of the �-rule. Therefore the proof is
straightforward. �

The role of the �-rule in our calculus T �
Q

is enshrined in the next lemma.

Lemma 5.20 T �
Q

��2
0

9XF.X/;:F.A/ for every arithmetic formula F.U / and
arbitrary formula A.a/.

Proof Let f .˛/ WD �C ˛ with dom.f / WD f˛ 2 OT. / W ˛ � �g: Then

T �
Q

f .0/

0
8X:F.X/; 9XF.X/;:F.A/ (4)

according to Lemma 5.15. For ˛ < � and every set of weak formulas ‚, we have
by Lemmas 5.18 and 5.19,

T �
Q

˛

0
‚;8X:F.X/ H) T �

Q

f .˛/

0
‚;:F.A/:

Therefore, by Lemma 5.14 (1),

T �
Q

˛

0
‚;8X:F.X/ H) T �

Q

f .˛/

0
‚; 9XF.X/;:F.A/: (5)

The assertion now follows from (4) and (5) by the �-rule. �
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Corollary 5.21 T �
Q

��2C1
! 9X 8y .y 2 X $ B.y// for every arithmetic formula

B.a/.

Proof Owing to Lemma 5.20 we have

T �
Q

��2
0

9X 8y .y 2 X $ B.y//; :8y .B.y/ $ B.y// : (6)

As Lemma 5.15 yields T �
Q

k

0
8y .B.y/ $ B.y// for some k < !, cutting with (6)

yields T �
Q

��2C1
! 9X 8y .y 2 X $ B.x// . ut

Corollary 5.22 For every arithmetic relation � (parameters allowed) and arbi-
trary formula A.a/ we have T �

Q

��2C!
0

8 EX 8Ex.WF.�/ ! TI.�; A// where the

quantifiers 8 EX 8Ex bind all free variables in WF.�/ ! TI.�; A/.
Proof By Lemma 5.20 we have T �

Q

��2
0

:.WF.�//0; .TI.�; A//0 where 0 denotes
any assignment of free numerical variables to numerals. Hence

T �
Q

��2C2
0

.WF.�/ ! TI.�; A//0

by two applications of ._/. Applying the !-rule the right number of times followed
by the right number of .82/ inferences, one arrives at the desired conclusion. ut

5.3 The Reduction Procedure for T �
Q

Below we follow [13, Section 7].

Lemma 5.23 Let C be a formula of grade %. Suppose C is a prime formula or of
either form 9XH.X/; 9xG.x/ or A_B . Let ˛ D !˛1 C � � � C!˛k with ı � !˛k �
� � � � !˛1: Then we have T �

Q

˛

% �;:C & T �
Q

ı

% 	; C H) T �
Q

˛Cı
% �; 	 :

Proof We proceed by induction on ı.

1. Let 	;C be an axiom. Then there are three cases to consider.
1.1. 	 is an axiom. Then so is �;	 . Hence T �

Q

˛Cı
% �; 	 :

1.2. C is a true constant prime formula or negated prime formula. A straightforward

induction on ˛ then yields T �
Q

˛

% � , and thus T �
Q

˛Cı
% �; 	 by Lemma 5.14

(1).
1.3. C � A.s1; : : : ; sn/ and 	 contains a formula :A.t1; : : : ; tn/ where si and ti

are equivalent terms. From T �
Q

˛

% �;:A.s1; : : : ; sn/ one receives

T �
Q

˛

% �;:A.t1; : : : ; tn/ by use of Lemma 5.14 (4). Thence T �
Q

˛Cı
% �; 	

follows by use of Lemma 5.14 (1), since :A.t1; : : : ; tn/ 2 	 .
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2. Suppose C � A _ B and T �
Q

ı0

% 	; C;A0 with A0 2 fA;Bg and ı0 C ı.
Inductively we get

T �
Q

˛Cı0
% �; 	;A0 : (7)

Next use Lemma 5.14 (2) on T �
Q

˛

% �;:A ^ :B to obtain

T �
Q

˛Cı0
% �; 	;:A0 : (8)

Whence use a cut on (7) and (8) to get the assertion.

