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Abstract This paper describes the far from most string problem, one of the
computationally hardest string selection problems that has found its way into
numerous practical applications, especially in computational biology and bioinfor-
matics, where one is interested in computing distance/proximity among biological
sequences, creating diagnostic probes for bacterial infections, and/or discovering
potential drug targets.

With special emphasis on the optimization and operational research perspective,
this paper studies the intrinsic properties of the problem and overviews the
most popular solution techniques, including some recently proposed heuristic and
metaheuristic approaches. Future directions are discussed in the last section.
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1 Introduction

The far from most string problem (FFMSP) is one of the string selection and
comparison problems, also called sequence consensus problems.

Generally speaking, given a finite set of sequences, one is interested in finding
their consensus, i.e., a new sequence that “agrees” as much as possible with all the
given sequences. In other words, the objective is to determine a sequence called
consensus, because it represents in some way all the given sequences.
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The concept of being representative of a given set of sequences strongly depends
on the specific objective pursued by the project of studying the information con-
tained in the given sequences and their specific properties under experimentation.
The most common objectives are listed in the following:

(i) the consensus is a new sequence whose total distance from all given sequences
is minimum (closest string problem);

(ii) the consensus is a new sequence whose total distance from all given sequences
is maximum (farthest string problem);

(iii) the consensus is a new sequence far from most of the given sequences
(FFMSP).

String selection problems find thousands of applications in several and het-
erogenous fields, ranging from coding theory to molecular biology. A fundamental
remark made by researchers in molecular biology regards the abstraction of the
real three-dimensional structure of DNA and its representation as a unidimensional
sequence of characters from an alphabet of four symbols. The same type of
assumption involves also the protein represented as a sequence of characters from
an alphabet of 20 symbols. As a result of the linear coding of DNA and proteins,
many molecular biology problems have been formulated as computational and
optimization problems involving strings and sequences, such as to rebuild long DNA
sequences starting from overlapping fragments (fragment assembly), to compare
two or more sequences looking for their similarities (strings coding the same
function), and to look for patterns that occur with a certain frequency in DNA
and/or protein sequences. Useless to say that many further targets can be pursued in
molecular biology applications involving sequences. For example, another possible
application arises in creating diagnostic probes for bacterial infections. Given a
set of DNA sequences from a group of closely related pathogenic bacteria, the
task is to find a substring that occurs in each of the bacterial sequences (as close
as possible) without occurring in the host’s DNA. Probes are then designed to
hybridize to these target sequences, so that the detection of their presence indicates
that at least one bacterial species is likely to be present in the host. Another
biological application related to string selection and comparison problems is related
to discovering potential drug targets. Given a set of sequences of orthologous genes
from a group of closely related pathogens and a host (such as human, crop, or
livestock), the goal is to find a sequence fragment that is more conserved in all
or most of the pathogens’ sequences but not as conserved in the host. Information
encoded by this fragment can then be used for novel antibiotic development or to
create a drug that harms several pathogens with minimal effect on the host. All
these applications reduce to the task of finding a pattern that with some error occurs
in one set of strings (closest string problem) and/or does not occur in another set
(farthest string problem). The FFMSP can help to identify a sequence fragment that
distinguishes the pathogens from the host, so the potential exists to create a drug
that harms several but not all pathogens.

The remainder of this article is organized as follows. In Sect. 2, the FFMSP is
described and its properties are analyzed. The most popular solution techniques
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for this problem are surveyed in Sect. 3, along with the computational results
obtained and analyzed in the literature. Concluding remarks and future directions
are discussed in the last section.

2 Notation and Problem Description

Throughout this paper, the following notation and definitions will be used:

� An alphabet † D fc1; c2; : : : ; ckg is a finite set of elements, called characters.
� si D .si

1; si
2; : : : ; si

m/ is a sequence of length m (jsi j D m) on † (si
j 2 †; j D

1; 2; : : : ; m).
� Given two sequences si and sl on † such that jsi j D jsl j, dH .si ; sl / denotes their

Hamming distance and is given by

dH .si ; sl / D
jsi jX

j D1

ˆ.si
j ; sl

j /; (1)

where si
j and sl

j are the characters in position j in si and sl , respectively, and
ˆ W † � † ! f0; 1g is the predicate function such that

