
Chapter 12
Holographic Chern–Simons Theories

H. Afshar, A. Bagchi, S. Detournay, D. Grumiller, S. Prohazka, and M. Riegler

Abstract Chern–Simons theories in three dimensions are topological field theories
that may have a holographic interpretation for suitable chosen gauge groups and
boundary conditions on the fields. Conformal Chern–Simons gravity is a topological
model of three-dimensional gravity that exhibits Weyl invariance and allows various
holographic descriptions, including Anti-de Sitter, Lobachevsky and flat space
holography. The same model also allows to address some aspects that arise in
higher spin gravity in a considerably simplified setup, since both types of models
have gauge symmetries other than diffeomorphisms. In these lectures we summarize
briefly recent results.

12.1 Introduction

Chern–Simons theories in three dimensions have a wide range of applications in
mathematics and physics (see [1–7] for various reviews). The bulk action
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depends on a dimensionless coupling constant, the Chern–Simons level kCS, a
Lie-algebra valued connection 1-form A and a manifold M that often has some
boundary @M . In these lectures we always assume that M topologically is either a
filled cylinder or a filled torus.

While the Lagrange-3-form in the action (12.1) is not gauge invariant, the
equations of motion are gauge invariant,

F D dAC A ^ A D 0 ; (12.2)

and show that locally all solutions are pure gauge. The theory is topological in the
sense that its action does not depend on the metric, and also topological in the sense
that the theory has no local physical degrees of freedom (see [8] for a review on
topological field theories).

Thus, all physical excitations are of global nature, and if M has a boundary one
can picture the excitations as edge states localized at the boundary, much like in the
Anti-de Sitter/conformal field theory (AdS/CFT) correspondence.

The precise boundary conditions imposed on the connectionA are a crucial input
in the specification of the model, and the same bulk action can describe completely
different physical systems, depending on the specific choice of boundary data.

Prominent examples of Chern–Simons theories with special boundary conditions
are Einstein gravity with negative cosmological constant [9, 10] and higher spin
theories [11, 12], some aspects of which are reviewed below.

In these lectures we focus mostly on a specific theory of gravity, conformal
Chern–Simons gravity (CSG) [13–15]. Its bulk action is similar to the Chern–
Simons action (12.1), but depends on a connection that is not a fundamental field,
namely on the Christoffel connection.
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Consequently, the equations of motion obtained by varying the action (12.1) with
respect to the metric do not imply flatness of the geometry, but only conformal
flatness.

C�� D 1
2
"�

˛ˇr˛Rˇ� C .� $ �/ D 0 (12.4)

The quantity C�� is the Cotton tensor, which vanishes in three dimensions if and
only if spacetime is conformally flat (see for instance [16]).

Thus, as opposed to three-dimensional Einstein gravity with negative cosmo-
logical constant, which allows only locally AdS solutions and thus only AdS
holography, CSG has also some non-AdS solutions and is thus a simple model
that allows to study non-AdS holography. Moreover, CSG has an additional gauge
symmetry, namely Weyl symmetry
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g�� ! e2˝ g�� ; (12.5)

so that metrics that are not diffeomorphic to each other can nevertheless be gauge
equivalent. All these properties are shared by higher spin gravity, which is why
CSG can be regarded as a simple toy model for higher spin gravity and non-AdS
holography (see [17, 18] for the higher spin perspective and [19, 20] for the CSG
perspective).

We address now which boundary conditions are possible in CSG. In principle,
any conformally flat metric is an allowed background. However, for practical
applications it usually makes sense to consider backgrounds that have at least one
Killing vector, e.g., associated with asymptotic time translations. In that case, a
Kaluza–Klein reduction to two dimensions reduces CSG to a specific non-linear
Maxwell–Einstein theory [21]. This theory in turn can be mapped to a specific
Dilaton–Maxwell–Einstein theory, whose classical solutions can be found globally
[22]. It turns out that all such solutions have additional Killing vectors: they are
either maximally symmetric, i.e., have six Killing vectors, or they have four Killing
vectors.

The first option allows to study AdS holography, flat space holography and
de Sitter holography. The second option allows to study Lobachevsky holography.
In the rest of these lectures we review some of these holographic setups and
recent results. In Sect. 12.2 we review AdS holography. In Sect. 12.3 we address
Lobachevsky holography. In Sect. 12.4 we focus on flat space holography, in
particular in the context of quantum gravity toy models.

12.2 Anti-de Sitter Holography

Holography provides a map between quantum gravity in d C 1 dimensions and
quantum field theories in d dimensions. While holographic correspondences exist
that involve specific types of non-unitary theories—see [23, 24] and references
therein—for many purposes one would like to insist on unitarity.

