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Preface

This book is an edited version of the review talks given in the Seventh Aegean
Summer School on Beyond Einstein’s Theory of Gravity, held in Parikia on Paros
Island, Greece, from 23 to 28 September 2013. The aim is to present an advanced
multiauthored textbook meeting the needs of both postgraduate students and young
researchers, in the fields of gravity, relativity, cosmology and quantum field theory.

In the past few years gravity theories were proposed which can be considered as
extensions of Einstein’s theory of gravity. Their main motivation was to explain the
latest cosmological and astrophysical data on dark energy and dark matter. Advances
in string theory also motivated the study of gravity theories in higher dimensions
and higher curvature. These theories introduced large scale modifications of General
Relativity giving a plethora of new gravity theories based mainly on various forms of
couplings of matter to gravity and to the introduction of high curvature terms in the
gravity action. Also they renewed the interest of the community to the long standing
problem if the graviton has a mass leading to a fast growing field of massive gravity.
Higher spin fields were also motivated leading to the study of higher spin gravity
theories. Finally, motivated by string theory, holography was applied to modified
gravity theories in a hope to understand perplexed strong coupled phenomena using
the gauge/gravity duality.

The selected contributions to this volume discuss the main ideas and models of
modified gravity. The long standing problem of massive graviton is discussed in
detail and the fast growing field of massive gravity is explored. Higher spin theories
and their connection to gravity are discussed and also Chern—Simons theories
are presented and their holographic perspective is explored. Finally, dynamical
processes like scattering amplitudes in gravity are discussed. The aim of this
volume is to introduce postgraduate students and young researchers to these very
challenging topics which constitute modifications of Einstein’s theory of gravity
and recently have attracted much interest.

In the first part of the book modifications of General Relativity at large distances
are discussed mainly due to various forms of matter coupled to gravity and to
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the introduction of higher curvature terms. The first chapter by Thomas Sotiriou
discusses gravity theories with non-minimally coupled scalar fields to demonstrate
the challenges and future perspectives of considering alternatives to general rela-
tivity and reviews the generalized scalar-tensor theories. Next, the second chapter
by Christos Charmousis reviews the recent progress in Lovelock and Horndeski
theories, discusses how the Kaluza-Klein reduction of Lovelock theory can lead
to scalar-tensor actions of the Horndeski type and presents black hole solutions of
these theories. The third chapter by Christof Wetterich discusses the equivalence
of models of modified gravity to couple quintessence and presents a modified
gravity model by introducing a field dependent Planck mass, discussing also its
cosmological implications. Finally the chapter by Shinji Tsujikawa introduces first
an effective field theory of cosmological perturbations, applies it to Horndeski
theories, and also it studies the equations of matter density perturbations based on
Horndeski theory in connection to observations.

In the second part of the book the basic ideas and models of massive gravity
are presented. In the first chapter by Claudia de Rham recent progress on mas-
sive gravity is reviewed. Special emphasis is paid to the ghost problem and its
resolution and also drawbacks on superluminalities and strong coupling and their
consequences are discussed. In the second chapter by Mikhail Volkov black hole
solutions in ghost-free bigravity and massive gravity are presented. The next chapter
by Eric Bergshoeff, Paul Townsend and collaborators introduces a wide class of
three-dimensional gravity models which can be put into “Chern—Simons-like” form
and then specializes these models to general massive gravity. Finally the last chapter
in this part of the book is by Andrew Tolley in which an overview of cosmological
solutions in extensions of massive gravity such as bi-gravity and quasi-dilaton
massive gravity is presented.

The last part of the book deals with high spin theories, Chern—Simons theories
and applications of holography to gravity theories. The first chapter is by Mikhail
Vasiliev in which higher-spin gauge theory is introduced with the emphasis given
on qualitative features of the higher-spin gauge theory and peculiarities of its space-
time interpretation. The chapter by Ricardo Troncoso and collaborators reviews
recent results in higher spin black holes in three-dimensional spacetimes, focusing
for simplicity on the case of gravity nonminimally coupled to spin-3 fields, which
nonperturbatively are described by a Chern—Simons theory. Next the chapter by
Jorge Zanelli presents a review of the role of Chern—Simons forms in gravitation
theories while the chapter by Daniel Grumiller and collaborators shows that
Chern—Simons theories in three dimensions being topological field theories may
have a holographic interpretation for suitable chosen gauge groups and boundary
conditions on the fields. The last two chapters of the book deal with holographic
aspects of gravity theories. The chapter by Marios Petropoulos discusses self-
duality in Euclidean gravitational set ups which allows holographically to relate the
boundary energy-momentum tensor and the boundary Cotton tensor and shows that
this relation results from a topological mass term for gravity boundary dynamics.
The chapter by Diana Vaman discusses stringy excitations of the graviton and using
the AdS/CFT correspondence studies their dynamics.



Preface vii

The Seventh Aegean Summer School and the present book became possible with
the kind support of many people and organizations. The Seventh Aegean Summer
School was organized and supported by Paris-Sud (Orsay) University, University
Francois Rabelais-Tours, Groningen University, and the National Technical
University of Athens. It was sponsored by Paris-Sud (Orsay) University, University
Francois Rabelais-Tours, Groningen University, National Technical University of
Athens, Springer Lecture Notes in Physics, Municipality of Paros and Preservation
Society of the Traditional Settlement of Parikia.

We specially thank the Municipality of Paros and the Preservation Society of the
Traditional Settlement of Parikia for their kind hospitality in the island of Paros and
their support. We also thank George Roussos for his valuable help in organizing the
school in Paros. Without his endless help and support the organization of the Aegean
School in Parikia would have been impossible. The administrative support of the
Seventh Aegean Summer School was taken up with great care by Maria Kazadei
and Katerina Papantonopoulou. We acknowledge the help of Vassilis Zamarias who
designed and maintained the website of the School.

Last, but not least, we are grateful to the staff of Springer-Verlag, responsible
for the Lecture Notes in Physics, whose abilities and help contributed greatly to the
appearance of this book.

Athens, Greece Eleftherios Papantonopoulos
June 2014






Contents

PartI Modification of General Relativity: General
Scalar-Tensor Theories

1  Gravityand Scalar Fields....................oooiiiiiiiiiiiiiiiiiiiie,
Thomas P. Sotiriou

1.1 IntroducCtion.......coovuneuiiee et

1.2 General Relativity and Beyond ...
1.2.1  General Relativity: Basic Assumptions

and UniqUeness ......oovvuuiiieeeiiineeeiiieeeenn.

1.2.2  Less Assumptions Means More Degrees of Freedom! ...

1.2.3  Taming the Extra Degrees of Freedom ....................

1.3 Scalar-Tensor Gravity .........cooovuuieeeeiiiiiieeiiiiiiieeannn.

1.3.1  The Prototype: Brans—Dicke Theory ......................

1.3.2  Scalar-Tensor Theories ...........cccovviiiiiiiiiiiiie...

1.3.3  Hiding the Scalar Field, PartT .............................

1.3.4  The Horndeski Action ............ccevviiiiiiiiiiiiinen...

1.3.5 Hiding the Scalar Field, Part II......................... ...

1.4 Scalar-Tensor Gravity in Disguise ...........oooeeeiiiiiiiiiieeann.

141 f(R) Gravity ....ooiuueeiie i

1.42  Hofava Gravity........cooeiiiiiiiiiiiiiiiiieniiiieeen.

1.5  Scalar Fields Around Black Holes...............cccoiiiiiioaa.

CONCIUSIONS .ttt ettt e e e e e et e e

RefEIONCES .. ..ottt

2 From Lovelock to Horndeski’s Generalized Scalar Tensor Theory ...
Christos Charmousis

2.1 INtrodUCtion.........oiiiiiiii i
2.2 The Lovelock and Horndeski Uniqueness Theorems...............
2.2.1  Lovelock Theory........ooouuiiiiiiiiiiiii i
2.2.2  Horndeski Theory ..........ccceviiiiiiiiiiiiiiiiiieenn.

10
10
12
13
16
17
17
18
19
20
22
23

25
25
29

29
32

ix



Contents

2.3 Seeking Exact Solutions in Lovelock Theory....................... 35
2.4  From Lovelock to Horndeski Theory: Kaluza-Klein Reduction ... 41
2.5 Self-tuningandthe Fab4 ... ... ..o 46
CONCIUSIONS .ttt ettt e e e et et e e 53
RefEIONCES ... et 54
Modified Gravity and Coupled Quintessence ........................... 57
Christof Wetterich
3.1 INtroduCtion......ooineeeit ittt 57
3.2 BasiC Setting....coovuuuiiiit et 59
3.3 0 Weyl Scaling....ooovnniiiiiiiii 61
3.4  Brans-Dicke CoSMOIOZY ...oounnuiiiiiiiiii i 63
3.5  Scalar Tensor MOdels .......oovuuiiiiiiiiiiiiiiiiiiiie s 65
3.6 Slow Freeze Universe .......oovuuuieieiiiiiiiiiiiiiiiee s 69
3.7  Modified Gravity with f(R).....cooueiiiiiiiiiiiiiiiiiiiinens 73
3.8  f(R)-Gravity with Varying Particle Masses ........................ 79
3.9 NON-1ocal Gravity .....vveeeeei e 84
3.10 Higher Derivative Modified Gravity with Second

Order Field EQUations ........coooiiiiiiiiiiii e 86
CONCIUSIONS .ttt ettt e e e et et e e 89
RefEIONCES .. ..ttt 91
The Effective Field Theory of Inflation/Dark Energy and
the Horndeski Theory ........... ..., 97
Shinji Tsujikawa
4.1 IntroducCtion.......coooineiiiit et 97
4.2 The General Gravitational Action in Unitary Gauge

and the Background Equations of Motion .......................... 100
4.3  Second-Order Action for Cosmological Perturbations ............. 105
4.4  Inflationary Power Spectra............cccoviiiiiiiiiiiiiiiiiiennn. 109
4.5 Horndeski Theory ..........ooiiiiiiiiiiii e 113

4.5.1 The Lagrangian of Horndeski Theory ..................... 113

4.5.2  Horndeski Lagrangian in Terms of ADM Variables ...... 116

4.5.3  Conditions for the Avoidance of Ghosts and

Laplacian Instabilities ............cccoviiiiiiiiiiiiiee... 118

4.5.4  Primordial Power Spectra in k-Inflation ................... 120
4.6  Horndeski Theory in the Language of EFT ......................... 121
4.7  Application to Dark Energy............coooviiiiiiiiiiiiiiiinn. 124

4.7.1  Background Equations of Motion.......................... 125

4.7.2  Matter Density Perturbations and Effective

Gravitational Couplings ..........cccoviiiiiiiiiiiiiien... 126

473  Growth of Matter Perturbations............................ 130

CONCIUSIONS .ttt ettt et e e e ettt e e 132

R OIENCES .. et 133



Contents xi

PartII Massive Gravity

5

Introduction to Massive Gravity ...............ccooiiiiiiiiiiiiinninnn. 139
Claudia de Rham
5.1  Gravitational Waves and Degrees of Freedom ...................... 139
S5.1.1  Polarizations ..........ccooeeiiiiiiiiiiiiiiiiiiii i, 139
5.1.2  Implications of the BD Ghost................ooovieea. 141
5.2 Consistent Modifications of Gravity From Extra Dimensions ..... 142
52.1 DBI-Galileon ........ccoiiiiiiiiiiiiiiiiiiiii i 142
5.2.2  Massive Gravity .....ooovveiiiiiiiiiiiiiieiiiiiiiiieeenn. 144
5.3  Deconstruction and Massive Gravity ..........cc.ooveeeieiiiinnn.. 146
53,1 Gauge-Fixing .......cooiiiiiiiiiiiiiiiiiiiiiiiiiiie e 146
5.3.2  From 5d Gravity to 4d Multi-Gravity...................... 147
5.3.3  Generalized Mass Term ...........cccoooviiiiiiiieiin.n. 148
5.3.4  Strong Coupling Scale.........cccovviiiiiiiiiiiiiieenn. 149
535 Bi-Gravity......oooiiiiiiiiiiiii 150
5.3.6 Massive Gravity .....ooovveiiiiiiiiiiiiieiiiiiiiiieeenn. 150
5.4  Absence of Boulware—Deser Ghost .................ccoiiiiiin.n. 151
54.1 ADMLaAN@uage.......oovvuiiiiiiiiiiiiii e 151
54.2  Decoupling Limit.........oooeiiiiiiiiiiiiiiiiiiiiiiean. 152
5.5  Vainshtein Mechanism .............oooiiiiiiiiiiiiiiiii i 154
5.5.1 Redressed Coupling ..........ccevviiiiiiiiiiiiiiieeennn. 155
5.5.2  Superluminalities ............ccoeviiiiiiiiiiiiiiiiiian, 156
5.6  Summary and Outlook ...........o.eiiiiiiiiiiiiiiii 158
References.......vvii i 158
Hairy Black Holes in Theories with Massive Gravitons................ 161
Mikhail S. Volkov
6.1  Black Holes and the No-Hair Conjecture ........................... 161
6.2  Theories with Massive GravitonS..............eeeeeeiieeieeeeeeeeens 163
6.3  Ghost-Free Bigravity ..........oooiiiiiiiiiiiiiiiiiiic e 164
6.4  Proportional Backgrounds ... 167
6.5  Solutions with Non-Bidiagonal Metrics ............................ 168
6.5.1  Imposing the Consistency Condition ...................... 170
6.6  Hairy Black Holes, Lumps, and Stars ....................ooooii 171
6.7  Black Hole Stability and New Hairy Black Holes.................. 175
Concluding Remarks........ ... 177
R OIENCES . . . . 177
Chern-Simons-Like Gravity Theories ..............................o.. 181

Eric A. Bergshoeff, Olaf Hohm, Wout Merbis, Alasdair J.
Routh, and Paul K. Townsend

7.1 Introduction: CS-Like Gravity Theories ............................ 181
7.2 Hamiltonian Analysis ......... ..ot 184
7.2.1  Poisson Brackets and the Primary Constraints ............ 184

7.2.2  Secondary CONStraints.........ccoeviuueieeennnnneeeeennn. 187



xii

9

Contents
7.3 Specific EXamples .......oooeiiiiiiii i 189
7.3.1  Einstein-Cartan Gravity ............ooooeeeiiiiiiiieeeennnn. 189
7.3.2  General Massive Gravity .........oovvieeeeiiniineeeennnn. 190
7.3.3  Zwei-Dreibein Gravity .........ccoooiiiiiiiiiiiiiiiiian. 192
7.3.4  General Zwei-Dreibein Gravity ..............oooeeeeeea.nn. 198
CONCIUSIONS ...ttt e 200
References......o.oviiii i 201
Cosmological Applications of Massive Gravity.......................... 203
Andrew J. Tolley
8.1  Introduction and Motivations ..............cccooeviiiiiiiiieiinn... 203
8.1.1  DGP: The Quintessential IR Modification ................ 204
8.1.2 IR Modifications of Gravity...........ccooevuueeeeeinnnnnn. 206
8.2 Ghost-Free Massive Gravity ..........oovveiiieiiiiiiiieeeennnnnn. 208
82.1 TheModel ......cooviiiiiiiiiiiiiiii i 208
8.2.2  Decoupling Limit Cosmology .........c..coouveeieiiiinnnn. 210
8.3  Cosmology of Massive Gravity..........oooeeeeiiiiiiiieeeennnnnnn. 212
83.1 ANo-Goand WaysOut.........oovviiiiiiiiiieiiniinnnn. 212
8.3.2  EXENSIONS ....ovuiiiiiiiiiiiiii i 216
84 SUMMAIY ..ottt e 221
References.......viii i 221
Part III Further Modifications at Large Distances
Higher-Spin Theory and Space-Time Metamorphoses................. 227
M.A. Vasiliev
9.1 INErOAUCHON ...ttt eeeeeees 227
9.2  Lower-Spin Global Symmetries ...............ccoviiiiieiiiin.. 228
9.3  Local Symmetries ........ccooviuiiiiieiiiiiiie e 229
9.3.1 Yang-MillsFields .............cooiiiiiiiiiiiiiiin. 230
9.3.2  Einstein—Cartan Gravity and Supergravity ................ 230
9.3.3  Spontaneous Symmetry Breaking ......................... 231
9.4  General Properties of HS Theory...............c...ooiiiii. 231
9.4.1 FronsdalFields ............ooooiiiiiiii 232
9.4.2 No-GoandtheRoleof (A)dS..........ccoovviiiiiiia..t. 232
9.4.3 HS Symmetries Versus Riemannian Geometry ........... 233
9.4.4  HS Gauge Theory, Quantum Gravity and
String Theory ... 234
9.4.5 HS AdS/CFT Correspondence............c.oeevueennenn.. 234
9.5 Global HS Symmetry: Idea of Construction ........................ 234
9.5.1 Auxiliary Problem ... 235
9.5.2  Massless Scalar Field Unfolded............................ 236
053  ANY d it 237
9.6  Conformal HS Algebraind =3 ........coocoiiiiiiiiiiiiiiin., 237
9.6.1  3d MUltiSPINOIS....uueeneeieteiei i 237

9.6.2  Spinorial Form of 3d Massless Equations ................ 238



Contents xiii

10

11

9.63 3d HS Symmetry .......occvvueiiniiiiiiiiiiiianieanne. 238
9.6.4  Weyl Algebra and Star Product ............................ 239
9.7  HS Symmetry in AdSs ...cooovi 240
9.7.1  Spinor Language in Four Dimension ...................... 240
972 AdS;HS Algebra ... 241
9.8  Free HS Fields in Four Dimension ......................oooiii 243
9.8.1  Vacuum Solution .............ccoiiiiiiiiiiiiiiiiiiean. 243
9.9  Nonlinear Higher-Spin Theory .................cooiiiiii, 245
9.9.1 Ideaof Construction ............cccovviuiiieeiiiinneeeennnn. 245
9.9.2 HSStarProduct..............oooiiiiiiiiiii i 247
9.9.3  The Full Nonlinear System..................c.oooieee.nn. 248
9.9.4  Properties of HS Interactions .....................ooeennn. 250
9.10 Unfolded Dynamics .........cooiuiiiiiiiiiiiieiiiii e 251
9.10.1 General Setup ......covviiiiiiii it 251
9.10.2  Properties ..........ceeiviiiiiiiiiiiiiiie e 253
9.11 Space-Time Metamorphoses............ooviiiiiiiiiiiiiieenninn.. 253
9.11.1 AdS4/CFT5 HS Holography ..........cccceieiiiinnnan... 254
9.11.2 sp(8) Invariant Setup .........cccevvieiiiiiiiiiiienian.n. 256
9.12  HS Theory and Quantum Mechanics.....................oooiiiit 259
9.13 To String Theory via Multiparticle Symmetry ...................... 260
Summary and Conclusion .............oooiiiiiiiiiiiiii i 260
References......ooon 262
Higher Spin Black Holes ... 265
Alfredo Pérez, David Tempo, and Ricardo Troncoso
10.1 IntroducCtion.........cooieuueiteeiiii e e e 265
10.2 Basic Aspects and Hamiltonian Formulation
of Chern—Simons Theories in Three Dimensions................... 267
10.3  General Relativity with Negative Cosmological
Constant in Three Dimensions.............c.oooiiiiiiiiiiieeann.. 269
10.3.1 Brown-Henneaux Boundary Conditions .................. 270
10.3.2 BTZ Black Hole and Its Thermodynamics................. 271
10.4 Higher Spin Gravity in 3D ... 273
10.4.1 Asymptotic Conditions with W3 Symmetries ............. 275
10.4.2 Higher Spin Black Hole Proposal
and Its Thermodynamics ................oovvviiieean..... 277
10.5 Solving the Puzzles: Asymptotic Conditions Revisited
and Different Classes of Black Holes ............................... 281
References......oovni i 284
Chern-Simons Forms and Gravitation Theory ......................... 289
Jorge Zanelli
I1.1 IntroducCtion.........coouueieeiiiiii e 289
11.2  Chern—Simons Forms in Physics ... 290
11.2.1 Construction of CS Forms...................oooiiit. 291
11.2.2 Gravitation and Diffeomorphism Invariance .............. 293

11.2.3 Lorentz Transformations ...............ccoviiiiiiiinnennn... 295



Xiv

12

13

Contents
11.3  First Order Gravity .........oeeeeiiiiiieeeeiiiiiiieeiiiiiiieeeanns 295
11.3.1 The Vielbein ........ovviiiiiiiiiiiiiiiiiiiiiiiiiiieeeens 296
11.3.2 The Lorentz CONNECtioN.........vvvvrrrieeirieeeeeeeeennnns 297
11.3.3 Lorentz Invariant TeNSOTS .........vvvvviiiiiiireieeeeennnns 297
11.3.4  CUIVAUIC. ..ottt eeeeeeeeeeeens 298
T1.3.5  TOTSION Lttt eeeeeeeeeees 298
11.3.6 Bianchi Identities ............vvviiiiiiiiiiiiiiiiiiinennnnnns 299
114 Gravity ACHONS . ..ceennnttttt ettt e 299
11.4.1 Lorentz-Invariant Lagrangians .................c.ooooee... 300
11.4.2 Lovelock Theories .....uvvvuriiiiiiiiiiiiieeeeennns 301
11.4.3 Torsional Series.........uvvrriiiiiiiiiiiieiieeiieeeeennns 302
11.4.4 Chern—Simons Series...........evvrrrrrieeirerereeeeeeenns 303
11.4.5 Dynamical Content of Lovelock Theory .................. 303
11.4.6 Euler-CS Forms and the Extension of Lorentz
SYMMELTY <ttt 305
T1.5  SUMMATY .ttt e 308
R I EINICES . . . e 309
Holographic Chern—-Simons Theories .....................coooiiiiii 311
H. Afshar, A. Bagchi, S. Detournay, D. Grumiller,
S. Prohazka, and M. Riegler
12,1 INtrodUCHON ... vt 311
12.2  Anti-de Sitter Holography ...........cccoiiiiiiiiiiiiiiiiiiiennn. 313
12.2.1 Conformal Chern—Simons Gravity ...................o.... 314
12.2.2 Higher Spin Theories ............cceeviiiiiiiiniiiee... 318
12.3  Lobachevsky Holography ............cccoviiiiiiiiiiiiiiiiiiienn. 319
12.4  Flat Space Holography .........cooviuiiiiiiiiiiiiiiiiiiiiiie e, 322
12.4.1 Introduction to Three-Dimensional Quantum
Gravity in AdS ... 322
12.4.2  Flat Space Chiral Gravity .........cccoovviiiiiiiiiinnee... 324
R OIEINCES . . . 327
Gravitational Duality, Topologically Massive Gravity and
Holographic Fluids ... 331
P. Marios Petropoulos
13,1 INtrodUCHON .. ..t 331
13.2  The Ancestor of Holography ..........cccoiiiiiiiiiiiiiiiiiienn. 333
13.2.1 Curvature Decomposition and Self-Duality ............... 333
13.2.2 The Filling-In Problem ..., 336
13.2.3 A Concrete Example .............ccoiiiiiiiiiiiiii.. 337
13.3  Weyl Self-Duality from the Boundary ....................oooeea. 339
13.3.1 The Fefferman—Graham Expansion........................ 340

13.3.2 Self-Duality and Its Lorentzian Extension ................ 342



Contents

14

13.4  Application to Holographic Fluids ...............cccooiiiiiiaa.
13.4.1 Fluids at Equilibrium in Papapetrou—Randers
Backgrounds ..........cooiiiiiiiiii
13.4.2  Perfect-Cotton Geometries and Their Bulk
Ascendants ...
13.5 Monopolar Boundaries and Topologically Massive Gravity .......
13.6 OUtlOOK ..t
Appendix 1: On Vector-Field Congruences ...........c.c.oooveeieeiinnne.
Appendix 2: Papapetrou—Randers Backgrounds and Aligned Fluids .....
References.......oviii i

Beyond Supergravity in AdS-CFT: An Application

toJetQuenching........... ...
Diana Vaman
14.1 A Brief Introduction and OVerview ..............c.ooeeviieiennn...
14.2 Basic Framework and the Jets We Study ..................oooeei.
14.2.1  NOtAtION c.uveitti it
14.2.2 Review of A=oco Results..........coooeviiiiiiiiiinan..
14.2.3 Determining the Importance of Corrections...............
14.2.4 The Choice of Source Operator ............cccovvvuuueen...
143 The R* COITECtion ..........c.ueveeineineineieieieieieeeeaene
14.3.1 R* Term in the Ten-Dimensional Supergravity Action ...
14.3.2 The ¢ Equation of Motion .............coeviiiiiine...
14.3.3 The WKB Approximation and the
Point-Particle Approximation ...............c.c.ooveuueee...
14.3.4 The Relative Importance of the C* Correction ...........
14.4 The D?"R* COITECtioNS .......ovvveeineineieieieieieeeeaee
14.4.1 Review: 4-Point String Amplitude.........................
1442 Factorsof o/ QQ ...c.oooinniiiiiiii i
14.4.3 The Dominant Factors..............c..oooiiiiiiine..
14.5 Higher Powers of Curvature ............ccooviiiiiiiiiiiiieeennn.
14.6 Discussion of 1/+/A Expansion and Reasons for Its Failure.......
14.7 The Penrose Limit..........cooiuiiiiiiiiiiiiiiiiiiiiii e,
14.8 Quantizing the Falling Closed String............ccccovviiiieeennn.
14.8.1 OVEIVIEW ..ottt
14.8.2  Solution of the Time-Dependent Harmonic
OsCillators......ooviuiiiii i
14.8.3 The Size of the String at Late Times.......................
14.9  DISCUSSION .. .uuttitiitt ettt e
Appendix 1: What Happens forz 3> 2,7 .......ooooiiiiiiiiiii.
Appendix 2: Why (14.46) Cannot Precisely Determine Afsqp ...........

Appendix 3: Other Higher-Derivative Terms ..............ooooeeiiiiin..

XV



XVi

Contents
Appendix 4: Large & Behavior of C(&)..........coooiiiiiiiiiiiiiiiin... 417
Appendix 5: A Back-of-the-Envelope Estimate ......................o..... 418
Appendix 6: Checking the Penrose Limit: Details ......................... 420
RefEIONCES .. ..ttt 423



Part I
Modification of General Relativity:
General Scalar-Tensor Theories



Chapter 1
Gravity and Scalar Fields

Thomas P. Sotiriou

Abstract Gravity theories with non-minimally coupled scalar fields are used as
characteristic examples in order to demonstrate the challenges, pitfalls and future
perspectives of considering alternatives to general relativity. These lecture notes can
be seen as an illustration of features, concepts and subtleties that are present in most
types of alternative theories, but they also provide a brief review of generalised
scalar-tensor theories.

1.1 Introduction

The predictions of general relativity are in impressive agreement with experiments
whose characteristic length scale ranges from microns (jLm) to about an astronom-
ical unit (AU). On the other hand, the theory is expected to break down near the
Planck length, /, ~ 1.6 x 107* m, and a quantum theory of gravity is needed
in order to adequately describe phenomena for which such small length scales are
relevant. There are really no gravitational experiments that give us access to the
region between the Plack length and the micron, so one has to admit that we have
no direct evidence about how gravity behaves in that region.!

It was perhaps much more unexpected that experiments probing length scales
much larger than the solar system held surprises related to gravity. General
relativity can only fit combined cosmological and galactic and extragalactic data

"However, one can infer certain properties of gravity indirectly. Matter couples to gravity and we
understand and probe the structure and behaviour of particles and fields at scales much smaller
than the micron, so if one is given a model that describes how gravity interacts with matter then
one could in principle gain insight into some aspects of gravity through the behaviour of matter.
Applying this logic to the quantum aspects of gravity has given rise to what is called Quantum
Gravity Phenomenology [1, 2]. The fact that the gravitational coupling is very weak poses a
particular challenge in such an approach, but smoking gun signals can still exist in certain models.
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well if there is a non vanishing cosmological constant and about six times more
Dark Matter—matter which we have so far detected only through its gravitational
interaction—than visible matter (see, for instance, [3]). Moreover, the value of
the cosmological constant has to be very small, in striking disagreement with any
calculation of the vacuum energy of quantum fields, and mysteriously the associated
energy density is of the same order of magnitude as that of matter currently [4, 5].
These puzzles have triggered the study of dynamical Dark Energy models, that come
to replace the cosmological constant.

Since general relativity is not a renormalizable theory, it is expected that
deviations from it will show up at some scale between the Planck scale and the
lowest length scale we have currently accessed. It is tempting to consider a scenario
where those deviation persist all the way to cosmological scales and account for
Dark Matter and/or Dark Energy. After all, we do only detect these dark component
through gravity. However, there is a major problem with this way of thinking.
There is no sign of these modifications in the range of scales for which we have
exhaustively tested gravity. So, they would have to be relevant at very small scales,
then somehow switch off at intermediate scales, then switch on again at larger scales.
It is hard to imagine what can lead to such behaviour, which actually contradicts
our basic theoretical intuition about separation of scales and effective field theory.
Nonetheless, intuition is probably not a good enough reason to not rigorously
explore an idea that could solve two of the major problem of contemporary physics
at once. This explain the considerable surge of interest in alternative theories of
gravity in the last decade or so.

Considering alternatives to a theory as successful as general relativity can be
seen as a very radical move. However, from a different perspective it can actually
be though of as a very modest approach to the challenges gravity is facing today.
Developing a fundamental theory of quantum gravity from first principle and
reaching the stage where this theory can make testable predictions has proved to
be a very lengthy process. At the same time, it is hard to imagine that we will
gain access to experimental data at scales directly relevant to quantum gravity any
time soon. Alternative theories of gravity, thought of as effective field theories, are
the phenomenological tools that provide the much needs contact between quantum
gravity candidates and observations at intermediate and large scales.

The scope of these notes is to briefly review the challenges one in bound to
face when considering alternatives to general relativity and discuss various ways to
overcome (some of) them. Instead of providing rigorous and general but lengthy
arguments, I will mostly resort to the power of examples. The examples will
be based on gravity theories with additional scalar degrees of freedom, so these
notes will also act as a brief review of generalised scalar-tensor theories and their
properties.

I have made extensive reference to various length scales in the arguments pre-
sented so far and one can rightfully feel uncomfortable talking about length scales
when it comes to gravity. The strength of the gravitational interaction has to do
with curvature and lengths are not even invariant under coordinate transformations.
Indeed, the Planck length can only be understood as a fundamental invariant length
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as the inverse of the square root of a fundamental curvature scale (which has
dimensions of 1 over a length square). In this spirit, it would be preferable to
talk about the range of curvatures in which we have tested gravity. Actually, the
experiments that span the range of lengths pm-AU all lie in a very narrow band
of curvatures. This is not so surprising, as they are all weak-field experiments.
This applies to binary pulsars as well as, even though the two companions that
form the binary are compact enough to exhibit large curvatures in their vicinity,
the gravitational interaction between them is still rather weak as the two stars are
not close enough to be in the region of strong curvature. Hence, if we think in
terms of curvatures, the range in which we have tested general relativity appears
even more restricted. Neutron stars and stellar and intermediate mass black holes
can exhibits curvatures which are many orders of magnitudes larger than the usual
weak-field experiments. It is, therefore, particularly interesting to understand the
structure of such objects and the phenomena that take place in their vicinity in
alternative theories of gravity. They are most likely the new frontier in gravitational
physics.

The rest of these notes is organised as follows: In Sect.1.2 I lay out the
basic assumption of general relativity and very briefly (and intuitively) discuss
the consequences of relaxing these assumptions. The main scope of this section
is to give an idea of what alternative theories of gravity are about and what
kind of problems one usually faces when deviating from general relativity. In
Sects. 1.3 and 1.4 I attempt to support the statements made in the previous section
by considering characteristics examples from (generalised) scalar-tensor gravity
theories. Section 1.5 focuses on black hole physics in scalar-tensor gravity. The
final section contains conclusions.

1.2 General Relativity and Beyond

1.2.1 General Relativity: Basic Assumptions and Uniqueness

The action of general relativity is

1

—_ 4 — _
~ 167G /d XV=8(R=2A) + Sn(guw. V). (1.1)

where G is Newton’s constant, g is the determinant of the spacetime metric g;.,, R is
the Ricci scalar of the metric, A is the cosmological constant, and S, is the matter
action. ¥ collectively denotes the matter fields, which are understood to couple
minimally to the metric.

Coupling the matter fields ¥ only to the metric and with the standard prescription
of minimal coupling guaranties that the Einstein Equivalence Principle is satisfied.
That is, test particles follow geodesics of the metric and non-gravitational physics
is locally Lorentz invariant and position invariant [6]. The reason why the last two
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requirements are satisfied once matter is minimally coupled is that in the local frame
the metric is flat to second order in a suitably large neighborhood of a space-time
point and S, reduces to the action of the Standard Model. It is worth elaborating a
bit more on universality of free fall and how this is related to the form of the matter
action.

Consider the stress-energy tensor 7),, of a pressure-less fluid, usually referred to
as dust. An infinitesimal volume element of such a fluid is as close as one can get
to a test particle. A rather straightforward calculation reveals that the conservation
of the stress-energy tensor, V#T,, = 0, implies that the 4-velocity of the fluid
satisfies the geodesic equation. Thatis, V#T),,, = 0 implies that test particles follow
geodesics. On the other hand, the conservation of the stress-energy tensor can be
shown to follow from diffeomorphism invariance of the matter action S,,, provided
that the matter fields are on shell (they satisfy their field equations).

Let £* be the generator of a diffeomorphism and .#; denote the associated Lie
derivative. Diffeomorphism invariance of the matter action implies

LS =0. (1.2)

One can express the action of the Lie derivative in terms of functional derivatives of
S,» with respect to the fields, i.e.

8Sm A
Wy — =0. L.
o 2e8" + Gty =0 (1.3)

However, 6S,,/8y = 0 are actually the field equations for . So, on shell we have

8Sm
sghy

Zg" =0. (1.4)

With the usual definitions for the stress-energy tensor and for the action of a Lie
derivative on the metric and after some manipulations, the above equation can take
the form

/d%ﬁnﬁﬂg“ =0. (1.5)

Finally, integrating by parts and taking into account that £* vanishes at the boundary
yields

/d4x¢Tg(VMTMV)gV =0. (1.6)

Since, &* is a generic diffeomorphism, Eq. (1.6) implies that V#T,,, = 0.
In conclusion, diffeomorphism invariance of the matter action allows one to
link geodesic motion with the requirement that the matter fields are on shell. An
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important assumption here is that there is no field other than the metric that couples
to the matter fields y and at the same time enters the gravitational action as well.
This assumption is reflected in the condition that §S,,/8% = 0, i.e. all fields other
than the metric are on shell. If there were a field, say ¢ entering both S,, and the
gravitational action, then §S,,/8¢ = 0 would not actually be its field equation and
it would not be sensible to impose it as a condition by assuming that this field is on
shell.

One more point that is worth stressing is that in the arguments and calculations
shown above one only makes reference to the matter action. This implies that they
are not specific to general relativity. Instead, they will apply to any theory in which
the matter couples only to the metric through minimal coupling.

In conclusion, the requirement to satisfy the Einstein Equivalence Principle,
which has been experimentally tested to very high accuracy, pins down the matter
action and the coupling between matter and gravity. What is left is to argue why the
dynamics of g,, should be governed by the first integral in Eq. (1.1), known as the
Einstein—Hilbert action. Luckily, this requires less work as Lovelock has provided
us with a theorem [7, 8] stating that this is indeed the unigue choice, provided that
the following assumptions hold true:

. The action is diffeomorphism-invariant;

. it leads to second-order field equations for the metric;

. we are restricting our attention to four dimensions;

. no fields other than the metric enter the gravitational action.

RENEROS I S

1.2.2 Less Assumptions Means More Degrees of Freedom!

We now consider what would be the implications of giving up one of the assump-
tions listed above. Let us start by relaxing the assumption that the gravitational
action depends only on the metric, and allow a dependence on a new field ¢.
Obviously, we would need to dictate how the gravitational action depends on ¢
in order to pin down the theory we are considering. However, as it should be clear
from the analysis in the previous section, if we were to allow this new field to enter
the matter action and couple to the matter fields then we would have violations of
the Einstein Equivalence Principle and signatures of this coupling would appear in
non-gravitational experiments. Constraints on universality of free fall, local Lorentz
symmetry in the matter sector, and deviations from the standard model in general
are orders of magnitude more stringent than constraints coming from gravitational
experiments. This explains why in the literature the common approach is to assume
that any new fields do not enter the matter action, or at least that the coupling
between these field and matter is weak enough to be irrelevant at low energies.
We will follow the same line of thought in what comes next. It should, however,
be clear that if there are new fields in the gravity sector at the classical level, then
one would expect that quantum corrections will force them to couple to the matter
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fields. Hence, a consistent theory should actually include a mechanism that naturally
suppressed the coupling between these new fields and matter. This is required in
order to theoretical justify what phenomenologically seems to be the only option.

A thorny issue is that of field redefinitions. Note that all of the assumptions,
conditions, and requirements discussed above, should in principle be posed as “there
exists a choice of fields where. .. ”. This becomes particularly relevant when one has
extra fields mediating gravity. Suppose, for instance, that ¢ does couple to matter
but in such a way that one can introduce a new metric, g,,, which can be given
in closed form in terms of g,, and ¢ (and potentially its derivatives), so that matter
actually couples minimally to g, . Then, the whole theory can be re-written in terms
of g,.» and ¢ and the matter action will be the conventional one with matter coupling
only to a metric with minimal coupling.

What would happen if we kept the field content unchanged and we instead
relaxed any of the other three assumptions of Lovelock’s theorem?

We could consider more than four-dimensions. However, so far we experimen-
tally detect only 4. Moreover, as long as we are interested in low energies and a phe-
nomenological description, one is justified to expect that for any higher-dimensional
theory there exist a four-dimensional effective theory. If this theory is not general
relativity, then it will have to contradict one of the other three assumptions. Going
beyond the four-dimensional effective description will be necessary in order to
explain various characteristics of the theory which might seems ad hoc or unnatural
when one is judging naively based on the four-dimensional picture (e.g. why
the action has a certain form or why some couplings have specific values). But
the four-dimensional effective description should usually be adequate to discuss
low-energy phenomenology and viability.

If we were to allow the equation of motion to be higher than second order
partial differential equations (PDEs), then we would be generically introducing
more degrees of freedom. This can be intuitively understood by considering the
initial data one would have to provide when setting up an initial value problem in this
theory (assuming that an initial value problem would be well posed). For instance,
consider for simplicity a fourth order ordinary differential equation: to uniquely
determine the evolution one would need to provide the first 3 time derivatives as
initial data. So, a theory with higher order equation will generically have more
propagating modes. Increasing the differential order is actually quite unappealing,
as it leads to serious mathematical complications—higher-order PDEs are not easy
to deal with—and serious stability issue. These will be discussed shortly.

Finally, one could give up diffeomorphism invariance. However, it has been long
known that symmetries can be restored by introducing extra fields. This procedure is
known as the Stueckelberg mechanism, see [9] for a review. In Stueckelberg’s work
the new field was a scalar field introduced to restore gauge invariance in a massive
Abelian gauge theory. By choosing the appropriate gauge one does away with the
Stueckelberg field (it becomes trivial) but the theory is no longer manifestly gauge
invariant. The Stueckelberg mechanism can be generalised to other symmetries,
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and specifically to diffeomorphism invariance.” Hence, one can choose to think of
theories that are not invariant under diffeomorphisms as diffeomorphism-invariant
theories with extra Stueckelberg fields.

In the previous section we demonstrated that diffeomorphism invariance has a
central role in relating energy conservation and geodesic motion to the require-
ment that matter fields are on shell. From this discussion it also follows that if
Stueckelberg fields are required in order to write a theory in a manifestly diffeo-
morphism invariant formulation, then these fields should not appear in the matter
action, as is the case for any field that coupled non-minimally to gravity.

To summarised, we have argued that irrespectively of which of the 4 assumption
of Lovelock’s theorem one chooses to relax, the outcome is always the same: one
ends up with more degrees of freedom. The name of the game in alternative theories
of gravity is, therefore, to tame the behaviour of these degrees of freedom.

Clearly, many of the statements made in this section where rather heuristics and
we relied heavily on the reader’s intuition. In Sect. 1.3 convincing examples from
scalar-tensor gravity that demonstrate all of the above will be presented.

1.2.3 Taming the Extra Degrees of Freedom

Consider a simple system of two harmonic oscillators, describe by the lagrangian

1., 1

LZ_Ql_E

1., 1
5 qi + qu - —q3. 1.7

2

If we were to flip the sign of ¢7 in the lagrangian ¢; would have to exhibit
exponential growth. If instead, we were to flip the sign of 7, the corresponding
hamiltonian would not be bound from below. Having the wrong sign in front of
certain terms renders the system unstable, but luckily in simple systems such as
harmonic oscillators it is easy to know which sign to choose. In fact, coupling the
two oscillators minimally would not affect this choice. Things become significantly
more complicated though when one has degrees of freedom that couple non-
minimally. Imagine adding a term such as ¢7¢3, f(q1)¢3 or ¢1¢. It is no longer
obvious whether you system is stable or not.

The situation is no different in a field theory. Fields whose hamiltonian is
not bound from below are called ghosts and sensible theories are expected to be
free of them. At the perturbative level this means that excitation around a certain
configuration should have the right sign in front of the kinetic term. One also expects
that physical configurations are classically stable, i.e. all excitation around them

2Erich Kretschmann argued in 1917 that any theory can be put in a generally covariant form, which
led to a famous debate with Einstein. A covariant version of Newtonian gravity can be found in
[10].
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have real propagation speeds. A complication that is always present in alternative
theories of gravity is that the extra degrees of freedom are always non-minimally
coupled to gravity (else there would be matter fields by definition). So, when
constructing an action for a theory with a given field content it is nontrivial to judge
whether it will satisfy the stability criteria mentioned above. As a result, one of the
first calculations one does in every alternative theory of gravity is to check if all
excitations satisfy these criteria around flat space (or some maximally symmetric
space—the vacuum solution of the theory).

In Sect. 1.2.2 we mentioned that theories that lead to higher-order equations are
generically plagued by instabilities. These instabilities are essentially due to the
presence of ghosts. It has been shown by Ostrogradski in 1850 that non-degenerate
Lagrangians with higher-order derivatives generically lead to Hamiltonians that
are linear in at least one of the momenta [11]. Such Hamiltonians are not bound
from below. A detailed discussion can be found in [12]. Obviously, Ostragradski’s
instabilities make higher-order theories particularly unappealing. However, higher-
order theories which can be explicitly re-written as second-order theories with more
fields evade such instabilities. We will see an example of such a theory below.

Once stability issues have been addressed, and the behaviour of the new degrees
of freedom has been tamed, the next step is to find a mechanism that hides them in
regimes where general relativity is well tested and no extra degrees of freedom have
been seen, but still allows them to be present and lead to different phenomenology
in other regimes. How challenging a task this is and how inventive we have been
in order to circumvent the difficulties will be demonstrated by the examples from
scalar-tensor gravity presented in the next section.

It should be mentioned that a road less taken is to consider alternative theories
with non-dynamical extra degrees of freedom. In fact, one could circumvent
Lovelock’s theorem by considering a gravity theory where fields other than the
metric are present, but they are auxiliary fields, so that they do not satisfy dynamical
equation but can be instead algebraically eliminated. This way ones has the same
degrees of freedom as in general relativity and does not have to worry about
instabilities associated with new dynamical fields. However, such an approach is
not without serious shortcomings, see [13] for a discussion and references therein.
For the rest of these notes we will focus one theories with dynamical new degrees
of freedom, as most popular alternative theories of gravity fall under this category.

1.3 Scalar-Tensor Gravity

1.3.1 The Prototype: Brans—Dicke Theory

The action for Brans—Dicke theory is

1

Spp = ——
B0 TenG

/d“X«/—_g (<PR - %V"Wufp - V(fp)) + Su(gu-¥),  (1.8)
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where ¢ is a scalar field and wg is known as the Brans—Dicke parameter. After some
manipulations, the corresponding field equations can take the form

1 8 G o 1 A
Rp,v - ERgpw = TTMV + F (VH¢VV¢ - Egﬂv \ (pv/l(p)

1 Vip)
+; (Vuvv(p_guvmﬁo)_ngVa (19)

Quwo+3)0¢p = V' =2V +87G T, (1.10)

where O = V"V, and a prime denotes differentiation with respect to the argument.
In its original formulation Brans—Dicke theory did not have a potential.

It is straightforward to see that in vacuo, where T), = 0, the theory admits
solutions where with ¢ = ¢ = constant, provided that go V' (¢o) — 2V (¢o) = 0.
For such solutions the metric actually satisfies Einstein’s equations with an effective
cosmological constant V(¢h). So, one could be misled to think that, as long as V(¢y)
has the right value, the predictions of the theory could be the same as those of
general relativity. For instant, the space-time around the Sun could be described by
such a solution, and then solar system constraints would be automatically satisfied.
What invalidates this logic is that the ¢ = ¢y solutions are not unique. ¢ could
actually have a nontrivial configuration, which would also force the metric to deviate
for the corresponding solution of general relativity.

This is indeed the case for spherically symmetric solution that describe the
exterior of stars, and in particular the Sun. Consider for concreteness the case
where V' = m?(¢ — ¢o)>. Performing a newtonian expansion one can calculate
the newtonian limit of the metric. The perturbations of the metric are

GM 1 2

hoo = -2 (1= op | = —2 _mr|) (1.11)

Yor 2w + 3 2wo + 3

GM;, 1 290
h; = Si |1 - , 1.12
= o f( +2w0+3ex”[ 2w0+3WD (1.12)
where M; is the mass of the Sun. There is a Yukawa-like correction to the standard

290

1/r potential, with effective mass m.g = m and range me_ffl. The ratio of

2wo+3
the perturbations of the time-time component /gy over any space-space diagonal
component /;|;=;, which is also known as the y (Eddington) parameter is then

given by [14]
2
hiliej 2w + 3 — exp [—‘/ o ]

»
S The 209 ‘
2w + 3 + exp o3

(1.13)
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It is clear that in order for y to be close to 1, which is the value it has in general
relativity, either wg or meg should be very large. Indeed, in the limit where wy — oo
or m — oo the equation imply that ¢ — ¢, and the constant ¢ solutions with g,
satisfying Einstein’s equation become unique. Current constraints on y require that
y —1 = (2.1 £2.3) x 107> [15]. For m = 0, this constraint would require w, to
be larger than 40,000, which would make the theory indistinguishable from general
relativity at all scales. For vy = O(1), the range of the Yukawa correction would
have to be below the smaller scale we have currently tested the inverse square law,
i.e. a few microns. But if this is indeed the case, then this correction will never play
arole at large scales.

The main message here is that weak gravity constraints are very powerful. It
seems very hard to satisfy them and still have a theory whose phenomenology
differs from that of general relativity at scales where we currently test gravity.
One would have to circumvent this problem in order to construct a theory which
is phenomenologically interesting.

1.3.2 Scalar-Tensor Theories

Scalar-tensor theories are straightforward generalisations of Brans—Dicke theory in
which @y is promoted to a general function of ¢. Their action is
1
S =
7 16nG

/d4x\/—_g(<pR - w((p(p) VMGDV;HD - V(@)) + S (guvs V).

(1.14)

This is the most general action one can write for a scalar field non-minimally
coupled to gravity which is second order in derivatives of the scalar. It can, therefore,
be thought of as an effective field theory which captures, at some appropriate limit,
the phenomenology of a more fundamental theory that contains a scalar field. The
corresponding field equations are, after some manipulations

1 871G w 1
R;w — ERgW = TTMU + % (Vu(pvv(p - Eglw Vl@vk@)

1 14
+5 (VMVVGD—gWD@)—%gW, (1.15)
Row(p) +3]0p = -0’ (9) V*oVigp + @ V' =2V +87G T . (1.16)

Scalar-tensor theories have been extensively studied and we will not review them
here. See [16, 17] for detailed reviews. The behaviour of the theories in the weak
field limit will be no different than that of Brans—Dicke theory, though allowing w
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to be a function of ¢ will lead to a novel way of getting exciting phenomenology in
the strong gravity regime, as we will see shortly.

We have given the action and field equations of scalar-tensor theory in terms of
the metric that minimally couples to matter, g,,,. This is referred to as the Jordan
frame. It is fairly common to re-write them in a different conformal frame, know as
the Einstein frame, in which the (redefined) scalar couples minimally to gravity but
it also couples to the matter.

The conformal transformation g,, = ¢ g.., together with the scalar field

redefinition 4/Tpdd = /2w(p) + 3 dg, brings the action (1.14) to the form

_ 4 ~ R\ 1 AV
Su= [ @xv=8(jqz — 5870006 ~ U@) + Sulgu ). (LIT

where U(¢) = V(¢)/9>, &, is Einstein frame metric and all quantities with a hat
are defined with this metric. The field equations in the Einstein frame take the form

A 1 4 87 G
Ry — =Rgu =87G TP + ——T,,, (1.18)
S ()
~ 47 G
tp-U'@) =,/ — =T, 1.19
¢ (®) Qw1 3) (1.19)
where
1
T = ViugpVut = 52 Vap V' = U@y (120)

whereas T}, and T are the Jordan frame stress-energy tensor and its trace
respectively.

The fact that ¢ couples minimally to g,,,, in the Einstein frame makes calculations
much simpler in many cases, especially in vacuo, where the theory becomes general
relativity with a minimally coupled scalar field. One can use any of the two frames
to perform calculations but some care is needed when interpreting results that do
not involve conformally invariant quantities. The physical significance of the two
metrics, g;,, and gw, should be clear: the former is the metric whose geodesics will
coincide with test particle trajectories, as it couples minimally to matter. The latter
is just a special choice which brings the action in a convenient form. See [18] and
references therein for more detailed discussions.

1.3.3 Hiding the Scalar Field, Part I

We will now briefly discuss some mechanisms that can hide the scalar field in the
weak field regime near matter but still allow the theory to deviate significantly from
general relativity in cosmology or in the strong gravity regime.
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The first and oldest of these mechanisms is present in theories were w(¢) diverges
for some constant value of ¢ [19, 20]. Consider theories without a potential. In
configurations where @ — oo one essentially ends up with a constant scalar and
metrics that satisfy Einstein’s equations. This follows intuitively by the analysis of
the newtonian limit of Brans—Dicke theory when wy — oo, or more rigorously by
inspecting the field equations or the action. It is more convenient and straightforward
to consider the Einstein frame. In the absence of a potential, Eq. (1.19) admits
¢ = ¢o =constant solutions with w(¢y) — oo even inside matter.’ For such
solutions Eq. (1.18) reduce to Einstein’s equations (with a rescaled coupling inside
matter). Going back to the Jordan frame, such solutions correspond to ¢ =constant
with g,,,, satisfying Einstein’s equations.

A key difference with Brans—-Dicke theory with very large wy is that here w
diverges only in the specific configuration for the scalar, so one needs to check
under which circumstances such configurations are solution of the physical system
of interest. In other words, one has to check that ¢ will be dynamically driven into
this configuration in situations where one would like to recover general relativity.

It has been indeed shown in [19, 20] that there exist theories where in principle
both ¢ = ¢y and non-trivial ¢ solutions exist for stars. Which of the two con-
figurations will be realised after gravitational collapse depends (roughly speaking)
on the compactness of the star. For ordinary stars, such as the Sun, the constant
scalar solution is the one realised. The metric describing their exterior is then the
same as in general relativity and this makes the theories indistinguishable from
the latter in the Solar system. For compact stars instead, such as neutron stars,
the non-trivial scalar configuration becomes energetically favourable and the metric
significantly deviates from the one general relativity would yield. Hence, the strong-
field phenomenology will be distinct from that of general relativity. The importance
of this result lies on the fact that it was the first demonstration that one can construct
a theory which agrees with general relativity in the weak field limit but still gives
distinct and testable predictions in the strong field regime. There is a very sharp
transition from the ¢ =constant to the non-trivial ¢ configurations as one increases
the compactness of the star, so the mechanism that causes this transition has been
dubbed “spontaneous scalarization” [19,20].

This mechanism relies entirely on the functional form of w, which turned out to
be intimately related to how the scalar field is sourced by matter. There is a different
type of mechanism to hide the scalar field that relies on the potential V', or U,
and is called the chameleon mechanism [21]. In terms of the newtonian limit of
Brans—Dicke theory that was given in Sect. 1.3.1 the chameleon mechanism can be
thought of as a dependence of the effective mass, and the corresponding range of
the Yukawa-like correction, on the characteristics of a given matter configuration.
As discussed earlier, when the effective mass gets large enough, the range of
the Yukawa-like correction becomes short enough to be negligible in any known
experiment. But if one wants the scalar field to have any effect in cosmology, for

31f there is a potential ¢ = ¢ solutions are only admissible if U’ (¢p) = 0 as well.
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example to account for dark energy, then the range of the correction should actually
be long. The dependence of the mass on the nearby matter configuration makes it
possible to have it both ways.

