
Chapter 10
Higher Spin Black Holes

Alfredo Pérez, David Tempo, and Ricardo Troncoso

Abstract We review some relevant results in the context of higher spin black
holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and
thermodynamic properties. For simplicity, we mainly discuss the case of gravity
nonminimally coupled to spin-three fields, being nonperturbatively described by a
Chern–Simons theory of two independent sl .3;R/ gauge fields. Since the analysis
is particularly transparent in the Hamiltonian formalism, we provide a concise
discussion of their basic aspects in this context; and as a warming up exercise, we
briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black
hole and its thermodynamics, exclusively in terms of gauge fields. The discussion
is then extended to the case of black holes endowed with higher spin fields, briefly
signaling the agreements and discrepancies found through different approaches. We
conclude explaining how the puzzles become resolved once the fall off of the fields
is precisely specified and extended to include chemical potentials, in a way that it
is compatible with the asymptotic symmetries. Hence, the global charges become
completely identified in an unambiguous way, so that different sets of asymptotic
conditions turn out to contain inequivalent classes of black hole solutions being
characterized by a different set of global charges.

10.1 Introduction

Fundamental particles of spin greater than two are hitherto unknown, which from
a purely theoretical point of view, appears to agree with the widespread belief that
massless fields of spin s > 2 are doomed to suffer from inconsistencies. Indeed, the
lore is reflected through a well-known claim in the context of supergravity (see e.g.,
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[1]), which asserts that the maximum number of local supersymmetries is bounded
by eight; otherwise, since the supersymmetry generators act as raising or lowering
operators for spin, a supermultiplet would contain fields of spin greater than two.
In turn, through the Kaluza–Klein mechanism, this also sets an upper bound on the
spacetime dimension to be at most eleven. The supposed inconsistency of higher
spin fields relies on solid no-go theorems (see [2] for a good review about this
subject). In particular, it is worth mentioning the result of Aragone and Deser [3],
which states that the higher spin gauge symmetries of the free theory around flat
spacetime, cannot be preserved once the field is minimally coupled to gravity.

A consistent way to circumvent the incompatibility of higher spin gauge
symmetries with interactions was pioneered by Vasiliev [4, 5], who was able to
formulate the field equations for a whole tower of nonminimally coupled fields
of spin s D 0, 1, 2, . . . , 1, in presence of a cosmological constant (For recent
reviews see e.g., [6, 7]). It is worth pointing out that, since the hypotheses of
the Coleman–Mandula theorem are not fulfilled by Vasiliev theory, spacetime and
gauge symmetries become inherently mixed in an unaccustomed form [8]. It then
goes without saying that the very existence of Vasiliev theory, naturally suggests a
possible reformulation of supergravity theories from scratch, which would may in
turn elucidate new alternative approaches to strings and M-theory. Indeed, in eleven
dimensions and in presence of a negative cosmological constant, a supergravity
theory that shares some of these features, as the mixing of spacetime and gauge
symmetries, is known to exist [9].

In order to gain some insights about this counterintuitive subject, one may
instead follow the less ambitious approach of finding a simpler set up that still
captures some of the relevant features that characterize the dynamics of higher
spin fields. In this sense, the three-dimensional case turns out to be particularly
appealing, since the dynamics is described through a standard field theory with a
Chern–Simons action [10–12]. The generic theory can be further simplified, since
it admits a consistent truncation to the case of a finite number of nonpropagating
fields with spin s D 2, 3, . . . , N . Hence the simplest case with the desired
properties corresponds to N D 3, so that the theory describes gravity with negative
cosmological constant, nonminimally coupled to an interacting spin-three field.
The remarkable simplification of the theory then allows the possibility of finding
different classes of exact black hole solutions endowed with a nontrivial spin-three
field, as the ones in [13, 14], and [15], respectively. However, despite the simplicity
of these solutions, the subject has not been free of controversy, mainly due to the
puzzling discrepancies that have been found in the characterization of their global
charges and their entropy.

The purpose of this brief review, is overviewing some of the relevant results
about this ongoing subject, as well as explaining how the apparent tension between
different approaches is fully resolved once the chemical potentials are suitably
identified along the lines of [15, 16], so that the asymptotic symmetries, and hence
the global charges, are completely characterized in an unambiguous way.

It is worth highlighting that the action principle in terms of the metric and the
spin-three field is currently known as a weak field expansion of the spin-three field
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up to quadratic order [17]. Thus, in order to deal with the full nonperturbative
treatment of the higher spin black hole solutions, it turns out to be useful to describe
them only in terms of gauge fields and the topology of the manifold, without making
any reference neither to the metric nor to the spin-three field.

Since the analysis becomes particularly transparent in the Hamiltonian formal-
ism, in the next section we concisely discuss some of their basic aspects in the
context of Chern–Simons theories in three dimensions. As a useful warming up
exercise, in Sect. 10.3, the asymptotic behaviour of pure gravity with negative
cosmological constant [18], as well as the BTZ black hole [19, 20] and its
thermodynamics, are briefly analyzed exclusively in terms of gauge fields. Section
10.4 is devoted to the case of gravity coupled to spin-three fields, including the
asymptotic behaviour described in [21, 22], the higher spin black hole solution of
[13, 23], and its thermodynamics [24, 25], briefly signaling the agreements and
discrepancies found through different approaches. We conclude with Sect. 10.5,
where it is explained how these puzzling differences become fully resolved once
the fall off of the fields is precisely specified, so that different sets of asymptotic
conditions turn out to contain inequivalent classes of black hole solutions [15, 16]
being characterized by a different set of global charges.

