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Abstract. With testing, a system is executed with a set of selected
stimuli, and observed to determine whether its behavior conforms to the
specification. Therefore, testing is a strategic activity at the heart of soft-
ware quality assurance, and is today the principal validation activity in
industrial context to increase the confidence in the quality of systems.
This paper, summarizing the six hours lesson taught during the Summer
School FOSAD’12, gives an overview of the test data selection techniques
and provides a state-of-the-art about Model-Based approaches for secu-
rity testing.

1 Testing and Software Engineering

One major issue, regarding the engineering in general and the software domain
in particular, concerns the conformity of the realization in regards of the stake-
holder specification. To tackle this issue, software engineering relies on two kinds
of approaches: Validation and Verification, usually called V&V.

1.1 Software Engineering

The approaches proposed by Software engineering to ensure software conformity
are the validation and the verification. There are many definitions of these two
words but we propose to explain them in regards of the usage. The validation
addresses the question “Are we building the right product?”, which aims to val-
idate that the software should do what the end users really requires, i.e. that
the developed software conforms to the requirements of its specification. The
verification addresses the question “Are we building the product right?”, which
aims to verify that all the artifacts defined during the development stages to
produce the software conform to the requirements of its specification, i.e. that
the requirements and design specifications has been correctly integrated in de-
velopment stuff (model, code, etc.). It should be noted that another variants
or interpretations of these definitions can be found in the literature, mainly de-
pending of the engineering domain they are applied.
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Fig. 1. Validation and verification

Figure 1 describes the different steps used by the methods of Verification and
Validation. For each step, different techniques can be used:

– Static Test for the reviews of code, of specification, of design documenta-
tion.

– Dynamic Test for the execution of program to ensure the correctness of its
functionalities.

– Symbolic Verification for run-time checking, symbolic execution (of model
or code).

– Formal Verification for proof, model-checking from formal model.

The rest of this presentation focuses on dynamic test approach, which is today
the principal validation activity in industrial context to increase the confidence
in the quality of software.

1.2 What Is Testing?

Naturally, the next question is “what is testing?”. Since the first and the second
techniques proposed in the previous part concern the Static Test and Dynamic
Test, we propose three definitions of testing from the state of the art:

– IEEE Std 829 [1]: “The process of analyzing (execution or evaluation) a soft-
ware item to detect the differences between existing and required conditions
(that is, bugs), and to evaluate the features of the software item.”

– G.J. Myers (The Art of Software testing [2]): “Test is the process of executing
a program (or part of a program) with the intention of finding errors.”

– E.W. Dijkstra (Notes on Structured Programming [3]): “Testing can reveal
the presence of errors but never their absence.”

Three major features can be underlined in these definitions. The first one con-
cerns the capacity to compare the results, provided by the real system, to the
expected value, defined in the specifications. It implies to have a referential to
ensure the confidence in testing activity. The second one concerns the testing
process itself, and the way to find bugs. Therefore, we need to define a coverage
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strategy of the referential element to be tested (such as code, requirements or
any artifact like models). Finally, the third issue is the uncompletion of testing
because, in general, we cannot explore all possibilities. Indeed, due to combinato-
rial explosion of reachable states, exhaustive testing is unfeasible in practice, and
dedicated strategies are needed to manage this explosion and to keep a relevant
quality assessment.

Fig. 2. Activities of dynamic test

As shown in Fig. 2, testing process can be decomposed in five main activities:

1. Select or design test cases: choose a subset of all possible features of the
System Under Test (SUT). This information is provided by the validation
and test plan. This step aims to produce the abstract test cases, i.e. scenarios
that have still to be concretized using concrete values and function calls.

2. Identify the data for test cases: the test cases, defined in the previous step,
can be used with several data. Then, it is important to choice a relevant
subset of data. The number of test cases execution is equal to the number
of chosen data.

3. Execute the test cases with the data: the test cases with data are executed on
the SUT and test results are gathered using manual or automatic execution
environment.

4. Analyze the results of the executed test. This step consists to assign a verdict
to each executed test case by deciding if the test is in success or not:
– Pass: the obtained results conform to the expected values.
– Fail: the obtained results do not conform to the expected values.
– Inconclusive: it is not possible to conclude.

5. Reporting: it is the evaluation of the quality and the relevance of the tests
(to determine the need and effort to correct discovered bugs, to decide to
stop testing phase, etc.).

Beyond this theoretical point of view, regarding the reality and practices of the
industrial development context, the maturity of the Quality Assurance or Test
function shift from theoretical ad hoc process to a more strategic and centralized
approach. Moreover, the testing activity often concerns areas of IT organizations
from western Europe Enterprise, which mainly promote and apply the following
process steps1:
1 Source IDC - European Services, Enterprise Application Testing Survey, March 2011.
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1. Choose a testing methodology to address agile/component based devel-
opment life cycle.

2. Provide automated test coverage that makes it possible to apply agility
in testing.

3. Focus on the non-functional aspects like performance, availability, secu-
rity, etc.

4. Refine the test strategy to optimize the use of testing services (tradi-
tional and cloud based).

This practical approach allows to highlight relevant aspects about testing
activity. The first one is the acceptance of the need to test. In fact, the question is
no more to know if testing should be used or not in the development process, but
how to enhance its usage. Indeed, the integration of testing activity at the heart
of the development process makes it possible to reduce bottleneck of the project
deadline and avoid the crushing tension of the validation phase before releasing
the product. Therefore, optimization issues are studied and generalization are
discussed to generalize it for other aspects (up to unit and/or functional for
example). The automation of the testing activity and the improvement of the
confidence level are thus today the main issues about testing.

