

H. Decker et al. (Eds.): DEXA 2014, Part II, LNCS 8645, pp. 417–432, 2014.
© Springer International Publishing Switzerland 2014

Inter-Data-Center Large-Scale Database Replication
Optimization – A Workload Driven Partitioning

Approach

Hong Min1,*, Zhen Gao3,*, Xiao Li2, Jie Huang3, Yi Jin4,**, Serge Bourbonnais2,
Miao Zheng5, and Gene Fuh5

1 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
hongmin@us.ibm.com

2 IBM Silicon Valley Lab, San Jose, CA, USA
{lixi,bourbon}@us.ibm.com

3 School of Software Engineering, Tongji University, Shanghai, China
{gaozhen,huangjie}@tongji.edu.cn

4 Pivotal Inc. Beijing, China
jinyi.smilodon@gmail.com

5 IBM System and Technology Group
fuh@us.ibm.com, zhengm@cn.ibm.com

Abstract. Inter-data-center asynchronous middleware replication between ac-
tive-active databases has become essential for achieving continuous business
availability. Near real-time replication latency is expected despite intermittent
peaks in transaction volumes. Database tables are divided for replication across
multiple parallel replication consistency groups; each having a maximum
throughput capacity, but doing so can break transaction integrity. It is often not
known which tables can be updated by a common transaction. Independent rep-
lication also requires balancing resource utilization and latency objectives. Our
work provides a method to optimize replication latencies, while minimizing
transaction splits among a minimum of parallel replication consistency groups.
We present a two-staged approach: a log-based workload discovery and analy-
sis and a history-based database partitioning. The experimental results from a
real banking batch workload and a benchmark OLTP workload demonstrate the
effectiveness of our solution even for partitioning 1000s of database tables for
very large workloads.

1 Introduction

Continuous availability (CA) is a critical aspect of business information technology
resiliency. Enterprises normally maintain multiple active replicas for improving data
availability and reducing data loss for the planned and unplanned outages. More en-
terprises and governments have realized that the data replicas should be geographical-
ly dispersed. Large-scale and long-distance data replication is a challenge especially
under unprecedented application and data growths.

 * Co-corresponding authors.
** Work done while employed by IBM.

418 H. Min et al.

Various database replication technologies have been proposed for different purpos-
es. High availability (HA) within a single data center employs data replication to
maintain global transaction consistency [3] or to improve fault tolerance and system
performance via transaction processing localization [1] [15] [17]. In an enterprise IT
environment that consists of distant data centers across a wide area network (WAN),
heterogeneous database architectures and active-active data serving configurations,
data replication for continuous availability needs to address additional challenges. Our
paper addresses an optimization problem in such an enterprise data replication setting.

Although some argue that integrating replication functionalities inside DBMS pro-
vides better replication performance, middleware-based replication solutions are
preferable for supporting replications in cross-vendor heterogeneous database envi-
ronments [11]. Industrial examples of such technology include IBM Infosphere Data
Replication [21], Oracle GoldenGate [22], etc. One widely used approach is to cap-
ture committed data changes from DBMS recovery log and replicate to target DBMS.
Replicating data after changes are committed at the source does not impact the re-
sponse time of source-side applications. Thus, such an asynchronous solution (a.k.a.
lazy replication) is widely applied in the context of WAN data replication.

However, lazy replication introduces data staleness and potential data loss in case
of unplanned outages. Higher replication throughput implies shorter data stales and
less data loss. Parallel replication is a desirable solution to increase the throughput by
concurrently replicating changed data through multiple logical end-to-end replication
channels. Such concurrent replication can potentially split a transaction’s writeset
among channels. Similar to DBMS snapshot consistency, point-in-time (PIT) snap-
shot consistency is provided via time-based coordination among replication channels
[21]. PIT-consistency is a guarantee of replicated data having a consistent view with
the source view at an instance of past time. Such a time delay in PIT-consistency is
called PIT-consistency latency. PIT latency at the target DBMS is determined by both
replication channel throughput and the duration between when the first element of a
transaction’s writeset is replicated and when the last element is replicated. Normally,
the more replication channels a transaction’s writeset is split into, the longer it takes
to reach PIT-consistency. Over-provisioning with underutilized replication channels
also introduces extra complexities and waste resources.

This paper proposes an automatic solution for addressing a partitioning problem in
parallel middleware-based inter-data-center data replication. Partitioning database
objects becomes a critical challenge in PIT latency reduction for parallel replication.
First, databases and applications are often designed separately following DBMS data
independence principles [2]. It is impractical to decouple database objects from appli-
cation serving and replication prospective in most cases. Furthermore, new applica-
tions are continually deployed on existing databases and access patterns change as
business requirements evolve. Giving the workload complexity, database object scales
and resource constraints, it is challenging, error-prone and time-consuming for data-
base administrators to understand the comprehensive picture of all the database activi-
ties and manually partition database for implementing parallel replication.

Our solution of partitioning database objects aims at employing minimum replica-
tion channels for achieving desired point-in-time consistency. We present a workload
discovery and history-based partitioning approach based on the observation that simi-
lar workload characteristics and patterns reoccur in most business applications. The

 Inter-Data-Center Large-Scale Database Replication Optimization 419

partition granularity is at DBMS object level such as tables and table partitions, which
can reach up to thousands or tens of thousands in a large enterprise IT environment.
Finer grained partitioning, such as at the row level, is less practical due to higher
overhead in runtime replication coordination and DBMS contention resolution. Our
approach discovers and analyzes the patterns from the DBMS recovery log, and
makes partitioning recommendations using a proposed two-phased algorithm called
Replication Partition Advisor (RPA)-algorithm. In the first phase, the algorithm finds
a partitioning solution with the least replication channels such that the PIT latency is
below a threshold tied to a service level agreement (SLA). The second phase refines
the partitioning solution to minimize the number of transaction splits. Our approach
is applicable to share-nothing, share-memory and share-disk databases [19]. The real-
world workload evaluation and analysis demonstrate the effectiveness of our solution.