ˆ.a; b/ D
�

0; if a D bI
1; otherwise:

� Given a set of sequences ˝ D fs1; s2; : : : ; sng on † (si 2 †m, i D 1; 2; : : : ; n)
d ˝

H denotes the Hamming distance among the sequences in ˝ and it is given by

0 � d ˝
H D min

i;lD1;:::;n j i<l
dH .si ; sl / � m: (2)

Given a set of sequences ˝ D fs1; s2; : : : ; sng on † (si 2 †m, i D 1; 2; : : : ; n),
the FFMSP consists in determining a string far from most of the strings in ˝ . This
can be formally stated by saying that given a threshold t , a string s 2 †m must be
found maximizing the variable x such that

dH .s; si / � t; 8 si 2 P � ˝ and jP j D x; (3)

or, equivalently

d
P [fsg
H � t; for P � ˝ and jP j D x: (4)
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For most consensus problems, Hamming distance (1) is used instead of any
alternative measure (such as the editing distance) and biological reasons justifying
this choice are very well described and motivated by Lanctot et al. in [24].

The FFMSP is one of the computationally hardest sequence consensus problems.
The intractability of the general sequence consensus problem was proved in 1997
by Frances and Litman [16] and in 1999 by Sim and Park [31]. In 2003, Lanctot
et al. [25] demonstrated that for sequences over an alphabet † with j†j � 3,
approximating the FFMSP within a polynomial factor is NP-hard.

3 Several Alternative State-of-the-Art Algorithms
for the FFMSP

Since polynomial time algorithms for approaching the FFMSP can yield only
solutions with no constant guarantee of approximation, heuristic methods must be
devised to find good-quality solutions in reasonable running times. This section
overviews main heuristic/metaheuristic algorithms to efficiently find good subop-
timal solutions for the FFMSP, starting from the first attempt done in 2005 by
Meneses et al. [27] to the latter proposed techniques in 2013 by Ferone et al. [5, 6],
who designed several pure and hybrid metaheuristics.

3.1 A Simple Heuristic Approach

The first attempt in trying to obtain good approximate solutions in reasonable
running times has been done by Meneses et al. [27], who in 2005 proposed a simple
heuristic consisting of the following two phases:

Phase I: A construction phase that iteratively builds a feasible solution s 2 †m.
Initially,

• for each position j 2 f1; : : : ; mg, compute the set Vj of characters appearing
in that position in any of the n strings in ˝;

• for each character c 2 Vj , compute the number of times that c appears in the
input on position j .

Then, for each position j 2 f1; : : : ; mg, a string s is iteratively built by choosing
the character in Vj that appears in the smallest number of strings.
For each position j > 1, check the effect that assigning a character to this
position will have on previous assignments.

Phase II: A local search phase that starting from s explores a suitably defined
neighborhood of s (a set of feasible solutions “close” to s) until a local optimum
is found and returned as final solution.
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Fig. 1 Local search procedure iter-impr for a maximization problem

Figure 1 shows the pseudo-code of the simplest local search procedure, known
as iterative improvement. It takes as input a cost vector c, an initial solution s, and
a predefined neighborhood function N . Starting from s, the iterative improvement
procedure explores the neighborhood N.s/ looking for a better solution s in terms
of objective function value. If such a solution exists, then the search continues from
s; otherwise, the procedure provides as output the current solution s which is locally
optimal with respect to the defined neighborhood.

Meneses et al. [27] proposed a 2-exchange local search procedure, whose basic
step consists in randomly selecting a position j 2 f1; : : : ; mg and changing it to
another character in Vj selected at random.

3.2 A GRASP

Meneses et al.’s algorithm has been the first attempt in the design of heuristic
approaches for the FFMSP. It is basically a greedy construction of a feasible solution
followed by a local search procedure to generate a local optimal solution.

The second step along this research line has been to design a multi-start or
iterative process as conceived in [26]. In general, in a multi-start technique, a
solution is built either only once and usually at the beginning of the solution process
or it is built at each iteration or “start” of the algorithm. In the first case, the unique
solution built by the approach can be constructed applying any criterion, ranging
from a pure greedy to a pure random strategy. Conversely, when a solution is built
at each start of the algorithm, then a pure greedy strategy should not be followed
since each time the pure greedy construction is invoked it would lead to the same
solution or to a set of “close” solutions.
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Fig. 2 Pseudo-code of a generic GRASP for a maximization problem

The first multi-start iterative process designed for the FFMSP appeared in 2007 in
[7], where a GRASP (greedy randomized adaptive search procedure) and a genetic
algorithm have been proposed.

