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Abstract. Face detection has been considered one of the most important areas
of research in computer vision due to its wide range of use in human face-related
applications. This paper addresses the problem of face detection using Hough
transform employed within the random forests framework. The proposed Hough
forests-based method is a task-adapted codebooks of local facial appearance with
a randomized selection of features at each split that allow fast supervised train-
ing and fast matching at test time, where the codebooks are built upon a pool
of heterogeneous local appearance features and the codebook is learned for the
face appearance features that models the spatial distribution and appearance of
facial parts of the human face. Experimental results are included to verify the
effectiveness and feasibility of the proposed method.

1 Introduction

Because of its various uses in several applications, face detection has received a con-
siderable attention in the last decade. The human face is the main source of information
during human interaction and in vision-based Human Computer Interaction (HCI) sys-
tems. Thus, any system integrating vision-based HCI requires fast and reliable face de-
tection [1]. The first step of any face processing system is detecting locations in images
where faces are present. Face detection is also a required preliminary step to automated
face recognition whose performance greatly impacts recognition rates.

According to [2] the face detection problem can be described as: given an arbitrary
image, determine whether there are any human faces in the images, and if there are,
return the location of each face in the image. Generally, face detectors return the image
location of a rectangular bounding box containing the face. This bounding box serves
as the starting point for the above mentioned applications. Automatic detection of the
human face is one of the most difficult problems in pattern recognition and computer
vision because the face is a non-rigid object that has a high degree of variability with
respect to head poses (off-plane rotations), illumination, facial expression, occlusion,
aging, image quality, and cluttered backgrounds may cause great difficulties [3].

On the other hand, random decision forests [4,5] have become popular in many ap-
plications of computer vision such as Bioinformatics [6], image classification [7], and
computational genomics [8] as well as object detection/tracking [9]. Because it provides
a unique combination of prediction accuracy and model interpretability among popular
machine learning methods. Random Forest (RF) includes an ensemble of decision trees
and incorporates a randomized selection of features at each split and interactions natu-
rally in the learning process, which can deal with small sample size, high-dimensional
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feature space, and complex data structures. Gall et al. [10] examined using random
forests for three tasks: object detection, tracking, and action recognition. They proved
the efficacy of forests-based method for these tasks and specifically Hough forests per-
form well compared to the state of the art for all the three tasks. In [11], a non-maxima
suppression method is proposed for detecting multiple object instances in images us-
ing Hough transform. To obtain the probabilistic votes, the Hough forest are learned
on a training data set from images with the objects of interest (pedestrians) at a fixed
scale and from the set of background images. The Hough-based method copes better
with multiple occluding instances; and according to the experiments conducted by the
authors, a significant increase in accuracy is obtained.

Motivated by these works, in this paper, we investigate the ability of random forests
for detecting the human face in digital images by employing the Hough transform
within the random decision forests framework. In this respect, a direct mapping be-
tween the facial landmarks appearance and its Hough vote in the Hough space can be
learned. This Hough forests-based approach can be regarded as task-adapted codebooks
of local facial features appearance that allow fast supervised training and fast matching
at test time. The set of leaf nodes of each tree in the Hough forest forms a discriminative
codebook, where, each leaf node makes a probabilistic decision whether a patch corre-
sponds to the facial part or not, and casts a probabilistic vote about the centroid position
with respect to the patch center. As far as we know, this is the first time that Hough
forest is utilized for the face detection problem. The proposed method-based Hough
forests is very efficient at runtime, since matching a sample against a tree is logarithmic
in the number of leaves. Therefore, the method is able to sample patches densely, while
maintaining acceptable computational performance. In contrast to other methods, the
proposed method is less sensitive to geometrical distortion, noise and partial occlusion.
Experimental results on the widely used face database (i.e., CMU+MIT database) are
presented to demonstrate the efficacy of the proposed method.

The rest of this paper is organized as follows. A brief review on existing face detec-
tion methods is presented in Section 2. The principles of Hough forests are discussed
in Section 3, while the proposed method for detecting faces is introduced in Section 4.
Experimental results are provided in Section 5. Conclusion along with future direction
is summarized in Section 6.

