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Abstract. Inter-data-center asynchronous middleware replication between ac-
tive-active databases has become essential for achieving continuous business 
availability. Near real-time replication latency is expected despite intermittent 
peaks in transaction volumes. Database tables are divided for replication across 
multiple parallel replication consistency groups; each having a maximum 
throughput capacity, but doing so can break transaction integrity.  It is often not 
known which tables can be updated by a common transaction.  Independent rep-
lication also requires balancing resource utilization and latency objectives. Our 
work provides a method to optimize replication latencies, while minimizing 
transaction splits among a minimum of parallel replication consistency groups. 
We present a two-staged approach: a log-based workload discovery and analy-
sis and a history-based database partitioning. The experimental results from a 
real banking batch workload and a benchmark OLTP workload demonstrate the 
effectiveness of our solution even for partitioning 1000s of database tables for 
very large workloads. 

1 Introduction  

Continuous availability (CA) is a critical aspect of business information technology 
resiliency. Enterprises normally maintain multiple active replicas for improving data 
availability and reducing data loss for the planned and unplanned outages. More en-
terprises and governments have realized that the data replicas should be geographical-
ly dispersed. Large-scale and long-distance data replication is a challenge especially 
under unprecedented application and data growths.    
                                                           
 * Co-corresponding authors.   
** Work done while employed by IBM. 
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Various database replication technologies have been proposed for different purpos-
es. High availability (HA) within a single data center employs data replication to 
maintain global transaction consistency [3] or to improve fault tolerance and system 
performance via transaction processing localization [1] [15] [17]. In an enterprise IT 
environment that consists of  distant data centers across a wide area network (WAN), 
heterogeneous database architectures and active-active data serving configurations, 
data replication for continuous availability needs to address additional challenges. Our 
paper addresses an optimization problem in such an enterprise data replication setting.  

Although some argue that integrating replication functionalities inside DBMS pro-
vides better replication performance, middleware-based replication solutions are  
preferable for supporting replications in cross-vendor heterogeneous database envi-
ronments [11]. Industrial examples of such technology include IBM Infosphere Data 
Replication [21], Oracle GoldenGate [22], etc. One widely used approach is to cap-
ture committed data changes from DBMS recovery log and replicate to target DBMS. 
Replicating data after changes are committed at the source does not impact the re-
sponse time of source-side applications. Thus, such an asynchronous solution (a.k.a. 
lazy replication) is widely applied in the context of WAN data replication.  

However, lazy replication introduces data staleness and potential data loss in case 
of unplanned outages. Higher replication throughput implies shorter data stales and 
less data loss. Parallel replication is a desirable solution to increase the throughput by 
concurrently replicating changed data through multiple logical end-to-end replication 
channels. Such concurrent replication can potentially split a transaction’s writeset 
among channels. Similar to DBMS snapshot consistency, point-in-time (PIT) snap-
shot consistency is provided via time-based coordination among replication channels 
[21]. PIT-consistency is a guarantee of replicated data having a consistent view with 
the source view at an instance of past time. Such a time delay in PIT-consistency is 
called PIT-consistency latency. PIT latency at the target DBMS is determined by both 
replication channel throughput and the duration between when the first element of a 
transaction’s writeset is replicated and when the last element is replicated. Normally, 
the more replication channels a transaction’s writeset is split into, the longer it takes 
to reach PIT-consistency. Over-provisioning with underutilized replication channels 
also introduces extra complexities and waste resources.  

This paper proposes an automatic solution for addressing a partitioning problem in 
parallel middleware-based inter-data-center data replication. Partitioning database 
objects becomes a critical challenge in PIT latency reduction for parallel replication. 
First, databases and applications are often designed separately following DBMS data 
independence principles [2]. It is impractical to decouple database objects from appli-
cation serving and replication prospective in most cases. Furthermore, new applica-
tions are continually deployed on existing databases and access patterns change as 
business requirements evolve. Giving the workload complexity, database object scales 
and resource constraints, it is challenging, error-prone and time-consuming for data-
base administrators to understand the comprehensive picture of all the database activi-
ties and manually partition database for implementing parallel replication.   

Our solution of partitioning database objects aims at employing minimum replica-
tion channels for achieving desired point-in-time consistency. We present a workload 
discovery and history-based partitioning approach based on the observation that simi-
lar workload characteristics and patterns reoccur in most business applications. The 
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partition granularity is at DBMS object level such as tables and table partitions, which 
can reach up to thousands or tens of thousands in a large enterprise IT environment. 
Finer grained partitioning, such as at the row level, is less practical due to higher 
overhead in runtime replication coordination and DBMS contention resolution. Our 
approach discovers and analyzes the patterns from the DBMS recovery log, and 
makes partitioning recommendations using a proposed two-phased algorithm called 
Replication Partition Advisor (RPA)-algorithm. In the first phase, the algorithm finds 
a partitioning solution with the least replication channels such that the PIT latency is 
below a threshold tied to a service level agreement (SLA). The second phase refines 
the partitioning solution to minimize the number of transaction splits.  Our approach 
is applicable to share-nothing, share-memory and share-disk databases [19]. The real-
world workload evaluation and analysis demonstrate the effectiveness of our solution. 

