
Discovering non-constant Conditional Functional

Dependencies with Built-in Predicates

Antonella Zanzi and Alberto Trombetta

Dipartimento di Scienze Teoriche e Applicate
Università degli Studi dell’Insubria, via Mazzini 5, 21100 Varese, Italy

{antonella.zanzi,alberto.trombetta}@uninsubria.it

Abstract. In the context of the data quality research area, Conditional
Functional Dependencies with built-in predicates (CFDps) have been
recently defined as extensions of Conditional Functional Dependencies
with the addition, in the patterns of their data values, of the compari-
son operators. CFDps can be used to impose constraints on data; they
can also represent relationships among data, and therefore they can be
mined from datasets. In the present work, after having introduced the
distinction between constant and non-constant CFDps, we describe an
algorithm to discover non-constant CFDps from datasets.

Keywords: Functional Dependencies, Data Constraints, Data Quality,
Data Mining.

1 Introduction

Conditional Functional Dependencies with built-in predicates (CFDps) have
been defined in [3] as extensions of Conditional Functional Dependencies (CFDs)
[8] (which have been proposed in the data quality field as extensions of Func-
tional Dependencies – FDs).

FDs and their extensions, capturing data inconsistency, can be used to eval-
uate the quality of a dataset and – to a certain extent – also for data cleaning
purposes. For example, the use of FDs for data cleaning purposes in relational
databases is described in [16], where data dirtiness is equaled to the violation
of FDs, and in [5] CFDs have been proposed as a method for inconsistency
detection and repairing.

This approach is used, for example, in Semandaq [7], a tool using CFDs for
data cleaning purposes. Another tool, called Data Auditor, is presented in [10]
and supports more types of constraints (i.e., CFDs, conditional inclusion depen-
dencies, and conditional sequential dependencies) used to test data inconsistency
and completeness.

In a previous work [19] – along with other types of constraints and dependen-
cies, such as FDs, CFDs, order dependencies and existence constraints – we used
CFDps in the context of data quality evaluation. In particular, we developed a
tool to check a dataset against a set of data quality rules expressed with the
XML markup language.

H. Decker et al. (Eds.): DEXA 2014, Part I, LNCS 8644, pp. 35–49, 2014.
c© Springer International Publishing Switzerland 2014

36 A. Zanzi and A. Trombetta

CFDps can potentially express additional constraints and quality rules that
cannot be expressed by FDs and CFDs and thus be useful in the data quality
field. However, their identification is not often straightforward just looking at
the data. For this reason a tool supporting the discovery of CFDps can be useful
to identify rules to be used in the evaluation of the quality of a dataset.

In the present work, after having distinguished between constant and non-
constant CFDps, we describe an algorithm for discovering non-constant CFDps.

2 CFDp Definition

CFDs specify constant patterns in terms of equality, while CFDps are CFDs
with built-in predicates (�=, <, >, ≤, ≥) in the patterns of their data values. It
is assumed that the domain of an attribute is totally ordered if <, >, ≤ or ≥ is
defined on it.

Syntax. Given a relation schema R and a relation instance r over R, a CFDp

ϕ on R is a pair R(X → Y , Tp), where: (1) X , Y ⊆ R; (2) X → Y is a standard
FD, referred to as the FD embedded in ϕ; (3) Tp is a tableau with attributes in
X and Y , referred to as the pattern tableau of ϕ, where, for each A in X∪Y and
each tuple tpi ∈ Tp, tpi [A] is either an unnamed variable ‘ ’ that draws values
from dom(A) or ‘op a’, where op is one of =, �=, <, >, ≤, ≥, and ‘a’ is a constant
in dom(A). �
Semantics. Considering the CFDp ϕ:R(X → Y , Tp), where Tp = tp1 , . . ., tpk

, a
data tuple t of R is said to match LHS(ϕ), denoted by t[X] 	 Tp[X], if for each
tuple tpi in Tp and each attribute A in X , either (a) tpi [A] is the wildcard ‘ ’
(which matches any value in dom(A)), or (b) t[A] op a if tpi [A] is ‘op a’, where
the operator op (=, �=, <, >, ≤ or ≥) is interpreted by its standard semantics.

