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International School on

Foundations of Security Analysis and Design

The LNCS series entitled Foundations of Security Analysis and Design (FOSAD)
began on 2001 with the aim of proposing a collection of tutorial papers accompa-
nying lectures given at the FOSAD summer school. This year we present the 7th
volume in the series, which is dedicated to FOSAD 2012 and 2013. FOSAD has
been one of the foremost educational events established to disseminate knowledge
in the area of security for computer systems and networks. Over the years, both
the summer school and the book series have represented a reference point for
graduate students and young researchers from academia or industry interested in
approaching the field, investigating open problems, and following priority lines
of research. The topics covered in this book include model-based security, auto-
matic verification of secure applications, information flow analysis, cryptographic
voting systems, encryption in the cloud, and privacy preservation.

The opening paper by Fabrice Bouquet, Fabien Peureux, and Fabrice Ambert
presents a survey of model-based approaches for security testing, by discussing
existing techniques, the state of the art, and deployment. A specific model-based
tool-supported technique is presented in the contribution by Jan Jürjens et al.,
who describe a dynamic approach to security engineering using UMLsec.

Automatic verification through formal methods is the main topic of the pa-
per by Bruno Blanchet, who introduces the specific case of ProVerif, an au-
tomatic protocol verifier that relies on the symbolic model of cryptography, a
process algebraic specification language, and resolution-based proof techniques.
Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio Maffeis present
a tutorial of the Defensive JavaScript language, which is a typed subset of
JavaScript with specific security guarantees. In particular, they show how to
use it to program secure applications and analyze them automatically through
ProVerif. Willem De Groef, Dominique Devriese, Mathy Vanhoef, and Frank
Piessens discuss information flow control mechanisms for the security analysis
and control of Web scripts. To this aim, they formalize both a static type-system
and a dynamic enforcement mechanism. The paper by Gilles Barthe et al. intro-
duces a machine-checked framework, called EasyCrypt, supporting the construc-
tion and automated verification of cryptographic systems in the computational
model.

David Bernhard and Bogdan Warinschi propose a survey of the main ideas
and techniques used in cryptographic voting systems. As a real-world example,
they describe the security properties of the Helios voting system. In their paper,
Samarati et al. address the issue of protecting sensitive information from uncon-
trolled access in the cloud. In order to preserve confidentiality and integrity in
this setting, they discuss the benefits of data encryption and data fragmentation.
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Finally, Ruben Rios, Javier Lopez, and Jorge Cuellar describe location privacy
issues in wireless sensor networks, by categorizing solutions and open problems.

We would like to thank all the institutions that have promoted and funded
FOSAD in the last few years. We are particularly grateful to the IFIP Working
Groups 1.7 on Theoretical Foundations of Security Analysis and Design and
11.14 on Secure Engineering (NESSoS), the ERCIM Working Group in Security
and Trust Management (STM), and the EPSRC CryptoForma network.

To conclude, we also wish to thank all the staff of the University Residential
Centre of Bertinoro for the organizational and administrative support.

June 2014 Alessandro Aldini
Javier Lopez

Fabio Martinelli
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César Kunz, Benedikt Schmidt, and Pierre-Yves Strub

Cryptographic Voting — A Gentle Introduction . . . . . . . . . . . . . . . . . . . . . . 167
David Bernhard and Bogdan Warinschi

Encryption and Fragmentation for Data Confidentiality in the Cloud . . . 212
Sabrina De Capitani di Vimercati, Robert F. Erbacher, Sara Foresti,
Sushil Jajodia, Giovanni Livraga, and Pierangela Samarati

Location Privacy in WSNs: Solutions, Challenges, and Future Trends . . . 244
Ruben Rios, Javier Lopez, and Jorge Cuellar

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283



Model-Based Testing
for Functional and Security Test Generation

Fabrice Bouquet1,2, Fabien Peureux2, and Fabrice Ambert2

1 Inria Nancy Grand Est – CASSIS Project
Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

fabrice.bouquet@inria.fr
2 Institut FEMTO-ST – UMR CNRS 6174, University of Franche-Comté

16, route de Gray, 25030 Besançon, France
{fbouquet,fpeureux,fambert}@femto-st.fr

Abstract. With testing, a system is executed with a set of selected
stimuli, and observed to determine whether its behavior conforms to the
specification. Therefore, testing is a strategic activity at the heart of soft-
ware quality assurance, and is today the principal validation activity in
industrial context to increase the confidence in the quality of systems.
This paper, summarizing the six hours lesson taught during the Summer
School FOSAD’12, gives an overview of the test data selection techniques
and provides a state-of-the-art about Model-Based approaches for secu-
rity testing.

1 Testing and Software Engineering

One major issue, regarding the engineering in general and the software domain
in particular, concerns the conformity of the realization in regards of the stake-
holder specification. To tackle this issue, software engineering relies on two kinds
of approaches: Validation and Verification, usually called V&V.

1.1 Software Engineering

The approaches proposed by Software engineering to ensure software conformity
are the validation and the verification. There are many definitions of these two
words but we propose to explain them in regards of the usage. The validation
addresses the question “Are we building the right product?”, which aims to val-
idate that the software should do what the end users really requires, i.e. that
the developed software conforms to the requirements of its specification. The
verification addresses the question “Are we building the product right?”, which
aims to verify that all the artifacts defined during the development stages to
produce the software conform to the requirements of its specification, i.e. that
the requirements and design specifications has been correctly integrated in de-
velopment stuff (model, code, etc.). It should be noted that another variants
or interpretations of these definitions can be found in the literature, mainly de-
pending of the engineering domain they are applied.

A. Aldini et al. (Eds.): FOSAD VII, LNCS 8604, pp. 1–33, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Validation and verification

Figure 1 describes the different steps used by the methods of Verification and
Validation. For each step, different techniques can be used:

– Static Test for the reviews of code, of specification, of design documenta-
tion.

– Dynamic Test for the execution of program to ensure the correctness of its
functionalities.

– Symbolic Verification for run-time checking, symbolic execution (of model
or code).

– Formal Verification for proof, model-checking from formal model.

The rest of this presentation focuses on dynamic test approach, which is today
the principal validation activity in industrial context to increase the confidence
in the quality of software.

1.2 What Is Testing?

Naturally, the next question is “what is testing?”. Since the first and the second
techniques proposed in the previous part concern the Static Test and Dynamic
Test, we propose three definitions of testing from the state of the art:

– IEEE Std 829 [1]: “The process of analyzing (execution or evaluation) a soft-
ware item to detect the differences between existing and required conditions
(that is, bugs), and to evaluate the features of the software item.”

– G.J. Myers (The Art of Software testing [2]): “Test is the process of executing
a program (or part of a program) with the intention of finding errors.”

– E.W. Dijkstra (Notes on Structured Programming [3]): “Testing can reveal
the presence of errors but never their absence.”

Three major features can be underlined in these definitions. The first one con-
cerns the capacity to compare the results, provided by the real system, to the
expected value, defined in the specifications. It implies to have a referential to
ensure the confidence in testing activity. The second one concerns the testing
process itself, and the way to find bugs. Therefore, we need to define a coverage
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strategy of the referential element to be tested (such as code, requirements or
any artifact like models). Finally, the third issue is the uncompletion of testing
because, in general, we cannot explore all possibilities. Indeed, due to combinato-
rial explosion of reachable states, exhaustive testing is unfeasible in practice, and
dedicated strategies are needed to manage this explosion and to keep a relevant
quality assessment.

Fig. 2. Activities of dynamic test

As shown in Fig. 2, testing process can be decomposed in five main activities:

1. Select or design test cases: choose a subset of all possible features of the
System Under Test (SUT). This information is provided by the validation
and test plan. This step aims to produce the abstract test cases, i.e. scenarios
that have still to be concretized using concrete values and function calls.

2. Identify the data for test cases: the test cases, defined in the previous step,
can be used with several data. Then, it is important to choice a relevant
subset of data. The number of test cases execution is equal to the number
of chosen data.

3. Execute the test cases with the data: the test cases with data are executed on
the SUT and test results are gathered using manual or automatic execution
environment.

4. Analyze the results of the executed test. This step consists to assign a verdict
to each executed test case by deciding if the test is in success or not:
– Pass: the obtained results conform to the expected values.
– Fail: the obtained results do not conform to the expected values.
– Inconclusive: it is not possible to conclude.

5. Reporting: it is the evaluation of the quality and the relevance of the tests
(to determine the need and effort to correct discovered bugs, to decide to
stop testing phase, etc.).

Beyond this theoretical point of view, regarding the reality and practices of the
industrial development context, the maturity of the Quality Assurance or Test
function shift from theoretical ad hoc process to a more strategic and centralized
approach. Moreover, the testing activity often concerns areas of IT organizations
from western Europe Enterprise, which mainly promote and apply the following
process steps1:
1 Source IDC - European Services, Enterprise Application Testing Survey, March 2011.
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1. Choose a testing methodology to address agile/component based devel-
opment life cycle.

2. Provide automated test coverage that makes it possible to apply agility
in testing.

3. Focus on the non-functional aspects like performance, availability, secu-
rity, etc.

4. Refine the test strategy to optimize the use of testing services (tradi-
tional and cloud based).

This practical approach allows to highlight relevant aspects about testing
activity. The first one is the acceptance of the need to test. In fact, the question is
no more to know if testing should be used or not in the development process, but
how to enhance its usage. Indeed, the integration of testing activity at the heart
of the development process makes it possible to reduce bottleneck of the project
deadline and avoid the crushing tension of the validation phase before releasing
the product. Therefore, optimization issues are studied and generalization are
discussed to generalize it for other aspects (up to unit and/or functional for
example). The automation of the testing activity and the improvement of the
confidence level are thus today the main issues about testing.

1.3 Kinds of Test

“Testing” is a very generic term. In reality, as suggested in previous IDC survey,
thus we need to refine it. J. Tretmans in [4] proposed to decompose the testing
approaches regarding three dimensions. This representation is shown in Fig. 3.

unit 

integration 

system 

performance 
robustness 

functional 
white box black box 

Details level (step in development life cycle) 

Type (which can be tested) 

ergonomic 
safety 

module 

security 

Accessibility level 

Fig. 3. Kind of testing approaches as proposed by J. Tretmans
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The first dimension (horizontal axis) concerns the accessibility of the code to
be tested. White box defines an open box in which all the information about
the code are accessible. Black box defines a closed box and only the binaries are
available to execute the test. The second dimension (vertical axis) is the archi-
tecture level of the system to be tested, i.e. the development phase from the
software life cycle point of view. An example of the development life cycle and
validation steps is proposed in Fig. 4. The figure depicts four phases from the
specification, provided by the client, to the code implementation. Each described
phase has four specific level or context, which are addressed by dedicated test
objectives. For example, Unit testing focuses on the coverage of the code to sep-
arately validate the computation of each implemented functions or procedures,
while Acceptance testing focuses on the end-user features and thus addresses
only the functional (or domain) requirements.

Fig. 4. Development life cycle & testing levels

Finally, the third dimension (plan axis) is the usage or targeted aspects to be
validated by the tests. So, each test is an element that can be located in this 3D
space representation.

White Box. White box testing, also called Structural Testing, instantiates the
four activities of the Fig. 2 as follows:

– Test cases: they cover all the functions of the source code to be tested.
• Deriving from the internal design of the program.
• Requiring detailed knowledge of its structure.

– Data: test data are produced from the source code analysis in order to ensure
some given coverage criteria. The most common coverage criteria are based
on the analysis and coverage of the flow graph associated to a function of
the source code as illustrated in Fig. 5.
• Statement: node or block of instructions,
• Branch: condition,
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• Path: a problem regarding the path coverage is the number of loops
(for example between B and A in Fig. 5), so there exist more restrictive
criteria as independent path or k-path (where k defines the maximum
number of loops to be tested). A comparison and a hierarchy of all such
structural criteria are proposed in [5].

– Execution: the test scripts take the form of a suite of function calls (with
data) of the source code.

– Reporting and end of the testing phase: it directly depends on the completion
of the given targeted coverage criteria.

B 

A 

Fig. 5. Source code representation for structural testing

Black Box. Black box testing, also called Functional Testing, instantiates the
four activities of the fig. 2 as follows (the overall black box testing process is also
depicted in Fig. 6):

– Test cases are derived from the functional specification.
• Designed without knowledge of the source code internal structure and

design.
• Based only on functional requirements.

– Test data are also derived from the functional specification by applying ded-
icated test coverage criteria on the related specification in order to identify
and target some requirements or functionalities as test objectives.

– Execution: the test scripts take the form of a suite of API call or imple-
mented user actions (with concrete data) of user or software interfaces of
the program.

– Reporting and end of the testing phase: it directly depends on the completion
of the given targeted coverage criteria.
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Specification 

Software 

Test cases & data 

Execution result 

Oracle 

Test 
result 

Fig. 6. Functional testing process

1.4 Testing Universe

In fact, testing is in the middle of many artifacts, called test universe. For in-
stance, the specification explains, in term of needs and requirements, the features
that have to be developed, and also what the tests have to validate. It also iden-
tifies the defects to be avoided (from which associated test can be derived). A
same test can be used to validate that a requirement is correctly implemented
(at its first execution), but it can also be used to ensure this requirement remains
correctly implemented in future versions (this kind of test is called non regres-
sion test). It is also possible to create or derive test from specific artifacts such
as contracts or models, which provide an abstraction level to help and ease the
design of the tests. Finally, as depicted in Fig. 7, some tooling and environment
are now available to manage, in an automated manner, all these artifacts re-
lated to requirements, models, defects, test scripts and test definition repository.
Those make it possible to offer a scalable and reliable automation of the testing
process, and ease its usage in the industrial development and validation team.

Fig. 7. Sphere of testing tools
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To conclude this overview, testing is today in industry the main activity to
determine if a developed software does the right things and things right (using
each level of test). It represents until 60% of the complete effort for software
development. This effort is reported in 1/3 during software development and
2/3 during software maintenance. Nevertheless, in current software development,
testing is still often seen as a necessary evil. It indeed remains a not very popular
activity in development teams especially because integrating testing activities
during development phase give rise to a psychological hindrance and/or cultural
brake because testing is seen as a destructive process (an efficient test is a test
that reveals an error), whereas programming is seen as a constructive and helpful
process (each line of code aims to fulfill a functional need for the end users).
Moreover, teams given the task of testing are often appointed by default and
have no professional skills in testing activities, although specific knowledge and
competences are required for the task. This paper precisely aims to fill in the
gaps on testing knowledge by introducing practical testing approaches focusing
on functional testing and security test design.

The paper is organized as follows. Techniques for test data selection are in-
troduced in Section 2, functional Model-Based Testing approaches are described
in Section 3, and specificities about Model-Based Testing to address security
features are presented in Section 4. Finally, Section 5 concludes the paper and
gives several tooling references to look at practical Model-Based Testing in more
depth.

2 Test Data Selection

The previous section introduced the testing steps to design test cases. This sec-
tion deals with the strategic activity concerning the selection of the data that
will be used to build executable test cases. Three main techniques are used to
choice the test data. The first one uses a partition analysis based on the input
domains. This approach reduces the number of possible values by selecting a rep-
resentative value (bound, middle, random...) for each identified partition. The
second one consists to apply a combinatorial testing strategy. This approach can
also restrict the possible combination of the input values by selecting specific
n-uplets of values. The third one is based on random or stochastic testing. This
approach enables to choose different input values using statistic strategies that
allow an uniform distribution of the selected data.

2.1 Partition Analysis of Input Domains

This technique, based on the classes of equivalence, is control flow oriented.
A class of equivalence corresponds to a set of data supposed to test the same
behavior, i.e. to activate the same effect of the tested functionality. The definition
of equivalent classes thus allows to convert an infinite number of input data into
a finite number of test data. The computation of the test data are performed
in order to cover each identified behaviors. For example, let a given function
defined by:
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Domain: x ∈ −1000..1000
Precondition: x ≤ 100
Postcondition:
IF x ≤ 0 THEN y ← default
ELSE IF x ≤ 40

THEN y ← low
ELSE y ← high
END

END

The partition analysis of this function gives rise to identify three behaviors
Pi in regards to Pre and Postcondition:

1. P1: x ≤ 0
2. P2: x > 0 ∧ x ≤ 40
3. P3: x > 40 ∧ x ≤ 100

We can then derive the corresponding constraints about the domain of the vari-
able x and define four classes of equivalence Ci:

1. C1: x ∈ [−1000, 0]
2. C2: x ∈ [1, 40]
3. C3: x ∈ [41, 100]
4. C4: x ∈ [101, 1000]

This technique thus aims to select data in order to cover each behavior of the
tested function. Such function often includes control points, which are usually
(such as the previous example) represented by IF-THEN-ELSE construct in pro-
gramming languages. The executed effects of a given execution depend on the
evaluation of the boolean formula, called decision, which is expressed in the IF
statement and gives rise to two equivalent classes : one makes true the evaluation
of the decision, the other makes it false. In the previous example, this decision is
an atomic expression (x ≤ 0), but in practice decisions are complex predicates
constructed with ∧, ∨ and ¬ operators, combining elementary boolean expres-
sions, called conditions, that cannot be divided into further boolean expressions.
Exposing the internal structure of a decision can lead to extend the number of
equivalence classes if each evaluation of each condition is considered. This is-
sue of how to treat multiple conditions without exponential test case explosion
is a key point for test generation. Several structural coverage criteria for deci-
sions with multiple conditions have thus been defined in the testing literature.
Brief informal definitions and hierarchy (see Fig. 8) are given here, but more
details including formal definitions in Z are available elsewhere [6,7]. Note the
terminology: a decision contains one or more primitive conditions, combined by
disjunction, conjunction and negation operators.
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Fig. 8. The Hierarchy of control-flow coverage criteria for multiple conditions. C1 −→
C2 means that criterion C1 is stronger than criterion C2.

Statement Coverage (SC). The test set must execute every reachable state-
ment of the program.

Condition Coverage (CC). A test set achieves CC when each condition in
the program is tested with a true result, and also with a false result. For a
decision containing N conditions, two tests can be sufficient to achieve CC
(one test with all conditions true, one with them all false), but dependencies
between the conditions typically require several more tests.

Decision/Condition Coverage (D/CC). A test set achieves D/CC when it
achieves both decision coverage (DC) and CC.

Full Predicate Coverage (FPC). A test set achieves FPC when each condi-
tion in the program is forced to true and to false, in a scenario where that
condition is directly correlated with the outcome of the decision. A condition
c is directly correlated with its decision d when either d ⇐⇒ c holds, or
d ⇐⇒ ¬c holds [8]. For a decision containing N conditions, a maximum of
2N tests are required to achieve FPC.

Modified Condition/Decision Coverage (MC/DC). This strengthens the
directly correlated requirement of FPC by requiring the condition c to in-
dependently affect the outcome of the decision d. A condition is shown to
independently affect a decision’s outcome by varying just that condition
while holding fixed all other possible conditions [9,10]. Achieving MC/DC
may require more tests than FPC, but the number of tests generated is
generally linear in the number of conditions.

Multiple Condition Coverage (MCC). A test set achieves MCC if it exer-
cises all possible combinations of condition outcomes in each decision. This
requires up to 2N tests for a decision with N conditions, so is practical only
for simple decisions.

These different coverage criteria can also be used to as data selection criteria
by rewriting the decision into several predicates. Each predicate defines a spe-
cific equivalent class in which data have to be derived. To achieve it, a simplistic
way is to consider a single disjunction A∨B nested somewhere inside a decision.
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We propose four possible rewriting rules to transform the disjunction into a set
of predicates defining data equivalent classes:

– A ∨B � {A ∨B }. This generates just one equivalent class for the whole dis-
junct, resulting in one test for the whole decision. This corresponds to deci-
sion coverage (because the negated decision is achieved by another equivalent
class, e.g., corresponding to the ELSE branch).

– A ∨B � {A,B }. This ensures D/CC, because there is one equivalent class
defined by A true, and one by B true, and another one with the negated
decision that will cover ¬A ∧ ¬B. In fact, a single equivalent class, A ∧ B,
would in theory be enough to ensure D/CC, but A∧B is often not satisfiable,
so two weaker tests are generated instead.

– A ∨B � {A ∧ ¬B,¬A ∧B }. This is similar to FPC, because the result of the
true disjunct is directly correlated with the result of the whole disjunction,
since it cannot be masked by the other disjunct becoming true.

– A ∨B � {A ∧ ¬B,¬A ∧B,A ∧B }. This corresponds to MCC, because it
defines an specific equivalent class for each combinations of A and B (the
¬A ∧ ¬B combination is covered by the negated decision). This usually be-
comes unmanageable even for moderate values of N conditions.

Figure 9 depicts these rewriting rules by showing the different equivalent
classes: the regions A and B identify the data domain of the two conditions
A and B of the decision A ∨B.

A B 

DC C/DC 

FPC MCC 

A B 

A B 

A B 

Fig. 9. Decision coverage

Finally, selecting data from obtained equivalent classes can be performed non-
deterministically, but also by applying a boundary/domain approach [11]. This
boundary values approach is known to be an efficient strategy to select test data
and is currently used as the basis for test generation algorithms [12], but it has
not generally been formalized as coverage criteria.
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To achieve this approach, some simple rules, based on the type of the param-
eter, can be applied to choice the values of data. Basically, for each equivalent
class, it consists to take the data value at an extremum – minimum or maximum
– of its domain. It should be noted that this approach can only be performed if
an evaluation function can discriminate each value of the domain (minimum or
maximum of integers, minimum or maximum of the cardinality of sets, etc.), else
an arbitrary value can be selected by default as usual. Some examples illustrating
this approach are given below:

– for each interval of integer described by an equivalent class, we select 2
values corresponding to the extrema (minimum and maximum), and 4 values
corresponding to the values of the extrema with minus/plus delta:
n ∈ 3..15 ⇒ v1 = 3, v2 = 15, v3 = 2, v4 = 4, v5 = 14, v6 = 16

– if the variable takes its value in an ordered set of values, we select the first, the
second, before the last and the last data and one data outside the definition
set:
n ∈ {−7, 2, 3, 157, 200} ⇒ v1 = −7, v2 = 2, v3 = 157, v4 = 200, v5 = 300

– for the data defining an object, we can minimize or maximize some feature
of its format, by selecting valid extremum values

– for an input file containing 1 to 255 records, we can select files with: 0, 1,
255 and 256 records

– for an object p typed by a static type C:
• null reference
• this reference (if \typeof(this) <: \type(C))
• One object such that: p != null && p != this && \typeof(p) ==

\type(c)
• One object such that: p != null && p != this && \typeof(p) ∈ \type(c)
• One object such that: p == p’ with p’ an other compatible object

When functions have several parameters (inputs), the global approach has to
be applied for each parameter. The first step consists, for each input, in calculat-
ing their domain from equivalent classes. The second is to select representative
value(s) of each domain. The third consists to use a composition (by Cartesian
product as instance) of all selected input values to generate the test data. This
composition can lead to a combinatorial explosion that need to be mastered
to make the test data set manageable. The next section gives an overview of
techniques to achieve that in the more global context of combinatorial testing.

2.2 Combinatorial Testing

The combination of all possible (or selected) input values can give rise to com-
binatorial explosion of the configurations. For example, from two inputs defined
as integer, we obtain: 232 ∗ 232 = 264 = 18 000 000 000 000 000 000 possible
configurations. Another concrete example concerns the preference parameter to
fix a character styles (see Fig. 10). The form is composed by seven check boxes
and one pull-down menu with four entries: it thus defines 27 ∗ 4 = 512 data
possible combinations.
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Fig. 10. GUI example for combinatorial testing

To control this combination, a classic approach is the Pair-Wise strategy. It
aims to test a fragment of the value combinations such that they guarantee
that each combination of two variables is tested. Indeed, practice shows that a
majority of bugs can be detected by only covering the combinations of two data.
For example, given the four following inputs representing:

– the operating System (OS): Windows, Mac Os, Linux,
– the Network connection: Cable, Wifi, Bluetooth,
– the file format: text, picture, mixed text picture,
– the printer technology: laser, liquid inkjet and Solid ink.

To cover all the possible configurations for the four inputs with a domain of 3
values, we must generate: 34 = 81 test data. The Pair-Wise approach makes it
possible to cover all the combinations of two values with only nine test data as
shown in Tab. 1.

Table 1. Pair-Wise results

Case OS Network Format Printer
1 Windows Bluetooth laser Text
2 Mac OS Cable Liquid Text
3 Mac OS Wifi laser Picture
4 Windows Cable Solid Picture
5 Windows Wifi Liquid Mixed
6 Linux Bluetooth Liquid Picture
7 Linux Cable laser Mixed
8 Mac OS Bluetooth Solid Mixed
9 Linux Wifi Solid Text

It is also possible to combine more values using a N-wise approach, in which
N defines the number of data value to be associated (N=2 for Pair-wise, N=3
for Triplet-Wise, N=4 for Quadruplet-Wise, etc.). However, it should be noted
that the number of test cases can quickly increase. More details (various articles
and tools) about this kind of strategies can be found at the following website:
http://www.pairwise.org/default.html.

http://www.pairwise.org/default.html


14 F. Bouquet, F. Peureux, and F. Ambert

2.3 Random and Stochastic Testing

This kind of testing approaches replace the partition analysis. Basically, their
principles are to apply a random function to select the test data. The random
function allows to take a value in the domain of the input in a nondeterministic
way or using statistic laws [13,14,15]. For example, to select a data representing
a distance, a sampling rate of 5 units to extract a set of input data to be tested;
to choose data to represent the size of an individual, a law of Gauss can be
applied.

The interest of such approaches concerns the simple way of automation to
perform the test data selection, even if the expected result can be more difficult
to predict. The objectivity of the test data is assumed by the blinding research.
However, the blinding research could be a problem because it is difficult to
generate real-life use case with arbitrary automated process.

The case studies show that the statistical testing approaches make it possible
to quickly achieve 50% of the testing objective, but, as described in Fig. 11, it
has a tendency to stagnate at this rate.

Determinist Test 

Random Test 

% coverage 

Effort 

Fig. 11. Random testing achievement

3 Functional and Model-Based Testing

Functional testing aims to validate the system under test from a behavioral
point of view, i.e. to ensure it conforms to the required functional requirements
of its specification. It requires that the system under test is checked according to
predetermined and expected behavior under specific circumstances. As shown in
Fig. 3, this kind of test is therefore performed to an upper level since it involves
the system as a product ready to be used (black box approach), and not pieces
of code as structural testing does (white box approach). However, regarding
test generation techniques, both domain are close since the strategies to select
test data, introduced in previous Section 2, have been adapted to be applied to
functional approaches [11,16]. Next subsection illustrates the application of the
test data selection based on equivalent classes (introduced in Section 2.1) in the
context of functional testing.
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3.1 Example of Data Selection for Functional Testing

This use-case example deals with a secure register form of a web site. The goal
of this use-case is to provide the test cases to validate this application. Figure 12
provides a simple version (V1) of the form.

Fig. 12. GUI of the register form (version V1)

From the interface of the Fig. 12, we can define five test objectives expanded
(with data) into twelve test cases:

1. The Login field is kept empty or not. For non empty scenario, we can decide
to fill with one character (minimal size), 8 characters (classical size) and 256
characters (huge size). Therefore, 4 different test data can be derived.

2. The Login exists in the system or not (2 test data).
3. The Password field is kept empty or not (2 test data).
4. The Password and Verification (to enter again the password) fields are

the same or not (2 test data).
5. The security aspect is assumed by the protocol to be used: HTTP or HTTPS

(2 test data).

Possible extensions of the form can also be handled by considering a greater
level of robustness regarding password security (as proposed in version V1 of
Fig. 13(a)), and by increasing the protection against robot using captcha tech-
nique (as proposed in version V2 of Fig. 13(b)).

(a) Robustness of password (b) Captcha

Fig. 13. GUI of the register form (version V1 and V2)
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To derive test cases from the aggregating version V2, we can reuse the 12
test data of the previous version, and complete them using two additional test
objectives that can be expanded into 5 test data (so 17 test data in all):

– Verification of the quality / robustness of the entered password (3 data - one
by level: poor, average, good).

– Verification of the captcha word by succeeding or not the challenge (2 data).

The equivalent class approach to select test data is therefore an efficient way
to maximize the functional coverage of a test suite with a minimal set of data.
The major weakness of this approach concerns the lack of automation: test data
are manually designed and the expected results have to be empirically checked.
This lack of automation makes repeated and tedious the activity of test case
design and verdict assignment. To overcome this problem, Model-based Testing
provides an automated approach by using a formal test model to derive test
cases, predict the test results, and compare obtained results with expected ones
to assign the verdict [17]. The automation of such test generation process is
a strategic issue, since it can replace the (so current) manual development of
test cases, which is known as costly and error-prone [18]. The next subsection
introduces this functional testing approach.

3.2 Model-Based Testing Overview

Model-based testing (MBT) is an increasingly widely-used technique, relying
on (semi) formal models called test models, for automating the generation of
tests [19]. There are several reasons for the growing interest in MBT approach:

– The complexity of software applications continues to increase, and the user
aversion to software defects is greater than ever, so the testing process has
to become more and more effective at detecting bugs.

– The cost and time of testing is already a major proportion of many projects
(sometimes exceeding the costs of development), so there is a strong push to
investigate methods like MBT that can decrease the overall cost of test by
designing tests automatically as well as executing them automatically.

– The MBT approach and the associated tools are now mature enough to be
applied in many application areas, and empirical evidence is showing that it
can give a good Return On Investment.

The main benefits of Model-Based Testing can be summarized as follows:
– It shortens the testing cycle by starting test automation before the applica-

tion is available. The test models, and the derived test cases, can indeed be
realized independently of the development progress.

– It enables to detects bugs sooner with the earlier involvement of testers in the
development process (which can be seen as another cost-effective benefit).

– It reduces test execution costs since test cases can be concretized and exe-
cuted automatically. Execution of automated tests can also be done overnight.

– It improves the overall quality of the test cases: test case generation is com-
puted in an automated manner and is therefore more predictive and less
error-prone than manual processes.
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– It increases the scope and the value of regression testing: the test cases, based
on the same model, can be generated for various implementations, releases,
and versions of a single application, which ensures efficient regression testing.

– It reduces test maintenance effort since the test model becomes the single
reference source of the testing process, and it is usually easier to manage this
model rather than to directly update the test cases (it is a key item when
features change constantly).

In this way, MBT approach renews the whole process of software testing from
business requirements to the test repository, with manual or automated test exe-
cution by supporting the phases of designing and generating tests, documenting
the test repository, producing and maintaining a bidirectional traceability ma-
trix between tests and requirements, automating test verdict assignment and
finally accelerating test automation [20]. The global picture of the MBT process
is shown in Figure 14. The first step of this approach consists to specify a test
model that captures the functional behavior of the system under test. From this
model, test cases can be automatically computed using algorithms or designed
manually to feed a test repository. The computed test cases are often abstract
because they are defined at the same abstraction level than the test model: a
dedicated publisher makes it possible to produce, from the abstract test cases,
executable test scripts. Afterwards, executable scripts or informal scenarios can
be executed on the concrete system to be tested. The test results and verdicts
can then be saved to be used as test report. It should be noted that some artifacts
of this process have already been introduced in Fig. 7 regarding test universe.

 test  test  test Tests 

Test model 

model 
Scenario + 

Requirements 

Fig. 14. Model-Based Testing architecture
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MBT

Model

Scope input-only / input-output

Characteristics

Untimed / Timed

Determinisctic / Non-Det.

Discrete / Hybrid / Continuous

Paradigm

Pre-Post of Input Domains

Transition-Based

History-Based

Functional

Operational

Stochastic

Data-Flow

Test Generation

Test Selection Criteria

Structural Model Coverage

Data Coverage
Requierements Coverage

Test Case Specifications

Random & Stochastic

Fault-Based

Technology

Random Generation

Search-Based Algorithms

Model-Checking

Symbolic Execution

Theorem Proving

Constraint Solving

Test Execution On/Off-line
On-line

Off-Line

Fig. 15. Model-Based Testing taxonomy

Many approaches and techniques can be used to apply MBT process. In [21],
the authors propose a taxonomy based on the modeling, test generation and
execution paradigm. Figure 15 summarizes each of the paradigms identified by
the authors to provide this taxonomy:
Model Scope. The test model can be based on the requirements associated to

the inputs only or both to inputs and outputs.
Model Characteristics. The test model can capture some features of the sys-

tem under test regarding temporal aspects, non determinism, events or con-
tinue values,...

Model Paradigm. It refers to all (semi-) formal model defined since time im-
memorial ... from the hieroglyph to SysML [22] including Z [23], B [24],
Lustre [25], etc.

Test Generation Criteria. It concerns the coverage criteria used to drive the
test generation process, and which should be ensured by the generated test
cases. Sometimes, it could be a budget coverage criterion: the industry an-
swer to “when is testing done?” can be understanding by “when there is no
more money” or “when the deadline is reached” (however, the answer often
relies on a rational approach!). Since adequacy criteria can lead to answer
the wrong response, the test criteria selection is a crucial choice in regard
to constraints (time or resources). That is why a practical evaluation and
comparison of approaches must be considered to make the right choice.

Test Generation Technology. It relates to the interpretative semantics asso-
ciated to the test model in order to automatically derive the test cases.

Test Execution. It concerns the interactions between the test execution pro-
cess and the system under test. The test cases can be directly executed during
the generation process (on-line approach) or not (off-line approach). Using
on-line approaches makes it possible to interact with the system under test,
and to dynamically use its outputs to adapt the test generation algorithms
(to choose the inputs of the next stimuli as instance).
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3.3 Example of MBT Approach for Functional Testing

This section illustrates a such MBT approach, based on a UML test model, using
a simple example of Web application, namely eCinema. Basically, eCinema is
a simple web-application that allows a customer to buy tickets on line before
to go to his favorite cinema. The main screen of the application displays the
list of available movies and show times. Before selecting tickets, a user should
be logged to the system. This requires a registration. A registration is valid
when a user gives a name (not already used) and a valid password. A valid new
registration implies that the user is automatically logged in. When logged in,
the user can buy tickets. If there are available tickets he can see his basket to
verify his selection. When checking his selection, the user can delete tickets and
then the number of available tickets for the session is automatically updated.
The functional requirements of the application are described in Table 2.

Table 2. Requirements of eCinema website example

# Requirements Description

1 ACCOUNT_MNGT/LOG The system must be able to manage the login process
and allow only registered user to login.

2 ACCOUNT_MNGT/

REGISTRATION

The system must be able to manage the user’s accounts.

3 BASKET_MNGT/

BUY_TICKETS

The system must be able to allow users to buy available
tickets.

4 BASKET_MNGT/

DISPLAY_BASKET

DISPLAY_BASKET_PRICE

The system must be able to display booked tickets and
the total basket’s price for a connected user.

5 BASKET_MNGT/

REMOVE_TICKETS

The system must be able to allow deletion of all tickets
for a given user.

6 CLOSE_APPLICATION The system can be shut down.
7 NAVIGATION It is possible to navigate from one state to another.

The requirements are translated into a UML test model written with a subset
of UML/OCL (called UML4MBT [26]). Concretely, a UML4MBT model consists
of (i) UML class diagrams to represent the static view of the system (with
classes, associations, enumerations, class attributes and operations), (ii) UML
Object diagrams to list the concrete objects used to compute test cases and to
define the initial state of the SUT, and (iii) state diagrams (annotated with OCL
constraints) to specify the dynamic view of the SUT.

Figures 16, 17 and 18 respectively show the UML class diagram, Object dia-
gram and state diagrams with an excerpt of OCL constraints that describe the
eCinema example.
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Fig. 16. eCinema class diagram

Fig. 17. eCinema object diagram

Fig. 18. eCinema state diagram with OCL constraints
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These three diagrams enable to simulate the execution of the eCinema appli-
cation and to automatically generate test cases by applying predefined coverage
strategies (such as D/CC) on OCL constraints. The generated test cases and
expected outputs are then published into a test repository, namely Testlink2, as
depicted in Fig. 19. During this step, a manually-designed mapping table con-
cretizes the abstract generated test cases into executable scripts by translating
the UML data into concrete ones. More details about this MBT testing approach
can be found in [27].

Fig. 19. Management of generated test cases using Testlink

The next section introduces the features of security testing and shows how
such MBT processes can be efficiently used for this specific testing domain.

4 MBT Approach within Security Testing

Software security testing aims at validating and verifying that a software sys-
tem meets its security requirements [28]. It targets two principal testing domain:
functional security testing and security vulnerability testing [29]. Functional se-
curity testing is used to check the functionality, efficiency and availability of the
designed security functionalities and/or security systems (e.g. firewalls, authen-
tication and authorization subsystems, access control). Security vulnerability
testing (or penetration testing, often called pentesting) directly addresses the
identification and discovery of system vulnerabilities, which are introduced by
security design flaws or by software defects, using simulation of attacks and other
kinds of penetration attempts.

The security testing techniques can be divided into four families as shown in
Fig. 20. The first one is the network security toolkit, with the network scan-
ners to check active ports and (characteristics of) computers on the network.
The second one concerns the Static Application Security Testing (SAST), which
aims to analyse application regarding known security threats using tools such as
2 http://testlink.org/

http://testlink.org/
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HP/Fortify, Veracode, Checkmarx, Parasoft... The third family focuses on moni-
toring approach, which consists to capture and analyse the behaviors and events
on the network using tools like Syslog, Nagios or IBM Tivoli... Finally, the fourth
family relates to Dynamic Application Security Testing (DAST) that consists to
dynamically check the security requirements. Typically, DAST techniques can
be performed using model-based testing approach dedicated to security features.

Fig. 20. Taxonomy of security software testing

In fact, recent IBM X-Force c© research revealed that, in 2012, 41% of all
security vulnerabilities pertained to web applications as shown in Fig. 21. This
kind of attacks is more and more complex and can be usually discovered only
using a dynamic approach. The rest of this section thus deals with on DAST
techniques, with a specific focus on MBT security testing approaches.

Fig. 21. Attack evolution from IBM X-Force

For further details about Web application security attacks, the Open Web
Application Security Project (OWASP) proposes some documentation including
a current Top Ten of the current threats [30]. The most prevalent and danger-
ous cyber-attacks against Web Applications are also reported and available in
CWE/SANS 25 [31] and WhiteHat Website Security Statistic Report 2013 [32].
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4.1 Model for Security Testing

M. Felderer et al. propose in [33] a classification for Model-Based Security Testing
decomposed into five families:

Individual Knowledge. The individual knowledge determines the design of
security tests. It is also used to select function and data to be tested.

(Adapted) Risk-Based Testing. These techniques are based on threat mod-
els and enable the prioritization of test concept or execution.

Scenario-Based MBT. It concerns techniques to complete test models (of
MBT approach) using scenarios dedicated to security aspects.

Risk Enhanced Scenario-Based MBT. This kind of approaches completes
the (MBT) test models using risk information in addition to the scenarios.

Adapted MBT. It relates to all other MBT approaches that use a dedicated
test model for security.

In many families presented for security testing, the link between risk and testing
is very important. As described in Fig. 22, risk assessment activity can drive
the MBT approach. In fact, each step of the MBT approach (modeling, crite-
ria to drive test generation and prioritization of the test execution) are driven
by the results of risk analysis and assessment. One of the more mature ap-
proach addressing Model-Driven Risk Analysis is CORAS [34], which provides
a customized language for threat and risk modeling. More precisely, CORAS is
a model-driven method for risk analysis featuring a tool-supported modelling
language specially designed to model risks that are common for a large num-
ber of systems. Such model serves as a basis to perform risk identification and
prioritization.

Fig. 22. Link between MBT and risk assessment
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4.2 Security Test Objectives

To define security test objectives, two main approaches have been defined during
the last decade. The first approach is based on dedicated security test models as
proposed in [35,36] with UMLSec, or as previously proposed with SecureUML
in [37]. These approaches can have a specific focus on protocols as proposed
in [38] using finite state machine, or using networks rules [39], or using protocol
mutation as described in [40]. In parallel, some other techniques are emerging to
help analysis like Threat or Risk model like CORAS [34].

We can also find specific testing techniques such as Fuzz testing (or Fuzzing) as
proposed in [41], which was used by Microsoft company to validate the layer that
manages the data and files acquired from network [42]. Fuzz testing, originated
from B.Miller at the University of Wisconsin [43], involves providing invalid,
unexpected, or random data to the inputs of a system under test. Although its
origin is based on a complete randomized approach, more systematic approaches
have been recently proposed: model-based fuzzers use their knowledge about the
message structure to systematically generate messages containing invalid data
among valid data [44]. It can also use a model describing the behavior of an
attacker to drive the test generation process [45]. Some tooling are now available
to compute fuzzing strategies such as the fuzz test data generator Fuzzino3,
which determines fuzzed test data by applying security test strategies to message
arguments from a given correct communication sequence [46,47].

The second main approach is based on properties or schema languages. Many
formalisms have already been used to drive the test generation from a property,
or by means of a test purpose. By using this kind of formalisms, the test ob-
jectives are expressed either as a particular sequencing of the actions (temporal
view) or as properties that the data of the system have to verify (spatial view).
Such formalism can address a specific security aspect such as access control
domain like OrBac [48] or SPL [49] languages.

Temporal logics, such as the Linear Temporal Logic (LTL) [50,51] allow to
specify properties on the state of the system under test w.r.t. several successive
moments in its life. Tests can then be obtained using a model-checker in the shape
of traces from a model that contradicts the required properties (see [52,53] for ex-
ample). Input/Output Labelled Transition System (IOLTS) and Input/Output
Symbolic Transition System (IOSTS) have been also frequently used to specify
test purposes [54,55]. These formalisms enable to specify sequencing of actions
by using the actions of the model, and possess two trap states named Accept and
Refuse. The Accept states are used as end states for the test generation, while
the Refuse states allow to cut the traces not targeted by the test generation
objectives. For example, these formalisms are used in tools such as TGV [54],
STG [56], TorX [57] or Agatha [58]. Another approach, described in [59], consists
to generate traces using model-checking techniques from a model specified as an
IOLTS, in which a fault have been injected by a mutation operator, according
to a fault model. The trace is then used as a test objective for the TGV tool.

3 https://github.com/fraunhoferfokus/Fuzzino

https://github.com/fraunhoferfokus/Fuzzino


MBT for Functional and Security Test Generation 25

Some security testing approaches are indeed based on the definition of sce-
narios as test objectives. In [60,61], test cases are issued from UML diagrams as
a set of trees. The scenarios are extracted by a breadth-first search on the trees.
A similar approach is implemented in the tool Telling TestStories [62], which
defines a test model from elementary test sequences composed of an initial state,
a test story and test data. An operational language to describe test schemas in a
“textual” way is proposed in [63]. Let us also cite Tobias tool [64,65] that provides
a combinatorial unfolding of some given test schemas. The schemas are sequences
of patterns composed of operation calls and parameter constraints. The schemas
are unfolded independently from any model, therefore the obtained test cases
have to be instantiated on a model. In [66], a connection between Tobias and the
UCASTING tool is studied to produce instantiated test cases. UCASTING [67]
aims to concretize sequences of operations that are derived from a UML model,
and thus are not, or only partially, instantiated.

It should also be noted that Advanced Open Standards of the Information
Society4 (OASIS) proposes some works to normalize the description as eXtensible
Access Control Markup Language (XACML) or the Security Assertion Markup
Language (SML).

4.3 Example of Properties Description Language

To facilitate the use of temporal properties by validation engineers, M. Dwyer
et al. have identified in [68] a set of design patterns that allow to express a
set of temporal requirements frequently met in industrial studies as tempo-
ral properties. A web version of the evolution of this works can be found at
http://patterns.projects.cis.ksu.edu/. As depicted in Figure 23, a prop-
erty pattern can be defined by the one way using occurrence patterns. This family
is composed of (i) Absence: an event never occurs, (ii) Existence: an event oc-
curs at least once, (iii) Bounded Existence has 3 variants: an event occurs k
times, at least k times or at most k times, and (iv) Universality: an event/state
is permanent. The second way concerns the order patterns: (v) Precedence: an
event P is always preceded by an event Q, (vi) Response: an event P is always
followed by an event Q, (vii) Chain Precedence: a sequence of events P1, . . . ,
Pn is always preceded by a sequence Q1, ... , Qm (it is a generalization of the
Precedence pattern), (viii) Chain Response: a sequence of events P1, ... , Pn is
always followed by a sequence Q1, ... , Qm (it defines a generalization of the
Response pattern).

From this work, an extension is proposed in [69] to add five scopes. Basically,
a scope concerns the pattern observation and is composed of events. Events
corresponds to all methods specified in the test model. The interest of the method
is that the properties are translated into automata and coverage criteria are
proposed to drive the test generation to derive test cases that target the related
security patterns.

4 http://www.oasis-open.org

http://patterns.projects.cis.ksu.edu/
http://www.oasis-open.org
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Fig. 23. Pattern expressiveness by M. Dwyer

4.4 Example of Pattern-Driven Security Testing Approach

The purpose of this section is to present an example of Model-Based Testing
approach driven by security test pattern [70]. This example aims to validate
the detection of SBS-1 malicious signals, formatted according to the ADS-B
air-traffic control standard5, which could be received by the control tower from
the aircraft. The ADS-B air-traffic control standard is all about communications
between aircraft, and also between aircraft and ground by providing every sec-
ond a broadcast of the aircraft status (including position, identity, velocity,...
calculated using a Global Navigation Satellite System) and make it possible to
generate a precise air picture for air traffic management. However, the ADS-B
standard is public and all the transmitted information are unencrypted, and de-
coding them is not difficult (see Figure 24 in which each line defines a separate
message that have been sent by a single aircraft).

Fig. 24. Excerpt of ADS-B/SBS-1 data stream

In this context, the Model-Based Security Testing generation process aims
to produce communication sequences including malicious data. The objective
of these generated sequences is to evaluate the vulnerability detection rate of
automated air-control system, and the corresponding human attitude during
monitoring. It also can be relevant to develop and elaborate new warning proto-
col, and to improve existing countermeasures, which are today mainly based on
data comparison between ADS-B and radar information, and to a latter extent
visual inspection. The global process of the approach is depicted in Figure 25.

5 http://adsb.tc.faa.gov/ADS-B.htm

http://adsb.tc.faa.gov/ADS-B.htm
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Fig. 25. Security testing process overview

The proposed process is based on the Smartesting Model-Based Testing tool
(namely CertifyIt) [27] provided by the company Smartesting6, which allows to
generate test sequences from UML behavioural models and security test pur-
poses, which are described in a language formalizing textual test patterns.

The behavioural model (UML class diagram, object diagram and state dia-
gram with OCL constraints as introduced in the eCinema example in Sect. 3.3)
defines the environmental aspects of the domain to be tested in order to gen-
erate consistent (from a functional point of view) sequences of ADS-B signals.
On the one hand, it includes the communication format of the SBS-1 message
of the ADS-B standard (static aspect), and on the other hand, it captures real
(or realistic) air-traffic scenarios (dynamic aspect).

A test purpose is here a high-level expression that formalizes a test intention
linked to a testing objective to drive the automated test generation on the be-
havioral model. This is a textual language, which has been originally designed to
drive model-based test generation for security components, typically Smart card
applications and cryptographic components [71]. This test purpose language has
also been extended to be able to formalize typical vulnerability test patterns for
Web applications [72]. In the context of this case-study, this test purpose lan-
guage allows the formalization of attack patterns in terms of states to be reached
and SBS-1 messages to be sent. It relies on combining keywords and instruc-
tions allowing updating and/or falsifying the real air-traffic scenarios described
in the UML behavioural model. The test generation algorithm, computed by
the Smartesting CertifyIt tool, enables then to produce mutated real air-traffic
scenarios (sequences of transmitted ADS-B signals) by changing and/or adding
communication data, which simulate a malicious aircraft broadcast. As exam-
ple, from a real air-traffic configuration, test patterns and corresponding test
purposes can give rise to the production of vulnerability air-traffic scenarios in-
cluding injection of fake aircrafts into a real configuration, injection of cancelled
flights into a real configuration, introduction of (slight) variations in real flights,
change of an apparent airliner into fighter(s),...
6 http://www.smartesting.com

http://www.smartesting.com
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Each of such generated scenarios is typically an abstract sequence of high-
level actions from the UML models. These generated test sequences contain the
sequence of stimuli, i.e. all the SBS-1 messages sent by the aircrafts concerning
their position. These generated sequences, that constitute attack scenarios, are
next translated into SBS-1 Simulator using ADS-B formatted signals to be ex-
ecuted on a realistic test bench. They are also concretized into KML language
scripts in order to be simulated using simulation tools such as Google Earth,
Marble or GeoServer.

Figure 26 shows an example of Google Earth simulation, in which a fake air-
craft (red path) has been added to the real air-traffic configuration. Figure 27
shows an excerpt of the falsified ADS-B/SBS-1 data stream, which is automati-
cally generated by the test generator.

Fig. 26. Simulation of a falsified air-traffic scenario using Google Earth

Fig. 27. Excerpt of a falsified ADS-B/SBS-1 data stream

5 Conclusion

Testing is nowadays a strategic activity at the heart of software quality assur-
ance, no matter the type of software development: all developments undergo some
testing, and effort as well as budget are allocated to this task. This paper gave an
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overview of existing techniques and state-of-the-art about Model-Based Testing
and its deployment to address both functional and security testing.

The idea of Model-Based Testing is to use an explicit abstract model of the
system under test and/or of its environment to automatically derive test cases:
the behavior of the model is interpreted as the intended behavior of the system
under test. The algorithms, driving the test generation process and selecting
the test data, enable to ensure a given coverage of the model entities, and so of
the functional features of the system. It should be noted that these algorithms
mainly originate from structural testing strategies: they are no more applied to
the code of the system, but to models specifying its expected functional behavior.

Therefore, Model-Based Testing promises higher quality and conformance to
the respective functional safety and quality standards at a reduced cost through
increased coverage, advanced test generation techniques, increased automation
of the process, eased regression testing management, and finally decreased test
maintenance effort. The technology of automated model-based test case genera-
tion has matured to the point where large-scale deployments of this technology
are becoming commonplace, and a wide range of commercial and open-source
tools are now available (this list is not exhaustive !):

– CertifyIt (Smartesting)
– Fokus!MBT (Fraunhofer Fokus)
– MaTeLo (All4Tec)
– ModelJUnit (CSZ)
– Conformiq Designer (Conformiq)

– Reactis (Reactive System)
– Scade (Esterel Technologies)
– Spec Explorer (Microsoft)
– STG - TGV (IRISA)
– UPPAAL Cover (UP4ALL)

Even if Model-Based testing approach is an effective and useful technique,
which brings significant progress in the current practice of functional software
testing, it does not solve all testing problems. This weakness especially occurs
when addressing non functional testing such as security testing that aims at
validating and verifying that a software system meets its security requirements.
Indeed, contrary to behavioral features, test objectives targeting security re-
quirements cannot be easily derived from the structure of the test model, and
the expertise of the security engineers is clearly missing. To tackle this weakness,
especially regarding security issues, dedicated test model targeting security as-
pects (including risk assessment results) and specific testing strategies have been
created. These strategies are mainly based on fuzzing algorithms and security
test patterns languages. These artefacts drive the security test generation pro-
cess, and therefore replace the coverage criteria traditionally used to address
functional purposes. Although model-based approaches for security testing are
not yet so advanced and so popular compared to functional Model-Based Testing
approaches, this research direction gives rise, from several years, to efficient and
emerging approaches and technologies, especially concerning fuzzing techniques.
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Abstract. We explain UMLsec and associated techniques to incorpo-
rate security aspects in model-based development. Additionally, we show
how UMLsec can be used in the context of software evolution. More
precisely, we present the SecVolution approach which supports monitor-
ing changes in external security knowledge sources (such as compliance
regulations or security databases) in order to react to security related
modification and to support the associated co-evolution of the UMLsec
models.

1 Introduction

Security modeling allows one to consider security issues at an early stage in the
development process [15]. Many security problems are induced by design flaws
which leads to problems in the developed software. A software design which is
augmented by security information helps the developer to avoid vulnerabilities
in the software design.

Although several approaches for model-based secure software engineering ex-
ist, few of these include automated tools for formally verifying the models against
the security requirements. Here, we focus on one such approach called UMLsec
[26]. It extends the Unified Modeling Language (UML) and offers automated
tools to verify UML models against security requirements [19] (cf. Fig. 1). The
UMLsec tool as well as its successor CARiSMA [11] support the analysis of
the security aspects expressed in the security extension UMLsec [26] (cf. Fig. 2).
CARiSMA is a reimplementation of the UMLsec tool and build upon the Eclipse
Modeling Framework (EMF). It thus supports UML and UMLsec models but
is especially extensible to support further modeling languages (e.g. BPMN as
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domain-specific language). Moreover, CARiSMA ist designed highly modular
and offering a flexible plugin-structure. CARiSMA as well as the UMLsec tool
mainly focus on the verification of the most important security requirements,
which can be directly used in the model, together with their formal definitions.

Source Code
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Fig. 2. UMLsec Tool Suite

Security Decay in Ageing Information Systems: Information systems are
exposed to constantly changing environments which require constant updating.
Software “ages” not by wearing out, but by failing to keep up-to-date with its
environment [32]. New technology, changing customer requirements, and new
knowledge on various software development issues require constant updating.
An information system that does not react to changes in its environment will
soon be outdated. This is especially true for security and secure development [12].
When an information system handles assets of a company or an organization,
any security loophole can be exploited by attackers. Advances in knowledge and
technology of attackers are part of the environment of a security-relevant in-
formation system. Outdated security precautions can, therefore, permit sudden
and substantial losses [3]. Security in long-living information systems, thus, re-
quires an on-going and systematic evolution of knowledge and software for its
protection. Thus, techniques, tools and processes are desired to support security
requirements and design analysis techniques for evolving information systems in
order to ensure “lifelong” compliance to security requirements.

SecVolution. We therefore introduce the SecVolution approach for demonstrat-
ing how to cope with (co-)evolution of UMLsec models. The ultimate goal of
SecVolution is to preserve the security of an information system by adapting
software models through the use of external and internal knowledge sources. As
presented in the workflow in Fig. 3, our approach supports reusing security en-
gineering knowledge gained during the development of security-critical software
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Fig. 3. Extended information flow model of the proposed SecVolution approach (ESR
= Essential Security Requirements; SCK = Security Context Knowledge). The infor-
mation flow syntax is described in [43,42].

and feeding it back into the development process. The information flow interface
of UMLsec is depicted on the right hand side. UMLsec supports the construc-
tion activity. The input of that activity is an improved requirements specification
with security-relevant parts being identified and marked. The ultimate outcome
is supposed to be a secure system, by making use of a set of security-enhanced
UMLsec models.

Since changes in the environment are the reason for updating an information
system, a knowledge model, namely the Security Maintenance Model (SMM),
plays an intermediary role. Incoming information on changes is represented in
that model. For this purpose, heuristic tools and techniques are used to support
elicitation of relevant changes in the environment. Then, findings are formalized
for semi-automatic security updates and stored in the SMM. Therefore, it is
essential to stay aware of potential sources for relevant changes and to prepare
for eliciting new knowledge. On the back-end, represented changes trigger re-
spective changes in the software models and their security aspects by means of
co-evolution. This leads to fast reactions and security updates in order to keep
information systems secure and “young at heart”.

CoCoME Case Study: To illustrate the usage of UMLsec regarding secure
information flow as well as (co-)evolution, we introduce the Common Compo-
nent Modeling Example (CoCoME) as running case study. CoCoME represents
a point-of-sale system as it can be found in most supermarkets. The system con-
sists of a number of cash desk PCs connected to a store server in a hierarchical
manner. A number of store servers again is connected to a central enterprise
server. As the communication paths between these systems are used to trans-
mit business as well as personal data (e.g. when processing EC transactions),
communication between the systems has to satisfy given security requirements.
Moreover, a lot of additional hardware is plugged into the cash desk PC provid-
ing various entry points to the whole trading system. For additional information
and models of CoCoME, we refer to [18].
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The remainder of this paper is organized as follows: In Sec. 2, we shortly
recall some relevant background on the UMLsec approach. In Sec. 3, we explain
how to model security knowledge and how to deal with its evolution. In Sec. 4,
we explain how, in reaction to changes in the security knowledge, the security
models can be co-evolved accordingly to deal with these changes appropriately.
After a discussion of further reading in Sec. 5, we end with a conclusion.

2 Model-Based Security Engineering Using UMLsec

In the UML extension UMLsec [26], recurring security requirements (such as
secrecy, integrity, authenticity and others) and security assumptions on the sys-
tem environment can be specified within a UML specification as annotations.
This way we can encapsulate knowledge on prudent security engineering and
make it available to developers who may not be security experts. The UMLsec
extension is given in form of a UML profile using the standard UML extension
mechanisms. Stereotypes are used together with tags to formulate the security
requirements and assumptions. Constraints give criteria that determine whether
the requirements are met by the system design, by referring to a precise seman-
tics of the used fragment of UML. The security-relevant information added using
stereotypes includes security assumptions on the physical level of the system, se-
curity requirements related to the secure handling and communication of data
and security policies that system parts are supposed to obey.

More information about the UMLsec approach and its notation can be found
in [26,25]. Some applications are reported in [29,23,28,24,21,20,27].

2.1 Secure Information Flow

Secure Information Flow (SIF) describes techniques to analyze and prevent the
flow of confidential information from a trusted (“high”) to an untrusted (“low”)
domain [17,35]. While dealing with SIF, a direct and an indirect flow can be
distinguished. Figure 4 shows both of them. In the left part a boolean variable l
in an untrusted environment is assigned a value from a high domain (h). Here,
the confidential information flows directly to the untrusted domain. The right

l = h ;

i f (h )
l = f a l s e ;

e l s e
l = t rue ;

f i

Fig. 4. Direct and indirect information flow: h is a
variable containing confidential (high) data and l is a
variable containing normal data (low) data. For sim-
plicity both variables are booleans.

cashier

storeManager

storeAdmin

Fig. 5. Hasse-Digram for
the security levels used in
the running case study
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side shows an indirect information flow. Through the if statement the informa-
tion in the low domain is influenced in a way that the high value can be simply
computed. This easy example shows that secure information flow is not easily
analyzed using dataflow in program, furthermore all side-effects from the pro-
gram logic need to be considered. In the literature, therefore, an approach using
observations of an program is often used. A program interacts with its environ-
ment and events can be observed. These events are categorized like the data
into high and low data, which are used to describe the SIF properties in terms
of program observations. One of these approaches, which covers many others,
is the Modular Assembly Kit for Security (MAKS) [34,33]. It can be used to
express secure information flow properties in a modular and uniform way. The
fundamental elements are Basic Security Predicates (BSP). All BSPs are param-
eterized with a view V , denoting the elements which are confidential. A MAKS
view V = (V,N,C) [34] is a disjoint partition of the event set E into three sets
V , N , C.

visible invisible
confidential ∅ C
not confidential V N

The set C collects confidential events which should not be seen. The events of
V are visible and hold non confidential data. Events which cannot be observed
and are not confidential are collected in the set N . The combination of visible
but confidential events makes no sense, because visibility and confidentiality are
contradicting.

The system model is given as a prefix closed set Tr of all system traces where
a trace is a sequence of events E. The system traces Tr are prefix closed if for
all traces all prefixes are in Tr also. For example, if the sequence 〈abc〉 is in Tr
then the traces 〈ab〉, 〈a〉 and 〈〉 need to be in Tr also.

Using a view V we can define BSPs. One example for such a BSP is strict
removal (SR):

SRV,N,C(Tr) := ∀τ ∈ Tr : τ |V ∪N ∈ Tr

Strict removal describes that all “confidential” events C are independent of the
“visible” V and “neither-nor” events N and thus no information about confiden-
tial events can be inferred from the others.

BSPs can be combined and parameterized by views. By using BSPs many SIF
properties can be expressed, including many traditional notions. For example,
non-interference (NFH,L(Tr) := ∀τ ∈ Tr : τ |L ∈ Tr) can be modeled using
SR [34]:

Let L be a set of low events and H be a set of high events with L ∪H = E.
Then the following equality holds:

SRH,∅,L(Tr) = NFH,L(Tr)

In many applications the distinction in two security levels (high and low) is too
simple. A common used approach using partially ordered sets (poset) can be used
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to reduce a multi-level problem. For example, a widely known system using this
approach is the linear system of the NATO defining the security levels unclas-
sified, classified, secret and top secret. In general, the security level structure is
described by a partially ordered set (A,≤) with the set A containing the secu-
rity levels and an partial order ≤ between the levels. If P denotes the set of all
permissions, then a security level can be described as a subset of P . The family
of security levels together with the operation subset ⊂ builds a poset. This can
be depicted as a Hasse Diagram (cf. Figure 5). Each connection from a higher
node x to a lower node y means x ≤ y. In security analysis, the poset approach
can be analyzed in terms of the high/low-approach. For each security level S we
define two sets H and L. H contains all permissions of S and all greater sets of
the poset. The set L holds all other permissions. This translation is the input for
high/low-analysis. If the analysis for all security levels fulfilled the poset holds
the SIF property.

In this tutorial, the security levels are modeled as sets of events that are al-
lowed to be seen by users holding this permission. Therefore, the relation between
the security levels is modeled as a poset.

2.2 CoCoME Case Study: Modeling Secure Information Flow

In this section, we illustrate the use of UMLsec and the extension to its core to
model secure information flow as introduced above. For this purpose, we extend
particular models of the CoCoME system.

Figure 6 shows a class diagram that depicts the components and interfaces
defined to handle inventory data of a specific store. Some details are omitted in
the figure due to the sake of readability. We only show the elements that are
relevant for the example. The operations defined as part of the interfaces model
the information flow and data handling inside the store.

According to the requirements [18], it seems reasonable to define three roles
and arrange their rights as a poset as part of the 〈〈DefSecurityLevels〉〉 stereo-
type (cf. Figure 5). The lowest level is set to the cashier as he only needs limited
access to the system and only uses few operations respectively. In fact, the cashier
needs to book sales, query stock items and specific products. The next level is
defined by the role manager. This role resembles the one of the store’s man-
ager. In consequence, the manager needs to access a number of administrative
operations such as queryLowStockItems. The third role necessary to model the
secure information flow of this example is the administrator who maintains the
IT of the store. This role, called storeAdmin, is the only one to be able to set
the store’s ID of the shop system (setStoreId).

3 Modeling and Evolution of Security Knowledge

Challenges in the evolution of an information system are driven by unfore-
seeable changes in the environment of a security-relevant information system:
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Fig. 6. Class diagram reflecting data handling of a single CoCoME store featuring
UMLsec SIF

New regulations require compliance; the source of new regulations (e.g. standards
organizations, law-makers, interest groups etc.) are usually well-known. Moreover,
failures will be detected in the construction of the information system itself. When
it comes to new or changing technologies and knowledge, it is difficult to determine
the impact on security of the information system. For example, faster computers
can make it easier to decode simplistic encodings. New approaches like rainbow
tables [37] can compromise password encoding schemes that were considered suf-
ficient before. A rainbow table is a preprocessed table for reversing cryptographic
hash functions. This technique, published in 2003, is used for cracking password
hashes and has be successfully applied to various systems.

Knowledge management is an essential part of our SecVolution approach to
cope with security issues properly. In this section, we therefore focus on organiz-
ing security knowledge and its evolution. Whenever security knowledge changes,
software engineers need to know how to adapt the regarded information system,
so that a certain level of security is retained.

3.1 Modeling Security Context Knowledge

Security knowledge generally contains essential axioms, concepts and their rela-
tions including all important hierarchies and constraints. Additionally, Security
Context Knowledge (SCK) is defined as security-relevant knowledge of the envi-
ronment of an information system, including but not limited to attacker types
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and their abilities, encryption protocols and their robustness against different
attacks, etc. It is contained in information sources of various kind (e.g. security
guidelines and obligations [9] or attack and vulnerability reports [47]). In SecVo-
lution, security context knowledge is part of the Security Maintenance Model
(SMM) as presented in Figure 3. Since this knowledge is not necessarily limited
and cannot guarantee that we will discover complete information about security,
the knowledge must be extended at any time.

In recent years, different ontologies and meta-models for security knowledge
have been proposed. One can distinguish between asset-centric modeling, which
focuses on the values that are threatened, and system-centric modeling, which
depicts systems and their vulnerabilities. Since SecVolution should deal with
versatile security knowledge on the one hand and an actual information system
that is to be maintained on the other hand, we need an integrated view that
incorporates security- and system-specific aspects.

In [36], a generic meta-model for IT security obtained from an extensive liter-
ature review is presented. It provides common security concepts and properties
that are the same across different domains. It has an asset-centric view and dis-
tinguishes between the different properties of attacks and countermeasures on a
conceptual level (e.g. is an attack taking place in public or in private, using legal
or criminal means; or whether it is detected by audits or by prediction). Further
relevant meta-models and ontologies are proposed in [7,48,14]. A widely accepted
meta-model considering security-relevant system properties is introduced in [45].
Further publications about security knowledge modeling can be found in [16].

In this tutorial, we use a minimal knowledge structure to model SCK, which
can be found in each of the abovementioned meta-models and ontologies in one
or the other way. It is shown in Figure 7.

AssetSystem Component

Entry Point

Vulnerability Action

Threat

Attack

Countermeasure

Attacker

contains

contains providesAccessTo

contains

exploits

threatens

realizes

consistsOf

mitigates

performs

re nes

Trust Level accessibleBy

includes
contains

accessTo
followedBy

Fig. 7. Minimal core of our knowledge structure [16]

To model an actual system from a security perspective, following concepts are
defined. An asset is an item of interest worth being protected. This generally
includes hardware (e.g. server, switches) and software (e.g. critical applications,
services) components. Regarding information systems, assets are also sensitive or
confidential information (e.g. passwords, user data, financial data and reports).
To provide access to assets, an entry point is defined as the interface to interact
with the system (e.g. login website, email, input field). Thus, each asset has at
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Table 1. Extension of the used knowledge structure to model privacy

Class Subclasses
Trust Level Agent (Person Affected, Third Party, Recipient)
Asset Data (Personal Data)
Action Anonymization, Data Usage, Data Processing, Pseudonymization,

Approval, Notification, Allowed Action, Critical Action
System Component Data Storage Device (File, Database), Data Processing Unit
Countermeasure Access Control, Physical Access Control, Encryption, Availability

Check

least one entry point. A trust level describes which role has access to an asset
using a specific entry point (e.g. customer, manager, administrator). System
components model the regarded information system focusing on assets and entry
points.

To model security knowledge from an attacker perspective, the following con-
cepts are defined. A threat is the possibility to perform a successful attack on
a specific asset (e.g. execute unauthorized code or commands, expose sensitive
data). Here, an attack is a sequence of malicious actions that are performed
by an attacker (e.g. cross-site scripting, denial-of-service attack). To perform a
successful attack, the attacker uses vulnerable entry points. Here, a vulnerability
is a system property that violates an explicit or implicit security policy (e.g.
improper neutralization of input, missing encryption of sensitive data). Thus,
it facilitates unintended access or modification of assets. To mitigate a certain
threat, countermeasures are used to fix the respective vulnerability (e.g. input
validation, encryption of sensitive data).

Note that this knowledge structure is not limited to the concepts depicted
here. It can be extended to fulfill further domain-specific requirements and con-
straints. For example, if we need to model the German privacy directive as
declared in [10], several concepts must be extended as listed in Table 1. To use
the knowledge structure for an actual system, system components, assets, entry
points and their relationships must be identified. This can be done by using
threat modeling as explained in [45].

To realize our knowledge base in practice, we decided to use the Web On-
tology Language (OWL) [38]. The SCK is therefore modeled in terms of con-
cepts and individuals. A concept is a collection of individuals, which share some
properties. Individuals are the basic elements of an ontology that describe the
actual knowledge. One advantage is that we are able to use standard OWL
tools such as Protégé [39] to edit knowledge elements. Moreover, reasoning and
query languages exists and allow to have unified access to knowledge. To extend
the knowledge structure as mentioned, OWL provides a mechanism to import
knowledge elements from other ontologies.

3.2 Managing Evolving Security Knowledge

Security knowledge must be up-to-date in order to preserve security sustainably.
The problem is to determine which security information remains valid, which
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information changes, how it changes, and why it changes. Moreover, informa-
tion systems are complex due to various technologies and frameworks used for
implementation.

To cope with security issues in long-living information systems, software en-
gineers need to overview numerous knowledge sources during maintenance. As a
consequence, they need methods to support identification and analysis of security
loopholes and design flaws in development artifacts based on security-relevant
knowledge. In particular, the evaluation whether a vulnerability can be exploited
by an attack may alter with each change of the system itself or of the system
context represented in the SMM. For example, encryption of a data connection
might become vulnerable due to change in configuration or due to the develop-
ment of more powerful algorithms for cracking passwords. To describe evolution
of SCK, knowledge elements can be added, modified and deleted (atomic edit
operations). If a change is reported by a knowledge source, the information must
be classified in either ordinary requirements, essential security requirements, or
security context knowledge.

SecVolution is not intended to detect or even to forecast new security issues
or to mitigate known exploits automatically. It is rather meant as a methodology
to systematically describe and share security knowledge and to make it usable
for non-security experts. For this purpose, we developed heuristic tools and tech-
niques to support security analysis of development artifacts and monitoring of
relevant changes in the environment. In [16], a security assessment of natural-
language requirements based on heuristics and reported security incidents is
proposed.

