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Recent Advances in Brain-Computer 
Interface Research—The BCI Award 2013

Christoph Guger and Brendan Z. Allison

© The Author(s) 2014 
C. Guger et al. (eds.), Brain-Computer Interface Research, SpringerBriefs  
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-09979-8_1
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1 � Introduction

Brain-Computer Interfaces (BCIs) are devices that can enable communication or 
control without movement. The BCI detects specific patterns of the user’s brain 
activity that reflect different messages or commands that the user wants to send, 
such as spelling or changing a television channel. Signal processing tools then 
decode this brain activity to identify the desired message or command, then send 
this message to an output device. BCIs are closed-loop systems, meaning that the 
BCI must provide the user with some information in real-time that (hopefully) 
reflects the intended message or command.

One defining feature of any BCI is the method used to record brain function. 
Many approaches have been explored, and new ones are often introduced—some 
later in this book. Most modern BCIs rely on one of the following four methods:

Electroencephalography (EEG) records the brain’s electrical activity from 
electrodes that are usually embedded in an electrode cap. This cap usually requires 
5 min to mount on the user and adjust electrodes to get a good signal, although 
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newer systems that require less time have been developed. EEG systems are rela-
tively inexpensive and portable, and are the most common neuroimaging method 
in BCI research.
Electrocorticography (ECoG) involves recording electrical activity from elec-
trodes that are surgically implanted on the surface of the brain. Relative to EEG 
sensors, ECoG sensors have better spatial resolution, and can accurately detect 
brain activity at high frequencies that are invisible to EEG electrodes. Once 
implanted, the electrodes can be ready for BCI use or other tasks without prepara-
tion before each use.
Depth electrode recording uses electrodes that are surgically implanted in the 
brain. This approach has appealing features similar to ECoG, but records activity 
from a smaller group of neurons. Hence, these two approaches provide a different 
picture of brain activity.
Functional Magnetic Resonance Imaging (fMRI) does not measure electri-
cal activity, but instead measures the brain’s blood flow changes associated with 
different mental activities. These changes cannot be detected with the temporal 
precision as the three approaches above. fMRI systems require a very powerful 
magnetic field, and thus cost millions of dollars and are not portable.

The two middle procedures require neurosurgery to implant the electrodes. Of 
course, this procedure is only considered when medically necessary, such as prior 
to epilepsy surgery or for severely disabled patients with few or no other commu-
nication and control options. This neurosurgical procedure is expensive, and may 
not be viable for some patients. Hence, invasive BCIs are only practical for some 
users. On the other hand, new research in this book and elsewhere is showing that 
invasive BCIs may provide some communication or rehabilitation options that are 
otherwise unavailable.

After the signal has been recorded from the brain, signal processing mecha-
nisms must determine which signal the user wanted to send. Signal processing often 
involves many steps to customize the BCI to a specific user and environment, such 
as finding the best electrode sites, removing unwanted information (such as elec-
trical noise caused by muscle movement or external devices), determining the best 
frequencies, and choosing the optimal classifier and classifier parameters. After this, 
the signal travels to an output device. Early BCIs typically sent signals to moni-
tors, and newer BCIs have been used to control devices including orthoses, wheel-
chairs, online applications, entertainment systems, or stroke rehabilitation systems. 
BCIs also differ in the types of mental activities that users perform for control, and 
the corresponding brain signals. Most BCIs rely on imagined movement or visual 
attention for control, but new directions are being explored and extended often. 
Ultimately, the best BCI for each user depends on the user’s medical condition (if 
any), needs, goals, preferences, usage environment, and other factors.

Over the last several years, BCI research has expanded in many different ways. 
BCI publications are becoming increasingly common in journals and books. The 
first journal devoted only to BCIs, called the BCI Journal, was launched in late 2013. 
BCI conferences and workshops are becoming more common and drawing more 
attendees. Videos and media articles about BCIs are increasingly popular online. 
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New BCI systems are being tested with a broader range of patient groups, providing 
new options for communication and rehabilitation. This increase in BCI activity has 
fostered some exceptional projects that merit additional attention.

2 � The BCI Award

To encourage top quality BCI research, g.tec established the annual BCI Awards 
in 2010. g.tec was formed in 1999 and produces equipment and software used in 
many BCI labs, as well as numerous research articles. To enter the competition, 
each team must submit a two-page research summary, detailed on the BCI Award 
website. The competition is open to any team, and submissions have come from 
a wide variety of regions and disciplines. The submissions may include different 
types of hardware and/or software, and must include results from real-world test-
ing and validation.

Each year, a different top research institution is asked to recruit a Chairman of 
the Jury, who will develop a jury to judge these submissions. This jury consists of 
respected BCI researchers, which judges the submissions based on the Award 
Criteria below. The jury then chooses ten nominees, who are announced publicly 
and invited to a gala award ceremony attached to a major BCI conference. Finally, the 
winning submission is announced at this ceremony. The winning team receives a cer-
tificate, trophy, and 3,000 USD. The Award is also a major honor; even being nomi-
nated is a significant accolade in the BCI research community. Furthermore, the ten 
nominees are invited to contribute a chapter to this annual book series, which summa-
rizes their projects along with related work, analyses, discussion, and new directions.

Each jury is asked to select the nominees and winner based on specific Award 
Criteria:

•	 Does the project include a novel application of the BCI?
•	 Is there any new methodological approach used compared to earlier projects?
•	 Is there any new benefit for potential users of a BCI?
•	 Is there any improvement in terms of speed of the system (e.g., bits/min)?
•	 Is there any improvement in system accuracy?
•	 Does the project include any results obtained from real patients or other poten-

tial users?
•	 Is the used approach working online/in real-time?
•	 Is there any improvement in terms of usability?
•	 Does the project include any novel hardware or software developments?

The BCI Award has rapidly developed into a top honor within the BCI community. In 
2013, 169 projects were submitted, almost triple the number of submissions in 2012. 
The 2013 Award Ceremony attracted a record number of attendees, and hundreds of 
BCI researchers and developers awaited the announcement of the winner with great 
suspense. Our book chapters reviewing the 2011 BCI Award has been downloaded 
over 10,000 times. The 2014 Award should be more competitive than ever.
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3 � The 2013 Nominees

This year, the jury was chaired by Theresa Vaughan from the Wadsworth 
Research Laboratory, who selected Drs. Douglas Weber, Adam Hebb, Donatella 
Mattia, Andrzej Cichocki, Adam Wilson, and Surjo Soekadar as jury members. 
Continuing with prior tradition, the jury included the winner of the previous year’s 
award, Dr. Soekadar. These jury members are all from esteemed research institutes 
around the world, with expertise including signal processing, neuroscience, medi-
cine, invasive and non-invasive BCIs, and real-world BCI use with patients.

Choosing ten nominees out of 169 submissions was very hard, and many inter-
esting submissions from well-known BCI groups had to be rejected. The following 
projects were nominated for the 2013 BCI Award:

“Give me a sign: The possibilities of using hand gestures as a control signal 
for implanted brain computer interfaces”

M.G. Bleichnera, J.M. Jansmaa, Z.V. Freudenburga, E.J. Aarnoutsea, M.J. 
Vansteensela, N.F. Ramseya

aRudolf Magnus Institute of Neuroscience, Dept. of Neurology and 
Neurosurgery, University Medical Center Utrecht, The Netherlands

“An Ipsilateral, Contralesional BCI in Chronic Stroke Patients”
D.T. Bundya, E.C. Leuthardta
aWashington University, St. Louis, MO, USA
“A learning-based approach to artificial sensory feedback: intracortical 

microstimulation replaces and augments vision”
M.C. Dadarlata,b, J.E. O’Dohertya, P.N. Sabesa,b

aDepartment of Physiology, Center for Integrative Neuroscience, San Francisco, 
CA, USA

bUC Berkeley-UCSF Bioengineering Graduate Program, University of 
California, San Francisco, CA, USA

“Motor recovery of chronic writer’s cramp by brain-computer interface 
rehabilitation: A pilot study”

Y. Hashimotoa, T. Otab, M. Mukainob, J. Ushibac

aDepartment of Electrical and Electronic Engineering, Kitami Institute of 
Technology, Kitami, Hokkaido, Japan

bDepartment of Physical Medicine and Rehabilitation, Asahikawa Medical 
University Hospital, Asahikawa, Hokkaido, Japan

cDepartment of Biosciences and Informatics, Faculty of Science and 
Technology, Keio University, Yokohama, Kanagawa, Japan

“Cognitive signals for brain-machine interfaces: an alternative paradigm 
to neuroprosthetics control”

I. Iturratea, R. Chavarriagab, L. Montesanoa, J. Mingueza, J. del R. Millánb

aInstituto de Investigación en Ingeniería de Aragón and Dpto. de Informatica e 
Ingeniería de Sistemas, University of Zaragoza, Spain

bDefitech Foundation Chair in Non-Invasive Brain-Machine Interface,  EPFL, 
Lausanne, Switzerland
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“An Accurate, Versatile, and Robust Brain Switch for Neurorehabilitation”
N. Jianga, N. Mrachacz-Kerstingb, R. Xua, K. Dremstrupb and D. Farinaa

aDepartment of Neurorehabilitation Engineering, Bernstein Center for 
Computational Neuroscience, University Medical Center, Göttingen, Denmark

bCenter for Sensory-Motor Interaction, Department of Health Science and 
Technology, Aalborg University, Aalborg, Denmark

“Ear-EEG: Continuous Brain Monitoring”
D. Looneya, P. Kidmoseb, M.J. Morrella,c, D.P. Mandica

aImperial College London, UK
bAarhus University, Denmark
cSleep Unit, Royal Brompton Hospital, London, UK
“A hybrid brain computer interface for adaptive workload estimation in 

rehabilitation robotics”
D. Novaka, B. Beyelera, X. Omlina, R. Rienera,b

aSensory-Motor Systems Lab, ETH Zurich, Switzerland
bSpinal Cord Injury Center of Balgrist University Hospital, Switzerland
“A concurrent brain-machine interface for sequential motor function”
M. Shanechia,b, R. Hud,e, M. Powersd, G. Wornellc, E. Brownd,e,f, Z. Williamsd,e

aDepartment of Electrical Engineering and Computer Science, University of 
California, Berkeley, CA, USA

bDepartment of Electrical and Computer Engineering,  Cornell University, 
Ithaca, NY, USA

cDepartment of Electrical Engineering and Computer Science,  Massachusetts 
Institute of Technology, Cambridge, MA, USA

dMassachusetts General Hospital, Boston, MA, USA
eHarvard Medical School, Boston, MA, USA
fDepartment of Brain and Cognitive Sciences, Massachusetts Institute of 

Technology, Cambridge, MA, USA
“Exploring an fMRI-guided minimally invasive subdural N200 speller”
D. Zhanga, H. Songa, R. Xua, B. Honga

aDepartment of Biomedical Engineering, School of Medicine, Tsinghua 
University, Beijing, China

These ten projects reflect substantial diversity in many ways. The projects 
include research to help people with visual deficits, hearing deficits, writer’s 
cramp, stroke, and severe movement disabilities. This trend toward broader medi-
cal applications is consistent with the overall increase in medical applications for 
more types of patients. The projects entail a variety of methods for recording brain 
activity, including conventional methods like scalp recorded EEG and invasively 
recorded ECoG and unconventional approaches including ear-based EEG record-
ing and activity modulated by direct sensory stimulation. The nominated teams 
come from a variety of backgrounds and academic disciplines, from China, The 
Netherlands, Japan, Denmark, Spain, the UK, Switzerland, and various institutes 
in the USA.

Because of the growing interest in the BCI Awards, and the quality of the nomi-
nated projects, we decided to create this annual book series so readers could learn 
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about the top projects and trends in the BCI community. Each book includes an 
introduction and conclusion, written by the editors, that summarizes recent BCI 
trends, the selection procedure, nominees, and winner. The remaining book 
chapters are written by the nominees themselves, and present each of their pro-
jects in more detail than their original two-page submission. These chapters also 
include newer results, analyses, discussion, and future directions. This year, for the 
first time, we have added a chapter from a project that received an “Honorable 
Mention” from the jury, but was not nominated. This chapter includes noteworthy 
progress since the award submission, and its principal author has been selected as 
a member of the jury for the 2014 BCI Award.



7

Give Me a Sign: Studies on the Decodability 
of Hand Gestures Using Activity of the 
Sensorimotor Cortex as a Potential Control 
Signal for Implanted Brain Computer 
Interfaces

M.G. Bleichner and N.F. Ramsey

© The Author(s) 2014 
C. Guger et al. (eds.), Brain-Computer Interface Research, SpringerBriefs  
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-09979-8_2

The major driving force behind the development of brain computer interfaces 
(BCI) has been the desire to re-establish communication for severely paralyzed or 
even locked-in patients. As a consequence, different strategies have been devel-
oped to provide a direct link between a still-functional brain and the outside world, 
bypassing the non-functional muscle system (Wolpaw et al. 2002). The first BCIs 
used the P300 evoked potential (Farwell and Donchin 1988) and slow cortical 
potentials (Birbaumer et al. 1999), as they can be measured by electroencephalog-
raphy (EEG).

In the ideal case, a BCI would enable its user, previously incapable of any 
communication, to participate in a conversation at the same speed and with the 
same expressiveness as a non-paralyzed person would. However, the use of elec-
troencephalography (EEG) as the primary recording method has to date limited 
the potential to decode brain activity, due to its low spatial resolution and signal-
to-noise ratio. EEG can only detect prominent changes in brain activity and often 
has to integrate information over time in order to detect a certain activity pattern. 
These limitations reduce the speed and flexibility of any communication based on 
EEG BCI.

M.G. Bleichner (*) · N.F. Ramsey 
Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus,  
University Medical Centre Utrecht, Utrecht, The Netherlands
e-mail: martin.bleichner@uni-oldenburg.de
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In recent years, an alternative to the EEG-based BCIs has emerged that is 
based on invasive recording techniques such as single-cell/multi-unit recordings 
(Collinger et  al. 2012; Guenther et  al. 2009; Hochberg et  al. 2012) and electro-
corticography (ECoG) (Leuthardt et al. 2004; Vansteensel et al. 2010; Wang et al. 
2013). These methods provide a much higher spatial resolution and have a supe-
rior signal-to-noise ratio compared to EEG, and provide the potential to differenti-
ate between a greater number of cognitive states and at a faster rate.

The primary objective of invasive BCI research has been the control of artificial 
limbs using the activity from neurons of the primary motor cortex. Using the com-
bined activity of individual neurons (Hochberg et al. 2012), or larger populations 
of neurons (Wang et al. 2013), allows tetraplegic patients to control artificial arms 
and hands with a promising degree of accuracy, enabling them to grasp objects, for 
example.

Our hands, however, are not only suitable for manipulating objects but also 
for communication. In sign languages, for example, different hand gestures rep-
resent the letters of the alphabet. Sign languages are full-fledged languages that 
allow anything to be conveyed in the same way that any other language can. With 
the help of the hands, face and even the entire body, words and meanings are 
expressed as complex signs. To spell words or names for which no specific signs 
are available, sign languages also contain a fingerspelling alphabet. For each letter 
of the alphabet, there exists a specific gesture that can be formed with one hand 
(see Fig. 1).

The muscles of our body, hands and fingers are controlled by a network of cor-
tical and subcortical structures involving, among others, the cerebellum, the basal 
ganglia and the primary motor cortex. The topographic representation of body 
parts in primary motor cortex (Penfield and Rasmussen 1950) makes it easy to 
differentiate between the movements of the different body parts (legs and arms) 

Fig. 1   Participants had to execute one of four hand gestures taken from the American sign lan-
guage alphabet. For the fMRI study, the gestures ‘L’, ‘F’, ‘W’ and ‘Y’ and for the ECoG study 
‘D’, ‘F’, ‘V’ and ‘Y’ were used
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based on neuronal activity, and this topographic representation is also present for 
individual fingers. The hands and fingers are known to be extensively represented 
on the sensorimotor cortex at a specific anatomical landmark, the so-called hand 
knob (Yousry et al. 1997). Moreover, it has been shown that the movement of indi-
vidual fingers (Kubánek et al. 2009; Miller et al. 2009) and the coordinated move-
ments of all fingers [e.g. during grasping (Chestek et al. 2013; Pistohl et al. 2012)] 
can be discriminated based on the neuronal activity of the sensorimotor cortex. 
Consequently it should also be possible to decode communicative hand gestures.

The confined representation of the hand makes it a very interesting target 
region to extract control states for a permanent BCI using implanted electrodes. 
Nevertheless, permanent BCIs based on needle or surface electrodes require surgi-
cal intervention for the electrode placement. Every surgery comes with a certain 
risk for the patient, which is especially the case for people with locked-in syn-
drome. The required surgery should therefore be as short and limited as possible. 
The hand knob area would be such a region. It is located on the gyrus ‘at the cross 
point between the pre-central sulcus and the central sulcus, and is therefore also 
visible on the cortical surface’ (Yousry et al. 1997), and is also confined to a small 
area. This makes it surgically comparatively easy to access and therefore only 
requires a small surgical intervention.

We propose using communicative hand gestures as the control signal for an 
ECoG based BCI with the purpose of re-establishing communication. If it were 
possible to decode multiple gestures from their activation pattern over the motor 
cortex, it would provide an interesting and powerful approach for the control of 
BCI, specifically aimed at reinstating communication. We therefore studied the 
feasibility of decoding communicative hand gestures using high-field fMRI and 
high-density ECoG.