Each pattern tuple tpi specifies a condition via tpi [X], and t[X] 	 Tp[X] if
t[X] satisfies the conjunction of all these conditions. Similarly, the notion that t
matches RHS(ϕ) is defined, denoted by t[Y] 	 Tp[Y]. An instance I of R satisfies
the CFDp ϕ, if for each pair of tuples t1, t2 in the instance I, if t1[X] and t2[X]
are equal and in addition they both match the pattern tableau Tp[X], then t1[Y]
and t2[Y] must also be equal to each other and must match the pattern tableau
Tp[Y]. �

2.1 Constant and non-constant CFDps

Extending the definition introduced for CFDs in [9], we distinguish between
constant and variable – or non-constant – CFDps, calling:

– constant, the CFDps having in their pattern tableaux only operators and
constant values (that is, without any unnamed variable ‘ ’);

– non-constant, the CFDps having, for the attributes in its right-hand side, an
unnamed variable ‘ ’ in each pattern tuple of its pattern tableau.

Examples of constant (ϕ1 and ϕ2) and non-constant (ϕ3, ϕ4 and ϕ5) CFD
ps

for the Iris dataset1 are shown in table 1: ϕ1 indicates that when the length

1 From the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml).

Discovering non-constant CFDps 37

Table 1. Examples of constant - and non-constant CFDps for the Iris dataset

ϕ1: iris(petalLength → class, T1)

T1:
petalLength class

< 2 Iris setosa

ϕ2: iris(petalWidth, petalLength → class, T2)

T2:
petalWidth petalLength class

> 1.7 > 4.8 Iris virginica

ϕ3: iris(sepalLength, petalWidth → class, T3)

T3:
sepalLength petalWidth class

< 5.9 – –

ϕ4: iris(sepalLength, petalLength → class, T4)

T4:
sepalLength petalLength class

�= 6.3 �= 4.9 –

ϕ5: iris(petalLength, sepalWidth → class, T5)

T5:
petalLength sepalWidth class

�= 4.8 – –
�= 5.1 – –

of the petal is less than 2 cm then the class of the flower corresponds to Iris
setosa; ϕ2 expresses that when the width of the petal is greater than 1.7 cm
and – at the same time – the length of the petal is greater than 4.8 cm then
the class of the flower corresponds to Iris virginica; ϕ3 expresses that the FD
sepalLength, petalWidth → class holds on the subset of the relation tuples
having the length of the sepal less than 5.9 cm; ϕ4 expresses that the FD
sepalLength, petalLength → class holds if the length of sepal is different from
6.3 cm and the length of the petal is different from 4.9 cm; finally, ϕ5 expresses
that the FD petalLength, sepalWidth → class holds if the length of the petal
is different from 4.8 cm and from 5.1 cm.

3 Discovering CFDps

CFDps can be used to add information on data as exemplified in [3], in which
case, the dependencies cannot be detected from the analysis of the dataset.
However, the CFDps characterizing a dataset can be discovered analyzing the
tuples contained in it.

We propose an algorithm for discovering from a dataset a subset of the existing
CFDps satisfiyng the requirements to be non-constant, to have in their right-
hand side only one attribute2 and to have, in their pattern tableaux, conditions
with operators only for numerical attributes.

2 Without loss of generality because of the Armstrong decomposition rule: if X →
Y Z, then X → Y and X → Z.

38 A. Zanzi and A. Trombetta

More formally, the algorithm looks for CFDps that can be written as R(LHS →
RHS, Tp), where:

– LHS → RHS is the FD embedded in the CFDp;
– RHS contains a single attribute A ∈ R;
– LHS ∩ A = ∅;
– X,T ⊂ R, T �= ∅, LHS = X ∪ T and X ∩ T = ∅;
– ∀ B ∈ T dom(B) is numeric;
– Tp is a pattern tableau with attributes in LHS and RHS;
– tp[A]=‘ ’;
– ∀ Z ∈ X and ∀ tuple tpi ∈ Tp, tpi [Z] is an unnamed variable ‘ ’ that draws

values from dom(Z);
– ∀ B ∈ T and ∀ tuple tpi ∈ Tp, tpi [B] is ‘op b’, where ‘b’ is a constant in

dom(B) and op is one of the following operators: <, >, ≤, ≥, �=, =.