The rest of the paper is organized as follows. Section 2 introduces more back-
ground in inter-data-center parallel data replication. Section 3 describes briefly the
workload profile collected for our RPA tool. Section 4 presents the RPA-algorithm.
The experiment evaluations are presented in Section 5. We discuss related work in
Section 6, ending with the conclusion in Section 7.

2 Background on Parallel Data Replication

Our work is applicable to an active-active configuration (where transactions can be
executed at either site) presuming that proper transaction routing provides conflict
prevention. For discussion simplicity, we present uni-directional replication in an
active-query configuration (a.k.a. master-slave [8]) where update transactions are
restricted to a designated master copy in one data center and read-only transactions
are executed in other data center copies. Upon a failure on the active copy caused by
disasters, one of the query copies assumes the master role and takes over the updates.

Fig. 1 illustrates a logical architecture of typical parallel lazy data replication be-
tween two database systems that potentially reside in two data centers. A parallel
replication system can be modeled as a network G(C ⋃ A,E) with a set of capture
C={c1, c2,…,cs} and a set of apply A={a1,a2,…,ar}. To replicate data changes, a cap-
ture agent, such as Capture1 in Fig. 1, captures the committed data changes from the
database recovery logs at the source site, packs and sends it over a transport channel.
The transport channels manage reliable data transfer between the two sites. An apply
agent, such as Apply1 in Fig. 1, applies the changes to the target database. Each cap-
ture and apply agent can be attached to a different database node in a cluster. Within
the capture and apply agent, whenever possible, multiple threads are used to handle
the work with the protection of causal ordering.

DBMS

Capture 2 Apply 3

Apply 2

Apply 1

DBMS

Database
Recovery Log

Transfer ApplyCapture

Capture 1
DBMS

Capture 2 Apply 3

Apply 2

Apply 1

DBMS

Database
Recovery Log

Transfer ApplyCapture

Capture 1

Fig. 1. Logical architecture of parallel lazy replication

420 H. Min et al.

The link (a,c) ∈ E represents a logical replication channel, which is an end-to-end
replication data path from a log change capture at the source site to a change apply at
the target site. Three channels are shown in Fig. 1. A throughput capacity or band-
width BW(a,c) measures the maximum data throughput, in bytes/second, of a channel.
The value is affected by all the involved components, e.g., source log reader, capture,
network, apply, target database, etc. For simplicity, this paper assumes that the
effective "bandwidth" is static. All changes within each database object (tables or
partitions) are replicated by one channel and this is designated by preconfigured sub-
scription policy. Each capture agent only captures the changes from its subscribed
objects. Transported data changes at target site are subscribed by one or more apply
agents on mutually disjoint sets of objects. The entire set of database objects within
each replication channel is guaranteed to preserve serial transaction consistency.
Hence, the set of database objects TB={tb1, tb2,…,tbk} that are replicated within the
same replication channel (a,c) is called a consistency group denoted as cg(a,c,TB).

When a transaction’s writeset is split into different consistency groups, the transac-
tion is split into multiple sub-transactions that each is handled by a consistency group.
The replication target eventually reaches point-in-time consistency. In the next two
sections, we discuss our solution for optimizing the partitioning of database objects
into minimum number of consistency groups to achieve a PIT latency goal.

3 Workload Profile and Replication Partition Advisor

Workload discovery is performed by our Workload Profiling Tool (WPT). This tool
collects transaction information, called WPT workload profile, from DBMS recovery
log for another tool, Replication Partition Advisor (RPA), for analysis. The log can
either be a real time log or a history log. In the workload profile, all transactions are
clustered based on their accessed tables. Each cluster is called a transaction pattern,
which is characterized by a distinct set of tables or table partitions. Each transaction
pattern contains all the transactions that access an identical set of tables or table parti-
tions, but the access order and frequency can vary. For example, given a table set
S={A,B,C,D}, examples of possible transaction patterns are P{A,B,C}, P{A},
P{B,C,D}, etc. In our solution, a table partition is treated as a database object, just as
any individual table. For simplicity, the rest of the paper only discusses tables.

Measuring the replication cost per operation depends on the operation type, the ta-
ble definition and the actual logged column size and values. For example, replicating
an update operation requires all the updated column values and the pre-updated key
values. The total size of all these column values drives the costs of log capture at the
source, network transmission, and operation replay at the target. WPT workload pro-
file is defined as the workload patterns with the associated information, which con-
sists of the snapshot time, transaction counts, the number of accessed tables, table
schema, and the insert, update and delete volumes in bytes for each snapshot.