1.3 Kinds of Test

“Testing” is a very generic term. In reality, as suggested in previous IDC survey,
thus we need to refine it. J. Tretmans in [4] proposed to decompose the testing
approaches regarding three dimensions. This representation is shown in Fig. 3.

unit 

integration 

system 

performance 
robustness 

functional 
white box black box 

Details level (step in development life cycle) 

Type (which can be tested) 

ergonomic 
safety 

module 

security 

Accessibility level 

Fig. 3. Kind of testing approaches as proposed by J. Tretmans
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The first dimension (horizontal axis) concerns the accessibility of the code to
be tested. White box defines an open box in which all the information about
the code are accessible. Black box defines a closed box and only the binaries are
available to execute the test. The second dimension (vertical axis) is the archi-
tecture level of the system to be tested, i.e. the development phase from the
software life cycle point of view. An example of the development life cycle and
validation steps is proposed in Fig. 4. The figure depicts four phases from the
specification, provided by the client, to the code implementation. Each described
phase has four specific level or context, which are addressed by dedicated test
objectives. For example, Unit testing focuses on the coverage of the code to sep-
arately validate the computation of each implemented functions or procedures,
while Acceptance testing focuses on the end-user features and thus addresses
only the functional (or domain) requirements.

Fig. 4. Development life cycle & testing levels

Finally, the third dimension (plan axis) is the usage or targeted aspects to be
validated by the tests. So, each test is an element that can be located in this 3D
space representation.

White Box. White box testing, also called Structural Testing, instantiates the
four activities of the Fig. 2 as follows:

– Test cases: they cover all the functions of the source code to be tested.
• Deriving from the internal design of the program.
• Requiring detailed knowledge of its structure.

– Data: test data are produced from the source code analysis in order to ensure
some given coverage criteria. The most common coverage criteria are based
on the analysis and coverage of the flow graph associated to a function of
the source code as illustrated in Fig. 5.
• Statement: node or block of instructions,
• Branch: condition,
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• Path: a problem regarding the path coverage is the number of loops
(for example between B and A in Fig. 5), so there exist more restrictive
criteria as independent path or k-path (where k defines the maximum
number of loops to be tested). A comparison and a hierarchy of all such
structural criteria are proposed in [5].

– Execution: the test scripts take the form of a suite of function calls (with
data) of the source code.

– Reporting and end of the testing phase: it directly depends on the completion
of the given targeted coverage criteria.

B 

A 

Fig. 5. Source code representation for structural testing

Black Box. Black box testing, also called Functional Testing, instantiates the
four activities of the fig. 2 as follows (the overall black box testing process is also
depicted in Fig. 6):

– Test cases are derived from the functional specification.
• Designed without knowledge of the source code internal structure and

design.
• Based only on functional requirements.

– Test data are also derived from the functional specification by applying ded-
icated test coverage criteria on the related specification in order to identify
and target some requirements or functionalities as test objectives.

– Execution: the test scripts take the form of a suite of API call or imple-
mented user actions (with concrete data) of user or software interfaces of
the program.

– Reporting and end of the testing phase: it directly depends on the completion
of the given targeted coverage criteria.
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Fig. 6. Functional testing process

1.4 Testing Universe

In fact, testing is in the middle of many artifacts, called test universe. For in-
stance, the specification explains, in term of needs and requirements, the features
that have to be developed, and also what the tests have to validate. It also iden-
tifies the defects to be avoided (from which associated test can be derived). A
same test can be used to validate that a requirement is correctly implemented
(at its first execution), but it can also be used to ensure this requirement remains
correctly implemented in future versions (this kind of test is called non regres-
sion test). It is also possible to create or derive test from specific artifacts such
as contracts or models, which provide an abstraction level to help and ease the
design of the tests. Finally, as depicted in Fig. 7, some tooling and environment
are now available to manage, in an automated manner, all these artifacts re-
lated to requirements, models, defects, test scripts and test definition repository.
Those make it possible to offer a scalable and reliable automation of the testing
process, and ease its usage in the industrial development and validation team.

Fig. 7. Sphere of testing tools
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To conclude this overview, testing is today in industry the main activity to
determine if a developed software does the right things and things right (using
each level of test). It represents until 60% of the complete effort for software
development. This effort is reported in 1/3 during software development and
2/3 during software maintenance. Nevertheless, in current software development,
testing is still often seen as a necessary evil. It indeed remains a not very popular
activity in development teams especially because integrating testing activities
during development phase give rise to a psychological hindrance and/or cultural
brake because testing is seen as a destructive process (an efficient test is a test
that reveals an error), whereas programming is seen as a constructive and helpful
process (each line of code aims to fulfill a functional need for the end users).
Moreover, teams given the task of testing are often appointed by default and
have no professional skills in testing activities, although specific knowledge and
competences are required for the task. This paper precisely aims to fill in the
gaps on testing knowledge by introducing practical testing approaches focusing
on functional testing and security test design.

The paper is organized as follows. Techniques for test data selection are in-
troduced in Section 2, functional Model-Based Testing approaches are described
in Section 3, and specificities about Model-Based Testing to address security
features are presented in Section 4. Finally, Section 5 concludes the paper and
gives several tooling references to look at practical Model-Based Testing in more
depth.

2 Test Data Selection

The previous section introduced the testing steps to design test cases. This sec-
tion deals with the strategic activity concerning the selection of the data that
will be used to build executable test cases. Three main techniques are used to
choice the test data. The first one uses a partition analysis based on the input
domains. This approach reduces the number of possible values by selecting a rep-
resentative value (bound, middle, random...) for each identified partition. The
second one consists to apply a combinatorial testing strategy. This approach can
also restrict the possible combination of the input values by selecting specific
n-uplets of values. The third one is based on random or stochastic testing. This
approach enables to choose different input values using statistic strategies that
allow an uniform distribution of the selected data.