In the following, we will refer to the attributes in X as variable attributes, to
the attributes in T (for which conditions are searched) as target attributes, and
to the conditions in the pattern tableau Tp as target conditions.

The algorithm is based on the selection of the tuples that do not satisfy a
target dependency and on the use of the values of these tuples to build the
conditions to obtain valid dependencies.

The algorithm accepts the following input parameters:

– maxSizeLHS – setting the maximum number of attributes that the depen-
dencies have to contain in their LHS;

– sizeT – setting the size of the set T containing the target attributes;
– maxNumConditions – an optional parameter setting the maximum number

of conditions that can be present in a dependency (i.e., the number of rows
in the dependency pattern tableau);

– depSupport – an optional parameter indicating, in percentage respect to the
dataset tuples, the support required for the resulting dependency (i.e., the
minimum number of tuples satisfying the dependency).

The first step performed by the algorithm is the generation of candidates for
the target dependencies, in the form LHS → A with the attributes in LHS
divided in the variable attributes set X and in the target attributes set T .

To generate the candidates, we have adopted the small-to-large search ap-
proach, which has been successfully used in algorithms to discover traditional
FDs and in many data mining applications, starting to compute dependencies
with a number of attributes equal to the size of the set T in their left-hand side
and then proceeding adding variable attributes in the set X .

In order to reduce the time spent by the algorithm producing the candidates,
some pruning approaches have been introduced. A relevant reduction in the
number of the generated candidates applies when a FD Y → A, with Y ⊂ R
and A ∈ R, holds on the dataset. In this case, it is not necessary to build any
candidates of the form Z → A, with Z ⊂ R and Y ⊆ Z.

The number of generated candidates is reduced also: (1) in the presence of
attributes having the same value for all the tuples in the dataset – such attributes

Discovering non-constant CFDps 39

Data: An instance relation r over the schema R
Input parameters: maxSizeLHS, sizeT , maxNumConditions, depSupport
Result: CFDps
resultSet = ∅;
RHS = {{A}|∀A ∈ R};
numSupportTuples = computeSupportTuples(depSupport);
for Y ∈ RHS do

LHSattrinit = {{B}|∀B ∈ (R − Y)};
LHSattr1 = pruneSet(LHSattrinit, Y);
l = 1;
while l ≤ (maxSizeLHS) do

candidateSet = generateCandidates(LHSattrl, Y);
for candidate ∈ candidateSet do

patternTableauSet = findTargetConditions(candidate,
numSupportTuples);
if patternTableauSet �= ∅ then

for patternTableau ∈ patternTableauSet do
if acceptResults(candidate, patternTableau,
maxNumConditions, numSupportTuples) then

resultSet += buildCFDp(candidate, patternTableau);
end

end

end

end
LHSattrl+1init = computeSetNextLevel(LHSattrl, l);
LHSattrl+1 = pruneSet(Xl+1init , Y);
l = l + 1;

end

end

Pseudocode 1. Algorithm main steps

are not included in the candidate generation process; (2) in the presence of
attributes having distinct values for each tuple in the dataset – such attributes
are excluded from the RHS of the candidate when the support required for the
dependency in greater than 1. Furthermore, the input parameters maxSizeLHS
and sizeT contribute in reducing the number of generated candidates and thus
the execution time of the algorithm.

After having determined a candidate, it is necessary to verify if it can be a
CFDp and determine which are the values for the attributes in the set T that
have to be excluded to obtain a valid CFDp. To perform this step, the algorithm
proceeds in computing the tuple equivalence sets3 for the set of attributes present
in the candidate.

