
Standardized Multi-protocol Data Management

for Grid and Cloud GridRPC Frameworks

Yves Caniou1, Hadrien Croubois2, and Gaël Le Mahec3

1 Université de Lyon, JFLI CNRS, Japan
Yves.Caniou@ens-lyon.fr

2 Université de Lyon, ÉNS Lyon
Hadrien.Croubois@ens-lyon.fr

3 Université de Picardie Jules Verne, MIS Laboratory, France
Gael.Le.Mahec@u-picardie.fr

Abstract. GridRPC is an international standard of the Open Grid Fo-
rum defining an API designed to allow applications to be submitted
in a seamless way on large scale, heterogeneous and geographically dis-
tributed computing platforms. First versions of the standard did not take
into account any data management feature. Data were parameters of the
Remote Procedure calls, without any possibility to prefetch them, to use
persistence, replication, external sources, etc. , and making GridRPC
codes middleware dependent. The data extension of the standard intro-
duced a short set of functions and data structures to complete the API
with simple but powerful data management features. In this paper, we
present a modular and extensible implementation of both APIs, which
needs only a few developments to be usable with any middleware relying
on RPC, and which provides access to numerous and easy to extend pro-
tocols and data middleware to access data. Gaining data management
functions, it introduces interesting potentiality for optimization that such
an approach would provide to large scale applications.

1 Introduction

Many applications use RPC-like mechanisms to distribute computations over
nodes of clusters and supercomputers composing some distributed systems like
a grid, a cloud, or both (now referred as sky computing). Combined with con-
nections to huge databases, they more or less transparently provide scientists
with the possibility to focus on their core thematic, giving them more time to
deal with data analysis, without dealing with the underlying complexity of all
the different mechanisms involved into job and data management. More lately
applications even directly couple analysis, graphical representations and such,
making platform management only a part of their project, whose actions are gen-
erally available through some web site. And surprisingly, when considering a new
area, a new platform, new independent pieces of software are often developed
instead of using previous work, software or standardized APIs.

The Open Grid Forum standard defining the GridRPC paradigm, namely
Remote Procedure Call over the Grid, has been published in 2007, benefiting

A. Hameurlain et al. (Eds.): Globe 2014, LNCS 8648, pp. 61–72, 2014.
c© Springer International Publishing Switzerland 2014



62 Y. Caniou, H. Croubois, and G. Le Mahec

from 10 years of experience by their respective authors. Simple and easy to use,
it has been completed with a standardized data extension only recently. This
extension to the native API proposes to expert users to easily handle remote data
and to optimize distributed applications with prefetch, migration or replication
of possibly distant data using multiple asynchronous transfers together with
remote procedure calls on available distributed computing resources.

Based on preliminary experiments[1,5], applications also benefit from multi-
administration sites resources managed by multi-middleware (inherent to inter-
operability provided with the implementation of the API data extension) and
target not only traditional Grids but any distributed platform possibly composed
of resources from the Cloud [6].

In an attempt to simplify and develop interoperability, and to unify previous
works, we propose here a library managing both GridRPC and GridRPC Data
Management APIs. We present an overview of the project architecture, designed
with a very modular prospect, relying on middleware and data manager modules
but also bringing inner data manager capabilities and transfer protocols. Having
in mind not to go too much into details, we highlight here some of its features,
such as the asynchronous requests management and the transfer management,
which involves mapping and scheduling aspects: there is interesting potentiality
for optimization at the data operation level, with scheduling to reduce the com-
pletion time of a data operation when several sources and several destinations
are provided but not necessarily interconnected; and at the workflow/dataflow
level to reduce any [sub part of an] application graph. At the moment, the library
provides modules for the grid middleware Diet and Ninf , and data manager
modules for projects and protocols like Dagda, iRods, webdav (used for web-
based repositories like dropbox, owncloud), ftp and rsync.

The rest of the paper is organized as follows: next section explains the moti-
vations behind the GridRPC DM API and some related work. Section 3 presents
the global design of the implementation, the different issues that the API leads
to and their solution. Section 4 presents some validation experiments and after
explaining some future work directions, we conclude in Section 6.