2.1 Partition Analysis of Input Domains

This technique, based on the classes of equivalence, is control flow oriented.
A class of equivalence corresponds to a set of data supposed to test the same
behavior, i.e. to activate the same effect of the tested functionality. The definition
of equivalent classes thus allows to convert an infinite number of input data into
a finite number of test data. The computation of the test data are performed
in order to cover each identified behaviors. For example, let a given function
defined by:
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Domain: x ∈ −1000..1000
Precondition: x ≤ 100
Postcondition:
IF x ≤ 0 THEN y ← default
ELSE IF x ≤ 40

THEN y ← low
ELSE y ← high
END

END

The partition analysis of this function gives rise to identify three behaviors
Pi in regards to Pre and Postcondition:

1. P1: x ≤ 0
2. P2: x > 0 ∧ x ≤ 40
3. P3: x > 40 ∧ x ≤ 100

We can then derive the corresponding constraints about the domain of the vari-
able x and define four classes of equivalence Ci:

1. C1: x ∈ [−1000, 0]
2. C2: x ∈ [1, 40]
3. C3: x ∈ [41, 100]
4. C4: x ∈ [101, 1000]

This technique thus aims to select data in order to cover each behavior of the
tested function. Such function often includes control points, which are usually
(such as the previous example) represented by IF-THEN-ELSE construct in pro-
gramming languages. The executed effects of a given execution depend on the
evaluation of the boolean formula, called decision, which is expressed in the IF
statement and gives rise to two equivalent classes : one makes true the evaluation
of the decision, the other makes it false. In the previous example, this decision is
an atomic expression (x ≤ 0), but in practice decisions are complex predicates
constructed with ∧, ∨ and ¬ operators, combining elementary boolean expres-
sions, called conditions, that cannot be divided into further boolean expressions.
Exposing the internal structure of a decision can lead to extend the number of
equivalence classes if each evaluation of each condition is considered. This is-
sue of how to treat multiple conditions without exponential test case explosion
is a key point for test generation. Several structural coverage criteria for deci-
sions with multiple conditions have thus been defined in the testing literature.
Brief informal definitions and hierarchy (see Fig. 8) are given here, but more
details including formal definitions in Z are available elsewhere [6,7]. Note the
terminology: a decision contains one or more primitive conditions, combined by
disjunction, conjunction and negation operators.
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Fig. 8. The Hierarchy of control-flow coverage criteria for multiple conditions. C1 −→
C2 means that criterion C1 is stronger than criterion C2.

Statement Coverage (SC). The test set must execute every reachable state-
ment of the program.

Condition Coverage (CC). A test set achieves CC when each condition in
the program is tested with a true result, and also with a false result. For a
decision containing N conditions, two tests can be sufficient to achieve CC
(one test with all conditions true, one with them all false), but dependencies
between the conditions typically require several more tests.

Decision/Condition Coverage (D/CC). A test set achieves D/CC when it
achieves both decision coverage (DC) and CC.

Full Predicate Coverage (FPC). A test set achieves FPC when each condi-
tion in the program is forced to true and to false, in a scenario where that
condition is directly correlated with the outcome of the decision. A condition
c is directly correlated with its decision d when either d ⇐⇒ c holds, or
d ⇐⇒ ¬c holds [8]. For a decision containing N conditions, a maximum of
2N tests are required to achieve FPC.

Modified Condition/Decision Coverage (MC/DC). This strengthens the
directly correlated requirement of FPC by requiring the condition c to in-
dependently affect the outcome of the decision d. A condition is shown to
independently affect a decision’s outcome by varying just that condition
while holding fixed all other possible conditions [9,10]. Achieving MC/DC
may require more tests than FPC, but the number of tests generated is
generally linear in the number of conditions.

Multiple Condition Coverage (MCC). A test set achieves MCC if it exer-
cises all possible combinations of condition outcomes in each decision. This
requires up to 2N tests for a decision with N conditions, so is practical only
for simple decisions.

These different coverage criteria can also be used to as data selection criteria
by rewriting the decision into several predicates. Each predicate defines a spe-
cific equivalent class in which data have to be derived. To achieve it, a simplistic
way is to consider a single disjunction A∨B nested somewhere inside a decision.
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We propose four possible rewriting rules to transform the disjunction into a set
of predicates defining data equivalent classes:

– A ∨B � {A ∨B }. This generates just one equivalent class for the whole dis-
junct, resulting in one test for the whole decision. This corresponds to deci-
sion coverage (because the negated decision is achieved by another equivalent
class, e.g., corresponding to the ELSE branch).

– A ∨B � {A,B }. This ensures D/CC, because there is one equivalent class
defined by A true, and one by B true, and another one with the negated
decision that will cover ¬A ∧ ¬B. In fact, a single equivalent class, A ∧ B,
would in theory be enough to ensure D/CC, but A∧B is often not satisfiable,
so two weaker tests are generated instead.

– A ∨B � {A ∧ ¬B,¬A ∧B }. This is similar to FPC, because the result of the
true disjunct is directly correlated with the result of the whole disjunction,
since it cannot be masked by the other disjunct becoming true.

– A ∨B � {A ∧ ¬B,¬A ∧B,A ∧B }. This corresponds to MCC, because it
defines an specific equivalent class for each combinations of A and B (the
¬A ∧ ¬B combination is covered by the negated decision). This usually be-
comes unmanageable even for moderate values of N conditions.

Figure 9 depicts these rewriting rules by showing the different equivalent
classes: the regions A and B identify the data domain of the two conditions
A and B of the decision A ∨B.

A B 

DC C/DC 

FPC MCC 

A B 

A B 

A B 

Fig. 9. Decision coverage

Finally, selecting data from obtained equivalent classes can be performed non-
deterministically, but also by applying a boundary/domain approach [11]. This
boundary values approach is known to be an efficient strategy to select test data
and is currently used as the basis for test generation algorithms [12], but it has
not generally been formalized as coverage criteria.
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To achieve this approach, some simple rules, based on the type of the param-
eter, can be applied to choice the values of data. Basically, for each equivalent
class, it consists to take the data value at an extremum – minimum or maximum
– of its domain. It should be noted that this approach can only be performed if
an evaluation function can discriminate each value of the domain (minimum or
maximum of integers, minimum or maximum of the cardinality of sets, etc.), else
an arbitrary value can be selected by default as usual. Some examples illustrating
this approach are given below:

– for each interval of integer described by an equivalent class, we select 2
values corresponding to the extrema (minimum and maximum), and 4 values
corresponding to the values of the extrema with minus/plus delta:
n ∈ 3..15 ⇒ v1 = 3, v2 = 15, v3 = 2, v4 = 4, v5 = 14, v6 = 16