3.3 CoCoME Case Study: Managing Security Knowledge

In this section, we illustrate the use of our knowledge structure to model security
problems. Regarding the CoCoME case study, we consider an extension of the
trading system which enables customers to order goods online and to come to
the shop to pick their order up (pick-up shop). The pick-up shop makes use
of hidden fields to pass values from one page-call to another. This simplifies
the server component, since it can be implemented stateless. Stateless in this
case means that every HTTP request happens in isolation. Thus, each HTTP
request must include all information necessary for the server to process the
request successfully. By doing so, the server does not need to store the data and
neither to cope with many special cases like session aborts. Statelessness also
corresponds to the resource-oriented architecture of the web.

In this example, we assume that an attacker exploited hidden fields to change
the price of an order in our pick-up shop. Here, the price is stored in a hidden
field to allow calculations, like the total over all items. It is forwarded using
a HTTP request to submit the order. On the server side, the integrity of the
hidden values is not checked explicitly. Therefore, the prices in the request can
be altered and used in the subsequent delivery process.

A similar vulnerability has been reported as CVE-2000-1001 [46] in the Com-
mon Vulnerabilities and Exposures (CVE) database [47]. The CVE database
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provides security information about known vulnerabilities and exposures. The
goal is to standardize the identification of publicly known vulnerabilities. The
CVE database serves as a reference by software engineers for identifying and
mitigating known vulnerabilities.

AssetSystem Component

Entry PointVulnerabilityCountermeasure

check integrityuse database 
data ... Hidden elds containts 

sensitive data
Session communication

using hidden elds
sensitive Data 

(prices)

WebFrontend 
contains

contains providesAccessTo

containsmitigates

Fig. 8. Elements that are added to the SCK to reflect knowledge about a new attack
and countermeasures

The knowledge about the vulnerability, the attack, and its entry points as
introduced in the preceding section needs to be added into the SMM. For this,
we need to modify the SCK. In this case, we add the notion of sensible data (e.g.
the price in the attack), the skills of the attacker and the countermeasures for
the attack. Possible countermeasures include using the price of the product in
the price database and not using the price in the HTTP request, or the integrity
check of the HTTP request that is transmitted. For simplicity, we show only the
addition of the countermeasure integrity check of the HTTP request. In Figure 8,
we see a fraction of a SCK that is already extended by new countermeasures.
The system component affected is the web front-end which exposes an entry
point by the definition and use of hidden fields for state communication between
the HTTP requests. When these hidden fields contain sensible data (asset) this
leads to the corresponding vulnerability.

4 Co-evolving Security Models

The ongoing change through modified requirements, corrections of discovered
problems etc. is often referenced as software evolution. A change occurs when
certain facts that are true in a situation are no longer true in a later situation [44].
Additionally, software evolution describes the process in the maintenance phase
which precedes the servicing and decommission phase. Since the evolution should
not depend on ad-hoc change, we also need a notion of evolution in the area of
software and security knowledge modeling. Here, evolution is often characterized
as ongoing change to the model.

In the remainder we show how knowledge evolution affects co-evolution of
security models. Moreover, we present an approach to model co-evolution of
UMLsec models based on security knowledge stored in the SMM.
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4.1 Evolution of Knowledge and Co-evolution of Security Models

If the information system was developed in a model-driven way, the adaptations
with respect to changed security knowledge or requirements can even be autom-
atized with co-evolution expressed as model transformations. For this purpose,
adaption information describing potential changes and how to deal with such
changes if they appear must also be stored in the SMM.

Since knowledge evolution and the corresponding co-evolution of the system
model are manifold, we designed the SMM consisting of three parts. Firstly, the
Security Context Knowledge (SCK) incorporates security-relevant knowledge of
the environment of the regarded system. Secondly, the Catalog of Reactions
(CoRe) bridges the gap between changes in the knowledge (i.e. evolutions of the
SCK) and consequent changes that have to be applied to the system model (i.e.
co-evolution). Thirdly, the History of Evolutions (HoE) is a supportive element
that is used to determine changes happened to the SMM so far.

When knowledge sources are identified, information on new knowledge and
its potential impact on security must be elicited. This analysis needs to reach a
level of detail that allows conceiving countermeasures and updating of models
during co-evolution. Therefore, each change in the elicited knowledge needs to be
reflected in the models, such that the security knowledge and the models evolve
together. Thus, a side by side evolution is referenced to as co-evolution.

Figure 9 shows the interrelationship between knowledge evolution and co-
evolution of the system model. First, a security analysis evaluates whether the
system model is secure in terms of the knowledge represented in the SMM at
design-time. This can be achieved by using our tool-support CARiSMA[11].
Changes in the SCK may trigger respective changes in the system model and
their security aspects as described by the CoRe. Evolution of the SCK
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Fig. 9. Interrelationship between security knowledge evolution and co-evolution of the
system model built upon this knowledge
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contained in the SMM is described in terms of atomic evolution steps. Depend-
ing on the parameters of all evolutions that took place, it has to be checked
whether security is retained. Unfortunately, the changes to the SMM cannot be
fully automatically used to adapt the system model, since these changes require
design decisions as well as that they depend on the language of the model. Thus,
we use a flexible approach that allows explicit modeling of different adaption
options.

4.2 Modeling Security Maintenance Rules

To adapt the system model sufficiently, a sequence of evolution operations on
the system model is necessary. The pairing of the evolution of two different
artifacts (here SMM and system model) is referred to as co-evolution. These co-
evolutions are derived from the sequence of applied edit operations which have
been used to change the SCK. This interrelationship is modeled in the SMM
using the Security Maintenance Rules (SMR). They are a part of the CoRe
and build the connecting link between evSMM and possible corrective actions
that have to take place at the system model. Since these rules depend on the
security information in the SMM and are themselves part of the SMM, they
can also evolve. The SMRs are to trigger reactions upon the security knowledge
that has changed. Regarding the kinds of possible reaction types, an appropiate
reaction can be the direct manipulation of the System Model (SyM). This can
for example be achieved by making use of graph transformation techniques.
Moreover, displaying instructions to the maintainer is also an important kind of
reaction to security knowledge evolution. For example, a newly discovered attack
that can be performed if the passwords used in the system underrun a certain
length does not require changes at the model level. In fact, the countermeasure is
to instruct the maintainer to ensure that all passwords used in the systems exceed
a (new) minimum length. We define SMRs to describe the adaption opportunities
for the SyM as a quadruple

(evSMM, evSyM, pars, pre). (1)

The first evolution evSMM describes the changes to the SMM and the second
evolution evSyM describes the corresponding changes that shall take place at
the system model. EvSMM and evSyM are captured in a transformation-based
manner. The predicate pars contains parameters that may additionally charac-
terize both evolutions. Moreover, pre resembles a precondition that has to hold
for the respective SMR to be applied. In summary, the latter two elements of
an SMR ensure that the parameters of the evolutions are compatible to each
other. Information about parameterizing evSMM is especially helpful because it
can support parameterizing of more generic co-evolution functions. Seeing the
relation of the parameters of the different evolutions as predicated allows us to
deal with directly computed parameters and manually chosen parameters.

As discussed above, SMRs can also evolve. Moreover, it seems reasonable to
not have any duplicates and detect variants of the same SMRs. We thus do not
let SMRs be created or modified directly but provide editing operations. Using
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editing operations, we can attach operations that check certain conditions prior
to modifying the set of SMRs. For example, adding a new countermeasure can
be performed by an operation formally denoted as

add.countermeasure.type(countermeasure, vulnerability, pars, pre)

where the countermeasure is the countermeasure and vulnerability the vulnera-
bility to be mitigated. pars and pre are used to parameterize the countermeasure
and define a precondition prior to applying the corrective actions. type denotes
the reaction’s type. For example, instructions to the maintainer or requesting a
(sequence of) model alterations through graph transformation steps are possi-
ble values.

It is difficult to describe evolutions for a general system model. Thus, the sec-
ond part of the rules is described in terms of the regarded model language. Here,
we choose UMLsec as introduced in Section 2, because it provides lightweight
annotations of security properties and requirements. These annotations are used
to ensure the security in the code.

The mapping between the SMM and the system model need not to be one-
to-one. For each SMM evolution, we can define an arbitrary number of system
model co-evolutions. In this case, the maintainer can choose between different
solutions. This allows the modeling of different solutions for one given adaption.
For example, the integrity of data communicated can be obtained by different
adaptions. One possibility is to use digital signatures over the value. Another
possibility is to check the value when it is communicated back to the issuer.

After describing the parts of the SMM including SCK and SMRs, we show an
application of our approach by continuing our case study in the next section.

4.3 CoCoME Case Study: Adapting UMLsec Models

In this section, we illustrate the use of security maintenance rules to adapt
UMLsec models. For this purpose, we consider the pick-up shop extension as
introduced in Section 3.3. We use UMLsec to annotate security related anno-
tations into the models. In detail, the security requirement of data integrity as
resembled by the stereotype 〈〈integrity〉〉 .

At design-time, there is no integrity check of the hidden fields data transmitted
between browser and the server component. Later, the analysis of the reported
vulnerability leads to new knowledge about the use of hidden fields in a web
page and data in our pick-up shop. In this example, this leads to the perception
that the integrity of sensitive data needs to be checked and the prices need to
be treated as sensitive data. Therefore, respective model elements need to be
annotated with appropriate UMLsec stereotypes (e.g. 〈〈integrity〉〉 ) to enforce
respective security checks as part of the implementation.

The compliance of security requirements annotated using UMLsec can be eas-
ily checked using our tools support. In the following, we focus on the integrity of
sensitive data in hidden fields as introduced in Section 3.3. Here, we explain how
the modified knowledge facilitates changes to the model such that the security
of the information system under consideration is preserved.
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Modeling Security Maintenance Rules. As explained in Section 3.3, the
SCK must be updated to reflect the new knowledge. After that, it is necessary
to model SMRs that are used to react upon security issues. On this account,
we need to define SMRs for every possible evolution of the SCK. Regarding the
reported vulnerability, the countermeasure integrity check needs to be described
as an evolution of a software model. Because an integrity check can be directly
annotated in UMLsec, this rule mainly has to describe the location where to add
the tag 〈〈integrity〉〉 and some parameters (what to check and where the integrity
should be ensured). There are often several possible modifications, thus more co-
evolutions can be added (see [22]). For example, the operation call following the
formalization as introduced above to add a SMR for this countermeasure is as
follows:

add.countermeasure.transformation("add integrity check",
"hidden fields manipulation", pars, pre)

with
pre = ∅
pars = (fields = getFieldsMarked("integrity")) (2)

For simplicity, we assume an auxiliary function to query the model. We use
getFieldsMarked to get all fields which need to be secured by the SyM evolution.
such functions can be realized, for example by using existing tool frameworks
(e.g. CARiSMA).

Modifying the Model. After the SCK is updated and SMRs are added
(evSMM), the co-evolution (evSyM) as introduced in Figure 9 takes place. Here, the
SMR chosen to be applied is the one created through (2) and realizes the coun-
termeasure check integrity. It thus leads to application of model transformations
of the models that for example realize the addition of 〈〈integrity〉〉 stereotype. In

:WebApp :Browser
getPage()

return price, ...

getPage(post=price,...)
<<integrity>>

Fig. 10. One of the model changes modeling the use of the new countermeasure check
integrity in the model. Here, the state-chart communication is annotated requiring that
the integrity of the communicated data is checked. For simplicity the parameter tags
of the stereotype are omitted.



Model-Based Security Engineering 49

summary, the resulting model is annotated with new security requirements. For
example, the check integrity countermeasure leads to the requirement of checking
the integrity of some post variables (see Figure 10).

5 Further Reading

Our approach combines methods and concepts from the field of secure software
development as well as information security management. In the next subsection
we give some further literature to other or connected approaches.

5.1 Model-Based Security Engineering Using UMLsec

Today, several approaches for model-based secure software engineering exist:
Ray et al. [41] propose to use aspect-oriented modeling for addressing access
control concerns. Functionality that addresses a pervasive access control concern
is defined in an aspect. The remaining functionality is specified in a so-called
primary model. Composing access control aspects with a primary model then
delivers a system model that addresses access control concerns. Basin et al. [5]
show how UML can be used to specify access control in an application and
how one can then generate access control mechanisms from the specifications.
The approach is based on role-based access control and gives additional support
for specifying authorization constraints. Brose et al. [8] demonstrate how to deal
with access control policies in UML. The specification of access control policies is
integrated into UML. A graph-based formal semantics for the UML access control
specification permits one to reason about the coherence of the access control
specification. The SECTET framework for Model Driven Security as proposed
by Alam et al. [1] is applied for example towards a domain-specific approach for
health care scenarios, including the modeling of access control policies, a target
architecture for their enforcement, and model-to-code transformations. In the
above-mentioned work, extensive security expertise is required to implement the
proposed methods or to operate relevant tools. Moreover, several approaches are
focused on a specific aspect of software systems such as access control.

5.2 Modeling and Evolution of Security Knowledge

A significant amount of work has been carried out on security knowledge man-
agement for information system. Belsis and Kokolakis [6] state that successful
security knowledge management of information systems largely depends on the
involvement of various stakeholders in security analysis, design, and implementa-
tion. However, they also found out in their field research that most stakeholders
lack relevant security knowledge. To overcome this knowledge gap, Raskin et
al. [40] present an ontology-driven security approach. Ontology organizes secu-
rity knowledge (e.g. attacks and countermeasures, etc.) retrieved from natural
language data sources. This approach can be seen as an interface of natural
language processing and information security. Eloff and Solms [13] present a
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hierarchical framework for information security management. It is an early at-
tempt to clarify security terminology and its interrelationships. The result is
used to build up a hierarchical framework made available to the information
system industry. Tsoumas and Gritzalis [48] suggest a security management ap-
proach for information systems which builds upon security knowledge gathered
from various information sources. Security knowledge is organized in an ontol-
ogy based on an extension of the DMTF Common Information Model. Other
approaches dealing with similar ontologies to manage security knowledge prop-
erly are presented in [30,6,4]. In this approach the ontology is set up beforehand,
considering widely-accepted standards and information about the infrastructure
of the information system as well as established policy documents. Kritzinger
and Smith [31] present a conceptual view of an information security retrieval
and awareness model. The purpose of the model is to increase security aware-
ness among employees of an organization. It ensures that technical aspects of
information security do not outweigh human-related issues. Moreover, the pre-
sented model considers measuring and monitoring the current level of security
awareness of each stakeholder in an organization. The measurement is mainly
based on an awareness test consisting of multiple choice questions. The approach
aims to link high-level policy statements and deployable security controls to sup-
port security expert’s work. AlHogail and Berri [2] propose the development of
an architecture sustaining security knowledge within an organization. The archi-
tecture aims to manage tailored security processes, policies and solutions. The
goal of this approach is to capture and share security-related knowledge in order
to efficiently react on security incidents and decrease dependencies on security
experts. To capture security incidents as well as actions taken to mitigate the
issue, a pre-defined report template is used. Subsequently, reports are analyzed
manually to establish rules that are stored in an organization-wide knowledge
base.

6 Conclusion

We described how to use UMLsec and the SecVolution approach for the security
maintenance of evolving systems. UMLsec can be used to include different aspects
of security requirements and techniques into model driven development processes
build on UML. We demonstrated this by showing how to model secure information
flow properties in a webshop case study build on CoCoME. We then showed how to
model the evolution of security knowledge. We used an ontology to store security
knowledge related to webstores. Based on this we can use the security knowledge
to co-evolve the UMLsec model when the security knowledge changes.
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Abstract. After giving general context on the verification of security
protocols, we focus on the automatic symbolic protocol verifier ProVerif.
This verifier can prove secrecy, authentication, and observational equiv-
alence properties of security protocols, for an unbounded number of ses-
sions of the protocol. It supports a wide range of cryptographic primitives
defined by rewrite rules or by equations. The tool takes as input a de-
scription of the protocol to verify in a process calculus, an extension of
the pi calculus with cryptography. It automatically translates this proto-
col into an abstract representation of the protocol by Horn clauses, and
determines whether the desired security properties hold by resolution on
these clauses.

1 Introduction

The verification of security protocols has been a very active research area since
the 1990s. The interest of this topic has several motivations. Security protocols
are ubiquitous: they are used for e-commerce, wireless networks, credit cards, e-
voting, among others. The design of security protocols is notoriously error-prone.
This point can be illustrated by attacks found against many published protocols,
including the famous attack found by Lowe [59] against the Needham-Schroeder
public-key protocol [65] 17 years after its publication. Moreover, security errors
cannot be detected by functional testing, since they appear only in the presence
of a malicious adversary. These errors can also have serious consequences. Hence,
the formal verification or proof of protocols is particularly desirable.

In order to verify protocols, two main models have been considered:

– In the symbolic model, often called Dolev-Yao model and due to Needham
and Schroeder [65] and Dolev and Yao [46], cryptographic primitives are
considered as perfect blackboxes, modeled by function symbols in an algebra
of terms, possibly with equations. Messages are terms on these primitives and
the adversary can compute only using these primitives.

– In contrast, in the computational model, messages are bitstrings, crypto-
graphic primitives are functions from bitstrings to bitstrings, and the adver-
sary is any probabilistic Turing machine. This is the model usually considered
by cryptographers.

A. Aldini et al. (Eds.): FOSAD VII, LNCS 8604, pp. 54–87, 2014.
c© Springer International Publishing Switzerland 2014



ProVerif 55

The symbolic model is an abstract model that makes it easier to build auto-
matic verification tools, and many such tools exist: AVISPA [12], FDR [59],
ProVerif [23], Scyther [42], Tamarin [70], for instance. The computational model
is closer to the real execution of protocols, but the proofs are more difficult to
automate; we refer the reader to [27] for some information on the mechanization
of proofs in the computational model. Even though it is closer to reality than
the symbolic model, we stress that the computational model is still a model.
In particular, it does not take into account side channels, such as timing and
power consumption, which may give additional information to an adversary and
enable new attacks. Moreover, one often studies specifications of protocols. New
attacks may appear when the protocol is implemented, either because the spec-
ification has not been faithfully implemented, or because the attacks rely on
implementation details that do not appear at the specification level.

In this course, we focus on the verification of specifications of protocols in
the symbolic model. Basically, to verify protocols in this case, one computes the
set of terms (messages) that the adversary knows. If a message does not belong
to this set, then this message is secret. The difficulty is that this set is infinite,
for two reasons: the adversary can build terms as large as he wants, and the
considered protocol can be executed any number of times. Several approaches
can be considered to solve this problem:

– One can bound the size of messages and the number of executions of the
protocols. In this case, the state space is finite, and one can apply standard
model-checking techniques. This is the approach taken by FDR [59] and in
the SATMC [13] back-end of AVISPA [12], for instance.

– If we bound only the number of executions of the protocol, the state space
is infinite, but under reasonable assumptions, one can show that the prob-
lem of security protocol verification is decidable: protocol insecurity is NP-
complete [69]. Basically, the non-deterministic Turing machine guesses an
attack and polynomially checks that it is actually an attack against the pro-
tocol. There exist practical tools that can verify protocols in this case, using
for instance constraint solving as in Cl-AtSe [38] or extensions of model
checking as in OFMC [19]; both tools are back-ends of AVISPA [12].

– When the number of executions of the protocol is not bounded, the problem
is undecidable [47] for a reasonable model of protocols. Hence, there exists
no automatic tool that always terminates and solves this problem. However,
there are several approaches that can tackle an undecidable problem:

• One can rely on help from the user. This is done for example using the
interactive theorem prover Isabelle [67], Tamarin [70], which just requires
the user to give a few lemmas to help the tool, or Cryptyc [50], which
relies on typing with type annotations.

• One can have incomplete tools, which sometimes answer “I don’t know”
but succeed on many practical examples. For instance, one can use ab-
stractions based on tree-automata to represent the knowledge of the
adversary [64,33].

• One can allow non-termination, as in Maude-NPA [62,48].
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ProVerif uses an abstract representation of protocols by Horn clauses, in the
line of ideas by Weidenbach [71], which is more precise than tree-automata
because it keeps relational information on messages. However, using this
approach, termination is not guaranteed in general.

In this chapter, we will focus on the tool ProVerif. We refer the reader to [28]
for a more complete survey of security protocol verification.

2 Structure and Main Features of ProVerif

The structure of ProVerif is represented in Fig. 1. ProVerif takes as input a
model of the protocol in an extension of the pi calculus with cryptography, sim-
ilar to the applied pi calculus [5] and detailed in the next section. It supports a
wide variety of cryptographic primitives, modeled by rewrite rules or by equa-
tions. ProVerif also takes as input the security properties that we want to prove.
It can verify various security properties, including secrecy, authentication (cor-
respondences), and some observational equivalence properties. It automatically
translates this information into an internal representation by Horn clauses: the
protocol is translated into a set of Horn clauses, the security properties to prove
are translated into derivability queries on these clauses. ProVerif uses an al-
gorithm based on resolution with free selection to determine whether a fact is
derivable from the clauses. If the fact is not derivable, then the desired security
property is proved. If the fact is derivable, then there may be an attack against
the considered property: the derivation may correspond to an attack, but it
may also correspond to a “false attack”, because the Horn clause representation
makes some abstractions. These abstractions are key to the verification of an
unbounded number of sessions of protocols.

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authenticity, . . .

Horn clauses Derivability queries

Resolution with selection

The property is true Potential attack

Automatic translator

Fig. 1. Structure of ProVerif
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M,N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . ,Mn) constructor application

P,Q ::= processes

M〈N〉.P output
M(x).P input
0 nil
P | Q parallel composition
!P replication
(νa)P restriction
let x = g(M1, . . . ,Mn) in P else Q destructor application
let x = M in P local definition
if M = N then P else Q conditional

Fig. 2. Syntax of the process calculus

Section 3 presents the model of protocols. Section 4 presents the Horn clause
representation of protocols and the resolution algorithm. Section 5 gives the
translation from the pi calculus model to Horn clauses for secrecy properties.
Finally, Sect. 6 summarizes some applications of ProVerif and Sect. 7 concludes.

3 A Formal Model of Security Protocols

This section details the model of protocols used by ProVerif. This calculus was
presented in [2]; we adapt that presentation.

3.1 Syntax and Informal Semantics

Figure 2 gives the syntax of terms (data) and processes (programs) of ProVerif’s
input language. The identifiers a, b, c, k, and similar ones range over names,
and x, y, and z range over variables. Names represent atomic data, such as
keys and nonces (random numbers). The syntax also assumes a set of symbols
for constructors and destructors; we often use f for a constructor and g for a
destructor.

Constructors are used to build terms. Therefore, the terms are variables,
names, and constructor applications of the form f(M1, . . . ,Mn); the terms are
untyped. On the other hand, destructors do not appear in terms, but only ma-
nipulate terms in processes. They are partial functions on terms that processes
can apply. The process let x = g(M1, . . . ,Mn) in P else Q tries to evaluate
g(M1, . . . ,Mn); if this succeeds, then x is bound to the result and P is executed,
else Q is executed. More precisely, the semantics of a destructor g of arity n is
given by a set def(g) of rewrite rules of the form g(M1, . . . ,Mn) → M where
M1, . . . ,Mn,M are terms without names, and the variables of M also occur in
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M1, . . . ,Mn. We extend these rules by g(M ′
1, . . . ,M

′
n) → M ′ if and only if there

exist a substitution σ and a rewrite rule g(M1, . . . ,Mn) → M in def(g) such
that M ′

i = σMi for all i ∈ {1, . . . , n}, and M ′ = σM . We assume that the set
def(g) is finite. (It usually contains one or two rules in examples.)

Using these constructors and destructors, we can represent data structures,
such as tuples, and cryptographic operations, for instance as follows:

– ntuple(M1, . . . ,Mn) is the tuple of the terms M1, . . . ,Mn, where ntuple is
a constructor. (We sometimes abbreviate ntuple(M1, . . . ,Mn) to (M1, . . . ,
Mn).) The n projections are destructors ithn for i ∈ {1, . . . , n}, defined by

ithn(ntuple(x1, . . . , xn)) → xi

– senc(M,N) is the symmetric (shared-key) encryption of the message M un-
der the key N , where senc is a constructor. The corresponding destructor
sdec is defined by

sdec(senc(x, y), y) → x

Thus, sdec(M ′, N) returns the decryption ofM ′ ifM ′ is a message encrypted
under N .

– In order to represent asymmetric (public-key) encryption, we may use two
constructors pk and aenc: pk(M) builds a public key from a secret key M
and aenc(M,N) encrypts M under the public key N . The corresponding
destructor adec is defined by

adec(aenc(x, pk(y)), y) → x

It decrypts the ciphertext aenc(x, pk(y)) using the secret key y corresponding
to the public pk(y) used to encrypt this ciphertext.

– As for digital signatures, we may use a constructor sign, and write sign(M,N)
for M signed with the signature key N , and the two destructors check and
getmess with the rewrite rules:

check(sign(x, y), pk(y)) → x

getmess(sign(x, y)) → x

The destructor check verifies that the signature sign(x, y) is a correct signa-
ture under the secret key y, using the public key pk(y). When the signature is
correct, it returns the signed message. The destructor getmess always returns
the signed message. (This encoding of signatures assumes that the signature
contains the signed message in the clear.)

– We may represent a one-way hash function by the constructor h. There is no
corresponding destructor; so we model that the term M cannot be retrieved
from its hash h(M).

Thus, the process calculus supports many of the operations common in security
protocols. It has limitations, though: for example, modular exponentiation or
XOR cannot be directly represented by a constructor or by a destructor. We
explain how we can treat some of these primitives in Sect. 5.4.
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The other constructs in the syntax of Fig. 2 are standard; most of them come
from the pi calculus.

– The input process M(x).P inputs a message on channel M , and executes P
with x bound to the input message. The output process M〈N〉.P outputs
the message N on the channel M and then executes P . Here, we use an
arbitrary term M to represent a channel: M can be a name, a variable, or a
constructor application. The calculus is monadic (in that the messages are
terms rather than tuples of terms), but a polyadic calculus can be simulated
since tuples are terms. It is also synchronous (in that a process P is executed
after the output of a message). As usual, we may omit P when it is 0.

– The nil process 0 does nothing.
– The process P | Q is the parallel composition of P and Q.
– The replication !P represents an unbounded number of copies of P in parallel.

It makes it possible to represent an unbounded number of executions of the
protocol.

– The restriction (νa)P creates a new name a, and then executes P . It can
model the creation of a fresh key or nonce.

– The local definition let x = M in P executes P with x bound to the term M .
– The conditional if M = N then P else Q executes P if M and N reduce to

the same term at runtime; otherwise, it executes Q. As usual, we may omit
an else branch when it consists of 0.

The name a is bound in the process (νa)P . The variable x is bound in P in the
processes M(x).P , let x = g(M1, . . . ,Mn) in P else Q, and let x = M in P . We
write fn(P ) and fv (P ) for the sets of names and variables free in P , respectively.
A process is closed if it has no free variables; it may have free names. We write
{M1/x1, . . . ,Mn/xn} for the substitution that replaces x1, . . . , xn with M1, . . . ,
Mn, respectively. When D is some expression, we write D{M1/x1, . . . ,Mn/xn}
for the result of applying this substitution to D, but we write σD when the
substitution is simply denoted σ. Except when stated otherwise, substitutions
always map variables (not names) to expressions.

ProVerif’s calculus resembles the applied pi calculus [5]. Both calculi are ex-
tensions of the pi calculus with (fairly arbitrary) functions on terms. However,
there are also important differences between these calculi. The first one is that
ProVerif uses destructors instead of the equational theories of the applied pi
calculus. (Section 5.4 contains further material on equational theories.) The sec-
ond difference is that ProVerif has a built-in error-handling construct (the else
branch of the destructor application), whereas in the applied pi calculus the
error-handling must be done “by hand”.

3.2 Example

We use as a running example a simplified version of the Denning-Sacco key
distribution protocol [44], omitting certificates and timestamps:

Message 1. A → B : {{k}skA}pkB

Message 2. B → A : {s}k
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This protocol involves two principals A and B. The key skA is the secret key of
A, pkA its public key. Similarly, skB and pkB are the secret and public keys of
B, respectively. The key k is a fresh session key created by A. A sends this key
signed with its private key skA and encrypted under the public key of B, pkB.
When B receives this message, B decrypts it and assumes, seeing the signature,
that the key k has been generated by A. Then B sends a secret s encrypted
under k. Only A should be able to decrypt the message and get the secret s.
(The second message is not really part of the protocol, we use it to check if the
key k can really be used to exchange secrets between A and B. In fact, there is
an attack against this protocol [7], so s will not remain secret.)

This protocol can be encoded by the following process:

P0 = (νskA)(νskB)let pkA = pk(skA) in let pkB = pk(skB) in c〈pkA〉.c〈pkB〉.
(PA(pkA, skA) | PB(pkB, skB , pkA))

PA(pkA, skA) = ! c(x pkB).(νk)c〈aenc(sign(k, skA), x pkB)〉.
c(x).let z = sdec(x, k) in 0

PB(pkB, skB, pkA) = ! c(y).let y′ = adec(y, skB) in

let x k = check(y′, pkA) in c〈senc(s, x k)〉

Such a process can be given as input to ProVerif, in an ASCII syntax. This
process first creates the secret keys skA and skB, computes the corresponding
public keys pkA and pkB , and sends these keys on the public channel c, so that
the adversary has these public keys. Then, it runs the processes PA and PB in
parallel. These processes correspond respectively to the roles of A and B in the
protocol. They both start with a replication, which makes it possible to model
an unbounded number of sessions of the protocol.

The process PA first receives on the public channel c the key x pkB, which is
the public key of A’s interlocutor in the protocol. This message is not strictly
speaking part of the protocol; it makes it possible for the adversary to choose
with whom A is going to execute a session. In a standard session of the protocol,
this key is pkB , but the adversary can also choose another key, for instance one
of his own keys. Then, PA executes the role of A: it creates a fresh key k, signs
it with its secret key skA, then encrypts this message under x pkB, and sends
the obtained message on channel c. PA then expects the second message of the
protocol on channel c, stores it in x and decrypts it. If decryption succeeds, the
result (normally the secret s) is stored in z.

The process PB receives the first message of the protocol on channel c, stores
it in y, decrypts it with skB, and verifies the signature with pkA. (The signature
is verified with the key pkA of A and not with an arbitrary key chosen by the
adversary since B sends the second message {s}k only if its interlocutor is the
honest participant A.) If these verifications succeed, B believes that x k is a key
shared between A and B, and it sends the secret s encrypted under x k. If the
protocol is correct, s should remain secret.

In the above model, we have assumed for simplicity that A and B each play
only one role of the protocol. One could easily write a more general model in
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which they play both roles, or one could even provide the adversary with an
interface that allows it to dynamically create new protocol participants.

3.3 Formal Semantics

The formal semantics of this calculus can be defined in two ways. We can use a
structural congruence and a reduction relation (Fig. 3), which is the most com-
mon approach, as in [5]. The main semantic rule is (Red I/O), which performs a
communication: the message M is sent on channel N by N〈M〉.Q and received
by N(x).P . After the communication, the process Q remains in parallel with P ,
in which x is replaced with the received message M . In our calculus, one can
communicate on channels that are any term.

However, the process is not always exactly of the form required to perform
the communication. Therefore, we use the structural congruence relation ≡ to
prepare the process in order to perform reductions. The structural congruence
says that the parallel composition is associative, commutative, has 0 as neutral
element. It allows swapping restrictions and modifying the scope of the restric-
tion. As the name says, structural congruence is a congruence, that is, it is an
equivalence relation (reflexive, symmetric, and transitive) and it can be applied
under parallel compositions and restrictions. The rule (Red ≡) allows one to
apply structural congruence before and after reduction.

The rules (Red Destr 1) and (Red Destr 2) correspond respectively to the
success and failure of the destructor application. The rule (Red Let) allows one
to evaluate a let binding. The rules (Red Cond 1) and (Red Cond 2) correspond
respectively to the success or failure of a conditional. The rule (Red Repl) creates
a new copy of a replicated process. Finally, the rules (Red Par) and (Red Res)
allow one to apply reductions under parallel compositions and restrictions. We
identify processes up to renaming of bound names and variables.

We can also define the semantics by a reduction relation on semantic config-
urations [26], as in Fig. 4. A semantic configuration is a pair E,P where the
environment E is a finite set of names and P is a finite multiset of closed pro-
cesses. The environment E must contain at least all free names of processes in
P . The configuration {a1, . . . , an}, {P1, . . . , Pn} corresponds intuitively to the
process (νa1) . . . (νan)(P1 | . . . | Pn). The semantics of the calculus is defined
by a reduction relation → on semantic configurations, shown in Fig. 4. The rule
(Red Res) is the only one that uses renaming. This second semantics guides the
reduction of the process more precisely, which simplifies the computation of the
evaluation of a process as well as the proofs of some results on ProVerif. In this
tutorial, we will focus on this second semantics.

3.4 Definition of Secrecy

We assume that the protocol is executed in the presence of an adversary that
can listen to all messages, compute, and send all messages it has, following the
so-called Dolev-Yao model [46]. Thus, an adversary can be represented by any
process that has a set of public names S in its initial knowledge. (Although the
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P | 0 ≡ P
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)

(νa1)(νa2)P ≡ (νa2)(νa1)P
(νa)(P | Q) ≡ P | (νa)Q if a /∈ fn(P )

P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ (νa)P ≡ (νa)Q

P ≡ P
Q ≡ P ⇒ P ≡ Q
P ≡ Q, Q ≡ R ⇒ P ≡ R

N〈M〉.Q | N(x).P → Q | P{M/x} (Red I/O)

let x = g(M1, . . . ,Mn) in P else Q → P{M ′/x} (Red Destr 1)
if g(M1, . . . ,Mn) → M ′

let x = g(M1, . . . ,Mn) in P else Q → Q (Red Destr 2)
if there exists no M ′ such that g(M1, . . . ,Mn) → M ′

let x = M in P → P{M/x} (Red Let)

if M = M then P else Q → P (Red Cond 1)
if M = N then P else Q → Q if M �= N (Red Cond 2)

!P → P | !P (Red Repl)

P → Q ⇒ P | R → Q | R (Red Par)
P → Q ⇒ (νa)P → (νa)Q (Red Res)

P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Fig. 3. Structural congruence and reduction

initial knowledge of the adversary contains only names in S, one can give any
terms to the adversary by sending them on a channel in S.)

Definition 1. Let S be a finite set of names. The closed process Q is an S-
adversary if and only if fn(Q) ⊆ S.

In this chapter, we only consider the property of secrecy. Intuitively, a process
P preserves the secrecy of M when M cannot be output on a public channel, in
a run of P with any adversary. Formally, we define that a trace outputs M as
follows:

Definition 2. We say that a trace T = E0,P0 →∗ E′,P ′ outputs M if and only
if T contains a reduction E,P ∪{ c〈M〉.Q, c(x).P } → E,P ∪{Q,P{M/x} } for
some E, P, x, P , Q, and c ∈ S.

We can finally define secrecy:

Definition 3. The closed process P preserves the secrecy of M from S if and
only if for any S-adversary Q, for any E0 containing fn(P0) ∪ S ∪ fn(M), for
any trace T = E0, {P0, Q} →∗ E′,P ′, the trace T does not output M .

This notion of secrecy is similar to that of [1,32,35]: a term M is secret if
the adversary cannot get it by listening and sending messages, and performing
computations.
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E,P ∪ { 0 } → E,P (Red Nil)

E,P ∪ { !P } → E,P ∪ {P, !P } (Red Repl)

E,P ∪ {P | Q } → E,P ∪ {P,Q } (Red Par)

E,P ∪ { (νa)P } → E ∪ {a′},P ∪ {P{a′/a} } (Red Res)

where a′ /∈ E.

E,P ∪ {N〈M〉.Q,N(x).P } → E,P ∪ {Q,P{M/x} } (Red I/O)

E,P ∪ { let x = g(M1, . . . ,Mn) in P else Q } → E,P ∪ {P{M ′/x} } (Red Destr 1)

if g(M1, . . . ,Mn) → M ′

E,P ∪ { let x = g(M1, . . . ,Mn) in P else Q } → E,P ∪ {Q } (Red Destr 2)

if there exists no M ′ such that g(M1, . . . ,Mn) → M ′

E,P ∪ { let x = M in P } → E,P ∪ {P{M/x} } (Red Let)

E,P ∪ { if M = M then P else Q } → E,P ∪ {P } (Red Cond 1)

E,P ∪ { if M = N then P else Q } → E,P ∪ {Q } (Red Cond 2)

if M �= N

Fig. 4. Operational semantics

4 The Horn Clause Representation of Protocols

In this section, we introduce the internal representation of protocols used by
ProVerif, based on Horn clauses. We also give and prove a resolution algorithm
on these clauses.

4.1 Definition of This Representation

Internally, ProVerif translates the protocol into a representation by a set of Horn
clauses; the syntax of these clauses is given in Fig. 5. In this figure, x ranges over
variables, a over names, f over function symbols, and pred over predicate sym-
bols. The patterns p represent messages that are exchanged between participants
of the protocol. (Patterns are terms; we use the word patterns to distinguish them

p ::= patterns
x variable
a[p1, . . . , pn] name
f(p1, . . . , pn) constructor application

F ::= pred(p1, . . . , pn) fact

R ::= F1 ∧ . . . ∧ Fn ⇒ F Horn clause

Fig. 5. Syntax of ProVerif’s internal protocol representation
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from terms of the process calculus.) A variable can represent any pattern. Names
represent in particular random numbers. In the process calculus, each principal
has the ability of creating new names: fresh names are created at each run of the
protocol, and names created in different runs of the protocol are always distinct.
In the Horn clause representation, the created names are considered as functions
a[p1, . . . , pn] of the messages previously received by the principal that creates
the name. Thus, names are distinguished only when the preceding messages are
different. As noticed by Mart́ın Abadi (personal communication), this approxi-
mation is in fact similar to the approximation done in some type systems (such
as [1]): the type of the new name depends on the types in the environment. It is
enough to handle many protocols, and can be enriched by adding other param-
eters to the name. The constructor applications f(M1, . . . ,Mn) build patterns.
A fact F = pred(p1, . . . , pn) expresses a property of the messages p1, . . . , pn.
Several predicates pred can be used but, for a first example, we are going to use
a single predicate attacker, such that the fact attacker(p) means “the attacker
may have the message p”. A clause R = F1 ∧ . . . ∧ Fn ⇒ F means that, if all
facts F1, . . . , Fn are true, then F is also true. A clause with no hypothesis ⇒ F
is written simply F .

We use illustrate the encoding of a protocol on the example of Sect. 3.2:

Message 1. A → B : {{k}skA
}pkB

Message 2. B → A : {s}k

Representation of the Abilities of the Attacker. We first present the en-
coding of the computation abilities of the attacker. The encoding of the protocol
itself will be detailed below.

During its computations, the attacker can apply all constructors and destruc-
tors. If f is a constructor of arity n, this leads to the clause:

attacker(x1) ∧ . . . ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn)).

If g is a destructor, for each rewrite rule g(M1, . . . ,Mn) → M in def(g), we have
the clause:

attacker(M1) ∧ . . . ∧ attacker(Mn) ⇒ attacker(M).

The destructors never appear in the clauses, they are coded by pattern-matching
on their parameters (here M1, . . . ,Mn) in the hypothesis of the clause and gen-
erating their result in the conclusion. In the particular case of public-key encryp-
tion, this yields:

attacker(m) ∧ attacker(pk ) ⇒ attacker(aenc(m, pk)),

attacker(sk) ⇒ attacker(pk(sk)),

attacker(aenc(m, pk(sk ))) ∧ attacker(sk ) ⇒ attacker(m), (1)
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where the first two clauses correspond to the constructors aenc and pk, and
the last clause corresponds to the destructor pdec. When the attacker has an
encrypted message aenc(m, pk) and the decryption key sk , then it also has the
cleartext m. (We assume that the cryptography is perfect, hence the attacker
can obtain the cleartext from the encrypted message only if it has the key.)

Clauses for signatures (sign, getmess, check) and for shared-key encryption
(senc, sdec) are given in Fig. 6.

The clauses above describe the computation abilities of the attacker. More-
over, the attacker initially has the public keys of the protocol participants. There-
fore, we add the clauses attacker(pk(skA[ ])) and attacker(pk(skB[ ])). We also
give a name a to the attacker, that will represent all names it can generate:
attacker(a[ ]). In particular, a[ ] can represent the secret key of any dishonest
participant, his public key being pk(a[ ]), which the attacker can compute by the
clause for constructor pk.

Representation of the Protocol Itself. Now, we describe how the protocol
itself is represented. We consider that A and B are willing to talk to any prin-
cipal, A, B but also malicious principals that are represented by the attacker.
Therefore, the first message sent by A can be aenc(sign(k, skA[ ]), pk(x)) for any
x. We leave to the attacker the task of starting the protocol with the principal
it wants, that is, the attacker will send a preliminary message to A, mentioning
the public key of the principal with which A should talk. This principal can be
B, or another principal represented by the attacker. Hence, if the attacker has
some key pk(x), it can send pk(x) to A; A replies with his first message, which
the attacker can intercept, so the attacker obtains aenc(sign(k, skA[ ]), pk(x)).
Therefore, we have a clause of the form

attacker(pk(x)) ⇒ attacker(aenc(sign(k, skA[ ]), pk(x))).

Moreover, a new key k is created each time the protocol is run. Hence, if two dif-
ferent keys pk(x) are received by A, the generated keys k are certainly different:
k depends on pk(x). The clause becomes:

attacker(pk(x)) ⇒ attacker(aenc(sign(k[pk(x)], skA[ ]), pk(x))). (2)

When B receives a message, he decrypts it with his secret key skB, so B ex-
pects a message of the form aenc(x′, pk(skB[ ])). Next, B tests whether A has
signed x′, that is, B evaluates check(x′, pkA), and this succeeds only when
x′ = sign(y, skA[ ]). If so, he assumes that the key y is only known by A, and
sends a secret s (a constant that the attacker does not have a priori) encrypted
under y. We assume that the attacker relays the message coming from A, and
intercepts the message sent by B. Hence the clause:

attacker(aenc(sign(y, skA[ ]), pk(skB[ ]))) ⇒ attacker(senc(s, y)).

Remark 1. With these clauses, A cannot play the role of B and vice-versa. In
order to model a situation in which all principals play both roles, we can replace
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Computation abilities of the attacker:
For each constructor f of arity n:

attacker(x1) ∧ . . . ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))
For each destructor g, for each rewrite rule g(M1, . . . ,Mn) → M in def(g):

attacker(M1) ∧ . . . ∧ attacker(Mn) ⇒ attacker(M)
that is

aenc attacker(m) ∧ attacker(pk) ⇒ attacker(aenc(m, pk))
pk attacker(sk) ⇒ attacker(pk(sk))
pdec attacker(aenc(m, pk(sk))) ∧ attacker(sk) ⇒ attacker(m)
sign attacker(m) ∧ attacker(sk) ⇒ attacker(sign(m, sk))
getmess attacker(sign(m, sk)) ⇒ attacker(m)
check attacker(sign(m, sk)) ∧ attacker(pk(sk)) ⇒ attacker(m)
senc attacker(m) ∧ attacker(k) ⇒ attacker(senc(m, k))
sdec attacker(senc(m, k)) ∧ attacker(k) ⇒ attacker(m)

Name generation: attacker(a[ ])

Initial knowledge: attacker(pk(skA[ ])), attacker(pk(skB [ ]))

The protocol:
First message: attacker(pk(x)) ⇒ attacker(aenc(sign(k[pk(x)], skA[ ]), pk(x)))
Second message: attacker(aenc(sign(y, skA[ ]), pk(skB[ ]))) ⇒ attacker(senc(s, y))

Fig. 6. Summary the Horn clause representation of the protocol of Sect. 3.2

all occurrences of skB[ ] with skA[ ] in the clauses above. Then A plays both
roles, and is the only honest principal. A single honest principal is sufficient for
proving secrecy properties by [40].

More generally, a protocol that contains n messages is encoded by n sets of
clauses. If a principal X sends the ith message, the ith set of clauses contains
clauses that have as hypotheses the patterns of the messages previously received
by X in the protocol, and as conclusion the pattern of the ith message. There
may be several possible patterns for the previous messages as well as for the sent
message, in particular when the principal X uses a function defined by several
rewrite rules, such as the function exp of Sect. 5.4. In this case, a clause must be
generated for each combination of possible patterns. Moreover, the hypotheses of
the clauses describe all messages previously received, not only the last one. This
is important since in some protocols the fifth message for instance can contain
elements received in the first message. The hypotheses summarize the history of
the exchanged messages.

Summary. To sum up, a protocol can be represented by three sets of Horn
clauses, as detailed in Fig. 6 for the protocol of Sect. 3.2:

– Clauses representing the computation abilities of the attacker: constructors,
destructors, and name generation.

– Facts corresponding to the initial knowledge of the attacker. In general, there
are facts giving the public keys of the participants and/or their names to the
attacker.
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– Clauses representing the messages of the protocol itself. There is one set of
clauses for each message in the protocol. In the set corresponding to the
ith message, sent by principal X , the clauses are of the form attacker(pj1)∧
. . . ∧ attacker(pjn) ⇒ attacker(pi) where pj1 , . . . , pjn are the patterns of the
messages received by X before sending the ith message, and pi is the pattern
of the ith message.

Approximations. The reader can notice that the Horn clause representation of
protocols is approximate. Specifically, the number of repetitions of each action
is ignored, since Horn clauses can be applied any number of times. So a step
of the protocol can be completed several times, as long as the previous steps
have been completed at least once between the same principals (even when
future steps have already been completed). For instance, consider the following
protocol (communicated by Véronique Cortier)

First step: A sends {(N1,M)}k, {(N2,M)}k
Second step: If A receives {(x,M)}k, he replies with x
Third step: If A receives N1, N2, he replies with s

where N1, N2, and M are nonces. In an exact model, A never sends s, since
{(N1,M)}k or {(N2,M)}k can be decrypted, but not both. In the Horn clause
model, even though the first step is executed once, the second step may be
executed twice for the same M (that is, the corresponding clause can be applied
twice), so that both {(N1,M)}k and {(N2,M)}k can be decrypted, and A may
send s. We have a false attack against the secrecy of s.

However, the important point is that the approximations are sound: if an
attack exists in a more precise model, such as the applied pi calculus [5] or mul-
tiset rewriting [43], then it also exists in the Horn clause representation. This
is shown for the applied pi calculus in [2] and for multiset rewriting in [24]. In
particular, [24] shows formally that the only approximation with respect to the
multiset rewriting model is that the number of repetitions of actions is ignored.
Performing approximations enables us to build a much more efficient verifier,
which will be able to handle larger and more complex protocols. Another ad-
vantage is that the verifier does not have to limit the number of runs of the
protocol. The price to pay is that false attacks may be found by the verifier:
sequences of clause applications that do not correspond to a protocol run, as il-
lustrated above. False attacks appear in particular for protocols with temporary
secrets: when some value first needs to be kept secret and is revealed later in
the protocol, the Horn clause model considers that this value can be reused in
the beginning of the protocol, thus breaking the protocol. When a false attack
is found, we cannot know whether the protocol is secure or not: a real attack
may also exist. A more precise analysis is required in this case. Fortunately, the
Horn clause representation is precise enough so that false attacks are rare. (This
is demonstrated by the experiments, see Sect. 6.)
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Secrecy Criterion. A basic goal is to determine secrecy properties: for in-
stance, can the attacker get the secret s? That is, can the fact attacker(s) be
derived from the clauses? If attacker(s) can be derived, the sequence of clauses
applied to derive attacker(s) will lead to the description of an attack. This is the
notion of secrecy of Sect. 3.4.

In our running example, attacker(s) is derivable from the clauses. The deriva-
tion is as follows. The attacker generates a fresh name a[ ] (considered as a se-
cret key), it computes pk(a[ ]) by the clause for pk, obtains aenc(sign(k[pk(a[ ])],
skA[ ]), pk(a[ ])) by the clause for the first message. It decrypts this message using
the clause for pdec and its knowledge of a[ ], thus obtaining sign(k[pk(a[ ])], skA[ ]).
It reencrypts the signature under pk(skB[ ]) by the clause for aenc (using its initial
knowledge of pk(skB[ ])), thus obtaining aenc(sign(k[pk(a[ ])], skA[ ]), pk(skB[ ])).
By the clause for the second message, it obtains senc(s, k[pk(a[ ])]). On the other
hand, from sign(k[pk(a[ ])], skA[ ]), it obtains k[pk(a[ ])] by the clause for getmess,
so it can decrypt senc(s, k[pk(a[ ])]) by the clause for sdec, thus obtaining s. In
other words, the attacker starts a session between A and a dishonest participant
of secret key a[ ]. It gets the first message aenc(sign(k, skA[ ]), pk(a[ ])), decrypts
it, reencrypts it under pk(skB[ ]), and sends it to B. For B, this message looks
like the first message of a session between A and B, so B replies with senc(s, k),
which the attacker can decrypt since it obtains k from the first message. The
obtained derivation corresponds to the known attack against this protocol. In
contrast, if we fix the protocol by adding the public key of B in the first message
{{(pkB, k)}skA

}pkB
, attacker(s) is not derivable from the clauses, so the fixed

protocol preserves the secrecy of s.
Next, we formally define when a given fact can be derived from a given set of

clauses. We shall see in the next section how we determine that. Technically, the
hypotheses F1, . . . , Fn of a clause are considered as a multiset. This means that
the order of the hypotheses is irrelevant, but the number of times a hypothesis
is repeated is important. (This is not related to multiset rewriting models of
protocols: the semantics of a clause does not depend on the number of repeti-
tions of its hypotheses, but considering multisets is necessary in the proof of the
resolution algorithm.) We use R for clauses (logic programming rules), H for
hypothesis, and C for conclusion.

Definition 4 (Subsumption). We say that H1 ⇒ C1 subsumes H2 ⇒ C2,
and we write (H1 ⇒ C1) � (H2 ⇒ C2), if and only if there exists a substitution
σ such that σC1 = C2 and σH1 ⊆ H2 (multiset inclusion).

We write R1 � R2 when R2 can be obtained by adding hypotheses to a particular
instance of R1. In this case, all facts that can be derived by R2 can also be derived
by R1.

A derivation is defined as follows, as illustrated in Fig. 7.

Definition 5 (Derivability). Let F be a closed fact, that is, a fact without
variable. Let R be a set of clauses. F is derivable from R if and only if there
exists a derivation of F from R, that is, a finite tree defined as follows:
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1. Its nodes (except the root) are labeled by clauses R ∈ R;
2. Its edges are labeled by closed facts;
3. If the tree contains a node labeled by R with one incoming edge labeled by F0

and n outgoing edges labeled by F1, . . . , Fn, then R � F1 ∧ . . . ∧ Fn ⇒ F0.
4. The root has one outgoing edge, labeled by F . The unique son of the root is

named the subroot.

subroot

root

FnF1

. . . . . .. . .

. . .
. . .

. . .

η′

η

R′

R

F

F0

Fig. 7. Derivation of F

In a derivation, if there is a node labeled by R with one incoming edge labeled
by F0 and n outgoing edges labeled by F1, . . . , Fn, then F0 can be derived from
F1, . . . , Fn by the clause R. Therefore, there exists a derivation of F from R if
and only if F can be derived from clauses in R (in classical logic).

4.2 Resolution Algorithm

The internal protocol representation is a set of Horn clauses, and our goal is to
determine whether a given fact can be derived from these clauses or not. This
is exactly the problem solved by usual Prolog systems. However, we cannot use
such systems here, because they would not terminate. For instance, the clause

attacker(aenc(m, pk(sk))) ∧ attacker(sk) ⇒ attacker(m)

leads to considering more and more complex terms, with an unbounded number
of encryptions. We could of course limit arbitrarily the depth of terms to solve
the problem, but we can do much better than that.

As detailed below, the main idea is to combine pairs of clauses by resolution,
and to guide this resolution process by a selection function: ProVerif’s resolution
algorithm is resolution with free selection [66,61,14]. This algorithm is similar
to ordered resolution with selection, used by [71], but without the ordering con-
straints.
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Notice that, since a term is secret when a fact is not derivable from the clauses,
soundness in terms of security (if the verifier claims that there is no attack, then
there is no attack) corresponds to the completeness of the resolution algorithm in
terms of logic programming (if the algorithm claims that a fact is not derivable,
then it is not). The resolution algorithm that we use must therefore be complete.

Let us first define resolution: when the conclusion of a clause R unifies with
a hypothesis of another (or the same) clause R′, resolution infers a new clause
that corresponds to applying R and R′ one after the other. Formally, resolution
is defined as follows:

Definition 6. Let R and R′ be two clauses, R = H ⇒ C, and R′ = H ′ ⇒ C′.
Assume that there exists F0 ∈ H ′ such that C and F0 are unifiable and σ is the
most general unifier of C and F0. In this case, we define R ◦F0 R

′ = σ(H ∪ (H ′ \
{F0})) ⇒ σC′. The clause R ◦F0 R

′ is the result of resolving R′ with R upon F0;
it can be inferred from R and R′:

R = H ⇒ C R′ = H ′ ⇒ C′

R ◦F0 R
′ = σ(H ∪ (H ′ \ {F0})) ⇒ σC′

For example, if R is the clause (2), R′ is the clause (1), and the fact F0 is
F0 = attacker(aenc(m, pk(sk))), then R ◦F0 R

′ is

attacker(pk(x)) ∧ attacker(x) ⇒ attacker(sign(k[pk(x)], skA[ ]))

with the substitution σ = {sk �→ x,m �→ sign(k[pk(x)], skA[ ])}.
We guide the resolution by a selection function:

Definition 7. A selection function sel is a function from clauses to sets of facts,
such that sel(H ⇒ C) ⊆ H. If F ∈ sel(R), we say that F is selected in R. If
sel(R) = ∅, we say that no hypothesis is selected in R, or that the conclusion of
R is selected.

The resolution algorithm is correct (sound and complete) with any selection
function, as we show below. However, the choice of the selection function can
change dramatically the behavior of the algorithm. The essential idea of the al-
gorithm is to combine clauses by resolution only when the facts unified in the
resolution are selected. We will therefore choose the selection function to reduce
the number of possible unifications between selected facts. Having several se-
lected facts slows down the algorithm, because it has more choices of resolutions
to perform, therefore we will select at most one fact in each clause. In the case
of protocols, facts of the form attacker(x), with x variable, can be unified will
all facts of the form attacker(p). Therefore, we should avoid selecting them. So
a basic selection function is a function sel0 that satisfies the constraint

sel0(H ⇒ C) =

{
∅ if ∀F ∈ H, ∃x variable, F = attacker(x)

{F0} where F0 ∈ H and ∀x variable, F0 �= attacker(x)
(3)

The resolution algorithm is described in Fig. 8. It transforms the initial set of
clauses into a new one that derives the same facts.
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saturate(R0) =
1. R ← ∅.

For each R ∈ R0, R ← elim({R} ∪ R).
2. Repeat until a fixpoint is reached

for each R ∈ R such that sel(R) = ∅,
for each R′ ∈ R, for each F0 ∈ sel(R′) such that R ◦F0 R′ is defined,

R ← elim({R ◦F0 R′} ∪ R).
3. Return {R ∈ R | sel(R) = ∅}.

Fig. 8. Resolution algorithm

The resolution algorithm, saturate(R0), contains 3 steps.

– The first step inserts in R the initial clauses representing the protocol and
the attacker (clauses that are in R0), after elimination of subsumed clauses
by elim: if R′ subsumes R, and R and R′ are in R, then R is removed by
elim(R).

– The second step is a fixpoint iteration that adds clauses created by resolution.
The resolution of clauses R and R′ is added only if no hypothesis is selected
in R and the hypothesis F0 of R′ that we unify is selected. When a clause is
created by resolution, it is added to the set of clauses R. Subsumed clauses
are eliminated from R.

– At last, the third step returns the set of clauses of R with no selected hy-
pothesis.

Basically, saturate preserves derivability (it is both sound and complete):

Theorem 1 (Correctness of saturate). Let F be a closed fact. F is derivable
from R0 if and only if it is derivable from saturate(R0).

This result is proved by transforming a derivation of F from R0 into a deriva-
tion of F from saturate(R0). Basically, when the derivation contains a clause R′

with sel(R′) �= ∅, we replace in this derivation two clauses R, with sel(R) = ∅,
and R′ that have been combined by resolution during the execution of saturate
with a single clause R ◦F0 R

′. This replacement decreases the number of clauses
in the derivation, so it terminates, and, upon termination, all clauses of the
obtained derivation satisfy sel(R′) = ∅ so they are in saturate(R0). A detailed
proof is given in Sect. 4.3.

Usually, resolution with selection is used for proofs by refutation. That is, the
negation of the goal F is added to the clauses, under the form of a clause without
conclusion: F ⇒. The goal F is derivable if and only if the empty clause “⇒”
can be derived. Here, for non-closed goals, we also want to be able to know which
instances of the goal can be derived. That is why we prove that the clauses in
saturate(R0) derive the same facts as the clauses in R0.
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We can determine which instances of pred(p1, . . . , pn) are derivable, as follows:

Corollary 1. Let solveR0(pred(p1, . . . , pn)) = {H ⇒ pred(p′1, . . . , p
′
n) | H ⇒

pred ′(p′1, . . . , p′n) ∈ saturate(R′
0)}, where pred ′ is a new predicate and R′

0 =
R0 ∪ {pred(p1, . . . , pn) ⇒ pred ′(p1, . . . , pn)}.

The fact σpred(p1, . . . , pn) is derivable from R0 if and only if there exists a
clause H ⇒ pred(p′1, . . . , p′n) in solveR0(pred(p1, . . . , pn)) and a substitution σ′

such that σ′pred(p′1, . . . , p
′
n) = σpred(p1, . . . , pn) and σ′H is derivable from R′

0.

Proof. The fact σpred(p1, . . . , pn) is derivable from R0 if and only if σpred ′(p1,
. . . , pn) is derivable from R′

0, so by Theorem 1, if and only if σpred ′(p1, . . . , pn) is
derivable from saturate(R′

0), so if and only if there exists a clause H ⇒ pred(p′1,
. . . , p′n) in solveR0(pred(p1, . . . , pn)) and a substitution σ′ such that σ′pred(p′1,
. . . , p′n) = σpred(p1, . . . , pn) and σ′H is derivable from saturate(R′

0), that is,
from R′

0. ��

In particular, if solveR0(attacker(p)) = ∅, then attacker(p) is not derivable from
R0. Moreover, if solveR0(attacker(p)) is not empty for the selection function sel0,
at least one instance of attacker(p) is derivable, since H will contain facts of the
form attacker(x), an instance of which is derivable by attacker(a[ ]).

4.3 Proofs

In this section, we detail the proof of Theorem 1. We first need to prove a few
preliminary lemmas. The first one shows that two nodes in a derivation can be
replaced by one when combining their clauses by resolution.

Lemma 1 (Resolution). Consider a derivation containing a node η′, labeled
R′. Let F0 be a hypothesis of R′. Then there exists a son η of η′, labeled R, such
that the edge η′ → η is labeled by an instance of F0, R ◦F0 R′ is defined, and
one obtains a derivation of the same fact by replacing the nodes η and η′ with a
node η′′ labeled R′′ = R ◦F0 R

′.

Proof. This proof is illustrated in Fig. 9. Let R′ = H ′ ⇒ C′, H ′
1 be the multiset

of the labels of the outgoing edges of η′, and C′
1 the label of its incoming edge.

We have R′ � (H ′
1 ⇒ C′

1), so there exists a substitution σ such that σH ′ ⊆ H ′
1

and σC′ = C′
1. Since F0 ∈ H ′, σF0 ∈ H ′

1, so there is an outgoing edge of η′

labeled σF0. Let η be the node at the end of this edge, let R = H ⇒ C be
the label of η. We rename the variables of R so that they are distinct from the
variables of R′. Let H1 be the multiset of the labels of the outgoing edges of
η. So R � (H1 ⇒ σF0). By the above choice of distinct variables, we can then
extend σ so that σH ⊆ H1 and σC = σF0.

The edge η′ → η is labeled σF0, instance of F0. Since σC = σF0, the facts
C and F0 are unifiable, so R ◦F0 R

′ is defined. Let σ′ be the most general uni-
fier of C and F0, and σ′′ such that σ = σ′′σ′. We have R ◦F0 R′ = σ′(H ∪
(H ′ \ {F0})) ⇒ σ′C′. Moreover, σ′′σ′(H ∪ (H ′ \ {F0})) ⊆ H1 ∪ (H ′

1 \ {σF0}) and
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η′′R′′

η′

η

R′

R

C′
1

H1

H ′
1

C′
1

H1 ∪ (H ′
1 \ {σF0})

σF0

Fig. 9. Merging of nodes of Lemma 1

σ′′σ′C′ = σC′ = C′
1. Hence R′′ = R ◦F0 R

′ � (H1 ∪ (H ′
1 \ {σF0})) ⇒ C′

1. The
multiset of labels of outgoing edges of η′′ is precisely H1 ∪ (H ′

1 \ {σF0}) and the
label of its incoming edge is C′

1, therefore we have obtained a correct derivation
by replacing η and η′ with η′′. ��

Lemma 2 (Subsumption). If a node η of a derivation D is labeled by R, then
one obtains a derivation D′ of the same fact as D by relabeling η with a clause
R′ such that R′ � R.

Proof. Let H be the multiset of labels of outgoing edges of the considered node
η, and C be the label of its incoming edge. We have R � H ⇒ C. By transitivity
of �, R′ � H ⇒ C. So we can relabel η with R′. ��

Lemma 3 (Saturation). At the end of saturate, R satisfies the following prop-
erties:

1. For all R ∈ R0, R is subsumed by a clause in R;
2. Let R ∈ R and R′ ∈ R. Assume that sel(R) = ∅ and there exists F0 ∈ sel(R′)

such that R ◦F0 R
′ is defined. In this case, R ◦F0 R

′ is subsumed by a clause
in R.

Proof. To prove the first property, let R ∈ R0. We show that, after the addition
of R to R, R is subsumed by a clause in R.

In the first step of saturate, we execute the instruction R ← elim({R} ∪ R).
After execution of this instruction, R is subsumed by a clause in R.

Assume that we execute R ← elim({R′′} ∪ R) for some clause R′′ and that,
before this execution, R is subsumed by a clause in R, say R′. If R′ is removed by
this instruction, there exists a clause R′

1 in R that subsumes R′, so by transitivity
of subsumption, R′

1 subsumes R, hence R is subsumed by the clause R′
1 ∈ R after

this instruction. If R′ is not removed by this instruction, then R is subsumed by
the clause R′ ∈ R after this instruction.
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Hence, at the end of saturate, R is subsumed by a clause in R, which proves
the first property.

In order to prove the second property, we just need to notice that the fixpoint
is reached at the end of saturate, so R = elim({R ◦F0 R

′} ∪R). Hence, R ◦F0 R
′

is eliminated by elim, so it is subsumed by some clause in R. ��

Proof of Theorem 1: Assume that F is derivable from R0 and consider a deriva-
tion of F from R0. We show that F is derivable from saturate(R0).

We consider the value of the set of clauses R at the end of saturate. For each
clause R in R0, R is subsumed by a clause in R (Lemma 3, Property 1). So, by
Lemma 2, we can replace all clauses R in the considered derivation with a clause
in R. Therefore, we obtain a derivation D of F from R.

Next, we build a derivation of F from R1, where R1 = saturate(R0). If D
contains a node labeled by a clause not in R1, we can transform D as follows.
Let η′ be a lowest node of D labeled by a clause not in R1. So all sons of η′

are labeled by elements of R1. Let R
′ be the clause labeling η′. Since R′ /∈ R1,

sel(R′) �= ∅. Take F0 ∈ sel(R′). By Lemma 1, there exists a son of η of η′ labeled
by R, such that R ◦F0 R

′ is defined, and we can replace η and η′ with a node η′′

labeled by R ◦F0 R
′. Since all sons of η′ are labeled by elements of R1, R ∈ R1.

Hence sel(R) = ∅. So, by Lemma 3, Property 2, R◦F0 R
′ is subsumed by a clause

R′′ in R. By Lemma 2, we can relabel η′′ with R′′. The total number of nodes
strictly decreases since η and η′ are replaced with a single node η′′.

So we obtain a derivation D′ of F from R, such that the total number of
nodes strictly decreases. Hence, this replacement process terminates. Upon ter-
mination, all clauses are in R1. So we obtain a derivation of F from R1, which
is the expected result.

For the converse implication, notice that, if a fact is derivable from R1, then it
is derivable from R, and that all clauses added to R do not create new derivable
facts: if a fact is derivable by applying the clause R◦F0R

′, then it is also derivable
by applying R and R′. ��

4.4 Optimizations

The resolution algorithm uses several optimizations, in order to speed up reso-
lution. The first two are standard, while the last three are specific to protocols.

Elimination of Duplicate Hypotheses. If a clause contains several times the same
hypotheses, the duplicate hypotheses are removed, so that at most one occur-
rence of each hypothesis remains.

Elimination of Tautologies. If a clause has a conclusion that is already in the
hypotheses, this clause is a tautology: it does not derive new facts. Such clauses
are removed.
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Elimination of Hypotheses attacker(x). If a clause H ⇒ C contains in its hy-
potheses attacker(x), where x is a variable that does not appear elsewhere in the
clause, then the hypothesis attacker(x) is removed. Indeed, the attacker always
has at least one message, so attacker(x) is always satisfied for some value of x.

Decomposition of Data Constructors. A data constructor is a constructor f of
arity n that comes with associated destructors gi for i ∈ {1, . . . , n} defined by
gi(f(x1, . . . , xn)) → xi. Data constructors are typically used for representing
data structures. Tuples are examples of data constructors. For each data con-
structor f , the following clauses are generated:

attacker(x1) ∧ . . . ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn)) (Rf)

attacker(f(x1, . . . , xn)) ⇒ attacker(xi) (Rg)

Therefore, attacker(f(p1, . . . , pn)) is derivable if and only if ∀i ∈ {1, . . . , n},
attacker(pi) is derivable. When a fact of the form attacker(f(p1, . . . , pn)) is met,
it is replaced with attacker(p1) ∧ . . . ∧ attacker(pn). If this replacement is done
in the conclusion of a clause H ⇒ attacker(f(p1, . . . , pn)), n clauses are created:
H ⇒ attacker(pi) for each i ∈ {1, . . . , n}. This replacement is of course done
recursively: if pi itself is a data constructor application, it is replaced again.
The clauses (Rf) and (Rg) for data constructors are left unchanged. (When
attacker(x) cannot be selected, the clauses (Rf) and (Rg) for data constructors
are in fact not necessary, because they generate only tautologies during resolu-
tion. However, when attacker(x) can be selected, which cannot be excluded with
certain extensions, these clauses may become necessary for soundness.)

Secrecy Assumptions. When the user knows that a fact will not be derivable, he
can tell it to the verifier. (When this fact is of the form attacker(p), the user tells
that p remains secret.) The tool then removes all clauses which have this fact in
their hypotheses. At the end of the computation, the tool checks that the fact
is indeed underivable from the obtained clauses. If the user has given erroneous
information, an error message is displayed. Even in this case, the verifier never
wrongly claims that a protocol is secure.

Mentioning such underivable facts prunes the search space, by removing use-
less clauses. This speeds up the resolution algorithm. In most cases, the secret
keys of the principals cannot be known by the attacker. So, examples of under-
ivable facts are attacker(skA[ ]), attacker(skB[ ]), . . .

For simplicity, the proofs given in Sect. 4.3 do not take into account these
optimizations. For a full proof, we refer the reader to [25, Appendix C].

4.5 Termination

In general, the resolution algorithm may not terminate. (The derivability prob-
lem is undecidable.) In practice, however, it terminates in most examples.
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Blanchet and Podelski have shown that it always terminates on a large and
interesting class of protocols, the tagged protocols [31]. They consider proto-
cols that use as cryptographic primitives only public-key encryption and signa-
tures with atomic keys, shared-key encryption, message authentication codes,
and hash functions. Basically, a protocol is tagged when each application of a
cryptographic primitive is marked with a distinct constant tag. It is easy to
transform a protocol into a tagged protocol by adding tags. For instance, our
example of protocol can be transformed into a tagged protocol, by adding the
tags c0, c1, c2 to distinguish the encryptions and signature:

Message 1. A → B : {(c1, {(c0, k)}skA
)}pkB

Message 2. B → A : {(c2, s)}k
Adding tags preserves the expected behavior of the protocol, that is, the attack-
free executions are unchanged. In the presence of attacks, the tagged protocol
may be more secure. Hence, tagging is a feature of good protocol design, as
explained e.g. in [7]: the tags are checked when the messages are received; they
facilitate the decoding of the received messages and prevent confusions between
messages. More formally, tagging prevents type-flaw attacks [53], which occur
when a message is taken for another message. However, the tagged protocol is
potentially more secure than its untagged version, so, in other words, a proof
of security for the tagged protocol does not imply the security of its untagged
version.

To illustrate the effect of tagging, we consider the Needham-Schroeder shared-
key protocol [65]. The algorithm does not terminate on its original version, which
is untagged. It terminates after adding tags. In this protocol, we have two mes-
sages of the form:

Message 4. B → A : {NB}K
Message 5. A → B : {NB − 1}K

where NB is a nonce. Representing NB−1 using a function minusone(x) = x−1,
the algorithm does not terminate.