2 State of the Art

2.1 The GridRPC Data Management API, Summary

The GridRPC DM API [2] introduces the concept of data handle and with it,
several GridRPC data types to provide standardized information, for example
lists of input and output URIs to give the locations of respectively source and
destination [remote] data, with the according protocols to access it at the consid-
ered location). It also defines mode managements for a client to characterize the
persistence of the data in the system, etc. All actions (initializing, transferring,
waiting for completion of asynchronous transfers, etc.) are provided with only
12 functions.

This standard answers at the API level to issues related to feasibility of
the computation by decoupling the data from its locations and from protocols



Standardized Data Management for GridRPC Framework 63

to access it; to performance using different sources and protocols to access a
remote data, providing explicit data management with the possibility to prefetch
and to migrate data, as well as the possibility to rely on some smart middleware
to transparently handle data management; and to extensibility by providing
containers of data. It also solves portability, making GridRPC codes portable
from one middleware to another.

2.2 Related Work

Similar works can address some data management issues in the GridRPC but
only separately and without integration into remote procedure call: one can store
data on a distributed file system like GlusterFS1 or GFarm [9] to deal with auto-
matic replication; OmniRPC introduced omniStorage [7] as a Data Management
layer relying on several Data Managers such as GFarm and Bittorrent. It aims
to provide data sharing patterns (worker to worker, broadcast and all-exchange)
to optimize communications between a set of resources, but needs knowledge on
the topology and middleware deployment to be useful; Diet also introduced its
own data managers (DTM and Dagda [3,4]), which focus on both user explicit
data management and persistence of data across the resources, with transparent
migrations and replications.

At a higher level, Stork [8] is a batch scheduler specialized in data placement
and data movement. If the transfer protocol specified in the job description file
fails for some reason, Stork can automatically switch to any alternative protocol
available between the same source and the destination hosts and complete the
transfer; Galaxy2 is a web interface written in python allowing on-line design
of task workflows. Galaxy focuses mainly on bioinformatics but could be used
for all type of applications relying on workflow execution. By default Galaxy
is configured to execute application on its host server but can use the OGF
DRMAA API to distribute computations on remote servers. Data can only be
transferred as files. On the contrary of classical RPC, there is no simple way to
upload data directly on the application memory address space. Moreover, the
GridRPC API modularity allows to combine simplicity of such data management
systems and tunability by choosing where and when data are transfered.

By using standardized GridRPC code with our implementation and its corre-
sponding modules, it should be possible to benefit at a upper layer from previ-
ous works, gaining in portability and interoperability with middleware and data
managers, which in turn provides access to a potentially larger set of resources
and architectures.

3 Implementation: Architecture and Features

We present in this section the system underlying our implementation of the
GridRPC and GridRPC Data Management standards. We highlight the features

1 http://www.gluster.org/
2 http://galaxyproject.org/

http://www.gluster.org/
http://galaxyproject.org/


64 Y. Caniou, H. Croubois, and G. Le Mahec

of the library, its data management capabilities as well as scheduling possibilities
between and for each data operation, i.e., the set of all transfers requested
between the URIs provided as sources and destinations for the same data.

The library is developed in C++ and C, using internally boost, and cmake to
build the project. It is freely available from a sourceforge repository:
http://sourceforge.net/projects/gridrpcdm/.

3.1 Modularity of the Solution

The proposed implementation can be viewed as a meta-implementation of the
APIs (see Figure 1) since it provides the two GridRPC APIs, adding some seam-
less mechanisms for performance (scheduling etc.) in a middleware and protocol
“agnostic” manner. The library does not interact directly with the middleware
nor the data storage servers. It proposes a fully interoperable API for any mid-
dleware and protocol/data manager with only very few specific developments of
simple modules. The module developers do not have to take care about which
data transfer protocol is available, like the data manager module developpers do
not have to care about which middleware is used to call remote procedures. To
do so, different interfaces are provided by the library:

– The client application interface: the external client API. Clients can use the
API directly without any knowledge about the underlying GridRPC middle-
ware. However, by adding a prefix to the service name, users can force the li-
brary to use a specific middleware (e.g., "DIET:matmul" and "Ninf:matmul"

select respectively Diet and Ninf-G for the "matmul" service).
– The Services interface: it is a subset of the client API with some additional

utility functions facilitating servers conversions from standard GridRPC
servers to GridRPC Data Management servers.