The algorithm selects the sets to be excluded and the sets to be accepted
in order to obtain a valid dependency: the sets with the same values for the

3 Two tuples t1 and t2 are equivalent respect to a set Y of attributes if ∀ B ∈ Y
t1[B]=t2[B].

40 A. Zanzi and A. Trombetta

procedure generateCandidates(LHSattr, Y)
candidateSet = ∅;
for S ∈ LHSattr do

setT = buildSetT(S, sizeT);
for T ∈ setT do

setXattr = S − T ;
setX = buildSetX(setXattr);
for X ∈ setX do

candidateSet += buildCandidate(X, T , Y);
end

end

end
return candidateSet;

procedure pruneSet(S, Y)
newSet = ∅;
for Z ∈ S do

if Z → Y holds on R then
newSet = S − Z;

end

end
return newSet;

Pseudocode 2. Algorithm procedures

attributes in LHS but different values of the attribute A are excluded. The values
of the target attributes (the attributes in the set T) of the tuples contained in
the excluded sets will be used to build the conditions for the dependency pattern
tableau.

At this step, to reduce useless computation, the input parameter depSupport
– when present – is used to filter out the candidates having in their selected sets
a number of tuples less greater than the required support.

Then, as a preliminary step in the determination of the intervals, for every
target attribute, the minimum distance among the values on the attribute do-
main is computed. It will be used to determine if the values are contiguous or
not and thus to decide for each value if it has to be part of an interval condition
or if it will generate an inequality condition.

Afterwards, the algorithm builds a set with the values of the target attributes
for all the tuples contained in the excluded sets; this last set is used by the
algorithm to compute the interval (or intervals) for which the candidate is a
valid dependency. Instead of an interval, an equality condition is generated when
an open interval contains only one value between the extreme values; e.g., when
the interval is (x − 1, x + 1) then the conditions “> x − 1” and “< x + 1” are
replaced by the condition “= x”.

Because of the semantics of the CFDps stating that a tuple has to satisfy the
conjunction of all the conditions in a pattern tableau, if more than one interval

Discovering non-constant CFDps 41

procedure findTargetConditions(candidate, numSupportTuples)
patternTableauSet = ∅;
equivalentSetsList = computeEquivalentSets(candidate);
acceptedSetsList = selectSetsToBeKept(equivalentSetsList);
if countTuples(acceptedSetsList) ≥ numSupportTuples then

excludedSetsList = selectSetsToBeExcluded(equivalentSetsList,
acceptedSetsList);
patternTableauSet = computeConditions(acceptedSetsList,
excludedSetsList);

end
return patternTableauSet;

procedure acceptResults(candidate, patternTableau, maxNumConditions,
numSupportTuples)

if size(patternTableau) <= maxNumConditions then
numTuples = countTuples(candidate, patternTableau);
if numTuples >= numSupportTuples then

return true;
end

end
return false;

Pseudocode 3. Algorithm procedures

is identified for a candidate, it is necessary to build different pattern tableaux
for that candidate.

If the input parameters maxNumConditions and depSupport have been set,
the last step consists in the acceptance or rejection of the dependency according
to the values of these parameters: a dependency is accepted if the number of
conditions in its pattern tableau is less than or equal to the maxNumConditions
parameter and if it is satisfied by a number of tuples greater than or equal to
the support required by the depSupport parameter.

4 Testing the Algorithm

The algorithm has been implemented using the Java programming language and
the PostgreSQL DBMS. The first test of the algorithm has been performed using
some of the datasets provided by the UCI Machine Learning Repository [2], such
as the Iris, Seeds, Escherichia Coli, BUPA Liver disorder4, Yeast5 and Wisconsin
breast cancer6 datasets.

To show some examples of the results produced by the algorithm, we use the
following datasets:

4 In the BUPA Liver disorder dataset duplicate rows have been excluded.
5 In the Yeast dataset duplicate rows have been excluded.
6 In the Wisconsin breast cancer dataset the attribute called Sample Code Number
and the rows containing empty attributes have been excluded.

42 A. Zanzi and A. Trombetta

Table 2. Results of the execution of the algorithm on the BUPA Liver dataset

ϕ1: BUPA-liver(alkphos, sgpt, drinks → selector, T1)

T1:

alkphos sgpt drinks selector

≥ 23 – – –
�= 85 – – –
≤ 138 – – –

ϕ2: BUPA-liver(gammagt, mcv, alkphos → sgot, T2)

T2:
gammagt mcv alkphos sgot

> 5 – – –
< 297 – – –

ϕ3: BUPA-liver(gammagt, mcv, alkphos → sgpt, T3)

T3:
gammagt mcv alkphos sgpt

> 5 – – –
< 297 – – –

ϕ4: BUPA-liver(sgpt, mcv, gammagt → drinks, T4)

T4:

sgpt mcv gammagt drinks

≥ 4 – – –
�= 9 – – –

≤ 155 – – –

ϕ5: BUPA-liver(sgpt, mcv, gammagt → alkphos, T5)

T5:

sgpt mcv gammagt alkphos

≥ 4 – – –
�= 9 – – –

≤ 155 – – –

– The Iris dataset, which has 5 attributes respectively called Petal Length,
Petal Width, Sepal Length, Sepal Width, and Class.