For a scalar field that experiences only self interactions one defines as the mass
the value of the second derivative of its potential at the minimum of the potential.
However, things are slightly more complicated for non-minimally coupled scalar
fields. It is easier to resort to the Einstein frame and consider Eq. (1.19). Then ¢’s
dynamics are governed by en effective potential Uy = U(¢p) +(In@)T /2 [as U/, =
U'(¢) + /47 G/Q2w + 3)T]. By choosing U appropriately (the behaviour of @
is much less relevant) one can arrange that ¢ have a very small mass when T is
small and a very large mass when 7T is large, as the term (In )7 /2 clearly deforms
the potential. The most characteristic example is when choosing U ~ e and
 is a constant, so that the 7'-dependent deformation is linear in ¢. Without this
deformation the range of the force would be infinite. But the deformation introduces
a minimum that leads to a short range force.

There are two subtleties in the line of reasoning we just laid out, which are
sometimes not given enough attention in the literature. Firstly, we used the Einstein
frame, but the mass that determines the range of the Yukawa-like correction is
not actually the one associated with the effective potential of ¢ in this frame
(neither the one defined as V" (¢g) in the Jordan frame actually, hence the use of
megr in Sect. 1.3.1). However, one can show that the various masses are intimately
related [22]. Secondly, Solar system test are not really performed in a high density
environment but in vacuo, outside a high density matter configuration. On the other
hand, continuity of the scalar field profile implies that, even outside the star, there
will be a region for which the configuration will be influenced more by the interior
configuration through boundary conditions that by the asymptotic configuration. We
refer the reader to a recent review on the chameleon mechanism for a thorough
discussion [23].

A third mechanism for hiding the scalar field in the Solar system is the
symmetron mechanism [24]. Here both the form of @ and the form of the potential
are important. In the Einstein frame the potential U is assumed to have the form

1 1
U(p) = —5u2¢2 + ZW' (1.21)

In the absence of matter U(¢) would then have a minimum at ¢y = u/ VA
The value of the potential at the minimum is related to an effective cosmological
constant, which one can tune to the desired value by appropriately choosing p and
A. Assume now that w has such a functional dependence on ¢ (and implicitly on ¢)
that in the presence of matter the effective potential would be

1 1 2T
V@) = 10>+ 3¢* + (14 o)

T o\ gl T
( )¢ + A (1.22)
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where M is a characteristic mass scale, and

Uli() = —1°¢ + A¢p° + %T, (1.23)

For such a choice, w(¢ = 0) — oo. Provided that T/M? > u?, ¢ = 0 becomes
the minimum of the effective potential and Eq. (1.19) admits ¢ = O solution in the
presence of matter.

In a certain sense, there is some similarity between the symmetron mechanism
and the models that exhibit spontaneous scalarization in compact stars discussed
earlier. In fact, one could see the symmetron mechanism as a cosmological scalariza-
tion. The way the symmetron mechanism works in a realistic matter configuration is
actually more complicated than the simplistic description given above. For example,
in a realistic matter configuration, the scalar has to smoothly change from being zero
inside the matter to obtaining its non-zero asymptotic value outside the matter. We
refer the reader to [24] for more details.

1.3.4 The Horndeski Action

The action of scalar-tensor theory in Eq.(1.14) is the most general action that is
quadratic in derivatives of the scalar, up to boundary terms. It is not, however,
the most general action that can lead to second order field equations for the
metric and the scalar. Horndeski has shown that the most general action with this
property is [25]

Sy = /d4x«/_—g (Ly+ L3+ Ly + Ls) , (1.24)
where
L, = K(¢, X), (1.25)
Ly = —G;(¢, X)O¢, (1.26)
Ly = Gy(¢, X)R + Gax [(O9)* = (V. Vo9)?] (1.27)
Gsx

Ls = G5(¢), X)GMVVMVV¢) - [(D¢)3 - 3D¢(Vuvv¢)2 + Z(VMV‘,QZ&)S] s

(1.28)

6

the G; are unspecified functions of ¢ and X = —%V“qﬁVMd) and G;y = 0G;/0X.
Scalar fields described by this action are also known as Generalised Galileons [26].
The name comes from a particular class of scalar theories in flat space which
enjoy Galilean symmetry, i.e. symmetry under ¢ — ¢ + ¢, x* + ¢, where ¢, is
a constant one-form and ¢ is a constant [27]. These fields are known as Galileons.
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A certain subclass of Generalised Galileons reduce to Galileons in flat space. But
galilean symmetry itself does not survive the passage to curved space [28] (it is local
symmetry) and the full Horndeski action does not reduce to the Galileon action in
flat space.*

Horndeski’s theory is intrinsically interesting as a field theory, as it contains
more than two derivatives in the action but still leads to second order equations.
That comes at the price of having highly nonlinear derivative (self-)interactions. It
is worth noting that, even though Horndeski’s actions includes second derivatives
of the fields, it avoids Ostrogradski’s instability because it does not satisfy the
non-degeneracy assumption.’

A more detailed discussion about the characteristics of the theory goes beyond
the scope of these lecture notes, so we refers the reader to [29] for a recent review.

1.3.5 Hiding the Scalar Field, Part 11

The high degree of non-linearity in the scalar field equations of Hordenski’s
theory certainly makes them mathematically complicated. However, it does not
come without advantages. In regimes where these highly non-linear terms will
dominate over the standard Brans—Dicke-like terms the behaviour of the scalar
field will be significantly different from that of the Brans—Dicke scalar discussed
above. In fact, such theories can exhibit the “Vainshtein effect”: solutions of the
linearised version of the theory—in which the higher derivative terms would give no
significant contribution—can be very different from solutions of general relativity,
but fully non-linear solutions might be indistinguishable from those of the latter.
The term “Vainshtein effect” originates from massive gravity theory where the
mechanism was first demonstrated by Vainshtein in [30]. A detailed introduction
to the Vainshtein mechanism can be found in [31].

1.4 Scalar-Tensor Gravity in Disguise

In Sect. 1.2.2 it was argued that allowing for higher-order field equations or giving
up diffeomorphism invariance leads to more degrees of freedom. In this section
we provide two examples that support this claim. In both cases the new degree of

4The numbering of the terms in the Lagrangian, L, to Ls, is also a remnant of the original flat
space Galileons [27]. The index indicates there the number of copies of the field in each term. In
the Generalised Galileons the L; term contains i — 2 second derivatives of the scalar.

5The Einstein—Hilbert action also contains second derivatives of the metric and is degenerate, thus
avoiding Ostrogradski’s instability.
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freedom is a scalar field and this can be made explicit, either by field redefinitions,
or via the Stueckelberg mechanism.

1.4.1 f(R) Gravity

The action of f(R) gravity is

4
= 16m G/d X/=8S(R) + Sn(guv- V) (1.29)

where f is some function of the Ricci scalar of g,,. Variation with respect to the
metric gM” yields

1
f/(R)R;w - Ef(R)g;w - [VMVV - guvD]f/(R) =8nGTy,. (1.30)

Provide that f”(R) # 0, in which case the theory would be general relativity, these
are clearly fourth-order equations in g,,. One would then expect the theory to suffer
from the Ostrogradski instability mentioned earlier.

Consider now the action

" T6n G/ XV/=g[f (@) + o(R =) + Su(gu.¥) . (1.31)

Variation with respect to ¢ yields ¢ = R. Replacing this algebraic constraint
back into the action yields the action of f(R) gravity. Hence, the two actions are
(classically) dynamically equivalent. If instead one varies with respect to ¢ one gets
¢ = f'(¢). Replacing this algebraic relation back in the action one gets another
dynamically equivalent action

= Tem G/d“X«/_hpR V()] + Sn(gu.¥) . (1.32)

where V(p) = f(¢) — ¢f'(¢p) (V is essentially the Legendre transform of f).
This theory is actually a Brans—Dicke theory with vanishing wy, also known as the
O’Hanlon action [32].

This simple exercise establishes that f(R) gravity can be recast into the form
of a special Brans—Dicke theory, something that has been known for quite a
while, see e.g. [33]. It demonstrates both how higher-order theories propagate more
degrees freedom—in this case a scalar—and how such theories avoid Ostrogradski’s
instability when they can be recast into second-order theories with more degrees of
freedom.
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1.4.2 Horava Gravity

Hoftava gravity [34] is a theory with a preferred spacetime foliation. The action of
the theory is [35]

1 1
Sy = dTd*x NVh| Ly + — Ly + —Lg | , 1.33
H 167tGH/ X ( 2+Mf 4+Mj‘ o) (1.33)
where
Ly = KiK' — 2K + EOR + na;a’, (1.34)

where T is the preferred time, K;; is the extrinsic curvature of the surfaces of
the foliation and K its trace, PR is the intrinsic curvature of these surfaces, N
is the lapse function, /;; is the induced metric and % is the determinant of the
induced metric, a; = 0; In N, Gy is a coupling constant with dimensions of length
squared and A, &, and 7, are dimensionless couplings. Since the action is written in
a preferred foliation the theory does not enjoy invariance under diffeomorphisms.
It is still invariant under the subset of diffeomorphisms that respect the foliation,
T — T' = f(T)and x' — x" = x"(T,x"). Ly and L include all possible
terms that respect this symmetry and contain up to four and six spatial derivatives
respectively. M, is a characteristic mass scale suppressing these higher order terms.

Hoftava gravity has been proposed as a power-counting renormalizable gravity
theory and the presence of the higher-order terms in L4 and Lg is crucial in order
to have the right UV behaviour [34]. However, these terms will not concern us here,
as we intend to consider the low energy part of the theory, L,, as an example of a
gravity theory that does not respect diffeomorphism invariance. For a brief review
on the basic features of Hofava gravity see [36].

Consider now the action

1
"= =7 / J=8(=R —M° | ) V,utVgu')d*x (1.35)
T
where
M“ﬂw = clg“ﬂgw + czé’fjé’f + 6’35385 + C4u°‘uﬂg,w , (1.36)

¢; are dimensionless coupling constants and u,, is given by

9, T
U, = ——— .
a \/gk"a)kTBUT

This is a scalar-tensor theory where the scalar field 7" only appears in the action
in the specific combination of Eq.(1.37). Therefore, u* can be thought of as a

(1.37)
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hypersurface orthogonal, unit, timelike vector (as u*u, = 1). The theory can be
thought of as a restricted version of Einstein-aether theory [37,38] where the aether
is forced to be hyper surface orthogonal before the variation.

Now, following the lines of [39], one can observe that T always has a timelike
gradient, so it can be a good time coordinate for any solution. Then one can give
up some of the gauge freedom in order to re-write the theory in terms of this time
coordinate. This involves introducing a foliation of 7 =constant hyper surfaces, to
which u# will be normal, and re-writing the action in this foliation. Thenu,, = N 89,
where N is the lapse of this foliation, and action (1.35) takes the form

1 ) )
= —/de3xN\/ﬁ(Ki,~K’f —AK? + EOR + na;d',) | (1.38)
167‘[GH X
where
GH—g— 1 3= 1+ _ c1+cq
G Tl (e TTit@ra TTiteta)

(1.39)

Action (1.38) is clearly the infrared (L,) part of action (1.33), which means that the
initial action (1.35) is just the diffeomorphism invariant version of the infrared limit
of Hofava gravity. 7' can then be thought of as the Stueckelberg field one needs to
introduce in order to restore full diffeomorphism invariance in Hofava gravity. It is
clearly a dynamical field and in the covariant picture one can think of it as having
a nontrivial configuration which defines the preferred foliation in every solution.
When the theory is written in the preferred foliation, as in Eq. (1.33), then the scalar
degree of freedom is no longer explicit, but one can expect its existence because the
action has less symmetry.

1.5 Scalar Fields Around Black Holes

As already mentioned in the introduction, black holes and compact stars are of
particular interest in alternative theories of gravity as potential probes of the strong
gravity regime. Black holes in particular have the advantage of being vacuum
solutions, so one need not worry about matter, and of containing horizons, hence
they have a very interesting causal structure.

One could argue that the existence of extra degrees of freedom—in this case
a scalar field—in a gravity theory will generically lead to black hole solutions
that differ from their general relativity counterpart. They could then be used as
probes for deviation from Einstein’s theory, or even for the very existence of
scalar fields. However, there are “no-hair” theorems is scalar-tensor gravity that
suggest otherwise [40, 41]. In particular, according to these theorems stationary,
asymptotically flat black holes in the theories described by the action of Eq. (1.14)



1 Gravity and Scalar Fields 21

are identical to black holes in general relativity. This is because the scalar field is
forced to have a ¢ = constant configuration in stationary, asymptotically flat space
times with a horizon. Quiescent astrophysical black holes that are the endpoints of
gravitational collapse are stationary. They are also asymptotically flat to a very good
approximation. Hence, one is tempted to believe that black holes in scalar-tensor
theories will be indistinguishable from black holes in general relativity.

Such an interpretation of the no-hair theorems would be misleading for several
reasons. First of all, a perturbed Kerr spacetime in a scalar-tensor theory would
differ from a perturbed Kerr spacetime in general relativity, a characteristic example
being the existence of a scalar mode in the gravitational wave spectrum [42].
Secondly, cosmological asymptotics do induce scalar hair in principle [43], though
the deviation from the Kerr geometry is unlikely to be detectable [44]. Finally,
astrophysical black holes tend to be surrounded by matter in various forms—
companion stars, accretion disks, or the galaxy as a whole. Equation (1.16) or (1.19)
imply that, in the presence of matter, constant scalar solutions are only allowed in
theories for which w diverges at the minimum of the potential. This has been already
discussed in Sect. 1.3.3 (theories that exhibit “spontaneous scalarization” [19, 20]).
Hence, generically the presence of matter around the black hole will tend to induce
scalar hair and the pending question is to determine how important this effect might
be.

So, when put in astrophysical context, the no-hair theorems tell us that black
holes that are endpoints of collapse will be rather close to the Kerr solution and that
we can use perturbative techniques in order to study phenomena around them (which
provides an important simplification). They do not, however, imply that astrophys-
ical black holes in scalar-tensor gravity are indistinguishable from astrophysical
black holes in general relativity. In fact, it has been suggested that there might be
smoking gun effects associated with the scalar field in scalar-tensor theories. For
example, in [45] it has been shown that there exist floating orbits around Kerr black
holes in these theories, i.e. particles can orbit the black holes without “sinking”
into it even though gravitational radiation is emitted. The loss of energy of the
emission is balanced by loss of angular momentum of the black hole. In [46]
instead, it was shown that, in theories that admit a constant scalar configuration
in the presence of matter, black holes can undergo spontaneous scalarization or
exhibit instabilities related to superradiance and very large amplification factors for
superradiant scattering.

We now move on to black holes in generalised scalar-tensor gravity, i.e. theories
described by the Horndeski action in Eq.(1.24). There are no no-hair theorems
covering the complete class of theories. On the contrary, there are already known
black hole solutions that have non-trivial scalar field configurations in theories that
belong to this class, see e.g. [47]. It has been claimed in [48] that in the subclass of
theories in which the scalar enjoys shift symmetry, i.e. symmetry under ¢ — ¢+
constant, only trivial scalar configuration are admissible for static, spherically
symmetric and asymptotically flat black holes, and, hence, these black holes are
described by the Schwarzschild solutions. It has been argued in [49] that, when
valid, the no-hair theorem of [48] can straightforwardly be generalised to slowly
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rotating black holes. However, it has been also been shown there that the theorem
holds in the first place only if one forbids a linear coupling between the scalar field
and the Gauss—Bonnet invariant. Such a coupling is allowed by shift symmetry,
since the Gauss—Bonnet term is a total diverge. A term that contains this coupling is
implicitly part of the Horndeski action, even though the representation of Eq. (1.24)
does not make that manifest. One can impose symmetry under ¢ — —¢ in order
to do away with this term (together with various others in the action). However, the
conclusion is that the subclass of theories for which one can have a no-hair theorem
is more limited than originally claimed.

We close this section with a few remarks on black holes in Lorentz-violating
theories, since, as we argued above Hofava gravity can be re-written as a scalar-
tensor theory. One could question whether black holes can actually exist in this
theory, as well as in other Lorentz-violating theories, as one can have perturbations
that travel with arbitrarily high speed and could, therefore, penetrate conventional
horizons.® However, it has been shown that a new type of horizon that shields its
exterior from any signal that comes from its interior, irrespectively of how fast
it propagates, can exist in theories with a preferred foliation, called the universal
horizon [50-53]. The existence of such a horizon implies that the notion of a black
hole can exist in Lorentz-violating theories. For a thorough discussion on this topic
see [54].

Conclusions

In these lecture notes I have attempted to highlight some interesting concepts,
pitfalls and subtleties that appear when one goes beyond general relativity.
Perhaps it is helpful to list the most important ones:

* Any attempt to modify the action of general relativity will generically lead
to extra degrees of freedom (carefully engineered exceptions can exist);

* These degrees of freedom may be manifest as extra dynamical fields or
may be implicit because of higher order equations or less symmetry;

* The actual number of degrees of freedom might be quite obscure in some
specific field representation;

* Taming the behaviour of these extra degrees of freedom is what construct-
ing viable and successful (in terms of some desirable phenomenological
signature) models is about;

* One should constantly be seeking for new constraints on deviations from
general relativity, and the strong gravity regime is particularly promising
in this respect.

(continued)

SHotava gravity exhibits instantaneous propagation even at low energies [50], and on general
grounds one would expect the UV completion of any Lorentz violating theory to generically
introduce higher order dispersion relations.
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A brief review of gravity theories with an extra scalar degree of freedom
has been given and some of their basic features have been discussed. Even
though I touched upon virtually all such theories, these lecture notes do not
constitute a thorough review of the theories and their phenomenology. I have
simply selectively discussed specific aspects of each theory in an attempt to
provide useful examples for the points listed above.
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Chapter 2
From Lovelock to Horndeski’s Generalized
Scalar Tensor Theory

Christos Charmousis

Abstract We review and discuss some recent progress in Lovelock and Horndeski
theories modifying Einstein’s General Relativity. Using as our guide the uniqueness
properties of these modified gravity theories we then discuss how Kaluza-Klein
reduction of Lovelock theory can lead to effective scalar-tensor actions including
several important terms of Horndeski theory. We show how this can be put to
practical use by mapping analytic black hole solutions of one theory to the other.
We then elaborate on the subset of Horndeski theory that has self-tuning properties
and review a generic method giving scalar-tensor black hole solutions.

2.1 Introduction

General Relativity (GR) is a classical or effective theory of gravity which is based
on very solid mathematical and physical foundations. It agrees with overwhelming
accuracy local' observational tests both for weak and strong gravity [1] including
laboratory tests of Newton’s force law. GR, is not only a very successful physical
theory. It is theoretically very robust and as it turns out mathematically a unique
metric theory. Indeed if one considers a theory depending on a massless metric and
up to its second derivatives endowed with a Levi-Civita connection then,

w _me' [ 4
SW === dx —g@WI[R-24], 2.1)

is the unique action giving equations of motion of second order in the metric field
variable. This theorem, as we will see, is a consequence of Lovelock’s theorem
[2] (see also [3, 4]). In other words, GR plus a cosmological constant is the

Local distance scales range up to 30 odd astronomical units, size of the solar system, but also size
of typical binary pulsar systems. The astronomical unit is a rough earth to sun distance.
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unique gravity theory constructed out of a single massless metric with a Levi-Civita
connexion (which is also defined uniquely). This means that any other curvature
scalar would necessarily yield either trivial or higher order than second derivatives
in the field equations. Higher order than second, V2-derivatives, lead directly to
a theory with ghost vacua, clearly an important setback for any classical physical
theory [5]. The only other term evading this problem is the one associated to the
cosmological constant. We will encounter consequences of this very shortly.

As we emphasized GR is an effective metric field theory. As such we expect
Einstein’s theory to break down at very high energies (strong curvatures) close to
the Planck scale, mlz,l = ﬁ, where higher order curvature terms can no longer be
neglected and are even dominant compared to the leading Einstein-Hilbert term.
What is maybe more surprising is that recent cosmological observations, point
towards the tantalizing possibility that GR may also be modified at very low energy
scales deep in the infra-red [6]. A tiny positive cosmological constant generates
an inversely proportional enormous cosmological horizon and can account very
simply for such a dark energy component. After all, as we saw in (2.1), it is
a mathematically allowed term in the metric action. However, the difference in
between cosmological and local scales corresponds to an enormous number, of
magnitude of 10'3, in other words we are very deep in the infra red and physics
may well differ from scales where we control gravity observationally. Furthermore,
although a cosmological constant provides a phenomenologically correct and
economic way to put away the dark energy problem it suffers from a theoretical
short-coming, the cosmological constant problem [7]. Indeed, from very simple
field theory considerations, GR, from its founding strong equivalence principle
perceives all forms of matter in time and space including vacuum energy. Vacuum
energy gravitates just as does radiation or matter. The cosmological constant, for
example, receives zero point energy contributions from each particle species up
to the UV cut-off of the relevant QFT. These contribute to the total value of the
cosmological constant which has to be fine-tuned to almost zero by the arbitrary bare
contribution we saw above (2.1). This fact only gets worse once we realize that phase
transitions in the early universe will actually shift this value around, and again each
time some miraculous fine-tuning will be required to tune the overall cosmological
constant to its tiny but non-zero value we observe today. The “big” cosmological
constant problem is precisely how all these vacuum energies associated to the GUT,
SUSY, the standard model etc. are fined-tuned each time to zero by an exactly
opposite in value bare cosmological constant Ay, appearing in (2.1) and being
the net result of the universe acceleration today. The unexplained small value of the
cosmological constant A,,, is then an additional two problems to add to the usual
“big” cosmological constant problem [7], namely, why the cosmological constant is
not cancelled exactly to zero and why do we observe it now. In a later section we
will see of such an attempt to classically? evade this problem [9].

2For a interesting proposal tackling the cosmological constant problem including the crucial
radiative corrections see, [8].
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Although this is not really a scientific argument, one can make reference to a
historically parallel situation. At the advent of General Relativity, observational
evidence pointed towards shortcomings of Newton’s gravitational theory in the
‘strong gravity’ regime. Amongst these was the advance of the perihelion of
Mercury, which deviated from Kepler’s laws describing planetary motion. As such,
the existence of a small planet in an even closer orbit to the sun, Vulcan, was
hypothesized. Alternatively, the presence of an unknown substance, aether, was put
forward, mediating and slightly modifying the prediction of Kepler’s laws to account
for observational data. Indeed a simple and slight correction to the established laws
of the time could account correctly for the advance of the perihelion. The solution
to the puzzle was, however, not as simple or economic as initially considered. In
fact, it was only after the theory of GR was put forward that this slight difference
was accounted for as, rather, a fundamental modification of gravity theory. As
often in physics, a modified physical theory is attained upon reaching a critical
energy scale; here, the critical scale in question is the strong gravity field of the
sun applied to its closest planet. There is in recent times an observational parallel
to the above, in the context of type Ia supernovae explosions, pointing towards
an accelerating universe [6]. Friedmann’s laws, in order to remain valid, require
the addition of an as yet unknown dark energy component, which is the dominant
component in the Universe. The addition of a small cosmological constant gives
very good agreement with observational data and is the most economic (in terms of
additional degrees of freedom) phenomenological explanation of the acceleration
phenomenon. Given, however, the above example, it seems to us important to
entertain the following question: could it be that recent observations are pointing
towards a fundamental modification of gravity rather than a modification in the
unknown matter sector? Are novel observations indications of a new gravity theory
beyond GR? This question is even more compelling since we know that dark matter
is so far unaccounted for and in the ultraviolet GR needs to be modified anyway.
A second important point concerns the predictions and motivation of a modified
gravity theory. Indeed, as we argued above, the initial conditions calling for a
modified gravity theory are in order to account on the one hand for the late-time
acceleration of the universe and to provide on the other hand a well-defined limit
at local scales where the theory at hand should be indistinguishable from GR. This
is of course an important and difficult initial step that provides a filter for possible
theories under consideration, but this is not all. Since observations can be accounted
for by a small cosmological constant put in by hand, one needs to go further in
order to make new accurate predictions theoretically. These novel predictions are
the real motivation in a modified theory of gravity. Indeed, General Relativity’s great
successes are not the explanation of the advance in the perihelion of Mercury or its
classical limit to Newtonian theory, but rather, completely novel ideas and solutions
stemming from the theory itself, such as black holes, Big Bang inflationary theory
and so forth.
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So how do we go about modifying such a robust theory such as GR (see the
review [10])? Not surprisingly it is extremely hard both observationally but also
theoretically, the windows of modification are rather narrow. This is at the same
time fortunate because at the end not there are not too many possibilities left
over. In rather loose terms following (2.1) and not breaking some fundamental
symmetry like Lorentz invariance (see for example [11]), there are four at least
routes emanating from a Lagrangian formulation. First, suppose we keep the single
massless metric character of the theory. Then inevitably we have to consider higher
dimensions. We will show that the relevant theory is then Lovelock theory (see
for example [12]). Secondly suppose we stick to 4 space-time dimensions. Then
inevitably we consider the existence of additional fields, in other words we add
novel gravitational degrees of freedom in four dimensional space-time. Here the
prototype is scalar-tensor theory and we know its most general form, Horndeski
theory [13]. We will study basics of this theory here. All the terms present in
Horndeski theory have been shown to be originating from Galileons i.e. scalar tensor
terms having Gallilean symmetry in flat space-time [14] and the latter equivalent
theory to Horndeski has been elegantly given for curved space-time in [15]. Thirdly
we can consider that the elementary particle mediating spin 2 gravity, the graviton,
has a finite range of application. In other words it is not a massless field but has some
(small) mass. This is the theme of massive gravity [16] which will also be covered in
later lectures. Lastly we can consider the possibility of allowing for other geometric
constructions such as a differing connexion than that of Levi-Civita. This allows
for torsion i.e. non zero parallel transport of scalars (rather than vectors) or first
order formalism, Palatini formalism (see for example [17]). These four directions
are not independent of each other in fact often they are related and it is useful to use
information from one to the other. We will give such relations during these lectures.
We will discuss in fact Lovelock and Horndeski theory and relate the two via the
Kaluza-Klein formalism.

Using as our guide uniqueness theorems we will discuss certain elements of
Lovelock and Horndeski theory. We will see in what sense these theories are
unique. We will focus throughout on recent elements of Lovelock theory that we
will be using in relation to Horndeski theory. We will omit some basic properties
diverting the interested reader to [12]. We will then go on to discuss Horndeski
theory which is the most general scalar-tensor theory in four dimensions. We will
then move on to review some black hole solutions of Lovelock theory and see how,
by toroidal Kaluza-Klein reduction we can construct four dimensional scalar-tensor
black holes. In this way we will establish a clear and practical connection in between
Lovelock and Horndeski theory. In the fifth section we will discuss the cosmological
constant problem and define a theory which is a subset of Horndeski theory and
has interesting self-tuning properties. This theory dubbed fab four [9], will at least
classically provide a partial solution to the big cosmological constant problem. We
will then sketch a recent and relatively simple way to obtain black hole solutions in
such scalar-tensor theories [18].
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2.2 The Lovelock and Horndeski Uniqueness Theorems

2.2.1 Lovelock Theory

Our purpose in this lecture is to present Lovelock theory in relation to Horndeski
theory. To this end it is mostly sufficient to truncate Lovelock theory to what is
usually called Einstein-Gauss-Bonnet (EGB) theory in the literature. Unlike the
name suggests, this is the five or six dimensional version of Lovelock theory
originally discussed by Lanczos [3]. Let us start with the uniqueness theorem
defining Lovelock theory and stick to six dimensions in order to fix notation. The
five dimensional theory is identical. Consider ¥ = £ (.#, g, V,V?) where (A, g)
is a six dimensional locally differentiable Lorentzian manifold without boundary?
and V is the Levi-Civita metric connexion over .#. The field equations obtained
upon metric variation of the action,

5© = M(T"’4 / V—&©® [R —2A+ aé] : 2.2)

are unique and admit the following properties:

¢ they depend on a symmetric two-tensor &yp

* the equations of motion are second-order PDE’s with respect to the metric field
variables

 satisfying Bianchi identities.

Here, M) is the fundamental mass scale in six-dimensional spacetime, G is the
Gauss-Bonnet density reading,

G = RupcpRAPE — 4R, R*® + R2, (2.3)
and A is the cosmological constant. The field equations in vacuum are
éap = Gap + Agap + aHap =0, (2.4)

where Gy4p stands for the standard Einstein tensor. Uppercase Latin indices will
refer to six-dimensional coordinates whereas Greek indices will always refer to
four dimensional space-time. We have also introduced the Lanczos or second order
Lovelock tensor,

Hup = g_gBé —2RRap + 4RacR; + 4RcpRE, 55 — 2Racpe R P . (2.5)

3The result depicted here is easily extended to manifolds with boundaries [12].
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Naturally, the Lanczos tensor is also divergence free, VA Hyp = 0. It is important
to note that, just like GR in four dimensions, i.e. under the same set of hypotheses,
EGB theory is the unique and most general metric theory with second order PDE’s
in five or six space-time dimensions. This is a non-trivial statement since the terms
appearing in the action already contain second order derivatives. In a moment we
will see that in higher than six dimensions this property is generalized by adding the
relevant higher order Lovelock terms. Furthermore in four dimensions the tensor
(2.5) is identically zero. Therefore we can note as a prelude that Lovelock theory
is the unique massless metric theory in arbitrary dimensions identical to GR with a
cosmological constant in four dimensional spacetime.

Before moving on it is useful to discuss some tensorial properties. The Lanczos
tensor (2.5) can be elegantly written (in arbitrary dimension) using the following
rank four tensor that will be useful to us later on,

Pspcp = Rapep + Rpc gap — Rep gac — Rac gsp + Rap gsc

1 1
+§R gAc &BD — ER gBC &AD> (2.6)

as

AB A
Hyp = —2PycpeRpPF + gTG . @.7)
The 4 index tensor Pspcp has several interesting tensorial properties. For a start it
is divergence free (in all indices) since Bianchi identities of the curvature tensor are
simply written as V? Pygcp = 0. It has the same index symmetries as the Riemann
curvature tensor. Its bi-tensor obtained by tracing two of its non-consecutive indices
yields

P®4cs = (D —3)Gac, (2.8)

the Einstein tensor. In fact divergence freedom of the Einstein tensor can be seen to
originate from this relation. In a nutshell, one can say that P4pcp is the curvature
tensor whose bi-tensor is the Einstein tensor, just as the Ricci tensor is the bi-tensor
of the Riemann tensor. A last interesting property is that a metric is an Einstein
Space, RAB = %R, if and only if PABCD = RABCD-

In four dimensions, the P,,,, tensor is even more very special. Indeed it has all
the above properties but, additionally it can be pictured in a very similar way to the
Faraday tensor in electromagnetism,

* Fuy = 3€umep F*° (2.9)
In analogy here, P, is a 4 tensor, and coincides with the double dual (i.e. for each
pair of indices) of the Riemann tensor defined as,

. 1 OAK T 1
lepo = (*R*)lwpa = _EG'D A Rkkg Eefr;ws (2.10)
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where €, s the rank 4 Levi-Civita tensor. Finally since in four dimensions we
have that H,,, = 0 we obtain the Lovelock identity,

Paspa Ry = 5226 (2.11)

which will be useful to us later on (see [19] for extensions).

In order to define the generic Lovelock densities one can use the elegant language
of differential forms [12]. Alternatively we take the route taken by Lovelock
using the generalized Kronecker delta symbols; the same route taken later on by
Horndeski,

85 ... 85

Spg = : 2.12)
5/"1 L8
A1

= h'S[Bl 85! (2.13)

which is antisymmetric in any pair of upper or lower indices. In fact we have
855" = ep,.p,eM4 with respect to the Levi-Civita symbols. Once this has
been digested the Lovelock densities are the complete contraction of the above with
the Riemann curvature tensor,

A1As.. Ay BB B(h*l)Bh
L(h/z) 2/183132 By A1 A2 ot DM Ap—nAn (2.14)

As such we can check that L is the Einstein-Hilbert term whereas Ly is the
Gauss-Bonnet combination. This immediately means that for 4 > D all Lovelock
densities vanish. Therefore the Lovelock Langrangian is given by,

k
L= Zcth (2.15)

where k = [(D —1)/2]. The case h = D is quite special because then the Lovelock
density is a topological one. Indeed we can query what is special about Lovelock
densities. The answer lies in differential geometry (see for example [20]). One can
trace the origin of such terms in the early works of Gauss who measuring geodesic
distances noted that scalar (Gauss) curvature of two dimensional surfaces depended
only on the first fundamental form, in other words the intrinsic metric of the surface
and its derivatives. This was the basis of what he called the Egregium theorem;
scalar curvature (unlike other extrinsic curvature components) does not depend on
the variation of the normal vector field on the surface i.e. on how the surface is
embedded in three dimensional space. Then later on Euler in his work on surface
triangulations noted that two dimensional surfaces can be topologically classified
by their “Euler” number, y: y[.#] = 2 — 2h where & is the number of topological
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handles. So one can take an arbitrary surface with no boundary and continuously
deform it to a sphere, a torus a double torus and so on.* This completely classifies
topologically two dimensional surfaces. In other words all topological properties of
two dimensional surfaces can be understood or characterized by their Euler number.
Gauss and Bonnet essentially related this topological number to a differentiable
geometric quantity, the scalar curvature, resulting in the celebrated relation,

1
x[4) = 4—/ R. (2.16)
T Jou

The Gauss-Bonnet theorem on surfaces has nothing to do with the Gauss-Bonnet
term given above (2.3). For our purposes the above Gauss-Bonnet relation means
that the Einstein-Hilbert term is in two dimensions is a topological invariant i.e.
the Einstein tensor in two dimensional space-time is identically zero. This analogy
goes through for all Lovelock terms as a corollary to the works of Chern [21]
who generalized the theorem of Gauss and Bonnet to higher dimensions finding
the relevant higher order curvature scalars. For example we have,

1 A

and thus the Lanczos or Gauss-Bonnet density is a topological invariant in four
dimensions whose integral is the generalised Euler or Chern topological number.
Beware this does not mean that the Gauss-Bonnet scalar is zero or constant in four
dimensions. It means that the Lanczos density is identically zero H,,, = 0 as we
admitted earlier.

Dimensionally extending the Chern scalar densities we obtain the Lovelock
densities (2.14) i.e. just those densities whose variation leads to second order
field equations. Any higher order derivatives present in the variation of Lovelock
densities conveniently end up as total divergent terms and thus do not contribute to
the field equations. In a similar way for example, in seven or eight dimensions, the
six-dimensional Euler density will be promoted to a Lovelock density of third power
in the curvature tensor and so forth. This explains the nice and unique properties of
the Lovelock densities and Lovelock theory in general. For more details the reader
can consult [12].

2.2.2 Horndeski Theory

So much for the moment concerning higher dimensional metric theories. In four
space-time dimensions we know that the unique classical metric theory is GR with

4When a surface has a boundary an analogous result holds.
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a cosmological constant. Hence any four dimensional modification of gravity will
have to involve some other non-trivial field. The simplest of cases is when this extra
field is a scalar. The prototype of scalar tensor gravity is Brans-Dicke theory [22]
which has been studied extensively throughout the years (see [23] and references
within). We should note that in the class of scalar-tensor theories fall also other
modified gravity theories like f(R) or f (G) which [24] are just particular scalar-
tensor theories in disguise. Furthermore other interesting GR modifications such as
bigravity or massive gravity theories [16] admit scalar tensor theories as particular
limits, for example the decoupling limit for massive gravity [25]. Hence scalar
tensor theories are a consistent prototype of GR modification and their important
properties are expected in some form, in other consistent gravity theories. Hence
the particular recent interest in scalar-tensor theories concerning modification of
gravity. So in this section we reiterate the question: what is the most general scalar
tensor theory in four dimensional space-time yielding second order field equations?
The answer has been given by Horndeski a long-time ago [13] but has remained
unnoticed since only recently [9], and states a similar theorem to that of Lovelock
for four dimensional scalar-tensor theories. Consider a single scalar field ¢ and a
metric gy, as the gravitational degrees of freedom of some Lorentzian manifold
endowed with a Levi-Civita connection. Consider a theory that depends on these
degrees of freedom and an arbitrary number of their derivatives,

g == g(g;w,g;w,ils R | g;w,il...i,,vd)v ¢,i17 L] 7¢),i1...iq) (218)

with p,q > 2. The finite number of derivatives signifies that we have again an
effective theory since we have a finite number of degrees of freedom. Here just like
in usual Brans Dicke theory we consider that matter couples only to the metric and
not to the scalar field thus fixing the metric and the frame as the physical one. In
this frame the metric will continue to verify the weak equivalence principle. In a
nutshell the metric in question can always be put locally in a normal frame where
by definition the Christophel symbols are identically zero. This frame is locally
equivalent to an inertial frame. The Hornedski action can be written in such a way
to involve only second derivatives and reads,

4
Ly = Kk1($, )TV VR, — gxl,p(gs, P)8%BY VIV, ¢V Vs VOV,

nvo nvo

+ic3 (. )T Vg VFR " — dics o (¢, p)SET Vap VIV Vg VOV,
+HF (@, p) + 2W(@ISH R, —4F (9, 0) o850 Vap VI GV Vi
—3[2F(p.p).g + 4W(@) g + pKs(¢. PV, V" + 2582 Vap VAPV Vb

+9(9, p).
p =V, pVF¢p, (2.19)
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The action (2.19) is rather general and depends on four arbitrary functions «; (¢, p),
i =1,3,8,9of the scalar field ¢ and its kinetic term denoted as p. Furthermore,

F,=1K14—K3—2pKk3, (2.20)

with W(¢) an arbitrary function of ¢, which means we can set it to zero without
loss of generality by absorbing it into a redefinition of F (¢, p). According to
Horndeski’s theorem, [13], the action (2.19) is the unique5 action whose variation
with respect to the scalar and metric yields second order field equations and Bianchi
identities. In his original work, Horndeski makes just like Lovelock, systematic use
of the anti-symmetric Kronecker deltas (2.12). The equations of motion are obtained
by variation of the metric and scalar field, are parametrized by the arbitrary functions
ki (¢, p) and read respectively,

1
EM = 3TH, & =0 (2.21)
where T#" = —2 35u 5 the matter energy-momentum tensor. The tensor &V is

- 8 5g;u;

divergent free. A rather more intuitive and economic way of obtaining the Horndeski
action is given in terms of the general Galileon covariant action [15] and reads,

Zpasz = K(¢, p) — Ga(¢, p) V2 + Ga(¢, p)R + Gu, [(V2)* — (V. Vu9)?]

+Gs(¢.p)G ViV — % [(V2¢)’ =3V2¢(V,.V.6)

+2(VuVi)’] (2.22)

In this version it is far easier to recognize subsets of this theory, GR, Brans-
Dicke, K-essence etc. and to figure out the most common Galileon terms. Again
the theory depends on four free potentials. It was shown in [26] that in four
dimensions Horndeski’s theory is equivalent to the generalised galileon theory with
the potentials given by,

o
K = k9 + ,0/ dp/ (K8,¢ — 2K3,¢¢) (2.23)

p
G3 = 6(F +2W) ¢ + pig + 4pK3 4 — / dp’ (Kg - 2/(374,) (2.24)

Gy = 2(F +2W) + 2pi3 (2.25)
G5 = —4/(1 (226)

SIn the action one can always add terms that can be written as a total divergence. Therefore the
term “unique action” refers to the unique class of equivalence which is in turn defined modulo
total divergence terms. In other words two actions are equal if and only if they are in the same class
of equivalence or they differ only by a totally divergent term.
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The uniqueness proof by Horndeski is quite technical and can be found in his
original paper. Here we simply sketch its important steps. The proof is based on
the property relating the metric and scalar field equations,

VEE, = 16V (2.27)

This is of course an identity and shows explicitly that the scalar field equation results
from the metric equations of motion as a Bianchi identity. Now starting from (2.18)
and requiring that &},, and & have second at most derivatives automatically means
that this will also have to hold for V#&),,. In general if &},, is of second order this is
not true for V#&),, but here it is required from (2.27). So Horndeski starts by finding
the most general symmetric, second order 2-tensor A, whose divergence V/* A4, is
also of second order. This places constraints on the form of A, leaving a solution
parametrized with ten free functions. These tensors include of course &), but not all
of them verify (2.27). Finally then Horndeski imposes (2.27) on the former family.
This leaves him with four free functions at the end giving his final result (2.19).

Now we have at hand the general scalar-tensor and higher dimensional metric
gravity framework we will move on to see some of their solutions and how the
theories are in fact related in practical terms. We will in particular use known
solutions from Lovelock theory in order to construct Horndeski solutions.

2.3 Seeking Exact Solutions in Lovelock Theory

One of the nice characteristics of Lovelock theory is that despite its additional
technical difficulties related to the higher order nature of the theory, certain
uniqueness black hole theorems of GR remain valid; at least under some weaker
hypotheses. In particular, a generalization of Birkhoff’s theorem remains true apart
from a case of fine tuning of coupling parameters® [28]. Let us review the higher
dimensional version of this result, for this will lead us to some relatively simple yet
interesting solutions where Lovelock theory even circumvents problems of higher
dimensional general relativity. The solutions we will consider will also have a nice
application to Galileon/Horndeski theories leading us to black hole solutions for
four dimensional scalar tensor theories.

The Birkhoff theorem states that, in four dimensions, any spherically symmetric
solution to Einstein’s equations in the vacuum is necessarily locally static. In other
words there exists a local time like Killing vector. This leads to the celebrated
Scharszchild metric as the unique GR solution of spherical symmetry in vacuum.

5The special relation between the coupling parameters corresponds to the strong coupling limit
of EGB-literally the case where the Gauss-Bonnet term is of maximal relative strength to the
Einstein-Hilbert term and gives a very special theory with enhanced symmetries, usually referred
to as Chern—Simons theory (see the nice review [27]).
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The theorem is not modified when one includes a negative or positive cosmological
constant but the solution itself is slightly more general. Indeed a negative cosmologi-
cal constant allows also for exotic horizon topologies of flat or hyperbolic geometry.
The general solution of the Einstein field equations with a cosmological constant in
D = 4 dimensions assuming a constant curvature 2-space (rather than a 2-sphere)
reads,

dy?

2
i = V(i + I 1 (1_

7o) e + xzd¢>2) (2.28)

where the constant (¢, r) sections are two-dimensional constant curvature spaces
parametrized by normalized curvature k = 0, £1. For linguistic simplicity we will
call the surfaces of constant (¢, r), horizon sections, preluding the presence of a
black hole. The lapse function in (2.28) reads, V(r) = « — %rz - % Note then
that since the metric is static, zeros of V' = V(r) correspond to Killing horizons and

exist for A < 0 even when k = 0 or k = —1. This can be explicitly checked by
going to an Eddington-Finkelstein chart,
d
V=14 / 4 (2.29)
V(r)

These black holes are often called topological due to the fact that special identifi-
cations have to be made in order for the horizon to be compact [29]. For A > 0
only the spherical topologies give regular solutions with the presence of an extra
cosmological horizon. So much for four dimensional GR with a cosmological
constant.

In higher, D dimensional, GR Birkhoff’s theorem remains valid not only for
constant curvature sections, but also for horizon sections which are Einstein spaces
[30]. Substituting the constant curvature surface of the horizon sections with a (D —
2)-dimensional Einstein manifold will not alter locally the black hole lapse function
and the general solution is static. The structure of space-time locally’ transverse to
the horizon sections is in this way not affected by the details of the internal geometry,
as long as the latter continues to be an Einstein space. In particular the horizon
structure is the same. To picture this let us take a particular example: consider the,
for example, six dimensional solution,

s> = —V(r)d + Ll (f(p)azr2 L de pzd[?z)
V(r) /(p) !
where f(p) = 1 — L. Hence the horizon sections in four dimensions are given

by a Euclidean Schwarzschild black hole obtained by Wick rotating the time
coordinate of the original four dimensional black hole. The metric (2.30) is a valid

7We will see that when the horizon sections carry non-zero curvature there is a global change in
the topology of the solution related to the presence of a solid angle deficit. This will end up having
important consequences that we will discuss in detail later with the solution at hand.
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six dimensional solution since the horizon sections are Ricci flat. On the hand we
can consider a second solution of the form,

2 ), dr 2 372
ds- = =V (r)dt + m + redTyy,
with now toroidal horizon sections, i.e. a locally flat four dimensional metric. In both
cases we have the same lapse function V(r) = k?r? — 75 independently whether our
horizon is of flat or Euclidean Schwarzschild geometry (which is of course Ricci flat
but has non zero Weyl curvature)-Ricci flatness of both the horizon sections means
that « = O for the lapse function V' (r). The former exotic black holes often have
classical instabilities [31] in a similar fashion to those of the black string [32]. In
fact black string metrics can be Wick rotated to a subclass of metrics with exotic
horizons. The exotic horizon section in this case is nothing but the Euclidean version
of four dimensional Schwarzschild (as in the example above). We see therefore
that in higher dimensional GR a certain kind of degeneracy appears in the possible
solutions which are not completely fixed by the symmetries and the field equations.
Therefore one could entertain the possibility that the additional unphysical exotic
black holes are just an artifact of not considering the full classical gravity theory
in higher dimensions. Indeed we will provide clear indications that this is the case
at least for six dimensional Lovelock theory in the sense that the possible horizon
geometries will be seen to be far more constrained [33] and asymptotically non-
trivial.

So how are these results translated in Lovelock theory? In order to answer this
question [34], we start by considering an appropriate anzatz for the metric and stick
to D = 6 dimensions and EGB theory. We have a transverse 2-space, which carries
the timelike coordinate t and the radial coordinate r, and an internal 4-space, which
is going to represent the horizon sections of the possible six-dimensional black
holes. The metric of the internal four dimensional space we note /4, and we take
to be an arbitrary metric of the internal coordinates x*, u = 0,1,2,3 only. We
furthermore impose that the internal and transverse spaces are orthogonal to each
other. This is immediately true for GR as a result of the theorem of Frobenius but
not true for Lovelock theory. It is an additional assumption we have make in order
to make the problem tractable [34]. The quite general metric anzatz for which we
want to solve the EGB field equations boils down to,

ds® = I B (1.2) 7/ (=dP + d2) + B (1.9 h}) (x) dx"dx” . (2.30)

Using light-cone coordinates,

2.31)

the metric reads

ds* = =22 B (u,v)>* dudv + B (u,v)"/? hffv) (x) dx*dx” . (2.32)
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We want to solve Lovelock’s equations (2.4) for metric (2.32). The key to doing so
boils down to the following two equations: the (uu) and (vv) equations that literally
play the role of integrability conditions for the full system of equations of motion
(351,

2vu,B ., — B _ 3 e

= 2= B [1 ta (B VRO 4 e 5/4B,MB,V)} L3
2v,B,—B,, _ 3

&, = UT [1 +a (B 12RM4) 4 3¢ »p 5/4B,MB,V):| . (2.34)

The above permit to classify and eventually completely solve the full system of field
equations [34]. We have three classes of solutions depending on wether the second,
the first factor is zero, or again a third class for constant B. Here we concentrate on
the class of most interest, class II, corresponding to,

ZV,VB,V - B,vv 0 ZU,MB,M - B,uu 0 2 35

B - B B (23)

The other classes are degenerate and occur for special relations of couplings only.

Most importantly class II solutions are directly connected to GR since (2.35) is

independent of the coupling constant «. Solving (2.35) immediately shows that

we have a locally static space-time [36] and thus a somehow weaker version of
Birkhoff’s theorem still holds.

Solving the remaining field equations leads eventually to the metric solution

[33,34],

},.2
s = —V (1 df + -2 4 12D (x) dxtax’ (2.36)
V(r) "

with lapse function,

RO 2 ea @ (ROP=660) 4
V)= |1+ |14 n 422
=17+ 1g 5 e i

(2.37)

Note first that there are two branches of solutions. This is true generically in EGB
theory and results from the higher order nature of the theory [12]. In EGB there
are generically two vacua for a given theory.® The upper '+ branch does not have
a well-defined GR limit (¢ — 0) and turns out to be unstable (for a full recent

8Tn higher order Lovelock theory there are more according to the order of the highest order
Lovelock term [12].
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discussion on stability of EGB vacua see [37]). The lower branch is ghost free [38]
and is the branch that we will consider from now on omitting the ‘4’ branch. The
horizon sections, parametrized by the four dimensional metric h(4) are constrained
by the field equations to be Einstein spaces,

@ _ RY 4
R = 55w (2.38)

But as we can see from the lapse function which has to be a function of the radial
variable r, a new geometric condition now appears whereupon the horizon quantity

R®? — 6G™ has to be constant. Combining the two conditions gives,
CPCyp,, = O (2.39)

where ® is a given constant and Cug,, is the four dimensional Weyl tensor
associated to h;fg. This is a supplementary condition for EGB theories, the Dotti-
Gleiser condition, (2.39) imposed in addition to the usual Einstein space condition
(2.38) for higher dimensional general relativity. Clearly then, for EGB theory, the
lapse function for the black hole carries a supplementary information particular to
the type of horizon section for the black hole solution. For example, the Euclidean
Schwarszchild metric is not a legitimate internal metric anymore since it does not
verify (2.39). Both of the conditions (2.38) and (2.39) present a geometric similarity
in that we ask for (part of) the curvature tensor to be analogous to the spacetime
metric. The main difference being that the curvature tensor in (2.39) is the Weyl
tensor and, given its symmetries, it is actually its square which has to be analogous
to the spacetime metric. Clearly horizons with ® # 0 will not be homogeneous
spaces and not even asymptotically so. Another interesting point is that the Gauss-
Bonnet scalar, whose spacetime integral is the Euler characteristic of the horizon,
has to be constant for these solutions to be valid. The Gauss-Bonnet scalar of the
internal space then reads G™W = 40 + 24«2 and the potential [33,34],

r2 2 26 M
V(r) =k + F (1 \/1 +cad- 24“— + 24“—) (2.40)

since R® = 12«. For ® = 0, we obtain the black holes first discussed by Boulware
and Deser (see [39]). In this case since the Weyl curvature is zero the horizon
sections are geometries of constant curvature. Taking A = 0 we note that these
black holes are asymptotically flat and are an extension of the higher dimensional
version of the Schwarzschild solution. In fact taking the limit of & small and large
r one obtains precisely the latter GR solution. Recently these black holes have been
reported to have a spin 2 instability for small enough mass parameter [40]. This
result has been extended to Lovelock black holes [41]. It is not yet understood what
is the physical nature of this “short distance scale instability” and if it is somehow
related to thermodynamic instability and quantum Hawking radiation.
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Putting this aside we now want to examine cases of Einstein metrics whose
squared Weyl curvature is not zero but constant. This is a special case of Einstein
metric and the Dotti-Gleiser condition is much like a supplementary requirement.
What is already clear is that any such solution will not be asymptotically “usual”
as the fall off the relevant term is 5 rather than six dimensional. Indeed notice that
the ®-term in (2.40) has a fall off rate of a five-dimensional Boulware-Deser black
hole [39] and is therefore dominant over the “usual” mass term contribution, [42].
We now investigate a simple example which will have interesting four dimensional
consequences.

Consider a four-dimensional space which is a product of two 2-spheres,

ds* = pi (d6] + sin® 01dp7) + p3 (dO; + sin’ dg3) | (2.41)

where the (dimensionless) radii p; and p, of the spheres are constant. The entire
six-dimensional metric reads,

dr 2
ds(24) =V (r)df + —— +r’p (d@l2 + sin’ 91d¢12) +r2p3 (d922 + sin? 92d¢§) ,

V(r)
(2.42)
with lapse function
RW r? \/ o? M
14 — 4+ — | 1= /1 —24k%0 — 240 — + 24a— | . 2.43
=5+ 12a * i hees 243)

In order for (2.42) to be a solution to the equations of motion the spheres have to be
of equal radius, p; = p,. This ensures that (2.42) is an Einstein space. The second
condition is then immediately verified for a product of 2-spheres. We have k =
3 2 >0and O = 37 . Note that even when the 2-sphere curvature is normalized to

p1 = 1 thenx # 1. A linear redefinition of the r coordinate then shows that the area
of the four dimensional space is reduced compared to the homogeneous 4-sphere.
In other words space-time is asymptotically altered by an overall solid angle deficit.
This results in a genuine curvature singularity at r = 0. Of course when we have
M # 0 there is central curvature singularity at » = 0 anyway. But, for (2.42) the
r = 0 singularity is present even for zero mass whenever & # 0! This is not an
artefact of EGB theory. In fact it is easy to see, taking the combined limit of « — 0

and large r, that the resulting GR black hole with V(r) = % +r2k2—rﬂ3 has exactly
the same problem at the origin independently of the value of M. For M = 0 the
GR solution has a naked singularity at the origin. Note again that the lapse function
for higher dimensional GR is the same with the higher dimensional Schwarzschild
black hole modulo the horizon curvature term. The zero mass solution is singular
at the origin wether we are in GR or Lovelock theory. But for Lovelock theory an

interesting effect occurs due to the presence of the ® term in the lapse function.
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To see this consider for the moment M = 0 in the lapse function (2.42). Then
the ® term in (2.42) is identical to the mass term in the Boulware Deser black hole
in five dimensions. Therefore, as we know from the Boulware-Deser solution [39]
this extra @ term generically generates an event horizon cloaking the central r = 0
singularity as long as o # 0! In fact the length scale of this event horizon is given
by the coupling constant & ~ length* which we know from string theory effective
actions [43] is related to the fundamental string tension «’. One then can interpret
this horizon as a higher order ‘quantum’ cloak of an otherwise naked singularity
present in GR. Details for the horizon structure can be found in [34]. We will come
back to this solution in order to construct a Galileon black hole.