– The Modules interface: the library defines a set of functions that should be
exposed by the module to extend the library capacities.

GridRPC middlewares 
modules

Data managers modules

GridRPC Data Management Library

grpc_initialize(…)
grpc_function_handle_default(…)
grpc_function_handle_init(…)
grpc_get_handle(…)
grpc_call(…)
...

grpc_data_init(…)
grpc_data_memory_mapping_set(…)
grpc_data_memory_mapping_get(…)
grpc_data_container_set(…)
...

DIET module Ninf module

...Local 
module

http module ftp module

DAGDA 
module

...

DIET module

grpc_initialize(…)
...

ftp module

grpc_data_init_in(…)
grpc_data_init_out(…)
...

const char*
   get_name()

grpc_remote_transfer(…)

const char**
   get_protocols()

Fig. 1. A very modular implementation

http://sourceforge.net/projects/gridrpcdm/


Standardized Data Management for GridRPC Framework 65

Integrating a new Middleware requires to fulfill a set of 10 main functions
and one optional. Most of them are just type conversions functions from the ex-
isting middleware data-type to the new GridRPC data-types. The most complex
function of a middleware module is grpc remote transfer() which initiates a
transfer from a remote host to another remote host. A default implementation
is included in the library relying on a middleware service call: the module de-
veloppers have just to implement this simple service using the library transfer
capabilities on the server side.

Remarks:

– To avoid “name conflicts” between existing GridRPC implementations and
the new definitions of the library, definitions in the library headers files are
automatically prefixed when needed, allowing an easy reuse of the existing
functions without name-clashing at the compilation step.

– Note on asynchronous calls: they are internally managed by the library from
synchronous calls to middleware. However, middleware functions must be
reentrant for a safe asynchronous use.

At the moment, the modules for the Diet and Ninf GridRPC middleware are
available.

Integrating a New Data Manager Module requires to provide 4 functions:
2 initialization functions corresponding to input and output data, which can
most of the time be left empty; and 2 transfer functions to get and put a data.
They are generally wrappers of existing transfer protocol libraries (e.g., libcurl
for http and ftp).

At the moment, the library implements the data manager modules for rsync
and scp, using the shell commands; iRODS, using the shell command (the library
is only available for Java and PHP); webdav, to access Owncloud and Dropbox

servers. It uses the neon library and; curl, to access http and ftp via the curl
library.

Module Initialization. The library global initialization process reads the
global configuration file to determine which module should be dynamically loaded
at execution time, where to find it, and some parameters available for each mod-
ule in its own separate section.

The initialization function of each module is then processed sequentially, pass-
ing the arguments of the module specific configuration, and potentially reading
more parameters in the deployed module-specific configuration file.

3.2 Asynchronicity Management

We call a request the inner action managed in the library: they correspond to
API calls for remote procedure, API calls for a transfer or a group of transfers
involving a unique data. For example when one source and several destinations



66 Y. Caniou, H. Croubois, and G. Le Mahec

are provided as input and ouput URIs, several transfers are involved in group
to provide the unique API transfer call. All requests are managed the same
way by the request controller: this entity registers each of them during their
initialization, and with the help of threads and semaphores it limits their number
and immediately knows the idendity of a request that completes without active
wait. Some additional dependency information is also recorded with each request,
and thus a hierarchy of requests (the link being the temporal dependency) can
be built. It is used to express the concept of a group of requests reported above
in the transfer example, but it is also a powerful way to handle waits for one or
a group of asynchronous remote procedure calls as well.

Requests are managed with a priority system, which has been instantiated in
the current implementation with a queue managed with a FIFO algorithm and a
limitation on the number of parallel threads executed at a given moment: There
is not much more that can be done at the moment: since there is no dependency
information between data transfers operated at the API level, one cannot try any
optimization between requests that do not belong to the same group because it
could generate inconsistency in data or failure. However coupled with a system
that handles workflow/dataflow, some meta-scheduling over available GridRPC
middleware and data managers may be performed.

