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Preface

Data management involves a strategic stake for governmental organizations and
companies, which need to anticipate and make relevant decisions based on high-
quality decision support. In large-scale distributed enthronements, research ac-
tivities in terms of data management continue intensively to explore new design
approaches, processing methods, and implementation techniques for developing
data management systems with the main characteristics such as scalability, elas-
ticity, and self-managing.

The 7th International Conference on Data Management in Grid and P2P Sys-
tems (Globe 2014) was held during September 2–3, 2014 in Munich, Germany.
The Globe Conference provides opportunities for academics and industry re-
searchers to present, exchange, and discuss the latest data management research
and applications in cloud, grid, and peer-to-peer systems.

Globe 2014 received 14 papers from 9 countries. The reviewing process led
to the acceptance of 7 papers for presentation at the conference and inclusion in
this LNCS volume. Each paper was reviewed by at least three Program Commit-
tee members. The selected papers focus on query processing and optimization,
recommender systems, MapReduce framework (e.g., data privacy and similar-
ity search), and data management in grid environments (e.g., protocol, recovery
failure).

The conference would not have been possible without the support of the
Program Committee members and members of the DEXA Conference organizing
Committee and the authors. In particular, we would like to thank Gabriela
Wagner and Roland Wagner (FAW, University of Linz) for their help in the
realization of this conference.

June 2014 Abdelkader Hameurlain
Tran Khanh Dang

Franck Morvan
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Optimizing Aggregate Query Processing

in Cloud Data Warehouses

Swathi Kurunji, Tingjian Ge, Xinwen Fu,
Benyuan Liu, Amrith Kumar, and Cindy X. Chen

University of Massachusetts Lowell, MA, USA
{skurunji,ge,xinwenfu,bliu,cchen}@cs.uml.edu,

amrith@parelastic.com

Abstract. In this paper, we study and optimize the aggregate query
processing in a highly distributed Cloud Data Warehouse, where each
database stores a subset of relational data in a star-schema. Existing
aggregate query processing algorithms focus on optimizing various query
operations but give less importance to communication cost overhead
(Two-phase algorithm). However, in cloud architectures, the communi-
cation cost overhead is an important factor in query processing. Thus, we
consider communication overhead to improve the distributed query pro-
cessing in such cloud data warehouses. We then design query-processing
algorithms by analyzing aggregate operation and eliminating most of
the sort and group-by operations with the help of integrity constraints
and our proposed storage structures, PK-map and Tuple-index-map.
Extensive experiments on PlanetLab cloud machines validate the ef-
fectiveness of our proposed framework in improving the response time,
reducing node-to-node interdependency, minimizing communication
overhead, and reducing database table access required for aggregate
query.

Keywords: Aggregate Operation, Communication Cost, Read-
Optimized Database, Data Warehouse, Cloud Storage, Query Optimiza-
tion.

1 Introduction

Data Warehouses or decision support systems use join, group-by, and aggre-
gate operations very often in formulating analytical queries. One of the survey
conducted by Oracle [15] shows that, 36% of Data Warehouse users are having
performance problems. Common performance bottlenecks include loading large
data volumes into a data warehouse, poor metadata scalability, running reports
that involve complex table joins and aggregation, increase in the complexity of
data (dimensions), and presenting time-sensitive data to business managers etc.

Efficient evaluation of complex queries (i.e. aggregate and multi-join queries)
is an important issue in applications that manage and analyze multidimensional
data (analytical business data, scientific data, spatial data etc.). Efficient execu-
tion of such queries in large-scale and dynamic cloud databases is a challenging

A. Hameurlain et al. (Eds.): Globe 2014, LNCS 8648, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014



2 S. Kurunji et al.

problem [7]. One of the main reasons is that we need to update global indexes
(such as DHTs) every time the data is moved (or changed), or new machine
is added. For example, in a ring network like Cassandra architecture, new ma-
chines are added to the ring near the bottlenecked machine, and the data is
redistributed between that machine and its new neighbor.

One of the important properties of cloud architecture is elastic scalability. It
must therefore support scale-out, where the responsibility of query processing
(and the corresponding data) is distributed among multiple nodes to achieve
higher throughput. Such network needs good storage structures, which reduce
the dependency of data distribution on other machines of the cluster [3].

Our proposed PK-map and Tuple-index-maps are fully decentralized, where
no predefined limits are imposed on the sizes of the network or data distribution.
We only store information on relationship between the data and not their loca-
tions. It is independent of the scale-out of data or the remote data distribution.
So, even if data is relocated remotely anywhere in the system, we do not have
to update our structures. In our previous work [17], we have showed how our
proposed method decreases the interdependency of machines (containing related
data) while optimizing the join operation in the query processing. In this paper
we will show how we optimize the aggregate query with join operations.

Aggregate operation is one of the expensive operations in distributed query
processing due to the requirement of sort and group-by operations to find the
aggregated result. Most of the earlier research work considers communication
cost as cheaper of all other operations of the query.1 Hence two-way optimization
algorithm is most commonly used, where query optimizer first generates the plan
assuming that the query is processed in local machine and, then optimizes the
plan considering the distributed architecture of query execution.

Due to virtualization nature of a cloud environment, data storage and query
processing have become physically more distributed to meet the resource avail-
ability or the customers service agreement [9]. This gives rise to increase in
node-to-node communication. In such scenario, even if the overall response time
of distributed query is decreased, it is possible that communication cost exceeds
other query operator costs. So, it is better to give more consideration to both
query operators as well as communication cost while generating the plan.

In this paper, we use our map structures and integrity constraint inference to
push down or pull up group-by functions while generating an aggregate query
plan. During query processing, we eliminate most of the sort and group-by op-
erations by having sorted map structures and enforcing a certain order based on
the hierarchy of the tables in the schema (reference graph of [17]). We will show
how we only access more relevant data from the database tables.

The remainder of this paper is organized as follows: Section 2 provides a liter-
ature review on aggregate query processing and optimization. Section 3 explains
our proposed framework. Section 4 shows the performance evaluation using Plan-
etLab Cloud. Finally, Section 5 states the conclusion.

1 Communication cost includes costs per message, costs to transfer data and CPU
costs to pack, unpack, and process messages at the sending and receiving sites.
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2 Related Work

Aggregate query processing has been studied in many research works [5]. But, as
per our knowledge, not many of them consider communication cost in optimizing
aggregate query processing. We analyzed some of the works which optimize the
aggregate query operations. Along with that knowledge, we propose our storage
structures, which will not only optimize query operations, but also communica-
tion cost overhead caused in cloud data warehouses.

Some of the earlier papers, which optimize aggregate query processing, are
[2] [14] and [22]. These papers provide optimizations by pushing down group-
by in the query tree to improve the query response time. W.Yan [22] proposed
two kinds of transformations namely, eager aggregation and lazy aggregation. In
eager aggregation, group-by operation is pushed down in the query tree, while
in lazy aggregation group-by is pushed up. We use the above transformations
of [22] in our system along with our PK-map and Tuple-index-map to generate
optimized query plan to process aggregate queries.

Order-Optimization [4], presents techniques to reduce the number of sorts
needed for query processing by finding the cover set using keys, predicates and
indexes. Since our proposed map structures are already sorted on keys, we elim-
inate most of the sort operations required for join operation on the tables.

Coloring-Away [23], proposed query plan generation using tree-coloring mech-
anism. This paper considers both communication cost and data re-partitioning,
and uses tree coloring to generate optimal query plan. In our framework, we op-
timize the query operations that cause the above mentioned query performance
problems such as aggregates and joins by doing sort and group-by on the fly.

Avoid-Sort-Groupby [24], proposed a query plan refining algorithm through
which unnecessary sorting and grouping can be eliminated from the query plan.
It uses inference strategies and order properties of the relation table to find the
unnecessary sorting or grouping. T.Neumann[19], points out that it is necessary
to consider both ordering and grouping to generate the query plan.

Cooperative-Sort [25], presented an evaluation technique for sorting tables.
This technique is for those queries that need multiple sort orders of the same
table on different attributes. This minimizes the I/O operations of successive
sort operations, which reduce the overall query cost.

Pre-computing the aggregates is proposed by many other researchers [6] [16],
which are useful for decision support systems. Decision support systems store
huge amount of historical data for analysis and decision-making. These databases
are updated less frequently (once a hour/day) on batches. This made it easy to
compute the aggregation ahead of time and store it as data cubes or materialized
views. Recently, the interval between historic and current data has been reduced
a lot. This will make it complicated and time consuming to re-compute data
cubes or materialized views every time data gets updated. Recent research by
companies like HP, Oracle and Teradata [8] [18] [21] shows new parallelization
schemes for processing joins and aggregate operations, eliminating data cubes.
So, in this paper we concentrate on optimizing aggregate queries without pre-
computation.
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3 Our Approach

During query execution, a query accesses data from different tables by performing
join operation on primary and foreign key attributes of those tables, and then the
required attribute values are filtered. This becomes more complicated in the vir-
tual cloud environment, where the location of the data changes more often based
on the resource availability or SLA (Service Level Agreement) of the customer. In-
creased node-to-node communication results in increased network delay and pro-
cessing time, leading to the decrease in query performance. Hence, we need storage
structures that help to minimize the communication between machines, minimize
the maintenance during updates and minimize the increase in the storage space.

3.1 Storage Structure

PK-map Structure: We create a PK-map (i.e., Primary Key map) for each of
the primary keys in the tables of the star schema. A PK-map will have one col-
umn for the primary key and one column for each of the foreign keys referencing
this primary key as shown in Table 1. Primary key column contains primary key
values and foreign key column contains logical record-ids. These logical record-
ids are index to the Tuple-index-map of the foreign key. Tuple-index-map is
explained in the next subsection. The PK-maps are sorted on primary key val-
ues, which allow us to apply run length encoding on foreign key logical record-ids
and reduce the size of the map to a great extent. Thus, the overall size of the
map will be proportional to the number of records in the dimension table, which
are usually smaller in size than fact table.

Tuple-index-map Structure: We create a Tuple-index-map for each of the
foreign key attribute, which reference the primary key attribute of the dimension
table as shown in Table 2. This Tuple-index-map will store the mapping between
the logical and actual record-id of the foreign keys in the foreign key table.

Table 1. NationKey-map and SuppKey-map

N.nationkey S.nk index C.nk index
Row 0 0000000000 0 0
Row 1 0000000001 4 6
Row 2 0000000002 14 26

.. .......... .......... ..........

.. .......... .......... ..........
Row 24 0000000024 .......... ..........

S.suppkey PS.sk index
Row 0 0000000000 0
......... .......... .......... Partition 1

Row 20000 0000020000 100000
Row 20001 0000020001 .......... Partition 2

......... .......... ..........

......... .......... .......... ..........

......... .......... .......... Partition 49
Row 980001 0000980001 ..........

........... .......... .......... Partition 50
Row 1000000 0001000000 ..........

Table 2. SuppKey Tuple-index-
map

PS.sk index PS.sk t index
Row 0 0
...... 24 Partition 1
...... .....

Row 400000 .....
Row 400001 ..... Partition 2

...... ..... .....

...... ..... .....

...... ..... .....

...... ..... .....

...... ..... .....

...... ..... .....

...... ..... Partition 49
Row 19600000 .....

...... .....

...... ..... Partition 50

...... .....
Row 20000000 .....
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If the foreign key table is sorted on the foreign key attribute value, then we do
not require Tuple-index-map for that relationship. In that case, logical record-id
of the PK-map will be the actual record-id of the foreign key table. For example,
in Figure 1, PART and PARTSUPP tables are sorted on partkey attribute.
Hence, PartKey-map does not require Tuple-index-map. Similarly, in column-
oriented databases, if at least one projection of the table is sorted on foreign key
attribute, then the logical record-id of the PK-map will be the actual foreign key
record-id.

3.2 TPC-H Star Schema

Star and Snowflake Schema representations are commonly used in read-optimized
Data Warehouses. In the rest of this paper we use the star schema from TPC
BENCHMARK H Standard Specification Revision 2.15.0 (Figure 1) for analy-
sis and performance study. Figure 1 is the schema of an industry, which must
manage, sell and distribute its products worldwide.

With the TPC-H schema of Figure 1, we need to create 6 PK-maps NationKey-
map, SuppKey-map, PartKey-map, PartsuppKey-map, CustKey-map and
OrderKeymap. Structure of NationKey-map and SuppKey-map are shown in Ta-
ble 1. We also need 5 Tuple-index-maps (like Table 2) for relationships between
each of the following tables: nation ↔ supplier, nation ↔ customer, supplier ↔
partsupp, customer ↔ orders table and partsupp ↔ supplier.

Through performance study of our previous work [17], we know that the size
of the maps would usually be around 10% to 12% of the actual data size. Size
can be calculated using below formulas.

Size of PK map = S1 +

n∑
i=0

S2[i] + c (1)

Size of Tuple index map = (Number of rows in FK Table) ∗ S2 (2)

where, S1 is the size of the primary key and S2 is the size of logical record id
(32/64 bit depending on the type of processor)

REGION(regionkey, name, comment) 
NATION(nationkey, name, regionkey, comment) 
SUPPLIER(suppkey, name, address, nationkey, phone, acctbal, comment) 
CUSTOMER(custkey, name, address, nationkey, phone, acctbal, mktsegment, comment) 
PART(partkey, name, mfgr, brand, type, size, container, retailprice, comment) 
PARTSUPP(partkey, suppkey, availqty, supplycost, comment) 
ORDERS(orderkey, custkey, orderstatus, totalprice, orderdate, order-priority, clerk, ship-
priority, comment) 
LINEITEM(orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, 
tax, returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, shipmode, 
comment) 

Fig. 1. TPC-H Benchmark Schema [20]
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(a) MySQL Plan (b) PK-map Plan

Fig. 2. Query Processing Plan for Query1 of Table 3

3.3 Aggregate Query Processing

Inferring on referential integrity constraints and functional dependencies, we
have classified aggregate operations into two general categories based on the
type of attribute on which the aggregate operation is applied. We then generate
plan for query processing accordingly.2

Aggregate onPrimary orForeignKey: When there is an aggregate operation
on primary key (PK) or foreign key (FK), we do not scan the database table (unless
there is a filtering constraint on non-PK or non-FK), instead we scan our proposed
map structures andperformaggregateoperationon the fly.We can do this because,
our maps are sorted on keys, and has required information on number of tuples of
foreign key table that are mapped to primary key of dimension table.

For example, Query 1 in Table 3 has count(*) operation. This query is trying
to find the total number of orders placed by the specified nations. Here, we
only require the number of rows in orders table that belong to each group in the
group-by clause (i.e., N.name). By inference, we can say that, this is an aggregate
operation on PK of the orders table. Hence, we can eliminate the scan of orders
table and get this count by scanning CustKey-map. We push down group-by on
N.name to step ”scan NationKey-map” as shown in Figure 2b.

Figure 2a is the plan generated by MySQL for processing Query 1 of Ta-
ble 3. As shown in Figure 2a, it requires three tables scan (Nation, Customer
and Orders), two joins, a sort and a group by operation. Here, query proces-
sor needs to communicate the data for each join operation, which increases the
communication overhead and response time.

2 We do not consider ”having” clause in our analysis, because having clause can be
converted into ”where” clause constraints by rewriting the query [22].
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select N.name, SUM(O.totalprice)  
from ORDERS O, CUSTOMER C, NATION N 
where N.name = "UNITED STATES"  
            or N.name = "INDIA"  
            and N.nationkey = C.nationkey  
            and C.custkey = O.custkey 
group by N.name; 

Fig. 3. Modified Query 1 of Table 3

On the other hand, Figure 2b is the plan generated for the same Query 1 using
our framework. Here, instead of scanning Customer and Orders table, we scan
two PK-maps (NationKey-map and CustKey-map), and its associated Tuple-
index-maps. These maps are very small compared to scanning tables. The join
operation in Figure 2b is not equivalent to join operation in Figure 2a. Instead,
it is performed by scanning map and applying associated filtering constraint.
Algorithms are shown in Figure 4a - 4b and comparison results in Section 4.

Aggregate on Non-Primary or Non-Foreign Key: When there is an aggre-
gate operation on Non-Primary Key (NPK) or Non-Foreign Key (NFK) of the ta-
ble, then we need to scan the table to find the correct result. But, we use inference
to push down the group-by in the query tree so that we can scan only the required
portion of table. We also replace the scanning table with maps wherever possible.

For example, suppose if we have SUM (O.totalprice) instead of COUNT (*)
of Query 1 as shown in Figure 3. We push down the group-by N.name (as in
Figure 2b) to reduce the number of rows to be scanned from the orders table.
This reduces the input rows of final aggregate operation.

Group-by Optimization: When there are multiple attributes in the group-by
clause, we associate certain order to those attributes and push down group-by
in the query tree. As we know that the group-by is a set operation and join
result will carry the sort order, we can change the sequence of attributes in
group-by clause. So, we change the sequence of attributes in group-by clause
corresponding to the sequence of table processing in our algorithm. By doing
this we can eliminate non-relevant data in the early stage of query processing as
well as achieve same result as we perform group-by in the final stage.

Query Processing Using Proposed Method: In Algorithm 1 shown in
Figure 4, we first sort the tables referenced in the query according to their
relationship in the schema. We sort tables starting from the table that does not
have any foreign keys (depth 0) [17]. For example, Query 1’s order of processing
will be nation → customer → orders. In addition, we consider all the constraints
in where clause and group-by while deciding on tables processing order.

We then consider aggregate operation to decide whether to scan the table
from the database or to scan our map structure (Line 3-15). If there are PK
or FK constraints, we scan our maps. As all PK to FK mapping information
is available in maps, data movement between nodes is eliminated in lines 5-8.
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(a) Aggregate Query Processing Algorithm

Algorithm 2 Predicate/Join Processing Algorithm
Input: Table t T, predicates of Q, required attributes in result
Output: Result of t

1: if there is a predicate on non-PK/non-FK then
2:         if d == 0 for t then
3:       Apply predicate on t to get the record ids
4:                   Store the record-id mapping in the format
5:                   (rec-id1, rec-id2,….)
6:                   Communicate if necessary with other nodes
7:            else if any table t1 with d1 <= d referenced by t then
8:                  Apply predicate on t
9:                  Update the mapping with rec-ids of t

10:                  Perform line 9
11:                  Eliminate mappings which has no match for t
12:        else
13:                  Perform similar to line 6, 9 and 14
14:        end if
15: else if there is a predicate on PK or FK then
16:        if d == 0 for t then
17:                  Scan PK-map and tuple-index-map
18:                  Perform line 6 to 8
19:        else
20:                  Scan PK-map and tuple-index-map for those rec-ids stored

for table t1 with d1 <= d that is referenced by t
21:                  Perform 12 and 14
22:        end if
23: end if
24: Scan tables of T for final mappings (rec-id1,…….) to get the value of 

other attributes in the select statement of Q
25: return Result

(b) Join Processing Algorithm [17]

Fig. 4. Query Processing Algorithms

Also, our maps are already sorted on keys which further eliminates most of the
sort operations. At last we retrieve remaining attributes required for the result.

4 Performance Evaluation

In this section, we present the performance study to show the effectiveness of our
proposed PK-map and Tuple-index-map structures while processing aggregate
queries (using Algorithms in Figure 4a and Figure 4b). We will compare the
performance between MySQL and our proposed framework on a large-scale cloud
network called PlanetLab with 150GB of TPC-H star schema data.

PlanetLab [12] [13] is a geographically distributed computing platform avail-
able as a testbed for deploying, evaluating, and accessing planetary-scale net-
work services. It is currently composed of around 1050 nodes (servers) at 400
sites (location) worldwide.

For performance study of this paper we chose 50 PlanetLab machines world-
wide running Red Hat 4.1 Operating System. Each machine has 2.33GHz Intel
Core 2 Duo processor, 4GB RAM and 10GB disk space. We installed regular
MySQL on all of the machines to perform experiments.