3. Suppose C � 9xG.x/ and T �
Q

ı0

% 	; C;G.t/ with ı0 C ı. Inductively we get

T �
Q

˛Cı0
% �; 	;G.t/ : (9)

By Lemma 5.14 (1) and (5), we also get

T �
Q

˛Cı0
% �; 	;:G.t/ I (10)

thus (9) and (10) yield T �
Q

˛Cı
% �; 	 by .Cut/.

4. Suppose the last inference was .92/ with principal formula C . Then C �
9XH.X/ and T �

Q

ı0

% 	; C;H.U / for some ı0 C ı and gr.H.U // � !.
Inductively we get

T �
Q

˛Cı0
% �; 	;H.U /: (11)

By Lemma 5.14 (1) and (6) we also get

T �
Q

˛Cı0
% �; 	;:H.U /: (12)

From (11) and (12) we obtain

T �
Q

˛Cı
% �; 	:

5. Let T �
Q

ı

% 	; C be derived by the �-rule with fundamental function f . Then
the assertion follows from the I. H. by the �-rule using the fundamental
function ˛ C f .

6. In the remaining cases the assertion follows from the I. H. used on the premises
and by reapplying the same inference. �
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Lemma 5.24 T �
Q

˛

�C1 	 H) T �
Q

!˛

� 	:

Proof We proceed by induction on ˛. We only treat the crucial case when
T �
Q

˛0

�C1 	;D and T �
Q

˛0

�C1 	;:D , where ˛0 C ˛, and gr.D/ D �. Inductively

this becomes T �
Q

!˛0

� 	;D and T �
Q

!˛0

� 	;:D: Since D or :D must be one of

the forms exhibited in Lemma 5.23, we obtain T �
Q

!˛0C!˛0
� 	 by Lemma 5.23. As

!˛0 C !˛0 C !˛ , we can use Lemma 5.14 (1) to get the assertion. ut
Theorem 5.25 (Collapsing Theorem) Let 	 be a set of weak formulas. We have

T �
Q

˛

! 	 H) T �
Q

#˛

0
	:

Proof We proceed by induction on ˛. Observe that for ˇ < ı < �, we always have
ˇ C ı:

1. If 	 is an axiom, then the assertion is trivial.
2. Let T �

Q

˛

! 	 be the result of an inference other than .Cut/ and �-rule. Then we

have T �
Q

˛0

! 	i with ˛0 C ˛ and 	i being the i -th premiss of that inference.

˛0 C ˛ implies #˛0 C #˛. Therefore T �
Q

#˛0

0
	0 by the I. H., hence T �

Q

#˛

0
	

by reapplying the same inference.
3. Suppose T �

Q

˛

! 	 results by the �-rule with respect to a …1
1-formula 8XF.X/

and a fundamental function f . Then f .�/ E ˛ and

T �
Q

f .0/

! 	;8XF.X/; (13)

and, for every set of weak formulas„ and ˇ < �,

T �
Q

ˇ

0
„;8XF.X/ H) T �

Q

f .ˇ/

! „; 	: (14)

The I. H. used on (13) supplies us with T �
Q

#.f .0//

0
	;8XF.X/ . Hence with

„ D 	 we get

T �
Q

f .#.f .0///

! 	 (15)

from (14). Now Lemma 5.8 ensures that f .ˇ/ C f .�/, where ˇ D #.f .0//.
So using the I. H. on (15), we obtain

T �
Q

#.f .ˇ//

0
	 ; (16)

thus T �
Q

#˛

0
	 as f .ˇ/ C ˛.
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4. Suppose T �
Q

˛0

! 	;A and T �
Q

˛0

! 	;:A , where ˛0 C ˛ and gr.A/ < !.

Inductively we then get T �
Q

#˛0

0
	;A and T �

Q

#˛0

0
	;:A: Let gr.A/ D n � 1.