The rest of the paper is organized as follows. Section 2 introduces more back-
ground in inter-data-center parallel data replication. Section 3 describes briefly the 
workload profile collected for our RPA tool. Section 4 presents the RPA-algorithm. 
The experiment evaluations are presented in Section 5. We discuss related work in 
Section 6, ending with the conclusion in Section 7. 

2 Background on Parallel Data Replication  

Our work is applicable to an active-active configuration (where transactions can be 
executed at either site) presuming that proper transaction routing provides conflict 
prevention. For discussion simplicity, we present uni-directional replication in an 
active-query configuration (a.k.a. master-slave [8]) where update transactions are 
restricted to a designated master copy in one data center and read-only transactions 
are executed in other data center copies. Upon a failure on the active copy caused by 
disasters, one of the query copies assumes the master role and takes over the updates. 

Fig. 1 illustrates a logical architecture of typical parallel lazy data replication be-
tween two database systems that potentially reside in two data centers. A parallel 
replication system can be modeled as a network G(C ⋃ A,E) with a set of capture 
C={c1, c2,…,cs} and a set of apply A={a1,a2,…,ar}. To replicate data changes, a cap-
ture agent, such as Capture1 in Fig. 1, captures the committed data changes from the 
database recovery logs at the source site, packs and sends it over a transport channel. 
The transport channels manage reliable data transfer between the two sites. An apply 
agent, such as Apply1 in Fig. 1, applies the changes to the target database. Each cap-
ture and apply agent can be attached to a different database node in a cluster. Within 
the capture and apply agent, whenever possible, multiple threads are used to handle 
the work with the protection of causal ordering.  
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Fig. 1. Logical architecture of parallel lazy replication 
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The link  (a,c) ∈ E  represents a logical replication channel, which is an end-to-end 
replication data path from a log change capture at the source site to a change apply at 
the target site. Three channels are shown in Fig. 1. A throughput capacity or band-
width BW(a,c) measures the maximum data throughput, in bytes/second, of a channel. 
The value is affected by all the involved components, e.g., source log reader, capture, 
network, apply, target database, etc. For simplicity, this paper assumes that the  
effective "bandwidth" is static. All changes within each database object (tables or 
partitions) are replicated by one channel and this is designated by preconfigured sub-
scription policy. Each capture agent only captures the changes from its subscribed 
objects. Transported data changes at target site are subscribed by one or more apply 
agents on mutually disjoint sets of objects. The entire set of database objects within 
each replication channel is guaranteed to preserve serial transaction consistency. 
Hence, the set of database objects TB={tb1, tb2,…,tbk} that are replicated within the 
same replication channel (a,c) is called a consistency group denoted as cg(a,c,TB). 

When a transaction’s writeset is split into different consistency groups, the transac-
tion is split into multiple sub-transactions that each is handled by a consistency group. 
The replication target eventually reaches point-in-time consistency. In the next two 
sections, we discuss our solution for optimizing the partitioning of database objects 
into minimum number of consistency groups to achieve a PIT latency goal. 

3 Workload Profile and Replication Partition Advisor 

Workload discovery is performed by our Workload Profiling Tool (WPT). This tool 
collects transaction information, called WPT workload profile, from DBMS recovery 
log for another tool, Replication Partition Advisor (RPA), for analysis. The log can 
either be a real time log or a history log.  In the workload profile, all transactions are 
clustered based on their accessed tables. Each cluster is called a transaction pattern, 
which is characterized by a distinct set of tables or table partitions. Each transaction 
pattern contains all the transactions that access an identical set of tables or table parti-
tions, but the access order and frequency can vary. For example, given a table set 
S={A,B,C,D}, examples of possible transaction patterns are P{A,B,C}, P{A}, 
P{B,C,D}, etc. In our solution, a table partition is treated as a database object, just as 
any individual table. For simplicity, the rest of the paper only discusses tables.  

Measuring the replication cost per operation depends on the operation type, the ta-
ble definition and the actual logged column size and values. For example, replicating 
an update operation requires all the updated column values and the pre-updated key 
values. The total size of all these column values drives the costs of log capture at the 
source, network transmission, and operation replay at the target. WPT workload pro-
file is defined as the workload patterns with the associated information, which con-
sists of the snapshot time, transaction counts, the number of accessed tables, table 
schema, and the insert, update and delete volumes in bytes for each snapshot.  

