
Link-Based Viewing of Multiple Web API

Repositories

Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Dept. of Information Engineering University of Brescia
Via Branze, 38 - 25123 Brescia (Italy)

{devis.bianchini|valeria.deantonellis|michele.melchiori}@unibs.it

Abstract. Web API sharing, fueled by large repositories available on-
line, is becoming of paramount relevance for agile Web application de-
velopment. Approaches on Web API sharing usually rely on single Web
API repositories, which provide complementary Web API descriptions,
on which different search facilities can be implemented. In this paper, we
propose a framework for defining a linked view over multiple repositories
and for searching their content. In particular, we apply Linked Data prin-
ciples to publish repository contents and identify semantic links across
them in order to exploit complementary Web API descriptions. We dis-
cuss how Web API sharing across multiple repositories, based on such a
link-based view, may benefit from selection criteria that combine several
aspects in Web API characterization. A preliminary evaluation based on
two popular public Web API repositories is presented as well.

1 Introduction

Selection and aggregation of reusable Web APIs is gaining momentum as a new
development style for building new, value-added applications. Web APIs are spe-
cific kinds of digital resources that can be shared over the Web. They may be gen-
eral purpose, provided by third parties, and they can be used as a productivity
tool for on-the-spot problems, that is, situational applications that require few re-
sources in terms of investment costs and development time. Existing approaches
for Web API selection rely on APIs registered within the ProgrammableWeb1

repository, because of its popularity. However, although ProgrammableWeb con-
stitutes a well-known meeting point for the community of mashup developers,
it is mainly focused on a feature-based description of Web APIs, classifying
them through categories and tags and storing features like the adopted data
formats, protocols and the list of mashups that have been developed using the
Web APIs. There exist different repositories that emphasize distinct aspects to
be considered for Web API sharing. For instance, Mashape, a cloud API hub2

leveraging a twitter-like organization, associates each Web API with the list of
developers who adopted or declared their interests for it and technical details

1 http://www.programmableweb.com/
2 https://www.mashape.com/

H. Decker et al. (Eds.): DEXA 2014, Part I, LNCS 8644, pp. 362–376, 2014.
c© Springer International Publishing Switzerland 2014

Link-Based Global Viewing of Multiple Web API Repositories 363

for Web API invocation are provided as well. Similarly, other repositories (e.g.,
theRightAPI) provide a community-oriented perspective on Web APIs. In this
scenario, distinct repositories act as information silos where: (i) complementary
or partially overlapping Web API characterizations are stored; (ii) the same Web
APIs or mashups are registered multiple times within different repositories; (iii)
similarity between Web APIs and mashups across different repositories cannot
be exploited to enrich search results. Various approaches have been proposed
to integrate Web APIs with the Linked Data cloud, but they require models
that are difficult and time-consuming to build [1] and generally are based on a
single repository. On the other hand, publishing Web API repository contents as
Linked Data may be useful to overtake the issues highlighted above. Moreover,
publishing Web API descriptions as (open) Linked Data offers the opportu-
nity for semantically enriching them by making explicit their social, technical
and terminological aspects with links from the Web API description to relevant
parts of the Web of Data. A further completion could be, when available, linking
them to descriptions specifically conceived for consuming and producing linked
data [2–4].

In this paper, we present a novel framework built according to Linked Data
principles aimed at enhancing effective cross-repository Web API browsing and
search for mashup development. The framework is based on an unified model
for Web APIs providing a linked view on the contents of each repository. Such
a model makes the content of repositories machine processable and accessible
through non-proprietary tools (e.g., SPARQL endpoints). Therefore, it enables
Web API search in a transparent way with respect to the localization of each
repository. This unified model is based on three modeling perspectives that we
introduced in [5] for Web APIs in a single repository. Within the framework, a
Linker is in charge of identifying and storing semantic links across repositories
according to identity and similarity criteria. Semantic links are published as
Linked Data and can be exploited to perform Web API search over multiple
repositories. thus taking benefit from existing approaches on query processing
over Linked Data [6] also in the Web API selection scenario.

The paper is organized as follows: in Section 2 we provide the motivations of
our approach, through the presentation of the running example and the discus-
sion about related work; in Sections 3 and 4 we detail the design of the unified
vocabulary and linking criteria on which the Linker is based; in Section 5 we de-
scribe how to exploit semantic links for Web API search through the Web API
Search Engine; we discuss implementation issues and preliminary evaluation of
the approach in Section 6; finally, Section 7 closes the paper.