2 Literature Review

As mentioned before, detection of the human face in an image is a difficult task in
pattern recognition because the face is a non-rigid object that has a high degree of vari-
ability as well as variations in occlusions, illumination changes, and background clutter.
Though the difficulties, the last years have shown a great deal of research effort put into
face detection technology. Numerous methods have been proposed to detect faces in
images. Many of these methods are reviewed in two surveys by Yang et al. [2] and by
Hjelmas and Low [12]. These methods can be broadly classified into two main cate-
gories: appearance-based approaches and feature-based approaches. Appearance-based
approaches are known to be better suited for detecting non-frontal faces and more suc-
cessful in complex scenes, however in simple scenes feature-based approaches are more
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successful. In contrast to the appearance-based approaches, feature-based approaches
make explicit use of face knowledge. They are usually based on the detection of local
invariant features of the face such as eyes, eyebrows, nose, mouth, and the structural
relationship between these facial features. Based on the detected facial features, a sta-
tistical model is built to describe their relationships and to verify the existence of a face.
There are other face detection methods that use a combination of both approaches in
order to achieve a more robust and better performance [13].

Viola and Jones [14] present a machine learning approach for face detection, which
has been integrated into OpenCV library with five Haar-cascade classifiers. Their
method is probably the best known face detection method and it has gained a wide
spread acceptance due to the availability of an open source implementation. The nov-
elty of this method comes from the integration of a new image representation (integral
image), a learning algorithm (based on AdaBoost to build a very rapid cascade classifier
based on weak classifiers (“Haar-like basis functions”), and a method for combining the
classifiers cascade. The original work on frontal faces has been extended to detect tilted
and non-frontal faces by extending the set of basic features and by introducing pose es-
timators. Variations of the framework that use different basis sets have been presented
using Gabor wavelets, local orientations of gradient and Laplacian based filters [15,16].
Li et al. [17] modify the monotonic assumption of the Adaboost algorithm proposed by
Viola and Jones [14] to develop the so-called Floatboost algorithm for the training of
face and non-face classifiers. By implementing these classifiers using a coarse-to-fine
and simple-to-complex pyramidal structure, the authors successfully develop a compu-
tationally efficient multi-view face detection system. However, the proposed classifiers
used in such boosted cascades operate independently of each other and therefore dis-
card useful information between layers, resulting in convergence problems during the
training process. In addition, non-face samples collected by the bootstrap procedure
are incorporated within the database during the training process and hence increase the
complexity of the classification task. Moreover, during the latter stages of the training
process, the pattern distributions of the face and non-face regions may become so com-
plicated that it is virtually impossible to distinguish between them on the basis of their
Haar-like features as reported in [18].

Chen and Lien [18] develop a statistical system for automatic multi-view face de-
tection and pose estimation consisting of five modules, Their statistical multi-view face
detection system is based on significant local facial features (or subregions) rather than
the entire face. The low and high frequency feature information of each subregion of
the facial image are extracted and projected onto the eigenspace and residual indepen-
dent basis space in order to create the corresponding PCA (principal component anal-
ysis) projection weight vector and ICA (independent component analysis) coefficient
vector, respectively. Therefore, the system has an improved tolerance toward differ-
ent facial expressions, wide viewing angles, partial occlusions and lighting conditions
due to projecting on feature subspaces. Furthermore, either projection weight vectors
or coefficient vectors in the PCA or ICA space have divergent distributions and are
therefore modeled by using the weighted Gaussian mixture model (GMM) rather than a
single Gaussian model. The GMM weights and parameters of the GMM are estimated
iteratively using the Expectation Maximization (EM) algorithm. Face detection is then
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performed by conducting a likelihood evaluation process based on the estimated joint
probability of the weight and coefficient vectors and the corresponding geometric po-
sitions of the subregions. Regarding the overall performance of this multi-view face
detection method, as the authors reported the system can successfully function under
various imaging conditions with the accurate detection rate of higher than 91% and
can estimate the pan-rotation angles of more than 90% of the input patches to within
±10◦ of their ground-truth values. Though this high detection rate, this method depends
basically on different types of thresholds and several parameters should be adapted in
advance in different databases. So the method is neither simple nor applicable.

Yang et al. [19] incorporate a genetic algorithm into the AdaBoost training to opti-
mize the detection performance given the number of Haar features for embedded sys-
tems. While, in [20], a bank of Gabor filters is utilized to search for ten facial features
(eye corners, eye centers, nostrils and mouth corners). Each feature is modeled using
a Gaussian Mixture Model (GMM) of feature responses. Any triplet of feature detec-
tions with an acceptable spatial orientation produce a face location hypothesis. These
face candidates are then normalized using an affine transformation and tested using a
SVM region classifier. The highest ranking candidate based on the SVM discriminant
function is declared the location of the face. The method detects 91% of faces in the
XM2VTS database and 65% of BioID database within 10% of the true inter-ocular dis-
tance. The proposed approach in this paper is closely related to this family of facial
feature-based methods.