3.3 Data Manager Capabilities

The library does not only operate with underlying data transfer projects. It must
provide the data persistence as defined in the API, integrate the possibility to
communicate in-memory data (which possibly avoids at least one copy to disk),
and make the junction between different locations where the data is available,
and the protocols with which one can access them. The latter induces possible
hidden (automatic and mandatory) copies and scheduling for the data to be
transferred to all requested destinations.

Data Persistence. The GridRPC Data Management API defines numerous
persistence modes: the data can be volatile, i.e., there is no special require-
ment on its management and this can be considered as the default mode; it can
be strictly volatile, meaning that the library has to provide means to remove
the data from the platform after a computation (thus some protocols and data
managers cannot be used); when defined as sticky, the data or a copy must be
kept on the location where the client requests are executed; if unique sticky, no
replication nor migration can be performed; finally, the client can also request
the library to transparently manage prefetch, replication and migration of data.
Then, by also handling procedure calls the library can perform some scheduling
in order to reduce some metrics. At the moment persistent data are managed
through Dagda.

The Memory Protocol. Each data is referenced by a given set of specific URIs,
providing the transfer protocol or the underlying data manager to use (for ex-
ample http or dagda). But when trying to get performance, on linear algebra



Standardized Data Management for GridRPC Framework 67

computation for example, there is a need to keep data in memory and avoid
file transfers. The GridRPC Data Management API foresaw this kind of use
and introduced the memory protocol. In addition to this protocol management,
our implementation lets a client (or the library itself) use URIs with query and
fragment. This leads to possible evolution for improvements (see after) and to
manage more data managers (like P2P middleware that initiate torrents with
specific files).

Implementing the memory protocol means that the library has to use GridRPC
middleware inner data manager which can hopefully communicate between its
own components to achieve such a need. But when a data is in memory and has
to be transferred either on another GridRPC middleware components or on a
storage server, it has to be written to a file and then be manipulated (transferred
and possibly handled remotely) to be in the requested status. This part uses
(de)serialization functions, defined by the GridRPC Data Management API,
partly relying on tools provided by the boost library. But that maybe shows an
unclear part of the API: the protocol to use in that specific case to manipulate
the file is not precised. In our current implementation, the protocol is static and
is read from the middleware configuration file at initialization time.

But if going a bit further than the API, we can use the query part of the
URI. Indeed considering a data available in memory, the API does not provide
a mean to know which protocol(s) can be used to send or to receive it since the
URI would be similar to memory://graal.ens-lyon.fr/matrixA. In ongoing
work, our library is going to explore what can be done with specifying protocols
within the URI query part, e.g., ?protocol=rsync?protocol=webdav.

Scheduling for Implicit and Explicit Data Transfers. Data transfers are
operated 1) when data participate to a remote procedure call. They are in that
case implicit or automatic, and; 2) can be explicitly requested by a client with
a call to grpc_data_transfer().

Implicit and Automatic Transfers: When a remote procedure call is performed,
meta-data are serialized and transferred to the distant service. They contain
sets of URIs which may lead to additional transfers before and after the service
execution (Fig 2).

– If one of the input URI refers to a memory or file data on the client, the data
must be available to the service before its execution so that it can remotely
access it.

– If one of the ouput URI refers to a memory or file data on the client, the
service must have made it available and the client must get it.

Explicit Data Transfers: Several transfers are operated by
grpc data transfer(), i.e., a call to an explicit transfer operation: the
data should be present in all locations set in the input URIs list, and must
be present in all locations set in the output URIs list. This can be treated
with a sequential set of transfers from one given source to each destination for

memory://graal.ens-lyon.fr/matrixA
?protocol=rsync?protocol=webdav


68 Y. Caniou, H. Croubois, and G. Le Mahec

example, but that would be inefficient. In addition, it is not mandatory that
all participants are directly interconnected (either by network or by protocol)
and transfers may have to be scheduled to make the whole operations possible
(destinations of completed transfers being considered as potential sources).
The library also makes possible to delegate transfers on all GridRPC servers
that offers some library specific service. Hence transfers can be distributed over
nodes to reduce the bandwidth impact, and/or to try to reduce the transfer
operation completion date for example.