Originally proposed in the literature by Feo and Resende [3,4], in the last 20 years
GRASP has been successfully applied to several computationally intractable com-
binatorial problems. The reader interested in a comprehensive study of GRASP
strategies and variants is referred to the survey chapter by Resende and Ribeiro
[29] and the more recent articles by Festa and Resende [11–13], as well as to the
annotated bibliography of Festa and Resende [8–10].

Figure 2 depicts the pseudo-code of a generic GRASP heuristic for a maxi-
mization problem. GRASP is an iterative multi-start heuristic algorithm that for
a certain number of iterations realizes two phases (loop while in lines 2–8): a
construction phase (line 3) and a local search phase (line 4). Similarly to the semi-
greedy heuristic proposed independently by [22], the basic GRASP construction
phase starts from an empty solution and iteratively adds one element at a time to the
partial solution under construction, ending up with a representation of a feasible
solution. At each iteration, an element is randomly selected from a restricted
candidate list (RCL), whose elements are among the best ordered, according to
some greedy function that measures the (myopic) benefit of selecting each element.
Once a feasible solution is obtained, the local search procedure attempts to improve
it by producing a locally optimal solution with respect to a predefined neighborhood
structure. Construction and local search phases are repeatedly applied until stopping
criterion is met and the best local optimal solution found over all iterations is
returned as output.
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A GRASP construction phase generally makes use of an adaptive greedy function
for constructing the RCL and of a probabilistic selection criterion of a well-ranked
element from the restricted list. In the case of the FFMSP, it is intuitive to relate the
greedy function to the occurrence of each character in a given position. In fact, as
in [27], for each position j 2 f1; : : : ; mg, it is computed as the set Vj of characters
appearing in that position in any of the strings in ˝ and then for each character
c 2 Vj , gj .c/ is computed as the number of times that c appears in the input on
position j . Starting from an empty solution, at each construction iteration the choice
of the next element to be added to the partial solution is determined by ordering all
candidate characters in a candidate list C with respect to the above defined greedy
function. The probabilistic component of the GRASP here proposed is characterized
by randomly choosing one of the best candidates in the list, but not necessarily the
top candidate. As in any GRASP heuristic, the construction procedure is adaptive,
because the benefits associated with every element are updated at each iteration
of the construction phase to reflect the changes brought on by the selection of the
previous element.

There are several different mechanisms to build the RCL. Typically, it can
be limited by the number of elements (cardinality-based criterion) or by their
quality (value-based criterion). If the cardinality-based criterion is chosen, then the
cardinality of RCL is a priori fixed to some p and the RCL is made up of those
elements having the p best greedy function values, while in the value-based case,
the cardinality of RCL depends on a threshold parameter 0 � ˛ � 1. In the GRASP
proposed in [7], at each iteration j 2 f1; : : : ; mg of the construction procedure, RCL
is formed by all possible candidates y whose greedy function value gj .y/ is better
or equal to ˛ � g�

j , where g�
j is the best greedy function value. Note that the extreme

case ˛ D 0 corresponds to a pure greedy strategy, while the extreme case ˛ D 1 is
equivalent to a completely random strategy.

To realize the local search phase the 2-exchange procedure is used as in [27].
The procedure takes as input the solution s D .s1; : : : ; sm/ 2 †m built at the end of
the GRASP construction phase and fVj gj D1;:::;m, where Vj is the set of characters
appearing in position j in any of the strings in ˝ . Then, for each position j D
1; : : : ; m and for each character c 2 Vj , c 6D sj , the 2-exchange procedure checks
if the solution s D .s1; : : : ; sj �1; c; sj C1; : : : ; sm/ obtained from s exchanging the
character in position j is better than s in terms of objective function value. Note that
s is a neighbor of solution s such that dH .s; s/ D 1.