– The BUPA Liver dataset, which contains the following 7 attributes (all
of them with values in the domain of the integer numbers): Mean Cor-
puscular Volume (mcv), Alkaline Phosphotase (alkphos), Alamine Amino-
transferase (sgpt), Aspartate Aminotransferase (sgot), Gamma-Glutamyl
Transpeptidase (gammagt), number of half-pint equivalents of alcoholic bev-
erages drunk per day (ndrinks), and a field used to split data into two sets
(selector).

– The Wisconsin breast cancer dataset, which contains the following 10 at-
tributes (all of them with values in the domain of the integer numbers):
Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape,
Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chro-
matin, Normal Nucleoli, Mitoses, and Class; the first 9 attributes have val-
ues in the range 1-10, while the Class attribute can have two values: 2 for
“benign”, 4 for “malignant”.

Table 2 shows the CFDps resulting from the execution of the algorithm on
the BUPA Liver dataset with the following values for the input parameters:

Discovering non-constant CFDps 43

Table 3. Results of the execution of the algorithm on the Wisconsin breast cancer
dataset

ϕ1: wbc(uniformityCellShape, singleEpithelialCellSize,
bareNuclei, normalNucleoli → class, T1)

T1:
uniformityCellShape singleEpithelialCellSize bareNuclei normalNucleoli class

≥ 1.0 – – – –
< 7.0 – – – –

ϕ2: wbc(bareNuclei, clumpThickness,
uniformityCellSize, uniformityCellShape → class, T2)

T2:
bareNuclei clumpThickness uniformityCellSize uniformityCellShape class

≥ 1.0 – – – –
< 10.0 – – – –

ϕ3: wbc(bareNuclei, uniformityCellShape,
marginalAdhesion, singleEpithelialCellSize → class, T3)

T3:
bareNuclei uniformityCellShape marginalAdhesion singleEpithelialCellSize class

≥ 1.0 – – – –
< 10.0 – – – –

maxSizeLHS equal to 3 , sizeT equal to 1, maxNumConditions equal to 3 and
depSupport equal to 0.98. Table 3 shows the CFDps resulting from the execution
of the algorithm on the Wisconsin breast cancer dataset with the following
input parameters:maxSizeLHS equal to 4, sizeT equal to 1, maxNumConditions
equal to 2 and depSupport equal to 0.8. Table 4 shows the CFDps resulting
from the execution of the algorithm on the Iris dataset with the following input
parameters:maxSizeLHS equal to 3, sizeT equal to 1, maxNumConditions equal
to 3 and depSupport equal to 0.6. Finally, table 4 shows the CFDps resulting
from the execution of the algorithm on the Iris dataset with the following input
parameters:maxSizeLHS equal to 2, sizeT equal to 2, maxNumConditions equal
to 5 and depSupport equal to 0.98.

Depending on the values assigned to the input parameters (in particular to
the dependency support parameter), on the number of attributes and tuples in
the relation, and, of course, on the type of data, the number of generated CFDps
can vary greatly.

Table 6 reports the number of CFDps identified by the algorithm on different
datasets provided by the UCI Machine Learning Repository with different values
for the support input parameter depSupport. The results shown in the table
have been computed with the following input parameters: maxSizeLHS equal to
4, sizeT equal to 1 and maxNumConditions equal to 4; while the values used for
the dependency support parameter – called k – are specified in the table.