Indeed, message 5 is represented by a clause of the form:

H ∧ attacker(senc(n, k)) ⇒ attacker(senc(minusone(n), k))

where the hypothesis H describes other messages previously received by A. After
some resolution steps, we obtain a clause of the form

attacker(senc(n,K)) ⇒ attacker(senc(minusone(n),K)) (Loop)

for some term K. The fact attacker(senc(minusone(NB),K)) is also derived, so a
resolution step with (Loop) yields: attacker(senc(minusone(minusone(NB)),K)).
This fact can again be resolved with (Loop), so that we finally have a cycle that
derives attacker(senc(minusonen(NB),K)) for all n.

When tags are added, the rule (Loop) becomes:

attacker(senc((c1, n),K)) ⇒ attacker(senc((c2,minusone(n)),K)) (NoLoop)
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and the previous loop is removed because c2 does not unify with c1. The fact
attacker(senc((c2,minusone(NB)),K)) is derived, but this does not yield a loop.

Other authors have proved related results: Ramanujan and Suresh [68] have
shown that secrecy is decidable for tagged protocols. However, their tagging
scheme is stronger since it forbids blind copies. A blind copy happens when a
protocol participant sends back part of a message he received without looking at
what is contained inside this part. On the other hand, they obtain a decidability
result, while [31] obtains a termination result for an algorithm which is sound,
efficient in practice, but approximate. Arapinis and Duflot [11] extend this re-
sult but still forbid blind copies. Comon-Lundh and Cortier [39] show that an
algorithm using ordered binary resolution, ordered factorization and splitting
terminates on protocols that blindly copy at most one term in each message.
In contrast, the result of [31] puts no limit on the number of blind copies, but
requires tagging.

For protocols that are not tagged, heuristics have been designed to adapt the
selection function in order to obtain termination more often. We refer the reader
to [26, Sect. 8.2] for more details.

It is also possible to obtain termination in all cases at the cost of additional
abstractions. For instance, Goubault-Larrecq shows that one can abstract the
clauses into clauses in the decidable class H1 [51], by losing some relational
information on the messages.

5 Translation from the Pi Calculus

Given a closed process P0 in the language of Sect. 3 and a set of names S,
ProVerif builds a set of Horn clauses, representing the protocol P0 in parallel
with any S-adversary, in the same style as the clauses presented in the previous
section. This translation was originally given in [2]. The clauses use facts defined
by the following grammar:

F ::= facts
attacker(p) attacker knowledge
mess(p, p′) message on a channel

The fact attacker(p) means that the attacker may have p, and the fact mess(p, p′)
means that the message p′ may appear on channel p. The clauses are of the form
F1 ∧ . . .∧ Fn ⇒ F , where F1, . . . , Fn, F are facts. They comprise clauses for the
attacker and clauses for the protocol, defined below. These clauses form the set
RP0,S .

5.1 Clauses for the Attacker

The abilities of the attacker are represented by the following clauses:

For each a ∈ S, attacker(a[ ]) (Init)

attacker(b0[ ]) (Rn)
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For each constructor f of arity n,

attacker(x1) ∧ . . . ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))
(Rf)

For each destructor g,

for each rewrite rule g(M1, . . . ,Mn) → M in def(g),

attacker(M1) ∧ . . . ∧ attacker(Mn) ⇒ attacker(M)

(Rg)

mess(x, y) ∧ attacker(x) ⇒ attacker(y) (Rl)

attacker(x) ∧ attacker(y) ⇒ mess(x, y) (Rs)

The clause (Init) represents the initial knowledge of the attacker. The clause (Rn)
means that the attacker can generate new names. The clauses (Rf) and (Rg)
mean that the attacker can apply all operations to all terms it has, (Rf) for
constructors, (Rg) for destructors. For (Rg), notice that the rewrite rules in
def(g) do not contain names and that terms without names are also patterns, so
the clauses have the required format. Clause (Rl) means that the attacker can
listen on all channels it has, and (Rs) that it can send all messages it has on all
channels it has.

If c ∈ S, we can replace all occurrences of mess(c[ ], p) with attacker(p) in the
clauses. Indeed, these facts are equivalent by the clauses (Rl) and (Rs).

5.2 Clauses for the Protocol

When a function ρ associates a pattern with each name and variable, and f is
a constructor, we extend ρ as a substitution by ρ(f(M1, . . . ,Mn)) = f(ρ(M1),
. . . , ρ(Mn)).

The translation [[P ]]ρH of a process P is a set of clauses, where ρ is a function
that associates a pattern with each name and variable, and H is a sequence of
facts of the form mess(p, p′). The environment ρ maps each variable and name to
its associated pattern representation. The sequence H keeps track of messages
received by the process, since these may trigger other messages. The empty
sequence is denoted by ∅; the concatenation of a fact F to the sequence H is
denoted by H ∧ F .

[[0]]ρH = ∅
[[P | Q]]ρH = [[P ]]ρH ∪ [[Q]]ρH

[[!P ]]ρH = [[P ]]ρH

[[(νa)P ]]ρH = [[P ]](ρ[a �→ a[p′1, . . . , p
′
n] ])H

where H = mess(p1, p
′
1) ∧ . . . ∧mess(pn, p

′
n)

[[M(x).P ]]ρH = [[P ]](ρ[x �→ x])(H ∧mess(ρ(M), x))

[[M〈N〉.P ]]ρH = [[P ]]ρH ∪ {H ⇒ mess(ρ(M), ρ(N))}

[[let x = g(M1, . . . ,Mn) in P else Q]]ρH =
⋃

{[[P ]]((σρ)[x �→ σ′p′])(σH)

| g(p′1, . . . , p′n) → p′ is in def(g) and (σ, σ′) is a most general pair of

substitutions such that σρ(M1) = σ′p′1, . . . , σρ(Mn) = σ′p′n} ∪ [[Q]]ρH
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[[let x = M in P ]]ρH = [[P ]](ρ[x �→ ρ(M)])H

[[if M = N then P else Q]]ρH =⎧⎪⎨
⎪⎩
[[P ]](σρ)(σH) ∪ [[Q]]ρH

when ρ(M) and ρ(N) unify and σ is their most general unifier

[[Q]]ρH when ρ(M) and ρ(N) do not unify

The translation of a process is a set of Horn clauses that express that it may
send certain messages.

– The nil process does nothing, so its translation is empty.
– The clauses for the parallel composition of processes P and Q are the union

of clauses for P and Q.
– The replication is ignored, because all Horn clauses are applicable arbitrarily

many times.
– For the restriction, we replace the restricted name a in question with the

pattern a[p′1, . . . , p
′
n], where p′1, . . . , p

′
n are the previous inputs.

– The sequence H is extended in the translation of an input, with the input
in question.

– The translation of an output adds a clause, meaning that the output is
triggered when all conditions in H are true.

– The translation of a destructor application is the union of the clauses for the
cases where the destructor succeeds (with an appropriate substitution) and
where the destructor fails. For simplicity, we assume that the else branch of
destructors may always be executed; this is sufficient in most cases, since the
else branch is often empty or just sends an error message. For a more precise
treatment, see [26, Sect. 9.2].

– The local definition let x = M in P is in fact equivalent to let x = id(M) in P
else 0, where the destructor id is defined by id(x) → x. The conditional
if M = N then P else Q is in fact equivalent to let x = equal(M,N) in P else
Q, where the destructor equal is defined by equal(x, x) → x. So the trans-
lations of these constructs is a particular case of the destructor application.
We give them explicitly since they are particularly simple.

This translation of the protocol into Horn clauses introduces approximations.
The actions are considered as implicitly replicated, since the clauses can be
applied any number of times. This approximation implies that the tool fails to
prove protocols that first need to keep some value secret and later reveal it.
For instance, consider the process (νd)(d〈s〉.c〈d〉 | d(x)). This process preserves
the secrecy of s, because s is output on the private channel d and received
by the input on d, before the adversary gets to know d by the output of d
on the public channel c. However, the Horn clause method cannot prove this
property, because it treats this process like a variant with additional replications
(νd)(!d〈s〉.c〈d〉 | !d(x)), which does not preserve the secrecy of s.
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5.3 Summary and Correctness

Let ρ = {a �→ a[ ] | a ∈ fn(P0)}. We define the clauses corresponding to the
process P0 as:

RP0,S = [[P0]]ρ∅ ∪ {attacker(a[ ]) | a ∈ S} ∪ {(Rn), (Rf), (Rg), (Rl), (Rs)}

Theorem 2 (Correctness of the clauses). Let P0 be a closed process. Let M
be a closed term and p be the pattern obtained from the term M by replacing all
names a with a[ ]. If attacker(p) is not derivable from RP0,S, then P0 preserves
the secrecy of M from S.

The proof of this result relies on a type system to express the soundness of
the clauses on P0, and on the subject reduction of this type system to show that
soundness of the clauses is preserved during all executions of the process. This
technique was introduced in [2] where a similar result is proved. [2] also shows
an equivalence between an instance of a generic type system for proving secrecy
properties of protocols and the Horn clause verification method. This instance
is the most precise instance of this generic type system.

By combining Theorem 2 with Corollary 1, we obtain:

Corollary 2. Let P0 be a closed process. Let M be a closed term and p be
the pattern obtained from the term M by replacing all names a with a[ ]. If
solveRP0,S (attacker(p)) = ∅, then P0 preserves the secrecy of M from S.

5.4 Extension to Equational Theories

ProVerif has been extended to handle primitives defined by equational theo-
ries [29]. The term algebra consists of constructors equipped with an equational
theory, defined by a finite set of equations. For example, we can model a sym-
metric encryption scheme in which decryption always succeeds (but may return
a meaningless message) by the equations

sdec(senc(x, y), y) = x

senc(sdec(x, y), y) = x
(4)

where senc and sdec are constructors. The first equation is standard; the second
one avoids that the equality test senc(sdec(M,N), N) = M reveals that M is a
ciphertext under N : in the presence of the second equation, this equality always
holds, even when M is not a ciphertext under N . These equations are satisfied
by block ciphers, which are bijective.

We can also model the Diffie-Hellman key agreement [45] using equations.
The Diffie-Hellman key agreement relies on the following property of modular
exponentiation: (ga)b = (gb)a = gab in a cyclic multiplicative subgroup G of Z∗

p,
where p is a large prime number and g is a generator of G, and on the assumption
that it is difficult to compute gab from ga and gb, without knowing the random
numbers a and b (computational Diffie-Hellman assumption), or on the stronger
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assumption that it is difficult to distinguish ga, gb, gab from ga, gb, gc without
knowing the random numbers a, b, and c (decisional Diffie-Hellman assumption).
These properties are exploited to establish a shared key between two participants
A and B of a protocol: A chooses randomly a and sends ga to B; symmetrically,
B chooses randomly b and sends gb to A. A can then compute (gb)a, since it has
a and receives gb, while B computes (ga)b. These two values being equal, they
can be used to compute the shared key. The adversary, on the other hand, has
ga and gb but not a and b so by the computational Diffie-Hellman assumption,
it cannot compute the key. (This exchange resists passive attacks only; to resist
active attacks, we need additional ingredients, for instance signatures.) We can
model the Diffie-Hellman key agreement by the equation [5,4]

exp(exp(g, x), y) = exp(exp(g, y), x) (5)

where g is a constant and exp is modular exponentiation. Obviously, this is a
basic model: it models the main functional equation but misses many algebraic
relations that exist in the group G.

The main idea of our extension to equations is to translate these equations into
a set of rewrite rules associated to constructors. For instance, the equations (4)
are translated into the rewrite rules

senc(x, y) → senc(x, y) sdec(x, y) → sdec(x, y)

senc(sdec(x, y), y) → x sdec(senc(x, y), y) → x
(6)

while the equation (5) is translated into

exp(x, y) → exp(x, y) exp(exp(g, x), y) → exp(exp(g, y), x) (7)

Intuitively, these rewrite rules allow one, by applying them exactly once for each
constructor, to obtain the various forms of the terms modulo the considered
equational theory.1 The constructors are then simply evaluated like destructors
in the calculus above. With Abadi and Fournet, we have formally defined when
a set of rewrite rules models an equational theory, and designed algorithms that
compute translate equations into rewrite rules that model them [29, Sect. 5].
Then, each trace in the calculus with equational theory corresponds to a trace
in the calculus with rewrite rules, and conversely [29, Lemma 1].2 We are then
reduced to the simpler case in which there are no equations. The main advantage
of this technique is that resolution can still use ordinary syntactic unification
(instead of having to use unification modulo the equational theory), and therefore
remains efficient.

1 The rewrite rules like sdec(x, y) → sdec(x, y) are necessary so that sdec always
succeeds. Thanks to this rule, the evaluation of sdec(M,N) succeeds and leaves this
term unchanged when M is not of the form senc(M ′, N).

2 More precisely, the inequality tests of (Red Destr 2) must still be performed modulo
the equational theory, even in the calculus with rewrite rules.



82 B. Blanchet

This extension to equations still has limitations: it does not allow us to model
associative operations, such as exclusive or, since this would require an infinite
number of rewrite rules. It may be possible to handle these symbols using unifi-
cation modulo the equational theory instead of syntactic unification, at the cost
of a larger complexity. In the case of a bounded number of sessions, exclusive or
is handled in [41,37] and a more complete theory of modular exponentiation is
handled in [36]. A unification algorithm for modular exponentiation is presented
in [63]. For an unbounded number of sessions, extensions of the Horn clause
approach that can handle XOR and Diffie-Hellman key agreements with more
detailed algebraic relations (including equations of the multiplicative group mod-
ulo p) have been proposed by Küsters and Truderung: they handle XOR provided
one of its two arguments is a constant in the clauses that model the protocol [57]
and Diffie-Hellman key agreements provided the exponents are constants in the
clauses that model the protocol [58]; they proceed by transforming the initial
clauses into richer clauses on which the standard resolution algorithm is applied.

6 Applications

The automatic protocol verifier ProVerif is available at http://proverif.inria
.fr/. Even though we focused only on secrecy in this chapter, ProVerif can also
verify authentication [26] and some observational equivalence properties [29]. It
can also reconstruct attacks against protocols [10] from the Horn clause deriva-
tion, when the desired property does not hold. It was successfully applied to
many protocols of the literature, to prove secrecy and authentication proper-
ties [26]: no false attack was found in the 19 protocols tested in [26]. It was also
used in more substantial case studies:

– With Abadi [3], we applied it to the verification of a certified email proto-
col [6]. We used correspondence properties to prove that the receiver receives
the message if and only if the sender has a receipt for the message. (We used
simple manual arguments to take into account that the reception of sent mes-
sages is guaranteed.) One of the tested versions includes the SSH transport
layer in order to establish a secure channel.

– With Abadi and Fournet [4], we studied the JFK protocol (Just Fast Key-
ing) [8], which was one of the candidates to the replacement of IKE as key
exchange protocol in IPSec. We combined manual proofs and ProVerif to
prove correspondences and equivalences.

– With Chaudhuri [30], we studied the secure filesystem Plutus [54] with
ProVerif, which allowed us to discover and fix weaknesses of the initial
system.

– ProVerif was also used for verifying a certified email web service [60], a certi-
fied mailing-list protocol [55], e-voting protocols [56,15], the ad-hoc routing
protocol ARAN (Authenticated Routing for Adhoc Networks) [49], and zero-
knowledge protocols [16], for instance.

http://proverif.inria.fr/
http://proverif.inria.fr/
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It was also used as a back-end for building other verification tools:

– Bhargavan et al. [21] use it to build the Web services verification tool Tu-
laFale: Web services are protocols that send XML messages; TulaFale trans-
lates them into the input format of ProVerif and uses ProVerif to prove the
desired security properties.

– Bhargavan et al. [22] use ProVerif for verifying implementations of protocols
in F# (a functional language of the Microsoft .NET environment): a subset
of F# large enough for expressing security protocols is translated into the
input format of ProVerif. The TLS protocol, in particular, was studied using
this technique [20].

– Aizatulin et al. [9] use symbolic execution in order to extract ProVerif models
from pre-existing protocol implementations in C. This technique currently
analyzes a single execution path of the protocol, so it is limited to protocols
without branching. An earlier related approach is that of Goubault-Larrecq
and Parrennes [52]: they also use the Horn clause method for analyzing
implementations of protocols written in C. However, they translate protocols
into clauses of the H1 class and use the H1 prover by Goubault-Larrecq [51]
rather than ProVerif to prove secrecy properties of the protocol.

– Bansal et al. [17] built the Web-spi library which allows one to model web
security mechanisms and protocols and verify them using ProVerif.

Canetti and Herzog [34] use ProVerif for verifying protocols in the computational
model: they show that, for a restricted class of protocols that use only public-key
encryption, a proof in the Dolev-Yao model implies security in the computational
model, in the universal composability framework.

7 Conclusion

ProVerif is an automatic protocol verifier that relies on the symbolic model of
cryptography. Its main strengths are that it supports a wide range of crypto-
graphic primitives, defined by rewrite rules and equations, that it can prove
various security properties, including secrecy, authentication, and some obser-
vational equivalences, and that it handles an unbounded number of protocol
executions. This is possible thanks to an abstract representation of the protocol
by Horn clauses. Its main limitations are that it may fail to prove some secu-
rity properties that actually hold, and that it may not terminate. However, it is
precise and efficient on many practical examples. Other limitations concern the
treatment of equations and the class of observational equivalences that it can
prove.

ProVerif verifies specifications of protocols in the symbolic model, which can
also be seen as a limitation, since the symbolic model abstracts away the details
of cryptographic operations, and specifications do not take into account all im-
plementation details. Going further is a topic of active research. Some tools, such
as EasyCrypt [18] and CryptoVerif [27], already tackle the more difficult problem
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of verifying protocols in the computational model. Other tools verify implemen-
tations of protocols rather than specifications, some of them by translating the
implementation into a ProVerif model, as mentioned in Section 6.
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Abstract. Defensive JavaScript (DJS) is a typed subset of JavaScript
that guarantees that the functional behavior of a program cannot be
tampered with even if it is loaded by and executed within a malicious
environment under the control of the attacker. As such, DJS is ideal for
writing JavaScript security components, such as bookmarklets, single
sign-on widgets, and cryptographic libraries, that may be loaded within
untrusted web pages alongside unknown scripts from arbitrary third par-
ties. We present a tutorial of the DJS language along with motivations
for its design. We show how to program security components in DJS,
how to verify their defensiveness using the DJS typechecker, and how to
analyze their security properties automatically using ProVerif.

1 Introduction

Since the advent of asynchronous web applications, popularly called AJAX or
Web 2.0, JavaScript has become the predominant programming language for
client-side web applications. JavaScript programs are widely deployed as scripts
in web pages, but also as small storable snippets called bookmarklets, as down-
loadable web apps,1 and as plugins or extensions to popular browsers.2 Main-
stream browsers compete with each other in providing convenient APIs and
fast JavaScript execution engines. More recently, Javascript is being used to
program smartphone and desktop applications3, and also cloud-based server ap-
plications,4 so that now programmers can use the same idioms and libraries to
write and deploy a variety of client- and server-side programs.

As more and more sensitive user data passes though JavaScript applications,
its confidentiality and integrity becomes an important security goal. Conse-
quently, JavaScript applications rely on a number of security libraries for cryp-
tography and access control. However, neither the JavaScript language nor its
execution environment (e.g. the web browser) are particularly well suited for
security programming. For example, to aid uniform deployment across different

1 https://chrome.google.com/webstore/category/apps
2 https://addons.mozilla.org/
3 http://dev.windowsphone.com/develop
4 http://node.js
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browsers, JavaScript allows a number of core language primitives to be rede-
fined and customized. This means that a JavaScript security library that may
run alongside other partially-trusted libraries must take extra care so that its
functionality is not subverted and its secrets are not leaked.

In this tutorial, we investigate approaches to build and verify JavaScript pro-
grams that implement security-criticial tasks, such as cryptographic protocols.
Our programs must contend not just with the traditional network attacker, but
also with a variety of web-specific attacks, such as malicious hosting websites and
Cross-Site Scripting (XSS). In other words, not just the communication channel
but even parts of the execution environment may be under the control of the
adversary. We propose a typed subset of JavaScript, called Defensive JavaScript,
that enables formal security guarantees for programs even in this threat model.
Our language and verification results previously appeared in [12].

Many existing works investigate the security of formal models of web applica-
tion protocols [3,17,8], but none of them can provide concrete security guarantees
for JavaScript code. Still, we build upon these prior results (especially [8]) to de-
velop our threat model and verification techniques. Another closely related line
of work investigates the use of type-preserving compilers to generate JavaScript
programs that are secure-by-construction [18,25]. We will focus only on language-
based protections in JavaScript, but note that HTML-level isolation techniques
may also be effectively used to separate trusted web security components from
untrusted JavaScript [4].

In the rest of this section, we will seek to better understand the threat model
and security goals of JavaScript security components through three examples.

1.1 Encrypted Cloud Storage Websites

Storage services (e.g. Dropbox) allow users to store their personal files on servers
hosted within some cloud infrastructure. Since users often rely on these services
to back up important files and share them across devices, the integrity and con-
fidentiality of this data is an important security requirement, especially since
the cloud servers may be under the control of a third party. Consequently, main-
stream storage services typically encrypt user files before storing them in the
cloud. A hacker who breaks into the cloud server to obtain the encrypted files
would also need to steal the file encryption key from the storage service.

Some services, such as SpiderOak and Mega, seek to provide a stronger privacy
guarantee to their users, sometimes called host-proof hosting — even if the
storage service and its cloud servers are both hacked, the user’s files should
remain confidential. The key mechanism to achieve this goal is that a user’s file
encryption keys are generated and stored on the client-side; even the storage
service does not get to see it, and so cannot accidentally leak it.

For example, to access their files stored on Mega, users visit the Mega website,
which downloads and runs a JavaScript program in the browser. The program
asks the user for a master passphrase, derives an authentication token and an
encryption key from the passphrase, and sends the username and authentication
token to the website. If the token matches the username, the web page allows the
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user to download or upload encrypted files from a cloud server. The JavaScript
program encrypts and decrypts user files upon request, using the encryption key
derived from the master passphrase, but the key and the passphrase never leave
the browser.

Hence, the storage service implements an application-level cryptographic pro-
tocol in JavaScript. This programming pattern is also popular with other security
web applications such as password managers (more below) and with privacy-
preserving websites like ConfiChair [5] and Helios [1].

The main threat to this design is that if the attacker manages to inject a
malicious script into the website, that script will be able to steal the master
passphrase (and hence the user’s files). This script injection may be achieved
by hacking the web server, or by tampering with externally loaded scripts on
the network, or by exploiting a cross-site scripting (XSS) attack. Many such
attacks have been found in previous work [10,7,12] and reports from the MEGA
bug bounty program indicate that such attacks are a common concern. Cloud
storage websites employ many techniques to block these attack vectors, such as
Strict Transport Layer Security [20] and Content Security Policy [24], but the
increasing incidence of server-side compromises, man-in-the-middle attacks on
TLS, and XSS vulnerabilities on websites, indicates that it would be prudent to
try to protect user data even if the website had a malicious script.

Even ignoring malicious scripts, to provide any formal security guarantee for
a website security component that runs alongside unknown third party scripts,
the component would need to be robust against bugs in these scripts. To give a
concrete example, the MEGA website relies on about 70 scripts, and less than
10% of their code is related to cryptography; most of the rest implements the
user interface. So the correctness of the cryptographic library and the secrecy of
its keys relies on the good behavior of these UI scripts, which are not written by
security experts and may be difficult to formally review.

1.2 Password Manager Bookmarklets and Browser Extensions

Password managers (e.g. LastPass) help users manage and remember their pass-
words (and other sensitive data such as credit card numbers) on various websites.
They are often implemented in JavaScript and deployed as a browser extension
or bookmarklet that detects the login page of a website, looks up a password
database for a matching username and password, and offers to fill it in auto-
matically. If there is no matching password, it may offer to generate a difficult-
to-guess password and store it in the database. To synchronize and backup the
password database across a user’s devices, many password managers implement
the host-proof encrypted cloud storage pattern described above.

For example, LastPass users can generate a “Login” bookmarklet and add it
to their browser’s bookmarks. The bookmarklet contains a JavaScript program
embedded with an encryption key for the user’s password database. When a user
next visits the login page at some website, she may click on the bookmarklet
to automatically log in. Clicking on the bookmarklet executes its JavaScript
program in the scope of the current page. The program contacts the LastPass
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website and retrieves the currently logged-in LastPass user’s encrypted password
data from the cloud server. It then uses the encryption key embedded in the
bookmarklet code to decrypt the password for the current page and fills in the
login form. If the browser does not have an active login session with LastPass,
the bookmarklet has no effect.

The main threat to the bookmarklet design is that it may be clicked on a
malicious website that may then tamper with the JavaScript environment to
subvert the bookmarklet’s functionality. A typical case is if the user acciden-
tally clicks the bookmarklet on a website that looks like a known trusted site.
Or the user has passwords for two different sites stored in her database, and
one of them may have been compromised. In these situations, the main goal
of the malicious website is to steal the user’s password at a different honest
website. The bookmarklet tries to prevent such attacks by identifying the web-
site the bookmarklet has been clicked on and only using its embedded secret
on trusted websites. However, identifying the host website and protecting the
bookmarklet secret are difficult in a tampered JavaScript environment, leading
to many attacks [2,10,7,12]. We propose a programming discipline that enables
secret-keeping bookmarklets that are robust against tampered environments.

As an alternative to bookmarklets, many password managers also provide a
downloadable browser extension that executes a similar JavaScript program, but
in a safer, more isolated JavaScript context. Password manager browser exten-
sions are subject to their own threat model [9], not detailed here. In particular,
even extensions must protect their secrets from being leaked by bugs in other
included JavaScript programs. To give a concrete example, the LastPass exten-
sion for the Google Chrome browser has 119 JavaScript files, of which only 5
contain any cryptography, but their security guarantees still must rely on the
correctness of these other scripts.

1.3 Single Sign-On and Social Sharing Buttons

Single Sign-On protocols (e.g Facebook’s Login button) are widely used by web-
sites that wish to implement authenticated sessions without the hassle of user
registration and password management. Another advantage is that the website
can leverage their users’ social networks to provide a richer experience (e.g.
Facebook’s Like button). From the user’s viewpoint, single sign-on and social
sharing buttons offer her a convenient and secure way of accessing and sharing
data across different websites, without needing to remember different passwords.

For example, to include the Facebook Login button on a web page, a website
W loads a JavaScript library provided by Facebook that displays the button.
When a user clicks on the button, the program asks Facebook for the currently
logged-in user’s access token for the current website W . If the user is logged in
and has previously authorized Facebook to provide an access token to W , Face-
book returns the access token in a URL. Otherwise, the user is forwarded to a
page where she may login and authorize W (or not). The program then gives the
access token to the website and also provides functions to access the Facebook
API and read or write (authorized elements of) the current user’s social profile.
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The protocol implemented by Facebook is OAuth 2.0 [19], which also prescribes
other message flows for server-side tokens and smartphones. Other popular sin-
gle sign-on protocols, such as OpenID, SAML, and BrowserID, provide similar
message flows that websites may use to obtain access tokens as user-specific
credentials.

The main threat to the single sign-on interaction above is that the access
token may be stolen by a malicious website and then used to impersonate the
user at an honest website, or to read or write the user’s profile information on
her social network. The OAuth 2.0 flow is particularly vulnerable since access
tokens are sent in URLs which may be leaked by Referer headers, or by HTTP
redirection, or by various browser and application bugs [8,26,12]. Since the access
token is used as a bearer token, and is often not specific to a website, it can be
immediately used by the adversary on any website to impersonate the user.

The BrowserID single sign-on protocol seeks to mitigate the effects of token
theft by using public key cryptography to authenticate the client5. Mozilla’s im-
plementation of BrowserID is written fully in JavaScript. The client includes a
JavaScript cryptography library that may be included by any site to retrieve
and sign tokens on behalf of the user. Even the single sign-on server is written
in JavaScript and deployed over node.js. The design of BrowserID has been
carefully evaluated by formal analysis [17], but to prove the code correct, one
must show that all the scripts loaded alongise behave safely. In Mozilla’s imple-
mentation, the server-side protocol moduls is loaded among 158 other node.js
modules, and a bug or malicious function in any of these modules could com-
promise both ther server’s and user’s private keys.

1.4 Towards Verifiably Secure Web Components

We have discussed three popular categories of JavaScript security components
that seek to protect sensitive user data such as files, passwords, and access
tokens from malicious websites using various combinations of authentication
protocols and cryptography. Each of these components is used in conjunction
with a number of other scripts that may modify the JavaScript environment.

Our goal is to write JavaScript security components in a style that their se-
curity can be formally proved even if the context is malicious. In particular,
we aim for a language-level isolation guarantee for our programs — that their
input-output functional behavior cannot be tampered with by the environment.
As a corollary, any secrets that are correctly protected by cryptography in our
programs cannot be stolen or modified by the adversary. This simple-sounding
isolation guarantee would be trivial to obtain in traditional programming langu-
gages with sound type systems, such as OCaml and Java. However, the flexibility
of JavaScript breaks many guarantees presumed by the programmer and the lan-
guage must be reined in before we can achieve our goal.

In Section 2, we discuss the peculiarities of JavaScript and the browser envi-
ronment that make it difficult to isolate security components. In Section 3, we

5 http://login.persona.org

http://login.persona.org
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present Defensive JavaScript (DJS), a typed subset of JavaScript that guarantees
isolation from the environment. In Section 4, we present a large cryptographic
library written in DJS and use it to write and verify simple cryptographic web
applications. Section 5 concludes.

2 Secure Messaging in an Untrusted Environment

As a motivating example, we consider how to implement a JavaScript program
that sends an authenticated message to a server. Our target web page is hosted
on a website W at URL http://W.com and it loads three scripts:

1 <html>

2 <body>

3 <script src="attacker1.js"></script>

4 <script src="messaging.js"></script>

5 <script src="attacker2.js"></script>

6 </body>

7 </html>

The first and third scripts are arbitrary malicious scripts chosen by the at-
tacker. The second script is our program that provides an API to send messages
to a server S at the URL http://S.com, via the XMLHttpRequest asynchronous
messaging API provided by the browser. (In some cases, W may be the same
site as S.) We assume that the program and S share a secret MACing key k.
The program uses this key to attach a MAC to each message sent to S.

The security goal is message authentication: every message received and ver-
ified by S must have been sent by our program running at W . In particular, it
should not be possible for the attacker scripts to steal the MAC key k and forge
messages to S. The above web page scenario may seem too paranoid, but more
generally, we want to guarnatee that that even if the surrounding scripts are just
buggy, not malicious, they still cannot accidentally leak the key.

2.1 Secure Delivery of the Secret Key

The first challenge is to deliver the MAC key to messaging.js in a way that
cannot be read by the other two attacker scripts.

Injecting the key as a token into the HTML document, or an HTTP cookie,
or in browser local storage would not work; if the messaging script can read it,
so can the attacker’s script. The only safe place for the key is to embed it into
the messaging program. But even in this case, there are many pitfalls. Consider
the following messaging script messaging.js with a key included on top:

1 var key = k;
2 var api = function(msg){ .../*send authenticated message*/}

Unfortunately, the attacker script attacker2.js can simply read the variable
key from the environment and obtain the key. A better solution would be to
protect the key within the function:
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1 var api = function(msg){

2 var key = k;
3 .../*send authenticated message*/

4 }

Now the script attacker2.js can no longer read the local variable key. How-
ever, it can retrieve the source code of the function api as a string by calling
api.toSource(). It can then extract the embedded key k from the string. To pro-
tect the source code of the function, we need to rewrite the function by wrapping
it within an anonymous function closure:

1 var api = (function (){

2 var _api = function(msg){

3 var key = k;
4 .../*send authenticated message*/}

5 return function(msg){return _api(msg);}

6 )();

Now, calling api.toSource() only reveals the code of the wrapper function,
and the code of the real _api function (which embeds the key k) remains private.

There remains another way for the attacker scripts to obtain the source code
of _api. If the script messaging.js is served from the current website’s origin
http://W.com, the source code of the whole script can be retrieved by either
attacker script by making an XMLHttpRequest to the script’s URL:

1 var xhr = new XMLHttpRequest();

2 xhr.open("GET","http://W.com/messaging.js",false);

3 xhr.send();

4 var program = xhr.responseText;

To prevent this, the messaging script must be served from a separate origin.
For example, the website W could set aside a separate origin for serving only
scripts, andplace themessaging script at say http://scripts.W.com/messaging.
js. in our example, it would also be suitable to source it from S’s origin, say at
http://S.com/messaging.js, so S can inject the shared key into the script. In
both cases, the attacker scripts on http://W.com would be unable to make an
XMLHttpRequest to read the code, due to the Same Origin Policy.

2.2 Calling External Functions

To construct and send a message, our messaging program will rely on several
external functions either builtin to the JavaScript language or provided by the
browser as part of the DOM library. For example, commonly used string func-
tions such as concatenation (s.concat(t)) or search (s.indexOf(t)) are defined
as methods in the String prototype. Other useful functions on arrays and ob-
jects are provided by the Array and Object prototypes. The window.Math object
provides implementations of many mathematical functions. The XMLHttpRequest

object allows asynchronous messaging with remote servers, and the postMessage

API implements client-side messaging between windows. Finally, the document

http://scripts.W.com/messaging.js
http://scripts.W.com/messaging.js
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object (or DOM) provides functions for reading and writing the HTML docu-
ment (e.g. document.getElementById(‘‘body’’)).

These external library functions are widely used by JavaScript programs. How-
ever, in our threat scenario, the attacker script attacker1.jsmay have redefined
every one of these functions by modifying the String, Array, and Object proto-
types, or by redefining these functions and objects in the window and document

objects. For example, the following code redefines the XMLHttpRequest object, so
that all messages send by the messaging script can be intercepted:

1 window.XMLHttpRequest =

2 function(){

3 return {open: function(){/*do whatever*/},

4 send: function(){/*do whatever*/}}}

Suppose our messaging program is written as follows; in addition to the
XMLHttpRequest object (and its methods), the code calls Crypto.HMAC:

1 var api = (function (){

2 var _api = function(msg){

3 var key = k;
4 var xhr = new XMLHttpRequest();

5 xhr.open("GET","http://S.com",false);

6 xhr.send(Crypto.HMAC(key,msg) + "," + msg);

7 }

8 return function(msg){return _api(msg);}}

9 )();

This code exemplifies three dangers of calling an external function.
First, the call to Crypto.HMAC leaks the key, since the attacker may have rede-

fined the function. Consequently, the only safe choice here is to inline the code
of the HMAC function into the messaging program. The HMAC function in turn re-
lies on a hashing function (say SHA-256) which would also need to be included
within the program. (To see what these functions look like in JavaScript, see our
implementation in Appendix A.)

Second, the call to any external function exposes _api function to a stack-
walking attack. For example, the attacker can redefine XMLHttpRequest.send so
that when it is called, it reads the source code of its calling function using the
caller method in the Function prototype:

1 stackwalk = function(){var program = stackwalk.caller.toSource();...}

2 window.XMLHttpRequest =

3 function(){

4 return {open: stackwalk,

5 send: stackwalk}}

Adding the above code in attacker1.js will set up the environment such
that when _api calls xhr.open, the attacker obtains the source code of _api and
hence its embedded key. The attack relies on the implementation of the caller

method, and it it works at least in Firefox at the time of writing. More generally,
this kind of stack-walking is a powerful attack vector. Whenever a function f is
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called, it can access its caller by accessing f.caller, and the next level on the
call stack by accessing f.caller.caller. At each level, it may examine (and even
overwrite) the arguments of the function.

Third, if our messaging script ever calls an external function, the attacker
may redefine its behavior so that the result of the function is not as expected.
For example, s.concat(t) may always return a constant string or Math.pow may
always return 0. In such cases, the functional integrity of our script has been
compromised, and if the results of these functions are used in the MAC function,
the authentication protocol may be broken even without leaking the secret key.

In summary, any external function calls from a the messaging script may lead
to a full compromise of its secrets and its functionality. To be safe, the script
must never call functions from within security sensitive functions whose source
code or arguments may be secret. Instead, all external function calls should be
factored out into a top-level wrapper function that calls a self-contained API:

1 var api = (function (){

2 var hmac = function(key,msg){/* inlined HMAC code */}

3 var _api = function(msg){

4 var key = k;
5 return (hmac(key,msg) + "," + msg);

6 }

7 return function(msg){return _api(msg);}

8 )();

9 var msg_api = function (msg) {

10 var mac = api(msg);

11 var xhr = new XMLHttpRequest();

12 xhr.open("GET","http://S.com",false);

13 xhr.send(mac);

14 }

Here, the external function call to XMLHttpRequest is performed outside the
sensitive API by a function msg_api that has no access to the secret MACing
key. Walking the stack to get to msg_api does not allow the attacker to steal any
secrets or to tamper with the _api function.

2.3 Implicit Calls to External Functions

In addition to explicit function calls, many JavaScript constructs implicitly trig-
ger methods defined in various prototypes. Since these prototypes may be mod-
ified by the adversary, we must also avoid such implicit calls in defensive code.

The first category of implicit function calls are coercions. For example, in the ex-
pression e == e’, if e is an object and e’ is a number, then the equalitywill trigger an
implicit coercion e.valueOf ewas an object; rest of paragraph assumes string. This
method valueOf is defined in the String prototype.More generally, comparison be-
tween any object and a string or a number may trigger the valueOf or toString
methods in that object’s prototype. Hence, by redefining these methods in the
Object prototype, the attacker can intercept any function that triggers an implicit
coercion and mount the attacks described in the previous subsection.
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The second category of implicit function calls are getters and setters. When-
ever an object is accessed at an undefined property (e.g. o.x), the JavaSript
interpreter traverses the prototype hierarchy to see if the property x is defined
in one of the prototypes that the object is derived from. If, say, none of the pro-
totypes has defined x, but the Object prototype defines a getter function for x,
then reading the property o.x will trigger this function. Similarly, if the Object

prototype has a setter function for x, writing to o.x will call the setter.
By defining getters and setters for specific properties, an attacker script can

cause trusted code to trigger an external function if it ever accesses an undefined
property. Similarly, if an array or string is every indexed out of bounds, it may
trigger a getter or setter in the Array prototype. Consequently, in our setting, the
messaging program should never access arrays, strings, or objects outside their
declared ranges. In particular, the popular JavaScript idiom of first declaring an
empty object and then extending it is vulnerable to attack:

1 Object.defineProperty(Object.prototype,"a",{set:function(){...}});

2 var x = {};

3 x.a = 1; // triggers malicious setter

4 Object.defineProperty(Array.prototype,"0",{set:function(){...}});

5 var y = [];

6 y[0] = 1; // triggers malicious setter

7 Object.defineProperty(Array.prototype,"1",{get:function(){...}});

8 y[0] = y[1]; // should be undefined, but triggers malicious getter

A particular subcase of prototype poisoning is worth mentioning. JavaScript
offers a for...in loop construct that goes through all the properties of an
object. For example for (i in {x:1})print(i) is expected to print ‘‘x’’ and
for (i in [1])print(i) is expected to print the single array index 0. However,
if the attacker modifies Object and Array prototypes to add more properties,
those properties will also be printed here. Even checking that each property was
defined locally within the object using the Object.hasOwnProperty function does
not help, since this function could also be modified by the adversary.

2.4 Defensive Programming Idioms

We have discussed many potential attack vectors that a malicious script may
employ when trying to subvert an honest JavaScript program running in the
same environment. To prevent these attacks, we advocate a defensive program-
ming discipline where programs aim to isolate their security-critical code from
the environment by using function closures, by being loaded from a different
origin, by refusing to explicitly call external functions, and by carefully prevent-
ing the triggering of coercions and prototype lookups. To systematically check
our programs for all these isolation conditions, we propose a static type system.
Defensiveness is a first step towards formal security guarantees. Once scripts
like our messaging program are correctly isolated, we may rely on their context-
independent semantics and on the functional integrity of their cryptographic
libraries to build automated security verification tools.
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Alternative Mitigations. The injunction that the core messaging API must be
fully self-contained may seem draconian and one may wonder if there are some
cases in which calling external functions is safe. If the goal is only to prevent
stack-walking, one may hide the stack by calling all external functions through a
recursive wrapper function [25]. However, this requires a source-to-source trans-
lation to implement effectively, especially for object methods like xhr.send.

Recent versions of JavaScript give programs the ability to freeze objects
and mark various properties as unmodifiable and/or unconfigurable (cannot be
deleted). It is tempting to suggest that the website W should freeze some objects
or that the browser should guarantee that some DOM properties are unforgeable.
These objects and properties would then be safe to access. However, the problem
with both Object.freeze and Object.defineProperty is that they need to apply
to the top object in the object hierarchy, otherwise it is ineffective. For example,
the properties document.location.href and window.location.href are commonly
considered unforgeable since modifying them would take the webpage to a new
location. Indeed, most browsers prevent JavaScript from redefining these prop-
erties. However, the attacker may directly redefine the window.document object
(FireFox) or the window.location object (Internet Explorer).

Another option is for the website W to run a script first that makes copies
of all relevant objects before they have been tampered by the attacker [18].
However, ensuring that a script runs first on a web page is surprisingly tricky [25].
Moreover, this solution does not work in scenarios where the website W itself
may be malicious or compromised.

One may also use isolation mechanisms outside JavaScript, such as HTML
iframes to effectively separate trusted and untrusted code [4]. In this paper, we
do not investigate such mechanisms and instead focus only on language-based
isolation. We note that the use of iframes relies on the semantics of the Same
Origin Policy which remains to be fully standardized, let alone formalized [28].
Furthermore, iframes may not be available in some JavaScript runtime envi-
ronments, such as smartphones and server applications. In these environments,
defensive programming becomes necessary.

3 Defensive JavaScript

We present a subset of JavaScript that enforces a strong defensive programming
discipline. Our language, Defensive JavaScript (DJS), imposes restrictions on
JavaScript code both at the syntactic level and through a static type system.
The main elements guiding the design of DJS are as follows:

Static Scopes. The variable scoping rules of JavaScript are notoriously difficult
to understand. For example, functions may use local variables before they are
declared. More worryingly, if a JavaScript program ever accesses a variable
that is not in its local scope, this access may trigger a getter or setter in
some prototype object. Consequently, we require that all variables in DJS
programs be strictly statically scoped. We impose this by restricting the
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occurance of variable declarations (var) and by enforcing a strong scoping
restriction on the bodies of with statements.

Static Types for Functions, Objects, and Arrays. To prevent out-of-
bound accesses to object properties, function arguments, and array indices,
we require that all these objects be statically types. Notably, this means that
the objects and arrays are not extensible and the types of variables cannot
be changed. Furthermore, dynamic accesses to arrays and strings are only
allowed when the index can be guaranteed to fall within bounds.

Coercion-Free Operations. To avoid triggering coercions, we enforce strict
types for all unary and binary operators. Comparisons, for example, can
only be performed between expressions of the same types.

Disjoint Heaps. To provide full isolation for our programs, we require that no
heap references are imported or exported by DJS code. Importing an external
object (array, function) is forbidden since accessing any of its properties may
trigger malicious code. Exporting an internal object is forbidden because it
may expose internal program state (and secrets) to the attacker. Hence, we
require that DJS programs can only export scalar (string -> string) APIs.

3.1 Syntax

The syntax of DJS depicted in Figure 1 reflects these design constraints. Since
DJS is a subset of JavaScript, much of the syntax is standard JavaScript and we
refer the reader to the full language specification for more syntactic details [16].

DJS includes the standard JavaScript literals: booleans, numbers, strings,
objects, and arrays. In fact, literals are the only way one may construct an
object or an array. DJS does not allow object constructors, and extending an
existing object or an array is forbidden.

DJS supports several unary (�) and binary (�) operators over numbers, strings,
and booleans. Since these operators are built into the language and cannot be
modified we can use them freely, except that the type system ensures that we
do not trigger coercions.

Left-hand-side expressions denote the various ways that objects, strings, and
arrays may be accessed in DJS code. Notably, dynamic accessors are severely
limited. For example, properties cannot be accessed via the e[i] syntax (where
i may have been dynamically computed). Instead, they must use the static
accessor e.x. This helps the typechecker ensure (statically) that only explicitly
defined properties are accessed (at runtime).

Arrays (and strings) can be accessed only at indexes that can be statically
shown to fall within the array (and string) bounds. We allow three kinds of
array indexes. The constant index e[η] is allowed when η is known to be within
the bounds of the array. The integer index e[e′&η] is allowed when η is an
integer (0 ≤ η < 230) and is within the array bounds. The bounded access
x[(e>>>0)%x.length] is always allowed.

Strings can be accessed with the three array access forms as well as a condi-
tional form that checks that the index is within the length of the string before
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a, b, c ::= literals
η numbers (0, 1, ...)xo
σ strings (‘‘...’’)
true, false booleans
[e1, . . . , en] array literals (n ≥ 0)
{x1 : e1, . . . , xn : en} object literals (n ≥ 0)

� ::= +,−, !,∼ unary operators
� ::= binary operators

+,−, ∗, /,% arithmetic operators
&, |, ^, <<, >>, >>>, >>>= bitwise operators
&&, || boolean operators
==, !=, >, <, >=, <= comparison operators

l,m, n ::= left-hand-side expressions
x,this.x variables
e.x object property
e[η] constant array index
e[e′&η] integer index (0 ≤ η < 230)
x[(e>>>0)%x.length] bounded array index
(e>>>=0) < x.length?x[e] : σ conditional string index

e ::= expressions
a literals
l left-hand-side expressions
l = e assignment
�e unary operation
e � e′ binary operation
ef (e1, . . . , en) function application (n ≥ 0)

s ::= statement
e expression
with (e) s scope
if (e) s1 else s2 conditional (else optional)
while (e)s while loop
{s1; . . . sn; } sequential composition (n ≥ 0)

f ::= function expression
function (x1, . . . , xn){

var y1 = d1, . . . , ym = dm;

s1; . . . sk; return e; }

(n,m, k ≥ 0)

d ::= e | f defined expression
pf ::= program (wrapping function f)

(function () {
var _ = f ;

return function (x) {if (typeof x == ‘‘string’’) return _(x); }})();

Fig. 1. Defensive JavaScript: Syntax
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accessing it, otherwise it returns a new string constant. The restrictions on dy-
namic accesses to objects, strings, and arrays are governed by the limits of our
type system and type inference algorithm. With a more expressive type system,
one may be able to allow other safe dynamic accessors.

Expressions include assignments, unary and binary operations, and function
and method applications. Functions and methods must be fully applied; we do
not allow optional arguments that may be left undefined.

Statements include if-then-else conditionals, while loops, and sequencing. No-
tably, variable declarations var x cannot appear in statements and property
enumeration via for-in is forbidden. General for loops are allowed by the type-
checker, even though they are not part of the formal syntax.

There are two mechanisms of introducing scope frames in DJS; functions (and
methods) and with. The statement with (e) s takes an object expression e and
makes its properties available as local variables to the statement s. To enforce
static scoping, we require that all the free unqualified variables of s be properties
in e. That is, looking up a free variable in the body of a with statement should
never require looking beyond the current with context.

The syntax of functions is restricted to make it easier to infer their scope
frames and return types. The function body begins with a series of variable
declarations; in fact, this is the only place where var statements appear in DJS
programs. The body continues with a series of statements and ends with a single
return statement. The function is not allowed to invoke return anywhere else.

The top-level program pf is a wrapper around a single function f ; it ensures
that the argument to the function is a string, calls the function, and returns
the result. The wrapping ensures that the source code of the internal function
is not leaked to the environment, and the argument typecheck ensures that the
program does not accidentally import an external heap reference.

3.2 Typing

The type rules depicted in Figures 2 and 3 enforce the language restrictions
described informally above. We write types and typing environments as follows:

Types and Environments

τ ::= Types
number | boolean | string | undefined Base Types
ρ Object
[τ ]n Array of length n ≥ 0
(τ1, . . . , τn) → τe Function n ≥ 0
(τ1, . . . , τn)[ρ] → τr Method on object of type ρ (n ≥ 0)

ρ ::= {x1 : τ1, . . . , xn : τn} Object Type (n ≥ 0)
κ ::= f | w Scope frame kind: function or with

Γ ::= ε | Γ, [ρ]κ Typing Environment

Types τ include the primitive base types of JavaScript, plus static types for
objects, arrays, functions, and methods. Object types ρ look like records; they
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declare a fixed set of properties and assign a static type to each property. Unlike
JavaScript, DJS array types [τ ]n require that all elements of the array must have
the same type τ and that the array length (n) must be fixed at initialization.

Each function is given a type (τ1, . . . , τn) → τr, which says that the function
expects n arguments with the indicated types τ1, . . . , τn and returns a result
of type τr. Method types look like function types, except that they have an
additional implicit argument — the object within which the method resides,
denoted by its type ρ. In DJS, methods may only be invoked with the syntax
e.m(x1, . . . , xn); it is, for example, forbidden to copy a method into a variable
and invoke it without the object prefix.

Typing environments consist of a sequence of scope frames, where each frame
looks like an object type ρ: it declares the types for a set of variables local to the
frame. Each frame also has a kind annotation that denotes whether the frame
was generated by a with statement or by a function (or method).

Most of the typing rules of DJS (Figures 2 and 3) are straightforwars. We give
a brief overview, focusing on the more unusual rules:

– The rules for typing literals (Num, String, BoolTrue, BoolFalse, Object,
Array) are standard.

– The casting rules (BoolCast, NumCast, StrCast) allow specific conversions
between primitive types that do not trigger coercions.

– The type rules for operators (Concat, UnaryOp, ArithmeticOp, Compar-
isonOp, BooleanOp) ensure that their arguments are already of the required
type, so that no coercions will be triggered during their execution.

– The object access rule (Property) ensures that the property is declared
within the object’s type.

– The three array access rules (ConstantIndex, IntegerIndex, BoundedIndex)
ensure that the index is an unsigned integer between 0 (inclusive) and the
array length (exclusive). The additional string indexing rule (Conditional-
StringIndex) also ensures that the string is accessed at an unsigned integer
index within the string.

– Assignment requires the left and right hand sides to have the same type.
Formally, there is no subtyping in DJS, even though the DJS typechecker
internally infers subtyping constraints.

– The rules for control-flow statements (Sequence, If, While) are standard.
– The rule for with e s (With) introduces a new frame of kind w into the typing

environment and uses this frame to typecheck the statement s. The frame
consists of the properties in the object type of the expression e.

– The variable scoping rules (VarLocal, VarFunctionScope) prescribe how to
lookup a variable in the typing environment. We first look for a local variable
in the current scope frame (VarLocal); if we fail, and if the current scope
frame was introduced by a function definition, we look further back into the
environment. If the current scope frame was introduced by a with statement,
we never look further. Hence, a well-typed with context in DJS must define
all the variables that may be used in its body, it cannot let any variable
lookup escape to the surrounding context.
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Num � η : number
String � σ : string

BoolTrue � true : boolean
BoolFalse � false : boolean

BoolCast Γ � e : τ
Γ �!e : boolean

NumCast
Γ � e : string

Γ � +e : number

StrCast Γ � e : number
Γ � e+ "" : string

Concat
Γ � e1 : string Γ � e2 : string

Γ � e1 + e2 : string

UnaryOp
Γ � e : number � ∈ {−,∼}

Γ � �e : number

ArithmeticOp

Γ � e1 : number Γ � e2 : number
� ∈ {+,−, ∗, /,%,&, |, ^, <<, >>, >>>, >>>=}

Γ � e1 � e2 : number

ComparisonOp

Γ � e1 : τ Γ � e2 : τ
τ ∈ {number, string} � ∈ {==, !=, <, >, >=, <=}

Γ � e1 � e2 : boolean

BooleanOp
Γ � e : boolean Γ � f : boolean � ∈ {&&, ||}

Γ � e � f : boolean

Object
� ei : τi i ∈ [1..n]

� {x1 : e1, . . . , xn : en} : {x1 : τ1, . . . , xn : τn} Array
� ei : τ i ∈ [1..n]

� [e1, . . . , en] : [τ ]n

Property
Γ � e : {x1 : τ1, . . . , xn : τn}

Γ � e.xi : τi
ConstantIndex

Γ � e : [τ ]m m > η ≥ 0

Γ � e[η] : τ

IntegerIndex
Γ � e : [τ ]m Γ � e′ : number 230 ≥ m > η ≥ 0

Γ � e[e′&η] : τ

BoundedArrayIndex
Γ � x : [τ ]n Γ � e : number n > 0

Γ � x[(e>>>=0)%x.length] : τ

ConditionalStringIndex
Γ � x : string Γ � y : number

Γ � ((y>>>=0) < x.length?x[y] : σ) : string

Fig. 2. Defensive JavaScript: Typing Rules (Literals and Expressions)
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Assign Γ � l : τ Γ � e : τ
Γ � l = e : τ

Sequence
Γ � si : undefined i ∈ [1..n]

Γ � {s1; . . . ; sn; } : undefined

If
Γ � e : boolean Γ � s, t : undefined

Γ � if(e) s else t : undefined

While Γ � e : boolean Γ � s : undefined
Γ � while(e) s : undefined

With
Γ � e : ρ Γ, [ρ]w � s : undefined

Γ � with(e) s : undefined

VarLocal
Φ(x) = τ

Γ, [Φ]κ � x : τ
VarFunctionScope

x �∈ dom(Φ) Γ � x : τ

Γ, [Φ]f � x : τ

FunctionCall
Γ � f : (τ1, . . . , τn) → τr Γ � ei : τi i ∈ [1..n]

Γ � f(e1, . . . , en) : τr

MethodCall

Γ � e : ρ = {x1 : τ1, . . . , xn : τn} τi = (τ ′
1, . . . , τ

′
m)[ρ] → τr

Γ � ei : τ
′
i i ∈ [1..m]

Γ � e.xi(e1, . . . , em) : τr

FunctionDef

ρk = {(xi : τi)i∈[1..n], (yj : μj)j∈[1..k]}
Γ, [ρk−1]f � dk : μk k ∈ [1..m]

Γ, [ρm]f � s : undefined Γ, [ρm]f � er : τr

Γ � function(x̃){var y1=d1, . . . , ym=dm; s ; return er} : τ̃ → τr

MethodDef
Γ � function (this, x̃){body} : (ρ, τ̃) → τr

Γ � function (x̃){body} : τ̃ [ρ] → τr

Program
Γ � f : string → string

Γ � pf : string → string

Fig. 3. Defensive JavaScript: Typing Rules (Statements and Programs)
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– Function and method calls must be fully applied with arguments of the
right types. Additionally, a method may only be called with an object of the
expected object type ρ.

– Function definitions introduce a sequence of scope frames. The first frame
consists of only the argument variables, and is used to typecheck the first
variable declaration. Each successive frame adds one local variable and is
used to typecheck the next variable definition. After all local variables have
been declared, the rest of the function body is typechecked with a frame that
consists of all arguments and all local variables.

– The rule for method definitions is similar to function definitions, except that
the body is typechecked in a frame that includes an implicit this argument
that has the object type ρ declared in the method type.

– Programs have the scalar API type string -> string. In practice, the DJS
typechecker is more general; it allows programs to export an object contain-
ing multiple scalar functions.

These typing rules are implemented by the DJS typechecker, which infers
types automatically without any annotations. The source code and an online
demo of the typechecker is available at http://defensivejs.com.

The DJS language and its type system imposes many restrictions on JavaScript
programs. In exchange, well-typed DJS programs enjoy strong isolation guaran-
tees. The key functional integrity property is called independence [12]:

Definition 1 (Independence). A program pf preserves the independence of
f if any two sequences of calls to the result of pf with the same sequence of
arguments, interleaved with arbitrary JavaScript code, return the same sequence
of return values, as long as no call triggered an exception.

The other key property, called encapsulation [12], guarantees that the DJS
program’s internal heap is isolated from the environment and that any internal
secrets can only be leaked though the exported API.

Definition 2 (Encapsulation). A program pf encapsulates f over domain D
if no JavaScript program that runs pf can distinguish between running pf and
running p′f for an arbitrary function f ′ without calling the wrapped function
returned by pf . Moreover, for any tuple of values ṽ ∈ D, the heap resulting from
calling pf (ṽ) is equivalent to the heap resulting from calling f(ṽ).

Well-typed DJS programs are guaranteed both these properties [12].

Theorem 1 (Defensiveness). If � f : string → string then the DJS program
pf encapsulates f over strings and preserves its independence.

4 Writing Defensive Cryptographic Applications

We present several case studies illustrating the use of DJS for building secure
web components. We begin by describing three libraries, and then describing
applications built with these libraries. Code sizes and verification details for these
programs are listed in Table 1. All our libraries, applications, and verification
tools are available from http://defensivejs.com.
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Table 1. Defensive JavaScript Libraries and Verified Applications

Program LOC Typechecking ProVerif LOC ProVerif

Encodings 339 24ms - -
DJCL 1425 300ms - -
DJSON and JOSE 433 36ms - -

Secure RPC 61 7ms 243 12s
Password Manager Bookmarklet 43 42ms 164 21s
Single Sign-On Library 135 42ms 356 43s
Encrypted Storage API 80 31ms 203 25s

4.1 Encoding and Decoding Strings

JavaScript applications often have to convert between different data encodings.
Unicode strings are typically encoded in UTF-8. Byte arrays can be stored in
integer arrays and converted either to ASCII strings, where each character rep-
resents a byte, or encoded in Base64, say for use in URLs.

Typical website JavaScript relies on a variety of libraries to implicitly and ex-
plicitly interconvert between strings and byte arrays in various formats (e.g.
window.atob, s.charCodeAt(i)). Since defensive code cannot rely on these li-
braries, we built our own encoding library that performs these conversions. The
library currently supports byte arrays encoded in Hexadecimal, UTF-8, Base64,
and ASCII and conversions between these formats.

The main limitation to using our DJS encoding library is performance, since
it has no access to native objects and libraries. Since we cannot trust that the
attacker has not tampered with efficient library objects like Int32Array, we en-
code all byte arrays as ASCII strings. Instead of relying on the String methods
fromCharCode and charCodeAt, which may be modified by the adversary, we use
large tables that map UTF-8 codes to their byte representations. The resulting
performance penalty depends on the amount of data being encoded, and on the
browser and hardware being used. We measured its impact on several applica-
tions (listed below), and surprisingly, even with the cost of encoding and de-
coding, DJS applications run as fast or faster than comparable JavaScript code.
Of course, encoding performance could be vastly improved if the browser could
provide access to an untamperable native library, such as the String prototype.

4.2 DJCL: Defensive JavaScript Crypto Library

We built a fully-featured JavaScript cryptography library in DJS, by adapting
and rewriting well-reputed libraries like SJCL [23] (for symmetric cryptography)
and JSBN (for public-key cryptography). Our implementation covers the follow-
ing primitives: AES on 256 bit keys in CBC and CCM or GCM modes, SHA-1
and SHA-256, HMAC, RSA encryption and signature on keys up to 2048 bits
with OAEP, PKCS1, or PSS padding. All our functions operate on byte arrays
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encoded as ASCII strings. Appendix A presents a detailed listing of the full code
for our HMAC and SHA-256 functions.

Typing guarantees that the input-output behavior of the cryptographic func-
tions cannot be tampered with by a malicious environment. However, this does
not mean that our code correctly implements the cryptographic algorithm, or
that it does not accidentally leak its secrets either explicitly in a return value or
implicitly via a side-channel. Proving the functional correctness of our crypto-
graphic library or its robustness against side-channels remains an open problem.

We evaluated the performance of various DJCL functions using the jsperf

benchmark engine6 on Chrome 24, Firefox 18, Safari 6.0 and IE 9. We found that
our AES block function, SHA compression functions and RSA exponentiation
performed at least as fast as their SJCL and JSBN counterparts, and sometimes
even faster. We conclude that defensive coding is well suited for bit-level, self-
contained crypto computations, and JavaScript engines find it easy to optimize
our non-extensible arrays and objects.

On the other hand, when implementing high-level constructions such as HMAC
or CCM encryption that operate on variable-length inputs, we must pay the
cost of encoding and decoding data as ASCII strings. Despite this performance
penalty, even on mobile devices, DJCL achieves encryption and hashing rates
upwards of 150KB/s, which is sufficient for most applications.

To further exercise our cryptographic library, we built an implementation of
the upcoming W3C Web Cryptography API standard [15], which is currently
being implemented by various browsers and JavaScript libraries as an extension
to the window object. We implement this API as a set of non-defensive func-
tions that wrap DJCL. We compared the performance of our implementation
on benchmarks provided by Chrome and Microsoft; our code is as fast as both
native and JavaScript implementations provided by mainstream browsers.

4.3 JSON Serialization

Messaging applications in JavaScript widely use the JSON format, which is con-
sidered more compact and easier to use programmatically than XML. JSON
defines a JavaScript-like syntax for serializing scalar objects and arrays. For ex-
ample, the object {a:"s",b:[0,1]} is written in JSON notation as the string
‘{"a":"s","b":[0,1]}’.

All modern browsers provide libraries for serializing and deserializing JSON
objects. The function JSON.stringify takes any JavaScript object and serializes
it as a string, typically by ignoring any functions it finds in the object’s structure.
Conversely, the function JSON.parse takes a string and attempts to reconstruct a
scalar JavaScript object from the string. DJS programs cannot use the browser’s
JSON library, since it may have been tampered by the adversary. So we build a
defensive JSON library (DJSON) to provide this functionality.

DJSON.stringify is conceptually a simple function; it takes an object, enumer-
ates its properties, and writes them out to a string. However, since the attacker

6 http://jsperf.org

http://jsperf.org
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may tamper the Object and Array prototypes, neither the for...in loop nor new
APIs like Object.keys can be trusted to correctly enumerate properties. Conse-
quently, DJSON.stringify takes an additional parameter — an object “schema”
that describes the type of the JSON object. For example, to serialize the JSON
example above, an application would call DJSON.stringify as follows:

1 DJSON.stringify({a:"s",b:[0,1]}, // JSON object

2 {type:"object", // Schema object

3 props: [

4 {name:"a",value:"string"},

5 {name:"b",value:{

6 type:"array",

7 props:[{name:"0",value:"number"},

8 {name:"1",value:"number"}]}}]})

Given such a schema, DJSON.stringify ensures that the given object has all
the fields and array indices declared in the schema before returning the serialized
string; if the object does not match the schema it returns an error.

Implementing DJSON.parse is a bit more challenging, since the function needs
to create a new object with an arbitrary number of properties. Creating an empty
object and adding properties to it would not work, since the attacker may have
set up malicious setter functions on the Object prototype. We define a defensive
DJSON.parse function that requires three parameters — the string to parse, the
schema for the expected JSON object, and a pre-allocated object that matches
this expected schema. DJSON.parse does not create a new object; instead, it fills
in this pre-allocated object. To return to our example, to parse the serialized
JSON string, the application would first create an object result and then call
DJSON.parse as follows:

1 var result = {a:"",b:[-1,-1]}; // Pre-allocated JSON object

2 DJSON.parse(’{"a":"s","b":[0,1]}’, // Serialized JSON string

3 {type:"object", // Schema object

4 props: [

5 {name:"a",value:"string"},

6 {name:"b",value:{

7 type:"array",

8 props:[{name:"0",value:"number"},

9 {name:"1",value:"number"}]}}]},

10 result)

The schemas used for these two functions are closely related to the expected
object types of the JSON objects. Indeed, our typechecker processes these
schemas as type annotations and uses them to infer types for code that uses
these functions.

Using explicit schemas with fixed object and array lengths imposes an impor-
tant restriction; our JSON library only works with objects whose sizes are known
in advance to the programmer. We have implemented extensions of DJS that use
ML-style algebraic constructors (e.g. cons, nil) to allow extensible objects and
arrays. The resulting encoded objects are less efficient than object literals but
more flexible since they can represent dynamically-sized objects.
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By combining our cryptographic library DJCL with DJSON, we implemented
a family of IETF standards collectively called Javascript Object Signing and
Encryption (JOSE) [21]. These standards include JSON Web Tokens (JWT),
which specifies authenticated JSONmessages, and JSONWeb Encryption, which
specifies encrypted JSON messages. Our defensive JOSE library interoperates
with other implementations of these specfications, and we use it to implement
various cryptographic messaging protocols, such as Secure RPC (see below).

4.4 Applications

We briefly describe four DJS applications that we built using our libraries. We
ran the DJS typechecker to verify their defensiveness. Furthermore, as we shall
see in the next subsection, we also verifed their cryptographic security against
both network and web attackers by translation to the applied pi calculus.

Secure RPC. Using the JOSE libraries, we programmed a variation of the se-
cure messaging program of Section 2 in DJS. The program consists of a core
typechecked API object that embeds a secret shared between the program and
a trusted server S.

The API provides two functions: makeRequest takes a string and returns a
serialized JWT object containing the argument and its HMAC; processResponse
takes a string, parses it as a JWT object, verifies the HMAC and returns the
payload (or an error). A non-defensive function then wraps this API to imple-
ment a secure RPC: it calls makeRequest to create the request, sends this request
via XMLHttpRequest (or postMessage) to a recipient, waits for a response, calls
processResponse and returns the result.

The security goal of this RPC application is authentication and correlation
for the request and response. The goal relies on the secrecy of the HMAC key
and the correct use of the HMAC function. Defensiveness guarantees that the
key is not accidentally leaked, but the authentication protocol implemented by
the application may still fail to achieve its goals. For example, the application
may leak the key in its outgoing message or serialize the message incorrectly
before MACing. We will see how to analyze the cryptographic security of the
application using the protocol analyzer ProVerif [13].

Password Manager Bookmarklet. We implemented a version of the LastPass
passwordmanager bookmarklet in DJS. The bookmarklet embeds a secret HMAC
key, and when it is clicked on a website W , it performs a secure RPC with the
LastPass website using this key to retrieve the currently logged in LastPass user’s
username and password for the website W and fill it in.

The security goal of the bookmarklet is to enable LastPass to authenticate
that the user clicked the bookmarklet on the hosting website W . In particular,
a malicious website W should not be able to steal the secret HMAC key or
impersonate another website S, even if the user clicks the bookmarklet at W .
At LastPass, the bookmarklet is authenticated by the secret key, whereas the
website W is authenticated by the Origin header that the browser sends along
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with the XMLHttpRequest message. While many previous attacks have been found
on password manager bookmarklets [2,10], our DJS-based solution is the first
that can verifiably protect the bookmarklet and its secrets in this scenario.

Protecting Single Sign-On Tokens. We implemented a version of the Facebook
JavaScript library that uses a DJS component to protect the user’s Facebook
access token from other scripts on the page. The DJS component embeds the
access token and provides an API though which scripts on the page can access
an authorized subset of the user’s Facebook profile. The DJS script uses the
access token as a MAC key to avoid leaking it to the environment.

In this design, malicious scripts on the page can access (parts of) the user’s
Facebook profile as long as the page is open, but do not get direct (long-term,
offline) access to the access token, and they lose all access when the page is closed
and the DJS script stops executing. In particular, the malicious script can never
use the token to impersonate the user at another website.

An Encrypted Storage API. Our final DJS application implements an API for
encrypted cloud storage. User files are encrypted at the client (via DJCL) and
uploaded to a cloud server. The file encryption keys themselves are stored en-
crypted in local storage, using a master encryption key derived from a passphrase
that is known only to the user. The user enters the passphrase on a protected
login page (served from a distinct origin), and the derived key is subsequently
embedded into a DJS script on the main storage service website.

By using DJS, we isolate the application code that implements cryptography
from the rest of the page. Hence, an XSS attack on the main website cannot
steal the file encryption key or the master encryption key. However, it can still
read and modify user files as long as the page is open. As such, our proposed
DJS API is the first to protect long term secrets on encrypted cloud storage
websites from XSS attacks, unlike many previous designs [7].

4.5 Verifying Applications with ProVerif

Well-typed programs in DJS enjoy functional integrity and heap isolation, so
the environment can only interact with them through their exported scalar
(string -> string) APIs. Even if the environment is malicious, it cannot ac-
cess or interfere with the internal state of the program. This isolation guarantee
makes it possible to analyze a DJS program independently of its environment,
an immense advantage over traditional JavaScript.

DJS prevents some kinds of accidental leakage of secrets, but it cannot protect
a program that leaks secrets through its exported interface. For example, even
a well-typed DJS program may foolishly return a secret in the result of a public
function. Furthermore, even though the DJCL cryptographic library is defensive,
it cannot ensure that the application uses it correctly to achieve its security goals.

Designing application-layer cryptographic protocols is an error prone task
(e.g. see the attacks in [10]). We advocate the use of formal protocol analysis
tools that can verify that DJS applications meet their goals.
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We define a translation from DJS programs to processes in the applied pi
calculus. The translation mimics previous formal translations to the applied
pi calculus from F# [11] and Java [6]. These previous works prove translation
soundness — every attack on the source program is present in its translation.
However, we do not prove any soundness result for our translation.

Appendix B provides a detailed listing of the applied pi calculus translation
for a simple DJS program that can send and receive authenticated messages.

Each DJS function is translated to a process following Milner’s famous “func-
tions as processes” encoding of the lambda calculus into the pi calculus [22].
The translated process waits for arguments on an input channel, computes the
function result and sends it back on an output channel.

The DJS programmer may selectively prefix any function name by _lib. (thus
placing it in the _lib object) to indicate that the code of the function should not
be translated; instead the function should be treated as a trusted primitive. For
example, we label all cryptographic primitives and encoding functions as trusted.
Their code is not verified; instead, calls to these functions are translated to calls
to symbolic constructors and destructors in the applied pi calculus.

The JavaScript heap and stack frames are modeled by a global private table
heap that is indexed by unique references (fresh pi calculus names). Each object,
array, function, and local variable corresponds to an entry in the table. A function
can read and write an entry as long as it knows its reference.