4 Replication Partition Advisor Algorithm 

4.1 Problem Formulation   

Let WK(TB, TX, T, IUD) denote a replication-specific workload collected during  a 
time window T={t0,t0+dt,t0+2·dt,… t0+v·dt}, where dt is the sample collection  
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interval; TB={tb1, tb2,…,tbn} is a set of n replication objects (e.g., tables) whose 
changes are to be replicated and TX={tx1, tx2,…,txk} represents their transaction activi-
ties; and IUD(TB,T) is the time series statistics of inserts, updates and deletes on the 
tables in a time window T. Given a parallel replication system G(C ⋃A,E), RPA-
algorithm partitions all the replicated database objects TB to form a set of m mutually 
disjoint non-empty partitions CG={cg1,cg2,…,cgm}, where cgi is a consistency group 
replicated by a particular channel E(a,c). The objective is to find a solution such that 
m is minimal and the worst replication latency in CG is below a user-supplied  
threshold H.  

For a particular replication channel, the PIT-consistency latency at a specific time 
point tp is the difference between tp and the source commit time for which all transac-
tions to that point have been applied to the target at time tp. The latency of each chan-
nel is directly related to the logical replication throughput capacity BW(a,c) as well as 
the size of workload assigned to this channel. The workload size is defined as the 
number of replicated data bytes. For a specific channel, it can process at most dt·BW 
bytes within dt seconds. The residual workload will be delayed to the next intervals. 
Residual workload REScg,i  for a consistency group cg at time t0+i·dt is the remaining 
work accumulated at t0+i·dt that has not been consumed by cgi. Thus, REScg,i  can be 
computed iteratively by:  

REScg,i = max{(REScg,i-1 + ∑IUD(TBcg ,t0+(i-1)·dt)-dt·BW) ,0}                   (1) 

Assuming data is consumed on a first-in-first-out basis, the PIT latency for cg at 
time t0+i·dt is the time to process the accumulated residue and new activities at 
t0+i·dt: 

PITcg,i = (REScg,i + ∑IUD(TBcg,t=t0+i)) / (dt·BW)                         (2) 

The maximum PIT latency PITcg  of group cg during the time period is computed as: 

PITcg = max{ PITcg,i | i=0,1,2,…,v}                                      (3) 

The maximum PIT latency PITCG-max of a set of consistency groups CG is the highest 
value of PITcg  among all consistency groups in CG.  

The objectives of the partition optimization can be formulized as follows. Given a 
workload W, a parallel replication system G and its replication channel bandwidth 
BW(a,c), and an SLA-driven PIT-consistency latency threshold H, the first objective 
function is defined as:   

L = min CG | ∀CG : PITCG−max ≤ H{ } ,                                  (O1) 

where |CG| is the size of a consistency group set CG, i.e., the number of groups in the 
set. O1 is to find the partitioning solutions with the lowest number L of consistency 
groups such that the highest PIT-consistency latency of all the replication channels 
PITCG-max  is less than or equal to H. Let PL represent all the partition solutions of 
group size L and satisfy O1. The second objective is to find a partitioning solution 
with the minimized number of transaction splits. 

T_split = argmin
CG∈PL

trT (cgi ,tx)
i=1

L


tx∈TX
 | trT (cgi ,tx) ∈ 0,1{ }








,                     (O2) 

where trT(cgi,tx) is either 1 or 0 representing whether transaction tx has tables as-
signed to group cgi or not. When all the tables in transaction tx is assigned to a single 
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group, trT(cgi,tx) equals 0 for all groups except one. O2 seeks to find the partition 
solution in PL  such that the aggregated count is minimized.  When no transaction split 
is required,  T_split  equals the total number of transaction instances in the workload.   

4.2 RPA-algorithm Phase-1:  Satisfying PIT Latency with the Least Groups  

Our RPA algorithm consists of two phases: phase-1 is to find a solution that satisfies 
the first objective O1, and then phase-2 applies a transaction graph refinement ap-
proach to achieve the objective O2. The algorithm flow of phase-1 is listed below 
followed by a description.  

RPA-algorithm Phase-1 Steps                                                                                                 
1_1. Aggregate the total amount of work Wsum= ∑ IUD(TB,T) for all tables in  

TB={tb1, tb2,…,tbn} and in time period T={t0,t0+dt,t0+2·dt,… t0+v·dt}. 
1_2. Compute the lower bound Llower  of the number of consistency groups  Llower= 

Wsum /(BW·v·dt +BW·H).  Set initial CG number  L = Llower. 
1_3. Sort all tables in TB in descending order by each table’s peak activity max(IUD) 

and total activity ∑ (IUD), represented by  TBP and TBT respectively. 
1_4. Select a subset TBtop consisting of top tables from both list  TBP and list  TBT 
1_5. Exhaust all the combinations of placing TBtop  tables into L groups.  Select the 

placement with the lowest maximum PIT latency and continue to next step.         
1_6. Iterate through the rest tables in their descending order in TBp .  Test each table 

against each consistency group and compute potential maximum PIT latencies  
PITpmax_i, i = 1,2…L,  for each group.  Place the table in the group with the low-
est potential PITpmax. If PITpmax > H for the selected group, stop and go to 1_8.  