In order to build a schedule in our implementation (made by the dispatcher,
Fig 3), we list the nodes that can participate to a transfer operation: To our bene-
fit, since the library contains middleware modules, it can also rely on underlying
GridRPC middleware to potentially add relay servers to [remotely] distribute
the transfer load or a part of it. To discover those middleware nodes, the library
provides an echo service, that must be deployed, i.e., registered in the GridRPC
server capabilities (at the moment, only middleware nodes with the memory pro-
tocol available are considered. If the service is not deployed, the node is simply
not considered as a possible relay).

Data Manager

RAM

Data Manager

Middleware callClient Server

Upload

Upload

Download

Download

Fig. 2. Automatic transfers during a
GridRPC call

Fig. 3. Dispatcher’s cycle

Then URIs are sorted: Local, Middleware node or Storage server; and the
dispatcher uses a Round-Robin algorithm to build and launch every one-to-one
transfer according to the sorted list below: the list describes by priority of action,
matching one input URI to one output URI depending on their nature (Local,
Middleware or Storage), the action undertaken to manage the corresponding
transfer. As seen in Sec. 3.2, transfers at the same time are possibly limited in
number, they are monitored with an effective and sufficient semaphore mech-
anism, and a completion leads to a dynamic update of the set of input URIs.
The above algorithm loops until all transfers to ouput locations are done. In
case of failure due to an unresponsive input middleware, the middleware is not
considered anymore in the next scheduling/mapping cycle.



Standardized Data Management for GridRPC Framework 69

L-S: The transfer is initiated locally.
M-S: The transfer is processed through a call to the remote transfer service.
S-L: The transfer is initiated locally.
S-M: The transfer is performed through a call to the distant transfer service.
L-L: The transfer is initiated and performed locally.
L-M: The library makes the local data available via the GridRPC middleware

inner data manager whose remote counter part will download afterwards.
M-L: The remote middleware is being asked to make the data available, this

data is then downloaded by the GridRPC middleware.
M-M: The source middleware is asked to make the data available so that the

destination middleware can download it when needed.
S-S: The library first tries to invoke a remote service on the destination server

to initiate the transfer. If the transfer fails, data is downloaded on the
library client, then transferred to the destination server. If there is no
available protocol to proceed to such transfers, the call fails returning an
error code.

4 Experimental Results

4.1 Multi-protocol and Dispatcher Scheduling/Mapping Validation

Table 1 lists the experiment deployment. We used 3 computing resources, 2
in Japan and 1 in France, on which we deployed iRODS and ssh servers, and
Diet components: a client, a dietAgent (the registry), and a server (matrix ad-
dition) written with the GridRPC APIs requirements together with our library.
Two matrices are defined with a list of input URIs depending on the running
test, described hereafter.

Table 1. Resources involved in Experiment 1

Machine (location) Services Data (protocol)

Arcterix (JFLI - Japon) dietAgent, client, sshd matA (ssh)
yume (JFLI - Japon) service ’+’, iRODS, sshd matA, matB (ssh)

graal (Éns-Lyon - France) sshd matB (ssh)

There are four tests, built with the scenario of getting the two matrices
through ssh, performing the addition, and uploading the result to an iRODS

server (here locally):

– Remote/Remote: the client does not include the URIs concerning the host
yume in the input list used for the remote call.

– Remote/Local: the client does not use the URI concerning matA on yume
in the input list used for the remote call.

– Local/Remote: the client does not use the URI concerning matB on yume
in the input list used for the remote call.

– Local/Local: all URIs are used for in remote call.



70 Y. Caniou, H. Croubois, and G. Le Mahec

This simple experiment aims to show both 1) the seamless multi-protocol
management of the library, as well as 2) the possibility for the dispatcher, de-
scribed page 68, to perform a schedule: due to its priority matching combined
with its Round-Robin algorithm, the library uses the local data first if available.
Figure 4 clearly shows this behavior, the blue region showing the time spent
during each transfer when it occurs.