We generated 150GB of data using the data generator ”dbgen”, provided by
TPC-H benchmark and distributed it to 50 PlanetLab machines. Each of these
machines store around 3GB data fragments of TPC-H schema relations. We gen-
erated PK-maps and Tuple-index-maps, and then horizontally partitioned them
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using the same partition key that was used to partition the data. We then dis-
tributed these partitions into all 50 machines that contained corresponding data.
All the map structures are loaded into the main memory before each experiment
begins. Here we can take advantage of main memory databases if the data size
is huge (in Petabyte or Exabyte) [1] [10] [11].

We used 5 queries for the performance analysis as shown in Table 3. Com-
parison of time taken by these queries is shown in Figure 5a to 5e. In graphs of
these figures, PlanetLab machines are on the x-axis and time taken by the query
(in seconds) is on the y-axis.

On each graph, top line shows the result of processing aggregate queries on
MySQL, and the bottom line shows the result of our framework. For simplicity
of explanation, we do not consider pipelined approach to count the number of
communications between the machines. Instead we use inter query operation
communications.

Figure 5a compares the time taken for processing Query 1. As explained in
Section 3.3.1, Query 1 has an aggregate operation on primary key of table OR-
DERS, and a Non-Primary Key/Non-Foreign Key (NPK/NFK) constraint on
table NATION. Hence, it is sufficient to scan NATION table, NationKey-map,
and CustomerKey-map to answer this query.

Figure 5b compares the time taken for processing Query 2. In Query 2, we
have an aggregate operation COUNT(*), and a NPK constraint on attribute

Table 3. Performance Evaluation Queries

Query 1: (COUNT) Find the total number of orders placed by the ’UNITED STATES’ and ’IN-
DIA’ customers (aggregation on primary key attribute)

select N.name, count(*)
from ORDERS O, CUSTOMER C, NATION N
where N.name = ”USA” or N.name = ”INDIA” and

N.nationkey = C.nationkey and C.custkey = O.custkey
group by N.name;

Query2: (COUNT) Find the total number of failed orders placed by customers of each nation.
I.e, orders whose ORDERSTATUS = ’F’ (aggregation on NON - Primary Key attribute)

select N.name, count(*)
from ORDERS O, CUSTOMER C, NATION N
where N.nationkey = C.nationkey and C.custkey = O.custkey and O.orderstatus = ’F’
group by N.name;

Query 3: (MIN) Find the minimum supply cost for all the parts supplied by ’UNITED STATES’
suppliers

select PS.partkey, min(PS.supplycost)
from PARTSUPP PS, SUPPLIER S, NATION N
where N.name = ”USA” and N.nationkey = S.nationkey and S.suppkey = PS.suppkey
group by PS.partkey;

Query 4: (SUM) Find the revenue generated by customers of each nation in the year 1995. I.e.,
revenue is equal to the totalprice from the orders table

select N.name, sum(O.totalprice)
from ORDERS O, CUSTOMER C, NATION N
where N.nationkey = C.nationkey and C.custkey = O.custkey and O.orderdate like ’1995%’
group by N.name;

Query5: (AVG) Find the average revenue generated by customers of each nation in year 1995.
I.e., revenue is equal to the totalprice from the orders table

select N.name, avg(O.totalprice)
from ORDERS O, CUSTOMER C, NATION N
where N.nationkey = C.nationkey and C.custkey = O.custkey and O.orderdate like ’1995%’
group by N.name;
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O.orderstatus of table ORDERS. Hence, we need to scan ORDERS table along
with NationKey-map and CustomerKey-map to process this query.

Figure 5c compares the time taken for processing Query 3. To answer this
query, we need to scan PARTSUPP table, NATION table, NationKey-map, and
SuppKey-map.

Figure 5d compares the time taken for processing Query 4. This query has an
aggregate operation and a filtering constraint on NPK of table ORDERS. Hence,
we scan NationKey-map, CustKey-map, and ORDERS table to process the query.

Figure 5e compares the time taken for processing Query 5. This query is similar
to Query 4, but needs to keep track of ”count” in order to find the ”AVG”.

In the above experiments, MySQL takes 3 inter-machine communications,
while our framework takes only one communication. In MySQL, each node has

(a) Query 1 (b) Query 2

(c) Query 3 (d) Query 4

(e) Query 5

Fig. 5. Performance Comparison of Query 1 to Query 5 of Table 3
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to communicate partial result or the join attribute values with its peers for every
join predicate present in the query. Thus each node has to do additional message
processing. This will effect the overall time taken by the query. But, with our
map structures we do not communicate for every join operation reducing the
communication delay. This less interaction between the database machines in the
cluster reduces the communication overhead and effect of poor load balancing.
Based on the data in Figure 5a to 5e, it is clear that, the query execution time
required by the state-of-the-art MySQL is more than our framework.

5 Conclusion

In this paper, we studied distributed aggregate query processing on cloud data
warehouses. We proposed storage structures PK-map and tuple-index-map, and
designed query-processing algorithm for processing these aggregate queries. We
analyzed the query processing, and advantages of using maps in eliminating sort
and group-by operations required by the aggregate operation. Our framework
not only reduces the communication cost but also makes minimum access to
relation tables depending on the type of aggregate operation. Results of our
extensive performance study demonstrate that the proposed approach improves
the performance of the ad-hoc aggregate query in Cloud Data Warehouses and
reduces communication overhead.

Acknowledgments. This work is supported in part by the NSF, under the
grants IIS-1149417, IIS-1239176, and IIS-1319600.
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Abstract. Sensor grid databases are powerful, distributed, self-
organizing systems that allow in-network query processing and offer a
user friendly SQL-like application development. We propose an adap-
tation of a well-known cache-based optimization and cache replacement
policy to this context. Since the data are distributed and the sensor nodes
are mobile, the cost model is more complicated than in traditional query
optimization, because it should account for several factors, including the
semantics, location and time. Therefore, we need a trade-off between
those constraints. Our approach is based on a theoretical foundation for
the game and balance problem. In summary, we propose an approach
that (i) Based on the Nash Equilibrium scheme, an application of three
scalar coefficients is proposed in term of the analysis of the relationship
among semantic, time and location factors. (ii) After that, we specialize
and summarize the general Nash Equilibrium scheme utilizing the equal
correlation coefficient among the new and old vectors to find the point
of Nash equilibrium and resolves the scalar coefficients. (iii) It uses these
scalar coefficient to attain an optimum cost model of the semantic cache,
for query optimization in the context of distributed query processing.
(iv) We emphasize that this method can extend to any finite-dimension,
which are other schemes cannot do. Extended simulation results indicate
that our scheme outperforms existing approaches in terms of both the
response time and the cache hit ratio.

Keywords: Sensor Grid Database, Semantic Cache, Location Depen-
dent Query, Query Optimization, Nash Equilibrium.

1 Introduction

A Sensor Grid is a grid that gathers, distributes, and acts on information about
the behavior of all participants including suppliers and consumers. In mobile
sensor applications, users who carry portable devices such as mobile phones can
issue local queries i.e, queries that are dependent on the user’s location, to learn
about their geographic surroundings [6]. However, those query operations are
usually frequent, whereas the resources of the sensor grid are limited. Therefore,
an optimal approach to handle local queries is needed. However, those Location
Dependent Queries become expensive in this environment, due to the sensor
nodes’s resource limitations and the mobile communications cost. Hence, we
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investigate query optimization in the context of distributed query processing in
a Sensor Grid Database.

Caching is a promising technique, widely used for query optimization. However,
as the query costmodel in sensor grids depends on different parameters than in the
centralized setting, the cachemanagement and the cache replacement policy needs
to be adapted. In this paper, we propose two techniques: First, we propose a seman-
tic cache, which is an optimized data structure for improving the query efficiency.
Generally speaking, semantic cache stores the query result and query semantic in
the cache, for responding the future query; Second, we propose a cache replace-
ment policy, accounts for the location dependent queries cost model, keeping in
the cache the most relevant data for better efficiency [1].

However we find that traditional approaches have a limitation. For example,
the paper in [4] proposes the approach of using a Clustering Semantic Cache
(CSC), which considers semantic and time factors, however there is only quali-
tative analysis and no quantitative description. In a previous paper [5], the cost
model of the branch and bound and Greedy Dual-Size Frequency (B&BGDSF )
considers semantic and time factors, which provides the advantage of quantita-
tive analysis, but , since the geographical context where rather static, the model
did not consider any dynamic location factor. In another paper [2], the cost model
of Collaborative Spatial Data Sharing (CSDS) considered a dynamic location
factor, but did not consider semantic and time factors. An advanced application
needs the new approach of semantic cache technology to synthetically consider
the multiple factors that are present.

How to organize the data in a mobile sensor device for access and query;
how to calculate the cost of a cache item for replacement and storage; and
how to synthetically consider semantic, time and location factors, and attain an
optimum cost model of a semantic cache are very challenging issues.

Our contribution is summarized as follows. We propose an approach that has
the following characteristics: (i) Based on the Nash Equilibrium scheme, an appli-
cation of three scalar coefficients is proposed in term of the analysis of the relation-
ship among semantic, time and location factors. (ii) After that, we specialize and
summarize the general Nash Equilibrium scheme utilizing the equal correlation
coefficient among the new and old vectors to find the point of Nash equilibrium
and resolves the scalar coefficients. (iii) It uses these scalar coefficient to attain an
optimum cost model of the semantic cache, for query optimization in the context
of distributed query processing. (iv) We emphasize that this method can extend
to any finite-dimension, which are other schemes cannot do.

2 Related Work

We choose three different ways for choosing and calculating a cost model for the
replacement of semantic cache segments.

1) Clustering Based Semantic Cache CSC: The paper [4] proposes the
approach of a Clustering Semantic Cache (CSC), which considers semantic and
time factors but only performs qualitative analysis, with no quantitative descrip-
tion. Early in the algorithm the technique of Clustering Semantic Cache divides
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queries into groups, and those that are semantically related queries are placed
together in a cluster.

2) The Semantic Cache Based onB&BGDSF : In a previous paper [5], the cost
model of the branch and bound and Greedy Dual-Size Frequency (B&BGDSF )
considers semantic and time factors, moving from qualitative to quantitative anal-
ysis, but does not consider a dynamic location factor. When a new query result
must be stored in a saturated cache, the most irrelevant queries must be evicted.
It is important to account for not only the constraints on the size but also the cost
and frequency of access to spatial objects. Thus, we base our replacement policy
on the (B&BGDSF ) algorithmproposed by Savary et al. This strategy replaces the
object with the smallest key value for a certain cost function. When an object i is
requested, it is given a priority key Ki that is computed as follows:

Ki = Fi ∗ Ci

Si
+ L. (1)

where Fi is the frequency of usage of the object I, and includes not only how
often node i uses the data, but also how often the data is requested from
its cache by other nodes; Ci is the cost associated with bringing the object
i into the cache, and Ci is a function of CCacheCPU and CDiskCPU : Ci =
f(CCacheCPU , CDiskCPU ): CCacheCPU stands for the cost in CPUs of the cached
query result, being the former the amount of processing required to extract some-
thing from the cache; and CDiskCPU stands for the cost in CPUs to re-compute
the query result I from the database, being the latter the amount of processing
required to extract something from a server. But for simple and effective discus-
sion, in the simulation of our paper Ci is a constant; Si is the size of the object
I; and L is a running life factor that starts at i and is updated for each replaced
object O to the priority key of this object in the priority queue, i.e., L = K0.

The cache replacement policy is composed of two steps. First, the cost of
each query result contained in cache is computed using the B&BGDSF policy.
Second, the total size of the set must be equal to or greater than the size of the
new query result.

3) The Semantic Cache Based on of CSDS: In another paper [2], the
cost model of Collaborative Spatial Data Sharing (CSDS) considers a dynamic
location factor but does not consider semantic and time factors.

For Nodes A and B, PrioA and PrioB are the values of the replacement
priority. For example, in the scenario in Fig. 1, Node A stays in a place that
is at a distance of 10 meters for approximately 5 minutes and in the a place
at a distance of 5 meters for approximately 5 minutes, which causes PrioA =
10meters× 5minutes+ 5meters× 5minutes = 75; Node B stays in a place at
a distance 10 for approximately 10 minutes. PrioB = 10meters× 10minutes =
100, thus PrioB > PrioA, and the replacement priority of B is higher.

We use Prob(Mi, Ej , Δt) to denote the probability that a deviceMi will access
the cell Ej during the time period [tc, tc+Δt], where tc is the current time. The
cell Ej is a cell of a grid defined over a geographical area, where the mobile
devices operate and wish to extract location-dependent data. We thus look Δt
time units into the future and predict how likely Mi will need Ej at that time.
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From 1 minute to 5 minutes From 5 minutes to 10 minutes

Fig. 1. The Integral of the Distance Over Time

Prob(Mi, Ej ,Δt) ≈ iDistM (Mi, Ej , Δt)

=
∫ tc+Δt

tc
distM (Mi.pos(t), Ej)dt =

1

2
. |Vk| .((tx − tc)

2 + (tf − tx)
2).

3 Synthetically Considering Semantic, Time and Location
Factors

The traditional semantic cache approaches, have a limitation in that they cannot
satisfy the development of modern sensor grid technology. An advanced appli-
cation needs the new approach of semantic cache technology to synthetically
consider multiple factors. The main difference between semantic cache manage-
ment and a conventional semantic cache is the cost model, which should account
for several factors including semantic, location and time. Therefore, we need a
trade-off between those constraints [3].

Our approach is the comprehensive consideration of the semantic, time and
location balance of the 3-Dimensional vectors Nash Equilibrium. There is much
research on special algorithms for any special factors of 3 − D factors. Our
approach has been developed for a Nash Equilibrium scheme with 3-Dimensional
vectors. Moreover we can generally and practically propose to any finite M-
Dimension vectors algorithm. Our algorithm is organically combined with these
3-D factors, and can be easily expanded.

3.1 To Define the Weights of the Nodes

Wi,j = αiW
′
i,j + βiW

′′
i,j + γiW

′′′
i,j . (2)

Wi,j : the general weight of the semantic cache block j in the node i;
αi, βi, γi: scalar coefficient, αi, βi, γi ∈ R, αi, βi, γi ≥ 0, as αi, βi, γi < 0 non-
sense;
W

′
i = Fi ∗ Ci

Si
: the semantic weight;

W
′′
i = L: the life (time) weight;

W
′′′
i = 1

2 . |Vk| .((tx − tc)
2 + (tf − tx)

2): the location weight.
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The relationship of the semantic, life, and location weight vectorsW
′
i ,W

”
i , and

W ”′
i are in Nash equilibrium. Each mobile device would want to choose scalar

coefficients for its three weight vectors that would result in a cache replacement
strategy that would strive to minimize the device’s costs in querying for data
and maintaining its cache and the time it takes to get queries answered. And, it
would be useful to be able to adjust the coefficients separately thus enabling the
weighting scheme to be customized for different types of applications and device
movement patterns. It is their game and its objective, which is a useful one for
caching among mobile devices.

3.2 The Scalar Coefficients of the Weights of the Nodes Satisfied

αi + βi + γi = 1; 0 < αi, βi, γi < 1;αi, βi, γi ∈ R. (3)

Theorem 1. Given three linearly independent vectors
W

′
i , W

′′
i , and W

′′′
i and their linear combination

Wi,j = αiW
′
i,j + βiW

′′
i,j + γiW

′′′
i,j , αi, βi, γi are scalar coefficient, αi, βi, γi ∈ R,

αi, βi, γi ≥ 0: then the following expression is satisfied:
αi + βi + γi = 1, 0 < αi, βi, γi < 1, αi, βi, γi ∈ R.

Proof: The rationality of the equation is obvious:
Let W ∗

i,j = α∗
iW

′
i,j + β∗

i W
′′
i + γ∗

i W
′′′
i , α∗

i , β
∗
i , γ

∗
i ∈ R, α∗

i , β
∗
i , γ

∗
i ≥ 0.

W∗
i,j

α∗
i +β∗

i +γ∗
i
=

α∗
i

α∗
i +β∗

i +γ∗
i
W

′
i,j +

β∗
i

α∗
i +β∗

i +γ∗
i
W

′′
i,j +

γ∗i

α∗
i +β∗

i +γ∗
i
W

′′′
i,j.

Then, Wi,j =
W∗

i,j

α∗
i +β∗

i +γ∗
i
, αi =

α∗
i

α∗
i +β∗

i +γ∗
i
, βi =

β∗
i

α∗
i+β∗

i +γ∗
i
, γi =

γ∗
i

α∗
i +β∗

i +γ∗
i
.

Then Wi,j = αiW
′
i,j + βiW

′′
i,j + γiW

′′′
i,j , and αi + βi + γi = 1, 0 < αi, βi, γi < 1,

αi, βi, γi ∈ R.

3.3 The Nash Equilibrium Point of the Semantic, Time and
Location Factors

Wi ·W ′
i

‖W ′
i‖

=
Wi ·W ′′

i

‖W ′′
i ‖

=
Wi ·W ′′′

i

‖W ′′′
i ‖ . (4)

Theorem 2. Given three linearly independent vectors,
W ′

i = (w′
i,0, . . . , w

′
i,j , . . . , w

′
i,m−1), W ′′

i = (w′′
i,0, . . . , w

′′
i,j , . . . , w

′′
i,m−1),

W ′′′
i = (w′′′

i,0, . . . , w
′′′

i,j , . . . , w
′′′

i,m−1), their linear combination

Wi = (wi,0, . . . , wi,j , . . . , wi,m−1), and Wi = αiW
′
i + βiW

′′
i + γiW

′′′
i , αi, βi, γi

are scalar coefficient, αi, βi, γi ∈ r, αi, βi, γi ≥ 0. The Nash Equilibrium point
of W ′

i, W
′′
i and W ′′′

i is
Wi·W ′

i‖W ′
i‖ =

Wi·W ′′
i‖W ′′

i ‖ =
Wi·W ′′′

i‖W ′′′
i ‖ .

Proof: Because W ′
i = (w′

i,0, . . . , w
′
i,j , . . . , w

′
i,m−1), W ′′

i = (w′′
i,0, . . . ,

w′′
i,j , . . . , w

′′
i,m−1), W

′′′
i = (w′′′

i,0, . . . , w
′′′

i,j , . . . , w
′′′

i,m−1), their linear com-

bination Wi = (wi,0, . . . , wi,j , . . . , wi,m−1), and Wi = αiW
′
i + βiW

′′
i + γiW

′′′
i (as

been shown in Fig. 2).
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Because of cosθ1=
Wi·W ′

i

‖Wi‖·‖W ′
i‖ , cosθ2=

Wi·W ′′
i

‖Wi‖·‖W ′′
i ‖ , cosθ3=

Wi·W ′′′
i

‖Wi‖·‖W ′′′
i ‖ , we want to

find the Nash Equilibrium point to make θ1=θ2=θ3, then cosθ1=cosθ2=cosθ3.
In other words, the Nash Equilibrium point among W

′
i , W

′′
i and W

′′′
i

should be the point that has an equal correlation coefficient to each of

the vectors. In other words
Wi·W ′

i

‖Wi‖·‖W ′
i‖=

Wi·W ′′
i

‖Wi‖·‖W ′′
i ‖=

Wi·W ′′′
i

‖Wi‖·‖W ′′′
i ‖ , then we get:

Wi·W ′
i‖W ′

i‖ =
Wi·W ′′

i‖W ′′
i ‖ =

Wi·W ′′′
i‖W ′′′

i ‖ .

1 2
3

Fig. 2. The relationship of W
′
i , W

′′
i , W

′′′
i and Wi

Combining (2) and (3), the paper builds the following linear binary simple
equations: {
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For αi + βi + γi = 1, then
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so: 0 < αi, βi, γi < 1, αi, βi, γi ∈ R.
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4 Algorithms for Nash Equilibrium Semantic Cache
Schemes

This section discusses the concrete implementation of the algorithms. Our algo-
rithm is consisted of three sub-algorithms:

1) Network Manager Algorithm: The Network Manager Algorithm manages
the network among the clients and the servers, which includes three functions:
Node Move Function, Building Routing Table Function, and Searching Routing
Table Function.