4 Replication Partition Advisor Algorithm

4.1 Problem Formulation

Let WK(TB, TX, T, IUD) denote a replication-specific workload collected during a
time window T={t0,t0+dt,t0+2·dt,… t0+v·dt}, where dt is the sample collection

 Inter-Data-Center Large-Scale Database Replication Optimization 421

interval; TB={tb1, tb2,…,tbn} is a set of n replication objects (e.g., tables) whose
changes are to be replicated and TX={tx1, tx2,…,txk} represents their transaction activi-
ties; and IUD(TB,T) is the time series statistics of inserts, updates and deletes on the
tables in a time window T. Given a parallel replication system G(C ⋃A,E), RPA-
algorithm partitions all the replicated database objects TB to form a set of m mutually
disjoint non-empty partitions CG={cg1,cg2,…,cgm}, where cgi is a consistency group
replicated by a particular channel E(a,c). The objective is to find a solution such that
m is minimal and the worst replication latency in CG is below a user-supplied
threshold H.

For a particular replication channel, the PIT-consistency latency at a specific time
point tp is the difference between tp and the source commit time for which all transac-
tions to that point have been applied to the target at time tp. The latency of each chan-
nel is directly related to the logical replication throughput capacity BW(a,c) as well as
the size of workload assigned to this channel. The workload size is defined as the
number of replicated data bytes. For a specific channel, it can process at most dt·BW
bytes within dt seconds. The residual workload will be delayed to the next intervals.
Residual workload REScg,i for a consistency group cg at time t0+i·dt is the remaining
work accumulated at t0+i·dt that has not been consumed by cgi. Thus, REScg,i can be
computed iteratively by:

REScg,i = max{(REScg,i-1 + ∑IUD(TBcg ,t0+(i-1)·dt)-dt·BW) ,0} (1)

Assuming data is consumed on a first-in-first-out basis, the PIT latency for cg at
time t0+i·dt is the time to process the accumulated residue and new activities at
t0+i·dt:

PITcg,i = (REScg,i + ∑IUD(TBcg,t=t0+i)) / (dt·BW) (2)

The maximum PIT latency PITcg of group cg during the time period is computed as:

PITcg = max{ PITcg,i | i=0,1,2,…,v} (3)

The maximum PIT latency PITCG-max of a set of consistency groups CG is the highest
value of PITcg among all consistency groups in CG.

The objectives of the partition optimization can be formulized as follows. Given a
workload W, a parallel replication system G and its replication channel bandwidth
BW(a,c), and an SLA-driven PIT-consistency latency threshold H, the first objective
function is defined as:

L = min CG | ∀CG : PITCG−max ≤ H{ } , (O1)

where |CG| is the size of a consistency group set CG, i.e., the number of groups in the
set. O1 is to find the partitioning solutions with the lowest number L of consistency
groups such that the highest PIT-consistency latency of all the replication channels
PITCG-max is less than or equal to H. Let PL represent all the partition solutions of
group size L and satisfy O1. The second objective is to find a partitioning solution
with the minimized number of transaction splits.

T_split = argmin
CG∈PL

trT (cgi ,tx)
i=1

L


tx∈TX
 | trT (cgi ,tx) ∈ 0,1{ }








, (O2)

where trT(cgi,tx) is either 1 or 0 representing whether transaction tx has tables as-
signed to group cgi or not. When all the tables in transaction tx is assigned to a single

422 H. Min et al.

group, trT(cgi,tx) equals 0 for all groups except one. O2 seeks to find the partition
solution in PL such that the aggregated count is minimized. When no transaction split
is required, T_split equals the total number of transaction instances in the workload.

4.2 RPA-algorithm Phase-1: Satisfying PIT Latency with the Least Groups

Our RPA algorithm consists of two phases: phase-1 is to find a solution that satisfies
the first objective O1, and then phase-2 applies a transaction graph refinement ap-
proach to achieve the objective O2. The algorithm flow of phase-1 is listed below
followed by a description.

RPA-algorithm Phase-1 Steps
1_1. Aggregate the total amount of work Wsum= ∑ IUD(TB,T) for all tables in

TB={tb1, tb2,…,tbn} and in time period T={t0,t0+dt,t0+2·dt,… t0+v·dt}.
1_2. Compute the lower bound Llower of the number of consistency groups Llower=

Wsum /(BW·v·dt +BW·H). Set initial CG number L = Llower.
1_3. Sort all tables in TB in descending order by each table’s peak activity max(IUD)

and total activity ∑ (IUD), represented by TBP and TBT respectively.
1_4. Select a subset TBtop consisting of top tables from both list TBP and list TBT
1_5. Exhaust all the combinations of placing TBtop tables into L groups. Select the

placement with the lowest maximum PIT latency and continue to next step.
1_6. Iterate through the rest tables in their descending order in TBp . Test each table

against each consistency group and compute potential maximum PIT latencies
PITpmax_i, i = 1,2…L, for each group. Place the table in the group with the low-
est potential PITpmax. If PITpmax > H for the selected group, stop and go to 1_8.

1_7. Compute the maximum PITmax_i, i = 1,2…L for all consistency groups.
1_8. For all consistency groups. If max(PITmax_i) > H for i = 1,2…L, increment

L=L+1 and repeat steps 1_5 to 1_8 until max(PITmax) ≤ H. The last L is the min-
imum number Lmin of consistency groups.

Given bandwidth BW(a,c) and a user specified PIT latency threshold H, the first
two steps in Phase-1 obtain the lower bound Llower, for the number of consistency
groups. The lower bound describes the best case scenario: the workload volume dis-
tributes uniformly in both table and time dimensions, while the PIT latency reaches
the highest at the end of the time window t0+v·dt and the residual workload evenly
spreads among all channels, i.e. Wsum =Llower ·BW·(v·dt+H). Starting with this lower
bound Llower, the process in steps 1_3 to 1_6 partitions the tables into Llower groups.
We then re-examine the actual maximum PIT-consistency latency of all groups in
steps 1_7 and 1_8. If the latency is higher than the threshold H, another round of par-
titioning using is performed with the number of groups incremented by 1.