 0

 1

 2

 3

 4

 5

 6

M
at A

M
at B

M
at C

M
at A

M
at B

M
at C

M
at A

M
at B

M
at C

M
at A

M
at B

M
at C

T
im

e 
(s

ec
on

ds
)

Comparison of data transfer time depending on locality
(transfering 512B matrices)

Local/LocalLocal/RemoteRemote/LocalRemote/Remote

M
at

 A

M
at

 B

M
at

 C

M
at

 A

M
at

 B

M
at

 C

M
at

 A

M
at

 B

M
at

 C

Remote/Remote Remote/Local Local/Remote

M
at

 A

M
at

 B

M
at

 C

Local/Local

Ti
m

e 
(s

ec
on

ds
)

Comparison of data transfer time depending on locality 
(transferring 512B matrices)

Fig. 4. Results for Experiment 1

 0

 10

 20

 30

 40

 50

 60

T
im

e 
(s

ec
on

ds
)

Number of simultaneous allowed transfers

Comparison of data transfer and processing time depending on transfer concurency
(transfering and processing 32 Mb matrices)

Waiting time
Transfer time

Deserializing time

Computing time
Freeing time

Limit 8Limit 4Limit 2Limit 1

Ti
m

e 
(s

ec
on

ds
)

Limit 1 Limit 2 Limit 4 Limit 8

Waiting time     
Transfer time     
Deserializing time   

Computing time   
Freeing time    

Comparison of data transfer and processing time 
depending on transfer concurrency (32MB matrices)

Fig. 5. Results for Experiment 2

4.2 Asynchronous Transfers Management and Bounded Number of
Simultaneous Transfers

For this experiment, we designed the following scenario: a remote procedure call
is performed to add a given number of matrices which are available remotely
through ssh. Matrices are downloaded and added as soon as the operation is
possible, i.e., at first when two of them are finished to be downloaded, then
every time a new one has been downloaded and the previous computation has
finished. We performed 4 tests, corresponding to the number of simultaneous
transfers that it is possible to make at a given instant, resp. 1 unique transfer,
2, 4 and 8 transfers maximum at a given time. The number of matrices is fixed
to 16, and one matrix is 32MB (i.e., 2000× 2000 of 64bits integers).

We designed this experiment to validate the request controller behavior, i.e.,
the implementation of the possibility to limit the number of simultaneous trans-
fers occurring in a transfer operation, and the possibility to use the waiting
functions, here with grpc_data_transfer() and the GRPC_WAIT_ANY parame-
ter, making the server able to perform an operation as soon as enough matrices
are present on the server side (the addition was chosen for the operation since
it requires less time than a transfer, which leads to show the wanted behavior.
Besides, it also makes sense conceptually since it’s a commutative operation).

Figure 5 shows the activity of the service and its duration on the y-axis, related
to the progression over the number of matrices downloaded for each limit on the
x-axis. The same evolution by group of cardinal equal to the possible limit of
both the waiting time (non-active wait) and transfer time highlights that the
number of simultaneous transfers operated by the library is indeed configurable



Standardized Data Management for GridRPC Framework 71

(for the moment the information is static in the configuration file. We intend
to look if it makes sens to have it self-tuned by the library, depending on the
dynamicity of both the network and computing performance). It also shows that
every computations occur when enough matrices are finished to be downloaded.
As a side effect, it also confirms the observations made in [8]: there’s a real need
to limit the number of possible parallel transfers. We can indeed observe on this
small example that the overall completion time of the addition of the 16 matrices
is a bit reduced when the limit is fixed to 2 for our small testbed.

5 Future Works

Future works are heading towards different directions. If the library is already
usable and implements most of the API, more performance can be obtained
with more efficient scheduling: at the request controller (Section 3.2), and at the
dispatcher level (Section 3.3); and more development: for example including a
middleware module for ssh would add more scheduling possibilities; the proto-
col memory leads to already complex data management mechanisms, yet to be
continued in addition to a file protocol that would help avoiding useless data
copies, making the use of the library even more scalable. Modules for dCache
and GridFTP would possibly make transfers faster, but further control would
have to be done on the bandwidth consumption; a data manager module for
Amazon S33 would give further access to cloud storage resources leading for a
need to also take into account some financial criteria in the above scheduling
process, and possible migration of data when possible (e.g., when the data is
requested as GRPC PERSISTENT).