Furthermore, table 7 reports the number of CFDps identified by the algorithm
on the same datasets using different values for the input parameter maxSizeLHS
– the maximum number of attributes in the LHS of the dependency. In this case,
the results have been computed with the dependency support equal to 0.5 and

44 A. Zanzi and A. Trombetta

Table 4. Results of the execution of the algorithm on the Iris dataset

ϕ1: iris(petalLength, sepalLength → class, T1)

T1:

petalLength sepalLength class

≥ 1.0 – –
�= 4.9 – –
≤ 6.9 – –

ϕ2: iris(sepalLength, petalLength → class, T2)

T2:

sepalLength petalLength class

≥ 4.3 – –
�= 6.3 – –
≤ 7.9 – –

ϕ1: iris(sepalWidth, petalLength → class, T1)

T3:
sepalWidth petalLength class

> 2.8 – –
≤ 4.4 – –

ϕ1: iris(petalWidth, sepalLength → class, T1)

T4:

petalWidth petalLength class

≥ 0.1 – –
�= 1.8 – –
≤ 2.5 – –

ϕ1: iris(petalLength, petalWidth → class, T1)

T5:

petalLength petalWidth class

≥ 1.0 – –
�= 4.8 – –
≤ 6.9 – –

sizeT equal to 1 but without any limit on the maximum number of conditions
allowed in the resulting pattern tableaux.

The results show that the number of the CFDps identified by the algorithm
increases when the maximum size of LHS increases and – as expected – de-
creases at the increasing of the dependency support required through the input
parameter. The high numbers of dependencies found when the input parameter
for the dependency support is not specified is mainly determined by the presence
of CFDps satisfied by a single tuple.

The approach to generate, during the same step, different tableaux for a candi-
date – producing disjoint intervals – determines that the dependencies generated
for the same candidate are not redundant. However, redundant CFDps can be
generated when there exist:

– two CFDps ϕa:R(Z1 → A, Tp1) and ϕb:R(Z2 → A, Tp2), with Z1 ⊂ Z2,
Z1=X1 ∪ T1, Z2=X2 ∪ T2, T1=T2 and X1 ⊂ X2: if the conditions in T2 are
subsumed by the conditions in T1 then ϕb is redundant.

Discovering non-constant CFDps 45

Table 5. Results of the execution of the algorithm on the Iris dataset

ϕ1: iris(sepalLength, petalLength → class, T1)

T1:

sepalLength petalLength class

≥ 4.3 ≥ 1.0 –
�= 6.3 �= 4.9 –
≤ 7.9 ≤ 6.9 –

ϕ2: iris(petalLength, petalWidth → class, T2)

T2:

petalLength petalWidth class

≥ 1.0 ≥ 0.1 –
�= 4.8 �= 1.8 –
≤ 6.9 ≤ 2.5 –

ϕ3: iris(sepalWidth, petalLength → class, T3)

T3:

sepalWidth petalLength class

≥ 2.0 ≥ 1.0 –
�= 2.7 �= 5.1 –
�= 2.8 �= 4.8 –
≤ 4.4 ≤ 6.9 –

Table 6. Results from the execution of the algorithm with different values of the input
parameter depSupport (k)

Dataset |R| |r| number of CFDps
name k not defined k ≥ 0.1 k ≥ 0.5 k ≥ 0.8

Iris 5 150 274 72 19 8

BUPA Liver 7 341 1413 596 228 126

Seeds 8 210 78 48 38 27

E. Coli 9 336 3307 699 174 139

Wisconsin
10 683 6578 1160 72 40

breast cancer

Yeast 10 1462 11236 1540 253 194

Table 7. Results from the execution of the algorithm with different values of the input
parameter maxSizeLHS (max|LHS|)

Dataset |R| |r| number of CFDps
name max|LHS|=2 max|LHS|=3 max|LHS|=4 max|LHS|=5

Iris 5 150 12 22 32 –

BUPA Liver 7 341 7 135 286 328

Seeds 8 210 76 91 91 91

E. Coli 9 336 66 210 413 558

Wisconsin
10 683 0 6 74 198

breast cancer

Yeast 10 1462 17 143 382 659

46 A. Zanzi and A. Trombetta

Table 8. Results of the execution of the algorithm on the Iris dataset

ϕ1: iris(petalWidth → class, T1)

T1:
petalWidth class

≥ 0.1 –
< 1.4 –

ϕ2: iris(petalWidth, sepalLength → class, T2)