Then (Cut) yields

T �
Q

ˇ1

n 	 (17)

with ˇ1 D .#˛0/ C 1. Applying Lemma 5.24, we get T �
Q

!ˇ1

n�1 	 , and by
repeating this process we arrive at

T �
Q

ˇn

0
	 ;

where ˇkC1 WD !ˇk .1 � k < n/. Since #˛0 < #˛, we have ˇn < #˛I thus,

T �
Q

#˛

0
	: ut

5.4 Embedding DQ into T �
Q

Assuming that DQ is well-founded tree, the objective of this section is to embed DQ

into T �
Q

, so as to obtain a contradiction. Let X be the Kleene–Brouwer ordering of

DQ. We write DQ

�
	 if 	 is the sequent attached to the node � in DQ.

Theorem 5.26 DQ
�
„ ) 9k < ! T �

Q

E�Ck
! „ .

Proof We proceed by induction on � , i.e., the Kleene–Brouwer ordering of DQ.
Suppose � is an end-node of DQ. Then „ must be axiomatic and therefore is an

axiom of T �
Q

, and hence T �
Q

E�
! „ .

Now assume that � is not an end-node of DQ. Then „ is not axiomatic.
If „ is not reducible, then there is a node �0 immediately above � in DQ such

that DQ
�0
„;: NQ.i/;:Ai for some i . Inductively we have

T �
Q

E�0Ck0
! „;: NQ.i/;:Ai

for some k0 < !. We also have T �
Q

0

0
NQ.i/ and, using Corollaries 5.21 (if i D 0)

and 5.22 (if i > 0), T �
Q

��2C!
! Ai . Thus, noting that � � 2C ! C E�0 C k0, and by

employing two cuts we arrive at

T �
Q

E�0Ck0C2
!Cn „
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for some n < !. By Lemma 5.24 we get T �
Q

!n.E�0Ck0C2/
! „ , and hence T �

Q

E�
! „

since !n.E�0 C k0 C 2/ C E� .
Now suppose that „ is reducible.„ will be of the form

„0; E; „00

where E is not a literal and„0 contains only literals.
First assume E to be of the form 8x F.x/. Then, for each m, there is a node �m

immediately above � in DQ such that

DQ
�n
„0; F . Nm/;„00;: NQ.i/;:Ai

for some i . Inductively we have

T �
Q

E�mCkm
! „0; F . Nm/;„00;: NQ.i/;:Ai

for all m, where km < !. We also have T �
Q

0

0
NQ.i/ and, using Lemma 5.22,

T �
Q

��2C!
0

Ai . Thus, noting that� � 2C! C E�m Ckm, and by employing two cuts
there is an n such that

T �
Q

E�mCkmC2
!Cn „0; F . Nm/;„00

holds for all m. By Lemma 5.24 we get

T �
Q

!n.E�mCkmC2/
! „0; F . Nm/;„00

for all m. Whence

T �
Q

E�
! „0; F . Nm/;„00

since !n.E�m C km C 2/ C E� . A final application of the !-rule yields

T �
Q

E�C1
! „0;8x F.x/; F. Nm/;„00

i.e., T �
Q

E�C1
! „ .

IfE is a redex of another type but not of the form 9XB.X/withB.U / arithmetic,
then one proceeds in a similar way as in the previous case.

Now assume E to be of the form 9X B.X/ with B.U / arithmetic. Then there is
a node �0 immediately above � in DQ such that

DQ
�0
„0; B.U /;„00;: NQ.i/;:Ai
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for some i and set variable U . Inductively we have

T �
Q

E�0Ck0
! „0; B.U /;„00;: NQ.i/;:Ai

for some k0 < !. We also have T �
Q

0

0
NQ.i/ and, using Lemma 5.22, T �

Q

��2C!
0

Ai .
Thus, noting that � � 2 C ! C E�0 C k0, and by employing two cuts there is an n
such that

T �
Q

E�0Ck0C2
!Cn „0; B.U /;„00:

By Lemma 5.24 we get

T �
Q

!n.E�0Ck0C2/
! „0; B.U /;„00: (18)

Lemma 5.20 yields

T �
Q

��2
0

9XB.X/;:B.U /: (19)

Cutting B.U / and :B.U / out of (18) and (19) we arrive at

T �
Q

!n.E�0Ck0C2/C1
! „0; 9XB.X/;„00:

Since !n.E�0 Ck0C2/C1 C E� we get T �
Q

E�
! „0; 9XB.X/;„00 , i.e., T �

Q

E�
! „ .

ut
Below ; stands for the empty sequent and �0 denotes the bottom node of DQ

which is the maximum element of the pertaining Kleene–Brouwer ordering.