1 � fMRI

In a first step towards our goal of using hand gestures for BCI control, we studied 
the decodability of gestures using functional magnetic resonance imaging (fMRI). 
Although our objective is an implantable BCI using ECoG electrodes, the fMRI 
provides valuable information that is difficult to acquire by other means. The pri-
mary advantage of using fMRI (compared to invasive recording techniques) is that 
it allows larger groups of people to be studied. The obtained results are therefore 
generalizable to the population. fMRI provides a good spatial resolution which, at 
7 T field strength, is comparable to what can be measured with high-density ECoG 
electrodes (1–2  mm inter electrode distance). Furthermore, it allows researchers 
to record from all parts of the brain (including deeper structures) at the same time. 
The rather good correspondence between the brain activity patterns on the cor-
tex as measured by fMRI and by ECoG (Hermes et  al. 2012; Siero et  al. 2013; 
Vansteensel et  al. 2010) makes it possible to use the fMRI results to inform our 
subsequent ECoG study.
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The classification of individual gestures on a single trial basis requires a good 
signal-to-noise ratio, and the representations we were interested in are presumably 
rather fine-grained (Dechent and Frahm 2003) necessitating high spatial resolu-
tion. We therefore conducted our study using a Philips Achieva MRI 7 T system 
with a 32-channel head-coil. Given the superiority of 7 T fMRI over typical fMRI 
at lower field strength, in terms of signal strength and quality (van der Zwaag et al. 
2009), we expected to be able to decode individual movements on a single trial 
basis.

Twelve young healthy right-handed volunteers participated in the study, 
in which they had to execute four hand gestures taken from the American Sign 
Language alphabet (corresponding to the letters ‘F’, ‘L’, ‘W’ and ‘Y’; see Fig. 1) 
inside the scanner. The participants were naive to the meaning of the signs prior 
to the experiment. In a familiarization session, they practiced the gestures and 
learned the corresponding letters. The execution of the gestures inside the scanner 
was recorded by an MRI compatible data-glove (5 DT). This data-glove provides 
information about the flexion of each finger [for a more detailed description of this 
study, please see Bleichner et al. (2013)].

As we wanted to classify individual gestures, all participants performed two 
runs. The data from the first run (training run) was used to train a classifier, and 
the data of the second run (test run) was used to test whether we could predict 
which gesture was performed on a single trial basis. For this, we computed aver-
age activation maps on the training run for each type of gesture. The resulting 
four activation maps (one for each type of gesture) then served as prototypical 
templates. Furthermore, to reduce the amount of data, we selected a subgroup of 
voxels that was considered most informative (i.e. showing a high level of activa-
tion of any of the gestures). The individual trials from the test run were then com-
pared with the four prototypes. Using a simple pattern correlation classification, 
we computed the Pearson correlation between the activity pattern of the individ-
ual trial and the activity patterns of the four prototypes. The individual trial was 
labeled according to the gesture type with which it had the highest correlation.

We found an average classification score for the four gestures of 63 % (range of 
35–95 %). This was significantly above the chance level of 25 %, indicating that 
the gestures could be distinguished on a single trial basis. Noticeably, the clas-
sification accuracy varied considerably between participants from barely above 
chance level (35 %) to almost perfect classification (95 %; Fig. 2a shows the indi-
vidual classification scores). This wide range of classification scores, however, 
could be explained by the consistency with which the gestures were executed. The 
data-glove provided information on the movement of the individual fingers, and 
allowed us to compute how consistently the gestures of the same type were exe-
cuted. There was a significant negative correlation (r = −0.62, p < 0.05) between 
the classification accuracy and the variability of the gesture execution (Fig.  2b). 
The less variably the gestures were executed, the higher the classification accu-
racy. This indicates that the gestures can be classified with high accuracy provided 
that the gestures are consistently executed.
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The most informative voxels were confined to a small patch of cortex surround-
ing the hand-knob area (Fig. 2c). The axial slices show nicely that the informative 
voxels cluster around the hand knob being partly located within the sulcus as well 
as on the gyrus.

Unlike fMRI, which provides a complete sample of the entire brain including 
deeper cortical structures, ECoG electrodes, which are located on the cortical sur-
face, cannot measure from tissue in the sulcus. The ECoG electrodes are most sen-
sitive to the neuronal activity of the tissue directly underneath the electrode, and 
probably cannot measure much from within the sulcus. To make our fMRI results 
comparable to the situation with ECoG electrodes, we restricted our voxel selec-
tion to those voxels that were located in the upper 6 mm of the cortical surface 
and we restricted the analysis to a patch of cortex of 2 × 2 cm (centered on the 
most active voxels). This corresponds to the area that could be covered by a high-
density 8 × 8 electrode grid (Fig. 2c: right side, black square).

(a)

(c)

(b)

Fig. 2   fMRI results: a classification accuracy given as percentage correct for each individual. 
The red line indicates the 25  % chance level. b There was a significant negative correlation 
between the classification accuracy and the variability with which the gestures were executed. 
Participants who executed the gestures more consistently had a higher classification score. c 
(Left) Location of the most informative voxels shown on the axial slices for one participant. The 
majority of informative voxels are located at the hand knob area. The informative voxels follow 
the characteristic Epsilon shape of the hand knob. (Right) Most informative voxels as projection 
to the cortex. The white line indicates the central sulcus, and the black square indicates the pos-
sible location of a high density—EcoG grid (2 × 2 cm)
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Using this restriction, we achieved an average classification accuracy of 53 % 
(range 32.5–92.5 %), which, though significantly lower than the values obtained 
using all voxels (p < 0.05), was still significantly above chance level (p < 0.01). 
For the best participant, that is, the person who performed the gestures most con-
sistently, the classification accuracy was still 92.5  %, which would allow very 
good BCI control.

These results indicate that it is possible to distinguish different gestures, based 
on their single trial activation pattern, using a confined area of cortical tissue 
around the hand-knob region. Consistent execution of the gestures is essential for 
effectively discriminating the gestures.

2 � ECoG

From the fMRI experiment, we learned that the four hand gestures could be clas-
sified with a comparably high accuracy using only a small patch of cortex (on the 
gyrus) that would also be accessible by ECoG surface grids.

In a subsequent study, we had the opportunity to test whether the gestures could 
also be discriminated using high-density ECoG. In the intensive epilepsy monitor-
ing unit of the University Medical Centre Utrecht/The Netherlands, we recorded 
from five patients undergoing ECoG monitoring prior to surgery for epilepsy focus 
detection and functional mapping.

The grids, with an inter-electrode distance of 3  mm, contained 9 times more 
electrodes than the standard clinical grid (inter electrode distance of 1  cm). The 
grids contained either 4 × 8 or 8 × 8 electrodes and covered the hand-knob region 
to varying degrees. Only for one patient was the grid optimally located on the 
hand-knob.

As in the fMRI experiment, we asked participants to perform four hand ges-
tures: ‘D’, ‘F’, ‘V’, ‘Y’ (see Fig. 1). Participants, who were naïve to the meaning 
of the gestures, underwent a short familiarization period. Due to the limited time 
we had with the patients, we could only record 40–80 trials in total per patient. 
To control for the accurate execution of the gestures, the hand movements were 
recorded using the data-glove as in the fMRI study.

After the normal pre-processing steps of filtering for line noise, and then re-
referencing to the common average reference (comprised of all electrodes on the 
high density grid), the data was epoched into segments of 3 s (1 s before and 2 s 
after movement onset as determined based on the data-glove recording). For each 
epoch and electrode, the average power was computed for the frequency range of 
70–125 Hz. Based on the literature, this frequency range was expected to be most 
informative for distinguishing the movements of individual fingers.

In a leave-one-out cross-validation scheme, we performed classification using 
pattern-correlation. All trials of each condition (excluding one) were used to com-
pute the average activation pattern, leaving us with four averages (one per condi-
tion). The excluded trial was than compared with the four averages and classified 
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as the condition with which it had the highest similarity (as computed by Pearson 
correlation).

The classification accuracy varied considerably between participants, rang-
ing from 40 to 97 % (see Fig. 3). These large differences are primarily due to the 
location of the grid. In the fMRI study, we have already seen that the most active 
voxels cluster around the hand-knob region, being confined to a small area. For 
patients where the electrode grids did not sufficiently cover the hand-knob, the 
classification accuracy was low.

The participant with the best classification accuracy had the best coverage (see 
Fig. 4), which was also confirmed by the 7 T fMRI data we had from this patient. 
The second best patient also had a sufficiently good coverage, though the elec-
trodes were located primarily on the post-central area. The reason for the lower 
classification accuracy for this participant was the poor execution of one of the 
gestures. In both runs (this was the only participant with two runs) the execution 
of the ‘D’ gesture entailed considerable problems, leading to hesitation and super-
fluous movements.

Fig. 3   ECoG classification 
results shown for each 
participant. The y-axis 
presents “classification 
scores” as percentage 
correct. The chance level of 
25 % is indicated by the red 
horizontal line. Patient 2 (P2) 
did two sessions
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Fig. 4   Electrode locations 
(yellow dots) rendered on the 
individual anatomy for the 
worst (41 %) and best (97 %) 
performing participants. 
The red rectangles indicate 
the actual location of the 
high-density grids. The 
yellow rectangles indicate 
the anatomical location of 
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These results show that classification of executed gestures is also possible using 
high-density surface electrode grids. Our data also suggest that the location of the 
grid is essential for good classification results. It appeared that high classification 
accuracy would also have been possible with a sub-selection of electrodes, which 
could allow the placement of fewer electrodes. Unfortunately, we did not have suf-
ficient data to test this hypothesis.

3 � Discussion

The two studies provide converging evidence that hand gestures, as used in the 
finger spelling alphabet, can be decoded from a small patch (several cm2) of corti-
cal surface. Using high-density electrode grids, it was possible to achieve almost 
perfect classification. We take this as evidence that hand gestures are in principle 
suitable for BCI control.

The small area from which the informative activation was recorded provides 
an optimal target for subdural grid placement. The burden and risk for the patient 
should therefore be limited.

The high correspondence between our fMRI and ECoG results provides some 
interesting opportunities. While this relationship has to be studied in more detail, 
our results suggest that high-field fMRI can help to pre-localize the optimal loca-
tion for the electrode grid prior to surgery. The hope is that it will be possible in 
the future to individually tailor the exact placement of an electrode grid based on 
the individual cortical representations. Furthermore, a good pre-surgical localisa-
tion of the optimal implantation position will increase the chance of success for a 
patient. This will be especially important for patients with severe paralysis, where 
the cortical representation might deviate from normal anatomy, due head trauma, 
tumours or cortical reorganisation after extended periods of paralysis.

Another advantage of this correspondence is the potential to check prior to 
implantation whether the patient is able to control a BCI using this strategy inside 
the scanner, by examining the discriminability of the different patterns of acti-
vation. This could prevent unnecessary surgical procedures in cases where the 
chances of success are small. The signal quality allows for realtime feedback of 
the classifier (Andersson et al. 2012), allowing for presurgical testing.

Using hand gestures to control a BCI has a number of beneficial features. To pro-
vide a natural communication speed, BCIs have to be able to discriminate a large 
number of control signals in a short time. From the user’s perspective, it should be 
possible to generate different control signals effortlessly in fast succession. However, 
many BCI control strategies require the user to switch between different mental 
tasks. For example, the fMRI based speller from Sorger et  al. (2012) requires the 
users to switch between three different tasks (e.g. motor imagery, mental calcula-
tion and inner speech). This constant task switching, however, is tiring for the user. 
Using different hand gestures does not require such constant task switching and can 
be highly automated. Furthermore, the different control signals are just variations of 
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the same task (i.e. the execution of a gesture), so additional control signals can be 
introduced by using more gestures. Our approach should therefore be extendable to 
a larger number of control signals without additional effort for the user.

An important limitation in our experiments is that we studied executed move-
ments in able-bodied participants, while the target group for such BCIs is patients 
with severe paralysis capable of attempted movements only. We have previously 
shown that imagined movements, assuming an adequate proxy for an inability to 
move in paralysis, in abled participants does not activate the primary motor cortex 
(M1), as measured with fMRI (Hermes et al. 2011). We instead postulate that exe-
cuted movements are a better proxy for attempted movements in paralyzed people. 
There are studies that support this notion. Hotz-Boendermaker et al. (2008) have 
reported that paraplegics showed activation of the primary motor cortex during 
attempted movements that was comparable to the executed movements in healthy 
controls. Moreover, Hochberg et al. (2012), Collinger et al. (2012) and Wang et al. 
(2013) have shown that the sensorimotor cortex in paralyzed people provides suffi-
cient information during attempted movements that allows for control of a robotic 
arm in several dimensions. Nevertheless, it remains to be shown that the complex 
hand gestures can also be discriminated during attempted movement and whether 
our approach is feasible for patients for actual BCI control.

Our approach allows an active BCI [as defined by Zander and Kothe (2011)] to be 
built. ‘The BCI derives its outputs from brain activity which is directly and consciously 
controlled by the user, independent of external events’ (Zander and Kothe 2011). 
Unlike the P300 speller where the user is dependent on external stimulation (i.e. the 
flashing of the letters), a gesture controlled BCI allows for self-paced control. The user 
can generate control signals whenever he wants, providing him with a larger degree of 
freedom and flexibility. It can also be an option for people that have problems (i.e. due 
to visual impairments) using the standard P300 speller (Brunner et al. 2010).

Finally, we expect that our approach would only interfere to a limited degree 
with other tasks. An often underestimated problem of BCI systems is the num-
ber of false alarms. BCIs are generally studied under well-controlled conditions 
in which the user is confronted with little distraction and has to perform a well-
defined task (e.g. copy the spelling of a predetermined sentence). Under real cir-
cumstances, the control task (e.g. inner speech) might interfere with the task at 
hand (thinking about what to do), causing unintended reactions from the BCI sys-
tem. We assume that this interference with general cognitive tasks should be mini-
mal when using attempted movements.

Postulated advantages of using gestures for BCI control

•	 A small, confined area of cortex is sufficient to discriminate four different 
hand gestures. This confined area is an optimal target for subdural grid 
placement.

•	 The close correspondence between the fMRI and ECoG results suggests 
that it is possible to pre-localize the best grid position with fMRI prior 
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to implantation. Furthermore, it is possible to train the patient inside the 
scanner prior to implantation, using realtime classification feedback.

•	 Our approach does not require switching between different control tasks 
(e.g. motor imagery, mental calculation and inner speech), since it is pos-
sible to create different control signals by varying the same task (i.e. dif-
ferent gestures).

•	 Our approach is extendable. Though we have only differentiated between 
four gestures, it should be possible to differentiate a larger number of 
gestures.

•	 Increasing the number of gestures and thereby the number of control sig-
nals would not increase the time that is necessary for a selection.

•	 Our approach can be self-paced. Unlike a P300 speller, external stimula-
tion is not necessary. This also makes it interesting for visually impaired 
patients.

•	 Interference effects with other cognitive tasks are expected to be minimal. 
This may have a positive effect on the false alarm rate.

4 � Conclusion

The studies presented here provide a first indication that communicative hand 
gestures as they are used in the fingerspelling alphabet of sign languages can be 
distinguished based on their neuronal activity on a small patch of cortex. The 
hand-knob area, which is anatomically well defined, therefore provides an inter-
esting target area for high-density electrode implantation. We conclude that hand 
gestures can provide an interesting possibility to control an ECoG based BCI for 
communication. As our results have been obtained in able-bodied people, consid-
erable work has to be done before this approach can be used in an actual applica-
tion for people with severe paralysis.
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Abstract  Brain-computer interface (BCI) systems have been suggested as a 
potential method to restore function and enhance communication in motor-
impaired patients. This approach has generally been proposed for patients with 
compromised motor outflow but a fully intact and functioning cortex. Because 
of this, in BCIs utilizing motor imagery, the BCI control signals have generally 
relied upon the cortical physiology associated with movements of the contralateral 
limb. More recently, BCIs have been proposed as a method to restore motor func-
tion after hemispheric stroke. In this patient population, the traditional contralat-
eral motor physiology is affected by the cortical lesion, making a different control 
signal necessary. We review the emerging literature describing the distinct corti-
cal physiology associated with ipsilateral or same-sided motor movements and 
the technical findings demonstrating the potential for this physiology to be used in 
BCIs for chronic stroke survivors.

Keywords  BCI  ·  Stroke rehabiliation  ·  Hemiplegia  ·  EEG

D.T. Bundy · E.C. Leuthardt (*) 
Department of Biomedical Engineering, Washington University in St. Louis,  
Campus Box 8057, 660 South Euclid, St. Louis, MO 63130, USA
e-mail: leuthardte@wudosis.wustl.edu

E.C. Leuthardt 
Department of Anatomy and Neurobiology, School of Medicine,  
Washington University in St. Louis, St. Louis, MO 63130, USA

E.C. Leuthardt 
Department of Neurological Surgery, School of Medicine, Washington University in St. Louis, 
Campus Box 8057, 660 South Euclid, St. Louis, MO 63130, USA

E.C. Leuthardt 
Center for Innovation in Neuroscience and Technology, School of Medicine,  
Washington University in St. Louis, St. Louis, MO 63130, USA

Disclosures: DTB receives consulting fees from and ECL has stock ownership in the company 
Neurolutions.



20 D.T. Bundy and E.C. Leuthardt

1 � Introduction

1.1 � Clinical Significance

A major challenge in the treatment of stroke survivors is the rehabilitation of 
chronically lost motor functions. Stroke is the most common neurological disorder 
in the United States, affecting 795,000 patients per year in the US alone and with a 
prevalence in the US of 7,000,000 adult Americans that have experienced a previ-
ous stroke (Duncan et al. 1992; Roger et al. 2012). Furthermore, 50 % of the survi-
vors of these strokes experience hemiparesis 6 months after the onset of the stroke 
(Roger et al. 2012). These deficits are significant as recovery has traditionally been 
shown to plateau at 3 months after a stroke (Jorgensen et al. 1995). Taken together 
this means that a large number of stroke survivors have motor impairments and 
will be unable to experience recovery through traditional means.