Let us, before moving on, make some final remarks regarding these solutions.
First we should note that most probably these multiple sphere solutions can be
unstable to linear perturbations. It has been shown in GR [31] that there is a “balloon
instability” whereupon one of the spheres wants to deflate with respect to the other.
This geometric effect may remain true in the above EGB version [33] although the
perturbation equations for EGB in lesser symmetry change completely compared
to GR. It is also probable that this instability may be stabilized by the inclusion
of a magnetic field in the relevant solution [44]. Secondly we should note that the
above construction involving multiples of equal radius spheres, can be undertaken
in arbitrary even dimensional spacetime as long as we truncate Lovelock theory
to EGB. If one considers higher order Lovelock terms it is not known under what
geometric conditions the horizon sections will be admissible. One may expect a
higher order condition of the type (2.39) in third and higher curvature order. .. We
expect the horizon sections to be more and more constrained as higher order
Lovelock terms come into play. At the same time since horizon sections will be of
higher dimension this will allow for a richer geometry. This is also an open question.
Finally, putting it all together we have arrived to the following result concerning
EGB theory: given the anzatz (2.30), the only asymptotically flat solution of six
dimensional EGB theory with zero cosmological constant, is the Boulware Deser
solution [39]. This is because whenever & # 0 the solution is not asymptotically
flat for six dimensional space-time. Therefore we can deduce that EGB theory is
very similar in this aspect to four dimensional GR lifting the degeneracy present in
higher dimensional GR due to the additional elegant geometric condition (2.39).

2.4 From Lovelock to Horndeski Theory: Kaluza-Klein
Reduction

In order to apply higher dimensional Lovelock theory to cosmology or gravity in
four dimensional space-time one needs some means of approach to four dimensional
gravity. There are at least two routes, braneworlds and Kaluza Klein reduction. In
the recent past Lovelock theory had an important implication in the braneworld
paradigm [45]. Braneworlds consist of higher dimensional spacetimes endowed with
a distributional brane where standard matter is localized. The idea “inspired” in
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rather loose terms from string theory, is that gravity perceives all the space-time
dimensions while matter is localized on a four dimensional braneworld. Since the
set-up involves junction or matching conditions an essential feature is the number of
extra dimensions, namely codimension, yielding for example a wall or string type of
defect. There is a long literature of articles on the subject treating codimension one
[12] and codimension two braneworlds (see [46] and references within) involving
respectively five and six dimensional EGB theory. In particular Lovelock theory
permits, due to the generalized junction conditions [47], well defined codimension
two braneworld cosmology [48]. This leads to important consequences since in
GR one cannot consider distributional sources for cosmological symmetry and
codimension 2. Again, the richer structure of Lovelock theory permits solutions
with distributional sources not available in higher dimensional GR. For more details
on these aspects see [12] and [46] and references within. Here, we will focus
on the more classical Kaluza-Klein compactification since it will give us a direct
connection to higher order scalar tensor terms, found in Galileon/Horndeski theory.
It will also provide a way to obtain exact black hole solutions [49].

It has been known since a long time [50] that a consistent Kaluza Klein reduction
of Lovelock theory gives a scalar-tensor theory with higher order derivatives,
but crucially, with second order equations of motion. In this sense many of the
Galileon terms discussed later on were known from previous work on Kaluza Klein
compactifications and braneworlds [51]. This is the direction we will take here. The
most generic of Kaluza-Klein reduction to four dimensions has recently been given
in the nice paper of [52]. There it has been shown that only up to the third order
Lovelock terms contribute to the Kaluza-Klein compactification in four dimensions.
Here we will concentrate on EGB theory i.e. up to second order Lovelock theory.
We will consider the simplest consistent toroidal compactification giving rise to one
extra scalar degree of freedom.

Start by taking D-dimensional Einstein Gauss-Bonnet theory which is the five
or six-dimensional Lovelock theory truncated to arbitrary dimension. The arbitrary
dimension D will be important when we end up promoting dimension from a
positive integer to a real parameter once we have undertaken a consistent Kaluza-
Klein reduction. We have the EGB action with a cosmological constant,

1 .
S=— | d°x J/=g|-24+R+G 2.44
167Gy / * g[ TR+ ] (2.44)

Consider now the simplest but consistent diagonal reduction along some arbitrary
n-dimensional internal curved space K. We aim to reduce this theory down to four
space-time dimensions with D = 4 + n:

2 =2 2
dsiyy,y = A5y + €?d KG,) . (2.45)
This particular frame is chosen in such a way as so there is no conformal factor

of ¢ in front of the four-dimensional metric. As such the asymptotic character (i.e.
radial fall off) of a Lovelock D dimensional solution will be similar to the four
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dimensional one. All terms with a tilde refer to the curved n-dimensional internal
space, while terms with a bar refer to the (4)-dimensional space-time. One can show
for the given metric Anzatz that the KK reduction for n arbitrary is consistent, i.e.
that the reduced equations of motion are derived from the reduced action [53]. This
reduction is therefore generalised in the manner defined in [54,55]. The important
result of this is that the integer n corresponding to the compact Kaluza-Klein space
can be analytically continued to a real parameter of the reduced action. Naturally
n corresponds to a dimension only for n integer. The solutions from the four
dimensional point of view are still solutions of the resulting effective action for
arbitrary n. The four dimensional effective action reads after integrating out the
internal space,

Sy = /d4x G e3? {R —2A+aG + %(n — 1)d¢? —an(n — )G, pd,¢

—%n(n — 1)(n —2)3¢>V2p + %n(n — 1)2(n —2) (3¢?)
+ e ?R[1+ aR +ad(n —2)(n —3)d¢*] + aGe 2} , (2.46)

For o = 0 this effective action is just the usual toroidal KK effective action. The
higher order Gauss-Bonnet term gives rise to several higher order scalar-tensor
Galileon (or equivalently Horndeski) terms, [14, 15,56, 57] with very particular
potentials. The Galileon field ¢ can then simply be understood to be the scalar field
parametrising the volume of the internal space.

Indeed, apart from the usual lower order terms appearing in standard Kaluza
Klein compactification of Einstein dilaton theories, we see the emergence of several
higher order terms. For a start we have the four dimensional Gauss Bonnet term G
which will contribute to the scalar field variation although it is a topological term for
four dimensional GR. Secondly we have G/*’9 ¢ 0,¢ involving the coupling of the
Einstein tensor with the kinetic term. Here, rather than metric-scalar interaction, as
for the standard kinetic term of ¢p we have a curvature-scalar interaction which we
will see has very interesting consequences in the forthcoming section. This term has
equations of motion of second order essentially due to the divergence free property
of the Einstein tensor G, . For example if one considers RM"3M¢3V¢ this is not
true. It has also shift symmetry in the scalar field typical of certain Galileon terms.
Furthermore we have, what is often called the DGP term, d¢>V2¢ appearing in the
decoupling limit of the DGP model [25] and then the standard Galileon term (8(,152)2
which are also shift symmetric in ¢. The last line in the effective action takes part
only for a curved internal space in the face of Ricci and Gauss Bonnet curvature.
Reducing from the EGB action yields terms up to quartic order in derivatives (either
of the metric or the scalar, or a mixed combination of the two). Reducing higher
order Lovelock densities yields terms with a higher number of derivatives. A typical
example is the higher order permissible curvature-scalar interaction,

PPN, ¢V,pV, Vs (2.47)
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which involves six derivatives and one can show [9] originates from the Kaluza-
Klein reduction of the third order Lovelock density [52]. Again the reader will
recollect the divergence freedom of the double dual tensor giving second order
field equations. Taking for example R*'*F V.9 VedV, Ve would fail this Galileon
property.

Although this effective action is very complex, and its field equations even more
so, it is “simple” to generate solutions for the above (2.46) in four dimensions [53].
One starts from a convenient Lovelock solution in D dimensions. Since we want
the four dimensional solution to have, at least locally, spherical horizon sections
we have to consider a solution where the (D — 2) dimensional horizon sections
are (D — 2)/2-products of two spheres. This is precisely the extension of the six
dimensional solution we discussed in the previous section (2.42) generalized to
arbitrary dimensions [53]. The solution reads,

ds%, = —V(R)df* + are + R dK? (2.48)
@ VR) " n+1 @7 '
R? 26, 202k? 46, m
V(R) =k +— |1 1-="— r , 2.49
(R)=k+& $\/ 2T DR R (249)
1 —2A
g =2 1), = 2.50
a, an(n + 1) - mtDnt)) (2.50)

R2
e = —— (2.51)
n+1

Here, n is the dimension of the internal space minus one 2-sphere in other words,
n = D — 4. This is the higher dimensional interpretation of # but once the solution
is written out we simply take » an arbitrary real number and (2.48) is still an exact
solution and n parametrizes the theory. In our notation here k = 0,1, —1 is the
normalised horizon curvature and we have redefined for this section the constants &,
and £. Taking carefully the &, — O limit, gives a standard Einstein dilaton solution
with a Liouville potential [49]. Set A = 0, k = 1 and let us start by making
some qualitative remarks describing properties of the solution without entering into
technical details. Note that, taking carefully the n = 0 limit switches off the scalar
field and the higher-derivative corrections, and we obtain pure GR in (2.46) and a
Schwarzschild black hole (2.48). This is particularly interesting since the scalar-
tensor solution given above for arbitrary n is a continuous deformation of the
Schwarzschild solution. When # is in the neighborhood of zero we are closest to the
GR black hole. As we hinted in the previous section the topology of the solution is
not that of GR. Indeed the warp factor of the 2-sphere, in (2.48), is recovered only at
n = 0, i.e. the GR limit. Otherwise the area of the reduced spherical horizon is given
by % rather than the 2-sphere area, 47 R?. This is again a solid deficit angle (and
not a conical deficit angle) the same one we encountered for the Lovelock solution
in the previous section. As stressed in the previous sections this will give, at R = 0,
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a true curvature singularity even if m = 0. For large R, we have a spacetime metric
very similar to that of a gravitational monopole [58]. Expanding 2.49 for small &,
and large R gives,

oy 2m
(I’l — I)Rz Rn+1

V(R) =1+ + ... (2.52)

This solution is reminiscent of a RN black hole solution where the role of the electric
charge is undertaken by the leading horizon curvature correction in &,. This is the
particular ® term we discussed in the previous section. This term dominates the
mass term close to the horizon and for n < 1. Note that it can be of negative sign
depending on the value of n and ¢&,. The further we are from n = 0, the GR limit,
the further we deviate from a standard four-dimensional radial fall-off. The first
important question we want to deal with is the central curvature singularity at R =
0, which is due to the solid deficit angle and is present even if m = 0. Also note
that whenever the square root in the lapse function (2.49) is zero we also have a
branch singularity which is also a dangerous curvature singularity. Setting m = 0,
we find that for —1 < n < 1 and &, > O the singularity at R = 0 is covered
by an event horizon created by the higher-order curvature correction. In its absence
(&, = 0), this solution would have been singular...The UV (small R) behaviour
of the solution is therefore regularised by the presence of the higher-order terms. If
n > lorn < —1, then @, < 0is needed in order to preserve the event horizon. The
remaining cases are singular.

Now let us switch on the mass, m # 0. Whenever &, > 0, we have a single event
horizon. When —1 < n < 1, there is no branch singularity however small m is.
On the contrary, when n > 1, the mass is bounded from below in order to avoid a
branch singularity:

m>( 2 ) S (2.53)
n+3 n—1

When n < —1, the solution is also a black hole but the mass term is not falling off at
infinity. The region of most immediate interest is whenever n is small but not zero.

The black hole properties are rather different for ¢, < 0. When —1 < n < 1,
there is an inner and an outer event horizon as long as the following condition is
fulfilled:

s 1 2\
- Lmi-m . (2.54)
2 &5 A3

When n > 1, a single event horizon exists, covering a single branch singularity with
RS < Rh.

Overall we can say that the KK solution given here has an interesting horizon
structure and presents again a quantum cloaking of an otherwise Einstein-Dilaton
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singular solution. It is however not of ordinary asymptotics bifurcating in this way
the no hair paradigm for Galileons [59]. In the last section we will see a way to
construct asymptotically ordinary solutions with fake black hole hair.

2.5 Self-tuning and the Fab 4

As we saw in the previous sections Horndeski or Galileon theory encompasses all
the possible (single) scalar tensor terms one can consider in order for the equations
of motion to be of second order. This is an essential requirement for a well-defined
classical modification of gravity [5]. In this section we will question which of the
terms in scalar-tensor theory have “self-tuning” properties. Self-tuning is a rather
simple and quite old idea with application to the cosmological constant problem.
The basic principle consists of finding solutions for flat (or possibly maximally
symmetric vacua) of some gravity action endowed with a bulk cosmological
constant, independently of the value of the cosmological constant in the action.
In order for self-tuning (and not fine tuning) to be effective the cosmological
constant should not be fixed with respect to any of the coupling constants in the
gravitational action. The idea then is that the cosmological constant is absorbed
by a dynamical solution involving the non-trivial scalar field without affecting the
gravitational background. This can only be a “partial” solution to the cosmological
constant problem since radiative corrections will destabilize this vacuum solution
beyond a certain energy scale, the cutoff of the effective gravity theory. It is
however an interesting first step especially since no theories were known, before
[9], to have such a property without some hidden effective fine tuning of the action
coupling constants as for example in codimension one braneworld models (see for
example [60]). We should note that recently there has been considerable progress
on protecting the cosmological constant from standard model radiative corrections
[61] and we refer the interested reader to this article for the model in question which
interestingly is a rather minimal extension of GR. Rather, for our purposes, having
at hand the general scalar tensor theory we will formulate the following question:
is there a subset of Horndeski theory with self-tuning properties? The answer is
affirmative as shown in [9], yielding a rather simple and neat geometrical theory
which was dubbed by the authors as Fab 4 theory. We start by presenting the theory
and then give a specific self tuning solution which elegantly and non-technically
gives the general idea. We close the section by showing a simple method to obtain
regular black hole solutions in fab 4 and Horndeski theory, independently of self-
tuning.

The Fab 4 potentials make up the most general scalar-tensor theory capable of
self-tuning. They are given by the following geometric terms,

egj'ohn =V & Vjahn(¢)GWVu¢Vu¢ (255)
Zrait = V=8 Vpaut (@) PPV .oV 9V, Vi (2.56)



2 From Lovelock to Horndeski’s Generalized Scalar Tensor Theory 47

860”86 =V Vgeorge(¢)R (257)
Lringo = =8 Vringo($)G (2.58)

where R is the Ricci scalar, G, is the Einstein tensor, P,,qg is the double dual of
the Riemann tensor (2.7), G = Rwab Rvep —4RM R, + R? is the Gauss-Bonnet
combination. As we saw in the previous section all of these terms with particular
potentials appear in Kaluza-Klein reduction of higher order Lovelock terms. Self
tuning solutions exist for any of these potentials as long as either {Vju,} # 0 or,
{Vpaur} # 0 or {Vgeoree} are not constant. Note that this constraint means that GR
in accordance to Weinberg’s no-go theorem [7] does not have self-tuning solutions.
Also Vg, cannot self-tune but does not spoil self-tuning, i.e. it cannot self-tune
without (a little) help from his friends-hence the unfortunate name. Also note that
taking {Veeoree} = constant as for GR with {Vjpn,} # 0 suffices for example to
have a self-tuning theory. In fact pure GR does not exclude self-tuning of the theory
as long as another non-trivial fab 4 term is present. This is also very interesting from
a phenomenological point of view. We will see in what follows how all these facts
come about.

The fab 4 terms are related to particular functionals of the Horndeski potentials,

n—zmww{r+4mmﬁ 2 @0 (2.59)

m=%M@MW v@mm ,m@uamm]<mm

kg = 2 /ohn(¢) 11’1(|,0|) (261)
K9 = _pIXlre - Vg/éorge(qb)p (2.62)
l
F+2W = george(¢) john(¢)pln(|p|) (2.63)

Notice that the self-tuning constraints fix completely the dependence on the kinetic
term p. Notice also that the Fab 4 terms are scalar interactions with space-time
curvature. No pure potential or kinetic terms are allowed for self-tuning. Again, we
will see why their form has to be so special.

Weinberg’s no-go theorem tells us that our vacuum solution must not be Poincaré
invariant [7]. Hence if we consider cosmological symmetry with a time dependent
background, the scalar field has to depend non-trivially on the time coordinate
breaking Poincaré invariance for flat space-time. The self-tuning filter defining the
self-tuning property and thus the form of Fab 4 terms is as follows:

* Fab 4 terms admit locally a Minkowski vacuum for any value of the net bulk
cosmological constant

» this remains true before and after any phase transition in time where the
cosmological constant jumps instantaneously by a finite amount. The scalar field
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will have to be able to change accordingly in order to accommodate the novel
value without affecting the flat space-time background.

* Fab 4 terms permit non-trivial cosmologies i.e. does not self-tune for any other
matter backgrounds other than vacuum energy.

The last condition ensures that Minkowski space is not the only cosmological
solution available, something that is certainly required by observation. The idea
is that the cosmological field equations should be dynamical, with the Minkowski
solution corresponding to some sort of fixed point. In other words, once we are
on a Minkowski solution, we stay there—otherwise we evolve to it dynamically
[62]. This last statement would indicate that the self-tuning vacuum is an attractive
fixed point. Mathematically self-tuning under these conditions, and especially the
second, translates to a junction condition problem where the metric is regular and C>
whereas the second derivative of the scalar field contains Dirac distribution terms.
The full equations of motion are given by,

gjgi‘z}n + é;l:;;l + éiglz;rge + grl;nvgo = %le (264)
¢ ¢ ¢
gjohn + é;aul + é()g‘Zorge + gringo =0 (265)

We have included the cosmological constant in the energy momentum tensor 7",
The contribution of each term from variation of the metric is given by

= 5 V(06T — 2P, 99,9) +
+38850 Y (Vi Ved) V" (Vi V) (2.66)
i = 5P PV (V%)
+1ghsron (I/;,i,/j;vm) v (Vpﬁ{ijm) Vo (I/I;/Ljvy¢>) (2.67)
Egrorge = Vaeorge G — (VIVE = g"1VIV ) Veeorge (2.68)
Eningo = —4P VY,V Vringo (2.69)

and from variation of the scalar by

éj'fhn =2 Y Vjohnvu(v Viohnvv(p)Gﬂv (270)
vy, 3 A

é‘azfml = 31/‘171(1/14?;VM (V;;la/lflvaqﬁ) VV (Vpla/;lvﬂd)) P P g paulpG (271)

é:zgrge = _Vg/eorgeR (2.72)

Ergo = —VingoG 2.73)

ringo ringo
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Notice that the scalar equation of motion vanishes identically for flat space-time.
This necessary condition can be traced back to the distributional origin of the
scalar field and strongly characterizes these terms. Indeed note that a canonical
kinetic term for the scalar is disqualified from self-tuning because there is no matter
source to account for the distributional part of the scalar field. This is why fab 4
terms represent curvature-scalar interactions: so that their scalar field equations are
redundant for the self-tuning background in question.

Instead of going through the detailed derivation of the self-tuning terms in
Horndeski theory we will rather look at a simple cosmological example in order to
see how self-tuning works in practice. For the details we refer the interested reader
to the original papers, [9].

In order to evade Weinberg’s no-go argument concerning the cosmological
constant we have to break Poincaré invariance for the scalar field. As such we
consider a time-dependent scalar field and the FRW family of cosmological metrics
of the form,

ds* = —dT? + a*(t)y;dx' dx’/ (2.74)

where y;; is the metric on the unit plane (« = 0), sphere (« = 1) or hyperboloid

(k = —1). The Friedmann equation reads .7 = —plj("" as we are supposing only

vacuum energy to be present,
H = Ko + Haud + Heorse + Hringo + P (2.75)
and
Hion = 3Viou(@)9* (3H + =)

. K
Hd = =3Voaua (V5> H (5H2 + 3;)

K H V/eor e
Hgorse = ~6Vieorse(®) [(H2 +5)+ H¢Vg—g}
george

. K
%ingo = _24Vr/ingo(¢)¢H (H2 + E)

Self-tuning requires a flat space-time solution and a time dependent non-trivial
scalar field whenever p,, = p4 and for all A. Flat space in cosmological coordinates
is given for a hyperbolic slicing k = —1 with a(T) = T and H = 1/T.
This is Milne space-time, the cosmological slicing of flat Minkowski space-time.
Therefore, plugging H? = —k /a? into (2.75), we immediately see that

Viorn (@)@ H)? + Veau @) G H)* = Voo ()G H) + pa = 0 (2.76)

Here, we immediately see that ringo or a constant george do not spoil self-tuning
but require necessarily another non-trivial fab 4 term. Indeed we see that the scalar
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field ¢ is given locally (in space and time) with respect to the arbitrary bulk value of
the cosmological constant. This is again an essential condition. For since the scalar
field equation is redundant and the space-time metric given, the Friedmann equation
has to fix the scalar field dynamically i.e. with respect to its derivative. Hence the
first condition means that the Friedmann equation is not trivial; it depends on ¢.
Furthermore, the scalar equation of motion is actually redundant for flat space-time.
This is important for otherwise under an abrupt change of the cosmological constant
the scalar derivative could not be discontinuous disallowing self-tuning. This is the
implementation of the second condition. Indeed the scalar equation E4 = 0, where

E¢ = Ejohn + Epaul + Egeorge + Eringo (277)

and

d . .
Ejom = 6 [@*Viom($)§ A2] = 307V, (9)¢ A2

d . .
Epaul - _95 [a3Vpaul(¢)¢2HA2] + 3a3Vp/aul(¢)¢3HA2

d ;
Egeorge = _65 [aSVg,:eorge((lS)Al] + 6a3Vg/e/orge(¢)¢Al + 6a3Vg,f/eorge(¢)A%

d[ 5[« 1

with operator

A, = H" — (*/__K) (2.78)

a

vanishes on shell for n > 0. However, we should note that the third condition
is implemented by the fact that the full scalar equation of motion should not
be independent of d. This ensures that the self-tuning solution can be evolved
to dynamically, and allows for a non-trivial cosmology. The second Friedmann
equation results from the scalar and 1st Friedmann equation as a Bianchi identity.

In order to explicitly show a self-tuning solution consider some particularly
simple potentials that can be obtained by Taylor expansion on ¢.

Vjohn = st V;)aul = Cps (279)
Veeorge = Cg + C4 ¢, Viingo = Cr + C ¢ + C? $?, (2.80)

This Taylor expansion corresponds to a slow varying late time scalar filed. Since
(2.76) is homogeneous in ¢ H it is quite easy to see that

¢=do+ T, 2.81)
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is a solution where ¢y and ¢; are constants, with

—c;¢1+2cj¢%—4cp¢f+%=0, (2.82)
Therefore for arbitrary A there exists ¢; satisfying locally (2.82) without fine tuning
of the potentials, here C f4p4. If A jumps to a different value then so can do ¢; and
this corresponds to a discontinuous scalar field ¢ The same mechanism occurs for
arbitrary potentials, of course there the solution is more complex. An interesting
question now arises: is it possible that self-tuning solutions exist for other vacuum
metrics of the theory. Could we for example have Fab 4 with a cosmological constant
and find a self-tuning vacuum black hole, in other words a black hole solution
than rather than de-Sitter have flat space-time asymptotics. This is still an open
problem for the theory, although a self-tuning solution has been recently found in
the literature with a remnant effective cosmological constant [18].

Let us now move on into the direction of exact solutions, describing a method
which will give black hole solutions in this theory [18]. Let us for simplicity
consider two of the Fab 4 terms namely John and George and let us also consider
their potentials to be constants. We have therefore the action,

S = /d4xJ—_g[§R + BG"0,90,6]. (2.83)

and here notice we have not included a cosmological constant. The relevant coupling
constants are now ¢ and B and as a result the above action is shift-symmetric for the
scalar field ¢. According to what we described above, this theory is a self-tuning
theory for flat space-time as long as B # 0 had we had a cosmological constant in
the action. The metric field equations read,

(G + g [(00)*G v + 2Puans Vi VP 9

+8adl0 vyvp¢v8va¢] =0, (2.84)

where Pyg,, is the double dual of the Riemann tensor (2.7). The ¢ equation of
motion can be rewritten in the form of a current conservation, as a consequence of
the shift symmetry of the action,

VoIt =0, JF =BG 0,9. (2.85)

Note that (2.85) contains a part of the metric field equations, namely that originating
from the Einstein-Hilbert term. We now consider a spherically symmetric Anzatz

ds® = —h(r)di* + ;’% e, 2.86)
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where f(r), h(r) are to be determined from the field equations.

Let us make a slight pause in order to make connection with the flat self-tuning
solution we exposed previously. In the (2.86) system of coordinates, Milne space-
time is given as,

t
T=+12—r2, cothX = - (2.87)
r

and thus we note from (2.81) that the self tuning solution we depicted previously
(2.81) is given by ¢(t,7) = ¢o + ¢1(t> — r?). The scalar field therefore in this
coordinate chart is a radial, time dependent function. Therefore any self-tuning black
hole solution will have to have a time and radially dependent scalar.

Although we do not find a self-tuning solution for the forthcoming example (we
have taken A = 0) we consider the Anzatz,

BG™ =0, ¢t r) = qt+ Y (r). (2.88)

involving a linear time dependence in the scalar field.” Notice from the field
equations (2.84) that due to shift symmetry no time derivatives are present, the
equations of motion are ODE’s. This condition (2.88) solves not only the scalar
but also the (zr)-metric equation which is not trivial due to time dependence of
the scalar field ¢. Therefore (2.88) is a valid anzatz rendering the whole system
integrable. Indeed the remaining equations are solved for, with f = h = 1 — &

-
whereas the scalar field is not trivial and reads,

_ T oog YR
oL =qttqu [2\/;+logﬁ+ﬂ:|+¢o (2.89)

The regularity of the metric and the scalar field at the horizon can be conveniently
checked by use of the generalized Eddington-Finkelstein coordinates, with the
advanced time coordinate, v,

v=t+ / (fh)~"2dr. (2.90)
One finds from (2.86) and (2.90),

ds* = —hdv* + 2/h/ f dvdr + r>d 2. (2.91)

°Clearly, had we been seeking a self-tuning solution in the presence of an arbitrary cosmological
constant this linear anzatz would not do. We know rather that there must be at large distance a ¢>
dependence on the scalar field. This unfortunately renders the field equations #-dependent and the
system cannot admit a non zero mass solution. In other words a self-tuning black hole would have
to be part of a radiating space-time. Again this is an open problem.
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One can explicitly check that the solution (2.89) with the plus sign does not diverge
on the future horizon (whereas the solution with the minus sign is regular on the
past horizon). Indeed the transformation (2.90) reads, v =t + r 4+ plog(r/pu — 1),
and using (2.89) one finds,

¢+ =4 [v—r +2W—2ulog(\/z+ 1)} + const, (2.92)
m

which is manifestly regular at the horizon, r = . This is therefore a regular GR
black hole with a non-trivial scalar field which is also regular at the horizon. This
method can be applied in differing Gallileon contexts yielding relatively simple and
well-defined black hole solutions [63]. It seems that the linear time dependence
of the scalar field, its shift symmetry and the presence of higher order terms is
capital to the presence of regular black hole solutions. Indeed if there is no linear
time-dependence then the scalar field can present singular behavior at the horizon
and solutions are not asymptotically flat [64]. We can re-iterate the Anzatz (2.88)
roughly as long as the Galileon scalar equation of motion gives the metric field
equation of the lower order term. In other words gravitational terms go in pairs, as
here in our example, the Einstein-Hilbert and the John term. One can show that a
similar property holds for Ringo and Paul terms of the Fab 4. Indeed one can show
that the scalar equation associated to Paul, puvep V.9V dV, Vg with V0 =
constant gives the metric field equations of gbG Note also that the latter is also
invariant under shift symmetry. This method bifurcates the no-hair arguments in
[59] (see [18] and [65]).

Conclusions

In this lecture we have studied certain aspects of Lovelock and Horndeski
theory that have been discussed very recently in the literature of modified
gravity theories. The former theory, as we saw is the general metric theory of
massless gravity in arbitrary dimensions and with a Levi-Civita connexion,
whereas the latter is the general scalar-tensor theory in four dimensional
space-time, again using a Levi-Civita connexion. Lovelock theory, is GR with
a cosmological constant in four dimensions whereas Horndeski theory is GR
once the scalar field is frozen. In this sense and given their unique properties
the two theories are essential and very general examples of modified gravity
theories. General because, for example, Horndeski theory includes known and
widely studied F(R) or F (G) theories. General also since part of Horndeski
theory is a limit of other fundamental modified gravity theories such as
massive gravity [16] in its decoupling limit [25]. We saw that Lovelock and
Horndeski theories are explicitly related via Kaluza-Klein reduction and one
can map solutions from one theory to the other. This permitted to find analytic

(continued)
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black hole solutions in Horndeski theory for the first time [53]. We then moved
on to discuss a subset of Horndeski theory which has self-tuning properties.
This particular theory consisting of four scalar-curvature interaction terms has
been dubbed Fab 4 [9]. Although Fab 4 does not present a full solution of the
cosmological problem since it does not account for radiative corrections [8],
the theory itself has some very interesting integrability properties giving for
the first time scalar-tensor black holes with regular scalar field on the black
hole horizon. The method described briefly here is quite powerful since it can
be applied in differing gravitational theories of the Galileon type or even with
bi-scalar tensor theories [63]. We have depicted very recent ongoing research
directions in these fields which have numerous open problems. We hope that
these notes will help in tackling some of those in the recent future.
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Chapter 3
Modified Gravity and Coupled Quintessence

Christof Wetterich

Abstract The distinction between modified gravity and quintessence or dynamical
dark energy is difficult. Many models of modified gravity are equivalent to models
of coupled quintessence by virtue of variable transformations. This makes an
observational differentiation between modified gravity and dark energy very hard.
For example, the additional scalar degree of freedom in f(R)-gravity or non-local
gravity can be interpreted as the cosmon of quintessence. Nevertheless, modified
gravity can shed light on questions of interpretation, naturalness and simplicity.
We present a simple model where gravity is modified by a field dependent Planck
mass. It leads to a universe with a cold and slow beginning. This cosmology can
be continued to the infinite past such that no big bang singularity occurs. All
observables can be described equivalently in a hot big bang picture with inflation
and early dark energy.

3.1 Introduction
Einstein’s equation
) 1
M (R;w - ERgp.v) = Tp.v (3.1)

expresses geometrical quantities on the left hand side in terms of matter and
radiation on the right hand side. The basic geometrical quantity is the metric g,
with R, and R the Ricci tensor and curvature scalar formed from the metric and
its derivatives. The energy momentum tensor 7),, contains contributions from the
particles of the standard model (“baryons”, neutrinos, radiation) and from dark
matter.

The observation of the present accelerated expansion [1,2] as well as indications
for an inflationary epoch in very early cosmology tell us that Eq. (3.1) cannot be
complete despite the numerous successful predictions of general relativity. One may
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supplement terms on the left or right side, as indicated by the dots

1 1
Ry — ERgW—i-m = W(T’w +.). (3.2)

Additional contributions to the energy momentum tensor are usually called dark
energy, whereas a change on the left hand side is associated with a modification of
gravity or general relativity.

It is obvious that this distinction cannot be a particularly strict one since the
validity of an equation does not depend on where one writes terms. The most promi-
nent candidate for the explanation of an accelerated expansion, the cosmological
constant, can be interpreted as an additional contribution to the energy momentum
tensor AT, = Ag,.. This interpretation is suggested by the contribution of the
effective potential of the Higgs scalar to A, or similar for other scalar fields. We
could write the cosmological constant term also on the left hand side and consider
it as a modification of gravity—after all it influences the gravitational equations in
“empty space”.

One may try a more concise definition of the meaning of modified gravity by
requiring that the change of the Einstein tensor on the Lh.s. of Eq. (3.1) involves
derivatives of the metric, while terms with additional fields and no derivatives of
&,v would contribute to 7},,. We will see, however, that modified gravity models
defined in this way can often be rewritten in terms of different fields, frequently
additional scalar fields. What appears in one field basis as a modification of gravity
with terms involving derivatives of the metric shows up as dark energy with new
fields and without metric derivatives in an other field basis. In particular, modified
gravity theories that are consistent with the observed evolution of the universe are
often equivalent to dynamical dark energy or quintessence. The borderline between
modified gravity and dark energy becomes rather fuzzy. In fact, the first model of
quintessence has originally been formulated as a modification of gravity [3].

The reason for this ambiguity between modified gravity and dark energy is
connected to a basic property: observables depend on the dynamical degrees of
freedom, but not on the choice of fields used to describe them (“field relativity”).
For example, the metric may contain a scalar degree of freedom besides the graviton.
This scalar is not distinguished from a “fundamental scalar field” (cosmon) which
is the basic ingredient of quintessence.

These lecture notes will present several examples for the equivalence of modified
gravity and quintessence. In particular, f(R) gravity or a large class of non-local
gravity models are equivalent to coupled quintessence [4, 5]. We do not aim,
however, to cover all possible modifications of gravity. More general modified
gravity models may contain further non-scalar degrees of freedom (vectors of
tensors), involve an infinite number of degrees of freedom, or give up the basic
diffeomorphism symmetry underlying general relativity.

Recent reviews of modified gravity can be found in [6-11]. We concentrate here
on the deep connection between modified gravity and coupled quintessence. This
helps to understand many of the rich features of modified gravity in a simple and
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unified way. It also shows that many claims for observational distinguishability
between modified gravity and quintessence are actually not justified.

In Sects. 3.2 and 3.3 we display our basic setting and discuss the field transforma-
tions that relate different versions of a given physical model. In Sect. 3.4 we describe
the cosmology of Brans-Dicke theory in the language of coupled quintessence. This
points to strong observational bounds on the effective coupling 8 between the cos-
mon and matter that will play an important role later. Section 3.5 discusses general
scalar-tensor models with actions containing up to two derivatives. We highlight the
importance of field-dependent particle masses in order to find models obeying the
bounds on 8. Section 3.6 discusses a simple three-parameter cosmological model
along these lines which is compatible with all present observations from inflation
to late dark energy domination. Formulated as a scalar-tensor theory (Jordan frame)
it exhibits an unusual cosmic history. The universe shrinks during the radiation-
and matter-dominated epochs and the evolution is always very slow. Cosmological
solutions remain regular in the infinite past and there is no big bang singularity. On
the other hand, the same model is characterized in the Einstein frame by a more
usual big bang picture. This underlines that the field transformations that a crucial
for these notes also incorporate important conceptual aspects.

In Sect.3.7 we describe the equivalence of f(R)-modified gravity with cou-
pled quintessence [12-14]. For constant particle masses the equivalent coupled
quintessence models exhibit a large universal cosmon-matter coupling 8 = 1/+/6.
This issue is a major problem for the construction of realistic f(R) models. We
sketch in Sect.3.8 how a vanishing coupling 8 = 0 can be obtained for f(R)-
models with field-dependent particle masses. In Sect. 3.9 we turn to simple models
of non-local gravity. Again, such models are equivalent to coupled quintessence.
In Sect.3.10 we ask the general question to what extent modified gravity models
which lead to second order field equations, as Horndeski’s models [15], can find an
equivalent description as coupled quintessence models. We find a huge class of such
modified gravity models for which the scalar-gravity part is given by the action for
quintessence, while additional information is contained in the details of the effective
cosmon-matter coupling. Our conclusions are drawn in the final section. Parts of
Sects. 3.5 and 3.6 have overlap with work reported in [16, 17].

3.2 Basic Setting

We will assume that the theory which describes the late universe (say from radiation
domination onwards) can be formulated as a quantum field theory. (This quantum
field theory may be an effective theory embedded in a different framework as
string theory.) We also restrict the discussion to the case where diffeomorphism
symmetry (invariance under general coordinate transformations) is maintained. The
most convenient way of specifying models is then the quantum effective action I"
from which the field equations can be derived by variation. It is supposed to include
all effects from quantum fluctuations. We can perform arbitrary changes of variables
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in I'. They correspond to changes of variables in the differential field equations. All
predictions of the model are contained in the field equations. A change of variables
can therefore not affect any observable quantities. We will in the following heavily
rely on this property of “field relativity” in order to demonstrate the equivalence
of many modified gravity theories with coupled quintessence. (Note that on the
level of the functional integral for a quantum theory a change of variables has two
effects. It transforms the classical action and induces a Jacobian for the functional
measure. The effective action is already the result of functional integration such that
no Jacobian plays a role in the variable transformation.)

We postulate that I" is invariant under general coordinate transformations and
write it in the form

I = /d4x¢§($g +.%). (3.3)

Here %, is the gravitational part, while the variation of ,/g.%, with respect to g,
yields the energy momentum tensor 7#". Einstein’s equation follows for

M2
Ly =—FR, 3.4
2
while %, involves matter and radiation
Zm = ogslandard model + Zdark matter « (35)

Modified gravity corresponds to a more general form of .. The simplest form of
quintessence adds to .Z, the contribution from a scalar field ¢(x), consisting of a
potential V/(¢) and a kinetic term,

1
ALy = anauq) + V(p). (3.6)

This scalar field is called the “cosmon”.

Simple modifications of gravity add to .Z, terms involving higher powers
of the curvature scalar as R?. They can play an important role for inflation
as in Starobinski’s model [18]. Within higher dimensional theories the higher
order curvature invariants have been employed for a mechanism of spontaneous
compactification [19] and for a description of inflation as an effective transition
from higher dimensions to four “large” dimensions [20, 21]. The field equations for
actions where R is replaced by an arbitrary function f(R) have been investigated
long ago [22]. Modifications of gravity also arise if our four-dimensional world is
a “brane” embedded in some higher-dimensional space [23]. Higher-dimensional
scenarios can be described in an equivalent four-dimensional setting, involving in
principle infinitely many fields and in some cases non-local interactions. In the four-
dimensional language typically both calL, and .Z}, are modified simultaneously. We
will concentrate in this lecture on simple four-dimensional models with only a few
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effective degrees of freedom. Many important aspects of modified gravity can be
understood in this simple setting. We are mainly interested in the role of modified
gravity for the present cosmological epoch and leave aside its potential relevance
for the early inflationary epoch.

Modified gravity models have a long history. One of the most prominent
historical models is Brans-Dicke theory [24], where the reduced Planck mass M
in %, is replaced by a scalar field y(x). In this case both .Z, and £}, get modified,

XZ
L =~ R. (3.7)

ALy

1
EK@"){BM)(. (3.8)

(Our choice of a scalar field y differs from the original formulation in [24]. The
constant K is related to the w-parameter in Brans-Dicke theory by K = 4w.) Many
aspects that are crucial for these notes can already be seen in Brans-Dicke theory,
and we will discuss them in the next two sections.

3.3 Weyl Scaling

Itis possible to express Brans-Dicke theory as a type of coupled quintessence model.
For this purpose we perform a Weyl scaling [25,26] by using a different metric field
g, related to g, by

Suv = Wg),,. (3.9)
Here the factor w? can be a function of other fields. Let us consider a scaling

involving the scalar field y without derivatives, w = w(}y). The new curvature scalar
R’ formed from g}, and its derivatives is related to R by

R =w2{R —6(Inw);"* (Inw),, — 6(Inw);* ,}. (3.10)
Here we denote by semicolons covariant derivatives, in particular
(Inw),, = 3, Inw, (Inw)" = g’*"9, Inw. (3.11)

The square root of the determinant of the metric, g = —det(g,,), transforms as

Jg =w'/g' (3.12)
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We next make the specific choice

M
resulting in
JEX*R — /g'M?R’' + derivatives of y. (3.14)

The term %, takes now the standard form (3.4) and the “modification of gravity”
has been transformed away. As a counterpart, the kinetic term for y is modified by

replacing /A%, — ' AL,

M2
AL = T(K +6)0"Iny 9, In x. (3.15)
For K > —6 the model describes gravity coupled to a scalar field. A canonical form
of the scalar kinetic term A.Z], = d*¢0d,¢/2 obtains for

0 =vEK+6Mn (%) (3.16)

The choice of the metric g, is called the Einstein frame. In the Einstein
frame the Planck mass M is a fixed constant that does not depend on any other
fields. Cosmologies of two effective actions related by Weyl scaling are strictly
equivalent, with all observables taking identical values [27]. For a quantum field
theory the concept of the quantum effective action I" is crucial for this statement.
Its first functional derivatives, the field equations, describe exact relations between
expectation values of quantum fields. Variable transformations as the Weyl scaling
are transformations among these field values—they may be associated with “field
coordinate transformations”. Observables that can be expressed in terms of field
values have to be transformed according to these variable transformations. For
cosmology it is crucial that all quantities, including temperature 7', particle masses
m, or the coupling of particles to fields 8, are transformed properly under Weyl
scaling. It can then be established that suitable dimensionless ratios, as T7/m,
remain invariant under Weyl scaling [27]. Dimensionless quantities are the only
ones accessible to measurement and observation. One is therefore free to use the
Einstein frame with metric g;w or the “Jordan frame” (3.7) with metric g,, - both
are equivalent, yielding the same results for dimensionless observable quantities.
This has been verified by detailed studies of many observables [27-32]. We may
summarize that physical observables cannot depend on the choice of fields used
to describe them, a principle called “field relativity” [32]. This principle extends
to observables involving correlations, which can be found from higher functional
derivatives of I".

It is crucial that also the matter and radiation part .Z, is transformed under Wey1
scaling, due to the presence of the factor /g, or g/ in derivative terms. In general,
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not only the metric but also other fields appearing in %, need to be transformed
under Weyl scaling. The electromagnetic gauge field A, needs no rescaling. Indeed
the Maxwell kinetic term remains invariant since a factor w* from /& cancels two
factors w2 from the inverse metric g"" appearing in

1
Lr = ZFWFPUg“pg””. (3.17)

For fermions, the factors of w drop out of the kinetic term provided we combine the
Weyl scaling (3.9) with a transformation of the fermion field

v o=wry (3.18)

This yields

JEUYF Y — Uy . (3.19)

where the dots denote a term containing a derivative of y, i.e. /g’y y*y’d w)x-Fora
model containing only massless gauge bosons and fermions the Weyl scaled version
of Brans-Dicke theory describes standard gravity and a massless scalar field that has
only derivative couplings. In this case ¢ can be associated with the Goldstone boson
of spontaneously broken dilatation or scale symmetry.

For massive fermions the situation changes drastically. A mass term m g \/E&W
transforms according to

_ _ M _
mp VY — mpJgv'y = mFY\/?l/f’wﬂ (3.20)

We end with a non-derivative coupling of ¢ to the fermion mass

Lrm = Mp exp (—%‘”) vy, (3.21)

with cosmon-matter coupling[4,27]

1 1

p= «/K+6= Vio+6

(3.22)

3.4 Brans-Dicke Cosmology

For understanding the cosmological role of the coupling f§ it is instructive to study
the cosmology of the Brans-Dicke theory in the Einstein frame. We assume a homo-
geneous and isotropic Schwarzschild metric with scale factor a(¢), H = dlna/dt,
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and vanishing spatial curvature, coupled to a homogeneous scalar field ¢(¢). The
field equations for a fluid of massive particles read [4, 5]

2 _ 1 1.,
H” = 3Mz(er 5% )s (3.23)
b 3H(+ D)+ (=35 =0 (3.24)
B
b+ 3Hp = 1-(0=3p). (3.25)

For the radiation dominated epoch with p = p/3 the coupling B plays no role.
The field ¢ settles rapidly to an arbitrary constant value and one finds standard
cosmology. Additional massless fields for which 8 vanishes do not change this
situation.

Once particles become non-relativistic, however, and matter starts to dominate
over radiation, the coupling f leads to a modified cosmology. The field ¢ evolves
and particle masses change. After a transition period cosmology reaches a scaling
solution which reads (p = 0)

n .M M
?7¢:T’pzt—2_ (3.26)

Equations (3.23)—(3.25) become algebraic equations for 7, ¢ and f, with solution

_ 2 _ 12—8,82 _ 48
3505 T Grap (T 3w

n (3.27)

This asymptotic solution exists for

B < \/g L 0> —g. (3.28)

For B of the order one one finds a scalar field dominated cosmology that is not
compatible with observation. This becomes even more drastic for § > \/3/_2 where
matter can be neglected as compared to the scalar kinetic energy. In contrast, for
small 8 the modification of the expansion remains small, with 7 close to the standard
value 2/3. The most prominent cosmological effect concerns the time variation of
the ratio of nucleon mass over Planck mass. Indeed, the field ¢ has changed between
matter-radiation equality and today by Ag = ¢(f) — @(teg),

Ag ~ 48M In (I—O) , (3.29)

teg
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with a corresponding change of the nucleon mass

2
mn(teq) ,3 to 4 682 3
~ Zap)l=(— = 2., ~ (1100)%. .
mn(lo) P (M (p) (teq) ¢ ! ( 00)2 (3 30)

The relative change of the nucleon mass R, ~ (3/2w)In(1100) bounds w as a
function of the observational bound R,, < R, on the relative variation of the nucleon
mass,

10
w > 7 Z 100. (3.31)

n

The upper bound on the relative variation of the nucleon mass R, can be
estimated from nucleosynthesis. (For Brans-Dicke theory no substantial change of
the nucleon mass occurs between nucleosynthesis and matter radiation equality.) We
evaluate

_ Amy, _ 1 AGy (3.32)

R, —=
my 2 GN

with Am, = m,(t,) —m, , m, = m,(ty) and ¢, the time of nucleosynthesis. The
second equation involves Newton’s constant G . It reflects the fact that all particle
masses vary ~m,, and only dimensionless ratios as m2G y can influence the element
abundancies produced during nucleosynthesis [33]. We may use the bound from [33]

AG
—0.19< =N <01 (3.33)
N
for a constraint Rn = 0.1, > 100. This cosmological bound is weaker than

the bound from solar system gravity experiments @ > 4 - 10* [34]. On the other
hand, this bound restricts the overall cosmological evolution. More precisely, the
cosmological bound constrains a combination of 8 and the change in the normalized
cosmon field since nucleosynthesis,

—~0.05< %(@(Zn) — ¢(1)) < 0.1. (3.34)

3.5 Scalar Tensor Models

The problem with ¢-dependent particle masses in the Einstein frame persists for
many scalar tensor models. There are two types of general solutions for this issue:
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(1) Particle masses in the Jordan frame are dependent on y and scale ~ y. In the
Einstein frame the particle masses are then independent of y and B vanishes
[3,27].

(i) The scalar field ¢ changes very little, both in cosmology and locally.

The simplest way to realize the second alternative is to add a potential V() in the
Jordan frame. After Weyl scaling one finds in the Einstein frame

M4
VEVO) = VgV (). V = wl = —rV = { - (3.35)

4¢ } v
VK+6M)
If V/(p) has a minimum at ¢, the cosmological solution will typically settle at this
minimum at early time, such that there is no residual cosmic time variation of the
ratio m, /M. On the other hand, if ¢ settles to ¢y only after nucleosynthesis or
continues evolving, the cosmological bound (3.34) has to be respected.

A local mass distribution acts as a source for the scalar field with strength 8/ M .
This induces an additional scalar-mediated attraction. For a massless scalar field the
relative strength of this interaction as compared to Newtonian gravity is 22. If the

scalar mass
02V
my = a—@z(fpo) (3.36)

is smaller than the inverse size of the solar system the presence of this scalar
interaction would be visible in post-Newtonian gravity experiments, limiting 1.2 -
107>, cf. Eq.(3.22). For larger m, the additional exponential suppression of a
Yukawa interaction allows for larger B. If m,, exceeds the inverse size of a massive
object the scalar field ¢ tends to settle inside the object at a value different from .
Then the nucleon mass becomes density dependent, implying again upper bounds
on B [35]. For models predicting large 8 and a small cosmological mass m,, there
remains still the possibility that the local mass inside an object is substantially higher
than the cosmological mass outside the object, due to non-linear effects. This is
called chameleon effect [36]. We will see that many popular f(R)-theories lead to
large B and small m,,.

In the remainder of this section we will concentrate on the alternative (i) with
x-dependent particle masses. We will investigate a general class of scalar tensor
theories with an effective action

(1 1
r= /gi {—EF(X)R"‘EK(X)a“XauX"‘ V(O - (3.37)

This is the most general form for a scalar coupled to gravity which preserves
diffeomorphism symmetry, provided that terms with four or more derivatives can
be neglected. For a homogenous and isotropic Universe (and for vanishing spatial
curvature) the field equations take the form [16,27]
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KGg+3mp+ 2K O 1Oy (3.38)
X XT3 BXX 3y 20y - '
2 : IF\ .»
FR= F(12H? 4+ 6H) =4V — (K + 65 ) i (3.39)
x
OF PF
—6— (i +3Hp)y—12—— 2> = TH,
a){2()(+ 0x ot LT
1 ) 1., _oF .
F(Row — 5 Rgw) = 3FH* =V + S K} —68—)(2H)()(+T00. (3.40)

The r.h.s. of the field equations involves the energy-momentum tensor 7),, and
the incoherent contribution to the scalar field equation g,. The general consistency
relation between g, Too = p and Tj; = pd;; reads

p+3H(p+p)+q,x =0. (3.41)

For an ideal fluid of particles with a y-dependent mass m () the explicit form of
q, is given by

dlnm
=" 2(p—3p). (3.42)

In particular, for m,(y) ~ x and p — 3p = m,n,, with n, the number density of
particles, Eq. (3.42) reads

-3 m
g, =" - "ry (3.43)
X X

Let us consider the case where particle masses scale m, ~ x and concentrate on
F(o=x. K =K. (3.44)

A particular case is V = Ay*. In this case the effective action (3.37) contains no
parameter with dimension of mass or length. If, furthermore, all particle masses in
%, scale precisely ~y no mass scale appears in ., either. Such models are scale
invariant or dilatation invariant [3, 37]. Scale symmetry can be realized by a fixed
point in the “running” of dimensionless couplings and mass ratios as a function of y.
If the strong gauge coupling, normalized a momentum scale ¢g> = y2, is independent
of x, the “confinement” scale Aqcp scales ~ x. For a scale invariant potential for
the Higgs doublet

A
S = Th(hTh —enr?)? (3.45)
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the minimum occurs for

ho ~ ¥, (3.46)
such that for constant Yukawa couplings one has

me ~ ¥, (3.47)

and similar for quark and other charged lepton masses.

The cosmology of a model with exact scale symmetry is simple. After Weyl
scaling the potential becomes V/ = AM* and particle masses are constant. The
model describes a standard cosmology with cosmological constant AM *, coupled
to an exactly massless Goldstone boson with derivative couplings, the dilaton.
The dilaton settles to an arbitrary constant value in early cosmology and is not
relevant for late cosmology [3]. In particular, this type of model cannot account
for dynamical dark energy.

The situation changes profoundly if we allow for violations of scale symmetry
(dilatation anomaly) [3]. For example, we may consider a cosmological constant in
the Jordan frame, V' = V;, or a quadratic potential V = u? 2. In both cases the
potential in the Einstein frame decays exponentially,

V = M*exp (——) , (3.48)

witha = 4//K +6forV =Vyanda = 2/V/K + 6 for V = pu?x2. (We absorb
a multiplicative constant by a shift in ¢.) The scalar “cosmon” field will roll down
the potential, ¢ (t — 00) — 0o, V(t — co) — 0. Models of this type with constant
particle masses in the Jordan frame lead to non-trivial cosmologies [38,39]. They are
excluded, however, by the bounds on the time variation of m,, / M since the coupling
B is large.