2 Motivations

2.1 Running Example

As a running example, we refer to the ProgrammableWeb (PW) and Mashape

(MP) repositories. We chose these two repositories since they are the most pop-
ular ones and provide complementary and partially overlapping features in Web

364 D. Bianchini, V. De Antonellis, and M. Melchiori

API descriptions so better illustrating the advantages and the problems arising
in using both of them. In particular, let us consider a web designer who is charge
of including a face recognition functionality to access the private area of his/her
web site. Since developing this kind of applications from scratch would require
very specific competencies, let us suppose that the designer looks for a Web API
in the PW repository. Using the face and recognition keywords, the designer
finds 15 matches. Among them, the LambdaLabs Face API is not assigned to
any mashup. Since the goal of the designer’s search on PW is to make easier the
integration of a new Web API in an existing web site, the LambdaLabs Face API
may not be considered. Nevertheless, on the MP repository, the same Web API
has 1385 consumers and 1304 followers (that is, developers who declared their
interest in the Web API). It is the most popular Web API out of the 106 APIs
retrieved on MP using the same keywords. This additional information could
influence the designer’s choice. It is thus very important for the web designer to
be able to identify and exploit correspondences between Web APIs in different
repositories. However, this task may be not trivial. In fact, the same Web API
may be classified into different categories or tagged with different tags across
distinct repositories (for instance, the LambdaLabs Face API is classified in the
media category on MP, while it is classified in the Photos category on PW).
Moreover, the categorizations adopted in the two repositories are very different
(68 categories on PW, 18 categories on MP, none of them organized in a hier-
archy, 10 overlapping categories, but no explicit semantics). Finally, in an ideal
situation, there should be specific properties to be used for identifying the same
Web API description across different repositories, such as the URL. Unfortu-
nately, data in Web API repositories is not often as complete as it could be: for
example, the LambdaLabs Face API is registered with slightly different names
on the two repositories and it is associated with the http://api.lambdal.com/
URL on PW and to the http://www.lambdal.com/developers/ URL on MP.
Therefore, to merge together the search results coming from the two Web API
repositories, the web designer must carefully inspect and compare each API de-
scription. We propose an approach that defines semantic links based on identity
and similarity criteria between elements across different repositories in order to
overcome these issues.

2.2 Related Work

Related efforts in the literature about Linked Web services or Linked Web APIs
for discovery purposes focused on the semantic annotation of service features [7]
through domain ontologies to publish service descriptions on the Web of Data [2,
8, 9], on the enrichment of the characterization of Web APIs to enable them to
consume and produce Linked Data [4, 10], and on publishing as linked resources
each single API invocation [11, 3].

The iServe platform described in [9] proposes adopting the Minimal Service
Model (MSM), that is, a simple RDF(S) integration ontology that captures the
maximum common denominator between existing conceptual models for services.
In this model, Linked Data techniques are used for semantic annotation of the

Link-Based Global Viewing of Multiple Web API Repositories 365

I/O parameters of the interfaces of Linked Web services or Linked Web APIs
with ontologies taken from the Web of Data. Comparison between I/Os based
on semantic annotations is performed to infer semantic relationships between
Web APIs. In [1], an interactive Web-based interface enables domain experts to
rapidly create semantic models of services and Web APIs, using an expressive
vocabulary that can be seen as an evolution of the MSM and includes also
lowering and lifting rules, that is mappings, between the semantic model and the
concrete API or service, that in this way is also able to consume and produce
RDF data. All these approaches are characterized by a complex semantic model,
where the semantic annotation of I/Os usually inhibits their wide adoption. This
is especially critical in Web API repositories that have highly variable content.
Moreover, the description of Web APIs at this level of details is not always
available and, although semi-automatic solutions have been proposed in [1], the
contents of repositories vary too fastly to enable this kind of approaches.

With respect to these approaches, our aim is to publish as Linked Data
sources the Web API repositories as a whole, enabling discovery of Web APIs
as resources. Therefore, we rely on information stored within multiple and pub-
lic available repositories without requiring a semantic annotation activity of
Web APIs. Similarity and identity links are automatically set to enable cross-
repository resource sharing. Moreover, our unified view is not focused on Web
APIs only, but also on mashups where APIs have been included according to the
multiple perspectives described in [5], thus enabling more in-depth searching fa-
cilities. Approaches, which discuss how to process or generate Linked Data, such
as Linked Open Services [11, 3] and Linked Data Services [4, 10], have not been
designed for Web API search on multiple repositories. Linked Open Services
(LOS) and Linked Data Services (LDS) are still focused on I/O modeling.

Among the most popular approaches and tools for link identification, we men-
tion the Silk framework [12], a toolkit to link entities across different data sources.
Nevertheless, the user-defined metrics presented in [12] can be built combining
generic similarity measures only, and cannot be specifically applied to our do-
main of interest.

