
IGV-plus: A Java Software for the Analysis
and Visualization of Next-Generation
Sequencing Data

Antonio Agliata, Marco De Martino, Maria Brigida Ferraro,
and Mario Rosario Guarracino

Abstract In this work we describe IGV-plus, a software for next-generation
sequencing (NGS) data analysis and visualization. It integrates de facto standard
tools for the discovery of genetic mutations in genomic-wide association studies.
We describe the software specification that led to the development of IGV-plus.
Finally, we show how we integrate a single-nucleotide polymorphism (SNP) calling
software of the genome analysis toolkit (GATK) in the genome browser integrative
genomics viewer (IGV), in order to create a centralized platform, as a possible one-
stop shop for biologists dealing with NGS data.

1 Introduction

High-throughput technologies for genome sequencing, namely next-generation
sequencing (NGS) platforms [1], produce large amounts of biological data. Such
data need extensive preprocessing before they can be used for genome-wide
association studies, in which genetic variants are detected and correlated to specific
traits. The availability of integrated software tools for the analysis, comparison,
view, and annotation of such data becomes a discriminating factor for the success of
a biological analysis [2].

The idea of NGS technology is similar to capillary electrophoresis (CE)-based
Sanger sequencing. The bases of a small fragment of DNA are sequentially
identified from signals emitted as each fragment is resynthesized from a DNA
template strand. NGS extends this process across millions of reactions through a
massive parallelization. It provides an enormous number of reads, which permits the
sequencing of entire genomes at a fraction of the costs for Sanger technology. The
main steps in NGS data preprocessing consist in computing the quality of base calls,

A. Agliata (�) • M. De Martino • M.R. Guarracino
High Performance Computing and Networking Institute, National Research Council, Naples, Italy
e-mail: agliataantonio@gmail.com

M.B. Ferraro
Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy

© Springer International Publishing Switzerland 2014
C. Vogiatzis et al. (eds.), Dynamics of Information Systems, Springer Proceedings
in Mathematics & Statistics 105, DOI 10.1007/978-3-319-10046-3__8

149

mailto:agliataantonio@gmail.com


150 A. Agliata et al.

aligning the short-reads to a reference genome (when available), evaluating quality
of such alignment for each short-read, and recalibrating the base calls quality in the
context of the aligned reads. After this phase, the discovery of genomic variants
is executed, and scientists visualize and analyze results using genome browsers.
This visual analysis shows the nucleotide context in which variants occur and
other factors of biological interest, such as splicing sites, promoters, terminators,
noncoding RNAs, and repeated sequences. Although many software are available
for each of such tasks and standards are emerging, some efforts are needed to use
the output of one software as the input of the next. To our knowledge, no single
software integrates all those steps, thus enabling the users to control the complete
process underlying their analysis.

In this work we describe IGV-plus, an open-source software that integrates
existing solutions for data preprocessing, genetic variant calling, and genome
browsing, providing a single tool for each and all the steps needed in NGS data
analysis. IGV-plus is extensible to plug in other existing tools, given they meet some
general requirements. Our analysis of existing software starts from preprocessing
and variant discovery software that are noncommercial and open source, with
support for input files in BAM and SAM formats [3] and output in VCF format
[4]. Furthermore, we only take into consideration those supporting pooled analysis
of individuals. Then we analyze existing genome browsers to upload, view, and
explore the alignment of the datasets to a reference genome [5]. There exist tens
of genome browsers, as a simple web search will reveal. Nevertheless, only a few
are widely adopted by the scientific community, usable across different operating
systems, freely available and downloadable together with their source code, easy to
use and with intuitive graphical user interface (GUI), executable on standard desktop
computers, and supported by a developers’ community. As a result of our analysis,
we decided to integrate the preprocessing and the variant calling software GATK [6]
with the genome browser integrative genomics viewer (IGV) [7].

The paper is organized as follows. In Sect. 2 we report a software specification
based on the analysis of user needs (Sect. 2.1). In particular, a simple use case
diagram is showed and the execution of the main tasks is described. In Sects. 2.2
and 2.3 we analyze tools for single-nucleotide polymorphism (SNP) calling and
the existing software solution to browse genomes. In Sect. 3 we provide the
implementation details, by analyzing the changes in Java class and the additional
packages required for the integration. Finally, in Sect. 4 conclusions are discussed
and future work is addressed.