A local search may be implemented using either a best improving or a first
improving strategy. The first improving strategy stops the current iteration as soon as
an improving neighbor is found, while in the best improving strategy all neighbors
are evaluated and the best among them is kept as new current solution from
which to start the next iteration. In [7], both strategies have been implemented
and, accordingly with results from the literature about these different possible
strategies, the best improving produces better-quality solutions for most of the
problem instances but in a higher amount of time as compared to the first improving
strategy.
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As any multi-start iterative heuristic, stopping criteria in a GRASP could be max-
imum number of iterations, maximum number of iterations without improvement of
the incumbent solution, maximum running time, or solution quality at least as good
as a given target value. In the GRASP for the FFMSP proposed in [7], the adopted
stopping criterion has been a maximum number of iterations.

3.3 A New Solution Evaluation Function

Starting from a given solution to the problem under studying, any local search
procedure explores a suitable neighborhood set of solutions “close” to the starting
solution and outputs a locally optimal solution with respect to the used neighbor-
hood structure definition. In exploring the neighborhood set, a local search needs to
evaluate many candidate solutions in order to compare them. The most used function
to perform this evaluation is the objective function, so that a solution s is better than
a different solution s if and only if the objective function evaluated in s produces a
value strictly better than the value assumed by the objective function when evaluated
in s.

This way of investigating the neighborhood of a solution is basically a steepest
descend/ascend process that presents serious drawbacks when the search landscape
includes many local optimal solutions. Unfortunately, this is exactly the case of the
FFMSP, because the set of possible objective function values is f0; 1; : : : ; ng and is
therefore rather small. To overcome this limit, Mousavi et al. [28] in 2012 proposed
to use in the GRASP local search of Festa [7] an alternative solution evaluation
function that takes into account both the classical objective function and the so-
called estimated Gain-per-Cost heuristic function that expresses the likelihood of a
solution to lead to better solutions with as few changes as possible.

The authors compared the original Festa’s GRASP with their proposal on
both randomly generated and real-world problem instances and as result of their
experiments the variant of the GRASP they proposed overcomes in terms of
solutions quality the original GRASP in all cases.

3.4 Hybrid and Pure Metaheuristics

An issue from the heuristic/metaheuristic research community involves the idea of
combining the main characteristics of pure metaheuristic frameworks in the attempt
to take advantage of their best properties in terms of total running times and/or
solution quality. Following this recent trend, Ferone et al. in [5] have designed the
following pure and hybrid metaheuristics for finding good-quality solutions to the
FFMSP:

� a pure GRASP, inspired by [7];
� a GRASP that uses Path-relinking for intensification;
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Fig. 3 Pseudo-code of a GRASP for the FFMSP

� a pure variable neighborhood search (VNS);
� a VNS that uses Path-relinking for intensification;
� a GRASP that uses VNS to implement the local search phase; and
� a GRASP that uses VNS to implement the local search phase and Path-relinking

for intensification.

3.4.1 A Pure GRASP

The pure GRASP proposed in [5] has been inspired by the GRASP proposed in
2007 [7], but presents some different details in the design of its main ingredients.
Figure 3 depicts its pseudo-code, where f W †m 7! N denotes the objective function
to be maximized according to (3) and (4).

As any GRASP framework and as the GRASP proposed in [7], also the GRASP
proposed in [5] for the FFMSP proceeds for a certain number of iterations. At
each iteration, it builds a solution sequence s, starting from which to look for a
locally optimal solution with respect to a predefined neighborhood structure. In the
following, the main ingredients of both construction and local search procedures are
detailed.

The operations performed during the construction phase are described in Fig. 4,
where a sequence s D .s1; : : : ; sm/ 2 †m is iteratively built, one character at each
iteration. As described in [7], the greedy function is related to the occurrence of
each character in a given position. In more detail, for each position j 2 f1; : : : ; mg
and for each character c 2 †, the number Vj .c/ of times c appears in position j in
any of the strings in ˝ is computed. Then, to build the RCL, let
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Fig. 4 Pseudo-code of the GRASP construction for the FFMSP

V min
j D min

c2†
Vj .c/; V max

j D max
c2†

Vj .c/:

Denoting by � D V min
j C ˛ � .V max

j � V min
j / the cutoff value (line 3), where ˛ is a

parameter such that 0 � ˛ � 1 (line 2), the RCL is built by selecting as its members
all characters whose greedy function value is not greater than � (line 6). Once the
RCL is built, character is then randomly selected from it (line 9) (Fig. 4).