2) Query Processor Algorithm:Query Processor Algorithm generates queries
and processes queries via the semantic caches and servers. It randomly generates
a query that is a data structure. Afterward, firstly it queries to locate the node,
then it queries in the neighboring node and finally it queries to the server.

3) Semantic Cache Manager Algorithm: The core part of our work focus
on the Semantic Cache Manager Algorithm, which calculates semantic cache
scalar coefficients, manages the store and replaces of the semantic cache. First,
it calculates the Semantic Weight, Time Weight, and Location Weight of every
semantic-cache block using the basic information about frequency, size, cost,
time, and location. Second, it finds the inserting place and calculates the store
space. Finally if the space is large enough, then store, otherwise replace.

5 Performance Evaluation

We examine the performance of the proposed scheme in a mobile computing en-
vironment through a simulation study. Our simulator is developed by ourselves
and implemented in C++, which simulates a simple but typical mobile comput-
ing model. Then, we describe the conducted experiments, and further analyze
the results. The simulation experiments are executed on an IBMx255 server that
runs Linux with four Intel Xeon MP 3.0GHz/400MHz processors and 18G DDR
main memory.

5.1 Simulation Environment

In the simulation environment, we set two servers and multiple mobile clients,
which use a wireless link among them. They move in the range (X1, X2, Y 1, Y 2).
We assume that at least one or two servers maintain a complete copy of the
database and act as a sink and a database server. The queries are submitted
by the different mobile nodes in different situations, including the location, time
and requirement. The semantic cache is located on the mobile nodes. First a
query is processed locally; second the query is sent to the neighboring nodes for
processing, when it cannot be answered via the cache; finally, it is sent to the
server nodes, when it cannot be answered via the neighboring nodes.

Mobile Clients Model: The mobile clients are simulated to be composed of
the following modules: network manager, which manages the network among
the mobile nodes and the central servers; query processor, which generates and
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processes queries via the semantic cache; and semantic cache manager, which
calculates the different parameters, and manages the store and replacement of
the semantic cache.

System Parameters: Table 1 gives the parameters that specify the physical
resources of the modeled mobile system. All of the devices move within the
spatial domain according to the random method, a Grid Configuration from
50 × 100 to 1000 × 2000. We vary the Number of Mobile Devices from 100
to 5000. The Wireless Network Bandwidth is given by Bandwidth, which has
a typical value of 19.2kbps. The Wireless Radius is changing from 10 to 100,
most of time focusing on 100. We set the Maximum Hops to forward a routing
message to 2. This value was chosen by experiment because it attained good
cache effects, but did not incur high additional costs. Database relations, cached
semantic segments and cache maintenance data are all physically stored in pages,
whose size is specified by Server Pages, which is set to 1000000. Client Cache
defines the size of the memory cache at the client side, which is set 10000.

Initially, all of the data are stored in the simulated servers, and no device stores
any data in local storage. During the Simulation Period T , which is changing
from 100s to 5000s, the system randomly generates one mobile device to issue
1 query, which is a different type, price, and time, according to the location
of the mobile device, in every time t. We vary the Number of Mobile Devices
from 100 to 5000, which yields a moderate-scale data set [7]. The Speed Range
of the mobile devices is from 1unit/s to 10unit/s, including of PERSON and
CAR. Because usually the simulation period T is very long, we choose Step
Time, which is changes from 50s to 200s to calculate the relative parameters,
for example: Average Response Time and Average Local/Peer Hit Ratio.

Table 1. Parameters Used in Simulation

Parameter Setting

Grid Configuration 50 × 100, ..., 1000 × 2000

Number of Mobile Devices 100, ..., 1000

Wireless Network Bandwidth 19.2kbps

Wireless Radius 10, ..., 100

Max Hops 2

Speed Range 1unit/s − 10unit/s

Simulation Period 100s, ..., 5000s

Step Time 50s, 100s, ..., 200s

Client Cache Size 10000

Server Page Size 1000000

Semantic degree 1, 2, 3, 4

Location degree 1, ..., 10

Here, we introduce one parameters: Semantic degree: (1, 2, 3, 4) means the
query generates a rate of semantics, for example, there are three query types:
Restaurant, Hotel and Parking lots. We consider random to skewed distribu-
tions:
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1, 33% of Restaurant: 33% of Hotel: 33% of Packing lots;
2, 50% of Restaurant: 30% of Hotel: 20% of Packing lots;
3, 70% of Restaurant: 20% of Hotel: 10% of Packing lots;
4, 80% of Restaurant: 10% of Hotel: 10% of Packing lots.

We consider two main performance aspects:

(1) Average Response Time. The response time is defined as the elapsed simu-
lation time from the moment that a query is issued at a mobile device Morg to
the moment that Morg obtains all of the answers.

(2) Average Peer Hit Ratio. A storage hit occurs when a desired semantic cache
block is found, if the system hasn’t retrieved it from the server. We use the peer
hit ratio for the percentage found in peer storage.

5.2 Experiments

Because the strategy of using CSC is obviously poorer than the other ap-
proaches, we mostly compared the following three different strategies: SCSTL,
B&BGDSF , CSDS.

We chose two parameters to compare the simulation result, which are Seman-
tic degree: The Semantic degree takes on the values of 1, 2, 3, and4.

(1) Average Response Time. In Fig. 3, when the Semantic degree is 1 the ap-
proach CSDS becomes similar to our approach SCSTL. For all other situations,
the Average Response Time of our approach SCSTL was always obviously bet-
ter than the others.

(2) Average Peer Hit Ratio. In Fig. 4, in the beginning, when the Semantic degree
is 1, the approach SCSTL is poorer than the others. However, when the Seman-
tic degree increase to 2 and 3, the efficiency increases. When the Semantic degree
reaches a max value of 4, our approach SCSTL attains the best efficiency of the
Average Peer Hit Ratio. In daily living, people will choose some hot places, which
means that our approach can attain the best efficiency in a realistic application.
Moreover, generally speaking, in the beginning, the Average Peer Hit Ratio of
our approach SCSTL is not as good as the others, but as time goes on, its
efficiency increases, and in the end it obtains the best result, which means that
our approach SCSTL is specifically suitable for a long-term application.

Furthermore, higher Average Peer Hit Ratio, means less communication and
computation cost. Especially in realistic applications, communication distance
between peer to peer is much less than between peer to server, maybe 100 times
or more, so it can save lots of bandwidth and energy. Moreover, it is obviously
that computation and query costs in peer are much less than in server, maybe
1000 times or more, for the cache data quantity is limited. So that, in realistic
applications, SCSTL can attain much better efficiency than others.

The reason for all of the better efficiencies of the Average Response Time and
Average Peer Hit Ratio is that our approach SCSTL synthetically considers all
of the semantic, time and location factors.
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Fig. 3. The simulation results for the Average Response Time of the following ap-
proaches: SCSTL, B&BGDSF , and CSDS: (a), (b), (c), (d) means the Location degree
focus on CSDS and the Semantic degree takes on the values of 1, 2, 3, 4
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Fig. 4. The simulation results for the Average Peer Hit Ratio of approach SCSTL,
B&BGDSF , CSDS: (a), (b), (c), (d) means the Location degree focus is on 3, while
the Semantic degree takes on the values of 1, 2, 3, 4
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6 Conclusions and Future Work

Conclusions: To improve the query efficiency of a sensor grid, we propose our
semantic cache scheme, which includes the following: (i) Based on the Nash
Equilibrium scheme, an application of three scalar coefficients is proposed in term
of the analysis of the relationship among semantic, time and location factors. (ii)
After that, we specialize and summarize the general Nash Equilibrium scheme
utilizing the equal correlation coefficient among the new and old vectors to find
the point of Nash equilibrium and resolves the scalar coefficients. (iii) It uses
these scalar coefficient to attain an optimum cost model of the semantic cache,
for query optimization in the context of distributed query processing. (iv) We
emphasize that this method can extend to any finite-dimension, which are other
schemes cannot do.

Future Work: To extend to the N-vectors correlation. All of author’s research is
in organic architecture. After discussing three-dimensional vectors correlations,
the algorithm can be extended to infinite N-vectors correlations.
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Abstract. In the context of Web 2.0, the users become massive pro-
ducers of diverse data that can be stored in a large variety of systems.
The fact that the users’ data spaces are distributed in many different
systems makes data sharing difficult. In this context of large scale dis-
tribution of users and data, a general solution to data sharing is offered
by distributed search and recommendation. In particular, gossip-based
approaches provide scalability, dynamicity, autonomy and decentralized
control. Generally, in gossip-based search and recommendation, each user
constructs a cluster of “relevant” users that will be employed in the pro-
cessing of queries. However, considering only relevance introduces a sig-
nificant amount of redundancy among users. As a result, when a query
is submitted, as the user profiles in each user’s cluster are quite simi-
lar, the probability of retrieving the same set of relevant items increases,
and recall results are limited. In this paper, we propose a gossip-based
search and recommendation approach that is based on a new clustering
score, called usefulness, that combines relevance and diversity, and we
present the corresponding new gossip-based clustering algorithm. We val-
idate our proposal with an experimental evaluation using three datasets
based on MovieLens, Flickr and LastFM. Compared with state of the
art solutions, we obtain major gains with a three order of magnitude
recall improvement when using the notion of usefulness regardless of the
relevance score between two users used.

1 Introduction

In the context of Web 2.0, users become massive producers of diverse data (e.g.
photos, videos, scientific data) that can be stored in a large variety of systems
(e.g. DropBox, Facebook, Flickr, Google+, local computer or smartphone). Users
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are often willing to share their data with other users in a community of interest.
However, the fact that their data spaces are distributed in many different systems
makes data sharing especially difficult. For instance, an artist photographer who
wants to share her pictures within an online community of photographers may
have to log in several different Web applications such as deviantArt, Facebook
or Flickr, each with a different interface and account. Similarly, a scientist who
needs to search for scientific datasets within an online community of scientists
will be faced with the problem that the relevant data is typically distributed
in many different labs’ servers or scientists’ local computers. Furthermore, since
this data is hidden to web crawlers, traditional search engines become useless.
In order to mitigate this problem, some Web applications allow grouping several
accounts and data from different systems (e.g. Facebook enables to regroup
DropBox and blogs into a single Facebook account). However, they are limited
to a few well-known systems.

In this context of large scale distribution of users and data, a general solution
to data sharing is offered by distributed search and recommendation [1, 2]. In
this paper, we adopt a peer-to-peer gossip-based approach, because it provides
important properties such as scalability, dynamicity, autonomy and decentralized
control. Within an online community, each user u is associated to a virtual data
space that contains all the data items (stored in different systems) it shares.
Given u and a keyword query q, the goal of our search and recommendation
approach is to recommend to u items that are relevant with respect to q and
that are shared by other users, regardless of the systems that store the items.
Then, a recommended item is simply a reference that can be used to retrieve
the actual data item. In other words, we combine search and recommendation
in the sense that a user u searches relevant items among those recommended by
users similar to u.

Distributed search and recommendation has received considerable attention
[1–4]. However, one open problem is the ability to attain high recall results. A
query is generally forwarded only to a subset of users who will be employed to
process queries and return recommendations. To compute this subset of users,
many solutions cluster relevant user profiles implicitly using gossip protocols.
Gossip protocols are known to be highly resilient, scalable and converge quickly
[5], which makes them a good alternative for distributed search and recommen-
dation. A User Network (U-Net in the following) refers to the cluster of relevant
users, a user u is aware of by gossiping, using a score (e.g. similarity between u
and the users in U-Net). At each gossip round, the most relevant users are kept
in U-Net. Since U-Net is used to guide recommendations given a keyword query,
the relevance score used in the clustering process plays a very important role to
increase the number of relevant items retrieved with respect to the whole set of
items (i.e. recall), known as the global corpus.

Relevance scores (e.g. Jaccard, overlap) define how well a user profile v meets
the needs of another user u. Most of the existing solutions exploit different kinds
of relevance scores to increase recall [2–4, 6, 7]. But recall results remain limited.
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The reason why recall remains limited is because using relevance as the clus-
tering score introduces a significant amount of redundant user profiles in U-Net.
As a result, when a query is submitted, since many user profiles in U-Net are
quite similar (i.e. redundant), and these users are chosen to provide recommen-
dations to answer the query, the probability of retrieving the same set of relevant
items increases and recall results remain low. In Information Retrieval, useful-
ness is used as a way to overcome redundancy between the items of a result
list by combining relevance with diversity [8, 9]. In our context, we claim that
usefulness can be used when clustering user profiles in U-Net, instead of just
relevance. This way, a more diverse set of results will be returned from different
users and the recall would be enhanced.

In this paper, we propose a gossip-based search and recommendation approach
based on a new clustering score, called usefulness, that combines relevance and
diversity. As we show experimentally, this new score is able to increase signif-
icantly the quality of the recommendations returned by the system. However,
existing peer-to-peer clustering algorithms are no longer suitable since they are
optimized for relevance only. Therefore we also propose a new clustering algo-
rithm especially conceived for usefulness.

In summary, we make the following contributions:

1. We show that usefulness is a good way to increase recall and that it should
be expressed as a known probabilistic diversification score [8, 9].

2. We propose a clustering algorithm that maintains a useful U-Net over a
gossip overlay using the usefulness score.

3. We validate our approach with an experimental evaluation using three differ-
ent datasets: MovieLens, Flickr and LastFM. We observe that diversification
enables a huge increase of recall regardless of the relevance score used. Com-
pared with state of the art solutions, we obtain an excellent gain with recall
results up to three times better when using the notion of usefulness.

This paper is organized as follows. Section 2 provides some basic concepts
and gives the problem definition. In Section 3, we describe our new clustering
score and present in details the new clustering algorithm that maintains U-Net.
In Section 4, we provide an experimental evaluation. In Section 5, we compare
our contributions with related work. Finally, Section 6 concludes and provides
directions for future work.

2 Basic Concepts and Problem Definition

In this section, we introduce the background necessary to understand the prob-
lem we address. In our distributed search and recommendation approach, when-
ever a user u submits a query q, the system sends q to a subset of users that we
call U-Net, and who will return their relevant results to u and will also recur-
sively forward the query to the users in their U-Net until the TTL is reached.
To build U-Net, we use a two steps approach. First, based on random gossiping
each user u is aware of other peers available on the network. Second, by means
of a clustering algorithm, u chooses among these users the best ones to answer
u’s queries and keep them in U-Net.
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More precisely, our peer-to-peer model is expressed based on a graph G =
(U, I, E), where U = {u1, ..., un} is the set of users distributed over the network,
I = {i1, ..., im} the set of shared data items (in the following, an item refers
to a data item), and E = {e1, ..., ek} the set of directed edges among users
and between users and items. This model is very generic. In our case, users are
independent nodes in the network. A node can be a physical computer or a
virtual node in a server.

Definition 1 (U-Net). Given a user u, its User Network, or U-Net, refers to
the cluster of relevant users u is aware of. There is an edge e(u, v) in the graph
between u and a user v, if v is in u’s U-Net.

With random gossiping [5], each user keeps locally a random view of its dy-
namic acquaintances (or view entries). Each view entry corresponds to a user
profile. Periodically, each user chooses randomly a contact (view entry) to gossip
with. The two involved users then exchange a subset of each others view (i.e.
user profiles), and update their view state. Then, after each gossip exchange, the
random view is used to update the U-Net if more relevant profiles are found in
the updated view. We use Jaccard as the relevance score to select the best users:

Jaccard(u,v) = |Iu ∩ Iv| / |Iu ∪ Iv| (1)

Where Iu and Iv are the items shared by user u and v respectively.
Here, we use the vector space model to represent items and user profiles [10].

Specifically, each item it is modelled as a sparse vector containing only the
weights of the keywords k1, ..., kz in it. The weight of each keyword is computed
using tf × idf . Distributed tf × idf can be easily implemented using gossip pro-
tocols. Indeed, the first part of the score, denoted tf, can be computed locally,
and the second part, denoted idf, only needs average information (e.g. average
number of items per user) to be computed. These averages can be easily com-
puted using gossip protocols [11]. Due to lack of space, we do not develop this
protocol in this paper.

Each user profile is defined based on the items the user shares, Iu (i.e. con-
tent based recommendation). We choose a relevance score (i.e. Jaccard) that
works well with content-based recommendation, but other relevance measures
and profiles definition methods could be used as well.

As mentioned before, whenever a user u submits a keywords query q =
k1, ..., kw, the query is redirected to all users in the participating users’ U-Net
recursively, until a predefine upper threshold, TTL (i.e. Time-To-Live). When-
ever a user v receives a query, it computes its top-k most relevant items with
respect to the query using a specific relevance score (e.g. Jaccard). Then, v re-
turns them to u. A recommended item is defined by its identifier, its tf × idf
vector, v’s identifier and v’s profile. Once u receives the set of recommended
items from v1, ..., vn with respect to its query q, it ranks them based on their
relevance with respect to the query:

Recq = rank(rec1q(it1, ...) ∪ ... ∪ recnq (itp, ...)) (2)

Where rec1q(it1, ...) is a recommendation (i.e. a set of recommended items)
coming from a user v1.
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To evaluate the quality of search and recommendation, we use the recall mea-
sure [12]. Recall captures the fraction of items that have been successfully rec-
ommended: recall = |Iretq| / |Irelq|, where Iretq ∈ I refers to the relevant
items recommended with respect to a query q, and Irelq ∈ I refers to all the
relevant items with respect to query q.

Problem Definition: Given a user u ∈ U , a query q, I in G, and a gossip based
overlay, the goal is to maximize the number of relevant items with respect to q
returned to u while minimizing TTL.

3 Diversified Clustering and Algorithm

In this section, we show that usefulness is an excellent way to increase recall
results of gossip-based recommendation, and can be used as a clustering score.
In section 3.1, we formally show that to increase recall, usefulness should take
into account relevance and diversity. Next, Section 3.2 presents the Useful U-Net
clustering algorithm deployed over a gossip-based overlay.

3.1 Usefulness Score

The usefulness score should be designed such that it maximizes the probability
that a user u can retrieve relevant items given a random query q, known as
the coverage probability. In other words, u’s neighbors v1, ..., vn ∈ G should be
chosen such that the number of relevant items (with respect to the queries u will
submit) that can be accessed through them is maximized.

Let Q be the set of all possible queries (all the combinations of terms), and
P (Qv) the probability that a user v can return at least one relevant item given a
random query q ∈ Q. In the following, we first define the coverage with respect
to U-Netu = {v1, ..., vn}. Then, based on coverage, we express the usefulness of
a user v with respect to the other users in u’s U-Net.

Definition 2 (Coverage). Given Q and U-Netu = {v1, ..., vn}, the users in u’s
U-Net. The coverage is the probability that at least one of the user in u’s U-Net
can return at least one item given a random query q ∈ Q. Coverage is denoted
P (Qv1 ∪Qv2 ∪ ... ∪Qvn).

The user profiles v1, ..., vn must be selected such that the coverage probability is
maximized. Formula 3 develops the coverage probability with respect to every
user in u’s U-Net.

P (Qv1 ∪ ... ∪Qvn) =
∑

j∈1,...,n

(P (Qvj )− P (Qvj ∩ (Qvj+1 ∪ ... ∪Qvn))) (3)

P (Qvj ) − P (Qvj ∩ (Qvj+1 ∪ ... ∪ Qvn)) represents the coverage added by user
vj with respect to the users vj+1, ..., vn. As a consequence, when j = n, only
P (Qvj ) is considered as there is no more user profiles to compare with.

In the following, we define the usefulness of a user profile vi with respect to
the coverage probability.

Definition 3 (Usefulness). Given u’s U-Net, the usefulness of a user profile
vj is the probability that it can return relevant items for a random query q, that
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could not be returned by other users in u’s U-Net. In other words, it is defined
as follows:

usefulness(vj |vj+1, ..., vn) =P (Qvj )− P (Qvj ∩ (Qvj+1 ∪ ... ∪Qvn)) (4)

Formula 4 shows that the usefulness score should consider relevance P (Qvj )
and take into account P (Qvj ∩ (Qvj+1 ∪ ... ∪ Qvn)) which corresponds to the
redundancy of user profile vj with respect to the other user profiles vj+1, ..., vn.