2 Software Specification

Analysis tools in the preprocessing phase are needed to detect positions of mutations
among billions of possible ones. Using only a genome browser software would mean
manually searching and viewing all data position, which is a daunting and prone-to-
error task. Genome browser is useful in the next phase to view the position filtered
by preprocessing and analyze them with useful annotation information.



IGV-plus: A Java Software for the Analysis and Visualization. . . 151

So the goal of IGV-plus is creating a centralize platform for biologists dealing
with NGS analysis by the integration of analysis tool into genome browser.

In this section we describe the biologists’ requirements, the choice of the genome
viewer, and the analysis tool to obtain an integrated software.

2.1 User Requirements

Not only do biologists require the list of candidate mutations, but they also need
to visually analyze these positions. After the identification of possible causative
mutations, they start the biological validation of those that might be of interest to
confirm their hypothesis. This is usually done with Sanger sequencing [8] or other
techniques, which are expensive in terms of time, resources, and expertise. For this
reason, they require to exclude variants that are obviously unrelated with the scope
of their research, and artifacts introduced in the amplification process before the
sequencing step, to avoid biological validations that would be unnecessary.

From these requirements, a simple use case diagram has been drawn (Fig. 1),
where the actor is represented by the software user and it is assumed to be of only
one type. In addition to the standard functions performed by a genome viewer, the
user can conduct a new analysis and/or evaluate the results of an existing one.

In the Execute Analysis task, the user goal is to perform an analysis of the
data. The preconditions are that the user is running the IGV-plus and executing the
“RunTool” task. The success is obtained when the input form is correctly filled in,
and the analysis is started. An exception is raised in case input forms are incorrectly
filled in. In case of success, it generates a VCF output file. In the View Results
task, the user goal is to evaluate the results of an analysis carried out earlier or by
others. The preconditions require a VCF file and to execute the “Run Tool” task.
The success is obtained when the input form is properly filled in, and the input

Fig. 1 Use cases diagram



152 A. Agliata et al.

Table 1 Analysis tools: a comparison

Features GATK FreeBayes SNVer CRISP

Language Java C++ Java Python

Multi-platform Yes No Yes Yes

Noncommercial Yes Yes Yes Yes

File format BAM, BED, FASTA BAM, FASTA BAM, BED, FASTA BAM, FASTA

VCF, tab-delim VCF VCF, tab-delim VCF

Supported Update 2013 Update 2013 Update 2012 Update 2012

file is correctly loaded. An exception is raised in case input forms are incorrectly
filled in. The use case describes the evaluation of analysis results that are available
in the VCF format. In case of success, the user will be able to browse candidate
mutations by including the “Load Data Track” and “Navigation” tasks.

2.2 Preprocessing and Variant Calling Software

We compare four variant calling software: GATK, FreeBayes [9], SNVer [10], and
CRISP [11]. The features of these software are described in Table 1.

The choice of variant calling software to integrate falls on GATK and depends
on different reasons. First, GATK provides more accurate results of sensitivity and
specificity on pooled NGS data [12]. In addition, as we will detail in the following,
it is not only a simple variant calling software but also a real analysis framework
that provides functions also needed in the preprocessing phase of the data. Finally,
it is possible to generate BAM files for other software.

GATK is a software developed at the Broad Institute to analyze NGS data. GATK
is not only used to perform genomic variant calling, but also integrate analysis to
evaluate variants (see Fig. 2). It is a structured framework designed to facilitate the
development of efficient and robust analysis tools for NGS data, and it is suitable
to be used in projects of any size [6]. GATK is developed in Java and follows the
MapReduce paradigm that allows the parallelization and distribution of processing
by splitting the computation into two steps: Map splits the initial problem into
independent subproblems and Reduce solves the subproblems and combines the
partial solutions to get the overall solution to the main problem. The use case
describes the evaluation of an analysis results, available in the VCF format.

The currently available version of GATK, 2.7-2, allows us to use two different
walkers for this purpose: Unified Genotyper and Haplotype Caller. Since Haplotype
Caller does not yet support pooled data, we use the first one.

Searching SNPs in pooled data requires methods capable to distinguish mutations
from sequencing errors, mainly with medium-low coverages, and amplification
artifacts. With an error rate equal to 1%, a mutation can be easily mistaken for
sequencing error.



