Informational Issues in Decentralized Control

Meir Pachter and Khanh Pham

Abstract The long-standing decentralized optimal control problem posed by
Witsenhausen is analyzed and the underlying modeling issues are discussed. The
strong connection to communication theory is highlighted. Informational aspects
are emphasized and it is shown that, to some extent, Witsenhausen’s decentralized
optimal control problem is somewhat contrived.
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1 Introduction

Informational issues in decentralized control are discussed. In this regard, Witsen-
hausen’s problem [1] is the simplest decentralized optimal control problem. Indeed,
the “simple” LQG control problem posed by Witsenhausen in his seminal paper
made a great splash when it first appeared in 1968 because the optimal linear
strategy is not optimal. This is caused by the nonclassical information pattern. Since
then numerous attempts have been made in the intervening 45 years to obtain a better
estimate of the minimal cost. A special session devoted to the Witsenhausen problem
was held at the 2008 CDC and this stimulated renewed interest in the subject
matter. Recently numerous additional papers on Witsenhausen’s counterexample
have appeared, and this problem was also extensively addressed in the most recent
CDCs [2-6]. There is a fascination with Witsenhausen’s counterexample in control
circles and for good reason: It touches on the dual control issue where one
needs to strike a balance between exploration and exploitation—this, exclusively
due to the information pattern, which is non-nested. However, the objective of
this article is not to survey the field, nor is it to further slightly improve the
estimate of the minimal cost—the current best estimate of the minimal cost for
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the “canonical” problem parameters currently stands at 0.1670790. The objective
is to gain an understanding of the underlying engineering or physical problem
that Witsenhausen’s mathematical model is addressing. In this respect, the coupled
communications and control aspects of Witsenhausen’s problem are discussed and
the attendant informational issues are carefully examined. Also, our aim is to gain
physical insight into a range of methods for obtaining suboptimal solutions and,
by doing so, dispel some of Witsenhausen’s counterexample mystique. The strong
connection to communication theory is emphasized and the informational aspects
of the problem are highlighted. The latter seem to direct one to the conclusion that
Witsenhausen’s decentralized optimal control problem is to some extent contrived.

The paper is organized as follows. In Sect. 2 Witsenhausen’s problem is carefully
stated. In Sect. 3 the communications aspect of Witsenhausen’s decentralized LQG
optimal control problem are analyzed and the connection to detection theory is
elucidated in Appendix A. The special case where the “receiver’s” noise floor is high
is analyzed in Sect. 4 and the optimal modulation and detection scheme is shown to
be linear. Concluding remarks are made in Sect. 5.

2 Witsenhausen’s Problem Statement

In Witsenhausen’s paper [1] the following decentralized LQG optimal control
problem is considered.

1. Dynamics: The discrete-time dynamics are linear and scalar, and the planning
horizon is N = 2. There are two “players,” Player 1 and Player 2. Player 1 acts
at decision time k = 0 and his input is ug:

x1 = xo + ug, Xo ~N(0,07). (1)
Player 2 acts at decision time k = 1 and his input is u;:
Xy = X1 — Uj. (2)
2. Information: The information of Player 1 at his decision time k = 0 is the initial
state xo. The information available to Player 2 at his decision time k = 1 is a
noise corrupted measurement of the state at time k = 1,
21 =x1 4+ vi. vi ~N(0,0%). 3)
Thus, the initial state x is the private information of Player 1 which is not shared

with Player 2. Player 1 has perfect information at his decision time k = 0,
whereas Player 2 which acts at time k = 1 has access to the noise corrupted
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measurement z; of the state x;. Thus, at his decision time k = 1, Player 2 has
imperfect information on the state x;. In addition, Player 2 does not know the
control ug of Player 1.
However, note that in [1], and in Eq. (1), it is also stated that the initial state

Xo is a random variable which is Gaussian distributed. This important point will
be further discussed in the sequel.

3. Strategy: The so far specified information pattern mandates that the strategy of
Player 1 is

1o = Yo(Xo) 4

and the strategy of Player 2 is
ur = yi(z1). ©)
4. Payoff: The cost function, which both players strive to minimize, is
J(uo, uy; x9) = Kzué + x%. (6)

Player 1, who has perfect state information, has a penalty K on his control effort,
whereas the control effort of Player 2, whose states’ measurements are corrupted
by noise, is free. Both players want the terminal state x, to be “small” while at
the same time, the control effort, exclusively expanded by Player 1, also to be
“small.” Evidently, Player 2 could effortlessly make the terminal state x, ~ 0, if
only he knew the state x; with a high degree of precision.

As far as Player 1 is concerned, the random variable in the problem statement
is the measurement error v; of Player 2. As far as Player 2 is concerned,
the random variables in the problem statement are the initial state xo and his
measurement error v;. The players are interested in the expectation of the cost
function (6), which requires Player 1 to take the expectation on the random
variable v; and Player 2 takes the expectation on the random variables v; and
Xo. Since the Players 1 and 2 have private information, xy and z;, respectively,
their expected costs will be conditional on their private information. This brings
us into the realm of nonzero-sum games.

Witsenhausen’s decentralized control problem is schematically illustrated in
Fig. 1. In Fig. 1 we have allowed for a more general initial state specification,

xo ~ N (Fo. 02) )

and, without loss of generality, have set the parameter 0 = 1; if 0 = 0, the
optimization problem is trivial—obviously, the optimal controls are uj = 0 and
u} = zi. The other extreme case where 0 — oo will be addressed in Sect. 4.
Thus, the problem parameters are K and 0.
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xo~ N (%,07) N
X »
U

L lry0—2

v~N(0,1)

Fig. 1 Witsenhausen’s decentralized control problem

2.1 |Initial State Information

In Witsenhausen’s paper it is stated that the initial state xy is random, Gaussian
distributed, and its statistics are specified according to Eq. (1), namely,

X0 ~ N(0,0’g)

The informational aspect of the specification of the initial state’s statistics merits
special attention.