For each fixed group number, the problem becomes to partition n tables into L
consistency groups for PIT latency minimization, which is an NP-hard problem [6].
Given that the number of tables in a workload can reach thousands or even more, it is
not realistic to exhaust all the partitioning combinations for finding the best among
them. Instead, the greedy algorithm is introduced to resolve such a problem [7].

When applying the greedy algorithm, we use a two-step approach for improving
the possibility of finding a global optimal solution instead of a local optimum. First,

 Inter-Data-Center Large-Scale Database Replication Optimization 423

using the most active tables TBtop (selected in step 1_4), step 1_5 enumerates all the
possibilities of partitioning them into L non-empty groups. The number of combina-
tions for such a placement grows rapidly with the numbers of tables and groups. For
avoiding an impractically high cost of step 1_5, the size of TBtop is determined based
on a reasonable computation time on the system where RPA runs. The best choice
from the exhaustive list of placements is the one with the lowest maximum PIT laten-
cy. Step 1_5 is then followed by a greedy procedure in step 1_6 that tests each of the
rest tables against each consistency group and computes the group’s potential new
maximum PIT latency contributed by the table. The group with the lowest new max-
imum PIT latency is the target group for the table placement. The greedy iteration in
step 1_6 uses a stronger heuristics for reaching the minimum number of consistency
groups, even though it is possible that other partitioning schemes that satisfy objective
O1 (Section 4.1) also exist. An added benefit is that this heuristics tends to generate
consistency groups with less PIT latency skews among them.

Our approach is particularly effective when there are activity skews among the
tables. In fact, such skews are common in real-world applications. Fig. 2 shows a
customer workload analysis on how tables weight within the workload with respect to
total and peak throughputs. A table with a higher x-axis value weights more in terms
of total throughput than those with lower x-axis values. Such a table contributes more
to the overall workload volume accumulation and channel saturation. A table with a
higher y-axis value is more likely to contribute to higher PIT latency at its own peak
time. As shown in Fig. 2, tables with higher peak or total throughputs constitute a
small fraction in the entire workload. Based on this observation, step 1_4 selects the
top tables with higher total and peak throughputs for enumerative placement tests.

High peak

Low peak

High total
throughput

Low total
throughput

High peak

Low peak

High total
throughput

Low total
throughput

Fig. 2. Table activity distribution in a real-world banking application workload

Throughput Balancing: An Alternative to PIT-consistency Latency Minimization
Calculation of PIT-consistency latencies is impossible when quantified replication
bandwidth is unavailable. In this case, the optimization goal of RPA-algorithm is
adjusted to balance the peak volume and total volume given a targeted number of
consistency groups. Instead of computing PIT latency, steps 1_5 and 1_6 choose the
candidate group based on the accumulated peak volume and total volume after adding
a new table. Both factors are positive correlated with the PIT latency. Total through-
put based placement tries to balance utilizations of physical replication channels. Peak
throughput based placement is for capping the highest workload volume among all
channels. Understanding workload peaks also facilitates capacity planning and system
configuration. This alternative is referred to as the throughput balancing algorithm
(RPA-T-algorithm).

424 H. Min et al.

4.3 Transaction Split Reduction

RPA-algorithm phase-1 focuses on reducing PIT-consistency latency. This section
describes phase-2, which attempts to reduce transaction splits for statistically increas-
ing serial consistency in data replication.

Transaction Graphs. In RPA, we use an undirected weighted graph TG(TB, TX, T,
IUD) to model tables and their transaction relationships within a workload WK(TB,
TX, T, IUD). Each node in the graph represents a table in TB. For simplicity, the same
notation TB={tb1, tb2,…,tbn} is also used to represents the graph nodes. The weight of
a node is the time series IUD statistics for the table in the workload profile. An edge
e(tbi , tbj) connecting two nodes tbi and tbj denotes that the there exists one or more
transaction patterns that correlate both tables. The weight of the edge |e(tbi , tbj)| is
the total transaction instance counts from all the transaction patterns that involve both
tables. Fig. 3 illustrates an example of a transaction graph with 19 tables. Table T1’s
weight is associated with a time series statistics {234,21,654,2556,..},which indicates
data activities to be replicated at each time point for T1. The weight 731 of edge
e(T1,T2) means that there are 731 committed transactions involving both T1 and T2.

T1

T6

T5

T4

T3T2

T12

T11

T7

T10

T9

T8

T16
T15

T14

T13

T19

T18
T17

{234,21,654,2556…}
432731

T1

T6

T5

T4

T3T2

T12

T11

T7

T10

T9

T8

T16
T15

T14

T13

T19

T18
T17

{234,21,654,2556…}
432731

Fig. 3. Transaction graph

Because of relational constraints or other reasons, there are cases when transaction
consistency must be preserved among certain tables. That means, these correlated
tables need to be assigned to the same consistency group. When RPA-algorithm
builds transaction graph for a workload, each set of such correlated tables is first
merged into a single node with aggregated node statistics and edge weights

When partitioning a set of table nodes, RPA-algorithm groups the tables to form
multiple clusters, which are possibly connected by edges. For a transaction instance
that is split into q clusters, the number of edges (of weight 1) connecting these q clus-
ters equals q·(q-1)/2. This number monotonically increases with q when q>1. Hence,
minimizing the number of split transactions, as formulated by O2 in Section 4.1, is
equivalent to minimizing the number of edges, or aggregated edge weight. Equiva-
lently, the problem of minimizing transaction splits is a graph partitioning problem,
which is to divide a graph into two or more disconnected new graphs by removing a
set of edges. As a classic partitioning problem, minimum cut graph partitioning is to
remove a set of edges whose aggregated weight is minimal. A constraint for typical
graph partitioning applications is to balance the total node weight of each partition.
Differently, the target of our problem is to minimize the maximum PIT-consistency
latency among all the groups, each corresponds to an individual consistency group.