1.2 � BCI After Stroke

One potential method to restore functionality after stroke would be the use of a brain-
computer interface (BCI) system. These systems use signals from the cortex to con-
trol a computer or other assistive device and could be used to enhance function either 
through control of a device independent of the unaffected hand or through pairing BCI 
operation with motor stimulation to induce recovery from endogenous plasticity. A 
number of studies have demonstrated the use of motor imagery-based BCI systems 
utilizing ipsilesional cortex contralateral to the affected limb in stroke survivors (Buch 
et al. 2008; Daly et al. 2009; Broetz et al. 2010; Caria et al. 2011). Additionally, BCI 
systems have been utilized in clinical trials to demonstrate the use of ipsilesional BCI 
systems for rehabilitation after stroke (Ang et al. 2010; Silvoni et al. 2011; Ramos-
Murguialday 2012, 2013). While this body of work is promising, stroke-induced 
motor impairment is associated with a large extent of damage to primary contralat-
eral motor cortices, with damage to the contralateral corticospinal tract, and with 
changes in functional connectivity in traditional motor networks (Carter et al. 2012). 
Furthermore, the neural modulation associated with motor imagery after stroke has 
been related to the remaining integrity of structural and functional motor networks 
(Buch et al. 2012). Because of this, in patients with dense hemiplegia, that would be 
the most likely to benefit from use of a BCI system, a novel control signal will likely 
be necessary for BCI applications. As conceptualized in Fig. 1, our proposal is unique 
in that it focuses on using ipsilateral motor signals from the contralesional hemisphere 
as a control signal for a BCI system (Bundy et al. 2012).

2 � Motivation for Ipsilateral, Contralesional BCI

There is a variety of evidence that demonstrates that motor areas ipsilateral to a 
moving limb play a unique role in the planning and execution of motor move-
ments. Wisneski et  al. (2008) used electrocorticographic (ECoG) recordings to 
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show that movements of the hand ipsilateral to the electrodes were associated with 
spectral power changes occurring in lower frequency ranges (average 37.5  Hz), 
at distinct anatomical locations, and at earlier time points relative to movement 
onset than movements of the hand contralateral to the electrodes. Because these 
electrophysiologic activations during movements of the ipsilateral hand occurred 
earlier and were found in more anterior locations, it was postulated that ipsilateral 
motor areas are primarily associated with motor planning. An additional line of 
evidence for the causal input of the ipsilateral hemisphere to movements comes 
from examination of motor deficits in the ipsilesional, “unaffected” arm after hem-
ispheric stroke. Several studies have demonstrated deficits in the ipsilesional limb 
after hemispheric stroke that are related to shifts in the location of ipsilateral neu-
ral activations (Baskett et  al. 1996; Cramer et  al. 2002). Additional studies have 
demonstrated a dissociation of the ipsilesional deficits observed with the side of 
the hemisphere that was damaged. In particular, in right handed subjects, damage 
to the left (dominant) hemisphere impaired modulation and adaptation of initial 
trajectories, while patients with right (non-dominant) hemisphere damage showed 
an impaired ability to correct their final position accuracy (Schaefer et  al. 2007, 
2009a, b). Furthermore, these deficits have been shown to be related to the extent 
of contralesional arm paralysis (Haaland et al. 2009).

In addition to the evidence for an active role of ipsilateral motor cortices in 
planning and execution of movements in motor intact humans, there are a number 
of studies that have examined the role of contralesional cortex in recovery from 
stroke. Traditionally, motor recovery after stroke has been thought to occur with 
“perilesional awakening” (Weiller et  al. 1992; Tecchio et  al. 2006) as improved 
long-term recovery of motor function after stroke is associated with a more normal 
pattern of contralateral, ipsilesional activity (Ward et  al. 2003a, b). Conversely, 
ipsilateral motor activity in the contralesional hemisphere increases with improve-
ments in motor function in some patients (Cramer et al. 1997; Tecchio et al. 2006). 
As the potential for recovery in stroke survivors is inversely correlated with corti-
cospinal tract damage (Carter et al. 2011), one hypothesis is that while recovery 
from stroke ideally involves remodeling of perilesional cortex, that the contrale-
sional hemisphere may provide an alternative path for motor recovery in people 
with severe or extensive lesions.

Fig. 1   Conceptual implementation of a BCI using ipsilateral motor areas in the contralesional 
hemisphere as a control signal in stroke survivors. Reprinted with permission from Bundy et al. 
(2012). a Normal motor control. b Stroke-induced paresis. c Neuroprosthetic restoration
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Taken together, ipsilateral motor areas contribute to the planning and execution 
of motor movements of the same-sided hand that is separable from the activity of 
contralateral motor areas. Furthermore, dense hemiplegics are likely to have more 
significant damage to the contralateral corticospinal tract (Carter et al. 2011) and 
decreased neuromodulation of ipsilesional motor areas (Buch et  al. 2012), indi-
cating that contralesional cortex would provide an alternative pathway for BCI 
applications for rehabilitation and an alternative control signal for long-term BCI 
system use for device control.

3 � Ipsilateral, Contralesional BCI After Stroke

3.1 � Study Overview

Bundy et al. (2012) demonstrated for the first time that EEG signals from the unaf-
fected hemisphere in chronic stroke survivors that are associated with intended 
movements of the affected hand can be utilized to control a one-dimensional com-
puter cursor rapidly and accurately. This study used four chronic stroke survivors 
(17–53 months post-stroke, age 48–61). In each participant, bipolarly derived EEG 
signals were recorded from scalp locations over frontal and parietal locations. The 
EEG signals were acquired using g.tec biosignal amplifiers (Graz, Austria) with 
a sampling rate of 256 Hz (patients 1 and 2) or 512 Hz (patients 3 and 4) using a 
0.1 Hz high pass filter.

Patients completed an initial screening task that was utilized to determine fea-
tures for later BCI control experiments. This screening procedure began with an 
experiment in which EEG signals were collected while patients performed overt 
and imagined finger-tapping movements of either the affected or unaffected hand 
or rested. For the overt movement condition, patients with limited motor func-
tion in the affected hand were instructed to perform overt movements of the unaf-
fected hand and intended movements of the affected hand. In a second task, the 
patients were instructed to perform the same task with all movements imagined. 
The data was converted to the frequency domain by autoregressive spectral estima-
tion in 2 Hz bins from 1 to 55 Hz. The signed coefficient of determination (r2) for 
each channel and frequency bin between ‘rest’ and affected hand movement trials 
was used to identify the candidate features with the highest r2 values. Selection 
of candidate electrode locations was limited to electrode positions over the con-
tralesional hemisphere and, where possible, features were additionally limited to 
those that discriminated affected hand movement from unaffected hand movement 
in addition to discriminating affected hand movements from rest.

Using the EEG features selected from the screening procedure described above, 
the patients participated in closed-loop BCI control experiments in which the 
objective was to use the neural activity associated with intended movements of the 
affected hand to move a cursor on a computer screen along a single dimension 
in order to hit a target presented on either side of the screen. Three different BCI 
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control experiments were tested, (1) overt affected hand movements versus rest 
(Patient 1), (2) intended movements of the affected hand versus rest (Patients 2, 
3, and 4), and (3) imagined affected hand movements versus imagined unaffected 
hand movements (Patients 1 and 2). Cursor movement velocity was determined 
from the EEG features in real-time by the BCI2000 software package (Schalk 
et al. 2004). Accuracy (the number of successful trials divided by the total number 
of trials) was calculated for each 2 min block of trials. Performance curves were 
produced using the entire duration of the closed-loop experiments consisting of 
multiple blocks with a particular task condition and control features. Subjects per-
formed between 85 and 246 trials of closed-loop BCI control.

Screening task recordings from each subject contained activations in the unaf-
fected hemisphere associated with intended movements of the affected hand 
(Fig. 2). Notably, when considering cortical activity in the unaffected hemisphere 
alone, there were spatial and spectral differences in the cortical activity associated 
with affected (ipsilateral) and unaffected (contralateral) hand movements. When 
examining all subjects, various features (locations and frequency bins) separated 
intended movements of the affected hand from both rest and intended movements 
of the unaffected hand (Fig. 3).

Furthermore, it was qualitatively observed that subjects with more severe 
motor impairments had contralesional, ipsilateral activity that was located ante-
rior to primary motor areas. Figure 4 demonstrates the significant (p < 0.05) acti-
vations differentiating screening task conditions at the frequencies utilized for 

Fig. 2   Screening task activations are illustrated as topographical maps of the maximum coeffi-
cient-of-determination (r2) values of power decreases between 0 and 50 Hz during affected hand 
movements when compared to rest. As decreases in power in these low frequency ranges have 
been related to motor intention more negative signed r2 values are associated with increased neu-
ral activity. Feature plots demonstrate the coefficient of determination values from electrode loca-
tions in the contralesional hemisphere only at all frequency bins between 0 and 50 Hz. Cortical 
activations are particularly observed in the mu (8–12 Hz) and beta (12–30 Hz) frequency bands. 
Reprinted with permission from Bundy et al. (2012)
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subsequent BCI control. The findings demonstrate wide-spread activity associated 
with affected hand movement in the contralesional hemisphere that could be used 
for device control. The time course of closed-loop task performance is shown in 
Fig. 5. Subjects achieved peak accuracies between 62.5 and 100 % with task dura-
tions ranging from 6 to 10 min. Furthermore, post hoc analysis demonstrated that 
the topography of activations during the closed-loop control and screening tasks 
were significantly correlated in three of the four patients, indicating that the suc-
cessful BCI control was achieved through the screened motor task and not an 
alternative, spurious strategy.

This study provides the first demonstration that neural activity from the unaf-
fected hemisphere associated with intended movements of the ipsilateral affected 
hand of chronic stroke survivors can be utilized for BCI control. Importantly, this 
demonstration of closed-loop BCI control was achieved independently from each 
patient’s ability to perform overt movements of the affected hand. Furthermore, 
the ipsilateral motor signals used for BCI control were observed at distinct loca-
tions and frequencies from the motor signals associated with contralateral move-
ments. In particular, utilizing ipsilateral motor activations from the unaffected 
hemisphere will allow BCI applications to be implemented in stroke survivors 
with dense hemiplegia and significant damage to contralateral motor areas that 
have traditionally been used for BCI control. Therefore, the results represent an 
important step towards translating BCI systems to meeting the significant needs 
represented by stroke survivors.

Fig. 3   In addition to differentiating affected hand movements from rest, contralesional cortex is 
also able to differentiate unaffected hand movements from rest. All 4 patients demonstrate sig-
nificant (p < 0.05) decreases in spectral power in locations over the contralesional cortex asso-
ciated with affected hand movements when compared to rest (left plots). Additionally, 3 of the 
4 patients have activity in the unaffected hemisphere that differentiates affected hand move-
ment from unaffected hand movement with the features in two of the patients based upon power 
decreases (Patients 1 and 2) in low frequencies (<30 Hz). Reprinted with permission from Bundy 
et al. (2012)
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4 � Future Directions

In the study described above, signals from the unaffected hemisphere were specifi-
cally examined as a potential BCI control signal after stroke. The choice of control 
signal is particularly relevant to the potential use of a BCI system for a rehabili-
tation tool. There is a variety of evidence in the published literature demonstrat-
ing changes in ipsilateral, contralesional activity after stroke. Functional imaging 
studies examining activity associated with affected hand movements have shown 
increases in unaffected hemisphere motor areas after recovery in stroke patients 
both when compared to normal controls (Weiller et al. 1992, 1993; Cramer et al. 
1997; Nelles et al. 1999; Tecchio et al. 2006) and when evaluated after improve-
ments in function due to constraint-induced movement therapy (Levy et al. 2001; 
Schaechter et al. 2002). Furthermore, inhibitory transcranial magnetic stimulation 
to contralesional cortex can impair movements of the affected hand (Johansen-
Berg et al. 2002), indicating an active role of the contralesional cortex in executing 
movements. Other evidence contradicts the conclusion that contralesional motor 
activity plays an active role in motor recovery after stroke. Specifically, greater 

Fig. 4   Topographical maps of screening task activations at frequency bins utilized for BCI con-
trol experiments. All patients had significant activity in the contralesional hemisphere associated 
with intended movements of the affected hand when compared to rest (red boxes). Reprinted 
with permission from Bundy et al. (2012)
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ipsilateral excitability measured using TMS in the contralesional hemisphere 
was found to be associated with poor recovery (Turton et  al. 1996; Netz et  al. 
1997) and both longitudinal and cross-sectional studies of recovery from stroke 
show decreases in ipsilateral, contralesional motor activity (Ward et al. 2003a, b). 
Using both of these lines of evidence, a more complicated view can be derived 
when considering studies that demonstrate both ipsilesional and contralesional 
changes in activity with recovery from stroke (Green et al. 1999; Levy et al. 2001). 
Furthermore, patients who recover have been found to show few changes to the 
locations of their contralesional motor activity, while patients with incomplete 
recovery have better recovery with increased contralesional motor activity dur-
ing affected hand motor tasks (Tecchio et al. 2006). This combination of evidence 
makes sense when considering the association between corticospinal tract dam-
age and motor impairment (Fries et al. 1993; Carter et al. 2011). Taken together, 
it appears that the ideal, patient-specific rehabilitation strategy may be dependent 
upon the extent of damage to structural and functional networks. Specifically, we 
hypothesize that patients with intact contralateral corticospinal tracts may bene-
fit from BCI therapies utilizing ipsilesional activity as control signals as shown 
previously (Ang et al. 2010; Silvoni et al. 2011; Ramos-Murguialday et al. 2012, 
2013), while patients with substantial damage to the corticospinal tract will require 
an alternative, contralesional pathway for recovery to take place. Future work 
designed to define the specific rehabilitation strategies (including BCI-based thera-
pies and traditional therapies) associated with optimal outcome dependent upon 

Fig. 5   Performance in closed-loop BCI control tasks over time. Reprinted with permission from 
Bundy et al. (2012)
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the structural and functional areas damaged by the initial lesion will be vitally 
important to the clinical translation of BCI therapies into patients that can benefit 
from them.

In addition to assessing the optimal patient-specific rehabilitation strategy, it 
will be important to gain a greater understanding of ipsilateral motor activity both 
in healthy patients as well as after stroke. While this project has demonstrated that 
stroke survivors can utilize their unaffected hemisphere to control a BCI system 
(Bundy et al. 2012), it is unclear what the extent of information that can be derived 
from these signals is. While a non-invasive control signal would provide the signal 
necessary for operation of a BCI for rehabilitation, long-term use of a BCI to con-
trol an assistive device would likely require more degrees of freedom than could 
be derived from non-invasive signals. To address the feasibility of ipsilateral motor 
areas for BCI control, it will be important to further examine the extent and type 
of information normally encoded by ipsilateral motor areas using invasive record-
ings from healthy controls and animal models. Furthermore, in the study described 
above, patients generally had shifts of the ipsilateral motor activity from the con-
tralesional hemisphere to locations anterior to primary sensorimotor cortices. 
While this finding is in line with other results demonstrating changes in contral-
esional motor activity (Cramer et al. 1997; Green et al. 1999; Tecchio et al. 2006), 
it will be important to fully define the remapping of contralesional motor activity 
after stroke in order to implement contralesional BCI systems for either rehabilita-
tion or device control.

5 � Conclusions

The recovery of chronically lost motor function after stroke represents a signifi-
cant and growing problem. Recent advances demonstrate the possibility of utiliz-
ing ipsilateral motor activity from the unaffected hemisphere of stroke survivors to 
implement a BCI system for long-term device control or rehabilitation. Creating 
a system that can be used for either chronic device control or rehabilitation will 
require further examination of the information encoded in ipsilateral motor sig-
nals, examination of the remodeling of ipsilateral motor areas after stroke, and 
determination of the interplay of lesion location and neural anatomy in determin-
ing an optimal rehabilitation strategy after stroke.
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Abstract  Proprioception plays an essential role in natural motor control, and 
we argue that it will serve an equally important function in artificial control of 
motor prosthetic devices. An artificial sensory feedback signal that could substi-
tute for proprioception in a Brain-Computer Interface (BCI) must be sufficiently 
informative to be used alone when vision is not available (sensory substitution), 
and it should integrate with vision to improve motor performance when it is (sen-
sory augmentation). Achieving these qualities with an artificial signal requires a 
high-bandwidth channel, which can be achieved with an invasive neural interface. 
With invasive electrode arrays, we can manipulate the activity of populations of 
neurons using intracortical electrical microstimulation (ICMS), effectively trans-
mitting useful information directly to the neural circuits where it is needed. To 
date, the dominant strategy for encoding artificial somatosensation has been bio-
mimetic—trying to replicate, at the single neuron level, the neural activity seen 
during natural sensory processing. Here, we argue for a different, though com-
plementary, learning-based approach. We propose taking advantage of the natural 
plasticity of the sensorimotor system, and asking the brain to learn, de novo, an 
artificial input. We hypothesize that the statistical dependencies, such as temporal 
correlations, that will be imposed on a natural (vision) and an artificial sensory 
input (ICMS) will be enough to drive learning and, ultimately, integration of the 
two inputs. Therefore we suggest that such a learning-based approach can achieve 
sensory substitution and augmentation of vision, the two desired properties of an 
artificial sensory feedback signal for clinical motor neural prostheses.
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1 � Normal Motor Function Needs Somatosensation

Motor neural prostheses are assistive devices that aim to restore normal movements 
for persons with injury or disease (Lebedev and Nicolelis 2006; Velliste et al. 2008). 
These systems harness neural activity to control motor prostheses with the prom-
ise of providing natural and effortless mobility with a degree of fluidity that could 
someday approach that of unimpaired movement. Different motor impairments 
spare varying degrees of residual function (compare, for example, spinal-cord injury 
(SCI) to the amputation of a limb), meaning that the most appropriate approach to 
artificial sensory feedback will be unique in each case. As a result, there is a wide 
range of neural prosthetic solutions that have been proposed and developed for 
restoring movements, extending from myoelectric signals extracted from muscles 
and nerves (Parker and Scott 1986; Kuiken et  al. 2009) to direct cortical control 
(Hochberg et al. 2006, 2012). Despite their diversity, all of these approaches share a 
common need: somatosensory feedback (Lebedev and Nicolelis 2006; Hatsopoulos 
and Donoghue 2009; Lebedev et al. 2011; Gilja et al. 2011; Weber et al. 2012).