In the following, we show that usefulness(vj |vj+1, ..., vn) can be expressed into
a known probabilistic diversification model [8, 9]. In Formula 5 we first integrate
usefulness (the right hand side of Formula 4) into a conditional probability.

P (Qvj )− P (Qvj ∩ (Qvj+1 ∪ ... ∪Qvn)) =P (Qvj )× (1− P (Qvj+1 ∪ ... ∪Qvn |Qvj ))

=P (Qvj )× P (Q̄vj+1 ∩ ... ∩ Q̄vn |Qvj )
(5)

Similar to [8, 9, 13], we assume that the redundancy of a user profile v1 with
another user profile v2 is independent of its redundancy with other users and we
derive Formula 6.

P (Qvj )× P (Q̄vj+1 ∩ ... ∩ Q̄vn |Qvj ) =P (Qvj )×
∏

i∈j+1,...,n

(1− P (Qvi |Qvj )) (6)

Finally, we observe that the usefulness of a user profile is clearly similar to the
probabilistic diversification problem used in [8, 9] and presented in Formula 7.

usefulness(vj |vj+1, ..., vn) =rel(vj)×
∏

i∈j+1,...,n

(1− red(vj , vi)) (7)

where rel(vj) = P (Qvj ) is the relevance of user profile vj and red(vj , vi) =
P (Qvi |Qvj ) is the redundancy of user profile vj with respect to the other user
profile vi.

3.2 Useful U-Net Clustering

We now present in details our clustering algorithm that maintains a useful U-Net
over a random gossip overlay using the usefulness score.

Given the set of users in the random view, the goal of the clustering algorithm
is to compute the usefulness of each user found in the view, with respect to
those that were previously added to the U-Net, taking into account relevance
and diversity, as defined in Equation 7, and to update the U-Net as consequence.

Based on random gossiping [5], each user u maintains a set of random view en-
tries corresponding to the users profile u is aware of. Periodically, users gossip,
and exchange a random subset of their views entries. After the random gossip
merging phase, the clustering algorithm, which corresponds to the Useful U-Net
Algorithm depicted in Algorithm 1, is triggered. In fact, taking into account the
previous gossip exchange, the algorithm selects the most useful users from the
random view considering the useful users previously selected (i.e. from the pre-
vious gossip rounds) in the U-Net. The algorithm uses three main data structures:
random view, U-Net, and the candidate list. The random view and the U-Net are
initialized when u joins the network, and continuously updated as a result of ran-
dom gossip. The candidates list contains the user profiles that will potentially be
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Fig. 1. An example of the execution of Useful-Unet

added to the U-Net and is initialized each time the clustering algorithm is trig-
gered.

In the following we present in more details the Useful U-Net algorithm based
on the example of Figure 1. The random view entries correspond to the profiles
of users v1, v6, v7, v8, v9. The previous useful user profiles are v1, v2, v3, v4, v5 and
are stored in U-Net. Assuming that the algorithm is executed in u’s node, the
algorithm input is u’s profile, its random view denoted RandomViewu and its
U-Net denoted U-Netu. The data structure used for U-Net is an array of size
N of user profiles, associated to their usefulness score and sorted in decreasing
order of usefulness. The output of the algorithm is the updated U-Net. Useful
U-Net algorithm has three main parts:

1. The first part (lines 1 to 6) finds the best useful user profile from the random
view, and the position i where it should be inserted in the U-Net (recall that
the usefulness score of a user depends on its position in the U-Net). As a
consequence, the update of the U-Net will only concern the user profiles
from position i to N . To find the best useful user from the random view,
the algorithm first initializes the candidates list with all users in the random
view except those already in the U-Net (line 2). In Figure 1, v1 is already
in the U-Net, so the candidates list is initialized with the users v6, v7, v8, v9
(1a). For each position i in U-Net, all the usefulness scores of the candidates
are computed using Formula 7 taking into account the set of users in the
U-Net at positions 1, ..., i − 1, and compared with the usefulness score of
the user profile in U-Netu[i]. If the best user profile in candidates is more
useful than U-Netu[i], then, the algorithm stops iterating (line 6). If there is
more than one best user profile, the best user profile is chosen randomly with
respect to the set of best user profiles. In Figure 1, v7 is more useful than
v3 at the third position in u’s U-Net because v3’s usefulness is 0.78 while
v7’s usefulness is 0.89 (1b). If there is no user profile in the candidate list
whose profile score is superior to any user profile in the U-Net, position N is
reached and the algorithm stops. Only the scores of the user profiles up to
position i are definitive. Thus, in our example, the scores of v4, v5, v6, v8, v9
are not definitive because they are either not in the U-Net or after i.
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2. The second part (lines 7 to 10) copies and deletes the remaining user profiles
(from position i to N) from the U-Net to the candidates (2a) list because
their scores need to be recomputed using Formula 7 and with respect to the
best user profile in candidates (computed in part 1). Then, the best user
profile is inserted in position i. In the on-going example of Figure 1, the user
profiles v3, v4, v5 are copied and removed from the U-Net to the candidates
list and user profile v7 is added in the U-Net at position 3 (2a and 2b).

3. Finally, in the last part (lines 11 to 15), the algorithm iteratively computes,
for each empty position i in the U-Net (positions emptied in part 2), the
scores of the user profiles in the candidates list using Formula 7 and taking
into account the set of users in the U-Net at positions 1, ..., i−1 (lines 12 and
13 and step 3a in the figure). Then, the most useful candidate is moved to
the U-Net at that position (line 15 and step 3b in the figure). The algorithm
repeats these steps until all the positions in U-Net are filled out (line 11).

Recall that gossip protocols converge quickly [3]. As a consequence the U-
Net will also converge quickly and, in general, tends to stabilize. Therefore, the
algorithm will stop at step 1b more and more frequently.

Algorithm 1. Useful U-Net

Input: u profile, U-Netu (array[1..N]), RandomViewu

Output: U-Netu is updated with respect to the RandomView
1 candidates : unsorted list of user profiles;
2 candidates ← RandomViewu − U-Netu; best ← ∅; i ← 0;
3 repeat
4 i++;
5 for each cj ∈ candidates do score(cj) ← usefulness(cj ,u,U-Netu[1..i− 1])

best ← argmaxc∈candidates(score(c));

6 until i=N or score(best) > score(U-Net[i]);
7 if score(best) > score(U-Net[i]) then
8 after← U-Netu[i..N ]; U-Netu[i] ← best ; i++;
9 candidates ← candidates − best ;

10 candidates ← after ∪ candidates; U-Netu ← U-Netu − after ;
11 while i < N and candidates�= ∅ do
12 for each cj ∈ candidates do
13 score(cj) ← usefulness(cj , u,U-Netu[1..i− 1]);

14 best ← argmaxc∈candidates(score(c)); U-Netu[i] ← best ;
15 candidates ← candidates − best ; i++;

4 Experimental Evaluation

In this section, we provide an experimental evaluation to validate our approach
and compare it to other state-of-the-art solutions. We conducted a set of experi-
ments using three datasets which correspond to MovieLens, Flickr and LastFM.
In Section 4.1, we introduce the experimental setup of our evaluation. Then, in
Section 4.2, we present and discuss the experimental results.
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4.1 Experimental Setup

We ran our experiments on the PeerSim simulator1. We used three different
datasets:MovieLens, Flickr and LastFM.MovieLens dataset is composed of users
that rated movies. Flickr dataset is composed of users that submitted or added
a picture to their favorites. Each user also associates tags to the pictures he/she
submits. Finally, LastFM dataset is composed of users who listen and associate
tags to artists. Each dataset has different features, in particular users are more or
less redundant if the number of items per user is more or less respectively. The
characteristics of the datasets are summarized in the following table.

dataset items # items # users avg items/user

MovieLens Movies 3, 900 6, 040 166

Flickr Pictures 2, 029 2, 000 3.7

LastFM Artists 23, 346 2, 000 98

The queries used in the experiments consist of: InMovieLens, for each user, a ran-
dom subset of movies are shared and the rest are used as the queries to submit.
In particular, the words in the title are used as separate keywords. In Flickr and
LastFM queries are computed as the random association of several tags submit-
ted by a given user on a given item. An experiment is composed of two parts.
First, all users gossip during 400 rounds until convergence. Then, every 20 gos-
sip rounds all users submit one of their queries. The experiment stops at 500 gos-
sip rounds. We measure the average recall results. The recall enables to compute
the fraction of items that has been successfully recommended as presented in Sec-
tion 2. On theMovieLens dataset, the recall value is 1 if the movie has been found
and 0 otherwise. On Flickr and LastFM, the recall is the proportion of pictures in
the whole dataset that contains all query’s keywords that have been returned to
the user. On the Flickr and LastFM experiments, we have computed the variance
which enables to compute the variability of the recall and is computed as follows:
V (X) = 1/N ×∑n

i=1(xi −m)2 where m is the average recall.
In our experiments, we use the following relevance scores:

overlap(u,v) = |Iu ∩ Iv| over big(u,v) = |Iu ∩ Iv|+ |Iv|
Jaccard(u,v) = |Iu ∩ Iv| / |Iu ∪ Iv| cosine(u,v) = Iru × Irv / ||Iru|| × ||Irv||
where Iu and Iv are the items shared by u and v, respectively, and where Iru

and Irv are the set of ratings u and v gave to the items they share. We have fixed
the U-Net ’s size to 16 and TTL to 3. Other values have been tested and showed
similar results. The size of the random view (5 in our case) is not important as
it only modifies the convergence speed.

4.2 Experiments

Figure 2 presents the results of our experiments. More precisely, Figures 2a, 2b
and 2c compare the recall results of the used relevance scores with and without
including our usefulness score, while Figures 2d, 2e and 2f compare the recall
results of several diversification methods.

1 www.peersim.sourceforge.net

www.peersim.sourceforge.net
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Fig. 2. Effect on recall of diversification

Not surprisingly, diversifying the U-Net enables for all relevance score to sig-
nificantly increase recall. On the MovieLens dataset, the recall results without
diversification range between 0.58 and 0.62 while they range between 0.978 and
0.999 with diversification. On the Flickr dataset, the gains are slightly smaller.
Since all users share their own pictures, their profiles are very different and al-
ready diversified. Therefore, diversification has less impact on the recall. Finally,
the LastFM dataset recall results are up to 3.26 times higher.

In addition to improve the recall, diversified solutions enable to reduce the
variance compared to undiversified solutions. For instance, on Flickr, the vari-
ance decreases from 0.116 to 0.013 when using Jaccard. This can be explained
by the fact that in the undiversified solution, users in U-Net are very similar
among them. As a consequence, either all are relevant to the query, and hence
they provide a high recall; or none of them is, thus producing a low recall. Diver-
sification enables to increase coverage and therefore, it increases the probability
to answer any kind of query.

In addition, we ran these experiments with different sizes of U-Net and values
of TTL. For instance, on the MovieLens dataset, with a U-Net of size 5 and a
TTL of 2, the recall is in average 2.37 times higher compared to undiversified
solutions. Indeed, without diversification, recall values are in average of 0.26
while they reach 0, 61 using usefulness.

We have also compared three different diversification methods. The first is
the usefulness score presented in Equation 7. The second method we use is the
Maximal Marginal Relevance, known as MMR [13]. MMR chooses users that
minimize the maximum similarity between any two users in u’s U-Net. Finally,
the last method is Explicit Query Aspect Diversification known as xQuad [14].
xQuad chooses users such that each user vi in u’s U-Net is similar to u in a
different way. For instance, suppose that u shares items i1 and i2. If v1 is in u’s
U-Net and is similar to u because it also shares i1, then, xQuad chooses a user
v2 such that v2 is similar to u because it shares the item i2. In this experiment,
we use Jaccard as the similarity measure.
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Figures 2d, 2e and 2f show that all diversification methods enable to increase
the recall values compared to undiversified methods. Among them, usefulness
obtains the best gain in terms of recall closely followed by xQuad. Finally, MMR
shows the worst gain in terms of recall. Indeed,MMR chooses users that minimize
the maximum similarity between any two users in u’s U-Net. Therefore, it prefers
users that are a little bit similar with every user in u’s U-Net, and that do not
necessarily increase recall results.

5 Related Work

Distributed recommendation for web data based on collaborative filtering has
been recently proposed with promising results. In this section, we compare our
recommendation approach with state of the art solutions.

In [15], Loupasakis and Ntarmos propose a decentralized approach for social
networking with three goals in mind: privacy, scalability with profitability and
availability. They propose an architecture based on a DHT for keywords query
search. Since, DHTs are better suited for exact-match queries, the author pro-
pose to decompose each query into several single word exact-match queries. The
main drawback is that responses that have medium scores with respect to each
keyword but high scores with respect to all the keywords are likely to be missed.

P2PRec [3] is a gossip-based search and recommendation solution where the
profile of each user u is represented as a set of topics computed based u”s items.
Then, using gossip protocols, similar users in terms of topics, are clustered to-
gether and used to guide recommendation as we do. However, since diversity is
not taken into account, users within each cluster can be redundant, thus limiting
recall results. In [6], Kermarrec et al. focus on recommendation and propose to
combine gossip algorithms and random walks. The users are clustered based on
relevance through gossip protocols. A user has knowledge of the items shared by
its neighbors. To compute the recommendation, each user runs locally a random
walk using a transition similarity matrix. However, the computational complex-
ity of the algorithm with respect to the size of the neighborhood and the number
of items. reduces the complexity of the approach. Moreover, Kermarrec et al. [7]
claim that, since users are heterogeneous, the similarity measure used to cluster
users should also be heterogeneous. Nevertheless, the concept of diversity is dif-
ferent from ours as it represents the usage of various relevance scores depending
on each user”s profile. As a consequence, each user”s cluster may still carry re-
dundant user profiles, because there is no explicit diversification. In [1], Bai et
al. propose a solution for personalized P2P top-k search in the context of col-
laborative tagging systems, called P4Q. In this solution, the users are clustered
based on relevance through gossip protocols. The users in each cluster are split
into two groups: 1) the c closest users from which u replicates all items metadata
(i.e. tagging actions) and 2) the n less similar users from which u knows only
the profile. Still, diversity is not taken into account and users within the clusters
are likely to be redundant.
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6 Conclusion and Future Work

In this paper, we proposed a new gossip-based search and recommendation ap-
proach with new measures and techniques. We first showed that usefulness, by
combining relevance and diversity, is very effective in increasing recall results
and can be used as a clustering score. Then, we designed a new clustering algo-
rithm based on usefulness that combines relevance and diversity. We validated
our proposal with an experimental evaluation using several datasets and show
major gains with recall results more than two times better.

In future work we intend to exploit other recommendation scenarios such as
multisite recommendation.
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Abstract. MapReduce is a powerful model for parallel data processing.
The motivation of this work is to allow running map-reduce jobs par-
tially on untrusted infrastructures, such as public clouds and desktop
grid, while using a trusted infrastructure, such as private cloud, to en-
sure that no outsider could get the ’entire’ information. Our idea is to
break data into meaningless chunks and spread them on a combination
of public and private clouds so that the compromise would not allow the
attacker to reconstruct the whole data-set. To realize this, we use the
Information Dispersion Algorithms (IDA), which allows to split a file
into pieces so that, by carefully dispersing the pieces, there is no method
for a single node to reconstruct the data if it cannot collaborate with
other nodes. We propose a protocol that allows MapReduce computing
nodes to exchange the data and perform IDA-aware MapReduce compu-
tation. We conduct experiments on the Grid’5000 testbed and report on
performance evaluation of the prototype.

1 Introduction

MapReduce is a powerful parallel data processing model, capable of simplify the
programing of data-intensive applications, i.e applications manipulating an enor-
mous amount of data at large scale. Recently, many organizations have adopted
the MapReduce model and have implemented their own frameworks such as
Google MapReduce [DG04], Yahoo! Hadoop [Whi09] and BitDew [TMC+10].
Furthermore, this model has been adopted by many researchers in high perfor-
mance computing, data intensive scientific analysis, large scale semantic anno-
tation and machine learning.

A large class of data processing systems using MapReduce is mainly run-
ning on local platform, such as clusters. However, open systems such as Service
Oriented Architecture, Grid Computing, Volunteer Computing and Cloud Com-
puting offer platforms to run MapReduce applications on. In particular, Cloud
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Computing aims to offer affordable and scalable computing capacities, which
meet the needs of MapReduce applications. However, because of the lack of se-
curity mechanisms to ensure data privacy provided by Cloud providers, users
are still reluctant to offload the processing of their sensible data-sets.

Desktop Grids (DG) [CF12] are a form of volunteer computing that have
known success thanks to the high computing and storage power they offer with
a low economic cost. The architecture of this infrastructure is based on the
federation of free resources; users, voluntarily, participate with their machines
when these are idle. Volatility and security are ones of the constraints that
discourage users to exploit this enormous potential.

Our contribution is to enhance MapReduce security, so that it protects data
sent by the users to remote computing infrastructures from leakage and eaves-
dropping. More specifically users face two kinds of threats : 1) during data dis-
tribution, an eavesdropper could intercept data when being transferred, and 2)
when stored or processed, a malicious workers could have access to data. Unfor-
tunately, if encryption can protect data transfer and storage, it cannot prevent
the spying of data when they are deciphered for computation. There exists tech-
niques that allow to process encrypted data, however, those are not yet generic
enough for supporting any kind of computation.

As MapReduce is based on parallel processing, data has to be divided over
the computing nodes so each one processes a chunk as an input file. To improve
data privacy, our approach is to use a combination of trusted and untrusted
infrastructures, for instance private and public Clouds, to store the data set and
execute the MapReduce applications. Our approach relies on the Information
Dispersal Algorithm (IDA) to split and distribute the data.

Our idea is to break data into meaningless chunks so that a malicious worker
or eavesdropper, can not get access to meaningful data. A meaningless data is
an obsolete and useless information so even if a malicious worker has access
to it, the data (i.e the meaningfull) remains protected. To do so, we use IDA
which generates, from an input file, several chunks and disperses them on several
machines. Each machine aiming to access data has to contact other machines
to get missing chunks to reconstruct the needed information. In our case, we
call chunk provided by IDA: meaningless data. So, if a malicious node has 1
chunk, it has to contact and collaborate with other nodes to get missing ones.
The lack of one chunk prevents the malicious user to get access to meaningful
data. In order to hide some chunks from malicious users, we use a hybrid cloud
infrastructure. If m chunks are necessary to reconstruct data, we deploy m − 1
chunks on untrusted infrastructure, such as public cloud and desktop grid. The
remaining chunks are deployed on a private cloud. We assume that a private
cloud is highly secure and cannot be accessible by malicious users.

The rest of the paper is organized as follows. Section 2 presents the dispersion
algorithm IDA and MapReduce. In Section 3, we describe our approach with
its various components. Section 4 analyzes the experiments results. Section 5
exposes related works. Finally, we conclude in section 6.
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2 Background

2.1 Presentation of IDA

Information Dispersal Algorithm (IDA), first proposed by O. Rabin in 1989
[Rab89], is used to break a file F of length L = |F | into n pieces Fi, i in [1..n],
each of length |Fi| = L/m, so that every m pieces suffice to rebuild F . The
sum of the lengths Fi is (n/m) ∗L. With IDA, since any m pieces, among the n
created, can reconstruct the data, loosing parts of data when stocking or routing
can be remedied.

Mainly, IDA is based on two key parameters. As defined, n is the total number
of pieces resulting from IDA, of which any m chunks are sufficient to reconstruct
the original file. m is called ”quorum” or ”threshold”. O. Rabin defines the ratio
between m and n as follows: n/m = 1+e (e > 0), so it ensures greater reliability
of the algorithm in terms of security and storage capacity.

IDA is based on two routines. The split operation generates the n chunks to
be distributed. The combine routine requires m chunks passed as arguments to
reconstruct the original data.

Both algorithms of division (split) and recomposition (combines) operate by
performing a multiplication of the entry and a key matrix, also called transfor-
mation matrix.