As we shall review in Sects. 12.2.1 and 12.4.2, in three-dimensional gravity
unitarity prefers spacetimes with AdS asymptotics for quantization of parity even
theories and asymptotically flat spacetimes for quantization of parity odd theories.
There are two pure gravity models without local degrees of freedom in three
dimensions, parity even Einstein-Hilbert gravity (EHG) and parity odd conformal
Chern–Simons gravity (CSG). These models can be written as Chern–Simons
topological gauge theories of level kCS for SO(2,2) AdS [10, 25] and SO(3,2)
conformal [26] groups respectively, with a proper non-degenerate bilinear form.
The AdS algebra

ŒJa; Jb� D �abcJ
c; ŒJa; Pb� D �abcP

c; ŒPa; Pb� D 
�abcJ
c ; (12.6)
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admits two different non-degenerate bilinear forms. In case of EHG this would be
[10],

tr.Ja; Pb/ D 1
2
�ab : (12.7)

The Chern–Simons theory based on this algebra and this bilinear form can be
decomposed as the sum of two Chern–Simons actions of SO(2,1) gauge group with
opposite levels. The conformal algebra on the other hand has a unique bilinear form.

In this formalism, the dreibein ea, and the (dualized) spin connection !a, are
gauge fields in the translation Pa and the rotation Ja generators and the gauge
transformations A� ! A� C D�" generate diffeomorphisms on-shell [10] when
the gauge parameter � depends linearly on fields, "a D Aa��

�,

ı�A
a
� D @�� � Aa C � � @Aa� C ��F a

�� ; (12.8)

The asymptotic analysis for EHG on AdS was first done by Brown and
Henneaux in [27] where they recognized that under suitable boundary conditions the
asymptotic symmetries of this theory are given by two copies of the Virasoro algebra
with the same central charge. A detailed analysis for CSG with AdS boundary
conditions was done in [19,20,28]. In the following subsection we address the main
aspects of these results.

12.2.1 Conformal Chern–Simons Gravity

Before discussing the first order formulation of CSG as a CS gauge theory of
SO(3,2), we review the asymptotic analysis of (12.3) in the metric formulation in
which the metric g is the dynamical field [19, 20]. In Gaussian normal coordinates,
consistent asymptotically locally AdS boundary conditions on the metric are,

ds2 D g��dx�dx� D e2
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where � is the “radial” coordinate and x˛ the “boundary coordinates” (for instance,
light-cone coordinates x˙). The equations of motion (12.4) for the choices �.0/C� D
1
2
, �.0/˙˙ D 0 and �.1/�� D 0 impose the restrictions

�
.2/
CC D L .xC/ ; �.2/�� D NL .x�/ and @2��

.1/
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.1/
CC�

.2/�� : (12.10)

The most general variation of the line-element that we permit is

ı
�
ds2

� D e2
�
2ı d�2 C Œ2�˛ˇ ı C ı�˛ˇ� dx˛dxˇ

�
: (12.11)
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which indicates different scenarios in deforming the boundary metric, namely the
trivial, fixed and free Weyl factor,  D 0, ı D 0 and ı ¤ 0, respectively. Here
we consider the last case with  D f .xC; x�/ (for possible radial dependence see
[20]). After adding a suitable boundary term for having a well-defined variational
principle, the full on-shell variation of the action reads

ıSCSG
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The response functions T ˛ˇ and J ˛ˇ are Brown–York stress tensor and partially
massless response with conformal weights � D 2 and � D 1, respectively, whose
non-zero components are given by
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For the BTZ black hole [29] we obtain

MBTZ D 2krCr� ; JBTZ D k.r2C C r2�/ ; (12.15)

where jrCj � jr�j are the inner and outer horizon radii, respectively (with the usual
definitions of mass,M D � R

d'T tt , and angular momentum, J D � R
d'T t' where

x˙ D t ˙ '). As compared to EHG the role of mass and angular momentum is
exchanged: for real r˙ the angular momentum JBTZ is non-negative, whereas the
mass MBTZ can have either sign, exactly like in “exotic” gravity theories [30].