In Witsenhausen’s paper [1], attention is confined to the special case where the
statistic X9 = 0. It stands to reason that the consideration of a more general initial
state is warranted, s.t. its statistics are specified by Eq. (7)—see also Fig. 1. Indeed,
including in the problem statement the initial state’s statistics immediately begs the
question: why not allow for a more generic form of the initial state information, as
specified in Eq. (7), whereupon the issue of who knows what, when, is immediately
brought up; exclusively considering the special case where the initial state’s statistic
Xo = 0 tends to hide the importance of the X information. This brings to the
forefront the question of whether Player 1, or Player 2, or both players are privy
to the X information.

Consider Egs. (7) or (1). This can be construed to mean that at time k = 0, Player
2 took a measurement of the initial state x, so that at his decision time k = 1, Player
2, in addition to the measurement z;, also has imperfect information about the state
Xo. Thus, the strategy (5) of Player 2 should in fact be replaced by the strategy

ur = y1(Xo,21). (®)
Whether or not Player 1 is informed on the initial state’s measurement taken by

Player 2 is an important question. If indeed the measurement information Xy is
shared with Player 1 then his strategy (4) should be replaced by the strategy

uo = Yo(xo0, Xo). 9
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Clearly, should at time k¥ = 0 the information on the measurement X, of Player 2
be shared with Player 1, Witsenhausen’s control problem would be somewhat less
decentralized than it appears to be at first glance.

Alternatively, one might argue that the specifications in Egs. (1) or (7) mean
that although it is so that at his decision time k = 0, Player 1 has perfect state
information, he might be aware of the fact that the initial state x¢ presented to him
at time k = 0 will actually be drawn from the distributions (1) or (7). This is critical
information if a degree of information sharing among the players before the kickoff
of this seemingly decentralized control problem is in fact allowed, or is required,
to take place—in which case Player 1 employs a prior commitment strategy and
the information X plays a crucial role in its synthesis. In this case, the strategy of
Player 1 will take the somewhat unconventional form of Eq. (9). Concerning Eq. (9),
one could then wonder why would Player 1 want to know the statistic of the initial
state, since he already knows the initial state proper, but as already stated above, this
additional information is required in order for Player 1 to be able to synthesize his
prior commitment strategy. In this instance, whether or not also Player 2 is informed
on the initial state’s statistics will be discussed in the sequel. Suffice it to say that
if Player 2 is informed about the statistic Xy, the strategy (5) of Player 2 will be
replaced by the strategy (8). In this case the strategy (9) of Player 1, which acts at
time k = 0, could be viewed as a delayed commitment strategy which encodes the
fact that at his decision time k = 0, Player 1 knows that Player 2, who’s turn will
come at time k = 1, knows the statistic X of the initial state xq. In other words,
both players know that the initial state xy will be drawn from a distribution (1) or
(7), except that, prior to his move at time k = 0, Player 1 is given the initial state
information.

When the initial state’s measurement/information X is available to Player 2 and
at time k = O this information is shared with Player 1, then Player 1, who has
perfect information on the initial state xo, also knows that Player 2 knows that the
initial state is distributed according to Eqs. (1) or (7). By virtue of this fact, the
strategy of Player 1, which incorporates all the information available to him, takes
the rather unusual form (9). This point, whether or not at his decision time k = 0
Player 1 knows that Player 2 knows that the initial state is distributed according to
Egs. (1) or (7), will be emphasized in Sect. 4.

Suppose the measurement (7) of the initial state taken by Player 2 is shared with
Player 1, which now uses the strategy (9). In other words, the result of the initial state
measurement of Player 2 is communicated to Player 1. Alternatively, suppose the
information (1), or (7), of Player 1 concerning the p.d.f. wherefrom the initial state
will be drawn is communicated to Player 2 before the start of the game. In both cases
the information X is shared at time k = 0 and the respective strategies of Players
1 and 2 will be specified by Eqgs. (9) and (8). This is the operational information
pattern in Witsenhausen’s paper. The control problem at hand now assumes a less
decentralized character.
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2.2 Cost Function

The ramifications as far as the cost functional is concerned are as follows. Since X is
public information, the strategies’ dependence on X is suppressed. The fact that the
players have private information would naturally lead to a formulation where each
player strives to minimize his own cost function: in the case of Player 1 it would be
the expectation on v; of the cost function (6), conditional on his private information
Xo, and in the case of Player 2 it would be the expectation on xo and v; of the
cost function (6), conditional on his private information z;. The players’ strategies
would be delayed commitment strategies, which means that the optimization of their
respective cost functions would be performed in the Euclidean space R'.

Although the players have private information, it is nevertheless stipulated in [1]
that both players are minimizing a common cost functional, namely the expectation
on xo and v; of the cost function (6): according to Witsenhausen [1] and the many
papers written on Witsenhausen’s problem, the cost functional is

J(¥0. Y1:X0) = Exy ( K2 (y0(x0))* + (X0 + yo(x0) — ¥1(x0 + yo(x0) + v1))*).
(10)