The key matrix must have the property that every subset ofm different vectors
are linearly independent. If this is not the case, the key matrix can not be inverted
and the combine phase is not feasible. Indeed, the key matrix is generated from
a ”key”. It is defined as a vector Vkey composed of a list of elements respecting
the following constraints:

Vkey : (x1, ..., xn, y1, ..., ym) , for every i, j :
(1) xi + yj 
= 0 ; (2) i 
= j → xi 
= xj et yi 
= yj

A row of the key matrix is:

ai = ( 1
xi+y1

, ..., 1
xi+ym

)

First, The key matrix A(n∗m) is generated respecting the mathematical con-
straints seen above. The next step is to decompose the input data into sequences.
Each sequence Si is expressed as a vector Fi. Fi is composed of m elements. An
element is of size w and can be a character (w = 1), a word, etc.. We will call the
matrix composed of the different vectors Fi, the matrix F . Then, F is transposed
to have Ft. The multiplication of A by Ft generates a matrix R (IDA output).
A chunk Mi is a file composed of 1) a header containing the key vector of order
ai (i.e. the ith row of the key matrix), 2) a body storing Ri. Mi is a chunk to
send to a mapper.

Once m chunks are collected by a host, the key matrix is obtained from the
m headers. The product result of the inverted key matrix by the content of the
chunks gives the original data.
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2.2 MapReduce

The principle of MapReduce consists of splitting the data into parts so their
process is simultaneously done. The model defines two main functions, the Map
function processes input chunks and the Reduce function processes the output
of Map tasks and outputs final results.

Computing elements can be classified into Mapper nodes, which execute Map
tasks and Reducers which execute Reduce tasks. In a first step, input data are
divided into chunks and distributed over the Mappers. Then, Mappers apply
the Map function on each chunk. The result of the execution of a Map task is
list(k,v), a list of key and value pairs. An intermediate Shuffle phase sorts the
map outputs, called intermediate results, according to keys so that in a second
step, each Reducer processes a set of the keys. In the Reduce phase, Reducers
apply the Reduce function to all of the values (k, list(v)) for a specific key. At
the end, all the results can be assembled and sent back to the user.

3 Our Secure MapReduce Approach Based on IDA

Our approach is composed of four phases, illustrated in Figure 1 as follows:

Fig. 1. IDA Phases for MapReduce

3.1 Preparation Phase (Split)

Classical MapReduce master splits the input data into chunks based on the
chunk size. In our approach, we apply the IDA split routine on input data which
generates n chunks. A chunk M i is composed of 1) a header containing the key
vector of order i (i.e. the ith row of the key matrix), 2) a body storing the ith

row of the key matrix and data product. All generated chunks will be dispersed
to the mappers machines.
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3.2 Distribution Phase (Scatter)

Once we get n chunks by applying the split routine, the master sends them to
the mapper machines via messages called yourChunk() (see Figure 2).

At this point, no mapper can start executing its task because the data it
owns do not match the real input data, because IDA applies multiplications
that alters data without losing them. Therefore, a mapper should contact other
machines to have the necessary information allowing the extraction of a sequence
of meaningful data during the collect phase.

Fig. 2. Exchanged data and messages

3.3 Collect Phase

Each mapper randomly selects its friends among all the mappers who received
their chunks. A mapper list of friends must be composed of m − 1. Adding to
them its data, m is the number of keys necessary for calculating the inverse
matrix. Then, it contacts them to ask for their miniChunks.

The request is made by sending a miniChunkRequest() message. Asking an
element from each friend allow the mapper to restore only one sequence which
size is m. IDA specifies m as the size of a sequence, which is a very fine granular-
ity and may degrade the performance of our system. To solve this problem, each
mapper is responsible of restoring a serie of contiguous sequences that we call
packet. Its size is fixed by the master. To do so, a mapper specifies in the request
message sent to its friends, the order of packet it should restore. Each friend
generates, from its own chunk, the appropriate mini chunk corresponding to the
order of requested packet and its size. Then, as an answer to the miniChunkRe-
quest(), they send them a sendminiChunk() message (see Figure 2).
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If the mapper Map1 is responsible for processing the packet number 1 or
P1, it sends a message miniChunkRequest(1, pack size) to m − 1 mappers
(assume m = 4). Each mapper Mapj (j in [2..n]) answers with a message
SendminiChunk(aj, R[j, 1, x]), where aj is a header of the chunk j that is in-
deed the jth vector of the key matrix A and R[j, 1, x] is the vector composed of
x elements starting from the first element in the chunk received by the Mapj
mapper (see Figure 2).

In classic MapReduce frameworks, there is no communication between map-
pers.

3.4 Extraction Phase (Combine)

Once the data is collected, each mapper first determines the inverse key matrix
from the m keys that it possesses (its own and those it had just received in
the collect phase). Thereafter, by multiplying the inverse matrix by the vector
composed of the elements collected, each mapper gets the packet to perform the
map task on it. These instructions match the treatments performed by the IDA
Combine function. Figure 3 summarizes the steps of this phase carried out by
the mapper Map1.

Fig. 3. Extraction of data by Map1

Comparing our approach to classical MapReduce systems, the preparation
and scatter phases are the same. Our preparation phase may take longer time,
because it does not only split data but apply a more complex procedure. Then
classically, workers start immediately their map tasks, while in our approach,
each mapper needs extra treatment to clarify its data. The procedure is close to
deciphering with a shared key. Mapper must collect the key to decrypt its data
in the extraction phase.
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3.5 Requirements

– Ratio between n and m: As m is the number of chunks necessary and
sufficient to reconstruct the input file, it is advantageous to maximize it. On
the other hand, this ratio ensures that the size of manipulated data is close
to the original file size, as extracting n chunks of length |F |/m each, from a
file size |F | gives a percentage of ((n/m∗ |F |)−|F |)∗100/|F | of redundancy.
Otherwise, with n = 2m, we will double (100%) the source file to generate
the n files to scatter.
In our approach, 2n∗(m−1) messages are exchanged. Therefore, the choice

of parameters n and m has impact on the performance of our approach.
• if m � n: we reduce communications but we weaken the security and
considerably increase redundancy.

• if m ≈ n: we provide better security, we maintain an acceptable level of
redundancy but we increase communications between mappers.

– Mappers allocation: Threats can occur at the mapper itself, as a mali-
cious one, or during communications when intruders hearken the network. A
malicious mapper can have access to data as it is charged to process it. This
scenario is allowed in our system. Nevertheless, when a community of, at
least, m malicious mappers cooperate to reveal their input, they may reveal
all data, not only theirs. To prevent that, we propose to use a hybrid cloud
infrastructure to deploy our solution. On each public cloud, we deploy m− 1
chunks.This number of chunks is not sufficient to reconstruct all the data.
The remaining chunks will be deployed on a private cloud.
There are different scenarios when taking into account the existing Cloud

providers, their cost and, the most importantly, confidence and probable
threats that may occur to each. A first given scenario may divide data be-
tween two famous Cloud such Amazon and IBM because security techniques
are more reliable, and the cost would be relatively higher. A second scenario
would choose others less trusted Clouds, so that first the cost is lower, second,
the user may allow a given level of data visibility; i.e the number of even-
tual untrusted mappers. The user could choose between different scenarios
according to his application and his data requirements.

4 Experiments and Evaluation

We have implemented our approach in Perl, to manage communication between
mappers and reducers and we have used Crypt-IDA1 library, which is an imple-
mentation of IDA in perl.

We realized a set of experiments on the Grid’5000 platform using 220 machines
on the Nancy site.

In order to evaluate the performance of our system, we chose to evaluate
the phases according to their locality of execution, the first two phases, Split
and Scatter (step 2S), being executed by the master, the two last Collect and

1 http://search.cpan.org/~dmalone/Crypt-IDA-0.01/lib/Crypt/IDA.pm

http://search.cpan.org/~dmalone/Crypt-IDA-0.01/lib/Crypt/IDA.pm
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Combine (step 2C) performed on each mapper. Indeed, we have made different
measurement scenarios in order to study the impact of various parameters on the
execution time on each phase on the one hand. On the other hand, the various
measures allow us to calculate the overhead (data overload) resulting in Split
phase and its impact on the Scatter phase. Finally, the analysis of experiments
guide us to the optimal choice of the parameters of each scenario.

4.1 Evaluation of the Split and Scatter Step (2S)

The first experiment aims to study the impact of input data size on the execution
time of Split Phase. We have turned the split routine on 8 cores node by varying
the size of the input file from 100MB to 1.3GB, and setting the parameters n=25
and m=10. As a result, the overhead rate is 150%. Figure 4 shows the execution
time in function of the input file size . As we can see, the split time increases
with the size of the input data. This is explained by the fact that applying the
split routine on a larger file is to multiply by a matrix of larger size and generate
larger pieces.

We noted that the preparation phase of chunks does not produce a signifi-
cant time overhead compared with MapReduce systems when dividing data into
chunks to send to mappers.

A second experiment aims to study the impact of n, the number of chunks
generated from split, on the execution time of the split and scatter phases. We
applied the split routine on a 1.3 GB file size, by changing n between 25, 82
and 180. Note that the results shown in Figure 5 show the average of values
found by varying the parameter m; for n = 25, m varies from 10 to 24, for n=82,
m=35,40,45,50,55,60 for n=180, m=68,69,70. The results show that for the same
size of input data, the duration of the split phase increases with n. Such is also
the case of the scatter Phase. The larger n is, the more key matrix, involved
in multiplication, increases in size. We deduce that it is better to maximize the
number of pieces to optimize the execution time.

Fig. 4. Duration of Split in fuction of input
data size

Fig. 5. Impact of n on execution time

4.2 Evaluation of the Collect and Combine Step (2C)

In order to start the map task, each mapper needs to restore the package of
meaningful data. To do so, it must contact m-1 friends-mappers, of which it
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requests the information necessary to rebuild the package that has been assigned.
Two parameters are involved, the number of friends: m, and the size of data to
be restored: the packet size.

In order to study the impact of the packet size to generate over step 2C, we
performed a first experiment which calculates the execution time depending on
the packet size, which varies from 5 to 128 MB. During the execution of the
step 2C, the number of chunks generated in the split phase is not important.
What matters in the implementation stage is the number of available mappers. A
maximum number of mappers ensures that the 2C step takes place in a minimum
number of iterations, a single iteration if possible. With 1.3GB as input data size
and 5MB as packet size, we would have to treat 260 packets, against only 11 for
a packet size of 128MB. The execution time is composed of Collect phase and
Combine phase.

Figure 6 presents the results found. As we can see, a packet size equal to 5MB
generates a duration of the Collect phase up to the double for other sizes where
the duration does not change practically. Nevertheless, we can see a minimum
time with a packet size between 10 and 16MB. Indeed, the duration made by
the system with a 5MB packet includes two iterations taken to process the 260
packets affected to 180 mappers. As for the duration of the combine phase, we
reach a minimum , also with packet size between 10 and 16MB. For the rest,
the more the packet size is, the more combine duration rises. This increase is
explained by the fact that applying the rabin-combine routine on larger data,
returns to handle larger matrices.

We can conclude that the duration of a single iteration 2C is minimal with a
smaller packet size. In contrast, a small size generates more packets. Which leads
to more iterations for assigning all the packets. Accordingly the right choice is
to provide an appropriate size, according to the number of available mappers n,
to minimize the total number of iterations. In our example, to be closer to the
optimal value of the systems implementing the MapRdeuce model, we choose 16
MB for the rest of experiments.

Fig. 6. Time of Collect & Combine accord-
ing to the packet size

Fig. 7. Time of Collect & Combine accord-
ing to m
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A second experiment questions the choice of m, which is the number of friends
to contact during collect phase and the number of input files for the combine
routine. The experiment consists in measuring the execution time of the two
phases in terms of m. The data size to disperse is 1.3GB. The packet size is
16MB. These values generate 82 packets. To proceed in a single iteration, we
set n=82. Therefore, m is from 35 to 60. Time includes the duration of the two
phases: Collect and Combine. Figure 7 illustrates the different results found. We
can observe that more m is small, we get better results.

In consideration, evaluating the step 2S and more specifically the split phase,
we were brought back to deduce that m gives better execution time when getting
closer to n, exceeding n/2. To decide about the choice of m, we re-ran the previous
experiment. Figure 8 includes all the phases; execution times of all phases in
terms of m. We observe that the value of m which gave a minimum time in step
2C, does not lead to a global optimum time. We conclude that the optimal value
of m is n/2.

4.3 Scenarii and Discussion

Based on the results obtained in experiments questioning the impact of the
number of chunks produced and the size of the packets, we are in front of two
alternatives. On the one hand, we discovered that our system takes longer to
generate more chunks (Phase Split). On the other hand, we found that the
optimal packet size leading to a minimum execution time is 16MB. For data of
1,3GB, we obtain 83 packets to be handled. Would it better to generate 83 chunks
and assign each packet to a mapper so that step 2C (Collect and Combine) is
carried out in a single iteration? Or would it be more appropriate and efficient
to generate less chunks to save time during the split phase, and accept that the
step 2C occurs in more than one iteration?

To answer these questions, we performed a comparative study between the
two scenarios. We realized four versions measuring each time the length of four
phases. In each experiment, we varied the number of mappers from 25 to 83.
Figure 9 shows the overall execution time. The first experiment done with 25
mappers takes bit of time to create chunks, while it generates four iterations
of the step 2C. 40 mappers require 40 chunks, which increases the duration of
the split phase compared with the first experiment, but treat all packets in 3
iterations. 50 mappers require more time to generate their corresponding chunks,
but complete the step 2C in two iterations. As for 83 mappers, the master puts
more than 600 seconds to perform the split routine and prepare the chunks.
And although the two phases Collect and Combine ending in a single iteration
of assignment, the overall time presents a significant additional cost compared
to other senarios. The total overcost is due, primarily and directly, to the split
phase run locally on the master.
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Fig. 8. Total time according to m Fig. 9. Comparative study

5 Related Works

The problem we face in this work is protecting MapReduce applications data in
public environments. Existing solutions focus on data when they have been sent
to be processed; either they apply control techniques such as Mandatory Access
Control (MAC) [Abr90, McC04] , or results verification and results control tech-
niques [Dwo10, Dwo11] which have been used by systems like Airavat [RSK+10]
and SecureMR [WDYG09] to ensure security, integrity and privacy for MapRe-
duce during running the application. None of these systems has considered the
threats that may occur during the dispersal of data over the working machines
deployed on public clouds or desktop grids.

IDA has been essentially exploited for file sharing systems [Rab90, DFM00].
It was applied to provide a secure and reliable storage of information, and supply
fault-tolerant and efficient transmission of information in networks. The concern
was how to prevent loss of data when stocking without having to duplicate data
and provide enormous capacities, or when transmitting avoiding sending multiple
copies and charging the network. With IDA, since any m pieces, among the n
created, can reconstruct the data, loosing parts of data when stocking or routing
can be remedied.

6 Conclusion

We have proposed a new approach of securing data distribution for MapReduce
applications, using Information Dispersal Algorithm. IDA is a mechanism that
allows to split a file into pieces so that, by carefully dispersing the pieces, there
is no method for a single node to reconstruct the data unless it cooperates with
others. We have implemented a prototype that adapt IDA to MapReduce needs
while respecting privacy constraints. We have realized several experiments to
evaluate our prototype performance.

In a future work, we plan to integrate our protocol in distributed MapReduce
frameworks such as hadoop and BitDew.
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Abstract. The outbreak of data brings an era of big data and more challenges 
than ever before to traditional similarity search which has been spread to a wide 
range of applications. Furthermore, an unprecedented scale of data being proc-
essed may be infeasible or may lead to the paralysis of systems due to the slow 
performance and high overheads. Dealing with such an unstoppable data growth 
paves the way not only to similarity search consolidates but also to new trends 
of data-intensive applications. Aiming at scalability, we propose an elastic ap-
proximate similarity search that efficiently works in very large datasets. More-
over, our proposed scheme effectively adapts itself to the well-known similarity 
searches with pairwise documents, pivot document, range query, and k-nearest 
neighbour query. Last but not least, these methods, together with our filtering 
strategies, are implemented and verified by experiments on real large data col-
lections in Hadoop showing their promising effectiveness and efficiency. 

Keywords: Similarity search, approximate search, very large datasets, MapRe-
duce, Jaccard measure, Hadoop. 

1 Introduction 

Similarity search has been widely used and played an essential role supporting a va-
riety of applications. The basic goal is to find possibly relevant results whenever a 
query sent by a user. In fact, many application scenarios want to retrieve objects that 
look like a given one or find the most similar objects in databases. Some typical in-
stances include plagiarism detection, recommendation systems, and data cleaning or 
clustering in data mining, to name a few. Nevertheless, similarity search has encoun-
tered a barrier caused by a big volume of data. These large datasets, from web  
crawlers, data logs, or click streams for example, may be processed up to hundreds of 
terabytes of data. In order to identify how similar a pair is, quantitative methods 
known as similarity functions, metrics, or distance measures are applied. It also means 
computation costs are additionally added to derive similarity scores. In other words, if 
we have n objects, the cost for pairwise similarity computing is O(n2). Such a high 
cost would be a burden to the system when objects never stop quickly growing, or 
they are distributed over a big number of computing nodes. 
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Researchers not only from academia but also from industry have focused on how 
to tackle the issue for many years. Some try to propose novel indexes or ways to ap-
proximately but efficiently do similarity search [5][6]. Recent state-of-the-arts pay 
attention to parallelism by optimizing algorithms in parallel [1] or employing MapRe-
duce [9] to improve similarity search for large scale data [4][8][12][13][14]. In this 
paper, we propose an elastic scheme dealing with massive datasets. Our main contri-
butions are as follows: 

1. A general approximate similarity search scheme with MapReduce is proposed 
towards data scalability. 

2. Collaborative refinement strategies are exploited to meet users’ search needs 
and reduce candidate size, which leads to eliminating unnecessary similarity 
computing and turning storage overheads down. 

3. The scheme is then shown how much adaptable it is to specific similarity 
search including pairwise documents search, pivot document search, range 
search, and k-Nearest Neighbor (k-NN) search. 

4. Experiments are conducted with Apache Hadoop framework [3] and real large 
datasets to indicate which can benefit from the proposed methods when large 
amounts of data keep increasing. 

The rest of paper is organized as follows. Section 2 introduces relevant researches 
in the field of similarity search which are close to our work. Section 3 presents some 
preliminaries behind our proposed similarity search methods. Next, section 4 shows 
our general scheme with MapReduce while section 5 discusses about how the general 
scheme adapts to the four most common similarity search strategies. Section 6 gives 
our experiments before we conclude our work and its future in section 7. 

2 Related Work 

The importance of similarity search as well as its issues has gained much attention 
and effort from researchers world-wide, especially when the data become oversized. 
While the traditional exact similarity search demands full computations that has the 
complexity as O(n2), much work tries to reduce the search space by filtering methods 
or approximately achieves similarity to improve the performance. In [11], the authors 
propose State Set Index, which is interpreted as a nondeterministic finite automaton, 
as a method for fast similarity search in very large string sets. Another approach com-
ing from the work in [15] utilizes positional filtering principle which is then combined 
with prefix and suffix filtering. The work in [16] presents the combination between 
index structure based method for prune strategy and hashing based method for fast 
distance computation. Nevertheless, only k-NN query is considered. In general, these 
methods are sequentially done without caring about parallel mechanism. 