– if the variable takes its value in an ordered set of values, we select the first, the
second, before the last and the last data and one data outside the definition
set:
n ∈ {−7, 2, 3, 157, 200} ⇒ v1 = −7, v2 = 2, v3 = 157, v4 = 200, v5 = 300

– for the data defining an object, we can minimize or maximize some feature
of its format, by selecting valid extremum values

– for an input file containing 1 to 255 records, we can select files with: 0, 1,
255 and 256 records

– for an object p typed by a static type C:
• null reference
• this reference (if \typeof(this) <: \type(C))
• One object such that: p != null && p != this && \typeof(p) ==
\type(c)
• One object such that: p != null && p != this && \typeof(p) ∈ \type(c)
• One object such that: p == p’ with p’ an other compatible object

When functions have several parameters (inputs), the global approach has to
be applied for each parameter. The first step consists, for each input, in calculat-
ing their domain from equivalent classes. The second is to select representative
value(s) of each domain. The third consists to use a composition (by Cartesian
product as instance) of all selected input values to generate the test data. This
composition can lead to a combinatorial explosion that need to be mastered
to make the test data set manageable. The next section gives an overview of
techniques to achieve that in the more global context of combinatorial testing.

2.2 Combinatorial Testing

The combination of all possible (or selected) input values can give rise to com-
binatorial explosion of the configurations. For example, from two inputs defined
as integer, we obtain: 232 ∗ 232 = 264 = 18 000 000 000 000 000 000 possible
configurations. Another concrete example concerns the preference parameter to
fix a character styles (see Fig. 10). The form is composed by seven check boxes
and one pull-down menu with four entries: it thus defines 27 ∗ 4 = 512 data
possible combinations.
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Fig. 10. GUI example for combinatorial testing

To control this combination, a classic approach is the Pair-Wise strategy. It
aims to test a fragment of the value combinations such that they guarantee
that each combination of two variables is tested. Indeed, practice shows that a
majority of bugs can be detected by only covering the combinations of two data.
For example, given the four following inputs representing:

– the operating System (OS): Windows, Mac Os, Linux,
– the Network connection: Cable, Wifi, Bluetooth,
– the file format: text, picture, mixed text picture,
– the printer technology: laser, liquid inkjet and Solid ink.

To cover all the possible configurations for the four inputs with a domain of 3
values, we must generate: 34 = 81 test data. The Pair-Wise approach makes it
possible to cover all the combinations of two values with only nine test data as
shown in Tab. 1.

Table 1. Pair-Wise results

Case OS Network Format Printer
1 Windows Bluetooth laser Text
2 Mac OS Cable Liquid Text
3 Mac OS Wifi laser Picture
4 Windows Cable Solid Picture
5 Windows Wifi Liquid Mixed
6 Linux Bluetooth Liquid Picture
7 Linux Cable laser Mixed
8 Mac OS Bluetooth Solid Mixed
9 Linux Wifi Solid Text

It is also possible to combine more values using a N-wise approach, in which
N defines the number of data value to be associated (N=2 for Pair-wise, N=3
for Triplet-Wise, N=4 for Quadruplet-Wise, etc.). However, it should be noted
that the number of test cases can quickly increase. More details (various articles
and tools) about this kind of strategies can be found at the following website:
http://www.pairwise.org/default.html.

http://www.pairwise.org/default.html
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2.3 Random and Stochastic Testing

This kind of testing approaches replace the partition analysis. Basically, their
principles are to apply a random function to select the test data. The random
function allows to take a value in the domain of the input in a nondeterministic
way or using statistic laws [13,14,15]. For example, to select a data representing
a distance, a sampling rate of 5 units to extract a set of input data to be tested;
to choose data to represent the size of an individual, a law of Gauss can be
applied.

The interest of such approaches concerns the simple way of automation to
perform the test data selection, even if the expected result can be more difficult
to predict. The objectivity of the test data is assumed by the blinding research.
However, the blinding research could be a problem because it is difficult to
generate real-life use case with arbitrary automated process.

The case studies show that the statistical testing approaches make it possible
to quickly achieve 50% of the testing objective, but, as described in Fig. 11, it
has a tendency to stagnate at this rate.

Determinist Test 

Random Test 

% coverage 

Effort 

Fig. 11. Random testing achievement

3 Functional and Model-Based Testing

Functional testing aims to validate the system under test from a behavioral
point of view, i.e. to ensure it conforms to the required functional requirements
of its specification. It requires that the system under test is checked according to
predetermined and expected behavior under specific circumstances. As shown in
Fig. 3, this kind of test is therefore performed to an upper level since it involves
the system as a product ready to be used (black box approach), and not pieces
of code as structural testing does (white box approach). However, regarding
test generation techniques, both domain are close since the strategies to select
test data, introduced in previous Section 2, have been adapted to be applied to
functional approaches [11,16]. Next subsection illustrates the application of the
test data selection based on equivalent classes (introduced in Section 2.1) in the
context of functional testing.
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3.1 Example of Data Selection for Functional Testing

This use-case example deals with a secure register form of a web site. The goal
of this use-case is to provide the test cases to validate this application. Figure 12
provides a simple version (V1) of the form.

Fig. 12. GUI of the register form (version V1)

From the interface of the Fig. 12, we can define five test objectives expanded
(with data) into twelve test cases:

1. The Login field is kept empty or not. For non empty scenario, we can decide
to fill with one character (minimal size), 8 characters (classical size) and 256
characters (huge size). Therefore, 4 different test data can be derived.

2. The Login exists in the system or not (2 test data).
3. The Password field is kept empty or not (2 test data).
4. The Password and Verification (to enter again the password) fields are

the same or not (2 test data).
5. The security aspect is assumed by the protocol to be used: HTTP or HTTPS

(2 test data).

Possible extensions of the form can also be handled by considering a greater
level of robustness regarding password security (as proposed in version V1 of
Fig. 13(a)), and by increasing the protection against robot using captcha tech-
nique (as proposed in version V2 of Fig. 13(b)).

(a) Robustness of password (b) Captcha

Fig. 13. GUI of the register form (version V1 and V2)
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To derive test cases from the aggregating version V2, we can reuse the 12
test data of the previous version, and complete them using two additional test
objectives that can be expanded into 5 test data (so 17 test data in all):

– Verification of the quality / robustness of the entered password (3 data - one
by level: poor, average, good).