This definition of the common cost functional is made possible by the fact that both
players share the information on the statistics (1), or (7), of the initial state x(. Now,
the players’ strategies yo(xo) and y;(z;) are prior commitment strategies. Indeed,
Player 2 now employs a prior commitment strategy—he decides on his optimal
strategy y(-) ahead of time, before ever receiving the measurement z;, which does
not feature in Witsenhausen’s cost functional. In order for the cost of Player 2 which
employs a prior commitment strategy to equal the average realized cost of Player
1, the latter is minimizing the expectation of the cost (6), taken not just over the
random variable v; but also over the initial state x(. This gives the appearance of
Player 1 playing a prior commitment game, that is, instead of determining his control
ug upon receiving his initial state information xo, Player 1 determines his strategy
function yy(-) ahead of time. Indeed, his private information x, does not feature in
Witsenhausen’s cost functional. The “prior commitment” aspect of the strategy of
Player 1 in this inherently cooperative game further manifests itself in the scenario
discussed in Sect. 3 where prior communication is allowed, that is, the players are
allowed to communicate before kickoff time, in which case Player 1 informs Player
2 about his optimal or suboptimal strategy prior to time k = 0. This requires Player
1 to be privy to the statistic X of the initial state xo, as indeed he must be if he
is to minimize Witsenhausen’s cost functional. Evidently, the requirement of prior
communication further diminishes the much touted decentralized control character
of Witsenhausen’s problem.

The dynamic “game” is now in normal form, is static, and is not in extensive form.
The price to pay for transforming the dynamic game into normal form is that prior
commitment strategies are used. When the game is in extensive form and delayed
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commitment strategies are used, part of the optimization is carried out in Euclidean
space. Now that prior commitment strategies are used, the optimization must be
performed in function space.

3 Communication and Control

To gain an understanding of, and insight into, the decentralized optimal control
problem at hand, the communications context of Witsenhausen’s decentralized
control problem is now discussed. By directly viewing the decentralized optimal
control problem (1)—(5), (7)—-(10) as a communications problem, which indeed it is,
and was originally perceived by Witsenhausen, one realizes that notwithstanding the
fact that the cost function is quadratic in the controls, the problem at hand entails the
minimization of a non-convex and complex cost functional, which is a hard problem.
At the same time, a hierarchy of suboptimal solutions readily suggests itself. This
must have been the motivation for Witsenhausen’s original counterexample in
the first place [1]. However, rather than directly viewing Witsenhausen’s problem
as an optimization problem in function space, we shall dwell on the physical
meaning of the mathematical problem posed by Witsenhausen. By emphasizing the
communications context of Witsenhausen’s decentralized optimal control problem
one opens wide the door to the synthesis of a family of suboptimal solutions
of Witsenhausen’s decentralized optimal control problem, as evidenced by the
rich current literature. In doing so we hope to dispel some of Witsenhausen’s
counterexample mystique.

A communication problem is considered where both Player 1, the transmitter,
and Player 2, the receiver, know that the “message” x( will be selected according to
the probability distribution specified by Eq. (7). Player 1 will encode the information
Xo according to

x1 = f(xo)

before sending x; over a Gaussian communication channel whose statistics are
specified by Eq. (3). The optimal function f(-) must be determined. It is also
specified that the cost to Player 1 of encoding the information xg is K?( f(xo)—xo)>.
Player 2, using his measurement z;, estimates the received signal x;. Player 2 strives
to reduce the variance of the estimation error of x;. Both players want to minimize
the average expected total cost of encoding and decoding the transmitted signal. As
such, this formulation models a communication problem, but not a decentralized
optimal control problem or a dynamic game.

1. In the context of a communication problem, we need to assume that the initial
state’s information/measurement (1), or (7) of Player 2, is shared with Player 1.
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Thus, both players know that the initial state will be drawn from the Gaussian
distribution (7), that is, the initial state’s p.d.f. is

_ (x=%p)?
1 2(72
e 0
N 2moy

2. Furthermore, suppose that before the “game” Player 1 and Player 2 come together
and agree that upon receiving his x( information, Player 1 will choose his control
ug to make sure that the state at time k = 1 is either x; = Xo+b or x; = Xy —b.
Thus, the state x| is quantized; the amplitude » > 0 will jointly be determined
by the players before the start of the game. Now, in order to keep the control
cost low and thus keep the cost low, the choice of Player 1’s control uy will be
dictated by the distance of x( from the two “guideposts” X + b and Xy — b. In
other words, the strategy of Player 1 will be

¢(x0) =

Xo+b—x0if xo> Xo,
fo—b—X() ifxo <fo.

Y

Yo(x0,X0) =

The strategy of Player 1 is illustrated in Fig. 2, where the function

S (x0,%0) = x1 = X0 + Yo(x0. Xo)

To + b*
To — b*
0 xo - 217:‘}

Fig. 2 Strategy of Player 1
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f (o)
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Zo

-b*

Fig. 3 Strategy of Player 1, xp =0

and in the special case where Xy = 0, as in Witsenhausen’s counterexample, the
strategy of Player 1 is shown in Fig. 3. The dependence of the strategy of Player
1 on the X, information is here suppressed.

Since the players come together before the game starts and a cooperative game is
played, Player 2 knows the strategy (11) of Player 1. Consequently, at decision time
k = 1, Player 2 knows that the true state at time k = 1 is either x; = Xy + b or
X1 = Xo — b. Moreover, Player 2 calculates the prior probabilities

Pxi=Xo+b)=Px1 =X0—b) = %

Hence, the decision process of Player 2 is now greatly simplified. Player 2 is faced
with a binary choice: based on his measurement z;, he will have to decide whether
the true state x; is Xo + b or Xo — b whereupon he will apply his costless control
to hopefully set the state x, = 0 and thus, to the best of his ability, reduce the
cumulative cost. Indeed, a typical communications scenario is at hand where Player
1 sends one of two possible letters, Xo + b or Xy — b, over a Gaussian channel and
the job of Player 2 is to detect the transmitted letter. To minimize his control effort,
Player 1 will decide on which letter to transmit according to its distance from the
random initial state xo which is known to him.