Somatic sensations (those that originate from the limbs and body, chiefly touch 
and proprioception) are essential for fine control of movements and the dexter-
ous manipulation of objects (Johansson and Flanagan 2009). They also reduce the 
effort required to make goal-directed movements while improving their reliability. 
More specifically, somatosensation relieves the need for constant visual attention 
to manipulated objects and permits movements made outside of the visual field 
(into pockets, etc.). It also enables tasks that are difficult to accomplish even with 
full and direct vision. This critical aspect can perhaps be appreciated by consider-
ing the motor impairments exhibited by persons suffering from sensory deafferen-
tation, impairments that persist despite a fully intact motor pathway. For example, 
the seemingly simple task of lifting an object (Johansson and Westling 1984) 
or striking a match is more challenging and takes longer to accomplish when 
attempted without cutaneous sensation from the fingers. Furthermore, without 
proprioception it is difficult to make spatially precise movement trajectories that 
require multi-joint coordination (Sainburg et al. 1993). Finally, despite the fact that 
vision is often viewed as the dominant sensory modality for humans, somatosensa-
tion actually offers more precision along some spatial axes (van Beers et al. 2002) 
and has a shorter feedback latency than vision (Omrani et al. 2013).

As one would predict from its importance for normal limb function, there is 
growing direct evidence that artificial proprioception would improve motor per-
formance with prosthetic limbs. Monkeys making virtual reaches with a Brain-
Computer Interface (BCI) controlled cursor demonstrated better performance 
levels when an exoskeletal robot passively moved their forelimb to track the cursor 
movement, compared to performance when their limb was held still or moved ran-
domly (Suminski et al. 2010). Although visual feedback of the state of the cursor 
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was available in all conditions, BCI control only approached natural levels of per-
formance and fluidity when additional state information was provided by intact 
proprioceptive feedback. A similar result was observed when decoding movement 
intention from humans with intact proprioception (Gomez-Rodriguez et al. 2011), 
where closing the sensorimotor feedback loop improved the user’s degree of con-
trol over the BCI. We expect that the benefit of proprioceptive feedback on BCI 
control will persist, even as the BCI control algorithms continue to improve (Gilja 
et  al. 2012; Orsborn et  al. 2012)—just as deafferented patients with nominally 
intact motor systems exhibit motor impairments, a motor neural prosthesis without 
somatic sensation will remain functionally impaired.

To optimize BCI control, an artificial sensory signal must fulfill the functions of 
natural proprioception. In particular, we will consider two criteria that we hypoth-
esize will be sufficient for improving BCI control. Namely, we want to design an 
artificial signal that can provide enough information to be used alone when vision 
is not available (sensory substitution), and that can be integrated with vision to 
improve motor performance when both inputs are available (sensory augmentation).

2 � Approaches for Artificial Somatosensation

Given the importance of somatosensory feedback for motor neural prosthetic systems, 
we next ask how such feedback should be provided. As with the selection of a motor 
decode strategy, the most suitable route for somatosensory feedback will depend on the 
specifics of the injury and the preferences of the user. For example, an amputee with 
an upper-limb prosthetic arm may be best served by stimulation of residual peripheral 
nerve afferents (Schiefer et al. 2010). In contrast, for SCI patients, the peripheral route 
may not be a viable option and a more central site of stimulation would be required.

In the following, we focus on the problem of restoring somatic sensation for com-
plete SCI or other conditions that result in functionally complete somatosensory 
loss below the neck. While these strategies may also apply in situations with less 
severe disability, we choose to focus SCI because there are fewer existing and via-
ble strategies for restoring somatosensation to these individuals. SCI imposes strong 
restrictions on the design of neural prosthetic devices. Motor commands are only 
available above the lesion site, so in many cases they must be read out from the brain. 
Similarly, sensory afferents from below the lesion are few or non-existent. While 
both invasive and non-invasive devices could be used in this case, we argue next that 
an invasive approach is preferable for both neural read-out and sensory write-in.

2.1 � Non-invasive Approaches

There are several non-invasive ways that a motor command signal could be 
obtained in SCI, including measurement of eye, head, face, or neck movement—
directly or via electromyogram (EMG) or electrooculogram (EOG) recordings—or 
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with external recording of neural signals from the brain (electroencephalogram, 
EEG). These controllers can be classified as either “direct” or “indirect.” With 
indirect control schemes, users learn to control the prosthetic device with a sub-
stitute effector. Clinically successful examples of indirect control include sip-and-
puff systems, head-mounted wands and joysticks, and voice commands. These 
indirect approaches are simpler and less expensive than other methods, but their 
information bandwidth is limited. In contrast, direct control schemes measure 
the control signal from EEG recordings, although eye position control of a com-
puter cursor could also be included. Notably, an EEG-based system has recently 
achieved information bandwidths comparable to invasive BCIs (Bin et al. 2011). 
However, these information rates were obtained by analyzing the temporal pattern 
of visual evoked potentials (VEP) during the serial presentation of a large set of 
discrete stimuli. The system was able to estimate which of a set of targets was 
being visually fixated at a rate of approximately every 2  s; significant advances 
would be needed to use this approach to obtain smooth, continuous control of a 
prosthetic device.

In principle, restoration of somatosensory feedback via non-invasive BCIs 
could also include direct and indirect approaches, however in the case of SCI, 
where the sensory periphery is unavailable, there are currently no viable non-
invasive technologies for stimulating the somatosensory pathways of the limb. 
This leaves only indirect approaches, or   “sensory substitution”, where sensory 
information intended for one modality is translated into another. Sensory sub-
stitution has employed tactile, auditory, and superficial electrical stimulation 
to replace systems like natural vision (Nau et  al. 2013) and vestibular function 
(Vuillerme et  al. 2011). While non-invasive systems have clear appeal, tac-
tile stimulation can be uncomfortable, and a device of suitably high bandwidth 
placed on the head or neck is likely to be bulky or awkward. We argue below that 
a fully implantable invasive device may, in the end, be more tolerable to many 
patients.

Despite potential limitations for rehabilitation, studies of sensory substitution 
provide key insight into the central role that sensorimotor learning can play in sys-
tems for artificial somatosensation. In a seminal sensory substitution experiment, 
blind subjects were taught to detect visual objects using a system that translated 
video input from a camera into a matrix of tactile inputs on the subject’s back 
(Bach-y-Rita et al. 1969; Bach-y-Rita and Kercel 2003). Users of this system had 
great success, even learning to recognize faces and partially occluded objects, 
and perceived “the external localization of stimuli,” meaning that the objects they 
sensed seemed to come directly from the camera rather than having to be inter-
preted from a sense of tingling or touch on their backs (Bach-y-Rita et al. 1969; 
Bach-y-Rita and Kercel 2002). Importantly, subjects only learned to distinguish 
objects when they were able to actively manipulate the movement and perspec-
tive of the camera, observing the changes in feedback as a result of their actions. 
If instead the camera was stationary or moved by another person, subjects did 
not “learn to see,” and instead had to interpret the signals in terms of touch and 
vibration. We conclude that active exploration is essential for learning of new 
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modalities, but once learned, new modalities can be directly perceived, without the 
need for a translation step. We believe that these principles can usefully inform 
invasive approaches for sensory feedback.

2.2 � Invasive Approaches

The key challenge for invasive approaches to BCI is the long-term stability and 
safety of the neural interface. Historically, implanted devices have suffered from 
mechanical failures (Barrese et  al. 2013), neurovascular damage (Kozai et  al. 
2010), immune response (Woolley et  al. 2013; Polikov et  al. 2005),   infection 
and other difficulties associated with percutaneous implants. However, recent 
initiatives aim to solve these problems by improving device design (smaller, 
more flexible electrodes), taking new approaches to avoid signal degradation 
(ECOG/LFP-based decoding as well as using robust multi-unit decoding; Schalk 
et al. 2008; Ledochowitsch et al. 2013; Chestek et al. 2011), and fully-implantable 
low-power wireless recording systems (Alam et al. 2013) that may alleviate both 
the medical risks and aesthetic concerns of percutaneous devices. These advances, 
and others, in the field of neurotechnology suggest that safe and reliable invasive 
neural interfaces are on the horizon.

A major advantage of using invasive systems is the potential for high-band-
width readout, due to their high spatial resolution, frequency range, and robustness 
to noise. Invasive systems now achieve information transfer rates of about 2 bits/s 
(Mulliken et  al. 2008) in the continuous control of cursors and robotic arms, in 
large part due to improved algorithmic design (Orsborn et  al. 2012; Gilja et  al. 
2012; Li et  al. 2011; Shanechi et  al. 2013), and  continued progress is expected. 
Still, BCIs have yet to approach the performance levels of natural human move-
ment (4.5 bits per movement, for movements that should take much less than 1 s 
to perform; Georgopoulos and Massey 1988). We attribute much of the remaining 
shortcoming in BCI control to the need for somatosensory feedback.

2.3 � Biomimetic Encoding of Somatosensory Information

Invasive neural interfaces enable not only high-bandwidth output from the brain, 
but also multi-channel input into the brain. Electrical stimulation has been used to 
drive targeted manipulations of neural activity, inducing artificial somatosensation 
or perturbing natural somatosensation, in both animal models and human (e.g., 
Penfield and Boldrey 1937; Butovas and Schwarz 2003; Tabot et al. 2013). As the 
number and density of stimulating electrodes increases, so does the potential com-
plexity of the spatiotemporal pattern of induced activity. This opportunity brings 
with it the challenge of choosing the right spatiotemporal activity patterns and 
determining how to create those patterns via stimulation. The dominant strategy so 
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far has been biomimetic (Fagg et al. 2007)—trying to replicate the patterns of neu-
ral activity observed during natural sensory processing. Intuitively, a biomimetic 
code would be able to provide a sufficiently rich and easily interpreted artificial 
sensory feedback signal. Preliminary studies using biomimetic stimulation show 
promise, at least for artificial tactile feedback (Berg et al. 2013; Tabot et al. 2013). 
However, it not clear how well this approach will extend to proprioception, espe-
cially in the context of SCI.

First, it is not possible to simply invert the biophysics of neural activity, i.e. to 
precisely recreate recorded patterns of activity. Each pulse of electrical current acti-
vates a sphere of neural activity around the stimulation site (Stoney et  al. 1968; 
Tehovnik 1996; Tehovnik et al. 2006) or, according to another study, a sparse, dis-
tributed population of cells whose processes lie proximal to the stimulation site 
(Histed et  al. 2009). In either scenario, it would be difficult to target individual 
neurons without undesired and/or unpredictable collateral activity (Butovas and 
Schwarz 2003). This problem will be particularly acute in brain areas that lack a 
fine-scale topographic map, i.e. where nearby neurons have different response prop-
erties. This appears to be the case in the proprioceptive regions of primary soma-
tosensory cortex (S1) (Kaas et  al. 1979; Weber et  al. 2012). Even if very small 
currents could be used to activate single neurons (Houweling and Brecht 2008), the 
total number of (directly) activated neurons would be limited by the size of the stim-
ulating array. In the near term, then, it seems infeasible to create targeted spatiotem-
poral patterns that mimic the precision and complexity of natural sensory activity.

A second obstacle faced by biomimetic approaches is our piecemeal under-
standing of how those natural patterns activity encode the sense touch (Johansson 
and Flanagan 2009), proprioception (Prud’homme and Kalaska 1994), and their 
complex interaction (Rincon-Gonzalez et al. 2012; Warren and Tillery 2011). Even 
in cases where elements of this coding are known—e.g. topographic maps for the 
digits—SCI with sensory loss raises the additional challenge that the code cannot 
be simply mapped using natural stimuli. While the problem could be inverted—
stimulating individual sites and asking for reports of the subsequent percept—this 
approach would be slow and coarse.

A third challenge for the biomimetic approach is the cortical remapping that 
occurs after the loss of sensory afferents. Somatosensory perturbations elicit plas-
tic changes in the adult brain in a matter of months, so that cortical representations 
of deafferented surfaces become occupied by expanded representations of the sur-
rounding areas (Merzenich et al. 1983a, b). For example, following complete loss 
of sensory input from the hand, the cortical hand representation ultimately repre-
sents somatosensory input from the face (Pons et al. 1991). Further complicating 
the matter, cortical stimulation itself alters the topography of the sensory cortex 
(Recanzone et al. 1992), shifting the receptive fields of neighboring cells towards 
that at the site of stimulation. Thus, neural plasticity must be considering in 
designing systems for artificial somatosensory feedback: in the absence of a stable 
cortical map, the target for biomimetic stimulation may itself be non-stationary.

Of course, these forms of neural plasticity could also facilitate artificial soma-
tosensation—for example, allowing the brain to reorganize to use new sensory 
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signals when they are provided (Frey et al. 2008). Indeed, we argue next that pre-
cise biomimetic stimulation may not be needed to achieve artificial sensory feed-
back. Rather, we suggest taking advantage of ongoing neural plasticity, which 
should permit the brain to find useful signals in even non-biomimetic patterns of 
stimulation.

3 � Harnessing Neural Plasticity

Despite the difficulties associated with biomimetic stimulation, there is both aes-
thetic appeal and, possibly, practical expediency in trying to mimic the way that 
natural systems work. Here we introduce a complimentary approach in which we 
focus not on how information is naturally encoded in the brain—or how to pre-
cisely reproduce that code—but rather on how the brain naturally learns to use 
new sensory information and how we can harness that process.

This approach should be made possible by the (perhaps counterintuitive) fact 
that the brain is always learning to use sensory information. Experimental evi-
dence from our lab (Verstynen and Sabes 2011; Sober and Sabes 2005; Simani 
et  al. 2007; McGuire and Sabes 2009) and from others (Ernst and Banks 2002; 
van Beers et al. 1999; Gu et al. 2008; Burge et al. 2010) demonstrates that sensory 
streams are integrated to provide statistically efficient feedback, and this process 
involves continuous recalibration. As described in more detail next, we propose 
that this ongoing neural plasticity is the key to developing a system for artificial 
somatosensory feedback. In particular, we propose that with the right training 
regime, the brain can learn to interpret and use novel artificial sensory signals, 
even when those signals are not biomimetic.

As an example, consider the problem of reaching to touch an object. To accom-
plish the reach, the brain must combine sensory estimates of the hand and the 
object into the appropriate motor command. Humans (van Beers et al. 1999) and 
animals (Gu et al. 2008) naturally integrate multiple streams of sensory informa-
tion (e.g., vision and proprioception) about relevant parameters (e.g., position, 
velocity, etc. of the hand) into a unified estimate. Experimental evidence indicates 
that—at least to a first approximation—this is a statistically optimal process, in 
that the individual modalities are combined in order to minimize the variance of 
the integrated sensory estimate (van Beers et al. 1999; Ernst and Banks 2002; Gu 
et al. 2008; Fetsch et al. 2012; Alais and Burr 2004). This can be expressed math-
ematically as

where x̂1, x̂2 and x̂int are the mean estimates from the individual modalities and the 
integrated estimate, respectively. The trial-to-trial variances of these estimates, σ 2
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with a given estimate. Note that the integrated estimate places more weight on the 
modality that has the smaller variance, or least uncertainty. The variance of the 
integrated estimate, σ 2

int
 is given by Eq. 2,

is guaranteed to be smaller than the variances of the individual estimates, as long 
as they are finite. This decrease in variance indicates one of the advantages of mul-
tisensory integration, and highlights one reason why artificial somatosensation is 
expected to improve the performance of neural prostheses.

There is preliminary experimental evidence that, at least for some sensory 
modalities, the coding of multisensory spatial variables reflects minimum-variance 
integration (Fetsch et al. 2012; Gu et al. 2008), yet the neural mechanisms under-
lying integration are net yet known. Similarly, although we know that integration 
is a learned process (Wallace and Stein 1997) and that it continually recalibrates 
itself (Simani et  al. 2007; Burge et  al. 2010), the neural basis for these plastic 
changes is not known.

Our lab has recently proposed a novel model of adaptive multisensory integra-
tion in a neural network (Makin et al. 2013). The model stems from the idea that 
multisensory integration can be viewed as one example of a more general, unsu-
pervised learning problem, namely latent variable density estimation (LVDE). 
The goal of LVDE is to extract low dimensional representations of incoming 
data while retaining as much of the original statistical structure as possible. Our 
model is implemented with a simple neural network that learns LVDE via a bio-
logically plausible Hebbian-like learning rule (Hinton et al. 2006). This model is 
illustrated in Fig.  1a. It consists of two populations of input neurons—“visual” 
neurons encoding hand position in extrinsic coordinates, and “proprioceptive” 
neurons encoding hand position in terms of joint angles—and an output popula-
tion of multisensory neurons that receive projections from the two input popula-
tions. Starting from a state of random connectivity, the links from input to output 
are learned through exposure to data in which a strong correlation between the two 
input populations arises from the fact that they both represent the same underlying 
variable(s), x, for example the state of limb. After learning, the network is able to 
perform minimum-variance cue combination, as well as a range of other move-
ment-related multisensory computations (Makin et al. 2013).

A key insight from the model in Fig.  1 is that the statistical properties of the 
input signals, namely the correlation between the activities of the two sensory neu-
ral populations, are sufficient to drive the network to learn integrated representa-
tions of hand position (Makin et al. 2013), without the need for supervisory signals. 
We do not know if this model accurately captures the mechanisms implemented 
in the brain, but its biologically plausible form makes it an exciting candidate and, 
moreover, it makes several testable predictions of practical importance for BCI.

A testable prediction that is particularly relevant for artificial somatosensation 
is that correlation between two input signals will drive learning and integration. 

(2)σ
2
int

=

(

1

σ
2
1

+
1

σ
2
2

)−1

,



39A Learning-Based Approach to Artificial Sensory Feedback

This suggests a powerful learning-based approach for delivering novel sensory 
signals to the brain: if one provides a novel stream of information, delivered for 
example by intracortical mircrostimulation, the brain should learn to interpret and 
integrate that signal as long as it correlates over time with a known sensory signal. 
Specifically, we propose to deliver an informative artificial feedback signal to a 
somatosensory area and to correlate this signal with vision. This pairing will drive 
learning and, ultimately, integration of the two signals, mimicking natural sensory 
processing.