At this point a simple setting for a realistic dynamical dark energy becomes
visible. One may combine a dilatation anomaly in the potential, say V' = 1V or
V = u?x?, with a scale invariant standard model of particle physics. If the charged
lepton masses and quark masses as well as Aqcp all scale proportional to x, the
nucleon and charged lepton masses as well as binding energies and cross sections
become independent of ¢ in the Einstein frame. All observational bounds on time
varying fundamental couplings and apparent violations of the equivalence principle
are obeyed. The first realistic model of dynamical dark energy or quintessence was
actually a “modified gravity” of this type [3]. Models of this type can also explain the
recent increase in the fraction of dark energy §2; [40,41]. Scale symmetry violation
in the neutrino sector induced by a dilatation anomaly in the sector of heavy singlet
fields entering by the seesaw mechanism can account for an increasing neutrino
mass in the Einstein frame, 8 < 0. This stops the evolution of ¢ as soon as neutrinos
become non-relativistic, typically around z = 5. From this time on the cosmology
looks very similar to a cosmological constant.
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Scalar tensor models that lead to dynamical dark energy for the present cosmo-
logical epoch [3,27,42—47] are sometimes called “extended quintessence”. By virtue
of Weyl scaling they are equivalent to a subclass of “coupled quintessence” [4,5,48—
56]. Constant particle masses in the Jordan frame imply in the Einstein frame
a universal coupling 8 for all massive particles, while y-dependent masses offer
more realistic perspectives. As compared to constant particle masses in extended
quintessence, coupled quintessence is a more general concept where the cosmon-
matter coupling can vary from one species to another. While the effective coupling
Bn to nucleons has to be very small, more sizeable couplings to dark matter are
allowed (B4, < 0.1), and the cosmon-neutrino coupling can be large, say 8, ~ 100.
Present data slightly favor a non-zero coupling, 8 =~ 0.07 [57].

3.6 Slow Freeze Universe

In this section we briefly describe a simple scalar-tensor model with only three
cosmologically relevant dimensionless parameters [17]. It is based on the effective
action

2 2
r= /d“xﬁ{—%R n (; - 3) Ay, x + V()()} . (3.49)
The potential
2.4 2
KX M
V=—2 1= 3.50
m? + y2 m2 (3.50)

shows a crossover between two scale invariant limits, one for y — O with IV ~ A )(4,
and the other for y — oo with V/x* — u?/x*> — 0. The mass scales u and m
violate scale symmetry. We take

w=2-1073ev (3.51)
and m ~ 10°u. The Planck mass y being dynamical, no tiny dimensionless
parameter for the cosmological constant appears in this model.

For “late cosmology” after inflation we can approximate

V= u?y (3.52)

During radiation domination the universe shrinks [32] according to a de Sitter
solution with negative constant Hubble parameter

H = —%u. (3.53)
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In this period the value of the cosmon field y increases exponentially according to
s
s = ; =oap, y ~explaut). (3.54)

Due to the shrinking of the universe with scale factor a ~ 1/,/y the energy density
in radiation increases ~ )(2,

o’ 2.2
or =3 7—1 wxX, (3.55)

similar to the potential and kinetic energy in the homogeneous scalar field which
obey

2.
m:v+ﬁf=wﬁ% (3.56)
This results in a constant fraction of early dark energy [58, 59]

Ph _
Pr+,0h

4
Q0= —. (3.57)
o

While the temperature increases during radiation domination, 7 ~ (pr)% ~ X
the particle masses increase even faster ~ y. The equilibrium number density of
a given species gets strongly Boltzmann-suppressed once a particle mass exceeds
T. With Fermi scale (h) ~ x and Agcp ~ x, as well as constant dimensionless
couplings, the decay rates scale ~ x, and all cross sections and interaction rates
scale with the power of y corresponding to their dimension. As a consequence,
nucleosynthesis proceeds as in usual cosmology, now triggered by nuclear binding
energies and the neutron-proton mass difference exceeding the temperature as y
increases. The evolution of all dimensionless quantities is the same as in standard
cosmology, once we measure time in units of the (decreasing) inverse nucleon
mass. The resulting element abundancies are essentially the same as in standard
cosmology. The only difference arises from the presence of a fraction of early
dark energy (3.57). This acts similarly to the presence of an additional radiation
component, resulting in a lower bound on « from nucleosynthesis [3, 4, 60, 61].
Later on, protons and electrons combine to hydrogen once the atomic binding energy
(increasing ~ y) exceeds the temperature T ~ ,/x. Up to small effects of early dark
energy the quantitative properties of the CMB-emission are the same as in standard
cosmology. The effect of early dark energy on the detailed distribution of CMB-
anisotropies gives so far the strongest bound on o, ¢ Z 10 [62-67].

The ratio of matter to radiation energy density increases as p,,/p, ~ ya, with
an~ )(_% during radiation domination (Ta = const.). This triggers the transition to
a matter dominated scaling solution once p,, exceeds p,, given again by a shrinking
de Sitter universe
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apn . o

=———,8 = 3
32 VAR

with a constant fraction of early dark energy £2, = 3/a?. Observations of redshifts
of distant galaxies are explained by the size of atoms shrinking faster than the
distance between galaxies [32,68-70], resulting in an increase of the relevant ratio
~ay.

The transition to the present dark energy dominated epoch can be triggered by
neutrinos. Assume that the heavy singlet scale entering the neutrino masses by the
seesaw mechanism decreases with increasing y. Neutrino masses will then grow
faster than y, with positive

2
= g(oz2 =3’ (3.58)

191n (m,(0)/x)

Ty (3.59)

yO) =

The value of 7 in the present epoch will be the third dimensionless cosmological
parameter of our model besides « and p/m. Together with the present neutrino
mass it determines the present dark energy density.

In a rather recent cosmological epoch (z ~ 5) the neutrinos become non-
relativistic. For ¥ > 1 the increase of their mass faster than y stops effectively
the time evolution of the cosmon field. The dark energy density p; remains
frozen at the value it had at this moment, relating it to the average neutrino
mass. More precisely, the cosmological solution oscillates around a very slowly
evolving “average solution” for which the r.h.s. of Eq.(3.38) vanishes to a good
approximation, V' = yp,. This yields for the homogeneous dark energy density pj,
the interesting quantitative relation [40]

1

Y 4
=127 (M) 1073V, (3.60)
eV

B

P

(Present neutrino masses on earth may deviate from the value of m, according to
the cosmological average solution, due to oscillations and a reduction factor for
neutrinos inside large neutrino lumps [71, 72]. Cosmological bounds on m, are
modified due to the mass variation.)

For low redshift z < 5 cosmology is very similar to the ACDM-model with
an effective equation of state for dark energy (more precisely the coupled cosmon-
neutrino fluid) very close to —1,

1+ Qv 1+ mv(IO)
w=— — = .
25 12eV

(3.61)

An important observational distinction to the ACDM-model is the clumping of the
neutrino background on very large scales which may render it observable [71, 73—
75]. The parameter u in Eq. (3.51) obtains from the observed value of the present
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dark energy density /p, = (2- 1073 eV)? ~ /V = uM. This also fixes jm, =
6.15eV.

Primordial cosmology corresponds to an inflationary epoch. Matter and radiation
play no role and we solve the field equations (3.38)—(3.40) with T),,, = 0,4, = 0.
One finds a scaling solution without a big bang singularity that can be continued to
t — —o0,

—2m? 3 —2,u2 3 X 1
X_(ﬁozzut) ’H_(%lzf) oy 3 (3.62)
The spectrum of primordial density fluctuations generated during inflation will be
discussed below.

A universe shrinking during radiation and matter domination was much colder
in the past than the present background radiation. Its shrinking was very slow, with
|H| ~ ap only slightly faster than the present expansion rate. During inflation the
expansion was even slower, cf. Eq. (3.62). The typical time scale of the universe was
never much shorter than 10'° yr. Despite the unusual aspects of such a “slow freeze”
picture of the evolution of the universe no present observation is in contradiction to
1t.

For a quantitative discussion of observables it is useful to perform a Weyl scaling
in order to bring this model to the form (3.3)-(3.6). In the Einstein frame the
potential decays exponentially for large ¢

V= AM“[l +exp (%)]_1. (3.63)

Particle masses except for the neutrinos do not depend on ¢, while the cosmon-
neutrino coupling

dnm, 7
o _ Y (3.64)
dp o

p=-M

realizes growing neutrino quintessence.

A quantitative discussion of the spectrum of density fluctuations is straightfor-
ward in the Einstein frame. For the inflationary epoch, our model can be treated in
the slow roll approximation. For fluctuations corresponding to the present scale of
galaxies or clusters, which have crossed the horizon N e-foldings before the end of
inflation, one finds for the spectral index n

1
= — =0.96-0.967, 3.65
n= o5 (3.65)

while the tensor amplitude r is very small

8
r= e < 3-107°. (3.66)
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A realistic amplitude for the primordial density fluctuations is found for
A0 o (3.67)
m  Na
The spectrum of primordial density fluctuations of our model is compatible with
Planck-results [67].

Our model has no more free parameters than the ACDM-model and is therefore
subject to many observational tests. Its compatibility with all present observations
demonstrates how a simple modification of gravity can lead to a rather natural set-
ting with a unified description of inflation and present dark energy. The naturalness
of the simple quadratic potential for large y, V = u” 2, may look less obvious if the
model would be originally formulated in the Einstein frame with a potential (3.63).
While we could add a cosmological constant to V(y) without affecting the late
time behavior for large y, an addition of a constant to Eq. (3.63) would drastically
change the late time cosmology. Thus the issue of naturalness of an asymptotically
vanishing cosmological constant looks very different in modified gravity (Jordan
frame) or the associated standard gravity (Einstein frame).

3.7 Modified Gravity with f(R)

Let us next discuss f(R)-theories, where .Z; takes the form

M4
Ly=—— . y= (3.68)

M2
We will see that they are equivalent to models of coupled quintessence with a
coupling B = 1/+/6. Due to their rather simple structure they are among the most
popular models of modified gravity [22,76-84].

We start with a simple example where f contains terms linear and quadratic
in R,

2
I'[guw] —/\/_{—ﬂR—ERz} L f) =cy+ay’ (3.69)

This includes the model used by A. Starobinski [18] in his early discussion of the
inflationary universe. It is straightforward to see that this model is equivalent to a
scalar model with

cM? 2y o ¢ 2
I'[g, guv]—/«/_{——R—ER E(——R) (3.70)
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Indeed, the scalar field equation,

or
— =0, (3.71)
¢
has a general solution
¢ = aR. (3.72)

Reinsertion into the effective action yields Eq. (3.69). Expanding the last term in
Eq. (3.70) yields the equivalent scalar-gravity model

2
Ilp. gl = I{V(cm -0 (c n jﬁ) } , (3.73)

with potential

1
V(g) = %cﬁz. (3.74)

At this stage the modified gravity model (3.69) has been transformed into a scalar-
tensor model (3.73).
We next perform a Weyl scaling with

w? = (3.75)

resulting in

ro 7 / Mz / 3 2 2
F[¢,gw]=/\/?{v ‘T(R —5(1nw>;“<1nw);ﬂ)}, (3.76)
with
2
Vet =9 (3.77)

2
20 (c + %)

The canonical normalization of the scalar kinetic term obtains for

3 26
9= \/;M In (c + W) , (3.78)

corresponding to
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w? = exp {—\/g%} . (3.79)

The modified gravity model appears now as a model of quintessence without any
modification of gravity,

1 M2
I'lp.g),) = / \/?{V’ + 504000 TR’} . (3.80)

The potential decays exponentially for large ¢

2
M* 2
V'(p) = o (1 —cexp (— §£)) ) (3.81)

We take o > 0 such that the potential is bounded from below.
It is instructive to expand the potential for small ¢

4

M 8 2 2
V'(p) = . { (1—c)* + \/;c(l —c)% + gc(2c — 1)% + } . (3.82)

For ¢ = 1 the leading term is the quadratic

M4
V'(p) = E(pz +... (3.83)
o

with scalar mass given by

—M (3.84)
m, = . .
¢ v 6

For o of the order one this mass turns out to be of the order of the Planck mass.
In this case the scalar field settles very early in cosmology to the minimum of the
potential at ¢ = 0. Subsequently, the potential V'’ plays no role for late cosmology.
Cosmology is described by standard gravity coupled to a massive scalar field. The
situation is similar for the corresponding modification of gravity. The term ~ aR? in
Eq. (3.69) can play a role during inflation [18], but is irrelevant for late cosmology.
If one wants to have the term ~ aR? to play a role in the present cosmological epoch
one needs a huge value of & such that R becomes comparable to M2,

o ~ 109, (3.85)
This points to a very general issue for f(R)-theories: The deviations from

Einstein’s equation play a role in present cosmology only if the expansion in
derivatives involves huge coefficients or diverges. In other words, any function f(y)
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which admits a Taylor expansion around f(y) with coefficients that are substantially
smaller than 10%° leads to modifications of gravity that are not observable in the
present cosmological evolution. This remark extends to more general effective
actions, involving, for example, R, R*".

For ¢ > 0 the potential has a minimum for a finite value of ¢

3
@min = \/;M Inc. (3.86)

We observe that at the minimum the effective cosmological constant vanishes
V' (@min) = 0. (3.87)

The scalar mass (3.84) is independent of ¢. For ¢ < 0 the minimum of V' occurs
for ¢ — oo, with

M4
V(p — o0) = < (3.88)

In this case the scalar mass vanishes in the asymptotic limit. A realistic effective
cosmological constant would require

o ~ 100, (3.89)

A major problem for f(R)-models is the universal large coupling 8 = 1/+/6 of
the cosmon to all massive particles in the Einstein frame. Indeed, the Weyl scaling
will take for all f(R)-models the form (3.79). This implies for the nucleon mass in
the Einstein frame

I ¢
L= = - , 3.90
m, wnmy exp { \/8 M } mpy ( )
resulting in a cosmon-nucleon coupling
0 1
w=—M-—Inm = —. (3.91)
s dp ! NG

Thus f(R)-theories are equivalent to coupled quintessence. In order to obey the
observational bound (3.34) on m,/M the cosmon is allowed to vary only by
a tiny amount since nucleosynthesis. Furthermore, unless the cosmon mass is
large enough, the large value B, = 1/+/6 contradicts post-Newtonian gravity
measurements in the solar system. The cosmological scalar mass is typically very
small, however, if the modifications of gravity are important in present cosmology
(e.g. Eq. (3.84) with huge «). Due to this clash,realistic models need to invoke the
chameleon mechanism [36]. The combination of the absence of a Taylor expansion
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(with moderate coefficients) and the need for the chameleon mechanism limits
severely the choice of realistic functions f(y). At the end, realistic functions are
very close to f(y) = co + y, with cg = A/ M* related to the cosmological constant
A. In the next section we will sketch how part of these problems can be avoided for
f(R) theories with field dependent particle masses.

We end this section by a short discussion of the general map from an f(R)-theory
to coupled quintessence. Consider a scalar-tensor theory with

r = [ Vat-or+ v (3.92)

The solution of the field equation for the scalar field expresses ¢ (R) as a function
of R, given implicitly by

1%
—_ —R
¢

For 3>V /d¢> # 0 this solution is unique. Insertion of ¢ (R) into the action (3.92)
yields an equivalent f(R)-theory (3.68) with

(3.93)

f (%) = %{Rqﬁ(m —V($(R))}. (3.94)

By virtue of Eq. (3.93) the function f(y) = f(R/M?) obeys the relation

() _ 29(R)
_ = . 3.95

3y Ve (3.95)
The construction above associates to a given potential V' (¢) an equivalent f(R)-
model. Inversely, for a given f(y) Eqgs. (3.94), (3.95) yield the potential V(¢) as a
Legendre transform

M*? d
Vi =2 (y% - f(y)) , (3.96)

with y(¢) given by Eq. (3.95). This holds provided Eq. (3.95) has a unique solution,
i.e. for 3> f/0y% # 0.

A Weyl scaling brings finally the action (3.92) to the standard form (3.80). Due
to the absence of a kinetic term in Eq. (3.92) the dependence of the conformal factor
w on the normalized scalar field ¢ is universal,

M? 2 ¢
2—_— f— —_——
wo = 2% —exp{ \/;M} . 3.97)
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As a consequence, f(R)-theories with constant particle masses are found to be
equivalent to coupled quintessence, with a universal coupling B = 14/6 given
by Eq.(3.91). For the normalized scalar field in the Einstein frame the potential
is related to f(y) by

M> Rf'—f

Vie) = —- NTOER (3.98)
As an example, we may consider
J) = foy. (3.99)
Equation (3.95) implies
5= YOM (i)y_l CR= MZ( 2¢ )yll, (3.100)
2 \Mm? vfoM?

and the potential in the scalar-tensor model reads

M*
vigy =100 () =

4y — =
M*(y 1)fo( 2¢ ) . (3.101)

2 yfoM?

Weyl scaling leads in the Einstein frame to an additional factor (M ?/2¢)? for V',
such that

, Miy-1) (M
Vi= —(f) (ﬁ) . (3.102)

For the particular “critical” value y = 2 the potential V' is constant. For 1 <
y < 2 the minimum of V' occurs for ¢ = 0, /(¢ = 0) = 0. On the other hand,
for y > 2 the potential takes its minimal value for ¢ — oo, with

V(¢ — 00) = 0. (3.103)
With
M2 2
¢ = Texp{ 5%} (3.104)

the limit ¢ — oo corresponds to ¢ — oo and we observe that the potential V' (p)
decays to zero exponentially. These models are of the same type as the one discussed
in Sect. 3.6, using in (3.49) the identifications ¢ = 22, o> = 2/3,and V(y) =
V(¢ =21
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We observe that the addition of a cosmological constant ). in the effective action
for modified gravity results in

e‘()M4

fO) = foy* —eo, A= - (3.105)

After Weyl scaling this adds to V' a part

f,’()M8
8p2

This becomes irrelevant for large ¢. Modified gravity theories with y > 2 are an
example for a self-tuning of the cosmological constant to zero as a consequence of
the asymptotic cosmological solution for large time.

For y = 1 one has Einstein gravity without an additional scalar degree of
freedom. For 0 < y < 1 and f; > 0 the potential V' is negative, diverging for
¢ — 0. For negative f, one finds negative ¢ such that the gravitational constant
would have a wrong sign, leading to instability. The range 0 < y < 1 does not
seem to lead to a reasonable cosmology. We may, however, consider the values
y < 0, fo < 0, with positive y fy and ¢. The potential V’ is now again positive,
decaying to zero for ¢ — oco. The behaviour is similar as for y > 2 and f, > 0. We
conclude that f(R)-models could lead to interesting cosmologies with a dynamical
self-tuning of the cosmological constant to zero if all particles are massless. For
massive particles one has to find a way to avoid the universal large cosmon-matter
coupling B = 1/+/6, as we will discuss in the next section.

AV = (3.106)

3.8 f(R)-Gravity with Varying Particle Masses

Having established the equivalence between f(R)-models and scalar-tensor theo-
ries a simple solution of the problem of a too large cosmon-matter coupling becomes
visible. One may follow the strategy (i) in Sect. 3.5: If particle masses scale /@ in
the Jordan frame, their mass will be constant in the Einstein frame, implying § = 0.
Realistic models may therefore be found if the particle masses show an appropriate
effective field dependence in the Jordan frame.

Let us consider the quarks and charged leptons. In the standard model of particle
physics their masses are proportional to the expectation value hy of the Higgs
doublet h. For cosmology, ho is replaced by the value of / according to the
cosmological solution. If this solution implies that ¢ scales proportional to /¢
we will find a vanishing cosmon-matter coupling 8 = 0 in the Einstein frame.

To be specific, we consider a first model where the effective action for gravity
and the Higgs doublet is given by



80 C. Wetterich

a (R—2u2\’ R—2p2\  Z,
r= — —) —nth [ —== ) + =2t . (3.107
/X@{ 2( > ) h ( > )+2a d9,h% . (3.107)

The parameters a and € are dimensionless, such that scale symmetry is violated only
by the parameter p with dimension of mass. The function f(y) is quadratic in y,
with field dependent coefficient of the linear term,

2 2\ 2 T o~ 2 2
fza(y Z[L/M) +2hh(y Z,u/M). (3.108)

2¢ M?2 2¢

We emphasize that the Planck mass M is not a parameter of the model (3.107). In
Eq. (3.108) it is merely introduced by the conventions for y and f.
According to Eq. (3.95) the relation between ¢ and R reads

_a 40 hth
¢ = 1 (R—2up") + e (3.109)

and the corresponding potential of the equivalent scalar-tensor model becomes
1
V= 2—(h*h —2e¢)* + 21%¢. (3.110)
a

Identifying 2¢p = x> we can associate the first term in Eq. (3.110) with Eq. (3.45),
for €, ~ € and A, ~ 1/a. For h = hy the potential becomes V = 2u¢ = u?y>,
which coincides for large y with the potential (3.50).

In the Einstein frame the Higgs doublet is rescaled according to

M2
W =wh, w?=—. 3.111)
2¢
This yields for the potential
| Mt
V= — (W —em?)? 4+ (3.112)
2a 2¢

It is obvious that /4’ settles to a constant value at the minimum of V', implying
constant particle masses if the dimensionless Yukawa couplings are constant, § = 0.
The kinetic terms for 4’ and ¢ in the Einstein frame read

Z / 1 ,
Lin = Th{f)“h 9,0 + 53" Ing 3, (h 'h')}

1 ,
+§(6M2 + Zph )" Ing 9, In . (3.113)
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For constant 4’ Th' = e M? the remaining kinetic term for ¢ becomes

M2
“in = ?(6 + Zy€)0" In¢g 9, In¢. (3.114)

Neglecting the contribution ~ Zj€ (see below) the normalized scalar field is related
to ¢ by Eq. (3.104) and Eq. (3.79) remains valid. For A’ = hj, the potential decays
exponentially

/ 2ag2 ap 2
V' = u’M exp( M),a_ - (3.115)

The value of « is too small for allowing for the scaling solutions with constant
early dark energy fraction §2, < 1. This issue is related to the absence of a kinetic
term for ¢ in Eq. (3.73) or (3.92). For initial values of ¢i, much smaller than M 2
the universe becomes scalar dominated long before the present epoch, leading to
unrealistic cosmology. For ¢, > M? the scalar potential will play a role only in
the far future and the model cannot account for dark energy. Realistic cosmology
requires a particular initial value with ¢;, close to M?/2. Cosmology is then of the
type of “thawing quintessence”. The need for a particular choice of initial conditions
makes the model perhaps less attractive than the scaling solution found in the model
of Sect. 3.6.

Despite this shortcoming, the simple model (3.107) offers an interesting perspec-
tive on a dynamical fine tuning of the cosmological constant. Indeed, the effective
cosmological constant vanishes asymptotically in the Einstein frame, even if we add
an additional constant to the modified gravitational action (3.107). In the Einstein
frame the resulting contribution to V’(¢) decays exponentially for large ¢. Scale
symmetry becomes exact for ¢ — 0o and the cosmon corresponds in this limit to
the dilaton, the Goldstone boson associated to the spontaneous breaking of scale
symmetry.

It is also interesting to discuss the issue of dilatation symmetry in the framework
of f(R)-models. For 4 = 0 the effective action (3.107) is scale invariant. The
potential in the Einstein frame (3.110) has then one exactly massless direction,
realizing the Goldstone boson. This demonstrates how the expected Goldstone
boson arises in a model (3.107) that does not contain an explicit scalar singlet degree
of freedom.

The model (3.107) contains large dimensionless parameters. The Fermi scale is
given by the canonically normalized doublet in the Einstein frame, hgx = Z ,1/ 2h6 =
175GeV. This implies €, = Ze = (hg/M)?> ~ 51073, The renormalized
quartic Higgs couplingis A, = 1/(a Z,%), such that the prefactor of R? in Eq. (3.107)
becomes a/(8¢?) = 1/(8/1116%) ~ 10%/(21},), similar in size to Eq. (3.85).

More reasonable couplings arise if one associates & with a scalar field in some
grand unified theory instead of the Higgs doublet. In this event €, could be roughly
of the order one. The effective quark and lepton masses are then suppressed by the
gauge hierarchy, i.e. the ratio between the Fermi scale and the scale /iy which is
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now characteristic for grand unification. If gauge couplings take a fixed value for
momenta given by £ also the QCD-confinement scale and therefore the nucleon
masses are proportional to /2, completing our mechanism for vanishing 8. If 4 is
associated with a field characteristic for grand unification the parameter a /€2 can be
taken to be of the order one, such that the prefactor of the term ~ R? in Eq. (3.107)
is of the order one. In this case, however, ¢ is given essentially by h//(2¢) and
the term ~ R? in Eq. (3.107) plays only a negligible role. (The limit @ — 0 has no
qualitative influence on the late cosmology of this model.)
As a second example we consider a family of models

- 1 Z
r= / JE%U(RZ +0)° 4 A — z—hThR + 22 8“h*8 h (3.116)
X €
The relation between ¢, h and R reads
— 5 N |
x=-yoy(y +p?>", (3.117)
with
_ 2e¢p—h'h R et - P
= o ,yzm,ozoM” ,pzm. (3.118)
In terms of ¢ the effective action becomes
Z
r =/J§{—¢R+ Vg, h) + =2 aﬂh*a h (3.119)
X
where
V=M +5) T {p+ (1= y)y) + A, (3.120)

and y is related to ¢ and & by Eq.(3.117). After Weyl scaling the effective action
for the metric and the scalars ¢ and 4’ takes a standard form

/fﬁ M o V) + B (3.121)
with
oo MYV
Vi, h') = Ve (3.122)

and Zin given by Eq. (3.113). Again, y is related to x by Eq. (3.117) with
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p(eM? —h'Th)
X=——.

YT (3.123)

We may next investigate the field equation for /#’. One finds a static solution
4
with hOTh’O = eM? provided V(x) has its minimum for x = 0. Particle masses are

then constant in the Einstein frame, 8 = 0. Inserting »'th’ = e M? and assuming
y(x = 0) = 0 the potential gets a simple form

pro M (J\C n op%) . (3.124)

For positive 1y = Ae + op?/? it decays to zero for ¢ — oo. For a canonical scalar
field (neglecting the term Zje in Eq. (3.114)) the potential decays exponentially

g
V' = Vyexp (—%) a=y/3 (3.125)

Again, this value of « is too small in order to realize the scaling solution with £2, <
1. Cosmology is similar to our first example, with realistic thawing quintessence
realized for initial values ¢;, close to 1090 \/70 .

We notice that cosmology is the same for all ranges of y,o and p for which V'
has its minimum for x = 0. For p > 0 the effective action (3.116) and the potential
V are analytic. A special case occurs for p = 0 which is similar to the model (3.99)
except for the additional coupling to /. The potential is no longer analytic

4
y—l1

V=MG(1—y)y]’ + A = M*G(1—y) +Ae.  (3.126)

X
Yo
For p > 0 the potential (3.126) describes the behavior for large y* > 5. We observe
that for y < 1 the limit x — 0 can be reached for |y| — 0 or |y| — oo. If the
potential minimum corresponds to the second case the value V) = A, may only be
reached for asymptotic time ¢t — co.

We conclude that the problematic universal cosmon-matter coupling 8 in the
Einstein frame can be avoided if f(R)-theories allow for a suitable field dependence
of particle masses. The other generic problem of f(R)-models, namely the need of
large couplings multiplying the terms in a Taylor expansion of f(y), will need a
particular physics explanation which produces and stabilizes such large couplings
appearing in the effective action. (In the generic case quantum fluctuations lead to a
very fast running of very large dimensionless couplings, typically bringing them to
values of the order one or making them divergent.) At present, we are still far from
constructing an f(R)-model which would show a similar simplicity as the scalar-
tensor theory discussed in Sect. 3.6. The benefit would be, of course, that no explicit
scalar field y is needed in modified gravity.
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3.9 Non-local Gravity

For non-local gravity (see [85] for a recent review and references) the action
involves the inverse of the covariant Laplacian 2, or similar operators that grow
strongly for small covariant momenta. As a consequence, such modifications of
gravity can play a role at long distances, without invoking very large dimensionless
parameters as « in the preceding section. Already the first non-local gravity model
in this spirit [86] has noted the equivalence to a model of a scalar field coupled to
gravity.
Let us consider the effective action [86]
M2

2
Zy= R+ %R@_IR , (3.127)

with covariant derivative D, and covariant Laplacian
9 =-D"D,. (3.128)
(In order to make Eq.(3.127) well defined one has to regularize the operator 2!

[86].) The model (3.127) admits an equivalent formulation as a scalar-tensor model
with effective action

2 2
r= / JE{—MT(I +1$)R — MTa%ans . (3.129)

Indeed, the field equation for ¢,
9¢ = -D"D,¢p = —1R, (3.130)
expresses ¢ as a functional of the metric,
¢=-127'R. (3.131)
Inserting the formal solution (3.131) into the action (3.129) yields the equivalent
effective action (3.127) of non-local gravity.

The scalar-tensor theory (3.129) can be brought to the standard form of a coupled
quintessence model by use of a Weyl scaling with

w=(14+1t¢)2. (3.132)
The resulting kinetic term,

M? 372
Lin = —— ( 5=
4 \(1+1¢) 1+ 19

) 3 $0,,0, (3.133)
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can be cast into a standard normalization (3.6) by defining ¢ with

dg M >
W _ " 32 _ 3.134
W V2(1 + t¢) ST+ Te) (3134)

The potential vanishes for this model, similar to Brans-Dicke theory.

The Weyl scaling typically leads to coupled quintessence. Consider non-local
modified gravity (3.127) and a particle with constant mass m. One obtains in
the Einstein frame a ¢-dependent mass, m’ = w(g)m. Defining the ¢-dependent

coupling B(¢) by

dlnm’

plo) =M=

(3.135)

one obtains

=

B = [6—%(¢+%):|_ : (3.136)

where ¢ can be expressed in terms of ¢ using Eq. (3.134).
We observe that stability requires a positive effective Planck mass and a positive
kinetic term (3.133), which is realized for the range

0<1+1¢ <37% (3.137)

In this range B is well defined. The minimum value for 8 is

Bmin = (3.138)

1
NG
resembling a Brans-Dicke theory with @ = 0. Such a large coupling is not
compatible with observation, such that the model (3.127) is not phenomenologically
viable [86].

In summary, the gravitational part of non-local gravity models has no problem
of consistency. It is equivalent to standard gravity coupled to a massless scalar,
similar to Brans-Dicke theory. Adding relativistic particles as photons remains
unproblematic. Issues of compatibility with observation arise, however, if massive
particles are considered within non-local gravity. The coupling between the scalar
field and massive particles typically turns out to be unacceptably large.

One may construct large classes of consistent non-local gravity models by
starting from a local scalar-tensor model that only contains terms linear and
quadratic in ¢. Such generalizations of Eq. (3.129) can contain higher derivatives
of ¢, a coupling of ¢ to higher order curvature invariants, terms ~ R0*¢0d,¢ or
~ R"09,¢0,¢ etc. The field equations for ¢ involve terms linear in ¢ as well
as a ¢-independent “source term”. The general solutions are functionals of the
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metric. Inserting these solutions into the action yields consistent models of non-
local gravity. Consistency does not imply compatibility with observation, however.
It seems not easy to avoid a too large coupling between the scalar field and massive
particles in the Einstein frame.

While non-local modifications of gravity are consistent, it is not easy to motivate
why the quantum effective action for gravity should have this form. Unless one
can identify some quantum effect producing such non-localities they may not
look very natural, however. For the moment, the only physically well motivated
origin of non-localities of the type discussed in this section that is known to us
arises from the exchange of an effective massless degree of freedom, similar to
the Coulomb interaction between electrons or the Newtonian interaction between
massive particles. In this event it seems much simpler to use directly a field for the
exchanged particle.

3.10 Higher Derivative Modified Gravity with Second Order
Field Equations

We have seen that f(R)-theories and a large class of non-local gravity theories can
be mapped to a quintessence model,

1 1
FZ/\/?{—EMZR/+§3“¢3M¢+V(¢J) , (3.139)

by an appropriate Weyl scaling. One may ask how large is the class of modified
gravity theories that can be mapped to the simple action (3.139) by suitable field
transformations. (See [87,88] for earlier work on this issue.) A large class of actions
involving higher derivatives, that nevertheless lead to second order field equations,
has been found by Horndeski [15]. One would like to know if they are equivalent to
the action (3.139).

Part of the answer can be given by considering general field transformations

@ =v(x.R,"xux....), (3.140)
gl =W 2L R 40X g + 5100 RO (0 x . )0 xux
+52(x, R, 0" x0ux... )R + ...

Here v, w, 51, s, are functions of various possible scalars that can be formed from
x and g,,,’, with dots standing for additional scalars as R, R"", 9, x0, yR"" etc.
We only require that the objects on the r.h.s. of Eq.(3.140) have the correct tensor
transformation properties.

It is obvious that a very large class of effective actions for modified gravity can
be constructed by inserting Eq. (3.140) into Eq. (3.139).
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Clx. 8wl = lolt gwl s &l gwl]- (3.141)

All these models have as physical degrees of freedom a scalar coupled to the
graviton. Even though these actions can contain an arbitrary number of derivatives,
the field equations will finally be second order field equations, equivalent to those
derived from the action (3.139). The requirement of equivalence imposes, however,
some mild conditions on the functions appearing in Eq. (3.140). What is needed is
the invertibility of the variable transformation (3.140).

We may demonstrate this explicitly for transformations with s; = s, = 0. The
field equations for the transformed action,

or ar

B S 3.142
) O Bgm () (G142

can be expressed as (d stands here for functional derivatives)

J

=0, (3.143)
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Obviously, the solutions of the field equations of the action (3.139),

or or

= N = 0’
dp(y) 9g,,(»)

(3.145)

are also solutions of the field equations (3.142). The conditions on the functions w
and v have to ensure that no additional “spurious” solutions are generated by the
transformation (3.140).

Consider, for example, the case w = 1. Then the matrix dv(y)/dx(x) should be
invertible, such that Eq. (3.143) implies d1"/d¢(y) = 0. Invertibility means that a
function H (x, z) exists such that

v(y)
« 0x(x)

H(x,2) =48(y —2). (3.146)
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For w = 1 the gravitational field equation (3.144) reads

or or  av(y) } —0 3147
Den () /y { 500) gm0 ) " G147

The second term vanishes for invertible dv(y)/dy(x) since 6I"/Sp(y) = O,
such that both field equations (3.145) must be obeyed necessarily. Similarly,
we may consider v = y and an invertible matrix dg},(y)/dguv(x). The field
equation (3.144) implies then 9I"/dg;,, (x) = 0, such that Eq. (3.143) guarantees
dI'/dp(x) = 0. Again, the field equations (3.145) must be necessarily obeyed.
This generalizes to arbitrary transformations gp(,(y)[g,“,(x)], as in Eq.(3.140).
Invertible transformations with v = xy or w = 1 can be combined to yield
more general invertible transformations. We conclude that invertibility of the
transformation (3.140) guarantees the absence of spurious solutions, such that the
effective action I"[g,,, x] is fully equivalent to I"[g;,,, ¢] given by Eq. (3.139).

It may be instructive to discuss two simple examples of field transformations
with w = 1. For the first we take ¢ = v(j, R), such that

av(y) v

o a()((x), R(x))S(y - X). (3.148)

If dv/dy is non-vanishing for all y and R the transformation is invertible. On the
other hand, if dv/dy = 0 has a solution yo(R), the configuration y = yo(R) solves
the field equation dI"/dx(x) = 0 without being a solution of Eq. (3.145). This is an
example of a spurious solution. A second example with a spurious solution is

p(x) =m73 (" 1 (x) + m? x(x)) x(x). (3.149)

While the solutions (3.145) remain solutions of the field equations (3.142), addi-
tional solutions of Eq. (3.142) are provided by y;}, +m?y = 0. This model can still
be cast into the form of an action with at most two derivatives, involving two scalar
fields. Besides the solutions (3.145) one has new solutions for non-zero values of a
free massive scalar field with mass m. (The last term in Eq. (3.144) ensures that the
energy momentum tensor of the second scalar field is induced in the gravitational
field equation.) Many transformations with higher derivatives are invertible and do
not lead to spurious solutions, however.

It remains an interesting question if invertible transformations of the type (3.140)
are sufficient in order to show the equivalence of a large class (or all) of Horndeski’s
models with the effective action (3.139). This seems very likely to us for models that
contain no further physical degrees of freedom besides a scalar and the graviton.
The effective action (3.141) obtained by inserting Eq. (3.140) into Eq. (3.139) may
even lead to still larger classes of higher derivative modified gravity for which all
cosmological solutions can be obtained from second order field equations. Further
generalizations are possible if one adds scalar, vector or tensor fields with no more
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than two derivatives to Eq. (3.139), and subsequently makes a field transformation
of the type (3.140).

The field transformations (3.140) are a convenient way to construct effective
actions (3.141) that only involve second order field equations for the scalar-graviton
system. This does not mean that all models based on an action (3.141) are equivalent
to those based on the action (3.139). The field transformations also affect the matter
part .£;,. Consider a model where matter is minimally coupled to the metric g,
and particle masses are y-independent. It becomes typically a model of coupled
quintessence with non-minimal gravitational interactions once written in terms of
g;w and ¢. The inverse of the transformation (3.140), which maps the action (3.141)
onto (3.139), can induce in the matter and radiation sector a complicated dependence
on ¢ and g;w. Even if we approximate %, in the generalized Jordan frame (3.141)
by free massive or massless particles, non-trivial interactions will appear in the
Einstein frame (3.139). This is the way how the functions v, w, 51, 5, in Eq. (3.140)
can affect the predictions for observations. Similar to f(R)-models also, the much
more general class of models (3.141) encounters often problems with too large
effective couplings ~ B in the Einstein frame.

Conclusions

Can one distinguish modified gravity from dark energy by observation?
In view of the equivalence of a large class of modified gravity models
with coupled quintessence an answer to this question is not straightforward.
Statements that modified gravity and quintessence lead to different growth
factors for cosmic structures apply only to quintessence models without
coupling to matter. We have seen, however, that the quintessence models
that are equivalent to modified gravity typically have a nonzero coupling
between the cosmon and different forms of matter. (This coupling needs not
to be the same for all species of massive particles.) In this view precision
measurements of the growth rate can differentiate between uncoupled and
coupled quintessence and determine bounds on S. The issue if there are
modified gravity models that can be distinguished observationally from
coupled quintessence is much harder to answer.

Modified gravity models almost always involve new degrees of freedom
besides the graviton. This is a consequence of the fact that models for a
massless spin two particle are severely constrained by consistency require-
ments. The conjecture that consistency requires diffeomorphism symmetry
(more precisely its unimodular subgroup) has never been proven, but no
counter examples are known either. A model containing a massless spin two
particle as the only degree of freedom is then rather close to general relativity.
Modifications of gravity therefore typically involve additional degrees of
freedom, as scalars or massive spin two particles.

(continued)
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The field description of the additional degrees of freedom is not unique. For
example, a scalar may be described as a component of the metric (modified
gravity) or by a separate field (quintessence). Very large classes of models can
be mapped onto each other by non-linear field transformations. Field relativity
states that observables cannot depend on the choice of fields. For models
related by field transformations no observational distinction is possible. We
have seen that this holds for variable gravity models where the Planck mass is
field dependent. It also applies to f(R)-models and large classes of non-local
gravity. Very general models equivalent to coupled quintessence models have
been discussed in the preceding section.

For all these models modified gravity and coupled quintessence should
merely be seen as two different pictures describing the same reality, in
analogy to the Jordan frame and Einstein frame for the metric. For practical
computations of the evolution of homogeneous cosmology and fluctuations
around this background the simplest way uses the Einstein frame. This holds
both for the linear treatment of fluctuations and for numerical simulations in
the non-linear regime. The physical effects of the cosmon-matter coupling j
are intuitively accessible in the Einstein frame.

For modified gravity models that are equivalent to coupled quintessence
one may ask: why then discuss them at all? If there is no observational
distinction, the discussion of such modifications of gravity may at first
sight look like a redundant exercise. A deeper answer concerns questions of
simplicity and naturalness. Models of modified gravity can be very simple
and involve no unnatural parameters. Nevertheless, the equivalent description
in the Einstein frame by coupled quintessence may hide simplicity and
naturalness in the complexity of the field transformation. An example is the
big bang singularity. We have presented in Sect. 3.6 a modified gravity model
for which the “beginning” of the universe is very slow and cold. It has no big
bang singularity, the cosmological solution can be continued to the infinite
past ¢ — —oo. In the Einstein frame the same model is described as a hot
big bang. Models may be regular in the Jordan frame and show a big bang
singularity in the Einstein frame. This singularity is then due to a singularity
in the field transformation [32], in close analogy to a coordinate singularity.

The question of naturalness is often closely linked to symmetries. Scale
symmetry is explicitly visible in the modified gravity description of the
models in Sects.3.5 and 3.6. It is realized by a multiplicative rescaling of
the metric and the scalar field y. In the presence of quantum fluctuations scale
symmetry is violated by y-dependent (“running”) dimensionless couplings.
For fixed points of the running exact (quantum-) scale symmetry is restored.
For the quantum effective action (3.49) such fixed points are present for
x — 0and y — oo [17].

(continued)
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In our model in Sect. 3.6 the asymptotic value
doo = lim V(y)/x* (3.150)
x—>00

vanishes for the fixed point at y — oo. This can be motivated by properties
of a possible ultraviolet fixed point in dilaton quantum gravity [89] or by
dilatation symmetry in higher dimensions [90,91]. The fixed point with A, =
0 is the deeper reason why the cosmological constant vanishes asymptotically
in the Einstein frame, lim,—, o V'(¢) — 0. Without this understanding of
naturalness as a consequence of fixed point properties one would argue in
the Einstein frame that naturalness suggests the addition of a constant to
Eq. (3.63). Apparently convincing qualitative arguments on the induction of
a cosmological constant by quantum fluctuations in the Einstein frame yield
very different results when applied in the Jordan frame. A constant term in
V(y) yields a term V'(¢) ~ exp(—2a¢@/M) in the Einstein frame which
vanishes for ¢ — oo. This is one more example how modified gravity can
shed new light on questions of naturalness.

The possibility of field transformations from modified gravity theories to
coupled quintessence models in the Einstein frame is an extremely useful tool
for the discussion of observational consequences of a model. It should not
prevent us, however, to look for modified gravity theories distinguished by
simplicity and naturalness.
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Chapter 4
The Effective Field Theory of Inflation/Dark

Energy and the Horndeski Theory
Shinji Tsujikawa

Abstract The effective field theory (EFT) of cosmological perturbations is a useful
framework to deal with the low-energy degrees of freedom present for inflation
and dark energy. We review the EFT for modified gravitational theories by starting
from the most general action in unitary gauge that involves the lapse function
and the three-dimensional geometric scalar quantities appearing in the Arnowitt-
Deser-Misner (ADM) formalism. Expanding the action up to quadratic order in
the perturbations and imposing conditions for the elimination of spatial derivatives
higher than second order, we obtain the Lagrangian of curvature perturbations
and gravitational waves with a single scalar degree of freedom. The resulting
second-order Lagrangian is exploited for computing the scalar and tensor power
spectra generated during inflation. We also show that the most general scalar-
tensor theory with second-order equations of motion—Horndeski theory—belongs
to the action of our general EFT framework and that the background equations of
motion in Horndeski theory can be conveniently expressed in terms of three EFT
parameters. Finally we study the equations of matter density perturbations and the
effective gravitational coupling for dark energy models based on Horndeski theory,
to confront the models with the observations of large-scale structures and weak
lensing.

4.1 Introduction

The inflationary paradigm, which was originally proposed to solve a number
of cosmological problems in the standard Big Bang cosmology [1, 2], is now
widely accepted as a viable phenomenological framework describing the accelerated
expansion in the early Universe. In particular, the Cosmic Microwave Background
(CMB) temperature anisotropies measured by COBE [3], WMAP [4], and Planck
[5] satellites support the slow-roll inflationary scenario driven by a single scalar
degree of freedom. Inflation generally predicts the nearly scale-invariant primordial
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power spectrum of curvature perturbations [6], whose property is consistent with
the observed CMB anisotropies. In spite of its great success, we do not yet know the
origin of the scalar field responsible for inflation (dubbed “inflaton”).

The observations of the type Ia Supernovae (SN Ia) [7, 8] showed that the
Universe entered the phase of another accelerated expansion after the matter-
dominated epoch. This has been also supported by other independent observations
such as CMB [4] and Baryon Acoustic Oscillations (BAO) [9]. The origin of the
late-time cosmic acceleration (dubbed “dark energy”) is not identified yet. The
simplest candidate for dark energy is the cosmological constant A, but if it originates
from the vacuum energy appearing in particle physics, the theoretical value is
enormously larger than the observed dark energy scale [10,11]. There is a possibility
that some scalar degree of freedom (like inflaton) is responsible for dark energy [12].

Although many models of inflation and dark energy have been constructed in
the framework of General Relativity (GR), the modification of gravity from GR can
also give rise to the epoch of cosmic acceleration. For example, the Starobinsky
model characterized by the Lagrangian f(R) = R + R*/(6M?) [1], where R is
a Ricci scalar and M is a constant, leads to the quasi de Sitter expansion of the
Universe. The recent observational constraints on the dark energy equation of state
wpe = Ppg/ppe (Where Ppg and ppg is the pressure and the energy density of dark
energy respectively) imply that the region wpg < —1 is favored from the joint data
analysis of SN Ia, CMB, and BAO [5, 13, 14]. If we modify gravity from GR, it is
possible to realize wpg < —1 without having a problematic ghost state (see [15] for
reviews).

Given that the origins of inflation and dark energy have not been identified yet, it
is convenient to construct a general framework dealing with gravitational degrees
of freedom beyond GR. In fact, the EFT of inflation and dark energy provides
a systematic parametrization that accommodates possible low-energy degrees of
freedom by employing cosmological perturbations as small expansion parameters
about the Friedmann-Lemaitre-Robertson-Walker (FLRW) background [16—18].
This EFT approach allows one to facilitate the confrontation of models with the
cosmological data.

Originally, the EFT of inflation was developed to quantify high-energy
corrections to the standard slow-roll inflationary scenario [19]. Expanding the action
up to third order in the cosmological perturbations, it is also possible to estimate
higher-order correlation functions associated with primordial non-Gaussianities
[20]. The EFT formalism was applied to dark energy in connection to the
large-distance modification of gravity [21-33]. The advantage of this approach
is that practically all the single-field models of inflation and dark energy can be
accommodated in a unified way.

Starting from the most general action that depends on the lapse function and
other geometric three-dimensional scalar quantities present in the ADM formalism,
Gleyzes et al. [28] expanded the action up to quadratic order in cosmological
perturbations of the ADM variables. In doing so, the perturbation §¢ of a scalar
field ¢ can be generally present, but the choice of unitary gauge (6¢p = 0) allows
one to absorb the field perturbation in the gravitational sector. Once we fix the gauge
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in this way, introducing another scalar-field perturbation implies that the system
possesses at least two-scalar degrees of freedom. In fact, such a multi-field scenario
was studied in [33] to describe both dark energy and dark matter.

By construction, the EFT formalism developed in [16, 17, 28] keeps the time
derivatives under control, while the spatial derivatives higher than second order
are generally present. Imposing conditions to eliminate these higher-order spatial
derivatives for the general theory mentioned above, Gleyzes et al. [28] derived
the quadratic Lagrangian of cosmological perturbations with one scalar degree of
freedom. If the scalar degree of freedom is responsible for inflation, for example, the
resulting power spectrum of curvature perturbations can be computed on the quasi
de Sitter background (along the same lines in [34—38]). In this review, we evaluate
the inflationary power spectra of both scalar and tensor perturbations expressed in
terms of the ADM variables.

In 1973, Horndeski derived the action of the most general scalar-tensor theories
with second-order equations of motion [39]. This theory recently received much
attention as an extension of (covariant) Galileons [40—42]. One can show that the
four-dimensional action of “generalized Galileons” derived by Deffayet et al. [43]
is equivalent to the Horndeski action after a suitable field redefinition [35]. Gleyzes
et al. [28] expressed the Horndeski Lagrangian in terms of the ADM variables
appearing in the EFT formalism. This allows one to have a connection between
the Horndeski theory and the EFF of inflation/dark energy. In fact, it was shown that
Horndeski theory belongs to a sub-class of the general EFT action [28].

For the background cosmology, the EFT of inflation/dark energy is characterized
by three time-dependent parameters f, A, and ¢ [16-18]. This property is useful
to perform general analysis for the dynamics of dark energy [30]. In the EFT
of dark energy, Gleyzes et al. [28] obtained the equations of linear cosmological
perturbations in the presence of non-relativistic matter (dark matter, baryons). This
result reproduces the perturbation equations in Horndeski theory previously derived
in [44]. We note that the perturbation equations in the presence of another scalar field
(playing the role of dark matter) were also derived in [33]. These results are useful
to confront modified gravitational models of dark energy with the observations of
large-scale structures, weak lensing, and CMB.

In this lecture note, we review the EFT of inflation/dark energy following the
recent works of [28, 33].

In Sect.4.2 we start from a general gravitational action in unitary gauge and
derive the background equations of motion on the flat FLRW background.

In Sect.4.3 we obtain the linear perturbation equations of motion and discuss
conditions for avoiding ghosts and Laplacian instabilities of scalar and tensor
perturbations.

In Sect.4.4 the inflationary power spectra of scalar and tensor perturbations
are derived for general single-field theories with second-order linear perturbation
equations of motion.

In Sect. 4.5 we introduce the action of Horndeski theory and express it in terms
of the ADM variables appearing in the EFT formalism.
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In Sect.4.6 we discuss how the second-order EFT action accommodates
Horndeski theory as specific cases and provide the correspondence between them.

In Sect.4.7 we apply the EFT formalism to dark energy and obtain the back-
ground equations of motion in a generic way. In Horndeski theory, the equations of
matter density perturbations and the effective gravitational coupling are derived in
the presence of non-relativistic matter.

The final section is devoted to conclusions.

Throughout the paper we use units such that c = A = 1, where c is the speed of
light and 7 is reduced Planck constant. The gravitational constant G is related to the
reduced Planck mass My = 2.4357 x 10'® GeV via 87G = 1/M_;. The Greek and
Latin indices represent components in space-time and in a three-dimensional space-
adapted basis, respectively. For the covariant derivative of some physical quantity
Y, we use the notation Y;,, or V,, Y. We adopt the metric signature (—, +, 4+, +).

4.2 The General Gravitational Action in Unitary Gauge and
the Background Equations of Motion

The EFT of cosmological perturbations allows one to deal with the low-energy
degree of freedom appearing for inflation and dark energy. In particular, we are
interested in the minimal extension of GR to modified gravitational theories with
a single scalar degree of freedom ¢. The EFT approach is based on the choice of
unitary gauge in which the constant time hypersurface coincides with the constant
¢ hypersurface. In other words, this corresponds to the gauge choice

§p =0, 4.1)

where 8¢ is the field perturbation. In this gauge the dynamics of §¢ is “eaten” by the
metric, so the Lagrangian does not have explicit ¢ dependence about the flat FLRW
background.

The EFT of cosmological perturbations is based on the 341 decomposition of the
ADM formalism [45]. In particular, the 3+ 1 splitting in unitary gauge allows one to
keep the number of time derivatives under control, while higher spatial derivatives
can be generally present. As we will see later, this property is especially useful for
constructing theories with second-order time and spatial derivatives. The ADM line
element is given by

ds* = gudx'dx’ = —N?di* + hy(dx' + N'dt)(dx' + N7dp), 4.2)

where N is the lapse function, N i is the shift vector, and hjj is the three-dimensional
metric. Then, the four-dimensional metric g, can be expressed as goo = —N LS
NiN;, goi = gio = N;, and gij = hjj. A unit vector orthogonal to the constant
t hypersurface X; is given by n, = —Nt,, = (=N,0,0,0), and hence n* =
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(1/N,—N'/N) with n,n* = —1. The induced metric /,, on X; can be expressed
as hy, = guv + nyun,, so that it satisfies the orthogonal relation n*h,, = 0.
The extrinsic curvature is defined by

A
Ky = hynyy = nvy +nga, “4.3)
where a” = n)‘n.")k is the acceleration (curvature) of the normal congruence n".
Since there is the relation n* K, = 0, the extrinsic curvature is the quantity on ;.
The internal geometry of X; can be quantified by the three-dimensional Ricci tensor

R = (3)R,w associated with the metric h uv- The three-dimensional Ricci scalar
R = RH, is related to the four-dimensional Ricci scalar R, as

R =R+ KuK" — K> +2(Kn" —a"),,, (4.4)

where K = K"/, is the trace of the extrinsic curvature.

In the following we study general gravitational theories that depend on scalar
quantities appearing in the ADM formalism. In addition to the lapse N, we have the
following scalars

K=K",, S=K,.K", R=R'y, Z=R,LR", U=R.K".
4.5)

The Lagrangian L of general gravitational theories depends on these scalars, so that
the action is given by

S = /d4x4/_—g L(N,K,S.R,Z.U;t). (4.6)

We do not include the dependence of the scalar quantity N' = N*N, coming
from the shift vector, since such a term does not appear even in the most general
scalar-tensor theories with second-order equations of motion (see Sect. 4.5). In the
action (4.6), the time dependence is also explicitly included because in unitary
gauge its dependence is directly related to the scalar degree of freedom, such that
¢ = ¢(t). The field kinetic term'

X = g"9,$0,6 @.7)

depends on the lapse N and the time 7. The field ¢ enters the equations of motion
through the partial derivatives Ly = dL/dN and Lyy = 0°L/IN>.