1_7. Compute the maximum PITmax_i, i = 1,2…L for all consistency groups. 
1_8. For all consistency groups. If max(PITmax_i) > H for  i = 1,2…L, increment 

L=L+1 and repeat steps 1_5 to 1_8 until  max(PITmax) ≤ H. The last L is the min-
imum number Lmin  of consistency groups.  

Given bandwidth BW(a,c) and a user specified PIT latency threshold H, the first 
two steps in Phase-1 obtain the lower bound Llower, for the number of consistency 
groups. The lower bound describes the best case scenario: the workload volume dis-
tributes uniformly in both table and time dimensions, while the PIT latency reaches 
the highest at the end of the time window t0+v·dt and the residual workload evenly 
spreads among all channels, i.e. Wsum =Llower ·BW·(v·dt+H).  Starting with this lower 
bound Llower, the process in steps 1_3 to 1_6 partitions the tables into Llower groups. 
We then re-examine the actual maximum PIT-consistency latency of all groups in 
steps 1_7 and 1_8. If the latency is higher than the threshold H, another round of par-
titioning using is performed with the number of groups incremented by 1. 

For each fixed group number, the problem becomes to partition n tables into L 
consistency groups for PIT latency minimization, which is an NP-hard problem [6]. 
Given that the number of tables in a workload can reach thousands or even more, it is 
not realistic to exhaust all the partitioning combinations for finding the best among 
them. Instead, the greedy algorithm is introduced to resolve such a problem [7].  

When applying the greedy algorithm, we use a two-step approach for improving 
the possibility of finding a global optimal solution instead of a local optimum. First, 
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using the most active tables TBtop (selected in step 1_4), step 1_5 enumerates all the 
possibilities of partitioning them into L non-empty groups. The number of combina-
tions for such a placement grows rapidly with the numbers of tables and groups. For 
avoiding an impractically high cost of step 1_5, the size of TBtop is determined based 
on a reasonable computation time on the system where RPA runs. The best choice 
from the exhaustive list of placements is the one with the lowest maximum PIT laten-
cy. Step 1_5 is then followed by a greedy procedure in step 1_6 that tests each of the 
rest tables against each consistency group and computes the group’s potential new 
maximum PIT latency contributed by the table. The group with the lowest new max-
imum PIT latency is the target group for the table placement. The greedy iteration in 
step 1_6 uses a stronger heuristics for reaching the minimum number of consistency 
groups, even though it is possible that other partitioning schemes that satisfy objective 
O1 (Section 4.1) also exist. An added benefit is that this heuristics tends to generate 
consistency groups with less PIT latency skews among them. 

Our approach is particularly effective when there are activity skews among the 
tables. In fact, such skews are common in real-world applications. Fig. 2 shows a 
customer workload analysis on how tables weight within the workload with respect to 
total and peak throughputs. A table with a higher x-axis value weights more in terms 
of total throughput than those with lower x-axis values. Such a table contributes more 
to the overall workload volume accumulation and channel saturation. A table with a 
higher y-axis value is more likely to contribute to higher PIT latency at its own peak 
time. As shown in Fig. 2, tables with higher peak or total throughputs constitute a 
small fraction in the entire workload. Based on this observation, step 1_4 selects the 
top tables with higher total and peak throughputs for enumerative placement tests. 

High peak                                                       

Low peak                                                      

High total 
throughput

Low total 
throughput

High peak                                                       

Low peak                                                      

High total 
throughput

Low total 
throughput

 

Fig. 2. Table activity distribution in a real-world banking application workload  

Throughput Balancing: An Alternative to PIT-consistency Latency Minimization    
Calculation of PIT-consistency latencies is impossible when quantified replication 
bandwidth is unavailable. In this case, the optimization goal of RPA-algorithm is 
adjusted to balance the peak volume and total volume given a targeted number of 
consistency groups. Instead of computing PIT latency, steps 1_5 and 1_6 choose the 
candidate group based on the accumulated peak volume and total volume after adding 
a new table. Both factors are positive correlated with the PIT latency. Total through-
put based placement tries to balance utilizations of physical replication channels. Peak 
throughput based placement is for capping the highest workload volume among all 
channels. Understanding workload peaks also facilitates capacity planning and system 
configuration. This alternative is referred to as the throughput balancing algorithm 
(RPA-T-algorithm).   
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4.3 Transaction Split Reduction   

RPA-algorithm phase-1 focuses on reducing PIT-consistency latency. This section 
describes phase-2, which attempts to reduce transaction splits for statistically increas-
ing serial consistency in data replication.   