Still there is other work exploiting parallelism to do similarity search. Like in [1], 
the authors conduct exact all-pair similarity search. Nevertheless, it requires a static 
partitioning to assure that dissimilar vectors are assigned to different partitions before 
computing similarity pairs. The authors in [10] introduce a MapReduce algorithm to 
compute the similarity score between pairs in large document collections. The algo-
rithm consists of two MapReduce phases which first create an inverted index and then 
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take pairwise similarity into account. Nevertheless, the algorithm only considers term 
frequency between documents as weights accumulating to the final similarity score by 
their inner product. This way does not bring much accuracy to the final score measur-
ing similarity. Furthermore, the authors do not mention any methods to reduce the 
size of candidate pairs. That means each document in the large collections is com-
pared one by one, which brings quadratic computing costs when the size of data  
rapidly increases. From the work in [12], the authors also use MapReduce as the ske-
leton of their approach. The costs for MapReduce operations, however, are so high 
due to so many phases. There are two MapReduce jobs to construct the dictionary, 
one MapReduce job to transform texts into vector texts, one MapReduce job to calcu-
late the inverted file, and two MapReduce jobs to resolve the query text. Moreover, 
the big size of the prefixes will cause computing overheads and slow down the system 
when massive datasets are given. The authors in [4] propose 2-phase MapReduce for 
the self-join problem. The first MapReduce job is to build an inverted index whereas 
the second MapReduce job is to calculate similarity scores based on partial contribu-
tions. Their approach requires overriding the group operator and partitioning function 
of Hadoop while our approach employs the most fundamental principle of MapRe-
duce, which is originally supported by Hadoop and has wider adoption. Last but not 
least, our work also aims at reducing candidate size before computing partial results 
which are then accumulated at Reduce task. We will show how we make the best use 
of our filtering strategies in comparison with other work. 

3 Preliminaries 

3.1 Concepts 

Given a set of documents known as worksets Ω = {D1, D2, D3, …, Dn}, and each doc-
ument which has the plain text form contains a set of terms Di = {term1, term2, 
term3, …, termk}. The symbol [,] represents the list of x elements while the symbol 
[[,], [,]] indicates the list of lists. In addition, the symbol ||.|| denotes the length of a 
list, i.e., the total number of distinct terms in the set. The most common similarity 
search problem is to find the document Dj when given a document Di as a pivot such 
that Di and Dj is the most similar pair in Ω. In general, a document Di can share com-
mon terms with other documents in the worksets. In the scope of this paper, we define 
such common terms as those appearing in all worksets. Furthermore, the inverted 
document frequency idfik shows how popular a termk of a document Di is compared to 
other worksets. The inverted document frequency idfik is computed by dividing the 
length of worksets || Ω || by the number of documents that also contain the termk. Last 
but not least, we employ the inverted index as a data structure to quickly support term 
filtering. 

In this paper, we use Jaccard measure, which is widely used and also adopted in 
[12], to estimate the similarity score of a document pair. Given two sets X and Y, the 
Jaccard coefficient measuring the similarity between the two sets X and Y is com-
puted as the equation (1) below: , || |||| ||                                                         1  
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The value of sim(X, Y) belongs to the interval [0, 1]. If two sets X and Y are simi-
lar to each other, the value of sim(X, Y) is close to 1. Otherwise, the value of sim  
(X, Y) is close to 0. 

3.2 MapReduce Paradigm 

MapReduce whose details can be seen in [9] is a parallel programming paradigm that 
helps solve the problem of data scalability. The fundamental idea of MapReduce start-
ing from functional programming languages is focused on two basis jobs named Map 
and Reduce. The paradigm is deployed on commodity machines in that one plays a 
role of master and the others take part in as workers. The master node takes its  
responsibility to assign Map and Reduce jobs to workers. The machines which are 
assigned Map task are called mappers whereas the machines which are assigned Re-
duce task are known as reducers. There are M mappers to execute the Map job and R 
reducers to execute the Reduce job. The Map job is defined by the Map function and 
the Reduce job is defined by the Reduce function.  

A single flow of MapReduce can be briefly summarized as following steps: (1) 
The input is partitioned in a distributed file system like Hadoop Distributed File Sys-
tem [3] and has the form of [key1, value1]; (2) Mappers do its assigned tasks from the 
Map function and produce intermediate key-value pairs of the form [key2, value2]; (3) 
The shuffling process from the combine method is conducted to group these pairs 
according to their key; (4) Reducers receive [key2, [value2]], apply the Reduce func-
tion, and output the final result, which might have the form [result]; and (5) The out-
put is finally written back in the distributed file system. 

4 The Proposed Scheme 

We start by introducing the simple yet efficient scheme. As illustrated in Fig. 1, the 
whole process is composed of two MapReduce operations as follows: (1) the first 
MapReduce operation takes worksets as its input, along with a given query document 
as a pivot, and then generates a customized inverted index; and (2) the second Ma-
pReduce operation exploits the inverted index to compute similarity pairs. Thanks to 
MapReduce paradigm, each MapReduce phase helps us solve a large volume of data 
by processing portions of data in parallel. Nevertheless, the more redundant data we 
eliminate, the better performance we get. On the one hand, the inverted index seems 
to be a good way to find overlapped sections of each pair. On the other hand, it suffers 
its long length from useless words that do not contribute much to the similarity score 
but appear frequently among documents, which makes the inverted index bulky. In 
addition, such a naïve approach is a waste of computation effort due to generating all 
candidate pairs and building the full inverted index. Thus, we propose two additional 
filtering strategies corresponding to each phase, known as Prior Filter and Query Pa-
rameter Filter, in order to reduce candidate size leading to eliminating unnecessary 
pair-similarity computing and avoiding further space cost. In other words, those pairs 
which are dissimilar to each other should not be computed during the whole process. 
Doing so partly reduce overheads and improve the performance phase-by-phase.  
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Moreover, it is noted that intermediate key-value pairs output from REDUCE-1 have 
the descending order by the length of the list Di a termk has and then by the total 
words Wi of Di in each list. In this way, we want to apply our filtering methods espe-
cially for the pivot document case, with range and k-NN queries in section 5, in order 
not to transfer much data over the network. As a consequence, the candidate size is 
significantly decreased. 

 

Fig. 1. The overview scheme 

The Prior Filter is applied at the MapReduce-1 operation whilst the Query Parame-
ter Filter is attached to the MapReduce-2 operation. The former consists of three sub-
filtering methods known as Duplicate Word Filtering, Common Word Filtering, and 
Lonely Word Filtering. Meanwhile, the latter is composed of another three sub-
filtering named Range Query Filtering, Pre-pruning, and k-NN Query Filtering. These 
filtering methods are alternatively combined to support specific similarity search sce-
narios. In general, the proposed scheme is not limited to be applied for various simi-
larity search strategies as discussed in section 5 of this paper. For simplicity, we 
present how the proposed scheme at first works for pairwise document similarity 
search in sub-section 5.1, and then we show how our scheme is effectively adapt itself 
to other similarity search parameters in the remaining sub-sections. 

Let Di be the ith document of the workset, Wi be the total words of Di, n be the ac-
cumulated number of the same key, and sim(Di, Dj) be the similarity score between a 
document pair. The two MapReduce operations can be summarized as follows: 

MAP-1:                            ,  @  
REDUCE-1:          ,  @       , @  
MAP-2:      , @    @ @ ,  
REDUCE-2:          @ @ ,      , ,  
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5 Contributions to Similarity Search 

Apart from the general similarity search that does not require any additional argu-
ments, other cases usually come with their own parameters for specific application 
domains. In this paper, we investigate the most popular ones known as pairwise simi-
larity, the pivot document, k-NN query, and range query. For these cases, we show 
how adaptable our proposed scheme is by utilizing these provided parameters.  

5.1 Pairwise Similarity Case 

Pairwise similarity search is also known as self-join similarity search. Documents of 
the plain text form are considered as the input of the scheme so-called worksets. The 
mappers from MAP-1 method process the worksets and emit intermediate key-value 
pairs which have the form of [termk, Di@Wi]. Then, these intermediate key-value 
pairs are transferred to the reducers from REDUCE-1 method in order to produce key-
value pairs of the output form [termk, [Di@Wi]], which is also known as an inverted 
index. Before producing the output, the Prior Filter is applied to discard duplicate 
terms, those are common terms having its inverted document frequency value as 0, 
and those cannot contribute to the pair similarity measures. Thus, discarding these 
common, duplicate, and lonely words partially help reduce the volume of processing 
data. As background computing, the Duplicate Word Filtering works with the form 
[termk, Di@Wi] at each mapper while the Common Word Filtering and Lonely Word 
Filtering work with the form [termk, [Di@Wi@idfik]] at each reducer. 

 

Fig. 2. MapReduce-1 operation 

For Example. Assuming that there are three documents named D1, D2, and D3. Each 
document contains its corresponding words as the input illustrated in Fig. 2. The 
mappers from MAP-1 method take the input to emit intermediate key-value pairs. 
Then, they are moved to the reducers from REDUCE-1 method to compute the in-
verted document frequency for each term. In this example, duplicate terms B and A in 
D1, term A whose inverted document frequency is equal to 0.0, and term D which is 
not shared with the other documents should be discarded. The other terms as B, C, E, 
and F, whose inverted document frequencies are greater than 0.0, will be emitted as 
the key-value pairs of the inverted index. In the end of this MapReduce phase, we 



 An Elastic Approximate Similarity Search in Very Large Datasets with MapReduce 55 

 

finally have the inverted index of the list as following [[B, [D3@5, D1@4]], [F, 
[D3@5, D1@4]], [E, [D3@5, D2@3]], [C, [D1@4, D2@3]]]. 

After the inverted index is derived from the first MapReduce operation, the second 
one will be conducted to compute the similarity score. The inverted index goes 
through the mappers from MAP-2 method which will emit intermediate key-value 
pairs of the form [Di, [Dij@Wi@Wj, n]] after shuffling. It is worth noting that the 
COMBINE function is additionally used to pre-group the intermediate key-value pairs 
so that the amount of data transferred to the reducers is further reduced. Then the 
intermediate key-value pairs are retrieved by the reducers from REDUCE-2 method 
and the final key-value pairs with their similarity scores of the form [DiDj, sim(Di, 
Dj)] will be computed and ranked according to the scores. Finally, the result can be 
filtered against query parameters like the threshold similarity ε or the top k-similarity 
pairs to meet users’ search requirements. 

 

Fig. 3. MapReduce-2 operation 

For Example. Fig. 3 indicates the next phase of the previous example. The output of 
the first MapReduce operation will be considered as the input for the second one. In 
other words, the inverted index [[B, [D3@5, D1@4]], [F, [D3@5, D1@4]], [E, [D3@5, 
D2@3]], [C, [D1@4, D2@3]]] is processed by the mappers from MAP-2 method to 
produce the independent intermediate key-value pairs [D31@5@4, 1], [D31@5@4, 1], 
[D32@5@3, 1], and [D12@4@3, 1]. The combine function groups these pairs accord-
ing to the key value, and we have the ordered shorter list [[D31@5@4, 2], [D32@5@3, 
1], [D12@4@3, 1]]. Then, the reducers from REDUCE-2 method will calculate the 
similarity score between the pairs. Finally, we have the ordered result list [[D31, 
0.2857], [D12, 0.1666], [D32, 0.1429]] which shows the most similarity pair is D1 and 
D3 with the score 0.2857, the pair D1 and D2 is with the score 0.1666, and the pair D2 
and D3 is with the score 0.1429. 

5.2 Pivot Document Case 

Normally, the query document is issued in order to search other most similarity ones 
from the database. For instance, given a sample document, we would like to search 
which documents are the most similar with the provided document. This scenario is 
so common to most of search applications. The query document is then called the 
pivot document because we use it as the anchor to compare with others. Once the 
pivot document is known, we are able to employ it to improve the performance. In 
this case, the whole follows the general scheme. Nevertheless, we flexibly use Prior 
Filter between MAP and REDUCE tasks and additionally attach lonely term removal  
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and pre-pruning processes to the pivot document case. The former takes place at the 
first MapReduce operation while the latter takes place at the second one. 

Those terms which do not appear in the pivot document or those which are con-
tained only in the pivot document will be assessed as lonely terms, and they should be 
ignored. It is possible because lonely terms do not contribute much to the final simi-
larity score. Therefore, we can approximate the final similarity score by discarding 
them. When it happens, the inverted index includes terms that appear in the pivot 
document. On the one hand, we reduce the number of unnecessary terms at the very 
beginning to reduce overheads. On the other hand, the Jaccard similarity score be-
tween the comparing document Di and the pivot document Dquery can be re-innovated 
as the equation below: , || ||                                                  2  

In the equation (2), ||Dquery|| denotes the original length of the pivot document and 
||Di|| represents the number of termk it contains. In other words, ∑termk yields ||Di||. 
The new form of similarity measure is approximately computed by dividing the 
length of the comparing document by the length of the pivot one. In addition, this new 
form is utilized by Pre-pruning at MAP-2 to soon eliminate unqualified candidate 
pairs. More details of Pre-pruning are discussed in section 5.3 for range query case 
and section 5.4 for k-NN query case. Consequently, those pairs compared with the 
pivot document and satisfying Pre-pruning constraints are emitted by MAP-2 method. 

 

Fig. 4. MapReduce-1 operation with the pivot document D3 

For Example. Considering another example and assuming that D3 is the pivot docu-
ment as illustrated in Fig. 4. That means we want to search other most similarity  
documents with D3. The whole process is still the same as in the pairwise similarity 
case except for added lonely term removal, pre-pruning, and the new form of Jaccard 
similarity measure. In this example, we have ||D3|| is 5. At the mapper side, duplicate 
terms B and A in D1 are disposed by Duplicate Word Filtering while term C, in both 
D1 and D2, is discarded by Lonely Word Filtering-1 because it is a lonely word that 
does not appear in the pivot document D3. Alternatively, Common Word Filtering-1 
works with a pre-defined dictionary to pre-filter common words in advance. At the 
reducer side, term A is removed by Common Word Filtering-2 because it is a common 
word whereas term D is ignored by Lonely Term Filtering-2 because it is a lonely 
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word that appears only in the pivot document D3. After the first MapReduce operation, 
we have some terms in the list of ordered key-value pairs [[B, [D3@5, D1@3]],  
[F, [D3@5, D1@3]], [E, [D3@5, D2@2]]]. At the second MapReduce operation as 
illustrated in Fig. 5, we have D1, D2, and D3 as in turn the candidate similarity pairs. 
The new form similarity computation shows that the similarity scores are as follows 
[[D13, 0.4], [D23, 0.2]]. Last but not least, Query Parameter Filtering is optionally used 
to filter against range query and k-NN query before generating the final output. 

 

Fig. 5. MapReduce-2 operation with the pivot document D3 

5.3 Range Query Case 

From the point of view of range query, a threshold ε is provided in order to find those 
pairs that have their similarity score greater or equal to the threshold. In general, the 
result after two MapReduce operations is filtered against ε to find the best fit. In the 
case of the pivot document, however, we propose to filter unnecessary pairs before 
their similarity computing. In other words, the final result has to satisfy the equation 
below which still guarantees the candidate pairs are the super set of the final result: 

, || ||                                               3  

Because ||Dquery|| is computed from MAP-1 method, we call the new upper bound ε’ 
the product between the query threshold ε and the length of the pivot document. As a 
result, the equation (3) has been equivalently transformed into the equation (4) below: || ||  || ||                                            4  

With    

It is worth noting that intermediate key-value pairs from REDUCE-1 have the des-
cending order by the length of the list Di a termk has. Therefore, we can make the best 
use of Pre-pruning at MAP-2 method to emit those pairs whose comparing documents 
have the key value ||Di|| greater or equal to the new threshold ε’, which partly helps 
eliminate the amount of unnecessary similarity computations. 

5.4 k-NN Query Case 

k-NN query looks for the k most similar pairs from the candidate set and can be seen 
as a special case of range query. Having the same strategy like in the range query 
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case, we utilize the MAP-2 method to filter candidate pairs against the k parameter 
before their similarity score is computed. In this case, the mappers from MAP-2 me-
thod with Pre-pruning only emit top-k intermediate key-value pairs. For approximate 
k-NN query, however, each mapper can emit top-pairs whose size is according to the 
total number of running mappers as the equation (5) below: top pairs  max ∑ , 1                                       5  

6 Experiments 

6.1 Environment Settings 

The experiments are set up in the cluster of commodity machines called Alex, which 
has 48 nodes and 8 CPU cores and either 96 or 48 GB RAM for each node [2]. The 
stable Hadoop has the version1.2.1, and DBLP dataset [7] is used to do similarity 
search on the title of publications. In general, we leave other Hadoop configurations 
as its default. We want to preserve the most common settings which commodity ma-
chines may initially get even though some parameters could be tuned or optimized to 
fit the Alex cluster. The configured capacity is 5GB per node, so there totally is 
240GB for the 48-node cluster. The number of reducers is set to 168. In addition, the 
replication factor is set to 47. The possible heap size of the cluster is about 629 MB, 
and each HDFS file has 64MB Block Size. It is worth noting that Alex has suffered 
the overhead of other coordinating parallel tasks, i.e., these nodes are not exclusively 
for the experiments. In addition, they are diskless nodes, but in the background data 
are located on a storage area network. Each benchmark, therefore, is run 10 times to 
obtain the average values. Last but not least, each benchmark has its fresh running. In 
other words, data from the old benchmark are removed before the new benchmark 
starts. All the experiments for one type of query are consecutively run so that their 
environments are close as much as possible. 

6.2 Empirical Evaluation 

Fig. 6a represents the query processing time of pairwise similarity case between the 
naïve approach, which uses MapReduce to compute all possible pairs, and the pro-
posed approach. The difference between two approaches is not so big when the 
benchmark size is under a specific threshold. The reason is that they have to suffer 
from the operation cost of the whole system. When the dataset size significantly in-
creases, the query processing time of the proposed method is not so much as that of 
the naïve method. In other words, when the dataset size is large enough, there is a 
very big gap between them, which indicates the query processing time of the naïve 
approach consumes much more while the proposed method outperforms the naïve  
method in its performance from 5% to 39% when the dataset size grows from 50MB 
to 500MB. On the other hand, the percentage of saved data volume during the compu-
tation phases ranges from 67% to 82%, respectively in Fig. 6b. 
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Fig. 6. Pairwise similarity case between the naïve approach and the proposed approach; (a) 
Query processing time; and (b) The saved data volume 

From the point of view of the pivot document case showed in Fig. 7, the dataset 
size grows from 900MB to 4500MB and mostly reaches the maximum capacity for 
each node. In Fig. 7a, there is not much difference in performance among all-pairs, 
range query whose threshold is set to 90% of similarity, and 100-NN query which are 
based on the proposed methods. Besides, Fig. 7b points out the percentage of saved 
data volume which will be increased further if query parameters are more given. 

 

Fig. 7. Pivot document, range query, and k-NN query cases; (a) Query processing time; and (b) 
The saved data volume 

Moreover, what are inherited from the experiments are MapReduce operations 
should not be too complex due to the lack of memory and the reduction of candidate 
size is essential because it helps reduce the number of volumes written in HDFS file 
systems during MapReduce operations, which can lead to achieve high performance. 

7 Conclusion and Future Work 

In this paper, we propose an elastic approximate similarity search with MapReduce to 
primarily deal with scalability. We show how our search scheme is specifically tai-
lored for the four most popular similarity search scenarios known as pairwise docu-
ments similarity, pivot document search, range query, and k-NN query. In addition, 
our strategic filtering methods which promote potential scalability of MapReduce 
help reduce the size of candidate pairs and eliminate unnecessary computations as 
well as space overheads. Moreover, we conduct experiments with real massive data-
sets and Hadoop framework to verify these methods.  

For our future work, we model worksets as distinct n-grams instead of terms and 
extend our methods to other metrics to achieve more efficiency. Besides, we also 
generalize our approach more concretely to the incremental case whose data are on 
the fly. Furthermore, we concentrate on resolving other factors under the big data 
context such as the velocity and variety of big data in order to consolidate our me-
thods and look forward to a unified solution supporting data-intensive applications. 
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Abstract. GridRPC is an international standard of the Open Grid Fo-
rum defining an API designed to allow applications to be submitted
in a seamless way on large scale, heterogeneous and geographically dis-
tributed computing platforms. First versions of the standard did not take
into account any data management feature. Data were parameters of the
Remote Procedure calls, without any possibility to prefetch them, to use
persistence, replication, external sources, etc. , and making GridRPC
codes middleware dependent. The data extension of the standard intro-
duced a short set of functions and data structures to complete the API
with simple but powerful data management features. In this paper, we
present a modular and extensible implementation of both APIs, which
needs only a few developments to be usable with any middleware relying
on RPC, and which provides access to numerous and easy to extend pro-
tocols and data middleware to access data. Gaining data management
functions, it introduces interesting potentiality for optimization that such
an approach would provide to large scale applications.