In view of the strategy (11) employed by Player 1, his expected share of the
incurred cost, J;, will be
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X0

—00

=K [ / (o + b — x0)’p(xo)dxo + / Fo—b —X0)2¢(X0)dxo}

o

= K? [ | (X0 —X0)*¢(x0)dxo —2b | (xo — o) (x0)dxo

X0

e / ¢ (xo)dxo + / " (x0 — %0)2 (x0)dxo

12b / " (%0 = Fo)p(xo)dxo + b / " 6 r0)dxo } ,

that is,
o0 o0
5= K? [ [ o=For gt + 5 / b (x0)dxy
0 1 LZZ
+ 2b X e 2”0 dx — e Podx
—00 V27t00 V oo
oo 1 _x2
= K? 02+b2—4b/ x e ¥dx|. (12)
[ 0 0 V2moy
Now,

2 x2

X
32 37
/xe % dx = —ofe

and therefore

2

o0 _LZ
/ xe ¥0dx = of.
0

Inserting this expression into Eq. (12) yields the cost component

Ji(b) = K? (bz— crob+o§), b>0.

4
V2w
The expected contribution of the actions of Player 1 to the cost functional (10),

J1, is parameterized by his choice of the amplitude/signalling level ». In [1],
Witsenhausen chose the amplitude b = oy.

Remark. The expected contribution of Player 1 to the cost functional (10) is

minimized when the signalling level b* = \/goo, whereupon

Jr = (1 — 3) (Kop)>. (13)
T
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The strategy of Player 2 is the following detection algorithm:

Xo + b if 71 > X,

14
fo—bif21<fo. ( )

y1(X0,21) =

We now draw the reader’s attention to the fact that for Witsenhausen’s formulation
of the control problem to model a communications scenario and be consistent, one
must tacitly assume that before the kickoff the initial state’s statistic information X
is shared with Player 2, as is evident in Eq. (14) above. This, of course, would draw
less attention and would appear to be less of an issue if Xo = 0, whereupon the
strategy of Player 2

b ifz;>0

@ =3 pirs <o

would somewhat misleadingly look like Eq. (5).
Concerning the contribution of Player 2 to the cost functional (9), we calculate
the probabilities of the possible outcomes:

P(x2 = 0) = P(x0 > Xo.21 = X0) + P(xo < Xo,21 < Xp)
= P(x0 = X0, X0 + b + v = X0) + P(xo < X0,Xo — b +vi <Xp)
= P(xo > Xo,v1 = —=b) + P(xo < Xo,v1 < D)

= P(xo = X0)P(vi = —b) + P(xo < Xo)P(vi < b)

= P01 2 —b) + 1P <)
= %[P(V] > —=b) + P(vi <D)]

= %[P(Vl <b)+ P < b)]

= P(Vl < b)
1 b
=—|1+4+ef|{— ||,
2[ (ﬁo):|
where
2 Y s
erf(x) = — e "dt.
W=7
Now,

Xo+b—(Xo—b)=2b
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and we calculate

P(x2 = 2b) = P(xo = Xo,21 < Xo)
=P(xo > X0, X0+ b+v < Xo)
= P(xo = Xp,v1 < —b)

= P(xo = Xo)P(vi < —=b)

= %P(vl < —b)
il ()]

fo—b—(fo-l-b):—Zb

Similarly,

and we calculate

P(x2 = —2b) = P(xo < Xo,21 > Xo)
= P(xo < Xo0,X0 — b + vi > xp)
= 'P()C() < fo,vl > b)

= P()C() < fo)’])(vl > b)

1
= EP(W > b)

i)

—|l1—erf[ — ).

4 V20

This allows us to calculate the expected contribution of Player 2 to the cost
functional (10),

Jy(b) = 0-P(x3 = 0) + 4b> - P(xy = 2b) + 4b* - P(x, = —2b)

The total cost, J; + J,, is

J(b) = |:K2 +2 (1 —erf (%))} b* — 2\/gK200b + (Kop)>.
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Without loss of generality assume o = 1. Also set

1
b:=—b
V2

so that as a function of the yet to be determined signalling level b, the cumulative
cost (10) is
4
J(b) = 2[K? + 2(1 — erf(b))]h* — TKzoob + (Kop)>. (15)
T

When Player 1 uses a binary signalling level of +b—see Eq. (11)—and Player 2
uses the detection strategy (14), the cost function is J(b). It can be further reduced
if Player 2 modifies his strategy as follows. Since he cannot be absolutely sure about
the correct outcome of the detection step as specified by the strategy (14), Player 2
hedges his bet, does not go all the way, and uses a modified strategy, parameterized
bya e R, |a|<<1:

(1 —a)(xo+b)if z1 > Xo.

u=nlon) = { (1—a)(Fo—b) if 21 < o.

As aresult, the contribution of Player 2 to the expected cost is

Do, b; %) = % [1 + erf( )} [@*(Xo + b)? + &*(Xo — b)?]

b
V20
+% [1 — erf(%)} [(Xo+b— (1 —a)(Xo —b))?
+(Xo— b — (1 —a)(Xo + b))’]

= ;|:l+erf(fa):| (X% + b*)a?

A o
)

} 2+ b)(1 —a)?

}(_2 b*)(1 - )
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[l—erf(; )i|( -b)(1-a)

b
=’ + (2 =20 + )b — 21—ocb2erf( )
34 ( =21~ @b ert

The minimum of J; is attained when the parameter

. b b .
e [l‘erf(E)} =0

When X, = 0, as in Witsenhausen’s counterexample, the optimal parameter

af =1 —erf(%)

and the expected contribution of Player 2 to the cost is reduced to

o)

By optimally hedging his bets, Player 2 has reduced by 50 % his expected contribu-
tion to the cost (10). Thus, when X, = 0, as in Witsenhausen’s counterexample, the
expected cumulative cost J = Jy + JJ" is

_ Y FE R _ L))z 2
J() = (Kop)”+ K (b moob)+|:l (erf(ﬁa b-.