 Inter-Data-Center Large-Scale Database Replication Optimization 425

General Graph Partitioning Algorithms. A graph partitioning problem, as an NP-
complete problem in general, is typically solved by heuristics in practice. One widely
used algorithm for two-way partitioning (bi-partitioning) is Kernighan-Lin algorithm
(KL algorithm) [12]. It is an iterative improvement algorithm over two existing parti-
tions. It seeks to reduce the total edge cut weight by iteratively swapping nodes in
pairs between the two partitions. Fiduccia-Mattheyses algorithm [5] (FM algorithm)
further enhances KL algorithm. By moving a node to a new group, it reduces its edge
cut to the other partition while increasing its edge connection to its home partition. It
also removes KL algorithm’s restriction of moving nodes in pairs. The improved al-
gorithm is referred to as KL-FM algorithm. For large graphs, multi-level bi-
partitioning is often applied through graph coarsening and expansion [9]. The quality
of their final solutions, which could be local optimum, is affected by the initial parti-
tioning. Spectral solution [16] can find the global optimum by deriving partitions
from the spectrum of the graph’s adjacency matrix, but it does not fit our transaction
graph model with time series statistics as node weights. Partitioning a graph into more
than two partitions can be achieved via a sequence of recursive bi-partitioning. Re-
finement heuristics for k-way partitioned graph have also been developed [10].

Transaction Split Reduction by Consistency Group Refinement. Before introduc-
ing our RPA-algorithm phase-2, we first discuss how to reduce transaction splits be-
tween two already partitioned consistency groups by FM algorithms. This process is
referred to as an algorithm for 2-CG refinement (CG-RF-2). The process refines the
partition via node/table movement. Each move needs to ensure that the PIT-
consistency latencies for both refined groups remain below PITmax or within a speci-
fied margin around PITmax.

Algorithm for 2-way CG refinement(CG-RF-2)
C_1 Create graph representations for each input consistency groups cg1 and cg2
C_2 Compute PIT latencies PITcg1 and PITcg2 for cg1 and cg2, respectively. Define

PITmax=max(PITcg1, PITcg2)·(1+α) as the upper bound for margin α.
C_3 Compute the gain of each node. The gain for a node table tbi , as defined in FM

algorithm, is computed as the total edge weight between tbi and all the nodes in
the group that tbi does not belong, subtracted by total edge weight between tbi

and all the nodes in the same group as tbi, i.e. g(tbi)= ∑(|e(tbi, tbj)|)- ∑(|e(tbi,
tbk)|) where tbj belongs in the different group than tbi , and tbk belongs in the
same group as tbi. The intuition is that if g(tbi) is positive, moving tbi from its
current group to the other group reduces the edge cut between the two groups.

C_4 Find the node n1 with the maximum gain g1 and whose move from its current
group to the other allows each group’s PIT latency remain below the PITmax
value from C_2. Lock node n1, mark its movement from its current group to the
other as an element mv1 and store in the moving list mv_list. In some cases, the
gain of node n1 is non-positive. However, it is still moved with the expectation
that the move will allow the algorithm to “escape out of a local minimum”.

C_5 Update the gains of all the nodes that are connected to n1 due to its movement.
C_6 Repeat C_4 and C_5 for the rest of the nodes until all the nodes are locked. All

movements are stored in mv_list{ mv1,…,mvn}in the order that they are found .
The gains corresponding to these node moving steps is {g1,g2 ,…,gn}.

426 H. Min et al.

C_7 Find the best sequence of mv1,mv2,…,mvk (1≤k≤n) such that ∑({g1,g2 ,…,gk}) is
maximum and positive.

C_8 Mark the move of these k tables permanent. The refined groups are cg1’ & cg2’.
C_9 Free all the locked nodes.
C_10 Repeat steps C_3 to C_9 until no move can be found in C_7.

The PIT latency upper bound in C_2 is set to preserve the optimization objective
and speed up the algorithm convergence. When the two input groups are produced by
RPA-algorithm phase-1 and α is set to 0, CG-RF-2 algorithm preserves the same max-
imum PIT latency value from phase-1 while refining the groups for transaction split
minimization. When α>0, the PIT latency constraint is relaxed and potentially more
nodes are moved to reduce transaction split. Alternatively, a user-supplied PIT thre-
shold H can be used as the constraint.

In some cases, the two-step procedure of bi-partitioning and refinement can be
used recursively to create a higher number of partitions, given that the refinement
constraint can be distributed along the recursion paths. Such an approach works for
throughput balancing partitioning optimization, i.e. the alternative algorithm RPA-T.
However, PIT-consistency latency is not a constraint measure that can be easily dis-
tributed while still guaranteeing convergence during recursive bi-partitioning. There-
fore a non-recursive approach is needed.

RPA-algorithm Phase-2: K-way Consistency Group Refinement for Transaction
Split Reduction. This section presents the phase-2 of our RPA algorithm for transac-
tion split reduction. The algorithm (called CG-RF-k) is derived from the k-way re-
finement algorithm proposed by Karypis et al [10].