10.2 Basic Aspects and Hamiltonian Formulation
of Chern–Simons Theories in Three Dimensions

In three-dimensional spacetimes, gauge theories described by a Chern–Simons
action are much simpler than their corresponding Yang–Mills analogues, in the
sense that less structure is required in order to formulate them. Indeed, the manifold
M , locally described by a set of coordinates x�, is only endowed with a gauge
field A D AI

�TI dx�, where TI stand for the generators of a Lie algebra g, which is
assumed to admit an invariant nondegenerate bilinear form gIJ D hTI ; TJ i. These
ingredients are enough to construct the action, given by

ICS ŒA� D k

4�

Z
M

�
AdA C 2

3
A3

�
; (10.1)

where k is a constant, and wedge product between forms has been assumed.
Consequently, the action does not require the existence of a spacetime metric, but
it is sensitive to the topology of M . The field equations imply the vanishing of
curvature, i.e., F D dA C A2 D 0, so that the connection becomes locally flat on
shell, and then the theory is devoid of local propagating degrees of freedom. Note
that the action (10.1) is already in Hamiltonian form. Indeed, if the topology of M

is of the form M D ˙ �R, where ˙ stands for the spacelike section, the connection
splits as A D Ai dxi C At dt, and hence the action (10.1) reduces to
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IH D � k

4�

Z
M

dtd2x"ij
˝
Ai

PAj � At Fij
˛

; (10.2)

up to a boundary term. It is then apparent that Ai correspond to the dynamical fields,

whose Poisson brackets are given by
n
AI

i .x/ ; AJ
j .x0/

o
D 2�

k
gIJ"ijı .x � x0/, while

At become Lagrange multipliers associated to the constraints G D k
4�

"ijFij. Then,
the smeared generator of the gauge transformations reads

G .�/ D
Z

˙

d 2x h�Gi ;

so that ıAi D fAi ; G .�/g D @i � C ŒAi ; �� (see, e.g., [26–28]). However, when ˙

has a boundary, according to the Regge–Teitelboim approach [29], the generator of
the gauge transformations has to be improved by a boundary term Q .�/, i.e.,

QG .�/ D G .�/ C Q .�/ ; (10.3)

being such that its functional variation is well-defined everywhere. This implies that
the variation of the conserved charge associated to an asymptotic gauge symmetry,
generated by a Lie algebra valued parameter �, is determined by the dynamical
fields at a fixed time slice at the boundary, which reads

ıQ .�/ D � k

2�

Z
@˙

h�ıA�i d� ; (10.4)

where @˙ stands for the boundary of the spacelike section ˙ .
The transformation law of the Lagrange multipliers, ıAt D @t � C ŒAt ; ��, is

then recovered requiring the improved action to be invariant under gauge transfor-
mations. Note that on-shell, by virtue of the identity L�A� D r� .��A�/ C ��F��,
diffeomorphisms ı�A� D �L�A� are equivalent to gauge transformations with
parameter � D ���A�, and hence, the variation of the generator of an asymptotic
symmetry spanned by an asymptotic killing vector ��, reads

ıQ .�/ D k

2�

Z
@˙

��
˝
A�ıA�

˛
d� : (10.5)

This means that the variation of the total energy of the system, which takes into
account the contribution of all the constraints, is given by

ıE D ıQ .@t / D k

2�

Z
@˙

hAt ıA� i d� : (10.6)

It should be stressed that the whole canonical structure only makes sense
provided the variation of the canonical generators can be integrated. This can be
generically done once a precise set of asymptotic conditions is specified, which in
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turn determines the asymptotic symmetries. This will be explicitly discussed in the
next section for the case of pure gravity with negative cosmological constant, as well
as in Sect. 10.4, and further elaborated in Sect. 10.5 in the case of gravity coupled to
a spin-three field.

10.3 General Relativity with Negative Cosmological
Constant in Three Dimensions

As it was shown in [30, 31] General Relativity in vacuum can be described in
terms of a Chern–Simons action. In the case of negative cosmological constant the
corresponding Lie algebra is of the form g D gC C g�, where g˙ stand for two
independent copies of sl .2;R/, which will be assumed to be described by the same
set of matrices Li , with i D �1; 0; 1, given by

L�1 D
�

0 0

1 0

�
I L0 D

�� 1
2

0

0 1
2

�
I L1 D

�
0 �1

0 0

�
; (10.7)

so that the sl .2;R/ algebra reads

�
Li ; Lj

� D .i � j / LiCj : (10.8)

The connection then splits in two independent sl .2;R/-valued gauge fields, accord-
ing to A D AC C A�, while the invariant nondegenerate bilinear form is chosen
such that the action (10.1) reduces to

I D ICS
�
AC� � ICS ŒA�� ; (10.9)

so that the bracket now corresponds to just the trace, i.e., in the representation of
(10.7), h� � � i D tr .� � � /, and the level is fixed by the AdS radius and the Newton
constant as k D l