Without loss of generality, assume o = 1. Also set

1
b:=—b
V2

so that the expected cumulative cost as a function of the amplitude/signalling
level b is

J(b) = 2[K? + 1 — (erf(b))*]b* — iK%rob + (Kog)?, b>0. (16)
J

Assume the parameter oy >> 1. The cumulative cost (10) then attains a local
minimum at b* = \/LEO'O and consequently the value of the functional (10) is

J*

&

(1 — 3) (Kop)>. (17)
b
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J(b) for Case 1

Cost Function
2.5 —— b* =2.874875e+000
—— Minimum Value = 3.651961e-001
2+ ]
S 15f |
S
1 ]
0.5F ]
O ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8

Fig. 4 Expected cost as a function of signalling level

This is also the minimal contribution of Player 1 to the expected cost—see Eq. (13).
Hence, we conclude that when oy >> 1 and the binary signalling communications
protocol is used, the global minimum is given by Eq. (13) and it is attained when
Player 1 uses the amplitude/signalling level

[2
b* = —0y.
b

We will focus on the benchmark/canonical scenario where the parameters K =
0.2 and o9 = 5 (> 1). The cumulative expected cost function (16) is depicted in
Fig. 4. The optimal binary signalling level is

b* =2.874875
and the expected minimal cumulative cost
J* =0.3651961.
As expected, and by design, in this scenario, the contribution of Player 2 to the

cumulative cost is small. From Fig. 4 it is also plainly evident that the cost function
is not convex and it has a local minimum.
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Binary signalling was also used in Witsenhausen’s original counterexample [1]
where the signalling level is

b:O'()

but in [1] the strategy y; (z:) of Player 2 did not entail a detection protocol
and instead a continuous function of his measurement z; is used. The expected
cumulative cost in Witsenhausen’s paper is

Jyy, = 0.404253
and we see that
J‘,T, > J* =0.3651961.

Players 1 and 2 could agree on a multilevel signalling/communications protocol—a
staircase-like rendition of a multilevel signalling protocol [6,7], is shown in Fig. 5.
This allows Player 1 to choose the signalling level which is closest to the randomly
selected initial state xo, thereby reducing his control effort. At the same time, the
use of multiple signalling levels complicates the detection task of Player 2 and the
probability of him erring increases. This, in turn, increases the expected contribution

X1

X0

Fig. 5 Multilevel threshold strategy of Player 1
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X

Fig. 6 Multilevel graded strategy of Player 1

of Player 2 to the cumulative cost and a trade-off is needed. A 3%-level signalling
protocol, as in [3], reduces the expected cost to J* = 0.1673132.

A piecewise constant staircase signalling protocol—see Fig. 5—is not optimal
and the horizontal rungs should be slightly slanted upward. The cost can be further
reduced if Player 1 uses a continuous signalling protocol as illustrated in Fig. 6.

The best result so far, using a continuous, monotonically increasing, signalling
function and a continuous “detection” algorithm, is reported in [4]. In [4] the param-
eters are K = 0.5, 09 = 10, and K = 0.25, oy = 10. When our suboptimal binary
signalling protocol is employed and, as in [4], the “non-canonical” parameters are
K = 0.5 and 0y = 10, the cost function J(b) is shown in Fig. 7. The optimal binary
signalling level is then

b* = 5.645646
and the expected minimal cumulative cost

J* =9.084513.
When, as in [4], the problem parameters are K = 0.25, 69 = 10 and our suboptimal
binary signalling protocol is employed, the cost function J(b) is shown in Fig. 8.

The optimal signalling level is

b* = 5.645646
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and the expected minimal cumulative cost
J* =2.271128.

In summary, in decentralized control, the players are not supposed to com-
municate, and yet in Witsenhausen’s communication and control scenario, the
players share the initial state’s statistic Xo and, moreover, are tacitly allowed
to communicate before the kickoff of the cooperative “game” and establish a
communication protocol—one thus refers to signalling. Indeed, in Witsenhausen’s
original counterexample, two letters are transmitted over a Gaussian channel, that
is, the signalling strategy of Player 1 is

yolro) =1 % ifxo = 0.
—0) if X < 0.

The job of Player 2, the receiver, is reduced to detection; however in Witsenhausen’s
counterexample the conventional thresholding—based detection scheme is not used,
and instead an optimal continuous decision function akin to a squashing function is
used. We have shown that using a detection strategy reduces the cost compared to
Witsenhausen’s continuous decision function. The reader is referred to Appendix A
where the basics of detection theory are outlined.

Thus, while not explicitly presented as such, Witsenhausen’s counterexample
centers on the design of a suboptimal communications protocol. Note however
that communication before the kickoff of the game would not be needed and the
optimal control problem would be a bit more decentralized if the players could
independently arrive at their respective optimal strategies.

4 No Communication During the Game

Since communicating/signalling over a noise-corrupted channel is so integral to
Witsenhausen’s decentralized control problem suboptimal solutions, it is instructive
to take things to an extreme and consider the following decentralized optimal control
problem where during run time no communication is to take place: the decentralized
control problem is specified by Egs. (1), (2), (4), (6) and the initial state information
is specified in (1), or (7), as before, but now, during runtime, Player 2 receives no
information whatsoever, that is, at time £k = 1 a measurement of the state x; is
not taken by Player 2. In other words, the extreme case is now considered where
the parameter 0 — oo. It is also assumed that over time the random initial state
xo of the dynamical system presented to Player 1 will be chosen according to the
probability distributions (1) or (7), and this is known to both Players 1 and 2. Thus,
the respective strategies of Players 1 and 2 are of the form (9) and

ur = y1(Xo).
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We intentionally now take a “wrong turn” and initially analyze this special case
from the vantage point of the widely used communications paradigm discussed in
Sect. 3, where the players come together and establish a communication protocol
before kickoff time.