The asymptotic Weyl factor  D f gives in general a contribution to the
asymptotic charges, since CSG is only invariant under diffeomorphism and Weyl
rescaling up to a boundary term. Conservation of the corresponding charges in turn
requires cancellation of these anomalies by imposing the following conditions on
the Weyl factor and its variation,

@C@�f D 0 ; @t .f @'ıf / D total '-derivative : (12.16)

Particularly simple choices are f D f .xC/ or f D f .x�/. The non-vanishing
2-point functions are given by (z D ' C it):

hJCC.z; Nz/JCC.0; 0/i D 2k Nz
z3

(12.17)

hTCC.z/TCC.0/i D 6k

z4
D �hT��.Nz/T��.0/i (12.18)

These results show that one of the conformal weights of the partially massless
mode is negative, Nh D �1=2. This is precisely the conformal weight required for a
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semi-classical null state at level 2 [20], which is indeed reproduced on the gravity
side through a 1-loop ghost determinant [31]. We can also read off the central
charges of the dual CFT,

c D �Nc D 12k : (12.19)

In order to be explicit about the derivation of the asymptotic symmetry algebra,
we now move to the first order formulation where CSG can be written in terms of
three Lorentz valued variables (note that kCS D 2k here), e, ! and �.

S.1/CSG D kCS
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The spin-connection is solved in terms of the dreibein ! D !.e/ by the torsion
constraint, T D de C e ^ ! D 0, variation with respect to ! solves the Lagrange
multiplier as � D S.e/, where S is the Schouten one-form, and variation with
respect to e gives the same field equation as in the metric formulation, C.e/ D 0

where C is the Cotton one-form. It has been shown by Horne and Witten [26] that
considering these variables (e, ! and �) as gauge fields along translation, rotation
and special conformal transformation generators and adding a Stückelberg field 
along the dilatation,

A� D ea�Pa C !a�Ja C �a�Ka C �D ; (12.21)

this action can be written as a Chern–Simons theory based on the SO(3,2) gauge
group.

We exploit now the Chern–Simons formulation for canonically and asymptoti-
cally analyzing CSG. The fact that SO(3,2) contains SO(2,2) as a subgroup, suggests
that we can study AdS boundary conditions in this setup.1 Introducing the following
state dependent one forms,

t0 D T1dt � T2d' ; t1 D T1d' � T2dt and

p0 D P2dt � P1d' ; p1 D P1dt � P2d' ; p2 D P3.dt C d'/ ;
(12.22)

we present the AdS boundary conditions as follows [28],

e0 D �`ef �
e�dt � p0 C t0e��� ; e1 D �`ef �

e�d' � p1 � t1e��� ;
e2 D �`ef �

d� � p2e��� ;
�0 D 1

2`
e�f �

e�dt C p0 C t0e��� ; �1 D 1
2`
e�f �

e�d' C p1 � t1e��� ;

1The same statement holds for SO(3,1), ISO(2,1) and SO(2,1)�R as subgroups of SO(3,2)
corresponding to de Sitter, Flat and Lobachevsky boundary conditions [28].
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�2 D 1
2`
e�f �

d�C p2e��� ;
!0 D e� d' C t1e�� ; !1 D e� dt � t0e�� ;

!2 D 0 ;  D df .t; '/� p2e�� :

Solving the flatness conditions (12.2) we find, (@ WD @C, N@ WD @�)

T1 D � 1
2
.L .xC/ � NL .x�//; T2 D 1

2
.L .xC/C NL .x�//;

P1 D �P2 D P.t; '/; P3 D N@P;
� NL � N@2�P D 0 : (12.23)

These are the analogue of (12.10). A general Lie algebra-valued generator of gauge
transformations is

" D �aPa C �aJa C 	aKa C �D: (12.24)

The boundary conditions given in (12.23) are preserved by gauge transformations
(12.24) when,

�0D`ef .a2e�C.a1Ca2/PCa4e��/ ; 	0D� 1
2`
e�f .a2e��.a1Ca2/PCa4e��/;

�1D`ef .a1e��.a1Ca2/PCa3e��/ ; 	1D� 1
2`
e�f .a1e�C.a1Ca2/PCa3e��/;

�2D�`ef �
@'a1Cd1e��� ; 	2D 1

2`
e�f �

@'a1�d1e��� ;
�0D�a1e�Ca3e�� ; �1D�a2e�Ca4e�� ; �2D@'a2 ; �D˝Cd1e��:

where the following relations should hold,

a2 D � 1
2

�
�.xC/C N�.x�/

�
; a1 D � 1

2

�
�.xC/� N�.x�/

�
; d1 D �N@P�.xC/

a3 D T2a2 � T1a1 � 1
2
@2'a1; a4 D T1a2 � T2a1 C 1

2
@2'a2: (12.25)

The variation of the state dependent functions in (12.23) with respect to these
parameters are,

ıL D @L � C 2L @� � 1
2
@3� ; ı NL D N@ NL N� C 2 NL N@N� C 1

2
N@3 N� ;

ıP D @P� C 3
2
P@� C N@P N� � 1

2
P N@N� ; ı˝f D ˝ ; (12.26)

which are the analogue of (12.17). The conserved charges associated to these
variations are given by,