4G
. The link between the gauge fields and spacetime geometry is

made through

A˙ D ! ˙ e

l
; (10.10)

where ! and e correspond to the spin connection and the dreibein, respectively. The
field equations, F ˙ D 0, then imply that the spacetime curvature is constant and
the torsion vanishes, while the metric is recovered from

g�� D 2tr
�
e�e�

	
; (10.11)

which is manifestly invariant under the diagonal subgroup of SL .2;R/ � SL .2;R/,
that corresponds to the local Lorentz transformations. Note that diffeomorphisms
can always be expressed in terms of the remaining gauge symmetries.
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10.3.1 Brown–Henneaux Boundary Conditions

As explained in [32], the asymptotic behaviour of gravity with negative cosmolog-
ical constant, as originally described by Brown and Henneaux [18], can be readily
formulated in terms of the gauge fields A˙. The gauge can be chosen such that the
radial dependence is entirely captured by the group elements

g˙ D e˙	L0 ; (10.12)

so that the asymptotic form of the connections is given by

A˙ D g�1˙ a˙g˙ C g�1˙ dg˙ ; (10.13)

where a˙ D a�̇ d� C aṫ dt, read

a˙ D ˙
�

L˙1 � 2�

k
L˙L�1

�
dx˙ ; (10.14)

with x˙ D t
l

˙ � , and the functions L˙ depend only on time and the angular
coordinate.

The asymptotic form of the dynamical fields a�̇ is preserved under gauge
transformations, ıa�̇ D @� �˙ C �

a�̇ ; �˙�
, generated by

�˙ ."˙/ D "˙L˙1 � "0̇ L0 C 1

2

�
"00̇ � 4�

k
"˙L˙

�
L�1 ; (10.15)

where "˙ are arbitrary functions of t , � , provided the functions L˙ transform as

ıL˙ D "˙L 0̇ C 2L˙"0̇ � k

4�
"000̇ : (10.16)

Hereafter, prime denotes the derivative with respect to � . Furthermore, requiring the
components of the gauge fields along time, aṫ , to be mapped into themselves under
the same gauge transformations, together with the transformation laws in (10.16),
implies that the functions L˙ and the parameters "˙ are chiral, i.e.,

@�L˙ D 0 ; @�"˙ D 0 : (10.17)

Note that the first condition in (10.17) means that the field equations have to be
fulfilled in the asymptotic region.

Consequently, according to (10.4), the variation of the canonical generators
associated to the asymptotic gauge symmetries generated by � D �C C ��, in
this case reduces to
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ıQ .�/ D ıQC
�
�C	 � ıQ� .��/ ; (10.18)

with

ıQ˙
�
�˙	 D � k

2�

Z ˝
�˙ıa�̇

˛
d� D �

Z
"˙ıL˙d� ; (10.19)

which can be readily integrated as

Q˙
�
�˙	 D �

Z
"˙L˙d� : (10.20)

Therefore, since the canonical generators fulfill ı�1Q Œ�2� D fQ Œ�2� ; Q Œ�1�g,
their algebra can be directly obtained by virtue of (10.16), which reduces to two
copies of the Virasoro algebra with the same central extension c D 3l

2G
[18].

Expanding in Fourier modes, according to L D 1
2�

P
m Lmeim� , the algebra

explicitly reads

i fLm;Lng D .m � n/LmCn C k

2
m3ımCn;0 ; (10.21)

for both copies.

10.3.2 BTZ Black Hole and Its Thermodynamics

The asymptotic conditions described above, manifestly contain the BTZ black hole
solution [19, 20], being described by

a˙ D ˙
�

L˙1 � 2�

k
L˙L�1

�
dx˙ ; (10.22)

when L˙ are nonnegative constants. Indeed, by virtue of Eqs. (10.10) and (10.11),
the spacetime metric is recovered in normal coordinates:

ds2 D l2



d	2 C 2�

k

�
LC

�
dxC	2 C L� .dx�/2

�

�
�

e2	 C 4�2

k2
LCL�e�2	

�
dxCdx�


: (10.23)

As shown in [33] (see also [34]), the topology of the Euclidean black hole
corresponds to R

2 �S1, where R2 stands for the one of the 	 � 
 plane, and 
 D �it
is the Euclidean time, fulfilling 0 � 
 < ˇ, where ˇ D T �1 is the inverse of the
Hawking temperature. Since R

2 can be mapped into a disk through a conformal
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compactification, the black hole topology is then equivalent to the one of a solid
torus.

As explained in the introduction, and for later purposes, afterwards we will
perform the remaining analysis exclusively in terms of the gauge fields (10.22) and
the topology of the manifold, without making any reference to the spacetime metric.

The simplest gauge covariant object that is sensitive to the global properties of
the manifold turns out to be the holonomy of the gauge field around a closed cycle
C , defined as

HC D P exp

�Z
C

A�dx�

�
; (10.24)

which is an element of the gauge group. Hence, since in this case the gauge group
corresponds to SL .2;R/ � SL .2;R/, the holonomy around C is of the form HC D
H C

C ˝ H �
C , with

HĊ D P exp

�Z
C

A�̇ dx�

�
: (10.25)

As the topology of the manifold is the one of a solid torus, there are two inequivalent
classes of cycles: (I) the ones that wind around the handle, and (II) those that do
not. This means that the former ones are noncontractible, while the latter can be
continuously shrunk to a point. Then, the holonomies along contractible cycles are
trivial, i.e.,

HĊII
D �1 ; (10.26)

where the negative sign is due to the fact that, according to (10.35), we are dealing
with the fundamental (spinorial) representation of SL .2;R/; while the holonomies
along noncontractible cycles HĊI

are necessarily nontrivial. Indeed, it is easy to
verify that this is the case for the gauge fields that describe the BTZ black hole
(10.22). For simplicity, we explicitly carry out the computation in the static case,
i.e., for L WD L˙, since the inclusion of rotation is straightforward.