IGV-plus: A Java Software for the Analysis and Visualization. . . 153

Fig. 2 Calling variants with GATK

The use of the pooling with a good sequencing quality can be very useful to
make a proper distinction. Assuming that the reads of each pool are aligned to the
reference genome, for each position, we consider the reads of all pools that cover
that position. Since GATK it is written in Java, it is executed from the command
line.

2.3 Genome Browser

With respect to the choice of the genome viewer software, it derives from the
analysis summarized in Table 2.

Although, as shown in Table 2, the software under analysis have characteristics
very similar to each other, we choose IGV for the integration, especially for the
support it offers for remote control. This feature is very important in an area where
large datasets produced by NGS are complex to manage. This means that, when
started, IGV runs a web server daemon accepting remote requests. This function
can be used to send commands to IGV and to receive results. This choice is also
supported by an idea of future development to be implemented, that is, to realize an
NGS analysis platform as a web service. The latter facilitates the management of
the data, avoiding its duplication among the groups of biologists and of analysts and
all those people involved in the project.



154 A. Agliata et al.

Table 2 Visualization software: a comparison

Features IGV Savant [13] Artemis [14]

Open source Yes Yes Yes

Language Java Java Java

Platform All All All

Technology Illumina, 454, Sanger,
ChIP-Seq, RNA-Seq

Illumina, 454, Sanger Illumina, 454, Sanger

File format BAM, SAM, GOBY,
BED, GFF, GTF,
PSL, CN, GCT,
FASTA, . . . , . . .

SAM, BAM, FASTA,
WIG, GFF, BED,
tab-delimited

BAM, VCF, BCF,
FASTA, tab-delimited

Remote control HTTP, HTTPS, FTP No No

Supported Yes Yes Yes

Other aspects for which IGV has been chosen are the high support to various
file formats and, last but not least, a more complete documentation from the
implementation point of view.

IGV is a high-performance viewer for genomic data, capable of handling
large heterogeneous datasets while providing a simple and intuitive interface for
navigation in the genome [7]. It is written in Java, so it is multi-platform. It supports
dataset loading from both local and remote storage. Furthermore, it is available for
free under the GNU LGPL license and the required hardware resources allow its
installation even on desktop computers. IGV also enables interaction with the data
through different levels of detail managed by zoom, which goes from the entire
genome to the single base/nucleotide, using an approach similar to that used by
Google Maps. It uses preprocessed images of genomic data, representing different
resolutions, leaving the display at runtime with a better resolution only for the
required parts. This approach is called data tiling (see Fig. 3).

The software architecture of IGV is divided into three conceptual levels (see
Fig. 4). The application layer deals with the management of IGV main window and
the interaction of the user with the interface elements. IGV displays data in rows
that are called tracks. They appear in the data panel that handles the layout and the
rendering, as well as events related to shared actions, such as zooming. It delegates
to object tracks that may refer to object renderers, instanced at runtime, events
related to navigation, loading of features, and track design. The data layer reads and
handles different file formats and makes the data available to the application layer
for displaying and on-demand indexing. This allows the optimization of computer
resources at runtime. It also creates the data caching to improve efficiency, when
requesting a genomic region that is already displayed in the same session. Finally,
the stream layer manages all the protocols that IGV uses for local and remote access
to files and for uploading of the reference genome.

As for all the genome viewers, IGV is mainly used to check the alignment of
the analyzed data to the reference genome. Since in the alignment process artifacts



IGV-plus: A Java Software for the Analysis and Visualization. . . 155

Fig. 3 Integrative genome viewer GUI

are introduced by the sequencing platform, SNPs must be detected from errors. The
misalignment, in practice, is suitably highlighted, at certain zoom levels. IGV also
offers the ability to display different characteristics of the aligned reads such as
mapping quality, the alleles frequency, and many other features used by biologists
to validate mutations. Finally, it supports about 30 different input file formats.

3 Implementation Details

In this section we detail the integration of UnifiedGenotyper, a specific GATK
walker, with IGV. There are two possibilities: integrating the entire GATK code,
which is open source, or allowing IGV to execute an instance of GATK. The adopted
solution enables the genome viewer to run instances of GATK, whereas the code
integration is not convenient in terms of usability and code complexity. Furthermore,
this option would make the GUI strictly linked to one version of GATK.