4 � Candidate Neural Structures to Target

In the preceding section we argued for a new, learning-based approach to provid-
ing artificial somatosensory feedback, in which cortical stimulation is paired with 
visual feedback. Here we address the question of where in the brain the stimu-
lation should be delivered. To inform this discussion, the principal cortical areas 
involved in goal-direction reaching are illustrated schematically in Fig. 2. Briefly, 
sensory information ascends from the periphery via the thalamus to modality-spe-
cific primary sensory areas. These, in turn, project to a number of multisensory 
cortical areas in the parietal lobe. Motor planning appears to occur across this pari-
etal circuit and in the interconnected pre-motor and primary motor cortex in the 
frontal lobe. The ideal target for somatosensory stimulation would seem to be one 
that either lies upstream of, or is one of, the multisensory areas involved in move-
ment planning (Fig. 2).

Fig. 1   Learning to integrate natural and artificial sensory signals. A schematic of a neural 
network model that learns, de novo and in an unsupervised fashion, to integrate visual and propri-
oceptive feedback of a variable of interest, x, such as the position or velocity of the limb. Learning 
is driven by correlations between the input populations, which in turn reflect their common encod-
ing of the variable  x. The same system would be equally able to learn novel artificial sensory 
inputs, assuming the inputs remain correlated. This figure is adapted from Makin et al. (2013)
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Neurons in primary somatosensory cortex (S1) process both touch and proprio-
ceptive information. In primates, S1 is composed of cortical areas 1, 2, 3a, and 3b. 
Area 3a is largely proprioceptive; 3b mostly cutaneous; and areas 1 and 2 have 
mixed responses (Krubitzer and Kaas 1990). All of these subdivisions are good 
candidates for providing artificial somatic sensations, but areas 1 and 2 offer an 
important practical advantage: easier targeting with electrode arrays because 
of their superficial location on bank of the post-central gyrus. In contrast, areas 
3a and 3b are less accessible: 3b lies on the bank of the central sulcus and 3b is 
located near its fundus.

Importantly, electrical stimulation of S1 produces sensations referred to the 
body (Penfield and Boldrey 1937). Stimulating in S1 (and the thalamic regions 
that project to it) produce sensations at lower thresholds than “higher” corti-
cal areas (Doty 1969). Additionally, S1 projects directly to areas that are known 
to perform multisensory integration (A5, PMd) as well as to primary motor cor-
tex (Fig.  2). The latter connection, in particular, may play an important role in 
the ability of somatosensory feedback to elicit rapid corrective responses during 
movement execution (Omrani et al. 2013). For these reasons, S1 is likely to play 
a privileged role in providing sensory feedback for BCI control, both for integrat-
ing with vision and for establishing a short latency loop between motor output 
and sensory feedback. Furthermore, neurons in S1 are known to be plastic; for 
example, they can develop visual responses through somatosensory-visual pair-
ing (Shokur et  al. 2013). For these and other reasons, most cortical approaches 
to providing artificial somatic sensation have targeted S1 (London et  al. 2008; 
O’Doherty et al. 2009, 2011, 2012; Berg et al. 2013; Tabot et al. 2013).

The parietal lobe also contains many multisensory areas. Of these, area 5, 
which receives projections from S1, may be particularly well suited, as it is situ-
ated conveniently on the cortical surface and seems involved in encoding arm 
postures and movements relative to the body in the context of upcoming motor 

Proprioception

Area 3b

Areas 1,2

V2,MT,
MST, etc.

Vision

Motor

Area 5

PMd M1

PO (V6)

VIP

MD P, 7m
V6a, MIP (PRR)

Posterior parietal cortex (PPC)

Fig. 2   Possible cortical targets for artificial somatosensory signals. Schematic of the corti-
cal circuit underlying sensory integration and reaching. Visual and proprioceptive information 
enter the parietal cortex via different pathways, and they are integrated before the information is 
passed to pre-central motor cortex
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responses (Lacquaniti et al. 1995; Kalaska 1996). Furthermore, in intact animals, 
area 5 may encode feedback from online perturbations during movement execu-
tion even earlier than S1 (Omrani et al. 2013). Neurons in area 5 also have larger 
and more complex receptive fields than S1 (Hyvarinen 1982), suggesting that it 
employs a more complex, or abstract, representation of proprioceptive space. 
Finally, area 5 projects directly to dorsal premotor cortex (PMd), and, along with 
S1, to primary motor (M1) cortex.

Lastly, we note that the thalamus—an earlier subcortical stage of sensory process-
ing—is also an attractive target for stimulation. The percepts evoked by thalamic 
stimulation correspond to relatively small and localized portions of the body surface 
(Heming et  al. 2011), implying that each channel on a stimulating array could be 
used as a distinct input channel. Additionally, the neural activity evoked by in cor-
tex by stimulation in the thalamus may more closely resemble “natural” neural activ-
ity than that evoked by stimulation of cortex directly (Brockmeier et al. 2012; Choi 
et  al. 2012). Indeed, taking advantage of the information processing performed by 
the thalamocortical projections may represent the key to obtaining more biomimetic 
activity patterns in S1. Unfortunately, however, the thalamus is difficult to reach using 
currently available electrode arrays, and thus far, it seems that evoked percepts more 
often resemble a numbness or tingle than touch or movement (Heming et al. 2010).

5 � Conclusion

In the preceding, we have argued that artificial somatosensory feedback will be 
needed to optimize clinically viable neural prostheses. Furthermore, we argued 
that it is practical to provide this feedback through the electrical stimulation of 
the brain, and indeed that this may be the only viable route for some patient popu-
lations, including following SCI with sensory loss. Lastly, we suggested a novel, 
learning-based approach to providing artificial somatosensory feedback.

Importantly, we are not arguing that the learning-based approach excludes more 
traditional biomimetic paradigms for stimulation-based feedback. Indeed, we think 
it is likely that the learning-based system would be learned more quickly as the 
stimulation protocol drives increasingly biomimetic patterns of activity. Rather, we 
are arguing that success of this approach need not rely of achieving high-fidelity 
biomimetic stimulation: the brain’s natural mechanisms of plasticity should be 
able to make up for the difference.
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Abstract  For the past decade, our group worked towards the development of a 
non-invasive BCI system for neuromodulation. Until recently, BCIs have been 
used mainly for communication and replacement or restoration of lost func-
tions for severely disabled people. Using a BCI for neuromodulation requires 
that the protocol closely matches the steps involved in the motor learning pro-
cess. However, the underlying mechanisms of motor learning in humans remain 
elusive, though several possibilities have been proposed. Of these, the most 
promising was proposed by Hebb (The organization of behavior: a neuropsy-
chological theory, vol. 44, p. 335, 1949), who suggested that synaptic strength 
is increased when two inputs from two sources arrive at the post-synaptic cell 
in synchrony. If this occurs repetitively with the necessary intensity, synap-
tic strength is increased. That is, the same input will produce a greater output. 
Stefan et  al. (Brain J Neurol 123(pt 3):572–584, 2000) were the first to inves-
tigate this concept non-invasively in humans, and it has now become accepted 
that it closely matches what occurs during motor learning. With this knowl-
edge, we developed a BCI system where the user’s movement intention is 
detected through non-invasive electroencephalogram (EEG). When the onset 
of the intended movement is detected, it is used to drive an external device 
that produces the intended movement. Through this process, the user is pro-
vided with the necessary proprioceptive feedback, timed to coincide with the 
onset of the intended movement, so that the Hebbian principle of associativity 
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is satisfied. In this chapter, we outline the development of this BCI system for 
neuromodulation and show that it can be used to drive any external device while 
satisfying all the main criteria necessary for a full BCI application, namely: 
accuracy, flexibility, rapid control, and robustness.

Keywords  Brain computer interface  ·  Hebbian plasticity  ·  Movement related 
cortical potentials  ·  Neurorehabilitation

1 � Introduction

Rehabilitation of motor disability for central nervous system injuries, such as stroke 
and Parkinson’s disease, aims to activate the brain areas related to the planning and 
execution of voluntary movements through consistent and repetitive movements 
of the affected limb(s), either administered by therapists or produced by robotic 
devices. Traditional clinical practice of neurorehabilitation, in which therapists 
manually move the affected limb(s), has limited efficacy. Many patients demon-
strate habituation to therapy, physiologically and psychologically. Numerous novel 
rehabilitation techniques involving advanced technology (Marchal-Crespo and 
Reinkensmeyer 2009), such as robot-assisted systems (Krebs et  al. 2003; Hesse 
et al. 2005; Sanchez et al. 2006), peripheral and (Ring and Rosenthal 2005; Alon 
et  al. 2007; Yan et  al. 2005) cortical electric stimulation (Hummel et  al. 2005; 
Hummel and Cohen 2006; Williams et  al. 2009), have been proposed for motor 
function rehabilitation. However, studies that have successfully demonstrated the 
clinical advantage of these technology-based approaches over conventional practice 
are only beginning to emerge. One concern with many of these new approaches is 
that they are not specifically designed to induce neural plasticity, which is essen-
tial to the recovery of motor function and re-learning of motor skills. Plasticity is 
induced following the Hebbian principle that synaptic connections are strengthened 
when pre- and post-synaptic neural structures are activated in a highly correlated 
way: what fires together wires together. Therefore, motor rehabilitation systems 
need to induce correlated activation of brain areas that are affected by the injuries, 
and such correlated activation has to be as physiologically realistic as possible.

Another equally important factor in motor rehabilitation is the patients’ motiva-
tion (Maclean et  al. 2000). All previously mentioned methods assign a purely pas-
sive role of the patient in the rehabilitation procedure. With this view, methods that 
would provide the patients a more active role in the rehabilitation process have been 
proposed by extracting patients’ movement intentions using biological signals, such 
as EEG. This is possible because the cortical areas, which are related to movement 
planning, sensorimotor processing, attention and task complexity, are shown to be as 
active in stroke survivors as in controls (Cramer et al. 2002). Therefore, in principle, 
these active brain state(s) can be identified through processing the associated brain 
signals, and the patients’ motor intentions can be detected. Rehabilitation devices, 
such as a robotic arm or an electric stimulator, can be controlled, at least in part, by 
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such a detection, as opposed to being fully controlled by a predefined program or by 
therapists. In such a way, the patients are in a much more active role in the rehabilita-
tion process and their motivation is likely to be significantly improved.

2 � System Overview

With the above principles in mind, our group has been developing a brain switch 
system that will efficiently induced neural plasticity and at the same time maxi-
mize the patients’ motivation.

We start with the first principle: creating a rehabilitation approach that com-
plies with the Hebbian rule. In the literature, strong supporting evidence for the 
Hebbian principle has been obtained in in vivo human experiments, notably the 
paired associative stimulation (PAS) paradigm (Stefan et  al. 2000). In this para-
digm, electrical stimulation (ES) was delivered to the peripheral nerve that 
innervates the target muscle. The ES was applied in a time-locked fashion with 
non-invasive brain stimulation to the area of the motor cortex with projections to 
the same muscle. Significant increases in cortical excitability of the target mus-
cle (quantified through transcranial magnetic stimulation, TMS) were observed 
after a short intervention consisting of repeated pairings of the two stimuli. The 
enhancement of cortical excitability was rapidly evolving, outlasted the inter-
vention and was specific to the target muscle. In later publications, the depend-
ence on N-methyl-D-aspartate (NMDA) receptor activation was also confirmed, 
thus satisfying some of the main requirements for an LTP-like (long term poten-
tiation) mechanism. We started the design of our brain switch system inspired 
by this PAS paradigm. It is known that TMS has the limitation that the stimula-
tion current may spread to non-target brain regions adjacent to the target region. 
Therefore, the simulation could become ‘non-specific’ and the efficiency of the 
intervention can be compromised. To avoid this problem and (more importantly) 
to design a system that can maximally engage patients, we chose to replace the 
cortical stimulation with a more natural option: subject’s intention of movements, 
which would activate only the specific cortical regions involved in the movement 
both spatially but also in a temporally correct manner. Thus, the neuromodulation 
system we present here consisted of basically two modules: movement intention 
detection module (a brain switch) and afferent generation module. The function 
of the movement intention detection module is to detect the intention of move-
ment (imaginary or attempted execution) from scalp EEG, i.e. a brain switch. This 
is a very challenging goal to achieve in a single trials basis from EEG, particu-
larly in an asynchronous paradigm. In additional to sensitivity and specificity, 
another key performance requirement for the detection module here is the detec-
tion latency from the onset of the movement intention. As discussed in detail in 
the next section, a short latency is critical for any neuromodulation system to be 
effective, because the Hebbian plasticity can only be induced when a causal rela-
tionship between the movement intention and the corresponding afferents can be 
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established. Each detection would then trigger the afferent generation module. 
This module’s function is to generate an afferent volley that would mimic, as 
closely as possible, the natural afferents arising from real movement. It is impor-
tant to note that the purpose of this module is not to produce functional move-
ments, as a BCI-triggered functional electrical stimulation (FES) is.

3 � MRCP and Movement Intention Detection

3.1 � MRCP and Voluntary Movements

When voluntary movements, or the imagination of movements, are performed, a type 
of slow cortical potential (SCP) can be recorded from scalp EEG. This specific sig-
nal is usually characterized by a slow negative phase, followed by a faster positive 
rebound. The negative phase can start as early as 1.5–2 s prior to the onset of move-
ments (or its imagination), and the peak negativity usually occurs at the movement 
onset. The positive rebound can be as long as 1–1.5  s. This particular signal wave-
form is often referred to as the movement related cortical potential (MRCP). The dif-
ferent phases of MRCPs are associative to specific neurophysiological mechanisms 
during voluntary movements. For an in-depth review on the physiology of MRCP, 
please refer to Johanshahi and Hallettm (2003). In the BCI context, it is important to 
note that the MRCPs observed from a self-paced movement (in an asynchronous BCI 
mode) and from a cue-based movement (in a synchronous BCI mode) arises from dif-
ferent physiological processes (Lu et al. 2012). In the former case, it is often referred 
to Bereitschaftspotential (BP, which means “readiness potential” in German) (Deecke 
et al. 1976), and the latter is often denoted as the contingent negative variation (CNV) 
(Walter 1968), or anticipation-related potential (Gangadhar et al. 2009; Garipelli et al. 
2013). An example of MRCPs under these two conditions is presented in Fig. 1. In the 
literature, MRCP or SCP is used to refer to either of the two cases (Johanshahi and 
Hallettm 2003; Gangadhar et al. 2009; Lew et al. 2012). In our efforts to develop the 
brain switch system, we are focusing on the self-paced paradigm because it provides 
the users (patients) a more engaging rehabilitation experience than a cue-based para-
digm, and the neurophysiological process involved in a self-paced paradigm is closer 
to those in everyday activities than in a cue-based paradigm. In the following, MRCP 
is used in the general case, and BP or CNV is used when a specific condition is dis-
cussed where a distinction between the two is necessary.

3.2 � Signal Processing of MRCP for Detection  
of Movement Intentions

The signal processing chain of MRCP for the purpose of movement intention 
detection is illustrated in Fig. 2. It consists of three modules: pre-processing, train-
ing, and detection. The pre-processing step mainly consists of band-pass filtering. 
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MRCPs are part of the lower end of the EEG spectrum, close to non-physiological 
DC drift in EEG recording systems. Therefore, a DC-coupled EEG system with a 
large dynamic range is mandatory for the detection of MRCPs. To extract MRCPs, 

Fig. 1   Self-paced and cue-based MRCPs. The presented MRCPs are epoch averages of 30 trials of 
execution of dorsiflexions, with self-paced and cue-based paradigms, respectively. Signals were first 
band-pass filtered at 0.05–3 Hz, and then processed with a large Laplacian spatial filter centered at Cz

Multi-EEG
MRCP

template/
classifier

MRCP
detection

Pre-
processing

Training

Testing

Fig. 2   The schematic diagram for the signal processing chain of MRCP detection
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it is necessary to band pass filter the raw EEG before any further processing. There 
is no consensus on the best parameters for the band-pass filter. In a recent study, 
Garipelli et  al. (2013) found that [0.1–1] Hz yielded the best detection accuracy 
for CNV. In general, [0.05, 5] Hz is acceptable. It is important to note that this 
type of band-pass filter usually has a very long transient phase (>30 s). Hence, it is 
highly recommended to check the raw signals at the beginning of a data acquisi-
tion session, to ensure that the transient phase has passed, prior to the start of the 
actual experiments. This is particularly important for online experiments. At this 
stage, it is also possible to include optional processing steps, such as spatial filter-
ing, independent component analysis etc., which would either enhance the power 
of the MRCP (Boye et  al. 2008), or remove signals corrupted by artifacts, EOG 
and EMG (Jiang et al. 2014).

Following band-pass filtering, an MRCP detector needs to be trained using a 
data set from a training session. Usually, during this session, the subject would be 
instructed to perform a series of single movement execution or imagination (e.g. 
dorsiflexion, wrist flexion etc.), either following a cue or at a self-selected pace. 
A typical training session consists of 20–30 such tasks. Usually, signal process-
ing on the training data takes place immediately after the training session. First, 
data segments consisting of MRCPs are identified. This can be done easily in a 
cue-based paradigm, for either imagination or execution tasks, because the timing 
of the movement onset in this paradigm is pre-defined. In a self-paced paradigm, 
this is only possible for execution tasks, and the EMG from the target muscle is 
often used to get the timing of movement onset. Once the timing of the movement 
(either imagination or execution) onset is identified, signals prior to and after the 
onset (t = 0), for example [−1.5, 1] s, are extracted to form an MRCP dictionary, 
from which an MRCP template can be obtained by taking the epoch-average of 
the dictionary. Optionally, a further ‘noise’ dictionary can be obtained by taking 
signals that are not in the MRCP dictionary. This ‘noise’ dictionary can be used to 
obtain an optimal spatial filter for the MRCP in a multi-channel setup by optimiz-
ing the power contrast between the MRCP dictionary and the ‘noise’ dictionary. 
The ‘noise’ dictionary can also be used, along with the MRCP dictionary, to train 
a two-class classifier. Once the detector is trained, either directly using the MRCP 
template, or through the classifier, the online detection (testing) part can start. 
After the same pre-processing, testing data will be streamed to the detector, either 
a matched-filter or a classifier. To improve the robustness of the entire detection 
process, the raw output of the detector can be subjected to post-processing, such as 
majority vote (e.g. a final positive detection would occur only when two out of the 
last three detections were positive).