A simple noncontractible cycle in this case is parameterized by 	 D 	0, and

 D 
0, with 	0, 
0 constants, so that the corresponding holonomies around it read

H ˙
� D e2�a˙� : (10.27)

These holonomies are then fully characterized, up to conjugacy by elements of
SL .2;R/, by the eigenvalues of 2�a�̇ , given by

�2
˙ D 2�2tr

h�
a�̇

	2
i

D 8�3

k
L ; (10.28)

and hence, since L is nonnegative, they are manifestly nontrivial.
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Analogously, a simple contractible cycle is parameterized by 	 D 	0, and
� D �0. Since the holonomies around this cycle are trivial, the conditions in (10.26)
reduce to

H ˙

 D eˇa˙
 D eiˇa˙t D �1 ; (10.29)

and since the cycle winds once, the eigenvalues of iˇat are given by ˙i� , which
equivalently implies that

ˇ2tr
h�

aṫ

	2
i

D 2�2 : (10.30)

Therefore, the triviality of the holonomies around this cycle amounts to fix the
Euclidean time period as

ˇ D l

r
�k

2L
; (10.31)

in full agreement with the Hawking temperature.
Note that the variation of the total energy (10.6) in this case reads

ıE D k

2�

Z
@˙

�˝
aC

t ıaC
�

˛ � ha�
t ıa�

� i	 d� D 4�

l
ıL ; (10.32)

from which, by virtue of (10.31) and the first law, implies that

ıS D ˇıE D ı
�
4�

p
2�kL

�
; (10.33)

which means that the entropy can be expressed in terms of the global charges
(10.20), as

S D 4�
p

2�kL : (10.34)

The black hole entropy found in this way agrees with the standard result obtained
in the metric formalism. Indeed, according to (10.23), in the static case the event

horizon is located at e2	C D 2�
k
L , so that its area is given by A D 4�l

q
2�
k
L , and

hence (10.34) is equivalent to the Bekenstein–Hawking formula S D A
4G

.

10.4 Higher Spin Gravity in 3D

As explained in the introduction, gravity with negative cosmological constant,
nonminimally coupled to an interacting spin-three field can be described in terms of
a Chern–Simons theory [10–12]. The action is then of the form (10.1), and as in the
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case of pure gravity, the corresponding Lie algebra is of the form g D gC C g�, but
where now g˙ are enlarged to two independent copies of sl .3;R/. Both copies of
the algebra will be assumed to be spanned by the same set of matrices Li , Wm, with
i D �1; 0; 1, and m D �2; �1; 0; 1; 2, given by (see e.g., [22])

L�1 D
0
@0 �2 0

0 0 �2

0 0 0

1
A I L0 D

0
@1 0 0

0 0 0

0 0 �1

1
A I L1 D

0
@0 0 0

1 0 0

0 1 0

1
A ;

W�2 D
0
@0 0 8

0 0 0

0 0 0

1
A I W�1 D

0
@0 �2 0

0 0 2

0 0 0

1
A I W0 D 2

3

0
@1 0 0

0 �2 0

0 0 1

1
A ; (10.35)

W1 D
0
@0 0 0

1 0 0

0 �1 0

1
A I W2 D

0
@0 0 0

0 0 0

2 0 0

1
A ;

whose commutation relations read

�
Li ; Lj

� D .i � j / LiCj ;

ŒLi ; Wm� D .2i � m/ WiCm ; (10.36)

ŒWm; Wn� D �1

3
.m � n/

�
2m2 C 2n2 � mn � 8

	
LmCn ;

so that the subset of generators Li span the algebra sl .2;R/ in the so-called principal
embedding.

The invariant nondegenerate bilinear form can also be chosen so that the action
(10.1) reads

I D ICS
�
AC� � ICS ŒA�� ; (10.37)

where A˙ stand for the gauge fields that correspond to both copies of sl .3;R/, and
now the bracket is given by a quarter of the trace in the representation of (10.35),
i.e., h� � � i D 1

4
tr .� � � /. As in the case of pure gravity, the level is also chosen as

k D l
4G

.
It is useful to introduce a generalization of the dreibein and the spin connection,

which relate with the gauge fields according to

A˙ D ! ˙ e

l
; (10.38)

so that the spacetime metric and the spin-three field can be recovered as
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g�� D 1

2
tr

�
e�e�

	 I '��	 D 1

3Š
tr

�
e.�e�e	/

	
; (10.39)

being manifestly invariant under the diagonal subgroup of SL .3;R/ � SL .3;R/,
which corresponds to an extension of the local Lorentz group. The remaining gauge
symmetries are then not only related to diffeomorphisms, but also with the higher
spin gauge transformations. It is worth pointing out that, since the metric transforms
in a nontrivial way under the action of the higher spin gauge symmetries, some
standard geometric and physical notions turn out to be ambiguous, since they are no
longer invariant. This last observation can be regarded as an additional motivation
to explore the physical properties of the theory directly in terms of its original
variables, given by the gauge fields A˙.