The implementation can be divided into two phases. The first one is reengineer-
ing IGV to integrate the variant caller by means of the identification of the package
and the integration of the software. The second one consists of developing a GUI
that allows the use of GATK.



156 A. Agliata et al.

3.1 IGV Reengineering

The reengineering of IGV starts with its structural analysis. We have identified the
packages and classes of interest related to the management of the user interface from
the class diagram of IGV (Fig. 4), provided in the documentation. Hence, most of

Fig. 4 IGV class diagram



IGV-plus: A Java Software for the Analysis and Visualization. . . 157

Fig. 5 Menu bar of IGV

Fig. 6 New menu bar of IGV

the necessary changes of IGV are basically related to interface and, in particular, the
command bar and some other menu items (Fig. 5).

The package org.broad.igv.ui consists of all the classes dealing with the manage-
ment of the graphical interface of IGV, the display preferences, and all the involved
aspects and graphical events. The goal is to integrate a menu item to run the GATK
GUI and to add two buttons forward and back for browsing the candidate mutations
arising from the analysis.

The IGVMenuBar.java class deals with the management of the GUI main frame,
bringing together items of the main menu and the command bar, in which we
want to add the menu item Tools/Run GATK. It extends the class JComponent
that implements the interfaces for the management of mouse events and keyboard
for the items in the menu. The IGVCommandBar.java deals with the management
of the IGV command bar, handling the events of mouse and keyboard inherent to
the buttons that appear on the toolbar. Such buttons allow to choose the reference
genome, to click the chromosome, to zoom, and other controls to which we want to
add the navigation buttons for the candidate mutations.

The edit of the above described classes leads to the addition of new features in
IGV (see Fig. 6)

3.2 GATK Graphical User Interface

The capabilities of GATK are structured in two levels: traversals and walkers. The
traversals layer is composed of the management modules for common functions.
These deal with partitioning and preparation of the data for analysis to be passed
to the walkers. The partition of any amount of data is a fundamental problem for
the scalability, memory consumption and parallelization task. GATK splits the data
into fragments called shards whose size is defined by GATK engine and depends
on the characteristics of the input BAM file. The walkers layer is composed of
the management modules of specific functions receiving data from traversals and it



158 A. Agliata et al.

applies the MapReduce paradigm. For example, the function SNP calling, used in
this work, operates in a Map level as it performs independent processing for each
position of the genome. Furthermore, walkers can also run on specific ranges of
input files, allowing users to perform analysis only on regions of interest. Each
thread performs independently one MapReduce call on a single instance of the
walker and GATK merges the results of the step Reduce of each thread in sequential
order, returning the overall step Reduce.

The walkers are the core of the functions offered by GATK, making it an essential
software to conduct analysis of NGS data even in the case where different tools for
the variant calling are used. In the following, we show how to implement a GUI for
the variant calling walker. This interface provides a GATL function within IGV.

The GATK GUI requires the implementation of new packages for GUI, the
management of VCF file format, and the GATK execution command, which are
implemented in org.broad.igv.gatk.ui (Gatk.java), org.broad.igv.gatk.vcf (ReadVcf-
File.java, VcfBean.java), and org.broad.igv.gatk.run (RunGatk.java), respectively.

Gatk.java deals with all the aspects related to the implementation of the GUI,
with the construction of the GATK execution string command and with the
management of all parameters that it is possible to set. It provides a robust control
on entered inputs, properly reporting the wrong and/or missing inputs. The GUI
also integrates tooltips menu for each parameter and each option that contains
information on the use and meaning of each of them, taken from the manual.
ReadVcfFile.java contains the implementation of a parser for VCF files. It reads
the mutations reported in the VCF file and its properties, setting proper variables.
VcfBean.java implements a Java bean for the input fields, by means of get and set
for their management. RunGatk.java deals with the GATK command that receives
input from the GUI, redirecting the standard output from GUI.

The GUI is organized in different areas. As shown in Fig. 7, A area contains
forms to select GATK jar for the execution walker, input BAM file to analyze,
input humane genome FASTA file to run GATK analysis, input VCF file of known
SNPs, and output VCF file path for called variants. If properly inserted, text box
is highlighted in green, otherwise in red. In B area it is possible to set GATK
command options like memory usage, number of threads to use in the execution,
and input interval to analyze. In C area we can set basic parameters related to
the UnifiedGenotyper walker, to change the default values. In D area we can set
advanced UnifiedGenotyper parameters, activated by Advanced checkbox. In E and
F areas there are two buttons to run GATK command with selected parameters and
to view results in IGV. Finally, in G area, we redirect GATK command standard
output, if the execution is successful, and standard errors, otherwise.