In the development of our brain switch system, we have conducted a series 
of studies using this general signal processing framework. We demonstrated the 
possibility of detecting executed movements and imagined movements (ballistic 
dorsiflexion) performed by able-bodied subjects, as well as movement attempts 
by chronic stroke patients in a self-paced paradigm (Niazi et  al. 2011). In this 
study, the initial phase of the MRCP (2 s before the negativity) was used for detec-
tion, and spatial filtering was used to enhance detection accuracy. Three spatial 
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filtering methods were investigated: large Laplacian filter, common spatial pat-
terns, and an optimized spatial filter for MRCP signal-to-noise ratio. The detec-
tion algorithm was a simple matched-filter, with a 3-window majority vote (MV) 
post-processing. The average detection performance of this algorithm for move-
ment execution from healthy controls was 82.5 % true-positive and 1.2 false detec-
tions per min. Across all subjects, the detection latency in this case was between 
−110 and 100 ms, with respect to the cue indicating the movement onset, and the 
average latency was −66.6 ms. In the movement imagination tasks, the detection 
performance was significantly lower (64.5 % true-positive and 5.2 false detections 
per min). For stroke patients, the detection true-positive for movement attempts 
was lower than healthy controls (56 %), while the false detection rate was simi-
lar. Most importantly, the detection latency of stroke patient was similar to that of 
healthy controls (−56.8 ms), which is critical for plasticity induction.

The detection performance of the simple spatial filtering and matched-filtering was 
satisfactory, but there was clear room for improvement. More recently, we applied a 
manifold-based dimensional reduction algorithm called locality preserving projection  
(LPP) (He and Niyogi 2003) followed by linear discriminant analysis (LDA) for 
MRCP detection (Xu et al. 2014). The LPP-LDA detector explicitly exploited infor-
mation from both ‘signal’ dictionary and ‘noise’ dictionary, and the resulting detec-
tion performance was significantly better. In this self-paced fully online study with 
healthy volunteers, the average true-positive rate, false positive rate, and detection 
latency of LPP-LDA was 79 %, 1.4 per minute and 315 ms, respectively. No statisti-
cally significant difference was found between movement execution and movement 
imagination tasks. For all performance measures, LPP-LDA was significantly better 
than the matched-filter algorithm on the same data set. Note that the detection latency 
in this study was larger than the one reported previously in Niazi et al. (2013) because 
the template used also included 0.5 s after the peak negativity.

The online detection of movement intentions (execution or imagination) from 
MRCPs makes this approach a candidate for our brain switch for neuromodula-
tion. Further, it has been shown that the morphology of the MRCP is modulated 
by specific task parameters, such as movement type, movement speed, target 
force level, etc. For example, classification accuracy as high as 81 % was reported 
for imagination tasks of wrist extension and rotation, while 84  % accuracy was 
reported for fast and slow imagination of wrist extension (Gu et  al. 2009). In a 
more recent study with healthy subjects, we showed fast and slow executed dorsi-
flexion can be classified with an average accuracy of 80 %, and high target force 
and low target force dorsiflexion can be classified with an average accuracy of 
75  % (Jochumsen et  al. 2013). The classifier used in this study was a Gaussian 
kernel support vector machine (SVM). These studies demonstrated the potential 
of the MRCP for online detection of more complex movements. This capabil-
ity allows for a brain switch that can detect movement intentions with different 
parameters from the user and provide feedback accordingly. Such as a system is 
highly desirable for neuromodulation because diversity in movement parameters is 
an important element of motor learning according to the schema theory (Schmidt 
1975; Salmoni et al. 1984; Shea and Wulf 2005).
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4 � MRCP Triggered Afferent Feedback and Plasticity 
Induction

With the demonstrated capability of using the MRCP for movement intention 
detection with a very small time delay, we continued to develop a closed-loop BCI 
system for neuromodulation. The key objective of such a system is to produce 
afferent feedback that is as close as possible, both spatially and temporally, to 
the afferent volley during normal movement. Spatial similarity means the afferent 
information has to be task and muscle specific. For example, when the intended 
movement is dorsiflexion, the afferents have to arise from tibialis anterior or the 
deep branch of common peroneal nerve; when the intended movement is wrist 
extension, the afferents have to arise from wrist extensors or radial nerve. This 
is one of the important distinctions between our brain switch system and other 
motor imaginary BCI system for communication or controlling external devices, 
in which the feedback to users is not functionally relevant to their motor intention. 
Temporal similarity means that the time interval between the movement imagina-
tion (or attempt) and the artificially generated afferents arriving at the cortex has 
to be similar to the time interval between the actual movement and its resulting 
afferents. This is to ensure that the artificial afferents can be considered as the 
physiological result of the movement intention. The maximum acceptable delay 
in a BCI system such as this is not clear. However, studies in myoelectric control 
indicated the delay should not exceed 250–300 ms for meaningful control (Paciga 
et al. 1980; Lauer et al. 2000; Velliste et al. 2008). Both spatial and temporal simi-
larities discussed above are necessary for satisfying the Hebbian principle and 
consequently plasticity induction.

First, we set out to prove that, when these two conditions are met, significant 
plasticity (cortical output) can be induced using our brain switch (Mrachacz-
Kersting et  al. 2012). In this study, the subjects performed ballistic dorsiflexion 
imaginations in a cue-based paradigm. The CNV was extracted and the peak nega-
tivity of CNV was used as the reference point for electric stimulation to the deep 
branch of the common peroneal nerve (dCPN). The BCI intervention consisted of 
one of three stimulation scenarios: either 2SD-50 ms before, on or 2SD-50 ms after 
the peak negativity of the CNV, where SD is the standard deviation of the peak 
negativity of the MRCP. Single pulse motor threshold stimulation was used. The 
excitability of the cortical projections to the TA muscle was quantified before and 
after each intervention session using TMS applied at five different stimulation lev-
els. Each subject received 50 paired movement imagination and peripheral stimuli 
in each scenario. Across all subjects, only when the dCPN stimulation was applied 
so that the generated afferent volley arrived at M1 during the peak negativity did 
we observe significant increases in the motor evoked potentials (MEP) for all lev-
els of TMS. Since no alterations of spinal pathways (tested through assessment of 
the stretch reflex) were found, the induced plasticity was deemed to be at the corti-
cal level. When the afferent volley was timed to arrive at M1 either before or after 
the peak negativity, there were no significant changes in the recorded TA MEPs. 
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Additional control conditions were also performed, including movement imagina-
tion only, random stimulation only and visual cue only. Neither of these control 
conditions was shown to have any effect on the TA MEPs. This study demonstrated 
clearly the necessary temporal and spatial specificity for effective plasticity induc-
tion through the brain switch.

We continued with another study using a self-paced paradigm (Niazi et  al. 
2012) where the matched filter detection algorithm presented in Sect. 3 was used. 
The subjects were instructed to perform self-paced dorsiflexion imagination, and 
the corresponding MRCP was detected online. Each detection then triggered an 
electric stimulation to the dCPN, with the same stimulation parameters as in the 
previous cue-based study (Mrachacz-Kersting et al. 2012). The subjects also par-
ticipated in two control conditions: BCI alone and random stimulation. The quan-
tification method of the cortical output to the TA muscle was also the same as in 
Mrachacz-Kersting et al. (2012). The results again confirmed the efficacy of our 
brain switch in inducing plasticity. For all subjects, the TA MEPs significantly 
increased after the BCI intervention, while there was no significant change in both 
control conditions. Stretch-reflex recordings also revealed no significant change at 
the spinal level after the BCI intervention.

Following the encouraging results from these studies on healthy subjects, we 
proceeded to determine whether the same or similar plasticity induction capa-
bility of the brain switch also applies to stroke patient. In collaboration with 
Professor Kostic of the Department of Neurology, University of Belgrade, 
Serbia, we applied this intervention in a group of 13 chronic stroke subjects 
who were no longer responding to regular therapy (manuscript in preparation). 
Each subject participated in four 30-min investigative sessions, separated by at 
least 24 h. Three of the four sessions were intervention sessions, in which our 
brain switch protocol was used, and one randomly selected session was a control 
session, in which the subject was only present in the laboratory for the same 
amount of time as the intervention sessions, without exposure to the interven-
tion. Both neurophysiological and functional measures were obtained before the 
first session and after each session. Cortical output to the TA muscle was meas-
ured using TMS, with the same procedure as in the earlier studies in healthy 
subjects (Mrachacz-Kersting et al. 2012; Niazi et al. 2012). In addition, standard 
motor functional measure tests, including Lower-Extremity Fugl-Meyer assess-
ment (LE-FM), 10  m walk test, a foot tapping task and a finger tapping task, 
were also performed before and after the intervention sessions. Across all sub-
jects, the MEPs quantified prior to and following the interventions significantly 
increased. The LE-FM scores of the patients improved significantly, the patients 
were able to walk significantly faster (on average 8 % in 10 m walk test) and had 
a significantly higher foot tapping frequency. Interestingly, there was no signifi-
cant change in the finger tapping frequency, further supporting the specificity of 
this intervention.

In all the above studies, the afferent flow was elicited with peripheral nerve 
stimulation. This approach of inducing afferent information has an apparent 
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problem, because ES is not selective, and the activated nerve fibres and the way 
in which they are activated during ES are not necessarily similar to what would 
occur in natural movements, where in essence there is the additional factor of 
agonist and antagonist activation. More recently, we have investigated the possi-
bility of inducing afferent information by passive dorsiflexion using a motorized 
ankle-foot orthosis (MAFO). Passive dorsiflexion moves the joint and stretches or 
compresses the muscle tendons in a more natural fashion than ES. Presumably, 
it should elicit afferent information more similar to natural movements. Indeed, 
combined with the LPP-LDA algorithm presented in Sect.  3, the BCI-MAFO 
brain switch demonstrated a superior capability in inducing cortical plasticity (Xu 
et  al. 2014). With the same intervention protocol and cortical output quantifica-
tion methods as in the previous studies, our BCI-MAFO brain switch induced a 
significant level of cortical plasticity with a reduced number of imaginations, 
thus a shorter intervention (Fig.  3). The MAFO-BCI intervention resulted in 
an 87  % increase in cortical output following only 50 motor imaginations in a 
~14 min intervention, while in Niazi et  al. (2012) a 53 % increase was reported 
with 75 motor imagery in a ~30-min intervention. The observed plasticity out-
lasted the intervention, as measured 30 min after the cessation of the BCI-MAFO 
intervention.

Fig.  3   Tibialis anterior motor evoked potential (MEP), recruitment curve, prior to, following 
and 30 min after the cession of the BCI-MAFO intervention. Each data point represents the aver-
age of 10 trials. Data are for n = 1
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5 � Conclusion Remarks and Long Term Perspectives

We summarized our efforts during the past several years in developing a brain 
switch that can induce neural plasticity and maximally engage patients during the 
rehabilitation process. In many aspects, our approach is indeed unique in the lit-
erature. In the following, we reiterate and highlight some of these aspects.

5.1 � Cortical Versus Peripheral Stimulation

While the non-invasive cortical stimulation protocols such as PAS showed 
improvements in performance, techniques such as PAS, repetitive TMS or tran-
scranial direct current stimulation (tDCS) have limitations due to current spread 
to adjacent non-targeted areas. They may thus activate intact areas inappropriately 
(both temporally and spatially) and thus affect the rehabilitation process. Further, 
user intention was not incorporated in these protocols. In comparison, our brain 
switch system relies on voluntary movements, as opposed to cortical stimulation. 
This choice serves two purposes simultaneously. The user’s movement intentions, 
either imaginary or actual attempts, activate specific brain areas related to the task, 
and only these areas, resulting in a more efficient dosage. In addition, the entire 
rehabilitation is controlled, at least to a large extent, by the users, thus providing a 
very engaging environment for the users. This should help to maximally motivate 
patients. Metaphorically, the patient is behind the wheel (controlling their own 
process), and the therapist only needs to point way (defining a protocol).

5.2 � Cue-Based Versus Self-paced BCI Paradigm

As discussed in Sect. 3.1, MRCPs are observed in both self-paced (asynchronous) and 
cue-based (synchronous) paradigms. The former is also called Bereitschaftspotential 
potential (BP) and the latter is often referred to as contingent negative variation 
(CNV) or anticipation-related potential. Although the underlying neurophysiologi-
cal processes of movement under these two conditions are not fully understood, 
evidences suggested that they are indeed different (Lu et al. 2012). As a result, the 
morphologies of Bereitschaftspotential and CNV are different (Lu et al. 2012).

We started our development with CNV in the investigation of temporal preci-
sion of afferent delivery (Mrachacz-Kersting et  al. 2012). However, our ultimate 
goal is to develop a system that allows maximal control from the patient, and the 
self-paced paradigm is clearly more suitable for this purpose. More importantly, 
the neurophysiological processes underlying Bereitschaftspotential are closer to 
those underlying natural voluntary movements. This is why we mainly focused on 
the self-paced paradigm (Niazi et  al. 2011, 2012; Xu et  al. 2014). That said, in 
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case of users such as stroke patients, who cannot produce any voluntary muscle 
contractions during movement attempts, a cue-based paradigm must be used in the 
training phase of the MRCP detector. Only after voluntary muscle activities can be 
reliably produced are self-paced paradigms possible.

5.3 � MRCP Versus Sensory-Motor Rhythm

Sensory-motor rhythm (SMR) is the main signal modality for motor-based BCI. 
It has been applied widely in various applications, including communications 
and controlling external devices. In comparison, our choice of signal modal-
ity, i.e. MRCP, constitutes a small portion in the literature. Recently, there are 
several notable efforts towards develop SMR-based neuromodulation systems 
(Soekadar et  al. 2011; Ramos-Murguialday et  al. 2013). In Niazi et  al. (2012), 
we demonstrated that MRCP triggered ES induced cortical plasticity within an 
hour, while previous SMR studies showed similar results with weeks of interven-
tion (Pichiorri et al. 2011). Due to methodological differences, a direction com-
parison in terms of effective intervention dosage between the two approaches is 
difficult. That said, we believe that our approach’s precise control in the timing 
when the afferents reach the motor cortex played a critical role in inducing signif-
icant cortical plasticity within such a short intervention. In MRCP-based BCI, the 
detection and triggered afferent flow occurs within a few hundred ms from onset 
of motor intention, which resulted in effective plasticity induction according to 
the Hebbian theorem. On the other hand, no special analysis was reported on the 
detection latency in the above published studies. In addition, MRCP is applicable 
to naïve subjects (Xu et  al. 2014), while SMR usually requires a long training 
period to get the desirable accuracy (Buch et al. 2008) even before the interven-
tion can start. We acknowledge that, compared with SMR, MRCP-based BCI for 
neuromodulation is a relatively a new signal modality, and is still an ongoing 
effort, and more clinical studies on patients are needed for further verifying its 
effect as well as efficiency.

5.4 � Long Term Perspectives

So far, our continued efforts in the development of the brain switch for neuromod-
ulation produced very encouraging results. Currently, we are looking into further 
development in various aspects of the system. First, we are investigating more 
advanced EEG signal processing methods that can exploit the morphological differ-
ences of MRCP due to different task parameters. In a preliminary study, we demon-
strated this potential in a 4-movement class paradigm: fast, slow, high target force 
and low target force (Jochumsen et al. 2013). It was shown that fast and slow tasks 
are easier to classify than high-low target force. In the next step, we will investigate 
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more advanced signal processing and machine learning algorithms, and the possi-
bility of online detecting and classifying movements with different parameters.

Our current efforts have been focused on lower limb muscles, especially the TA 
muscle. This is because drop-foot is one of the key challenges for the stroke popula-
tion. However, we will also explore the applicability of the brain switch in upper 
limb functions. Currently, we are conducting pilot experiments with wrist func-
tions, using the proven protocol for lower limbs. We anticipate challenges both from 
MRCP detection and afferent elicitation in the case of upper limb motor function.

Because the working principles of our brain switch are the general principles of 
neurophysiology and motor learning, it might also find application in the rehabilitation 
of other movement disorders, such as Parkinson’s disease. In a very recent study, we 
demonstrated the possibility of detecting the initiation of gait using only EEG based 
only on MRCP (Jiang et al. 2014). This can be further developed into an assistive and 
rehabilitation system for Parkinson’s patients who have difficulty initiating gait.
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Abstract  We present a radically new way of recording EEG comfortably and unob-
trusively over long time-periods in natural environments. This break-through has 
been achieved using electrodes embedded on a customized earpiece as typically 
used in hearing aids (Ear-EEG). We illustrate the potential of Ear-EEG as an ena-
bling technology for a number of uses beyond traditional BCI, which are currently 
limited by the inconvenience of standard EEG recording methods. We show that 
Ear-EEG enables both conventional BCI and next-generation applications such as 
the evaluation of hearing capability and the monitoring of fatigue and drowsiness.

Keywords  Ear-EEG  ·  Brain computer interface (BCI)  ·  Non-medical BCI  ·  
Wearable EEG  ·  Hearing threshold estimation  ·  Fatigue estimation

1 � Introduction

Opportunities for EEG-based BCI are rapidly expanding beyond medical uses, 
where the primary aim is a high-performance communication pathway for para-
lyzed patients, to numerous non-medical uses wherein the goal is a continuous 
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measurement of brain state (Blankertz et al. 2010; Allison et al. 2013). Typical appli-
cations could include monitoring fatigue or stress to optimize performance at work, 
or diagnosing sleep disorders (Ward et al. 2012). This all requires overcoming several 
multi-disciplinary challenges in e.g. machine learning and signal processing, but most 
crucial of all is the realisation of a robust and portable technology for continuous 
recording of EEG. The first ambulatory EEG (AEEG) systems appeared in the 1970s 
(Waterhouse 2003), aided by developments in miniature preamplifiers and continuous 
analog-recording technology. Digitization of recording platforms, coupled with the 
integration of computer technology, has provided even greater portability, and cur-
rent recording systems can operate for 24 h with up to 32 channels. However, con-
ventional recording systems remain bulky and cumbersome, and primarily operate in 
the laboratory setting (see Fig. 1, left), highlighting the need for so-called wearable 
systems that allow long-term recordings in natural environments (Casson et al. 2010).