10.4.1 Asymptotic Conditions with W3 Symmetries

A consistent set of asymptotic conditions for the theory described above was found
in [21, 22]. Using the gauge choice as in [32], the radial dependence can be
completely absorbed by SL .3;R/ group elements of the form (10.12), so that the
asymptotic behaviour of the gauge fields can be written as in Eq. (10.13), where a˙
are now given by

a˙ D ˙
�

L˙1 � 2�

k
L˙L�1 � �

2k
W˙W�2

�
dx˙ ; (10.40)

and L˙, W˙ stand for arbitrary functions of t , � . The asymptotic symmetries
can then be readily found following the same steps as in the case of pure gravity,
previously discussed in Sect. 10.3.1.

The asymptotic form of the fields a�̇ is maintained under gauge transformations
generated by

�˙ ."˙; �˙/ D "˙L˙1C�˙W˙2 � "0̇ L0 � �0̇ W˙1C1

2

�
�00̇ � 8�

k
L˙�˙

�
W0

C1

2

�
"00̇ � 4�

k
"˙L˙C8�

k
W˙�˙

�
L�1 �

�
�

2k
W˙"˙C7�

6k
L 0̇ �0̇

C �

3k
�˙L 00̇ C 4�

3k
L˙�00̇ � 4�2

k2
L 2˙�˙ � 1

24
�0000˙

�
W�2

� 1

6

�
�000̇ � 8�

k
�˙L 0̇ � 20�

k
L˙�0̇

�
W�1 ; (10.41)

which depend on two arbitrary parameters per copy, "˙, �˙, being functions of t

and � , provided the transformation law of the fields L˙, W˙ reads
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ıL˙ D "˙L 0
˙ C 2L˙"0

˙ � k

4�
"000

˙ � 2�˙W 0
˙ � 3W˙�0

˙ ; (10.42)

ıW˙ D "˙W 0̇ C 3W˙"0̇ � 64�

3k
L 2˙�0̇ C 3�0̇ L 00̇ C 5L 0̇ �00̇ C 2

3
�˙L 000̇

� k

12�
�00000˙ � 64�

3k

�
�˙L 0̇ � 5k

32�
�000̇

�
L˙ : (10.43)

Then, the time component of the gauge fields aṫ , is preserved under the gauge
transformations generated by (10.41), with the transformation rules in (10.42),
(10.43), provided the fields and the parameters are chiral:

@�L˙ D @�W˙ D 0 ; (10.44)

@�"˙ D @��˙ D 0 : (10.45)

As in the case of pure gravity, the chirality of the fields in Eq. (10.44) reflects the
fact that the field equations in the asymptotic region are satisfied.

The variation of the canonical generators that correspond to the asymptotic
symmetries spanned by (10.41) now reads

ıQ˙
�
�˙	 D � k

2�

Z ˝
�˙ıa�̇

˛
d� D �

Z
."˙ıL˙ � �˙ıW˙/ d� ; (10.46)

and then integrates as

Q˙
�
�˙	 D �

Z
."˙L˙ � �˙W˙/ d� : (10.47)

This means that generic gauge fields that fulfill the asymptotic conditions described
here, do not only carry spin-two charges associated to L˙, whose zero modes are
related to the energy and the angular momentum, but they also possess spin-three
charges corresponding to W˙.

The algebra of the canonical generators can be straightforwardly recovered from
the transformation law of the fields in (10.42), (10.43) and it is found to be given by
two copies of the W3 algebra with the same central extension as in pure gravity, i.e.,
c D 3l

2G
. Once the fields are expanded in modes, the Poisson bracket algebra is such

that both copies fulfill

i fLm;Lng D .m � n/LmCn C k

2
m3ımCn;0 ;

i fLm;Wng D .2m � n/WmCn ; (10.48)

i fWm;Wng D1

3
.m � n/

�
2m2 � mn C 2n2

	
LmCn C 16

3k
.m � n/ �mCn

C k

6
m5ımCn;0 ;
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where

�n D
X

m

Ln�mLm ; (10.49)

so that the algebra is manifestly nonlinear.
It has also been shown that once the asymptotic conditions (10.40) are expressed

in a suitable “decoupling” gauge choice, they admit a consistent vanishing cosmo-
logical constant limit, so that the asymptotic symmetries are spanned by a higher
spin extension of the BMS3 algebra with an appropriate central extension [35] (see
also [36]). Related results along these lines, including Hamiltonian reduction [37],
unitarity [38], and the analysis of cosmologies endowed with higher spin fields have
been discussed in [39–42].