Transaction Graphs. In RPA, we use an undirected weighted graph TG(TB, TX, T, 
IUD) to model tables and their transaction relationships within a workload WK(TB, 
TX, T, IUD). Each node in the graph represents a table in TB. For simplicity, the same 
notation TB={tb1, tb2,…,tbn} is also used to represents the graph nodes. The weight of 
a node is the time series IUD statistics for the table in the workload profile. An edge 
e(tbi , tbj ) connecting two nodes tbi and tbj denotes that the there exists one or more 
transaction patterns that correlate both tables. The weight of the edge |e(tbi , tbj )|  is 
the total transaction instance counts from all the transaction patterns that involve both 
tables. Fig. 3 illustrates an example of a transaction graph with 19 tables.  Table T1’s 
weight is associated with a time series statistics {234,21,654,2556,..},which indicates 
data activities to be replicated at each time point for T1. The weight 731 of edge 
e(T1,T2) means that there are 731 committed transactions involving both T1 and T2.   
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Fig. 3. Transaction graph 

Because of relational constraints or other reasons, there are cases when transaction 
consistency must be preserved among certain tables. That means, these correlated 
tables need to be assigned to the same consistency group. When RPA-algorithm 
builds transaction graph for a workload, each set of such correlated tables is first 
merged into a single node with aggregated node statistics and edge weights 

When partitioning a set of table nodes, RPA-algorithm groups the tables to form 
multiple clusters, which are possibly connected by edges. For a transaction instance 
that is split into q clusters, the number of edges (of weight 1) connecting these q clus-
ters equals q·(q-1)/2. This number monotonically increases with q when q>1.  Hence, 
minimizing the number of split transactions, as formulated by O2 in Section 4.1, is 
equivalent to minimizing the number of edges, or aggregated edge weight. Equiva-
lently, the problem of minimizing transaction splits is a graph partitioning problem, 
which is to divide a graph into two or more disconnected new graphs by removing a 
set of edges. As a classic partitioning problem, minimum cut graph partitioning is to 
remove a set of edges whose aggregated weight is minimal. A constraint for typical 
graph partitioning applications is to balance the total node weight of each partition. 
Differently, the target of our problem is to minimize the maximum PIT-consistency 
latency among all the groups, each corresponds to an individual consistency group. 
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General Graph Partitioning Algorithms. A graph partitioning problem, as an NP-
complete problem in general, is typically solved by heuristics in practice. One widely 
used algorithm for two-way partitioning (bi-partitioning) is Kernighan-Lin algorithm 
(KL algorithm) [12]. It is an iterative improvement algorithm over two existing parti-
tions. It seeks to reduce the total edge cut weight by iteratively swapping nodes in 
pairs between the two partitions. Fiduccia-Mattheyses algorithm [5] (FM algorithm) 
further enhances KL algorithm. By moving a node to a new group, it reduces its edge 
cut to the other partition while increasing its edge connection to its home partition. It 
also removes KL algorithm’s restriction of moving nodes in pairs. The improved al-
gorithm is referred to as KL-FM algorithm. For large graphs, multi-level bi-
partitioning is often applied through graph coarsening and expansion [9]. The quality 
of their final solutions, which could be local optimum, is affected by the initial parti-
tioning. Spectral solution [16] can find the global optimum by deriving partitions 
from the spectrum of the graph’s adjacency matrix, but it does not fit our transaction 
graph model with time series statistics as node weights. Partitioning a graph into more 
than two partitions can be achieved via a sequence of recursive bi-partitioning. Re-
finement heuristics for k-way partitioned graph have also been developed [10].  

Transaction Split Reduction by Consistency Group Refinement. Before introduc-
ing our RPA-algorithm phase-2, we first discuss how to reduce transaction splits be-
tween two already partitioned consistency groups by FM algorithms. This process is 
referred to as an algorithm for 2-CG refinement (CG-RF-2). The process refines the 
partition via node/table movement. Each move needs to ensure that the PIT-
consistency latencies for both refined groups remain below PITmax or within a speci-
fied margin around PITmax. 

Algorithm for 2-way CG refinement(CG-RF-2)        
C_1 Create graph representations for each  input consistency groups cg1 and cg2  
C_2 Compute PIT latencies PITcg1 and PITcg2 for cg1 and cg2, respectively. Define 

PITmax=max(PITcg1, PITcg2)·(1+α)  as  the upper bound for margin  α.  
C_3 Compute the gain of each node. The gain for a node table tbi , as defined in FM 

algorithm, is computed as the total edge weight between tbi  and all the nodes in 
the group that tbi  does not belong, subtracted by total edge weight between tbi 

and all the nodes in the same group as tbi, i.e. g( tbi)= ∑(|e( tbi, tbj)|)- ∑(|e( tbi, 
tbk)|) where  tbj belongs  in the different group than tbi , and tbk belongs in the 
same group as tbi. The intuition is that if g( tbi)  is positive, moving tbi from its 
current group to the other group reduces the edge cut between the two groups.  