I'We caution that the notation of the field kinetic energy is the same as that used in [28,33], but the
notation of X used in [35-38,44] is —1/2 times different.
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Let us consider four scalar metric perturbations A, v, ¢, and E about the flat
FLRW background with the scale factor a(¢). The general perturbed metric is given
by

ds? = —e*di + 2y dx dt + a*(t)(e*8; + ;E)dx dx/ (4.8)

where |i represents a covariant derivative with respect to /i, and 9; = V;V; —
SUV2/3. Under the transformation ¢ — ¢ + 8¢ and x! — x! + 8‘73]-8)6, the
perturbations §¢ and E transform as

S — 8¢ — P, E — E —éx, (4.9)

where a dot represents a derivative with respect to 7. Choosing the unitary gauge
(4.1), the time slicing d¢ is fixed. The spatial threading §x can be fixed with the
gauge choice

E=0. (4.10)

On the flat FLRW background with the line element ds* = —dt* +a2(t)8ijdxi dx/
the three-dimensional geometric quantities are given by

Ryw=Hh,., K=3H, §=3H, RuW=0, R=Z=U=0,

where a bar represents background values and H = d/a is the Hubble parameter.
We define the following perturbed quantities

SK!'=K/!'—HhY, SK=K-3H, 88§=8-3H>=2HSK +5K/'§K},,
(4.12)

where the last equation arises from the first equation and the definition of S. Since R
and Z vanish on the background, they appear only as perturbations. Up to quadratic
order in perturbations, they can be expressed as

R =6§R+6&R, §Z =SRISR,,, (4.13)

where §;R and §,R are first-order and second-order perturbations in §R, respec-
tively. The perturbation Z is higher than first order. The first equality (4.12) implies

U=HR+RISK?, (4.14)
where the last term is a second-order quantity.

In order to derive the background and perturbation equations of motion, we
expand the action (4.6) up to quadratic order in perturbations, as
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L =L+ LNSN+ Lg8K + LS + LrSR + Lz8Z + Ly 8U

1 9 9 9 9 9 9 \>

(4.15)
where a lower index of the Lagrangian L denotes the partial derivatives with respect
to the scalar quantities represented in the index. From the second and third relations
of Eq. (4.12), the expansion of the term Lx6K + LséS up to second order reads

LgéK + LséS = F(K —3H) + LSSK#(SK;
~ —F —3HF + FSN + LsSK!'6K), — FSN*>,  (4.16)
where

F =Lk +2HLs. (4.17)

In the second line of Eq. (4.16), the term F K has been integrated by using the
relation K = n',,,, as

7
/d4x4/_—g FK = —/d4x4/_—g ntF,, = —/d4x4/_—gﬁ, (4.18)
where the boundary term is dropped. Note that we have also expanded the term

N~' = (1 +8N)~" up to second order in Eq. (4.16).
The term U/ satisfies the relation

a(OU = %a(t)RK + %d(r)R, (4.19)

where «(?) is an arbitrary function of ¢. Using this relation and the fact that I/ is a
perturbed quantity, it follows that

LySU = = (Ly + 3HLy) §;R + % (LuSK — LySN) §;R

N =

+= (Lu + 3HLy) R (4.20)

N =

where the first term on the r.h.s. is the first-order quantity, whereas the rest is
second-order.

Summing up the terms discussed above, the zeroth-order and first-order
Lagrangians of (4.15) are given, respectively, by

Lo=L—-F—-3HF, 4.21)
Ly = (F+ Ly)SN +E85IR, (4.22)
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where
1. 3
E=Lrp+ ELM + EHLL{. (4.23)

Defining the Lagrangian density as £ = /=gL = N~/h L, where h is the
determinant of the three-dimensional metric 4, the zeroth-order and first-order
terms read

Lo=a*(L—-F-3HF), (4.24)
Li=a(L+Ly—3HF)SN + (L - F —3HF)§Vh+ a>E6R .
(4.25)

The last term is a total derivative, so it can be dropped. Varying the first-order
Lagrangian (4.25) with respect to N and 8+/h, we can derive the following
equations of motion respectively:

L+Ly—-3HF =0, (4.26)
L—F—-3HF=0. 4.27)

On using Eq. (4.27), the zero-th order Lagrangian density (4.24) vanishes. Subtract-
ing Eq. (4.26) from Eq. (4.27), we obtain

Ly+F=0. (4.28)

Two of Eqgs. (4.26)—(4.28) determine the cosmological dynamics on the flat FLRW
background.

As an example, let us consider the non-canonical scalar-field model given by
[46,47]

M2
L= TPIR + P(¢.X). (4.29)

where P is an arbitrary function with respect to ¢ and X. Using Eq. (4.4) and
dropping the total divergence term, it follows that

M3
L= T" (R+S—K?) + P(¢.X). (4.30)

where X = —N72¢?. Since L = —3M3H* + P, Ly = 2¢*Py, and F =
—2Mp21H on the flat FLRW background, Eqs. (4.26) and (4.28) read

3MJH? = —2Px¢* — P, (4.31)
M}H = ¢’ Py, (4.32)
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which match with those derived in [46]. Taking the time derivative of Eq. (4.31) and
using Eq. (4.32), we obtain the field equation of motion

d , , ‘5 1 5.
) P —a’P =0, 4.33
7 (a X¢)+2a ( )

which is equivalent to % (a*Px¢)+ 1a* Py = 0. For a canonical field characterized
by the Lagrangian P = —X/2 — V(¢), this reduces to the well-known equation
¢+3Hp+Vy=0.

4.3 Second-Order Action for Cosmological Perturbations

In order to derive the equations of motion for linear cosmological perturbations, we
need to expand the action (4.6) up to quadratic order. The Lagrangian (4.15) reads

L=L—-F—-3HF+(F+Ly)SN +E§R

1 . 1
+ (ELNN — f) SN2 + EA&K2 + BSKSN + CSK8;R + DSNS§IR

+E86R + %galnz + LsSK/'SK), + Lz8RY SR, (4.34)
where
A = Lgx +4HLsx + 4H?Lss , (4.35)
B = Lgy + 2HLsy , (4.36)
C = Lgr +2HLsg + %Lu + HLyy +2H?Lsy (4.37)
D= Lygr— %L’M + HLyy (4.38)
G = Lrr +2HLry + H* Ly . (4.39)

Then, we obtain the second-order Lagrangian density, as
Ly = 8VR[(F + Ly)SN + E&R]

1 1
+a? [(LN + ELNN) SN2 + E8,R + EA(SKZ + BSKSN + CSK81R

1
+ (D4 E)SNSIR + EQSIRZ + LsSK/'SK ) + LZ(SR{)‘SRL} .

(4.40)
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For the gauge choice (4.10), the three-dimensional metric following from the

metric (4.8) is h; = a’(t)e**§;. Then, several perturbed quantities appearing in
Eq. (4.40) can be expressed as

SVh=3d%,  §Ry=—(8;0°C + 8:9,¢) ,
§IR =—4a720%C,  8§R=-2a"2[(0))*—400%C] .,  (4.41)

where 82¢ = 8;8;{ = Y°7_, 82/8(x")? and (3¢)* = (3;0)(3;¢) = 37—, (3; )%,

From Eq. (4.3) the extrinsic curvature can be expressed in the form
1 /-
Kj= 55 (h,.,- — Ny — Nj‘i) . (4.42)
For the perturbed metric (4.8), the first-order extrinsic curvature reads
i ; i [
5K = (; - H5N) 8 — 538" BN, + 9, No) (4.43)

where we have used the fact that the Christoffel symbols I"Uk are the first-order

perturbations for non-zero values of k, i, j. Since the shift N; is related to the metric
perturbation v via N; = 0; v, the trace of §Kj; can be expressed as

§K =3 (é - HSN) - %azw . (4.44)

On using the relations (4.41), (4.43), and (4.44), the second-order Lagrangian
density (4.40), up to boundary terms, reduces to

1
Ly = a3{ E(2LN + Lyy + 9AH? —6BH + 6LsH*)SN*?

2y ¢
+ [(B —3AH —2LsH) ( ¢ — —) +43HC—-D— 5)—} SN

2 2 2
—(BA+ 2L5)§— - 120;E + GA + 3L5) &2+ 28 (a;)
2 2 2 2 2 2
(A +2Lg)—— @ ‘”) 4c? wzfa 9 +2(4G + 3LZ)( ) } ,
(4.45)

where we have used the background equation (4.28) to eliminate the term 3a*(Ly +
F)¢8N . Variations of the second-order action S, = [ d *x L, with respect to N
and 8”1 lead to the following Hamiltonian and momentum constraints, respectively:
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[2Ly + Loy —6HW —3H>(3A + 2Ls)| SN

2 . 2
—Wa—;”+3W§+4(3HC—D—€)a—f:0, (4.46)
a a
Oy : ¢
WEN — (A + ZLS)? + BA+2Ls)C — 46? =0, (4.47)
where
W=B-3AH —2LsH . (4.48)

From Egs. (4.46) and (4.47) one can express SN and 0°y/a” in terms of § and
0%¢/a®. The last three terms in Eq. (4.45) give rise to the equations of motion
containing spatial derivatives higher than second order. If we impose the three
conditions

A+2Ls =0, (4.49)
C=0, (4.50)
4G +3Lz =0, 4.51)

then such higher-order spatial derivatives are absent. Under the conditions (4.49)—
(4.51), we obtain the following relations from Eqs. (4.46) and (4.47):

82w _ 3IW? 4+ 4LsQRLy + Lyy —6HW + 12H2L3) .

az W2 ¢
4(D + &) 9*
4L .
SN = —2¢, 4.53
W ¢ (4.53)

where W = Ly + 2HLsny + 4HLs. Substituting these relations into Eq. (4.45),
we find that the second-order Lagrangian density can be written in the form £, =
c1(1)8* + (1) + ¢3(1)(38)?, where ¢123(t) are time-dependent coefficients.
After integration by parts, the term c,(1)£9%¢ reduces to é,(¢)(9¢)?/2 up to a
boundary term. Then, the second-order Lagrangian density reads [28,33]

2
L= a0, [62 - C—;(az)ﬂ , (4.5
a
where

2Ls[3B% +4Ls(2Ly + Lyn)]

s = v (4.55)

2= Qi M+HM=E), (4.56)

s
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and

4Ls(D+ &) _ 4L s

M 4% w

3
(LR + Lyr + HLyy + EHLM) . 4.57)

Varying the action S, = [ d“*x £, with respect to the curvature perturbation ¢,
we obtain the equation of motion for {:

dit <a3QS§) — a0, =0. (4.58)

This is the second-order equation of motion with a single scalar degree of freedom.
Provided that the conditions (4.49)—(4.51) are satisfied, the gravitational theory
described by the action (4.6) does not involve derivatives higher than quadratic
order at the level of linear cosmological perturbations. As we will see in Sect. 4.5,
Horndeski theory satisfies the conditions (4.49)—(4.51).

While we have focused on scalar perturbations so far, we can also perform a
similar expansion for tensor perturbations. The three-dimensional metric including
tensor modes y;; can expressed as

R N 1 R
]’l,:,' = az(t)ezgh,-j s ]’l,:,' = 8,:,' +vi + Eyﬂy[j s deth =1, (4.59)
where y;; is traceless and divergence-free such that y;; = 0;y; = 0. We have

introduced the second-order term y;;y;;/2 for the simplification of calculations [48].
On using the property that tensor modes decouple from scalar modes, we substitute
Eq. (4.59) into the action (4.6) and then set scalar perturbations 0. We note that
tensor perturbations satisfy the relations §K = 0, SKI% = )’5 /4, iR = 0, and
6 R = —(0k szi)2 /(4a?). The second-order action for tensor perturbations reads

s = / d*xa [Ls (3K8KY — 5K2) + E8,R ]
a’ . E
= / d*x T [Lsyg — a—z(aky,-j)z} ) (4.60)

One can express y;; in terms of two polarization modes, as y; = h+e;' +
hxei}(. In Fourier space, the transverse and traceless tensors e;' and ei}( satisfy the
normalization condition e;;(k) e;;(—k)* = 2 for each polarization (k is a comoving
wavenumber), whereas e;' (k) ei}( (—k)* = 0. The second-order Lagrangian (4.60)
can be written as the sum of two polarizations, as

. 2
s =" /d4x a0, [hi - ;—'Z(ahk)z} , (4.61)

A=+4,x
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where
L
0, ==, (4.62)
2
&
F= . 4.63
¢ =1 (4.63)
Each mode /) (A = +, x) obeys the second-order equation of motion
d (3, 202
d—t(a Q,hx)—ath,B hy=0. (4.64)

In order to avoid the appearance of ghosts, the coefficient in front of the term hy,
needs to be positive and hence Q, > 0. The small-scale instability associated with
the Laplacian term ¢?3%h, is absent for ¢> > 0. Then, the conditions for avoidance
of the ghost and the Laplacian instability associated with tensor perturbations are
given, respectively, by Gleyzes et al. [28] and Gergely and Tsujikawa [33]

Ls>0, (4.65)

1. 3
E=Lr+ ELM + EHLM >0. (4.66)

Similarly, the ghost and the Laplacian instability of scalar perturbations can be
avoided for Q; > 0 and cf > 0, respectively, i.e.,

3(Lgy + 2HLsN)* +4Ls(2Ly + Lyy) > 0, (4.67)
M+HM=-E>0, (4.68)

where we have used the condition (4.65). The four conditions (4.65)—(4.68) need to
be satisfied for theoretical consistency.

4.4 Inflationary Power Spectra

The scalar degree of freedom discussed in the previous section can give rise to
inflation in the early Universe. Moreover, the curvature perturbation ¢ generated
during inflation can be responsible for the origin of observed CMB temperature
anisotropies [6]. The tensor perturbation not only contributes to the CMB power
spectrum but also leaves an imprint for the B-mode polarization of photons.

In this section we derive the inflationary power spectra of scalar and tensor
perturbations for the general action (4.6). We focus on the theory satisfying
the conditions (4.49)—(4.51). In this case, the equations of linear cosmological
perturbations do not involve time and spatial derivatives higher than second order.
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Since the Hubble parameter H is nearly constant during inflation, the terms that do
not contain the scale factor a slowly vary in time. Let us then assume that variations
of the terms Qy, Oy, ¢, and ¢, are small, such that the quantities

8 _ 9 8 _ 9 , =
Qs_HQS’ Qr_HQ[’ s HCS’ t HC;

(4.69)

are much smaller than unity.
We first study the evolution of the curvature perturbation ¢ during inflation. In
doing so, we express ¢ in Fourier space, as

t(t,x) = / d3k L(z, k)e'k~ (4.70)

@)

where
E(‘L’, k) = u(zr.k)ak) + u* (v, —k)a' (—k) . 4.71)

Here, 1 = f a~'dt is the conformal time, k is the comoving wavenumber, a (k)
and a (k) are the annihilation and creation operators, respectively, satisfying the
commutation relations

[ak1).a® (k)] = 27)*8P (k) — k»)
la(ky),a(kz)] = [a'(k1).a"(k2)] = 0. (4.72)

On the de Sitter background where H is constant, we have a & e and hence
© = —1/(aH). Here, we have set the integration constant 0, such that the asymptotic
past corresponds to T — —00.

Using the equation of motion (4.58) for £, we find that each Fourier mode u obeys

@Q,) .
i’)QY

For large k, the second term on the Lh.s. of Eq. (4.73) is negligible relative to the
third one, so that the field u oscillates according to the approximate equation it +
c2(k*/a*)u ~ 0. After the onset of inflation, the ¢ (k?/a?)u term starts to decrease
quickly. Since the second term on the Lh.s. of Eq. (4.73) is of the order of H?u,
the third term becomes negligible relative to the other terms for c;k < aH. In the
large-scale limit (k — 0), the solution to Eq. (4.73) is given by

u—+

i+ c? —u =0. 4.73)

1
M:CI+C2/a3—Qsd[, (474)
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where ¢ and ¢; are integration constants. As long as the variable Q changes slowly
in time, u approaches a constant value c¢;. The field u starts to be frozen once the
perturbations with the wavenumber k cross ¢sk = aH [6,49,50].

We recall that the second-order Lagrangian for the curvature perturbation ¢ is
given by Eq. (4.54). Introducing a rescaled field v = zu with z = a+/20;,
the kinetic term in the second-order action S, = f d*x L, can be rewritten as
[ dtd?xv/2, where a prime represents a derivative with respect to 7. This means
that v is a canonical field that should be quantized [34,36]. Equation (4.73) can be
written as

1
V't (csz - Z—) v=0. (4.75)
Z

On the de Sitter background with a slow variation of the quantity Q;, we can
approximate z”/z ~ 2/7%. In the asymptotic past (kt — —o0), we choose the
Bunch-Davies vacuum characterized by the mode function v = e™“k7/\/2¢/k.
Then the solution to Eq. (4.75) is given by

i H e—ifsk‘f

2k 20

The deviation from the exact de Sitter background gives rise to a small modification
to the solution (4.76), but this difference appears as a next-order slow-roll correction
to the power spectrum [51,52].

In the regime c;k << aH, the two-point correlation function of ¢ is given by
the vacuum expectation value (O|§: (, kl)f (7, k7)|0) at T &~ 0. We define the scalar
power spectrum P (k1), as

u(t, k) = (1 +icskt). (4.76)

R R 2
(OIF(0, k)E0.k)[0) = 25 Pikr) (2)'50 (s + k) “.77)
1

Using the solution (4.76) in the T — 0 limit, it follows that

H2

P = 0.0 (4.78)

Since the curvature perturbation soon approaches a constant for csk < aH, it is
a good approximation to evaluate the power spectrum (4.78) at ¢k = aH during
inflation. From the Planck data, the scalar amplitude is constrained as P; ~ 2.2 x
107 at the pivot wavenumber ko = 0.002 Mpc~! [5].

The spectral index of P is defined by

_ d InP;
dInk |

ng —

= —2¢ —8p, — 38, . (4.79)



112 S. Tsujikawa

where §p, and &, are given by Eq. (4.69), and

€= ——. (4.80)

The slow-roll parameter € is much smaller than 1 on the quasi de Sitter background.
Given that the variations of H and ¢, are small during inflation, we can approximate
the variation of Ink at ¢k = aH, as dInk = dlna = Hdr. Since we are
considering the situation with [6p,| < 1 and |8.,| <« 1, the power spectrum is
close to scale-invariant (ng; >~ 1).

We also define the running of the spectral index, as

dny
~ dInk csk=aH ’

(4.81)

which is of the order of €2 from Eq. (4.79). With the prior oy = 0, the scalar spectral
index is constrained as ny; = 0.9603 %+ 0.0073 at 68 % confidence level (CL) from
the Planck data [5]. Since € is at most of the order 1072, it is a good approximation
to neglect the running ¢ in standard slow-roll inflation.

Let us also derive the spectrum of gravitational waves generated during inflation.
The second-order action for tensor perturbations is given by Eq. (4.61), where 5,
obeys Eq. (4.64). A canonical field associated with h; (A = +, X) corresponds
to v; = zh; and z; = a+/2Q,. Following a same procedure as that for scalar
perturbations, the solution to the Fourier-transformed mode /,, which recovers the
Bunch-Davies vacuum in the asymptotic past, reads

i H e—ictkr

2(cik)¥? /01

This solution approaches h; — iH/[2(c;k)>?/Q;] in the T — 0 limit.

We also define the tensor power spectrum Pj in a similar way to (4.77).
According to the chosen normalization for the tensors efj explained in Sect. 4.3,
we obtain P, = 4 - k3|h,(0,k)|>/(27?), where h; (0, k) = iH/[2(c;k)**/O;). It
then follows that

hy(t, k) = (1 4 ickt). (4.82)

H2
Pp=—-. 4.83
"= 20,0 (4.83)
The tensor spectral index, which is evaluated at ¢,k = aH, reads
dInP
=S lh = —2¢— 8o, — 3., . (4.84)

dInk ctk=aH
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where §p, and &, are given by Eq. (4.69). The tensor power spectrum is close to
scale-invariant (n, ~ 0) provided that ¢ < 1, |6g,| <« 1, and |§.,| < 1. The
difference between the scalar and tensor spectral indices comes from the difference
between (Qy, ¢5) and (Q;, ¢;).

For those times before the end of inflation (¢ <« 1) when both P; and P, are
approximately constant, the tensor-to-scalar ratio can be estimated as

rEﬂ:4Qscs3

Pt Oic?’
The Planck data [5], combined with the WMAP large-angle polarization measure-
ment [13] and ACT/SPT temperature data [53], showed that r is constrained as
r < 0.11 (95 % CL). Recently, the Background Imaging of Cosmic Extragalactic
Polarization (BICEP2) group [54] reported the first evidence for the primordial
B-mode polarization of CMB photons and they derived the bound r = 0.201'8"857
(68 % CL) with r = 0 disfavored at 7o0. There is a tension between the data of
Planck and BICEP2, but future measurements of the B-mode polarization will place
more precise bounds on r.

The inflationary scalar and tensor power spectra (4.78) and (4.83) are valid for
general theories given by the action (4.6), provided that the conditions (4.49)—
(4.51) are satisfied. The quantities like O and cs2 are written in terms of the partial
derivatives of L with respect to the ADM variables such as K and N. For a given
theory, we need to express the Lagrangian L in terms of the three-dimensional
quantities and the lapse N to derive concrete forms of the inflationary power spectra.
In the next section, we will perform this procedure for the most general scalar-tensor
theories with second-order equations of motion.

(4.85)

4.5 Horndeski Theory

4.5.1 The Lagrangian of Horndeski Theory

In this section we apply the EFT formalism advocated in Sects.4.2 and 4.3 to
the most general scalar-tensor theories with second-order equations of motion—
Horndeski theory [39]. This theory is described by the action S = [ d 4x J—gL,
with the Lagrangian [43]

L= Z L, (4.86)

where

Ly = G2(¢. X), (4.87)
L3 = G3(¢. X)Uo, (4.88)
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Ly = Ga($. X) R—2Gux (9. X) [(Op)” — ¢ ¢y ] (4.89)
LS = G5(¢7X)G;w¢;lw

1 . I
+3Gsx (9. X) [(@¢)° —3(0¢) $yud™™ + 26677 ¢" ;] . (4.90)

Here G; (i = 2,3,4,5) are functions in terms of a scalar field ¢ and its kinetic
energy X = g""0d,¢0,¢ with the partial derivatives G;x = 0G;/0X and G;y =
0G;/0¢, R is the Ricci scalar, and G, is the Einstein tensor. In 1973, Horndeski
derived the Lagrangian of the most general scalar-tensor theories in a different form
[39], but as shown in [35], it is equivalent to the above form. The Horndeski’s
paper” has not been recognized much for a long time, but it was revived recently in
connection to covariant Galileons [40,4 1] and generalized Galileon theories [42,43].

The Lagrangian (4.86) covers a wide variety of gravitational theories listed
below.

* (1) General Relativity with a minimally coupled scalar field
The minimally coupled scalar-field theory (4.29) is characterized by the
functions [46]

G, = P(¢.X), G; =0, Gy=M3/2, Gs=0. (4.91)

The canonical scalar field with a potential V(¢) corresponds to the particular
choice

G, =—X/2—V(¢). (4.92)

* (2) Brans-Dicke theory
The Lagrangian of Brans-Dicke (BD) theory is given by

M X 1
Gzz_ma)i_v((P)’ G3:0, G4:§ pl¢9 GSZO’

2¢
(4.93)

where wgp is the so-called BD parameter. In the original BD theory [55], the field
potential V(¢) is absent. Dilaton gravity [56] corresponds to wgp = —1.

2When Horndeski wrote this paper, he was the Ph.D. student of David Lovelock. In 1981, he
was taking a sabbatical year in Netherlands as a tenured professor of applied mathematics at the
University of Waterloo. When he saw a van Gogh exhibition, he was deeply moved. He stated
“I was never that interested in art. Then I stumbled onto van Gogh. I never knew art could be like
that. I had always thought of it as very representational and not very interesting. But then I thought,
“This is something I eventually want to do.” When I saw van Gogh I was sure I could paint.” After
this, Horndeski left physics and became an artist.
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* (3) f(R) gravity
This theory is characterized by the action

S = d4x\/—_M—pzl
= g— (R, (4.94)

where f(R) is an arbitrary function of the Ricci scalar R. The metric f(R)
gravity corresponds to the case in which the action (4.94) is varied with respect
to g,.v. This can be accommodated by the Lagrangian (4.86) for the choice

1
—M2F, Gs=0,

My
Gz——T(RF—f)» G3=0, G4—2 pl
(4.95)
where F' = df/0R. There is a scalar degree of freedom ¢ = My F(R) with a
gravitational origin. Comparing Eq. (4.93) with Eq. (4.95), we find that metric
f(R) gravity is equivalent to BD theory with wgp = 0 and the potential V' =
(M3/2)(RF - f).

In the Palatini formalism where the metric g,, and the connection F”‘y are
treated as independent variables, the Ricci scalar is different from that in metric
f(R) gravity. The Palatini f(R) gravity is equivalent to BD theory with the
parameter wgp = —3/2 [15].

* (4) Non-minimally coupled theory
This theory is described by the functions

M2
Gy =w(@)X —V(9), G3; =0, Gy = —> — —£¢°, Gs =0.

2 2
(4.96)

where w(¢) and V(¢) are functions of ¢. Higgs inflation [57] corresponds to a
canonical field (w(¢) = —1/2) with the potential V(¢) = (1/4)(¢p> — v?)? (see
also [58]).
¢ (5) Covariant Galileons
The covariant Galileons [41], in the absence of the field potential, are
described by the functions

M
Gy =X, Gy =X, Gy = Tp+6’4X2, Gs = csX?,
4.97)
where ¢; (i = 2, 3,4,5) are constants. The field equations of motion are invariant

under the Galilean transformation d,¢ — 0,¢ + b, in the limit of Minkowski
space-time [40].
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* (6) Derivative couplings
A scalar field whose derivative couples to the Einstein tensor in the form
G 0" 90" ¢ [59,60] corresponds to the choice

Gy =—-X/2-V(¢), G; =0, G4 =0, Gs=co, (4.98)

where c is a constant and V(¢) is the field potential. In fact, integration of the
term c¢ G, " by parts gives rise to the coupling —c G ., 0" ¢ 9" ¢.
* (7) Gauss-Bonnet couplings
The Gauss-Bonnet couplings of the from —&(¢) R2;, where R2; = R* —
4Ry R + Rogys R*PY8 can be accommodated by the choice [35]

Gy = —2EW(p)X*[3—In(=X/2)], G; =269 (p)X[7-3In(-X/2)],
Gy = 26P(¢)X[2 — In(—X/2)], Gs = 48V(¢)In(—X/2),  (4.99)

where £ (¢) = 3"E(¢)/09".

4.5.2 Horndeski Lagrangian in Terms of ADM Variables

Let us express the Horndeski Lagrangians (4.87)—(4.90) in terms of the lapse N and
the three-dimensional quantities introduced in Sect.4.2. In unitary gauge, the unit
vector 1, orthogonal to the constant ¢-hypersurface is given by Gleyzes et al. [28]

1
ny ==y, = —. (4.100)
123 y(ib 1 Y \/j
Taking the covariant derivative of Eq. (4.100) and using the relation (4.4), we obtain
1 y? -
G = —; (K/w —nua, — nvau) + ?qﬁ’ X.onun, . 4.101)

The trace of Eq. (4.101) gives

1 X,
O¢p =——K — .
¢ y + 2X

(4.102)

First of all, the Lagrangian L, depends on N through the field kinetic energy,
ie.,

Ly = Ga(¢, X(N)) . (4.103)

On using the property X (N) = —¢*/N? on the flat FLRW background, the quantity
like L,y can be evaluated as Loy = 2¢2Gay.
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For the computation of L3 = G30¢, it is convenient to introduce an auxiliary
function F3(¢, X), as

G3 = F3 4+ 2XFsyx . (4.104)

After integration by parts, the term F30¢ reduces to —(Fzg¢., + F3x X)) up
to a boundary term. On using the relation (4.102) for the term 2XF;y ¢, it follows
that

Ly =2(=X)?F;x K — XF3. (4.105)

Although the auxiliary function Fj is present in the expression of L3, the combina-
tion of quantities appearing in the background and linear perturbation equations of
motion can be expressed in terms of Gs.

Substituting Egs. (4.101) and (4.102) into Eq. (4.89), the term L, reads

Ly = G4R + 2XGyx (K* — S) + 2Gax X, (Kn" — a*) (4.106)

where we have used the property a, = —h,, X;,/(2X). Substituting Eq. (4.4) into
Eq. (4.106) and employing the relations Gax X;;, = Ga; + ¥~ 'Gagn, and nyat =
0, we obtain

Ly = G4R + (2XGusx — G4)(K* — S) — 2v/—X Gy K . (4.107)

The Lagrangian Ls is most complicated to be dealt with. We refer readers to [28]
for detailed calculations. Introducing an auxiliary function F5(¢, X) such that

Gy = 22 4 F (4.108)
5X—2X 5X » .

the final expression of L5 is given by
1
Ls = v/—XF;s (EKR — u) — H(—X)*Gsx(2H? —2KH + K> - S)

1 1
+§X(G5¢ — Fs¢)R + EXG5¢(K2 -3S), (4.109)

which is valid up to quadratic order in the perturbations.
Summing up the contributions (4.103), (4.105), (4.107), and (4.109), the
Lagrangian (4.86) can be expressed as

L =Gy +2(—X)?F;xK — XF3,
+G4R + (2XGax — G4)(K* — S) — 2/ =X Gy K
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1
++/—X Fs (EKR - u) — H(—=X)**Gsx(2H* —2KH + K*> — 5)
1 1 5
+5X(Gsy = Fsp)R + 5XGsy (K = S), (4.110)

where G345 and F35 are functions of ¢ and X(N). The Lagrangian (4.110)
depends on N, K, S, R, U, but not on Z. We evaluate the partial derivatives of
the Lagrangian (4.110) with respectto N, K etc. and finally set N =1, K = 3H,
S=3H>R=0,U=0.

Among the terms appearing in Eqgs. (4.49)—(4.51), the non-vanishing ones are
given by

Lix = —2Ls = 2(2XGasx — G4) —2H(—X)*?Gsy + XGsy, (4.111)

1 1
Lgr = _ELM = EV—XFS, 4.112)

so that all the three conditions (4.49)—(4.51) are satisfied. In Horndeski theory, there
are no spatial derivatives higher than second order.

4.5.3 Conditions for the Avoidance of Ghosts and Laplacian
Instabilities

The conditions (4.65) and (4.66) for avoiding the ghost and the Laplacian instability
of tensor perturbations translate to

; 1
Ls = G4 —2XGsx — HPpXGsy — EXGS¢ >0, (4.113)
1 .
E=0Gs+ EXG5¢ —XGsx¢ > 0, (4.114)

respectively. In the presence of the terms G4(X) and G5(¢, X), the tensor propaga-
tion speed square ct2 = &/ Lgs is generally different from 1.
On using the properties B = Lxy + 2HLsy and W = Lky + 2HLsy + 4HLs,

the quantity Q; in Eq. (4.55) can be expressed as
2Ls

Qs =305 (OWV? + 8Lsw) , (4.115)
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where?

w=3Ly +3Lyy/2—9H(Lgy + 2HLsy) — 18LsH?
= —18H?G4 + 3(XGax + 2X*Gaxx) — 18HP(2XGsy + X’ Gxx)
—3X(Gap + XGspx) + 18H*(TXGax + 16X*Gaxx + 4X>Gaxxx)
—18H$(Gap + 5XGupx + 2X*Guapxx) + 6H>$(15XGsx + 13X *Gsxx

+2X°Gsyxx) + 9H?>X(6Gsy + 9XGspx + 2X*Gspxx) . (4.116)
W = 4HGy + 2¢XGsx — 16 H(XGyx + X*Gaxx) + 2¢(Gag + 2XGapx)
—2H?$(5XGsx + 2X°Gsxx) — 2HX(3Gsy + 2XGspx) - (4.117)

Taking into account the requirement (4.113), the no-ghost condition for scalar
perturbations reads

9WV? +8Lsw>0. (4.118)

In Horndeski theory (4.110), we notice that there is the following relation
3
L5=D+5=LR+LN73+§HLM+HLNM, (4.119)

so that the quantity (4.57) reduces to

412
M=—_5. 4.120
W ( )

Then, the condition (4.68) for avoiding the Laplacian instability of scalar perturba-

tions reads

d (4L% 4HL>
—(==)+ S_£>0, (4.121)
i\ W w

where Ls, £, and W are given by Eqgs. (4.113), (4.114), and (4.117) respectively.

As an example, let us consider BD theory described by the functions (4.93).
Since Ls = £ = G4 = Mp¢p/2 in this case, the conditions (4.113) and (4.114) are
satisfied for

¢ >0, (4.122)

3The four quantities w) ;34 introduced in [38] are related to Ls, W, w, and &, as w; = 2Lg,
wy =W, w3z = w, and wy = 2E.
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with the tensor propagation speed square ¢? = 1. Since W = Mpl(q.b + 2H¢) and
w = —3Mu(6H?$> — wppd® + 6HpP)/(2¢), the quantity (4.115) reads

_ 3+ 20pp) My¢d?

O @ 1 2Hp? (4.123)
On using the condition (4.122), we find that the scalar ghost is absent for
wpp > —3/2. (4.124)
The quantity M can be expressed as
M2¢?

M=— ;IC , (4.125)
where we have used the fact that the term F in Eq. (4.17) is givenby F = — M, (p+
2 H¢). From the background equation (4.28), it follows that

F=~Ly =~Mu$p(3H — wpp)/¢ (4.126)

Then, the condition (4.68) for avoiding the Laplacian instability of scalar perturba-
tions translates to

2
M+ HM—€ = (3 + 2wpp) Mpidp
2(¢ + 2H¢)?

>0, (4.127)

which is satisfied under (4.122) and (4.124). In fact, from Eq. (4.56), the scalar
propagation speed square c? is equivalent to 1 in BD theory.

N

4.5.4 Primordial Power Spectra in k-Inflation

Let us consider a non-canonical scalar-field theory described by the Lagrangian
(4.29). This theory can be expressed in terms of the ADM variables as Eq. (4.30).
Since Ls = £ = G4 = MPZI/Z, 0, = Mp21/4 and cl‘2 = 1, the tensor mode is not
plagued by any ghosts and Laplacian instabilities. From Eq. (4.83), the tensor power
spectrum is given by

2H?

Pr=——, 4.128
h M ( )

which depends only on H. Therefore, if the amplitude of primordial gravitational
waves is measured, the energy scale of inflation can be explicitly known.
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We also have the relations W = 2HM?

s W= —9H2Mp2l + 3X(Px + 2XPxy),
and

> (Px + 2X Pxx)
_ e ,

Qs = (4.129)

so the scalar ghost is absent for Py + 2XPxx < 0. Since F = —ZMPZIH and

Ly = 2q§2PX, the background equation of motion (4.28) gives MPZIH = ¢2PX.

Taking the time derivative of the quantity M = Mp21 /(2H), it follows that
Mple _d’z Py

M+HM—-E =— =

S SR (4.130)

To avoid the instability of scalar perturbations, we require that Py < 0. Substituting
Egs. (4.129) and (4.130) into Eq. (4.56), we obtain

2 Py

- x 4131
T Py + 2XPex (@.131)

In standard slow-roll inflation driven by the potential energy V(¢) of a canonical
scalar field (P = —X/2—V(¢)), ¢ is equivalent to 1. If the Lagrangian P contains
a non-linear term in X, the scalar propagation speed is generally different from 1.

From Eqs. (4.129) and (4.131), we find that the slow-roll parameter € = —-H JH?
is related to Q; and ¢2, as

2
€= Qi . (4.132)
M
Then, the scalar power spectrum (4.78) reads
H2
Pr=——75—. 4.133
‘ SnzMIﬁecS ( )

From Egs. (4.128) and (4.133), the tensor-to-scalar ratio is given by Garriga and
Mukhanov [49]

r = 16¢,e . (4.134)

Since € < 1 during inflation, it follows that r < 1 for¢; < 1.

4.6 Horndeski Theory in the Language of EFT

In this section, we relate the variables introduced in Sect. 4.2 with those employed
in the EFT language of [17,25,26]. The action expanded up to quadratic order in
the perturbations can be written in the following form
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MZ M4 =3 MZ
S = /d4x\/—_g|:7*ﬂ€— A—cg®+ 72(85,700)2 — %5K8g00 — 725K2

M2 by bt
— S KUSK) + ”1R5g°°+ R8K+ ‘R2+ ZR“R“} (4.135)

where g% = —1/N?2, M, is a constant, and other coefficients such as f, A,c, M,
depend on time. We note that the four-dimensional Ricci scalar R can be written in
terms of the three-dimensional quantities as Eq. (4.4). After integration by parts, the
first term in Eq. (4.135) reads

2 2
MfR—M (fR+fS —fK?—2f— ) (4.136)

Now we substitute R = 8| R +8,R, K = 3H?>+6K,and S = 3H>+2HSK +
SK1 SKI‘i into Eq. (4.136) and then expand the action (4.135) up to quadratic order
in the perturbations. In doing so, we use the similar property to Eq. (4.18), i.e.,

[d*x /=g B(t)SK = [d*x/—g(—B —3HB + BSN — BEN?), where B(z) is an

arbitrary function in terms of ¢. Then, the resulting Lagrangian reads

L=MXf+2Hf +2Hf +3H )~ A+c
2
+HMA—f+Hf -2Hf) -

1R

+[Mf(f'—Hf+2Hf)+3c+2M24]5N2—( I 2)5;@

2

+(M2f —in})SKSN + %SK&R + 128N

M
+(2

Comparing the terms up to the second line of Eq. (4.137) with those in Eq. (4.22),
it follows that

e ) )
f- 73) SKI'SK) + ?IRZ + 7257%557%; . (4.137)

M2(f +2Hf +2Hf +3H*f)—A+c=L—F—3HF, (4.138)
MX—Ff+Hf-2Hf)—2c=F+Ly. (4.139)

1
— 2Lz + Ly + 3HLy) . (4.140)

2
I =28 =

*

From Eqgs. (4.27) and (4.28), the r.h.s. of Eq. (4.138) and (4.139) vanish in the
absence of matter. The background equations of motion are characterized by the
three parameters f, A, and ¢. Comparing the second-order terms in Eq. (4.137)
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with those in Eq. (4.34), we obtain the following relations

My = %(2LN + Lyy —2¢), i} =2€ — Lgy —2HLsy ,

M} = 26 — Lgx — 4HLsx —4H*Lss, M} =28-2Ls,
ui=Lyr— %Lu + HLyy ,

s =2Lxr + 4HLsRr + Ly + 2HLgy + 4H*Lsy .

A = Lrr +2HLry + H*Lyy Ay =2Lz, (4.141)

where we have used Eq. (4.139) to derive M. In Horndeski theory, the r.h.s. of
Eq. (4.141) can be evaluated by taking partial derivatives of the Lagrangian (4.110)
in terms of the scalar variables.

The conditions (4.49)—(4.51) reduce, respectively, to

M} +M?=0, ms=0, 81 +31 =0, (4.142)

under which the spatial derivatives higher than second order are absent. On using
these conditions, the Lagrangian (4.135) can be expressed as

2
*

M} m3
fR—A—CgOO + TZ(SgOO)Z_ 7181('8g00

M

S = /dm/_—g[ 3
2 2 M% 00

—m? (51< —aKgaK,j) + S Rég } (4.143)

where

mi = ! (M3 — M) = — (—4€ +2Ls — Lxx — 4HLsg —4H?Lss) .

(4.144)

I
FN-

The terms containing R? = 16(3°¢)?/a* and R;RY = [5(3%¢)? + (0;0;¢)%]/a* are
absent in Eq. (4.143) because they only involve spatial derivatives of ¢ higher than
second order.
In Horndeski theory described by the action (4.110), the coefficients in the action
(4.143) can be computed by using Eqs. (4.138)—(4.141). They are given by
MXf = 2G4 — Gspd* + 2Gsx ¢ . (4.145)
A =XGrx — Gy + $*(p + 3HP)Gsx + Fu/2 +3HX Gyx — 18H>Gyx ¢*
+6HGyx$® + 12H?Gaxxd* + Fs/2+3M2H? fs + 3M2H f5/2
—6H*Gsyp> — TH>Gsxd® + 3H*Gsyxd* + 2H>Gsxx®,  (4.146)

¢ = XGox + ¢*(—p + 3HP)Gax + ¢*Gsy — Fu/2 + 3HX Gux
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—6H?Gyx¢? + 6HGupx > + 12H*Gaxxd* — Fs/2 + 3M2H f5/2

—3H?Gsyd?> —3H>Gsxd® + 3H*Gsyxd* + 2H>Gsxxp®,  (4.147)
My = X*Goxx + (¢ + 3H$)G3x$*/2 — 3HG3xxp® — Gapx $*/2

+F4/4—3HX Gux /2 4 6HGuyx > + 18 H*Gaxxp* — 6HGupxx 9’

—12H?Gaxxxd® + Fs/4 — 3M2H f5/4 — 3H3Gsx /2

+6H?Gspx¢p* + 6H>Gsxxd® — 3H>Gsgxxdp® — 2H > Gsxxxd”, (4.148)
i3 = 2G3x$> + 2X Gay — SHG4x* + 4Guyx > + 16HGuxxd* ,

+ M2 fs — 4HGsyp? — 6H?Gsx > + 4HGsyx §* + 4H?Gsxxd”,

(4.149)

m; = i =2Gax§* + Gsp$* + HGsx¢® — Gsx ¢ . (4.150)
where

Fi = 2XGyx — 8HG4x ¢, (4.151)

Fs =2MZ2Hfs + M2 fs — 2HGsy¢*> — 2H>Gsx ¢ , (4.152)

M} fs = —Gspd” + 2Gsx > . (4.153)

We stress that Horndeski theory satisfies the additional relation mﬁ = ,u%.

The time and spatial derivatives for the theory (4.143) are kept up to second
order for linear cosmological perturbations. If mi #* ,u%, then higher-order spatial
derivatives should appear beyond linear order. For the computation of primordial
non-Gaussianities of curvature perturbations generated during inflation, we need to
expand the action (4.6) higher than quadratic order. In such cases, the presence of
higher-order spatial derivatives can modify the shape of non-Gaussianities [20, 61]
relative to that derived for Horndeski theory [37, 38, 52].

4.7 Application to Dark Energy

In this section, we study the dynamics of dark energy based on Horndeski theory in
the presence of matter (cold dark matter, baryons, photons etc.). The action in such
a theory is given by

5
S = /d4x4/_—g > L +/d4me, (4.154)
i=2

where L, 3 45 are given by Eqgs. (4.87)—(4.90) and L,, is the matter Lagrangian of a
barotropic perfect fluid. The scalar degree of freedom is responsible for the late-time
cosmic acceleration. We assume that matter does not have a direct coupling to ¢.
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4.7.1 Background Equations of Motion

On the flat FLRW background, the energy-momentum tensor of the barotropic
perfect fluid is given by T(? = —pm and T]’f = Pm8j, where p,, is the energy density
and P, is the pressure. This satisfies the continuity equation TO’;L . =0, le,

Pm + 3H(pm + Py) =0. (4.155)

In the presence of matter, the background equations of motion (4.26) and (4.28) are
modified to

L+Ly—3HF=p,, (4.156)
Ft Ly = pu+ Pu. (4.157)
Substituting Eqs. (4.156)—(4.157) into Egs. (4.138)—(4.139), we obtain
A+c=3M2fH*+ fH) - pn, (4.158)
A—c=MXQfH +3fH>+2fH + )+ P,. (4.159)
In Horndeski theory, the functions f, A, ¢ are given, respectively, by Eqgs. (4.145),
(4.146), and (4.147). Among the four functions G 3 4 5, the three combinations of
them (i.e., f, A, ¢) determine the cosmological dynamics.
Taking the time derivative of Eq. (4.158) and using Egs. (4.155) and (4.159), we
obtain

A+¢é+6He=3M2f(2H*+ H). (4.160)

The background equations of motion (4.158) and (4.159) can be expressed as

3M3H? = ppe + pm - (4.161)
M}(2H +3H?) = —Ppg — Py, , (4.162)

where
poE =+ A+ 3H* (M3 —M2f)—3M2fH (4.163)

Pop =c—A— (QH +3H) (M3 —M2f)+ M2QH f + f). (4.164)

On using Eq. (4.160), we find that the “dark” component satisfies the standard
continuity equation

ppe + 3H (ppE + Ppe) = 0. (4.165)
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Then, we can define the equation of state of dark energy, as

P 20 —2H(M2—M2f)—MXHf — f
wpe = —- = —1 + WMo “M D ZMAHT =)y 166)
PDE ¢+ A+3HXMZ—-M2f)-3M2fH

For quintessence described by the Lagrangian G, = P(¢, X), Gz = 0, G4 =
MPZI/Z, and Gs = 0, we have M2 f = Mpzl, A = V(¢), and ¢ = $?/2. Since
wpe = [¢2/2 — V($)]/[¢%/2 + V(¢)] in this case, it follows that wpg > —1. For
a non-canonical scalar field with the Lagrangian (4.29) we have wpg < —1 for
Px > 0, but the scalar ghost is present. For the theories in which the quantity f
varies in time (i.e., G4 or Gs varies), it is possible to realize wpg < —1 under the
condition

20 —2HMZ—MIf)—MXHf - f)<0, (4.167)

where we have assumed ppg > 0. In f(R) gravity [62-66] and Galileons [67], the
dark energy equation of state can be smaller than —1, while avoiding the appearance
of ghosts.

4.7.2 Matter Density Perturbations and Effective Gravitational
Couplings

Let us proceed to discuss the equations of motion for linear cosmological perturba-
tions. The discussion in Sect. 4.2 is based on unitary gauge, but for the study of dark
energy, the Newtonian gauge is commonly used. The general metric in the presence
of scalar perturbations ¥, 1, @, and E can be written as

ds* = —(1+2¥)dr + 2y dx' dt +a*(t) [(1 + 2®)8; + 9;E]dx'dx/ . (4.168)

The Newtonian gauge corresponds to ¥ = 0 and £ = 0.

Since the Horndeski action is equivalent to the EFT action (4.143) in unitary
gauge with my = ,u% (up to second order), it is possible to derive the perturbation
equations in general gauge by reintroducing the scalar perturbation §¢ via the
Stueckelberg trick [16, 17, 28]. The quantities appearing in the action (4.143)
transform under the time coordinate change t — ¢ + §¢(t,x), e.g., 6K; —
8K;j— H8¢ph;j—2;0,;8¢, P Ryj — @ R;j+ H(9;0,;8¢ +8;0°6¢). This transformation
allows one to write the action (4.6) up to quadratic order in the perturbations for the
general metric (4.168). Varying the resulting action S with respect to ¥, ¥, @, E,
8¢ and finally setting ¥ = 0 = E, we can derive the perturbation equations in the
Newtonian gauge. This is the approach taken in [28].
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As performed in [44], the perturbation equations can be also derived by directly
expanding the Horndeski action (4.154) for the metric (4.168). In the following we
assume that the matter Lagrangian L, is described by a barotropic perfect fluid of
non-relativistic matter with the energy-momentum tensor

70 =—(om +8pm). T =—pmdivw. T} =0. (4.169)

Since there is no direct coupling between matter and the field ¢, the perturbed
energy-momentum tensor obeys the continuity equation

§T™., =0. (4.170)

From the v = 0 and v = i components of Eq. (4.170), we obtain the following
equations in Fourier space respectively,

2

. .k
8pm + 3HSpm + 30m® + ?pmvm =0, 4.171)

V=V, 4.172)

where k is a comoving wavenumber. We introduce the gauge-invariant density
contrast

5
S = 22" 4 3HY,,. (4.173)
Pm

Taking the time derivative of (4.171) and using Eq. (4.172), the density contrast
satisfies

. . k? . .
$m +2HS8y + ¥ =30 +6HQ, (4.174)
a
where Q = Hv,, — ®.
Expanding the action (4.154) for the metric (4.168) up to quadratic order in the

perturbations, varying the resulting action with respect to E, ¥, §¢, and finally
setting v = E = 0, we obtain the following perturbation equations respectively:

B¢® + B:6¢p + Bs¥ =0, (4.175)

X . kz k2

A\ D + Arb¢p — puW + Bg;@ + AW+ (A6; — u) §¢p —8pm =0, (4.176)
. . . . . k2

D@ + Dy8¢p + D3® + Dydp + Ds¥ + (37; + Ds) @

k? k?
+ (D9—2—M2) 56 + (A@_2 +D11)lI/=O, @.177)
a a
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where
Bs = 4 = 4G4 + 2XGsy — 4XGsx ¢ , (4.178)
4 .
B; = % [Ls + H(Ls —5)] ,

= 8Gux Hp + 8(Gux + 2XGuxx)$ + 4Gay — 8XGuyx
+4(Gsg + XGspx)p + 4H [2(Gsx + XGsxx)$ + Gsy — XGsgx | ¢
—2XGspy — 4(H* + H)XGsy (4.179)
Bg = 4Ls = 4G4 — 8XGyx — 4HXGsy — 2XGsy . (4.180)

Explicit forms of the time-dependent coefficients A; and D; as well as other
perturbations equations (derived by the variations of @ and ) are given in [44]. The
definition of the term w in Eq. (4.176) is u = Hy, where H = —(L+Ly—3HF).
The term M in Eq. (4.177) is defined by

M?>=[1+3H(u+v)]/d, (4.181)

where v = Py with P = L — F —3H F. The mass square M2 involves the second
derivative of —G, with respect to ¢ [44]. For a canonical field with the potential
V(¢), this means that the second derivative V4 is present in the expression of M 2,
For dark energy models in which the so-called chameleon mechanism [68] works
to suppress the fifth force mediated by the field ¢, the models are designed to have
a large mass M in the region of high density [62-66, 69]. In the low-energy regime
where the late-time cosmic acceleration comes into play, the mass M should be as
small as H.

The perturbations related to the observations of large-scale structures and weak
lensing have been deep inside the Hubble radius in the low-redshift regime. In
the following we use the quasi-static approximation on sub-horizon scales, under
which the dominant contributions to Eqs. (4.176) and (4.177) are those involving
the terms k2/a?, 8p,, and M? [70]. In doing so, we neglect the contribution of
the oscillating term of the field perturbation 8¢ relative to the one induced from
the matter perturbation §p,,. Under this approximation scheme, the variations of the
gravitational potentials @ and ¥ are small such that |®| < |H®| and |¥| < |HW|.
Then, Egs. (4.176) and (4.177) read

k2 k2
By—® + Ag— 8¢ — Spm =0, (4.182)
a a

k? k? k?
B;—® + (Dg—z—MZ) 8¢ + Ae—W¥ ~ 0, (4.183)
a a a
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where

As = 2XGsx + 8H (Gax + 2XGaxx)$ + 2Gap + 4XGuyx
+4H (Gsg + XGspy) ¢ — 2H?X (3Gsx + 2XGsxx) | (4.184)
Dy = 2Gyx — 4 (Gsx + XGixx) § — 8HG3xp — 2Gsy + 2XGapx
+[~16H(3 Gaxx + 2XGaxxx)$ — 8H(3Gagpx — 2XGuyxx)]d
~4(3Gapx + 2XGupxx)$ + 40H*XGaxx + 4XGaggx
+8H (Gax + 2XGuxx) + 12H?Gax + {—8H(2Gspx + XGspxx)$
+8H(H? + H)(Gsx + XGsxx) + 4HXGsppx } — 4H> X*Gspxx
+4H*(Gsx + 5XGsxx + 2X2Gsxxx)p + 2(3H* + 2H)Gsy
+4HXGsgx + 10H* XG5 . (4.185)

Solving Eqgs. (4.175), (4.182), and (4.183) for ¥ and @, it follows that

k2 B¢Do — B2) (k/a)* — BeM?

A S (BsD, — By) (k/a)” — BolM Spm, (4.186)
a (AgBﬁ+B§D9_2A6B7BS) (k/a) —BSZMZ

k2 ~ (A6B7 — Bng) (k/a)2 + BgM2

Co~o Spm.  (4.187)
pe (A2Bs + B2Dy— 2A4¢B1By) (k/a) — BIM? "

From Eq. (4.171), we find that the term Hv,, is at most of the order of
(aH/k)?80,/ pm. For the modes deep inside the Hubble radius (k >> aH), we then
have 8,, >~ Spm/pm in Eq. (4.173). Under the quasi-static approximation on sub-
horizon scales, the r.h.s. of Eq. (4.174) is negligible relative to the Lh.s. of it. On
using Eq. (4.186), the linear matter perturbation obeys

Sm + 2H 8y — A7 Gegipmbm ~ 0, (4.188)
where

_ 2MJ[(BsDy — B}) (k/a)’ — BsM’]
(A2B¢ + B3 Dy —2A¢B7By) (k/a)* — B} M?>

Gefy (4.189)

Note that G is the bare gravitational constant related with the reduced Planck mass
My, via the relation 87G = MPT 2. Since the effective gravitational coupling Gy is
different depending on gravitational theories, it is possible to discriminate between
different modified gravity models from the growth of matter perturbations.