10.4.2 Higher Spin Black Hole Proposal
and Its Thermodynamics

It is simple to verify that, for the case of constant functions L˙ and W˙, the asymp-
totic conditions described in the previous subsection do not accommodate black
holes carrying nontrivial spin-three charges. This is because once the holonomies
along a thermal cycle are required to be trivial, the spin-three charges W˙ are
forced to vanish. Thus, with the aim of finding black holes solutions which could
in principle be endowed with spin-three charges, a different set of asymptotic
conditions was proposed in [13] (see Sect. 10.5) and further analyzed in [43, 44].
Indeed, this set includes interesting new black holes solutions, which in the static
case are described by three constants, and the gauge fields are of the form (10.13),
with

a˙ D ˙
�

L˙1 � 2�

k
QLL�1 � �

2k
QW W�2

�
dx˙

C Q�
�

W˙2 � 4�

k
QLW0 C 4�2

k2
QL 2W�2 ˙ 4�

k
QW L�1

�
dx� : (10.50)

The precise form of the SL .3;R/ group elements g˙ D g˙ .	/, which was further
specified in [23], would be needed in order to reconstruct the metric and the
spin-three field according to Eq. (10.39). In the case of sl .3;R/ gauge fields, the
conditions that guarantee the triviality of their holonomies around the thermal circle,
since the representation in (10.35) is vectorial, now read

H ˙

 D eiˇa˙t D 1 ; (10.51)

which turn out to be equivalent to
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tr
h�

aṫ

	3
i

D 0 I ˇ2tr
h�

aṫ

	2
i

D 8�2 : (10.52)

For the gauge fields (10.50), conditions (10.52) reduce to

64� QL 2 Q�
�
32� QL Q�2 � 9k

�
C 27k QW

�
32� QL Q�2 C k

�
� 864�k QW 2 Q�3 D 0 ;

(10.53)

l2�k

2

�
QL � 3 Q� QW C 32�

3k
Q�2 QL 2

��1

D ˇ2 ;

(10.54)

respectively, which for the branch that is connected to the BTZ black hole, being
such that Q� ! 0 when QW ! 0, can be solved for ˇ and Q� in terms of QL and QW ,
according to

ˇ D l

2

s
�k

2 QL
2C � 3

C � 3

�
1 � 3

4C

��1=2

; (10.55)

Q� D 3

4

s
kC

2� QL
1

2C � 3
; (10.56)

where the constant C is defined through

C � 1

C 3=2
D

s
k

32� QL 3
QW : (10.57)

A proposal to deal with the global charges and the thermodynamics of this black
hole solution, being based on a holographic approach, was put forward in [13, 23].
The bulk field equations were identified with the Ward identities for the stress tensor
and the spin-three current of an underlying dual CFT in two dimensions, so that
the integration constant QL was interpreted as the stress tensor, while QW and Q�
were associated to the spin-three current and its source, respectively. According to
this prescription, the first law of thermodynamics implies that the variation of the
entropy should be given by

ı QS D 4�

l
ˇ

�
ı QL � Q�ı QW

�
; (10.58)

which by virtue of (10.55), (10.56) integrates as

QS D 4�
p

2�k QL
r

1 � 3

4C
; (10.59)
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so that the trivial holonomy conditions around the thermal circle agree with the
integrability conditions of thermodynamics.

It is worth mentioning that the black hole entropy formula (10.59) remarkably
agrees with the result found in [45], which was obtained from a completely different
approach. Indeed, the computation of the free energy was carried out directly in
the dual CFT with extended conformal symmetry in two dimensions, exploiting
the properties of the partition function under the S-modular transformation, making
then no reference to the holonomies in the bulk.

These approaches have been reviewed in [46–48], and further results about black
hole thermodynamics along these lines have been found in [49–58].

However, it should be stressed that identifying the integration constants QL and
QW with global charges, appears to be very counterintuitive from the point of view

of the canonical formalism. This is because, in spite of the fact that the components
of the gauge fields along dx˙ for the black hole solution (10.50) agree with the ones
of the asymptotic fall-off in (10.40), once a nonvanishing constant Q� is included,
the additional terms along dx� amount to a severe modification of the asymptotic
form of the dynamical fields a�̇ , so that the expression for the global charges in
Eq. (10.47) no longer applies for this class of black hole solutions. Hence, as shown
in [24], in full analogy with what occurs in the case of three-dimensional General
Relativity coupled to scalar fields with slow fall-off at infinity [59, 60], the effect of
modifying the asymptotic behaviour is such that the total energy acquires additional
nonlinear contributions in the deviation of the fields with respect to the reference
background. Indeed, the variation of the total energy can be obtained directly from
(10.6), which for the case of the black hole solution (10.50), reads

ıE D k

2�

Z �˝
aC

t ıaC
�

˛ � ha�
t ıa�

� i	 d� ;

D 4�

l



ı QL � 32�

3k
ı. QL 2�2/ C Q�ı QW C 3 QW ı Q�


: (10.60)

Note that (10.60) is not an exact differential. This is natural because the
variation of the total energy not only includes the variation of the mass, but also
the contribution coming from all the constraints. Therefore, in order to suitably
disentangle the mass (internal energy) from the work terms, one should provide
a consistent set of asymptotic conditions that allows the precise identification of the
global charges as well as the chemical potentials. This is discussed in Sect. 10.5.
Nonetheless, the expression (10.60) provides a nice shortcut to compute the black
hole entropy, circumventing the explicit computation of higher spin charges and
their chemical potentials [24, 25]. This is because, by virtue of the first law, the
inverse temperature ˇ acts as an integrating factor, being such that the product ˇıE

becomes an exact differential that corresponds to the variation of the entropy, i.e.,

ıS D ˇıE D ı

"
4�

p
2�k QL

�
1 � 3

2C

��1
r

1 � 3

4C

#
; (10.61)
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so that the black hole entropy is given by

S D 4�
p

2�k QL
�

1 � 3

2C

��1
r

1 � 3

4C
: (10.62)