Q D kCS

2�

Z
d' Œ�.xC/L .xC/C N�.x�/ NL .x�/C˝.xC/@'f .xC/� : (12.27)

Defining the generators of these global symmetries as,
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Ln D QGŒ� D einxC

�; NLn D QGŒN� D einx�

� and Jn D QGŒ˝ D einxC

� ;

(12.28)

we compute the Poisson brackets and convert Poisson brackets into commutators
by the prescription ifq; pg D Œ Oq; Op�. The resulting algebra is Vir ˚ Vir ˚ Ou.1/k .
Finally, we Sugawara-shift the quantum L generator

Lm ! Lm C 1

4k

X
n2Z

W JnJm�n W (12.29)

In conclusion, the asymptotic symmetry algebra has the following non-zero
commutators:

ŒLn; Lm� D .n �m/LnCm C c C 1

12
.n3 � n/ ınCm;0

Œ NLn; NLm� D .n �m/ NLnCm C Nc
12
.n3 � n/ ınCm;0

ŒLn; Jm� D �mJnCm
ŒJn; Jm� D 2k n ınCm;0 (12.30)

The central charges are given by c D �Nc D 12 k with k D kCS=2. Note the
quantum shift by one in the central charge of one copy of the Virasoro algebra.
This is due to the normal ordering of J ’s introduced in (12.29). The relative sign
of two central charges is a sign of non-unitarity. This is consistent with the parity
odd nature of this theory; as mentioned before, flat boundary conditions seem more
suitable for unitarity in the asymptotic analysis of parity odd models. For a detailed
asymptotically flat analysis of CSG as a Chern–Simons gauge theory of SO(3,2) see
[28] and in the metric formulation see Sect. 12.4 and [32].

12.2.2 Higher Spin Theories

In the introduction we alluded to some similarities between CSG and higher spin
theories. In this subsection we make this statement more concrete and summarize
some important properties of such theories.

Even though it is easy to write down the (Fronsdal-)equations [33] for free
massless higher spin fields, the coupling of the fields for spins greater than two
to gravity is severely constrained by various no-go theorems (for a review see
[34]). Fradkin and Vasiliev [35] showed that consistent interacting higher spin gauge
theories involving gravity need to be defined on a curved background and involve
an infinite tower of massless higher spin fields [36], see e.g. [37, 38] for reviews.
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One interesting aspect of higher spin gauge fields is that they might be connected
to string theory in the tensionless limit in which the massive excitations of string
theory become massless. It is conjectured that string theory is a broken phase of a
higher spin gauge theory. For more details see [39] and references therein.

Another interesting aspect is that holographic correspondences between higher
spin theories and field theories can be formulated, such as the conjectured duality
in the large N limit of the critical three-dimensionalO.N/ model and the minimal
bosonic higher spin theory in AdS4 [40–42] (for a review of various impressive
checks of this conjecture see [43]).

We focus now on 2 C 1 dimensions where the situation simplifies significantly.
An action is known [44], namely the sum of two Chern–Simons actions (12.1)
with opposite levels with the gauge group SL.N/ which is a natural generalization
of EHG and corresponds to fields of spin s D 3; 4; : : : ; N coupled to gravity.
This consistent truncation to a finite number of higher spin fields is not possible
in higher dimensions [45]. Moreover, the dual field theories are two-dimensional,
which allows a high degree of analytic control.

The Brown–Henneaux type of analysis reviewed in the previous subsection
generalizes to higher spin fields for asymptotic AdS3 [11, 12, 46, 47] and leads to
asymptotic WN � WN [48, 49] symmetry algebras. Using the infinite dimensional
higher spin algebras hsŒ�� ˚ hsŒ�� as gauge algebra we get gravity coupled to
massless fields with spins s D 3; 4; : : : ;1 and, again for AdS3, asymptotic
symmetries of the form W1Œ�� � W1Œ��.

Gaberdiel and Gopakumar proposed [50] that the hsŒ�� theory coupled to an
additional complex scalar field on AdS3 is dual to a specific large-N limit of WN

minimal models on the CFT side. The duality is reviewed in [51].
Since the BTZ black hole can also be generalized to higher spin theories,

new questions arise concerning gauge invariant characterizations of observables—
like in CSG there are gauge symmetries that act on the metric but are not
diffeomorphisms—and black hole thermodynamics (for a review of the proposed
answers see [52, 53]).

An interesting possibility that we will exhibit in the next section—first for
CSG and then for higher spin theories—is to realize higher spin holography for
backgrounds other than AdS3 [17], see [18, 54–56] for explicit constructions.