Corollary 5.27 If DQ is well-founded, then T �
Q

#.!n.E�0Cm//
0

; for some n;m < !.

Proof We have DQ
�0 : NQ.0/;:A0 . Thus there is a k < ! such that

T �
Q

E�0Ck
! : NQ.0/;:A0

holds by Theorem 5.26. We also have T �
Q

0

0
NQ.0/ and, using Corollary 5.22,

T �
Q

��2C!
0

A0 . Thus, noting that � � 2 C ! C E�0 C k, and by employing two
cuts we arrive at

T �
Q

E�0CkC2
!Cn ;
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for some n < !. Via Lemma 5.24 we deduce T �
Q

!n.E�0CkC2/
! ; , so that by

Theorem 5.25 we conclude T �
Q

#.!n.E�0Cm//
0

; with m D k C 2. ut
Corollary 5.28 DQ is not well-founded.

Proof If DQ were well-founded, we would have

T �
Q

#.!n.E�0Cm//
0

; (20)

for some n;m < ! by Corollary 5.27. But a straightforward induction on ˛ < �

shows that

T �
Q

˛

0
	 ) 	 ¤ ;;

yielding that (20) is impossible. ut
It remains to show that the result of Corollary 5.28 is provable in ACA0 from

8X .WO.X/ ! WO.#X// :

Let S be the theory ACA0 plus the latter axiom. The main issue is how to formalize
the derivability predicate T �

Q

˛

� 	 in the background theory S. We elaborated earlier
in Remark 5.13 that this seems to require an iterated inductive definition, something
apparently not available in S. However, all we need is a fixed point not a proper
inductive definition, i.e., to capture the notion of derivability in T �

Q
without the �-

rule it suffices to find a predicate D of ˛; �; 	 such that

.
/ D.˛; �; 	/ if and only if ˛ 2 j#Xj, � � ! C !, 	 is a sequent, and either 	
contains an axiom of T �

Q
or 	 is the conclusion of an inference of T �

Q
other than

.�/ with premisses .	i /i2I such that for every i 2 I there exists ˇi C ˛ with
D.ˇi ; �; 	i /, and if the inference is a cut it has rank < �.

.
/ can be viewed as a fixed-point axiom which together with transfinite induction
for #X defines T �

Q
-derivability (without .�/-rule) implicitly.

How can we find a fixed point as described in .
/? As it turns out, it follows
from [12] that S proves that every set is contained in a countable coded !-model
of the theory ATR0. It is also known that ATR0 proves the †11 axiom of choice,
†11-AC (see [17, Theorem V.8.3]). Moreover, in ACA0 C †11-AC one can prove
for every P -positive arithmetical formula A.u; P / that there is a †11 formula F.u/
such that 8xŒF.x/ $ A.x; F /�, where A.x; F / arises from A.x; P / by replacing
every occurrence of the form P.t/ in the first formula by F.t/. This is known as
the Second Recursion Theorem (see [2, V.2.3]). Arguing in S, we find a countable
coded ! model B with X 2 B such that B is a model of ATR. As a result, there is
a predicate D definable in B that satisfies .
/. As a result, D is a set in S. To obtain
the full derivability relation T �

Q

˛

� 	 we have to take the�-rule into account. We do
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this by taking a countable coded !-model C of ATR that contains both X and D. We
then define an appropriate fixed point predicate D� using the clauses for defining
T �
Q

˛

� 	 and D for the negative occurrences in the �-rule.
The upshot is that we can formalize all of this in S.

Remark 5.29 When giving talks about the material of this article, the first author
was asked what the proof-theoretic ordinal of the theories that Theorem 1.7 is
concerned with might be. He conjectures that it is the ordinal

#.'2.�C 1//

(or  .'2.� C 1// in the representation system based on the  -function; see [13,
Section 3]), i.e. the collapse of the first fixed point of the epsilon function above�.
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