RPA-algorithm Phase-2 (CG-RF-k)
Ck_1 For the k consistency groups cg1,…,cgk created by RPA-algorithm phase-1,

create the graph representation for the workload and these k partitions.
Ck_2 Iteration through all the nodes, find the set Ne of all the nodes that each has

edge connections to other groups that it does not belong to. Compute the gain
for each element in Ne, denote a gain as g(tbi , cgm) in which cgm is a group
that node (table) tbi does not belong but has edge connections to one or more of
its nodes. The gain is computed the same as algorithm CG-RF-2 step C_3.

Ck_3 Compose subset Ne’ of Ne with nodes that only have positive gains.
Ck_4 For each node tbi in Ne’, test it with its connected groups for potential new PIT

latencies. Among those groups whose potential new PIT latencies are below the
user specified threshold H, select the group with the largest positive gain for tbi
to move into. If none of the group qualifies the PIT threshold requirement, do
not move tbi.

Ck_5 Update the gains of all the affected nodes due to the move of tbi, including tbi.
Updates Ne’ following the same criteria as in Ck_3.

Ck_6 Repeat steps Ck_4 and Ck_5 until there is no node in Ne’.

RPA-algorithm phase-2 starts its refinement process from the partitioning result of
phase-1, which finds the minimum number of groups while satisfying maximum PIT-
consistency latency threshold. Every node move seeks to reduce the positive gains,

 Inter-Data-Center Large-Scale Database Replication Optimization 427

i.e. trading higher inter-group edge cut weight with lower intra-group edge cut weight.
This process keeps reducing transaction split count until reaching the lowest.

5 Experiments and Analysis

We applied our work to a batch workload and an OLTP workload. The batch work-
load is from a banking business and we collected the WPT data from an offloaded
production DBMS recovery log. For the OLTP workload, we expanded the schema of
TPC-E benchmark [23] and simulated workload profile data for analysis. In both ex-
periments, the analysis processes complete within minutes.

5.1 Transaction Split Avoidance Algorithm

For studying trade-offs between transaction split and replication latency or throughput
balancing, we devised an algorithm Transaction Split Avoidance (TSA) that partitions
database objects without allowing any transaction split. Using transaction graph, TSA
algorithm is a modified tree traversal algorithm. Without getting into details, this
algorithm works by repeatedly selecting an unassigned table node and grouping it
with all the nodes that connect to it directly or indirectly.

5.2 Experiment with a Large Bank Batch Workload

This workload profile was collected from a database log representing a four-hour
batch processing window with 1 minute sample interval. There are 824 tables with
active statistics among a total of 2414 tables, and 5529 transaction patterns are dis-
covered from 12.7 million transaction instances. The number of tables correlated by
transaction patterns varies between 1 and 27 with histogram shown in Fig. 4.

Number of Transaction Patterns

0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Number of Tables

Fig. 4. Distribution of transaction patterns over the number of tables in a batch workload

PIT Latency (# of sample intervals)

0

10

20

30

40

50

4-Group 6-Group 8-Group 10-Group 12-Group

Fig. 5. Partitioning result of batch workload with RPA-algorithm phase-1

428 H. Min et al.

We apply RPA-algorithm with a replication bandwidth BW= 5MB/second. To put
in prospective, this bandwidth is equivalent to insert 50K 100-byte records per second
into a database. Starting from the lower bound of 3 consistency groups following step
1_2 of RPA-algorithm phase-1, Fig. 5 shows the maximum PIT-consistency latency
of each group, in the unit of a sample interval, when the workload is partitioned into
4, 6,8,10 or 12 groups. As the number of consistency groups increases, the PIT laten-
cies are reduced for each configuration. The reason that the three highest PIT latency
values remain unchanged in 8-, 10- and 12-group cases is because these three groups
are assigned with only one volume heavy table each. To further reduce point-in-time
latency, single channel replication bandwidth has to be increased by improving the
underline replication technologies in network, database, and replication software.

Next we apply both phase-1 and phase-2 of RPA-algorithm to reduce transaction
splits for a given PIT latency threshold H=60 (1 hour). The lowest number of consis-
tency group for this threshold is four from phase-1. Fig. 6 shows the result of phase-2.
The first chart in Fig. 6 shows the maximum PIT latency of each consistency group
using different variations of RPA-algorithm such as phase-1 only, phase-1 plus phase-
2 with allowed increase in PIT latency within 0%, 10% and 20% margin, as labeled
accordingly in the chart. The second chart in Fig. 6 shows the transaction split distri-
bution in terms of number of groups, note that splitting into one group means no split-
ting. TSA algorithm, results are also provided for comparison.

The charts show that when phase-2 is used after phase-1, the percentage of non-
splitting transactions increases from 70% with “RPA_Phase1” to 82%, 88% and 91%
respectively for RPA_Phase1&2, RPA_Phase1&2-10% and RPA_Phase1&2-20%.
With TSA algorithm, all the transactions are non-splitting; however the maximum
PIT latency reaches unacceptably high of over 450 1-minute sample intervals. In addi-
tion to demonstrating that RPA-algorithm can effectively reduce transaction split, the
result provides trade-offs study between transaction split and PIT latency.