The GRASP local search proposed in [5] and presented in Fig. 5 analyzes all
positions j 2 f1; : : : ; mg (loop in lines 4–14) and changes the character in position
j in the sequence s to another character in RCLj . During the local search process,
the current solution is replaced by the first improving neighbor (lines 8–11). The
search in the neighborhood of the current solution stops after all possible moves
have been evaluated and no improving neighbor of the current solution was found,
returning a local optimal solution (line 16).

3.4.2 A Pure VNS

In [5], a pure VNS has been designed for the FFMSP. Contrary to other metaheuris-
tics based on local search methods, given a solution s, VNS [21] is based on the
exploration of increasingly distant neighborhoods Nk.s/, k D 1; : : : ; kmax, until
some stopping condition is satisfied. Figure 6 reports the pseudo-code of a VNS for
the FFMSP, as proposed in [5].

At any VNS iteration a solution S is built at random (line 3). Then, in
loop lines 4–13, increasingly distant neighborhoods Nk.s/, k D 1; : : : ; kmax, are
explored by applying the same local search strategy used within the pure GRASP
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function LocalSearch (m, s, f (·), {RCLj} j=1)
1    max:=f(s); change:=.TRUE.;
2    while (change)→
3                change:=.FALSE.;
4         for j = 1 to m→
5        temp:=sj;
6                       for all c ∈RCLj→
7               sj:=c;
8               if ( f(s) > max) then
9     max:=f(s);temp:=c;change:=.TRUE.;break;
10               endif
11                     endfor
12                     sj:=temp;
13              endfor
14   endwhile
15    return(s);
end LocalSearch

m

Fig. 5 Pseudo-code of the GRASP local search for the FFMSP

algorithm  VNS (m, Σ , f (·), kmax, Seed)

1    sbest      f (sbest):=−∞;

2    while stopping criterion not satisfied→
3            k:=1; s:=BuildRand(m,Σ, Seed); /* pure randomly */

4            while (k ≤ kmax)→
5                 s  :=Random (Nk(s), Seed);

6                 s  :=locsearch (m, s , f(·), {RCLj}j=1);

7                 if (f(s  ) > f (s)) then
8                     s:=s  ; k:=1;

9                       if (f(s   ) > f (sbest)) then sbest:=s ;
10                     endif
11                else k:=k+1;

12                endif
13           endwhile
14   endwhile
15   return (sbest);

end VNS

m

Fig. 6 Pseudo-code of a VNS for the FFMSP
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algorithm described in Sect. 3.4.1. For the FFMSP, the kth-order neighborhood
Nk.s/ is the set of all sequences that can be derived from the current sequence s

by selecting k positions j1; : : : ; jk and changing sj1 ; : : : ; sjk
with a character in

RCLj1 ; : : : ; RCLjk
, respectively.

3.4.3 Path-Relinking

Path-relinking is an intensification strategy exploring trajectories connecting elite
solutions. It was proposed in 1996 by Glover [17] and later hybridized with tabu
search and scatter search [18–20]. Generally speaking, starting from one elite
solution, Path-relinking generates a path in the solution space leading towards
another guiding elite solution. This path connecting the two solutions in the solution
space is built by selecting moves that introduce in the initial solution attributes
contained in the guiding solution. At each iteration, all moves are analyzed and
the move that best improves (or least deteriorates) the initial solution is chosen. The
scope of building this path is to explore it in the search for better solutions.

In [5], Path-relinking is applied to a pair of sequences .s; Os/, where s is a given
input solution and Os is a solution sufficiently different from s selected at random
(line 1) from an elite set E of solutions that has a fixed size that does not exceed
MaxElite.

s and Os have been retained sufficiently different if j�.s; Os/j � m
2

, where �.s; Os/ is
their the symmetric difference set and it is clearly defined as follows:

�.s; Os/ WD fi D 1; : : : ; m j si 6D Osi g: (5)

Roughly speaking, �.s; Os/ is the set of components for which the two solutions
differ. Once known and selected the sequences s and Os, a path is explored in the
solution space linking the worst solution s0 between s and Os to the best one (line 3).
s0 is called the initial solution and Os the guiding solution (Fig. 7).