1.1 � Towards Wearable EEG

The concept of wearable EEG is of particular value in non-medical BCI applica-
tions where a trade-off in performance is acceptable in order to satisfy needs of 
the user. One of the ways such a trade-off can be achieved is in the design of sys-
tems which can accommodate smaller batteries, thereby reducing the system size 
and increasing its wearability  (see Fig.  1, right), either by reducing the number 
of electrodes or through advanced data compression algorithms which reduce data 
logging or transmission costs [50 % raw data reduction using lossless compression 
techniques (Casson et al. 2010)].

Another key advance in wearable EEG is dry electrode technology; stand-
ard systems require the use of conductive gel to enable an electrical connection 
between the electrodes and the scalp, which is time consuming, can cause dis-
comfort and limits the time that the recording system can remain functional as 
the gel dries out. Dry electrode technologies have been in development since the 

Fig. 1   Left A 128-channel ‘stationary’ EEG system (asalab, by ANT neuro) and right a wearable 
system (Emotiv EPOC headset)
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late 1960s (Richardson et al. 1968; Bergey et al. 1971) and recent research illus-
trates that, for motor imagery BCI, dry electrode systems can match the opera-
tion of wet electrode systems with only a 30 % reduction in performance (Popescu 
et al. 2007). More recent work demonstrated that dry electrodes could yield per-
formance comparable to wet electrodes in P300, SSVEP, and motor imagery BCIs 
(Guger et al. 2012; Edlinger and Guger 2013).

Despite such advances in wearable EEG technology, research has focused on 
systems which utilise on-scalp electrodes. This methodology is fundamentally lim-
ited, as it requires a means for stable attachment (cap and/or adhesive), making the 
recording process uncomfortable and stigmatising. In order for EEG-based BCI 
to be adopted more widely and to be robust for use in natural environments, the 
recording technology must be:

•	 discreet—not clearly visible or stigmatizing;
•	 unobtrusive—comfortable to wear and impeding the user as little as possible; and
•	 user-friendly—users should be able to attach and operate the devices themselves.

2 � Ear-EEG

To expand the use of BCI, particularly in non-medical applications where core 
user requirements (unobtrusive, discreet, user-friendly) are paramount over perfor-
mance, we have developed the Ear-EEG concept (Looney et  al. 2012; Kidmose 
et  al. 2013). The approach, as shown in Fig.  2, is radically new in that EEG is 
recorded from within the ear canal, which is achieved by embedding electrodes on 
a customized earpiece (similar to earplugs used in hearing-aid applications). Both 
in terms of the propagation of the brain electric potentials and the recording tech-
nology, Ear-EEG uses the same principles as standard recordings obtained from 
on-scalp electrodes. In electrophysiological terms, bioelectrical signals from the 

earplug

outer ear

ear canal

Fig. 2   Left The right Ear-EEG earplug with electrodes visible and an arrow indicating the direc-
tion in which it enters the ear canal. Right The earplug inserted in the right ear
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cortex are attenuated by the cerebrospinal fluid, skull, and skin before reaching the 
ear canal, as is the case with conventional scalp measurements.

In addition to satisfying the aforementioned BCI user-requirements, crucial 
advantages of the Ear-EEG platform are as follows (Looney et al. 2012):

•	 the earpieces are personalized, comfortable to wear, discreet, and are easy to put 
in place by the users themselves, facilitating everyday use;

•	 the tight fit between the earpiece and ear canal ensures that the electrodes are 
held firmly in place, thus overcoming some critical obstacles in scalp EEG—
such as motion artifacts and experiment repeatability.
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The current in-ear prototype (see Fig. 2) comprises several electrodes, with areas 
of approximately 20 mm2, made of silver (Ag) epoxy glue mounted onto a plastic 
earpiece [see Kidmose et al. (2013) for more details]. The earpiece does not enter 
the ear by more than 10 mm and does not approach the part of the ear canal sur-
rounded by bone. Signal acquisition is performed via an external biosignal ampli-
fier (g.tec g.USBamp). When comparing with scalp-EEG, both sets of electrodes 
are connected to the same amplifier; this facilitates the recording of several inde-
pendent blocks of inputs, allowing a fair comparison between the two approaches.

The Ear-EEG approach has recently been rigorously validated (Looney et  al. 
2012; Kidmose et  al. 2013) in terms of time, frequency and time-frequency sig-
nal characteristics for a range of EEG responses (see Fig.  3); its robustness to 
common sources of artifacts has also been demonstrated (see Fig.  3, upper). 
Comparative analysis of the alpha attenuation response (see Fig. 3, centre) shows 
that Ear-EEG responses match those of neighbouring scalp electrodes located in 
the temporal region. In general, while signal amplitudes measured from within the 
ear are weaker, so too is the noise, and for certain auditory responses the signal-to-
noise ratios (SNR) are similar (see Fig. 3, lower left). Responses to visual stimuli 
are also possible (see Fig. 3 lower right). All in all, Ear-EEG offers a unique bal-
ance between key user needs and recording quality to enable long-term EEG mon-
itoring in natural environments.

3 � Ear-EEG: Towards Continuous Brain Monitoring

The presented results were obtained using a simple prototype system, but with 
further developments Ear-EEG will be a tiny battery powered brain monitor-
ing device with gel-free electrodes that, like a hearing aid, will perform both the 
recording and signal processing in situ (see Fig.  4). Moreover, to increase the 
functionality of Ear-EEG in BCI applications where the user state must be evalu-
ated, other physiological parameters can be inferred by integrating additional non-
invasive sensors onto the ear-based platform (Looney et al. 2012):

•	 cardiovascular function: ear-based PPG devices available (Poh et al. 2010);
•	 respiratory function: respiratory sounds can be recorded within ear canal 

(Pressler et al. 2002); and
•	 movement: accelerometers are sufficiently small size and low-power for in-ear use.

We have already established that Ear-EEG enables conventional communication 
BCI (see Fig.  3 lower right). Its potential in continuous brain monitoring is illus-
trated with two case studies via the Ear-EEG prototype shown in Fig. 2. To ensure 
a fair comparison between scalp and ear-electrodes, EEG was recorded for both 
approaches using the same amplifier (g.USBamp by g.tec). On-scalp reference and 
ground electrodes were placed at, respectively, chin and Cz (HTL study) and earlobe 
and Fpz (fatigue study) based on the 10–20 system. All ear-electrodes were inside 
the ear, including reference and ground [see Kidmose et al. (2013) for more details].
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4 � Fatigue Estimation

Many occupations and daily activities require prolonged periods of vigilance 
and concentration. In the transport industry, a lapse in concentration can be fatal. 
The Royal Society for the Prevention of Accidents estimates that driver fatigue 
accounts for 20  % of road accidents in Great Britain. Yet there is still no read-
ily available device that can objectively and reliably detect a loss of sustained 
attention.

We have already shown in Fig. 3 (centre, right) that Ear-EEG can track the evo-
lution of alpha activity with high accuracy. As increases in alpha power are also 
caused by drowsiness, we next demonstrate how Ear-EEG models drowsiness on a 
par with a scalp approach: highlighting its role in maintaining vigilance (e.g. pha-
sic alert via a loudspeaker). Our study was based on the Oxford Sleep Resistance 
Test; a functional test of attention and drowsiness (Davies et al. 1997), wherein a 
subject was instructed to press a button in response to periodic visual stimuli. A 
missed stimulus (MS) event denotes the failure of the subject to respond in time to 
the stimulus and indicates an attention lapse. Fatigue was induced by reducing the 
sleeping hours of the subject and their vigilance was determined by detecting MS 
events, or consecutive MS events. Figure 5 shows the button-press errors and the 
corresponding levels of alpha power in EEG (filtered via a median filter) estimated 
using scalp- and ear-electrodes.1 Observe the high similarity in alpha power for 
ear and scalp EEG and the clear increases in alpha power which accompany error 

1  The in-ear setup used to obtain the results shown in Fig. 5 was electrode ELB referenced to 
ELH (Kidmose et al. 2013).

Fig. 4   An illustration of a future Ear-EEG device with an electronic module comprising instru-
mentation for the electrode signals, analog-to-digital conversion, a signal processing unit, battery, 
and a radio module
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events and, for instance, how a rise in alpha power at 850 s precedes consecutive 
MS events. This result is consistent with prior results with on-scalp electrodes 
(Jung et al. 1997).

5 � The Estimation of Hearing Threshold

The World Health Organization (WHO) estimates that hearing impairment affects 
more than 250 million people worldwide, making it the most common sensory 
deficit. The operation and fitting of modern hearing devices requires an accurate 
assessment of hearing capability known as the hearing threshold level (HTL). The 
HTL is estimated via behavioural hearing tests at an audiology clinic. However, in 
many cases, hearing loss is progressive or fluctuating (such as in Meniere’s disease 
or auditory neuropathy) and requires continuous assessment.

A well-established HTL-estimation protocol is based on the auditory steady 
state response (ASSR) (Cone-Wesson et al. 2002). The Ear-EEG platform accom-
modates a loudspeaker (as in hearing aids) inducing ASSRs as illustrated in Fig. 3 
(lower, left), the amplitudes of which reflect the level of the auditory stimuli. This 
enables a model of HTL and a reference for continuous hearing aid adaptation to 
match progressive/fluctuating hearing loss without an audiologist. Figure 6 depicts 
a high level of similarity between the SNR of ASSRs recorded2 from a scalp 

2  The SNR of the ASSR is defined as the power spectrum ratio of the response peak to the back-
ground EEG [see also Fig. 3 (lower, left)].
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electrode located in the left temporal region (Tp9) and a left Ear-EEG electrode 
[ELB referenced to ELH, see Kidmose et al. (2013)] for various ASSR-stimulus 
sound pressure levels (SPL).

6 � Conclusions

Ear-EEG is a breakthrough in wearable sensing that has the potential to be used 
in non-specialist environments over long time periods—it is robust, discreet and 
comfortable. We have demonstrated the usefulness of Ear-EEG, with sensing as 
well as reference and ground electrodes embedded on the earpiece, for current and 
next-stage BCI—continuous brain monitoring. The estimation of hearing threshold 
and fatigue have great significance in quality of life and work for a sizeable popu-
lation. This work illustrates how, when combined with appropriate electronics, the 
ear-based platform will open up radically new possibilities in future continuous 
monitoring applications.
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Abstract  Stroke patients must exercise intensely with rehabilitation robots to 
achieve satisfactory rehabilitation outcome, but ensuring appropriate exercise 
difficulty is a challenging task. Brain-computer interfaces would be suitable for 
such difficulty adaptations since they capture both conscious and subconscious 
aspects of workload, but have seen little use in rehabilitation. This chapter reviews 
previous work on passive brain–computer interfaces and highlights the practical 
challenges of applying the technology to motor rehabilitation. Preliminary results 
of a study on workload estimation in a rehabilitation robot with healthy subjects 
are then presented. Adaptive stepwise regression is used to estimate different 
types of workload from electroencephalography signals recorded at different sites. 
Results show that electroencephalography can achieve more accurate workload 
estimation than autonomic nervous system responses and that adaptive estimation 
methods can further improve accuracy. However, the number of electrode sites 
needs to be reduced and issues such as motion artefacts must be resolved before 
passive brain-computer interfaces can be used in motor rehabilitation.

Keywords  Machine learning  ·  Passive brain-computer interface  ·  Psychophysiology  ·  
Rehabilitation  ·  Robotics

1 � Introduction

1.1 � Robot-Assisted Rehabilitation

Stroke affects about 1 million people in Europe each year (Brainin et  al. 2000; 
Thorvaldsen et  al. 1995). Though a stroke often causes severe impairment, 
it is possible to regain lost motor functions and improve quality of life through 
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appropriate therapy. Successful therapy is characterized by intensive, repetitive 
exercises of long duration (Bütefisch et  al. 1995; Kwakkel et  al. 2002; Nelles 
2004). With respect to these criteria, the normal manually-assisted therapy has 
several limitations: it is labour-intensive, time-consuming, and expensive. By con-
trast, robot-assisted rehabilitation can reduce the number of therapist hours and 
increase the duration and number of training sessions. Furthermore, the robot pro-
vides multimodal feedback and supports the assessment of impairment score and 
functional ability (Guidali et al. 2011).

Despite its advantages, robotic guidance alone is not sufficient to guaran-
tee positive rehabilitation outcome. The patient’s motivation is also an important 
determinant of the outcome (Maclean 2002). Motivation has been highlighted as 
an additional advantage of robot-assisted rehabilitation, which can be enhanced 
with virtual environments that are viewed as more fun, engaging and motivating 
than conventional therapy (Colombo et al. 2007; Mihelj et al. 2012).

1.2 � Exercise Difficulty Adaptation

One way to improve patient motivation is to ensure an appropriate exercise 
difficulty level: the patient should be challenged in a moderate but engaging way 
without causing undue boredom or stress. Difficulty can be adapted based on 
the patient’s exercise performance (Cameirão et  al. 2010; Zimmerli et  al. 2012), 
but this ignores subjective factors such as perceived workload. For example, the 
patient may be successfully completing the task but only with excessive effort 
that quickly leads to frustration. An unobtrusive alternative for dynamic difficulty 
adaptation in motor rehabilitation was proposed in the form of psychophysiologi-
cal measurements.

Psychophysiological measurements are defined as measurements of the body’s 
responses to psychological factors such as workload, engagement and stress. The 
first such measurements used in motor rehabilitation were autonomic nervous 
system (ANS) responses, as the sensors are relatively cheap and can be quickly 
attached to the patient. Closed-loop rehabilitation difficulty adaptation systems 
based on ANS responses were first presented in 2011 for both upper limb (Novak 
et al. 2011a) and lower limb (Koenig et al. 2011) rehabilitation. Since then, other 
authors have proposed alternative solutions based on ANS responses (Badesa 
et  al. 2012; Guerrero et  al. 2013; Shirzad and Van der Loos 2013), but results 
have been mixed. Since ANS responses are heavily affected by physical work-
load, which is an integral part of motor rehabilitation, it can be difficult to extract 
psychological aspects (Novak et  al. 2011b). Examples of existing rehabilita-
tion robots that have been used with ANS-based difficulty adaptation are shown  
in Fig. 1.
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1.3 � Passive Brain-Computer Interfaces

A promising alternative or complement to ANS responses are passive brain-com-
puter interfaces (BCIs). Unlike classic ‘active’ BCIs, which measure intention-
ally generated brain activity (e.g. due to motor imagery), passive BCIs measure 
brain activity that occurs in response to, for example, stress or workload without 
conscious user effort (Zander and Kothe 2011). They have been used to classify 
workload, emotions and attention in many applications, including computer games 
(Chanel et  al. 2011; Girouard et  al. 2009), simulated flight (Wilson and Russell 
2007) and driving (Zhao et al. 2011). Passive BCIs may represent a more promis-
ing and practical application of BCI than active ones since the required temporal 
resolution is much lower (Van Erp et al. 2012).

Recently, passive BCIs were used in physical human-robot interaction to detect 
mental workload and adapt robot behaviour accordingly (George et al. 2012). As 
brain activity should be less vulnerable to physical workload, passive BCI could 
offer an alternative to ANS responses in motor rehabilitation applications. It may 
even be possible to combine central and autonomic nervous system responses to 
obtain the optimal amount of information for exercise difficulty adaptation. Such 
a combination of passive BCI and ANS responses has already been tested in, for 
example, computer games (Chanel et al. 2011).

Passive BCIs, however, have their own weaknesses. They can require a signifi-
cant time to apply, making them problematic in rehabilitation where the goal is to 
maximize the amount and intensity of exercise in a limited time period. They are 
vulnerable to motion artefacts, both due to sensor movement and due to electrical 
activity caused by muscle activation. Even without motion artefacts, inferring use-
ful information from brain signals is not trivial and generally requires advanced 
machine learning techniques.

Fig.  1   Existing rehabilitation systems that have been tested with closed-loop difficulty adap-
tation based on autonomic nervous system responses. Left to right HapticMaster (Novak et  al. 
2010), Lokomat (Koenig et al. 2011), PhysioBot (Guerrero et al. 2013)
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In the following sections, we shall discuss the problems of introducing passive 
BCIs to motor rehabilitation, suggest potential solutions, and finally show our own 
implementation of a passive BCI in the ARMin rehabilitation robot.

2 � Hardware Selection and Setup

The crucial requirements for BCI hardware in motor rehabilitation are non-inva-
siveness and ease of use. A typical rehabilitation session lasts approximately 
one hour and should be spent exercising as intensively as possible. To be effec-
tive, the BCI should therefore require as little additional setup time as possible. 
Furthermore, since the added benefit of BCI is simply a more appropriate exer-
cise difficulty (rather than, for example, allowing exercise to be performed at all), 
patients and therapists are likely unwilling to deal with great inconveniences in 
applying the equipment. Given these requirements, two promising technologies 
are electroencephalography (EEG) and functional near infrared spectroscopy 
(fNIRS), as they are both noninvasive and portable.

2.1 � EEG Hardware

EEG is by far the most studied physiological signal for noninvasive BCIs. It 
measures the brain’s electrical activity using electrodes placed on the scalp. 
Preparation time, however, can be up to 30 min when using a cap with ~15 gelled 
signal electrodes, a reference, ground, and electrooculography (EOG) electrodes. 
This is not suitable for motor rehabilitation, so we should aim to minimize the 
number of electrode sites while making each individual electrode quick and easy 
to apply.