3 Modeling Web Mashup Resources

In order to obtain a link-based view of repository content we look for same/simi-
lar resources and define links among them. For comparing resources we assume a
multi-perspective model introduced in [5] where features characterizing resources
in existing repositories are considered. According to the multi-perspective model
a resource can be described through:

– a functional characterization of the Web API obtained through a top-down
classification, according to fixed categories, a bottom-up tagging through
semantic tags associated by designers, and a set of technical features (e.g.,
protocols or data formats) used to further characterize the API (component
perspective);

366 D. Bianchini, V. De Antonellis, and M. Melchiori

foaf:Person

Web API

String (URL)

Date

String

String (URL)

providedBy

address

describedBy

technicalFeature

updated

foaf:homepagefoaf:name

String

Developer

rdfs:subClassOf

Terminological
Item

String
name

created

Category

rdfs:subClassOf

String (URL)

taxonomy
WordNet

term

String String

synonyms WordNetSense

rdfs:subClassOf

Tag

rdfs:subClassOf

Concept

rdfs:subClassOf

String

name

consumedBy

ownedBy

composedOf

Mashup/
application

Web mashup
resource

rdfs:subClassOf

rdfs:subClassOf

Feature

value

String

name

Decimal

skill

Stringtype

URI

identifiedBy

Fig. 1. RDF representation of the Web mashup resource unified model

– any existing mashups that include the Web API, described through the other
APIs that compose them and tags associated by the designers with mashups
as well (application perspective);

– the ratings assigned to the Web API by designers who used it in their own
mashups (experience perspective).

The basic concepts and relationships of the multi-perspective model are rep-
resented in Figure 1. In the model, both a Web API and a mashup (composed
of APIs) are defined as subclasses of Web mashup resource, denoted by its URL,
a human-readable name, the date in which resource has been created, and the
time of the last upgrade. Each Web mashup resource is associated with a set
of terminological items, which correspond to: (a) categories extracted from top-
down classifications imposed within a given repository where the resource is
registered; (b) a term with an explicit semantics, either a term extracted from
a terminological thesaurus like WordNet or a concept extracted from an ontol-
ogy in the Semantic Web context; and (c) a simple keyword or tag without an
explicit representation of semantics. Each terminological item is described by a
name, a type (namely, C for categories, WD for WordNet terms, O for ontological
concepts, K for simple keywords or tags) and a set of properties:

– if the item is a category, the item name corresponds to the category name
and it has a property that identifies the taxonomy or the classification to
which the category belongs;

Link-Based Global Viewing of Multiple Web API Repositories 367

– if the item is extracted from WordNet, it has two properties, namely the
list of synonyms of the term and the meaning associated with the WordNet
sense to which the term belongs;

– if the item is a concept extracted from an ontology, its name corresponds
to the concept name; it is further specified through its URI, which identifies
the definition of the concept within the ontology where it is provided;

– if the item is a keyword or a tag without an explicit semantics, the item has
no properties and its name corresponds to the keyword or the tag name.

We distinguish keywords and tags as follows: tags are assigned by designers,
aimed at classifying resources in a folksonomy-like style, but keywords are re-
current terms extracted from resource textual descriptions using common IR
techniques. Each Web mashup resource is also associated with ratings assigned
by designers, who may be characterized by their development skill, either self-
declared, as shown in [5], or estimated, using techniques such as those proposed
in [13]. Designers may be either Web API providers, Web mashup owners, or
Web API consumers who rate resources according to their personal opinion. Web
APIs can be further characterized through technical features, such as protocols
or data formats.3

To enrich the model, we rely on external ontologies, when available, follow-
ing the methodological guidelines suggested in [14]. For instance, we modeled
designers using the foaf:Person class from the FOAF (Friend of a Friend) on-
tology,4 where contact information of each foaf:Person is composed of the name
(foaf:name) and the homepage address (foaf:homepage).