As explained in [25], the entropy (10.62) can be recovered from a suitable
generalization of the Bekenstein–Hawking formula, given by

S D A

4G
cos



1

3
arcsin

�
33=2 'C

A3

�
; (10.63)

which depends on the reparameterization invariant integrals of the pullback of the
metric and the spin-3 field at the spacelike section of the horizon, i.e., on the horizon
area A and its spin-3 analogue:

'
1=3
C WD

Z
@˙C

�
'��	

dx�

d

dx�

d

dx	

d

�1=3

d : (10.64)

It is worth highlighting that, for the static case, and in the weak spin-three field
limit, our expression for the entropy (10.63) reduces to

S D A

4G

�
1 � 3

2

�
g��

	3
'2

��� C O
�
'4

	�ˇ̌
ˇ̌
	C

; (10.65)

in full agreement with the result found in [17], which was obtained from a
completely different approach. Indeed, in [17] the action was written in terms of the
metric and the perturbative expansion of the spin-three field up to quadratic order, so
that the correction to the area law in (10.65) was found by means of Wald’s formula
[61].

Further results about black hole thermodynamics and along these lines have been
found in [53, 54, 62–65], and the variation of the total energy (10.60) has also been
recovered through different methods in [43, 44].

Since the entropy is expected to be an intrinsic property of the black hole, the
fact that the nonperturbative expression for the entropy S in Eq. (10.62) differs
from QS in (10.59) by a factor that characterizes the presence of the spin-three

field, i.e., S D QS �
1 � 3

2C

	�1
, is certainly disturbing. Indeed, curiously, a variety

of different approaches either lead to QS or S , in [13, 45, 52, 58], and [25, 62–64],
respectively, or even to both results [53, 54] for the black hole entropy.

As explained in [24,25], the discrepancy of these results stems from the mismatch
in the definition of global charges aforementioned, which turns out to be inherited
by the entropy once computed through the first law, even in the weak spin-three field
limit.

Nonetheless, some puzzles still remain to be clarified, as it is the question
about how the entropy (10.62) fulfills the first law of thermodynamics in the grand
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canonical ensemble, which is related to whether the black hole solution (10.50)
actually carries or not a global a spin-three charge. This is discussed in the next
Sect. 10.5.

10.5 Solving the Puzzles: Asymptotic Conditions Revisited
and Different Classes of Black Holes

As explained in [15, 16], the puzzles mentioned above become resolved once the
asymptotic conditions are extended so as to admit a generic choice of chemical
potentials associated to the higher spin charges, so that the original asymptotic
W3 symmetries are manifestly preserved by construction. In this way, any possible
ambiguity is removed. This can be seen as follows. At a slice of fixed time,
according to (10.40), the asymptotic behaviour of the dynamical fields is of the
form

a�̇ D
�

L˙1 � 2�

k
L˙L�1 � �

2k
W˙W�2

�
d� ; (10.66)

which is maintained under the gauge transformations �˙, defined through (10.41),
with (10.42) and (10.43). In order to determine the asymptotic form of the gauge
fields along time evolution, note that the field equations Fti D 0 read

PAi D @i At C ŒAi ; At � ;

which implies that the time evolution of the dynamical fields corresponds to a gauge
transformation parameterized by At . Hence, in order to preserve the asymptotic
symmetries along the evolution in time, the Lagrange multipliers must be of the
allowed form (10.41), i.e., aṫ D �˙. Thus, following [15], the chemical potentials
are included in the time component of the gauge fields only, so that the asymptotic
form of the gauge fields is given by

a˙ D ˙
�

L˙1 � 2�

k
L˙L�1 � �

2k
W˙W�2

�
dx˙ ˙ 1

l
�˙.�˙; �˙/dt ;

(10.67)

where �˙, �˙ stand for arbitrary fixed functions of t , � without variation (ı�˙ D
ı�˙ D 0), that correspond to the chemical potentials. Note that, since the
asymptotic form of the dynamical fields (10.66) is unchanged as compared with
(10.40), the expression for the global charges remains the same, i.e., at a fixed t slice,
the global charges are again given by (10.47), so that the asymptotic symmetries are
still generated by two copies of the W3 algebra.

Consistency then requires that the asymptotic form of aṫ , should also be
preserved under the asymptotic symmetries, which implies that the field equations
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have to be fulfilled in the asymptotic region, and the parameters of the asymptotic
symmetries satisfy “deformed chirality conditions”, which read

l PL˙ D ˙ .1 C �˙/L 0
˙ � 2�˙W 0

˙ ;

l PW˙ D ˙ .1 C �˙/W 0
˙ ˙ 2

3
�˙

�
L 000

˙ � 16�

k

�
L 2

˙
	0

�
; (10.68)

and

l P�˙ D ˙ .1 C �˙/ �0̇ ˙ 2�˙"0̇ ;

l P"˙ D ˙ .1 C �˙/ "0̇ � 2

3
�˙

�
�000̇ � 32�

k
�0̇ L˙

�
; (10.69)

respectively, where for simplicity, in Eqs. (10.68), (10.69), the chemical potentials
associated to the spin-two and spin-three charges, given by �˙ and �˙, were
assumed to be constants.