3 The Hough Decision Forests

This section describes the necessary general background of the Hough forests frame-
work and the notation that we will use in the rest of the paper. Hough forests consist
of a collection of randomized trees where each tree consists of split nodes and leaves.
During training, in each splitting node the algorithm tries to split the given training data
{zi; vi}Ni=1 where zi ∈ RD is a D-dimensional feature vector, vi ∈ {1, . . . , C} is the
corresponding class label, and N is the number of training samples. By predefined the
number of splitting functions, this recursive algorithm continues to split the data until
either the maximum depth of the tree is reached; the subset of the data in a node is pure,
or the number of samples is below a threshold. If any of these conditions is met, a leaf
node is created and the class probability p(v|z) is estimated.

Hough forests work on small patches extracted at random locations within a given
bounding box from positive and negative training images of a face, each patch is
described with several features, termed channels. Positive samples additionally store
an offset vector pointing to the center of the face. Hough Forests then try to sepa-
rate positive from negative patches and simultaneously cluster together similar positive
patches according to their offset vectors. The splitting functions at each node in the
Hough Forests randomly selects a feature channel and two pixels within the patch and
calculates the difference of the feature values. This difference is then thresholded to
determine which patches are forwarded to the left or the right child node. While, in
the test phase, each image patch is passed through all trees in parallel, in each non-leaf
node, a simple binary test is performed. The test is applied to each patch that arrives in
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the node, and its output defines the child that the patch will proceed to. The set of leaf
nodes of each tree in the Hough forest can be regarded as a discriminative codebook.
Each leaf node makes a probabilistic decision whether a patch corresponds to a part of
the face or to the background, and casts a probabilistic vote about the centroid position
with respect to the patch center in a probabilistic generalized Hough transform, and the
maxima in the Hough voting space (Hough image) correspond to face hypotheses.

4 The Proposed Methodology

Figure 1 shows steps of the proposed method using Hough forests to detect faces in
images, which can be summarized as follows: first, the different views of a human face
can be handled by a single codebook B with entries B1, . . . , Bb for each face pose in
the images. The training procedure first extracts a set of patches which are sampled
from a set of bounding box annotated positive images of facial landmarks and a set of
background images. The set of training patches P train

j are randomly sampled from the
examples used to construct each tree T on the Hough forests, where the set of patches
is {P train

j = (aj , lj , oj)}, where aj are the extracted image feature channels Γ of the
patch (facial appearance), lj is the class label for the patch, and oj is a offset vector from
the patch center to the centroid. The patches sampled from the negative set (background
patches) are assigned the class label lj = 0, while the patches sampled from the interior
of the face bounding boxes are assigned lj = 1. Each face patch is also assigned a 2D
offset vector oj equal to the offset from the centroid of the bounding box to the center of
the patch. Based on such a set of patches, the Hough forests trees are then constructed
recursively starting from the root.

Second, the selection of random tests is based on how well they separate the input
set of patches, the quality of the separation is measured by one of two uncertainty
measures: class label uncertainty μ1 measuring the impurity of the class labels lj and
offset uncertainty μ2 measuring the impurity of the offset vectors oj

μ1(A) = |A|. E({lj}) (1)

μ2(A) =
∑

j:lj=1

‖ (oj −Om) ‖2 (2)

Where A is the set of patches assigned to a node A = {P train
j }, |A| is the number of

patches in the set A, and Om is the mean offset of this set. E is Shannon entropy, used
to maximize the classification information gain. The class label entropy is

E({lj}) = −
∑

l∈{0,1}
P(lj |A) log

(
P(lj |A)

)
(3)

Where P(lj|A) is the proportion of patches with class label lj in the set A. The first
measure μ1 tries to create two subsets of patches that are as pure as possible in terms of
their class labels, while the second measure μ2 forces the patch offsets to be spatially
coherent. When the number of patches is below a certain threshold or the maximum
predefined height of the tree is reached, the node is declared a leaf. For each leaf node
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Fig. 1. Flowcharts of the training and detecting processes of the proposed face detection method

L in the constructed tree, the information about the patches that have reached this node
at train time is stored. Thus, we store the proportion FL of the facial patches (i.e.,
FL = 1 means that only facial patches have reached the leaf) and the list OL = oj of
the offset vectors corresponding to the facial patches. In this context, the leaves of the
tree in the forest form a discriminative codebook with the assigned information about
possible locations of the face center. At runtime, this information is used to cast the
probabilistic Hough votes about the existence of the face at different positions.