To better explain GATK GUI we consider the following execution example. If
we want to run a complete NGS analysis we can fill in input forms with GATK jar,
input file BAM, human genome FASTA file, and VCF output file path. Then, we
select proper parameters to run GATK jar (area B) and analysis (areas C, D). When
selecting the Execute Analysis button all parameters are collected for variant calling
and analysis starts if errors are not signaled. At the end of execution, we can evaluate



IGV-plus: A Java Software for the Analysis and Visualization. . . 159

Fig. 7 GATK GUI

GATK execution (area G) and navigate in variants found by clicking the View IGV
button that loads input bam file automatically. So we can use the new buttons in IGV
GUI to navigate through the called variants.

4 Conclusion and Future Work

In genomic analysis it is necessary to validate the positions of candidate mutations.
To reduce the cost of validation, it is useful to view these positions in a software
viewer, in order to evaluate also the biological context.

In this work we propose IGV-plus, a software for providing biologists with a
simple and centralized platform to make an independent genomic analysis.

It is of great interest for biologists to annotate the discovered mutations in order
to create an appropriate report of the visual inspection. Furthermore, in the near
future, we will integrate other analysis software and mutation reports, and we will
provide them as web services. Finally, we will integrate a database to handle data
and associate it to patients, and for storing information about them, as in a laboratory
information and management systems (LIMS).



160 A. Agliata et al.

References

1. Nielsen, R., Paul, J.S., Albrechtsen, A., Song, Y.S.: Genotype and SNP calling from next-
generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011)

2. Illumina, Inc.: An introduction to next-generation sequencing technology (2013). http://www.
illumina.com/

3. The SAM/BAM Format Specification Working Group: Sequence alignment/map format
specification. https://github.com/samtools/hts-specs (2014)

4. The Variant Call Format (VCF) Version 4.1 Specification. https://github.com/samtools/hts-
specs (2013)

5. Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G.,
Mesirov, J.P.: Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011)

6. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A.: The genome analysis
toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome
Res. 20, 1297–303 (2010)

7. Thorvaldsdottir, H., Robinson, J.T., Mesirov, J.P.: Integrative genomics viewer (IGV): high-
performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192
(2012)

8. Sanger, F., Coulson, A.R.: A rapid method for determining sequences in DNA by primed
synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975)

9. Garrison, E., Marth, G.: Haplotype-based variant detection from short-read sequencing (2012).
http://arxiv.org/abs/1207.3907

10. Wei, Z., Wang, W., Hu, P., Lyon, G.J., Hakonarson, H.: SNVer: a statistical tool for variant
calling in analysis of pooled or individual next-generation sequencing data. Nucl. Acids Res.
39 (2011). doi:10.1093/nar/gkr599

11. Bansal, V.: A statistical method for the detection of variants from next-generation resequencing
of DNA pools. Bioinformatics 26, 318–324 (2010)

12. Ferraro, M.B., Guarracino, M.R.: Prediction of single-nucleotide polymorphisms causative of
rare diseases. In: Computational Intelligence Methods for Bioinformatics and Biostatistics, pp.
213–224. Springer, Berlin (2014)

13. Fiume, M., Williams, V., Brook, A., Brudno, M.: Savant: genome browser for high-throughput
sequencing data. Bioinformatics 26, 1938–1944 (2010)

14. Carver, T., Harris, S.R., Berriman, M., Parkhill, J., McQuillan, J.A.: Artemis: an integrated
platform for visualization and analysis of high-throughput sequence-based experimental data.
Bioinformatics 28, 464–469 (2012)

http://www.illumina.com/
http://www.illumina.com/
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
https://github.com/samtools/hts-specs
http://arxiv.org/abs/1207.3907

	IGV-plus: A Java Software for the Analysis and Visualization of Next-Generation Sequencing Data
	1 Introduction
	2 Software Specification
	2.1 User Requirements
	2.2 Preprocessing and Variant Calling Software
	2.3 Genome Browser

	3 Implementation Details
	3.1 IGV Reengineering
	3.2 GATK Graphical User Interface

	4 Conclusion and Future Work
	References