12.3 Lobachevsky Holography

Lobachevsky holography refers to asymptotic expansions of the line-element of the
form

ds2 D ˙dt2 C d�2 C sinh2 �d'2 C : : : (12.31)

where the ellipsis refers to suitable expressions subleading as � ! 1. Without
subleading terms the line-element (12.31) describes a direct product manifold of the
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two-dimensional Lobachevsky plane H2 (famously depicted by M.C. Escher in his
paintings “Circle Limits”) and a line or S1 corresponding to the time-direction (with
upper sign: Euclidean time). Which subleading expressions are “suitable” depends
on the specific theory.

In [57] boundary conditions suitable for CSG were formulated and their consis-
tency was checked. Performing the Brown–Henneaux type of analysis reviewed in
Sect. 12.2.1 then leads to the asymptotic symmetry algebra

ŒLn; Lm� D .n �m/LnCm C c

12
.n3 � n/ ınCm;0

ŒLn; Jm� D �mJnCm
ŒJn; Jm� D 2k n ınCm;0 : (12.32)

The value of the central charge, c D 24k, is compatible with the limiting case of
warped AdS holography [58]. The algebra above is similar to the AdS asymptotic
symmetry algebra (12.30), with the following differences: there is no second copy
of the Virasoro algebra and no quantum shift by one in the central charge. The
appearance of a single Virasoro algebra and a Ou.1/ current algebra suggests that
the dual field theory, if it exists, is a warped CFT [59]. Some checks and aspects
of this proposal—consistency of canonical charges, one-loop partition function,
identification of non-perturbative states, aspects of the Lobachevsky $ field theory
map—are discussed in [57], but many open issues remain (some of which are also
mentioned in that paper).

Amusingly, the higher spin side of the Lobachevsky story seems more straight-
forward, so let us switch now to higher spin theories. The first explicit example of
non-AdS holography was worked out in [18] for spin-3 gravity (for more details see
[54]). In this example one considers a bulk metric that is asymptotically H2 � R. In
order to succeed it is crucial that the embedding of sl.2/ into sl.3/ yields at least
one singlet under the sl.2/. Otherwise it turns out that one cannot reproduce the
correct dt2 term in the line-element (12.31). The unique viable choice for spin-3
gravity is then the non-principal embedding of sl.2/ into sl.3/ (also called diagonal
embedding). In this way we reproduce (12.31) (up to subleading terms) in the limit
� ! 1.

Besides the sl.2/ part given by the generatorsLi with i D 0;˙1 this embedding
contains the singlet S and “colored” doublets  j̇ with j D ˙ 1

2
. We write the

connections as

a� D Oa.0/� C a.0/� C a.1/� and Na� D ONa.0/� C Na.0/� C Na.1/� : (12.33)

One set of connections reproducing (12.31) in the large � limit is given by

Oa.0/� DL0; Oa.0/' D �1
4
L1; ONa.0/� D �L0; ONa.0/' D �L�1; ONa.0/t D p

3S

(12.34a)
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a.0/' D2�

k

�
3

2
W0.'/S C W C

1
2

.'/ C
� 1
2

� W �
1
2

.'/ �
� 1
2

� L .'/L�1
�
; (12.34b)

Na.0/' D2�

k

�
3

2
NW0.'/S C NW C

1
2

.'/ C
� 1
2

C NW �
1
2

.'/ �
� 1
2

C NL .'/L�1
�
; (12.34c)

Oa.0/t Da.0/� D a
.0/
t D Na.0/� D Na.0/t D 0; (12.34d)

a.1/� DO.e�2�/ D Na.1/� ; (12.34e)

where the Oa.0/� . ONa.0/� / describe the part of the connection that reproduces the

background, a.0/� . Na.0/� / state dependent fluctuations that are of leading order for

large � and a.1/� . Na.1/� / are subleading terms.
As in the example in Sect. 12.2.1, in order to check whether or not the boundary

conditions lead to interesting physics one has to find gauge transformations that
preserve these boundary conditions and check that the resulting canonical boundary
charge is finite at the boundary, nontrivial and conserved in time. After having
determined a canonical boundary charge which satisfies these conditions one can
determine the asymptotic symmetry algebra on the level of Poisson brackets. One
can then replace if�; �g ! Œ�; �� and expand the fields appearing in (12.34) in terms of
their Fourier modes in order to obtain the (semi-classical) symmetry algebra which
determines essential properties of the dual quantum field theory.

In the case of the boundary conditions (12.34) the asymptotic symmetry algebra
obtained this way consists of one copy of the semi-classical (large values of kCS)
W

.2/
3 algebra, also known as Polyakov-Bershadsky Algebra [60, 61] and one copy

of an affine Ou.1/ algebra. This is the anticipated spin-3 generalization of the CSG
result (12.32).