T2:
petalWidth sepalLength class

≥ 0.1 – –
< 1.4 – –

ϕ3: iris(sepalLength, petalWidth → class, T3)

T3:
sepalLength petalWidth class

≥ 4.3 – –
< 5.9 – –

ϕ4: iris(sepalWidth, petalLength → class, T4)

T4:
sepalWidth petalLength class

> 2.8 – –
≤ 4.4 – –

– two CFDps ϕa:R(Z1 → A, Tp1) and ϕb:R(Z2 → A, Tp2), with Z1 ⊆ Z2,
Z1=X1 ∪ T1, Z2=X2 ∪ T2, T1 ⊂ T2: if the conditions in T2 are subsumed by
the conditions in T1 then ϕb is redundant.

However, the support of the CFDps can be different, and it can be higher for
the dependency ϕb.

An example of the first case is shown in table 8 with the results from the
execution of the algorithm on the Iris dataset (the following input parameters
have been used: maxSizeLHS equal to 2, sizeT equal to 1, maxNumConditions
equal to 2 and depSupport equal to 0.5), in particular the CFDps ϕ1 and ϕ2;
whereas an example of the second case can be observed comparing table 4 and
table 5.

5 Related Work

For the discovery of non-constant CFDps, to date and to our knowledge, there
are no published algorithms.

Similarities between CFDps and approximate functional dependencies7 [12]
can be highlighted: in both cases a dependency holds excluding a subset of the
set of tuples. However, the process to find a CFDp requires the identification
of the target conditions contained in the pattern tableau, while in the case of

7 An approximate FD is a FD that does not hold over a small fraction of the tuples;
specifically, X → Y is an approximate FD if and only if the error(X → Y) is at
most equal to an error threshold ε (0 < ε < 1), where the error is measured as the
fraction of tuples that violate the dependency.

Discovering non-constant CFDps 47

approximate dependencies it is sufficient to determine the number of tuples non-
satisfying the dependency.

Several algorithms for the discovery of FDs have been proposed since 1990s
and more recently for CFDs.

Examples of algorithms developed to discover traditional FDs are: TANE [11],
Dep-miner [14], Fast-FD [17], FD Mine [18].

For the discovery of general CFDs the following algorithms have been pro-
posed: an algorithm based on the attribute lattice search strategy is presented
in [4]; Fast-CFD [9] is inspired by the Fast-FD algorithm; CTANE [9] extends
the TANE algorithm; CFD-Mine [1] is also based on an extension of the TANE
algorithm. Moreover, some algorithms for the discovery of only constant CFDs
have been proposed: CFDMiner [9] is based on techniques for mining closed item
sets and finds a canonical cover of k-frequent minimal constant CFDs; an algo-
rithm that extends the notion of non-redundant sets, closure and quasi-closure
is described in [6]; in [13] new criteria to further prune the search space used by
CFDMiner to discover the minimal set of CFDs are proposed.

6 Conclusions and Future Work

In this work we have introduced an algorithm to discover non-constant CFDps
from datasets. Aim of the developed algorithm is the identification of a subset of
the existing non-constant CFDps characterized by the requirements mentioned in
section 3, without looking specifically for CFDs, for which dedicated algorithms
already exist. The algorithm implements the approach of selecting the tuples
that do not satisfy a dependency and using the values of the attributes of the
identified tuples to build the target conditions to obtain valid dependencies.

The results of the first algorithm test, which has been executed on datasets
from the UCI Machine Learning Repository, show that the number of CFDps
generated by the algorithm can vary greatly depending on the values assigned
to the input parameters, on the number of attributes and tuples in the relation,
and – of course – on the type of data. When too many CFDps are retrieved from
a dataset, the input parameters – in particular the depSupport and maxSizeLHS
parameters – help in decreasing the number of identified dependencies. A high
value of the depSupport parameter determines also the identification of the most
interesting dependencies to be practically used in the data quality context.

As in the case of the algorithms for discovering FDs [15], the worst case time
complexity of the developed algorithm, with respect to the number of attributes
and tuples in the relation, is exponential. The criteria used by the algorithm to
prune the number of candidates and the input parameters help in improving the
algorithm efficiency as in reducing the number of identified dependencies.