1 Introduction

Many applications use RPC-like mechanisms to distribute computations over
nodes of clusters and supercomputers composing some distributed systems like
a grid, a cloud, or both (now referred as sky computing). Combined with con-
nections to huge databases, they more or less transparently provide scientists
with the possibility to focus on their core thematic, giving them more time to
deal with data analysis, without dealing with the underlying complexity of all
the different mechanisms involved into job and data management. More lately
applications even directly couple analysis, graphical representations and such,
making platform management only a part of their project, whose actions are gen-
erally available through some web site. And surprisingly, when considering a new
area, a new platform, new independent pieces of software are often developed
instead of using previous work, software or standardized APIs.

The Open Grid Forum standard defining the GridRPC paradigm, namely
Remote Procedure Call over the Grid, has been published in 2007, benefiting
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from 10 years of experience by their respective authors. Simple and easy to use,
it has been completed with a standardized data extension only recently. This
extension to the native API proposes to expert users to easily handle remote data
and to optimize distributed applications with prefetch, migration or replication
of possibly distant data using multiple asynchronous transfers together with
remote procedure calls on available distributed computing resources.

Based on preliminary experiments[1,5], applications also benefit from multi-
administration sites resources managed by multi-middleware (inherent to inter-
operability provided with the implementation of the API data extension) and
target not only traditional Grids but any distributed platform possibly composed
of resources from the Cloud [6].

In an attempt to simplify and develop interoperability, and to unify previous
works, we propose here a library managing both GridRPC and GridRPC Data
Management APIs. We present an overview of the project architecture, designed
with a very modular prospect, relying on middleware and data manager modules
but also bringing inner data manager capabilities and transfer protocols. Having
in mind not to go too much into details, we highlight here some of its features,
such as the asynchronous requests management and the transfer management,
which involves mapping and scheduling aspects: there is interesting potentiality
for optimization at the data operation level, with scheduling to reduce the com-
pletion time of a data operation when several sources and several destinations
are provided but not necessarily interconnected; and at the workflow/dataflow
level to reduce any [sub part of an] application graph. At the moment, the library
provides modules for the grid middleware Diet and Ninf , and data manager
modules for projects and protocols like Dagda, iRods, webdav (used for web-
based repositories like dropbox, owncloud), ftp and rsync.

The rest of the paper is organized as follows: next section explains the moti-
vations behind the GridRPC DM API and some related work. Section 3 presents
the global design of the implementation, the different issues that the API leads
to and their solution. Section 4 presents some validation experiments and after
explaining some future work directions, we conclude in Section 6.

2 State of the Art

2.1 The GridRPC Data Management API, Summary

The GridRPC DM API [2] introduces the concept of data handle and with it,
several GridRPC data types to provide standardized information, for example
lists of input and output URIs to give the locations of respectively source and
destination [remote] data, with the according protocols to access it at the consid-
ered location). It also defines mode managements for a client to characterize the
persistence of the data in the system, etc. All actions (initializing, transferring,
waiting for completion of asynchronous transfers, etc.) are provided with only
12 functions.

This standard answers at the API level to issues related to feasibility of
the computation by decoupling the data from its locations and from protocols
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to access it; to performance using different sources and protocols to access a
remote data, providing explicit data management with the possibility to prefetch
and to migrate data, as well as the possibility to rely on some smart middleware
to transparently handle data management; and to extensibility by providing
containers of data. It also solves portability, making GridRPC codes portable
from one middleware to another.

2.2 Related Work

Similar works can address some data management issues in the GridRPC but
only separately and without integration into remote procedure call: one can store
data on a distributed file system like GlusterFS1 or GFarm [9] to deal with auto-
matic replication; OmniRPC introduced omniStorage [7] as a Data Management
layer relying on several Data Managers such as GFarm and Bittorrent. It aims
to provide data sharing patterns (worker to worker, broadcast and all-exchange)
to optimize communications between a set of resources, but needs knowledge on
the topology and middleware deployment to be useful; Diet also introduced its
own data managers (DTM and Dagda [3,4]), which focus on both user explicit
data management and persistence of data across the resources, with transparent
migrations and replications.

At a higher level, Stork [8] is a batch scheduler specialized in data placement
and data movement. If the transfer protocol specified in the job description file
fails for some reason, Stork can automatically switch to any alternative protocol
available between the same source and the destination hosts and complete the
transfer; Galaxy2 is a web interface written in python allowing on-line design
of task workflows. Galaxy focuses mainly on bioinformatics but could be used
for all type of applications relying on workflow execution. By default Galaxy
is configured to execute application on its host server but can use the OGF
DRMAA API to distribute computations on remote servers. Data can only be
transferred as files. On the contrary of classical RPC, there is no simple way to
upload data directly on the application memory address space. Moreover, the
GridRPC API modularity allows to combine simplicity of such data management
systems and tunability by choosing where and when data are transfered.

By using standardized GridRPC code with our implementation and its corre-
sponding modules, it should be possible to benefit at a upper layer from previ-
ous works, gaining in portability and interoperability with middleware and data
managers, which in turn provides access to a potentially larger set of resources
and architectures.

3 Implementation: Architecture and Features

We present in this section the system underlying our implementation of the
GridRPC and GridRPC Data Management standards. We highlight the features

1 http://www.gluster.org/
2 http://galaxyproject.org/

http://www.gluster.org/
http://galaxyproject.org/
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of the library, its data management capabilities as well as scheduling possibilities
between and for each data operation, i.e., the set of all transfers requested
between the URIs provided as sources and destinations for the same data.

The library is developed in C++ and C, using internally boost, and cmake to
build the project. It is freely available from a sourceforge repository:
http://sourceforge.net/projects/gridrpcdm/.

3.1 Modularity of the Solution

The proposed implementation can be viewed as a meta-implementation of the
APIs (see Figure 1) since it provides the two GridRPC APIs, adding some seam-
less mechanisms for performance (scheduling etc.) in a middleware and protocol
“agnostic” manner. The library does not interact directly with the middleware
nor the data storage servers. It proposes a fully interoperable API for any mid-
dleware and protocol/data manager with only very few specific developments of
simple modules. The module developers do not have to take care about which
data transfer protocol is available, like the data manager module developpers do
not have to care about which middleware is used to call remote procedures. To
do so, different interfaces are provided by the library:

– The client application interface: the external client API. Clients can use the
API directly without any knowledge about the underlying GridRPC middle-
ware. However, by adding a prefix to the service name, users can force the li-
brary to use a specific middleware (e.g., "DIET:matmul" and "Ninf:matmul"

select respectively Diet and Ninf-G for the "matmul" service).
– The Services interface: it is a subset of the client API with some additional

utility functions facilitating servers conversions from standard GridRPC
servers to GridRPC Data Management servers.

– The Modules interface: the library defines a set of functions that should be
exposed by the module to extend the library capacities.

GridRPC middlewares 
modules

Data managers modules

GridRPC Data Management Library

grpc_initialize(…)
grpc_function_handle_default(…)
grpc_function_handle_init(…)
grpc_get_handle(…)
grpc_call(…)
...

grpc_data_init(…)
grpc_data_memory_mapping_set(…)
grpc_data_memory_mapping_get(…)
grpc_data_container_set(…)
...

DIET module Ninf module

...Local 
module

http module ftp module

DAGDA 
module

...

DIET module

grpc_initialize(…)
...

ftp module

grpc_data_init_in(…)
grpc_data_init_out(…)
...

const char*
   get_name()

grpc_remote_transfer(…)

const char**
   get_protocols()

Fig. 1. A very modular implementation

http://sourceforge.net/projects/gridrpcdm/
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Integrating a new Middleware requires to fulfill a set of 10 main functions
and one optional. Most of them are just type conversions functions from the ex-
isting middleware data-type to the new GridRPC data-types. The most complex
function of a middleware module is grpc remote transfer() which initiates a
transfer from a remote host to another remote host. A default implementation
is included in the library relying on a middleware service call: the module de-
veloppers have just to implement this simple service using the library transfer
capabilities on the server side.

Remarks:

– To avoid “name conflicts” between existing GridRPC implementations and
the new definitions of the library, definitions in the library headers files are
automatically prefixed when needed, allowing an easy reuse of the existing
functions without name-clashing at the compilation step.

– Note on asynchronous calls: they are internally managed by the library from
synchronous calls to middleware. However, middleware functions must be
reentrant for a safe asynchronous use.

At the moment, the modules for the Diet and Ninf GridRPC middleware are
available.

Integrating a New Data Manager Module requires to provide 4 functions:
2 initialization functions corresponding to input and output data, which can
most of the time be left empty; and 2 transfer functions to get and put a data.
They are generally wrappers of existing transfer protocol libraries (e.g., libcurl
for http and ftp).

At the moment, the library implements the data manager modules for rsync
and scp, using the shell commands; iRODS, using the shell command (the library
is only available for Java and PHP); webdav, to access Owncloud and Dropbox

servers. It uses the neon library and; curl, to access http and ftp via the curl
library.

Module Initialization. The library global initialization process reads the
global configuration file to determine which module should be dynamically loaded
at execution time, where to find it, and some parameters available for each mod-
ule in its own separate section.

The initialization function of each module is then processed sequentially, pass-
ing the arguments of the module specific configuration, and potentially reading
more parameters in the deployed module-specific configuration file.

3.2 Asynchronicity Management

We call a request the inner action managed in the library: they correspond to
API calls for remote procedure, API calls for a transfer or a group of transfers
involving a unique data. For example when one source and several destinations
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are provided as input and ouput URIs, several transfers are involved in group
to provide the unique API transfer call. All requests are managed the same
way by the request controller: this entity registers each of them during their
initialization, and with the help of threads and semaphores it limits their number
and immediately knows the idendity of a request that completes without active
wait. Some additional dependency information is also recorded with each request,
and thus a hierarchy of requests (the link being the temporal dependency) can
be built. It is used to express the concept of a group of requests reported above
in the transfer example, but it is also a powerful way to handle waits for one or
a group of asynchronous remote procedure calls as well.

Requests are managed with a priority system, which has been instantiated in
the current implementation with a queue managed with a FIFO algorithm and a
limitation on the number of parallel threads executed at a given moment: There
is not much more that can be done at the moment: since there is no dependency
information between data transfers operated at the API level, one cannot try any
optimization between requests that do not belong to the same group because it
could generate inconsistency in data or failure. However coupled with a system
that handles workflow/dataflow, some meta-scheduling over available GridRPC
middleware and data managers may be performed.

3.3 Data Manager Capabilities

The library does not only operate with underlying data transfer projects. It must
provide the data persistence as defined in the API, integrate the possibility to
communicate in-memory data (which possibly avoids at least one copy to disk),
and make the junction between different locations where the data is available,
and the protocols with which one can access them. The latter induces possible
hidden (automatic and mandatory) copies and scheduling for the data to be
transferred to all requested destinations.

Data Persistence. The GridRPC Data Management API defines numerous
persistence modes: the data can be volatile, i.e., there is no special require-
ment on its management and this can be considered as the default mode; it can
be strictly volatile, meaning that the library has to provide means to remove
the data from the platform after a computation (thus some protocols and data
managers cannot be used); when defined as sticky, the data or a copy must be
kept on the location where the client requests are executed; if unique sticky, no
replication nor migration can be performed; finally, the client can also request
the library to transparently manage prefetch, replication and migration of data.
Then, by also handling procedure calls the library can perform some scheduling
in order to reduce some metrics. At the moment persistent data are managed
through Dagda.

The Memory Protocol. Each data is referenced by a given set of specific URIs,
providing the transfer protocol or the underlying data manager to use (for ex-
ample http or dagda). But when trying to get performance, on linear algebra
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computation for example, there is a need to keep data in memory and avoid
file transfers. The GridRPC Data Management API foresaw this kind of use
and introduced the memory protocol. In addition to this protocol management,
our implementation lets a client (or the library itself) use URIs with query and
fragment. This leads to possible evolution for improvements (see after) and to
manage more data managers (like P2P middleware that initiate torrents with
specific files).

Implementing the memory protocol means that the library has to use GridRPC
middleware inner data manager which can hopefully communicate between its
own components to achieve such a need. But when a data is in memory and has
to be transferred either on another GridRPC middleware components or on a
storage server, it has to be written to a file and then be manipulated (transferred
and possibly handled remotely) to be in the requested status. This part uses
(de)serialization functions, defined by the GridRPC Data Management API,
partly relying on tools provided by the boost library. But that maybe shows an
unclear part of the API: the protocol to use in that specific case to manipulate
the file is not precised. In our current implementation, the protocol is static and
is read from the middleware configuration file at initialization time.

But if going a bit further than the API, we can use the query part of the
URI. Indeed considering a data available in memory, the API does not provide
a mean to know which protocol(s) can be used to send or to receive it since the
URI would be similar to memory://graal.ens-lyon.fr/matrixA. In ongoing
work, our library is going to explore what can be done with specifying protocols
within the URI query part, e.g., ?protocol=rsync?protocol=webdav.

Scheduling for Implicit and Explicit Data Transfers. Data transfers are
operated 1) when data participate to a remote procedure call. They are in that
case implicit or automatic, and; 2) can be explicitly requested by a client with
a call to grpc_data_transfer().

Implicit and Automatic Transfers: When a remote procedure call is performed,
meta-data are serialized and transferred to the distant service. They contain
sets of URIs which may lead to additional transfers before and after the service
execution (Fig 2).

– If one of the input URI refers to a memory or file data on the client, the data
must be available to the service before its execution so that it can remotely
access it.

– If one of the ouput URI refers to a memory or file data on the client, the
service must have made it available and the client must get it.

Explicit Data Transfers: Several transfers are operated by
grpc data transfer(), i.e., a call to an explicit transfer operation: the
data should be present in all locations set in the input URIs list, and must
be present in all locations set in the output URIs list. This can be treated
with a sequential set of transfers from one given source to each destination for

memory://graal.ens-lyon.fr/matrixA
?protocol=rsync?protocol=webdav
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example, but that would be inefficient. In addition, it is not mandatory that
all participants are directly interconnected (either by network or by protocol)
and transfers may have to be scheduled to make the whole operations possible
(destinations of completed transfers being considered as potential sources).
The library also makes possible to delegate transfers on all GridRPC servers
that offers some library specific service. Hence transfers can be distributed over
nodes to reduce the bandwidth impact, and/or to try to reduce the transfer
operation completion date for example.

In order to build a schedule in our implementation (made by the dispatcher,
Fig 3), we list the nodes that can participate to a transfer operation: To our bene-
fit, since the library contains middleware modules, it can also rely on underlying
GridRPC middleware to potentially add relay servers to [remotely] distribute
the transfer load or a part of it. To discover those middleware nodes, the library
provides an echo service, that must be deployed, i.e., registered in the GridRPC
server capabilities (at the moment, only middleware nodes with the memory pro-
tocol available are considered. If the service is not deployed, the node is simply
not considered as a possible relay).

Data Manager

RAM

Data Manager

Middleware callClient Server

Upload

Upload

Download

Download

Fig. 2. Automatic transfers during a
GridRPC call

Fig. 3. Dispatcher’s cycle

Then URIs are sorted: Local, Middleware node or Storage server; and the
dispatcher uses a Round-Robin algorithm to build and launch every one-to-one
transfer according to the sorted list below: the list describes by priority of action,
matching one input URI to one output URI depending on their nature (Local,
Middleware or Storage), the action undertaken to manage the corresponding
transfer. As seen in Sec. 3.2, transfers at the same time are possibly limited in
number, they are monitored with an effective and sufficient semaphore mech-
anism, and a completion leads to a dynamic update of the set of input URIs.
The above algorithm loops until all transfers to ouput locations are done. In
case of failure due to an unresponsive input middleware, the middleware is not
considered anymore in the next scheduling/mapping cycle.
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L-S: The transfer is initiated locally.
M-S: The transfer is processed through a call to the remote transfer service.
S-L: The transfer is initiated locally.
S-M: The transfer is performed through a call to the distant transfer service.
L-L: The transfer is initiated and performed locally.
L-M: The library makes the local data available via the GridRPC middleware

inner data manager whose remote counter part will download afterwards.
M-L: The remote middleware is being asked to make the data available, this

data is then downloaded by the GridRPC middleware.
M-M: The source middleware is asked to make the data available so that the

destination middleware can download it when needed.
S-S: The library first tries to invoke a remote service on the destination server

to initiate the transfer. If the transfer fails, data is downloaded on the
library client, then transferred to the destination server. If there is no
available protocol to proceed to such transfers, the call fails returning an
error code.

4 Experimental Results

4.1 Multi-protocol and Dispatcher Scheduling/Mapping Validation

Table 1 lists the experiment deployment. We used 3 computing resources, 2
in Japan and 1 in France, on which we deployed iRODS and ssh servers, and
Diet components: a client, a dietAgent (the registry), and a server (matrix ad-
dition) written with the GridRPC APIs requirements together with our library.
Two matrices are defined with a list of input URIs depending on the running
test, described hereafter.

Table 1. Resources involved in Experiment 1

Machine (location) Services Data (protocol)

Arcterix (JFLI - Japon) dietAgent, client, sshd matA (ssh)
yume (JFLI - Japon) service ’+’, iRODS, sshd matA, matB (ssh)

graal (Éns-Lyon - France) sshd matB (ssh)

There are four tests, built with the scenario of getting the two matrices
through ssh, performing the addition, and uploading the result to an iRODS

server (here locally):

– Remote/Remote: the client does not include the URIs concerning the host
yume in the input list used for the remote call.

– Remote/Local: the client does not use the URI concerning matA on yume
in the input list used for the remote call.

– Local/Remote: the client does not use the URI concerning matB on yume
in the input list used for the remote call.

– Local/Local: all URIs are used for in remote call.
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This simple experiment aims to show both 1) the seamless multi-protocol
management of the library, as well as 2) the possibility for the dispatcher, de-
scribed page 68, to perform a schedule: due to its priority matching combined
with its Round-Robin algorithm, the library uses the local data first if available.
Figure 4 clearly shows this behavior, the blue region showing the time spent
during each transfer when it occurs.
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4.2 Asynchronous Transfers Management and Bounded Number of
Simultaneous Transfers

For this experiment, we designed the following scenario: a remote procedure call
is performed to add a given number of matrices which are available remotely
through ssh. Matrices are downloaded and added as soon as the operation is
possible, i.e., at first when two of them are finished to be downloaded, then
every time a new one has been downloaded and the previous computation has
finished. We performed 4 tests, corresponding to the number of simultaneous
transfers that it is possible to make at a given instant, resp. 1 unique transfer,
2, 4 and 8 transfers maximum at a given time. The number of matrices is fixed
to 16, and one matrix is 32MB (i.e., 2000× 2000 of 64bits integers).

We designed this experiment to validate the request controller behavior, i.e.,
the implementation of the possibility to limit the number of simultaneous trans-
fers occurring in a transfer operation, and the possibility to use the waiting
functions, here with grpc_data_transfer() and the GRPC_WAIT_ANY parame-
ter, making the server able to perform an operation as soon as enough matrices
are present on the server side (the addition was chosen for the operation since
it requires less time than a transfer, which leads to show the wanted behavior.
Besides, it also makes sense conceptually since it’s a commutative operation).

Figure 5 shows the activity of the service and its duration on the y-axis, related
to the progression over the number of matrices downloaded for each limit on the
x-axis. The same evolution by group of cardinal equal to the possible limit of
both the waiting time (non-active wait) and transfer time highlights that the
number of simultaneous transfers operated by the library is indeed configurable
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(for the moment the information is static in the configuration file. We intend
to look if it makes sens to have it self-tuned by the library, depending on the
dynamicity of both the network and computing performance). It also shows that
every computations occur when enough matrices are finished to be downloaded.
As a side effect, it also confirms the observations made in [8]: there’s a real need
to limit the number of possible parallel transfers. We can indeed observe on this
small example that the overall completion time of the addition of the 16 matrices
is a bit reduced when the limit is fixed to 2 for our small testbed.