Programs may contain two kinds of security annotations that will be treated
specially in the translation. A function may log a security event by calling _lib.

event. For example, _lib.event(Send(a,b,x)) may indicate that a is going to use
a secret key to authenticate a message x to b. These are translated to events in the
applied pi calculus and are then used to specify authentication goals. A function
may also label a certain value as secret (_lib.secret(x)). This expression is
translated as the application of a private constructor, and is used to specify
secrecy goals for an application.

The translated applied pi calculus process is composed with the WebSpi li-
brary and analyzed for violations of its security goals using the cryptographic
protocol analyzer ProVerif. The WebSpi library models web browsers, web
servers, and enables a variety of well-known web and network attacks. To model
the malicious JavaScript environment, we give the attacker read and write ac-
cess to the global heap table, but only for the entries for which he knows the
references. The attacker cannot forge pointers. In addition, the attacker is given
control over all public channels and access to the function input and output
channels for the API exported by the DJS program. The attacker cannot di-
rectly access the processes corresponding to internal functions.

Table 1 reports the ProVerif verification time for a few DJS applications.
As depicted in Appendix B, ProVerif may find a counterexample to the security
goals, which probably indicates an attack on the source DJS program. If ProVerif
verifies the security goals, one gain some confidence in the application, but we
caution that there may be other attacks not captured by our WebSpi model.
Occasionally, ProVerif may not terminate, typically when the source program
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uses loops or recursive functions. In this case, the programmer may need to edit
the source program or its translation to help ProVerif reach a conclusion.

5 Conclusions

We presented the design of DJS, a defensive subset of JavaScript that is par-
ticularly suited for programming web security components that may execute in
malicious environments. DJS is not meant for programming whole websites. It
does not allow access to any external libraries and imposes many language re-
strictions that may feel awkward to a typical JavaScript programmer, but are
necessary for security on malicious websites. We have shown that large libraries
such as DJCL and various applications can be programmed in DJS, at little cost
to performance but great gains in security. We showed how DJS applications can
be automatically verified for security using the cryptographic protocol analyzer
ProVerif. As future work, we plan to relax some of the restrictions of DJS by
relying on frozen and unforgeable objects in the environment, as well as by using
more expressive types to capture more safe programs. We also plan to prove a
formal soundness result for our translation from DJS to the applied pi calculus.
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A Defensive HMAC-SHA-256 Code

To illustrate the DJS programming style as it is used in cryptographic libraries,
we present below the full code for the HMAC and SHA-256 functions imple-
mented in DJCL. The code shown here is accepted by the DJS typechecker and
hence does not rely on any external functions. To see the code for other defen-
sive cryptographic functions and applications and to try out variations of these
programs against the DJS tpechecker, visit http://defesnsivejs.com.

1 /**

2 * A hashing library to include with Defensive Applications

3 */

4 var hashing = (function()

5 {

6

7 return {

http://www.proverif.inria.fr/manual.pdf
http://tools.ietf.org/wg/jose/
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8 /** SHA-256 hash function.

9 * @param {string} msg message to hash, as a hex string

10 * @returns {string} hash, as an hex string.

11 * @alias hashing.sha256

12 */

13 sha256: {

14 name: ’sha-256’,

15 identifier: ’608648016503040201’,

16 size: 32,

17 block: 64,

18

19 key: [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,

20 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,

21 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,

22 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,

23 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,

24 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,

25 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,

26 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,

27 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,

28 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,

29 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,

30 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,

31 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,

32 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,

33 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,

34 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2],

35

36 hash: function(s)

37 {

38 var s = s + ’\x80’, len = s.length, blocks = len >> 6,

39 chunk = len & 63, res = ’’, p = ’’,

40 i = 0, j = 0, k = 0, l = 0,

41 H = [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,

42 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19],

43 w = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

44

45 while(chunk++ != 56)

46 {

47 s+="\x00";

48 if(chunk == 64){ blocks++; chunk = 0; }

49 }

50

51 for(s+="\x00\x00\x00\x00", chunk=3, len=8*(len-1);

52 chunk >= 0; chunk--)

53 s += encoding.b2a(len >> (8*chunk) &255);

54

55 for(i=0; i < s.length; i++)

56 {

57 j = (j<<8) + encoding.a2b(s[i]);
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58 if((i&3)==3){ w[(i>>2)&15] = j; j = 0; }

59 if((i&63)==63) this._round(H,w);

60 }

61

62 for(i=0; i < H.length; i++)

63 for(j=3; j >= 0; j--)

64 res += encoding.b2a(H[i] >> (8*j) & 255);

65

66 return res;

67 },

68

69 _round: function(H,w)

70 {

71 var a = H[0], b = H[1], c = H[2], d = H[3], e = H[4],

72 f = H[5], g = H[6], h = H[7], t = 0, u = 0, v = 0, tmp = 0;

73

74 for(t=0; t < 64; t++)

75 {

76 if(t < 16) tmp = w[t&15];

77 else

78 {

79 u = w[(t+1)&15]; v = w[(t+14)&15];

80 tmp = w[t&15] = ((u>>>7 ^ u>>>18 ^ u>>>3 ^ u<<25 ^ u<<14) +

81 (v>>>17 ^ v>>>19 ^ v>>>10 ^ v<<15 ^ v<<13) +

82 w[t&15] + w[(t+9)&15]) | 0;

83 }

84

85 tmp = (tmp + h + (e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7)

86 + (g ^ e & (f^g)) + this.key[t&63]);

87 h = g; g = f; f = e; e = d + tmp | 0; d = c; c = b; b = a;

88 a = (tmp + ((b&c) ^ (d&(b^c))) + (b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30

^ b<<19 ^ b<<10)) | 0;

89 }

90

91 H[0]=H[0]+a|0; H[1]=H[1]+b|0; H[2]=H[2]+c|0; H[3]=H[3]+d|0;

92 H[4]=H[4]+e|0; H[5]=H[5]+f|0; H[6]=H[6]+g|0; H[7]=H[7]+h|0;

93 }

94 },

95

96 /** The hash function to use for HMAC, hashing.sha256 by default

97 * @alias hashing.hmac_hash

98 */

99 hmac_hash: sha256,

100

101 /** HMAC: Hash-based message authentication code

102 * @param {string} key key of the authentication

103 * @param {string} msg message to authenticate

104 * @returns {string} authentication code, as an hex string.

105 * @alias hashing.HMAC

106 */
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107 HMAC: function(key, msg)

108 {

109 var key = key+’’, msg = msg+’’, i = 0, h = this.hmac_hash,

110 c = 0, p = ’’, inner = "", outer = "";

111

112 if(key.length > h.block) key = h.hash(key);

113 while(key.length < h.block) key += "\x00";

114

115 for(i=0; i < key.length; i++)

116 {

117 c = encoding.a2b(key[i]);

118 inner += encoding.b2a(c ^ 0x36);

119 outer += encoding.b2a(c ^ 0x5C);

120 }

121

122 return encoding.astr2hstr(h.hash(outer + h.hash(inner + msg)));

123 }

124 };

125 })();

B Verification Example

Source Program. We begin with the following DJS program that uses a cryp-
tographic hash function _lib.hmac (as defined above) to authenticated messages
between two scripts that are running on the same malicious page and which
share a symmetric HMAC key.

Both scripts run the same core DJS program that embeds the key mac_key

and provides an API with three functions:

– mac takes a string message x, logs a security event Send(x), and returns the
HMAC of x using the key mac_key.

– verify takes a string message x and a string t and verifies that t is the
HMAC of x using mac_key. It then logs the event Accept(x,t,res) with the
boolean result of the verification and returns the boolean.

– guess is used to specify syntactic secrecy. It takes a string argument k and
logs the event Leaked(k,true) if k is the same as the secret key mac_key.

These core functions may be used by untrusted wrapper functions to create
messages that are then sent from one script to other via any communication
mechanism, such as window.postMessage. We assume that this external wrapper
code is under the control of the adversary, who may subvert it by tampering
with the window object. Hence, for verification, we assume that the attacker can
directly call our core API and state our goals using security events in this API.

The intuition for the security events is that whenever Accept(x,t,true) is
logged for a message x, that is the recipient program accepts x, it must be the
case that Send(x) has been logged before, that is the sender program must have
intended to send x. This is called a correspondence assertion [27] and is a common
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way of formalizing authentication goals in cryptographic protocols. Conversely,
we expect that the event Leaked(k,true) is never logged, that is the HMAC key
remains unknown to the adversary.

These authentication and secrecy queries are embedded on the top of the
script using the _lib.spec function, which tells the ProVerif translator to directly
embed its argument into the generated scripts. We run the ProVerif translator
on this simple DJS library and verify that the API satisfies these queries.

1 /* Declaring Events */

2 _lib.spec("event�Send(String)");

3 _lib.spec("event�Accept(String,String,Boolean)");

4 _lib.spec("event�Leaked(String,Boolean)");

5

6 /* Sanity Check: Are the Events Reachable? */

7 _lib.spec("query�x:String;�event(Send(x))");

8 _lib.spec("query�x:String,t:String;�event(Accept(x,t,bool_true()))");

9

10 /* Authentication Query */

11 _lib.spec("query�x:String,t:String;�event(Accept(x,t,bool_true()))�==>�

event(Send(x))");

12

13 /* Secrecy Query */

14 _lib.spec("query�x:String;�event(Leaked(x,bool_true()))");

15

16 x = (function()

17 {

18 var mac_key = _lib.secret("xxx");

19

20 var mac = function (x) {

21 _lib.event(_lib.Send(x));

22 return _lib.hmac(x, mac_key);

23 }

24

25 var verify = function (x,t) {

26 var res = _lib.hmac(x, mac_key) === t;

27 _lib.event(_lib.Accept(x,t,res));

28 return res ? "yes" : "no";

29 }

30

31 var guess = function (k) {

32 var res = k == mac_key;

33 _lib.event(_lib.Leaked(k,res));

34 return res ? "yes" : "no";

35 }

36

37 var _ = function(s)

38 {

39 var o = _lib.DJSON_parse(s, {t: "", h: ""});

40 var h = o.h;

41
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42 // oops = mac key;

43 return (o.t == "" ? guess(h) :

44 (h == "" ? mac(o.t) :

45 verify(o.t, h)));

46 }

47

48 return function(s){if(typeof s=="string") return _(s)};

49 })();

Generated Model. The ProVerif script generated by our model extraction tool
(DJS2PV) is presented below to illustrate the translation. The script uses the
typed applied pi calculus syntax described in [14]. It shows how the various DJS
objects and variables are stored in the heap table, how the functions are encoded
as processes, how the call to the _lib.hmac function is turned into a function
call, and how all constant strings are extracted as top-level declarations.

The generated script relies on an external WebSpi library that defines all the
types (String, Boolean, MemLoc, Function), the cryptographic functions (hmac,
secret), and a table representing the JavaScript heap (heap). The WebSpi li-
brary encodes a rich attacker model that includes both web and network at-
tacks. To verify DJS, we extend WebSpi to allow the attacker direct access
to the JavaScript heap: the attacker can insert any object into the heap and
read any object for which he knows the table index (representing the heap
reference). More details on the original WebSpi library can be obtained from
http://prosecco.inria.fr/webspi. Other verification examples that rely on
WebSpi have appeared in [8,7].

1 free var_x:Memloc.

2

3 free str_1:String.

4 free str_2:String.

5 free str_3:String.

6 free str_4:String.

7 free str_5:String.

8

9 event Send(String).

10 event Accept(String,String,Boolean).

11 event Leaked(String,Boolean).

12 query x:String; event(Leaked(x,bool_true())).

13 query x:String; event(Send(x)).

14 query x:String,y:String; event(Accept(x,y,bool_true())).

15 query x:String,y:String; event(Accept(x,y,bool_true())) => event(Send(x))

.

16

17 process

18 (new fun_1:channel;

19 (!in(fun_1, (ret_1:channel));

20 new var_mac_key:Memloc;

21 insert heap(var_mac_key,mem_string(secret(str_1)));

22 new var_mac:Memloc;
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23 new fun_2:channel;

24 (!in(fun_2, (ret_2:channel,arg_x:String));

25 new var_x:Memloc;

26 insert heap(var_x,mem_string(arg_x));

27 get heap(=var_x, mem_string(val_1)) in

28 event Send(val_1);

29 get heap(=var_x, mem_string(val_2)) in

30 get heap(=var_mac_key, mem_string(val_3)) in

31 out(ret_2,hmac(val_2,val_3));

32 0)|

33 insert heap(var_mac,

34 mem_function(function(fun_2)));

35 new var_verify:Memloc;

36 new fun_3:channel;

37 (!in(fun_3, (ret_3:channel,arg_x:String,arg_t:String));

38 new var_x:Memloc;

39 insert heap(var_x,mem_string(arg_x));

40 new var_t:Memloc;

41 insert heap(var_t,mem_string(arg_t));

42 new var_res:Memloc;

43 get heap(=var_x, mem_string(val_4)) in

44 get heap(=var_mac_key, mem_string(val_5)) in

45 get heap(=var_t, mem_string(val_6)) in

46 insert heap(var_res,mem_boolean(equal(mem_string(hmac(val_4,val_5)),

mem_string(val_6))));

47 get heap(=var_x, mem_string(val_7)) in

48 get heap(=var_t, mem_string(val_8)) in

49 get heap(=var_res, mem_boolean(val_9)) in

50 event Accept(val_7,val_8,val_9);

51 get heap(=var_res, mem_boolean(val_10)) in

52 let val_11=(if val_10=bool_true() then str_2 else str_3) in

53 out(ret_3,val_11);

54 0)|

55 insert heap(var_verify,

56 mem_function(function(fun_3)));

57 new var_guess:Memloc;

58 new fun_4:channel;

59 (!in(fun_4, (ret_4:channel,arg_k:String));

60 new var_k:Memloc;

61 insert heap(var_k,mem_string(arg_k));

62 new var_res:Memloc;

63 get heap(=var_k, mem_string(val_12)) in

64 get heap(=var_mac_key, mem_string(val_13)) in

65 insert heap(var_res,mem_boolean(equal(mem_string(val_12),mem_string(

val_13))));

66 get heap(=var_k, mem_string(val_14)) in

67 get heap(=var_res, mem_boolean(val_15)) in

68 event Leaked(val_14,val_15);

69 get heap(=var_res, mem_boolean(val_16)) in

70 let val_17=(if val_16=bool_true() then str_2 else str_3) in
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71 out(ret_4,val_17);

72 0)|

73 insert heap(var_guess,

74 mem_function(function(fun_4)));

75 new var__:Memloc;

76 new fun_5:channel;

77 (!in(fun_5, (ret_5:channel,arg_s:String));

78 new var_s:Memloc;

79 insert heap(var_s,mem_string(arg_s));

80 new var_o:Memloc;

81 get heap(=var_s, mem_string(val_18)) in

82 insert heap(var_o,mem_object(DJSON_parse(val_18,obj_add(obj_add(obj_empty

(), obj_prop(str_4, mem_string(string_empty))), obj_prop(str_5,

mem_string(string_empty))))));

83 new var_h:Memloc;

84 get heap(=var_o, mem_object(val_19)) in

85 insert heap(var_h,mem_string(obj_property_string(val_19,str_4)));

86 get heap(=var_o, mem_object(val_32)) in

87 get heap(=var_guess, mem_function(val_20)) in

88 get heap(=var_h, mem_string(val_21)) in

89 let function(fun_6)=val_20 in

90 new ret_6:channel;

91 out(fun_6, (ret_6,val_21));

92 in(ret_6, val_22:String);

93 get heap(=var_h, mem_string(val_30)) in

94 get heap(=var_mac, mem_function(val_23)) in

95 get heap(=var_o, mem_object(val_24)) in

96 let function(fun_7)=val_23 in

97 new ret_7:channel;

98 out(fun_7, (ret_7,obj_property_string(val_24,str_5)));

99 in(ret_7, val_25:String);

100 get heap(=var_verify, mem_function(val_26)) in

101 get heap(=var_o, mem_object(val_27)) in

102 get heap(=var_h, mem_string(val_28)) in

103 let function(fun_8)=val_26 in

104 new ret_8:channel;

105 out(fun_8, (ret_8,obj_property_string(val_27,str_5),val_28));

106 in(ret_8, val_29:String);let val_31=(if equal(mem_string(val_30),

mem_string(string_empty))=bool_true() then val_25 else val_29) in

107 let val_33=(if equal(mem_string(obj_property_string(val_32,str_5)),

mem_string(string_empty))=bool_true() then val_22 else val_31) in

108 out(ret_5,val_33);

109 0)|

110 insert heap(var__,

111 mem_function(function(fun_5)));

112 new fun_9:channel;(!in(fun_9, (ret_9:channel, arg_s:Memval));let

mem_string(s)=arg_s in (new var_s:Memloc;insert heap(var_s,arg_s);

get heap(=var__, mem_function(val_34)) in

113 get heap(=var_s, mem_string(val_35)) in

114 let function(fun_10)=val_34 in
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115 new ret_10:channel;

116 out(fun_10, (ret_10,val_35));

117 in(ret_10, val_36:String);

118 out(ret_9,val_36);

119 0) else out(ret_9, undefined()))|

120 out(ret_1,function(fun_9));

121 0)| let function(fun_11)=function(fun_1) in

122 new ret_11:channel;

123 out(fun_11, (ret_11));

124 in(ret_11, val_37:Function);

125 insert heap(var_x, mem_function(val_37));

126 0) |

127 attackerHeap()

Example Attack. If line 42 is uncommented in the source DJS program (caus-
ing the key to be accidentally written to a global variable oops, ProVerif is able to
show that the Leaked event is triggered, and produces the following trace. (Note:
this bug is also caught by the DJS typechecker as a defensiveness violation.)

1 new fun_8 creating fun_398886 at {1}

2 new ret_260 creating ret_398877 at {419}

3 out(fun_398886, ret_398877) at {420} received at {3} in copy a_398865

4 new var_mac_key creating var_mac_key_398884 at {4} in copy a_398865

5 new k_11 creating k_398878 at {6} in copy a_398865

6 insert heap(var_mac_key_398884,mem_string(k_398878)) at {7} in copy

a_398865

7 new var_mac creating var_mac_399613 at {8} in copy a_398865

8 new fun_12 creating fun_399614 at {9} in copy a_398865

9 insert heap(var_mac_399613,mem_function(function(fun_399614))) at {19} in

copy a_398865

10 new var_verify creating var_verify_399615 at {20} in copy a_398865

11 new fun_18 creating fun_399616 at {21} in copy a_398865

12 insert heap(var_verify_399615,mem_function(function(fun_399616))) at {43}

in copy a_398865

13 new var_guess creating var_guess_398890 at {44} in copy a_398865

14 new fun_31 creating fun_398879 at {45} in copy a_398865

15 insert heap(var_guess_398890,mem_function(function(fun_398879))) at {63}

in copy a_398865

16 new var__ creating var___398897 at {64} in copy a_398865

17 new fun_41 creating fun_398880 at {65} in copy a_398865

18 insert heap(var___398897,mem_function(function(fun_398880))) at {402} in

copy a_398865

19 new fun_249 creating fun_398892 at {403} in copy a_398865

20 out(ret_398877, function(fun_398892)) at {417} in copy a_398865 received

at {421}

21 insert heap(var_x,mem_function(function(fun_398892))) at {422}

22 in(pub, var_x) at {424} in copy a_398875

23 get heap(var_x,mem_function(function(fun_398892))) at {425} in copy

a_398875

24 out(pub, mem_function(function(fun_398892))) at {426} in copy a_398875
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25 in(fun_398892, (a_398872,mem_string(DJSON_stringify(a_398871)))) at {405}

in copy a_398865, a_398873

26 new var_s_253 creating var_s_398896 at {407} in copy a_398865, a_398873

27 insert heap(var_s_398896,mem_string(DJSON_stringify(a_398871))) at {408}

in copy a_398865, a_398873

28 get heap(var___398897,mem_function(function(fun_398880))) at {409} in

copy a_398865, a_398873

29 get heap(var_s_398896,mem_string(DJSON_stringify(a_398871))) at {410} in

copy a_398865, a_398873

30 new ret_257 creating ret_398893 at {412} in copy a_398865, a_398873

31 out(fun_398880, (ret_398893,DJSON_stringify(a_398871))) at {413} in copy

a_398865, a_398873 received at {67} in copy a_398865, a_398874

32 new var_s creating var_s_398895 at {68} in copy a_398865, a_398874

33 insert heap(var_s_398895,mem_string(DJSON_stringify(a_398871))) at {69}

in copy a_398865, a_398874

34 new var_o creating var_o_398894 at {70} in copy a_398865, a_398874

35 get heap(var_s_398895,mem_string(DJSON_stringify(a_398871))) at {71} in

copy a_398865, a_398874

36 insert heap(var_o_398894,mem_object(DJSON_parse(DJSON_stringify(a_398871)

,obj_add(obj_add(obj_empty,obj_prop(str_4,mem_string(string_empty)))

,obj_prop(str_5,mem_string(string_empty)))))) at {72} in copy

a_398865, a_398874

37 new var_h creating var_h_400490 at {73} in copy a_398865, a_398874

38 get heap(var_o_398894,mem_object(a_398871)) at {74} in copy a_398865,

a_398874

39 insert heap(var_h_400490,mem_string(undefined_string)) at {240} in copy

a_398865, a_398874

40 get heap(var_mac_key_398884,mem_string(k_398878)) at {241} in copy

a_398865, a_398874

41 insert heap(var_oops,mem_string(k_398878)) at {242} in copy a_398865,

a_398874

42 in(pub, var_oops) at {424} in copy a_398876

43 get heap(var_oops,mem_string(k_398878)) at {425} in copy a_398876

44 out(pub, mem_string(k_398878)) at {426} in copy a_398876

45 in(fun_398892, (a_398867,mem_string(DJSON_stringify(obj_add(a_398866,

obj_prop(str_4,mem_string(k_398878))))))) at {405} in copy a_398865,

a_398868

46 new var_s_253 creating var_s_398891 at {407} in copy a_398865, a_398868

47 insert heap(var_s_398891,mem_string(DJSON_stringify(obj_add(a_398866,

obj_prop(str_4,mem_string(k_398878)))))) at {408} in copy a_398865,

a_398868

48 get heap(var___398897,mem_function(function(fun_398880))) at {409} in

copy a_398865, a_398868

49 get heap(var_s_398891,mem_string(DJSON_stringify(obj_add(a_398866,

obj_prop(str_4,mem_string(k_398878)))))) at {410} in copy a_398865,

a_398868

50 new ret_257 creating ret_398881 at {412} in copy a_398865, a_398868

51 out(fun_398880, (ret_398881,DJSON_stringify(obj_add(a_398866,obj_prop(

str_4,mem_string(k_398878)))))) at {413} in copy a_398865, a_398868

received at {67} in copy a_398865, a_398869
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52 new var_s creating var_s_398889 at {68} in copy a_398865, a_398869

53 insert heap(var_s_398889,mem_string(DJSON_stringify(obj_add(a_398866,

obj_prop(str_4,mem_string(k_398878)))))) at {69} in copy a_398865,

a_398869

54 new var_o creating var_o_398888 at {70} in copy a_398865, a_398869

55 get heap(var_s_398889,mem_string(DJSON_stringify(obj_add(a_398866,

obj_prop(str_4,mem_string(k_398878)))))) at {71} in copy a_398865,

a_398869

56 insert heap(var_o_398888,mem_object(DJSON_parse(DJSON_stringify(obj_add(

a_398866,obj_prop(str_4,mem_string(k_398878)))),obj_add(obj_add(

obj_empty,obj_prop(str_4,mem_string(string_empty))),obj_prop(str_5,

mem_string(string_empty)))))) at {72} in copy a_398865, a_398869

57 new var_h creating var_h_398887 at {73} in copy a_398865, a_398869

58 get heap(var_o_398888,mem_object(obj_add(a_398866,obj_prop(str_4,

mem_string(k_398878))))) at {74} in copy a_398865, a_398869

59 insert heap(var_h_398887,mem_string(k_398878)) at {78} in copy a_398865,

a_398869

60 get heap(var_mac_key_398884,mem_string(k_398878)) at {79} in copy

a_398865, a_398869

61 insert heap(var_oops,mem_string(k_398878)) at {80} in copy a_398865,

a_398869

62 get heap(var_o_398888,mem_object(obj_add(a_398866,obj_prop(str_4,

mem_string(k_398878))))) at {81} in copy a_398865, a_398869

63 get heap(var_guess_398890,mem_function(function(fun_398879))) at {82} in

copy a_398865, a_398869

64 get heap(var_h_398887,mem_string(k_398878)) at {83} in copy a_398865,

a_398869

65 new ret_52 creating ret_398882 at {85} in copy a_398865, a_398869

66 out(fun_398879, (ret_398882,k_398878)) at {86} in copy a_398865, a_398869

received at {47} in copy a_398865, a_398870

67 new var_k creating var_k_398885 at {48} in copy a_398865, a_398870

68 insert heap(var_k_398885,mem_string(k_398878)) at {49} in copy a_398865,

a_398870

69 new var_res_33 creating var_res_398883 at {50} in copy a_398865, a_398870

70 get heap(var_k_398885,mem_string(k_398878)) at {51} in copy a_398865,

a_398870

71 get heap(var_mac_key_398884,mem_string(k_398878)) at {52} in copy

a_398865, a_398870

72 insert heap(var_res_398883,mem_boolean(equal(mem_string(k_398878),

mem_string(k_398878)))) at {53} in copy a_398865, a_398870

73 get heap(var_k_398885,mem_string(k_398878)) at {54} in copy a_398865,

a_398870

74 get heap(var_res_398883,mem_boolean(bool_true)) at {55} in copy a_398865,

a_398870

75 event(Leaked(k_398878,bool_true)) at {56} in copy a_398865, a_398870

76 (*

77 The event Leaked(k_398878,bool_true) is executed.

78 A trace has been found.

79 RESULT not event(Leaked(x_338058,bool_true)) is false.

80 *)
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Abstract. Modern web applications heavily rely on JavaScript code ex-
ecuting in the browser. These web scripts are useful for instance for im-
proving the interactivity and responsiveness of web applications, and for
gathering web analytics data. However, the execution of server-provided
code in the browser also brings substantial security and privacy risks.
Web scripts can access a fair amount of sensitive information, and can
leak this information to anyone on the Internet. This tutorial paper dis-
cusses information flow control mechanisms for countering these threats.
We formalize both a static, type-system based and a dynamic, multi-
execution based enforcement mechanism, and show by means of exam-
ples how these mechanisms can enforce the security of information flows
in web scripts.

Keywords: web scripts, JavaScript, security, information flow control.

1 Introduction

Modern interactive web applications heavily rely on browser-side scripts in lan-
guages such as JavaScript, for instance to propose completions while a user is
typing into a text field. These scripts are usually event-driven programs that can
react to user interface events such as key presses or mouse clicks, or to network
events such as the arrival of HTTP responses. While handling events, scripts can
display output to the user or send output on the network in the form of HTTP
requests.

Listing 1.1 shows a simplified example of such a program that interactively
proposes possible completions for a string that the user is typing into a textfield.

The first three lines declare an event handler for the key up event. That handler
takes the current contents of the textfield with ID field1, and invokes a helper
function that computes the possible completions (for instance by contacting a
remote server). These possible completions are finally displayed in the text area
with ID suggestions.

While browser-side scripts are very useful for building responsive interactive
web applications, they also come with substantial security and privacy risks.
Scripts have, and need, access to both user information and to remote HTTP
servers. The completion example above can only perform its function if it can
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Listing 1.1. Suggesting completions

1 window.onkeyup = function(e) {
2 suggestions.value = completions(field1.value);
3 }
4

5 function completions(s) {
6 // return possible completions of s

7 }

read what the user is typing, and if it can contact the remote server to retrieve
possible completions. Unfortunately, a consequence of these capabilities of scripts
is that they are commonly used to leak private information to untrusted network
servers [18,26]. To illustrate these risks, Listing 1.2 shows an example of a script
that implements a simple key logger in JavaScript. It installs an event handler
to monitor key presses, and leaks every keystroke to hacker.com, using the
jQuery ajax() function that sends an HTTP request to the URL provided as a
parameter. The similarity of this example with the earlier completion example
shows that it is a thin line between useful and dangerous scripts. The fact that
many web sites include scripts from third parties [25] further amplifies the need
for protective countermeasures.

Listing 1.2. Keylogger

1 var u = ’http://hacker.com/?=’;
2 window.onkeypress = function(e) {
3 var leak = e.charCode;
4 $.ajax(u + leak);
5 }

Researchers have realized that mechanisms for information flow security are a
promising countermeasure for web script-related threats, since such mechanisms
allow the scripts to have access to private information but at the same time
prevent it from leaking that information to untrusted servers.

Information flow security can be enforced statically or dynamically. The pur-
pose of this tutorial article is to explain the essence of two techniques for en-
forcing information flow security for event-driven programs: a static technique
based on typing, and a dynamic technique based on secure multi-execution.

The remainder of this tutorial paper is structured as follows. First, in Sec-
tion 2, we define a formal scripting language that is a simple model of JavaScript.
Then, in Section 3, we define information flow control and give both examples
of scripts that are information flow secure and scripts that are insecure. Sec-
tions 4 and 5 define a static, respectively dynamic enforcement mechanism for

http://hacker.com/?=
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information flow security and illustrate the mechanisms by means of examples.
Section 6 provides a brief overview of the existing research in this area, and
Section 7 concludes.

2 Formal Model of Web Scripts

2.1 Syntax

For the purpose of this tutorial paper, we use a very simple model of a web
scripting language, strongly inspired by the model language introduced by Bo-
hannon et al. [8]. The syntax is specified in Figure 1. We assume certain given
disjoint sets of identifiers: GVars is the set of identifiers for mutable global vari-
ables, Chan is the set of identifiers for communication channel names, and Var
is the set of identifiers for bound variables.

n ∈ Z (Integer number literals)

� ∈ {+,−,=, <} (Primitive operations on numbers)

r ∈ GVars (Global mutable variables)

ch ∈ Chan (I/O Channels)

x ∈ Var (Variables)

p ::= h; p (Reactive Programs)

| ·
h ::= on ch(x) c (Event handlers)

c ::= skip (Commands)

| c; c

| r := e

| if e then c else c

| while e do c

| output e on ch

e ::= n (Expressions)

| r

| x

| e� e

Fig. 1. Formal syntax of our web scripting language

A program p is essentially a list of handlers, where each handler h specifies
a command c to be executed on occurrence of an input event on channel ch.
An input event always carries a single integer value, and that integer value is
bound to the formal parameter x before the command c is executed. The syntax
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of commands is standard, with syntactic forms for the empty command (skip),
sequential composition, assignment to global variables, conditional and looping
constructs, and performing output on a channel. Expressions e are standard
integer arithmetic expressions that can refer to formal parameters x declared in
a handler definition, or to global variables r.

In examples we will assume the existence of I/O channels such as KeyPress ,
Network , Display , MouseClick , . . . Scripts can output integers on these channels
with the output command. For instance, output 10 on Network will output the
integer 10 on the Network channel. They can react to inputs arriving on these
channels by declaring event handlers. For instance, key presses are modeled
as input events on the KeyPress channel carrying a single integer value that
represents the scan code of the key that was pressed. For simplicity, we assume
that all input events carry a single integer value, and that all output events are
outputs of a single integer value.

As an example, the JavaScript key logger program from Listing 1.2 is rendered
in our model language as:

on KeyPress(x) output x on Network

This script declares an event handler that upon each key press sends the key
scan code on the network.

If we want to distinguish different network destinations (for instance com-
munication to the same network origin the web page was loaded from and
other network origins) we can use two separate channel identifiers Network and
SameOriginNetwork . The completions example from Listing 1.1 could then be
rendered as:

on KeyPress(x) output x on SameOriginNetwork

We could even use parameterized channel names such as Network(o) with o
an origin of the form http://www.kuleuven.be for instance.

2.2 Semantics

To define the semantics of the model language, we define stores μ (assigning
a current (integer) value to all global variable names) and outputs o (either
the special “no output” constant · or an output of a number n on channel ch
(outch(n)) (Figure 2). For updating of the store, we use the notation μ[r �→ n]:
it denotes the store equal to μ except that the global variable r now maps to
the value n.

Using stores, we define a big-step operational semantics judgement for expres-
sions μ � e ↓ n (in store μ, expression e evaluates to value n). This definition is
completely standard (Figure 3).

Programs are event-driven. The judgement (p)(i) ⇓ c defines formally what
command c program p will execute to handle the input event i. It is defined
by the rules in Figure 4. Essentially, this looks up the handler for handling the
input event, and substitutes the integer n received on the input channel for the

http://www.kuleuven.be
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μ ∈ Ref → Z (Stores)

o ::= · (Outputs)

| outch(n)

i ::= inch(n) (Input Events)

ev ::= i | o (Reactive Events)

Fig. 2. Semantic structures

μ � n ↓ n
(E-Expr-Lit)

μ � r ↓ μ(r)
(E-Expr-Ref)

μ � e1 ↓ n1 μ � e2 ↓ n2

μ � e1 + e2 ↓ n1 + n2
(E-Expr-Plus)

μ � e1 ↓ n1 μ � e2 ↓ n2

μ � e1 − e2 ↓ n1 − n2
(E-Expr-Minus)

μ � e1 ↓ n1 μ � e2 ↓ n2 n1 	= n2

μ � e1 = e2 ↓ 0
(E-Expr-Eq1)

μ � e1 ↓ n1 μ � e2 ↓ n2 n1 = n2

μ � e1 = e2 ↓ 1
(E-Expr-Eq2)

μ � e1 ↓ n1 μ � e2 ↓ n2 n1 	< n2

μ � e1 < e2 ↓ 0
(E-Expr-Lt1)

μ � e1 ↓ n1 μ � e2 ↓ n2 n1 < n2

μ � e1 < e2 ↓ 1
(E-Expr-Lt2)

Fig. 3. Semantics of expressions

formal parameter x in that handler. If no handler is defined in the program p
for input i on this channel, we have (p)(i) ⇓ skip .

(on ch(x) do c; p)(inch(n)) ⇓ [x �→ n]c

(p)(inch(n)) ⇓ c ch �= ch ′

(on ch ′(x) do c′; p)(inch(n)) ⇓ c

(·)(inch(n)) ⇓ skip

Fig. 4. Determining the event handling command

Finally, the semantics of commands is given as a small-step operational se-
mantics judgement (μ, c)

o→ (μ′, c′) (executing command c in store μ produces
an updated store μ′ and new command c′ producing output o). They are defined
by the rules in Figure 5.

The initial program state is (μ0, skip) where μ0 maps all global variables on 0.
A program state is passive if it has the form (μ, skip). We say a program is well-
formed if it has no unbound variables (i.e. the only variable x ∈ Var occurring
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(μ, (skip; c)) ·→ (μ, c)
(E-Stmt-SeqSkip)

(μ, c1)
o→ (μ′, c′1)

(μ, (c1; c2))
o→ (μ′, (c′1; c2))

(E-Stmt-Seq)

μ � e ↓ n

(μ, (r := e)) ·→ (μ[r �→ n], skip)
(E-Stmt-Assign)

μ � e ↓ n n �= 0

(μ, if e then c1 else c2)
·→ (μ, c1)

(E-Stmt-If1)

μ � e ↓ n n = 0

(μ, if e then c1 else c2)
·→ (μ, c2)

(E-Stmt-If2)

μ � e ↓ n n �= 0

(μ, while e do c) ·→ (μ, (c; while e do c))
(E-Stmt-While1)

μ � e ↓ n n = 0

(μ, while e do c) ·→ (μ, skip)
(E-Stmt-While2)

μ � e ↓ n

(μ, output e to ch)
outch(n)−−−−−→ (μ, skip)

(E-Stmt-Out)

(p)(inch(n)) ⇓ c

(μ, skip)
inch(n)−−−−→ (μ, c)

(E-Input)

Fig. 5. Semantics of commands

in the body of a handler is the formal parameter of the handler – of course, the
handler can also use global variables r ∈ GVars) . It is straightforward to prove
that well-formed programs that are not in a passive state can always make a
deterministic step. The only non-deterministic transitions are transitions that
consume a new input, and these are only possible from a passive state.
An execution of a script is a finite or infinite sequence of events ev:

ev = (μ0, skip)
ev0−−→ (μ1, c1)

ev1−−→ (μ2, c2)
ev2−−→ . . .

We say an execution is event-complete if it ends in a passive state: this means
that all the input events the program has received have been fully handled, and
that the only way to further extend the execution is by giving it a new input
event.

2.3 Examples

Consider the following script:

on KeyPress(x) total := total + x;

on MouseClick (x) output total on Display
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The script keeps a running total of the key scan codes of all key presses it has
seen, and on a MouseClick input event, it displays the total on the Display
channel. This models a simple JavaScript calculator.

The following is an example execution of the script. We denote a memory μ
as the set that has an element r �→ μ(r) for every global variable r that has a
non-zero value in μ. Hence, μ0 is denoted as the empty set {}.

({}, skip)
inKeyPress(10)−−−−−−−−→ ({}, total := total + 10)

·−→ ({total �→ 10}, skip)
inKeyPress(20)−−−−−−−−→ ({total �→ 10}, total := total + 20)

·−→ ({total �→ 30}, skip)
inMouseClick(0)−−−−−−−−→ ({total �→ 30}, output total on Display)
outDisplay(30)−−−−−−−−→ ({total �→ 30}, skip)

For the remainder of this paper, we will usually not show the silent actions (·)
in example executions.

As a second example, consider again the key logger script:

on KeyPress(x) output x on Network

The following is an example execution of the script.

({}, skip)
inKeyPress(10)−−−−−−−−→ ({}, output 10 on Network )
outNetwork(10)−−−−−−−−→ ({}, skip)
inKeyPress(20)−−−−−−−−→ ({}, output 20 on Network )
outNetwork(20)−−−−−−−−→ ({}, skip)
inMouseClick(0)−−−−−−−−→ ({}, skip)

Key press events get echoed on the network, while a mouse click event is just
silently absorbed (there is no handler for these events).

3 Information Flow Control

3.1 Introduction

Web scripts can receive and send information on a variety of channels.
They need to receive information from both sensitive and less sensitive chan-

nels. For instance, a script may need to read a password from the user in order
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to estimate the strength of the password (clearly a sensitive piece of informa-
tion). Scripts may also need to receive advertisements to be displayed from the
network (an example of a script reading less sensitive information).

Scripts also need to send information both to trustworthy output channels as
well as to less trustworthy output channels. For instance, in a web based docu-
ment processor, scripts will send document content to the site hosting the doc-
ument processing application (an output to a trustworthy channel). But scripts
may also collect user interaction data to be sent to a web analytics site (outputs
to a less trustworthy channel).

The key idea of information flow control is to allow scripts to perform all these
inputs and outputs, as long as no information received from a sensitive input
channel leaks to a non-trustworthy output channel. Let us assume for the sake
of the following examples that:

– Display is a trustworthy output channel: the outputs on that channel can
only be seen by a trusted observer – the user of the web application.

– Network is a non-trustworthy output channel: the outputs can possibly be
seen by untrusted obervers, for instance attackers.

– KeyPress is a sensitive input channel: we do not want untrusted observers
to know anything about what keys we press.

– MouseClick is a non-sensitive input channel: we do not care that information
leaks about when and where we click the mouse.

To enforce information flow control, these assumptions are formalized in a
policy that assigns a security label to each of the channels. These security labels
should be thought of as confidentiality levels. For the purpose of this paper, we
use only two such levels: H for high confidentiality and L for low confidentiality.
The set of security labels is an ordered set: for our two element set, H > L.

For input channels, the label defines the level of confidentiality of information
received on that channel. Hence, in our examples the label of KeyPress will be H
and the label of MouseClick will be L.

For output channels, the label defines the trustworthiness of the observers
of the output channel. A H observer is trusted and it is OK if that observer
sees information of confidentiality levels H or L. A L observer is untrusted and
should only ever see information of level L.

With these intuitions in mind, we can discuss some examples of secure and
insecure scripts.

Consider again the JavaScript calculator:

on KeyPress(x) total := total + x;

on MouseClick (x) output total on Display

This script is secure: it reads sensitive information from KeyPress but only
discloses it to the trustworthy Display channel.

On the other hand, the key logger script:

on KeyPress(x) output x on Network
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is an example of an insecure script. It discloses information read from a H
input channel (KeyPress) to a L output channel (Network ). The variant of
the script that outputs these key presses to a trustworthy network channel
SameOriginNetwork would be secure.

The key logger script above has a blatant leak: it just copies information from
a H channel to a L channel and hence is obviously insecure. But it is important
to note that scripts can also leak information in more subtle ways. Consider for
instance the following script:

on KeyPress(x) r := x;

on MouseClick (x) output r on Network

This script leaks information from KeyPress to Network by first storing the
information in memory, and sending it out at a later moment in time. Hence
this script is also insecure, but in a somewhat less obvious way.

Leaks can be even more indirect. Consider for instance:

on KeyPress(x) if x = 100 then r := 1 else skip;

on MouseClick (x) output r on Network

This script leaks whether the user ever pressed a key with scan code 100: it
outputs 1 on the Network in case it has ever seen a KeyPress(100) event. Hence,
it is also insecure but in an even more indirect way. Flows of information that, as
in the example above, leak information by using the control flow of the program
are often called implicit flows.

The objective of information flow security is to formalize the distinction be-
tween secure and insecure programs that we informally discussed in this section,
and to develop enforcement mechanisms that prevent such insecure information
leaks. We want to prevent both explicit and implicit flows.

3.2 Formal Definitions

The notion of information flow security discussed above can be formalized as
noninterference, which roughly says that there should not be two executions of
the program that (1) receive the same L inputs, but (2) produce different L
outputs. The intuition is that if L outputs are always the same given the same
L inputs, then the L outputs could not have been influenced in any way by the
H inputs, and hence do not leak any information about the H inputs.

To make this formal for web scripts, we need a few definitions. We assume as
given a policy that assigns security labels to channels in the form of a function
lbl from Chan to {L,H}.

For a sequence of events ev = ev1 · · · evn, we define

–  ev!I the subsequence of all input events.
–  ev!O the subsequence of all output events.
–  ev!I,L the subsequence of all input events inch(n) such that lbl(ch) = L.
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–  ev!O,L the subsequence of all output events outch(n) such that lbl(ch) = L.

Definition 1. A program p is noninterferent iff for any two event-complete ex-
ecutions ev1 and ev2 it holds that:

 ev1!I,L =  ev2!I,L =⇒  ev1!O,L =  ev2!O,L

I.e. any two event-complete executions that receive the same L inputs will pro-
duce the same L outputs.

Example 1. The key logger script:

on KeyPress(x) output x on Network

is insecure according to this definition, because of the following two event-
complete executions.

ev1 = ({}, skip) inKeyPress(10)−−−−−−−−→ ({}, output 10 on Network)
outNetwork(10)−−−−−−−−→ ({}, skip)

ev2 = ({}, skip) inKeyPress(20)−−−−−−−−→ ({}, output 20 on Network)
outNetwork(20)−−−−−−−−→ ({}, skip)

For these two executions,  ev1!I,L =  ev2!I,L (both executions have no L input
events), but  ev1!O,L �=  ev2!O,L (both executions have different L outputs on
Network).

Example 2. Also the script with the more subtle leaks:

on KeyPress(x) if x = 100 then r := 1 else skip;

on MouseClick (x) output r on Network

can be seen to be insecure by considering the following two event-complete exe-
cutions (we do not show the silent output events):

ev1 = ({}, skip)
inKeyPress(10)−−−−−−−−→ ({}, skip)
inMouseClick(10)−−−−−−−−−→ ({}, output 0 on Network)
outNetwork(0)−−−−−−−→ ({}, skip)

ev2 = ({}, skip)
inKeyPress(100)−−−−−−−−→ ({r �→ 1}, skip)
inMouseClick(10)−−−−−−−−−→ ({}, output 1 on Network)
outNetwork(1)−−−−−−−→ ({}, skip)

It is easy to check that  ev1!I,L =  ev2!I,L but  ev1!O,L �=  ev2!O,L.
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3.3 Enforcement

Roughly speaking, there are two classes of approaches to enforce noninterference.
We can statically check that a program is secure, by using techniques such as
type systems or program verification. Or we can dynamically enforce that no
information leaks by using techniques such as monitoring or multi-execution.

In the following two sections, we focus on one static enforcement technique
(based on typing) and on one dynamic technique (based on multi-execution).

4 Static Enforcement

The idea of using static techniques to check noninterference was pioneered in
the seventies by Denning and Denning [14]. There is a huge body of literature
on static enforcement of information flow security. The survey by Sabelfeld and
Myers [30] provides an excellent overview. We illustrate static enforcement by
means of typing by showing a type system that is very similar to a type system
proposed by Bohannon et al. [8].

Types are just security labels (hence, in our case, there are only two types: H
and L). Programmers have to declare a type for every global variable and the
type checker will enforce that the information stored in global variables of type
L will only depend on L information.

We first define a typing judgment for expressions (Figure 6). The intuition
is that the type l of an expression e is an upper bound for the level of the
information that could have influenced e. The judgement (x : lc) � e : l defines
the type l of expression e in context (x : lc). The context (x : lc) defines the level
of the bound variable x; for an expression that is part of a handler definition on
a channel ch, the variable bound by the handler will get as type the level of the
channel ch.

lc ≤ l

(x : lc) � x : l
(T-Expr-Var)

(x : lc) � n : l
(T-Expr-Lit)

lbl(r) ≤ l

(x : lc) � r : l
(T-Expr-Ref)

(x : lc) � e1 : l1 (x : lc) � e2 : l2 l1 ≤ l l2 ≤ l

(x : lc) � e1 � e2 : l
(T-Expr-Op)

Fig. 6. Typing of expressions

The type system is polymorphic: an expression can have multiple types. Any
type that is an upper bound for the level of the information that could have
influenced e is a valid type. With our restriction to two security levels H and L,
expressions can either have the H type, or both the L and H type. This simple
form of polymorphism in the type system will make some of the typing rules for
commands simpler.
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The rule (T-Expr-Var) says that a variable assumed to have level lc in the
context can be given as type any level above or equal to lc, and rule (T-Expr-

Ref) says that global variables can be given as type any level above or equal
to the level assigned to them by the programmer. Literals can have any level
(T-Expr-Lit), and in a binary expression, the level of the result can be any
level that is above or equal to the levels of the two operands (T-Expr-Op).

Next we turn to typing of commands (Figure 7). We define a typing judgement
(x : lc) � c : l, expressing that command c is well-typed with type l in context
(x : lc). The intuition is that the type of a command is a lower bound for the level
of the side-effects (either assignments to global variables or outputs on channels)
that a command can have. Hence typing is again polymorphic. In our system,
a well-typed command can have both type H and L, meaning it definitely only
performs H side effects, or a well-typed command can have type L only, if the
command possibly performs some L side effect.

(x : lc) �skip: l (T-Cmd-Skip)

(x : lc) � c1 : l1 (x : lc) � c2 : l2 l ≤ l1 l ≤ l2

(x : lc) � (c1; c2) : l
(T-Cmd-Seq)

(x : lc) � e : le le ≤ lbl(ch) l ≤ lbl(ch)

(x : lc) �output e to ch : l
(T-Cmd-Out)

(x : lc) � e : le le ≤ lbl(r) l ≤ lbl(r)

(x : lc) � (r := e) : l
(T-Cmd-Assign)

(x : lc) � e : le (x : lc) � c1 : l1 (x : lc) � c2 : l2
l ≤ l1 l ≤ l2 le ≤ l1 le ≤ l2

(x : lc) �if e then c1 else c2 : l
(T-Cmd-If)

(x : lc) � e : le (x : lc) � c : l′ l ≤ l′ le ≤ l′

(x : lc) �while e do c : l
(T-Cmd-While)

Fig. 7. Typing of commands

Rule (T-Cmd-Skip) says that skip can be given any level. The sequential
composition of two commands must have a level that is below or equal to the
levels of the two commands that are composed (T-Cmd-Seq). Rule (T-Cmd-

Out) ensures two things. First, for an output command, the level of the expres-
sion that is output must be below or equal to the level of the channel on which
it is output. Since le is an upper bound for the level the information that could
have influenced e, this ensures no information leaks with this output. Second,
the level l of the command itself must be a lower bound for the effects, and
hence musy be below or equal to the level of the output channel. The rule for
assignments (T-Cmd-Assign) is very similar: assignment to global variables is
an effect that is similar to the effect of producing output. The rules for condi-
tionals (T-Cmd-If) and (T-Cmd-While) make sure that no information leaks
through the control flow and are needed to prevent implicit flows. Parts of the
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program that can only be reached dependent on information of level le (like the
branches of an if-statement or the body of a while-statement) should only have
effects that have le as lower bound. In other words, there should be no L effects
in parts of the program whose reachability depends on H information.

Finally, we turn to programs (Figure 8). Each declared handler on ch(x) c

� · (T-Pgm-Empty)
(x : lbl(ch)) � c : lbl(ch) � p

on ch(x) c; p
(T-Pgm)

Fig. 8. Typing of programs

must be type-checked in a context that assigns the label of the channel ch to
the bound variable x, and the side-effects of the resulting commands must be
bounded by that same label; a H input event should not lead to L side effects.

Example 3. Consider again the JavaScript calculator:

on KeyPress(x) total := total + x;

on MouseClick (x) output total on Display

If we define lbl(total) = H , this script passes type checking. The expression
total + x gets type H and the assignment total := total + x can be given both
types H and L (both these are lower bounds for the single effect of assigning to
total). In a similar way, the output command in the second handler can be given
both types H and L.

Example 4. The key logger script:

on KeyPress(x) output x on Network

does not type check. The expression x must be given type H because it arrives
on a H channel (rules (T-Pgm) and (T-Expr-Var)). As a consequence, the
output command fails to type check as the level of Network is L and rule (T-

Cmd-Out) requires that the type of the expression being output is below or
equal to the level of the output channel.

For similar reasons, the script below also does not type check:

on KeyPress(x) r := x;

on MouseClick (x) output r on Network

The first handler can only be type checked of r is given type H by defining
lbl(r) = H . But then the second handler can not be type checked for the same
reason as above.
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Example 5. Finally, let us consider an example with conditionals. The program
below:

on KeyPress(x) if x = 100 then r := 1 else skip;

on MouseClick (x) output r on Network

can not be type checked. Since the conditional of the if-statement depends on
H information (x has type H), effects in the then and else branch must be
bounded below by H (rule(T-Cmd-If)) . Hence, the r variable must be made H
by defining lbl(r) = H . But then the second handler can not type check anymore.

One can prove that any program that type checks is noninterferent.

Theorem 1. Suppose we are given a policy lbl that assigns security levels to
I/O channels, and suppose that lbl can be extended to assign security levels to
global variables such that � p, then p is noninterferent under that policy.

We refer the reader to [8] for a proof.
Note that the type system is conservative. It is easy to come up with example

programs that are noninterferent but that fail to type check. For instance:

on KeyPress(x) r := x;

on MouseClick (x) output r − r on Network

is noninterferent since the expression r − r always evaluates to 0. But the type
system will treat the expression as H . The fact that type systems (and other
static approaches) reject some good programs is one of the main motivations to
also consider dynamic methods that can be more permissive [31].

5 Dynamic Enforcement

The first attempts at dynamically enforcing information flow also date back to
the seventies [16], but for many years static enforcement techniques were con-
sidered more promising. The impression was that dynamic mechanisms are not
a good match for information flow security, as they monitor only a single exe-
cution, and the definition of noninterference talks about two executions. Hence,
for many years the emphasis was on the development of static methods.

In the last decade, we have seen a renewed interest in dynamic methods [31].
The most obvious dynamic approach is monitoring where the enforcement mech-
anism monitors an execution and blocks it as soon as it detects an information
leak. Such a monitor for JavaScript was for instance developed by Hedin and
Sabelfeld [17]. An alternative approach is the approach of secure multi-execution
(SME) [15]. We illustrate dynamic enforcement by means of a secure multi-
execution mechanism that is very close to the mechanism proposed by Bielova
et al. [6].

The core idea of SME for reactive systems is to maintain two executions of the
program (one for each security level, i.e. a low (L) and a high (H) execution),
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and to implement the following rules on the I/O performed by these executions.
L input events are handled by both executions, and H input events are only
handled by the H execution. Outputs on L channels are only performed in the
L execution and outputs on H channels only in the H execution.

It is relatively easy to see that executing a program under this SME regime
will guarantee non-interference: the execution that does output at level L only
sees inputs of level L and hence the output could not have been influenced by
inputs of level H .

Similarly, it is relatively easy to see that non-interferent programs run un-
modified: if L outputs indeed only depend on L inputs, then the L execution
will still perform the same outputs. The H execution gets all events and behaves
exactly as the program would behave without SME so also the H outputs will
remain the same. The only net effect that SME has on noninterferent programs
is that – depending on how both executions are scheduled – outputs may happen
in a different order (but outputs at the same security level remain in the same
order). This is the precision property of SME. Rafnsson et al.[27] have shown
that, if the program is noninterferent and low and high executions are scheduled
correctly, then even ordering of outputs remains the same. However, in many
cases it is sufficient to maintain order only within security levels. For instance,
in the case of web scripts, if graphical outputs to the browser user are H and
outputs to the network are L, it is sufficient to maintain order per security level.
That is, the relative order of graphical outputs in relation to networks outputs
is not important. This observation allows for simple schedulers which, for each
input event, first perform the low execution (if the input event was low), and
then the high execution. In this paper we focus on the case where the scheduler
is simple, and only maintain output order per security level.

We formalize SME for web scripts by defining how to execute a script under
SME. A program state under SME contains two program states of the original
program ((μL, cL), (μH , cH)), the state of the L execution (μL, cL) and the state

of the H execution (μH , cH). We define the judgement ((μL, cL), (μH , cH))
ev⇒

((μ′
L, c

′
L), (μ

′
H , c′H)) in Figure 9.

The rules (New-H-Input) and (New-L-Input) formalize that H inputs are
only given to the H execution and L inputs are given to both executions. Then
rules (L-Internal) and (L-Output) are applicable until the L execution is
finished with the current input event. These rules let the L execution run but
suppress any H output events.

When the L execution is done, rules (H-Internal) and (H-Output) kick
in. The H execution can now run, but L outputs will be suppressed.

The initial program state is ((μ0, skip), (μ0, skip)) and a program state is
passive if it has the form ((μ, skip), (μ, skip)). We define the notions of execution
under SME and event-complete execution under SME in the obvious way (similar
to how they were defined for the standard semantics in Section 2.2).

Note that SME does not detect insecure scripts, it automatically fixes them
as they execute.
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lbl(ch) = H (p)(inch(n)) ⇓ c

((μL, skip), (μH , skip))
inch(n)
====⇒ ((μL, skip), (μH , c))

(New-H-Input)

lbl(ch) = L (p)(inch(n)) ⇓ c

((μL, skip), (μH , skip))
inch(n)
====⇒ ((μL, c), (μH , c))

(New-L-Input)

(μL, cL)
o→ (μ′

L, c
′
L) o = ·∨ lbl(o) = H

((μL, cL), (μH , cH)) ·=⇒ ((μ′
L, c

′
L), (μH , cH))

(L-Internal)

(μL, cL)
o→ (μ′

L, c
′
L) lbl(o) = L

((μL, cL), (μH , cH))
o
=⇒ ((μ′

L, c
′
L), (μH , cH))

(L-Output)

(μH , cH)
o−→ (μ′

H , c′H) o = ·∨ lbl(o) = L

((μL, skip), (μH , cH)) ·=⇒ ((μL, skip), (μ
′
H , c′H))

(H-Internal)

(μH , cH)
o−→ (μ′

H , c′H) lbl(o) = H

((μL, skip), (μH , cH))
o
=⇒ ((μL, skip), (μ

′
H , c′H))

(H-Output)

Fig. 9. Semantics of SME

Example 6. Consider again the key logger script:

on KeyPress(x) output x on Network

If this script is executed under SME, the occurrence of an input event on the
KeyPress channel will be handled by theH execution only (ruleNew-H-Input).
When that execution performs the output command on the Network channel,
this output will be suppressed (rule H-Internal). SME fixes this example by
never performing any of the insecure outputs.

Example 7. Consider again the script with the more subtle leaks:

on KeyPress(x) if x = 100 then r := 1 else skip;

on MouseClick (x) output r on Network

For this script, inputs on the KeyPress channel are only delivered to the H
execution (rule New-H-Input). Hence the value of the global variable r can
become 1 in μH , but it will always remain 0 in μL. On occurrence of an input on
the MouseClick channel, this input is delivered to both executions (rule New-

L-Input). The L execution runs first and outputs a 0 on Network . Then the H
execution runs, but when it performs the output on Network (that could be 0
or 1 in this execution), this output is suppressed (rule H-Internal).

So we see that SME again fixes this example. The program becomes equivalent
to the secure program that always outputs 0 to Network on a mouse click:

on KeyPress(x) if x = 100 then r := 1 else skip;

on MouseClick (x) output 0 on Network
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The main security theorem about SME says that any script, when executed
under the SME regime, is non-interferent.

Theorem 2. Any program is noninterferent when executed under the SME se-
mantics.

For a proof, we refer the reader to [6].
Of course, since SME can change the behaviour of programs, we have to

check that it does not change the behaviour of secure programs. We do not want
an enforcement mechanism to do arbitrary changes to the semantics of secure
programs. Fortunately, secure programs are more or less untouched.

Example 8. Consider again the (secure) JavaScript calculator:

on KeyPress(x) total := total + x;

on MouseClick (x) output total on Display

If we execute this script under SME, the behaviour remains the same. Key presses
are only delivered to the H execution, and the total is correctly computed in μH

(The value of total remains 0 in μL). When an input arrives on the MouseClick
channel, it is delivered to both executions (rule New-L-Input). The output
produced on the Display channel by the L execution is suppressed (rule L-

Internal). The (correct) output produced by the H execution is performed
(rule H-Output). We see that SME leaves the behaviour of this secure program
untouched.

However, with the simple scheduling approach of first running the L execution
and then running the H execution, it might happen that the order of outputs is
changed even for secure programs.

Example 9. Consider the (secure) program:

on MouseClick (x) output x on Display ; output x on Network

If we execute this script under SME, an input that arrives on the MouseClick
channel, is delivered to both executions (rule New-L-Input). The L execution
runs first (rules H-Internal and H-Output can only fire once the L execution
has finished; they state that the L execution must be passive). The output
produced on the Display channel by the L execution is suppressed (rule L-

Internal), and the output on the Network channel is performed. Then the H
execution runs. It performs the output on the Display channel, and the output
on the Network channel is suppressed. The net effect is that the order of the
Display and Network outputs is reversed.

Fortunately, this kind of reordering is the only change that SME does to
secure programs. The precision theorem for SME says that the output, when
projected on an arbitrary security level, remains the same. So the relative order
of outputs on different security levels is the only thing that can change. For an
exact statement of the theorem, and a proof, we refer the reader to [6].

If even this kind of reordering is undesirable, it is possible to schedule the L
and H executions in a more interleaved way so that absolute ordering of outputs
can be maintained for secure programs. We refer the reader to [37] for details.
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6 Related Work

Information flow security is an established research area, and too broad to survey
here. For many years, it was dominated by research into static enforcement tech-
niques. We point the reader to the well-known survey by Sabelfeld and Myers [30]
for a discussion of general, static approaches to information flow enforcement.
Several static or hybrid techniques specifically for information flow security in
web scripts or in browsers have been proposed. Bohannon et al. [8,7] define a
notion of non-interference for reactive systems, and show how a model browser
can be formalized as such a reactive system. Chugh et al. [10] have developed
a novel multi-stage static technique for enforcing information flow security in
JavaScript. Just et al. [19] propose a hybrid combination of dynamic informa-
tion flow tracking and a static analysis to capture implicit flows within full
(excluding exceptions) JavaScript programs, including programs calling eval.

Dynamic techniques have seen renewed interest in the last decade. Le Guer-
nic’s PhD thesis [22] gives an extensive survey up to 2007, but since then, signif-
icant new results have been achieved. Recent works propose run time monitors
for information flow security, often with a particular focus on on the web scripts.
Sabelfeld et al. have proposed monitoring algorithms that can handle DOM-
like structures [29], dynamic code evaluation [2] and timeouts [28]. In a recent
paper, Hedin and Sabelfeld [17] propose dynamic mechanisms for all the core
JavaScript language features. Austin and Flanagan [3] have developed alterna-
tive, sometimes more permissive techniques.

Secure multi-execution (SME) was developed independently by several re-
searchers [21,36,15]. Khatiwala et al. [21] proposed a technique called Data Sand-
boxing. They partition a program in two programs at source code level and use
system call interposition to implement the SME I/O rules. In followup work,
Capizzi et al. [9] avoid the need for source level partitioning by means of shadow
executions : they run two executions of processes for theH (secret) and L (public)
security level to provide strong confidentiality guarantees. Devriese and Piessens
[15] independently came up with the closely related technique they called SME,
and they were the first to prove the strong soundness and precision guarantees
that SME offers.

These initial results were improved and extended in several ways: Kashyap
et al. [20], generalize the technique of secure multi-execution to a family of
techniques that they call the scheduling approach to non-interference, and they
analyze how the scheduling strategy can impact the security properties offered.
Barthe et al.[5] propose a program transformation that simulates SME. Bielova
et al. [6] propose a variant of secure multi-execution suitable for reactive systems
such as browsers. An implementation of SME in a real browser was done by De
Groef et al. [12,13]. Austin and Flanagan [4] propose a more efficient implemen-
tation technique called multi-faceted evaluation. In a recent paper, Rafnsson
and Sabelfeld [27] extend SME in several ways by showing (1) how to support
policies that can distinguish presence of messages from content of messages, (2)
how to perform declassification under SME and (3) how to make SME precise
(or transparent in their terminology) even for observers that can observe more
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than one level. An alternative, more black-box approach to declassification was
developed by Vanhoef et al. [33].

Information flow security is one promising approach to web script security,
but two other general-purpose approaches have been applied to script security
as well: isolation and taint-tracking.

Isolation or sandboxing based approaches develop techniques where scripts
can be included in web pages without giving them (full) access to the surround-
ing page and the browser API. Several practical systems have been proposed,
including Webjail [32], ADSafe [11], Caja [24], and JSand [1]. Maffeis et al. [23]
formalize the key mechanisms underlying these techniques and prove they can
be used to create secure sandboxes. They also discuss several other existing pro-
posals, and we point the reader to their paper for a more extensive discussion
of work in this area. Isolation is easier to achieve than non-interference, but it
is also more restrictive: often access needs to be denied to make sure the script
cannot leak the information, but it would be perfectly fine to have the script use
the information locally in the browser.

Taint tracking is an approximation to information flow security, that only
takes explicit flows into account. Several authors have proposed taint track-
ing systems for web security. Two representative examples are Xu et al. [35],
who propose taint-enhanced policy enforcement as a general approach to miti-
gate implementation-level vulnerabilities, and Vogt et al. [34] who propose taint
tracking to defend against cross-site scripting.

7 Conclusions

Information flow control is a widely studied information security mechanism. It
makes sure that programs can not leak sensitive information that they receive for
processing to output channels that might be observable by opponents that should
not learn such sensitive information. Information flow control is an interesting
security mechanism for web scripts, since these scripts need to process sensitive
information as well as need to communicate over untrustworthy output channels.

We have described two information flow control mechanisms for web scripts,
one static mechanism based on typing, and one dynamic mechanism based on
multi-execution. We have explained the intuitions behind these mechanisms and
illustrated them on examples.
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1 Introduction

Cryptography plays a key role in the security of modern communication and
computer infrastructures; therefore, it is of paramount importance to design
cryptographic systems that yield strong security guarantees. To achieve this goal,
cryptographic systems are supported by security proofs that establish an upper
bound for the probability that a resource-constrained adversary is able to break
the cryptographic system. In most cases, security proofs are reductionist, i.e.
they construct from an (arbitrary but computationally bounded) adversary that
would break the security of the cryptographic construction with some reason-
able probability another computationally bounded adversary that would break
a hardness assumption with reasonable probability. This approach, known as
provable security, is in principle able to deliver rigorous and detailed mathemat-
ical proofs. However, new cryptographic designs (and consequently their security
analyses) are increasingly complex, and there is a growing emphasis on shifting
from algorithmic descriptions to implementation-level descriptions that account
for implementation details, recommendations from standards when they exist,
and possibly side-channels. As a consequence, cryptographic proofs are becom-
ing increasingly error-prone and difficult to check. One promising solution to
address these concerns is to develop machine-checked frameworks that support
the construction and automated verification of cryptographic systems. Although
many such frameworks exist for the symbolic model of cryptography, compar-
atively little work has been done to develop machine-checked frameworks to
reason directly in the computational model commonly used by cryptographers.

EasyCrypt1 is an interactive framework for verifying the security of crypto-
graphic constructions in the computational model. EasyCrypt adopts the code-
based approach, in which security goals and hardness assumptions are modelled
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as probabilistic programs (called experiments or games) with unspecified adver-
sarial code, and uses tools issued from program verification and programming
language theory to rigorously justify cryptographic reasoning. Concretely, Easy-
Crypt supports common patterns of reasoning from the game-based approach,
which decomposes reductionist proofs into a sequence (or possibly tree) of small
steps (sometimes called hops) that are easier to understand and to check. As
each step relates two programs, one central component of EasyCrypt is a rela-
tional Hoare logic for probabilistic programs. The logic, called pRHL, reasons
about judments of the form

[c1 ∼ c2 : Φ =⇒ Ψ ]

where c1 and c2 are probabilistic programs, and Φ and Ψ are relational assertions,
i.e. first-order formulae which relate two memories; an instance of a relational
assertion is x〈1〉 = x〈2〉, which states that the value of x coincides in both mem-
ories. Although pRHL judgments do not explicitly refer to probabilities, it is
possible to derive probability claims from valid judgments; indeed, the validity
of pRHL judgments is based on a notion of lifting, inspired from probabilistic
process algebra, and from which one can derive equalities and inequalities be-
tween two probabilities. Specifically, one can derive from valid pRHL judgments
of the form

[c1 ∼ c2 : Φ =⇒ E〈1〉 → F 〈2〉]
that Pr [c1, m1 : E] ≤ Pr [c2, m2 : F ] for every initial memories m1 and m2 that
are related by Φ and events E and F . In addition, pRHL subsumes reasoning
about equivalence of probabilistic programs: given a valid judgment of the form[

c1 ∼ c2 : Φ =⇒
n∧

i=1
xi〈1〉 = xi〈2〉

]

we have Pr [c1, m1 : A] = Pr [c2, m2 : A] for every initial memories m1 and m2
that are related by Φ and event A that only depends on {x1, . . . , xn}. A useful
generalization of observational equivalence is observational equivalence up to a
failure event F : [

c1 ∼ c2 : Φ =⇒ ¬F 〈2〉 →
n∧

i=1
xi〈1〉 = xi〈2〉

]

It follows from the above judgment that for every initial memories m1 and m2
that are related by Φ and event A that only depends on {x1, . . . , xn}, we have:

Pr [c1, m1 : A] ≤ Pr [c2, m2 : A] + Pr [c2, m2 : F ]

In addition to relating the probability of events in different games, cryptographic
proofs therefore require the computation of concrete upper bounds on the prob-
ability of some event, typically a failure event, in a game. A second component
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of EasyCrypt is a probabilistic Hoare logic to reason about the probability of
events in games. The logic, called pHL, reasons about judgments of the form

[c : ς =⇒ ϕ] � p

where c is a probabilistic program, ς and ϕ are (non-relational) assertions, � is
a comparison operator and p is a probability expression.

Both pRHL and pHL are embedded into a higher-order logic in which one can
define operators and their associated axioms. Reasoning in this ambient logic
is supported by a core proof engine; the proof engine is heavily inspired by the
SsReflect extension of Coq, but also enables the use of SMT solvers to discharge
proof obligations.

A key challenge for the formalization of cryptographic proofs is to support
compositional reasoning. Indeed, many cryptographic systems achieve their func-
tionality by combining (often in intricate ways) different cryptographic construc-
tions, which may themselves be built from several cryptographic primitives. In
order to support reasoning about such cryptographic systems, EasyCrypt features
a module system which allows the construction of modular proofs that respect
the layered and modular design of the cryptographic system. The module sys-
tem is also useful for structuring large and complex proofs that involve a large
number of game hops and perform reductions at different levels.

1.1 Outline

We first recall useful concepts and notations, before presenting a high-level,
mathematical overview of the construction and proof developed in this tuto-
rial (Section 2). The objective of the rest of this document is to illustrate our
preferred way of specifying cryptographic systems and their proof sketches by
constructing a pseudo-random generator (PRG) from a pseudo-random function
(PRF). We start by specifying the construction and the desired security notions
(Section 3). Finally, we prove formally that our construction is a secure PRG if
it is applied to a secure PRF (Section 4).

1.2 Preliminaries

Types, operators and data structures. EasyCrypt’s expression language is a higher-
order strongly typed functional language. We often view types as (non-empty)
sets and operators as mathematical functions, sometimes using these terms in-
terchangeably. In addition to some basic types (unit, bool, int, real), EasyCrypt’s
libraries provide specifications for some more advanced data structures that can
be used when specifying cryptographic systems or when proving their security.
We only mention here the types and operators relevant to our formalization.