4.1 The Players Communicate Before the Game

Although Player 2 operates in an open-loop mode and no signalling will take place,
not everything is lost: since a cooperative control scenario is considered where the
players are allowed to communicate prior to the start of the game, they could as
well agree that Player 1 will always see to it that, irrespective of the realized initial
state xo, at decision time k = 1 the state x; = b, always; the optimal amplitude b
is yet to be determined. Player 1 is now committed to an affine strategy

Yo(x0,X0) = b — xo (18)

and Player 2 knows this. Hence, Player 2 is absolved of even taking a measurement
of x;—he does not need the measurement z; and he will always apply the control

u =b,
driving the state x; to 0.

The amplitude b must be decided on ahead of time. In order to minimize his
average cost, Player 1 will calculate the optimal amplitude b* by solving the
optimization problem

JF = miny E,,( K*(b — x0)*)
which yields
b* =%
so that the optimal strategy of Player 1 is affine and is
Yo (X0, X0) = Xo — Xo. (19)

Hence, the realized minimal cost is

J 1 (x0) = K*(xo — Xo)* (20)
and consequently, the average minimal cost of Player 1 is,

J' = K?0;. 21
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The minimal expected cost (21) is not dependent on the initial state’s statistic Xy.
Also,

Ir=Jp

Note: Similar to the stochastic games paradigm, it is assumed throughout that the
0y statistic is shared by the players.

Indeed, Player 2 does not need to know the initial state’s statistic X: Since Player
1 communicates the amplitude b* to Player 2 before the start of the game, then,
similar to Player 1, upon analyzing the optimization problem at hand, Player 2 will
independently arrive at the conclusion that the initial state’s statistic is in fact Xy =
b* and he will apply the control

ut = Xo. (22)

Example Assume that prior communication is allowed and 0 — oo. When the
problem parameters are the canonical parameters K = 0.2 and oy = 5, the
“minimal” average cost J;* and the expected “minimal” cost J,* are

Jr=JF=1.

In particular, if Xy = O then the “optimal” strategies are ¥} (xo) = —xo and u} = 0.

In conclusion, the strategy (19) of Player 1 and the open-loop optimal control
(22) of Player 2 are commensurate with the herein stipulated information pattern,
irrespective of whether Player 2 is privy to the initial state’s statistic Xo. For the
“minimal” average cost (21) to be realizable when prior communication is allowed,
Player 2 does not need to know the initial state’s statistic Xy. This is so because
prior communication takes place and the “game” is cooperative. Indeed, prior
communication allows Player 2 to infer the initial state’s statistic Xy on his own.

However, should the initial state’s statistic Xy be known to both Players 1 and 2,
and if, in addition, the strategy (19) of Player 1 and the open-loop control (22)
of Player 2 were indeed optimal, that is, K 2002 is the minimal expected cost,
then no prior communication would be required: based on the public information
Xo available to them, both players would independently solve the decentralized
optimal control problem, arrive at their respective optimal strategies, and calculate
their expected costs—this being predicated on the assumption that Player 1 is
after minimizing his average cost. Strictly speaking, a unique Nash equilibrium
would have been obtained. In this instance, and courtesy of the solution of the
optimal control problem, implicit communication would automatically materialize.
It however turns out that the modulation strategy (19) of Player 1 which was derived
using the communications model from Sect. 3 is not optimal, as will be shown in
the next section where the optimal solution is derived.
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4.2 The Players Do Not Communicate Before the Game

The information pattern is s.t. Player 2 knows that Player 1 knows that his
measurement of the initial state x( is Xy, according to the distribution (7), or,
alternatively, Player 1 knows that the initial state xo presented to him will be drawn
from the distribution (7) and Player 2 knows this as well. Thus, the strategy of Player
1 is given by Eq. (9) and the strategy of Player 2 is

up = y1(Xo).

Since the statistic X is public information and it is not a random variable, the
strategies’ dependence on X, is temporarily suppressed and we shall refer to the
strategy

ug = Yo(xo)
of Player 1 and the control
u; € R!
of Player 2.

Concerning the correct analysis of the optimization process:

1. First, take the point of view of Player 1, who has been provided the initial state
information x¢: Player 1 is playing against the optimal input u} € R! of Player
2, and since his strategy is a delayed commitment strategy, no random variables
feature in his optimization. Thus, his cost function

JO @) = min, e g1 [K?u5 + (X0 + 1o — u)’]
and consequently his optimal control must satisfy the relationship

1
ur = _Kz——l-l(xo —uy).
Hence, the optimal strategy of Player 1 and the optimal control of Player 2 must
satisfy the relationship

Yo (x0) = (xxo — uf). (23)

K241

2. Next, take the point of view of Player 2, who is playing against the optimal
strategy y (xo) of Player 1 and as far as he is concerned, the initial state is a
random variable whose p.d.f. is specified by Eq. (7). Thus, his cost functional

TP (g () = ming, e {Exy (K (15 (x0)) + [0 + 15 (x0) = 1]” | %o )}
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and consequently his optimal control must satisfy the relationship
uy = Ex,(xo0 + ¥, (x0) | Xo )
that is,
Uy =Xo + Ex (5 (x0) | Xo). (24)

Both Players 1 and 2 calculate the expectations of the L.H.S. and R.H.S. of
Eq. (23) and obtain the equation

- |
Ey (¥ (x0) | %0) = _KZ—-H(XO — uy). (25)
Inserting Eq. (25) into Eq. (24) yields