– Verification of the captcha word by succeeding or not the challenge (2 data).

The equivalent class approach to select test data is therefore an efficient way
to maximize the functional coverage of a test suite with a minimal set of data.
The major weakness of this approach concerns the lack of automation: test data
are manually designed and the expected results have to be empirically checked.
This lack of automation makes repeated and tedious the activity of test case
design and verdict assignment. To overcome this problem, Model-based Testing
provides an automated approach by using a formal test model to derive test
cases, predict the test results, and compare obtained results with expected ones
to assign the verdict [17]. The automation of such test generation process is
a strategic issue, since it can replace the (so current) manual development of
test cases, which is known as costly and error-prone [18]. The next subsection
introduces this functional testing approach.

3.2 Model-Based Testing Overview

Model-based testing (MBT) is an increasingly widely-used technique, relying
on (semi) formal models called test models, for automating the generation of
tests [19]. There are several reasons for the growing interest in MBT approach:

– The complexity of software applications continues to increase, and the user
aversion to software defects is greater than ever, so the testing process has
to become more and more effective at detecting bugs.

– The cost and time of testing is already a major proportion of many projects
(sometimes exceeding the costs of development), so there is a strong push to
investigate methods like MBT that can decrease the overall cost of test by
designing tests automatically as well as executing them automatically.

– The MBT approach and the associated tools are now mature enough to be
applied in many application areas, and empirical evidence is showing that it
can give a good Return On Investment.

The main benefits of Model-Based Testing can be summarized as follows:
– It shortens the testing cycle by starting test automation before the applica-

tion is available. The test models, and the derived test cases, can indeed be
realized independently of the development progress.

– It enables to detects bugs sooner with the earlier involvement of testers in the
development process (which can be seen as another cost-effective benefit).

– It reduces test execution costs since test cases can be concretized and exe-
cuted automatically. Execution of automated tests can also be done overnight.

– It improves the overall quality of the test cases: test case generation is com-
puted in an automated manner and is therefore more predictive and less
error-prone than manual processes.
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– It increases the scope and the value of regression testing: the test cases, based
on the same model, can be generated for various implementations, releases,
and versions of a single application, which ensures efficient regression testing.

– It reduces test maintenance effort since the test model becomes the single
reference source of the testing process, and it is usually easier to manage this
model rather than to directly update the test cases (it is a key item when
features change constantly).

In this way, MBT approach renews the whole process of software testing from
business requirements to the test repository, with manual or automated test exe-
cution by supporting the phases of designing and generating tests, documenting
the test repository, producing and maintaining a bidirectional traceability ma-
trix between tests and requirements, automating test verdict assignment and
finally accelerating test automation [20]. The global picture of the MBT process
is shown in Figure 14. The first step of this approach consists to specify a test
model that captures the functional behavior of the system under test. From this
model, test cases can be automatically computed using algorithms or designed
manually to feed a test repository. The computed test cases are often abstract
because they are defined at the same abstraction level than the test model: a
dedicated publisher makes it possible to produce, from the abstract test cases,
executable test scripts. Afterwards, executable scripts or informal scenarios can
be executed on the concrete system to be tested. The test results and verdicts
can then be saved to be used as test report. It should be noted that some artifacts
of this process have already been introduced in Fig. 7 regarding test universe.

 test  test  test Tests 

Test model 

model 
Scenario + 

Requirements 

Fig. 14. Model-Based Testing architecture
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MBT

Model

Scope input-only / input-output

Characteristics

Untimed / Timed

Determinisctic / Non-Det.

Discrete / Hybrid / Continuous

Paradigm

Pre-Post of Input Domains

Transition-Based

History-Based

Functional

Operational

Stochastic

Data-Flow

Test Generation

Test Selection Criteria

Structural Model Coverage

Data Coverage
Requierements Coverage

Test Case Specifications

Random & Stochastic

Fault-Based

Technology

Random Generation

Search-Based Algorithms

Model-Checking

Symbolic Execution

Theorem Proving

Constraint Solving

Test Execution On/Off-line
On-line

Off-Line

Fig. 15. Model-Based Testing taxonomy

Many approaches and techniques can be used to apply MBT process. In [21],
the authors propose a taxonomy based on the modeling, test generation and
execution paradigm. Figure 15 summarizes each of the paradigms identified by
the authors to provide this taxonomy:
Model Scope. The test model can be based on the requirements associated to

the inputs only or both to inputs and outputs.
Model Characteristics. The test model can capture some features of the sys-

tem under test regarding temporal aspects, non determinism, events or con-
tinue values,...

Model Paradigm. It refers to all (semi-) formal model defined since time im-
memorial ... from the hieroglyph to SysML [22] including Z [23], B [24],
Lustre [25], etc.

Test Generation Criteria. It concerns the coverage criteria used to drive the
test generation process, and which should be ensured by the generated test
cases. Sometimes, it could be a budget coverage criterion: the industry an-
swer to “when is testing done?” can be understanding by “when there is no
more money” or “when the deadline is reached” (however, the answer often
relies on a rational approach!). Since adequacy criteria can lead to answer
the wrong response, the test criteria selection is a crucial choice in regard
to constraints (time or resources). That is why a practical evaluation and
comparison of approaches must be considered to make the right choice.

Test Generation Technology. It relates to the interpretative semantics asso-
ciated to the test model in order to automatically derive the test cases.

Test Execution. It concerns the interactions between the test execution pro-
cess and the system under test. The test cases can be directly executed during
the generation process (on-line approach) or not (off-line approach). Using
on-line approaches makes it possible to interact with the system under test,
and to dynamically use its outputs to adapt the test generation algorithms
(to choose the inputs of the next stimuli as instance).
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3.3 Example of MBT Approach for Functional Testing

This section illustrates a such MBT approach, based on a UML test model, using
a simple example of Web application, namely eCinema. Basically, eCinema is
a simple web-application that allows a customer to buy tickets on line before
to go to his favorite cinema. The main screen of the application displays the
list of available movies and show times. Before selecting tickets, a user should
be logged to the system. This requires a registration. A registration is valid
when a user gives a name (not already used) and a valid password. A valid new
registration implies that the user is automatically logged in. When logged in,
the user can buy tickets. If there are available tickets he can see his basket to
verify his selection. When checking his selection, the user can delete tickets and
then the number of available tickets for the session is automatically updated.
The functional requirements of the application are described in Table 2.