Since the W
.2/
3 algebra is an infinite dimensional, non-linear, centrally extended

algebra one has to introduce normal ordering prescription for the non-linear terms if
we are interested in the regime where kCS is of order one, i.e., in the quantum regime.
The structure constants of the W

.2/
3 algebra are functions of kCS. Hence one has to

check whether or not the algebra still satisfies the Jacobi identities after introducing
normal ordering. And indeed, in order to be compatible with the Jacobi identities,
some of the structure constants and the central charges obtain O.1/ corrections
in the quantum regime. The final result for the asymptotic symmetry algebra for
connections obeying (12.34) is W .2/

3 ˚ Ou.1/.
After having found the quantum asymptotic symmetry algebra of spacetimes that

are asymptotically H2�R one can also ask whether or not there are unitary represen-
tations of this algebra. In the case of Lobachevsky holography it is surprisingly easy
to answer this question. There is only one value of the Chern Simons level kCS where
it is possible to obtain nontrivial unitary representations [18, 54]. The reason why
this question is so easy to answer in this case is because the states that correspond
to descendants of the “colored” doublet have to be absent, otherwise those states
would always have norms with opposite signs spoiling unitarity. This leaves only
two possible values of the level kCS with only one of them leading to a nontrivial
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theory, which can be interpreted as the theory of a free boson with a coupling
constant fixed by an additional gauge symmetry. The generalization of the unitarity
discussion to the full W .2/

N family is more involved, particularly for even N [62].

12.4 Flat Space Holography

The constructions reviewed above are all similar at a technical level. This has two
reasons. First, we were always dealing with some Chern–Simons theory (12.1)
supplemented by suitable boundary conditions (finding the latter was the main
non-trivial task). Second, we were almost exclusively concerned with asymptotic
symmetry algebras and did not specify in detail the precise field theory that is
supposed to be dual to a given gravitational or higher spin theory, other than that
it has to fall into representations of the corresponding asymptotic symmetry algebra
(given that all these symmetry algebras are infinite dimensional and have specific
values of the central charges predicted from the gravity calculation this puts already
a lot of constraints on the dual two-dimensional field theory). In addition, all the
constructions above referred to some curved asymptotic background.

In this section we go beyond this basic scenario, by allowing for non-topological
theories like topologically massive gravity, by attempting to establish a more precise
holographic correspondence to specific field theories, and by studying backgrounds
that are locally and asymptotically flat. In Sect. 12.4.1 we review attempts to
establish precise holographic correspondences between AdS quantum gravity and
specific CFTs, before addressing the flat case in Sect. 12.4.2, where we shall come
back to our starting point, CSG.

12.4.1 Introduction to Three-Dimensional Quantum Gravity
in AdS

Quantum gravity is a notoriously difficult subject. As such, one strategy to tackle
it is to consider toy models capturing some of its salient features. EHG in (2+1)-
dimensions has emerged over the years as an archetypical model for quantum
gravity in general, and AdS/CFT in particular. It differs in important respects from
its (3+1)-dimensional counterpart: it has no bulk propagating degrees of freedom,
and any solution to the equations of motion has constant curvature (i.e. is flat for
vanishing cosmological constant 
 WD �1=`2; for reviews, see e.g. [63–65], and
[66] p. 29 for a chronological list of references). Despite the remarkable observation
that three-dimensional gravity could itself be formulated as a Chern–Simons theory
of the form (12.1) [9, 10, 67] with a gauge group depending on 
, it appeared at
first sight too simple to be able to address the conundrums of quantum gravity.
The situation changed dramatically through a series of seminal contributions in the
negatively curved case 
 < 0 of which we cite three hereafter.
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First, even though there are no bulk degrees of freedom, the presence of an
asymptotic boundary in AdS3 induces boundary degrees of freedom [64]. In
particular, the phase space of AdS3 gravity admits a non-trivial action of the two-
dimensional conformal group with two sets of non-trivial Virasoro charges Lṅ and
non-vanishing central charge given by c˙ D 3`

2G
. This appeared as the first hint of a

deep connection between a gravity theory in AdS space and a conformal field theory
in one dimension less.

Second, the AdS3 phase space happens to contain black hole solutions, the BTZ
black holes [68, 69] with the exciting prospect of addressing questions related to
black hole physics in a simplified setting.

Third, assuming the existence of a dual CFT2 of which BTZ black holes are par-
ticular thermal states, the BTZ Bekenstein-Hawking entropy could be reproduced
by a counting of states using the Cardy formula[70].