In other words, the optimal strategy of Player 2 is
Y (X0) = Xo (27)

and inserting Eq. (26) into Eq. (23) yields the optimal strategy of Player 1

Yo (X0, X0) = (X0 — x0). (28)

Kz +1

Having obtained the optimal strategies, the respective value functions of Players
1 and 2 are calculated as follows:

V" (x0.%0) = (xo — o)’ (29)

K2 +1
and

_ 1
VO(Z)()C()) = K2—+10§ (30)

The analysis from above is summarized in

Theorem 1. The special case of Witsenhausen’s decentralized optimal control
problem (1), (2), (4), and (6), where the parameter c — 00, but with the slightly
more general initial state information specified by Eq. (7), is considered. Thus, the
case is considered where at time k = 1 a measurement of the state x, is not taken
by Player 2. The respective optimal strategies of Players 1 and 2 are linear and
are given by Egs. (28) and (27) and their value functions are given by Egs. (29)
and (30).
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Remark. The value of Player 2 is equal to the average cost/value of Player 1, that is,
Vo (T0) = Exy (V" (x0.%0) | Xo). (31)

Corollary 2. In the special case where, as in Witsenhausen’s paper, the initial
state’s statistic Xo = 0, the optimal strategies are

1

Yo (X0) = TR (32)
and
yr =0 (33)
and the players’ value functions are
M I -
Vy ' (x0) = TR (34)
and
@ LI
V2 = ot (35)

When the parameter (the canonical parameter)
K =02
the slope of the linear control law of Player 1 is ~ —1 and the function

J(x0)

xo + g (x0)
KZ

1+ K20

=~ 0.04xy.

In summary, in our analysis the somewhat unconventional information pattern
germane to Witsenhausen’s problem where at time k = 0 the information about
the initial state’s statistic X is shared among the players and which therefore
somewhat detracts from its perceived degree of decentralization, has been retained.
It is however important to realize that in this special case of Witsenhausen’s
problem, where the variance of the measurement error of Player 2 is very large, the
optimal solution has been obtained. As a result, no additional communication among
the players before kickoff time is needed in order to establish a communications
protocol, as is tacitly assumed in the case where the parameter o is finite, the
optimization problem is much harder and has not yet been solved, and one must
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fall back on suboptimal solutions derived using the communications/signalling
paradigm discussed in Sect. 3. Since in the special case treated herein where the
parameter ¢ — oo the optimal solution can be independently obtained by both
Players 1 and 2, no communication prior to kickoff is needed and therefore one is
entitled to say that the attendant optimal control problem has been solved in a more
decentralized manner.

An additional instance where an optimal solution can be easily obtained entails
the symmetric information pattern where Player 1 does not have access to the initial
state information and both players’ information is shared and is specified by Eq. (7);
in addition, Player 1 knows that Player 2 has the public information (7) and, vice
versa, Player 2 knows that Player 1 has the public information (7). In this case, the
strategy of Player 1 is the control uy € R' and the strategy of Player 2 is the control
uy € R!.

1. First, take the point of view of Player 1: Player 1 is playing against the optimal
input uf € R' of Player 2 and now the random variable x( features in his
optimization. Thus, his cost function

T ) = min, e g1 Evy ([Kug + (X0 + o — u7)?])
and consequently his optimal control must satisfy the relationship

1

_ — *
Uy = —KZ——H(X() — Ml).

2. Next, take the point of view of Player 2, who is playing against the optimal
strategy/control u of Player 1 and as far as he is concerned, the initial state is a
random variable whose p.d.f. is specified by Eq. (7). Thus, his cost functional

T2 () = min, e pi{ By ( K2(3)” + [xo + 15 —]* | To)}
and consequently his optimal control must satisfy the relationship
u’f =Xo+ u(’; (36)
This yields the optimal controls/strategies

ui =0, (37)

and the optimal/minimal expected cost

J*=0a} (39)



70 M. Pachter and K. Pham

The analysis from about is summarized in

Theorem 2. The special case of Witsenhausen’s decentralized optimal control
problem (1), (2), (4), and (6), where the parameter c — 00, but with the slightly
more general initial state information specified by Eq. (7), is considered. Thus, the
case is now considered where at time k = 1 a measurement of the state x| is not
taken by Player 2 and, in addition, Player 1 does not have access to the initial state
information xo. The respective optimal strategies of Players 1 and 2 are given by
Egs. (36) and (37) and the minimal cost is given by Eq. (38). The minimal cost is
not dependent on the initial state’s statistic X.

5 Conclusion

In Witsenhausen’s problem statement the following must be made clear. The
decision problem is only partially decentralized. At time k = O the information
on the initial state’s statistic Xy is exchanged among the players. In addition, the
synthesis of suboptimal solutions rests on the assumption that before the game
starts, during “foreplay,” the players are allowed to come together and establish
a communication protocol. This entails allowing Player 1 to convey the information
on the initial state’s statistic to Player 2. Thus, a communications problem using
a Gaussian communications channel is modeled. Now, communication can be
referred to as signalling, although, in the informational economics literature [9] the
term signalling assumes a somewhat different meaning. Alternatively, it is tacitly
assumed that at decision time k = 0, Player 2 takes a measurement of the initial
state and communicates his measurement to Player 1. In this case Player 1 knows
that Player 2 thinks that the initial state is distributed according to Egs. (1) or (7).
Evidently, the control problem is not completely decentralized and the strategy
of Player 1, which naturally incorporates all the information available to him at
decision time k = 0, has the somewhat unconventional form (9). This state of
affairs is masked if, as in Witsenhausen’s problem statement, it is assumed that the
statistic xo = 0.