6 Conclusion

With the GridRPC Data Management standard completing previous works on
GridRPC, both at the API and software level, feasibility of computations and
performance is at reach with immediate portability and interoperability be-
tween GridRPC middleware. To ease its spread, while giving access to GridRPC
middleware and to existing data managers, we provide an implementation of
both APIs relying on a very modular architecture. Fulfilling the standard re-
quirements, the library also implements the data management modes as well
as a memory protocol to avoid useless copy to disk. We showed that an effi-
cient system to handle waiting mechanisms is in place and that we operate
some mapping/scheduling when several transfers are involved in the same data
management. We conducted some experiments and obtained results validating
the expected behaviors. From now on we will focus on more theoretical work
to improve the yet non-trivial mapping/scheduling of transfers involved for a
given data, and we are considering to plug a workflow/dataflow analyzing tool
to schedule transfers of different data with remote procedure calls altogether.

3 http://aws.amazon.com/

http://aws.amazon.com/


72 Y. Caniou, H. Croubois, and G. Le Mahec

Further developments will also occur, giving more adaptability and choices to
the end-user while bringing new issues concerning scheduling possibilities, for
example with Cloud storage resources.

Acknowledgment. This work is partially founded by the ÉNS Lyon. The au-
thors want to thank Hidemoto Nakada for the Ninf middleware module.

References

1. Caniou, Y., Caron, E., Mahec, G.L., Nakada, H.: Transparent Collaboration of
GridRPC Middleware using the OGF Standardized GridRPC Data Management
API. In: The International Symposium on Grids and Clouds (ISGC), February 26-
March 2. Proceedings of Science, 12 p. (2012)

2. Caniou, Y., Caron, E., Mahec, G.L., Nakada, H.: Data management API within the
GridRPC. In: GFD-R-P, vol. 186 (June 2011)

3. Del-Fabbro, B., Laiymani, D., Nicod, J.M., Philippe, L.: DTM: a service for manag-
ing data persistency and data replication in network-enabled server environments.
Concurrency and Computation: Practice and Experience 19(16), 2125–2140 (2007)

4. Desprez, F., Caron, E., Le Mahec, G.: DAGDA: Data Arrangement for the Grid
and Distributed Applications. In: International Workshop on Advances in High-
Performance E-Science Middleware and Applications, AHEMA 2008, Indianapolis,
Indiana, USA. In conjunction with eScience 2008, pp. 680–687 (2008)

5. Camillo, F., Caniou, Y., Depardon, B., Guivarch, R., Mahec, G.L.: Improvement of
the data management in GridTLSE, a sparse linear algebra expert system. JCIT:
Journal of Convergence Information Technology 8(6), 562–571 (2013)

6. Muresan, A.: Scheduling and deployment of large-scale applications on Cloud
platforms. These, Ecole normale supérieure de lyon - ENS LYON (December 2012)

7. Nakajima, Y., Aida, Y., Sato, M., Tatebe, O.: Performance evaluation of data man-
agement layer by data sharing patterns for GridRPC applications. In: Luque, E.,
Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 554–564.
Springer, Heidelberg (2008)

8. McLaren, J., Kosar, T., Hutanu, A., Thain, D.: Coordination of access to large-scale
datasets in distributed environments. In: Shoshani, A., Rotem, D. (eds.) Scientific
Data Management: Challenges, Existing Technology, and Deployment. CRC Press/-
Taylor Francis Books (2009)

9. Tatebe, O., Hiraga, K., Soda, N.: Gfarm grid file system. New Generation
Computing 28, 257–275 (2010)


	Standardized Multi-protocol Data Managementfor Grid and Cloud GridRPC Frameworks
	1 Introduction
	2 State of the Art
	2.1 The GridRPC Data Management API, Summary
	2.2 Related Work

	3 Implementation: Architecture and Features
	3.1 Modularity of the Solution
	3.2 Asynchronicity Management
	3.3 Data Manager Capabilities

	4 Experimental Results
	4.1 Multi-protocol and Dispatcher Scheduling/Mapping Validation
	4.2 Asynchronous Transfers Management and Bounded Number of Simultaneous Transfers

	5 Future Works
	6 Conclusion
	References