First, we consider inductive lists, that may be the empty list [], or a value
x::xs constructed inductively by prepending x to the list xs. We write |xs| to mean
the length (or number of elements) of a list xs. We sometimes denote [x] the list
x::[]. We define the boolean operator unique: α list → bool as the function that
returns true if and only if its argument does not have any duplicates.
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Our formalization also uses finite maps, that may be indexed by arbitrary
types. We use mixfix notations for the map get (m[x]) and map set (m[x] = y)
operations, denoting map0 the map that is everywhere undefined. We call the
domain of a map m the (finite) set of indices on which m is defined.

Discrete probability sub-distributions. EasyCrypt features a type of discrete prob-
ability sub-distributions that is used to model probabilistic operations, including
sampling from a distribution. Informally, a discrete probability distribution over
a type A is a function f : A → R such that: i. for every a ∈ A, f a ≥ 0;
ii. for every finite subset X of A,

∑
a∈X f a ≤ 1; iii. the support of f , i.e. the

set of elements a of A that have a non-zero probability (i.e. f a > 0) is dis-
crete. Formally, we axiomatize discrete probability sub-distributions by defin-
ing for every type t a type t distr, and several operators, including an operator
pr: α distr → (α → bool) → real that gives the probability of an event (modelled
as a boolean-valued predicate over the carrier type). Moreover, we axiomatize
various properties of discrete probability sub-distributions. We introduce some
important properties of discrete probability sub-distributions:

– we call full sub-distributions whose support is the entire carrier type; con-
versely, we call empty sub-distributions whose support is the empty set,

– we call lossless sub-distributions in which the constantly true event has prob-
ability 1 (that is, proper distributions),

– we call sub-uniform sub-distributions that give the same probability to all
elements in their support, using uniform to mean lossless and sub-uniform.

In the following, we often abuse terminology and use distribution to mean discrete
probability sub-distribution.

2 High Level Description

We start by giving a high level description of the proof described in this tutorial.
The idea is to prove that a concretely defined stateful random generator is a
pseudo-random generator under the hypothesis that the underlying function is a
pseudo-random function. We first introduce the construction, then the different
security notions used in the proof.

A Stateful Random Generator. The stateful random generator we use in this
chapter is a generic construction parameterized by a function Fc : seed → state →
state × output The type seed represent the set of seeds, state is the set of states
and output the set of the output returned by the random generator. The code
of the construction is described in Figure 1. It is composed of two procedures:
an initialization function that sample a seed and an initial state and a gener-
ator function generating an output. The generator uses Fc with the seed and
the current state to obtain a new state, which is stored in place of the current,
and an output which is returned to the caller. Concretely, one could, for exam-
ple, instantiate the function Fc with AES, using appropriately-sized fixed-length
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Game SRG =
procedure init()

s $← seed;
st $← state;

procedure next()
(st, r) ← Fc s st;
return r;

Fig. 1. Stateful random generator

bitstrings as seeds, states and outputs. The proof presented here would then
directly apply to obtain a security result for this concrete instance.

We would like to prove that the concrete SRG construction is a secure pseudo-
random generator (PRG) under reasonable assumptions on Fc. We now define
the notion of PRG-security and formalize our assumption on Fc.

Pseudo-Random Generators (PRG). The notion of security for pseudo-random
generators is expressed using games Realprg

Fc and Randprg
output defined in Figure 2.

Both games are parameterized by an adversary: a distinguisher D that, given or-
acle access to a next oracle, returns a bit representing its guess as to whether it is
playing against the concrete PRG (game Realprg

Fc ) or the ideal random generator
(game Randprg

output).

Game Realprg
Fc (D) Game Randprg

output(D)
procedure init() procedure init()

s $← seed;
st $← state;

procedure next() procedure next()
(st, r) ← Fc s st; r $← output;
return r; return r;

procedure main() procedure main()
init(); init();
b ← Dnext(); b ← Dnext();
return b; return b;

Fig. 2. PRG security games

Definition 1 (PRG-advantage). Let Fc : seed → state → state × output be a
function. Let D be a distinguisher with an oracle access to a function next and
returning a bit. The PRG-advantage of D against Fc is defined as

Advprg
Fc (D) = Pr

[
Realprg

Fc (D) : res
] − Pr

[
Randprg

output(D) : res
]

Intuitively, a function Fc yields a stateful random generator that is secure
when, for all “reasonable” distinguisher D, Advprg

Fc (D) is “small”. Formally defin-
ing the notions of “reasonable” and “small” is not the objective of EasyCrypt: we
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rather aim at proving concrete bounds that can be used to prove security with
respect to chosen definitions (for example, parameterizing the system by a secu-
rity parameter η, “reasonable” adversaries might be algorithms that are p.p.t.
in η, and “small” advantages might be negligible as functions of η). However,
our proofs still require some restrictions to be placed on the adversaries consid-
ered. In particular, we will consider adversaries that make a bounded number of
queries to their oracles.

Pseudo-Random Functions (PRF). In our example, the bound for Advprg
Fc (D) is

expressed in terms of the security of Fc seen as a pseudo-random function. We
now introduce this notion.

A function family is a function F : K × D → R, where K is the set (or type)
of keys, D is the domain and R the range. We write FK(x) for F (K, x). This
allows us to view the function F as a family of functions from D to R indexed
by K.

A pseudo-random function is a function family that is computationally hard to
distinguish from a random function when its key is chosen at random. Formally,
this property is expressed using the games Realprf and Randprf presented in
Figure 3. Both games are parameterized by a distinguisher D which is given
oracle access to a procedure Fn and returns a bit representing its guess as to
which of the two games it is playing. In game Realprf, a key K is initially sampled
in K, and the procedure Fn is implemented using function FK . In game Randprf

the procedure Fn implements a lazily sampled random function: on each fresh
query x a random value is sampled and stored into the (initially empty) map
M , then the associated value is returned to the caller.

Game Realprf
F (D) Game Randprf

R (D)
procedure init() procedure init()

K $← K; M ← ∅;
procedure Fn(x) procedure Fn(x)

return FK(x); if M [x] = ⊥ then M [x] $← R;
return M [x];

procedure main() procedure main()
init(); init();
b ← DFn(); b ← DFn();
return b; return b;

Fig. 3. PRF security games

Definition 2 (PRF-advantage). Let F : K → D → R be a function family.
Let D be an adversary with oracle access to a procedure Fn and returning a bit.
The PRF-advantage of D against F is defined as

Advprf
F (D) = Pr

[
Realprf

F (D) : res
] − Pr

[
Randprf

F (D) : res
]
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High level description of the security proof. The objective of the security proof
is to bound, for all D in a certain class of algorithms, Advprg

Fc (D) as a function
of Advprf

Fc (D′) for some adversary D’ constructed from D. More concretely, in
Section 4.1, we prove the following abstract probability bound.

Theorem 1 (Abstract Security of our SRG). For all PRG-distinguisher
D, we construct a PRF-distinguisher Dprf

D such that

Advprg
Fc (D) ≤ Advprf

Fc (Dprf
D ) + Pr

[
Randprf

R (Dprf
D ) : ∃x, 1 < x # Q]

,

where Q is the multiset of queries made by Dprf
D to the PRF oracle, and x # X

is the number of occurrences of element x in multiset X .

In practice, the class of distinguishers considered is restricted to adversaries
with access to bounded resources, taking into account running-time and number
of queries to the oracles, and limiting the adversary’s access to the real and ideal
system’s memory spaces. In Subsection 4.2, we restrict the class of distinguishers
under consideration and compute concrete probability and resource bounds.

Theorem 2 (Concrete Security of our SRG). For all PRG-distinguisher D
that makes at most qn queries to its next oracle, the constructed adversary Dprf

D
from Theorem 1 makes at most qn queries to its PRF oracle, and we have

Pr
[
Randprf

R (Dprf
D ) : ∃x, 1 < x # Q] ≤ q2

n

|state| ,

where |state| is the cardinal of the set state.

Remark. The bound from Theorem 2 could be made slightly tighter. We choose
to keep this weaker result in this tutorial to keep the proof clear. This and
other generalizations and improvements are discussed in the online version of
this tutorial.

3 EasyCrypt Specification

In this Section, we formalize in EasyCrypt the definitions given in Section 2. We
start by formalizing our concrete SRG construction. We then formalize what it
means for an abstract SRG to be a secure PRG, and what it means for a function
family to be be a secure PRF. Finally, we instantiate these abstract definitions
to our concrete construction and state our security theorem.

3.1 A Stateful Random Generator

First of all we need to declare the types and distributions on which our construc-
tion relies. As discussed in Section 2, those are kept abstract throughout this
document but can later be instantiated, for example with bitstrings of various
fixed lengths, without having to re-prove anything, simply by proving that the
concrete instantiations given to types and operators fulfill the axioms specified
in our formalization. We give an example of such an instantiation (although we
do so on other theories) in Section 3.4.
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type seed.

op dseed: seed distr.
axiom dseed_ll: islossless dseed.

type state.

op dstate: state distr.
axiom dstate_uf: isuniform dstate.
axiom dstate_fu: isfull dstate.

type output.

op dout: output distr.
axiom dout_uf: isuniform dout.

op Fc: seed → state → state ∗ output.

Listing 1.1. Core Declarations

The first line declares a new abstract type seed representing the set of seeds.
The second line declares an abstract operator dseed: a sub-distribution over
seed, that we further restrict to be lossless (i.e. a proper distribution) with an
axiom dseed_ll. The next lines introduce the types state and output, and uniform
distributions over them, also requiring the distribution dstate to be full. Note that
this combination of axioms defines dstate uniquely given a finite instantiation
for type state. Finally, we declare an operator Fc representing a function family
from type state to type state ∗ output and indexed by the type seed.

module SRG = {
var s : seed
var st : state

proc init(): unit = {
s $← dseed;
st $← dstate;

}

proc next(): output = {
var r;

(st,r) = Fc s st;
return r;

}
}.

Listing 1.2. Our concrete Stateful Random Generator

Given these basic blocks, we define our stateful random generator as discussed
in Section 2: during an initialization phase, a seed and an initial state are sampled
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from the specified distributions. Each query for a new random output then simply
uses the function Fc applied to the seed and the old state to produce a new state
and some output. The new state is stored for use in the next query, and the
output is returned.

These procedures are defined as part of a module, which also specifies a mem-
ory space, here composed of two global variables: s of type seed and st of type
state. All procedures in a module may access the module’s entire memory space
and there is no need to pass the current state of global variables around through
the return values and arguments of the procedures that use them. EasyCrypt
modules are used to formalize schemes, constructions and oracles, but also con-
crete adversaries, games and security experiments.

We now give generic formalizations of PRG-security and PRF-security that
are independent of our concrete construction, as they might appear in Easy-
Crypt’s library of security notions. This library and the instantiation mechanism
discussed in Section 3.4 often make it unnecessary to formalize security notions
anew for each particular proof.

3.2 Pseudo-Random Generators

We first formalize PRG-security. To allow this notion to later be instantiated to
the types declared in Listing 1.1 and our concrete SRG, we wrap the following
definitions inside a theory: a collection of declarations and definitions, including
types, operators, and modules, that can be restricted by axioms (assumptions)
and extended with lemmas (derived from the axioms and the language’s seman-
tics).

theory PRG.
type output.
op dout: output distr.

module type PRG = {
proc init(): unit
proc next(): output

}.

module type PRGA = { proc next(): output }.

Listing 1.3. Pseudo-Random Generators: Types

For any type output equipped with an arbitrary sub-distribution dout, we
use a module type to define a random generator as a pair of algorithmes G =
(init, next). A module type specifies a set of procedures that are expected to be
provided by a module implementing it. A module is said to implement a module
type if it provides at least all the procedures specified in the type, with the
correct types. In particular, our construction from Listing 1.2 implements the
PRG module type, but also the module type PRGA, that hides the existence
of the init oracle. Module types can be used to quantify over adversaries, or
prove generic results on abstract cryptographic constructions before applying
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them to concrete instances. In addition to quantification in lemmas, module
types enable us to parameterize module definitions with abstract modules of a
given type. Such module parameters can be used to define generic constructions
of complex cryptographic schemes from abstract primitives, or to model that
an adversary has oracle access to some procedure (that is, that it can query
the procedure and get the corresponding reply, but cannot interfere with that
procedure’s internal state or its execution). For example, we consider adversaries
that have only oracle access to the next algorithm, which can be formalized using
the following set of definitions.

module type Distinguisher(G:PRGA) = { proc distinguish(): bool }.

module IND(G:PRG,D:Distinguisher) = {
module D = D(G)

proc main(): bool = {
var b;

G.init();
b = D.distinguish();
return b;

}
}.

module PRGi:PRG,PRGA = {
proc init(): unit = { }
proc next(): output = { var r; r $← dout; return r; }

}.
end PRG.

Listing 1.4. Pseudo-Random Generators: Security

A PRG-distinguisher is an algorithm distinguish that, given no inputs, and
oracle access to the next procedure of a PRG, returns a boolean. The module type
Distinguisher is parameterized with an abstract module G implementing module
type PRGA. This means that the implementation of its distinguish procedure may
call the procedure G.next.

Given these module type definitions, we can now define an indistinguisha-
bility experiment as a module IND, parameterized by a PRG G and a PRG-
distinguisher D. In this experiment, we first instantiate the distinguisher’s
module parameter, ensuring that any query it makes to next is answered us-
ing the implementation G.next, we then initialize G and run the distinguisher,
returning its output. Security of a PRG G with respect to a given adversary
D can then be defined using the standard notion of advantage. Formally, the
advantage of an adversary D in distinguishing a PRG G from distribution dout
in an initial memory m is written as follows:

Advprg
G (D, m) = Pr[IND(G,D).main() @ m: res] − Pr[IND(PRGi,D).main() @ m: res].
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Given a module M implementing procedure f, and an initial memory m, the
expression Pr[M.f() @ m: res] is a real-valued expression whose value is the prob-
ability of procedure M.f() returning true when run in initial memory m. The
formula appearing after the colon can be arbirary and may mention the global
variables of any module currently in scope, as well as the special res variable,
which is bound to the procedure’s return value. In the rest of this document, we
omit memories where irrelevant2, and also omit the procedure name when it is
main, simply writing, say, Pr[IND(G,D): res] for Pr[IND(G,D).main() @ m: res].

3.3 Pseudo-Random Functions

In EasyCrypt, we define pseudo-random functions using the following declara-
tions, leading to the declaration of a function family F, and a module PRFr
wrapping F so that it can be queried as an oracle, with a fixed key initially
sampled in dK.

theory PRF.
type D.

type R.

type K.

op dK: K distr.
axiom dK_ll: islossless dK.

op F: K → D → R.

module PRFr = {
var k:K
proc init(): unit = { k $← dK; }
proc f(x:D): R = { return F k x; }

}.

Listing 1.5. Pseudo-Random Functions

The security of a PRF F: K → D → R is defined, as shown below, with respect
to a random function from D to R. We write it as expected, using the uniform
distribution uR on the full range R to sample output values. The standard def-
inition of a random function from D to R as a function sampled uniformly at
random in RD can be recovered if the domain D is finite.

2 Formally, these probabilities may in fact depend on the initial memory. In practice,
it is always possible to make sure that advantage expressions are in fact independent
from the initial memory by initializing all variables before use, and we slightly abuse
notations by omitting initial memories.
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op uR:R distr.
axiom uR_uf: is_uniform uR.

module PRFi = {
var m:(D,R) map

proc init(): unit = { m = map0; }

proc f (x:D): R = {
if (x ∈ dom m) m[x] $← uR;
return (oget m[x]);

}
}.

module type PRF = {
proc init(): unit
proc f(x:D): R

}.

module type PRFA = {
proc f(x:D): R

}.

module type Distinguisher (F:PRFA) = {
proc distinguish(): bool

}.

module IND(F:PRF,D:Distinguisher) = {
module D = D(F)

proc main(): bool = {
var b;

F.init();
b = D.distinguish();
return b;

}
}.

end PRF.

Listing 1.6. Pseudo-Random Functions: Security

The advantage of a given D in distinguishing the given PRF F (from List-
ing 1.5) from a random function in an initial memory m can be expressed as:

Advprf
F (D) = Pr[IND(PRFr,D): res] − Pr[IND(PRFi,D): res].

3.4 Security of Our Stateful Random Generator
We now have enough definitions to properly express our desired security theorem.
However, we first need to instantiate the abstract PRF and PRG theories with
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the types and definitions used in our stateful random generator. We do so using
EasyCrypt’s theory cloning mechanism.

clone PRF as PRFa
with

type D ← state,
type R ← state ∗ output,
type K ← seed,
op dK ← dseed,
op F ← Fc,
op uR ← dstate ∗ dout (∗ product distribution ∗)

proof ∗
(∗ Proofs omitted ∗).

module INDPRF
P = PRFa.IND(P).

module PRFc = PRFa.PRFr.
module PRFi = PRFa.PRFi.

Listing 1.7. Security of Fc

The clone instruction creates a copy of the PRF theory defined in Section 3.3,
renaming it PRFa, and instantiating some of its declared types and operators.
For example, we instantiate the abstract operator F from the theory with the
function family Fc used in the construction of our SRG, instantiating the domain,
range and keyspace accordingly. In addition to instantiating types and operators,
the cloning instruction allows us to discharge assumptions about them made in
the theory. Here, we discharge all axioms, ensuring that any lemma existing in
the PRF theory are unconditional lemmas of its PRFa instantiation. After cloning
and instantiating the PRF definitions, we define some shorthand notations for
its instantiated modules. In particular, we call PRFc the PRFr module where Fc
is used. PRF advantage notations in the rest of the paper refer to the advantage
in the INDprf game rather than the uninstantiated IND game. Also note that
parameterized modules can be partially applied: given a module P implementing
module type PRF, the partially applied module INDprf

P = INDprf(P) is such that,
given a PRF-distinguisher D, INDprf

P (D) = INDprf(P,D). From now on, we often
write the first parameter as an index when applying module expressions.

Similarly, we clone and instantiate the PRG theory with the types used in
our construction to easily express the fact that PRGc is a secure PRG. Likewise,
PRG advantage notations in the following refer to the instantiated INDprg game.

clone PRG as PRGa
with

type output ← output,
op dout ← dout.

module INDPRG
G = PRGa.IND(G).

module PRGi = PRGa.PRGi.

Listing 1.8. Security of PRGc
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4 EasyCrypt Proof Sketch

4.1 Abstract Bounds for Arbitrary Distinguishers

We first bound the PRG advantage of D as abstract expressions that may not be
very meaningful but hold for all D. This proof itself is done in two hops: i. the
first hop transforms the SRG construction to make use of the random function
PRFi to implement the next oracle instead of Fc; ii. the second hop shows that
the PRFi-based implementation of the next oracle is equivalent, up to some well-
defined failure event, to the ideal random generator PRGi. We now discuss both
steps.

A simple reduction. We want to relate the probability of a distinguisher D to
win the game INDprg to the probability of another distinguisher DPRF to win
the game INDprf. To do so we can simply use the game INDprg itself as PRF
distinguisher after rewriting SRG as a parameterized module PRGp that uses the
PRF oracles instead of calling Fc directly. Anticipating on later proof steps, we
also log the queries made by PRGp to the PRF oracle in a list Dprf.log.

module Dprf(D:PRGa.Distinguisher,F:PRFA) = {
var log: state list

module PRGp = {
proc init(): unit = {

SRG.st $← dstate;
log = [];

}

proc next(): output = {
var r;

log = SRG.st::log;
(SRG.st,r) = F.f(SRG.st);
return r;

}
}.

proc distinguish = INDprg
PRGp(D).main

}.

Note that the module PRGp does not declare its own memory space, but
simply hijacks our initial SRG’s global variables. Although this is not necessary,
it simplifies invariants slightly by reducing the number of proof artefacts to
consider. The following fact is now easy to prove.

Fact 1 For any PRG distinguisher D whose memory space is disjoint from that
of SRG and PRFc, we have

Pr
[
INDprg

SRG(D) : res
]

= Pr
[
INDprf

PRFc(Dprf
D ) : res

]
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Proof (Sketch). In EasyCrypt, the proof of this lemma makes use of the following
pRHL judgment:

INDprg
SRG(D).main ~ INDprf

PRFc(Dprf
D ).main: ={glob D} =⇒ ={res}

The judgment itself is easily discharged by automated tactics after inlining all
procedures. Indeed, the procedures are identical except for the fact that the
program on the left uses variable SRG.s to store the seed whereas the one on
the right uses PRFc.k. The main trick in this proof is to be able to prove the
statement for all adversary D. Intuitively we have to compare two evaluations
of D, the first uses the next function provided by the module SRG whereas the
second uses the next function provided by the module PRGp. Assuming the
memory space of D is equal in both evaluations, they can diverge only if: i. D
can read values of variables SRG or PRFc but this is impossible due to memory
restrictions; ii. the oracles return different results or dissimilar states even when
called on identical arguments and in similar states. So, the only point that needs
to be proved is that both oracles behave identically.

Once proved, this judgment can be used to prove the probability statement
simply by using its semantic interpretation. �

Fact 1 is written as follows in its full EasyCrypt notation.

lemma SRG_PRGp (D <: PRGa.Distinguisher {SRG,PRFc}) &m:
Pr[INDprg(SRG,D).main() @ &m: res] =

Pr[INDprf(PRFc,Dprf(D)).main() @ &m: res].

Note that the quantification over the PRG-distinguisher D is made explicit in
the lemma, the only restrictions on it being that it implements module type
PRGa.Distinguisher and that its memory space (denoted glob D in pRHL state-
ments) is disjoint from those of SRG and PRFc. We also prove this lemma for
any initial memory: the variable &m denotes a universally quantified memory.
We do not list full EasyCrypt notations for other lemmas, but rather refer the
reader to the formalization itself.

Continuing the proof, and using Fact 1 we show:

Advprg
SRG(D) = Pr

[
INDprg

SRG(D) : res
] − Pr

[
INDprg

PRGi(D) : res
]

by definition

= Pr
[
INDprf

PRFc(Dprf
D ) : res

] − Pr
[
INDprg

PRGi(D) : res
]

by Fact 1

= Pr
[
INDprf

PRFc(Dprf
D ) : res

] − Pr
[
INDprf

PRFi(Dprf
D ) : res

]
+

Pr
[
INDprf

PRFi(Dprf
D ) : res

] − Pr
[
INDprg

PRGi(D) : res
]

= Advprf
Fc (Dprf

D )+ by definition
Pr

[
INDprf

PRFi(Dprf
D ) : res

] − Pr
[
INDprg

PRGi(D) : res
]

Considering failure events. We now wish to bound the last term

Pr
[
INDprf

PRFi(Dprf
D ) : res

] − Pr
[
INDprg

PRGi(D) : res
]

.
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It is clear from their definitions that the two games will only show different
behaviours if a duplicate query is made to the PRF by Dprf

D . Indeed, in this
case, the value eventually returned to D is not sampled from dout but rather
recalled from the random function’s map, whereas the ideal random generator
always samples its output freshly. We therefore expect the bound to be the
probability of a duplicate query to the random function, which we expressed in
Section 2 as Pr

[
INDprf

PRFi(Dprf
D ) : ∃x, 1 < x # Q]

. Moving slightly away from this
high-level description, we use the inductive list Dprf.log to model multiset Q,
using the unique predicate (or rather its negation) to capture the desired event.

However, having the failure event occur only in the first (left) game of the
transition would not yield the expected inequality. Indeed directly applying the
semantics of equivalence upto failure as presented in Section 1 would lead to a
lower-bound rather than the desired upper-bound. Still, an upper-bound can be
obtained in this case if the failure event is known to happen with the same prob-
ability on both sides of the transitions. Therefore, we also instrument the PRGi
module to construct a log of “intermediate states” that it does not otherwise
use. In addition, we also make sure that the intermediate state and the output
are sampled in the product distribution dstate ∗ dout. This makes this complex
game transition easier to prove, by separating two concerns.

module PRGilog = {
proc init(): unit = {

SRG.st $← dstate;
Dprf.log = [];

}

proc next(): output = {
var r;

Dprf.log = SRG.st :: Dprf.log;
(SRG.st,r) $← dstate ∗ dout;
return r;

}
}.

First note that PRGilog is indistinguishable from PRGi. Indeed, the additional
log and state variables do not alter its control-flow and its output is the sec-
ond component of a value sampled in the product distribution dstate ∗ dout.
In EasyCrypt, we in fact prove that oracles PRGilog and PRGi define the same
distribution on the type output regardless of initial state by proving

∀&m1 &m2 o,

Pr [PRGilog.next()@ &m1 : res = o] = Pr [PRGi.next()@ &m2 : res = o] .

This is in fact sufficient to prove that, for any PRG-distinguisher D, we have

Pr
[
INDprg

PRGilog
(D) : res

]
= Pr

[
INDprg

PRGi(D) : res
]
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and we now only have to prove the following Fact.

Fact 2 (Equivalence upto failure) For all PRG-distinguisher D whose mem-
ory space is disjoint from that of Dprf and SRG, we have the following bound

Pr
[
INDprf

PRFi(Dprf
D ) : res

] − Pr
[
INDprg

PRGilog
(D) : res

]
≤

Pr
[
INDprf

PRFi(Dprf
D ) : !unique Dprf.log

]
Proof (Sketch). We prove in EasyCrypt a single pRHL statement:

INDprf
PRFi(Dprf

D ).main ~ INDprg
PRGilog

(D).main:
={glob D} =⇒
(unique Dprf.log{1} = unique Dprf.log{2}) ∧ (unique Dprf.log{2} ⇒ ={res}).

This pRHL judgement implies two distinct probability relations. The first
conjunct in the postcondition implies that the probability of the failure event in
both games is equal

Pr
[
INDprf

PRFi(Dprf
D ) : !unique Dprf.log

]
=

Pr
[
INDprg

PRGilog
(D) : !unique Dprf.log

]
(1)

whereas the second conjunct implies the expected inequality

Pr
[
INDprf

PRFi(Dprf
D ) : res

] − Pr
[
INDprg

PRGilog
(D) : res

]
≤

Pr
[
INDprg

PRGilog
(D) : !unique Dprf.log

]
We then conclude easily. �
Combining Fact 2 and Fact 1’s corollary concludes the proof of Theorem 1.

Note that this Theorem does not directly imply security in the concrete sense:
although we did take care to ensure that our constructed PRF-distinguisher
Dprf

D did not have access to the internal memory of PRFc or PRFi (with which it
could trivially distinguish the two constructions), we did not bound the number
of oracle queries it makes, which may lead to large values of the PRF-advantage
and to a large probability of the failure event occurring. We now bound these
two quantitites more concretely.

4.2 Application to Resource-Bounded Adversaries

All proof steps seen so far hold regardless of the adversary’s resource bounds
(running time or number of oracle queries) and only place restrictions on the
oracles the adversary can query (via its module type) and on the global variables
it may access (via restrictions in the module quantification). However, computing
probability and resource bounds requires us to restrict the adversary further, and
in particular requires us to limit the number of oracle queries it can make.
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Counting oracle queries. First, consider the following module wrappers, that
simply count the number of queries made to the PRG (Cprg) or PRF (Cprf)
oracles.

module Cprg(G:PRG) = {
var c:int

proc init(): unit = {
c = 0;
G.init();

}

proc next(): output = {
var r;

r = G.next();
c = c + 1;
return r;

}
}.

module Cprf(F:PRF) = {
var c:int

proc init(): unit = {
c = 0;
F.init();

}

proc f(): output = {
var r;

r = F.f();
c = c + 1;
return r;

}
}.

This wrapper allows us to easily restrict the number of queries made by an
adversary to the oracle. In particular, all conditions of the form “D makes at most
q queries to the PRG oracle” appearing below can be expressed in EasyCrypt
using the following specification, which states that the distinguisher D playing
the INDprg game against any appropriate G (note the restrictions ensuring that
such a D exists) has a probability 1 of making at most q queries to the oracle
G.next.

∀ (G <: PRG {D,Cprg}),
islossless G.init ⇒ islossless G.next ⇒
Pr[INDprg(Cprg

G ,D): Cprg.c ≤ q] = 1
More complex conditions, for example relating the initial value of the counter to
its final value even when D(Cprg

G ).distinguish is run independently of the experi-
ment, can also be expressed in similar ways.

Bounding the failure event. We can now bound the probability of the failure
event from Theorem 1 for any PRG-distinguisher D that makes at most q queries
to its next oracle.

Lemma 1 (Probability of the failure event). For all positive integer q,
and all PRG-distinguisher D whose memory space is disjoint from those of Cprg,
PRFc, PRFi and Dprf and that makes at most q queries to its next oracle, we
have

Pr
[
INDprf

PRFi(Dprf
D ) : !unique Dprf.log

] ≤ q2

|state| ,
where |state| is the cardinal of type state.
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Proof (Sketch). To prove this, we make use of the failure event lemma, that
intuitively states that, if an event occurs with probability at most p, regardless
of state and adversary inputs, during each execution of the oracle, and if the
adversary may call this oracle at most q times, then the probability of the event
occurring during a full run of the adversary is bounded by p · q.

To ease the computation of the probability that the failure event is triggered
during a given execution of the oracle, we simplify the computation in two ways:
i. we first observe that, from equality (1) obtained during the proof of Fact 2, it is
in fact sufficient to bound the probability Pr

[
INDprg

PRGilog
(D) : !unique Dprf.log

]
;

and ii. we soundly approximate the failure event with a more general one, trig-
gered as soon as a state that already appears in the log is sampled, rather than
when it is added to the log.

proc next(): output = {
var r;

log = SRG.st::log;
(SRG.st,r) $← dstate ∗ dout;
bad = bad ∨ mem SRG.st log;
return r;

}

Clearly, if bad is initially unset, we can prove that bad has to be set for the log
to have duplicates. This implication is sufficient to prove, in pRHL:

Pr
[
INDprg

PRGilog
(D) : !unique Dprf.log

]
≤ Pr

[
INDprg

PRGilog
(D) : bad

]
.

In this latest variant of the next oracle, it becomes clear that the probability
of the bad event being triggered during a given query knowing that it was not
true beforehand is exactly the probability that a freshly sampled state already
appears in the log. Since the log until that point does not have duplicates and
dstate is uniform and full, this probability is exactly |log|

|state| . Given that the log’s
size is bounded by q, we obtain the desired bound. �

Bounding the resources of the PRF-distinguisher. Finally, we prove that for any
bounded PRG-distinguisher D with no access to the memory of the primitive
modules, the generic construction Dprf and both Cprg modules, the constructed
PRF-distinguisher Dprf

D makes at most as many queries to the PRF as D did to
the PRG.

Lemma 2 (Number of PRF queries). For all positive integer q, and all
PRG-distinguisher D whose memory space is disjoint from those of Cprg, Cprf,
PRFc, PRFi and SRG, and that makes at most q oracle queries, the constructed
PRF-distinguisher Dprf

D makes at most q oracles queries.

Proof (Sketch). Given an integer q and PRG-distinguisher D as constrained
above, we prove the following equality, which states that (for all initial memory)
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the probability that the constructed Dprf
D makes at most q queries to PRFc.f

during a run of the INDprf experiment is 1.

Pr
[
INDprf

Cprf(PRFc)(Dprf
D ) : Cprf.c ≤ q

]
= 1.

We do so by proving the following statement, inlining all functions and noting
that the counters remain synchronized through the execution.

Pr
[
INDprf

Cprf(PRFc)(Dprf
D ) : Cprf.c ≤ q

]
= Pr

[
INDprg

Cprg(SRG)(D) : Cprg.c ≤ q
]

We conclude by applying the assumption on D, rewriting the right-hand-side of
this equality into 1. �

This concludes the proof of Theorem 2.

5 Further Reading and Concluding Remarks

EasyCrypt provides tool-assisted support for building and verifying machine-
checked cryptographic proofs. Its foundations are based on a probabilistic re-
lational Hoare logic, pRHL, that was first introduced in [5], and a verification
condition generator that was first presented in [4]. Another key component of
EasyCrypt is its module system, which supports the formalization of complex
and layered proofs and has been used for instance to verify the security of pro-
tocols for secure function evaluation and verifiable computation [2]. One main
motivation for the development of EasyCrypt is to close the gap between se-
curity proofs and implementations; an approach based on certified compilers
is presented in [1]. Beyond EasyCrypt, it is possible to develop and apply fully
automated verification techniques for analyzing the security of classes of cryp-
tographic constructions; for instance, one can use customized logics to reason
about the security of padding-based encryption schemes, i.e. public-key encryp-
tion schemes built from one-way trapdoor permutations and random oracles [3].
Deduction rules of the logic capture high-level reasoning principles that can be
formalized in EasyCrypt, and contribute to building an extensive library of com-
mon reasoning patterns in cryptography. It is our hope that the development
of the library will somewhat shift the focus of EasyCrypt proofs to reduce the
emphasis on proving pRHL judgments and to bring them closer to the high level
reasoning steps used by cryptographers.
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Cryptographic Voting — A Gentle Introduction

David Bernhard and Bogdan Warinschi

University of Bristol, UK

Abstract. These lecture notes survey some of the main ideas and tech-
niques used in cryptographic voting systems. The write-up is geared to-
wards readers with little knowledge of cryptography and it focuses on
the broad principles that guide the design and analysis of cryptographic
systems, especially the need for properly designed security models.

We use a system proposed by Fujioka, Okamoto and Ohta as starting
example to introduce some basic building blocks and desirable security
properties. We then slowly build towards a comprehensive description of
the Helios voting system, one of the few systems deployed in practice
and briefly discuss a few of its security properties.

1 Introduction

A potential solution to the problem of decrease turn-out in elections is the use of
remote voting systems. The increased comfort that permits voters to cast their
ballot from anywhere and at any time (as long as they have an internet connec-
tion) should translate in higher voter participation and even reduce the costs of
running elections. Just like with any advanced technology, bringing electronic
voting1 to widespread practice faces both technological and societal challenges.

The latter is well illustrated by Norway’s recent decision, that follows a couple
of trials, not to expand internet voting to nationwide elections because of the
impact that public’s trust in this technology may have on the democratic process.
Related problems raised questions regarding the constitutionality of internet
voting in Germany. While the deployment and usability issues (e.g. dealing with
malware on user’s voting device, overcoming social inertia, gaining public trust)
still need to be solved, it is fair to say that the cryptographic technology that goes
into electronic voting is by now in a reasonably stable condition. In particular
existing schemes build upon a powerful and versatile toolbox of cryptographic
techniques which are combined to achieve the desired functionality and security.

These notes survey some of the most commonly used cryptographic primi-
tives used in electronic voting. We explain and motivate the functionality and
security they achieve through their use within electronic voting schemes. In this
context, perhaps the most important message we wish to convey is the crucial

1 We remark that in this write-up we use the term electronic voting to refer to online
voting schemes. The term is also used to refer to kiosk-voting that involves some
form of digital recording machine, potentially combined with other mechanisms like
optical scanners, paper-based recording, etc.

A. Aldini et al. (Eds.): FOSAD VII, LNCS 8604, pp. 167–211, 2014.
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role that rigorous models play in the development of secure systems. For pro-
tocols with complex security requirements, as is the case of electronic voting,
models are necessary for understanding the security these protocols offer and for
enabling rigorous security proofs. Most of the discussion is driven by two voting
schemes from the literature, one of which is in current use. We aim to provide a
comprehensive overview of the latter.

These notes are intended for readers with little to no knowledge of cryptog-
raphy, but who wish to understand some of the underpinnings of cryptographic
voting. We assume some familiarity with basic abstract algebra and ease in using
mathematics.

Primitives and models. One of the main goals of this write-up is to present
the building blocks used in voting systems. Our presentation is not exhaustive
but it includes some of the most used primitives: digital and blind signatures,
homomorphic encryption, threshold techniques and zero-knowledge proofs. For
each of the primitives we present a rigorous security model where we clarify what
is an adversary, how it can interact with the primitive, and what constitutes a
breach against the primitive. To ease understanding, we find it useful to define
the functionality and security of these primitives by analogy with systems which
achieve similar levels of security in the physical world. In addition, for increased
clarity but at the expense of some precision, we chose not to give the typical
fully formal cryptographic definitions.

We remark that, perhaps surprisingly, not all of the (many) security properties
that voting systems should satisfy have formal definitions. Indeed, most of the
recent research on cryptographic voting focuses on the design of such models
and the analysis of existing schemes. In these notes we recall ballot privacy, a
security notion that captures the idea that users’ votes stay private. In addition,
we briefly comment on the equally important property of verifiability.

Instantiations and Helios. For all of the primitives that we cover we show how
they can be (securely) instantiated; each instantiation is preceded by the nec-
essary mathematical background. In particular, we show how to realize all of
the primitives that go into the design of the Helios voting systems, one of the
few voting systems that are actually used in practice. For pedagogical reasons
we present an incremental design of Helios: we start with a basic voting system
which is functional but not secure, then we identify attacks against the scheme
which we show how to defend against via cryptographic techniques. The result-
ing design together with the instantiations of the different primitives that we
present yield a scheme which has ballot privacy. We briefly discuss (informally)
its verifiability properties.

Conventions. To allow the reader to zoom-in on the parts that may be of more
interest to him/her we separate and clearly indicate the following. Sections giving
mathematical background information are marked with a frame and a large Σ.
Sections that introduce basic cryptographic primitives are marked with a lock
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symbol ( ). Sections giving applications specific to the Helios voting scheme are

marked with a � symbol.

2 First Steps

2.1 Example

Here is one way to run a poll. Voters enter a polling station and pick up a voting
card on which the candidates standing for election or choices in a referendum
are printed. They fill in their card by placing crosses in boxes. Then they take
their card and put it in an opaque envelope which they seal. In keeping with
the cryptographic constructions we will describe later, we call such an envelope
containing a filled in vote card a “ballot”. This completes the first step, ballot
creation.

To cast their ballots, voters present them to an official along with some iden-
tification. The official checks that the voter is registered at this polling station
and has not cast a vote yet, but the official does not get to see the vote itself.
Then the official places the ballot-envelope in a stamping machine and stamps
the envelope, in such a way that the imprint of the stamp is not only visible on
the envelope but also transferred to the vote card within.

Voters post their ballots to a counting centre. The postal service agrees to send
any correctly stamped envelope free of charge from anywhere in the country so
voters can post their envelope anonymously in any post box that they choose.
The counting centre shuffles all received envelopes, opens them and counts all
vote cards that contain an imprint of the official stamp.

2.2 Digital Signatures

We will now start to develop the tools that we will use to build a cryptographic
version of the protocol sketched in the last section. Along the way we will in-
troduce the cryptographer’s method of defining and reasoning about security of
schemes and protocols.

Digital signatures are the cryptographer’s replacement for signatures or stamps.
If we know what someone’s signature looks like and believe that it would be hard
for anyone but the owner to produce such a signature, the presence of such a sig-
nature on a document attests that the owner has seen and signed it. Similarly,
the imprint of a stamp on a document attests that someone with the appropriate
stamp has stamped the document — although as we will see soon this does not
have to mean that the stamp-owner has seen the document.

Digital signatures differ from physical ones in that they are not placed on
an original document, modifying the original, but are separate objects that can
be provided alongside the original. As a consequence, to prevent someone from
transferring a signature from one document to another, digital signatures for
different documents will be completely different objects.

We follow the cryptographic convention of first defining a class of schemes
(that is, digital signature schemes) and then, in a later step, defining what we
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mean when we say that a member of this class is “secure”. Keeping functionality
and security separate has many advantages including that we can reason about
several different levels of security for the same class of schemes. We will give
some examples of this relating to signature schemes in particular.

To be able to create digital signatures, a signer first has to generate a pair of
keys called the signing key (or secret key) and verification key (or public key).
To do this, a digital signature scheme defines a key generation algorithm. The
signing key is like a stamp with which the signer can stamp documents. Such
a stamp on a document does not mean much on its own (anyone can create
their own stamps) but if you know what a particular person’s or organisation’s
stamp looks like, you can verify any stamped document to see if it was really
stamped by the person or organisation you know, by comparing the imprint on
the document with the imprint you know to be theirs. The verification key plays
a similar role for digital signatures.

A digital signature scheme comes with two more algorithms. The signing
algorithm takes a document and a signing key as input and returns a signature
for the document. The verification algorithm takes a document, a signature and
a verification key and outputs 1 if the signature is valid for the given key and
document, otherwise 0.

It is the signer’s responsibility that all verifiers have an authentic copy of the
verification key. For example, in some government e-ID card schemes every citi-
zen gets a smartcard containing a signing key and the government maintains a
public database of verification keys. For a digital election, if the election author-
ities need to sign ballots they can publish their verification key as part of the
election specification.

Definition 1. A digital signature scheme Σ is a triple of algorithms

Σ = (KeyGen, Sign, Verify)

known as the key generation, signing and verification algorithms and satisfying
the correctness condition below.

The key generation algorithm takes no input and produces a pair of keys
(sk, vk) ← KeyGen() known as the signing and verification keys. The signing
algorithm takes a signing key sk and a message m as inputs and produces a
signature σ ← Sign(sk,m). The verification algorithm must be deterministic.
It takes a verification key vk, a message m and a signature σ as inputs and
returns 0 or 1. We say that σ is a (valid) signature for m under key vk if
Verify(vk,m, σ) = 1.

A digital signature scheme must satisfy the following correctness condition
which means that correctly generated signatures are always valid. For any mes-
sage m, if you run the following sequence of algorithms then you get b = 1:

(sk, vk) ← KeyGen(); σ ← Sign(sk,m); b ← Verify(vk,m, σ)

We will present a concrete digital signature scheme later in this work when
we have developed the necessary mathematics to motivate it. For now, we briefly
change our focus to talk about security notions and models.
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2.3 Security Models

We introduce the cryptographer’s viewpoint of security using digital signatures
as an example. Security means that an certain kind of attacker can not do certain
things, like create a signature on a document that verifies under someone else’s
key.

Cryptographic Games. The core of a security notion, at least in this work, is
a cryptographic game. A game formalises two main aspects of a notion. First, it
defines exactly what we want an attacker not to be able to do: a scheme will be
called secure (w.r.t. a notion or game) if we can show that no attacker can win
the given game. Secondly, a game specifies what we assume the attacker can do,
by giving a set of moves allowed in the game and conditions on when and how
often the attacker can use them.

Security games are defined in three parts. First, the game begins with some
setup algorithm. Secondly, we give one or more moves that the attacker can play
in the game. Finally, we state the winning conditions for the attacker.

For example, the two security notions for digital signatures that we use in this
work both start by having the game playing the role of a signer and creating
a signature key pair. They also both end by saying that the attacker wins if
she can forge a signature but they differ in what other signatures the attacker
may legitimately obtain: the security notion for “no-message” attackers considers
attackers that never see any valid signatures whereas “chosen message” attackers
may ask the signer to sign any message of their choice and win if they can forge
a signature on a message that was never signed by the signer.

Cryptographers use two kinds of security games. The first, which could be
called “trace games”, are games in which the attacker wins if she does something
that should be impossible in a secure system (like obtain someone’s secret key
or forge a signature). Here, the security definition calls a scheme secure if no
attacker can win the game. The second type of game is the indistinguishability
game where the attacker is asked to guess which of two things the game did. In
an indistinguishability game, the attacker can always make a guess at random
so the security definition says that a scheme is secure if no attacker can win the
game with more than the probability 1/2 of guessing at random. It will always
be clear from our description of games and their winning conditions which type
of game is meant.

From Games to Security Notions. The second main ingredient in a security
notion is the definition of the resources available to a hypothetical attacker.
These resources are composed of two factors: first, the moves available to the
attacker in the game and secondly, the computational resources that the attacker
can use “during her turns”. Thus, the difference between a security game and a
security notion is that a game specifies an interface with which the attacker can
interact but says nothing about the attacker herself whereas a security notion
describes both a game and a class of attackers, usually in a statement of the
form “no attacker of a given class can win the given game (with more than a
certain probability)”.
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There are two principal classes of attackers. The first are computationally un-
bounded attackers who may have unlimited resources; only a very small number
of cryptographic constructions can be secured against unbounded attackers. This
does not include digital signatures or indeed any scheme using a fixed-length se-
cret key — an unbounded attacker can always break such schemes by trying all
possible keys. Commitment schemes which we will introduce later can however
be made secure even if one of the two players involved has unbounded resources.

The second class of attackers is that of polynomially bounded attackers, com-
monly called efficient attackers. This class follows the notion of efficiency from
complexity theory: an algorithm taking a bitstring s as input if there is some
polynomial p(x) such that on input a string s, the algorithm completes in at
most p(|s|) steps where |s| is the length of s in bits. This allows us to introduce
cryptographic keys since an n-bit key can be chosen in 2n possible ways and 2n

grows much faster than any polynomial in n.
A fully formal treatment of this approach, which can be called asymptotic

security, gets complex very quickly. We cannot talk about the security of any
one fixed scheme but instead have to reason about families of schemes indexed
by a so-called security parameter, which can very informally be thought of as the
bit-length of keys in a scheme. Further, an asymptotic security notion typically
says that the attacker’s probability of winning the game is smaller than the
inverse of any polynomial in the security parameter, what complexity theorists
would call a negligible function2.

In this work, we largely sweep such considerations under the carpet in favour
of a more readable (we hope) introduction to the concepts and high-level con-
nections that make up a cryptographic voting scheme. For the same reason we
omit all formal security proofs which we could not present without fully formal
definitions.

2.4 Security of Digital Signatures

An obvious property that signatures should have is that you cannot forge a
signature on a message that verifies under someone else’s key. We call such a
forgery an existential forgery and we call an attacker that produces such a forgery
a no-message attacker (we will see why in a moment). The security game and
notion for this property have the game create a key pair and give the adversary
the verification key, which is supposed to be public. The adversary wins if she
produces a forgery:

Definition 2. A digital signature scheme is existentially unforgeable under no-
message attacks (EF-NMA) if no attacker can win the following game.

Setup The game creates a key pair (sk, vk) ← KeyGen() and saves them; the
attacker gets the verification key vk.

Moves None in this game.

2 A negligible quantity is not the same thing as an exponentially small one like 2−n,
but an exponentially small quantity is always negligible.
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Winning conditions The attacker wins the game if she provides a message/
signature pair (m∗, sk∗) such that this pair verifies under the game’s key:
Verify(vk,m∗, σ∗) = 1.

This definition is considered necessary but not sufficient. The attacker may
be a participant in some system using digital signatures in which she gets to see
messages legitimately signed by some other person; she should still not be able
to forge anyone else’s signature on any message they did not sign. This includes
such attacks as taking a signature off one message and claiming that the signer
actually signed some other message. Cryptographers model this with the chosen-
message attack game. Here the adversary gets an extra move: she may ask the
game to sign any messages of her choice and wins if she can forge a signature on
any message that the game did not sign.

Definition 3. A digital signature scheme is existentially unforgeable under cho-
sen message attacks (EF-CMA) if no attacker can win the following game.

Setup The game creates a key pair (sk, vk) ← KeyGen() and saves them; the
attacker gets the verification key vk. The game also makes an empty list L
of signed messages.

Moves The attacker may, any number of times, send the game a message m
of her choice. The game signs this message producing a signature σ ←
Sign(sk,m), adds m to L and returns σ to the attacker.

Winning conditions The attacker wins the game if she provides a message/
signature pair (m∗, sk∗) such that (1) this pair verifies under the game’s key:
Verify(vk,m∗, σ∗) = 1 and (2) the game never signed the message m∗, i.e.
m∗ /∈ L.

In neither of the above games would it make any difference if we gave the
attacker an extra move to verify signatures: she already knows the verification
key vk so she can do this herself.

One-Time Signatures. There are several reasons why it is useful to define
several security notions of increasing strength for the same class of scheme,
rather than just go with the strongest known definition. For signature schemes in
particular, some protocols use a construction called a one-time signature: a signer
who has a personal signing key pair (pk, sk) of some signature scheme generates,
for each action that she performs in the protocol, a new key pair (pk′, sk′) of a
one-time signature scheme and uses sk′ to sign exactly one message whereas she
signs the one-time public key pk′ under her long-term key pk. One reason why
one might do such a construction is for greater anonymity: in a voting scheme,
a voter could send her ballot with a one-time signature under sk′ to the ballot
counting authority and her signature on pk′ to another, independent authority.
The ballot is now anonymous in the sense that it is not linked to the voter’s
public key pk but in the case of a dispute, the information held by the two
authorities together can be used to trace the ballot. Since sk′ is only ever used
once, a scheme secure under no-message attacks is sufficient for this application
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and in some cases this allows one to choose a more efficient signature scheme
and/or reduce the signature size.

2.5 Blind Signatures

Voting is one of several applications where it is useful to be able to sign mes-
sages without knowing their content. To ensure that only authorized voters cast
ballots, one could ask voters to authenticate themselves with an authority who
holds a signing key and signs the ballots of authorized voters. Unfortunately, a
straightforward use of digital signatures here would reveal everyone’s votes to
the authority. Instead, one can use blind signatures: each voter fills in her ballot
and blinds it — we will define this formally in a moment but think of blinding
for now as placing the ballot in an envelope — then authenticates herself to the
authority, who signs the blinded ballot without knowing its contents. The voter
then turns the signature on the blinded ballot into a signature on the real ballot
and casts this ballot along with the signature.

Blind signatures will require two security properties. Security for the signer
requires that no-one can forge signatures on messages that the signer has not
blind-signed, even though the signer will not usually know which messages she
has signed. Security for the user (in our case, the voter) requires that the signer
cannot learn which messages she has signed. We follow Fujioka et al. [FOO92] in
the definition of blind signatures and Schröder and Unruh [US11] in the definition
of security properties.

Definition 4. A blind signature scheme is a tuple

BS = (KeyGen, Blind, Sign, Unblind, Verify)

of algorithms where Verify is deterministic and the rest may be randomized.
The key generation algorithm outputs a keypair (sk, vk) ← KeyGen(). The blind-
ing algorithm takes a message m and a verification key vk and outputs a blinded
message b and an unblinding factor u: (b, u) ← Blind(m, vk). The signing al-
gorithm takes a signing key sk and a blinded message b and outputs a blinded
signature s ← Sign(b, sk). The unblinding algorithm takes a verification key
vk, a blinded signature s and an unblinding factor u and outputs a signature
σ ← Unblind(vk, s, u). The verification algorithm finally takes a verification key
vk, a message m and a signature σ and outputs a bit v ← Verify(vk,m, σ) that
is 1 if the signature verifies.

A blind signature scheme is correct if the following outputs v = 1 for any
message m, i.e. a correctly generated signature verifies:

(sk, vk) ← KeyGen(); (b, u) ← Blind(vk,m); s ← Sign(sk, b);
σ ← Unblind(vk, s, u); v ← Verify(vk,m, σ)

Definition 5. A blind signature scheme is unforgeable (secure for the signer) if
no attacker can win the following game.
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Setup The game creates a key pair (sk, vk) ← KeyGen and saves them. It also
creates a list L of signed messages which starts out empty. The attacker gets
vk.

Moves The attacker may submit a message m for signing as long as m /∈ L. The
game runs (b, u) ← Blind(vk,m); s ← Sign(sk, b); σ ← Unblind(vk, s, u),
adds m to L and returns the signature σ. The attacker may use this move
as many times as she likes.

Winning Conditions. The attacker wins if she can output a list of message/
signature pairs

((m1, σ1), (m2, σ2), . . . , (mk+1, σk+1))

satisfying the following conditions: (1) all messages are distinct: mi �= mj

for all pairs (i, j) with i �= j (2) all pairs verify i.e. Verify(vk,mi, σi) = 1
for all i and (3) the attacker has made at most k signature moves, i.e. fewer
than the number of messages she returns.

The list L here serves a slightly different purpose than for plain digital sig-
natures: it prevents the attacker from submitting the same message twice. The
winning condition is that the attacker has produced signatures on more mes-
sages than she has used in signing moves, so at least one of her output pairs
is a genuine forgery. The reason for this formulation is that some blind signa-
ture schemes allow you to take a message/signature pair (m,σ) and create a
new signature σ′ �= σ on the same message such that (m,σ′) is still a valid
message/signature pair on the same key.

In the blindness game, the attacker takes the role of the signer. She may
interact with two users bringing messages of the attacker’s choice to be signed;
her aim is to guess which order the users come in.

Definition 6. A blind signature scheme is blind (secure for the user) if no at-
tacker can guess the bit b in the following game with better probability than one
half.

Setup. The game picks a bit b at random from the set {0, 1}.
Moves. The attacker has only one move and she may use it only once. First,

the attacker may send the game a verification key vk. The attacker may then
choose a pair of messages (m0,m1) and send them to the game. The game
runs (b0, u0) ← Blind(vk,m0) and (b1, u1) ← Blind(vk,m1) and sends
(bb, b1−b) to the attacker. If the attacker returns a pair (sb, s1−b) then the
game sets σ0 ← Unblind(vk, s0, u0) and σ1 ← Unblind(vk, s1, u1). If both
σ0 and σ1 are valid, the game sends (σ0, σ1) to the attacker.

Winning Conditions. The adversary may make a guess for b at any time.
This stops the game. The adversary wins if the guess is correct.

Our presentation of blind signatures is that of Fujioka et al. [FOO92] that
was used in their voting protocol which we are working towards. There is a more
general notion of blind signatures where the Blind, Unblind and Sign algorithms
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are replaced by interactive algorithms for the user and signer, however not all
blind signatures of the more general type can be used to construct a voting
protocol in the manner that we do in this work.

We now turn our attention to a possible implementation of standard and blind
digital signatures based on the famous RSA construction.

∑ RSA. In 1978, Rivest, Shamir and Adleman constructed the
first public-key encryption scheme [RSA78]. In 1985, Chaum
used RSA to propose and construct a blind signature scheme
which we will present in the next section; let us first describe
the RSA construction.

Pick two prime numbers p, q and multiply them together to get N = pq.
The RSA construction lives in the ring Z

∗
N : the elements are the integers

{1, 2, . . . , N − 1} with the operation of multiplication modulo N . This ring
is not a field (p, q are zero-divisors after all) but for large N , if we pick a
random element x from {1, . . . , N−1} the chance of hitting a non-invertible
element is small. One idea behind RSA is that if you know N but not p and
q, you can treat Z∗

N as if it were a field. Specifically, you can try and invert
any element with Euclid’s algorithm and if you find a non-invertible element
then you can factor N (you’ve found a multiple of p or q that’s coprime to
the other factor of N) and vice versa. Factoring is arguably the most famous
computationally hard problem in mathematics.

If you pick an element x ∈ Z
∗
N coprime to N (not a multiple of p or q)

and look at the subgroup {xk (mod N) | k ∈ N} that it generates then
this subgroup has order exactly φ(N) = (p− 1)(q − 1) where φ is the Euler
totient function, i.e. x(φ(N) = 1 (mod N). The RSA construction makes
use of exponentiation modulo N as its basic operation. The idea is that if
you pick a pair of integers e, d satisfying e · d = 1 (mod φ(N)) then for
any invertible x ∈ Z

∗
N the equation (xe)d = xe·d = x (mod N) holds,

i.e. exponentiating with e and d are mutually inverse operations. Crucially,
given N and any e that is coprime to N , it is considered hard to find the
corresponding d or to compute xd (mod N) for random x. A cryptographer
would say that x �→ xe (mod N) is a trapdoor one-way function: one-way
because it is easy to compute yet hard to invert; “trapdoor” because given d
it becomes easy to invert. Upon such a function one can construct much of
modern cryptography. While it is clear that if you can factor N you can also
invert the function x �→ xe (mod N) for any e > 0, it is less clear whether
an attack on RSA implies the ability to factor N . However, RSA has stood
the test of time in that no-one has managed to attack properly generated
RSA keys of decent key sizes, either through factoring or any other means,
since the system was first proposed.

To generate an RSA keypair (whether for encryption, signing or many
other applications), the key generation algorithm KeyGen performs the fol-
lowing steps:
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1. Pick large enough primes p and q and compute N = pq. The bitlength
of N is your key length.

2. Pick any unit e of Z∗
N — choices such as e = 3 are common as they are

efficient to work with.
3. Find d such that ed = 1 (mod (p− 1)(q− 1)) (since you know p, q this

can be done with a variation on Euclid’s algorithm).
4. The public key is the pair (N, e). People can share e but everyone gets

their own N . The private key is the tuple (N, e, d, p, q) — most of the
time, the pair (N, d) suffices to work with though.

2.6 A Blind Signature Based on RSA

We start with the construction of a digital signature scheme, which then we show
how to turn into a blind one. The scheme is based on the RSA group described
above and is as follows. The private signing key is (N, d) and public verification
key is (N, e). To sign a message m ∈ Z

∗
N (without blinding) with key (N, d), one

computes
Sign((N, d),m) := H(m)d (mod N)

and to verify a signature σ, check that the following returns 1:

Verify((N, e),m, σ) :=

{
1, if σe = H(m) (mod N)
0, otherwise

Here, H is a hash function that serves two purposes. First, it allows a signature
of constant size on a message of any length. Secondly, the hash function is a
necessary part of the security of this construction: without it, you could take
any value x, compute y = xe (mod N) and claim that x is a signature on y.

Chaum’s blind signature has the user blind the message m (or, more precisely,
the value of H(m)) with a random value r before sending it to the signer and
strip this factor out again afterwards:

KeyGen: Standard RSA key generation.
Blind((N, e),m): pick a random r from Z

∗
N and set b := H(m) · re (mod N),

u := r.
Sign: as for the basic RSA signature.
Unblind((N, e), s, u): Compute σ := s/u (mod N).
Verify: as for the basic RSA signature.

Let us check correctness of the blind signature. We have

σe = (s/u)e = ((H(m) · re)d)e = H(m)e·d(re·d)e = 1 · 1e = 1 (mod N)

Note that σ is exactly the standard RSA signature on m for verification key
(N, e). The analysis for this scheme is due to Bellare et al. and [BNPS03] and
we omit it in this work.
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2.7 Commitment Schemes

A commitment scheme is the cryptographer’s equivalent of placing a message
in an opaque envelope and placing this envelope on the table: no-one else can
can read your message until you open the envelope but you cannot change the
message that you have placed in the envelope either: you are committed to the
message.

Definition 7. A commitment scheme CS is a triple of algorithms

CS = (Setup, Commit, Open)

called the setup, commitment and opening algorithms. The setup algorithm out-
puts some commitment parameter p ← Setup(). The commitment algorithm
takes a parameter p and a message m and returns a commitment c and an open-
ing key k: (c, k) ← Commit(p,m). The opening algorithm takes a parameter p, a
message m, a commitment c and a key k and returns a bit b to indicate whether
the commitment matches the message: b ← Open(p,m, c, k). The opening algo-
rithm must be deterministic.

A commitment scheme must satisfy the following correctness property. For
any message m, if you run

p ← Setup(); (c, k) ← Commit(p,m); b ← Open(p,m, c, k)

then b = 1 i.e. correctly commited messages also open correctly.

Security of commitment schemes has two parts. A commitment is hiding if
you cannot extract a committed message from a commitment until it is opened.
A commitment is binding if you cannot change it once committed.

In more detail, the hiding property says that for any two messages of your
choice, if you are given a commitment to one of them then you cannot guess
better than at random which message was committed to.

Definition 8. A commitment scheme CS = (Setup, Commit, Open) is hiding if
no attacker can win the following game with better probability than one half.

Setup The game picks a bit b at random and creates a parameter p ← Setup().
The attacker gets p.

Moves The attacker may, once only, send a pair of messages m0,m1. The game
runs (c, k) ← Commit(p,mb) and returns c to the attacker.

Winning conditions The attacker wins if she guesses b. A guess stops the
game.

The binding property asks the attacker to produce one commitment c and two
different messages m,m′ to which she can open the commitment, i.e. keys k, k′

(which may or may not be the same) such that Open returns 1 on both triples
involved.
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Definition 9. A commitment scheme CS = (Setup, Commit, Open) is binding if
no attacker can win the following game.

Setup. The game creates parameters p ← Setup(). The attacker gets p.
Moves. No moves.
Winning Conditions. The attacker may provide a string c, two messages m,m′

and two keys k, k′. She wins if (1) m �= m′ and (2) both Open(p, c,m, k) and
Open(p, c,m′, k′) return 1.

Commitment is one of the few cryptographic primitives that can be built se-
curely against attackers with unlimited resources, however a commitment scheme
can only be either “perfectly hiding” or “perfectly binding”, not both at once.
All decent commitment schemes are both hiding and binding against computa-
tionally bounded attackers.

2.8 The FOO Protocol

The cryptographic tools we introduced above allow us to describe the voting
scheme presented by Fujioka, Okamoto and Ohta at Auscrypt 1992 [FOO92].
This scheme was also the one that we motivated in the informal example above
and has the convenient abbreviation FOO.

The FOO protocol uses two administrators, a counter who publishes all ballots
sent to her and an authority who checks voters’ eligibility and can produce
blind signatures. Voters must be able to talk anonymously to the counter; this
requirement could be achieved with cryptographic tools that we will introduce
later such as mix-nets.

The FOO protocol assumes that there is some public-key infrastructure in
place in which each voter has a digital signature keypair and the association of
verification keys to voters is public. FOO requires each voter to perform four
steps:

1. Prepare a ballot on her own, sign it and save a private random value.
2. Authenticate herself to the authority and get a blind signature on the ballot.
3. Submit the ballot and authority signature anonymously to a ballot counter

(this is equivalent to publishing the ballot).
4. After voting has closed, submit the private random value from step 1 to the

counter, also anonymously.

Definition 10. The FOO protocol is the following protocol for voters, an au-
thority and a ballot counter.

Tools. The FOO protocol requires a digital signature scheme Σ, a blind signa-
ture scheme BS and a commitment scheme CS. We write algorithms with
the scheme name as prefix, for example BS.Sign, to avoid ambiguity. We
assume that some commitment parameters p ← CS.Setup() have been gen-
erated.

Voter. The voter starts out with a digital signature keypair (skV , vkV ) for Σ,
a vote v and the authority’s blind signature verification key vkA.
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1. She creates a commitment (c, k) ← CS.Commit(p, v), blinds it as (b, u) ←
BS.Blind(vkA, c) and signs this as σV ← Σ.Sign(skV , b).

2. She then sends (IDV , b, σV ) to the authority and expects a blinded signa-
ture s in return. Here IDV is some string describing the voter’s identity.

3. On receipt of s, she creates the blind signature σA ← Unblind(vkA, s, u)
and sends her ballot (c, σA) anonymously to the counter. The counter
replies with some random identifier i.

4. After voting has closed and the counter has invited the voters to open
their ballots, the voter sends (i, v, k) anonymously to the counter.

Authority. The authority has a keypair (skA, vkA) for a blind signature scheme.
She also has access to a table T of the identities and verification keys of all
eligible voters: (IDV , vkV ) for all voters V . Further, the authority has a list L
of the identities, blinded ballots and signatures of all voters who have already
voted (this list starts out empty of course). When a voter sends the authority
a triple (IDV , b, σV ) the authority checks that the voter is eligible to vote,
i.e. IDV ∈ T , and retrieves the corresponding verification key vkV . The
authority then checks that the signature is valid: Σ.Verify(vkV , b, σV ) = 1.
If this is correct, the authority checks that the voter has not already voted,
i.e. IDV does not appear in L. The authority then adds (IDV , b, σV ) to L
and returns a blind signature s ← BS.Sign(skA, b) to the voter.
At the end of the voting phase, the authority publishes the list L.

Counter. The ballot counter starts out with the authority’s verification key
vkA. The counter holds no secrets and performs no secret operations: the
entire protocol for the counter can be performed in public and therefore
checked by anyone.
During the voting phase, the counter anonymously receives ballots (c, σ).
She checks that each incoming ballot is valid, i.e. BS.Verify(vkA, c, σ) = 1
and publishes all accepted ballots along with their signatures and a unique
identifier i, i.e. the counter maintains a list of entries (i, c, σ). The identifiers
could be randomly chosen or simply sequence numbers.
At the end of the election, the counter invites all voters to open their ballots.
On receipt of an anonymous message (i, v, k) the counter retrieves the entry
(i, c, σ) and if such an entry exists, she computes x ← CS.Open(p, v, c, k). If
this returns 1, the ballot is valid and the counter adds the vote v to the set
of valid votes. Finally, the counter tallies all valid votes.

Privacy of FOO. The FOO protocol was published in 1992, before any formal
models for voting schemes had been developed. Consequently, the original paper
only offers a “proof sketch” for privacy; no-one has presented a formal analysis of
privacy in FOO to date although there is no reason to suspect that this property
would not hold. The modelling of anonymous channels is also not standardised;
one could use mix-nets (discussed in Section 6) to achieve anonymity in which
case the anonymity offered is well understood.

We give a brief sketch of why FOO is private. Before the tallying phase, each
voter submits a pair (c, σ). c is a commitment and thus hides the contained vote;
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σ is a signature on the commitment so it cannot leak more information on the
vote than the commitment itself. Even the authority only sees the commitment
and not the vote in clear, so votes are kept private.

After tallying, the votes are revealed and FOO argue that no-one, not even
the authority and vote counter together, can link a voter to a vote. This is
because the items on the board are posted anonymously and the only non-
anonymous communication that might link a voter to a ballot occurs when the
voter obtains a signature from the authority. However, the authority only sees
a blinded commitment and the returned signature is a blind signature, so the
authority cannot link the ballots on the board to the commitments that she has
signed.

Verifiability of FOO. To date, no formal models for verifiability exist that
could be usefully applied to FOO. We will briefly argue informally why FOO is
a verifiable protocol. Specifically, we check the following properties.

Individual verifiability Voters can check that their ballot was counted.

Universal verifiability Anyone can check that all ballots were counted cor-
rectly.

Ballot verifiability Anyone can check that all ballots correspond to correct
votes.

Eligibility verifiability Anyone can check that only eligible voters have voted,
and only once each.

For individual verifiability, since the counter just publishes all ballots the voter
can check if her ballot is included among the published ones. Better still, in case
of a dispute the voter can expose a cheating counter if the counter refuses to
accept a correctly signed ballot.

Universal verifiability is easy since the counter holds no secrets: anyone can
repeat the count of all opened ballots. The same holds for ballot verifiability
since the ballots are opened individually.

Indeed, the nature of the FOO protocol is that only eligibility is assured
by cryptographic means alone; the other verifiability properties follow from the
public nature of the bulletin board and counting operation. This comes at the
cost of practicality: voters must interact with the system twice, once to cast their
ballots and once again to open them. Later systems such as Helios only require
voters to interact with the system once; verifiability will become a more involved
matter here.

For eligiblility, first note that anyone can verify that only correctly signed
ballots are counted. If we assume that the authority is honest then only eligible
voters will receive a signature from the authority and only once each. Even if the
authority is dishonest, its log L would show if it had ever blind- signed a ballot
that was not accompanied by a correct signature from a legitimate voter key, or
if the authority had signed two ballots with a signature from the same voter.
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Dispute Resolution in FOO. In addition to verifiability, the FOO protocol
provides a digital audit trail that can be used to resolve many disputes which
could arise. We mention some cases that were addressed in the original paper;
we imagine that all these disputes could be brought before a judge or election
official. In the following we assume that honest parties’ keys are not available
to cheaters. This means that in any dispute between a honest and a dishonest
party, the honest party will be able to convince a judge that the other side is
cheating - more precisely, that either the other side is cheating or her signature
has been forged. In the following we give a list of possible accusations and how
a judge should respond.

– The authority refuses to give a legitimate voter a signature, or provides her
with an invalid signature.

The voter can publish a blinded ballot and her digital signature on it; a
judge can now ask the authority to either sign this ballot or give a reason for
refusing to do so. If the judge asks to see the authority’s blinded signature,
the voter can reveal her vote and blinding factor to the judge who can then
check the unblinding step and verify the resulting signature. This way, a
cheating authority will always be exposed.

– The authority claims that a voter has already voted.
A judge can ask for the voter’s previous blinded ballot and digital signa-

ture as proof. If the authority fails to produce this, she is exposed - if she
does produce this, the voter must explain why said blinded ballot carries a
signature under her key.

– The authority signs a ballot that does not come from a legitimate voter, or
more than one ballot from the same voter.

The judge checks the counter’s published ballots against the authority’s
list L for any signed ballots that do not have a valid voter-signature in L, or
two ballots with the same voter’s signature.

– The authority signs something that is not a legitimate ballot.
If the illegitimate ballot is never opened, it does not contribute to the

result and can be ignored. Once a ballot is opened, the judge can check its
contents. It is not the authority’s fault if its signature is discovered on an
invalid ballot: since the authority’s signature is blind, the authority has no
way of knowing the contents of what it signs.

– A voter tries to vote more than once.
The judge checks that all the counter’s ballots are also referenced in the

list L and then checks the list L for two different ballots with the same
voter’s signature.

– The counter refuses to accept a legitimate ballot.
The judge checks the signature on the disputed ballot; if it verifies and

the counter still refuses then the counter is exposed as a cheater. The same
applies to opening keys k where the judge checks using the opening algo-
rithm.

– The counter accepts an illegitimate ballot (without a valid signature).
The judge checks the signature; if it fails the counter is exposed as a

cheater. The same applies to opening information.
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– The counter produces a false result.
The judge recomputes the result and disqualifies the counter if the results

do not match.

3 Homomorphic Voting

The FOO protocol from the last section scores well on privacy, verifiability and
dispute resolution but has one major drawback: voters need to interact with the
voting system at two different times, once to cast their ballot and once again
after the voting period has ende to open their ballot. A different approach to
cryptographic voting removes this drawback.