The problem with Witsenhausen’s problem goes beyond the somewhat hidden
requirement that the initial state’s statistics information be shared by Players 1
and 2, which immediately detracts from the decentralized aspect of the control
problem: the suboptimal solutions are based on the perception that a cooperative
communication problem is at hand and this requires the Players to come together
and agree on a communications protocol prior to the kickoff of the game. Obviously,
the better the communications protocol is, the lower will be the expected cost,
and so, when viewing Witsenhausen’s problem in the context of a mathematical
model of a communications scenario, suboptimal solution methods readily suggest
themselves. Now, the fact that the initial state’s statistics information is shared is
perhaps OK, but the additional requirement that the players come together before the
kickoff of the game and agree on a communications protocol, as is indeed the case
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in the classical communications paradigm is giving one pause for thought. No such
thing would be required if the optimal solution of Witsenhausen’s problem would be
known, in which case the two intelligent Players 1 and 2 could independently figure
out their respective modulation and detection strategies. This unfortunately is not
the case, because the optimal solution of Witsenhausen’s problem is not yet fully
known and therefore the game is not playable without the artificial preliminary step
of setting up a (suboptimal) communications protocol. Knowledge of the optimal
solution would obviate the need for this preliminary step. There is one exception: in
the special case investigated in Sect. 4 where the variance of the measurement error
of Player 2 is very big, the optimal strategies are linear and are known—we refer
to the players’ optimal strategies (23) and (27); the point is that both players can
independently derive their optimal strategies.

In summary, Witsenhausen’s problem is not fully decentralized to start with and
in the absence of an optimal solution the players must establish a somewhat artificial
communication protocol before kickoff time. As such, Witsenhausen’s problem is
somewhat contrived.

Appendix A: Witsenhausen’s Counterexample
and Detection Theory

An information theoretic analysis of Witsenhausen’s binary signalling protocol
follows. The case where a system could be in either one of two states is considered.

Specifically, when the binary signalling protocol is invoked in Sects. 3 and 4, the
state could be x; = b or x; = —b. Suppose the true state x; is not known; however
a measurement of the state x; is taken, whereupon, based on the measurement’s
outcome, a declaration concerning the state x; is made, namely, x; is declared to
be b or, alternatively, the state x; is declared to be —b. Let the performance of the
said classifier be quantified by the receiver operating characteristic (ROC) which is
a confusion matrix

Confusion matrix

True/Rep. |x; =b |x; =—b
b Prr 1 — Pprr

Here, the probabilities

Prr=P(x1=b|b)
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and
Perr = P(x1 = —b | =b).

Concerning the detection task, consider the typical situation where prior information
on the state x; of the system is available and, based on a received measurement of
the state x;, one is about to decide whether the state x; = b or x; = —b. The
performance of the classifier, that is, its ROC, is quantified by the above specified
confusion matrix. The following holds.

Theorem. The state x; is known to be either x; = b or x; = —b and the prior
information on X is

P(x1 =b) = p.

Suppose a measurement is about to be taken whereupon, based on the recorded
measurement, a classifier will either declare the state x| = b or, alternatively, the
state x; = —b. The performance of the classifier is characterized by its confusion
matrix which is parametrized by Prr and Prrr. Then the expected information gain
will be

Prr )
I(P1Rr, PrrR, = pPrrlo
(Prr, Prrr, p) = pPrr g(PPTR+(1_P)(1_PFTR)
1 — Prg )
+p(1—-P 10(
P( ) log p(1 — Prr) + (1 — p) Prrr

1 — Pprr )

+(1 = p)(1 — Prrr) log (pPTR + (1 = p)(1 — Prr)

Prrr
S .40
(1= p)Prre Og(p(l—PTRH(l—P)PFTR) w

The expected information gain function (40) is depicted in Fig. 9.

Concerning the classification algorithm proper, the probabilities Prr and Pgrg,
which characterize the classifier’s performance, are obtained as follows.

The performance of the sensor used to measure the state x; is specified by
Eq. (41): if the classifier’s threshold is set to ¢, the detection algorithm yields the
estimate X; of the state x; according to

~ b ifz; >t
fr— - ’ 41
T Spifz <1, “1)

Hence, from Fig. 10—see, e.g., [8]—one concludes that the detection probability

Prr = P(X; =b|x =b)
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Information Gain (bits) as a Function of Pz and Pgrg with p =.5
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Fig. 10 Calculation of the probabilities of detection and false alarm

=Pz >1)

t—b
=1-¢(—).

(o2

Similarly, with reference to Fig. 10, the “False Alarm” probability Pga is calculated

as follows:

Pea =P(X1 =b | x; = —b)
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1 O a—(=h)?
= e 202 dx
2mo Ji

1 o0 tn)?
= e 22 dx
2mo Ji

1 00 52
= e 202 dy
V2no /t+b

that is,
t+b
Pea=1—0 (_) |
Hence,
Prrr = 1 — Ppa
t+b
o[12)
o
Now,

b(x) = % [1 —i—erf(%)]

Using the signal to noise ratio (SNR) definition

SNR =

Q|

and non-dimensionalizing the threshold

SHE

we finally obtain

Prr(t,SNR) =

(5]

N =

M. Pachter and K. Pham

(42)
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Information Gain for 1(0,snr) (bits)
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Fig. 11 Expected information gain as a function of SNR

and

PFTR(Zy SNR) = % [1 + erf (%)} . 43)

Due to symmetry, the prior probability that the state x; = b is p = % Inserting the
expressions (42) and (43) into Eq. (40) with p = % directly yields the expected
information gain as a function of the threshold setting 7 and the SNR. Due to
symmetry, the threshold will be set to # = 0. The expected information gain as
a function of the SNR is shown in Fig. 11. For the optimal b* calculated in Sect. 3
the attendant SNR yields the expected maximal information gain: it is 1 bit.
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