In order to quantify the difference between the two gravitational potentials ¥ and
@, we define

n=-o/v. (4.190)
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On using the solutions (4.186) and (4.187), the anisotropy parameter reads

_ (BsDy — AgB7)(k/a)* — BsM*
~ (BsDy— Bf)(k/a)* — BeM?

(4.191)

The effective gravitational potential associated with deviation of the light rays in
CMB and weak lensing observations is defined by [71]

P = (¥ — D)2, (4.192)
From Egs. (4.186), (4.189), and (4.190), we obtain

14+
Dep ~ —47 Gegr L

(%)2 O (4.193)

which is related to both §,, and 7.

4.7.3 Growth of Matter Perturbations

Introducing the matter density parameter £2,, = 0,/ (3Mp21H 2), we can write the
matter perturbation equation (4.188) in the form

H' 3G
8 + (2 + F) 503 gfszmam ~0, (4.194)

where a prime represents a derivative with respect to Ina.
Let us first consider a non-canonical scalar field described by the Lagrangian

MZ
L= TI’IR + P(¢,X), (4.195)

in which case G, = P(¢,X), G3 = 0, G4 = Mp21/2, and G5 = 0. Since By =
Bg = 2Mpzl, B; = A¢ = 0, and D9 = 2Py, it follows that Geig = G and n = 1
from Eqs. (4.189) and (4.191). During the matter-dominated epoch characterized by
2, = 1and H'/H = —3/2, there is the growing-mode solution to Eq. (4.194):

S o 1213 (4.196)

In this regime, the effective gravitational potential (4.193) is constant. After the
Universe enters the epoch of cosmic acceleration, the growth rate of §,, becomes
smaller than that given in Eq. (4.196), so @ starts to decay. Since G is equivalent
to G for the models in the framework of GR, the difference of the growth rate
between the models comes from the different background expansion history. In the
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ACDM model characterized by P = — A, the growth rate f = Sm /(H dy,) can be
estimated as f = (£2,,,)" with y =~ 0.55 in the low-redshift regime (z < 1) [72]. As
long as the dark energy equation of state does not significantly deviate from —1, y
is close to the value 0.55 for the models in the framework of GR [73,74].

As an example of modified gravity models, we consider BD theory described by
the action (4.93). Since Bg = 2Mp¢p, B; = 2Mp, By = 2Mpp, As = My, and

Dy = —Mpwsp/¢, Egs. (4.189) and (4.191) reduce to
_ My 4+ 2wsp + 2(¢p/ M) (Ma/ k)?
Gt = 5 34 20mp + 26/ M) Maf kP @197
1 + wgp + (¢/My) (Ma/ k)
= , 4.198
"= 25 wmp + (@ My) (Ma/ )2 @199)
where
2 wBDMpl 2 o .
M?* = Vyy + [¢>— ¢ (¢ +3HP)] . (4.199)

¢3

In the wgp — oo limit with ¢ — M, we obtain Geir — G and n — 1, so the
General Relativistic behavior can be recovered. The same property also holds for
M — o0, as the scalar field does not propagate.

In the massless limit M2 — 0, it follows that Gegr =~ (My1/¢) (4 +2wpp)G/ (3 +
2wpp) and n >~ (1 4+ wpp)/(2 + wsp), so the growth rates of §,, and Pes are
different from those in GR. Since wgp = 0 in metric f(R) gravity, we have
Getr = (Mp/¢)(4/3)G and n ~ 1/2. The viable dark energy models based on
f(R) gravity [62-66] are constructed in a way that the mass M is large for R > H¢
and that M decreases to the similar order to Hy by today. There is a transition from
the “massive” regime M > k/a to the “massless” regime M < k/a, depending
on the wavenumber k [64,65,75]. If this transition happens in the deep matter era
characterized by H'/H ~ —3/2 and 2,, = pm/ (BMpu¢pH?) =~ 1, the growing-
mode solution to Eq. (4.194) during the “massless” regime of metric f(R) gravity
is given by

8, o t(W3B=D/6 (4.200)

whose growth rate is larger than that in GR. This leaves an imprint for the
measurement of red-shift space distortions in the galaxy power spectrum [76]. From
Eq. (4.193), the effective gravitational coupling evolves as @ o (V335/6_ This
modification affects the weak lensing power spectrum as well as the ISW effect in
CMB [77,78].

In other modified gravity models like covariant Galileons [79], the growth rate
of perturbations is different from that in GR and f(R) gravity. Although the current
observations are not enough to discriminate between different models precisely, we
hope that future observations will allow us to do so.
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Conclusions

We have reviewed a framework for studying the most general four-
dimensional gravitational theories with a single scalar degree of freedom.
The EFT of cosmological perturbations is useful for the unified description
of modified gravitational theories in that it can be describe practically
all single-field models proposed in the literature. This unified scheme can
allow one to provide model-independent constraints on the properties of
inflation/dark energy and to put constraints on individual models consistent
with observations.

Starting from the general action (4.6) that depends on the lapse N and other
three-dimensional scalar ADM variables, we have expanded the action up to
quadratic order in cosmological perturbations about the FLRW background.
The choice of unitary gauge allows one to absorb dynamics of the field
perturbation 6¢ into the gravitational sector. Provided that the three conditions
(4.49)—(4.51) are satisfied, the second-order Lagrangian density reduces to the
simple form (4.54) with a single scalar degree of freedom characterized by
the curvature perturbation {. We have also shown that the quadratic action
for tensor perturbations is given by Eq. (4.60). In order to avoid ghosts
and Laplacian instabilities of scalar and tensor perturbations, we require the
conditions Q5 > 0, ¢2 > 0, Q; > 0, and ¢? > 0.

The most general scalar-tensor theories with second-order equations of
motion—Horndeski theory—belong to a sub-class of the action (4.6) in the
framework of EFT. The Horndeski Lagrangian can be expressed in terms of
the ADM scalar quantities in the form (4.110). Using the relations (4.138)—
(4.141) between the EFT variables appearing in the action (4.135) and the
partial derivatives of the Lagrangian L with respect to the ADM variables,
we have shown that, up to quadratic order in perturbations, Horndeski theory
corresponds to the action (4.143) with the additional condition mi = /1,%
The dictionary between the EFT variables and the functions G; (¢, X) in
Horndeski theory is given by Egs. (4.145)—(4.150).

In Sect.4.4 we have also derived the power spectra of scalar and tensor
perturbations generated during inflation for general second-order theories
satisfying the conditions (4.49)—(4.51). The formulas (4.78) and (4.83) cover
a wide variety of modified gravitational theories presented in Sect. 4.5.1, so
they can be used for constraining each inflationary model from the CMB
observations (along the lines of [80]). In particular, it will be of interest
to discriminate between a host of single-field inflationary models from the
precise B-mode polarization data available in the future.

In Sect.4.7 we have applied the EFT of cosmological perturbations to
dark energy in the presence of a barotropic perfect fluid. The background
cosmology is described by three time-dependent functions f, A, and c,

(continued)
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with which different models can be distinguished from the evolution of the
dark energy equation of state. In Horndeski theory, we have obtained the
effective gravitational coupling (4.189) appearing in the matter perturbation
equation (4.188) under the quasi-static approximation on sub-horizon scales.
Together with the effective gravitational potential given in Eq. (4.193), it will
be possible to discriminate between different modified gravity models from
the observations of large-scale structures, weak lensing, and CMB.

While we have studied the effective single-field scenario in unitary gauge,
another scalar degree of freedom can be also taken into account in the action
(4.6) [33]. Such a second scalar field can be potentially responsible for dark
matter. It will be of interest to provide a unified framework for understanding
the origins of inflation, dark energy, and dark matter.
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Chapter 5
Introduction to Massive Gravity

Claudia de Rham

Abstract We review recent progress on massive gravity. We first show how extra
dimensions prove to be a useful tool in building theories of modified gravity,
including Galileon theories and their DBI extensions. DGP arises from an infinite
size extra dimension, and we show how massive gravity arises from ‘deconstructing’
the extra dimension in the vielbein formalism. We then explain how the ghost issue
is resolved in that special theory of massive gravity. The viability of such models
relies on the Vainshtein mechanism which is best described in terms of Galileons.
While its implementation is successful in most of these models it also comes hand
in hand with superluminalities and strong coupling which are reviewed and their
real consequences are discussed.

5.1 Gravitational Waves and Degrees of Freedom

5.1.1 Polarizations

One of the genuine predictions of General Relativity is the existence of a graviton
or massless spin-2 field under the Poincaré group which mediates the gravitational
force. The existence of this particle implies the presence of Gravitational Waves
(GWs). Whilst advanced LIGO and other interferometer [1] are expected to be on
the edge of discovering GWs, the indirect detection of GWs has been confirmed
for forty years via the spin-down of binary pulsars and particularly the Hulse
Taylor pulsar [2]. The spin-down is in perfect agreement with the emission of
gravitational radiation and the prediction that in GR gravitational waves have
two polarizations. Nevertheless this does not necessarily rule out the existence of
additional polarizations which could be screened for instance via the Vainshtein
mechanism see [3] and [4].
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Polarizations present in GR: Fully transverse to the line of propagation
Tensor mode X O ,'Q y | O | Y Q‘-
Tensormode + | © | g @ 1 O i [0) 1
Additional Polarizations not present in GR

Vector mode 1,2 == —_ ) -> - - > e

Scalar mode 1
Conformal mode

Scalar mode 2 — = : > — > —_— >
Longitudinal mode —— -

Fig. 5.1 Polarizations of Gravitational Waves in General Relativity and potential additional
polarizations in modified gravity. From [6]

In modified theories of gravity GWs could have up to four additional polar-
izations: two ‘vector’ polarizations which mix the longitudinal and the transverse
directions, as well as two ‘scalar’ polarizations, one of each being a conformal or
breathing mode and the other one a purely longitudinal mode as depicted in Fig.5.1.

These last four polarizations are absent in GR. However in theories of modified
gravity one could in principle excite them. For instance in massive gravity the
graviton is instead seen as a massive spin-2 field. In four dimensions, a massive
spin-s fields is known to propagate 25 4 1 dofs (degrees of freedom), so a massive
spin-2 field should propagate five dofs.

At the same time, massive gravity breaks diffeomorphism invariance, corre-
sponding to four symmetries in four dimensions. This means that we expect massive
gravity to propagate four dofs more than in GR, this would correspond to the four
additional polarizations depicted in Fig.5.1. This corresponds to one additional
polarization compared to what a massive spin-2 field should have. If present, this
additional fourth new polarization is always pathological and enters as a ghost, now
commonly known as the Boulware—Deser (BD) ghost [5]. This BD ghost correspond
to the last polarization depicted in Fig. 5.1, namely the longitudinal scalar mode. So
for a theory of massive gravity to be free of the BD ghost it should only have at
most the three first additional polarizations of Fig. 5.1 and should not excite the last
one. In what follows we explain why the presence of a BD ghost would always
invalidate the theory and then proceed by constructing explicit models of massive
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gravity which are free from this pathology. We refer to [6] for a recent review on
massive gravity.

5.1.2 Implications of the BD Ghost

To understand the implications of the BD ghost, we consider a simple but repre-
sentative example of how this ghost can present itself. Let us consider a free scalar
field ¢ with kinetic term' —1/2(d¢)>. For definiteness, one way the BD ghost can
manifest itself is via a new operator of the form (0¢)? arising at a scale A,

1

509 (5.1)

1
2= —5(3¢)2 +
Considering the fluctuations about a non-trivial background ¢ = ¢y + §¢, with
say ¢g = A3/ 8 Bon,yx*x”, the Lagrangian for the fluctuations is

1 By
£ = —§5¢> (1 + PD) 0é¢ . (5.2)

The associated propagator has two poles signaling the presence of two dofs

g:+:l—;. (5.3)
(1+%0)0 o o+ A%/Bj
The pole at zero mass represents the standard degree of freedom associated with ¢,
but we see a new pole with (tachyonic) mass square A2/ Bg which always enters
with the wrong sign. So the new degree of freedom at A/ By is a ghost.

We emphasize that a ghost represents a degree of freedom with the wrong sign
kinetic term and should be distinguished from a tachyon which corresponds to a
degree of freedom with the wrong sign mass term or an instability in the potential.
For a tachyon the scale of the instability is governed by the mass of the mode and we
can thus survive with small mass tachyonic modes as the time scale of the instability
is long compared to other process that may be taking place. For a ghost on the other
hand, the scale associated with the instability is the momentum of the field and so the
instability scale is always at least of the order of the cutoff of the theory. This implies
that if a ghost is present at a scale p then one cannot trust the theory beyond the scale
M. In the case of the BD ghost, the ghost enters at the background dependent scale
A/ By. By choosing an arbitrarily large background By, one can brings the scale
at which the theory breaks down arbitrarily low, which would mean that one can

'In this contribution we use a mainly + convention and so —1/2(d¢)? represents the correct sign
kinetic term.
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never trust this theory, neither at the classical level nor at the quantum level. New
physics has to enter at the cutoff scale or at the scale A/ By to help making sense of
the theory. This is distinct from having a low strong coupling scale where classical
predictions break down at that scale but not the quantum ones. New physics does
not need to enter at the strong coupling scale.

To summarize, a ghost leads to an arbitrarily fast instability already at the
classical level and signals the fact that the theory cannot be trusted neither classically
nor quantum mechanically at and above the mass of the ghost. However as we shall
see below the Vainshtein mechanism relies crucially on classical configurations
at the low scale A. It is therefore essential to be able to trust the theory at the
scale at which the first interactions enter (i.e., at the strong coupling scale). To get
some intuition on how to obtain a ghost-free theory of massive gravity and other
modifications of gravity a useful tool is to rely on a higher dimensional theory of
gravity. In some cases this higher-dimensional theory is merely a ‘mathematical
trick’ but it will show to provide useful insights.

5.2 Consistent Modifications of Gravity From Extra
Dimensions

One of the most straight-forward way to derive a sensible and theoretical con-
sistency theory of modified gravity is to start with General Relativity in higher
dimensions. Higher dimensional gravity is known to lead to consistent high energy
modifications of gravity. Here we shall focus on infrared (IR) modifications and see
how it can lead to different interconnected models like Galileon theories of DGP
and massive gravity which behave as Galileons in some limit. In the rest of this
contribution we will use the notation that y represents the fifth extra dimension and
x" are the 4d space-time coordinates. The 5d coordinates are given by {x¢ 3=0 =

Xk v}

5.2.1 DBI-Galileon
5.2.1.1 Five-Dimensional Minkowski

Starting with five dimensional GR, we can consider all the Lovelock invariants
namely a cosmological constant (CC), a five dimensional scalar curvature R® and
a Gauss-Bonnet (GB) invariant Zg. The presence of a cosmological constant leads
to a non-flat maximally symmetric 5d spacetime (AdS) and will be mentioned in
what follows. To start with we stick to a flat Minkowski 5d spacetime ds?> =
dy® + 1y, dx* dx” and set the CC to zero. In order to recover 4d gravity in some
regime we consider a probe brane located at y = w(x*) and consider the boundary
terms induced by the Lovelock invariants. The scalar curvature leads to an extrinsic
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boundary term K on the brane and the GB to a related term Kgg. Furthermore
induced on the brane one can consider a tension or a 4d CC A and a 4d induced
scalar curvature R™. If the brane is localized at y = m(x*), the induced metric
on the brane is g,, = nu, + 9,79, leading to what will represent a disformal
coupling to matter. In the weak field limit, these invariants lead to a generalized
Galileon-DBI set of interactions in 4d [7],

5d 4d DBI — Galileon

A =D ~—A/1- (n) .

R® - K — &~ 3,73,7x1")/(1 - (d7)?)
RY — Ly ~ ([O) —[[P) /1= @7)% + -
Lo — Keg — L ~ ([T =3[I)[IT°] 4 2[1°)) /(1 — (97)*) + -+~

where here and in what follows I1,, = 0,0,7 and square brackets represent the
trace of a tensor with respect to 1,,, [[T] = n*"I1,,, etc. In the weak field limit,
these invariants lead to the Galileon terms on the brane [8]

Ly = (m)’

Ly = (3m)*[M]

Ly = (0n) ([T — [IT%))

Ls = (0n)> ([T = 3[TN[IT?] + 2[1T%)) .

(5.5)

This is a finite set of interactions and the fact that these terms be it in their exact
form (5.4) or in their weak field limit (5.5) derive from Lovelock invariants in five
dimensions ensures that they are ghost free. Furthermore Poincaré invariance in five
dimensions leads to the following four-dimensional global symmetry [7]

7= +c+vxt + v, (5.6)

for the interactions (5.4) and the Galilean symmetry for the Galileon interactions
(5.5)

7= 4+c+vxt. 5.7
In addition they also satisfy a non-renormalization theorem [9] which means that
the coefficient governing any of these interactions can be set to any desired value
without the loops of the field itself destabilizing it.

5.2.1.2 Curved Five Dimensions

As mentioned previously, one can also consider a CC in five dimensions, leading
to 5d AdS rather than Minkowski. Since this is still a maximally symmetric
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spacetime, there is an equivalent to the symmetries presented in (5.6) or (5.7) for
Minkowski, simply involving the AdS curvature [7]. The results sets of interactions
are a Galileon generalization of the warped DBI and satisfy the same properties as
previously namely the absence of ghost and radiative stability.

One can also extend the setup to arbitrary matter in five dimensions leading
to an arbitrary five dimensional metric g,,. The induced metric on the brane is
then g,, = gu, + 9,70, and the resulting Galileon field 7 leaves on a curved
metric ¢,,,. This leads to the covariant set of Galileon interactions first proposed
in [10] which remains free of ghost but does satisfy the Galileon symmetry nor a
generalized one. The reason is clear: the five dimensional spacetime is no longer
maximally symmetric and there is therefore no reason to expect any resulting global
symmetry.

These Galileon scalar fields can play an important role on cosmological scales
(for instance they can be a good candidate for dark energy) and yet remain frozen
on short distance scales thanks to a Vainshtein mechanism. Before describing this
mechanism in Sect.5.5 (see also other contributions), we show how theories of
modified gravity are derived from extra dimensions.

5.2.2 Massive Gravity
5.2.2.1 Infinite Extra Dimension: DGP

If one is to start with five dimensional gravity to derive theories of IR modifications
of gravity one first needs to confine gravity in four dimensions. This can be
performed in two ways: Either by compactifying the extra dimension, which is
performed in Sects. 5.2.2.2 and 5.3 or by considering an large (even infinite) extra
dimension and inducing a four-dimensional curvature on a four-dimensional brane.
This is the idea behind the DGP (Dvali-Gabadadze—Porrati) model where we start
with five-dimensional gravity with a five-dimensional Planck scale M5 and induce
a four-dimensional curvature with Planck scale Mp; in four dimensions [11]. The
effective Friedman equation on the brane is then [12]

MZH?> + M2H = p, (5.8)

where H is the Hubble parameter and p the energy density of fields localized on
the four-dimensional brane. This modified Friedman equation has lead to a wealth
of new directions for testing cosmology.

The brane-bending mode on the brane behaves as a cubic Galileon [9], given by
%4 in (5.5). From a four-dimensional view point, the graviton is effectively massive
and at the linearized level it satisfies (symbolically) the following equation

(O—m~/=0) hyy = My' Ty, (5.9)
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Fig. 5.2 Spectral representation of different models. (a) DGP, (b) higher-dimensional cascading
gravity and (¢) multi-gravity. Bi-gravity is the special case of multi-gravity with one massless mode
and one massive mode. Massive gravity is the special case where only one massive mode couples
to the rest of the standard model and the other modes decouple. (a) and (b) are models of soft
massive gravity where the graviton mass can be thought of as a resonance. From [6]

where m = M3/ M and the effective mass of the graviton is momentum-dependent
m2(k) = mk. So rather than having a fixed pole at the scale m, the propagator has
rather a resonance. In this sense DGP is a model of ‘soft-massive gravity’.

For DGP, the peak of the spectral distribution still occurs at zero mass as can
be seen in Fig.5.2. However extensions of DGP to higher dimensions (known as
Cascading gravity [13—15]) can lead to a peak in the spectral representation as
depicted in Fig. 5.2 and are possibly closer to models of a hard mass graviton. In
what follows, we discuss an alternative way to derive a theory of massive gravity
from five dimensional GR, via Kaluza—Klein reduction or deconstruction.

5.2.2.2 Compact Extra Dimension

An alternative to the DGP model and its extensions is to consider a compact
extra dimension of size R. A Kaluza-Klein decomposition (discretization in the
momentum along the extra dimension) leads to a massless mode and an infinite
tower of massive Kaluza-Klein modes, with mass gap m = 1/R. Rather than
performing a Kaluza-Klein decomposition, one can also consider a deconstruction
of the extra dimension which is a discretization of the extra dimension directly
in real space rather than in momentum. Rather than considering a smooth extra
dimension 0 < y < R, we replace that direction by a series of N points y,. In the
large N limit one should in principle recover 5d GR but as we shall see below this
does not occur in some special gauge choices.

The deconstruction framework will be explained in more detail below and as we
shall see, for a finite number of site N one obtains a four-dimensional theory of N
interacting gravitons (multi-gravity), with one massless graviton and N — 1 massive
ones. Moreover this theory is identical to a truncated Kaluza-Klein decomposition
after a non-trivial field redefinition.

As we have seen before, in the case of an infinite extra dimension a la DGP, we
obtain a theory of gravity where the graviton acquires a soft mass or resonance.
In the case of a compact extra dimension, the deconstruction framework leads to a
finite number N of discrete graviton(s) with mass ~ n/R as can be seen from the
spectral representation in Fig. 5.2.
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In both cases starting from five-dimensional GR ensures (to some extend?) a
consistent resulting four-dimensional theory of modified gravity. Indeed a massless
graviton in 5d propagates 5 dofs which is precisely the right number of dofs that a
massive spin-2 field should propagate in 4d without the BD pathology discussed in
Sect.5.1.2. In what follows we thus proceed by showing how 5d gravity can lead to
a consistent theory of 4d massive gravity free of the BD ghost.

5.3 Deconstruction and Massive Gravity

We now present how to deconstruct 5d GR and recover 4d multi-gravity. We will
then specialize to bi-gravity and to massive gravity as special cases. We follow the
formalism derived in [17].

Starting with 5d gravity in the Einstein—Cartan form, the 5d metric is given by

8op (X, ) = e (x, y)ef (X, y)nap - (5.10)

The connection is set of the torsionless condition,

1
it = Eef (08¢ — 0c*® — 081 | (5.11)

with 048 = 2e4%eBP 9, epc. The 5d curvature 2-form is then
'8 = do™ + wlc A0 B . (5.12)

The 5d Einstein-Hilbert action is then

M3
St = - / d*xdy/=gR"[¢] (5.13)
M3
= 3 / EABCDE%AB AN ec VAN eD VAN EE . (514)
2 x 3!

Before we proceed with discretizing this action we first briefly discuss the gauge
choice we use.

5.3.1 Gauge-Fixing

The theory has 5 spacetime symmetries associated with 5d diffeomorphism invari-
ance. In addition in the veilbein language there are 10 Lorentz symmetries. As a

2There are some exceptions to the rule, see for instance [16].



5 Introduction to Massive Gravity 147

result one can make 15 gauge choices. We chose the following conditions on the
vielbein and the connection

a 5 5 _ 1
ey;lb— 0, e[Z = 2], e; =1 —> 9gauge ﬁx?ng (5.15)
wy” =e9ye, =0  —> 6 gauge fixing,

which fully fixes all the gauge freedom. The condition on the vielbein implies e4 =
(el‘j dx#, d y) and the condition on the connection implies the symmetric vielbein

condition. Interestingly this condition ensures that the theory can be written back in
terms of the metric. Here it appears as a simple consequence of our gauge choice.
In the metric language this gauge choice implies that the lapse is unity and the shift
vanishes, ds> = dy* + g, (x, y) dx* dx”. We now proceed with discretizing 5d
GR in this gauge.

5.3.2 From 5d Gravity to 4d Multi-Gravity

In the gauge chosen previously, 5d GR can be written as

M3

5

SO = 75 / d*xdy/=g (RW[g] + [K]* — [K?]) , (5.16)
where K is the extrinsic curvature, in the metric language

1
K. = Eg"”‘(x, )0, 8w (x,¥). (5.17)
We now discretize the extra dimension as follows:
Y == n
e (x.y) — eny(x)
guv(x,y) = ?’Iabeﬁ(X, Y)ef;)(xv y) — gan (x) = nabenﬁ(-x)enﬁ(-x) (5.18)
dye(x,y) — m(ent1(x) —en(x)) ,
with m = N/R. Applying this discretization procedure on the extrinsic curvature,
K~ g0, g0y ~ e 'y, (5.19)

and using the symmetric vielbein condition we obtain

K: — me, " (ey41 —e,) = —m (5’; — (g(n))’“" gé’fl)) (5.20)

= —mA g, g" V] = —m ity
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Using this expression into the 5d Einstein-Hilbert action (5.16) we obtain [17]

<z = MsS/ dy (RW[¢] + [K)” — [K?]) (5.21)
N
Z (R + m? (i — 12 11])) - (5.22)

This is a 4d theory of multi-gravity as presented in [18] with the specific interactions
governed by %}, ,, derived in [19,20]. The 4d fundamental Planck scale is then given
by M3 = M3/(mN) = M2R.

5.3.3 Generalized Mass Term

The multi-gravity theory derived previously has only one of the possible sets of
allowed interactions derived in [19,20]. In the previous derivation we have applied
the most straightforward discretization procedure but there is some freedom on how
one wishes to define a field or its derivative at a point. To see the most general
discretization procedure it is convenient to return to the vielbein language where
rather than using

e — e, (5.23)
we may use the more general procedure
e’ — (wel + (1 —w)es,,) . (5.24)
The mass term then gets generalized to
V=8 ([KI* = [K?]) = eapca® A’ A dye A dye? (5.25)
— m*Eaped (wle,’f + (1 - wl)eZ_H) A (wzei7 +(1-— wz)efﬂ)
A en —eppr) A e — i)

= m> /=g (L(H) + (W1 + W) LB(H) + wim L (H)) |

where we recover the ghost-free interaction terms L34 first derived in [20]
(sometimes known as ‘dRGT’ mass terms or interactions),

29%[%] = 8ub0d8u/b/cd%u/<%/bb/ (526)
LA = P egerg Y A (5.27)
L[] = e egpera K Y A A (5.28)
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or equivalently,

Ll = (17— [#T) (5.29)
Ll = ()P =3[0 + 2[47) (5.30)
L] = (A = 6l + 3[4 + 82— 6[4%) . (5.31)

This structure is very similar to that of the Galileons [8] and as we shall see they are
indeed very closely related and are the essence of the absence of BD ghost.

5.3.4 Strong Coupling Scale

This theory of multi-gravity has one massless mode with 2 dofs and (N —1) massive
modes with 5 dofs each, meaning that there is no BD ghost for any mode. The
lightest mode has a mass m; = 1/R = m/ N, while the heaviest mode has a mass
set by m ~ Nm (in the large N limit.)

The strong coupling scale for this theory (the scale at which the lowest
interactions arise) is the same as for a normal (ghost-free) theory of massive gravity
and is given by de Rham and Gabadadze [19]

A= (Mpm})'?, (5.32)

where m is the mass of the lightest mode. Interestingly in what should be the
continuum limit R — oo or m; — 0 the degree of freedom that interact at the scale
A (namely the helicity-0 mode of the lightest mode), as well as all the other helicity-
0 modes entirely decouple in that limit. This means that in this specific theory, we
do not recover 5d GR in the limit R — oo or m; — 0 but rather N decoupled
massless spin-2 fields, (N — 1) decoupled spin-0 fields and (N — 1) decoupled
spin-1 fields. This decoupling is ensured by the low strong coupling scale (5.32)
and is responsible for the Vainshtein mechanism [3] and the absence of vDVZ (van
Dam-—Veltman—Zakharov) discontinuity in the massless limit [21,22]. In this sense
the strong coupling scale (5.32) is a desirable (and even required) feature of the
theory if one would like to be able to consider it as a truncated theory in its own
right.

There is an alternative to the low strong coupling scale (5.32) which implies
choosing a different gauge choice that what was performed here. If instead we keep
the lapse dynamical, the presence of low strong coupling scale is avoided but at the
price of introducing a ghost at the scale of the heaviest mode. This means that the
truncated theory is not consistent, and one should keep an infinite number of modes
or work at energy scales well below the mass of the heaviest mode. In that case one
recovers 5d GR in the continuum limit R — oo or m; — 0.
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5.3.5 Bi-Gravity

Focusing on a discretization with two sites only with respective metrics g, and f,,,
we obtain the following bi-gravity theory [23] with the same ghost-free interactions
(20]

Loy = M} J=gRIgl+ M} y/=fRIf] (5.33)
+m*MyMy /=g ioanz; g f]) (5.34)

with
g f1= 8= (Vo) . (539)

In the absence of the interaction governed by m, this would the theory of two non-
interactive massless spin-2 fields bearing 2 x 2 = 4 dofs. This theory would have
two copies of diffeomorphism invariance.

Including the interaction breaks one copy of diffeomorphism invariance which
excites three new dofs in the theory leading to a total of 4 +3 = 7 dofs, which is the
correct counting for one massless mode and one massive mode which carry a total
of 2 4 5 = 7 dofs without any BD ghost.

It is sometimes stated that unlike massive gravity bi-gravity does not break
diffeomorphism invariance. This statement is quite incorrect, just like massive
gravity, bi-gravity breaks one copy of diffeomorphism invariance and just like in
massive gravity four Stiickelberg fields (only three of which are independent) should
be included in bi-gravity to restore that homeomorphism invariance.

5.3.6 Massive Gravity

We can now easily see how to obtain a theory of massive gravity and a decoupled
massless spin-2 field out of massive gravity.> From simplicity let us imagine that
no matter couples directly to the metric f,, (such a coupling does not affect the
argument it simply allows to generalize massive gravity on arbitrary reference
metrics [24]) and we set g = a1 = 0. In that case it is useful to split the metric f,,
as follows

3In reality multi-gravity was obtained out bi-gravity which was obtained out of massive gravity
but for pedagogical reasons it is more intuitive to derive bi-gravity from multi-gravity and massive
gravity from bi-gravity.
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1

g w = Ny +
Taking the scaling limit My — oo while keeping x,, fixed does not change the
number of dofs in the theory but simply decouples some of them. In this limit, we
obtain a theory of massive gravity and a decoupled massless-spin-2 field,

4
Lity oo = Mg /=8 (R[g] +m? ), L (A g, n])) (5.37)
n=2
L g
5 X v Xop s
where & is the Lichnerowicz operator which is the healthy linearized kinetic term
for a massless spin-2 field. Notice that the second line is exact to all orders in y,
so the massless sector of the theory is not interacting at all, not even with itself.
Nevertheless it still carries the two standard dofs of a massless spin-2 field, and the
massive graviton carried in g,, carries five dofs, leading once again to the same
number of dofs as any other healthy bi-gravity theory.

As already mentioned, one could generalize this procedure to allow for a non-
trivial background metric, f,, = fu., + ML, X before taking the limit M — oo.

In that case, the resulting theory is massive gravity on the reference metric f,w and
a decoupled non-interacting massless spin-2 field.

The fact that this theory emerges from 5d GR which carries the correct number of
dofs for a massive graviton is suggestive that the theory of massive gravity we have
derived here does not suffer from the BD ghost. We shall prove this more explicitly
in what follows working both in the ADM language and in the decoupling limit.

5.4 Absence of Boulware-Deser Ghost

5.4.1 ADM Language

The presence of a BD ghost in a large class of massive gravity theories was origi-
nally presented in the ADM language [5]. Starting with the ADM decomposition,

ds® = =Ng d* 4 y; (dx" 4+ N'dr) (dx/ + N/ dr) | (5.38)

GR is special in that both the lapse and the shift are Lagrange multipliers,
propagating 4 first class constraints. This means that the phase space has a priori
6 x 2 dofs in y;; and its conjugate momentum but 8 of them are removed by the
4 first class constraints, leading to a total of 4 = 2 x 2 dofs in phase space or 2
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dofs in field space which is the correct counting for GR (leading to the two first
polarizations presented in Fig.5.1.)

Now focusing on massive gravity (without the decoupled linearized massless
spin-2 field), neither the lapse nor the shift remain linear. A priori this means that
one looses four first class constraints, and one is left with a priori 6 degrees of
freedom in y;; in field space, which would correspond to the five expected dofs and
an additional sixth BD ghost, which as we have seen would always signal a disaster
(see Sect.5.4.)

However this naive estimation does not account from the fact that not all the shift
and lapse are necessarily independent. As first explained in [19] and then carried out
in [20], the real criteria for determining the number of degrees of freedom in field
space in d spacetime dimensions is

1
# field space dof = Ed(d —1)—(d —rank (L)), (5.39)
where the Hessian L, is given by the second derivative of the potential % =
V=g, L,
L, = ru (5.40)
M ONHONY ‘

In d = 2 dimensions, it was shown in [20] that the rank of L was 1 and so the
number of physical dofs in 2 dimensions is zero, as it should be for a healthy
spin-2 field without BD pathology. The counting carries through to any number
of dimensions and in d = 4 is was shown in [19] for special cases and then in [25]
in all generality that rank = 3, for the special form of the potential given in (5.37)
and so in the theory given in (5.37) has only 5 and not 6 dofs in the massive spin-2
field. This theory is thus free of the BD ghost.

5.4.2 Decoupling Limit

The theory of multi-gravity presented previously breaks (N — 1) copies of diffeo-
morphism invariance. To restore them one can introduce (N — 1) Stiickelberg fields.
The same counting remains for bi-gravity and massive gravity. In what follows we
shall focus on the case of massive gravity bearing in mind that the same derivation
follows for bi- and multi-gravity as well as for New Massive Gravity (NMG) [26].

When formulating the theory of massive gravity, we made use of a reference
metric f;,, which can be chosen to be Minkowski or other. We focus the discussion
on a Minkowski reference metric f,, = 7,, but the essence of the argument
remains the same for other reference metrics. See for instance [27] for the
decoupling limit of a de Sitter reference metric. The existence of a reference metric
breaks diff invariance, but it can be restored by introducing four Stiickelberg fields
¢“ which transform as scalar under local diffs
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Nuv —> ﬁuv = au¢aav¢bnab ) (5.41)

where 7),,, now transforms as a tensor under local diffs. Even if in bi-gravity the two
metrics are dynamical it does not change the fact that the interaction between the
two metrics breaks one copy of diff and the theory is not fully diff invariant unless
the same four Stiickelberg fields are introduced. The same remain valid for NMG
and multi-gravity.

We can further split the Stiickelberg fields into a helicity-0 and -1 modes:

1 1
@ = x4 A¢ DYy, 5.42
" =x +mMp1 +m2MP1?’) b7 (5.42)

where the scales are introduced for later convenience and in what follows we only
focus on the helicity-0 mode 7. The full decoupling limit including the vector A¢
was derived in [28].

Using the expression (5.41) into (5.35) with f,,, — 7., we see directly that

1
Hl = HeTT, O\ —h]), 5.43
v M2 Mo, n av ( Mo, ) ( )
where we write the metric g, as
= + ! h (5.44)
Euv = My My .

We now take the decoupling limit where Mp; — oo and m — 0 while keeping
the scale A = (m>Mp)'/? fixed. Clearly in this decoupling limit #* — IT and
the mass terms for massive gravity given in ((5.26)—(5.28)) or equivalently ((5.29)—
(5.31)) reduce to total derivatives. As a result to zeroth order in &2/ Mp; the theory
has no ghost.

We now proceed to first order in ./ Mp, to that order the mass term becomes

1
ook = M3E (ER o (BLA + o DA + a4$4[«%/])) (5.45)

1 5 1+ 3c as + 4o
(dec) 1 3v(2 3 4y@3
Lack =~ M 6 hap — W (X;(w) +—5 X TXLJ), (5.46)
where as & is the Lichnerowicz operator and
X = &P e 08T, (5.47)
X(Z)Z/ — 8#1}&/35“/‘}/0[,}317:/17;1/ (5.48)

XOW, = e [T TS IT, (5.49)
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This set of tensors satisfies some remarkable properties: First they are identically
conserved. Second they share a similar structure as Galileon interactions and
are indeed closely related. Third, they trivially satisfy the Galileon symmetry
by construction (and this already at the level of the Lagrangian unlike Galileon
interactions). Finally and most importantly, these interactions can be proven to have
no ghost. The reason for that is that their respective equations of motion never bear
more than two derivatives and the X % bears no time derivative, while X% carries at
most a single time derivative.

The helicity-0 and -2 modes can be ‘semi-diagonalized’ by performing a field
redefinition,

- 1 + 33
huw = hyy + T, + T’aﬂnavn, (5.50)

leading to a Galileon theory

o3 + 4oy
6

N X% - (5.51)

mv

1- A - > c
Zaon = —Eh“”@@ﬁfhaﬁ +) MTZ)@%(Z? +
n=2

where fé’;f are the Galileon Lagrangian, .ZG(ZI) = X"Vl and the ¢, are
dimensionless coefficients related to the «,,. We see that when a3 + 4a4 = 0,
the helicity-2 and -0 modes fully decouple in this limit and the interactions for
the helicity-0 mode are pure Galileon interactions. The only two differences with
a standard Galileon model is that it only has one free parameter (namely «3) and the
coupling to matter includes a disformal contribution

1 1 - 1 143
Lroatter = hy TH = M—th’“ +—nT + 0% dumd,TH | (5.52)
Pl

Mp, Mp Mp A3

which can lead to specific observational signatures as the field now also couple to
radiation.

In [29, 30] the BD ghost was connected to the existence of an Ostrogradsky
instability in the decoupling limit. The fact the decoupling limit of this theory is
a Galileon which is known to be free of Ostrogradsky instability was therefore the
first indication that the theory was in fact free of the BD ghost. As explained earlier
this was later confirmed by a multitude of independent studies.

In what follows we will introduce the Vainshtein mechanism using the cubic
Galileon as a toy model and discuss the existence of superluminalities.

5.5 Vainshtein Mechanism

The essence of the Vainshtein mechanism, and its subtleties is already manifest in
the cubic Galileon
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1 2 1 2 1
Lo = _5(87{) + F(aﬂ) Or + M—PIHT . (5.53)

In the absence of the cubic interaction, the field = would always couple to matter
with gravitational strength and would be incompatible with observations. In what
follows we show how the cubic interaction at the low scale A < Mp is key in
screening this scalar field.

5.5.1 Redressed Coupling

Let us consider a macroscopic source 7 and smaller perturbations on top of it, T =
T + 8T . Similarly we may split the field as the configuration 7 soured by 7" and its
fluctuations 7 = 7 487 For definiteness we consider a constant source 7" although
the argument is relatively unaffected by the precise form of source, so long as there
is a regime where 7 > Mp A®. The background configuration is then given by

7 =—-AAx? (5.54)
- 1/2 -
ith A4 ! 1-[1+ 0T ! r > 1, (5.55)
W1 = —— — —_— ~ ) — , .
24 MP1A3 4\/6 MP1A3
so M ~&7~AA4> A3 (5.56)

On top of these background configuration, the effective Lagrangian for the
fluctuations is

Z o, , 1
Lsn = 5 (08m)” + VE (08m)"aém + MP187r8T, (5.57)

with
Z=1+244. (5.58)

When 7 > Mp A® then A > 1 and it follows that Z > 1. Next we canonically
normalize the field,

Sm =277, (5.59)

so that the properly canonically normalized field sees the effective Lagrangian

1 1
Lsr = —=(387)% + F(a&%)zmaﬁ +

5 SAST (5.60)

1
MpNZ
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with the new ‘redressed’ scale A, = AZ'/? > A. As a result on the background
of the source Tp the field is no longer strongly coupled at the scale A but rather
at the much scale A.. Notice that at no point do we consider the scale A or A,
to be the cutoff, as it would simply not make sense to have a cutoff which is
background dependent unless some very peculiar mixing with high energy physics
occurs. Instead A (resp. Ax) are the scales at which tree-level unitarity breaks down.
This scale differs from the cutoff which is the scale at which new physics enters (see
[31] for other examples in physics where the strong coupling scale which dictates
the breakdown of tree-level unitarity is distinct from the cutoff scale at which new
physics enters.)

Moreover we see that the coupling to matter occurs at the new scale Mpjv/Z >
Mpy,. This means that in the vicinity of large sources 7 (for instance the Sun), the
coupling to other sources (for instance the planets of the solar system) is very much
suppressed. This is precisely how the Vainshtein mechanism succeeds at screening
the field 7. In what follows we will show how this Vainshtein mechanism comes
at the price of allowing superluminal classical velocities. After reviewing a simple
example we shall see why the presence of these superluminalities do not imply
acausality.

5.5.2 Superluminalities
5.5.2.1 Classical Superluminalities

Similarly as seen previously, if we split the field into a background configuration
7 and a fluctuation 8, with [1,, = 0,0,7 > A? (by that we mean, that at least
some of the eigenvalues of IT wy are larger than A?), then the fluctuations §7 see the

effective second order Lagrangian
1
LD = ——7m9,8md,8m, (5.61)
2
with the effective metric
Zm =" + 4 (1" — [ (5.62)
=17 VE ). .

Now without loss of generality, at any point x one can perform a global Lorentz
transformation to a frame where Z', is diagonal. In that frame the speed of
propagation along the direction x' is

IS1S)
ww

)
)

> _ 2 _ 1o

CrTZ0 T2

(5.63)

S
S =
[Ye)

—_—

+ T2 + IT;
12 + [T

IS1S)
ww
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As a result, the field §& propagates with superluminal classical (group and phase)
velocity along the direction x! for any configuration admitting 1T 8 > 1T } at least at
one point. This is easily achieved, at least locally, for instance considering a plane
wave 7 = F(x! — ) which satisfies the background equations of motion in the
absence of any source. Then the fluctuations travel with classical superluminal group
and phase velocity as soon as F” > 0 [32,33].

5.5.2.2 Front Velocity and Causality

The existence of these classical superluminalities has been the object of much
concern and claims connecting them to acausality have been made. However it is
important to emphasize that causality is not determined from the classical group
or phase velocity but rather from the front velocity which is the high frequency
limit of the phase velocity. As a consequence quantum corrections ought to be
included in order to compute the front velocity and before any claims may be made
on the causality of the theory. This is especially important in the context of these
theories since we have seen that the strong coupling scale, or scale at which tree-
level calculations can no longer be trusted depend on the background. As a result
the tree-level (or classical) calculation presented above of the front velocity are only
valid at low energy and break down precisely in the regime where one would want
to connect it with causality. Consequently there has been so far no evidence that
massive gravity or other theories that exhibit the Vainshtein mechanism are causal
or acausal.

5.5.2.3 Galileon Duality

To emphasize further how the notion of classical group or front velocity can be
misleading we perform a coordinate and field redefinition to specific example of
quintic Galileon. Consider the following quintic Galileon [33],

1
304°

1 1 1
Spume = [ @ (~[5 280 + G0l - g+

(5)
12 643 8A® "%‘d‘) , ©6h

where the Galileon Lagrangian are given below Eq. (5.51). The same analysis as
for the cubic Galileon applies here and similarly it is straightforward to find exact
solutions in the absence of matter which exhibits superluminal propagation along

any direction for the field fluctuation 8.
Now performing the following combined field and coordinate transformation

1
xt — it =xt 4+ FBJT(X) (5.65)

w(x) = p(X) = 7(x) + %(Eht(x))z, (5.66)

the quintic Galileon theory introduced in (5.64) simplifies to a free theory for p [33]
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~ 1
Squintic —> S = / d*x (_5 (3/0)2) ; (5.67)

which can never exhibit any superluminalities and is manifestly causal. This does
not mean that the causal structure between the two representations is different,
quite the opposite the causal structure is the same but is distinct from the notion of
superluminalities. This comes to show how the notion of classical superluminality
can be misleading and one ought to keep track of the front velocity (with in this case
its full quantum corrections) in order to infer whether or not the theory is causal.

5.6 Summary and Outlook

In this proceedings we have reviewed how to derive consistent and ghost-free four-
dimensional theories of massive gravity using five-dimensional General Relativity
as our starting point. In the case of an infinite extra dimension, gravity may be
localized in four dimensions by inducing a four-dimensional Einstein Hilbert term
on a four-dimensional brane. Depending on the setup, this leads to a general DBI-
Galileon model or to a soft theory of massive gravity known as DGP. Alternatively
for finite size-extra dimensions, a discretization of this extra dimension (either in
real space or in Fourier space) leads to a ghost-free theory of massive gravity
(sometimes known as dRGT) provided the discretization is performed in the
vielbein formalism. Galileons are ubiquitous to all these theories of massive gravity
and provide a simple way to understand the Vainshtein mechanism whereby the
helicity-0 mode of the graviton is screened in the vicinity of large matter sources.
This Vainshtein mechanism is also shown to come hand in hand with classical
superluminalities. While superluminalities in the front velocity would indeed imply
acausality superluminal classical group and front velocities do not have the same
implications and have been observed in nature. In order to comment on the causality
of the theory it is therefore essential to find a prescription which allows us to
compute the front velocity with all its quantum corrections. This is where the
Vainshtein mechanism and its implementation at the quantum level could come in
useful.
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Chapter 6
Hairy Black Holes in Theories with Massive
Gravitons

Mikhail S. Volkov

Abstract This is a brief survey of the known black hole solutions in the theories
of ghost-free bigravity and massive gravity. Various black holes exist in these
theories, in particular those supporting a massive graviton hair. However, it seems
that solutions which could be astrophysically relevant are the same as in General
Relativity, or very close to them. Therefore, the no-hair conjecture essentially
applies, and so it would be hard to detect the graviton mass by observing black
holes.

6.1 Black Holes and the No-Hair Conjecture

More than 40 year ago J.A. Wheeler summarized the progress in the area of black
hole physics at the time by his famous phrase: black holes have no hair [1]. More
precisely, this means that

» All stationary black holes are completely characterized by their mass, angular
momentum, and electric charge measurable from infinity.

» Black holes cannot support hair = external fields distributed close to the horizon
but not seen from infinity.

Therefore, according to the ho-hair conjecture, the only allowed characteristics of
stationary black holes are those associated with the Gauss law. The logic behind
this is the following. Black holes are formed in the gravitational collapse, which
is so violent a process that it breaks all the usual conservation laws not related to
the exact symmetries. For example, the chemical content, the baryon number, etc.
are not conserved during the collapse—the black hole ‘swallows’ all the memory
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of them. Everything that can be absorbed by the black hole gets absorbed. Only
few exact local symmetries, such as the local Lorentz or local U(1), can survive the
gravitational collapse. Associated to them conserved quantities—the mass, angular
momentum, and electric charge—cannot be absorbed by the black hole and remain
attached to it as parameters. They give rise to the Gaussian fluxes that can be
measured at infinity.

The no-hair conjecture essentially implies that the only asymptotically flat black
holes in Nature should be those described by the Kerr-Newman solutions. And
indeed, a number of the uniqueness theorems [2—4] confirm that all stationary and
asymptotically flat electrovacuum black holes with a non-degenerate horizon should
belong to the Kerr-Newman family.

The electrovacuum uniqueness theorems do not directly apply to systems with
matter fields other than the electromagnetic field. The field equations for such
systems read schematically

G =87GT, (W), O¥ = V(¥), 6.1)

where ¥ denotes the matter field, or several interacting matter fields. One can
wonder if these equations admit asymptotically flat black hole solutions with the
curvature bounded everywhere outside the black hole horizon. According to the no-
hair conjecture, the answer should be negative, but to prove this requires considering
each matter type separately. In view of this, a number of the no-hair theorems have
been proven to confirm the absence of static black hole solutions of Eq. (6.1) in the
cases where ¥ denotes scalar, spinor, etc. fields [S—10]. The common feature in all
these cases is that if ¥ does not vanish, then the field equations require that it should
diverge at the black hole horizon, where the curvature diverges too. Therefore, to
get regular black holes one is bound to set ¥ = 0, but then the solution is a
vacuum black hole belonging to the Kerr-Newman family.! All this confirms the
non-existence of hairy black holes.

The first explicit evidence against the no-hair conjecture was found 20 years after
its formulation, in the context of the Einstein-Yang-Mills theory with gauge group
SU(2). This theory contains all the electrovacuum solutions, hence all Kerr-Newman
black holes [13], because the electromagnetic U(1) gauge group is contained in
SU(2). However, it also admits static black holes supporting a non-trivial Yang-Mills
field which asymptotically decays as 1/73, so that the corresponding Gaussian flux
is zero [14, 15]. Close to the horizon the geometry deviates from the Schwarzschild
one, but the deviations rapidly decay with distance and cannot be seen from infinity.
Therefore, such black holes support a hair.

Subsequent developments have revealed that the Einstein- Yang-Mills black holes
can be generalized to include scalar fields, as for example a Higgs field, which leads

't has recently been shown that these arguments can be circumvented for fine-tuned black hole
mass and angular momentum [11]. This allows one to construct spinning hairy black holes which
do not admit a static limit [12].
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to a variety of new solutions describing hairy black holes [16]. In particular, it turns
out that regular gravitating solitons, as for example gravitating magnetic monopoles
or gravitating Skyrmions, can be generalized to contain inside a small black hole.
This gives rise to black holes with a ‘solitonic hair’. However, when the black hole
size exceeds a certain critical value, the black hole ‘swallows the soliton’ and ‘looses
its hair’, becoming a Kerr-Newman black hole [16].

Yet more hairy black holes can be obtained in models inspired by string theory
and including a dilaton [17], the curvature corrections and so on [16]. Adding a
cosmological term, positive or negative, gives asymptotically (anti)-de Sitter hairy
black holes [18]. Summarizing, one can say that hairy black holes arise generically
in physical models. However, large hairy black holes are typically unstable and loose
the hair when perturbed, whereas the stable ones are typically very small [16]. As
a result, despite a large number of solutions describing hairy black holes in various
systems, it seems that the no-hair conjecture essentially holds for the astrophysical
black holes, all of which should be of the Kerr-Newman type.

In what follows we shall be considering black holes in theories with massive
gravitons—the ghost-free bigravity and massive gravity. Some of these black
holes are of the known Kerr-Newman(-de Sitter) type, but there are also black
holes supporting a massive graviton hair. However, the hairy black holes turn out
to be either asymptotically anti-de Sitter (AdS), or cosmologically large, which
contradicts the observations. Therefore, the astrophysical black holes should be
described by the Kerr-Newman(-de Sitter) metrics, possibly with small corrections
in the near-horizon region, so that the no-hair conjecture essentially holds.

6.2 Theories with Massive Gravitons

The idea that gravitons could have a tiny mass was proposed long ago [19], but it
attracted a particular interest after the recent discovery of the special massive gravity
theory by de Rham, Gabadadze, and Tolley (dRGT) [20] (see [21,22] for a review).
Before this discovery it had been known that the massive gravity theory generically
had six propagating degrees of freedom (Dof). Five of them could be associated
with the polarizations of the massive graviton, while the sixth one, usually called
Boulware-Deser (BD) ghost, is unphysical, because it has a negative kinetic energy
and renders the whole theory unstable [23]. The specialty of the dRGT theory is
that it contains two Hamiltonian constraints which eliminate one of the six Dof
[24-28]. Therefore, there remain just the right number of Dof to describe massive
gravitons and so the theory is referred to as ghost-free. This does not mean that
all solutions are stable in this theory, since there could be other instabilities, which
should be checked in each particular case. However, since the most dangerous BD
ghost instability is absent, the theory of [20] and its bigravity generalization [29] can
be considered as healthy physical models for interpreting the observational data.
These theories can be used to explain the current cosmic acceleration [30, 31].
This acceleration could be accounted for by introducing a cosmological term in
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Einstein equations, however, this would pose the problem of explaining the origin
and value of this term. An alternative possibility is to consider modifications of Gen-
eral Relativity (GR), and theories with massive gravitons are natural candidates for
this, since the graviton mass can effectively manifest itself as a small cosmological
term [32].

Theories with massive gravitons are described by two metrics, g,, and f,,.
In massive gravity theories the f-metric is non-dynamical and is usually chosen
to be flat, although other choices are also possible, while the dynamical g-metric
describes massive gravitons. In bigravity theories [29] both metrics are dynamical
and describe together two gravitons, one massive and one massless. The theory
contains two gravitational couplings, k; and k7, and in the ks — 0 limit the f-
metric decouples and can be chosen to be flat. Therefore, the bigravity theory is
more general, while the massive gravity theory can be viewed as its special case.

All known bigravity black holes were obtained in [33] (see also [34]), with the
exception of special solutions discovered in [35]. These black holes can be divided
into three types. First, there are solutions for which the two metrics are proportional,
fuv = C?gy, with a constant C, where g,,,, fulfills the Einstein equations with a
cosmological term A(C) o m?. If C = 1 then A = 0 and one obtains all solutions
of the vacuum GR, in particular the vacuum black holes. For other values of C one
has A(C) # 0, which gives rise to black holes with a cosmological term. None of
these solutions fulfill equations of the massive gravity theory with a flat f.