3.1 Motivation and Example

Here is another sketch of a “physical” voting protocol. Consider a yes/no refer-
endum. Each voter gets two balls of the same size and appearance except that
one weighs 1 lb3and the other 2 lb. To vote no, the voter writes her name on
the lighter of two balls and places it on a tray; to vote yes she does the same for
the heavier one. This allows anyone to check that only eligible voters have voted
and only once each by comparing the names on the cast ball(ot)s with a list of
eligible voters. To tally the election, one first counts the number of balls cast,
then weighs the entire tray and derives the number of light and heavy balls from
the total amount and weight of the balls. This way, the amount that each indi-
vidual ball(ot) contributed to the tally is hidden from everyone except the voter
who cast it. One point that we will have to take care of in the cryptographic
protocol based on this idea is how we prevent a voter from casting a forged ball
weighing more than 2 lb to gain an unfair advantage.

The cryptographic tool that we will use to build the equivalent of the balls
above goes by the name of “homomorphic asymmetric encryption”. The adjective
“homomorphic” describes a scheme where ciphertexts (or commitments, signa-
tures etc.) can be added together to create a new ciphertext for the sum of the
original messages. Before we can define homomorphic asymmetric encryption,
we first need to define what asymmetric encryption is in the first place.

3.2 Asymmetric Encryption

Asymmetric or “public key” encryption is perhaps the best-known invention of
modern cryptography. It is certainly one of the oldest: it was first suggested
by Diffie and Hellman in 1976 [DH76] and implemented successfully by Rivest,
Shamir and Adleman in 1978 [RSA78].

There are many ways to explain asymmetric encryption using physical terms:
our favourite example is a letter-box. Anyone can send you letters by placing
them in your letter-box but only you can get letters out of the box again4.

3 One pound, abbreviated lb, is around 0.454 kg.
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Indeed, once someone has placed a letter in your letter-box, even they can’t get
it out again.

As for digital signatures, we define the types of algorithms required and the
security requirements.

Definition 11. An asymmetric encryption scheme E is a triple of algorithms

E = (KeyGen, Encrypt, Decrypt)

where the key genration algorithm takes no input and returns a pair (pk, sk) ←
KeyGen() known as the public and secret key. The encryption algorithm takes a
public key pk and a message m and returns a ciphertext c ← Encrypt(pk,m).
The decryption algorithm takes a secret key sk and a ciphertext c and outputs
either a decrypted message d ← Decrypt(sk, c) or declares the ciphertext invalid,
which we indicate with the special output symbol ⊥. The decryption algorithm
must be deterministic.

The correctness condition is that for any message m, the following operations
result in d = m:

(pk, sk) ← KeyGen(); c ← Encrypt(pk,m); d ← Decrypt(sk, c)

3.3 Security of Encryption

It took the community of cryptographers some time to come up with the def-
initions of security for asymmetric encryption that are in use today. The first
obvious condition is that given a ciphertext, you should not be able to tell the
contained message. Unfortunately this is not sufficient, here is an example why.
Alice, a famous cryptographer, wishes to announce the birth of her child to
her family while keeping its gender secret from the world at large for now. She
encrypts the good news under her family’s public keys and sends out the cipher-
texts. Eve, an eavesdropper from the press, obtains Alice’s ciphertexts. This
should not matter — this is exactly what encryption is for, after all.

Eve guesses that Alice’s message is either “It’s a boy!” or “It’s a girl!”. In-
stead of trying to decrypt a completely unknown message, Eve would already
be happy if she could tell which of two messages (that she already knows) Alice
has encrypted. Further, Eve might be able to obtain Alice’s family’s public keys
from a directory — they are meant to be public as their name suggests — and
Eve can encrypt both her guessed messages herself under these public keys and
check if either of her ciphertexts matches the one sent by Alice. If so, Eve has
effectively broken Alice’s secret.

This story gives rise to two more requirements: given a ciphertext and two
candidate messages, you should be unable to guess which of the two messages was

4 The design of letter-boxes varies a lot between countries; we have in mind the conti-
nental European style where letterboxes have a flap to insert letters and the owner
can open a door on the letter-box with a key to retrieve letters.
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encrypted; given two ciphertexts you should not be able to tell if they encrypt
the same message or not. The first common security requirement for encryption
is known as indistinguishability under chosen plaintext attack, abbreviated IND-
CPA. Here, the attacker may chose any two messages, send them to the security
game and get an encryption of one of them back; a scheme is called IND-CPA
secure if she cannot tell which message the security game chose to encrypt.

Definition 12. An asymmetric encryption scheme E is IND-CPA secure if no
attacker can win the following game with better probability than 1/2, the proba-
bility of guessing at random.

Setup. The game creates a keypair (pk, sk) ← KeyGen() and gives the attacker
the public key pk. The game also picks a bit b randomly from {0, 1} and keeps
this secret.

Moves. Once in the game, the attacker may pick a pair of messages m0 and
m1 of the same length† and send them to the game. The game encrypts
c ← Encrypt(pk,mb) and returns this to the attacker.

Winning Conditions. The attacker may make a guess at b which ends the
game. The attacker wins if she guesses correctly.

(†) The condition that the two messages be of the same length is to avoid the
attacker guessing the message from the ciphertext length. In the example above,
“boy” has three letters but “girl” has four so any encryption scheme that returns
a ciphertext with the same number of characters as the message is vulnerable to
such an attack and Alice should pad both her messages to the same length to be
safe. In practice, many encryption schemes work not on characters but on blocks
of characters in which case the restriction can be weakened to both messages
producing the same number of ciphertext blocks; the ElGamal scheme which we
will consider later operates on messages in a fixed group where all messages have
the same length “1 group element” and this condition is vacuous.

There are stronger notions of security for encryption that we will introduce at
the appropriate point later in this work and explain how they relate to keeping
encrypted votes private.

3.4 Homomorphic Encryption

A homomorphic encryption scheme offers an additional algorithm Add that takes
two ciphertexts and a public key and produces a new ciphertext for the “sum”
of the two messages in the original ciphertexts. We put “sum” in quotes because
the principle can be applied to different operations such as multiplication as well.

Definition 13. An asymmetric encryption scheme

E = (KeyGen, Encrypt, Decrypt)

is homomorphic if there are these additional operations:

– An operation + on the message space.
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– An algorithm Add that takes a public key pk and two ciphertexts c1, c2 and
outputs another ciphertext s.

The correctness condition is that for any messages m1,m2 the following re-
turns d = m1 +m2:

(pk, sk) ← KeyGen(); c1 ← Encrypt(pk,m1); c2 ← Encrypt(pk,m2);
c ← Add(pk, c1, c2); d ← Decrypt(sk, c)

Actually, we require a slightly stronger condition as the presentation above
does not exclude the following degenerate construction: a “ciphertext” is a list
of ciphertexts, the encryption algorithm returns a list with one element and Add

just returns a list containing its two input ciphertexts. The decryption algorithm
takes a list, decrypts each element individually and returns the sum of all de-
cryptions. What we require in particular is that sums of ciphertexts look just like
ordinary ones and even the legitimate decryptor cannot tell a sum from a simple
ciphertext. For example, if a ciphertext decrypts to 2, the decryptor should not
be able to tell if this was a direct encryption of 2, a sum of encryptions of 0 and
2 or of 1 and 1 etc.

∑ Prime-Order Groups. We are now working towards the
ElGamal encryption scheme that we will use to build a toy
voting scheme called “minivoting” and then extend this to get
the Helios voting scheme. ElGamal uses a prime-order group,
we sketch a number-theoretic construction. To set up such a

group, one typically picks a prime p such that q = (p−1)/2 is also prime (this
is even more essential than for RSA, to avoid “small subgroup” problems).
The group Z

∗
p with multiplication modulo p has p− 1 elements; since p is a

large prime and therefore is odd there will be a factor 2 in p− 1. If (p− 1)
factors as 2 · q where q is also prime and we pick an element g ∈ Z

∗
p of order

q then the subgroup G := 〈g〉 ⊂ Z
∗
p is itself a cyclic group of order q. Since

q is prime, G has no true subgroups, i.e. apart from the identity, there is
no extra “structure” to be discovered by examining the traces of individual
group elements5.

The ElGamal encryption scheme lives in such a group G given by
parameters (p, q, g). Since G is isomorphic to Zq, we have an inclusion
Zq → G, (x �→ gx (mod p)). This map is efficient to compute (square-and-
multiply and variations) but is considered to be hard to invert on randomly
chosen points. Its inverse is known as taking the discrete logarithm of a
group element. Further, given two group elements h and k, there are unique
integers a, b ∈ Zq such that h = ga (mod p) and k = gb (mod p). The
group operation sends such (h, k) to h ·k = ga+b (mod p). We can define a
further operation ⊗ that sends such (h, k) to ga·b (mod p). This turns out
to be a bilinear map on G called the Diffie-Hellman product and it is consid-
ered to be hard to compute in general; computing it for random h, k is the
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computational Diffie-Hellman problem. For random h, k and another group
element z, it is even considered hard to tell whether z = h ⊗ k or z is just
another random group element, this is called the decisional Diffie-Hellman
problem. However, if you are given the integer a (from which you could
easily compute h = ga in G) then you can easily take the Diffie-Hellman
product with any k as h⊗ k = ka (mod p).

Definition 14. A Diffie-Hellman group is a group 〈g〉 ⊂ Z
∗
p of order q for p, q

primes with (p−1)/2 = q. Such a group is given by parameters (p, q, g) and such
parameters can be public and shared among all users of a cryptosystem.

To generate a Diffie-Hellman keypair, pick parameters if required and pick an
x at random from Zq, then set y = gx (mod p). Your secret key is x and your
public key is y.

Two comments on this scheme are in order. First, the group has order q but is
represented as a subgroup of Z∗

p. The rule to remember is, always reduce group
elements modulo p and integers (exponents) modulo q. This is why you pick your
secret key from Zq (it’s an integer) and then compute the public key (a group
element) modulo p.

Secondly, there are other possible realisations of cryptographically useful
prime-order groups in which the Diffie-Hellman product and discrete logarithms
are assumed to be hard. The most popular alternative uses a representation on
an elliptic curve over a finite field; we will not go into details of the construction
in this work but the ElGamal encryption scheme works identically whether you
are using a Z

∗
p group or an elliptic curve group.

3.5 ElGamal

The ElGamal encryption scheme [E85] was invented in 1985. It encrypts a mes-
sage m ∈ G as a pair (c, d):

Definition 15. The ElGamal encryption scheme is the encryption scheme given
by the algorithms below.

KeyGen Pick or obtain parameters (p, q, g). Pick sk at random from Zq and set
pk = gsk (mod p), return (pk, sk).

Encrypt(pk,m) Pick r at random from Zq and set c = gr (mod p), d = m ·pkr
(mod p). Return (c, d).

Decrypt(sk, (c, d)) Compute m = d/csk (mod p).

The message is multiplied with a random group element, resulting in a uni-
formly distributed group element d. Since r was random in Zq, so is pk

r (mod p)
for any group element pk, thus d on its own is independent of m. To allow the
key-holder, and her only, to decrypt, an additional element c is provided. Since
m = d/(c⊗y), the decryptor can compute m with her secret key; for anyone else
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extracting the message given both c and d is equivalent to solving the computa-
tional Diffie-Hellman problem. Telling which of two messages was encrypted (the
IND-CPA security game) is equivalent6 to solving the decisional Diffie-Hellman
problem.

�
Exponential ElGamal. ElGamal is homomorphic but the
operation is not as useful as we would like: for ciphertexts
(c, d) and (c′, d′) we can set

Add((c, d), (c′, d′)) := (c · c′ (mod p), d · d′ (mod p))

such that for messages m,m′ in G we get a ciphertext for m ·m′ (mod p).
What we would really like for voting is a scheme where messages lie in the
additive group Zq and we can perform homomorphic addition, rather than
multiplication, of ciphertexts. If our messages are restricted to small inte-
gers (indeed, in our ballots they will be wither 0 or 1) then we can use a
variation called exponential ElGamal: to encrypt an integer m, replace the
d-component with gm · pkr (mod p). For two ciphertexts (c, d) for m and
(c′, d′) for m′ the Add operation now produces a ciphertext that decrypts
to gm+m′ (mod q) as desired. While getting the exponent back from an ar-
bitrary group element is hard (the discrete logarithm problem), for small
enough exponents this can be done just by trying g0, g1, g2, . . . until we
find the correct decryption. This is the approach taken by Helios, which we
will replicate in our minivoting scheme as a first step towards constructing
Helios.

Other Homomorphic Schemes. Besides ElGamal, there are numerous other
homomorphic encryption schemes. The DLIN scheme of Boneh et al. [BBS04]
works on similar principles to ElGamal but uses a different security assump-
tioni and is thus applicable to different kinds of groups. The Paillier scheme
[P99] operates in composite-order RSA-type groups and offers additive instead
of multiplicative homomoprhism, but is much less efficient than ElGamal. There
are also many extensions of ElGamal such as Signed ElGamal (a.k.a. TDH0) and
TDH2 [SG98] from which an ElGamal ciphertext with homomorphic properties
can be extracted.

3.6 Minivoting

We will develop the concept of homomorphic voting in several steps, ending up
with Helios as an example. The first step is a scheme called “minivoting” by
Bernhard et al. from Esorics 2011 [BC+11]. Minivoting is not verifiable and
indeed is only secure against passive attackers who cannot send malformed ci-
phertexts. In a later step we will add further components to minivoting in order
to obtain a fully secure scheme.

6 Ignoring some details.
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Definition 16. Minivoting is the following voting scheme for a yes/no question,
based on a homomorphic asymmetric encryption scheme E with a message space
Zn for some n larger than the number of voters.

Participants. Minivoting requires one authority, a public bulletin board to which
everyone can post authenticated messages and any number of voters smaller
than n.

Setup. The authority creates a key pair (pk, sk) ← E.KeyGen and posts pk to
the bulletin board.

Voting. Voters read the public key pk off the board. They choose v = 1 for “yes”
and v = 0 for “no” and create a ballot b ← E.Encrypt(pk, v) which they post
on the board.

Tallying. The authority uses the E.Add operation to add all ballots, creating
a final ballot s which she decrypts as d ← E.Decrypt(sk, s). The authority
then counts the number m of ballots submitted and posts the result “d yes,
m− d no” to the board.

4 Vote Privacy

We give a notion of ballot privacy against observers for voting schemes, following
the principles set out by the IND-CPA game for encryption. The attacker can
choose two votes for each voter and the voters will either cast the first or second
vote (all voters make the same choice which of the two to cast). The attacker’s
aim is to tell which choice the voters made, just like the IND-CPA game asks
the attacker to tell which of two messages was encrypted. Since the two results
that this game produces may differ, which would immediately tell the attacker
what is going on, the game will always report the first result.

Definition 17. A voting scheme has ballot privacy against observers if no at-
tacker can do better in the following game than guess at random (with probability
1/2).

Setup. The game picks a bit b at random and keeps it secret. The game then
sets up the voting scheme and plays the voters, authorities and bulletin board.

Moves. Once for each voter, the attacker may choose two votes v0 and v1. The
game writes down both votes. If b = 0, the game lets the voter vote for v0; if
b = 1 the game lets the voter vote for v1.
The attacker may ask to look at the bulletin board at any point in the game.
When all voters have voted, the game gives the attacker the result computed
as if everyone had cast their first (v0) vote.

Winning Conditions. At any point in the game, the attacker may submit a
guess for b. This ends the game immediately. The attacker wins if her guess
is correct.

Although we do not prove it here, we could show that if there is an attacker
with a better than random chance of winning this game for the minivoting
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scheme (based on some homomorphic encryption scheme E) then we can build
an attacker who wins the IND-CPA game for the same encryption scheme E with
better than one half probability too. The rough idea is that any attacker guessing
better than at random for the ballot privacy game must have selected at least
one voter and given her different votes v0 and v1, so we could run the IND-CPA
game with messages v0 and v1 and use the attacker’s guess to make our guess
at which one was encrypted. The crux of the proof is that the IND-CPA game
allows only one challenge move whereas the ballot privacy game allows many
voters. This gives us the following proposition.

Proposition 18. For any IND-CPA secure homomorphic asymmetric encryp-
tion scheme, the derived minivoting scheme has ballot privacy against observers.

In particular this holds for the minivoting scheme based on ElGamal.

4.1 Threshold Encryption

Minivoting used a single authority which is bad for two reasons. First, a dishonest
authority could decrypt individual ballots. Secondly, if the authority loses her
key, the election cannot be tallied. (We will deal with the authority trying to
claim a false result in a later section.)

Threshold schemes aim to mitigate these risks. In a k-out-of-n threshold
scheme, there are n authorities and any subset of at least k can tally the elec-
tion. In this way, a coalition of up to k− 1 dishonest authorities cannot decrypt
individual ballots (or obtain early results) whereas up to n−k of the authorities
can drop out and the election can still be tallied.

In our definition of threshold schemes, the authorites run an interactive pro-
tocol to generate keys, as a result of which each authority obtains a public key
share and a secret key share. A user of the scheme can run a key combination al-
gorithm to obtain a single public key and encrypt messages with this. To decrypt,
each authority that takes part in the decryption process produces a decryption
share with her secret key and anyone can combine at least k decryption shares
to recover the message.

Definition 19. A (k, n) threshold encryption scheme consists of a key genera-
tion protocol KeyGen for n authorities and four algorithms

(CombineKey, Encrypt, DecryptShare, Combine)

The key generation protocol results in all participants obtaining a public key
share pki and a secret key share ski. The key combination algorithm takes a list
of n public key shares and returns a public key pk ← CombineKey(pk1, . . . , pkn)
or the special symbol ⊥ to indicate invalid shares. The encryption algorithm
works just like non-threshold encryption: c ← Encrypt(pk,m). The decryption
share algorithm takes a secret key share ski and a ciphertext c and outputs a
decryption share di ← DecryptShare(ski, c). The recombination algorithm takes
a ciphertext c, a set D = {di}i∈I of at least k decryption shares and outputs
either a message m or the symbol ⊥ to indicate failure.
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The correctness condition is that for any message m and any set I of at least
k authorities, the following yields d = m:

((pk1, . . . , pkn), (sk1, . . . , skn)) ← KeyGen();
pk ← CombineKey(pk1, . . . , pkn); c ← Encrypt(pk,m);
for i ∈ I : di ← DecryptShare(ski, c); d ← Combine(c, {di}i∈I);

Threshold ElGamal for k = n. Here is an implementation of threshold
encryption for k = n, i.e. all authorities must be present to decrypt. ElGamal
can also be used for arbitrary (k, n) thresholds but the construction is more
complex. The definition below is secure against up to n − 1 authorities as long
as they follow the protocol, i.e. they may compute and communicate freely “on
the side” but can not deviate from the key generation protocol. We will adapt
the system to be secure against misbehaving authorities in a later section once
we have introduced the necessary tools.

KeyGen All authorities agree on or obtain common parameters (p, q, g). Each
authority then simply generates an ElGamal keypair under these parameters.

CombineKey Take all n shares pk1, . . . , pkn and multiply them together: pk ←∏n
i=1 pki (mod p).

Encrypt This is standard ElGamal encryption with the public key.
DecryptShare(ski, c) An ElGamal ciphertext is a pair c = (a, b). Return the

share di := aski (mod p).
Combine On input a ciphertext c = (a, b) and a set of n decryption shares {di}ni=1

set d := b/
∏n

i=1 di (mod p).

This works because

d = b/

n∏
i=1

di = b/

n∏
i=1

aski = b/a
∑n

i=1 ski (mod q) = b/ask (mod p)

where sk :=
∑n

i=1 ski (mod q) is the secret key corresponding to the public key
pk, so this is just a normal ElGamal decryption. We draw the reader’s attention
to the correct use of ps and qs: the group elements are taken modulo p whereas
the integers in the exponent are taken modulo q = (p− 1)/2.

4.2 Problems with Minivoting

Minivoting (even with threshold encryption) is not a secure scheme if some of
the participants misbehave. For example,

1. A voter may encrypt g2 to get an unfair advantage. For more complex ballots
than yes/no questions, voters have even more ways to cheat.

2. A voter can stall the election by submitting a ballot for gr for some random
r — no-one will be able to decrypt the result anymore.

3. You have to trust the authorities that they have announced the correct result.
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Luckily, cryptographers have found solutions to all these problems. They are:

1. Zero-knowledge proofs.
2. Zero-knowledge proofs.
3. Zero-knowledge proofs.

Zero-knowledge proofs are a technique to turn any protocol secure against
observers into a protocol secure against misbehaving participants. The idea is
that whenever a participant submits some information (say, a ballot) they must
submit two things: first, the ballot and secondly, a proof that they have made a
correct ballot. “Zero-knowledge” means that these proofs reveal nothing beyond
that the ballot is correct. In particular, a proof that your ballot is correct does
not leak your vote.

4.3 Zero-knowledge Proofs

Zero-knowledge proofs7are tools that allow you to prove that you have done a
certain operation correctly, without revealing more than that fact. In this sec-
tion we develop the mathematical theory of zero-knowledge proofs based on
so-called Σ-protocols and then give the protocols used in Helios. Our develop-
ment and presentation of Σ-protocol theory follows the work of Bernhard [B14];
we present the Schnorr [S91], Chaum-Pedersen [CP92] and disjunctive Chaum-
Pedersen (DCP) protocols.

�
Proofs in Helios. Helios uses zero-knowledge proofs in three
ways:

– Each voter proves that she has cast a ballot for a valid
vote, without revealing her vote.

– The authorities prove that they know their secret keys
(that match the election public keys), without revealing
their secret keys.

– At the end of the election, the authorities prove that they
have tallied correctly (decrypted the result correctly),
again without revealing their secret keys.

Consider an ElGamal keypair (sk, pk = gsk (mod p)) for a group defined
by parameters (p, q, g). Suppose you want to prove that you know the secret
key matching the public key. One paper-based protocol, following the ideas in
earlier sections, could work like this: prepare 100 keypairs. Write the secret
keys on pieces of paper and place them in opaque envelopes; write the matching
public keys on the outside of the envelopes. Let someone pick 99 of the envelopes,
open them and check that the keys inside match those outside (i.e. that gski =

7 Formally, one can distinguish zero-knowledge “proofs” from “arguments” and “proofs
of knowledge” from “proofs of facts”. We ignore these distinctions here.
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pki (mod p) for each pair (pki, ski) opened). If this holds for randomly chosen
envelopes, then with probability at least 99/100 the last envelope is also correct
and you can use the key written on the outside as your public key. This protocol
has two slight drawbacks. First, it is wasteful with envelopes — especially if you
want a really high security margin like 1 − 2100 — which is not good for the
environment. Secondly, you only convince one person that your key is correct:
an observing third party cannot know if you have not agreed in advance which
envelope your accomplice will not pick, in which case you could easily cheat and
claim someone else’s public key as your own, for which you do not know the
secret key.

To address the first problem we note that the map turning secret keys into
public keys, (sk �→ gsk (mod p)), is linear if you look at it the right way.
If you have two key pairs (sk, pk) and (sk′, pk′) then sk + sk′ (mod q) is the
secret key matching the public key pk ·pk′ (mod p). Note that the operation on
public keys is written as a multiplication instead of an addition but the secret
and public keys live in isomorphic groups so they are really both just group
operations. The map taking a secret key to a public key is an isomorphism, its
inverse is the discrete logarithm operation which is (hopefully) hard to compute
but a well-defined map nonetheless. Further, if you rerandomise a secret key sk
with an integer r to get sk′ = r · sk (mod q) then the corresponding public key
is pk′ = pkr (mod p) where pk was the public key corresponding to sk.

∑ On Linearity. To speak of a linear map we actually need
a vector space over a field; since we are working in a prime-
order cyclic group Zq for the exponents we may embed this into
the finite field Fq by adjoining the obvious field multiplication
structure to get our field. Any field is a one-dimensional vector

space over itself so the secret key space can be interpreted as a Fq–vector
space. The public key space is isomorphic to the secret key space, so we
can really speak of the isomorphism (sk �→ gsk (mod p)) as an Fq–linear
map. The statement that you can add secret keys is saying that our map
commutes with vector addition; rerandomising a key is field multiplication
and together these two properties show linearity. Why we do all this should
become clear later when we construct Σ-protocols on statements involving
vectors which are tuples of group elements.

With these foundations in place, here is a protocol to prove that you know a
secret key sk matching a given public key pk. Pick a second keypair (sk′, pk′) and
reveal pk′. Let someone pick a number c between 0 and n− 1 (for n ≤ q, to be
exact) and compute the linear combination pk′′ = pk′ · pkc (mod p). You then
reveal sk′′ := sk′ + c · sk (mod q) and your challenger checks that gsk

′′
= pk′′

(mod p). This protocol does the same (and some more) than the one above with
n envelopes. To see why, consider the point of view of the challenger who knows
pk and pk′ and has just picked c. Unless you know the correct sk, or are able
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to compute such a sk, there is only one single value of c for which you have
any hope of providing the correct answer that will convince your challenger. The
probability of cheating is bounded by 1/n and n can be chosen as large as you
like (up to q − 1).

Suppose that there are two distinct values of c, namely c1 and c2, for which
you have some nonzero probability of finding a correct answer and call these
answers sk′′1 and sk′′2 . By a bit of linear algebra, since both answers are correct
we must have

gsk
′′
1 = pk′ · pkc1 (mod p) (1)

gsk
′′
2 = pk′ · pkc2 (mod p) (2)

which suggests that we divide the two, cancelling pk′:

gsk
′′
1 /gsk

′′
2 = pkc1/pkc2 (mod p) (3)

gsk
′′
1 −sk′′

2 (mod q) = pkc1−c2 (mod q) (mod p) (4)

but the exponent space is a field and c1, c2 are distinct so we can rearrange to
get

g
sk′′

1 −sk′′
2

c1−c2
(mod q) = pk (mod p) (5)

and this exponent is exactly the secret key sk such that gsk = pk (mod p).
In other words, if you can find the answers sk′′1 , sk

′′
2 to two different challenges

c1, c2 then from this information you can compute a secret key sk =
sk′′

1 −sk′′
2

c1−c2
(mod q) yourself. This property is called “special soundness”. Conversely, if you
do not know the secret key sk then you cannot hope to answer any two different
challenges c1, c2 in the same protocol so your probability of cheating is at most
1/n. This inability for Alice to cheat (except with a tiny probability) is called
“soundness” of the protocol. Special soundness implies soundness.

This protocol is Schnorr’s protocol [S91] for proof of knowledge of a discrete
logarithm. An additional advantage of this protocol over the envelope-based one
is that you can pick one keypair (pk, sk) and re-run the protocol to convince
many different people that you know your secret key, picking a new (pk′, sk′)
keypair for each person you run the protocol with but keeping the same public
key pk all the time. (If you ever re-use a pk′, the two people that you did the
protocol with using the same pk′ can get together and compute your secret key
exactly as described above, unless they both happened to pick the same challenge
which is very unlikely for large n.) A cryptographer would say that Schnorr’s
protocol is a “proof of knowledge” of a value sk such that gsk = pk (mod p)
because the protocol satisfies the following condition:

Proposition 20. Any person that can convince a challenger with more than 1/n
probability in Schnorr’s protocol (for challenges from {0, . . . , n − 1} and public
key pk) can also compute a secret key sk that matches pk.
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Suppose that Alice is using Schnorr’s protocol to prove to Bob that she knows
her secret key. We have just established that Alice cannot cheat Bob (except with
probability at most 1/n). Can Bob cheat? That is, can Bob use the Schnorr
protocol to gain more information about Alice’s secret key than he could if he
only got her public key pk in the first place?

The answer is of course “no” — at least if Bob picks his challenge randomly.
What Bob gets to see in this protocol is a new public key pk′ and a secret key sk′′

for a c of his choice; we argue that Bob could just as well create these elements
himself if Alice didn’t want to run the protocol with him.

1. Bob picks a value c at random from {0, 1, . . . , n− 1}.
2. Bob picks a value sk′′ at random from {0, 1, . . . , q− 1} and computes pk′′ :=

gsk
′′

(mod p).
3. Bob sets pk′ = pk′′/pkc (mod p) where pk is Alice’s public key.

The triple (pk′, c, sk′′) looks exactly like one that would be generated if Bob
did Schnorr’s protocol with Alice; in particular the verification equation holds:
gsk

′′
= pk′ ·pkc (mod p) from the definition of pk′ and c, pk′, sk′′ are uniformly

random subject to this equation holding. So Schnorr’s protocol gives Bob no
more information about Alice’s key than he could already compute by himself,
if Bob chooses his challenge randomly. This property of the protocol is called
“honest verifier zero-knowledge”.

Proposition 21. If Bob picks his challenge c randomly, he gains no information
from a run of Schnorr’s protocol with Alice.

Another way of phrasing this argument is that if Alice does the protocol with
Bob and Carol observes this, the protocol convinces Bob but it cannot convince
Carol: Alice and Bob could be working together to cheat Carol. To do this, Alice
could pick any public key for which she does not know the secret key, Bob could
create values as above and agree them with Alice beforehand and they could run
the protocol together on these values.

The bit about honest verifiers — Bob picking his challenge randomly — is
not just a technicality. For sure, it cannot help Bob to choose his challenge in
a way that Alice could predict (this just allows Alice to cheat, but not Bob).
Bob can however throw a spanner in the works by choosing his challenge as the
value of a pseudorandom or hash function on input the values he has seen so far,
pk and pk′. This breaks the “simulation” argument above because Bob had to
choose his c before he picked pk′. This is exactly why Alice needs to know sk to
convince Bob but Bob does not need to know sk to simulate the protocol: when
Alice is talking to Bob, she has to send him pk′ before he chooses c but on his
own, Bob can do it “backwards”.

Before we go on to fix this problem, we slightly abstract Schnorr’s protocol
which will come in useful when we discuss other protocols along similar lines
such as Chaum-Pedersen. The flow of messages in Schnorr’s protocol can be
drawn to look like the Greek letter Σ which prompted Cramer [C96] to call such
protocols “Σ-protocols”.
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Definition 22. A Σ-protocol is a protocol after the following template for Alice
to prove knowledge of a preimage x : y = φ(x) of a value y to Bob.

1. Alice samples a random a from the domain of φ, sets b := φ(a) and sends b
to Bob. We assume that Bob already knows y, alternatively Alice could send
y to Bob too.

2. Bob picks a challenge c randomly from the set {0, 1, . . . , n− 1} which must
form part of the field F. Bob sends c to Alice.

3. Alice computes d := a+ cx in the field F and sends d to Bob.
4. Bob checks that φ(d) = b+c ·y where this calculation is done in the F–vector

space of which y is an element (c · y is scalar multiplication; c is a field
element).

A Σ-protocol gives Alice no more than a 1/n probability of cheating and Bob,
if he chooses his challenge randomly, no advantage in finding Alice’s preimage.

Proposition 23. A Σ-protocol derived from the template above is a honest ver-
ifier zero-knowledge proof of knowledge of a preimage of a linear map φ (over
some field F).

We have a second problem beyond Bob not choosing a random c. If Alice wants
to use a zero-knowledge proof to convince everyone that her ballot is valid, using
an interactive proof like the one above would mean that everyone must be able
to challenge Alice to run a protocol with them, even after the election has closed.
This is clearly impractical. What we want is a non-interactive proof, where Alice
can once and for all time convince every possible Bob that her ballot is valid.
And, almost paradoxically, the way Alice can do this is by doing exactly what
we just argued that no Bob can be allowed to do: choose the challenge c herself
as a hash value on pk and pk′. This technique is usually attributed to and named
after Fiat and Shamir8[FS86].

Definition 24. The Fiat-Shamir transformation of a Σ-protocol is the protocol
in which Bob’s choice of a challenge c is replaced by Alice computing the challenge
as c := H(y, b) where y is the value of which she is proving a preimage and b is
her “commitment”, the message that she would send to Bob immediately before
getting his challenge. H is a cryptographic hash function with range {0, 1, . . . , n−
1}. This is a non-interactive proof of knowledge.

To verify a proof π = (y, b, c, d) you first check that c = H(y, b). If this holds,
check that φ(d) = b+ c · y for the function φ in question and accept the proof if
this is the case.

�
Key generation in Helios. These are the exact steps that
a Helios authority performs to generate her key share. Helios
uses n-out-of-n threshold keys as we described eariler.

8 The attribution is not uncontested: others prefer to credit Blum with the technique
[BR93].
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1. Obtain parameters (p, q, g) or agree these with the other
authorities.

2. Generate a key pair by picking ski randomly from Zq and
setting pki := gskir (mod p). Here i is some identifier.

3. Pick another keypair (a, b = ga (mod p)) for the proof.
4. Compute c := H(pki, a) (mod q) where H is a hash

function (Helios uses SHA-256).
5. Compute d := a+ c · ski (mod q).
6. Your public key component is pki and its proof of cor-

rectness is πi = (c, d). Your public key share is (pki, πi).

The value a is omitted from the proof as the verifier can recompute it
using the verification equation as a = gd/(pki)

c (mod p) and then check
that c = H(pki, a). This variation is equivalent to the one we gave above,
i.e. zero-knowledge and a proof of knowledge, but saves one group element
per proof.

4.4 Chaum-Pedersen: Proving Correct Decryption

To prove that you have decrypted a ciphertext correctly, you need to show that
you have produced a value d such that d = aski (mod p) where ski is your secret
key share satisfying gski = pki (mod p), the value a is the first component of
the ciphertext and pki is the key component of your public key share. Put another
way, you have to show knowledge of an ski satisfying

aski = d (mod p) ∧ gski = pki (mod p)

All constants appearing in this formula (a, d, g, pki, p) are public. In the notation
that we have just introduced, you have to show knowledge of

a preimage x of (d, g) under φ(x) = (ax (mod p), gx (mod p))

this function is conveniently also linear. Here we start to see why linearity and
vector spaces are the correct way to understand Σ-protocols abstractly: for the
finite field Fq, our function signature is φ : Zq → G2, mapping integers (1-
dimensional vectors) into 2-dimensional vectors over the group G.

The protocol for this particular φ-function was invented by Chaum and Ped-
ersen [CP92]. We give the exact steps to prove a decryption share correct:

1. Inputs: ciphertext (a, b), public key share pki, secret key share ski.
2. Pick a random r from Zq. Compute

(u, v) := φ(r) = (ar (mod p), gr (mod p))
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3. Compute a challenge as c := H(pki, a, b, u, v).
4. Let s := r + c · ski (mod q).
5. Compute the decryption factor d := aski (mod p).
6. Reveal d and the proof π := ((u, v), s).

To check such a proof, your inputs are a, b, pki, u, v and s. Compute the hash
value c := H(pki, a, b, u, v) and check that

as = u · dc (mod p) ∧ gs = v · (pki)c (mod p)

There is an important difference between Schnorr’s protocol and that of
Chaum and Pedersen. In the former, Bob already knows that whatever Alice
claims as her public key has a discrete logarithm — all group elements do, by
definition. Alice is only trying to convince Bob that she knows the discrete loga-
rithm of her public key. By contrast, in the Chaum-Pedersen protocol the focus is
less on convincing Bob that you know how to decrypt but that you have done so
correctly. Indeed, if a ciphertext decrypts to d but you claim some d′ �= d instead,
the pair (pk, d′) will not lie in the image of φ so there will be no x with which
you can convincingly run the protocol. For the interactive Chaum-Pedersen pro-
tocol, someone who has decrypted incorrectly cannot cheat (with more than 1/n
probability) even if they have unlimited resources and can even take discrete
logarithms. For the non-interactive protocol, the security analysis depends on
the hash function but we still get the property that no realistic attacker can
produce a proof of a false decryption. This property is called “soundness”.

Proposition 25. In a Σ-protocol following our construction, it is infeasible to
produce a proof (whether interactive or non-interactive) for a value not in the
image of the φ-function.

4.5 DCP: Proving That a Vote Is Valid

We come to our third and final Σ-protocol. This one is for the voter to prove
that she encrypted a valid vote in her ballot (namely 0 or 1), without reveal-
ing the vote. ElGamal encryption of a message m with random value r, in the
exponential version used by Helios, can be expressed by the formula

c = φ(m, r) := (gr (mod p), gmpkr (mod p))

which is linear in m and r as a function with signature φ : (Zq)
2 → G2 where

g, p, q and pk are taken to be constants. This immediately yields a Σ-protocol
to prove knowledge of your vote and randomness but does not prove that your
vote m lies in a particular range. Let us consider how Alice would prove that
she had voted for a particular value of m. If her ciphertext is (a, b) = (gr

(mod p), gmpkr (mod p)) then she could divide out gm again to get (a, b′) =
(a, b/gm (mod p)) which is the image of the linear function

φ′ : Zq → G2, r �→ (gr (mod p), pkr (mod p))
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In other words, to prove that (a, b) is a ciphertext for m Alice can prove that
she knows a preimage r of (a, b/gm (mod p)) under the function φ′. This is of
course exactly the protocol of Chaum and Pedersen with pk playing the role of
the second basis (instead of a in our last discussion).

There is a general construction for Alice to prove that she knows a preimage of
(at least) one of two linear functions for given images, without revealing which.
Given linear functions φ0, φ1 and values y0, y1 in their respective domains, to
prove that she knows x0 : φ0(x0) = y0 or x1 : φ1(x1) = y1 Alice runs the
following protocol.

– Start running the Σ-protocols for both functions.
– Get Bob to pick a single challenge c from {0, 1, . . . , n− 1}.
– For each of the two protocols, produce a new challenge ci and a final value x′′

i

such that both protocols are correct individually and c = c1 + c2 (mod n).

The trick is that Alice cheats and picks c and x′′ first for the function where
she does not have a preimage. The condition c = c1 + c2 where c is chosen by
the challenger lets Alice cheat in one of the two protocols but not both. In more
detail, here is the general construction.

1. For the value i where you know a preimage xi : φi(xi) = yi, pick a new pair
(x′

i, y
′
i = φi(x

′
i)) as you would to start the Σ -protocol for this function.

2. For the value j where you do not know a preimage, run the cheating protocol:
pick cj at random from {0, 1, . . . , n} and x′′

j at random from the domain of
φj . Then set y′j := φ(x′′

j ) − cj · yj , where these operations are done in the
vector space that contains the range of φj , i.e. cj · yj is scalar multiplication
with the scalar cj .

3. Send y′0 and y′1 to the challenger and obtain a c in return.
4. Set ci := c− cj (mod n) and complete the protocol for φi by setting x′′

i :=
x′
i + ci · xi. These operations are done in the vector space that contains the

range of φi.
5. Send c0, c1, x

′′
0 , x

′′
1 to the challenger to complete the protocol.

From Bob’s point of view, there are two Σ-protocols running in parallel:

1. Bob knows functions φ0, φ1 and claimed images y0, y1. He gets a pair of
further values y′0, y

′
1 from Alice.

2. Bob chooses a single value c at random from {0, 1, . . . , n− 1}.
3. Alice sends Bob values c0, c1, x

′′
0 , x

′′
1 . Bob checks the following equations. The

first two check the individual Σ protocols and the final one ensures that Alice
can cheat on at most one of the protocols:

φ0(x
′′
0 ) = y′0 + c0 · y0 (6)

φ1(x
′′
1 ) = y′1 + c1 · y1 (7)

c = c0 + c1 (mod n) (8)
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The argument that Alice cannot cheat in both protocols is as follows. Suppose
Alice knows neither a preimage of y0 nor of y1. If there are two values of c, c′ for
which she could both convince Bob then there must be some values c0, c1, c

′
0, c

′
1

that she could use to convince Bob, i.e. c0 + c1 = c and c′0 + c′1 = c′ (all modulo
n). But c �= c′ so at least one of c0 �= c′0 or c1 �= c′1 must hold, which implies that
Alice can already cheat in one of the two individual Σ-protocols on its own.

Of course this protocol can be made non-interactive with a hash function just
like any Σ-protocol. The items that need to be hashed here are y0, y1, y

′
0, y

′
1 and

any other constants appearing in the two protocols. Similarly, the same technique
can be used for three or more functions — what Alice is proving in each case
is that she knows at least one preimage, without revealing which. The resulting
Σ-protocol is called a “disjunctive proof” or an “OR-proof”. Applied to Chaum-
Pedersen proofs, the resulting protocol is called disjunctive Chaum-Pedersen or
DCP.

�
Proofs in Helios ballots. In Helios, a voter uses this tech-
nique to prove that she either knows a random value r0 with
which she can do a Chaum-Pedersen proof that her ballot is an
encryption of 0, or she knows a value r1 with which she can do
a Chaum-Pedersen proof that she has encrypted 1. The voter

must produce one such proof for each ciphertext in her ballot.
If the election format demands that the voter choose a certain mini-

mum/maximum number of options in a question (e.g. vote for at most one
candidate) then the voter additionally takes the homomorphic sum of all
her ciphertexts for the question and performs an additional DCP proof on
the sum, showing that it is in the allowed range. This proof is known as the
overall proof for the question.

Definition 26. The following is the voter’s protocol for proving that a ciphertext
is an encryption of 0 or 1. The voter’s inputs are the parameters (p, q, g), the
election public key pk, the voter’s ciphertext (a, b) = (gr, gv · pkr), her vote
v ∈ {0, 1} and the random value r that she used to encrypt her vote.
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If your vote is v = 0:

1. Simulate the protocol for prov-
ing v = 1. Pick c1 randomly
from {0, 1, . . . , n} and r′′1 from
Zq at random. Set

b′ := b/g1 (mod p)

a′1 := gr
′′
1 /ac1 (mod p)

b′1 := pkr
′′
1 /(b′)c1 (mod p)

2. Set up the proof that v = 0. Cre-
ate a value r′0 from Zq at random
and set

a′0 := gr
′
0 (mod p)

b′0 := pkr
′
0 (mod p)

3. Get the challenge for the v = 0
proof. Compute

c := H(pk, a, b, a′0, b
′
0, a

′
1, b

′
1)

c0 := c1 − c (mod n)

4. Complete the v = 0 proof. Com-
pute

r′′0 := r′0 + c0 · r (mod q)

5. Your proof π is the tuple

(a′0, a
′
1, b

′
0, b

′
1, c0, c1, r

′′
0 , r

′′
1 )

If your vote is v = 1:

1. Simulate the protocol for prov-
ing v = 0. Pick c0 randomly
from {0, 1, . . . , n} and r′′0 from
Zq at random. Set

a′0 := gr
′′
0 /ac0 (mod p)

b′0 := pkr
′′
0 /bc0 (mod p)

2. Set up the proof that v = 1. Cre-
ate a value r′1 from Zq at random
and set

a′1 := gr
′
1 (mod p)

b′1 := pkr
′
1 (mod p)

3. Get the challenge for the v = 1
proof. Compute

c := H(pk, a, b, a′0, b
′
0, a

′
1, b

′
1)

c1 := c0 − c (mod n)

4. Complete the v = 1 proof. Com-
pute

r′′1 := r′1 + c1 · r (mod q)

5. Your proof π is the tuple

(a′0, a
′
1, b

′
0, b

′
1, c0, c1, r

′′
0 , r

′′
1 )

To verify such a proof, the following equations need to be checked.

gr
′′
0 = a′0 · ac0 (mod p) (9)

gr
′′
1 = a′1 · ac1 (mod p) (10)

pkr
′′
0 = b′0 · bc0 (mod p) (11)

pkr
′′
1 = b′1 · (b/g1)c1 (mod p) (12)

c0 + c1 = H(pk, a, b, a′0, b
′
0, a

′
1, b

′
1) (mod n) (13)

�
The Helios ballot format. Homomorphic ballots are pos-
sible not just for yes/no questions but for a number of vot-
ing/election setups including first-past-the-post, approval vot-
ing and top-k-of-n elections. All these formats have in common
that a voter answers a question by ticking some (or all, or none)



202 D. Bernhard and B. Warinschi

of a predefined set of checkboxes and the election result is essentially a list,
for each box, of how many voters ticked this box. Homomorphic voting in
the above sense cannot handle write-in votes or ranked (Instant runoff etc.)
counts.

For example, in a first-past-the-post election for three candidates A, B
and C, voters will be presented with three boxes — obviously labelled A,
B and C — and must tick exactly one box each (or possibly none, to cast
a blank vote). The election result is the number of votes that A, B and C
each got, from which one can form the sum and determine the turnout and
the percentage of votes that each candidate got.

Helios supports such elections: a ballot contains one ciphertext for each
checkbox. These ciphertexts are encryptions of either 0 or 1. In addition,
each ciphertext is accompanied by a proof that it really contains 0 or 1;
these proofs are known as individual proofs. If the election specification sets
limits on the numbers of boxes you can/must check, there is one further
proof per ballot attesting to this known as the overall proof. A ballot can
be composed of several structures as just described, allowing for multiple
questions in a poll or multiple races in an election.

Attacks against the Ballot Format and Ballot Weeding. Cortier and
Smyth [CS13] pointed out the following problem with bulletin board based
elections. Suppose there are three voters, Alice, Bob and Eve. Alice and Bob
both cast ballots. Next, Eve reads Alice’s ballot off the board and submits
a copy of it as her own ballot. The election result is now announced as 2
yes, 1 no: Eve knows that Alice must have voted yes and Bob no, since the
two copied ballots must encrypt the same vote. However, in a truly private
election, Eve should never be able to tell whether Alice votes yes and Bob
no or the other way round, since these two scenarios both make the same
contribution to the result. If the result is that everybody voted yes then Eve
can deduce that Alice voted yes too, which is unavoidable — the problem
with ballot copying is that Eve can find out more than she could by just
observing the result.

A first reaction to this problem could be to introduce ballot weeding in
the following sense: we reject any ballot that is an exact copy of a ballot
already on the board. If ballots are non-malleable ciphertexts, this is actually
sufficient — however, homomorphic ciphertexts can never be non-malleable
as Eve can always Add an encryption of g0 to an existing ciphertext. Eve
will still know that the two ciphertexts encrypt the same vote but no-one
else, even the decryptor, can tell such a “rerandomised” ciphertext from a
genuine ballot by a voter who just happened to vote for the same choice as
Alice.

We can solve this problem and the problem of Eve voting for g2 in one go
by adding a non-malleable zero-knowledge proof to each ciphertext. Ballot
weeding will now reject any ballot that shares a proof with a previous ballot.
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In fact we even fix one more problem that Cortier and Smyth identified with
the original ballot format. Consider a poll for choices A, B and C so ballots
take the form

(cA, πA, cB, πB, cC , πC , πO)

where cA is the ciphertext for choice A, πA is the individual proof that cA
is well-formed and πO is the overall proof (that at most one of cA, cB, cC
encrypts a 1). If the above is Alice’s ballot, Eve can submit the following
modified ballot:

(cB, πB , cA, πA, cC , πC , πO)

The result is that Eve has swapped the A- and B-components of Alice’s
ballot around but she knows exactly what the relations between the orig-
inal and modified ballot are and can use this knowledge to attack Alice’s
privacy. In Helios version 3, after you submitted a ballot, the hash of your
ballot was sent to you as a confirmation value and the hashes of all ballots
were displayed on a “short board”, with the “full board” of all ballots also
available. The point here is that Eve’s ballot will have a completely differ-
ent hash value to Alice’s and while Helios prevented Eve from submitting
a ballot with the same hash value as Alice’s (i.e. making an exact copy),
this modified ballot was accepted by Helios without complaint. It could be
detected by auditing the full board but code for this was not available in
Helios at the time.

4.6 Ballot Privacy

With zero-knowledge proofs in ballots, everyone can be assured that voters are
casting ballots for valid votes. To model what security level this yields, we give
the full ballot privacy game that protects against dishonest voters. It differs from
the previous notion of privacy against observers in that the attacker can declare
any voters she likes to be dishonest and provide them with arbitrary ballots.
This accounts for both attempts at making “bad ballots” and ballot-copying or
modifying existing ballots and resubmitting them as your own.

Definition 27. A voting scheme has ballot privacy if no attacker can do better
in the following game than guess at random (with probability 1/2).

Setup The game picks a bit b at random and keeps it secret. The game then sets
up the voting scheme and plays the voters, authorities and bulletin board.

Moves Once for each voter, the attacker may perform one of two moves.

– The attacker declares this voter to be honest. She may then choose two
votes v0 and v1. The game writes down both votes. If b = 0, the game
lets the voter vote for v0; if b = 1 the game lets the voter vote for v1.

– The attacker declares this voter to be dishonest and may provide an ar-
bitrary ballot b for the voter, which the game processes.
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The attacker may ask to look at the bulletin board at any point in the game.
When all voters have voted, the game individually decrypts all dishonest
voters’ ballots. It then gives the attacker the result computed as follows: for
each honest voter, it takes the first (v0) vote and for each dishonest voter, it
takes the vote obtained by decrypting the submitted ballot.

Winning conditions At any point in the game, the attacker may submit a
guess for b. This ends the game immediately. The attacker wins if her guess
is correct.

4.7 Achieving Ballot Privacy with Non-Malleability

We sketch how one would show that minivoting with zero-knowledge proofs
added to key shares, ballots and decryption shares achieves ballot privacy. The
main issue is that the attacker may derive one of her own ballots from that of
an honest voter. Bernhard et al. [BPW12a, BS13] have explored the connection
between ballot privacy and ballot independence — the property that there are
no “unexpected” relations between the votes in ballots of different voters — and
concluded that the two are essentially the same, i.e. to achieve privacy one must
ensure that ballots are independent.

The model that we use to capture independence is that of non-malleable
encryption. This can be expressed by taking the IND-CPA game and letting the
attacker, once in the game, produce any number of ciphertexts she likes and
ask the game to decrypt them. If the attacker has already obtained a challenge
ciphertext, she cannot ask for the challenge ciphertext to be decrypted however.

Definition 28. An asymmetric encryption scheme E is non-malleable if no at-
tacker can win the following game with better probability than 1/2, the probability
of guessing at random.

Setup. The game creates a keypair (pk, sk) ← KeyGen() and gives the attacker
the public key pk. The game also picks a bit b randomly from {0, 1} and keeps
this secret.

Moves. Once in the game, the attacker may pick a pair of messages m0 and
m1 of the same length and send them to the game. The game encrypts c ←
Encrypt(pk,mb) and returns this to the attacker.
Once in the game, the attacker may send the game a list of any number
of ciphertexts (c1, . . . , cn). If the attacker has already obtained a challenge
ciphertext c, she must not include this ciphertext in her list. The game de-
crypts each ciphertext in the list and sends the attacker back the decrypted
messages.

Winning Conditions. The attacker may make a guess at b which ends the
game. The attacker wins if she guesses correctly.

This notion captures non-malleability in the following sense. Suppose that a
scheme is malleable in that the attacker can take a ciphertext c and somehow
turn it into a different ciphertext c′ for a message that has some relation to
the message in c — for example, the two ciphertexts encrypt the same message.
Then the attacker can win the non-malleability game as follows:
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– Pick any messages m0,m1 and ask for a challenge ciphertext c.
– Turn c into c′ and ask for c′ to be decrypted.
– If the decrypted message is m0, guess b = 0, otherwise guess b = 1.

The exact form of the game has been shown be Bellare and Sahai [BS99] to
imply that the attacker is unable to construct any number of ciphertexts that
have an “unexpected” relation with the challenge message. By “unexpected”, we
mean that we are glossing over the following problem: the attacker can always
make two fresh ciphertexts c0 and c1 for m0 and m1 herself, this pair (c0, c1)
will then have the relation “one of the two encrypted messages matches that in
the challenge ciphertext”. Informally, what we want is that the attacker cannot
construct any relation that helps her decide what is in the challenge ciphertext.
The formal argument can be found in the cited paper [BS99].

ElGamal on its own is homomorphic and therefore not non-malleable: an
attacker can always add an encryption of 0 to a challenge ciphertext to get a
new ciphertext for the same message. ElGamal with a Σ-protocol based zero-
knowledge proof however is non-malleable. As proven by Bernhard, Pereira and
Warinschi [BPW12b]:

Proposition 29. The encryption scheme obtained by combining ElGamal with
a DCP proof that the encrypted message lies in a certain range is non-malleable.

Side Note — CCA Security. Non-malleability is a strictly stronger notion
of security than IND-CCA. There is a further, even stronger notion that is often
cited as “the correct notion” for security of asymmetric encryption called CCA,
security against “chosen-ciphertext attacks”. In this notion, the attacker can use
the decryption move as many times as she likes, as long as she never asks to
decrypt the challenge ciphertext. The game is usually presented in a form where
the attacker asks one decryption at a time instead of a list at once which makes
no difference (whereas the fact that the attacker only gets one decryption move
is a central part of the non-malleability notion). For the purposes of building
ballot private voting schemes, non-malleability is sufficient.

Ballot Privacy of Minivoting. To obtain ballot privacy we need two in-
gredients. The first is non-malleability which prevents Eve from submitting a
modified version of Alice’s ballot as her own. The second ingredient is ballot
weeding, a way to catch Eve if she tries to submit an exact copy of Alice’s bal-
lot. In a scheme with ballot weeding, whenever anyone submits a ballot, the
bulletin board checks the ballot against all previous ballots and rejects it if it
finds a relation. If ballots are non-malleable, this relation can be “the ballot is an
exact copy of a previous one”. This leads to the following proposition attesting
to ballot privacy of minivoting with proofs.

Proposition 30. Minivoting with non-malleable ballots and ballot weeding for
exact copies has ballot privacy.
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The non-malleability of ElGamal with DCP gives non-malleable ballots if each
ballot contains only a single ciphertext. Otherwise, as explained in the section on
the Helios ballot format, Cortier/Smyth attacks [CS13] in which the ciphertexts
in a ballot get permuted might still be possible. The correct way to weed ballots
containing multiple ElGamal+DCP ciphertexts is to check for repeated proofs.
This extends to show ballot privacy of the version of Helios that we present in
this work.

Proposition 31. Minivoting with ElGamal+DCP ciphertexts/proofs has ballot
privacy if the ballot weeding rejects any ballot re-using a proof from an earlier
ballot.

�
On ballot privacy in Helios. The original Helios security
result by Bernhard et al. [BC+11] showed that Helios would
have ballot privacy if it employed CCA secure encryption. The
combination of ElGamal and a DCP proof (or any other Σ-
protocol with special soundness w.r.t the encryption random-

ness r and the Fiat-Shamir transformation for the challenge) has not been
shown CCA secure in a widely accepted model and indeed there is evidence
suggesting that it is not CCA secure, although no proof of this has been
published to date.

CCA security is not necessary for ballot privacy however: the latest proofs
[BPW12a, BPW12b] achieve privacy from non-malleability alone and ElGa-
mal + DCP definitely is non-malleable.

However, Bernhard, Pereira and Warinschi [BPW12b] have also shown
that the currently available version 3 of Helios does not perform the zero-
knowledge proofs of knowledge correctly, as a result of which Helios currently
does not satisfy our notion of ballot privacy and can even be attacked in
practice. The Helios described in this paper is a fixed version; the Helios
authors have assured us that the upcoming Helios version 4 will contain
fixed proofs.

4.8 � Helios

We now have all the building blocks to describe the Helios electronic voting
scheme.

To generate an election or poll, the authorities agree on the questions and op-
tions and generate parameters (p, q, g). They each generate an ElGamal keypair
with a Schnorr proof to obtain their threshold keys. One of the authorities then
combines the public key and publishes the election specification, parameters,
public key shares and the public key itself on a bulletin board.

To vote, voters obtain and check the public key. By check, we mean that
they check the authorities’ Schnorr proofs and re-run the key combination step.
For each option “checkbox”, the voter encrypts g0 to leave the box empty and
g1 to check it. She accompanies each ciphertext with a DCP proof that she
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has indeed encrypted either g0 or g1. If the election specification restricts the
maximum or minimum number of boxes that a voter must check for a question,
she also makes an overall proof that the number of boxes checked lies in the
allowed range. The voter’s ballot contains her ciphertexts, individual proofs and
if required and overall proof for each question; she posts this ballot to the bulletin
board. Typically, a board will require voters to authenticate themselves before
accepting any ballots. The board never sees the actual votes however.

To tally an election, the authorities check all proofs in the ballots and discard
any ballots with invalid proofs. Further, they reject any ballot that has copied a
proof from an earlier ballot9. These checks can also be done by the board itself
when ballots are submitted so invalid ones never end up on the board but for
security reasons, the authorities always need to repeat these checks to protect
against a dishonest board collaborating with a dishonest voter. One authority
sums all ciphertexts for each individual question and posts the sum-ciphertexts
back on the board. Each authority then produces a decryption share for each
sum-ciphertext and posts this to the board. One authority completes the tally
by combining the decryption shares for each sum and posting this on the board
and computing the result in the correct format, for example each option’s count
as a percentage of the total number of ballots cast.

5 Verifiability

Anyone can verify a Helios election. Taking the board of a completed election,
they should perform the following steps.

1. Check that the Schnorr proofs on the public key shares are correct and that
the public key was combined correctly.

2. Check that each ballot meets the election format (correct number of cipher-
texts and proofs) and that all proofs in the ballots verify, or that all invalid
ballots have been marked as such and excluded from the tally.

3. If ballots contain voter information, check that this is consistent, i.e. only
eligible voters have voted and no-one has cast more votes than allowed.

4. Check that no ballot re-uses a proof from an earlier ballot, or that all ballots
that do so have been marked as invalid.

5. Recompute the sum-ciphertexts and check that they are correct. In particu-
lar, the sums should be over only those ballots not marked as invalid.

6. Check the zero-knowledge proofs on all decryption shares.
7. Recombine all decryptions and check that they are correct.
8. Check that the announced result matches the decryptions.

From this procedure, we can check whether Helios meets the following verifi-
ability criteria.

Individual Verifiability. Each voter can save a copy of her ballot and check
that it is included in the final bulletin board. This property is satisfied.

9 At least, this is the way Helios should check ballots and will do in a future version.
The current version (v3) is still susceptible to some ballot-copying attacks.
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Eligibility Verifiability. This depends on the election setting as eligibility in-
formation must be available to check this (such as a list of all eligible voters)
and a method is required to verify that ballots really come from who they
claim to come from. If voters are all equipped with digital signature keypairs
and the public keys are available in a public directory, voters could be asked
to sign their ballots as part of the authentication process.

Universal Verifiability. This was the key design aim of Helios and is satisfied.
All the steps in the protocol that use secret information are protected by
zero-knowledge proofs: key generation, ballot creation (the vote is secret)
and decryption. These proofs are available on the bulletin board for anyone
to audit.

Ballot Verifiability. Ballots are protected by zero-knowledge proofs attesting
to the fact that they contain correct votes. These votes are available on the
bulletin board to audit. This property is satisfied10.

As the reader will have noted, this too is an informal analysis — no formal
model for verifiability of Helios-type schemes11exists yet, in contrast to ballot
privacy. Creating a suitable model and proving Helios secure in such a model (or
finding an attack) is one of the open challenges of cryptographic voting.

6 Mix-Nets

In this section we give a brief overview of mix-nets, the other main technique
(beside blind signatures and homomorphic encryption) to achieve private and
verifiable cryptographic voting schemes. An advantage of mix-nets over homo-
morphic voting is that they can handle arbitrary ballot formats including write-in
votes.

Suppose that every voter encrypts their vote with normal ElGamal (not the
exponential variant) and posts the ciphertext on the board, along with some
identification information (or even a digital signature) to ensure eligibility. Nor-
mal ElGamal can handle arbitrary bitstrings (of a fixed length) as messages as
long as the basic group is chosen cleverly12. Since we can no longer do ho-
momorphic tallying, we need another way to anonymize ballots. Here is one: a
trusted authority takes all ballots, randomly shuffles them and re-encrypts each
one, that is for a ciphertext (a, b) the authority generates a random r from Zq

and sets (a′, b′) := (a ·gr (mod p), b ·pkr (mod p)). These shuffled ciphertexts

10 This analysis refers to the version of Helios described in this work — the current
(v3) Helios does not satisfy ballot verifiability due to a bug in the implementation
of the proofs.

11 There is a model for verifiability by Kuesters et al. [KTV11] but it coniders voting
schemes from a highly abstract point of view and has, to our knowledge, never been
successfully applied to a fully cryptographic scheme such as Helios.

12 The kind of groups we presented in this work are not suitable for this kind of scheme,
since our messages have to start out as group elements. ElGamal in groups defined
over elliptic curves does work and is typically faster (for the same key-size) too.



Cryptographic Voting — A Gentle Introduction 209

contain the same set of votes as the originals but the link between voter and
ballot is hidden, so the shuffled ciphertexts can be decrypted individually.

This also removes the need for zero-knowledge proofs to assert correctness of
ballots: if someone has encrypted a 2 in an 0/1 question, since ballots are de-
crypted individually such invalid ballots can be discarded individually too. This
technique does not prevent the need for non- malleable encryption to combat
ballot-copying however so ElGamal will still need some kind of proof protecting
the ciphertexts.

If one does not have a trustworthy authority, once can take several authorities
who each shuffle and re-encrypt all ballots in turn. As long as any one of the
authorities is honest, this protects voters’ privacy from all other authorities. The
system is also resilient to mixers failing: a mixer who does not complete a mix
can be simply replaced by another.

Unfortunately, the scheme as described is not verifiable and in fact completely
insecure against a cheating mixer substituting ballots of her own instead of re-
turning a shuffled, re-encrypted version of her inputs. In this way, a dishonest
mixer can arbitrarily manipulate the election results. The solution to this prob-
lem is clear: zero-knowledge proofs!

In a real mix-net, each mixer takes a list of ciphertexts (c1, . . . , cn) as input
and outputs a mix (c′1, . . . , c

′
n) together with a proof π that the outputs are a

mix of the inputs. Different mix-nets differ in the kind, size and efficiency of the
proof: proofs of correct mixing are typically quite expensive to compute. Some
mix-nets offer an ”online/offline” mode where most of the work in computing
a mix and a proof can be done “offline” before or during the election. This
work involves choosing random values r1, . . . , rn for some upper bound n of the
number of ballots expected and a permutation p on the set {1, . . . , n}, then
pre-computing as much of the proof as possible without the actual ciphertexts.
At the end of the election, the pre-computed values can then be applied more
efficiently to the ciphertexts forming the ballots in an “online” phase, returning
the permuted and rerandomised ballots and the proof of correct mixing.

7 Conclusion

We have presented several cryptographic schemes and techniques for voting,
introduced the building blocks from which they are constructed and given an
overview of how cryptographers work with security properties and models. The
state of the art is that we have (albeit imperfect) models for ballot privacy
and proofs for that the (fixed) Helios scheme satisfies these models; while these
models and proofs were developed, their authors discovered subtle problems with
the existing Helios which shows the importance of a detailed and formal approach
to security. While Helios is widely believed to be verifiable, which is one of its
design goals if not the key selling point, a formal model in which this claim can
be justified has not been published at the time of writing.



210 D. Bernhard and B. Warinschi

References

[DH76] Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transac-
tions on Information Theory 22(6), 644–654 (1976)

[RSA78] Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM 21(2),
120–126 (1978)

[C85] Chaum, D.: Security without Identification: Transaction Systems to make
Big Brother obsolete. Communications of the ACM 28(10) (October 1985)

[E85] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory 31, 469–472
(1985)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[S91] Schnorr, C.P.: Efficient signature generation for smart cards. Journal of
Cryptology 4, 161–174 (1991)

[CP92] Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer,
Heidelberg (1993)

[FOO92] Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for
Large Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992.
LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)

[BR93] Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security (CCS 1993), pp. 62–73 (1993)

[C96] Cramer, R.: Modular Design of Secure yet Practical Cryptographic Proto-
cols. PhD thesis, University of Amsterdam (1996)

[SG98] Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Cho-
sen Ciphertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 1–16. Springer, Heidelberg (1998)

[P99] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999)

[BS99] Bellare, M., Sahai, A.: Non-Malleable Encryption: Equivalence between
Two Notions, and an Indisinguishability-Based Characterization. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer,
Heidelberg (1999)

[BNPS03] Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-
More-RSA-Inversion Problem and the Security of Chaum’s Blind Signature
Scheme. J. of Cryptology 16(3), 185–215 (2003)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BC+11] Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapt-
ing Helios for Provable Ballot Privacy. In: Atluri, V., Diaz, C. (eds.)
ESORICS 2011. LNCS, vol. 6879, pp. 335–354. Springer, Heidelberg (2011)
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Abstract. Cloud computing has emerged as a successful paradigm
allowing individual users as well as companies to resort to external
providers for storing/processing data or making them available to others.
Together with the many benefits, cloud computing introduces however
new security and privacy risks. A major issue is that the data owner,
storing data at external providers, loses control over them, leaving them
potentially exposed to improper access, use, or dissemination. In this
chapter, we consider the problem of protecting confidentiality of sen-
sitive information when relying on external cloud providers for storing
and processing data. We introduce confidentiality requirements and then
illustrate encryption and data fragmentation as possible protection tech-
niques. In particular, we discuss different approaches that have been
proposed using encryption (with indexing) and fragmentation, either by
themselves or in combination, to satisfy confidentiality requirements.

1 Introduction

Cloud computing has brought enormous benefits to individual users as well as
companies, enabling them to enjoy convenient and flexible availability of on
demand storage and computational resources for storing, processing and share
data with others. While these advantages are appealing, the price to pay for
them is a loss of control of the data owners on their data, whose confidentiality
and integrity could then be put at risk [20,32]. Security issues may vary de-
pending on the considered cloud scenario. In fact, the term cloud refers to a
variety of distributed computing environments, which differ in the architectural
or trust assumptions. Specifically, different deployment models can be identi-
fied [36], ranging from private cloud, which operates for a single organization
and the infrastructures and services are maintained on a private network, to a
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public cloud, where the cloud infrastructure is owned by a cloud provider that
offers its services to everybody. Ownerships and operation models between these
two extremes are also possible, such as in a community cloud , where the cloud
infrastructure is shared among a set of organizations with similar needs, and
a hybrid cloud , where an organization with a private cloud wants to use it in
conjunction with a public or community cloud for a given purpose (e.g., critical
applications and data are managed in the private cloud while other less critical
applications can be managed in a public cloud). In all models above, the con-
sideration of (not fully trusted/trustworthy) providers introduces potential risks
on the protection of data that are stored or processed by external providers. In
particular, while providers could typically be assumed to be trustworthy with
respect to the proper management of the data, they might not be trusted for
data confidentiality. In other words, data should be protected from the providers
themselves (considered honest-but-curious) that, while providing data storage,
management, and processing, should not be authorized to know the actual data
content.

In this chapter, we address the problem of guaranteeing data confidentiality
when relying on external cloud providers for storing and processing data and
illustrate possible solutions for it. In particular, a natural solution for protecting
data confidentiality is encryption: data are protected by applying an encryption
layer wrapping them before outsourcing them to external cloud providers. How-
ever, while effective, encryption makes query execution more complex. In fact,
the external provider cannot decrypt the data for query execution, and must
execute queries directly on encrypted data (not always applicable in practice)
or rely on indexing information that can be associated with encrypted data. An
additional/alternative solution is data fragmentation: when what is sensitive is
the association among data (rather than the individual data themselves), con-
fidentiality can be provided by storing different chunks of the data in separate
non-linkable fragments.

The remainder of this chapter is organized as follows. Section 2 introduces the
protection requirements to be enforced as a set of confidentiality constraints, and
describes encryption and fragmentation as basic techniques that can be used to
preserve the confidentiality of stored data. It also introduces the different data
protection paradigms given by the disjoint or combined application of encryption
and fragmentation, which are illustrated in more details in subsequent sections.
Section 3 illustrates protection via data encryption (and indexing). Section 4
illustrates an approach departing from encryption in favor of data fragmenta-
tion whenever possible and assuming two data fragments and the availability of
two independent and non-communicating providers for storing them. Section 5
illustrates a similar approach assuming an arbitrary number of non-linkable
data fragments, which can be stored at an arbitrary number (including one)
of providers on which no specific assumption is required. Section 6 illustrates
an approach completely departing from encryption relying instead only on frag-
mentation and assuming the owner’s involvement in storing (and processing) a
limited amount of data. Finally, Section 7 concludes the chapter.
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2 Protection Requirements and Techniques

In this section, we first discuss confidentiality requirements that may need to
be satisfied when moving the data to the cloud (Section 2.1), and then describe
the protection techniques that can adopted for their enforcement (Section 2.2).
Finally, we illustrate the data protection paradigms resulting from different com-
binations of these protection techniques (Section 2.3).

2.1 Confidentiality Constraints

Protection requirements express what is sensitive and should be therefore main-
tained confidential when storing data at external providers. For simplicity and
concreteness, most existing proposals assume data to be organized as a relation
r over relational schema R(A1, . . . ,An), where Ai, i = 1, . . . , n, are the different
attributes of the relation, with the note that the proposed protection techniques
could however be applied to different data models. Similarly, they assume pro-
tection requirements to be defined at the schema level, meaning at the level of
attributes (in contrast to specific attribute values). This assumption simplifies
the management and the application of the protection techniques, ensuring the
applicability of the solutions.

Operating at the schema level, we can distinguish the following two kinds of
confidentiality requirements that can apply to the data, corresponding to the fact
that a given attribute is sensitive or that the association among some attributes
is sensitive.

– Sensitive attributes. Some attributes are sensitive and their values should be
maintained confidential. Simple examples of such attributes are SSN, credit
card numbers, emails or telephone numbers and similar attributes whose
values should not be released.

– Sensitive associations. In some cases, what is sensitive is the association
among attributes values rather than the values of an attribute. For instance,
the names of patients in a hospital may be considered not sensitive, and so
the diseases treated by the hospital; however the specific association between
individual patients and their illnesses is sensitive and should be maintained
confidential.