Table 2. Requirements of eCinema website example

# Requirements Description

1 ACCOUNT_MNGT/LOG The system must be able to manage the login process
and allow only registered user to login.

2 ACCOUNT_MNGT/

REGISTRATION

The system must be able to manage the user’s accounts.

3 BASKET_MNGT/

BUY_TICKETS

The system must be able to allow users to buy available
tickets.

4 BASKET_MNGT/

DISPLAY_BASKET

DISPLAY_BASKET_PRICE

The system must be able to display booked tickets and
the total basket’s price for a connected user.

5 BASKET_MNGT/

REMOVE_TICKETS

The system must be able to allow deletion of all tickets
for a given user.

6 CLOSE_APPLICATION The system can be shut down.
7 NAVIGATION It is possible to navigate from one state to another.

The requirements are translated into a UML test model written with a subset
of UML/OCL (called UML4MBT [26]). Concretely, a UML4MBT model consists
of (i) UML class diagrams to represent the static view of the system (with
classes, associations, enumerations, class attributes and operations), (ii) UML
Object diagrams to list the concrete objects used to compute test cases and to
define the initial state of the SUT, and (iii) state diagrams (annotated with OCL
constraints) to specify the dynamic view of the SUT.

Figures 16, 17 and 18 respectively show the UML class diagram, Object dia-
gram and state diagrams with an excerpt of OCL constraints that describe the
eCinema example.
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Fig. 16. eCinema class diagram

Fig. 17. eCinema object diagram

Fig. 18. eCinema state diagram with OCL constraints
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These three diagrams enable to simulate the execution of the eCinema appli-
cation and to automatically generate test cases by applying predefined coverage
strategies (such as D/CC) on OCL constraints. The generated test cases and
expected outputs are then published into a test repository, namely Testlink2, as
depicted in Fig. 19. During this step, a manually-designed mapping table con-
cretizes the abstract generated test cases into executable scripts by translating
the UML data into concrete ones. More details about this MBT testing approach
can be found in [27].

Fig. 19. Management of generated test cases using Testlink

The next section introduces the features of security testing and shows how
such MBT processes can be efficiently used for this specific testing domain.

4 MBT Approach within Security Testing

Software security testing aims at validating and verifying that a software sys-
tem meets its security requirements [28]. It targets two principal testing domain:
functional security testing and security vulnerability testing [29]. Functional se-
curity testing is used to check the functionality, efficiency and availability of the
designed security functionalities and/or security systems (e.g. firewalls, authen-
tication and authorization subsystems, access control). Security vulnerability
testing (or penetration testing, often called pentesting) directly addresses the
identification and discovery of system vulnerabilities, which are introduced by
security design flaws or by software defects, using simulation of attacks and other
kinds of penetration attempts.

The security testing techniques can be divided into four families as shown in
Fig. 20. The first one is the network security toolkit, with the network scan-
ners to check active ports and (characteristics of) computers on the network.
The second one concerns the Static Application Security Testing (SAST), which
aims to analyse application regarding known security threats using tools such as
2 http://testlink.org/

http://testlink.org/
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HP/Fortify, Veracode, Checkmarx, Parasoft... The third family focuses on moni-
toring approach, which consists to capture and analyse the behaviors and events
on the network using tools like Syslog, Nagios or IBM Tivoli... Finally, the fourth
family relates to Dynamic Application Security Testing (DAST) that consists to
dynamically check the security requirements. Typically, DAST techniques can
be performed using model-based testing approach dedicated to security features.

Fig. 20. Taxonomy of security software testing

In fact, recent IBM X-Force c© research revealed that, in 2012, 41% of all
security vulnerabilities pertained to web applications as shown in Fig. 21. This
kind of attacks is more and more complex and can be usually discovered only
using a dynamic approach. The rest of this section thus deals with on DAST
techniques, with a specific focus on MBT security testing approaches.

Fig. 21. Attack evolution from IBM X-Force

For further details about Web application security attacks, the Open Web
Application Security Project (OWASP) proposes some documentation including
a current Top Ten of the current threats [30]. The most prevalent and danger-
ous cyber-attacks against Web Applications are also reported and available in
CWE/SANS 25 [31] and WhiteHat Website Security Statistic Report 2013 [32].
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4.1 Model for Security Testing

M. Felderer et al. propose in [33] a classification for Model-Based Security Testing
decomposed into five families:

Individual Knowledge. The individual knowledge determines the design of
security tests. It is also used to select function and data to be tested.

(Adapted) Risk-Based Testing. These techniques are based on threat mod-
els and enable the prioritization of test concept or execution.

Scenario-Based MBT. It concerns techniques to complete test models (of
MBT approach) using scenarios dedicated to security aspects.

Risk Enhanced Scenario-Based MBT. This kind of approaches completes
the (MBT) test models using risk information in addition to the scenarios.

Adapted MBT. It relates to all other MBT approaches that use a dedicated
test model for security.

In many families presented for security testing, the link between risk and testing
is very important. As described in Fig. 22, risk assessment activity can drive
the MBT approach. In fact, each step of the MBT approach (modeling, crite-
ria to drive test generation and prioritization of the test execution) are driven
by the results of risk analysis and assessment. One of the more mature ap-
proach addressing Model-Driven Risk Analysis is CORAS [34], which provides
a customized language for threat and risk modeling. More precisely, CORAS is
a model-driven method for risk analysis featuring a tool-supported modelling
language specially designed to model risks that are common for a large num-
ber of systems. Such model serves as a basis to perform risk identification and
prioritization.