As future work we plan to test the algorithm on other datasets and to ex-
periment with other candidate pruning approaches to improve the algorithm
efficiency. We are also studying the feasibility of an extension to the algo-
rithm in order to include non-numeric attributes in the target attribute set T ,

48 A. Zanzi and A. Trombetta

considering the alphanumeric ordering or a semantic ordering defined on the
domains of the relation attributes.

References

1. Aqel, M., Shilbayeh, N., Hakawati, M.: CFD-Mine: An efficient algorithm for dis-
covering functional and conditional functional dependencies. Trends in Applied
Sciences Research 7(4), 285–302 (2012)

2. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013),
http://archive.ics.uci.edu/ml

3. Chen, W., Fan, W., Ma, S.: Analyses and validation of conditional dependencies
with built-in predicates. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA
2009. LNCS, vol. 5690, pp. 576–591. Springer, Heidelberg (2009)

4. Chiang, F., Miller, R.: Discovering data quality rules. Proceedings of the VLDB
Endowment 1(1), 1166–1177 (2008)

5. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency
and accuracy. In: Koch, C., et al. (eds.) International Conference on Very Large
Data Bases (VLDB 2007), pp. 315–326. ACM (2007)

6. Diallo, T., Novelli, N., Petit, J.M.: Discovering (frequent) constant conditional
functional dependencies. Int. Journal of Data Mining, Modelling and Manage-
ment 4(5), 205–223 (2012)

7. Fan, W., Geerts, F., Jia, X.: Semandaq: A data quality system based on conditional
functional dependencies. Proceedings of the VLDB Endowment 1(2), 1460–1463
(2008)

8. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependen-
cies for capturing data inconsistencies. ACM Transactions on Database Systems
(TODS) 33(2), 94–115 (2008)

9. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-
dencies. IEEE Transactions on Knowledge and Data Engineering (TKDE) 23(5),
683–697 (2011)

10. Golab, L., Karloff, H., Korn, F., Srivastava, D.: Data Auditor: Exploring data
quality and semantics using pattern tableaux. Proceedings of the VLDB Endow-
ment 3(2), 1641–1644 (2010)

11. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: TANE: An efficient algo-
rithm for discovering functional and approximate dependencies. Computer Jour-
nal 42(2), 100–111 (1999)

12. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from
relations. Theoretical Computer Science 149(1), 129–149 (1995)

13. Li, J., Liu, J., Toivonen, H., Yong, J.: Effective pruning for the discovery of condi-
tional functional dependencies. The Computer Journal 56(3), 378–392 (2013)

14. Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional dependencies
and Armstrong relations. In: Zaniolo, C., Lockemann, P.C., Scholl, M.H., Grust,
T. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 350–364. Springer, Heidelberg (2000)

15. Mannila, H., Raiha, K.J.: On the complexity of inferring functional dependencies.
Discrete Applied Mathematics 40, 237–243 (1992)

16. Pivert, O., Prade, H.: Handling dirty databases: From user warning to data cleaning
— Towards an interactive approach. In: Deshpande, A., Hunter, A. (eds.) SUM
2010. LNCS, vol. 6379, pp. 292–305. Springer, Heidelberg (2010)

http://archive.ics.uci.edu/ml

Discovering non-constant CFDps 49

17. Wyss, C., Giannella, C., Robertson, E.: FastFDs: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances - extended
abstract. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001.
LNCS, vol. 2114, pp. 101–110. Springer, Heidelberg (2001)

18. Yao, H., Hamilton, H.: Mining functional dependencies from data. Journal Data
Mining and Knowledge Discovery 16(2), 197–219 (2008)

19. Zanzi, A., Trombetta, A.: Data quality evaluation of scientific datasets: A case
study in a policy support context. In: International Conference on Data Manage-
ment Technologies and Applications (DATA 2013), pp. 167–174. SciTePress (2013)

	Discovering non-constant Conditional Functional Dependencies with Built-in Predicates
	1 Introduction
	2 CFDp Definition
	2.1 Constant and non-constant CFDps

	3 DiscoveringCFDps
	4 Testing the Algorithm
	5 Related Work
	6 Conclusions and Future Work
	References