Maximum Group PIT Latency (# sample intervals)

0
100
200
300
400
500

RPA-Phase-1 RPA-Phase
1&2

RPA-Phase
1&2-10%

RPA-Phase
1&2-20%

TSA

PIT=60

Number of transactions

0
4,500,000
9,000,000

13,500,000

RPA-Phase-1 RPA-Phase
1&2

RPA-Phase
1&2-10%

RPA-Phase
1&2-20%

TSA

1 Group

2 Groups

3 groups

4 groups

70% 82%
88% 91% 100%

Maximum Group PIT Latency (# sample intervals)

0
100
200
300
400
500

RPA-Phase-1 RPA-Phase
1&2

RPA-Phase
1&2-10%

RPA-Phase
1&2-20%

TSA

PIT=60

Number of transactions

0
4,500,000
9,000,000

13,500,000

RPA-Phase-1 RPA-Phase
1&2

RPA-Phase
1&2-10%

RPA-Phase
1&2-20%

TSA

1 Group

2 Groups

3 groups

4 groups

70% 82%
88% 91% 100%

Fig. 6. Partition and transaction split results with RPA-algorithm phase-1 & phase-2 (4 CGs)

 Inter-Data-Center Large-Scale Database Replication Optimization 429

5.3 Experiment with an OLTP Workload

TPC-E is a newer OLTP data centric benchmark. Its processing is composed of both
READ-ONLY and READ-WRITE transactions. Only the READ_WRITE transac-
tions with data changes are used in our study. The TPC-E table schema consists of 33
tables, and 23 of which are actively updated during the transaction execution flows.

To simulate more complex real-world workloads, we expanded the schema by in-
creasing the number of tables by 30x as well as increasing transaction correlations
among the tables. Based on the augmented schema and workloads, as well as TPC-E
specification on how the tables are updated, we generated a simulated workload pro-
file data with 155 transaction patterns and over 6 million transactions

OLTP workloads usually update the smaller amount of data within the scope of a
committed transaction. Since the volume is lower than the batch, we experiment with
our alternative throughput balancing algorithm (RPA-T-algorithm) and to partition the
tables and balance total throughput among 8 consistency groups.

The analyses of the partitioning results using RPA-T phase-1 and RPA-T phase-
1&2 are shown in Table 1 and Fig. 7. To be more intuitive, relative standard deviation
(RSTDEV=standard deviation/mean) is used to evaluate the effectiveness of through-
put balancing among consistency groups, as listed in Table 1 for each algorithm. With
no surprise, the RSTDEV value is near 0 (0.03%) for RPA-T phase-1 since it is opti-
mized for balancing throughout; the RSTDEV value for TSA is very high (282%)
since it does not address balancing. Fig. 7 offers a different view than Fig. 6 for ana-
lyzing how the transaction split is distributed. In Fig. 7, y-axis indicates the percen-
tage of the total transactions that are contained within x number or less consistency
groups, x being the label on x-axis. The percentage values on y-axis increase and
reach 100% for eight consistency groups, i.e. all transactions are replicated within
eight groups or less. An algorithm whose curve progresses to 100% slower than
another means that a higher percentage of the transactions are split into more consis-
tency groups when using this algorithm than using the other one. With TSA algo-
rithm, none of the transactions are replicated with more than one consistency group.
For RPA-T phase-1 algorithm, only a small number of transactions (0.0015%) are
replicated in one group and 15% are replicated in one or two groups, etc.

Table 1. Throughput RSTDEV for different algorithm

 RPA-T TSA RPA-T phase-1&2 (throughput tradeoff
 Phase-1 0% 1% 5%

RSTDEV 0.03% 282% 0.03% 1.15% 7.84%

Like RPA-algorithm, RPA-T phase-2 seeks to reduce transaction split count among

consistency groups generated by RPA-T phase-1. Table 1 and Fig. 7 show that the
RPA-T phase-1&2 (0%) curve progresses only marginally faster than RPA phase-1.
Because the activities in this workload are uniformly distributed among different
tables and along time dimension, by not allowing throughput trade-offs (0%), it limits
the number of tables that can be moved during refinement. For further transaction
split reduction, more trade-offs are needed on throughput balancing constraint. As
observed from Fig. 7, with 1% and 5% allowed adjustment on throughputs constraint

430 H. Min et al.

during each refinement step, there are significant increases in the number of transac-
tions that are replicated using less consistency groups. For example, 49.2% and 84.0%
of transactions are replicated with two consistency groups or less, respectively using
RPA-T phase-1&2 (1%) and RPA-T phase-1&2 (5%). The trade-offs increase the
throughput deviations among groups, e.g. to RSTDEV=1.15% for RPA-T phase-1&2
(1%) and RSTDEV=7.84% for RPA-T phase-1&2 (5%). Such deviation is less signif-
icant compared to the reduction in transaction splits.

Percentage of Total Transactions

0%

40%

80%

120%

1 2 3 4 5 6 7 8

Number of Consistency Groups

RPA-T phase-1

RPA-T phase-1&2
RPA-T phase-1&2 (1%)

RPA-T phase-1&2 (5%)
TSA

Fig. 7. Transaction split result for OLTP workload

6 Related Work

Database replication is a key technology and a challenging problem for achieving data
serving high availability and disaster tolerance [8][11]. Prior works attempt to address
various aspects of replication such as transaction consistency protocols, scalability,
performance, etc. (e.g. [14] [13][18]) . As reported by Cecchet et al. [1], various
challenges still exist when applying database replication in commercial business envi-
ronments. Motivated by a real-world problem, this paper aims at optimizing middle-
ware-based parallel data replication, especially in a long-distance multi-data-center
setting. By filling a gap in understanding database objects affinities with transaction
workloads, our work investigates how to group a large number of database objects to
improve the performance with a constraint of user-specified PIT-consistency latency
threshold. To the best of our knowledge, we are the first to propose an automatic
design solution to this optimization problem.