Fig. 22. Link between MBT and risk assessment
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4.2 Security Test Objectives

To define security test objectives, two main approaches have been defined during
the last decade. The first approach is based on dedicated security test models as
proposed in [35,36] with UMLSec, or as previously proposed with SecureUML
in [37]. These approaches can have a specific focus on protocols as proposed
in [38] using finite state machine, or using networks rules [39], or using protocol
mutation as described in [40]. In parallel, some other techniques are emerging to
help analysis like Threat or Risk model like CORAS [34].

We can also find specific testing techniques such as Fuzz testing (or Fuzzing) as
proposed in [41], which was used by Microsoft company to validate the layer that
manages the data and files acquired from network [42]. Fuzz testing, originated
from B.Miller at the University of Wisconsin [43], involves providing invalid,
unexpected, or random data to the inputs of a system under test. Although its
origin is based on a complete randomized approach, more systematic approaches
have been recently proposed: model-based fuzzers use their knowledge about the
message structure to systematically generate messages containing invalid data
among valid data [44]. It can also use a model describing the behavior of an
attacker to drive the test generation process [45]. Some tooling are now available
to compute fuzzing strategies such as the fuzz test data generator Fuzzino3,
which determines fuzzed test data by applying security test strategies to message
arguments from a given correct communication sequence [46,47].

The second main approach is based on properties or schema languages. Many
formalisms have already been used to drive the test generation from a property,
or by means of a test purpose. By using this kind of formalisms, the test ob-
jectives are expressed either as a particular sequencing of the actions (temporal
view) or as properties that the data of the system have to verify (spatial view).
Such formalism can address a specific security aspect such as access control
domain like OrBac [48] or SPL [49] languages.

Temporal logics, such as the Linear Temporal Logic (LTL) [50,51] allow to
specify properties on the state of the system under test w.r.t. several successive
moments in its life. Tests can then be obtained using a model-checker in the shape
of traces from a model that contradicts the required properties (see [52,53] for ex-
ample). Input/Output Labelled Transition System (IOLTS) and Input/Output
Symbolic Transition System (IOSTS) have been also frequently used to specify
test purposes [54,55]. These formalisms enable to specify sequencing of actions
by using the actions of the model, and possess two trap states named Accept and
Refuse. The Accept states are used as end states for the test generation, while
the Refuse states allow to cut the traces not targeted by the test generation
objectives. For example, these formalisms are used in tools such as TGV [54],
STG [56], TorX [57] or Agatha [58]. Another approach, described in [59], consists
to generate traces using model-checking techniques from a model specified as an
IOLTS, in which a fault have been injected by a mutation operator, according
to a fault model. The trace is then used as a test objective for the TGV tool.

3 https://github.com/fraunhoferfokus/Fuzzino

https://github.com/fraunhoferfokus/Fuzzino
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Some security testing approaches are indeed based on the definition of sce-
narios as test objectives. In [60,61], test cases are issued from UML diagrams as
a set of trees. The scenarios are extracted by a breadth-first search on the trees.
A similar approach is implemented in the tool Telling TestStories [62], which
defines a test model from elementary test sequences composed of an initial state,
a test story and test data. An operational language to describe test schemas in a
“textual” way is proposed in [63]. Let us also cite Tobias tool [64,65] that provides
a combinatorial unfolding of some given test schemas. The schemas are sequences
of patterns composed of operation calls and parameter constraints. The schemas
are unfolded independently from any model, therefore the obtained test cases
have to be instantiated on a model. In [66], a connection between Tobias and the
UCASTING tool is studied to produce instantiated test cases. UCASTING [67]
aims to concretize sequences of operations that are derived from a UML model,
and thus are not, or only partially, instantiated.

It should also be noted that Advanced Open Standards of the Information
Society4 (OASIS) proposes some works to normalize the description as eXtensible
Access Control Markup Language (XACML) or the Security Assertion Markup
Language (SML).

4.3 Example of Properties Description Language

To facilitate the use of temporal properties by validation engineers, M. Dwyer
et al. have identified in [68] a set of design patterns that allow to express a
set of temporal requirements frequently met in industrial studies as tempo-
ral properties. A web version of the evolution of this works can be found at
http://patterns.projects.cis.ksu.edu/. As depicted in Figure 23, a prop-
erty pattern can be defined by the one way using occurrence patterns. This family
is composed of (i) Absence: an event never occurs, (ii) Existence: an event oc-
curs at least once, (iii) Bounded Existence has 3 variants: an event occurs k
times, at least k times or at most k times, and (iv) Universality: an event/state
is permanent. The second way concerns the order patterns: (v) Precedence: an
event P is always preceded by an event Q, (vi) Response: an event P is always
followed by an event Q, (vii) Chain Precedence: a sequence of events P1, . . . ,
Pn is always preceded by a sequence Q1, ... , Qm (it is a generalization of the
Precedence pattern), (viii) Chain Response: a sequence of events P1, ... , Pn is
always followed by a sequence Q1, ... , Qm (it defines a generalization of the
Response pattern).

From this work, an extension is proposed in [69] to add five scopes. Basically,
a scope concerns the pattern observation and is composed of events. Events
corresponds to all methods specified in the test model. The interest of the method
is that the properties are translated into automata and coverage criteria are
proposed to drive the test generation to derive test cases that target the related
security patterns.

4 http://www.oasis-open.org

http://patterns.projects.cis.ksu.edu/
http://www.oasis-open.org
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Fig. 23. Pattern expressiveness by M. Dwyer

4.4 Example of Pattern-Driven Security Testing Approach

The purpose of this section is to present an example of Model-Based Testing
approach driven by security test pattern [70]. This example aims to validate
the detection of SBS-1 malicious signals, formatted according to the ADS-B
air-traffic control standard5, which could be received by the control tower from
the aircraft. The ADS-B air-traffic control standard is all about communications
between aircraft, and also between aircraft and ground by providing every sec-
ond a broadcast of the aircraft status (including position, identity, velocity,...
calculated using a Global Navigation Satellite System) and make it possible to
generate a precise air picture for air traffic management. However, the ADS-B
standard is public and all the transmitted information are unencrypted, and de-
coding them is not difficult (see Figure 24 in which each line defines a separate
message that have been sent by a single aircraft).