C_4 Find the node n1 with the maximum gain g1 and whose move from its current 
group to the other allows each group’s PIT latency remain below the PITmax 
value from C_2.  Lock node n1, mark its movement from its current group to the 
other as an element mv1 and store in the moving list mv_list. In some cases, the 
gain of node n1 is non-positive. However, it is still moved with the expectation 
that the move will allow the algorithm to “escape out of a local minimum”. 

C_5 Update the gains of all the nodes that are connected to n1 due to its movement.  
C_6 Repeat C_4 and C_5 for the rest of the nodes until all the nodes are locked. All 

movements are stored in mv_list{ mv1,…,mvn}in the order that they are found . 
The gains corresponding to these node moving steps is {g1,g2 ,…,gn}. 
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C_7 Find the best sequence of mv1,mv2,…,mvk (1≤k≤n) such that ∑({g1,g2 ,…,gk}) is 
maximum and positive. 

C_8 Mark the move of these k tables permanent. The refined groups are cg1’ & cg2’. 
C_9 Free all the locked nodes. 
C_10 Repeat steps C_3 to C_9 until no move can be found in C_7.  

The PIT latency upper bound in C_2 is set to preserve the optimization objective 
and speed up the algorithm convergence. When the two input groups are produced by 
RPA-algorithm phase-1 and α is set to 0, CG-RF-2 algorithm preserves the same max-
imum PIT latency value from phase-1 while refining the groups for transaction split 
minimization. When α>0, the PIT latency constraint is relaxed and potentially more 
nodes are moved to reduce transaction split. Alternatively, a user-supplied PIT thre-
shold H can be used as the constraint.   

In some cases, the two-step procedure of bi-partitioning and refinement can be 
used recursively to create a higher number of partitions, given that the refinement 
constraint can be distributed along the recursion paths. Such an approach works for 
throughput balancing partitioning optimization, i.e. the alternative algorithm RPA-T. 
However, PIT-consistency latency is not a constraint measure that can be easily dis-
tributed while still guaranteeing convergence during recursive bi-partitioning. There-
fore a non-recursive approach is needed.    

RPA-algorithm Phase-2: K-way Consistency Group Refinement for Transaction 
Split Reduction.  This section presents the phase-2 of our RPA algorithm for transac-
tion split reduction. The algorithm (called CG-RF-k) is derived from the k-way re-
finement algorithm proposed by Karypis et al [10].  

RPA-algorithm Phase-2 (CG-RF-k)       
Ck_1 For the k consistency groups cg1,…,cgk  created by RPA-algorithm phase-1, 

create the graph representation for the workload and these k partitions. 
Ck_2 Iteration through all the nodes, find the set Ne of all the nodes that each has 

edge connections to other groups that it does not belong to. Compute the gain 
for each element in Ne, denote a gain as g( tbi , cgm ) in which cgm is a group 
that node (table) tbi does not belong but has edge connections to one or more of 
its nodes. The gain is computed the same as algorithm CG-RF-2 step C_3. 

Ck_3 Compose subset Ne’ of Ne with nodes that only have positive gains.  
Ck_4 For each node tbi in Ne’, test it with its connected groups for potential new PIT 

latencies. Among those groups whose potential new PIT latencies are below the 
user specified threshold H, select the group with the largest positive gain for tbi 
to move into. If none of the group qualifies the PIT threshold requirement, do 
not move tbi.       

Ck_5 Update the gains of all the affected nodes due to the move of tbi, including tbi. 
Updates Ne’ following the same criteria as in Ck_3.   

Ck_6 Repeat steps Ck_4 and Ck_5 until there is no node in Ne’.  

RPA-algorithm phase-2 starts its refinement process from the partitioning result of 
phase-1, which finds the minimum number of groups while satisfying maximum PIT-
consistency latency threshold.  Every node move seeks to reduce the positive gains, 
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i.e. trading higher inter-group edge cut weight with lower intra-group edge cut weight. 
This process keeps reducing transaction split count until reaching the lowest.   

5 Experiments and Analysis 

We applied our work to a batch workload and an OLTP workload. The batch work-
load is from a banking business and we collected the WPT data from an offloaded 
production DBMS recovery log. For the OLTP workload, we expanded the schema of 
TPC-E benchmark [23] and simulated workload profile data for analysis. In both ex-
periments, the analysis processes complete within minutes.   