4 Defining Links Among Web Mashup Resources

Formally, we represent a link L between Web mashup resources, either within
the same repository or across different repositories, as follows:

L = 〈type, s URI, t URI, conf, [when]〉 (1)

where s URI and t URI are the URIs of the resources that are source and target
of the link, respectively, conf∈[0, 1] is the confidence to set the link (obtained
through identity and similarity metrics evaluation depending on the link type,
as we describe below) and the optional element when denotes when the link has
been established and therefore published as Linked Data. The when clause is
exploited to filter out or check links older than a predefined number of days.
During Web API search, the designer can choose a threshold conf′∈[0, 1] such
that only links with conf≥conf′ are considered. We have identified two link
types, sameAs and simAs, which we describe as follows:

– sameAs link betweenWeb mashup resources, to denote that two resources reg-
istered in the repositories refer to the same software artifact; this kind of link

3 See, for example, the technical description of the LambdaLabs Face API at:
http://www.programmableweb.com/api/lambdalabs-face

4 http://xmlns.com/foaf/spec/

368 D. Bianchini, V. De Antonellis, and M. Melchiori

makes sense only across different repositories, since we assume that the publi-
cation of the sameWebmashup resource in the same repository is not allowed;

– simAs link between two Web mashup resources, established on the basis of
a comparison between their terminological items; a further specification of
this kind of link is provided to distinguish among similar APIs and similar
mashups; in the former case, also technical features (such as protocols and
data formats) are taken into account to establish the link; in the latter one,
we must also consider that the more two mashups are similar, the more
similar the Web APIs that compose them are; the simAs link can be set
either within the same repository or across different repositories.

Each kind of link is identified through proper metrics evaluation, detailed in the
following. A threshold τ∈[0, 1] is set in order to publish each link as shown in
Section 6. In our approach, we fixed τ = 0.5 to avoid storing loosely related
resources. If the result of metrics evaluation is equal or greater than τ = 0.5, the
conf parameter introduced in Equation (1) is set to this value and the link is
stored in the Link Repository as we discuss in Section 6.

The sameAs link between Web mashup resources. We say that two Web
mashup resources across different vocabularies reference the same software com-
ponent if they present the same URL. In this case, the link is set and conf = 1.0.
Unfortunately, URL mismatches like the ones described in the motivating ex-
ample make the use of additional similarity computations necessary. In par-
ticular, to manage these mismatches, the criteria used to set the sameAs link
between Web mashup resources is based upon a host name similarity metric
(HostSim). This metric is computed between the host names of two URLs
(e.g., http://api.lambdal.com and http://www.lambdal.com/developers/,
except for the scheme (e.g., http://) and the fragment (e.g., /developers/) [15].
Each host name is composed of substrings separated by dots, e.g., www.lambdal.
com. Host name similarity is computed using the Dice formula in Equation (2):

HostSim(URI1, URI2) = 2 · |URI1∩URI2|
|URI1|+ |URI2|

∈[0, 1] (2)

where |URI1∩URI2| denotes the maximum number of common substrings within
URI1 and URI2 (in the exact order) starting from the top-level domain (e.g.,
com), |URIi| denotes the number of substrings within URIi. The Dice formula is
used to normalize the metric in the [0,1] range. For instance, HostSim(www.lamb
dal.com, api.lambdal.com) = 2 · 2

3+3 = 0.67, because the two host names
share the two lambdal.com substrings (underlined) on a total of 3+3 substrings.
Since the same domain may be assigned to several Web mashup resources, the
HostSim computation is also applied to the URLs of the designers who provided
or own the resource (for Web APIs or mashups, respectively) and is combined
with the string similarity between resource names, using one of the classical
string distance metrics. It is out of the scope of our framework to propose a par-
ticular metric for string comparison. The framework includes the most common
metrics [16]. In the future we may explore tuning strategies further. The overall

Link-Based Global Viewing of Multiple Web API Repositories 369

metric applied on two Web mashup resources res1 and res2, provided or owned
by designers d1 and d2, respectively, is defined as:

0.4 ·HostSim(res1.address, res2.address) +

0.4 ·HostSim(d1.homepage, d2.homepage) + (3)

0.2 · StringSim(res1.name, res2.name)∈[0, 1]

where, for instance, res1.address is the value of property address for the re-
source res1; in our preliminary evaluation, for StringSim() computation, we
chose the Levenshtein distance metric. On the basis of the results of this experi-
mentation, in the equation (3)HostSim() is weighted more than string similarity
between resource names. In fact, the latter is relevant only if we are within the
same or very close domains. The value of the overall metric in this case will be
assigned to the conf parameter.
The simAs link between Web mashup resources. The similarity between
two Web mashup resources is deeply rooted in the comparison of their termino-
logical items, that is:

TermSim(res1, res2) =
2 ·

∑
t1∈T1,t2∈T2

itemSim(t1, t2)

|T1|+ |T2|
∈[0, 1] (4)

where we denote with Ti the set of terminological items used to characterize resi,
t1 and t2 are terminological items, |Ti| denotes the number of items in the set Ti
and itemSim(·) values are aggregated through the Dice formula. The point here
is how to compute itemSim(t1, t2)∈[0, 1] given the different types of involved
terminological items.