Fig. 24. Excerpt of ADS-B/SBS-1 data stream

In this context, the Model-Based Security Testing generation process aims
to produce communication sequences including malicious data. The objective
of these generated sequences is to evaluate the vulnerability detection rate of
automated air-control system, and the corresponding human attitude during
monitoring. It also can be relevant to develop and elaborate new warning proto-
col, and to improve existing countermeasures, which are today mainly based on
data comparison between ADS-B and radar information, and to a latter extent
visual inspection. The global process of the approach is depicted in Figure 25.

5 http://adsb.tc.faa.gov/ADS-B.htm

http://adsb.tc.faa.gov/ADS-B.htm
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Fig. 25. Security testing process overview

The proposed process is based on the Smartesting Model-Based Testing tool
(namely CertifyIt) [27] provided by the company Smartesting6, which allows to
generate test sequences from UML behavioural models and security test pur-
poses, which are described in a language formalizing textual test patterns.

The behavioural model (UML class diagram, object diagram and state dia-
gram with OCL constraints as introduced in the eCinema example in Sect. 3.3)
defines the environmental aspects of the domain to be tested in order to gen-
erate consistent (from a functional point of view) sequences of ADS-B signals.
On the one hand, it includes the communication format of the SBS-1 message
of the ADS-B standard (static aspect), and on the other hand, it captures real
(or realistic) air-traffic scenarios (dynamic aspect).

A test purpose is here a high-level expression that formalizes a test intention
linked to a testing objective to drive the automated test generation on the be-
havioral model. This is a textual language, which has been originally designed to
drive model-based test generation for security components, typically Smart card
applications and cryptographic components [71]. This test purpose language has
also been extended to be able to formalize typical vulnerability test patterns for
Web applications [72]. In the context of this case-study, this test purpose lan-
guage allows the formalization of attack patterns in terms of states to be reached
and SBS-1 messages to be sent. It relies on combining keywords and instruc-
tions allowing updating and/or falsifying the real air-traffic scenarios described
in the UML behavioural model. The test generation algorithm, computed by
the Smartesting CertifyIt tool, enables then to produce mutated real air-traffic
scenarios (sequences of transmitted ADS-B signals) by changing and/or adding
communication data, which simulate a malicious aircraft broadcast. As exam-
ple, from a real air-traffic configuration, test patterns and corresponding test
purposes can give rise to the production of vulnerability air-traffic scenarios in-
cluding injection of fake aircrafts into a real configuration, injection of cancelled
flights into a real configuration, introduction of (slight) variations in real flights,
change of an apparent airliner into fighter(s),...
6 http://www.smartesting.com

http://www.smartesting.com
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Each of such generated scenarios is typically an abstract sequence of high-
level actions from the UML models. These generated test sequences contain the
sequence of stimuli, i.e. all the SBS-1 messages sent by the aircrafts concerning
their position. These generated sequences, that constitute attack scenarios, are
next translated into SBS-1 Simulator using ADS-B formatted signals to be ex-
ecuted on a realistic test bench. They are also concretized into KML language
scripts in order to be simulated using simulation tools such as Google Earth,
Marble or GeoServer.

Figure 26 shows an example of Google Earth simulation, in which a fake air-
craft (red path) has been added to the real air-traffic configuration. Figure 27
shows an excerpt of the falsified ADS-B/SBS-1 data stream, which is automati-
cally generated by the test generator.

Fig. 26. Simulation of a falsified air-traffic scenario using Google Earth

Fig. 27. Excerpt of a falsified ADS-B/SBS-1 data stream

5 Conclusion

Testing is nowadays a strategic activity at the heart of software quality assur-
ance, no matter the type of software development: all developments undergo some
testing, and effort as well as budget are allocated to this task. This paper gave an
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overview of existing techniques and state-of-the-art about Model-Based Testing
and its deployment to address both functional and security testing.

The idea of Model-Based Testing is to use an explicit abstract model of the
system under test and/or of its environment to automatically derive test cases:
the behavior of the model is interpreted as the intended behavior of the system
under test. The algorithms, driving the test generation process and selecting
the test data, enable to ensure a given coverage of the model entities, and so of
the functional features of the system. It should be noted that these algorithms
mainly originate from structural testing strategies: they are no more applied to
the code of the system, but to models specifying its expected functional behavior.

Therefore, Model-Based Testing promises higher quality and conformance to
the respective functional safety and quality standards at a reduced cost through
increased coverage, advanced test generation techniques, increased automation
of the process, eased regression testing management, and finally decreased test
maintenance effort. The technology of automated model-based test case genera-
tion has matured to the point where large-scale deployments of this technology
are becoming commonplace, and a wide range of commercial and open-source
tools are now available (this list is not exhaustive !):

– CertifyIt (Smartesting)
– Fokus!MBT (Fraunhofer Fokus)
– MaTeLo (All4Tec)
– ModelJUnit (CSZ)
– Conformiq Designer (Conformiq)

– Reactis (Reactive System)
– Scade (Esterel Technologies)
– Spec Explorer (Microsoft)
– STG - TGV (IRISA)
– UPPAAL Cover (UP4ALL)

Even if Model-Based testing approach is an effective and useful technique,
which brings significant progress in the current practice of functional software
testing, it does not solve all testing problems. This weakness especially occurs
when addressing non functional testing such as security testing that aims at
validating and verifying that a software system meets its security requirements.
Indeed, contrary to behavioral features, test objectives targeting security re-
quirements cannot be easily derived from the structure of the test model, and
the expertise of the security engineers is clearly missing. To tackle this weakness,
especially regarding security issues, dedicated test model targeting security as-
pects (including risk assessment results) and specific testing strategies have been
created. These strategies are mainly based on fuzzing algorithms and security
test patterns languages. These artefacts drive the security test generation pro-
cess, and therefore replace the coverage criteria traditionally used to address
functional purposes. Although model-based approaches for security testing are
not yet so advanced and so popular compared to functional Model-Based Testing
approaches, this research direction gives rise, from several years, to efficient and
emerging approaches and technologies, especially concerning fuzzing techniques.
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