5.1 Transaction Split Avoidance Algorithm  

For studying trade-offs between transaction split and replication latency or throughput 
balancing, we devised an algorithm Transaction Split Avoidance (TSA) that partitions 
database objects without allowing any transaction split. Using transaction graph, TSA 
algorithm is a modified tree traversal algorithm. Without getting into details, this 
algorithm works by repeatedly selecting an unassigned table node and grouping it 
with all the nodes that connect to it directly or indirectly.  

5.2 Experiment with a Large Bank Batch Workload 

This workload profile was collected from a database log representing a four-hour 
batch processing window with 1 minute sample interval. There are 824 tables with 
active statistics among a total of 2414 tables, and 5529 transaction patterns are dis-
covered from 12.7 million transaction instances. The number of tables correlated by 
transaction patterns varies between 1 and 27 with histogram shown in Fig. 4.  
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Fig. 4. Distribution of transaction patterns over the number of tables in a batch workload 
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Fig. 5. Partitioning result of batch workload with RPA-algorithm phase-1 
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We apply RPA-algorithm with a replication bandwidth BW= 5MB/second. To put 
in prospective, this bandwidth is equivalent to insert 50K 100-byte records per second 
into a database.  Starting from the lower bound of 3 consistency groups following step 
1_2 of RPA-algorithm phase-1, Fig. 5 shows the maximum PIT-consistency latency 
of each group, in the unit of a sample interval, when the workload is partitioned into 
4, 6,8,10 or 12 groups. As the number of consistency groups increases, the PIT laten-
cies are reduced for each configuration. The reason that the three highest PIT latency 
values remain unchanged in 8-, 10- and 12-group cases is because these three groups 
are assigned with only one volume heavy table each. To further reduce point-in-time 
latency, single channel replication bandwidth has to be increased by improving the 
underline replication technologies in network, database, and replication software. 

Next we apply both phase-1 and phase-2 of RPA-algorithm to reduce transaction 
splits for a given PIT latency threshold H=60 (1 hour). The lowest number of consis-
tency group for this threshold is four from phase-1. Fig. 6 shows the result of phase-2.  
The first chart in Fig. 6 shows the maximum PIT latency of each consistency group 
using different variations of RPA-algorithm such as phase-1 only, phase-1 plus phase-
2 with allowed increase in PIT latency within 0%, 10% and 20% margin, as labeled 
accordingly in the chart. The second chart in Fig. 6 shows the transaction split distri-
bution in terms of number of groups, note that splitting into one group means no split-
ting. TSA algorithm, results are also provided for comparison.   

The charts show that when phase-2 is used after phase-1, the percentage of non-
splitting transactions increases from 70% with “RPA_Phase1” to 82%, 88% and 91% 
respectively for RPA_Phase1&2, RPA_Phase1&2-10% and RPA_Phase1&2-20%. 
With TSA algorithm, all the transactions are non-splitting; however the maximum 
PIT latency reaches unacceptably high of over 450 1-minute sample intervals. In addi-
tion to demonstrating that RPA-algorithm can effectively reduce transaction split, the 
result provides trade-offs study between transaction split and PIT latency.    
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Fig. 6. Partition and transaction split results with RPA-algorithm phase-1 & phase-2 (4 CGs) 
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5.3 Experiment with an OLTP Workload 

TPC-E is a newer OLTP data centric benchmark. Its processing is composed of both 
READ-ONLY and READ-WRITE transactions. Only the READ_WRITE transac-
tions with data changes are used in our study. The TPC-E table schema consists of 33 
tables, and 23 of which are actively updated during the transaction execution flows. 

To simulate more complex real-world workloads, we expanded the schema by in-
creasing the number of tables by 30x as well as increasing transaction correlations 
among the tables. Based on the augmented schema and workloads, as well as TPC-E 
specification on how the tables are updated, we generated a simulated workload pro-
file data with 155 transaction patterns and over 6 million transactions   

OLTP workloads usually update the smaller amount of data within the scope of a 
committed transaction. Since the volume is lower than the batch, we experiment with 
our alternative throughput balancing algorithm (RPA-T-algorithm) and to partition the 
tables and balance total throughput among 8 consistency groups.  