The algorithm for the itemSim(·) calculation is shown in Algorithm (1). When
the types of t1 and t2 coincide, proper metrics from the literature are used for
the comparison (see rows 1-8). In all the other cases, a comparison between the
names of terminological items using the StringSim(·) metric is performed (row
18), except for the case of WordNet terms, that are expanded considering all the
synonyms (rows 10-17)in order to look for a better matching term in the synset.
In this version of the framework, we considered only the concept name in the case
of ontological concepts. Future work will be devoted for refining this part, by
expanding the set of terms extracted from the ontological concept with the name
of other concepts connected through semantic relationships in the ontology.

For establishing simAs links between Web APIs, the TermSim(·) metric is
equally balanced with the technical feature similarity TechSim(·)∈[0, 1], which
evaluates how much the two Web APIs have common technical features, that is,
ApiSim(res1, res2) = 0.5 · TermSim() + 0.5 · TechSim() (∈[0, 1]). The value of
the ApiSim() metric in this case will be assigned to the conf parameter. Feature
values are compared only within the context of the same feature. For example,
if res1 presents {XML, JSON, JSONP} as data formats and {REST} as protocol,

370 D. Bianchini, V. De Antonellis, and M. Melchiori

Algorithm 1. The itemSim(·) calculation algorithm

Input : Two terminological items t1 and t2.
Output: The calculated itemSim(t1, t2) value.

if (t1.type == C) and (t2.type == C) then1

itemSim(t1, t2) = Simcat(t1, t2) (using the Simcat defined in [5]);2

else if (t1.type == WD) and (t2.type == WD) then3

itemSim(t1, t2) = Simtag(t1, t2) (using the Simtag defined in [5]);4

else if (t1.type == O) and (t2.type == O) then5

itemSim(t1, t2) = H-MATCH(t1, t2) (using the H-MATCH function6

given in [17]);

else if (t1.type == K) and (t2.type == K) then7

itemSim(t1, t2) = α · StringSim(t1, t2) (using the Levenshtein measure);8

else9

if t1.type == WD then10

t1.bagOfWords = expandWithSynonyms(t1);11

else12

t1.bagOfWords = t1.name;13

if t2.type == WD then14

t2.bagOfWords = expandWithSynonyms(t2);15

else16

t2.bagOfWords = t2.name;17

itemSim(t1, t2) = maxi,j{StringSim(ti1, t
j
2)}, where ti1∈t1.bagOfWords18

and tj2∈t2.bagOfWords;
return itemSim(t1, t2);19

while res2 presents {XML, JSON} as data formats and {REST, Javascript, XML}
as protocols, the TechSim() value is computed as

2 · [|{XML, JSON, JSONP} ∩ {XML, JSON}|+ |{REST} ∩ {REST, Javascript, XML}|]
|{XML, JSON, JSONP}|+ |{XML, JSON}|+ |{REST}|+ |{REST, Javascript, XML}| = 0.67

(5)

In this example, XML is used both as data format and as XML-RPC protocol and
it is considered separately in the two cases.

For establishingsimAs linksbetweenmashups, theTermSim(·)metric is equally
weighted with the mashup composition similarity MashupCompSim(·)∈[0, 1],
which measures the degree of overlapping between two mashups as the number of
common or similar APIs between them, that is

MashupCompSim(res1, res2) =
2 ·

∑
i,j ApiSim(resi1, res

j
2)

|res1|+ |res2|
(6)

where resi1 and resj2 are two Web APIs, used in res1 and res2 mashups, re-
spectively, |res1| (resp., |res2|) denotes the number of Web APIs in res1 (resp.,

Link-Based Global Viewing of Multiple Web API Repositories 371

res2) mashup and ApiSim() = 1.0 by construction when the two Web APIs
are the same. Therefore, MashupSim(res1, res2) = 0.5 · TermSim() + 0.5 ·
MashupCompSim() (∈[0, 1]). The value of the MashupSim() metric in this
case will be assigned to the conf parameter.

5 Exploiting Links among Web mashup Resources

In this section, we present an applicative scenario for link-based view on repos-
itories by defining and implementing a Web API search process. The process
exploits the representation of repositories given according to the model of Sec-
tion 3. The search process is formalized in Algorithm (2). A developer submits
a query by specifying a set of keywords, a set of desired technical features, and
an optional set of Web APIs that have been selected by the developer to be ag-
gregated with the Web API to search for. Once results are obtained by merging
the contents coming from considered repositories matching the query, they are
filtered with respect to a set of required technical features, their appropriateness
with respect to a given mashup (see below) or their popularity based on the
number of developers and followers who are interested in a given Web API of
the result. A query is formally defined as Q = 〈KQ,FQ,MQ〉, where KQ is the
set of keywords, FQ is a set (possibly empty) of pairs 〈tech feature=value〉,
and MQ (possibly empty) is a mashup (that is, a set of Web APIs).