Despite these striking and suggestive results, the precise nature of the corre-
sponding dual CFT2 (in pure gravity) remained elusive for another 10 years. In 2007,
Witten revisited the subject and made a concrete proposal for the partition function
of the CFT dual to pure three-dimensional gravity [71]. Assuming holomorphic
factorization (motivated partially by the relation to Chern–Simons theory), he
argued from the BTZ spectrum in AdS3 gravity that the holomorphic part of the
partition function should take the form (with k D c=24 quantized to integers)

Z.q/ D
kX
rD0

arJ.q/
r ; J.q/ D 1

q
C 196884qC � � � (12.35)

where J.q/ is the unique modular-invariant function on the upper half plane, which
is holomorphic away from a single pole at the cusp. Therefore, the requirement that
the partition function be of the form

Z.q/ D Z0.q/CO.q/; Z0.q/ D q�k
1Y
nD2

1

1 � qn ; (12.36)

whereZ0.q/ captures the vacuum descendants and the “O.q/” piece the BTZ black
holes (having L0 > 0), uniquely fixes the form of the partition function. CFTs with
partition functions (12.35) are called extremal, roughly because they have as few
low-lying primaries as possible compatible with modular invariance, and display
remarkable group- and number-theoretic properties.

It happens that AdS3 gravity is simple enough that the quantum gravity partition
function can be explicitly calculated as a sum over geometries. Maloney and
Witten performed this computation [72] and found out that the result could not
be interpreted as a CFT partition function, i.e., as a trace over some CFT Hilbert
space. They concluded that either pure gravity in 2+1 dimensions simply did not
exist quantum mechanically, or that additional contributions should be included.
At any rate, the quantity they computed did not holomorphically factorize, thereby
violating one of the assumptions of [71].
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An alternative emerged few months later under the name chiral gravity [73, 74].
The idea was to modify pure gravity by supplementing if with the gravitational
Chern–Simons term (12.3). The resulting theory is called Topologically Massive
Gravity (TMG) [13, 75] with action

STMG D 1

16�

Z
d3x

p�g �
RC 2

`2

� � 1

8k�
SCSG : (12.37)

One effect of the additional term (12.3) is to shift the values of the (asymptotically)
conserved charges as compared to EHG. For Brown–Henneaux boundary conditions
[76]

�grr D frr

r4
C O.

1

r5
/ �gr˙ D fr˙

r3
C O.

1

r4
/ �g˙˙ D f˙˙ C O.

1

r
/

(12.38)

the corresponding Virasoro charges are given by

Lṅ D 2

`

�
1˙ 1

�`

� Z
einx˙

f˙˙d (12.39)

with the corresponding central extensions [77]

c˙ D
�
1˙ 1

�`

�
3`

2G
: (12.40)

Therefore, at the critical point �` D 1, one copy of the Virasoro algebra has
vanishing central charge. If the theory is unitary then it must be chiral and one
is left with a single copy of the Virasoro algebra. Alternatively, if the theory is non-
unitary one encounters the structure of a specific type of logarithmic CFT where one
chiral part of the stress tensor acquires a logarithmic partner [23, 24]. In the former
case, holomorphic factorization would be explicitly implemented in the resulting
theory, dubbed “chiral gravity” [78] (see also [79]). Chiral gravity (which could
exist as a unitary truncation of the non-unitary logarithmic CFT that is dual to TMG
at the critical point �` D 1) therefore appears as a candidate for the simplest and
potentially solvable model including quantum black holes.

12.4.2 Flat Space Chiral Gravity

The above considerations regarded gravity theories with a negative cosmological
constant. Could a similar logic be used to argue that flat space could be dual to a
field theory of some kind? And if yes, what could it be?



12 Holographic Chern–Simons Theories 325

It is tempting to use as guiding principle the ingredients that led to the first
glimpses of AdS/CFT: asymptotic symmetries. The first caveat is that the asymptotic
structure of flat space is more involved than that of AdS spaces (see e.g. [80]).
However, the structure of its various asymptotic symmetry groups has been studied
over the years, starting with [81]. For the case that will interest us in the following,
the asymptotic symmetries of (2+1)-dimensional gravity at null infinity form the
so-called BMS3 algebra [82], with commutation relations

ŒLm; Ln� D .m � n/LnCm C c1

12
.n3 � n/ ınCm;0 (12.41a)

ŒLm; Mn� D .m � n/MnCm C c2

12
.n3 � n/ ınCm;0 (12.41b)

ŒMm; Mn� D 0 (12.41c)