A simple, yet conveniently expressive, way to capture the confidentiality re-
quirements of sensitive attributes/associations is the specification of confiden-
tiality constraints as set of attributes whose joint visibility should be avoided [1].
Singleton sets correspond to sensitive attributes; non-singleton sets correspond
to sensitive associations.

Definition 1 (Confidentiality constraint). Let R(A1, . . . ,An) be a relation
schema. A confidentiality constraint c over R is a subset of attributes in R (i.e.,
c⊆{A1, . . . ,An})



Encryption and Fragmentation for Data Confidentiality in the Cloud 215

Patients

SSN Name Race Job Disease Treatment Ins
123-45-6789 Alice white teacher flu paracetamol 160
234-56-7890 Bob while farmer asthma bronchodilators 100
345-67-8901 Carol asian nurse gastritis antacids 100
456-78-9012 David black lawyer angina nitroglycerin 200
567-89-0123 Eric black secretary flu aspirin 100
678-90-1234 Fred asian lawyer diabetes insulin 180

C
c1 = {SSN}
c2 = {Name, Disease}
c3 = {Name, Ins}
c4 = {Disease, Ins}
c5 = {Race, Job, Ins}

(a) (b)

Fig. 1. An example of a relation (a) and of confidentiality constraints over it (b)

As an example, consider relation Patients in Figure 1(a), reporting the in-
formation about hospitalized patients. Figure 1(b) illustrates an example of con-
fidentiality constraints over it stating that:

– c1: the Social Security Numbers of the patients are sensitive and should be
maintained confidential (sensitive attribute);

– c2, c3: the disease suffered from a patient and the medical insurance she pays
are sensitive and should be maintained confidential (sensitive associations);

– c4: the association between the disease of a patient and the medical insurance
she pays is sensitive (sensitive association);

– c5: the association among the race of a patient, her job, and the insurance
she pays is confidential (sensitive association).

Note that the protection of a confidentiality constraint ci implies the protec-
tion of any confidentiality constraint cj such that ci⊂cj (if observers do not have
visibility of the attribute/association ci they clearly do not have visibility of the
association including it); making the consideration of cj redundant. A set C of
confidentiality constraints over R is well-defined if it does not include redundant
constraints, that is, ∀ci,cj∈C, i �= j: ci �⊂cj. The set of constraints in Figure 1(b)
is well-defined.

2.2 Encryption and Fragmentation

Two natural protection techniques that have been proposed for satisfying confi-
dentiality requirements are encryption and fragmentation.

Encryption consists in encrypting the data before outsourcing them to exter-
nal providers so to make them intelligible only to users holding the decryption
keys, and protecting them from unauthorized eyes (including the provider itself).
Although in principle both symmetric and asymmetric encryption schemas can
be adopted, for performance reasons, most proposals assume the adoption of
symmetric encryption. Encryption could be enforced at different levels of granu-
larity: table, column, tuple, and individual cell. Encrypting at the level of table
implies that the whole relation needs to be returned to the client for access,
requiring heavy communication and leaving the whole query processing work to
the client. Such a drawback is also present in case of encryption at the level
of column as the only operation that the provider could perform is projection,
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with the whole column of interest for a query being always returned. On the
other hand, encrypting at the level of individual cells would introduce many en-
cryption/decryption operations and issues related to possible inferences on the
encrypted data. Encrypting at the level of tuple appears then the preferable op-
tion, providing some ability for fine-grained retrieval (returning only a subset of
the tuples) while not requiring too many encryption/decryption operations.

Since the provider is not trusted for confidentiality, encrypted data cannot
be decrypted for query execution. Queries need therefore to be evaluated on
the encrypted data themselves. There are typically two lines of approaches for
providing this functionality: performing queries directly on encrypted data, pos-
sibly with the use of specific cryptographic techniques (e.g., [6,13,25,34]), or
attaching to the encrypted data some metadata representing indexes that are
then exploited for query execution (e.g., [5,14,22,26]). These approaches however
support evaluation of only specific kinds of queries.

Fragmentation consists in splitting the attributes of a relation R producing
different vertical views (fragments) in such a way that these views stored at
external providers do not violate confidentiality requirements (neither directly
nor indirectly). Intuitively, fragmentation protects the sensitive association rep-
resented by an association constraint c when the attributes in c do not appear
all in the same (publicly available) fragment, and fragments cannot be joined by
non authorized users. Note that singleton constraints are correctly enforced only
when the corresponding attributes do not appear in any fragment that is stored
at a cloud provider. In this chapter, we illustrate fragmentation solutions assum-
ing attributes to be independent. Fragmentation can however take into account
also the case of possible correlations among attributes (which could introduce
inferences or enable linking) [16].

2.3 Data Protection Paradigms

Different approaches have been proposed for protecting confidentiality of data
stored at external providers by applying encryption and fragmentation, by them-
selves or in combination. We distinguish four different protection paradigms that
have been proposed.

– Encryption/indexing. Data are encrypted before being outsourced to exter-
nal providers, with encryption typically applied at the level of tuple. En-
cryption does not distinguish between attributes or association constraints,
applying instead the wrapping protection layer to all the attributes in a tuple.
For query purposes, the encrypted data are associated with some metadata
(indexes) that can be used by the cloud provider for executing queries.

– Two can keep a secret . It assumes the availability of two independent,
non-communicating, providers each storing a portion of the data. Whenever
possible, sensitive associations are protected by partitioning the involved at-
tributes among the two providers (any way would do, as long as none of the
two providers has complete visibility of all the attributes in a sensitive as-
sociation). Sensitive attributes are always encrypted. Other attributes may
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be stored in encrypted form whenever storing them in the clear at any of
the two providers would violate at least one confidentiality constraint. The
two fragments have a key attribute in common, making them joinable by the
owner and by authorized users, who are the only parties who have access to
both providers.

– Multiple fragments . It employs encryption for protecting sensitive attributes
and fragmentation for protecting sensitive associations. It does not make
assumptions on the nature/number of providers and on the number of frag-
ments. Employing an arbitrary number of fragments allows sensitive asso-
ciations to always be satisfied with fragmentation. Fragments are complete
(all attributes are stored in each fragment in either encrypted or plaintext
form) and not linkable (they have no attribute in common). Being fragments
unlinkable, there is no need of assuming absence of communication between
the providers.

– Keep a few . It assumes the involvement of a trusted party (typically the
owner) for storing, and hence participating in the processing of, a limited
amount of data. No encryption is applied. Sensitive attributes are stored at
the owner side. Sensitive associations are protected by storing at least one of
their attributes at the owner side (trying to minimize storage/computation
required to the owner).

In the following sections, we describe more in details these four data protec-
tion paradigms. For the encryption/indexing paradigm, we will present the data
model and describe how to execute queries directly on the encrypted data. For
the fragmentation-based paradigms, we will present: i) the fragmentation model;
ii) the metrics for evaluating the quality of a fragmentation; iii) the algorithms
developed for computing an optimal fragmentation; and iv) the techniques to
efficiently evaluate queries on the fragmentation.

3 Encryption and Indexing

We first describe how data confidentiality can be guaranteed by encrypting the
data before storing them in the cloud [14,26] (Figure 2), and then illustrate how
indexes can be defined and adopted for supporting the execution of queries.

Encryption Model. A relation r , defined over schema R(A1, . . . ,An), is rep-
resented at the cloud provider as an encrypted and indexed relation re, defined
over schema Re(tid, enc, I i, . . . , I j), where:

– tid is a randomly generated tuple identifier;
– enc is the encrypted tuple;
– {I i, . . . , I j} is the set of indexes defined over attributes {Ai, . . . ,Aj}⊆R.

Each tuple t in r is represented by an encrypted tuple te in re, where: te[tid ] is a
randomly generated value; te[enc]=Enc(t ,k), with Enc a symmetric encryption
function with key k; and te[I l]=ιl(t [Al]), with ιl an index function defined for
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Fig. 2. Encryption and indexing

Patients
e

tid enc Ir Ij Id Ii
1 4tBf α δ ζ σ
2 lkG7 α δ η ρ
3 wF4t β ε θ ρ
4 m;Oi γ ε κ σ
5 n:8u γ δ λ ρ
6 xF-g β ε μ σ

Fig. 3. An example of encrypted and indexed version of relation Patients in Fig-
ure 1(a)

attribute Al. Note that not all the attributes in R are associated with an index
in the corresponding encrypted relation Re. Typically, indexes are defined only
for those attributes on which conditions need to be evaluated in query execution.
Figure 3 illustrates the encrypted version of relation Patients in Figure 1(a),
with indexes over attributes Race, Job, Disease, and Ins. In the figure, for
simplicity, index values are represented with Greek letters.

Depending on how the index function ι maps plaintext values into the corre-
sponding index values, most of the existing indexing techniques can be classified
as follows [22].

– Direct index : maps each value in the attribute domain to a different index
value and viceversa. Encryption-based indexes (e.g., [14]) represent an ex-
ample of direct index. In fact, the index function maps plaintext value t [A]
to index value ι(t [A])=Ek(t [A]), for each tuple t in r . For instance, index
I r in relation Patients

e in Figure 3 is a direct index over attribute Race of
relation Patients in Figure 1(a).

– Bucket-based index : maps different values in the attribute domain to the
same index value (i.e., generates collisions), but each value in the attribute
domain is mapped to one index value only. Partition-based and hash-
based indexes are examples of bucket-based indexes. Partition-based indexes
(e.g., [26]) split the domain D of attribute A into non-overlapping subsets of
contiguous values and associate a label with each of them. The index value
representing t [A], for each tuple t in r , is the label of the partition to which
t [A] belongs. For instance, index I i in relation Patients

e in Figure 3 is a
partition-based index over attribute Ins of relation Patients in Figure 1(a),
where the domain has been partitioned in two intervals: [100, 150] with label
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ρ, and [151,200] with label σ. Hash-based indexes (e.g., [14]) instead adopt a
secure hash function h that generates collisions. Hence, the index value repre-
senting t [A] is computed as h(t [A]), for each tuple t in r . For instance, index
I j in relation Patients

e in Figure 3 is a hash-based index over attribute Job
of relation Patients in Figure 1(a), where the hash function is defined as
follows: h(teacher)=h(farmer)=h(secretary)=δ and h(nurse)=h(lawyer)=ε.

– Flattened index : maps each value in the attribute domain to a set of index
values, in such a way that all the index values have the same number of oc-
currences (flattening). Each index value however represents one value in the
attribute domain only. An example of flattened index applies direct encryp-
tion to the values in the attribute domain and a post-processing to flatten
the distribution of index values. For instance, index I d in relation Patients

e

in Figure 3 represents a flattened index over attribute Disease of relation
Patients in Figure 1(a), where each index value has one occurrence.

Besides these approaches, indexing techniques have been proposed for sup-
porting the evaluation of specific conditions and SQL clauses [21]. As an ex-
ample, solutions that exploit homomorphic encryption have been developed to
support aggregate functions and the basic arithmetic operators (e.g., [24,27]).
Techniques based on the Order Preserving Encryption schema have been in-
stead studied to support range conditions and ordering (e.g., [2,35]). A different
class of indexing techniques rely on the definition of specific data structures (e.g.,
B+-tree) to support the evaluation at the provider-side of specific operations.
These indexes are however not represented as attributes of the encrypted rela-
tion, but they translate into additional relations stored together with re at the
cloud provider [14].

Query Evaluation. Since moving data to the cloud should be transparent for
final users, they formulate their queries over the original relation schema. These
queries are then translated into equivalent queries operating on the encrypted
and indexed relation re. The translation of a query q operating on the origi-
nal relation into an equivalent set of queries exploiting indexes depends on the
indexing techniques adopted by the data owner.

Consider, for simplicity, a query q of the form “select Att from R where

Cond ”, with Att a set of attributes in R and Cond=
∧

i cond i is the conjunction
of equality conditions of the form A=v, with A∈R and v a value in its domain.
To partially delegate the query evaluation to the cloud provider storing re, q is
translated into two queries: qp executed by the provider and qu executed by the
user. Query qp contains only the equality conditions in the where clause of q
that operate on indexes. Query qu operates on the result of qp and contains all
the other conditions. To translate q into an equivalent pair of queries {qp,qu},
Cond is first split in sub-conditions Condp, Condu, and Condpu as follows:

– Condp is the conjunction of conditions cond in Cond involving attributes
that are represented by an index in re that fully support equality conditions
(e.g., direct and flattened indexes);
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Original query Translated queries

q := select Att
from R
where Cond

qp := select tid, enc
from Re

where Condp
e
and Condpu

e

qu := select Att
from Decrypt(Rp.enc,k)
where Condu and Condpu

q := select Name

from Patients

where Race=‘white’ and
Job=‘teacher’ and
Treatment=‘paracetamol’

qp := select tid, enc
from Patientse

where Ir=α and Ij=δ

qu := select Name

from Decrypt(Rp.enc,k)
where Job=‘teacher’ and

Treatment=‘paracetamol’

Fig. 4. An example of query translation in the encryption and indexing scenario

– Condu is the conjunction of conditions cond in Cond that involve attributes
that are not represented by an index in re;

– Condpu is the conjunction of conditions cond in Cond that involve attributes
that are represented by any index in re that only partially supports the eval-
uation of equality conditions (e.g., bucket-based indexes, due to collisions).

For instance, consider the encrypted and indexed version of relation Patients

in Figure 1(a) reported in Figure 3, and query “select Name from Patients

where Race=‘white’ and Job=‘teacher’ and Treatment=‘paracetamol’”. In
this case, Condp={Race=‘white’}, Condu={Treatment=‘paracetamol’}, and
Condpu={Job=‘teacher’}.

After conditions in Cond have been classified in Condp, Condu, and Condpu,
query q is translated in qp and qu, as illustrated in Figure 4. Query qp, eval-
uated by the provider, operates on re and evaluates the conditions in Condp

and in Condpu, properly translated to operate on indexes. That is, each con-
dition (Ai=v) is represented in qp by condition (I in ι(v)), with I the index
defined over A and ι the corresponding index function. When the user receives
the result Rp of query qp, it decrypts attribute enc and evaluates, on the re-
sulting tuples, query qu. Query qu evaluates conditions in Condu and Condpu

and projects the attributes Att. Consider, as an example, the encrypted and
indexed version of relation Patients in Figure 1(a) reported in Figure 3, and
query “select Name from Patients where Race=‘white’ and Job=‘teacher’
and Treatment=‘paracetamol’”. Figure 4 illustrates the translation of q in the
corresponding sub-queries operating at the provider (i.e., qp) and at the user
(i.e., qu) sides.
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Fig. 5. Two can keep a secret

4 Two Can Keep a Secret

We present a solution based on encryption and fragmentation where data are
split into two fragments, with each fragment stored at a different provider (Fig-
ure 5). The two providers are assumed to be non-communicating [1].

Fragmentation Model The satisfaction of confidentiality constraints is guar-
anteed by proper combination of vertical fragmentation and encryption, and
relies on the assumption that the two cloud providers storing fragments do not
communicate with each other (see Figure 5). Note that in the original pro-
posal [1] encryption is considered as one of the techniques that can be used for
encoding (i.e., obfuscating) attributes. Given an attribute A, the encoding of A
consists in splitting its value in two (or more) attributes, say Ai and Aj , whose
combined knowledge is necessary to reconstruct A (i.e., A = Ai ⊗ Aj with ⊗
a non-invertible composition operator). Encoding an attribute using encryption
means therefore that Ai contains the ciphertext, Aj contains the encryption key,
and ⊗ is the encryption function adopted by the data owner. For the sake of
readability, in the remainder of this section we will consider encryption as the
specific technique adopted to enforce encoding.

According to the proposal in [1], the original relation r is fragmented generat-
ing a fragmentation F={F 1,F 2,E}, where F 1 and F 2 are two fragments that are
stored at two providers and E is the set of encrypted attributes. Singleton con-
straints are satisfied by encrypting sensitive attributes. Association constraints
are satisfied by splitting the involved attributes between the two providers. Since
relation r can be split in two fragments only, it may happen that an attribute
cannot be stored at any of the two providers without violating a confidentiality
constraint. In this case, the confidentiality constraint can be satisfied by encrypt-
ing one (or more) of its attributes. A fragmentation F={F 1,F 2,E} is correct if it
satisfies all the confidentiality constraints defined by the data owner, as formally
stated below.

Definition 2 (Correct Fragmentation). Let R(A1, . . . ,An) be a relation
schema and C be a set of confidentiality constraints over it. A fragmentation
F = {F 1,F 2,E} is correct iff:
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– ∀c ∈ C: c �⊆F 1, c �⊆F 2 (confidentiality),
– F 1∪F 2∪E = R (completeness).

The first condition requires that neither F 1 nor F 2 store all the attributes in
a confidentiality constraint in plaintext. Since the two fragments are stored at
different providers, and these providers do not communicate with each other,
sensitive associations as well as sensitive attribute values cannot be recon-
structed by non authorized users. The second condition instead demands that
the fragments store (either plaintext or encrypted) all the attributes in the
original relation. This guarantees that the content of the original relation can
always be reconstructed starting from F . For instance, a correct fragmenta-
tion F of relation Patients in Figure 1(a) with respect to the confidential-
ity constraints in Figure 1(b) is F={F 1,F 2,E}, with F 1={Name,Race,Job},
F 2={Disease,Treatment}, and E={SSN,Ins}.

At the physical level, fragments F 1 and F 2 are represented by physical frag-
ments F e

1 and F e
2, respectively. Each physical fragment F e

i stores the attributes
in F i in plaintext, and all the attributes in E encrypted. The two physical
fragments representing relation r must have a common attribute, to allow au-
thorized users to correctly reconstruct the content of r (lossless join prop-
erty). Therefore, physical fragment F e

i representing fragment F i has schema
F e

i (tid,Ai1 , . . . ,Ain ,A
i
e1 , . . . ,A

i
em), where:

– tid is a randomly generated tuple identifier;
– {Ai1 , . . . ,Ain} is the set of attributes composing fragment F i;
– {Ai

e1 , . . . ,A
i
em} is the set of attributes resulting from the encryption of the

attributes in E={Ae1 , . . . ,Aem}, that is, for each Aei in E , either A1
ei repre-

sents encrypted attribute Aei and A2
ei represents the corresponding encryp-

tion key, or viceversa.

Each tuple t in r is represented by a tuple te1 in F e
1 and a tuple te2 in F e

2,
where: te1[tid]=te2[tid] is a randomly generated value; te1[A]=t [A], ∀A∈F 1 and
te2[A]=t [A], ∀A∈F 2; and attributes te1[A

1], t2[A
2] are the encrypted version and

the encryption key of attribute t [A], ∀A∈E (i.e., Enc(t [A], te1[A
1]) = te2[A

2] or
Enc(t [A],te2[A

2]) = te1[A
1]).

Figure 6 illustrates the physical fragments representing fragmentation
F={F 1,F 2,E}, with F 1={Name,Race,Job}, F 2={Disease,Treatment}, and
E={SSN,Ins} of relation Patients in Figure 1(a). In this example, for sim-
plicity, we assume that F e

1 stores the encrypted attribute values and F e
2 stores

the corresponding encryption keys for all the tuples in r and for both attributes
SSN and Ins.

Fragmentation Metrics. Given a relation schema R and a set C of confiden-
tiality constraints over it, the data owner needs to compute a correct fragmen-
tation. However, there may exist different fragmentations that satisfy all the
constraints. As a simple example, fragmentation F={F 1,F 2,E} with E=R and
F 1=F 2=∅ is clearly correct but undesirable, since no query can be evaluated
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Fe
1

tid Name Race Job SSN1 Ins1

1 Alice white teacher Enc(123-45-6789,k1
SSN) Enc(150,k1

Ins)
2 Bob while farmer Enc(234-56-7890,k2

SSN) Enc(100,k2
Ins)

3 Carol asian nurse Enc(345-67-8901,k3
SSN) Enc(100,k3

Ins)
4 David black lawyer Enc(456-78-9012,k4

SSN) Enc(200,k4
Ins)

5 Eric black secretary Enc(567-89-0123,k5
SSN) Enc(100,k5

Ins)
6 Fred asian lawyer Enc(678-90-1234,k6

SSN) Enc(180,k6
Ins)

Fe
2

tid Disease Treatment SSN2 Ins2

1 flu paracetamol k1
SSN k1

Ins

2 asthma bronchodilators k2
SSN k2

Ins

3 gastritis antacids k3
SSN k3

Ins

4 angina nitroglycerin k4
SSN k4

Ins

5 flu aspirin k5
SSN k5

Ins

6 diabetes insulin k6
SSN k6

Ins

Fig. 6. An example of a correct fragmentation of relation Patients in Figure 1(a) in
the two can keep a secret scenario

by the providers storing F e
1 and F e

2. Aiming at leaving as much computational
effort as possible to the cloud providers, it is then necessary to define a metric to
measure the quality of a fragmentation in terms of the query overhead required
to users for evaluating their queries over the fragmentation F . The metric pro-
posed in [1] is based on the knowledge of the query workload Q (i.e., a set of
representative queries that are expected to be frequently executed) characteriz-
ing the system. In fact, the query workload describes how frequently attributes
appear together in queries, and then permits to estimate the computational
overhead that a fragmentation that splits these attributes may cause to users.
To assess the quality of a fragmentation, the query workload is modeled as an
affinity matrix , which is a symmetric matrix with a row and a column for each
attribute in R , and where each cell M [Ai,Aj ]=M [Aj ,Ai] (i �= j), represents the
cost (i.e., the computation overhead for users) of having attributes Ai and Aj

stored in different fragments. Each cell M [A,A] (i.e., cells along the diagonal)
instead represents the cost of having attribute A encrypted. For instance, the
affinity matrix in Figure 7 states that the cost of having attributes Name and
Disease stored in two different fragments is M [Name, Disease] = 10, and that
of encrypting attribute Ins is M [Ins, Ins] = 15. The cost of a fragmentation
F is computed by summing the costs of the attributes encrypted in F , and the
costs of the pairs of attributes not stored together in a fragment in F . Formally,
the cost of a fragmentation F={F 1,F 2,E} is defined as:∑

Ai∈F 1,Aj∈F 2

M [Ai,Aj ] +
∑
Ai∈E

M [Ai,Ai]

As an example, consider relation Patients in Figure 1(a), the fragmentation in
Figure 6, and the affinity matrix in Figure 7 (since the matrix is symmetric, we re-
port the values only for the cells in the upper half of the matrix). The quality of F
is computed as: M [Name, Disease]+M [Name, Treatment]+M [Race, Disease]+
M [Race, Treatment] + M [Job, Disease] + M [Job, Treatment] + M [SSN, SSN] +
M [Ins, Ins] = 10 + 15 + 32 + 40 + 14 + 23 + 10 + 15 = 159.
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SSN Name Race Job Disease Treatment Ins
SSN 10 20 22 18 17 25 10

Name 30 12 25 10 15 40
Race 20 18 32 40 10
Job 10 14 23 17

Disease 10 30 40
Treatment 20 40

Ins 15

Fig. 7. An example of affinity matrix

Computing an Optimal Fragmentation. The problem of computing a frag-
mentation that minimizes the cost of query evaluation is NP-hard (the minimum
hypergraph coloring problem reduces to it in polynomial time [1]). Hence, in [1]
the authors propose to adopt an heuristic approach to compute a good, although
non optimal, solution. The proposed solution is based on a graph modeling of
the fragmentation problem, where each attribute in R is represented as a vertex
in a complete graph G whose edges and vertices are weighted according to M
(i.e., weight(A)=M [A,A] and weight(Ai,Aj)=M [Ai,Aj ]). The graph has an ad-
ditional set H of hyperarcs, modeling the confidentiality constraints in C. The
proposed heuristic combines two approximation techniques, traditionally used
to find a good solution to the following well known hard problems.

– Min-Cut . Assuming that C is empty, the problem of computing an optimal
fragmentation can be translated into the problem of computing a minimum
cut for G. A minimum cut for a graphG is a partitioning of the set of vertices
in G in two subsets, V1 and V2, that minimizes the weight of the edges
with one vertex in V1 and vertex in V2. Intuitively, the heuristic approaches
proposed for the Min-Cut problem can be used to compute different cuts
that are nearly minimal, and then we can choose the one that satisfies the
highest number of confidentiality constraints.

– Weighted Set Cover . If we do not consider the cost of splitting attributes
between F 1 and F 2, the problem of computing a correct fragmentation can
be translated into the minimum set cover problem. Intuitively, each confi-
dentiality constraint is a set whose elements are the attributes composing
it. The weight of each attribute A is M [A,A] and the minimum set cover is
the set C′ of attributes with minimum weight that includes (at least) one
attribute for each constraint. Confidentiality constraints can be satisfied by
encrypting all the attributes in C′.

By combining these two approaches, it is possible to compute a good fragmen-
tation in polynomial time. In fact, the Min-Cut heuristic algorithm guarantees to
compute a good split of the attributes between F 1 and F 2, while the weighted set
cover guarantees constraint satisfaction. The corresponding heuristic algorithm
works as follows. First, it computes a minimum set cover E through a greedy
strategy, to guarantee that all the constraints are satisfied by encrypting the
attributes in E. Then, it computes a minimum cut for the attributes in R\E,
to split them between F 1 and F 2 minimizing the cost of the fragmentation.
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Finally, for each attribute A in E, it moves A to F 1 (F 2, respectively) if no
confidentiality constraint is violated.

Query Evaluation. A query q formulated over the original relation r is trans-
lated into a set of queries operating over the two fragments stored at the two
cloud providers. A naive solution would download from the two providers both
F e

1 and F e
2, and locally evaluate q at the user side on the joined fragments.

However, this solution would not be acceptable due to the high computational
and communication overhead for users. The translation of original queries to
operate on fragments should then limit the computational overhead for the user
(i.e., moving as much as possible the query evaluation process to the providers).

Consider, for simplicity, a query q of the form “select Att from R where

Cond ”, with Att a set of attributes in R and Cond=
∧

i cond i a conjunction of
basic conditions of the form (Ai op v), (Ai op Aj), or (Ai in {vi, . . . , vk}), where
Ai,Aj ∈ R , {v, v1, . . . , vk} are constant values in the domain of Ai, and op is a
comparison operator in {=, �=, >,<,≥,≤}. For the sake of readability, in the fol-
lowing, we will use notationAttr(cond) to denote the set of attributes in the basic
condition cond. To partially delegate the computation of the query to the providers
storing F e

1 and F e
2, q is translated into a set {q1, q2, qu} of queries operating at

the provider storing F e
1, at the provider storing F e

2, and at the user side, respec-
tively. This translatwion is based on the observation that the evaluation of basic
conditions involving only attributes plaintext represented in F e

1 (F
e
2, respectively)

can be delegated to the provider storing F e
1 (F e

2, respectively). Conditions oper-
ating on encrypted attributes or on two attributes, say A1 and A2, with A1∈F 1

and A2∈F 2, must be evaluated by the user. Given query q , condition Cond in the
where clause is then split into three sub-conditions as follows:

– Cond1=
∧

i cond i : Attr(cond i)⊆F 1 is the conjunction of basic conditions
that involve only attributes in fragment F 1;

– Cond2=
∧

i cond i : Attr(cond i)⊆F 2 is the conjunction of basic conditions
that involve only attributes in fragment F 2;

– Condu=
∧

i cond i : Attr(cond i)�⊆F 1 and Attr(cond i)�⊆F 2 is the conjunction
of basic conditions that either involve encrypted attributes or are of the form
(Ai op Aj), where Ai∈F 1 and Aj∈F 2 (or viceversa).

For instance, consider relation Patients in Figure 1(a), its fragmentation in
Figure 6 and query q=“select Name from Patientswhere Job=‘lawyer’ and
Disease=‘flu’ and Ins=100.” Cond1 includes basic condition Job=‘lawyer’;
Cond2 includes basic condition Disease=‘flu’; and Condu includes basic condi-
tion Ins=100.

The evaluation of a query q on R can follow different strategies, depending on
whether Cond1 and Cond2 are evaluated in parallel (Figure 8(a)) or in sequence
(Figure 8(b)), as illustrated in the following.

– Parallel strategy. The two providers evaluate in parallel queries q1 and q2,
which are in charge of returning the tuples in F e

1 and F e
2 satisfying conditions
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Original query Translated queries
q := select Att

from R
where Cond

q1 := select tid, (Att∪Attr(Condu)) ∩ (F 1∪E )
from F e

1

where Cond1

q2 := select tid, (Att∪Attr(Condu)) ∩ (F 2∪E )
from F e

2

where Cond2

qu := select Att
from R1 join R2 on R1.tid=R2.tid
where Condu

q := select Name
from Patients
where Job=‘lawyer’ and

Disease=‘flu’ and
Ins=100

q1 := select tid, Name, Ins1

from F e
1

where Job=‘lawyer’

q2 := select tid, Ins2

from F e
2

where Disease=‘flu’

qu := select Name
from R1 join R2 on R1.tid=R2.tid
where Decrypt(Ins1 , Ins2)=100

(a) Parallel strategy

Original query Translated queries
q := select Att

from R
where Cond

q1 := select tid, (Att∪Attr(Condu)) ∩ (F 1∪E )
from F e

1

where Cond1

q2 := select tid, (Att∪Attr(Condu)) ∩ (F 2∪E )
from F e

2

where (tid in R1.tid) and Cond2

qu := select Att
from R1 join R2 on R1.tid=R2.tid
where Condu

q := select Name
from Patients
where Job=‘lawyer’ and

Disease=‘flu’ and
Ins=100

q1 := select tid, Name, Ins1

from F e
1

where Job=‘lawyer’

q2 := select tid, Ins2

from F e
2

where (tid in {4,6}) and Disease=‘flu’

qu := select Name
from R1 join R2 on R1.tid=R2.tid
where Decrypt(Ins1 , Ins2)=100

(b) Sequential strategy

Fig. 8. An example of query translation in the two can keep a secret scenario
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Cond1 and Cond2, respectively. Query q1 (q2, respectively) returns the tuple
identifier tid, which is necessary to join its result R1 (R2, respectively) with
the result of q2 (q1, respectively), and all those attributes included in F 1

(F 2, respectively) and in E that appear either in the select clause of q , or in
Condu. When the user receives both R1 and R2, she executes query qu that
computes the join between them, decrypts encrypted attributes, evaluates
Condu, and projects the attributes in the select clause of q . Figure 8(a)
illustrates the translation of query q=“select Name from Patientswhere

Job=‘lawyer’ and Disease=‘flu’ and Ins=100” formulated over relation
Patients in Figure 1(a) into an equivalent set of queries operating on the
fragments in Figure 6.

– Sequential strategy. With this strategy, one among the two queries q1 and q2
is sent to the corresponding provider first. Let us assume that the provider
storing F e

1 goes first (the case where the provider managing F e
2 goes first is

symmetric) and executes query q1, which evaluates condition Cond1 retuning
attribute tid and all those attributes included in F 1 and in E that appear
either in the select clause of q , or in Condu. Upon receiving R1, the user
sends to the provider storing F e

2 the identifiers of the tuples in R1. The
provider then executes q2, which evaluates Cond2 on the tuples in F e

2 whose
identifier is among the ones received from the user. The user finally computes
the join between R1 and R2, evaluates Condu and projects the attributes
of interest. Figure 8(b) illustrates the translation of query q=“select Name

from Patients where Job=‘lawyer’ and Disease=‘flu’ and Ins=100”
formulated over relation Patients in Figure 1(a) into an equivalent set of
queries operating on the fragments in Figure 6. (Values {4,6} in the where

clause of q2 are the identifiers of the tuples satisfying Cond1.)

The choice between the parallel and the sequential strategies depends on the
performance they guarantee and on the resource that the user considers more
valuable. In fact, the parallel strategy has the advantage of reducing the response
time, while causing a higher communication cost than the sequential strategy (R2

is likely to be composed of a higher number of tuples). The choice of the provider
that goes first in the sequential strategy instead depends only on the selectivity of
Cond1 and Cond2, since it is preferable to evaluate the most selective condition
first.

5 Multiple Fragments

We present a solution based on encryption and fragmentation where data can be
splitted among an arbitrary number of fragments [7,10], which may be possibly
stored at the same provider (Figure 9).

Fragmentation Model. The goal of the proposal in [7] is to remove the limiting
assumption of absence of collusion between the two providers characterizing the
solution in [1]. The idea is therefore to compute a fragmentation (with no limits
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Fig. 9. Multiple fragments

on the number of fragments composing it) in such a way that its fragments are
not linkable, meaning that it is not possible for parties different from the data
owner and authorized users to reconstruct the original relation and then also the
sensitive values and associations. Being non linkable, fragments can be stored at
a different providers, but also at the same provider, with no confidentiality risk.

The approach in [7] couples vertical fragmentation with encryption to sat-
isfy confidentiality constraints. In particular, each singleton constraint c={A}
is satisfied by encrypting the involved attribute A. Each association constraint
c={A1, . . . ,An} can instead be satisfied by either encrypting at least one among
the A1, . . . ,An attributes, or by storing these attributes in different fragments.
To prevent indirect violation of confidentiality constraints by joining fragments,
fragments must be disjoint (i.e., no attribute can appear in more than one frag-
ment). More formally, a correct fragmentation is defined as follows.

Definition 3 (Correct Fragmentation). Let R(A1, . . . ,An) be a relation
schema and C be a set of confidentiality constraints over it. A fragmentation
F = {F 1, . . . ,Fm} is correct iff:

– ∀c ∈ C, ∀F ∈ F : c �⊆ F (confidentiality);
– ∀F i,F j ∈ F , i �= j: F i ∩ F j = ∅ (unlinkability).

The first condition states that a fragment in F cannot contain all the attributes
composing a confidentiality constraint. The second condition states that frag-
ments must be disjoint. This approach has two advantages: i) being disjoint, all
fragments F 1, . . . ,Fn composing a fragmentation F are not linkable and can
therefore be stored at the same provider; and ii) not imposing any limit on the
number of fragments, association constraints can always be satisfied without en-
cryption, thus increasing the visibility over data, with clear advantages for query
evaluation. In fact, the plaintext representation of an attribute A in a fragment
F permits the evaluation of conditions over A at the cloud provider storing F .
For this reason, the approach in [7] aims at computing fragmentations that max-
imize visibility. A fragmentation maximizes visibility if each attribute A in R not
appearing in a singleton constraint is plaintext represented in at least one frag-
ment. Note however that, to satisfy the unlinkability condition, each attribute
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Fe
1

salt enc Name Job

s11 xTb: Alice teacher
s21 o;!G Bob farmer
s31 Ap’L Carol nurse
s41 .u7t David lawyer
s51 y”e3 Eric secretary
s61 (l1! Fred lawyer

Fe
2

salt enc Disease Treatment

s12 hg5= flu paracetamol
s22 mB71 asthma bronchodilators
s32 :k?2 gastritis antacids
s42 Ql4, angina nitroglycerin
s52 -kGd flu aspirin
s62 p[Mz diabetes insulin

Fe
3

salt enc Race Ins

s13 bP5 white 160
s23 *Cx white 100
s33 1Bny asian 100
s43 Oj)6 black 200
s53 vT7/ black 100
s63 l1fY asian 180

Fig. 10. An example of correct fragmentation of relation Patients in Figure 1(a) in
the multiple fragments scenario

not appearing in a singleton constraint can belong to at most one fragment in
a correct fragmentation. For instance, F={{Name,Job}, {Disease,Treatment},
{Race,Ins}} is a correct fragmentation of relation Patients in Figure 1(a) with
respect to the constraints in Figure 1(b). This fragmentation maximizes visi-
bility as all the attributes but SSN, which is sensitive per se (c1), are plaintext
represented in exactly one fragment.

At a physical level, each fragment F i = {Ai1 , . . . ,Ain} of a fragmentation F
is represented by a physical fragment F e

i (salt , enc,Ai1 , . . . ,Ain), where:

– salt is the primary key of the relation and contains a randomly chosen value;
– enc is an attribute storing the encrypted attributes in R\{Ai1 , . . . ,Ain};
– {Ai1 , . . . ,Ain} is the set of attributes composing fragment F i.

Each tuple t in r is represented by a tuple in each of the physical frag-
ments {F e

1, . . . ,F
e
m} corresponding to the fragments {F 1, . . . ,Fm} in F . Tu-

ple te representing t in F e
i is such that: te[salt ] is a random value; te[enc] is

computed as Enc(t [R \ F i] ⊕ t [salt ], k), with ⊕ the binary xor operator; and
te[A]=t [A], ∀A∈F . Note that the attributes not appearing in plaintext in F e

are combined with a random salt before encryption to prevent frequency at-
tacks [33]. Since each physical fragment stores (either plaintext or encrypted) all
the attributes in R , every query can be evaluated on a single fragment. Figure 10
illustrates the physical fragments representing fragmentation F={{Name,Job},
{Disease,Treatment}, {Race,Ins}} of relation Patients in Figure 1(a).

Fragmentation Metrics. Given a relation schema R and a set C of confi-
dentiality constraints over it, there may be different correct fragmentations that
maximize visibility. As an example, a fragmentation F where each attribute in R
that does not appear in a singleton constraint is stored in a different fragment is
correct and maximizes visibility. However, this solution causes an excessive frag-
mentation making the evaluation of queries involving more than one attribute
expensive. We now present different metrics (see Figure 11) that can be used to
assess the quality of a fragmentation in terms of the query evaluation overhead
caused to users.

– Minimal fragmentation (e.g., [7]). A simple metric for evaluating the qual-
ity of a fragmentation consists in minimizing the number of fragments thus
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Metric Quality function

Number of fragments card(F)

Affinity

n∑

k=1

aff(Fk)

where aff(Fk) =
∑

Ai,Aj∈Fk,i<j M [Ai,Aj ], k = 1, . . . , n

Query evaluation cost
m∑

i=1

freq(qi)·cost(qi,F)

where cost(qi,F)=Min(cost(qi,Fj), j = 1, . . . , n)
and cost(qi,Fj)=S(qi,Fj)·|r |· size(tj), i = 1, . . . ,m and j = 1, . . . , n

Fig. 11. Classification of the metrics in the multiple fragments scenario

avoiding excessive fragmentation. Intuitively, a fragmentation with a lower
number of fragments is likely to store more attributes in the same frag-
ment, clearly favoring the evaluation of queries that involve these attributes
(also together). For instance, both F={{Name,Job}, {Disease,Treatment},
{Race,Ins}} and F ′={{Name,Job}, {Disease},{Treatment}, {Race,Ins}}
are correct fragmentations of relation Patients in Figure 1(a). However, F
is preferable to F ′ because it efficiently supports the evaluation of queries
involving, both Disease and Treatment. Two different notions of minimal-
ity have been proposed: minimality (i.e., composed of the minimum number
of fragments [3,12]) and local minimality (i.e., composed of fragments that
cannot be merged without violating constraints [7,12]). We note that, while
a locally minimal fragmentation might not be composed of the minimum
number of fragments, a minimal fragmentation is indeed also locally mini-
mal (i.e., merging any of its fragments violates at least a constraint).

– Maximum affinity (e.g., [10]). A more precise assessment of the quality of
a fragmentation is based on the affinity between attributes. The affinity
between two attributes quantifies the performance advantage in query eval-
uation that can be obtained by storing them in the same fragment [31]. At-
tributes with high affinity are expected to be frequently involved together in
queries. Therefore, the higher the affinity, the higher the advantage in query
evaluation of having the attributes stored in the same fragment. Attribute
affinity can be modeled by an affinity matrix M , which is a symmetric ma-
trix with a row and a column for each attribute that do not appear in a
singleton constraint. Each cell M [Ai,Aj ], with i �= j, represents the benefit
obtained by storing attributes Ai and Aj in the same fragment. For instance,
Figure 12 illustrates an example of affinity matrix for relation Patients in
Figure 1(a). Fragmentations that keep in the same fragment attributes with
high affinity are to be preferred over fragmentations that split them in differ-
ent fragments. The quality of a fragmentation F is measured as the sum of
the affinity of the fragments composing it, where the affinity of a fragment F
is obtained by summing the affinities of the pairs of attributes in F . As an ex-
ample, consider relation Patients in Figure 1(a), the fragmentation in Fig-
ure 10, and the affinity matrix in Figure 12. The quality of F is computed as:
M [Name, Job]+M [Disease, Treatment]+M [Race, Ins] = 30+25+40 = 95.
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Name Race Job Disease Treatment Ins
Name 10 30 10 10 10
Race 10 10 10 40
Job 10 10 10

Disease 25 10
Treatment 10

Ins

Fig. 12. An example of affinity matrix

– Minimum query evaluation cost (e.g., [8]). Another possible metric is based
on the definition of a query cost model, which can be used to evaluate the cost
of executing a representative set of queries over fragments. This metric, com-
pared with the affinity metric, has the advantage of taking into consideration
also the benefit of storing in the same fragment arbitrary sets of attributes
(instead of pairs thereof). The adoption of this metric requires the availabil-
ity of the query workload Q of the system, which is a set {q1, . . . , qm} of
queries along with their execution frequency freq(qi), i = 1, . . . ,m. The pro-
posal in [8] assumes that queries in Q are of the form “select Ai1 , . . . ,Ain

from R where

∧n
j=1 (Aj in Vj)” with Vj a set of values in the domain of

attribute Aj . The quality of a fragmentation F then depends on the cost
of executing the queries in Q, properly weighted by their frequency, over
the fragments in F . Since each physical fragment stores, either plaintext or
encrypted, all the attributes in R , the cost of evaluating a query q over F is
the minimum among the costs of evaluating q over each physical fragment
F e in F . The cost of evaluating q on F e is estimated by the size of the
result returned to the user, because the costs of communication, decryption,
and evaluation of conditions on encrypted attributes at the user side are
more expensive than the computational costs at the provider side. Hence,
the cost cost(qi,F j) of executing qi on F j is computed as S(qi,F j) · |r | ·
size(t j), where S(qi,F j) is the selectivity of query qi, |r | is the number of
tuples in r , and size(t j) is the size of the attributes appearing in the select
clause of qi and the size of attribute enc if there is the need of accessing
attributes not appearing in plaintext in F j . The selectivity of condition A
in V = {v1, . . . , vn} is an estimate of the ratio of the number of tuples in F
that satisfy the condition over the total number of tuples in r . If attribute A
does not appear in plaintext in F , the selectivity is set to 1. Consider, as an
example, a query workload composed of two queries: q1=“select ∗ from

Patientswhere Job=‘teacher’ and Race=‘asian’”, with frequency 30; and
q2=“select ∗ from Patients where Job=‘lawyer’ and Disease=‘flu’”,
with frequency 70. The fragmentation in Figure 10 implies a query eval-
uation cost cost(Q,F) = cost(q1,F) · freq(q1) + cost(q2,F) · freq(q2) =
1/6 · 6 · 1 · 30 + 1/3 · 6 · 1 · 70 = 170. In fact, assuming that the size of the
tuples is the same for all the fragments and is equal to 1, the fragment that
minimizes query evaluation cost for q1 is F 1, and are both F 1 and F 2 for q2.
Indeed, the most selective condition in q1 operates on attribute Job, while
the two conditions in q2 are equally selective.
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Computing an Optimal Fragmentation. Regardless of the metric adopted
to evaluate the quality of a fragmentation, the problem of computing an optimal
fragmentation is NP-hard (the minimum hypergraph coloring problem reduces
to it in polynomial time [10]). Hence, the time complexity of any algorithm able
to compute an optimal fragmentation is exponential in the number of attributes
in R . In the following, we briefly survey exact and heuristic algorithms proposed
for efficiently computing a correct and optimal (according to a chosen metric)
fragmentation.

– Minimal fragmentation (e.g., [3,7,12]). Both exact and heuristic algorithms
have been proposed to the aim of avoiding an excessive fragmentation and
producing minimal or locally minimal fragmentations. The exact algorithms
in [3,12], proposed to produce a minimal fragmentation, rely on a logical
modeling of the problem. The attributes in R are interpreted as Boolean vari-
ables, and each confidentiality constraint c={A1,. . . ,An} in C as a Boolean
formula representing the conjunction A1 ∧ . . . ∧ An of the attributes com-
posing it. A fragment F of R is a truth assignment that assigns true to the
variables representing the attributes in the fragment, and false to the other
variables. A fragmentation F is a set of truth assignments that satisfy all the
constraints in C, and such that each variable A is assigned true in at most
one fragment F in F . Two approaches have been studied to compute a set
of truth assignments representing a correct fragmentation that use a SAT
(SATisfiability) and an OBDD (Ordered Binary Decision Diagram) formu-
lation of the fragmentation problem. The adoption of SAT solvers has been
proposed in [3] to compute a fragmentation composed of the minimum the
number of fragments. To this aim, a SAT solver able to compute a correct
fragmentation composed of n fragments is iteratively invoked. At the first
iteration, n is set to 1. It is then incremented by 1 at each iteration. The
iteration stops when the SAT solver finds a correct fragmentation. The adop-
tion of the OBDD data structure to represent confidentiality constraints and
efficiently compute fragments (i.e., truth assignments) satisfying constraints
has been proposed in [12]. The problem of computing a fragmentation com-
posed of the minimum number of fragments is translated into the problem
of computing a maximum weighted clique over a fragmentation graph. The
fragmentation graph models fragments, efficiently computed using OBDDs,
that satisfy all the confidentiality constraints and a subset of the visibility
constraints (i.e., required views over the data) defined in the system. Another
heuristic approach for computing a locally minimal fragmentation has been
proposed in [7]. The algorithm starts from an empty fragmentation F and
tries to insert each attribute A in R (non involved in a singleton constraint)
into a fragment F∈F . If A cannot be inserted into any fragment in F with-
out violating constraints, a new fragment F ′={A} is created and inserted
into F . The attributes are considered in decreasing order of the number of
constraints in which they are involved (i.e., attributes appearing in a higher
number of constraints are considered first).
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– Maximum affinity (e.g., [10]). The greedy approach proposed in [10] takes
advantage of the affinity matrix M previously illustrated in this section to
compute a fragmentation that maximizes affinity. The proposed technique
starts with a fragmentation F where each attribute A that does not appear in
a singleton constraint belongs to a different fragment F∈F . At each iteration,
the algorithm merges the pair of fragments 〈F i,F j〉 with highest affinity
according toM , provided no constraint is violated. The algorithm terminates
when no further merge is possible.

– Minimum query evaluation cost (e.g., [8]). The exact algorithm proposed
in [8] to minimize the cost of query execution is based on an efficient visit
of the solution space of the fragmentation problem, which is represented
through a lattice (SF ,&). Set SF includes all the fragmentations of relation
R composed of disjoint fragments; & is a dominance relationship between
fragmentations where F&F ′ iff F can be obtained by merging fragments
in F ′. The visit of the fragmentation lattice is based on two nice proper-
ties of the dominance relationship: i) given a non-correct fragmentation F ′,
any fragmentation F such that F&F ′ is not correct; and ii) given two frag-
mentations F and F ′ such that F&F ′, the query evaluation cost of F ′ is
higher than the cost of F (i.e., the cost is monotonic with the dominance
relationship). A heuristic algorithm exploiting the fragmentation lattice has
also been proposed [8].

Query Evaluation. Since each physical fragment stores (either plaintext of
encrypted) all the attributes in R , a query q can be evaluated on any physical
fragment. However, the performance clearly depends on the fragment that is
chosen to evaluate q . Given the set Att of attributes involved in q , it is intuitively
more convenient to evaluate q over a physical fragment F e

i that stores attributes
in Att (or a subset thereof) in the clear, rather than over a fragment F e

j where
attributes in Att are encrypted. In fact, choosing F e

j would require the user to
download the whole fragment from the cloud and to locally evaluate the query
(after the encrypted attributes have been decrypted). Instead, resorting to F e

i

permits to (partially) delegate to the provider the query evaluation task.
The solution in [7] considers queries q of the form select Att from R where

Cond , with Att a set of attributes in R and Cond=
∧

i cond i a conjunction of
basic conditions of the form (Ai op v), (Ai op Aj), or (Ai in {vi, . . . , vk}),
where Ai,Aj ∈ R , {v, v1, . . . , vk} are constant values in the domain of Ai, and
op is a comparison operator in {=, �=, >,<,≥,≤}. Let us assume that query
q is evaluated over physical fragment F e. The basic conditions in the where

clause of q operating on attributes in F (i.e., attributes appearing in plaintext
in F e) can be evaluated by the provider while the basic conditions operating on
attributes not included in F (i.e., encrypted attributes in F e) must be evaluated
by the user who knows the encryption key. To translate q into an equivalent set
of queries operating on F e, Cond is split in sub-conditions Condp and Condu,
as follows:
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Original query Translated queries

q := select Att
from R
where Cond

qp := select salt , enc, Att∩F
from F e

where Condp

qu := select Att
from Decrypt(Rp.enc⊕salt ,k)
where Condu

q := select Name

from Patients

where Disease=‘flu’ and
Job=‘teacher’

qp := select salt, enc, Name
from F e

1

where Job=‘teacher’

qu := select Name

from Decrypt(Rp.enc⊕salt,k)
where Disease=‘flu’

Fig. 13. An example of query translation in the multiple fragments scenario

– Condp=
∧

i cond i : Attr(cond i) ⊆ F is the conjunction of the basic conditions
involving only attributes plaintext stored in the chosen fragment;

– Condu=
∧

i cond i : Attr(cond i) �⊆ F is the conjunction of the basic condi-
tions that involve at least one attribute that appears encrypted in the chosen
fragment.

For instance, consider the fragmentation in Figure 10, and assume that query
“select Name from Patients where Disease=‘flu’ and Job=‘teacher’ ” is
evaluated over fragment F e

1. In this case, Cond includes conditions Disease=‘flu’
and Job=‘teacher’. Since attribute Job belongs to F 1 while attribute Disease

does not, Condp includes condition Job=‘teacher’, and Condu includes condition
Disease=‘flu’.

After conditions in Cond have been classified between Condp and Condu,
query q is translated in two queries, as illustrated in Figure 13. Query qp, ex-
ecuted at the provider side, operates on the selected physical fragment F e and
evaluates condition Condp. When the user receives the result Rp of query qp, it
decrypts attribute enc and evaluates, on the resulting tuples, query qu. Query qu
evaluates condition Condu and projects the attributes in Att. Note that if Condu

is empty and all the attributes in the select clause of q belong to F , then qu
does not need to be executed and qp does not need to return attributes salt and
enc (since the result Rp returned by qp already coincides with the result of the
original query q ). Consider, as an example, relation Patients in Figure 1(a),
the fragmentation in Figure 10, and query q=“select Name from Patients

where Disease=‘flu’ and Job=‘teacher’ ”, returning the names of the teachers
suffering from flu. While, in principle, the query might be evaluated using any
of the three fragments, F e

1 and F e
3 are more convenient than F e

2 because F e
2

does not include any of the attributes involved in the conditions of q . Figure 13
illustrates the translation of q in the corresponding sub-queries operating at the
provider side (i.e., qp) and at the user side (i.e., qu) using F e

1.
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Fig. 14. Keep a few

6 Keep a Few

We present a solution completely departing from encryption where a trusted
party (the owner) is involved in storing a portion of the data (Figure 14). Specif-
ically, data are splitted into two fragments, one stored at the data owner side,
and one stored at an external provider so that the fragment managed by the
provider does not violate the confidentiality constraints [4,9,11].

Fragmentation Model. Sensitive associations are protected by the approaches
discussed in previous sections by encrypting (a portion of) the original relation
and/or by splitting its content into non-linkable fragments. The approach in [9]
departs from encryption, and protects sensitive associations relying on owner-
side storage to satisfy confidentiality constraints. According to this proposal,
relation R is fragmented generating a pair F = 〈Fo, Fp〉 of fragments, with F o

stored at the data owner and F p stored at a cloud provider. This solution satisfies
singleton constraints c={A} by storing A at the owner. Similarly, it satisfies as-
sociation constraints c={A1, . . . ,An} by storing at least one among {A1,. . . ,An}
at the owner. Formally, a correct fragmentation is defined as follows.

Definition 4 (Correct Fragmentation). Let R(A1, . . . ,An) be a relation
schema and C be a set of confidentiality constraints over it. A fragmentation
F = 〈Fo, Fp〉 is correct iff:

– ∀c ∈ C, c �⊆ F p (confidentiality);
– F o∪F p=R (losslessness).

The first condition states that fragment F p cannot contain all the attributes
composing a confidentiality constraint. This condition must hold only for F p,
since F o is stored at the data owner and is therefore accessible to authorized
users only. The second condition demands that all attributes in R are represented
at the data owner or at the cloud provider, thus guaranteeing losslessness of the
fragmentation. Although, in principle, F o might include attributes appearing in
F p, this redundancy is not necessary and might be expensive for the data owner
(both in terms of storage and computation). Fragments are then required to be
disjoint (i.e., F o∩F p=∅). For instance, F = 〈Fo, Fp〉 with F o={SSN,Name,Ins}
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Fe
o

tid SSN Name Ins
1 123-45-6789 Alice 160
2 234-56-7890 Bob 100
3 345-67-8901 Carol 100
4 456-7 8-9012 David 200
5 567-89-0123 Eric 100
6 678-90-1234 Fred 180

Fe
p

tid Race Job Disease Treatment
1 white teacher flu paracetamol
2 while farmer asthma bronchodilators
3 asian nurse gastritis antacids
4 black lawyer angina nitroglycerin
5 black secretary flu aspirin
6 asian lawyer diabetes insulin

Fig. 15. An example of a correct fragmentation of relation Patients in Figure 1(a) in
the keep a few scenario

and F p={Race,Job,Disease,Treatment} represents a correct fragmentation of
relation Patients in Figure 1(a) with respect to the confidentiality constraints
in Figure 1(b).

At the physical level, fragments F o and F p must have a common key attribute
to permit authorized users to correctly reconstruct the content of relation r . This
attribute can be either the primary key of relation R , if it is not sensitive, or
an attribute that does not belong to the schema of R and that is added to both
F o and F p to this purpose. Assuming that the primary key of R cannot be
publicly released, a fragmentation F = 〈Fo, Fp〉, with F o = {Ao1 , . . . ,Aoi} and
F p = {Ap1 , . . . ,Apj}, is translated into physical fragments F e

o(tid,Ao1 , . . . ,Aoi)
and F e

p(tid,Ap1 , . . . ,Apj ), where tid is a randomly generated tuple identifier. Fig-
ure 15 illustrates the physical fragments representing fragmentation F = 〈Fo, Fp〉
with F o={SSN,Name,Ins} and F p={Race,Job,Disease,Treatment} of relation
Patients in Figure 1(a). Note that at least one attribute of each constraint in
Figure 1(b) is in F o.

Fragmentation Metrics. Given a relation schema R and a set C of confiden-
tiality constraints over it, there may exist different correct fragmentations that
are non-redundant. For instance, consider a fragmentation F = 〈Fo, Fp〉 where
F o = R and F p = ∅. This fragmentation is correct and non-redundant, but
it does not take advantage of outsourcing as no storage and/or computation
is delegated to the cloud provider. To maximize the advantages for the data
owner, she must push to the cloud provider as much as possible of the storage
and computation workload necessary for the management of her data. To this
aim, it is necessary to properly measure the storage, computation, and commu-
nication overhead caused to the data owner by the storage and management of
fragment F o. In the following, we illustrate the metrics that can be adopted to
assess the quality of a fragmentation, depending on the resource that the data
owner values more and on the information available about the system workload
at initialization time [9].

– Minimal fragmentation. The most straightforward metric consists in count-
ing the number of attributes in F o. Intuitively, a fragment composed of a
lower number of attributes is likely to be smaller (reducing the storage oc-
cupation), and to be involved in a lower number of queries (reducing the
computation and communication overhead).
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Attribute A size(A)

SSN 10
Name 20
Race 5
Job 18
Disease 18
Treatment 30
Ins 8

Query q freq(q) Attr(q ) Condq

q1 20 Job, Disease 〈Job〉, 〈Disease〉
q2 30 Disease, Treatment 〈Disease〉, 〈Treatment〉
q3 40 Job, Ins 〈Job〉, 〈Ins〉
q4 10 SSN, Ins, Disease 〈SSN〉, 〈Ins〉, 〈Disease〉

(a) (b)

Fig. 16. An example of size of attributes (a) and query workload (b) for relation
Patients in Figure 1(a)

– Minimal size of attributes . If the data owner aims at limiting the storage
occupation at the provider side, the most effective metric to assess the quality
of a fragmentation measures the size of F o. The storage occupation of F o is
computed as the sum of the size of the attributes composing it. For instance,
suppose that the size of the attributes of relation Patients in Figure 1(a)
is as summarized in Figure 16(a). The size of fragment F o in Figure 15 is
size(SSN)+size(Name)+size(Ins) = 10 + 20 + 8 = 38.

– Minimal number of queries . The computation and communication overhead
at the data owner side can be measured as the number of queries whose eval-
uation requires the owner’s intervention (i.e., queries involving at least one
attribute in F o). The adoption of this metric requires the knowledge of the
query workload Q characterizing the system that, in this scenario, is a set
{q1, . . . , qm} of representative queries, along with their frequency freq(qi),
i = 1, . . . ,m. For instance, the first three columns in Figure 16(b) represent
a query workload for relation Patients in Figure 1(a). The cost of a frag-
mentation F = 〈Fo, Fp〉 is computed as the sum of the frequencies of the
queries including at least one attribute in F o. With respect to the workload
in Figure 16(b), the fragmentation in Figure 15 requires the evaluation of
freq(q3)+freq(q4) = 50 queries at the data owner, since q3 and q4 involve
attributes in F o.

– Minimal number of conditions . A more precise metric measuring the com-
putation overhead of the data owner considers, instead of the number of
queries, the number of conditions she should evaluate. In fact, the presence
of multiple conditions in the same query operating on F o causes a higher
computation overhead for the data owner. To adopt this metric, it is neces-
sary to know, besides the frequency freq(qi) of each query qi in the query
workload Q, also the conditions, denoted Cond (qi), composing it. The qual-
ity of F = 〈Fo, Fp〉 is then computed as the sum of the frequencies of the
conditions in Q involving attributes in F o. For instance, the first, second,
and fourth column of Figure 16(b) represent a possible workload profile for
relation Patients in Figure 1(a). With respect to this workload, the frag-
mentation in Figure 15 requires the evaluation of freq(〈SSN〉)+freq(〈Ins〉)
= 10 + (40 + 10) = 60 conditions at the data owner side.
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Metric Quality function

Storage
Number of attributes card(Fo)

Size of attributes
∑

A∈Fo

size(A)

Computation and
communication

Number of queries
∑

q∈Q
freq(q ) s.t. Attr(q )∩Fo 	=∅

Number of conditions
∑

cond∈Cond (Q)

freq(cond ) s.t. cond∩Fo 	=∅

Fig. 17. Classification of the metrics in the keep a few scenario

Figure 17 summarizes the formal definition of the metrics illustrated above.
Note that the adoption of each metric is subject to the knowledge of different
information about relation r and the query workload expected for the system.

Computing an Optimal Fragmentation. The problem of computing an op-
timal fragmentation that minimizes the storage or the computation and commu-
nication costs for the data owner is NP-hard (the minimum hitting set problem
reduces to it in polynomial time [9]). The heuristic approach proposed to com-
pute a good fragmentation is based on the nice property that all the metrics
illustrated above are monotonic in the number of attributes in F o (i.e., the cost
of a fragmentation F increases when an attribute is moved from F p to F o).
Hence, the same heuristics applies to all the four metrics in Figure 17. The
algorithm proposed in [9] aims at computing a locally minimal fragmentation
F = 〈Fo, Fp〉, which is defined as a fragmentation where no attribute can be
moved from F o to F p without violating confidentiality constraints. The algo-
rithm first inserts into F o all the attributes that are considered sensitive per se
(i.e., the attributes involved in singleton constraints). The remaining attributes,
which initially belong to F p, are organized in a priority queue. The priority of an
attribute A depends on: i) the number of constraints that would be solved mov-
ing A to F o, and ii) the cost that the data owner would pay to move A to F o.
The algorithm iteratively extracts from the queue the attribute A with highest
priority (i.e., the attribute with minimum cost per solved constraint) and inserts
it into F o. The iteration stops when either all the constraints are satisfied or the
queue is empty (i.e., F o=R and F p=∅). The algorithm finally tries to move each
attribute in F o to F p, to guarantee minimality of the computed fragmentation.

Query Evaluation. A query q formulated over the original relation r must
be translated into an equivalent set of queries operating on F = 〈Fo, Fp〉. The
solution in [9] considers queries q of the form select Att from R where

Cond , with Att a set of attributes in R and Cond=
∧

i cond i a conjunction of
basic conditions of the form (Ai op v), (Ai op Aj), or (Ai in {vi, . . . , vk}),
where A,Ai,Aj ∈ R , {v, v1, . . . , vk} are constant values in the domain of Ai,
and op is a comparison operator in {=, �=, >,<,≥,≤}. Although in principle the
data owner can evaluate, any query q formulated by the users, such a solution
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should be avoided when possible as it would reduce the advantages of resorting
to a cloud provider for partial data storage and management. In fact, the cloud
provider shluld be delegated for the evaluation of all those conditions operating
on attributes in F p. Given query q , the approach in [9] first splits Cond in
three sub-conditions, Condo, Condp, and Condpo, depending on the attributes
involved in each basic condition, as follows:

– Condo=
∧

i cond i : Attr(cond i)⊆F o is the conjunction of basic conditions
that involve only attributes stored at the data owner, which can be evaluated
only by the owner;

– Condp=
∧

i cond i : Attr(cond i)⊆F p is the conjunction of basic conditions
that involve only attributes stored at the cloud provider, which can be eval-
uated by the provider;

– Condpo=
∧

i cond i : Attr(cond i)∩F o �=∅ and Attr(cond i)∩F p �=∅ is the con-
junction of basic conditions of the form (Ai op Aj), whereAi∈F o andAj∈F p,
which can be evaluated only by the data owner, with the support of the
provider.

For instance, consider relation Patients in Figure 1(a), its fragmentation in
Figure 15 and query q=“select Name from Patients where Disease=‘flu’
and Ins=100”. Condp includes condition Disease=‘flu’; Condo includes condi-
tion Ins=100; and Condpo is empty.

The evaluation of a query q on R can follow the provider-owner or the owner-
provider strategies, depending on the order in which Condp, Condo, and Condpo

are evaluated (see Figure 18).

– Provider-Owner strategy. This strategy first evaluates condition Condp at
the provider side and then evaluates both Condo and Condpo at the data
owner side. Query q is translated into two equivalent queries qp and qo, as
illustrated in Figure 18(a). Query qp operates on F e

p and evaluates condi-
tion Condp. It returns to the data owner the tuple identifier tid (which is
necessary to join the result Rp of qp and F e

o) and the attributes in F e
p that

appear in the select clause of q or in Condpo. When the data owner re-
ceives Rp, she executes query qpo that computes the join between Rp and
F e

o, evaluates Condo and Condpo, and projects the attributes in the select
clause of q . The data owner finally returns the result Rpo of qpo to the user.
As an example, Figures 18(a) illustrate the translation of query q=“select
Name from Patientswhere Disease=‘flu’ and Ins=100” formulated over
relation Patients in Figure 1(a) into an equivalent set of queries operating
on the fragmentation in Figure 15.

– Owner-Provider strategy. This strategy first evaluates Condo at the data
owner, then evaluates condition Condp at the provider side, and finally eval-
uates Condpo again at the data owner side. Query q is then translated into
three queries, as illustrated in Figure 18(b). Query qo operates on F e

o, eval-
uates condition Condo, and projects attribute tid only. The result Ro of
this query, computed by the data owner, is sent to the cloud provider that
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Original query Translated queries

q := select Att
from R
where Cond

qp := select tid, (Att∪Attr(Condpo)})∩F p

from F e
p

where Condp

qo := select Att
from F e

o join Rp on F e
o.tid=Rp.tid

where Condo and Condpo

q := select Name

from Patients

where Disease=‘flu’ and
Ins=100

qp := select tid, Name
from F e

p

where Disease=‘flu’

qo := select Name

from F e
p join Rp on F e

p.tid=Rp.tid
where Ins=100

(a) Provider-Owner strategy

Original query Translated queries

q := select Att
from R
where Cond

qo := select tid
from F e

o

where Condo

qp := select (Att∪Attr(Condpo))∩F p

from F e
p

where (tid in Ro) and Condp

qpo := select Att
from F e

o join Rp on F e
o.tid=Rp.tid

where Condpo

q := select Name

from Patients

where Disease=‘flu’ and
Ins=100

qo := select tid

from F e
o

where Ins=100

qp := select tid, Name
from F e

p

where (tid in {2,3,5}) and Disease=‘flu’

qpo := select Name

from F e
o join Rp on F e

o.tid=Rp.tid

(b) Owner-Provider strategy

Fig. 18. An example of query translation in the keep a few scenario
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executes query qp on the join between Ro and F e
p. Query qp evaluates condi-

tion Condp, and returns attribute tid and the attributes in F e
p that appear

in the select clause of q or in Condpo. The provider returns the result
Rp of qp to the data owner, who evaluates qpo on the join between Rp and
F e

o. Query qpo evaluates Condpo and projects the attributes in the select

clause of q . The data owner finally returns the result Rpo of qpo to the user.
As an example, Figures 18(b) illustrate the translation of query q=“select
Name from Patientswhere Disease=‘flu’ and Ins=100” formulated over
relation Patients in Figure 1(a) into an equivalent set of queries operating
on the fragmentation in Figure 15 (values {2,3,5} in the where clause of qp
represent the identifiers of the tuples satisfying Condo=Ins=100).

In the choice between these two strategies, it is necessary to take into consid-
eration (besides performance) the risk of leakage of sensitive information that
the Owner-Provider strategy may cause. In fact, if the provider knows the query
q formulated by the user, this strategy reveals to the provider which are the
tuples in F p that satisfy Condo, even if the provider is not authorized to see the
content of attributes in F o.

7 Conclusions

Users as well as private and public organizations are more and more often relying
on cloud providers to store and manage their data, enjoying economic advan-
tages and high data availability. Although appealing, outsourcing the storage and
management of data to the cloud introduces risks for data confidentiality, which
could still represent a major obstacle to the wide adoption of cloud computing.
In this chapter, we focused on the problem of protecting the confidentiality of
data stored at external cloud providers. We first described the confidentiality
requirements that may need to be considered and enforced before moving the
data in the cloud. We then surveyed different approaches that have been pro-
posed for enforcing such confidentiality requirements, using data encryption and
fragmentation, either by themselves or in combination. In addition to the data
confidentiality issue treated in this chapter, other issues that might need to be
addressed when relying on external cloud providers for data storage or computa-
tion include: data integrity, and availability; protection against external attacks;
selective access to the data; fault tolerance management; the specification of se-
curity requirements on task/resource allocation in a cloud; query privacy; and
query and computation integrity (e.g., [15,17,18,19,23,28,29,30]).
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Abstract. Privacy preservation is gaining popularity in Wireless Sensor
Network (WSNs) due to its adoption in everyday scenarios. There are a
number of research papers in this area many of which concentrate on the
location privacy problem. In this paper we review and categorise these
solutions based on the information available to the adversary and his
capabilities. But first we analyse whether traditional anonymous com-
munication systems conform to the original requirements of location pri-
vacy in sensor networks. Finally, we present and discuss a number of
challenges and future trends that demand further attention from the
research community.

Keywords: Wireless sensor networks, location privacy, traffic analysis,
survey.

1 Introduction

The miniaturisation of electro-mechanical systems has led to the creation of
tiny, inexpensive computers capable of feeling their environment in the same
way as humans experience the world through our senses. These matchbox-sized
computers are called sensor nodes and they can cooperate and communicate
wirelessly with other nodes nearby forming a wireless sensor network (WSN).
The data collected by the sensor nodes are transmitted to a powerful device
called the base station or data sink, which serves as an interface to the network.

These systems have been successfully applied to numerous application scenar-
ios where sensor nodes are unobtrusively embedded into systems for monitoring,
tracking and surveillance operations [13]. However, sensor nodes are highly vul-
nerable to a number of threats and attacks [45] due to their hardware limitations,
which may limit their applicability to scenarios where security and privacy are
essential properties. Particularly sensitive scenarios are those involving individ-
uals, businesses and relevant assets.

A first line of defence against attacks is to protect the data traversing the
network from modifications and eavesdropping but even if secure confidentiality
and integrity mechanisms are in place, an adversary can attack the network
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c© Springer International Publishing Switzerland 2014



Location Privacy in WSNs 245

in another way. By silently observing and analysing the communications, the
adversary can obtain contextual information associated with the measuring and
transmission of data [33]. These metadata are inherently more difficult to protect
than the data contained in the packets’ payload. Indeed, the mere presence of
messages may reveal sensitive information related to the application scenario.
For example, the transmission of messages by a sensor node used for monitoring
the structural health of a fuel pipeline is an indicator of internal corrosion.

A noteworthy piece of contextual information that may be leaked to the at-
tacker is the location of relevant nodes in the network. The location of data
sources reveals the area where special phenomena are being observed. These
phenomena may be related to individuals, endangered animals, valuable cargo,
etc., and as a result, the adversary obtains the location of those entities and
goods. On the other hand, the location of the base station is relevant for sev-
eral reasons. The base station is the most critical device in the network and if
the adversary is able reach it, he may be able take control of the network or
even render it completely useless by destroying it. Besides its importance for
the survivability of the network, the location of the base station is strategically
significant because it is most likely housed in a highly-sensitive facility. In a sce-
nario where a WSN is deployed to monitor the behaviour of whales in the middle
of the ocean, finding the base station leads to the ship where the biologists are
analysing the results.