Therefore, by construction, the functions L˙, W˙ are really what they mean,
since their Poisson brackets fulfill the W3 algebra with the same central extension.
Note that this is so regardless the choice of chemical potentials, because the
canonical generators do no depend on the Lagrange multipliers.

The asymptotic conditions given by (10.67) then provide the required extension
of the ones in [21, 22], since the latter are recovered when the chemical potentials
are switched off, i.e., for �˙ D 0, �˙ D 0. In this case, Eqs. (10.68) and (10.69)
reduce to (10.44) and (10.45), respectively, expressing the fact that the fields and the
parameters become chiral.

From a different perspective, the case of �˙ D �1, �˙ D 1 has also been
discussed in [66].

It is worth emphasizing that since the Lagrange multipliers appear in the
improved action through the improved generators (10.3), the interpretation of
�˙, �˙ as chemical potentials, is also guaranteed by construction. Note that
this corresponds to the standard procedure one follows in the case of Reissner–
Nordstrm black holes, where the chemical potential associated to the electric charge
corresponds to the time component of the electromagnetic field, being the Lagrange
multiplier of the U.1/ constraint.

The extended asymptotic conditions (10.67), in the case of constant functions
L˙, W˙ and chemical potentials �˙, �˙, then accommodate a new class of
black hole solutions, endowed not only with mass and angular momentum, but
also with nontrivial well-defined spin-three charges [15]. Their asymptotic and
thermodynamical properties are further discussed in [16], where it is explicitly
shown that for this solution, there is no tension between the different approaches
mentioned above.

Note that in the standard approach for black hole thermodynamics, the tempera-
ture and the chemical potential for the angular momentum do not explicitly appear
in the fields. Instead, they enter through the identifications involving the Euclidean
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time and the angle, so that the range of the coordinates is not fixed and depends
on the solution. The presence of nonvanishing chemical potentials �˙ associated
to the spin-two charges, then allows performing the description keeping the range
of the coordinates fixed once and for all, i.e., 0 � � < 2� and 0 � 
 < 2�l ,
which amounts to introduce a non trivial lapse and shift in the metric formalism.
Both approaches are indeed equivalent, but in the case of higher spin black holes,
since the chemical potentials that correspond to the spin-three charges cannot be
absorbed into the modular parameter of the torus, it becomes conceptually safer to
follow the latter approach, since all the chemical potentials become introduced and
treated unambiguously in the same footing.

Otherwise, for instance, if the chemical potentials were not introduced along the
thermal circles, but instead along additional non-vanishing components of the gauge
fields along the conjugate null directions, as in the case of [13], the asymptotic form
of the gauge fields would be given by

a˙ D ˙
�

L˙1 � 2�

k
QL˙L�1 � �

2k
QW˙W�2

�
dx˙ ˙ �˙ . Q�˙; Q�˙/ dx�;

(10.70)

which severely modifies the components of the dynamical fields a�̇ , in a way that
is incompatible with the asymptotic W3 symmetry. This is because at a fixed t slice,
the terms proportional to Q�˙ contribute to a�̇ with additional terms of the form

a�̇ D
�

L˙1 � 2�

k
QL˙L�1 � �

2k
QW˙W�2

�
C . Q�˙L˙1 C Q�˙W˙2/

C



1

2

�
�4�

k
Q�˙ QL˙ C 8�

k
QW˙ Q�˙

�
L�1 �

�
�

2k
QW˙ Q�˙ � 4�2

k2
QL 2˙ Q�˙

�
W�2



� 4�

k
QL˙ Q�˙W0 ; (10.71)

that are not of highest (or lowest) weight, and hence incompatible with the asymp-
totic conditions (10.67) that implement the Hamiltonian reduction of the current
algebra associated to sl.3;R/ to the W3 algebra. Indeed, in this case, the asymptotic
symmetries that preserve the asymptotic form of a� are shown to be spanned by two
copies of the Bershardsky–Polyakov algebra W 2

3 [67,68], corresponding to the other
non trivial (so-called diagonal) embedding of sl .2;R/ into sl .3;R/ [16]. Therefore,
in spite of dealing with the same action, the effect of this drastic modification
of the boundary conditions amounts to deal with a completely different theory,
being characterized by a different field content, and hence with an inequivalent
spectrum, so that their corresponding black hole solutions, as the one in (10.50),
are characterized by another set of global charges of lower spin.

It is worth pointing out that our procedure to incorporate chemical potentials can
be straightforwardly extended to the case of g˙ D sl .N;R/, regardless the way in
which sl .2;R/ is embedded, as well as to the case of infinite-dimensional higher
spin algebras.
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Some closing remarks are in order. It should be mentioned that the case of three-
dimensional gravity nonminimally coupled with spin-three fields, also appears to
be consistently formulated in the second-order formalism by introducing a suitable
set of auxiliary fields [69]. Besides, in the case of spin-three and higher, consistent
sets of asymptotic conditions have also been proposed in [21, 70, 71], while exact
solutions and their properties have been explored in [72–76]. In the context of higher
spin supergravity in three dimensions, the asymptotic structure was analyzed in [77],
and exact solutions have also been found in [78–80]. Moreover, along the lines
of holography and the corresponding dual CFT theory with extended conformal
symmetry at the boundary [81–83], further interesting results can also be found in
[84–91].
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