In the prototype implementation, in order to build an answer R(Q), a set
of SPARQL queries are issued on the Virtuoso Universal Server5. Additionally,
since we assume that the web designer is not confident with SPARQL, the Web
interface lets the designer insert the components of the query Q and generates
corresponding SPARQL queries.

When a query Q is evaluated, the content of each repository of Web APIs
is inspected searching for those Web APIs that include in their terminological
equipments at least one of the keywords specified in Q (rows 1-3). The inspection
of terminological equipments is performed through the InTERM predicate that
checks the presence of a keyword in the name attribute of a terminological item
(see the model in Fig. 1) and, in case of a WordNet term, in the set of synonyms.
In a second phase, for each retrievedWeb API the simAs links are used to include
in the result also those Web APIs that are similar to the retrieved ones (rows 4-
5). In a third phase, descriptions of pairs of Web APIs related by sameAs links are
merged by building a unified representation. Moreover, the original descriptions
are removed from the result (rows 6-12).

An API ri belonging to the query result R(Q) is modeled as 4-tuple:

〈api URIs, riM, riD, riF 〉 (7)

where api URIs are the URIs assigned to the Web API in the repositories, riM is
the set of mashups where the Web API has been used, identified by their URIs,
riD is the set of developers, consumers and followers who used the Web API (e.g.,
developers of mashups which contain the Web API are used for PW), riF is the
set of technical features of the Web API.

5 http://virtuoso.openlinksw.com/

372 D. Bianchini, V. De Antonellis, and M. Melchiori

Algorithm 2. Linked Web API search

Input : the query Q =〈KQ,FQ,MQ 〉.
Output: R(Q), where ri ∈R(Q) is a 5-tuple 〈api URIs,riM,riD,riF 〉.
foreach Web API Repository S do1

foreach k∈KQ do2

R(Q) ← Web APIs W from S such that InTERM(k,W);3

foreach Web API W∈ R(Q) do4

add W ′ to R(Q) such that W simAs W ′ with conf ≥ conf’;5

foreach Web API W∈ R(Q) do6

foreach Web API W ′∈ R(Q) do7

if (W sameAs W ′ with conf ≥ conf’) then8

build W ′′ by merging W and W ′;9

add W” to R(Q);10

remove W from R(Q);11

remove W ′ from R(Q);12

if FQ �= ∅ then13

filter R(Q) with respect to the set FQ;14

if MQ �= ∅ then15

rank Web APIs in R(Q) according to their appropriateness wrtMQ;16

rank equally appropriate Web APIs in R(Q) according to their17

popularity;

else18

rank Web APIs in R(Q) according to their popularity;19

return R(Q);20

The last search steps of Algorithm (2) concern filtering and ranking of search
results. Retrieved Web APIs are filtered out according to the set of required
features FQ if specified in Q (rows 13-14). Finally, search results are ranked
according to their appropriateness with respect to the target mashup MQ if
specified in Q (rows 12-14) and according to their popularity (row 16). Specifi-
cally, we define the similarity between two mashups M1 and M2 (as sets of Web
APIs) using a formula according to the same rationale of Equation (4):

MashupSim(M1,M2) =
2 · |M1∩M2|
|M1|+ |M2|

(8)

where |M1∩M2| denotes the number of common Web APIs in the two mashups
and |Mi| the number of Web APIs in the mashup Mi. Given the set riM of
mashups of a search result ri, if riM �=∅, the appropriateness of ri with respect to
the mashup MQ is given by maxj{MashupSim(MQ,Mj)}, where Mj∈riM. If
riM = ∅, then ranking based on appropriateness is not performed. Popularity of
a result ri is measured as the number of developers in riD. For ranking purposes,
the designer may choose, through the search interface, to give priority to the
appropriateness or to the popularity of results.

Link-Based Global Viewing of Multiple Web API Repositories 373

Example. Let us consider again the LambdaLabs Face face recognition API. In
particular, suppose that after retrieving Web APIs from repositories (rows 1-3),
this API is present in both PW and MP. In particular, the descriptions of the
API in these sets is given in Table 1. Note that total number of followers and
consumers of this API in Mashape is reported and that the number of developers
that used the API in ProgrammableWeb is 0.