Secondly, imposing spherical symmetry, there are black holes described by two
metrics which are not simultaneously diagonal. They formally decouple one from
the other and each of them fulfills its own set of Einstein equations with its own
cosmological term. The g-metric is Schwarzschild-de Sitter, whereas the f-metric
can be chosen to be AdS, with Ay ~ /c?, and it becomes flat when xy — 0,
in which limit the dRGT massive gravity is naturally recovered. Therefore, these
solutions exist both in the bigravity and dRGT massive gravity theories. In the latter
case they exhaust all known black hole solutions.

Solutions of the third type are obtained when the two metrics are both diagonal
but not proportional. One obtains in this case more complex solutions describing
static black holes with a massive graviton hair, which can be either asymptotically
AdS [33], or asymptotically flat [35], although in the latter case their size should be
comparable with the Hubble radius.

A more detailed description of the currently known bigravity and massive gravity
black holes is given below.

6.3 Ghost-Free Bigravity

The theory of the ghost-free bigravity [29] is defined on a four-dimensional
spacetime manifold equipped with two metrics, g,,, and f,,, which describe two
interacting gravitons, one massive and one massless. The kinetic term for each
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metric is chosen to be of the standard Einstein-Hilbert form, while the interaction
between them is described by a local potential % [g, /] which does not contain
derivatives and is expressed by a scalar function of the tensor

Yh = V8" fou. (6.2)

Here g/ is the inverse of g,,, and the square root is understood in the matrix sense,
ie.

L = vy = g™ fan. (6.3)

The action is (with the metric signature — 4+ ++)
1 1
Sle-f1= 55 [@* VTER@ + 55 [ d*x V=T A
ZKg 2/cf

2
- / d*x y=g%[g. f1, (6.4)

where R and Z are the Ricci scalars for g, and f,,, respectively, /c; = 8nG and

K7 = 879 are the corresponding gravitational couplings, while k* = k7 + «7 and
m is the graviton mass. The interaction between the two metrics is given by

4
U =Y b %) (6.5)
k=0

where by are parameters, while %4 () are defined by the relations

U(y) =1, %) =) ra=1l
A

W) = Y haks = (0P = 7).

A<B

W= Y Aakshe = 0 - 3001+ 207D,

A<B<C

Ui(y) = Aoridads = 41!([),]4 —6[yPly?] + 81y’ + 3[y° 1 — 6[y*]) . (6.6)

Here A4 (A = 0,1,2,3) are the eigenvalues of v%, and, using the hat to denote
matrices, one has defined [y] = tr(P) = ., [y*] = w(P¥) = (y*)",.. The (real)
parameters by could be arbitrary, however, if one requires flat space to be a solution
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of the theory, and m to be the Fierz-Pauli mass of the graviton [19], then the five
bi’s are expressed in terms of two free parameters c3, ¢4 as follows:

bo=4c3+cy4—6, by =3—3c3—c4, by =2¢c3+c4—1,
by = —(63 + ¢4), by = ¢4. (6.7)

The theory (6.4) propagates 7 = 5+ 2 Dof corresponding to the polarizations of two
gravitons, one massive and one massless. Before this theory was discovered [29],
more general bigravity models, sometimes called f-g theories, had been considered
[36]. In these models the potential %/ is a scalar function of H', = 8!/ — gh® f,,, of
the form

1
U =g (HH ), — (HY)?) + ..., (6.8)

where the dots denote all possible higher order scalars made of H,. A particular
choice of these terms leads to (6.5). The generic f-g theories propagate 7 4+ 1 Dof,
the additional one being the BD ghost [23].

Introducing the mixing angle 7 such that k; = k cos 7, Kk y = k sin 7 and varying
the action (6.4) gives the field equations

Gl = m?cos’ nTH, (6.9)
G = m*sin® n TH (6.10)

where G/ and ¢! are the Einstein tensors for guw and f,,. The graviton
energy-momentum tensors obtained by varying the interaction % are

TH= s, gr=-Y 8 (6.11)

where

™ ={b1 U + by U + b3 U + bs U}y
~{bs Uy + by % + bs U} (y*)"
+ibs Uy + b U} (V)"
—bs U (v, . (6.12)

with %, = % (y). The Bianchi identities for (6.9) and (6.10) imply that

(g) f)
V,.TH=0, ¥,T"=0, 6.13)

v
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(&) ) . .. .
where V and V are the covariant derivatives with respect to g,,, and f,. In fact,

the latter of these conditions is not independent and follows from the former one in
view of the diffeomorphism invariance of the interaction term.

If  — 0 and sin? n .7} — 0, then Eq. (6.10) for the f-metric decouple and their
solution enters the g-equations (6.9) as a fixed reference metric. The g-equations
describe in this case a massive gravity theory. If f becomes flat for  — 0, then one
recovers the dRGT theory [20]. Therefore, the massive gravity theory is contained
in the bigravity.

6.4 Proportional Backgrounds

The simplest solutions of the bigravity equations are obtained by assuming the two
metrics to be proportional [33,37],

fuv = C?gpv. (6.14)
The energy-momentum tensors (6.11) then become
TH = —Ag(C)8", T'=—As(C)s", (6.15)
with
Ag(C) = m*cos®n (bo + 3b1 C +3b, C* + b3 C?) |

sin® 7

Af(C) =m* =

(b] + 3b,C + 3b3C2 + b4C3) . (6.16)

Since the energy-momentum tensors should be conserved, it follows that C is a
constant. As a result, one obtains two sets of Einstein equations,

GY + 4g(C)8, =0, 9"+ A;(C)8, =0. 6.17)
Sinceone has ) = G},/C 2, it follows that A ; = A,/ C?, which gives an algebraic

equation for C. If the parameters b; are chosen according to Eq. (6.7), then this
equation reads

0= (C—Dl(e3 +c))C° + (3= 5¢5 + (1 — 2)ca)C?
+((4 =33+ (1 =2x)cs —6)C + (Bcs + ¢4 — Dy, (6.18)

with y = tan® 5, while the cosmological constant is

A
Wogs?n =(1=C)(c3+cs)C?>+ (B3 =5c3—2¢4)C +dcz+cy—6).  (6.19)
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Depending on values of c3, ¢4, 17, Eq. (6.18) can have up to four real roots, so that
there can be solutions with four different values of the cosmological constant, which
can be positive, negative, or zero.

One solution of (6.18) is C = 1, in which case the two metrics coincide, g, =
Juv, while Ay = 0, so that the vacuum GR is recovered. Therefore, the black hole
solutions obtained in this case are either Kerr, or Kerr-de Sitter, or Kerr-AdS. None
of these solutions admit the massive gravity limit with a flat f-metric.

6.5 Solutions with Non-Bidiagonal Metrics

Let us assume both metrics to be invariant under spatial SO(3) rotations. Since
the theory is invariant under diffeomorphisms, one can choose the spacetime
coordinates such that the g-metric is diagonal. However, the f-metric will in general
contain an off-diagonal term, so that the two metrics can be parameterized as

dr?
2 2 2 2
dsg = —Ndi’ + =5 + Rd2?,
ds’ = (th+cd)2+ Ndt bd 2+ 2R%d 27 (6.20)
Sf— a. A r C. A r u B .

with d2? = dv? + sin®> ¥dg?. The amplitudes N, A, R depend on r, while
a,b, c,u can in general depend on ¢, r. It is straightforward to check that the matrix
square root is

a ¢/(AN)OO

—cAN b 00

)/li = v gﬂafav = s (621)
0 0 u0
0 0 Ou

whose eigenvalues are

1
/\()'1 = E(G—Fbﬂ: (a—b)2—4c2), AQZA3 = Uu. (622)
Inserting this to (6.6) gives

2 =a+b+2u, %:u(u+2a+2b)+ab+c2,
Uy = u(au+ bu +2ab +2¢%), U = u*(ab + c?). (6.23)

Although the eigenvalues (6.22) can be complex-valued, the %4 ’s are always real.
It is straightforward to compute the energy-momentum tensors 7, and .7 defined
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by Eqgs .(6.11),(6.12). In particular, one finds

c

7O = IV [by 4 2bou + b3u?]. (6.24)
Since the g-metric is static, there is no radial energy flux, and so T should be zero.
Therefore, either ¢ should vanish, or the expression in brackets in (6.24) vanishes.
The former option will be considered in the next section, while presently let us
assume that ¢ # 0 and

by + 2byu + b3u* = 0. (6.25)

This yields

1
u= - (—bz + /b2 - b1b3) . (6.26)

3

Notice that # was a priori a function of ¢, r, but now it is restricted to be a constant.
Using this, one finds that 7% = 7" = —A, and ) = J7 = —\; where

_ by + 2bsu + b4u2

/\g = by + 2bju + bzuz, /\f 5

(6.27)

u

(&)
The conditions V,, 7} = 0 reduce in this case to the requirement that 79 — 7%,
should vanish. On the other hand, one finds

T9 —TY = (by + bsu)[(u — a)(u — b) + ¢?, (6.28)

and since this has to vanish, either the first or the second factor on the right should be
zero. Let us assume that one of these conditions is fulfilled. Then one has T% = Tg
and .7 8 =9 g, hence both energy-momentum tensors are proportional to the unit
tensor, Ty = —A,8. and 7} = —A ;§\'. The field equations (6.9) then reduce to

Gy + A8 =0, (6.29)
G0+ A8 =0, (6.30)

where
Ag =m?cos’nhy, Ay =m?sin’ niy. (6.31)

As a result, the two metrics decouple one from the other, and the graviton mass
gives rise to the two cosmological terms. If the parameters by are chosen according
t0 (6.7), then A, + u?A ; = —(u — 1)?, therefore, if Ag > Othen Ay < 0.
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Since we want the g-metric to describe a black hole geometry, the solution of
(6.29) is the Schwarzschild-de Sitter metric. On the other hand, as the cosmological
term for the f-metric is negative, the solution of (6.30) can be chosen to be AdS.
Therefore,

dr’ 2M A
2 2 2 2 g .2
dsg —E(I')d[ —l—m—i—r d.Q s Z,(r)_l—T_Tr’

dU? Ay
ds? = —QU)dT? + —— 4+ U2dRQ*, 9WU)=1--LU? (632
) =PI + S+ W =1-Zv2 632

with U = ur. It is worth noting that, since A ¢ ~ sin ) — 0 when n — 0, the f-
metric becomes flat in this limit. Therefore, the solutions apply both in the bigravity
theory and in the dRGT massive gravity.

6.5.1 Imposing the Consistency Condition

The solution (6.32) is not yet complete, since the two metrics are expressed in
two different coordinate systems, ¢, r and 7', U, whose relation to each other is not
known. One has U = ur but the function T'(¢, r) is still undetermined. We therefore
remember that up to now we have not considered the consistency condition, which
requires that the expression in (6.28) should vanish. This condition will be fulfilled
in either of the following two cases:

I (by+bsu) =0; (6.33)
I: w—a)u—>b)+c*=0. (6.34)

In case I, since u is already expressed in terms of by, by, b3 by Eq. (6.26), the
condition (6.33) imposes a constraint on values of these parameters. Therefore,
this condition is possible only for the special subclass of the theory characterized
by the restricted values of b;. Within this subclass the consistency condition is
fulfilled without specifying 7 (¢, ). Therefore, the function 7' (¢, ) in (6.32) remains
arbitrary, which can probably be traced to a some kind of hidden gauge invariance.

In case II no restrictions on the coefficients by arise, so that this case is generic.
The coefficients a, b, ¢ can be obtained by comparing the line element ds? in (6.20)
with that in (6.32), which gives '

2

, b=t =X% (”é — @T’Z) , cla+b)=9TT . (6.35)

2
2 7T
)
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Resolving these relations with respect to a, b, ¢ and inserting the result to (6.34)
yields the equation,

7 >2 X9 ”
- [ — =1 .
29 +2_@9 , (6.36)

with T = u.7. A simple solution can be obtained by separating the variables,
dr dr
fzt—}-/f— ézt—kr;—r;. (6.37)

One can think that this solution is singular, since the tortoise coordinate r3.
diverges at the black hole and cosmological horizons, where X' vanishes. However,
introducing the light-like coordinate

V=t+rs=9+r,, (6.38)
both metrics can be written in the Eddington-Finkelstein form

ds®> = —XdV? + 2dVdr + r*d 2*,

2
g
1
— ds; = —2dV* + 2dVdr 4+ r’d 2*, (6.39)
u

from where it is obvious that the solution is regular. This solution is valid for all
values of the parameters b. All the above solutions have been obtained in the
ghost-free bigravity context in [33] (see also [34]), but in fact solutions of this type
were considered already long ago in the generic f-g bigravity theories [38—40]. The
generalization for a nonzero electric charge was considered in [41].

Since the f-metric becomes flat for  — 0, the solutions describe in this limit
black holes in the dRGT massive gravity. In this context they were studied in [42,43]
for the special case I, and in [44,45] for the generic case II. These solutions and their
generalization for a nonzero electric charge [42,43,46] exhaust all static, spherically
symmetric black holes in the dRGT theory.

6.6 Hairy Black Holes, Lumps, and Stars

Black holes considered in the previous two sections are described by the known
GR metrics. New black holes are obtained in the case where the two metrics are
simultaneously diagonal [33],

2

dr’ U
ds, = N*dr* — A—rz —rld @2, dsy = Adf - odr? - U2 (6.40)
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Here N, A, Y, U, A are five functions of r which fulfill the equations

G = m*cos’ n Ty, G" =m*cos’ n T,

40 = m?sin’* n 7, 4" =m?sin’ n I,
N 2 .
T + ~ T - 7)) + ;(Tg’ —T7)=0. (6.41)

The simplest solutions are obtained if f,,, = C 2g,w, where g, fulfills (6.17) while
C, Ag(C) are defined by (6.16),(6.18). Since A, can be positive, negative, or zero,
there are the Schwarzschild, Schwarzschild-de Sitter, and Schwarzschild-AdS black
holes. Let us call them background black holes.

More general solutions are obtained by numerically integrating Eq. (6.41). It
turns out [33] that the equations for the three amplitudes A, Y, U comprise a closed
system. Its local solution near the horizon,

A= a,r =)' Y2 =) by(r—r)"s U=ury+ Y calr =)',

n>1 n>1 n>1

contains only one free parameter u = U(ry)/ry, which is the ratio of the horizon
radius measured by f,,, to that measured by g, . The horizon is common for both
metrics, in addition, its surface gravities and temperatures determined with respect
to both metrics are the same [47].

Choosing a value of u# and integrating numerically the equations from r = ry,
towards large r, the result is as follows [33]. If u = C where C is a root of the
algebraic equation (6.18), then the solution is one of the background black holes.
If u = C + Su then one can expect the solution to be the background black hole
slightly deformed by a massive graviton ‘hair’ localized in the horizon vicinity. This
is indeed confirmed for the Schwarzschild-AdS type solutions (A, < 0), which can
support a short massive hair and show deviations from the pure Schwarzschild-AdS
in the horizon vicinity, but far away from the horizon the deviations tend to zero (see
Fig. 6.1). Therefore, there are asymptotically AdS hairy black holes in the theory.

1.01 | T

AlA,
1B e
0.99 | , Ay 1
098 [ e E
oo7} o/ |
096 ./ N/N, 1
Fig. 6.1 Hairy deformations g5 / ]
of the Schwarzschild-AdS i Y/Y,
background, where 0.94 — ; ! . ; . !
0 1 2 3 4 5 6 7

Ao, No, Ay, Yy correspond to

the undeformed solution In(t/ry)
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Fig. 6.2 Hairy deformations 6 i
of the Schwarzschild : -
background 1

In(N/A)

In(r/ry,)

However, the procedure goes differently for A, > 0. When one deforms the
Schwarzschild background by setting u = r, + Su, then the solutions first stay
very close to Schwarzschild. However, at large r they deviate away and show a
completely different asymptotic behavior at infinity (Fig.6.2), characterized by a
quasi-AdS g-metric and a compact f-metric [33]. Therefore, the only asymptotically
flat black hole one finds is the pure Schwarzschild, while its hairy deformations
loose the asymptotic flatness. Similarly, trying to deform the Schwarzschild-de
Sitter background produces a curvature singularity at a finite proper distance away
from the black hole horizon, hence the only asymptotically de Sitter black hole is
the pure Schwarzschild-de Sitter.

The conclusion is that there are hairy black holes in the theory, but they are not
asymptotically flat. The following argument helps to understand this. Let us require
the solution to be asymptotically flat. Then one should have at large r

A'sin® 1
A=1- Sln'7+Bcosznmr+ e 4.,
r
2.2
1
U:,JFB%(;—WJFM,
m<r
A sin? 1
Y =1— 28N g2 L e (6.42)

where A, B are integration constants. Suppose that one wants to find black hole
solutions with this asymptotic behavior using the multiple shooting method. In
this method one tries to match the asymptotics (6.42) and (6.42) by integrating the
equations starting from the horizon towards large r, and at the same time starting
from infinity towards small r. The two solutions should match at some intermediate
point, which gives three matching conditions for A, Y, U. These conditions should
be fulfilled by adjusting the free parameters A, B, u in Egs. (6.42),(6.42). Solutions
of this problem may exist at most for discrete sets of values of A, B, u, hence one
cannot vary continuously the horizon parameter u. Therefore, there could be no
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continuous, asymptotically flat hairy deformations of the Schwarzschild solution.
However, this does not exclude isolated solutions, and in fact they exist, but to find
them requires a good initial guess for A, B, u.

It is interesting to see what happens to the hairy black holes when one changes
the horizon radius rj. It turns out that in the r, — 0 limit, where the black
hole disappears, its ‘hair’ survives and becomes a static ‘lump’ made of massive
field modes. Such lumps are described by globally regular solutions for which
the event horizon is replaced by a regular center at r = 0, while at infinity the
asymptotic behavior is the same as for the black holes [33]. None of the lumps are
asymptotically flat. Neither lumps no hairy black holes admit the dRGT limit, they
exist only in the bigravity theory.

It is worth mentioning in this context that there are asymptotically flat solutions
with a matter [33]. Such solutions describe regular stars, and for them one can
take limits where one of the two metrics becomes flat. Suppose that the f-sector
is empty, while the g-sector contains T[m]’é = diag[—p(r), P(r), P(r), P(r)] with
p = pB(r. — r), corresponding to a ‘star’ with a constant density p, and a
radius r,. Adding this source to the field equations (6.41) and assuming a regular
center at ¥ = 0, one finds solutions for which both metrics approach Minkowski
metric at infinity according to (6.42). Introducing the mass functions M,, M s via
g7 = A% = 1—=2My(r)/r and f" = Y?/U” = 1—2M/(r)/r, one finds
that M,, M  rapidly increase inside the star, while outside they approach the same
asymptotic value My(00) = Mys(o0) ~ sin® 7 (see Fig.6.3). For n = /2 the
g-metric is coupled only to the matter and is described by the GR Schwarzschild
solution, Mg(r) = p,r3/6 forr < r, and Mg(r) = p,r2/6 = Mapm forr > r,.
For n < m/2 the star mass Mapy is partially screened by the negative graviton
energy. For n = 0 (dRGT theory) the f-metric becomes flat, so that My = 0, while
M, asymptotically approaches zero and the star mass is totally screened, because
the massless graviton decouples and there could be no 1/r terms in the metric.

0.008
0.006

0.004 [

0.002
Fig. 6.3 Profiles of the 0
asymptotically flat star o5 ] 15 5 25 3 Py
solution sourced by a regular
matter distribution In(1+1)
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If the graviton mass is very small, then the m2T contribution to the equations
is small as compared to T[mu]“ , and for this reason M, rests approximately constant
forr, < r < ry ~ (Mapm/m?)'/3. This illustrates the Vainshtein mechanism
of recovery of General Relativity in a finite region [48]. This mechanism has also
been confirmed by the numerical analysis within the generic massive gravity theory
with the BD ghost [49, 50], and also in the dRGT theory [51]. The approximate
analytical solutions in the weak field limit were considered in [44,45,52] within the
dRGT theory and in [53] within the bigravity theory.

6.7 Black Hole Stability and New Hairy Black Holes

As discussed in Sect. 6.4, if the two metrics coincide, g,, = f,v, then the bigravity
theory reduces to the vacuum GR, hence one can choose the Schwarzschild metric
as a solution. This solution is known to be linearly stable in the GR context, but
one can wonder if it is stable also within the bigravity theory. Let us consider small
perturbations around this solution,

g = gLOV) +5guvs f;w = gLOV) +8f;w s (6.43)

where gLOU) is the Schwarzschild metric. If one sets §g,, = /., then the GR
result will be recovered. However, the perturbations of the two metrics need not
be the same in general. Linearizing the bigravity field equations with respect to the
perturbations, it turns out that the linear combinations

huy = cosndguy +sinndfy, hg’g = cosndfuy —sinndg (6.44)

decouple from each other and can be identified with the massive and massless
gravitons, respectively. Equations for the massless graviton are the same as in GR,
while for the massive graviton one obtains [54]

[ 0)
a By 42 Ryugop hP = m?h,,, (6.45)

0)
V, =0, h* =0.

v 1
An interesting observation [54] is that these equations have exactly the same
structure as those describing perturbations of the black strings—Schwarzschild
black holes uplifted to five spacetime dimensions. At the same time, it is known that
the black strings are prone to the Gregory-Laflamme instability [55]. Specifically,
setting 71, = e“‘”H,w (r, 9, @), it turns out that Eq. (6.45) admit a bound state
solution with @? < 0 in the spherically-symmetric sector, provided that [56]

black hole radi
mry = ————< O TTI_ _ g6, (6.46)
graviton’s Compton length
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It follows that small black holes are unstable, since the frequency w is imaginary
and so the perturbations grow in time [54]. The condition of smallness is not crucial,
since all usual black holes are small compared to the Hubble radius and so fulfill the
bound (6.46), so that all of them should be unstable. On the other hand, since the
frequency |w| o m, this instability is very mild, as it needs a Hubble time ~ 1/m
to develop. Therefore, even if real astrophysical black hole were described by the
bigravity theory, their instability would be largely irrelevant and they would actually
be stable for all practical purposes over a cosmologically long period of time.

A similar instability was found also for the Kerr black holes [56] and for the
Schwarzschild-de Sitter black holes with proportional metrics described in Sect. 6.4
[57]. Interestingly, it was found in the latter case that the instability disappears in
the partially massless limit, where the graviton mass is related to the cosmological
constant as m? = 2A/3 [57].

As discussed in Sect. 6.5 above, the Schwarzschild-de Sitter solution in the
bigravity theory can exist also in a different version, for which the two metrics
are not simultaneously diagonal. The linear stability of this solution was studied
with respect to all possible perturbations, but only in the restricted case (6.33) [58],
and also in the generic case (6.34), but only with respect to spherically symmetric
perturbations [59]. In both cases the solution was found to be stable.

Getting back to the unstable Schwarzschild black holes, it turns out that their
instability can be used to find new black holes which support hair and which are
asymptotically flat. As was explained above, asymptotically flat solutions subject to
the boundary conditions (6.42),(6.42) may exist, but to find them requires to fine-
tune the parameters A, B, u in (6.42),(6.42), for which an additional information is
needed. Now, the existence of the black hole instability provides such an information
[35].

Indeed, Eq. (6.45) admit solutions with w? <0 only for mr, < 0.86, while
for mr, > 0.86 all solutions have w? > 0. This means that for mr, ~ 0.86 there
is a zero mode: a static solution of (6.45) with w = 0. This zero mode can be
viewed as approximating a new black hole solution which exists for mr, < 0.86
and which merges with the Schwarzschild solution for mr, ~ 0.86. Close to the
merging point the deviations of the new solution from the Schwarzschild are small
and can be described by the linear theory. Therefore, one can use the linear zero
mode to read-off the values of the parameters A, B, u in (6.42),(6.42), after which
one can iteratively decrease r, to obtain the ‘fully-fledged’ non-perturbative hairy
black holes. This was done in [35].

The conclusion is that there are asymptotically flat black holes with a massive
hair in the bigravity theory. However, it seems that their parameter mr; cannot be
too small (unless for ¢ = —c4 = 2) [35], which means that these black holes
are cosmologically large, their size being comparable with the Hubble radius. Such
solutions are unlikely to be relevant.

All described above black holes have been obtained in the theory either without
a matter source or in the theory with an electromagnetic field. At the same time,
the perturbative analysis of [60] predicts that hairy black holes should generically
exist in the massive gravity theory coupled to a matter with a non-vanishing trace of
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the energy-momentum tensor. It would be very interesting to test this prediction by
fully non-perturbative calculations.

Concluding Remarks

Summarizing the above discussion, all possible static, spherically symmetric
black holes in the dRGT massive gravity theory are described by the
Schwarzschild-de Sitter metrics. They belong to the type studied in Sect. 6.5
and they are probably stable. One may wonder why one does not find
asymptotically flat black holes. However, our universe is actually in the de
Sitter phase, and the main motivation for considering theories with massive
gravitons is to describe this fact. Hence, it is not astonishing that the solutions
are not asymptotically flat.

One finds more solutions in the bigravity theory, as for example the hairy
black holes. However, these seem to be not very relevant, since they are
either asymptotically AdS, which contradicts the observations, or they are
too large. There are also asymptotically flat or asymptotically de Sitter black
hole solutions, but they are unstable. However, they can describe astrophysical
black holes, since the instability takes cosmologically long times to develop.
One can also wonder what these black holes decay to, and one possibility is
that their instability actually implies that there is a slow accretion of massive
graviton modes to the horizon [61]. If this is true, then the black holes should
be almost exactly Kerr (Kerr-de Sitter), apart from small corrections in the
near-horizon region where the accretion takes place.

Some aspects of the graviton mass can be captured within a simplified
description in the context of the Galileon theory [62]. This is essentially the
General Relativity coupled to a self-interacting scalar field that mimics the
scalar polarization mode of the massive graviton. It turns out that black holes
in these theory are described by the GR metrics [63], and a no-hair theorem
can be proven in this case [64].

To recapitulate, even if the gravitons are indeed massive, this would be
hard to detect by observing black holes.
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Chapter 7
Chern-Simons-Like Gravity Theories

Eric A. Bergshoeff, Olaf Hohm, Wout Merbis, Alasdair J. Routh,
and Paul K. Townsend

Abstract A wide class of three-dimensional gravity models can be put into
“Chern—Simons-like” form. We perform a Hamiltonian analysis of the general
model and then specialise to Einstein-Cartan Gravity, General Massive Gravity, the
recently proposed Zwei-Dreibein Gravity and a further parity violating generalisa-
tion combining the latter two.

7.1 Introduction: CS-Like Gravity Theories

In three space-time dimensions (3D), General Relativity (GR) can be interpreted
as a Chern—Simons (CS) gauge theory of the 3D Poincaré, de Sitter (dS) or anti-
de Sitter (AdS) group, depending on the value of the cosmological constant [1,2].
The action is the integral of a Lagrangian three-form L constructed from the wedge
products of Lorentz-vector valued one-form fields: the dreibein e? and the dualised
spin-connection w“. Using a notation in which the wedge product is implicit, and a
“mostly plus” metric signature convention, we have

A
L =—e,R*+ gs“b‘eaebec, (7.1)
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where R is the dualised Riemann 2-form:
a a 1 abc
R =dw® + 55 WpWe . (7.2)

This action is manifestly local Lorentz invariant, in addition to its manifest invari-
ance under diffeomorphisms, which are on-shell equivalent to local translations. The
field equations are zero field strength conditions for the Poincaré or (A)dS group.

Strictly speaking, the CS gauge theory is equivalent to 3D GR only if one
assumes invertibility of the dreibein; this is what allows the Einstein field equations
to be written as zero field-strength conditions, and it is one way to see that 3D
GR has no local degrees of freedom, and hence no gravitons. However, there
are variants of 3D GR that do propagate gravitons. The simplest of these are 3D
“massive gravity” theories found by including certain higher-derivative terms in the
action.! The best known example is Topologically Massive Gravity (TMG), which
includes the parity violating Lorentz—Chern—Simons term and leads to third-order
field equations that propagate a single spin-2 mode [3]. A more recent example is
New Massive Gravity (NMG) which includes certain curvature-squared terms; this
leads to parity-preserving fourth-order equations that propagate a parity-doublet
of massive spin-2 modes; combining TMG and NMG we get a parity violating
fourth-order General Massive Gravity (GMG) theory that propagates two massive
gravitons, but with different masses [4].

Although GMG is fourth order in derivatives, it is possible to introduce auxiliary
tensor fields to get a set of equivalent first-order equations [5]; in this formulation
the fields can all be taken to be Lorentz vector-valued 1-forms, and the action
takes a form that is “CS-like” in the sense that it is the integral of a Lagrangian
3-form defined without an explicit space-time metric (which appears only on the
assumption of an invertible dreibein). The general model of this type can be
constructed as follows [5]. We start from a collection of N Lorentz-vector valued
1-forms a"¢ = alr;’dx", where r = 1,..., N is a “flavour” index; the generic
Lagrangian 3-form constructible from these 1-form fields is

L= %g,sa’ -da* + éfma’ <(a® xa'), (7.3)
where g, is a symmetric constant metric on the flavour space which we will require
to be invertible, so it can be used to raise and lower flavour indices, and the coupling
constants f,, define a totally symmetric “flavour tensor”. We now use a 3D-vector
algebra notation for Lorentz vectors in which contractions with 7,, and €., are
represented by dots and crosses respectively. The 3-form (7.3) is a CS 3-form when
the constants

't is possible, at least in some cases, to take a massless limit but since “spin” is not defined for
massless 3D particles, one cannot get a theory of “massless gravitons” this way, if by “graviton”
we mean a particle of spin-2.
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farbx o = Gahcfrxt & 8ar bs = Nab8rs (74)

are, respectively, the structure constants of a Lie algebra, and a group invariant
symmetric tensor on this Lie algebra.” For example, with N = 2 we may choose
ai = e“ and a§ = o“, and then a choice of the flavour metric and coupling
constants that ensures local Lorentz invariance will yield a CS 3-form equivalent,
up to field redefinitions, to (7.1). For N > 2, we will continue to suppose that
ai = e“ and a§ = w“, and that the flavour metric and coupling constants are such
that the action is local Lorentz invariant, but even with this restriction the generic
N > 2 model will be only CS-like. In particular TMG has a CS-like formulation
with N = 3 and both NMG and GMG have CS-like formulations with N = 4.
Since these models have local degrees of freedom they are strictly CS-like, and not
CS models.

The generic N = 4 CS-like gravity model also includes the recently analysed
Zwei-Dreibein Gravity (ZDG) [6]. This is a parity preserving massive gravity model
with the same local degrees of freedom as NMG (two propagating spin-2 modes of
equal mass in a maximally-symmetric vacuum background) but has advantages in
the context of the AdS/CFT correspondence since, in contrast to NMG, it leads to a
positive central charge for a possible dual CFT at the AdS boundary.

We focus here on the Hamiltonian formulation of CS-like gravity models for a
number of reasons. One is that the CS-like formulation allows us to discuss various
3D massive gravity models as special cases of a generic model, and this formulation
is well-adapted to a Hamiltonian analysis. Another is that there are some unusual
features of the Hamiltonian formulation of massive gravity models that are clarified
by the CS-like formalism. One great advantage of the Hamiltonian approach is that
it allows a determination of the number of local degrees of freedom independently
of a linearised approximation (which can give misleading results). In particular,
massive gravity models typically have an additional local degree of freedom, the
Boulware-Deser ghost [7]. It is known that GMG has no Boulware-Deser ghost,
and this is confirmed by its Hamiltonian analysis, but ZDG does have a Boulware-
Deser ghost for generic parameters [8], even though it is ghost-free in a linearised
approximation. Fortunately, this problem can be avoided by assuming invertibility of
a linear combination of the two dreibeine of ZDG. A special case of this assumption
imposes a restriction of the parameters; this point was made in an erratum to [6] and
here we present a detailed substantiation of it. We also present a parity violating CS-
like extension of ZDG, which we call “General Zwei-Dreibein Gravity” (GZDG),
and we show that it has the same number of local degrees of freedom as ZDG.

2There are CS gauge theories for which the Lagrangian 3-form is not of the form (7.3) because not
all of the generators of the Lie algebra of the gauge group are Lorentz vectors. If we wish the class
of CS gravity theories to be a subclass of the class of CS-like gravity theories, we should define the
latter by a larger class of 3-form Lagrangians, as in [5], but (7.3) will be sufficient for our purposes.
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7.2 Hamiltonian Analysis

It is straightforward to put the CS-like model defined by (7.3) into Hamiltonian
form. We perform the space-time split

a™ = aldt +al“dx , (7.5)

which leads to the Lagrangian density
1 ij ross r
Z = —58 8rsd; - a}' + ag . ¢r ) (76)

where e/ = ¢% . The time components of the fields, aj“, become Lagrange
multipliers for the primary constraints ¢¢:

) 1 .
¢f =&Y (grsa,-aj»“ + Efrst (a,-“ X ajt) ) . (7.7)

The Hamiltonian density is just the sum of the primary constraints, each with a
Lagrange multiplier a;, ¢,

H = —Eslfgmal’- -80a‘; — %L =—ay - ¢r. (7.8)

We must now work out the Poisson brackets of the primary constraints. Then,
following Dirac’s procedure [9], we must consider any secondary constraints. We
consider these two steps in turn.

7.2.1 Poisson Brackets and the Primary Constraints

The Lagrangian is first order in time derivatives, so the Poisson brackets of the
canonical variables can be determined by inverting the first term of (7.6); this gives

{ara.ay, 0, = g nas®r =), 79)
Using this result we may calculate the Poisson brackets of the primary constraint
functions. It will be convenient to first define the “smeared” functions ¢[£]
associated to the constraints (7.7) by integrating them against a test function &/ (x)
as follows

ole] = /E % £ (1)1 (x). (7.10)
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where X is space-like hypersurface. In general, the functionals ¢[£] will not be
differentiable, but we can make them so by adding boundary terms. Varying (7.10)
with respect to the fields a;* gives

Sg[€] =/ d*x € 8"i’ab8ai5b+/ dx B[£,a,8a]. (7.11)
D) a; 95

)

A non-zero B[£, a, a] could lead to delta-function singularities in the brackets of
the constraint functions. To remove these, we can choose boundary conditions which
make B a total variation

/ dx Bl§,a,ba]l = —06QI¢&,a]. (7.12)
3>

We then work with the quantities

o[§] = ¢lE] + Q[¢.al. (7.13)

which have well-defined variations, with no boundary terms. In our case, after
varying ¢ [£] with respect to the fields a;*, we find

Blt.a,8a] = / Y& g, 8a; " . (7.14)
X

The Poisson brackets of the constraint functions can now be computed using
Eq. (7.9). They are given by

((E) o), = w([E. 1) + [2 d2x £ P

- /3 A E [’ + falar <) (7.15)
where
[E.0l. = fis' € cEqmy (7.16)
and
P = [ ai L™ AP+ 2 s fam (VY (7.17)
Vo = é"al,al,, A = elal - q? (7.18)

In general, adopting non-trivial boundary conditions may lead to a (centrally
extended) asymptotic symmetry algebra spanned by the first-class constraint func-
tions if the corresponding test functions &/ (x) are the gauge parameters of boundary
condition preserving gauge transformations. Here we will focus on the bulk theory
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and assume that the test functions £/ (x) do not give rise to boundary terms in (7.11)
and (7.15).

The consistency conditions guaranteeing time-independence of the primary
constraints are

d
Edﬁ’ = (A ¢ Vs ~ —a), PP ~ 0. (7.19)

This expression is equivalent to a set of “integrability conditions” which can be
derived from the equations of motion. The field equations of (7.3) are

1
grnda’® + Efm(as xa)*=0. (7.20)
Taking the exterior derivative of this equation and using d> = 0, we get the
conditions
flar fagma ™ “a? -a? = 0. (7.21)

Using the space-time decomposition (7.5) we have

t b
0= f q[,fs],,,ar a” -a" = a(’)ae@“

rs

(7.22)

the right hand side being exactly what is required to vanish for time-independence
of the primary constraints. These conditions are 3-form equations in which each
3-form necessarily contains a Lagrange multiplier one-form factor, so they could
imply that some linear combinations of the Lagrange multipliers is zero.

If the matrix £ vanishes identically then all primary constraints are first-class
and there is no constraint on any Lagrange multiplier. In this case the model is
actually a Chern—Simons theory, that of the Lie algebra with structure constants
€“pe f 5. In general, however, 3”;2” will not vanish and rank(£?) will be non-
zero. We can pick a basis of constraint functions such that 3N — rank(Z?) have
zero Poisson bracket with all constraints, while the remaining rank(%?) constraint
functions have non-zero Poisson brackets amongst themselves. At this point, it
might appear that the Lagrange multipliers for the latter set of constraints will be
set to zero by the conditions (7.22). However, when one of the fields is a dreibein,
this may involve setting ep = 0. This is not acceptable for a theory of gravity,
as the dreibein must be invertible! When specifying a model, we must therefore be
clear whether we are assuming invertibility of any fields as it affects the Hamiltonian
analysis. In general, if we require invertibility of any one-form field then we may
need to impose further, secondary, constraints.

In other words, the consistency of the primary constraints is equivalent to
satisfying the integrability conditions (7.22). If some one-form is invertible, then
some integrability condition may reduce to a two-form constraint on the canonical
variables, which we must add as a secondary constraint in our theory. We now turn
to an investigation of these secondary constraints.
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7.2.2 Secondary Constraints

To be precise, consider for fixed s the expression [/ fi:a”®. If the sum over r
is non-zero for only one value of r, say " = h“, and h“ is invertible, then the
integrability conditions (7.21) imply that

fl‘q[rfs]pta]7 -a?=0. (7.23)
In particular, taking the space-space part of this two-form, we find
e f' g famal -ah =0, (7.24)

which depends only on the canonical variables and is therefore a new, secondary,
constraint. One invertible field may lead to several constraints if the above equation
holds for multiple values of s. The secondary constraints arising in this way> are
therefore the inequivalent components of the field space vector ¥, = f [ fspr A9,
Let M be the number of these secondary constraints, and let us write them as

Vi = fipgA, I=1,....M. (7.25)

We now have a total of 3N 4 M constraints.

According to Dirac, after finding the secondary constraints we should add them
to the Hamiltonian with new Lagrange multipliers [9]. However, in general this can
change the field equations. To see why let us suppose that we have a phase-space
action [ [z] for some phase space coordinates z, and that the equations of motion
imply the constraint ¢ (z) = 0. If we add this constraint to the action with a Lagrange
multiplier A then we get a new action for which the equations of motion are

8—] :Aa—¢, ¢(z) =0. (7.26)
8z 0z
Any solution of the original equations of motions, together with A = 0, solves these
equations, but there may be more solutions for which A # 0. This is precisely what
happens for NMG and GMG (although not for TMG) [5]; the field equations of these
models lead to a (field-dependent) cubic equation for one of the secondary constraint
Lagrange multipliers, leading to two possible non-zero solutions for this Lagrange
multiplier.* In this case, Dirac’s procedure would appear to lead us to a Hamiltonian

3Here we should issue a warning: a linear combination of invertible one-forms is not in general
invertible, so if [, fypra”“ sums over multiple values of r with each corresponding one-form
invertible, this does not in general imply a new constraint.

4This problem appears to be distinct from the problem of whether the “Dirac conjecture” is
satisfied, since that concerns the values of Lagrange multipliers of first-class constraints. It may
be related to the recently discussed “sectors” issue [10].
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formulation of a theory that is more general than the one we started with (in that its
solution space is larger). Perhaps more seriously, adding the secondary constraints
to the Hamiltonian will generally lead to a violation of symmetries of the original
model.

Because of this problem, we will omit the secondary constraints from the total
Hamiltonian. This omission could lead to difficulties. The first-class constraints
are found by consideration of the matrix of Poisson brackets of all constraints,
so it could happen that some are linear combinations of primary with secondary
constraints. We would then have a situation in which not all first-class constraints are
imposed by Lagrange multipliers in the (now restricted) total Hamiltonian, and this
would appear to lead to inconsistencies. Fortunately, this problem does not actually
arise for any of the CS-like gravity models that we shall consider, as they satisfy
conditions that we now spell out.

The Poisson brackets of the primary with the secondary constraint functions are

GELVen = [t € -al + £ fip€ - (af xal)] . 2D

and the Poisson brackets of the secondary constraint functions amongst themselves
are

{WI s w./ }P.B. = 4f1,qu]’mAprqu . (728)

We now make the following two assumptions, which hold for all our examples:

e We assume that all Poisson brackets of secondary constraints with other sec-
ondary constraints vanish on the full constraint surface. It then follows that the
total matrix of Poisson brackets of all 3N 4+ M constraint functions takes the
form

| —{qxvf}T)
P_({dmﬁ} o ) (7.29)

where &7’ is the matrix of Poisson brackets of the 3N primary constraints
evaluated on the new constraint surface defined by all 3N + M constraints.

* We assume that inclusion of the secondary constraints in the set of all constraints
does not lead to new first-class constraints. This means that the secondary
constraints must all be second-class, and any linear combination of secondary
constraints and the rank(£?") primary constraints with non-vanishing Poisson
brackets on the full constraint surface must be second-class.

The rank of P, as given in (7.29), is the number of its linearly independent
columns. By the second assumption, this is M plus the number of linearly
independent columns of
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({f;ﬁ}) ‘ 730

The number of linearly independent columns of this matrix, as for any other matrix,
is the same as the number of linearly independent rows, which by the second
assumption is rank(&?’) + M. The rank of P, and therefore the number of second-
class constraints, is then rank(2?’) + 2M .

In principle one should now check for tertiary constraints. However, in this
procedure the invertibility of certain fields will be guaranteed by the secondary
constraints. The consistency of the primary constraints under time evolution can be
guaranteed by fixing rank(4?’) of the Lagrange multipliers. The consistency of the
secondary constraints under time evolution, af,{¢¢,¥;} ~ 0, can be guaranteed,
under the second assumption, by fixing a further M of the Lagrange multipliers.
The fact that these M multipliers are distinct from the rank(£?") multiplier fixed
before follows from the second assumption. The remaining consistency condition,
{¥, ¥} = 0, is guaranteed by the first assumption.

We therefore have 3N - rank(&?’) - M undetermined Lagrange multipliers,
corresponding to the 3N - rank(£?') - M first-class constraints. The remaining
rank(#') + 2M constraints are second-class. The dimension of the physical phase
space per space point is the number of canonical variables a/“, minus twice the
number of first-class constraints, minus the number of second-class constraints, or

D =6N —2x (3N —rank(#') — M) — 1 x (rank(2”') + 2M) = rank(#').
(131)

We will now apply this procedure to determine the number of local degrees of
freedom of various 3D gravity models with a CS-like formulation.

7.3 Specific Examples

We will now derive the Hamiltonian form of a number of three-dimensional CS-like
gravity models of increasing complexity following the above general procedure.

7.3.1 Einstein-Cartan Gravity

To illustrate our formalism we will start by using it to analyse 3D General Relativity
with a cosmological constant A, in its first-order Einstein-Cartan form. There are
two flavours of one-forms: the dreibein, a®“ = e“, and the dualised spin-connection
a®? = ' = %eahfa);,c. The Lagrangian 3-form is that of (7.1). This takes the
general form of (7.3), with the flavour index r, s,t,... = w, e. The first step is to

read off g, and f,, and for later convenience we also determine the components of
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the inverse metric g’ and the structure constants with one index raised, f”. The
non-zero components of these quantities are:

Bwe = _17 feee =Aa feww =_1a (732)
gw€:_17 fweez_Aa fwa)a)zla feewzl-

These constants define a Chern—Simons 3-form, as mentioned in the introduction;
the structure constants are £, f” ;. This algebra is spanned by the Hamiltonian con-
straint functions, which are all first-class. In three-dimensions, General Relativity,
like any Chern—Simons theory, has no local degrees of freedom.

To see how the details work in our general formalism, we can work out the
matrix (7.17) and find that it vanishes. Then, by equation (7.31) the dimension of
the physical phase space is

D=12-2x6=0, (7.33)
as expected. Using (7.15) we can also verify that

(0, Ppp =€ S, (%, @ e = € pC, (B0, P tpn = — A P,

which is the SO(2,2) algebra for A < 0, SO(3,1) for A > 0 and ISO(2, 1) for
A = 0, as expected.

7.3.2 General Massive Gravity

General Relativity was a very simple application of our general formalism; as a
Chern—Simons theory the Poisson brackets of the constraint functions formed a
closed algebra, so it did not require our full analysis. We will now turn to a more
complicated example, General Massive Gravity (GMG). This theory does have local
degrees of freedom; it propagates two massive spin-2 modes at the linear level. It
contains two well known theories of 3D massive gravity as limits: Topologically
Massive Gravity (TMG) [3] and New Massive Gravity (NMG) [4].

We can write the Lagrangian 3-form of GMG in the general form (7.3). There
are four flavours of one-form, a"* = (w?, h?, e?, f¢), the dualised spin-connection
and dreibein and two extra fields 2 and f“, and the Lagrangian 3-form is

A 1 1
Loymg = —oe, R + —Oe””ceuebec + h, T + — | wdw® + =€ w wpw,
6 2 3

1
m?

|:faRu + %Gahceafbf;} ,
(7.34)



7 Chern—Simons-Like Gravity Theories 191

where we recall that R? is the dualised Riemann 2-form. The flavour-space metric
grs and the structure constants f, can again be read off:

1 1

8we = —0, gehzls gfw:__zv ow = —,
m m
1 1

feww = —0, feha} = 17 fe = 5 fwww = —, (735)
m m

_ 1
feee - AO s fwwf - _W .

The next step is to work out the integrability conditions (7.21). We find three
inequivalent 3-form relations,

ele- f=0, f“(ie-f+h-e)—h“e-f=0, e! (%e-f+h-e)=0.
(7.36)

We will demand that the dreibein, e“, is invertible. Following our general analysis,
we find the two secondary constraints

Y =A"=0, V=AY =0. (7.37)

Next, we compute the matrix 2% as defined in (7.17). All the AP? terms drop out
because of the secondary constraints, and in the basis (w, i, e, f) we get

0 0 0 0
/ 0 0 Vae[ _Vaebe
s =10 vl —avif+ vl vie - vk (739
0— aebe Vaehh - %Vaei{ %Vaebe

We must now determine the rank of this matrix at an arbitrary point in space-time.
A Mathematica calculation shows that the rank of £’ is 4. To complete the analysis
and verify if the two assumptions stated in Sect. 7.2.2 are met, we need the Poisson
brackets of the secondary constraint functions ¥; (I = 1, 2) with themselves and
with the primary constraint functions. The Poisson bracket {v/, ¥»»} is zero on the
constraint surface, which verifies the first assumption, and the Poisson brackets of
Y with the primary constraint functions are

{plE]. Y1ipB. = Gij|:3i§h e —E" (w; xe;) — 08 -hj + £ (w; X hj)

# (o8 + 58 ) e x £ + (08 + k) x|,
(7.39)
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(B[E], Yalrs, = eif[aisf ce) =& (X e)) = DE - f +E (@ % f)

+ (mzéh - %Zéf) (e; x ej) +m*E - (ei X (hj - %f/))}
(7.40)

The full matrix of Poisson brackets is a 14 x 14 matrix P given by

gZ/ 12 %)
P=|-T00], (7.41)
—vI 00

where the vy, (I = 1,2), are column vectors with components

1P, ViipB.
_ | {¢n.Vites.
= {od . Yiten. | (7.42)

6% Viies.

These brackets can be read off from Eqgs. (7.39) and (7.40). The vectors (7.42) are
linearly independent from each other and from the columns of &', which verifies
the second assumption of Sect.7.2.2 and the rank of PP is increased by 4. The full
(14 x 14) matrix therefore has rank 8, so eight constraints are second-class and the
remaining six are first-class. By Eq. (7.31), the dimension of the physical phase
space per space point is

D=24-8-2x6=4. (7.43)

This means there are two local degrees of freedom, and we conclude that the non-
linear theory has the same degrees of freedom as the linearised theory, two massive
states of helicity £2.

7.3.3 Zwei-Dreibein Gravity

We now turn our attention to another theory of massive 3D gravity, the recently
proposed Zwei-Dreibein Gravity (ZDG) [6]. This is a theory of two interacting
dreibeine, ef and ¢4, each with a corresponding spin-connection, w;* and w,. It
also has a Lagrangian 3-form of our general CS-like form (7.3). Like NMG, ZDG
preserves parity and has two massive spin-2 degrees of freedom when linearised
about a maximally-symmetric vacuum background, but this does not exclude the
possibility of additional local degrees of freedom appearing in other backgrounds.
In fact, it was shown by Bafiados et al. [8] that the generic ZDG model does have an
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additional local degree of freedom, the Boulware-Deser ghost. We will see why this
is so, and also how it can be removed by assuming invertibility of a special linear
combination of the two dreibein.

The Lagrangian 3-form is

m?
b
Lzpg = _MP{GelaRlu + e Ry + ?Ga “(a1e1q€1pe1c + 0er4e2p€2,)

—Lis(er, 62)} , (7.44)

where R|% and R,“ are the dualised Riemann 2-forms constructed from w;% and
w,“ respectively, and the interaction Lagrangian 3-form L, is given by

1 X
Lis(er,ez) = Emzfabc (Bieraeiverc + Breraeapenc) (7.45)

Here 0 = =+1 is a sign parameter, «; and o, are two dimensionless cosmological
parameters and 8, and f, are two dimensionless coupling constants. The parameter
m? is a redundant, but convenient, dimensionful parameter. For now these parame-
ters are arbitrary, but we will soon see that some restrictions are necessary.

From (7.44) we can read off the components of g,; and f,,,. We will ignore the

overall factor Mp to simplify the analysis; after this step they become

Zeion = Bwier = =0, Zern = Guner = —1,

f;fla)la)l = —0, feza)za}z = _1 ) (746)
felelez = mzﬁl s felezez = m2’32 s
felelel = _mzal s fezezez = _mzaZ .

We also work out the inverse metric g” and the structure constants f”;,

gelwl — gwlel — _l 7gé’zwz — ngez = -1 ,
o
fwla)la)l = fela)lel - 15 fwza)za)z - feza)zez - 1 ) (747)
2 2
fa”elé’z = fa”é’zel = . b ’fwlé’zez = -z . )
o o
2
m
2
fwlelé’l = ?061 ’fwzezez =moa,

fwzelez = fwzezel = _m2’32 s fwzelel = _mzﬁl .

Equipped with these expressions, we can evaluate the 12 x 12 matrix of Poisson
brackets (7.15), in the flavour basis (o, ws, ey, €2)
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0 0 —BiACe —By A0
(!@ ) _ mzr] 0 0 IB]A(%]HZ 'Bszlyz
ab)rs — ab
'BlAelez _ﬂlAelez 0 —,BIAQPEI _ '32Aw7e2
BrA1e: —Pr A1 B AV 4 By A0 0
0 0 Var Vo'
0 0 —yae Ve
+ m2,31 ezel ezel wie @ wye wie] “ wyeq (748)
Vab _Vab _(V[ab] - V[ub] ) (Vab - Vab
A O B
0 0 Var® Ve
0 0 —pee y e
+ mZIBZ exen ezen “ ezwldb erw)
Vab _Vab 0 _(Vab - Vab
S R e WU g
ere w— = w); — ws. e determine the rank of this matrix as before usin
Wh We d ine th k of thi i befi ing

Mathematica, and find it to be 6. This means that there are 12 — 6 = 6 gauge
symmetries in the theory.

To find the secondary constraints we must study the integrability conditions
(7.21). There are three independent equations

(Bre1” + Brex*)er e =0, (7.49)
e'o_ - (Brer + Paez) — Brow-_e;-ea =0, (7.50)
er‘w— - (Bre1 + Barez) + Prw_"e1-e2 = 0. (7.51)

Assuming invertibility of both dreibeine, e{ and e, is not sufficient to generate a
secondary constraint; from (7.49) we need that (81e1“ + Bre,?) is invertible. This
does not follow from the invertibility of the two separate dreibeine. Without any
secondary constraints, the dimension of the physical phase space, using Eq. (7.31),
is 6. This corresponds to 3 local degrees of freedom, one massive graviton and the
other presumably a scalar ghost.

We are interested in theories of massive gravity without ghosts, so we must
restrict our general model to ensure secondary constraints. By analysing (7.49)-
(7.51) we see that to derive two secondary constraints, we should assume the
invertibility of the linear combination fie;* + Baex“. A special case of this
assumption, where the ZDG parameter space is restricted to 818, = 0, but one
of the B; is non-zero and the corresponding dreibein is assumed to be invertible,
was considered in an erratum to [6]. We will first analyse this special case in more
detail and then move to the generic case.
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7.3.3.1 The Case 168, =0

In the case that we set to zero one of the two parameters 8; we may choose, without
loss of generality, to set

B2=0. (7.52)
In this case the invertibility of e;“ alone implies the two secondary constraints.
Y = A9 =0, Yo = AT = 0. (7.53)
These constraints and parameter choices cause the first and last matrices in
Eq. (7.48) to vanish. The remaining matrix &?’ has rank 4.