It is generated by Virasoro generators Ln and supertranslations Mn. The latter are
the modes of diffeomorphisms preserving the following boundary conditions at null
infinity [32]:

guu D huu CO.1
r
/ gur D �1C hur=r CO. 1

r2
/ (12.42a)

gu� D hu� CO.1
r
/ grr D hrr=r

2 CO. 1
r3
/ (12.42b)

gr� D h1.�/C hr�=r CO. 1
r2
/ (12.42c)

g�� D r2 C .h2.�/C uh3.�//r CO.1/ (12.42d)

The flat counterpart of (12.39) is then given by

Mn D 1

16�G

Z
d� ein�

�
huu C h3

�
(12.43a)

Ln D 1

16�G�

Z
d� ein�

�
huu C h3

� C 1

16�G

Z
d� ein�

��
inuhuu C inhur C 2hu� C @uhr� � h3h1 � in@�h1

�
(12.43b)

and the central extensions in (12.41) are computed as[32]2

c1 D 3

�G
; c2 D 3

G
: (12.44)

The phase space defined by the boundary conditions (12.42) contains an interest-
ing two-parameter family of solutions recognized some time ago as the shift-boost
orbifold of flat space [85]:

2It should be straightforward to generalize these results to other massive gravity theories like “new”
massive gravity [83, 84].
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ds2 D 8m du2 � 2drdu C 8j d�du C r2d�2: (12.45)

They represent cosmological solutions (here expressed in Eddington–Finkelstein
coordinates)—in particular, they have a cosmological horizon, an associated
Bekenstein–Hawking entropy and a Hawking temperature [86, 87]. We therefore
have a classical phase space endowed with an action of an infinite-dimensional
BMS3 symmetry, and by analogy with the AdS3 situation, one could expect that
upon quantization states will form representation of that algebra, i.e. quantum
gravity in flat space would be related to a BMS3-invariant field theory. Although
some hints in this direction have been given, it is fair to say these types of field
theories remain relatively unexplored. Some aspects of the representation theory
have been discussed in [88–92]. What is lacking as opposed to the exhaustive
study of two-dimensional CFTs is the presence of concrete examples of such field
theories. We review now a first concrete example of holography in flat spacetimes.

To this end, there is a limit that make our lives easier. Consider

� ! 0 ; G ! 1 keeping �G WD 1

8k
finite: (12.46)

In that limit, the Mn charges become trivial, the central term c2 vanishes and the
BMS3 algebra reduces to a single copy of a Virasoro algebra! This can be further
checked by looking at null vectors in the field theory and observing that in the above
limit, there is indeed a consistent truncation of the representations of the algebra
(12.41) to simply the Virasoro module [32]. On the bulk side, the Bekenstein-
Hawking entropy of the above solutions (taking into account the Chern–Simons
contribution [77, 93–95]) is

S D 8�k
p
2m D 2�

r
c1L0

6
(12.47)

i.e., precisely a chiral half of the Cardy formula. This provides a check on the
correctness of flat space holography.

One can go further. The vacuum flat space solution lies in (12.45) for m D � 1
8

and j D 0, i.e., for L0 D �k D � c
24

, while the cosmological solutions have
L0 > 0. The spectrum therefore share strong similarities with that of AdS3 gravity,
as there is a gap between the vacuum and the first primary state. One can then
follow the same reasoning as Witten, arguing that modular invariance uniquely fixes
the partition function to be of the form (12.35). As a consequence, we can proceed
with a comparison analogous to the one done in [71] for BTZ black holes. Consider
a cosmological solution with L0 D 1, at k D 1. Its (semi-classical) entropy is
SBH D 4� � 12:57. On the other hand, in the expansion (12.35), 196884 is the
total number of states with L0 D 1, representing one descendant of the vacuum
state and 198883 primaries creating the corresponding cosmological solution. The
entropy is thus SCFT D ln 196883 � 12:19, which matches with the geometrical
entropy within a few percents (perfect agreement was not be expected since the
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semi-classical entropy is valid for large k and we used k D 1; the agreement gets
better as k increases). This leads us to conjecture that CSG with the above boundary
conditions—a theory which we call flat space chiral gravity—is dual to a chiral CFT
with c D 24k.

This conjecture can be sharpened by further arguments, which we now present.
The presence of the finite sized gap leads to the expectation that the dual CFT is an
extremal CFT with c D 24k. An important caveat is that such CFTs need not exist
for arbitrary values of k [96, 97], but at least for k D 1 the extremal CFT that could
serve as a gravity dual has been previously identified by Witten [71] as the Monster
CFT [98]. So we can sharpen our conjecture to the following [32]:
Flat space chiral gravity at Chern–Simons level k D 1 is dual to the Monster CFT.
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