5 Future Works

Future works are heading towards different directions. If the library is already
usable and implements most of the API, more performance can be obtained
with more efficient scheduling: at the request controller (Section 3.2), and at the
dispatcher level (Section 3.3); and more development: for example including a
middleware module for ssh would add more scheduling possibilities; the proto-
col memory leads to already complex data management mechanisms, yet to be
continued in addition to a file protocol that would help avoiding useless data
copies, making the use of the library even more scalable. Modules for dCache
and GridFTP would possibly make transfers faster, but further control would
have to be done on the bandwidth consumption; a data manager module for
Amazon S33 would give further access to cloud storage resources leading for a
need to also take into account some financial criteria in the above scheduling
process, and possible migration of data when possible (e.g., when the data is
requested as GRPC PERSISTENT).

6 Conclusion

With the GridRPC Data Management standard completing previous works on
GridRPC, both at the API and software level, feasibility of computations and
performance is at reach with immediate portability and interoperability be-
tween GridRPC middleware. To ease its spread, while giving access to GridRPC
middleware and to existing data managers, we provide an implementation of
both APIs relying on a very modular architecture. Fulfilling the standard re-
quirements, the library also implements the data management modes as well
as a memory protocol to avoid useless copy to disk. We showed that an effi-
cient system to handle waiting mechanisms is in place and that we operate
some mapping/scheduling when several transfers are involved in the same data
management. We conducted some experiments and obtained results validating
the expected behaviors. From now on we will focus on more theoretical work
to improve the yet non-trivial mapping/scheduling of transfers involved for a
given data, and we are considering to plug a workflow/dataflow analyzing tool
to schedule transfers of different data with remote procedure calls altogether.

3 http://aws.amazon.com/

http://aws.amazon.com/


72 Y. Caniou, H. Croubois, and G. Le Mahec

Further developments will also occur, giving more adaptability and choices to
the end-user while bringing new issues concerning scheduling possibilities, for
example with Cloud storage resources.
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Abstract. In this paper we focus on data management aspects of W-
Grid, a decentralized infrastructure that self-organizes wireless devices in
an ad-hoc manner where each node has one or more virtual coordinates
through which both message routing and data management can be com-
bined and performed in a cross-layer fashion. Differently from existing
solutions, W-Grid does not require complex devices that need global in-
formation or external help from systems, such as the Global Positioning
System (GPS), which works only outdoor with a precision and an efficacy
both limited by weather conditions and obstacles. Therefore our solution
can be applied to a wider number of scenarios, including mesh networks
and wireless community networks. In particular, in this paper we intro-
duce two extensions to W-Grid: (i) recovery capabilities to network or
node failures without using broadcasting operations and (ii) improved
routing based on a local learning with a new method of evaluating logical
distances among nodes through implicit cost-free overhearing at sensors.

1 Introduction

A wide number of routing algorithms for ad-hoc wireless sensor networks have
been proposed in the literature, ranging from those that adopt message broad-
cast/flooding to those using Global Positioning System (GPS) to discover the
routing path towards the destination. Broadcast algorithms, while simple to im-
plement, are not scalable due to the enormous overhead caused by congestion
in large networks. On the other hand, solutions based on GPS, which rely on
exact geographic position for each node, do not work in indoor environments
and do not function correctly in extremely dense networks or in adverse climatic
conditions. Technical and economic feasibility constraints also prevent from at-
taching a GPS receiver to each node in very large network (i.e. made of thousands
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of devices). For these reasons our solution does not rely on GPS or any other
positioning system. The routing problem has also been addressed in cases of
both total absence and partial availability of geographic location information by
generating virtual coordinates to approximate real ones. Our solution may be
classified within this set of approaches in that it also uses virtual coordinates,
but it is different in that it does not aim to approximate real coordinates, but
rather it simulates them.

W-Grid [1,2] is a distributed binary tree index cross-layering both routing and
data management features, in that (1) it allows efficient message routing and,
at the same time, (2) the virtual coordinates determine a data indexing space
partition for the management of multi-dimensional data. Each node has one or
more virtual coordinates on which an order relation is defined and through which
the routing by content occurs; each virtual coordinate represents a portion of the
data indexing space for which a device is assigned the management responsibility.
A consequence of this approach is that nodes which are close in the physical
network topology are also close in the logical overlay network.

In this paper we focus on data management aspects of W-Grid, and we in-
troduce (i) a new recovery method that does not require broadcast messages
and (ii) a new routing approach based on a local learning method that improves
also the traffic balancing among nodes without affecting energy consumptions.
The solution does not require GPS because each device receives a virtual co-
ordinate reflecting its local connectivity with other neighbor devices and each
of them uses this information to perform routings and to search for data; the
data management is performed natively, namely in a cross-layer fashion, thanks
to the fact that each device receives a set of unique virtual coordinates, each of
which represents also a portion of the data indexing space for which a device is
assigned the management responsibility. We also show that W-Grid is at some
extent robust to sensor failures, meaning that if a sensor or a link crashes or
turns off, neighbor sensors are able to recover the network failure without using
local broadcasting, when physically possible, i.e. when the failure does not cause
the partition into unconnected subnetworks. In this work we consider W-Grid to
be used in wireless ad-hoc and sensor networks, therefore nodes disconnections
are basically represented by failures (e.g. power exhaustion).

With respect to previous work, in [17] we described a preliminary W-Grid
version with routing and data management features, in [22] we introduced data
replication to allow faster content location while in [2] we presented the range
query capability of W-Grid. In [1] we introduced a lazy recovery algorithm to
resolve in background possible routing problems while in [2] the infrastructure
has been extended with reactive recovery capabilities to solve node failures as
soon as they are detected; however, differently from the solution presented in
this paper, both recovery solutions required some broadcast operations. Finally
a preliminary version of routing with learning capability is reported in [23].
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Fig. 1. Correspondence Among Coordinates and Multi-Dimensional Data Space Par-
titions

2 W-Grid Overview

From now on we will refer at devices with the terms sensors or nodes indis-
tinctly. Basically W-Grid can be viewed as a binary tree index cross-layering
both routing and data management features in that, (1) implicitly generating
coordinates and relations among nodes allows efficient message routing and, at
the same time, (2) the coordinates determine a data indexing space partition for
the management of multi-dimensional data. Each node has one or more virtual
coordinates on which an order relation is defined and through which the routing
occurs, and at the same time each virtual coordinate represents a portion of the
data indexing space for which a device is assigned the management responsi-
bility. Differently from algorithms based on geographic routing, W-Grid routing
is not affected by dead-ends. Since in sensor networks the most important op-
erations are data gathering and querying it is necessary to guarantee the best
efficiency during these tasks.

While W-Grid architecture and main functionalities have extensively be pre-
sented in [1,2], in this paper we further focus on data management aspects of
W-Grid.

W-Grid distributes data (represented as tuples of attributes) gathered by
sensors or shared by nodes among them in a data-centric manner. Values are
linearized into binary strings (see [24]) and are each stored at the nodes/sensors
whose W-Grid coordinates have the longest common prefix with the resulting
strings. Thus, a W-Grid network acts directly as a distributed database and
coordinates c are used as a roadmap to data repository. This means that each
coordinate represent a portion (i.e. region) of the global data space as depicted
in Figure 1. Regions are generated according to data distribution and the use
of a bucket size for each data region, together with a load balancing algorithm,
allow to balance nodes storage load [17].

Let us describe a brief example of an environment monitoring application in
which sensors survey temperature (T ) and pressure (P ), to which we refer as d1
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and d2. Each event is inserted in the distributed database implicitly generated
by W-Grid, reporting for instance date and time of occurrence. Without loss of
generality we can define a domain for T and P let us say Dom(d1) = [−40, 60]
and Dom(d2) = [700, 1100]. We present two examples: (i) an exact-match and
(ii) a range query submitted to the network.

(i) Return the times at which sensors surveyed a temperature of 26 Cel-
sius degrees and a pressure of 1013mbar. The linearization [25,24] of the two-
dimensional data values results in a binary string which indicates the path to be
followed in the network to get to the sensor storing the data. Then, any sensor
can be taken as starting point for the query to get to the destination. In this
case the result of the linearization is1:

ct = ∗11011000
As described in [25,24] the length of the destination string can be adjusted,
without affecting the hops that were previously covered, during the routing if
we find that sensors with longest string exist.

(ii) Return the times at which sensors surveyed a temperature ranging from
26 to 30 Celsius degrees and pressure ranging from 1013 to 1025mbar. After
calculating the correspondent binary string for the four corners of the range
query, namely:

(26,1013) (26,1025) (30,1013) (30,1025)
c1 = *11011000 c2 = *11011001
c3 = *11011010 c4 = *11011011

all we have to do is querying sensors whose coordinates have ∗110110 as prefix.

3 Active Recovery of Node Failures

In ad-hoc networks nodes usually have scarce resource and they especially suffer
of power constraints. This can lead to nodes failures that could affect routing
efficiency. In W-Grid robustness is guaranteed by multiple coordinates at each
node and by the adopted routing metric. In fact, it is possible to route through
different paths. If a broken path is discovered the packet can change direction
(e.g. next hop) and follow a different path, according to another coordinate.
Whenever a nodes detects that it can not contact one of its father(s) it must
start a recovery procedure and find its closest existing relative. In [17] we forced
the orphan node to perform a ”local broadcast” searching for the parent of the
missing coordinate. The term ”local broadcast” was used since it is very likely
that the searched coordinate will be close to the broadcasting node considering
that it is a close relative. However, even if the broadcast packet time-to-live is

1 By standardizing 26 and 1013 to their domains we get 0,76 and 0,78 respectively.
We multiply both of them by 24 to get a string of length 8. The binary conversion
of the multiplications are 1010 and 1100 respectively. Then, by crossing bit by bit
the two string we get *11011000.
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small, the impact of performing broadcast is always heavy on energy consump-
tion, especially in a sensor network. For this reasons in this paper we present
a recovery procedure that does not uses broadcast at all, and we show that its
performances are at least equal to it. We call this procedure active recovery. In
this new solution, if a node ni holding, among the others, the coordinate ∗01001∗
discover that the node nf with coordinate ∗0100∗ is no longer available it will
start a search for ∗0100∗, the search is performed using a special type of message
(recovery message) mr. Each node that is crossed by a recovery message knows
that each coordinate with prefix equal to the destination (∗0100∗ in this case)
must not be used to evaluate the distance to it. This little variation tries to help
the system getting out of the subtree generated by the node failure. The orphan
node will try in sequence each of its neighbors to deliver the recovery message
and the search will stop either when mr is delivered or when all the neighbors
have been contacted. The rest of the recovery procedure is the same as in [17].
Once the coordinate has been found, the holding node fixes the relationship with
the affected node by giving it a new coordinate, in our case through n4 and n7.

d4 *10101(n7) 
*1101(n3) 

*11 = *1010

b) 

d1   *11(n5)       
*1010100(n3) 
*1101 = *101

d2  *1110(n1) 
*10101011(n3) 

d3 *110(n1) 
*101010(n4)

d5   *1  
*1101 = *101

d6   *101(n5) 
*1101 = *101

d7   *1010(n6)
*1101 = *101

d4 *10101(n7) 
*1101(n3)

a) 
d1   *11(n5)       

*1010100(n3)

d2  *1110(n1) 
*10101011(n3) 

d3 *110(n1) 
*101010(n4)

d5   *1 

d6   *101(n5) 

d7   *1010 
(n6) 

Fig. 2. Effects of Node Failure (d3) during Routing of a Packet from Node d1 to Node
d4

4 Lazy Recovery of Node Failures

W-Grid also include a lazy recovery feature. Besides active recovery we also let
the nodes try to fix failures situations not solved by exploiting the traffic during
queries routing.

Lazy recovery act as follows: whenever a node cannot recovery trough active
recovery sets itself in a recovery failed state. When a node is in this state it
will first of all notice all its neighbors about it and its neighbors will do the
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same. Then, each node informed about this temporary state will add all of its
coordinate to every query that it will be asked to route and that is evaluated to
cross the node2 in recovery failed state. The node in recovery failed state will
scan each attached coordinate in the query message looking for a coordinate
which is parent of the broken one, so that it can perform a recovery.

5 Local Learning

In this paper we improve the routing efficiency by introducing a new feature
named local learning (LL). In a wireless environment uni-cast is never actually
uni-cast, in fact, whenever a node communicates with one of its neighbors the
communication is overheard by all of them, what it happens is that only the re-
cipient of the communication will listen it. In the same way, each routing request
exchanged among couples of nodes are heard by their respective neighbors. Our
idea is that overhearing neighbors may not ignore the informations they “listen
to” but they may process them instead, finding for help to give the (neighbor)
routing nodes. It may happen that a node apparently farthest from the des-
tination is aware of a node that would shorten the path, by giving back this
information to its neighbor that was routing a message through another node
it is possible that at the next routing the helping node will be chosen, and the
path will be shorten. Local is referred to the fact that what nodes learn regards
only their direct neighbors.

Every time that a packet pi (data or query) with destination ci is forwarded
by a sensor df (forwarder) to a sensor dr (receiver), each sensor that is within the
radio range (neighbors N) of df is aware that the packet is being forwarded. As
a consequence each sensor in N can discover (i) which virtual coordinate is the
destination of pi, (ii) which sensor dr has been chosen towards that destination
and (iii) which is the distance of pi at dr. Here comes the local learning. If
any sensor in N , let us say dl finds out that a neighbors, let us say dnf with
coordinate cnf would have taken pi closer than dr then dl temporarily stores
the pair (dnf , ci) so that when it performs the next beaconing it informs df that
a better path has been discovered. In this way, the next time that df needs to
forward a packet to a destination whose prefix is ci, dl will be preferred to dr.
Figure 3 shows an example of local learning. Packet pi with destination ∗011
must be routed by node df . By forwarding pi to dl the distance from df to the
destination is 3 while by forwarding pi to df the distance is 5. Local learning
allows nf to know that dl is a better choice for routing packets whose destination
is ∗011%3.

A possible variation of the strategy is to choose between dl and dr according
to a certain probability, so that possible changes in network topology and con-
sequently new possible paths can be caught even if some learning has already

2 Each node can estimate if the query is likely to cross the orphan node by comparing
query destination and node.

3 % means a binary string of arbitrary length.
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Fig. 3. Example of Local Learning at Node nf

occurred. Simulation results show that the network gains in routing performances
under these conditions.

6 Distances in the W-Grid Logical Network

We also added the Real Distance (RD) feature to W-Grid. Whenever a node nj

gets a coordinate from node ni the new coordinate will be one bit longer that
the father one. However ni might have already split and while this information
is known by nj that will know about all the coordinates of it the same is not
for nj ’s neighbors which are not neighbors of ni. Actually those neighbors could
find useful such kind of information in order to get more precise distance values
during routing. For this reasons routing table entry will also contain this integer
value which represents the real distance among couple of nodes. In section 7 we
evaluated network performance with respect to this feature.

7 Simulation Results

An extensive number of simulations have been conducted in order to evaluate the
network routing performances, in term of average path length, and the robustness
in W-Grid networks.

When comparing W-Grid with GPSR [12], which is the routing method em-
ployed by several existing solutions such as in [3] and in [20], it is appropriate
to remind that in GPSR each sensor needs to be aware both of their physical
location and the network perimeter. These constraints increase the cost of each
sensor and limit GPSR usage possibility, for instance it cannot be used in indoor
environments and in outdoor areas where the density of sensors is beyond the
GPS precision, or when weather conditions are bad.

The simulation model consists of a square area 800 × 800m, in this area
205 nodes are randomly spread. Each sensor has its own ID and a radio range
varying from 73m to 123m (ideal transmission) in order to get different densities,
namely 4, 8 and 12 neighbors per node respectively. For each scenario we ran 5
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simulations and in each simulation we submitted 20000 queries to the system
and then tested network robustness by turning off each node of the network one
at a time. The simulator performed the following tasks:

– Random placement of sensors in a user-defined area;
– Generation of W-Grid coordinates at sensor exploiting implicit overhearing;
– Random generation of 20000 queries;
– Turning off of nodes at the delivery of queries, as previously described.

For each simulation run we observed:

– The variation in queries APL (Average Path Length), namely the number
of hops necessary to resolve a query, between W-Grid with LL and RD and
GPSR.

– The ratio of succeeded recovery in W-Grid scenarios;

7.1 Average Path Length Comparisons

Even if the comparison appears prohibitive, since GPSR can stay very close to
the ideal routing algorithm by using physical position of nodes, W-Grid returns
very good performances, especially considering that it does not require any kind
of information about geographic position of nodes. Figures 4, 5 and 6 show that
the number of hops (APL) is similar in W-Grid and GPSR especially when LL
is applied. Besides, the flat look of the averages with respect with the number
of coordinates shows that W-Grid behavior is stable according to that variable.

Fig. 4. Query APL in a Network with an Average of 12 Neighbors per Node

7.2 Recovery Failures

The second measure we evaluate is the ratio of failure recovery which is cor-
rectly performed according to the different node densities and the number of
coordinates. We simulate two different recovery strategies:

– Active recovery;
– Lazy recovery.
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Fig. 5. Query APL in a Network with an Average of 8 Neighbors per Node

Fig. 6. Query APL in a Network with an Average of 4 Neighbors per Node

Where lazy recovery is performed whenever a node could not solve a failure
situation with the active recovery. We present the results obtained with both
strategies.

In each Figure 7, 8 and 9 we compare W-Grid efficiency with coordinates
dependencies against the W-Grid solution exploiting message broadcast. Here,
broadcast feature has been tried with different Time-To-Live (TTL) values and
obviously the efficacy, not the efficiency, improves as TTL value increases. The
fifth curve represents an unlimited broadcast which has been simulated whenever
W-Grid could not be able to perform recovery. Figures show that almost every
time that W-Grid was not able to perform recovery, unlimited broadcast was
not able as well, meaning that preceding W-Grid version failed just because the
network was partitioned due to device failure.

Fig. 7. Recovery Success Ratio with an Average of 4 Neighbors per Node
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Fig. 8. Recovery Success Ratio with an Average of 8 Neighbors per Node

Fig. 9. Recovery Success Ratio with an Average of 12 Neighbors per Node

In Figure 10 we can see that the percentage of successful queries keeps really
high even when the network is in an unstable state due to failed recoveries.

Fig. 10. Percentage of Successful Queries in the case of Recovery Failure

According to what shown by our experimental analysis (not included in this
paper due to space limitations), the network traffic generated by W-Grid active
failure recovery strategies compared with broadcast applied to W-Grid (with
different level of broadcast propagations) expose an appreciable performance.
Indeed, W-Grid heavily reduces the number of messages required for recovery.

8 Conclusions and Future Work

In this paper we presented W-Grid, a fault tolerant cross-layer infrastructure
for routing and multi-dimensional data indexing and querying in ad-hoc sensor
networks. After describing W-Grid we have introduced the new efficient recovery
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capabilities and the local learning with a new distance evaluation technique, a
routing technique that improves the average path length measures of W-Grid
networks.

Besides, the work has showed that in case of failures, W-Grid guarantees net-
work robustness while reducing the energy consumption with respect to existing
solutions that instead require broadcast/flooding propagations. In particular, the
simulations have measured both the efficacy and efficiency of the routing method
and the recovery approach according to an extensive number of scenarios with
different radio connectivity density, with several logical network topology chang-
ing the number of coordinates and with the treatment of node failures.

The results have highlighted that the routing performance of GPSR and W-
Grid with local learning are quite similar despite GPSR requires GPS; finally
the new recovery approach drastically reduces the network traffic while preserv-
ing the same recovery efficacy of solutions based on costly broadcast/flooding
operations.

Future work is manly oriented towards integrating W-Grid with novel
paradigms dictated by recent Big Data initiatives (e.g., [26,27]), perhaps in-
spired by approximation paradigms (e.g. [28,29]).
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