Table 1. Descriptions of LambdaLabs Face face recognition API

PW MP

URI {http://api.lambdal.com} {http://www.lambdal.com/developers}
riM {} {}
|riD| 0 2689

riF {REST, JSON} {}

A sameAs link is already set in the Link Repository based on the linking criteria
presented in the previous section. Hence, these Web API descriptions are merged
and added to R(Q) (rows 9-10). Specifically, the merged description presented
in the query result will be, according to (7):

〈{http : //api..., http : //www...}, {}, riD, {REST, JSON}〉
Because riM is empty, the ranking based on mashup appropriateness is not per-
formed, as explained above. On the contrary, if MQ is empty, the ranking based
on the popularity, given by |riD|, of this API will be rather high.

Preliminary evaluation. We performed a preliminary evaluation of the search
process based on classical IR measures of precision and recall. The aim is to
check the capability of our approach to provide improved search results with
respect to the separated use of the available repositories. A more extensive ex-
perimentation on the system implementing the process will be performed as
future work. As a proof of concept, we started from two popular repositories,
namely ProgrammableWeb (PW) and Mashape (MP), considered for the running
example in Section 2.1. Observing the two repositories and their differences, we
note that their search results strongly depend on the tags and categories used
for search. Experiments have been run on an Intel laptop, with 2.53 GHz Core
2 CPU, 2GB RAM and Linux OS. We manually selected all the relevant Web
APIs on face recognition stored within the PW and MP repositories and we
collected the sets of tags and categories for the two Web APIs. We then issued
several queries using different subsets of tags and categories: on the PW repos-
itory only, on the MP repository only, and on both the repositories through
our approach. In Table 2 we report an excerpt of results of this preliminary
experimentation, using the following subsets of tags: 〈face,recognition〉 and
〈facial,detection〉. We note that even if we consider the union of the results
from the PW and MP repositories, queried separately, our approach presents
better precision and recall results. The other aspect that can take advantage of

374 D. Bianchini, V. De Antonellis, and M. Melchiori

Table 2. Preliminary evaluation results

〈face,recognition〉 〈facial,detection〉
Precision Recall Precision Recall

ProgrammableWeb 0.72 0.64 (no results) (no results)
Mashape 0.68 0.69 0.47 0.43
Union of PW and MP results 0.73 0.70 0.40 0.41
(invoked separately)
Results from the joint use of PW 0.93 0.91 0.77 0.70
and MP through our

our approach is the identification of corresponding Web APIs across different
repositories: for instance, 75% of the face detection Web APIs that have been
registered in both the repositories present different URLs. The action to reconcile
Web APIs, if manually performed, would be time-consuming and error-prone,
due to the dynamic nature of the two sources.

6 The Framework Architecture

The framework architecture is shown in Figure 2. The Web API meta-repository
aimsat enablinguniformaccess to the contents of individual repositories. It is based
on the RDF Quad Store of the Virtuoso Universal Server, on which our approach
is implemented and it includes the unified vocabulary and the Link Repository, to
store similarity and identity links across distinct Web API repositories.

Once an RDF vocabulary for our unified model has been defined, the Vir-
tuoso Sponger tool6 has been properly configured in order to retrieve resources
from the Web API repositories, according to their conceptualization in the vo-
cabulary. In this way, resources are directly retrieved from the repositories by
relying on the Virtuoso update procedures. These procedures are executed off-
line and are combined with link maintenance strategies mentioned in Section 3.
To perform its tasks, Sponger relies on the Virtuoso Content Crawler (VCC),
which executes a periodic update of cached contents of PW and MP repositories,
and a set of cartridges which are used to extract RDF tuples from the retrieved
sources. A cartridge is composed of an interface for invocation (Cartridge Hook),
an extractor to obtain (non-RDF) data from the source and a mapper that looks
for correspondences between data extracted from the source and the RDF vo-
cabulary that has been built for the source. The mapper is based on an XSLT
document. Cartridges are stored within the Cartridge Registry. Cartridges have
been designed to invoke specific methods made available by public repositories
to query their contents7. It is clear that the effort of configuring a cartridge has
to be done only one time for each repository that we want to include.

Currently, ProgrammableWeb and Mashape cartridges are available. Other pro-
prietary Web API repositories may be provided by enterprises, which can inte-

6 http://www.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger
7 See, for instance, http://api.programmableweb.com for the ProgrammableWeb

repository or http://www.mashape.com/mashaper/mashape#!documentation for the
Mashape repository.