We developed heuristics for using a greedy process [7] to achieve the first objec-
tive of minimizing the number of consistency groups with a PIT latency constraint.
Based on practical analyses, an optimization technique is also proposed to improve
the probability of finding a global optimal result. For reducing the transaction splits,
which is the second optimization objective, we model the workload as a transaction
graph and transform the problem to a graph partitioning problem. Finally, it is solved
by our proposed heuristics based on the existing graph partitioning algorithms
[5][12][10]. Both Schism work [4] and SWORD work [17] apply graph algorithms for
finer-grain partitioning of tables horizontally across a distributed environment. They
model tuples and transactions as graphs and use them, to determine the placements of

 Inter-Data-Center Large-Scale Database Replication Optimization 431

data or works within a cluster. Instead, for resolving a partitioning problem in large-
scale data replication across databases and data centers, our workload pattern driven
approach focuses on modeling and analysis at database object levels. Common graph
models and partitioning algorithms provided by existing software such as METIS [20]
are not sufficient for our problem. The major reason is that the transaction graph
model needs to support time series statistics and the computation of PIT-consistency
latency is an iterative process.

7 Conclusion and Future Work

Large scale database replication is essential for achieving IT continuous availability.
This paper presents a workload discovery and database replication partitioning ap-
proach to facilitate parallel inter-data-center data replication that is applicable to both
share-nothing and share-disk databases. Our design and algorithms are demonstrated
with a real customer batch workload and a simulated OLTP workload. In practice, the
work has been applied to real-world business applications environment.

For future work, we plan to further fine-tune the optimization model for the repli-
cation stack. We are also interested in looking into how to further automate the cyclic
flow of workload profile capturing and inter-database or inter-data-center data repli-
cation partitioning and re-adjustment.

Acknowledgements. We would like to thank Austin D'Costa and James Z. Teng for
their insights.

References

1. Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based database replication: the gaps
between theory and practice. In: SIGMOD (2008)

2. Codd, E.F.: The relational model for database management: Version 2. Addison-Wesley
(1990) ISBN 9780201141924

3. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: OSDI (2012)
4. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach to da-

tabase replication and partitioning. VLDB (2010)
5. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network parti-

tions. In: Proceedings of the 19th Design Automation Conference, pp. 175–181 (1982)
6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co, New York (1990)
7. Graham, R.L.: Bounds on multiprocessing anomalies and related packing algorithms. In:

AFIPS Spring Joint Computing Conference, pp. 205–217 (1972)
8. Gray, J., Helland, P., O’Neil, P.: The dangers of replication and a solution. In: SIGMOD

(1996)
9. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irre-

gular Graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)
10. Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning. In:

Proceedings of the 1998 ACM/IEEE conference on Supercomputing (1998)

432 H. Min et al.

11. Kemme, B., Jiménez-Peris, R., Patiño-Martínez, M.: Database Replication. Synthesis Lec-
tures on Data Management. Morgan & Claypool Publishers (2010)

12. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell
Systems Technical Journal 49, 291–307 (1970)

13. Lin, Y., Kemme, B., Patiño-Martínez, M., Jiménez-Peris, R.: Middleware based data repli-
cation providing snapshot isolation. In: SIGMOD (2005)

14. Patiño-Martinez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: MIDDLE-R: Consistent
database replication at the middleware level. ACM TOCS 23(4) (2005)

15. Pavlo, A., Curino, C., Zdonik, S.B.: Skew-aware automatic database partitioning in
shared-nothing, parallel OLTP systems. In: SIGMOD 2012 (2012)

16. Pothen, A., Simon, H.D., Liou, K.: Partitioning sparse matrices with eigenvectors of
graphs. SIAM Journal on Matrix Analysis and Applications 11(3), 430–452 (1990)

17. Quamar, A., Kumar, K.A., Deshpande, A.: SWORD: scalable workload-aware data place-
ment for transactional workloads. In: EDBT 2013 (2013)

18. Serrano, D., Patino-Martinez, M., Jimenez-Peris, R., Kemme, B.: Boosting Database Rep-
lication Scalability through Partial Replication and 1-Copy-Snapshot-Isolation. In: Pro-
ceedings of the 13th PRDC (2007)

19. Stonebraker, M.: The Case for Shared Nothing. IEEE Database Eng. Bull. 9(1), 4–9 (1986)
20. http://glaros.dtc.umn.edu/gkhome/views/metis
21. IBM Infosphere Data Replication, http://www-03.ibm.com/software/
22. Oracle GoldenGate,

http://www.oracle.com/technetwork/middleware/goldengate/
23. http://www.tpc.org/tpce/

	Inter-Data-Center Large-Scale Database Replication Optimization – A Workload Driven Partitioning Approach
	1 Introduction
	2 Background on Parallel Data Replication
	3 Workload Profile and Replication Partition Advisor
	4 Replication Partition Advisor Algorithm
	4.1 Problem Formulation
	4.2 RPA-algorithm Phase-1: Satisfying PIT Latency with the Least Groups
	4.3 Transaction Split Reduction

	5 Experiments and Analysis
	5.1 Transaction Split Avoidance Algorithm
	5.2 Experiment with a Large Bank Batch Workload
	5.3 Experiment with an OLTP Workload

	6 Related Work
	7 Conclusion and Future Work
	References