Third, the appearance of the patch aj for each non leaf node in each tree is assigned
a binary test during training. The patches have a fixed size of pixels at both train and
test time; the appearance of the patch can be written as aj = (Γ1

j ,Γ
2
j , . . . ,Γ

c
j), where c

is the number of the extracted feature channels. The binary tests on a patch appearance
T (a) → {0, 1} is defined as simple pixel-based tests. Such a test simply compares the
values of a pair of pixels in the same channel with some threshold. The test is defined by
a channel α ∈ {1, 2, . . . , c}, two positions p, q in the patch image, and a real threshold
value r. The test T(α,p,q,r)(a) is defined as:

T(α,p,q,r)(a) =

⎧
⎨

⎩

0, if Γα(p)− Γα(q) < r

1, otherwise
(4)

Using (1) and (2) for uncertainty measures μ1 and μ2, a pool of binary tests {T } can
be generated by sampling α, p, and q uniformly given a training set of patches P train.
The threshold value r for each test is chosen uniformly from the range of differences
observed on the data randomly. Then, the random decision is made whether should
minimize the class label uncertainty μ1 or the offset uncertainty μ2 at the non-leaf node.
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We choose this with equal probability unless the number of negative patches is small
than 5%, in the case of the non-leaf node it is chosen to minimize the offset uncertainty
μ2. Finally, the set of patches arriving at the non-leaf node is evaluated with all binary
tests in the pool and the binary test satisfying the minimization target Ω, which is sum
of the respective uncertainty measures to split the training set, Ω can be defined as:

Ωk = min

(
μγ

(
{Pj |T k(aj) = 0}

)
+ μγ

(
{Pj|T k(aj) = 1}

))
(5)

Where μγ = μ1 or μ2 depending on the random choice. By choosing the non-leaf
nodes that decrease the class label uncertainty μ1 with the non-leaf nodes that decrease
the offset uncertainty μ2, the tree construction process ensures that the sets that reach
the leaf have low variations in both class labels and offsets (leaves represent patches for
the facial features only).

In general, the tree construction for generating the codebook follows the common
Hough forests framework [9]. During the construction, each node receives a set of train-
ing patches. If the depth of the node is equal to the maximal one (Dmax = 15) or the
number of patches is small (Nmin = 20), the constructed node is declared a leaf and
the leaf vote information (FL,OL) is accumulated and stored. Otherwise, a non-leaf
node is created and an optimal binary test is chosen from a large pool of randomly
generated binary tests. For detecting the face, image patches are sampled from the test
image and passed through the trees, every patch of the test image P test

i is matched
against the codebook B and its probabilistic votes are cast to the Hough image, the
image patches can be densely sampled or subsampled as for training. Consider a patch
P test(y) = (a(y), l(y), o(y)) centered at the position y in the test image, where, y
lies inside the face bounding box B(x) centered at x. Here, a(y) is the appearance of
the patch, l(y) = 1 is the hidden class label and o(y) is the hidden offset vector from
the center of the face bounding box to y. Furthermore, E(x) denotes the random event
corresponding to the existence of the face centered at the location x in the image. The
probabilistic evidence P(E(x)|a(y)) that the appearance a(y) of the patch brings about
the availability E(x) at different positions x in the image is defined as:

P(E(x)|a(y)) = P(E(x), l(y) = 1|a(y)) =
P(o(y) = y − x|l(y) = 1, a(y)) · P(l(y) = 1|a(y)) (6)

Assuming that for a tree T the patch appearance ends up in a leaf L, the first factor
can then be approximated using the probability density estimation methods [21] based
on the offset vectors DL collected in the leaf at train time, while the second factor can
be straightforwardly estimated as the proportion CL of face patches at train time. For a
single tree T, the probability estimate is

P(E(x)|a(y);T) =

[
1

|OL|
∑

o∈OL

1

2πδ2
exp(−‖(y − x)− o‖2

2δ2
)

]
· FL (7)
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Where δ2I(2×2) is the covariance of the Gaussian Parzen-Window, for the entire forest

{Tt}
F
t=1, we simply average the probabilities (7) coming from different trees

P(E(x)|a(y); {Tt}Ft=1) =
1

F

F∑

t=1

P(E(x)|a(y);Tt) (8)

Equations (7) and (8) define the probabilistic vote cast by a single patch about the ex-
istence of the face. To integrate the votes coming from different patches, we accumulate
them in an additive way into a 2D Hough image H(x) using

H(x) =
∑

y∈B(x)

P(E(x)|a(y); {Tt}Ft=1) (9)