Link-Based Global Viewing of Multiple Web API Repositories 375

Fig. 2. The framework architecture

grate their own components with Web APIs made available within public reposi-
tories, thus adopting an “app store” development approach to reduce investment
costs and development time for those applications that do not shape strategic
decisions. In this case, new cartridges must be added to the system according
to a modularized architecture. The contents stored within the Web API meta-
repository are only accessible through the SPARQL Endpoint. The Linker is in
charge of populating the Link Repository by performing evaluation of the met-
rics designed to identify semantic links across the repositories. To this aim, the
Linker relies on the Identity and Similarity Evaluator, which implements the
metrics as a Web Service.

Finally, the Web API Search Engine implements the search process by issuing
SPARQL queries on the Virtuoso Universal Server in order to access the contents
of different repositories. Due to the dynamic nature of Web API repositories, a
links maintenance mechanism has been combined with the update procedures
implemented by the Virtuoso Content Crawler.

7 Concluding Remarks

In this paper, we discussed an approach to link, according to Linked Data prin-
ciples, contents of multiple Web API repositories, and how to exploit these links
for Web API search purposes. The approach is based on a unified model for Web
mashup resources. As future work, we plan to quantify how the productivity of
Web designers is increased through the use of multiple repositories for Web API
selection, where different repositories focus on complementary Web mashup re-
source descriptions. We have run preliminary experiments to test effectiveness
of Web API search in terms of precision and recall, using two popular public
repositories as a proof of concept.

376 D. Bianchini, V. De Antonellis, and M. Melchiori

References

1. Taheriyan, M., Knoblock, C., Szekely, P., Ambite, J.L.: Rapidly Integrating Ser-
vices into the Linked Data Cloud. In: Proc. of the International Semantic Web
Conference (ISWC), pp. 559–574 (2012)

2. Taheriyan, M., Knoblock, C., Szekely, P., Ambite, J.: Semi-Automatically Modeling
Web APIs to Create Linked APIs. In: Proceedings of the ESWC 2012 Workshop
on Linked APIs (2012)

3. Speiser, S., Harth, A.: Integrating linked data and services with linked data ser-
vices. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170–184.
Springer, Heidelberg (2011)

4. Krummenacher, R., Norton, B., Marte, A.: Towards linked open services and pro-
cesses. In: Proceedings of the Third Future Internet Conference, pp. 68–77 (2010)

5. Bianchini, D., De Antonellis, V., Melchiori, M.: A Multi-perspective Framework
for Web API Search in Enterprise Mashup Design. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 353–368. Springer, Heidelberg
(2013)

6. Hartig, O., Langegger, A.: A database perspective on consuming linked data on
the web. In: Datenbank-Spektrum, pp. 57–66 (2010)

7. Bianchini, D., De Antonellis, V., Melchiori, M., Salvi, D.: Semantic-enriched service
discovery. In: Proc. of the 22nd International Conference on Data Engineering
(ICDE), pp. 38–47 (2006)

8. Bianchini, D., De Antonellis, V.: Linked Data Services and Semantics-enabled
Mashup. In: On Semantic Search on the Web, pp. 281–305. Springer (2012)

9. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.:
iServe: a Linked Services Publishing Platform. In: Proceedings of ESWC Ontology
Repositories and Editors for the Semantic Web (2010)

10. Norton, B., Krummenacher, R.: Consuming Dynamic Linked Data. In: Proc. of
First International Workshop on Consuming Linked Data (2010)

11. Speiser, S., Harth, A.: Towards Linked Data Services, in: Proc. of the 9th Interna-
tional Semantic Web Conference, ISWC (2010)

12. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and Maintaining Links
on the Web of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 650–665. Springer, Heidelberg (2009)

13. Malik, Z., Bouguettaya, A.: RATEWeb: Reputation Assessment for Trust Estab-
lishment among Web Services. VLBD Journal 18, 885–911 (2009)

14. Villazón-Terrazas, B., Vilches, L., Corcho, O., Gómez-Pérez, A.: Methodological
Guidelines for Publishing Government Linked Data. Springer, Heidelberg (2011)

15. Qi, X., Nie, L., Davison, B.: Measuring Similarity to Detect Qualified Links. In:
Proc. of the 3rd Int. Workshop on Adversarial Information Retrieval on the Web,
pp. 49–56 (2007)

16. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics
for name-matching tasks. In: IJCAI-2003 Workshop on Information Integration on
the Web, pp. 73–78 (2003)

17. Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked
Systems: Techniques and Applications. Journal on Data Semantics 2, 25–63 (2006)

	Link-Based Viewing of Multiple Web API
Repositories
	1 Introduction
	2 Motivations
	2.1 Running Example
	2.2 Related Work

	3 Modeling Web Mashup Resources
	4 Defining Links Among Web Mashup Resources
	5 Exploiting Links among Web mashup Resources
	6 The Framework Architecture
	7 Concluding Remarks
	References