Location privacy schemes can be categorised following two main criteria,
which are (a) what information is available to the adversary, and (b) what are
the capabilities of the adversary to be countered. There are basically two items
of interest which may help the adversary to locate targets, namely the identities
of the nodes and the traffic pattern. Packet headers contain the identifiers of the
source and destination of a transaction, therefore obscuring this information is
the first step in achieving location privacy. Although these data are effectively
protected, the attacker can still obtain location information by analysing the
traffic generated by the network. The strategy of the adversary is determined by
his goal and capabilities. The literature usually considers an external and passive
attacker with either local or global eavesdropping capabilities. Occasionally, the
attacker is also capable of compromising a small portion of the sensor nodes,
thus becoming an internal adversary. As a result, we propose a taxonomy of
solutions (see Fig. 1) that will guide the exposition of subsequent sections.

The rest of this work is organised as follows. Prior to the analysis of location
privacy solutions in WSNs, Section 2 studies whether traditional anonymous
communication systems devised for computer networks can adjust to the specific
requirements and adversaries considered in sensor networks. Then, Section 3
examines two approaches to node identity protection based on the creation and
use of pseudonyms. Section 4 dives into source-location privacy solutions, paying
attention both to external and internal adversaries. Similarly, Section 5 analyses
solutions for the protection of the base station against local and global observers.
Finally, Section 6 presents and discusses a number of open issues and future areas
of research, and Section 7 concludes this paper.
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Fig. 1. Taxonomy of Location Privacy Solutions in WSNs

2 Computer-Based Anonymity Systems

Anonymous communication systems for computer networks were originally de-
vised to hinder traffic analysis attacks. Therefore, it appears feasible to use
these solutions to protect location privacy in sensor networks as this problem is
caused by the peculiar traffic pattern of this networks. First, we need to anal-
yse the anonymity requirements in both scenarios. After that, we select several
renowned anonymous communication systems to study whether these can be
implemented in resource-constrained sensor nodes and also whether the deploy-
ment of these solutions limit in any way, the usability or functionality of the
network.

2.1 Anonymity Requierements

There are several anonymity properties that may help entities to preserve their
privacy when communicating with other entities [34]. These properties provide
different levels of anonymity ranging from avoiding the identification of a given
subject within a set of other subjects to the impossibility of proving the partici-
pation of a specific subject in a given communication. The most usual property
implemented by traditional anonymous communication systems is the unlinka-
bility of senders and receivers, which is intended to prevent an adversary from
identifying which entities are communicating with whom, since this allows him
to learn the habits and interests of a specific individual. However, this property
is not necessary in WSNs since an external adversary already knows that all
sensor nodes communicate with the base station.

Some other solutions focus on providing sender anonymity with respect to the
receiver. The goal is to prevent ill-intentioned service providers from collecting
data from users for the purpose of tracking and profiling. In WSNs, the enforce-
ment of this property is not only unnecessary but also detrimental to the normal
operation of the network. The reason is that the base station needs to know the
identities of the nodes generating data messages in order to faithfully identify
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the location of relevant events in the field. Nevertheless, source anonymity is
also suitable for systems where the communications traverse some potentially
malicious (i.e., honest but curious) nodes interested in learning the actual data
sender. This type of anonymity is important in WSNs where some nodes are com-
promised by the attacker and try to obtain the source node identifier. Therefore,
source anonymity is only necessary in certain circumstances.

While unobservability is a very strong notion of privacy and is only rarely
necessary in computer networks, it becomes the most natural way of protecting
location privacy in WSNs. It is imperative to hide the existence of the nodes
reporting on or receiving event data. If the adversary cannot sufficiently detect
the presence of data messages in the network, he will be unable to determine
the location of the nodes taking part in the communication. Consequently, if the
attacker is not able to ascertain the existence of messages, he will not be able to
determine who is the sender or recipient of that message by simply performing
traffic analysis attacks.

In general, we can state that some anonymity properties are unsuitable or
unnecessary for protecting location privacy in WSNs, in fact, they might even
be counterproductive in particular cases.

2.2 Overhead Analysis

The aforementioned properties have been satisfied by anonymous communica-
tion schemes through different techniques, which incur notorious computational
and communication overhead to the system. These techniques range from simple
identity renaming to more complex operations such as layered encryption, fake
traffic injection, and tightly-synchronised broadcast communications. Moreover,
anonymous communications systems can be categorised based on their architec-
ture as centralised or decentralised, depending on whether the users are members
of the system that collaborate in the anonymisation process or not. Here we have
selected three solutions that not only cover a wide range of techniques and fea-
tures but also pursue different anonymity properties and architectures.

Mix-nets [6] are high-latency centralised systems composed of a set of store-
and-forward devices (i.e., mixes) that prevent the correlation between incoming
and outgoing messages. Whenever a user wants to communicate with another
user, he selects a series of mixes and recursively adds a layer of (public-key)
encryption to the message for each mix in reverse order. In this way, each mix
device only knows its predecessor and successor in the path. This scheme is ex-
tremely effective for ensuring unlinkability in delay-tolerant applications but its
is not suitable for WSNs, where real-time monitoring capabilities are usually
necessary. Moreover, there are some other limitations with respect to the mem-
ory and computational requirements imposed by the scheme. Data sources are
required to perform n+1 public-key operations per data packet, being n the path
length, but they also need to have a complete knowledge of the topology of the
mix-net in order to apply the layers of encryption in the right order. Addition-
ally, each intermediate node is required to not only perform one decryption per
packet but also to store a number of packets for a long period of time. Finally, a
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centralised scheme cannot protect from global adversaries and, for the particular
case of mix-nets, it cannot protect itself from local adversaries either because
the attacker can eventually reach the edge of the mix-net and from there locate
the data sources.

Crowds [38] is a decentralised scheme where a set of users collaborate to
issue requests to servers in order to provide anonymity to its members. After
joining the crowd, any of its members can initiate requests to different servers,
which are delivered by a random member. Whenever a crowd member wants
to send a message, it chooses a random member, possibly itself, to act as an
intermediary. The recipient decides, based on some biased probability, whether
to forward the data to another member or to finally submit it to the destination.
Subsequent requests from the same data source and same destination follow the
same path. Messages are re-encrypted and the sender identity is replaced at
every hop. Although this model is far less complex than the previous one from
a computational point of view, it still has high memory demands. Each node
must hold n− 1 shared keys (i.e., one key per crowd member) and a translation
table containing all the paths that have the node as an intermediary, as paths
are static. This is, indeed, an important drawback to its application in WSNs
because static paths can be easily traced back by local adversaries. Even though
this is a decentralised solution, global adversaries might be able to identify data
sources since new traffic is only generated in the presence of real events, and
also, the base station as all the traffic is addressed to it. However, this scheme
does provide some means of protection against Internal adversaries due to the
identity renaming mechanism.

DC-nets [7] is a decentralised solution based on simple calculations that al-
lows a group of users to share information while hiding the actual sender (and
recipient) of messages even from other protocol participants. To this end, each
member shares bitwise keys with any other participant and all members simul-
taneously broadcast the result of the bitwise sum of their secrets. The key point
is that if a participant has something to say he inverts this result before broad-
casting it. Each secret is used twice so the final result must be zero if no one
has inverted his result. Since the initial shared bits are secret, there is no way to
determine the actual sender. Although the original protocol considers the trans-
mission of a single data bit, the DC scheme can be easily extended to transmit
string messages by sharing random numbers instead of random bits. The appli-
cation of the DC-nets model in WSNs has several impediments. First, the need
for a tight and reliable broadcast channel that covers all sensor nodes and the
base station. Second, the high memory overhead required to store one-time se-
crets for multiple protocol rounds and the high waste of bandwidth and energy
due to the continuous rounds even when no participant is willing to transmit.
Another substantial problem has to do with simultaneous communications. The
scheme does not support multiple transmissions at the same time, which would
highly constrain the usability and nature of sensor networks.

Table 1 presents a summary of the this analysis. It indicates that even though
some solutions are sufficiently lightweight to run in sensor nodes, the true weak
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Table 1. Suitability of some Anonymous Communication Systems

Adversary
Limitations Global Local Internal

Mix-nets high × × �
Crowds low × × ≈
DC-nets high � � �

point is that the solutions do not fit the requirements and the adversarial models
under consideration. Similarly, another group of solutions are suitable for the
protection of location privacy in WSNs but they are rather expensive or they
present important limitations. As a result, new tailored solutions have been
designed specifically for WSNs.

3 Node Anonymity

Packet headers consist of various data fields containing, among other things,
the identifiers of the data sender and the destination. These data are sent in
clear text to enable intermediate nodes to perform routing tasks. Thus, after a
sufficient number of observations, an attacker can elaborate a map of the network
relating node identifiers to locations in the field. Being in possession of such a
network map, the attacker may simply wait next to the base station for incoming
messages and easily obtain the location where events occur.

Several techniques have been proposed to provide node anonymity, most of
which are based on the use of dynamic pseudonyms. Some authors have ap-
proached the management of pseudonyms by means of pools of pseudonyms
while others have turn to cryptographic mechanisms for the same purpose. Note
that most of the solutions fall into the second category since the use of crypto-
graphic techniques for the creation of pseudonyms have several benefits over the
use of network pools. Next, we review these solutions in detail.

3.1 Pool of Pseudonyms

Misra and Xue [26] were the first authors to provide a set of solutions for node
identity protection. The Simple Anonymity Scheme (SAS) is based on a network-
wide pool of pseudonyms which the base station divides into subranges of l bits
and provides each node with a random set of them (see Fig. 2a). Each node
builds a pseudonyms table where it stores pseudonym ranges for incoming and
outgoing messages for each neighbour and their corresponding secret keys. When
the node wants to communicate with a specific neighbour, it selects a random
value from the range of pseudonyms belonging to that node and concatenates the
index of the row from where it picked the pseudonym. The recipient node checks
whether the received pseudonym belongs to the incoming range corresponding
to the given index and, that being the case, it uses the shared key to decrypt the
message. The principal limitation to SAS is the large memory space necessary
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Fig. 2. Pool-Based Approaches

to store a sufficiently large pseudonym space, especially in densely populated
networks.

Nezhad et al. [27,28] proposed a label switching protocol as part of their
DCARPS anonymous routing protocol. After each topology discovery phase,
the base station obtains an updated map of the network and assigns labels (i.e.,
identifiers) to each and every network link, as depicted in Fig. 2b. These labels
serve as pseudonyms and whenever a node has to send a packet to the base
station, it uses the label assigned to the link connecting it to a neighbour that
is closer to the base station. Upon the reception of the packet, the neighbour
node, checks whether the label corresponds to one of its input labels. If the label
is known to the node, it replaces the input label with its own output label. For
example, the grey node in Fig. 2b checks whether an incoming message has either
label L9 or L10 and, in the case it does, it forwards the packet after changing the
original label with L3. The main drawback to this labelling solution is that labels
are modified only after a topology change has been discovered, which allows the
attacker to correlate labels with specific nodes, thus completely compromising
anonymity.

3.2 Cryptographic Pseudonyms

The second solution by Misra and Xue [26] is intended to reduce the amount of
memory needed by SAS at the expense of increased computational overhead. The
Cryptographic Anonymity Scheme (CAS) uses a keyed hash function to generate
the pseudonyms. Before the deployment of the network, each node is assigned a
pseudo-random function, a secret key and a random seed shared with the base
station. After deployment, each pair of neighbours agree upon a random seed
and a hash key that they store together with a sequence number. Whenever a
node wants to send data to the base station, using a neighbour as intermediary,
it creates a message M = {sID, rID,EncryptedPayload, seq}, where sID and
rID are the pseudonyms generated after applying the keyed hash functions to
the random seed and the sequence number shared with the base station and the
intermediary, respectively. This scheme is more memory efficient but it imposes
a computational overhead, not only to the intended recipient but also to any
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neighbour receiving the packet which need to compute a keyed hash value before
discovering it is not addressed to them.

The CAS scheme assume that an attacker cannot compromise the secrets
shared between the nodes. To reduce the impact of secrets being compromised,
Ouyang et al. [31] propose two methods based on keyed hash chains. The Hashing-
based ID Randomisation (HIR) scheme, uses the result of applying a keyed hash
function to the true identifier of the node as pseudonym. More precisely, each
node shares pairwise keys with uplink and downlink neighbours and creates, for
each link, the keyed hash identifier of the uplink node of that neighbour. Af-
ter the transmission or reception of a message on a particular link, the node
rehashes the value contained in the table to generate a fresh pseudonym. Addi-
tionally, packets convey another identifier used for the base station to be able to
identify the original data source. This value is also an element of a hash chain
keyed with a secret shared with the base station. Since hash values are assumed
to be non-invertible, this solution provides backwards secrecy, but if the adver-
sary compromises the key used by the hash functions, he can generate future
pseudonyms. The second solution, Reverse HIR (RHIR), attempts to reduce this
problem by creating the hash chain during the initialisation and then using the
elements of the chain in reverse order. Once a pseudonym has been used, it is no
longer needed and it can be deleted from the memory. In this way, the attacker
cannot generate any fresh pseudonyms even if he compromises the key. The main
drawback to this solution with respect to the previous one lies in the need for
increased memory space to accommodate a lengthy hash chain.

Later, Jiang et al. [16] introduced the Anonymous Path Routing (APR) proto-
col. One of the elements of this scheme, namely the anonymous one-hop commu-
nication, introduces an enhancement that improves the resilience against secret
compromise attacks compared to previous solutions. In this scheme each node
creates a table to keep the uplink and downlink hidden identities of each neigh-
bour. These identities are calculated by hashing the values of the secret keys,
identities, a sequence number and a nonce shared by the nodes. The novelty of
this approach is that not only the hidden identities are updated (i.e., rehashed)
after each successful transmission between neighbouring nodes but also the keys
shared between the nodes. The same idea has been developed by Chen et al. [9]
in the Efficient Anonymous Communication (EAC) protocol. The problem with
this is scheme is that, nodes exchange with their neighbours the keys and nonces
they share with the base station to update the pseudonyms used for one-hop
communications. This allows any node to determine whether the true source of
the packet is a neighbouring node as well as to impersonate any of its neighbours.

Finally, it is important to highlight that node anonymity is only a first line of
defence to preserve location privacy. An adversary can perform more sophisti-
cated attacks to obtain location information from the analysis of traffic patterns.
In the following sections we concentrate on the most important solutions that
have been developed to diminish the threat of different types of adversaries.
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4 Source-Location Privacy

Source-location privacy refers to the ability to hide the location of data sources,
which results in the protection of the physical location of the events being moni-
tored since they may be related to individuals or valuable resources. This problem
has drawn the attention of the research community and plenty of solutions have
been devised for countering passive adversaries with a local or a global view of
the communications, but only a few authors have concentrated on the threat of
internal attackers.

4.1 Local Adversaries

A local adversary can only monitor a small portion of the network, typically
the equivalent of the hearing range of an ordinary sensor node. Therefore, they
must turn to moving in the field using a traceback attack in an attempt to reach
the target by moving along the path of messages from the source to the base
station in reverse order. This attack is successful because data packets tend to
follow the same path over and over again. Consequently, most of the solutions to
this problem are based on the randomisation of routes although some schemes
also take advantage of bogus traffic to mislead the adversary. Note that some
solutions may belong to more than one category.

Undirected Random Paths. The first solution to provide source-location
privacy was devised by Ozturk et al. and is called Phantom Routing [32]. Phan-
tom Routing proposes making each packet undergo two phases, a walking phase
and a flooding phase. In the walking phase, the packet is sent on a random walk
for h hops until it reaches a node, which is called the phantom source. Then, in
the next phase, the phantom source initiates a baseline or probabilistic flooding,
which eventually delivers the packet to the base station. This two-phase process
picks random phantom sources for each new message thereby originating differ-
ent paths. Later, a new version of protocol, called Phantom Single-Path Routing
[17] replaced the flooding in the second phase by a single-path routing, which
results in even longer safety periods due to the fact that the adversary misses
some packets. Fig. 3 depicts the transmission of two messages using this solu-
tion, where dashed arrows represent the walking phase and the ordinary arrows
represent the single-path phase. The grey node is the phantom source. The main
limitation to Phantom Routing protocols is in the walking phase. Pure random
walks tend to stay close to the source node and the definition of a larger value of
h does not provide a direct improvement in the safety period, it only increases
the energy waste. This problem is represented in Fig. 3, where phantom sources
are within a distance of two or three hops regardless of the definition of a 5-step
random walk.

Xi et al. [49] state that using pure random walks is desirable because routing
decisions are independent from the source location but also impractical since the
average delivery time of messages goes to infinity. The idea behind GROW is
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using two random walks as the probability of them not intersecting decreases
exponentially in time. First, it creates a permanent path of receptors by trans-
mitting a special packet on a random walk from the base station. Then, the
source nodes send data packets on a greedy random walk that will eventually
hit a node from the path of receptors. From there, the packet is forwarded to
the base station following the established path in reverse order. This process is
illustrated in Fig. 4. Despite being designed as a greedy algorithm, one of the
main limitations of GROW is the substantial delivery time of the packets.

Cross-layer routing [42] was designed to further mitigate the problem of ran-
dom walks staying close to the data source. This approach is basically a Phantom
Routing that hides the walking phase by routing data using the beacon frames
from the data link layer. Since beacons are transmitted regardless of the occur-
rence of events, the attacker is unable to distinguish legitimate beacons from
those containing event data. At the end of the walking phase, event data reaches
a pivot node that sends the data to the base station using the implemented
routing protocol. The operation of the protocol is depicted in Fig. 5a, where the
dotted arrows represent the beacon frames, solid arrows represent the routing
phase, and the black and grey circles represent the source and the pivot node,
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respectively. The main limitation to this approach lies in the tradeoff between
the level of protection it can provide and the delay introduced by large beacon-
ing areas1. Therefore, the larger the beaconing area is the better the protection
but also the longer the delay.

An attacker may be able to reach the edge of the beaconing area and, from
there, reach the data source if the network administrator turns to small values
for h to boost the delivery time. A double cross-layer solution is proposed to
further enhance location privacy in these circumstances. In this version of the
protocol, instead of sending the data directly to the base station, the pivot node
sends the data to another randomly chosen node using the routing layer. Then,
this random node chooses a new pivot node and starts a second beaconing phase.
Thus, the attacker cannot easily reach the edge of the beacon area to which the
original data source belongs. The dual cross-layer approach is represented in
Fig. 5b.

Based on the same idea of hiding the walking phase, Mahmoud and Shen
propose creating a cloud of fake traffic around the data source to hinder traceback
attacks [23]. During the network setup, sensor nodes choose a group of nodes
at different distances to later become fake source nodes, similar to phantom
sources or pivot nodes. Also, each node divides its immediate neighbours in
several groups in such a way that the neighbours from the same group are in
different directions. During the data transmission phase, for each message, the
source node chooses one of its fake sources and sends the message to the group
where there is a member which knows how to reach it. As the packet travels
to the fake source, it generates fake traffic to cover the route. A node from
the addressed group that does not know where the fake source is, generates a
fake message and picks one of its groups at random to broadcast it. The fake
message lasts for h hops, generating clouds with dynamic shapes. Compared to

1 Beacon frames are sent out at intervals ranging from milliseconds to hundreds of
seconds.
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the previous scheme, this solution consumes substantially more energy but it
reduces the delivery time.

Directed Random Paths. Instead of simply sending packets at random,
some authors have proposed using mechanisms to guide the walking phase. The
first solution to have considered this is Phantom Routing itself [32]. The authors
suggest changing the pure random walk in favour of a directed random walk.
To that end, each node separates its neighbours into two groups depending on
whether they are in the same direction or in the opposite direction to the base
station. Thus, during the walking phase, the next hop in the path is still selected
uniformly at random but only from the set of nodes in the direction of the base
station. By introducing this simple mechanism they prevent packets from looping
in the vicinity of the source thereby increasing the level of protection.

Yao and Wen devised the Directed Random Walk (DROW) in [53]. The idea
behind this solution is quite simple, any sensor node having a data packet to
transmit must send it to any of its parent nodes (i.e., a node closer to the
sink) with equal probability. Therefore, the level of protection is highly depen-
dent on the connectivity of the network. In 2010, Yao alone published another
paper describing the Directed Greedy Random Walk (DGRW) [52], which is ba-
sically a copy of DROW with a different name. Also, the Forward Random Walk
(FRW) [8] does exactly the same thing. However, the Chen and Lou argue that
this solution cannot obtain a high level of protection and it would be necessary
to inject dummy messages in the network to reduce the chances of the adversary.

Interestingly, Wei-Ping et al. [48] observed that long random walks do not
necessarily increase the protection unless the phantom sources are not placed
close to the straight line between the data source and the sink. The reason is that
if phantom sources are close to this line too often, the single paths originated
by them will be very similar to each other and thus the attacker has more
opportunity to overhear packets. This problem is depicted in Fig. 6a, where the
curly lines represent directed random walks from the source node to the phantom
sources and the dashed lines represent the single-path routing phase. To prevent
this situation, in Phantom Routing with Locational Angle (PRLA) a sensor node
assigns its neighbours forwarding probabilities based on their inclination angles
in such a way that neighbours with larger angles will be more likely to receive
messages. A major downside to this work is that it is not fully clear how the nodes
obtain the inclination angles2 of their neighbours without built-in geolocation
devices or directional antennas.

Wang et al. [46] devised a solution, called the Weighted Random Stride
(WRS), which is similar to PRLA in the sense that both of them make routing
decisions probabilistically based on the inclination angle of its neighbours. Data
paths are guided by two parameters, a forwarding angle and a stride. The for-
warding angle determines the next neighbour in the path while the stride defines
the number of hops for a particular forwarding angle. The node receiving a ex-
pired stride selects a new forwarding angle and starts a new stride. In practice,

2 The authors claim that the inclination angle is calculated in terms of the hop count.



256 R. Rios, J. Lopez, and J. Cuellar

β
α BS

h hops

(a) Problematic selection of phantom
sources

Sector 1

Sector 6

α

Sector2

Sector3

Sector 4

Sector 5

(b) Sector-based neighbour selec-
tion in WRS

Fig. 6. Angle-based privacy solutions

sensor nodes divide their neighbours into closer and further nodes and these
into sectors. Sectors with larger inclination angles are prioritised. For example,
in Fig. 6b, sectors 1 and 6 are more likely to be chosen than sectors 2 and 5, and
sectors 3 and 4 are the least likely. The main difference between this approach
and PRLA is that in WRS there are no phantom sources from where the packets
are finally routed to the base station using a single-path approach.

Besides the WRS routing, Wang et al. [46] designed the Random Parallel
routing, which assigns each sensor node n parallel routing paths to the base
station. Messages are evenly distributed to different paths in such a way that
the adversary traceback time is the same at any path. The underlying idea is
that once the adversary chooses one of the paths he is forced to stay on that
path. This increases the traceback time, which is now equivalent to the sum of
all the parallel paths, without delaying message delivery. In a real-world setting,
the generation of n truly parallel paths is a complex task, especially in large-
scale sensor network deployments. Moreover, since the paths are parallel to each
other, retrieving several packets from any of the paths provides a good idea of the
direction to the source. This would significantly reduce the expected traceback
time for the adversary.

Li et al. [19] proposed Routing through a Random selected Intermediate Node
(RRIN) to the problem of selecting phantom sources close to the data source. The
authors assume that the network is divided into a grid and that each node knows
its relative location (i.e., cell position) as well as the grid dimensions. In this
way, the source node can pick a random point in the field and send the packet to
that location. The node closest to that location becomes the intermediate node.
They devised two versions of RRIN. In the first version, the intermediate point
is chosen uniformly at random but it is forced to be placed at least at a distance
dmin from the source as shown in Fig. 7a. The main drawback to this scheme is
that the probability of being selected as an intermediate node is proportional to
the distance to the data source. Additionally, no mechanism prevents them from
being picked from the proximities of the source-destination shortest path, which
was one of the problems addressed by PRLA and WRS. In the second version
of RRIN, any location in the network has the same probability of being selected
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as the random intermediate point. The consequence is that some intermediate
nodes will be very close to the data source thus exposing its location while some
others will be extremely far resulting in energy-intensive paths.

The RRIN scheme has been extended and used in several other papers. The
Sink Toroidal Routing (STaR) routing protocol [22] is also designed to improve
upon the initial RRIN designs. More precisely, the goal is to reduce the energy
cost associated with the selection of pure random intermediate nodes in the
field. To that end, the source node picks random points within a toroidal region
around the base station, which guarantees that intermediate nodes are, at most,
a given distance from the destination but also not too close in order to prevent
traceback attacks. The main drawback to this solution again has to do with the
selection of problematic intermediate nodes not only between the source and the
base station but also behind it.

In [20], Li et al. propose two schemes that use multiple random intermedi-
ate nodes instead of a single one. In the angle-based multi-intermediate node
selection, the source node selects a maximum angle β to limit the location of
the last intermediate node within the range (−β, β). Once the maximum angle
has been determined, the source node uniformly chooses a random angle θ be-
tween itself and the node with respect to the base station, such that θ ∈ (−β, β).
Then, the data source selects the rest of the n intermediate nodes to be evenly
separated between itself and the final intermediate node. In the quadrant-based
multi-intermediate node selection, each sensor node divides the network into
four quadrants in such a way that it is placed in the first quadrant and the base
station is in the middle. The source node location is determined within the first
quadrant based on a random angle α. The last intermediate node is selected to
be somewhere within its adjacent quadrants, namely quadrant 2 and 4 as shown
in Fig. 7b. Both extensions ensure that nodes are neither selected from behind
the base station nor close to the shortest-path between the data source and the
destination. However, it is not fully clear why it is necessary to use multiple
intermediate nodes instead of a single intermediary.
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Finally, Rios and Lopez [40] realised that the message delivery delay and
energy consumption incurred by existing solutions could be significantly reduced.
The Context-Aware Location Privacy (CALP) scheme takes advantage of the
ability of sensor nodes to perceive the presence of a mobile adversary in their
vicinity in order to dynamically modify the routing paths. The routing process
operates as usual but upon the detection of an adversary in the vicinity of a node
the CALP mechanism is triggered. The detecting node informs its neighbours
about the presence of the adversary and they modify their routing tables to
circumvent the area controlled by him. Two strategies are devised depending on
the way forwarding decisions are made. The strict version blocks the transmission
of packets if the adversary is too close, thus avoiding the capture of packets but
it might cause large delays. The second version is more permissive as it only
penalises the transmission of packets within an area close to the adversary but
it reduces the delay.

Network Loop Methods. A completely different approach to deceive local
adversaries consists of the creation of network loops. A network loop is basically
a sequence of nodes that transmit messages in a cycle in order to keep the
adversary away from the real direction towards the data source.

The Cyclic Entrapment Method (CEM) [30] sets traps in the form of decoy
messages to distract the adversary from the true path to the data source for as
long as possible. After the deployment of the network, each sensor node decides
whether it will generate a network loop with a given probability. Then, the node
selects two neighbouring nodes and sends a loop-creation message that travels h
hops from the first to the other neighbour. All the nodes receiving this message
become loop members. During the normal operation of the network, a loop
remains active as long as a loop member receives a real packet. Interestingly,
when CEM is used in conjunction with single-path routing (see Fig. 8a), real
traffic reaches the base station in the shortest time possible without incurring
extra delays. During a traceback attack, when reaching a fork in the path the
adversary must decide which packet to follow. If he picks the fake message he is
trapped in the loop for h hops. However, an skilled adversary might avoid loops
since packets with a larger inclination angle are more likely to lead to a loop.

In the information Hiding in Distributed Environments (iHIDE) scheme [18]
the sensor network consists of a set of ring nodes which are inter-connected
with each other and with the base station by means of a network bus. This
arrangement is similar to the one depicted in Fig. 8a but in iHIDE all sensor
nodes are either bus or ring nodes. During the data transmission period, a source
node that wishes to communicate data to the sink first sends the data to the next
ring member in a (counter-)clockwise direction3. When the bus node receives
the packet, it forwards it to the next bus node closer to the sink but the packet
continues to loop in the same ring for a random number of hops. As the packet
travels through the bus, each bus node decides, based on a given probability, to

3 In the case that the sensor node belongs to multiple rings simultaneously it randomly
selects one of them to forward the message.
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forward the packet into its own ring or to directly submit it to the next bus node.
The main limitation to iHIDE is that the adversary can wait until he observes
that a bus node just forwards a message to the next bus node. This implies that
somewhere in a previous ring there is a data source.

The Network Mixing Ring (NMR) scheme [21] creates a virtual ring of nodes
surrounding the base station whose aim is to mix up real messages with fake
traffic in order to mislead the adversary. This scheme consists of two phases.
In the first phase, the source nodes picks an intermediate node using the RRIN
approach (see Section 4.1). In the second phase, the intermediate sends the
packet to the network mixing ring. Once there, the packet is relayed clockwise
for a random number of hops before being finally submitted to the base station.
Within the mixing ring there are a few nodes that generate vehicle messages,
which are re-encrypted at every hop. These messages carry several bogus data
units, which are replaced as real messages enter the ring. The whole process is
depicted in Fig. 8b, where the grey cells represent the area defining the network
mixing ring. A major limitation to this scheme is that ring nodes are likely to
deplete their batteries soon, thus isolating the sink from the rest of the network.

To diminish the energy imbalance between ordinary sensor nodes and ring
nodes, the authors propose predefining several rings and activating only one at a
time according to the residual energy of their members. Additionally, they briefly
discuss the possibility of having several active rings simultaneously to improve
the level of protection of the data sources. This idea have been continued by
Yao et al. [54]. Whenever a sensor nodes has something to transmit it picks two
random rings (one closer and one farther), and an angle α between zero and π.
Then, it sends out the packet to the farther ring and once there it is relayed
counterclockwise until the angle is reached. From this point, the packet is sent
to the closer ring and once more travels counterclockwise for an angle β = π−α.
Finally, the packet is routed directly to the base station. During this process,
fake packets are injected by the nodes on contiguous rings to further complicate
traffic analysis. Clearly, these ring-based solutions require the network to be
densely populated in order to enable the creation of full rings.
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Fake Data Sources. The idea of using fake data sources was first suggested
by Ozturk et al. [32]. They proposed two strategies, namely Short-lived and Per-
sistent Fake Source, to simulate the presence of real events in the field by making
some sensor nodes to behave as true data sources. In the first strategy, whenever
a sensor node receives a real message it decides, based on a particular proba-
bility distribution, whether to generate a fake message and flood the network
with it. This scheme provides a poor privacy protection since fake data sources
are ephemeral. The second strategy aims to prevent this by creating persistent
sources of fake messages. Each sensor node decides with a probability to become
a fake data source. The efficiency of this strategy is very much dependent on the
positioning of the fake data source. If fake data sources are far from a real data
source it helps, otherwise it may lead the adversary to the real data source.

Chen and Lou [8] designed several solutions to protect location privacy based
on the use of fake messages, namely the Bidirectional Tree (BT) scheme, the
Dynamic Bidirectional Tree (DBT) scheme, and the Zigzag Bidirectional Tree
(ZBT) scheme. These solutions are intended to protect both source- and receiver-
location privacy simultaneously but we cover them here in full detail to avoid the
duplication of contents across different sections. In the BT scheme, real messages
travel along the shortest path from the source to the sink and several branches of
fake messages flow into and out of the path. To that end, before the transmission
of data messages, the source node sends a packet containing its own hop count
Hs along the shortest path. Those nodes in the path whose distance to the sink is
greater than (1−p)Hs, being p a network-wide parameter, will generate an input
branch4 with a given probability. Similarly, the nodes satisfying pHs will choose
whether to generate an output branch. This solution is depicted in Fig. 9a, where
dashed arrows represent (input or output) fake branches. The idea behind the
creation of fake branches is to misdirect the adversary from the real path but
is not difficult for a skilled adversary to realise that nodes deviating from the
already travelled path are fake branches.

To prevent the adversary from easily obtaining directional information, the
DBT scheme suggests that when a node receives a real message it must decide the

4 The authors do not specify how sources of fake input data are selected.
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next hop uniformly at random its neighbours closer to the base station. Similar
to the BT scheme, fake branches are created but in this case, input branches are
generated with a given probability when the hop count is smaller than Hs/2, and
output branches otherwise. In the ZBT real packets zigzag along three segments:
from the source node to a source proxy, from there to a sink proxy, and finally
to the real sink. During the data transmission phase, each node in the path
generates fake branches with a given probability. In the segment from the source
node to the source proxy, the fake packets flow into the path, and in the segment
from the sink proxy to the sink, the packets flow out. No branches are generated
in the segment connecting the source and sink proxies. The operation of the
ZBT scheme is depicted in Fig. 9b, where grey nodes represent the source and
sink proxy nodes. This scheme presents the same limitation as the original BT
scheme, that is, fake branches can be eventually discarded. Either the attacker
discards a fake branch after tracing it or due to a unusual inclination angle.

Jhumka et al. [14] developed two solutions, namely fake source (FS) 1 and
2, to investigate the effectiveness of using fake data sources. Both solutions are
built on top of a baseline flooding protocol. In FS1, the data source floods the
network with a message containing the event data and a hop count. When this
packet reaches the base station, it generates an away message containing the
distance between itself and the data source, and floods the network with it. The
away message is intended to reach all nodes at the same distance as the source
to the sink and make them transmit a choose message. This new message is
forwarded to nodes further away, which decide to forward it based on a given
probability. When the hop count of the choose message reaches 0, it generates a
random number and, if above a given threshold, the node becomes a fake data
source. The FS2 protocol is very similar to FS1, the difference is that in FS2
all the nodes that receive a message forward it, while in FS1 the forwarding
of messages is determined by a given probability. Consequently, more nodes
are likely to become fake data sources in FS2 and thereby the level of protection
achieved by this scheme is better at the expense of increased energy consumption.

4.2 Global Adversaries

The aforementioned techniques are only effective against adversaries performing
traceback attacks with a limited hearing range. Global adversaries are capable
of monitoring all the traffic generated and forwarded in the network. Such ad-
versaries can easily detect the data sources among mere intermediaries because
sensor nodes are programmed to report event data to the base station as soon
as it is detected.

There are two main approaches to hide the location of data sources from
global adversaries, either using fake packets or introducing significant delays in
the transmissions. Most solutions have concentrated on the injection of bogus
traffic and a huge research effort has been devoted to making these solutions as
energy-efficient as possible.
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Bogus Traffic. The threat of global adversaries was first considered by Mehta
et al. in [24], where they proposed the Periodic Collection scheme. This scheme
hides the presence of events in the field by making every node transmit fake mes-
sages at regular intervals. However, it is not as simple as sending fake messages
at a constant rate because the occurrence of an event message would change
the transmission pattern, as shown in Fig. 10a. This figure depicts a timeline
where the transmissions of real and fake packets are represented by arrows with
white or black heads, respectively. In the Periodic Collection scheme, sensor
nodes transmit messages at a given rate R regardless of the presence of events.
Instead of transmitting a message immediately after the detection of an event,
the message is temporarily stored until the next scheduled transmission time,
as shown in Fig. 10b. Since real and bogus traffic are indistinguishable from
each other, this method provides perfect event source unobservability because
the transmission rate is not altered by the presence of events.

time

F1 F2 F3 F4E

(a) Flawed fake injection mechanism

time

F1 F2 F4E

(b) Perfect event source unobservability

Fig. 10. Periodic Fake Packet Injection

As event messages need to be delayed until the next scheduled transmission
time, this poses a serious limitation in time-critical applications. Intuitively, the
delivery delay can be reduced by changing scheduling in order to have shorter
inter-transmission times. However, this impacts negatively on the energy waste
of the network. Therefore, the transmission rate must be carefully adjusted in
order to ensure the durability of the network without incurring an excessive
delay.

Energy-Aware Approaches. There has been an extensive body of research
which focuses on reducing the overhead imposed by the injection of fake messages
at regular intervals. These proposed solutions have approached the problem in
different ways: simulating the presence of events in the field, filtering out fake
traffic, using already existing traffic to convey event data, and sending messages
according to a given probability distribution.

The Source Simulation scheme [24] is based on the idea of saving energy by
reducing the number of nodes transmitting fake messages. Instead of making all
nodes send out messages at regular intervals, the network simulates the presence
of real events in the field. During network deployment, a set of L nodes are
preloaded, each with a different token. These nodes generate fake traffic during
the data transmission phase and after a predefined period of time, the token
is passed to one of its neighbours (possibly itself) depending on the behaviour
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of real objects. The size of L determines the level of protection as well as the
energy consumed by the network. The main problem with this approach lies in
the difficulty of accurately modelling the movement of an object so it appears
as real to the adversary.

The Unobservable Handoff Trajectory (UHT) [29] is another solution that
simulates the presence of objets in the field. The UHT is a decentralised and
self-adaptive scheme that generates fake mobile events with the same proba-
bility distribution as real events. Real events follow a Poisson distribution and
fake events are generated in such a way that the overall distribution is not af-
fected. The generation of dummy events starts at the perimeter of the network
and propagates for a number of hops according to the length of real events (see
Fig. 11a). Each perimeter node decides to generate a new dummy event indepen-
dently based on the number of perimeter nodes and the number of real events
they observe over a time window. After being created, fake messages must be
propagated. This process is based on the fact that all the neighbours of a fake
node receive the fake packets sent towards the base station. This packet contains
who will be the next fake source in the path and also the length of the current
event. The propagation is represented in Fig. 11b, where fake sources are shaded
in grey and real sources in black while fake and real messages are represented
with dashed and ordinary arrows, respectively.

Besides the cross-layer scheme described in Section 4.1, Shao et al. [42] pro-
posed another version of the same solution that can protect against global ad-
versaries. This alternative protocol is very similar to the Periodic Collection
proposed by Mehta et al. but the main difference is that instead of using ordi-
nary network traffic it takes advantage of the beaconing phase. This scheme also
provides perfect event source unobservability at no additional cost since event
data is hidden within beacon frames, which are periodically broadcast regardless
of the occurrence or not, of events in the field. However, since the time between
consecutive beacons is relatively large, the solution is only practical for some
applications where no tight time restrictions exist.
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Fig. 12. Statistically strong source unobservability

In order to reduce network traffic while maintaining source unobservability,
Yang et al. [50] proposed a bogus traffic filtering scheme. In this solution, any
node sends real or fake messages at a given rate and some nodes operate a
filtering proxies. Proxy nodes discard bogus traffic and temporarily buffer and
re-encrypt real traffic before forwarding it. If there are no real messages available,
a proxy node sends encrypted dummy messages. In the Proxy-based Filtering
Scheme (PFS) selects a number of proxies and traffic is filtered by only them.
In the Tree-based Filtering Scheme (TFS) packets can be processed by several
proxy nodes as the move towards the base station, thus reducing fake traffic at
the expense of increased network delay. A drawback to this solution is that an
attacker can still use rate monitoring techniques to identify the proxy nodes,
which are important for the operation of the network.

Another branch of research has concentrated on the concept of statistically
strong source unobservability. This concept was introduced by Shao et al. [43]
to relax the tight requirements of perfect event source unobservability while
maintaining a statistical assurance on the protection of data source. Before de-
ployment, sensor nodes are configured to transmit according to a message distri-
bution Fi, as depicted in Fig. 12. During the data transmission phase, when an
event E occurs, the real message can be transmitted before the next scheduled
transmission, F4, without altering the parameters (e.g., the mean and variance)
of the distribution. This process is depicted in Fig. 12b. Sensor nodes keep a
sliding window of previous inter-message delays {δ1, δ2, ..., δn−1} and, upon the
occurrence of an event, δn is set to a value very close to 0 and gradually in-
cremented by a small random number until the whole sliding window passes
a goodness of fit test. Thus, the real event transmission can be sent ahead of
the scheduled time without alerting the adversary even if he performs statistical
tests on inter-message delays. The solution includes a mean recovery mechanism
which delays subsequent transmissions because the presence of bursts of real
messages might skew the mean of the distribution.

Recently, Alomair et al. [2] showed that a global adversary has more efficient
ways of breaking statistically strong unobservability. Instead of focusing on the
inter-message delays of a single sliding window, the attacker might try to spot
differences between any two sliding windows (i.e., intervals) in order to detect
the presence of real events. The strategy of the adversary is to identify short
inter-message delays followed by long inter-message delays. These patterns are
common in intervals containing real events because the delay of real messages
is usually shorter than the mean in order to reduce the latency, and subsequent
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messages are delayed in order to adjust the mean of the distribution, as pro-
posed in [43]. To the contrary, inter-message delays are independent identically
distributed random variables in fake intervals. Consequently, by counting the
number of short-long inter-message delays an attacker might be able to distin-
guish intervals containing real events. The solution proposed by Alomair et al.
is to make fake intervals resemble intervals with real events by introducing some
statistical interdependence between fake inter-message delays.

Proano and Lazos [36] pointed out that since a global vision is obtained by
means of an adversarial network, the attacker cannot exactly determine the
transmission rate of each and every sensor node. As a result, not all sensor
nodes need to be active sources of fake traffic to deceive the adversary. They
suggest reducing the number of fake data sources by partitioning the network
into a minimum connected dominating set (MCDS) rooted at the base station.
In a MCDS each node either belongs to the MCDS or is one hop away from it, as
depicted in Fig. 13. In this way, the nodes in the MCDS transmit (real or fake)
traffic at a given rate and the rest of the nodes regulate their transmissions in
order to conform to the statistical traffic properties observed by an eavesdrop-
per. Later, in [37], the same authors added a deterministic assignment scheme
for coordinating sensor transmissions and thus reduce end-to-end delay for real
packets. Nodes deeper in the MCDS are scheduled to transmit sooner, so that
any real packet reaches the sink at the end of each interval. For example, in
Fig. 13b, each time interval is divided into four subintervals since the maximum
depth of the MCDS is four. Sensor node s0 transmits at the first subinterval,
node s1 at the next subinterval, and so on.

Previous solutions have countered a passive global attacker. Yang et al. [51]
consider a global attacker who, upon detecting suspicious cells devises an op-
timal route to visit these spots. Tthey propose two potential strategies to find
a (pseudo-)optimal route to visit all suspicious cells. The first strategy is based
on a greedy algorithm, which ends in polynomial time but is not globally op-
timal, and the second one is a dynamic programming algorithm, which finds
the optimal solution but requires an exponential time to finish. Subsequently,
the authors evaluate the impact of the proposed attacker model to two exist-
ing solutions: statistically strong source unobservability and source simulation.
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They conclude that the former behaves well when the rate of real messages to
be delivered is low while the latter approach is suitable when the rate is high.
As a result, Yang et al. propose a dynamic approach that combines the merits
of both solutions by switching from the one to the other based on the load of
the network.

4.3 Internal Adversaries

Some adversaries might be able to compromise and control a subset of nodes from
the legitimate network. These nodes become internal adversaries since they can
participate in the same tasks performed by any other network node and provide
the attacker with any information contained in the packets they forward. The
solutions devised to deal with these types of attackers are very limited and their
approaches rather diverse.

The Identity, Route and Location privacy (IRL) algorithm [41] is as a network-
level privacy solution. The primary goal of this solution is to provide source
anonymity and location privacy as well as provide assurance that packets reach
their destination. Although the authors do not consider the threat of internal
adversaries, one of its features is suitable for just this purpose. The authors
introduce the notion of trust and reputation to prevent routing through mis-
behaving adversaries. First, each node classifies its neighbours into four groups
depending on their position with respect to the base station. Additionally, each
node classifies its neighbours as either trustworthy or untrustworthy. When a
node wants to transmit, it selects random trustworthy nodes which are closer
to the base station. If no trustworthy nodes are found it tries with nodes at the
same distance or in the opposite direction. In the case no trustworthy nodes are
found, the node simply drops the packet. Therefore, each message follows a ran-
dom path composed of trustworthy nodes only. Additionally, dishonest en-route
nodes are unable to determine whether the sender is the real data source or
a mere intermediary since nodes replace the identifier of received packets with
their own at every hop.

Pongaliur and Xiao [35] propose to modify packets headers at dynamically
selected nodes in the route to the base station to protect the identity of the
data source from internal adversaries. When a node creates a packet it includes
a pseudonym instead of its real identifier. This pseudonym is a value from a
hash chain used in reverse order obtained from the real identifier of the node.
The packets also include a random value that is used by intermediate nodes to
determine whether to replace the identifier carried in the packet by their own
pseudonym5. Additionally, a rehashing node concatenates the replaced identifier
to the payload and encrypts it with its own shared with the base station. An
extra field is used for verifying the validity of the modifications. To that end,
the base station needs to keep track of the hash chains of all the nodes in order
to find the key corresponding to each of concatenated the hash values. Another

5 A hash function is applied to the random value and the result is used as input to a
mapping function which returns 0 or 1 with a given probability.
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limitation to this approach is that an internal adversary can estimate its distance
to the data source based on the rehashing probability and the size of the payload.

The last solution is called pDCS [44] and its aim is to provide security and
privacy in Data-Centric Sensor (DCS) networks, where the data collected by
sensing nodes is forwarded and kept at storage node until the base station queries
for them. Sensing nodes know where to send the data by means of a a publicly
known mapping function. Since this function is public an attacker can easily
determine which nodes to compromise to obtain a particular type of data. After
compromising such nodes, he can also identify the location where the data was
originally collected. pDCS is intended to protect against this type of threat. The
scheme is based on the use of a secure mapping function6 and the storage of
encrypted data in a remote location. In the case the adversary compromises a
storage node he is not able to decrypt the data contained in it because these
data are encrypted with the key of the sensing nodes which collected them. If a
sensing node is compromised, the attacker cannot determine where previous data
was stored because the secure mapping function prevents this from happening.
Moreover, when a node is found to be compromised there is a node revocation
mechanism in order to prevent the attacker from obtaining the location of future
event data. Finally, the authors suggest protecting the flow of data from the
sensing to the storage node by means of any existing source-location privacy
solution.

5 Receiver-Location Privacy

Receiver-location privacy refers to the protection of the destination of messages
but it primarily concentrates on hiding the location of the base station. The lo-
cation of the base station is exposed due to the peculiar communication pattern
of WSNs: each sensor node transmits data messages to this single point. Intu-
itively, the solution is to normalise the traffic load by making each sensor node
transmit, on average, the same number of messages but this incurs a prohibitive
network overhead. In the following we analyse proposals dealing with local ad-
versaries followed by solutions considering the threat of global adversaries. To
the best of our knowledge, there are no solutions in the literature that study the
threat of internal adversaries.

5.1 Local Adversaries

A local attacker usually starts at a random position in the network7 and moves
around until he overhears some transmissions in the area surrounding him. The
typical types of attacks performed by an adversary who wishes to find the sink
are: content analysis, time correlation, and rate monitoring. Content analysis
tries to obtain information from the packet headers or payload. Additionally, an

6 A secure mapping function is basically a keyed hash function that uses as input the
type of event and other secret information shared by a group of nodes.

7 Starting at the edge of the network is, in our opinion, more realistic.
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attacker can observe the packet sending times of neighbouring nodes in order to
determine the direction to the base station.Finally, in a rate monitoring attack,
the strategy of the adversary is to move in the direction of those nodes with
higher transmission rates since nodes in the vicinity of the base station receive
more packets than remote nodes.

Next we analyse some basic countermeasures against the aforementioned at-
tacks followed by a set of more advanced solutions. Most of these solutions aim
to balance the amount of traffic between all network nodes by selecting the next
hop based on some probability while other solutions attempt to disguise or emu-
late the presence of the base station at different locations. Again, some solutions
may fall into several categories depending on the features analysed.

Basic Countermeasures. Some basic countermeasures have been proposed
in [12] to prevent the aforementioned attacks. First, content analysis can be
hindered by applying secure data encryption on a hop-by-hop basis. This process
should be applied throughout the whole lifetime of the network but it is not
easy to satisfy this requirement until each node shares pairwise keys with all its
neighbours. Thus, they propose an ID confusion technique to conceal the source
and destination during the route discovery phase. This technique is based on
reversible hash functions so that when a node x sends a message to node y, it
randomly selects an element from Cx = {hx : x = H(x)} as the source address,
and an element from Cy = {hy : y = H(y)} as the destination address. Finally,
it encrypts the whole packet with a network-wide shared key pre-loaded on all
sensor nodes. A receiving node decrypts the message and, by reverting the hash
function, it obtains the true sender and intended recipient.

During data transmission, sensor nodes must ensure that packets change their
appearance as they move towards the base station. Each node in the path must
decrypt any received packet and then re-encrypt it with the key shared with
the next node in the route. However, even if the attacker cannot observe the
contents of the packets, he can learn some information from packet sending
times and eventually infer the relationship between parent and child (i.e., closer
and further) nodes. To prevent this, Deng et al. [11] propose applying random
delays to the transmission of packets. Additionally, the authors suggest creating
a uniform sending rate to prevent rate monitoring attacks. This can be achieved
by making a parent node accept packets from a child node only if its own packet
has been forwarded. In the case the parent node has nothing new to send, it can
simply continue to send the same packet or inject dummy traffic.

There are some limitations to these basic countermeasures that require the
development of further solutions. The following schemes aim to reduce these
limitations.

Biased Random Walks. This category brings together solutions where the
routing process is random but somehow biased towards the base station. The
first solution is also presented by Deng et al. [11] and is called Multi-Parent
Routing (MPR). The MPR consists of making each sensor node pick the next
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element in the path uniformly at random from its set of parent nodes. See in
Fig. 14 a comparison between a single-path routing and a MPR scheme. In
Fig. 14a all transmissions use the same transmission path, which is represented
by a straight arrow, while in Fig. 14b the paths followed by two different packets
are represented. The MPR scheme obtains a better load balance as data packets
spread within a band of nodes next to the shortest path from the data source
to the base station. However, the traffic flow still points to the base station as
the next communication hop is always selected from the list of parent nodes.
To further diversify routing paths, the authors suggest combining MPR with a
random walk (RW) routing scheme. In this version of the protocol, nodes forward
packets to a parent node with probability pr and to a randomly chosen neighbour
with probability 1− pr. Consequently, packets may not only travel towards the
base station but in any other direction. In Fig. 14c we depict two routing paths
which at some points move in the opposite direction to the base station. This
scheme provides better security at the cost of a higher message delivery delay.

Similarly, Jian et al. [15] propose to make every sensor node divide its neigh-
bours two groups. The first group contains nodes which are closer to the base
station and the second group contains the rest of their neighbours. So, nodes
forward packets to further nodes with probability Pf < 1/2 and to closer nodes
with probability 1−Pf . This implies that the transmission is biased and the at-
tacker is able to infer the direction to the data sink. To prevent this, the authors
inject fake packets in the opposite direction to the base station with probability
Pfake after receiving a real packet. This packet travels for several hops away
from the base station. In general, the adversary cannot distinguish real from
fake traffic which makes this solution secure since packets flow in any direction
with an even probability. However, if the adversary observes a node that does
not forward a packet he knows that it is a fake packet. As fake packets are sent
to further neighbours exclusively, the adversary learns that the base station is
in the opposite direction.

Rios et al. [39] devised an new strategy that solves the previous problem.
They suggest to send a pair of messages (real and fake) for every transmission in
such a way that real traffic is more likely to be sent towards the base station and
fake traffic is used to compensate the message rate for every neighbour. When
fake traffic is received by a node, it continues sending two messages, both of
which are fake, for a number of hops that depends on the hearing range of the
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adversary. The branches of fake traffic must reach out of the hearing range of the
adversary. Now, if the adversary observes a node that drops a received packet
he knows that this packet is fake but he is unable to determine the direction to
the base station since fake packets are sent in any possible direction.

Fake Traffic Injection. Deng et al. [11] proposed new ways of improving MPR
based on the injection of fake traffic. Fractal Propagation (FP) was designed to
be used in conjunction with MPR and RW. When a sensor node observes that a
neighbouring node is forwarding a data packet to the base station, it generates
a fake packet with probability pc and forwards it to one of its neighbours. The
durability of fake packets is controlled by means of a global time-to-live param-
eter K. Also, if a node observes a fake packet with parameter k (0 < k < K)
it propagates another fake packet with time-to-live parameter k − 1. Fig. 14d
shows the trace resulting from the transmission of a single packet using the three
mechanisms together. The main problem of the FP scheme is that nodes in the
vicinity of the base station generate much more fake traffic than remote nodes.
To address this problem, the authors propose the Differential Fractal Propaga-
tion (DFP), where sensor nodes adjust their probability of generating fake traffic
pc according to the number of packets they forward. Besides reducing the en-
ergy waste, this scheme provides better privacy protection because it balances
the network traffic load more evenly.

Yao et al. propose in [55] a new fake packet injection scheme. Real packets
are sent to the base station using the shortest path and when two paths of
real messages intersect at some point, the node receiving these packets sends
two fake packets to two fake data sinks after a timer expires or a packet counter
reaches a certain threshold. In this way, real and fake data sinks receive a similar
number of packets. Moreover, when a packet reaches subsequent intersection
points, the intersection node sendsNf packets to some random destinations. This
process is depicted in Fig. 15, where dark grey nodes represent intersection nodes,
light grey nodes are fake sinks or some random data destinations. Ordinary
arrows symbolise real data packets while dashed arrows represent fake packets.
In Fig. 15a the first intersection node transmits fake traffic to both fake data
sinks. Meanwhile, the second intersection node introduces fake traffic to other
random destinations as well. The main problem of Yao et al.’s approach is an
attacker starting from a data source and tracing packets can trivially reach the
first intermediate node. From that point, he can distinguish fake paths since
they may imply an abrupt change in the angle of transmission. This problem
has already been discussed for other solutions.

Sink Simulation. Some approaches try to emulate the presence of the base
station at different points in the field. Simulation techniques are based on the
generation of fake traffic but, instead of being transmitted in random directions,
it is addressed to particular network locations. This results in a concentration
of high volumes of fake traffic, called hotspots, the objective of which is to draw
the adversary away from the true data sink. The main challenge is to create
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Fig. 15. Yao et al. Fake Packet Injection Scheme

hotspots that are evenly distributed throughout the network with a minimum
overhead.

Maelstrom [5] is one of such solutions that generates a number of fake data
sinks. After deployment, the base station sends N special configuration packets,
each of which is configured to travel Hs hops away from the base station. After
that, each of these packets travel Hr random hops to any node on the same
level or further away. The final recipients of these packets become the centre of a
maelstrom area and announce this by sending a discovery packet to nearby nodes.
During data transmission, when a node receives a real packet it generates, with
a probability, a fake message and forwards it to its closest maelstrom. However,
once an intelligent attacker reaches a maelstrom area he can discard it as the
true data sink.

A similar approach is proposed by Biswas et al. [3]. The idea is to evenly dis-
tribute multiple fake data sinks with the largest number of neighbours, since this
implies more incoming traffic. During data transmission, each node is configured
to transmit a fixed number of messages either real or fake so that after a given
time period all nodes have sent the same amount of traffic. Fake traffic is directed
to fake data sink by its neighbours except for nodes which are not immediate
neighbours, where the selection of a fake destination is done in a round-robin
fashion. The result should be that fake base stations receive at least the same
amount of traffic as the actual base station. This approach may deal with naive
rate monitoring adversaries but it can be defeated by informed adversaries.

Finally, Deng et al. [11] refined their fractal propagation solutions and created
a new scheme called Differential Enforced Fractal Propagation (DEFP) that is
capable of creating hotspots in a decentralised and dynamic way. Sensor nodes
keep track of the number of fake packets forwarded to each neighbour and new
fake traffic is more likely to be sent to neighbours who have previously received
more fake traffic, as shown in Fig. 16. In this way there is no need for a central
authority or a complex coordination system to establish where the hotspots
should be placed. Another interesting feature of this solution is that the hotspots
can be deactivated by simply resetting the forwarding probabilities of each node.
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Fig. 16. Decentralised Hotspot Generation in DEFP

After that, new hotspot locations are likely to appear, which prevents smart
attackers from discarding fake data sinks (i.e., hotspots) until they find the real
base station.

5.2 Global Adversaries

The aforementioned techniques are considered to be effective only in a local
adversarial model but some of them may also provide some means of protection
against global adversaries. As a matter of fact, they can be useful if the global
adversary has no real-time analysing capabilities.

Again, the injection of fake traffic is one of the main approaches for protecting
from global adversaries. Making the base station mimic the behaviour of sensor
nodes, simulating the presence of several data sinks, and moving the base station
to a different location might also be useful solutions.

Bogus Traffic. As mentioned in Section 5, flooding the network with messages
is a simple yet efficient mechanism to protect the location of the base station.
The main drawback to flooding is the high communication cost associated with
the retransmission of the same message to every corner of the network. Back-
bone flooding [25] reduces the communication cost by limiting the transmissions
within a backbone area. The backbone area consists of a sufficient number of
adjacent nodes to achieve a desired level of privacy. Any data packet generated
in the network is addressed to the backbone, where it spreads to all its members.
Since data sinks must be located at least within the range of a backbone member,
they overhear all messages. A major limitation to this approach is that the back-
bone is static. The authors suggest to alleviated this problem by (a) periodically
rebuilding the backbone or (b) defining several backbones from the beginning.
Fig. 17 illustrates the transmission of a data packet and its propagation within
the backbone area.

The scheme called Concealing Sink Location (CSL) [56] follows a different
strategy. The idea is to make each sensor node transmit at the same rate re-
gardless of its distance to the base station. This rate is calculated for nodes at
distance i from the sink by counting the number of nodes at distance greater
than i and dividing it by the number of nodes at distance i. This ratio represents
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(a) Data packet reaches the backbone

BS

(b) Flooding within the backbone

Fig. 17. Backbone Flooding

that each node must send its own traffic and forward the traffic from nodes fur-
ther away. The number of nodes at a given distance i is estimated via geometric
analysis considering the size of the deployment area and a uniform distribution of
the nodes in the field. However, these estimations may differ significantly from
the reality. Also, it is important to note that the authors assume that sensor
nodes have a similar transmission rate for real messages but this might not be
the case in the presence of bursts of messages.

A similar approach is followed in [57], where the transmission rate of nodes is
calculated based on the number of child nodes an immediate neighbour of the
sink has. The idea is to make all sensor nodes transmit as many messages as
a sink neighbour has to since they are the busiest nodes. When a sensor node
receives a fake packet it simply drops it, while if the packet is real, it buffers
it temporarily. In the meantime the sensor node generates fake traffic to satisfy
the overall transmission rate. The authors claim that by generating that much
traffic the lifetime of the network is not reduced. The argument is that all nodes
in the network will deplete their batteries at the same time and not only the sink
neighbours. However, they have not considered that in this way the transceivers
of the nodes are active most of the time and they need to decrypt much more
messages. Also, they have not considered collisions and packet retransmissions.

Sink Simulation. Sink simulation has also been suggested as a mechanism to
protect from global adversaries. Mehta et al. [25] propose simulating the presence
of several data sinks in the field. During the deployment k of sensor nodes are
picked as fake data sinks and the true data sinks are manually placed within the
communication range of some of these. The number of fake sinks must outnumber
the number of true sinks. When a source node detects event data, it send them to
all the fake data sinks, which on reception broadcast the message locally. This
process is illustrated in Fig. 18a, where the data source S sends messages to
F1, . . . , F2 and each of them broadcast the message locally. Since all fake sinks
receive the same amount of traffic, they are all equally likely to be next to a true
data sink. The larger the value of k the better the protection but the higher the
volume of traffic in the network.
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(b) Network partition and tree formation

Fig. 18. Examples of Sink Simulation Approaches

The solution in [4] is also based on the concept of k-anonymity. The idea is to
have at least k nodes with a communication pattern similar to the nodes around
the base station. To that end, the network is partitioned into k Voronoi regions,
each of which contains a node that collects all the information sensed in that re-
gion. These nodes pi are organised as an Euclidean minimum-spanning tree and
the data they received from their own region is forwarded to all other tree mem-
bers. Fig. 18a shows a Voronoi partition of the network for the designated nodes
pi, in grey. Note that all nodes connecting the designated nodes see all the network
traffic and thus the base station simply needs to be placed close to one of them.
As a result, the uncertainty of the attacker is much greater than in the previous
scheme for the same value of k. However, the nodes forming the tree are highly
likely to deplete their batteries much sooner than the rest of the nodes.

Wang and Hsiang [47] propose another solution that starts by generating
a shortest-path tree rooted at the base station. After that, neighbouring leaf
nodes establish communication links to generate network cycles. During data
transmission, the shortest-path tree is used to transmit data to the base sta-
tion and, simultaneously, fake packets are injected into the cycles. Fake traffic
continues moving along the cycle until it is completed. When several cycles in-
tersect at a node it creates a hotspot since it receives all the bogus traffic from
the cycles. The authors include a mechanism to limit the number of cycles by
allowing leaf nodes to establish links only if their least common ancestor is at
least h hops away from both nodes. In this way, each of the hotspots receive
more traffic. Even though the authors assume a global adversarial model, this
solution does not seem suitable for that purpose. The main problem is that the
true sink behaves differently from the rest of the artificial hotspots. While the
transmission rate of the base station is negligible, fake hotspots must forward
the real data packets coming from its child nodes.

Relocation and Disguise. As far back as 2003, Deng et al. [12] suggested the
reallocation of the base station for enhanced security. They assume that the base
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(a) Safest route in the RIA scheme
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(b) Selective packet retransmission

Fig. 19. Relocation and Disguise Examples

station has complete knowledge of the topology of the network and thus it may
calculate an optimal future location that maximises its security. Actually, they
do not address a global eavesdropper but a compromised node dropping packets.
Therefore, we refer the reader to their paper for further details.

Possibly motivated by the approach just mentioned, Acharya and Younis pro-
pose the Relocation for Increased Anonymity (RIA) scheme [1], where the base
station finds a new location by considering both the impact over network per-
formance and its own level of protection. The base station calculates a score for
each cell based on the node density and the threat level (i.e., transmission rate).
The rationale behind this scoring mechanism is that by moving the base station
to a cell with a low threat , the cells with high activity need to send packets
to remote areas, which increases the delivery time and consumes more energy.
Likewise, if there is a low transmission rate due to a reduced node density, mov-
ing the base station to that cell would cause the few nodes in the cell to become
overwhelmed with traffic. Once the base station knows which is the most suit-
able cell to reside in, it follows the safest route to reach the final destination.
In Fig. 19a we depict the path selected by the base station for relocation based
on the scores of each of its cells, the cells with higher scores are depicted in a
lighter colour.

Mimicking the behaviour of ordinary sensor nodes is another way of hiding
the base station from global adversaries. The Base-station Anonymity increase
through selective packet Re-transmission (BAR) [1] suggests to make the base
station decide whether to forward the packets it receives for several hops. The
length of the walk is dynamically adjusted based on the level of threat perceived
by the base station. If the base station needs to increase its level of protection
it defines longer walks. The general idea is that by doing this, the number of
transmissions in remote cells increase and thus the attacker cannot clearly iden-
tify the actual location of the base station based on the transmission rate of a
cell. An example of this approach is illustrated in Fig. 19b, where source nodes
and destination nodes are represented as grey and white circles, respectively.
The main problem with this approach is that by forwarding packets to random
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remote locations, the base station is also increasing the transmission rate of the
cells in its vicinity. Consequently, the attacker may still spot the base station as
the cell with the highest transmission rate.

Finally, the Decoy Sink Protocol [10] combines indirection and data aggre-
gation to reduce the amount of traffic received by the base station. Instead of
sending the data to the base station directly, sensor nodes are programmed to
transmit their packets to an intermediate node (i.e., the decoy sink) and, on
their way, the data are aggregated. Finally the decoy sink sends the result of the
aggregation to the base station. Although this may prevent the attacker from
determining the location of the true data sink, this scheme exposes the location
of the decoy sink. If the goal of the attacker is to compromise the base station,
he obtains a similar result by compromising the decoy sink. Also, if he destroys
it the protocol stops working. This problem is contemplated by the authors and
they suggest picking several random nodes during the initialisation of the net-
work to operate as decoy sinks. During the transmission period, sensor nodes
send all their readings to a particular decoy sink for a pre-established period of
time. This version of the protocol adds robustness to the network and balances
the traffic load but the attacker is still able to ultimately achieve his original
goal.

6 Challenges and Future Trends

Privacy preservation in WSNs has proven to be an extremely challenging task
and regardless of the number of solutions that have been devised there are several
open questions that need further attention:

– Cost-Effective Solutions. The main approach to location privacy is to
increase the number of transmissions in order to mislead the adversary from
the target in some way. However, sending more packets implies more energy
waste and increased delays. This overhead is normally related to the level of
protection provided by the solutions but sending more packets does not al-
ways increase privacy, as shown by angle-based privacy solutions. Moreover,
many solutions are incapable of completely deceiving the adversary and can
only guarantee a longer safety period until the adversary eventually finds
the target. Consequently, it is necessary to devise and develop new solu-
tions that keep to a reasonable energy budget without sacrificing the level
of protection. Some solutions based on innovative techniques already exist
(e.g., cross-layer routing and context-aware location privacy) but there is
still room for original research in the area.

– Holistic Privacy. Despite the number of solutions existing in the litera-
ture devoted to protecting source- and receiver-location privacy, there is no
single scheme capable of effectively and efficiently providing an integral solu-
tion to both problems simultaneously. While source-location privacy can be
achieved by hiding the transmissions of real packets, receiver-location pri-
vacy demands a homogeneous traffic load in the network. Therefore, a naive
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solution to these problems is to use baseline flooding together with fake data
sources. However, this approach is too energy consuming for ordinary sensor
networks, where the energy budget is rather limited. How to solve this prob-
lem in an energy-efficient way demands further attention from the research
community.

– Interoperability Framework. Another open problem in the literature is
the lack of a unified framework for quantifying location privacy for comparing
different solutions. Currently, different authors resort to different approaches
such as measuring entropy, game theory, evidence theory, numerical analysis,
and simulations. However, it is not trivial to provide a formal model that
accurately represents the behaviour of the system, especially in the context
of a local adversary. Although it is possible to measure the privacy loss in one
step, the information leak accumulates in a way that remains intractable as
the adversary moves in the field. Probably, this is the reason why simulations
is the most common approach to proving the correctness of solutions. But
simulation results are not easily reproducible because either the simulator is
not standardised or the code is not made publicly available, or both. Thus,
defining an interoperability framework is a challenging area of research that
may help to devise new contrasted solutions.

– More Skilled Adversaries. Also in relation with the previous issue, it is
necessary to formally and faithfully define the capabilities and actions that
may be performed by the adversary. The traditional approach is to define an
adversary with a predefined strategy that remains unaltered. An appropriate
model for representing the knowledge of the adversary does not exist. At
most, the adversary knows whether he has visited a specific node before or
not. The adversary does not use or infer new information based on previously
known data or additional sources of information. For example, the adversary
might use the routing tables of the nodes to compromise receiver-location
privacy. In this regard, the adversarial model considered in the literature
is mostly passive and does not interfere with the normal operation of the
network. Particular attention must be paid to adversaries who can inject,
modify, reply, or block messages from a portion of the network given the
hardware limitations of sensor nodes. Also, more research must be conducted
to devise solutions against internal adversaries, which are not only capable
of obtaining contextual information but also payload contents.

– Dynamic Environments and Future Scenarios. All the solutions anal-
ysed here only consider static networks. Once placed, sensor nodes are not
reallocated to another location. However, the Internet of Things opens the
door to new scenarios where everyday objects are fitted with computational
power and limited batteries. This will result in one of the most promising
areas for innovation. In this landscape, mobility is of paramount importance
but it may also imply intermittent network connectivity and the use of un-
trustworthy data relays to reach the base station. Moreover, it is possible
that not only the base station has a connection to the outside world, but the
sensor nodes could also be directly connected to the Internet. Similarly, new
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types of adversaries might appear. Therefore, we believe that the integration
of sensor networks with the Internet will result in a prolific area of study.

Note that this paper has focused on location privacy but there are more meta-
data that may be leaked from the operation of the network. For example, it is
important to hide the moment in time when an event takes place (i.e., temporal
privacy) since it allows an adversary to predict future behaviours of the ele-
ments being monitored by the network. Also, there is also room for innovation
and research in content-oriented privacy, which is primarily aimed to hide pack-
ets contents while enabling data-aggregation. Finally, another related issue that
requires further attention is query privacy, namely, preventing the disclosure of
a query based on the nodes that respond to it.

7 Conclusions

This paper has presented a taxonomy of solutions for location privacy in Wire-
less Sensor Networks. The taxonomy is organised based on the information to
be protected and the capabilities of the adversary that may want to compromise
location privacy. More than 50 papers have been analysed including solutions for
node anonymity, source-location privacy, and receiver-location privacy. In gen-
eral, local adversaries are countered by means of random walk routing solutions,
which are ineffective against global adversaries. Dummy traffic injection is the
typical approach to provide protection against more powerful adversaries but
the overhead imposed by these solutions is overly high. Internal adversaries have
not received sufficient attention yet.

Prior to analysing solutions we have studied whether traditional anonymous
communication systems are suitable for protecting location privacy in WSNs.
This study has first considered which anonymity requirements are desirable for
the sensors’ domain and then we have studied the overhead and limitations
imposed by some renowned anonymous communication systems. From this, we
have shown that some of these solutions are sufficiently lightweight to run in
sensor nodes but either the anonymity requirements or the adversarial model
differ from the ones considered in WSNs. To the contrary, other solutions are
suitable for the location privacy problem but impose a high overhead or limit
the usability of the network.

At the end of this paper we present a number of challenges and open issues
that must be addressed by the research community to facilitate the acceptance
of sensor networks and other foreseeable technologies.
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