The procedure then computes (line 4) the symmetric difference �.s0; Os/ between
the two solutions as defined in Eq. (5), i.e., the set of moves needed to reach Os from
s0. A path of solutions s0

1; s0
2; : : : ; s0j�.s0;Os/j is generated linking s0 and Os. The best

solution s� in this path is returned by the algorithm (line 13).
The path of solutions is computed in the loop in lines 5 through 12. This is

achieved by advancing one solution at a time in a greedy manner. At each iteration,
all possible moves i 2 �.s0; Os/ are examined. Then, the best move i� is made,
producing solution s0 ˚ i� (line 8) and, if necessary, the best solution s� is updated
(lines 9–11 ). The algorithm stops as soon as �.s0; Os/ D ;.

3.4.4 Hybrid GRASP with Path-Relinking

Hybridizations of GRASP with Path-relinking have been proposed in the literature
to incorporate into a general GRASP framework some sort of memory mechanisms.
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algorithm Path-relinking (m, f(·),s,   ,Seed)

1    s:=Random (   ,Seed);

2    f ∗ := max{f (s), f (s)}; s∗ := argmax{f(s), f(s)};

4    Δ (s ,   ):=:={i=1,...,m |s i= i};

5    while 
6            i* := argmax

7

8

9 if then
10

11         endif
12   endwhile
13   return (s∗);

end  Path-relinking

ˆ
ˆ ˆ
ˆ3    s := argmin{f(s), f(s)}; s:=s∗; ˆ

s ˆ   s ˆ

Fig. 7 Pseudo-code of a path-relinking for the FFMSP

The first attempt along this direction has been done by Laguna and Martí [23] in
1999. This attempt has been successful followed by several further extensions and
improvements [2, 11, 13–15].

In [5], the authors have integrated Path-relinking into the pure GRASP algorithm
described in Sect. 3.4.1. In more detail, at each GRASP iteration, Path-relinking is
applied to a pair .s; Os/ of solutions, where s is the locally optimal solution obtained
by GRASP local search and Os is randomly chosen from a pool with a limited number
MaxElite of high-quality solutions found along the search. The pseudo-code for
the proposed GRASP with Path-relinking hybrid algorithm is shown in Fig. 8.

The pool E of elite solutions is originally empty (line 1) and it is then populated
by the first MaxElite GRASP iteration local optima solutions. After MaxElite
iteration, the best solution s found along the relinking trajectory is considered as a
candidate to be inserted into E . In more detail, the procedure AddToElite inserts
s into the pool replacing the worst elite solution if s is better than the best elite
solution or if it is better than the worst elite solution and sufficiently different (i.e., if
j�.s; �/j � m

2
, for all � 2 E ) from all elite solutions.

3.4.5 Hybrid GRASP with VNS

As underlined in Sect. 3.4.2, until a stopping criterion is met, VNS generates at each
iteration a sequence s at random. In the hybrid GRASP with VNS designed in [5],
VNS is applied as local search and its starting solution is the sequence s output of
the GRASP construction procedure.



142 D. Ferone et al.

Fig. 8 Pseudo-code of a hybrid GRASP with path-relinking for the FFMSP

3.4.6 Hybrid VNS with Path-Relinking

VNS described in Sect. 3.4.2 has been hybridized with Path-relinking applied as
an intensification procedure at each VNS iteration. In the pair of solutions .s; Os/ to
which Path-relinking is applied, s is the locally optimal solution while Os is randomly
chosen from the MaxElite high-quality solutions.

3.4.7 Hybrid GRASP with VNS and Path-Relinking

The main blocks of each iteration of this hybrid heuristic are the GRASP con-
struction procedure, followed by VNS local search phase, and Path-relinking as
intensification procedure. See [5] for a detailed description of the resulting hybrid
algorithm.
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3.4.8 Experimental Results and Recent Trends

In [5], the above described pure and hybrid metaheuristic approaches have been
experimentally evaluated to determine which algorithm seems to be more effective
to solve the FFMSP.