The analyses of the partitioning results using RPA-T phase-1 and RPA-T phase-
1&2 are shown in Table 1 and Fig. 7. To be more intuitive, relative standard deviation 
(RSTDEV=standard deviation/mean) is used to evaluate the effectiveness of through-
put balancing among consistency groups, as listed in Table 1 for each algorithm. With 
no surprise, the RSTDEV value is near 0 (0.03%) for RPA-T phase-1 since it is opti-
mized for balancing throughout; the RSTDEV value for TSA is very high (282%) 
since it does not address balancing. Fig. 7 offers a different view than Fig. 6 for ana-
lyzing how the transaction split is distributed. In Fig. 7, y-axis indicates the percen-
tage of the total transactions that are contained within x number or less consistency 
groups, x being the label on x-axis. The percentage values on y-axis increase and 
reach 100% for eight consistency groups, i.e. all transactions are replicated within 
eight groups or less. An algorithm whose curve progresses to 100% slower than 
another means that a higher percentage of the transactions are split into more consis-
tency groups when using this algorithm than using the other one. With TSA algo-
rithm, none of the transactions are replicated with more than one consistency group. 
For RPA-T phase-1 algorithm, only a small number of transactions (0.0015%) are 
replicated in one group and 15% are replicated in one or two groups, etc. 

Table 1. Throughput RSTDEV for different algorithm 

 RPA-T  TSA RPA-T phase-1&2  (throughput tradeoff 
 Phase-1   0% 1% 5% 

RSTDEV 0.03% 282% 0.03% 1.15% 7.84% 

 
Like RPA-algorithm, RPA-T phase-2 seeks to reduce transaction split count among 

consistency groups generated by RPA-T phase-1.  Table 1 and Fig. 7 show that the 
RPA-T phase-1&2 (0%) curve progresses only marginally faster than RPA phase-1. 
Because the activities in this workload are uniformly distributed among different 
tables and along time dimension, by not allowing throughput trade-offs (0%), it limits 
the number of tables that can be moved during refinement. For further transaction 
split reduction, more trade-offs are needed on throughput balancing constraint. As 
observed from Fig. 7, with 1% and 5% allowed adjustment on throughputs constraint 
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during each refinement step, there are significant increases in the number of transac-
tions that are replicated using less consistency groups. For example, 49.2% and 84.0% 
of transactions are replicated with two consistency groups or less, respectively using 
RPA-T phase-1&2 (1%) and RPA-T phase-1&2 (5%). The trade-offs increase the 
throughput deviations among groups, e.g. to RSTDEV=1.15% for RPA-T phase-1&2 
(1%) and RSTDEV=7.84% for RPA-T phase-1&2 (5%). Such deviation is less signif-
icant compared to the reduction in transaction splits.  
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Fig. 7. Transaction split result for OLTP workload 

6 Related Work 

Database replication is a key technology and a challenging problem for achieving data 
serving high availability and disaster tolerance [8][11]. Prior works attempt to address 
various aspects of replication such as transaction consistency protocols, scalability,  
performance, etc. (e.g. [14] [13][18]) . As reported by Cecchet et al. [1], various  
challenges still exist when applying database replication in commercial business envi-
ronments. Motivated by a real-world problem, this paper aims at optimizing middle-
ware-based parallel data replication, especially in a long-distance multi-data-center 
setting. By filling a gap in understanding database objects affinities with transaction 
workloads, our work investigates how to group a large number of database objects to 
improve the performance with a constraint of user-specified PIT-consistency latency 
threshold.  To the best of our knowledge, we are the first to propose an automatic 
design solution to this optimization problem.   

We developed heuristics for using a greedy process [7] to achieve the first objec-
tive of minimizing the number of consistency groups with a PIT latency constraint. 
Based on practical analyses, an optimization technique is also proposed to improve 
the probability of finding a global optimal result. For reducing the transaction splits, 
which is the second optimization objective, we model the workload as a transaction 
graph and transform the problem to a graph partitioning problem. Finally, it is solved 
by our proposed heuristics based on the existing graph partitioning algorithms 
[5][12][10]. Both Schism work [4] and SWORD work [17] apply graph algorithms for 
finer-grain partitioning of tables horizontally across a distributed environment. They 
model tuples and transactions as graphs and use them, to determine the placements of 
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data or works within a cluster. Instead, for resolving a partitioning problem in large-
scale data replication across databases and data centers, our workload pattern driven 
approach focuses on modeling and analysis at database object levels. Common graph 
models and partitioning algorithms provided by existing software such as METIS [20] 
are not sufficient for our problem. The major reason is that the transaction graph 
model needs to support time series statistics and the computation of PIT-consistency 
latency is an iterative process.   

7 Conclusion and Future Work  

Large scale database replication is essential for achieving IT continuous availability. 
This paper presents a workload discovery and database replication partitioning ap-
proach to facilitate parallel inter-data-center data replication that is applicable to both 
share-nothing and share-disk databases. Our design and algorithms are demonstrated 
with a real customer batch workload and a simulated OLTP workload. In practice, the 
work has been applied to real-world business applications environment.  

For future work, we plan to further fine-tune the optimization model for the repli-
cation stack. We are also interested in looking into how to further automate the cyclic 
flow of workload profile capturing and inter-database or inter-data-center data repli-
cation partitioning and re-adjustment.  
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