The secondary constraints (7.53) are in involution with each other, and their
brackets with the primary constraint functions are given by

{BIEL V1l = e’if[a,-sel Cer) — £ ans X ery — E? 01+ E -y X e

—(§" —§")-ey; ¥ 621} , (7.54)
and

($1E] Vaten, =s"f'[<a,-sw C0E) 1) — (7 — ) - (wnr x 1)) — DE o0

+ £ (017 X 0 j) + m* (OB1E" + 02E?) - (e1; X e2)
(1.55)

(0o + BET — 0B1E) - (e x el,»)} .

The full matrix of Poisson brackets is again a 14 x 14 matrix P given by (7.41),
where the v; with I = 1,2 are now

196, Vilps.
{#5,. Viles. 756
{68 ¥iten. | 7:50)
{¢e,, Vilps.

vy =

These brackets can be read off from equations (7.54) and (7.55). The vectors (7.56)
are linearly independent from each other and with the columns of P, so this increases
the rank of P by 4. The total number of second-class constraints is 8, leaving 6 first-
class constraints. Using (7.31) we find that for general values of the parameters
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ai, o and B the dimension of the physical phase space per space point is 4. This
corresponds to the 2 local degrees of freedom of a massive graviton.

7.3.3.2 The Case of Invertible f1e1* + B2e"

The more general case is to assume invertibility of the linear combination of the two
dreibeine, B1e1¢ + Baex”. In this case, to keep track of the invertible field, we make
a field redefinition in the original Lagrangian (7.44). We define, for 8, + a8, # 0,

2
et = m (Bie1® + Brer?) , fi=o0e" —e". (7.57)

For convenience we will work with the sum and difference of the spin connections®

1 1
w’ = b (01" + "), ht = 2 (01" — ) . (7.58)

In terms of these new fields, the ZDG Lagrangian 3-form is
1
L=-— Mp%(reaR”(a)) + cfa R (@) + fuPh* + Eeabc(oe“ + cf Y he

b b
+ m%ege (%e”ebec - Ele“ebfc - Eze”fbfc (7.59)

+(02 - 1)b16— 2cob,

f”fbe)} ,

where & is the covariant derivative with respect to w. The new dimensionless
constants (a1, by, by, ¢) are given in terms of the old («;, f;) parameters as follows

afi+ B3 — Bl —aufo

4(B1 + op2) ’
(7.60)

1
a) = g(al —30’,31 —3,32 +O'Ol2) s by =

_aip; +oPiBs + Bibr +owpi o= of2— i
2(B1 + 0B2)? ’ ofa+ i’
By construction, this theory has two secondary constraints for invertible e“. Indeed,

when we calculate the integrability conditions (7.21) for this theory we find the three
equations

by =

5Note that the sum of the two connections also transforms as a connection, while the difference
transforms as a tensor under the diagonal gauge symmetries.
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1 1
5(,31 +0pr)e’f-e=0, 5(,31 +0Br)e’h-e =0, (7.61)

and
%(,31 +0B)(hf e+ f'h-e)=0. (7.62)

From (7.61) we can derive two secondary constraints, since we assumed that e was
invertible and that 8; + 0, # 0. The secondary constraints are

U =AF=0, Y =AM =0. (7.63)

After imposing these constraints, the matrix of Poisson brackets in the basis
(w, h, f,e) reduces to

(P = 561 + 0B) (8 g ) , (7.64)

where

0 Vaehe - Vae}];
o=\|Vy O —ij" . (7.65)
fe e M
- Vab - Va}lg V[ah]
Using the same techniques as previously, we find that this matrix has rank 4.

The secondary constraints are again in involution with themselves, and their
brackets with the primary constraint functions are given by

{plE], Ytpn. = Eij[aié&f vej—& cwpxe; — 0 f +E w0 X f

— (o€ +cE) e xhj — (c& +o(?—DET)- fi xh;
(7.66)

_;;:h.(geixej+2ce,-xfj+o(cz—1)fixfj)i|,
and

9[E] Vojen. = 5”[3:'511 e —E"w xe; — 0,8 h; +E w xh;

+m? ((coar + b)E — (coby —b)ET) -e; x e (7.67)
—m*((coby — b)E® + ((¢* — Dby —caby)e)) -ei x f;
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—(c& 4o =1 ) hixh;—¢g"

(ce,- X hj +o(-1)f; xhj)i|.

For generic values of the parameters these constraints increase the rank of the
total matrix of Poisson brackets, PP, by 4, leading to a 14 x 14 matrix of rank
8. This implies that there are eight second-class constraints and six first-class
constraints, leading to two degrees of freedom, those of two massive spin-2 modes
in 3 dimensions.

To summarize, demanding the presence of secondary constraints in ZDG to
remove unwanted degrees of freedom forces us to make an additional assumption
about the theory. We must assume invertibility of a linear combination of the two
dreibeine. With an additional restriction on the parameter space of the theory, the
invertibility of one of the original dreibein is sufficient to remove the Boulware-
Deser ghost. Note that only one dreibeine (or one combination of the two dreibeine)
need be assumed invertible. This suggests that we identify its square as the
“physical” metric with which distances are measured. In the case where 8,8, = 0,
this suggestion is supported by the fact that the second dreibein may be solved for in
terms of the invertible dreibein and its derivatives, leading to an equation of motion
for a single dreibein containing an infinite sum of higher derivative contributions
[11]. It would be interesting to investigate whether this is also possible in the generic
case.

7.3.4 General Zwei-Dreibein Gravity

It is natural to look for a parity violating generalisation of ZDG, just as GMG is
a parity violating version of NMG. To this end we add to the ghost-free, 8, = 0,
ZDG Lagrangian 3-form (7.44) a Lorentz—Chern—Simons (LCS) term for the spin-

connection ;4.

M 1 .
Lgzog = Lzpg(B2 = 0) + 2—:601“ (dwla + ge“b‘a)lba)l c) ) (7.68)

The introduction of the LCS term for w;“ introduces non-zero torsion for e¢;“. One
might consider adding a torsion constraint for e;“, enforced by a Lagrange multiplier
field A%, but this introduces new degrees of freedom [6]. In any case, the equations
of motion for General ZDG are such that the torsion constraint is not needed in
order to solve for the spin-connections, and there exists a scaling limit similar to

Tt is also possible to include a LCS term for w,?, in this case the expressions presented in this
subsection are only slightly modified and lead to the same conclusion.
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the NMG-limit presented in [6] where the General ZDG Lagrangian reduces to the
GMG Lagrangian (7.34).

From the point of view of our general formalism, the addition of the LCS term
adds the following non-zero components to g,; and f,

1 1
vy = fwlwlwl = . (7.69)
j2% j2%

The integrability conditions now read

elael s @) = O, (770)
2
e, (w_-e1 LGN ~eg) —0, (7.71)
I
2
elw_-e; + ('Blm e’ — a)_“) ej-ep =0, (7.72)

Invertibility of e;“ implies the same secondary constraints as in Eq. (7.53), and the
counting of degrees of freedom proceeds analogously. After a linear redefinition of
the constraints to ¢,y = ¢, + @Pw,, the matrix of Poisson brackets reduces to

00
D) =m? , 7.73
@i =1 (o)) a.73)
where
0 ~Var” Vir”
ere wre wye Bim? 1 eze wre wye Bim? 1 eze
0 = [ =V g =iy By e - v — by
V0 v - By by

(7.74)

We find that this matrix has rank 4. The Poisson brackets of the secondary
constraints with the primary ones are now:

WELth=s{m$%@j—§hwuxaj—&ﬁtaj+$%wyxaj

m m?B

2

7 m Sez) e X €2 (775)
L Bm?
2

£ - ey; Xezj:|,
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and

{9[E]. V2 ps. =5ii[(3i§w‘ —0:E)-e1; — (E" —E) - (w2 xe1j) — ;" -

+ £ (011 X 0 ;) + m? (OB1E" + aE?) - (e1; X e2)
(1.76)

—m?*((oay + B)E" —0B1E?) - (e1; X e1)

o (ﬂé“ - ﬁé”) ers x o) —m2ELgen (ery x w-j)] |
H I H
Again, the secondary constraints are in involution, and the new columns are linearly
independent from each other and the original columns. The usual analysis shows that
there are 8 second-class constraints and 6 first-class constraints. The total dimension
of the physical phase space remains 4, and so the model has the same number of
local degrees of freedom as GMG.

Conclusions

It is a remarkable fact that many of the 3D “massive gravity” models that
have been found and analysed in recent years have a CS-like formulation in
which the action is an integral over a Lagrangian 3-form constructed from
wedge products of 1-forms that include an invertible dreibein. One example
not considered here is Topologically Massive Supergravity [12].

Many of these CS-like models have an alternative formulation as a higher-
derivative extension of 3D General Relativity, and it is certainly not the case
that all such higher-derivative extensions can be recast as CS-like models.
It appears that the unitary (ghost-free) 3D massive models are also special
in this respect. Whatever the reason may be for this, it is fortunate because
the CS-like formalism is well-adapted to a Hamiltonian analysis, which we
have reviewed, and refined, extending the results of [5] for General Massive
Gravity (GMG) to include the recently proposed Zwei-Dreibein Gravity
(ZDG) [6].

This Hamiltonian analysis leads to a simple determination of the number of
local degrees of freedom, independent of any linearisation about a particular
background. This allows one to establish that a class of 3D massive gravity
models is free of the Boulware-Deser ghost that typically afflicts massive
gravity models [7]. This class includes ZDG, provided a linear combination of
the dreibeine is assumed to be invertible. Conversely, the CS-like formulation
of these models can be used as a starting point to find higher-derivative
extensions of New Massive Gravity which are guaranteed to be free of scalar
ghosts [13].

(continued)
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We have also discussed a parity violating extension of ZDG; it has some
similarities to GMG (and has a limit to GMG for a certain range of its
parameters) so it could be called “General Zwei-Dreibein Gravity” (GZDG).
We have shown that it has exactly the same number of local degrees of
freedom as GMG. We know that ZDG propagates two spin-2 modes of
equal mass in a maximally symmetric vacuum, so it seems that GZDG will
propagate two spin-2 modes of different masses, like GMG. It would be
interesting to see whether there is some limit of the parameters of GZDG that
sends one mass to infinity keeping the other fixed, because we would then
have a model similar to TMG but possibly with better behaviour in relation to
the AdS/CFT correspondence.
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Chapter 8
Cosmological Applications of Massive Gravity

Andrew J. Tolley

Abstract Models of modified gravity in the infrared are especially appealing for
their late-time cosmology. We review different models before focusing on the
cosmology of massive gravity. We start by information derived from its decoupling
limit where a self-acceleration solution can be found but suffers from strong
coupling issues in the vector modes. This feature is carried through for most
FRW self-accelerating solutions in the full theory. We emphasize the role played
by inhomogeneous solutions which reduce to a self-accelerating FRW solution
on distances comparable to our current Universe but are inhomogeneous at larger
distances. We also give an overview of cosmological solutions in extensions of
massive gravity such as bi-gravity and quasi-dilaton massive gravity.

8.1 Introduction and Motivations

Most modifications of gravity change physics at high energies. Examples include
string theory, Kaluza—Klein theories etc.... In gravity, high energy means high
curvatures which means early times. Thus string theory/Kaluza—Klein modifications
and other UV modifications of gravity have little impact on late-time cosmology.
Ironically, it is late time cosmology that we least understand and particularly
Cosmic Acceleration. In this proceedings we explore the effects of IR (low-energy)
modifications of gravity on late-time cosmology.

We start by reviewing the Dvali-Gabadadze—Porrati (DGP) model and its
cosmology. While DGP is well-known for admitting a self-acceleration branch,
it is plagued by ghost which makes that solution unphysical. Nevertheless DGP
has played a profound role in our understanding of IR modifications of gravity.
While the “normal” branch (or ghost) of DGP does not self-accelerate it exhibits
important features which remain for any modification of gravity. We then review
the features behind degravitating/screening solutions and explore extensions of DGP
including massive gravity and Cascading gravity. The rest of these proceedings are
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then dedicated to the cosmology of massive gravity. Starting with its decoupling
limit we emphasize the existence of several key features, including self-acceleration
and strong-coupling. We then present a no-go for FRW solutions in the full spatially
flat massive gravity theory on flat spacetime and different resolutions to get round
this no-go theorem. We show how massive gravity with FRW reference metric is
never an observationally consistent resolution due to the “Higuchi” problem but
explain how bi-Gravity bypasses these issues. We then present the cosmology in the
quasi-dilaton. Finally we discuss Partially Massless (Bi)Gravity and show that such
a non-linear theory cannot exist.

8.1.1 DGP: The Quintessential IR Modification
8.1.1.1 Self-Acceleration

Imagine a brane in an infinite fifth dimension with a localized Einstein—Hilbert term
on the brane [38]

M? M3
S:/d4x —g4TPlR4+/ d4x\/—g—4$M+/ d5x4/_—g575R5, 8.1)

where the terms of the left are the most irrelevant and the ones that dominate in
the UV while to the right are the most relevant operators which dominate in the IR.
This means that at low energies we feel all five dimensions. As a result, the force of
gravity in at large distances (or low-energy) falls as r—>.

At high energies, the brane kinetic term dominates which forces gravity to behave
four-dimensional. At short distances (or high-energies), one recovers the standard
Newton’s square law for the force of gravity falling as 2.

One of the main interests of DGP is that gravitons can condense to form a
condensate whose energy density sources self-acceleration [36]. This corresponds
to the self-accelerating solution of DGP that can be inferred from the Friedman

equation [36]

1
H2 FmH = 777 Pmatter (8.2)
3IM3

wherem = M 53 / Mpzl. The two different signs correspond to the two embeddings of
the brane. In the ‘—’-branch, the Universe accelerates H ~ m even in the absence
of matter pmaer = 0. The ‘unfortunate’ news is that this branch also has a ghost
[7,45, 63]. Furthermore the solution also sits at a strong coupling threshold which
makes the question of the quantum stability particularly interesting [65, 68].

A few years later, one of the motivations for Galileon models was to find self-
accelerating solutions without the Ghost issue [69]. Depending on the context,
Galileons may or may not be seen as scalar fields in their own right. They may
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arise as the brane-bedding mode of a probe brane in higher dimensions [24]. In
DGP, they arise a remnants of higher spin fields and this also happens in Cascading
gravity and massive gravity as we shall see later. In this case the Galileon symmetry
is exact even in the presence of gravity.

8.1.1.2 Screening/Self-Tuning Mechanism

As we have seen, IR modifications (like DGP) can be used to weaker the strength
of gravity at large (cosmological) distances. But this is not all. Rather than
providing a self-accelerating solution, IR modifications of gravity can lead to
screening or self/tuning mechanism whereby a large cosmological constant could be
screened resulting in a small late-time acceleration of the Universe. If this screening
happens dynamically for any value of the cosmological constant it could lead to a
degravitation mechanism [4,39-41].

Unlike for self-accelerating solutions, for a degravitating/screening solution,
gravitons can condense to form a condensate whose energy density compensate the
cosmological constant. This would mean that the Cosmological Constant could be
large but the cosmic acceleration would be small.

As we have seen, the Friedman equation in DGP (8.2) is a completely local rela-
tion between the energy density and the Hubble rate. As long as the FRW equation is
local we can never use IR modifications to resolve the OLD cosmological constant
problem.

o In higher than five dimensions, the full evolution is expected to be non-local
from a four-dimensional viewpoint

H>+ F(H) ~ STJTG(D),O. (8.3)

e In Massive gravity, the effective Einstein equation in the presence of a
Cosmological Constant is expected to be of the form

0Ln

2
Gu +m ag

= —87G Agy, (8.4)

where m is the graviton mass and .Z), the Lagrangian for the mass term. For a
self-screening graviton condensate, we expect the spacetime to be Minkowski, for
instance

A
8w = (1 +f (ﬁ)) Ny G, =0, (8.5)

in the presence of an arbitrary large Cosmological Constant A,
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0L
mzagm}::—Sn(;Agﬂv. (8.6)

This means that the cosmological constant can be reabsorbed into a redefinition of
the metric and coupling constants—and is hence a redundant operator.

Independently of its explicit realization, the idea behind degravitation [4,39—41]
is to have a dynamical relaxation, meaning a dynamical evolution towards screened
solutions. Can we modify gravity in the IR such that at low energy sources
couple more weakly to gravity? In GR, a cosmological constant is the most
relevant operator one can write down (the operator which dominates at low energy)
since 0, A = 0. Modifications of gravity such as DGP provide one step in answering
this question, but DGP is not sufficiently modified in the IR. The Friedman equation
ought to be more ‘non-local’. A possible solution would be too generalize DGP to
higher dimensions, known as Cascading Gravity [26,27]. Another possibility could
be to work straight with a theory of massive gravity.

8.1.2 IR Modifications of Gravity
8.1.2.1 Extending DGP to Higher Dimensions

In 4 4 n dimensions, the gravitational potential scales as

V(r) ~ 8.7)

F+n)

and so gravity is weaker in larger dimensions. We would like this behaviour in the
IR while maintaining the standard Newton’s square law in the UV,

V(r) ~ ; — V(r) ~ (8.8)

y(1+n)

UV, small r IR, large r .

The gravitational potential V'(r) can be expanded using the Kallen—Lehman spectral
representation

—Sr

wm:%+£ww%wﬁf, (8.9)

corresponding to the propagator' (in Fourier space)

'The tensor structure has been omitted in the expression for the propagator but can easily be
restored: all the massive modes in the spectral representation have the massive Fierz—Pauli tensor
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Z o0
Gr(k) = R /0 ds?p(s?) (8.10)

Z n 1-Z7
k?—ie kX4 m2(k)—ie’

k2 +s2—ie

8.11)

and we can interpret m? (k) as an effective mass for the graviton. For an infinite extra
dimension, Z = 0.
In higher dimensional theories, we find [27] that the mass scales as

m*(k) ~ m} (—=k*L?)" (8.12)

with @ = 1/2 in 5d, ¢ ~ O (up to logarithmical corrections) in 6d and « = 0 in
seven dimensions or more. This means that one should consider six dimensions or
more to potentially obtain degravitation.

When dealing with higher dimensions the first guess would be to consider a
3-brane embedded in six or more dimensions. The 3-brane is then an object of
codimension-2 or higher which suffers from classical UV divergences that ought to
be renormalized already at the classical level [20,44]. To avoid needing to address
these issues one can consider instead a “cascading” setup where a codimension-one
brane lies within a codimension-one brane etc. . .. In six dimensions this leads to the
following Cascading gravity theory [21,26,27,29]

M2 M3
S = / d*x /=g (7“R4+$M) +/ dx./=g5 (TSRS)
M4
+/ d6x4/—g6 (76R4) s

where the terms on the left are the most irrelevant operators which dominate in
the UV and terms to the right are the most relevant operators which dominate
in the IR. In this model gravity transitions from a four-dimensional behaviour at
short distances to a five-dimensional one and finally a six-dimensional one at large
distances. See also [28] for considerations in higher dimensions, where the same
type of behaviour occurs.

One advantage in going to seven or more dimensions is that there could be
no maximal value for the cosmological constant to be carried by the 3-brane. To
understand whether or not Cascading gravity realizes a dynamical relaxation, two
criteria should be satisfied:

Criterion I: Screening/Self-Tuning Existence of a Minkowski vacuum solution
in the presence of a cosmological constant on the 3-brane. In a six-dimensional

structure GL’:Lﬂ ~ (M) — $TuvTlap) With 7 ~ 0y — kk,/m?, while the massless modes

have the Einsteinian tensor structure Gg)v)aﬁ ~ (Mu@vp) — %nwnaﬁ).
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spacetime, tension on a 3-brane creates a deficit angle in the bulk rather than
leading to an acceleration on the brane. Similar properties were found in seven
dimensional Cascading gravity where a 3-brane lies in a 4-brane which lies in a
5-brane in 7d.

Criterion II: Dynamical Relaxation For a model to degravitate it should not
only satisfy the previous criterion but also admit a dynamical and causal process
by which one can relax to the solution found in criterion I. At the linearized
level this was shown to work in [41]. Non-linearly, this criterion is much harder
to check. As yet this has not been demonstrated non-linearly mainly due to the
complexity of the problem.

One strong motivation for considering massive gravity is as a toy-model of higher
dimensional gravity models (e.g. for cascading gravity) that potentially exhibit
degravitation.

8.1.2.2 Why Massive Gravity

In many respects, massive gravity is simpler than large extra dimensions and
cascading gravity. In massive gravity, the departure from GR is governed by
essentially a single parameter: the Graviton Mass.

The gain is that the theory is easier to solve than the higher dimensional
framework. One may worry that massive gravity looses diffeomorphism invariance.
In practice this is not so: Massive gravity can be formulated in a perfectly covariant
(or diff invariant way) at the price of introducing four Stiickelberg fields. These
fields lead to new degrees of freedom, but far less than one would have for gravity
in six or more dimensions.

In massive gravity, the Vainshtein mechanism [74] is the screening mechanism
which ensures the recovery of GR in the massless limit m — 0. This ensures
that massive gravity can be easily made to be consistent with most tests of GR
(effectively placing an upper bound on the graviton mass) without spoiling its role
as an IR modification of GR. We now turn to the formulation of massive gravity and
its cosmological applications.

8.2 Ghost-Free Massive Gravity

8.2.1 The Model

Other proceedings are dedicated to the description of massive gravity (de Rham) and
its Vainshtein Mechanism ( so we only summarize its formulation in what follows.
See [22] for a recent review. The Lagrangian for massive gravity takes the form [30]

2

L = %\/—_g(R +2m*% (g. f)) + Lu (8.13)
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where all quantities are four-dimensional, f,, is the reference metric that be
Minkowski or other [54]. The potential term has only a finite number of possible
interactions in any dimensions. In four dimensions, it may be written as

U(g, [) = U+ a3l + U, (8.14)

with [30]
WA = (X7 —[A7) (8.15)
U A = (AT =304+ 2027)) (8.16)

Ul = (AT — 6[AV[A?) + 8[| + 3[4 —6[£%), (8.17)
and

H (g, f) =8 — Vg fan. (8.18)

This model is sometimes referred to as dRGT and we keep the same terminology
to avoid confusion. The mass term can equivalently be written as characteristic
polynomials [52]

4
& = %J—_g(lelR—mZZﬂn%[X]) +Zu (8.19)

n=0

with

XI:; =V glmfocv . (8.20)

These interactions appear as very non-trivial, yet it can be shown that they are
protected by a non-renormalization theorem [33].

8.2.1.1 Cosmology of Massive Gravity: A Basic Tension

The theory of massive gravity presented previously ensures the absence of a sixth
degree of freedom in four dimensions, but it does not guarantee that all five
remaining degree are ghost free.

The representation theory of the de Sitter group gives the Higuchi bound for
massive spin 2 representations [55]

» m? = 0: Corresponds to GR and has two degrees of freedom
» 0 < m? < 2H?: Corresponds to massive gravity and has five degrees of freedom,
one of them being a ghost (the Higuchi ghost)
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s m? = 2H?: Corresponds to Partially massless gravity and has four degrees of
freedom

« m? > 2H?: Corresponds to massive gravity and has five degrees of freedom
without Higuchi ghost.

For every cosmological solution we need to check carefully whether or not the
helicity-0 mode is unitary, since this is not guaranteed a priori by the theory.
However this is not guaranteed to be a problem either, for instance in DGP the bound
is always satisfied [7, 63]. This may not obviously be relevant for a Minkowski
reference metric which breaks the de Sitter symmetry.

8.2.2 Decoupling Limit Cosmology

We can take a decoupling limit of massive gravity (and as we shall see later of bi-
gravity as well) where after diagonalization massive gravity is equivalent to a free
helicity-2 particle and a helicity-1 coupled to a helicity-0 particle. This limit sends
Mp; — 00, m — 0 while keeping the scale A3z = (Mpm?)'/? fixed [23]

3

1 A a
— v pof v E : n (n)
Z = —Ehﬂ gl“’ haﬁ + l’lﬂ WXMV [H] + le N (821)

1
n=143 Mp
with [T, = 3,9, 7 and X' [[T] ~ [T, in such a way that the trace of X would be
a total derivative. The coefficients a,, are related to the previous coefficients c,.

The helicity-0 mode interactions are true Galileons and preserve the Galileon
symmetry. Since the Galileon symmetry is EXACT, we only require that I7,, is
homogeneous and isotropic to describe FRW. The generic solution for the helicity-0
mode near x = 0 which is isotropic in this limit is [31]

T~ A(t) + B(t)x*. (8.22)
Interestingly there is no equivalent of this form in the covariant Galileon or

Horndeski theory [37, 58] because the symmetry is broken in these cases but not
in massive gravity. The resulting metric takes the form

. 1
ds* = —[1— (H + H*)x*] di* + [1 - §H2X2:| dx*

(o + RV dxr dx”, (8.23)

where the equations of motion fix A and B in (8.22) for instance for a pure

Cosmological constant source B is constant and A = —B#>.
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8.2.2.1 Self-Accelerating Solution

Considering the following background solution plus perturbation split [31]

1
T = EquAgﬁ +¢ (8.24)

1
huw = =5 His¥* v + Ko (8.25)
Ty = —Anu + Ty (8.26)

the background quantities satisfy the equations of motion for the self-accelerating
branch,

ay + 2axqas + 3a3qis = 0 (8.27)

AL (a19as + a2q3s + a3q3s) (8.28)
s = 3 Mle My, ds das) »
where we see an acceleration Hj; > 0 even in the absence of a cosmological
constant, A = 0. Unlike for DGP, this self-accelerating solution admits no ghost
for a, + 3aszqqs > 0

6HZ Mp o,
—a (a2 + 3azqqs) 0@ + M—Pl)(" Tu. (8.29)

2 1 v A 8
92( J = __2)( éo;w Xotﬂ +
3

A remarkable feature is worth pointing out at this level: the fluctuation ¢ does not
directly couple to matter. As a result there is no need for a Vainshtein mechanism to
screen to field [31].

8.2.2.2 Screening/Self-Tuning (Degravitating) branch

Another background solution to classical equations of motion in the decoupling
limit (8.21) is

_ 1 3.2
T = EquA:,,x + ¢ (8.30)
Ry =04 xu0 (8.31)
Tuy = —ANuw + T, (8.32)

where we obtain a Minkowski solution for any value of the cosmological constant
!!! Perturbations are stable and present the Vainshtein mechanism

1 A 3 1
3(2) — __ lwgaﬁ ” —o0 _ HY —+ wy v 8.33
= 2)( ;LvXﬂ+2¢ ¢+MP1 (x &™) T ( )
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however the scale of the strong coupling ends up being too large for being
observationally viable. Nevertheless this still provides a proof of principle for how
one could evade Weinberg’s no-go theorem.

8.2.2.3 DL Cosmology Summary

More generally, the decoupling limit implies the existence of isotropic and inho-
mogeneous cosmological solutions for massive gravity which for suitable range of
parameters are free from the Higuchi bound (no ghost in helicity-0 sector).

The absence of Higuchi bound opens up possibilities for background Vainshtein
effects where the mass can be as small as desired leading to consistent results with
the expansion history at early times.

All the solutions presented so far are in the decoupling limit. They will all map
to solutions in the full non-linear theory but may be hard to find.

8.3 Cosmology of Massive Gravity

8.3.1 A No-Go and Ways Out

The simplest model (ARGT massive gravity in Minkowski) does not support spa-
tially flat (or closed) cosmological solutions which are FRW meaning homogeneous
and isotropic.

The argument is simple: as in GR we have a Friedman equation and a Raychaud-
huri equation. In GR, the second follows from the first by diff invariance. In massive
gravity diff invariance is broken and so the would-be Raychaudhuri equation no
longer follows from the first equation. The consistency of both equations imposes a
condition on the scale factor [10].

Indeed, assuming an FRW metric,

ds?> = —N2(t) dt* + a(t)* dx>, (8.34)
the lagrangian for massive gravity becomes

-2
L =3M3 (—% —m*(a® —a®) + m*NQ2Na® —3a°> + a)) . (8.35)

The constraint imposed on the scale factor by consistency of the would be Friedman
and Raychaudhuri equation is then [10]

m?9, (a3 — az) =0, (8.36)

which is clearly uninteresting.
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To bypass this no-go several options can and have been considered:

¢ Resolution I: Accept Inhomogeneities

The most natural and certainly the most physical resolution to the previous no-go
(although also probably the hardest to implement from a purely technical aspect)
is to accept the existence of inhomogeneities [10]. While inhomogeneities may
be important at large distances (beyond our observable Universe—which is
the picture modern cosmology has in mind), the Vainshtein mechanism would
guarantee that the inhomogeneities are unobservable at short distance scales
(within the observable Universe) and before late times. The inhomogeneities
would only appear on a scale set by the graviton mass (which is usually assumed
to be close to the current Hubble parameter). Since observational constraints on
inhomogeneities at the current Hubble scale are actually very weak, the presence
of these inhomogeneities would thus have little observational effects and yet
would resolve the previous no-go.

Moreover, inhomogeneities and anisotropies can be hidden inside the
Stiickelberg fields which do not directly couple to matter but only indirectly
though the Planck scale. Inhomogeneities in the Stiickelberg fields are thus
observationally very weak.

To summarize, the metric could even remain perfectly homogeneous and
isotropic at the price of introducing some inhomogeneities in the Stiickelberg
fields that would show up at the level of cosmological perturbations but could
easily be small [15,17,18,46,50,51,60,62,72,76,77,81].

* Resolution II: Modify the Assumptions
The previous no-go had several underlying assumptions which can be bypassed
to allow for FRW solutions:

— Considering an open Universe rather than a flat or closed one allow for FRW
solutions [49] which are however unstable [75].

— Consider a de Sitter or FRW reference metric, however this also leads to
instabilities [42] as we shall see later. (See also [25] for the decoupling limit
of massive gravity on de Sitter).

— Make the reference metric dynamical, leading to bi-gravity [53]. As we shall
see later, this could prevent the instabilities [2,5,8,61,78,79].

* Resolution III: Extension or Modification of the Theory
Other more significant modifications of the theory allow for FRW solutions:

— Quasi-Dilaton massive gravity which admits self-accelerating solutions but
which appear to be unstable [11, 13, 19]

— Generalized Quasi-Dilaton massive gravity which admits stable self-
accelerating solutions [14, 16,67]

— Lorentz-violating massive gravity [9]

— Varying mass gravity [19, 64, 80]

— Multi-vierbeins gravity [71]
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— Extended Massive gravity [3,57]
— Non-local Massive gravity [59, 66]

In what follows we look at a few of these alternatives and show how massive gravity
with FRW reference metric allows for an FRW solution but inevitably suffers from
an Higuchi ghost at early times.

8.3.1.1 From Acceleration to Decceleration
Consider the spacetime metric
ds?> = —=N%(t)dt*> + a*(¢) dx*, (8.37)
and the reference metric,
0,0 0,¢" fop dx" dx” = — (¢°) dr + b2(¢") dx>. (8.38)

For instance if the reference metric was de Sitter it could be written as previously
with b(¢?) = exp (quﬁo).

Before proceeding, let us address at this point what happens when the metric
transits from an acceleration to a decceleration. In that case ¢ changes sign and
one of the eigenvalues of /g~! f vanishes. To better understand the physics at that
point, let us move onto the vierbein formulation which can accommodate a change
of sign.

The vierbein formulation is analytic in the Stiickelberg fields ¢¢ [6,48,56] and
the mass term takes the form

det e + A5 £, ] . (8.39)

There is no singularity in the formulation as long as it is possible to solve the
following equation for the Lorentz Stiickelberg fields A (A nAT =)

e Al 09,67 =0, (8.40)
which corresponds to six equations for six unknown Lorentz transformations. The
main point to notice is that even when ¢° = 0, one can solve for Ay = ... 8¢..
This point originally made in [73] was later explained in [47].

8.3.1.2 Dressed Mass and Partially Massless

Using the ansate (8.37) and (8.38) into the Lagrangian for massive gravity, we obtain
the following equations:
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,3n+1 b n+1 H Hf
(Z emla) ) (5 ) 40
3

3m?B, H\" 0
-2t () * 5 6

where Hy = b'(¢%)/ $#°b(¢°) is the effective Hubble parameter of the FRW
reference metric and H = d/a N . The normal branch solution of (8.41) is given by

b H
-—=—. (8.43)
a Hf

The effective mass (governing the kinetics of the helicity-0 mode) is given by [42]

2 2
i) = 2 [ﬂl + ZﬂzHi + ﬂ3H ] , (8.44)
f f

and the coefficient of the kinetic term for the helicity-0 mode is
Lheticity—o < —m>(H) (m*(H) — 2H?) (97) , (8.45)
so the generalized Higuchi bound is
m2(H) > 2H>. (8.46)

If we make the special choice fi = f3 = O and f = 1 and m* = 2H;
then the effective mass term is simplify m?(H) = 2H? and the kinetic term
vanishes regardless of the source [25]. This corresponds to partially massless case.
Unfortunately this theory keeps some interactions between the helicity-0 mode
and the vectors, and the theory is thus infinitely strongly coupled. This happens in
massive gravity as in bi-gravity.

8.3.1.3 Higuchi Versus Vainshtein

As seen before, considering massive gravity on a FRW reference metric leads to
the effective mass term (8.44) and the Higuchi bound imposes the relation (8.46).
In parallel, observations and the screening of the Helicity-0 mode impose an upper
bound on the effective graviton mass [42]

m2

2M32

2 3
|:3,31 il +3,32H + B3 i

72 } < 3H?. (8.47)
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As result to satisfy both the Higuchi bound and the Vainshtein requirements one
should satisfy

3. H H?> 3 H? H? H3
|:2'31H_+3'32H)% +§,33H—?:| |:3,31—f+3,32H2 ,33H—;:|, (8.48)

which is impossible to satisfy. We shall see in what follows how bi-gravity resolves
this tension.

8.3.2 Extensions
8.3.2.1 Bi-gravity
We now consider the theory of bi-gravity [53],

£ = %\/_g[Mle lg] - ZZM/ m]

n=0
+3VTMIRIS1+ Z (8.49)

The analogue of the Higuchi bound in that case is [43]

Hp/Mg\?
22 x |1+ (L) > 2H?. (8.50)
H/Mp
We recover the massive gravity bound by taking the limit M y — oo, while keeping
Mp and H finite. In that massive gravity limit it was not possible to obtain
Hy H

—_— > — (8.51)
My~ Mp

but in bi-gravity any solution which satisfies (8.51) at early times automatically
satisfies the Higuchi bound and is thus free from this ghost.
The resulting Friedman equations are then

3

3m?B, H\"
3M§1 |:,0( )+Z( —oi ( ) ] (8.52)

3 n—3
1 3m?Buy ((H
H? = — . 8.53
7 3m? [; (3—n)n! (Hf) (8.53)
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When Hy /M > H/Mp these equations can be used to solve for m? and Hy. In
the region where B, # 0, the resulting bound simplifies to

3H? > 2H? (8.54)
which is always satisfied ! As a result the tension between the stability of the theory

and the observations is resolved in bi-gravity [43].
As an example, one can set S, = B3 = 0 and B; = 2MJ leading to

1 12m*M

which has been shown to be observationally viable, [1]. Moreover in that case the
stability bound reduces to [43]

! 12M’2’ H* 0 8.56
— + - >0, .
w2 g (8.56)

which is also always satisfied.

8.3.2.2 Decoupling Limit of Bi-gravity

In massive gravity (without introducing the Stiickelberg fields), the mass term
breaks a single copy of the local diffeomorphism group down to a global Lorentz

group

Diff(M) —— Global Lorentz. (8.57)

In Bi-gravity (without introducing the Stiickelberg fields), the mass term (or inter-
action term between the two metrics) breaks two copies of local diffeomorphism
group down to a single copy local diffeomorphism group

Diff(M) x Diff(M) —  Diff(M)diagonal - (8.58)
As a result bi-gravity is also best understood with the Stiickelberg fields for

the broken diffs which in turn lead to a Galileon field in its decoupling limit—
dominating the interactions of the bi-gravity model.”

The Stiickelberg fields are as necessary or unnecessary in bi-gravity than they are in massive
gravity. The physics is easier to follow when the Stiickelberg fields are introduced but even with
the Stiickelberg fields, both theories are still strongly coupled at the scale A3 = (Mp;m?)'/3 or the
equivalent in terms of M.
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In bi-gravity we can work with the following metrics:

Dynamical Metric I: g, (x)

Dynamical Metric Il : F,, = fap($)3,03,¢%, (8.59)

where to start with we can express the Stiickelberg fields in terms of the helicity-0
mode (and omitting for now the helicity-1 mode)

¢t =x" + 07 (x). (8.60)

1
m?*Mp,
Denoting by #,, the fluctuations of the metric g,,, and by v,,, the fluctuations of the
metric f,,, then the decoupling limit of bi-gravity is [43] (omitting the helicity-1
modes)

1 ~ A3
Shelicity—2/0 = / d4x|:— Zh""&ﬁﬂh o — —V’w@mﬂvaﬂ + = 5 By (x) X1

+A7§ﬁ—‘;‘hw<x)w“vm b+ A7) (et + 1) YW} ,
(8.61)
with [T, = 9,0,/ A} and
I B A\
Xm = — Z e g (n+17) P (8.62)

n—1

Y= 2(4—;1)'(;1—1)1 e (n+ )T 863

As aresult, the two massless spin-two fields coupled to a Galileon in a highly non-
minimal way. Now including the helicity-1 modes, the decoupling limit of bi-gravity
and massive gravity gives the following helicity-1/helicity-0 interactions [70]

Shelicity—1/0
_ _855,;';;’ (2G“(8 + 1) w88 + (5 + )46 + )20 + 8¢ wgwf,]) ,

with

oo A 7 At
— _ a _ b
Wab :/ due e 1 G rpre (8.64)
0
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Gap = DaBy— 0Ba = 00c (§+ 1) + 6+ M. 869

where B, is the helicity-1 mode. Since partially massless gravity (resp. bi-gravity)
should only have 4 (resp. 7) propagating degrees of freedom—since the helicity-0
must be pure gauge—and since from the above action we see that the helicity-0
mode always interact with the helicity-1 modes in bi-gravity and in massive gravity,
we can conclude that there is no partially massless theory of gravity or bi-gravity
[32,43].

8.3.2.3 Galileon Duality

There are actually two (completely equivalent) ways to introduce the Stiickelberg
fields. Rather than the procedure (8.59)

Dynamical Metric I : &uv(x)
Dynamical Metric IT : Fuo = fap(9)0,040,¢% (8.66)
Relations between Coordinates : ¥4 = ¢4(x) = x4 + 047(x)

we can of course use instead

Dynamical Metric I : GAB()E) =gu(Z2)04Z"0p 2"
Dynamical Metric II : Sap(X) (8.67)
Relations between Coordinates : x* = Z*(X) = X* + 0" p(X)

This leads to a remarkable property. For every Galileon field 7 (x) one can define a
dual Galileon field via the implicit field-dependent coordinate transformation [34]

= ¢A(x) = x* + 0 (x) (8.68)
Xt = ZHF) = " + 0 p(F). (8.69)

Considers a Galileon operator in D dimensions
() = wee(IT)" ' yP+1 (8.70)
Then every Galileon field Lagrangian in D dimensions

D+1

L) =) enuln) (8.71)
n=2

admits a dual formulation as a Galileon
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D+1
L) =Y pua(p) (8.72)
n=2
with distinct coefficients [34]
D+1
! k. kd—k+1)
pn—nk;( 1) s Ty ——— (8.73)

The coupling to other matter fields transforms in a local way under this duality, [35].
This could have interesting consequences for understanding the features associ-
ated with the strong coupling and the Vainshtein mechanism in this types of theories.

8.3.2.4 Quasi-Dilaton Massive Gravity

To finish, let us present another extension of massive gravity known as quasi-dilaton.
The same arguments found previously can be applied to generic cosmological
solutions on quasi-dilaton massive gravity [12]

4 M1>21 @ m’ C
SE=/dx /=g - R—Wg“ 8M08V0—T%[K] + L (v, V)¢ s
Pl
(8.74)

with

Y= 88— oM gha g ad, . (8.75)

This model avoids the no-FRW argument formulated previously thanks to the quasi-
dilaton field 0. Generically one finds a non-zero kinetic term for the helicity-0 mode,
showing that the general cosmological solutions are healthy.

A generalized version of the quasi-dilaton was shown to provide stable self-
accelerating solutions [14,16]. For the generalized quasi-dilaton, the action takes the
same form as in (8.74) with the expression (8.75) for with the generalized expression

for the tensor % £,
L= 8 — &M fgnady $ad, 0 (8.76)

and

Fuw = Ny — %e‘z"/MP‘B,LUBVU. (8.77)
3
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Of course this theory can be generalized to arbitrary reference metrics 1, — fuv,
but it makes more physical sense to keep Minkowski as the reference metric.
Effectively this corresponds to a theory of massive gravity with a dynamical mass
and couplings and a dynamical reference metric governed by the quasi-dilaton scalar
field. The self-accelerating solutions in that generalized theory were shown to be
free of instabilities, making them particularly appealing [14, 16].

8.4 Summary

In these proceedings we have first established that massive gravity is a useful
toy model to understand higher dimensional theories. They potentially exhibit
both self-acceleration and self-tuning (degravitating) solutions. FRW solutions
(fully homogeneous and isotropic) cannot directly emerge from massive gravity.
Instead one can consider solutions which are inhomogeneous beyond the observable
Universe, which is actually closer to natural concepts of modern cosmology. Inho-
mogeneous or anisotropic solutions (or both simultaneously) do exist in massive
gravity. Not all such solutions are stable but some are.

We have shown how for Partially Massless gravity, the Higuchi bound was
automatically satisfied for any choice of matter. Unfortunately the decoupling limit
makes it easy to see the absence of partially massless (bi)gravity.

For massive gravity on a fixed FRW reference metric, the bound is in conflict
with observations (it would effectively impose the mass to be much larger than the
Hubble parameter at early time which would be ruled out observationally).

For bi-gravity on the other hand the Higuchi is almost always satisfied regardless
of the choice of matter as long as H <« Hy, where H is the Hubble parameter of
the metric to which matter couples to.

Finally we have shown how to extend massive graviton to include a quasi-dilaton
scalar field which admits stable self-accelerating solutions.

Needless to say this is still very early days for the cosmology in massive
gravity and bi-gravity and the amount of different subclasses of models considered
illustrates how rich and yet complex the cosmology of massive (bi-)gravity is.
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Chapter 9
Higher-Spin Theory and Space-Time
Metamorphoses

MLA. Vasiliev

Abstract Introductory lectures on higher-spin gauge theory given at seventh
Aegean workshop on non-Einstein theories of gravity. The emphasis is on quali-
tative features of the higher-spin gauge theory and peculiarities of its space-time
interpretation. In particular, it is explained that Riemannian geometry cannot play a
fundamental role in the higher-spin gauge theory. The higher-spin symmetries are
argued to occur at ultra high energy scales beyond the Planck scale. This suggests
that the higher-spin gauge theory can help to understand Quantum Gravity. Various
types of higher-spin dualities are briefly discussed.

9.1 Introduction

Higher-spin (HS) gauge theories form a class of theories exhibiting infinite-
dimensional symmetries which go beyond conventional lower-spin symmetries.
The primary goal of these lectures is to focus on qualitative aspects of HS gauge
theories avoiding technical details as much as possible. The emphasis is on possible
consequences of HS symmetries for our understanding of space-time. It will be
explained in particular that in the setup of HS gauge theories the usual concepts of
Riemannian geometry such as metric, local event and space-time dimension cannot
play a fundamental role. The HS symmetries will be argued to occur at ultra high
energy scales beyond the Planck scale. Having a potential to describe transPlanckian
energies, HS gauge theory can shed light on the problem of Quantum Gravity.
Various aspects of HS dualities including AdS/CFT and duality with quantum
mechanics are briefly discussed.
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9.2 Lower-Spin Global Symmetries

The fundamental example of a lower-spin symmetry is provided by the Poincaré
symmetry which underlies relativistic theories. It acts on coordinates of Minkowski
space-time as §x¢ = € + €, x” where € and € are parameters of infinitesimal
translations and Lorentz rotations, respectively. One can write

x4 = [T, xu] P T =¢€" Pu + eahMab s (91)
where
d ad d
P, = , My = Xg— — Xp—
0xd b= axb b 0xd

are the generators of the Poincaré algebra iso(d — 1, 1) obeying the commutation
relations

[Maha PL] = Panbc - anac s
[Mahv Mcd] = Madnhc - Mbdnac - acllbd + Mbcnad 5
[Pu ’ Pb] = 0 )

where 7,5, is the Minkowski metric.
The Poincaré algebra admits the (anti-) de Sitter deformation / with

[Past] = AMubv
which describes symmetries of either anti-de Sitter spaceat A < 0 (I = o(d —1,2))
or de Sitter space at A > 0 (I = o(d,1)). At A = 0,/ = iso(d — 1, 1) describes
the symmetries of Minkowski space.

Supersymmetry is the extension of the Poincaré symmetry by supergenerators
0 4 obeying relations

104.08} = vagPu.

1
My, Q] = 0un® 03, Oap = Z[)’a . Vbl

where A, B = 1,2, 3, 4 are the Majorana spinor indices in four dimensions. Note
that, being fermions, supergenerators obey anticommutation relations.
Internal symmetry generators 7; are space-time invariant

[T'l'sPa]:Ov [TisMab]:O'
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In particular, the symmetries of the Standard Model 7; € su(3) x su(2) x u(1) are
of this type.

To complete the list of symmetries that play a role in conventional lower-
spin theories it remains to mention conformal (super)symmetries. These will be
discussed in some more detail below.

9.3 Local Symmetries

A useful viewpoint is that any global symmetry is the remnant of a local symmetry
with parameters like &9(x), % (x), e%(x), &' (x) being arbitrary functions of space-
time coordinates. Local symmetries are symmetries of the full theory. Global
symmetries are symmetries of some its particular solution.

For example, the infinitesimal diffeomorphisms §x* = &“(x) are symmetries of
GR while the global symmetries with £*(x) = €% + €%,x” are symmetries of the
Minkowski solution g,, = 14 of the Einstein equations.

Let

SzﬁﬂLwaxmmm“»

be invariant under a global symmetry g with parameters €” (n = a,«, 1, ...). Letting
the symmetry parameters be arbitrary functions of space-time coordinates, " —
£"(x), we obtain that

e R

since 85 should be zero at d,e"(x) = 0. J(¢) are conserved currents since
9, J(¢) = 0 by virtue of the field equations §S = 0.

The local symmetry is achieved with the aid of gauge fields A] that have the
transformation law

SA = 046" + ...,

where the ellipsis denotes possible field-dependent terms. The following modifica-
tion of the action

S—S+AS+..., AS=/ T4 (@) Al (x)
Md

preserves local symmetry in the lowest order in interactions. The term AS describes
the so-called Noether current interactions.

There is, however, a subtlety if ¢(x) were themselves gauge fields with gauge
parameters ¢’. In this case it may happen that J¢(¢) is not invariant under the &’
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symmetry. Hence the Noether current interaction for several gauge fields may be
obstructed by gauge symmetries.

Localization of various types of lower-spin symmetries leads to important classes
of gauge field theories.

9.3.1 Yang-Mills Fields

The Yang—Mills theory is responsible for the localization of internal symmetries.
For a Lie algebra [ with generators 7;, Yang-Mills fields A’ (x) and symmetry
parameters &' are valued in /

Aa(x) = AT, e(x) = (0T .
The Yang—Mills gauge transformation is
844(x) = Dat(x),
where
Dye(x) = dag(x) + [Aa(x) . &(x)]

is the covariant derivative. The commutator of the covariant derivatives gives the
Yang—Mills curvature

[Da, Dp] = Rap Rayp = 0, A4p — 0p Ay + [Aa, Ap],
which has the transformation law
5Ra;, = [Rah, 8] .

Needless to say that the Yang—Mills fields play a prominent role in the modern
theory of non-gravitational fundamental interactions, i.e. the Standard Model.

9.3.2 Einstein—Cartan Gravity and Supergravity

Localization of the Poincaré symmetry leads to the Cartan formulation of Einstein
gravity. The Yang-Mills gauge fields A” = (e,*, »,*’) associated with the Poincaré
algebra include the frame field (vielbein) e, and the Lorentz connection w,. The
frame field e, relates base indices v with the fiber ones a. (In Minkowski space in
Cartesian coordinates, where e,“ = §¢, the two types of indices can be identified.)
The gauge transformations have the form
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8e, (x) = 3,6%(x) + w,“p (x)e” (x) — e%p(x)e,” (x) + Ae,”
Swu"”(x) = 3\,8“”()6) + w,“. (x)e"b (x) — ,’, (x)e“(x) + Aw,® .

Here Ae,® and Aw,® denote some corrections to the Yang—-Mills transformation
law, which are proportional to the curvatures

R, = aueu"+w\,”beﬂb—(v < W), R\,M“b = auwu“b+wV“CwMCb—(v < ).

The zero-torsion constraint R,,“ = 0 expresses the Lorentz connection in terms
of the frame field and its derivatives: w = w(e, de). In this case R,,”° equals to
the Riemann tensor. Recall that the relation of the metric with the frame field is
— L, a, b
8o = €y €y Nab-
Localization of supersymmetry extends the gravitational fields by the spin-3/2
gauge field gravitino v, with the gauge transformation law

SV = Dyeg + ... .

Gauge theories of this type are called supergravities, constituting a very interesting
class of extensions of the theory of gravity. (See e.g. [1] and references therein.
Note that the construction of supergravity in terms of the gauge fields of the
supersymmetry algebra was suggested in [2].)

9.3.3 Spontaneous Symmetry Breaking

Generally, one should distinguish between the symmetry G of some equations and a
symmetry G of some their particular solution. For example, for the case of the Higgs
field H'(x) = H} +h'(x), the unbroken part G C G is a residual symmetry of H{:
G = SU(3) x U(1) in the Standard Model. For H/ having a non-zero dimension
[H!] = cm™ ~ GeV, spontaneous symmetry breaking is a low-energy effect. In
other words, the symmetry restores at £ > H,.

In the unbroken regime, the gauge fields associated with the usual lower-spin
symmetries describe massless particles of spin one 4, spin 3/2 ¥, , and spin two
e, w,%.

9.4 General Properties of HS Theory

The key question is whether it is possible to go to larger HS symmetries. If yes,
what are HS symmetries and HS counterparts of the lower-spin theories including
GR? What are physical motivations for their study and possible outputs?
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9.4.1 Fronsdal Fields

As shown by Fronsdal [3], all symmetric massless HS fields are gauge fields. They
are described by rank-s symmetric tensors ¢,, . ,, obeying the double tracelessness
condition ¢”,# ;. . = 0. The gauge transformation is

8P, (X) = Oy vy (X) 9.2)
where the gauge parameter is symmetric and traceless
e vy vy = 0. (9.3)
The field equations have the form
Py (X) =0,
where the Ricci-like tensor %, .., (x) is

s(s—1)
2

Ryy..vs(X) = Oy, (X) = 500, 0" Py vy (X) + Ay vy " s w0 (X) -

The gauge invariant Fronsdal action is

§= /Md (%¢”"""~“%w...us(¢) - %s(s - 1)¢MV“V3---”s£@ppy3mus(¢)).

9.4.2 No-Go and the Role of (A)dS

In the 1960s of the last century it was argued by Weinberg [4] and Coleman and
Mandula [5] that HS symmetries cannot be realized in a nontrivial local field theory
in Minkowski space. In the seventies it was shown by Aragone and Deser [6] that HS
gauge symmetries are incompatible with GR within an expansion over Minkowski
space. The general belief was that nontrivial interactions of massless HS fields
cannot be introduced.

Nevertheless, in the 1980s, it was shown by light-cone [7, 8] and covariant
methods [9, 10] that some non-gravitational HS interactions can be constructed at
least at the cubic order. These results suggested that some consistent HS theory
should exist.

The further progress resulted from the observation that the consistent formulation
of the HS gauge theory requires a curved background instead of the flat Minkowski.
The most symmetric curved cousins of the flat Minkowski space are de Sitter and
anti-de Sitter spaces. That HS theories admit consistent interactions including the
gravitational interaction in (A)dS background was shown in [11, 12]. In agreement
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with the no-go statements, the limit of zero cosmological constant A — 0 turns
out to be singular so that, indeed, HS theories with unbroken HS symmetries do not
exist in the Minkowski background.

9.4.3 HS Symmetries Versus Riemannian Geometry

The HS symmetries and the space-time symmetries do not commute simply because
HS generators are higher-rank Lorentz tensors

[Ta , THS] — THS , [Tab , THS] — THS )

However, the same commutation relations imply that HS generators transform the
space-time generators to the HS generators. Since th