The objectives of the computational study were to compare the running times
and the solution qualities achieved by the several alternative pure and hybrid
algorithms when applied to solve FFMSP instances pseudo-randomly generated
and characterized by several different sizes. In fact, in the set of test instances,
the sequence length m ranged from 300 to 800, the number n of sequences in ˝

ranged from 100 to 200, and threshold t varied from 75 %m to 85 %m. The stopping
criterion for all algorithms was MaxIterations D 500 or the obtainment of an
incumbent solution with objective function value z D n (i.e., an optimal solution).

For each problem size, 100 random instances have been generated for each
possible value of t 2 f75 %m; 80 %m; 85 %mg. Each algorithm has been run
on the 100 random instances and average solution values and the corresponding
average running times (in seconds) were computed. For a detailed analysis of the
experimental evaluation of the different algorithms, the reader can refer to [5]. Here,
about the experiments carried by the authors, we report only the main conclusions
which are the following:

� on all instances, better-quality solutions have been found by the hybrid GRASP
with VNS and Path-relinking;

� at the expense of increased running times, both hybridizations of Path-relinking
with all different metaheuristics and the use of VNS in the local search phase of
GRASP have been beneficial in terms of solution quality.

Given the random component of each proposed algorithm and since their running
times per iteration vary substantially, in [5] a further experiment has been carried,
involving the empirical distributions of the random variable time-to-target-solution-
value considering the following four random instances:

1. n D 100, m D 300, t D 240, and target value Oz D 0:70 � n (Fig. 9a);
2. n D 100, m D 300, t D 252, and target value Oz D 0:12 � n (Fig. 9b);
3. n D 200, m D 300, t D 240, and target value Oz D 0:40 � n (Fig. 10a);
4. n D 300, m D 300, t D 240, and target value Oz D 0:28 � n (Fig. 10b).

100 independent runs of each heuristic have been performed and the time taken
to find a solution at least as good as the target value Oz has been saved. As in [1],
to plot the empirical distribution, with the i th sorted running time (ti ) a probability
pi D i�1=2

100
is associated, and the points zi D .ti ; pi /, for i D 1; : : : ; 100, are

then plotted. About these further experiments, looking at Figs. 9 and 10, the authors
concluded that, in a fixed amount of running time, the hybrid GRASP with Path-
relinking has a higher probability than all competitors of finding a solution whose
objective function value is at least as good as the target objective function value.
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Fig. 9 Time to target distributions comparing GRASP, GRASP+PR, and GRASP+VNS+PR
(a) Random instance with n D 100, m D 300, t D 240, and target value Oz D 0:70�n (b) Random
instance with n D 100, m D 300, t D 252, and target value Oz D 0:12 � n
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4 Conclusions and Future Directions

The FFMSP—as well as all consensus problems—occurs as a problem and/or as a
subproblem in many real-world scenarios, especially in computational biology and
bioinformatics.

Among consensus problems, the FFMSP is one of the computationally hardest.
For this reason, contrary to other problems in the same family, only very recently
efficient, fast, and robust solution techniques have been designed and proposed in
the scientific literature. With special emphasis on the optimization and operational
research perspective, this paper surveyed the most popular solution techniques,
starting from the first ingenuous and naive heuristic attempt by Meneses et al. [27]
in 2005 and ending with recently proposed heuristic and metaheuristic approaches
[5, 28] that appeared in 2012 and 2013.

In [6], as current and immediately future work, we are performing the following
steps:

1. To better understand the practical behavior of the algorithms proposed in [5],
we are analyzing the numerical results by applying a recently published tool
designed by Ribeiro et al. [30] for characterizing stochastic algorithms’ running
times under the assumption that the running times of the algorithms follow
exponential (or shifted exponential) distributions, as it is the case of our hybrid
heuristics.

2. We are collecting and interpreting further numerical results, by applying the
heuristics proposed in [5] on a larger dataset of instances, both randomly
generated and taken from real-world applications of the problem.

3. We are designing some further variants of the approaches proposed in [5].
Three natural extensions are

• to perform a post-optimization phase, consisting in performing Path-relinking
among pairs of elite solutions;

• to implement alternative Path-relinking strategies, known as backward, mixed,
and randomized Path-relinking;

• to integrate in the local search of the algorithms Mousavi et al.’s function [28].

In addition, thinking about future research it would also be interesting to propose
some further metaheuristic approaches, analyzing the possibility of designing some
sophisticated nature-inspired techniques, whose main ingredients could be ad hoc
tuned for this problem.
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