The detection procedure simply computes the Hough image H and returns the set of
its maxima locations and values {x,H(x)} as the face hypotheses. The Hough image
H(x) is then obtained by Gaussian filtering the vote counts accumulated in each pixel.
An alternative way to find the maxima of the Hough image would be to use the mean-
shift procedure as it is done in [11]. To handle scale variations, let us first assume that
the size of the detected face bounding boxes is fixed to w × h during both training and
testing. The test image is resized by a set of scale factors σ1, σ2, . . . , σz . The Hough
images H1, H2, . . . , Hz are then computed independently at each scale. After that, the
images are stacked in a 3D scale vector, the Gaussian filtration is performed across the
third (scale) dimension, and the maxima of the resulting function are localized in 3D

(a) Sample patches in an image (b) Probability of each patch in (a)

(c) Aggregating all votes (d) Face location in the image

Fig. 2. Aggregating the votes of patches into the Hough space; the Hough image peak is the face
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scale vector. The resulting face hypotheses have the form (x, σ,Hσ(x)). Finally, the
hypothesized bounding box in the original image is then centered at the point x

σ , has
the size w

σ × h
σ , and the face detection confidence Hσ(x) as illustrated in Fig. 2.

5 Experimental Results

For training, we use a set of 500 face images with a fixed size of 24× 24 pixels. While,
non-face training set contains 2,750 images cropped manually and collected by random
sampling non-face regions of different images downloaded from the Internet. A total of
15000 random binary tests are considered for each node. Furthermore, each tree was
trained on 20000 positive and 20000 negative patches. It should be noted that in the
proposed approach, the positive patches (facial features) need to collaborate somehow
to detect the searched faces. The extracted features of the patches are as follows; the
first two channels contain the pixel values and normalized ones to avoid the effect of
illumination, the first and second derivatives in x,y directions, and the rest of channels
are the HOG descriptors respectively. Other local features descriptors such as SURF
and SIFT, or Gabor wavelets may be used, but in this work we examine the HOG de-
scriptor [22]. This is because the definition of split functions (4) is in general based on
local image features (i.e., locations and descriptors). Furthermore, for time-efficiency
reasons and memory, split functions need to be simple but should also be designed for
maximizing the information gain.

The performance of the proposed face detection is evaluated in terms of the receiver
operating characteristics (ROC) curve. Where, the two quantities of interest are clearly
the number of correct detections, which one wishes to maximize, and the number of
false detections, which should be minimize. The ROC curve plots the true positive rate

Fig. 3. ROC curves for Hough forests method with different tree number and Viola &Jones [14]
method on CMU+MIT database
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versus the false positive rate. We investigate the effect of trees number in the forest;
thus the detector is trained for three different Hough forests trees number with same
setting and training data used in constructing the trees. The first detector is trained for
Hough forests of only one tree, the second detector of three trees, while the last detec-
tor of five trees. The ROC curves are obtained for each one of the three detector using
the CMU+MIT database [23]. From this experiment, we note that there is a significant
variation in the performance between the three detectors. The detector of five trees (i.e.,
Hough Forests 5) performs best compared to the other detectors achieving a high de-
tection rate of 96% at 60 false positives as shown in Fig. 3. The Hough forests detector
with five trees in the forest is compared with the baseline face detector of Viola and
Jones [14] using CMU+MIT database. Figure 3 shows also the ROC curves for this
comparison; the presented results on the curves are extracted from author’s publication
without any modifications. It is clear that the Hough forests based method with five
trees outperforms the compared Viola & Jones’ method achieving the highest detec-
tion rate of 97.4% at 156 false positives. In particular, the implementation of OpenCV
2.4.2 with the default frontal face classifier configuration (i.e., haarcascadefrontalface-
default.xml) of Viola & Jones method is used. Some examples that are successfully
detected by Hough forests based method but failed in Viola & Jones method are given
in Fig. 4.

Fig. 4. Comparison detection examples using Viola & Jones’ method (green left) and Hough
forests method (red right) on test images from the CMU+MIT database
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6 Conclusions

This paper introduced a method for face detection based on Hough forests that can
learn a mapping from local image or depth patches to a probability over the parameter
space. We chose Hough forests approach, because it is capable to handle large training
datasets, high generalization power, fast computation, and ease of implementation. A
simple experimental evaluation is conducted on the CMU+MIT database for face detec-
tion and the obtained results are encouraging. The performance of the proposed method
is compared to the baseline face detector of Viola and Jones. There is still a room to fur-
ther improve the detection performance, so our future work includes using non-maxima
suppression that can be combined with Hough forests to improve the detection results.
Investigating the aggregating of local descriptors SIFT, SURF, or HOG-LBP into Hough
forests is another promising approach for improving the detection accuracy.
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