2.1.1 � Electrode Locations

There is no clear agreement on where to place electrodes for passive BCIs, possi-
bly since each passive BCI measures a different aspect of the user’s psychological  
state and thus requires a different electrode placement. Table  1 shows example 
electrode placements from various passive EEG studies.

We can see from the table that frontal sites are strongly represented, which is 
convenient as these sites are generally not covered by hair and allow easier elec-
trode application. They are, however, more susceptible to EOG interference. Other 
popular sites are central (C3, C4, Cz) and parietal (P3, P4, Pz). However, authors 
often do not make a distinction between workload types, which may range from 
visual processing to short-term memory recall to decision making under temporal 
pressure.
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Robot-assisted rehabilitation involves many brain activities, including motion 
planning and visual processing. In order to identify the optimal electrode place-
ment, we recommend an initial study of frontal, central and parietal sites with 
actual rehabilitation tasks. If possible, we should aim to minimize the setup to 
frontal sites. Though some studies place ground and reference electrodes in spots 
such as Cz or FCz, we recommend placing them in convenient spots such as the 
forehead or the ears/mastoids (Berka et  al. 2004; Coffey et  al. 2012; Ryu and 
Myung 2005; Wilson and Russell 2007).

2.1.2 � Electrode Types

The most convenient device for measuring EEG in rehabilitation would be a low-
cost device with integrated electrodes such as the Emotiv EPOC headset (Emotiv 
Systems, Australia). The Emotiv has previously been used for workload measure-
ment and has successfully shown correlations between frontal signals and task dif-
ficulty (Knoll et al. 2011). However, in an evaluation with active BCI, it achieved 
significantly worse results than a medical EEG device (Mayaud et al. 2013).

Table 1   Signal electrode locations in different passive EEG studies, as well as the psychological 
variable(s) of interest

Study Electrode locations Psychological variable

Missonnier et al. (2003) F3, F4, Fz, C3, C4, Cz, P3, P4, Pz Working memory load

Wilson and Russell (2003) F7, Fz, Pz, T4, T5, Oz Mental workload

Berka et al. (2004) Fz, Cz, POz Vigilance

Ryu and Myung (2005) Fz, Pz, O1, O2 Mental workload

Fairclough and Venables 
(2006)

Cz, P3, P4, Pz, Engagement, distress, 
worry

Pesonen et al. (2006) Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4,  
Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2

Auditory memory load

Berka et al. (2007) F3, F4, Fz, C3, C4, Cz, POz Engagement, workload

Wilson and Russell (2007) F7, Fz, Pz, T5, O2 Mental workload

Venables and Fairclough 
(2009)

F3, F4, C3, C4, P3, P4 Mood, workload

Antonenko et al. (2010) 5 frontal, 4 temporal, 3 central,  
2 parietal, 2 occipital

Cognitive load

Heger et al. (2010) Fp1, Fp2, F3, F4, F7, F8, C3, C4,  
Cz, P3, P4, Pz, T3, T4, O1, O2

Workload

Wu et al. (2010) Fp1, Fp2, Fz, Cz, Pz, O1, O2 Arousal

Knoll et al. (2011) AF3, AF4, F3, F4, F7, F8, FC5, FC6,  
T7, P7, P8, T8, O1, O2

Cognitive workload

Brouwer et al. (2012) F3, F4, Fz, FCz, C3, C4, Pz Workload

Coffey et al. (2012) F3, F4, Fz, FCz, C3, C4, Cz, Pz Workload

George et al. (2012) Fp1, Fp2, F3, F4, F7, F8, C3, C4,  
Cz, T8, P3, P4, Pz, T7, O1, O2

Mental workload
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As an alternative to low-cost systems, we can consider dry (ungelled) or even 
noncontact electrode systems, as patients are unlikely to accept gel on the scalp 
simply for automated difficulty adaptation. Such electrodes have already been 
shown to be comparable to classic electrodes in active BCI (Chi et al. 2012; Guger 
et al. 2012).

2.2 � fNIRS Hardware

fNIRS has begun gaining ground in passive BCI due to the relatively quick and 
simple setup (Solovey and Girouard 2009). It provides a measure of blood oxygen 
concentration indicative of brain activity using one or more infrared light source-
detector pairs that probe tissue up to depths of 1–3 cm. Since the light from the 
source is absorbed by hemoglobin and deoxygenated hemoglobin in the blood, 
changes in light intensity at the detector can be related to changes in relative 
concentrations of hemoglobin. The main weakness of fNIRS is that, due to the use 
of light, ambient lighting or dark hair can easily distort measured signals (Coyle 
et al. 2004).

2.2.1 � Probe Locations

There are many possible placements for fNIRS probes, with the most common 
being the motor cortex (Sitaram et  al. 2007) and the frontal/prefrontal cortex 
(Ayaz et al. 2012; Ong et al. 2013). The prefrontal cortex has been recommended 
for passive brain-computer interfaces since it deals with high-level processing 
such as working memory and problem solving (Solovey and Girouard 2009). 
fNIRS measurements from the prefrontal cortex are taken by placing the probe on 
the forehead, which is not covered by hair. This is both user-friendly and prevents 
problems with dark hair affecting measurements.

Since almost all passive BCI research with fNIRS has been performed with 
forehead measurements, this is also the best current candidate for motor rehabilita-
tion, though tests with different locations on the forehead should be performed to 
find the area with the best response to rehabilitation tasks.

2.2.2 � Probe Types

The basic fNIRS technology of multiple source-detector pairs is common to all 
existing probes. The main requirements for practical use are to block out ambient 
light, which distorts the signal, and to tightly fix the probe to the head. Previous 
studies have used probes embedded in black hats to block ambient light, and sug-
gestions have been made that probes for applied studies should be embedded in 
hats or helmets (Solovey and Girouard 2009). At the moment, this appears more 
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user-friendly for rehabilitation than dimming the light in the room, and is therefore 
a prime concern in hardware selection.

Another potentially important feature of the probe is the short separation chan-
nel. This is an additional source-detector pair whose light does not penetrate 
deeply enough to measure brain activity, but does measure the same physiological 
noise as the other channels (Gagnon et al. 2012). It is frequently used to reduce 
noise, and is practical since it can be built into the same probe as the other chan-
nels and therefore does not increase the setup time.

2.3 � Hybrid BCIs

It should be reiterated that there is no serious barrier to combining multiple sen-
sor types, creating so-called hybrid BCIs. Hybrid passive BCIs such as EEG 
combined with ANS responses (Chanel et al. 2011) or even EEG combined with 
fNIRS (Coffey et  al. 2012) have already achieved good results. The only obsta-
cles are increased setup time and possible physical overlapping between sensors 
(e.g. fNIRS and frontal EEG). However, both can be mitigated with appropriate 
equipment.

3 � Signal Processing

3.1 � Artefact Removal

Motor rehabilitation is a noisy environment for passive brain-computer interfaces, 
and numerous artefacts must be considered. The most problematic ones are motion 
artefacts due to movement of the head or entire body. While commonly minimized 
in BCI, motion is an integral part of motor rehabilitation.

Motion affects measured signals either directly (e.g. by causing electrode/probe 
movement) or indirectly via human physiology. For EEG, the main indirect prob-
lem is that the electrodes also measure head and neck muscle activity as well as 
eye movement and blinking. Neck muscle artefacts are prominent toward the back 
of the head while eye artifacts are prominent toward the forehead. They cannot 
be removed by simple bandpass filtering, as frequency bands of the EEG, electro-
myogram (EMG) and EOG partially overlap (Vaughan et  al. 1996). For fNIRS, 
motion can increase blood flow through the scalp, and head orientation can affect 
the signal due to gravity’s effect on blood (Matthews et al. 2008). fNIRS is notably 
less vulnerable to eye artefacts than EEG.

Motion artefacts can be reduced using secondary sensors. For instance, eye 
artefacts can be removed from the EEG by using the EOG as a reference for noise 
removal algorithms (Croft and Barry 2000). Larger artefacts such as head movement 
can be detected using accelerometers and reduced in both EEG and fNIRS using 
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e.g. adaptive finite impulse filtering (Matthews et al. 2008). An alternative approach 
is to remove artefacts without a secondary sensor using computational methods such 
as principal or independent component analysis. This has been successfully per-
formed to remove motion artefacts from EEG during walking (Gwin et al. 2010).

Besides motion artefacts, additional noise is caused by cardiorespiratory activ-
ity, which is visible in both the EEG (due to e.g. ECG or electrode movement 
as a result of respiration) and the fNIRS (affecting the blood flow). This noise is 
commonly removed by measuring cardiorespiratory activity using additional sen-
sors and including this information as an input to adaptive filtering. Most notably, 
physiological noise could be measured in fNIRS using the short separation chan-
nel (Sect. 2.2.2), which may be a simple and convenient solution.

We should, however, consider to what degree physiological noise should 
be removed at all. Changes in heart rate or respiration also reflect psychologi-
cal changes, so brain signals containing such physiological ‘noise’ may actually 
allow more accurate inference of the subject’s psychological state. Similarly, EOG 
artefacts seen in the EEG reflect eye movement and may provide useful informa-
tion about visual processing. We believe that physiological noise removal should 
depend on the research goal. If the goal is to show that brain activity alone can be 
used to infer workload in rehabilitation, physiological noise should be minimized. 
However, if the goal is to obtain the most accurate psychophysiological inference, 
a passive BCI should be evaluated both with and without physiological noise.

3.2 � Feature Extraction

In the context of psychophysiology and passive BCI, feature extraction refers to 
extracting a number of psychologically relevant features from raw physiological 
signals. They are generally calculated over a certain time period (window) and 
then fed to the psychophysiological inference algorithms. The length of this win-
dow depends on the measured signal and application, with values between 30  s 
and 5 min being common in psychophysiology (Novak et al. 2012). While EEG 
responds faster to stimuli than ANS signals and theoretically allows shorter win-
dows, this is probably unnecessary. Feature extraction in closed-loop psychophysi-
ological systems is generally done every time an action is taken by the system. As 
we should not adapt the rehabilitation task difficulty more than once a minute (or 
even less frequently), shorter windows are not needed.

3.2.1 � EEG Feature Extraction

With regard to signal analysis, passive BCIs differ significantly from active ones. 
While active BCIs tend to focus on event-related potentials, passive BCIs gener-
ally measure brain activity over the entire time period of interest. This activity is 
examined in multiple frequency bands: delta (0.5–4  Hz), theta (4–8  Hz), alpha 
(8–13 Hz), beta (13–30 Hz) and gamma (30–70 Hz). The overwhelmingly popular 
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EEG features for passive BCIs are total power in a particular band (e.g. Antonenko 
et al. 2010; Wilson and Russell 2007; Wu et al. 2010) and total power in a particu-
lar band divided by total power in all bands (e.g. Fairclough and Venables 2006). 
These features are commonly normalized with respect to a baseline (rest) condition 
in order to reduce intra- and intersubject variability (e.g. Antonenko et al. 2010).

Not all frequency bands are equally contaminated by motion artefacts. 
Particularly, frequencies above 20 Hz are significantly affected by EMG (Whitham 
et al. 2007), reducing their usefulness unless artefact removal methods are applied. 
This may be problematic since beta and gamma bands are connected to aspects 
of attention and mental workload (e.g. Herrmann et al. 2004). Though alpha and 
theta bands still contain a large amount of information about mental workload 
tasks (Klimesch 1999), this problem should be kept in mind.

3.2.2 � fNIRS Feature Extraction

The first step in fNIRS feature extraction is to calculate oxygenated and deoxygen-
ated hemoglobin concentrations using the modified Beer-Lambert law (Villringer 
and Chance 1997). The commonly extracted features are then simply the mean 
values of the two concentrations over the time period of interest (Ayaz et al. 2012; 
Girouard et al. 2009; Ong et al. 2013). As with EEG, the concentrations are often 
normalized by expressing them as a percentage of change from the baseline level.

4 � Psychophysiological Inference

Once a set of potentially relevant features has been extracted from the EEG and/
or fNIRS signals, the set should be assigned a label. For motor rehabilitation, this 
label can be categorical such as “task is too easy/too hard” (Novak et al. 2011a) or 
“workload is low/high” (George et al. 2012; Koenig et al. 2011). Alternatively, the 
label can be a continuous number that represents perceived task difficulty or work-
load (Badesa et al. 2012; Guerrero et al. 2013). The label type affects the actions 
that can be taken by the robot. Categorical labels are used to trigger discrete 
actions such as “change difficulty by one level” or “activate/deactivate robotic 
assistance” while continuous labels can be used for smoother, continuous control 
such as changing the gain of the robotic assistance.

4.1 � Categorical Inference

Categorical labels in psychophysiology and passive BCI are inferred almost exclu-
sively with classifiers based on supervised machine learning. A popular example 
of such a classifier is linear discriminant analysis (LDA), which has been used in 
ANS- and EEG-based motor rehabilitation systems despite its simplicity (George 
et al. 2012; Koenig et al. 2011; Novak et al. 2011a). Other classifiers that have been 
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previously used for psychophysiological inference include support vector machines, 
nearest-neighbour classifiers, Bayesian networks and neural networks (Novak et al. 
2012). Most of these classifiers are also used in active BCIs (Lotte et al. 2007), with 
one significant difference. Active BCIs frequently employ hidden Markov models, 
which take temporal dynamics into account (Lotte et al. 2007; Zimmermann et al. 
2013). These are uncommon in passive BCIs and ANS-based psychophysiological 
systems where dynamics within a time period are not very important.

The best classifier to use in a particular application is uncertain, and our recent 
review of psychophysiological measures (Novak et  al. 2012) did not find a sys-
tematic advantage of any specific classifier, though we do not recommend nearest-
neighbour classifiers since they are not robust to irrelevant features and features 
with different numerical ranges. Furthermore, dimensionality reduction methods 
such as principal component analysis or sequential feature selection are recom-
mended to remove irrelevant input features (Novak et  al. 2012). Dimensionality 
reduction is more relevant for EEG-based passive BCIs, which have a large num-
ber of input features compared to fNIRS-based BCIs.

4.2 � Continuous Inference

Continuous inference is less common than categorical inference in both ANS-based 
psychophysiological systems (Novak et al. 2012) and in BCIs (Lotte et al. 2007), but 
has gained attention in motor rehabilitation since it allows smoother tuning of different 
parameters (Badesa et al. 2012; Guerrero et al. 2013; Mihelj et al. 2009). While con-
tinuous inference can also be based on machine learning techniques such as regression 
and neural networks (Novak et al. 2012), motor rehabilitation studies have preferred to 
use fuzzy logic (Badesa et al. 2012; Guerrero et al. 2013; Mihelj et al. 2009).

Fuzzy logic defines the relationship between physiological input features and 
the output label using if-then rules. Unlike classical logic, fuzzy rules and defini-
tions have degrees of truth. For instance, while a fuzzy rule may state “if blood 
oxygenation is high, workload is high”, blood oxygenation can be 70 % ‘high’ and 
30  % ‘low’ at a certain time. The if-then rules are manually defined by experts 
and are appropriate for noisy systems where a precise mathematical model does 
not exist, but experts can identify general rules underlying the system—which is 
the case in passive BCIs. Furthermore, fuzzy logic does not require training data, 
which can potentially simplify the design of the system.

5 � Preliminary Implementation

This section describes our own preliminary experiment with a passive BCI in the 
ARMin arm rehabilitation robot. To illustrate the principle, we present first results; 
a more detailed analysis is planned for the future as a journal publication.
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5.1 � Goal

Passive BCIs have potential in rehabilitation robotics, but several application-
specific issues remain. Outstanding questions include:

1.	 Passive BCIs commonly involve regular rest periods to allow physiological  
activity to return to a baseline state. These must be avoided at all costs in 
motor rehabilitation, as they decrease the amount of exercise performed by the 
patient. However, can passive BCIs still provide useful information without 
them?

2.	 Given the high levels of physical activity in motor rehabilitation, how heavily 
contaminated by motion artefacts are the measured signals?

3.	 What measurement locations are needed to obtain useful information? 
Specifically, are frontal locations (user-friendly, dominant in fNIRS) sufficient?

4.	 What psychological quantities do we wish to infer from the BCI data? Previous 
work has focused on workload (George et  al. 2012; Koenig et  al. 2011) or 
arousal/valence (Badesa et al. 2012; Guerrero et al. 2013; Mihelj et al. 2009). 
However, workload has many aspects [e.g. physical, temporal, mental (Hart 
and Staveland 1988)] that may be correlated with each other in a rehabilita-
tion task. Furthermore, perceived workload may not always positively correlate 
with the effort the user puts into the task; for instance, users may become frus-
trated and give up as workload becomes too high.

5.	 What level of accuracy can the psychophysiological inference achieve? In one 
of our previous studies, for instance, using physiological measurements for 
closed-loop adaptation of a rehabilitation task was less accurate than simply 
using the task performance, but combining both sources of information gave 
the best accuracy (Novak et  al. 2011a). Can a passive BCI outperform or at 
least complement task performance information and ANS responses?

Though we naturally cannot satisfactorily answer all questions at once, we 
designed a first study to obtain exploratory information.

5.2 � Study Protocol

Ten healthy subjects (8 males, 2 females, 27.6 ±  3.7  years of age) were asked 
to perform a “whack a mole” game with the ARMin III rehabilitation robot. The 
ARMin III (Nef et  al. 2009) has an exoskeletal structure with seven actuated 
degrees of freedom, including a hand module. The subject’s dominant arm is con-
nected to the robot with cuffs on the upper arm and forearm. The hand is fixed to 
the hand module with elastic straps. The dimensions of the device are adjustable to 
the individual subject, and gravity and friction compensation allow the arm to be 
moved in all directions without resistance. A photo of the subject performing the 
task is shown in Fig. 2.
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The principle of the game is to hit monsters with a hammer before they disap-
pear (Fig.  3). The hammer is moved around the screen with the end-effector of 
the robot, and a ‘hitting’ movement is performed by turning the forearm. Monsters 
appear at one of nine locations (3 × 3 layout) and disappear if not hit within a cer-
tain amount of time. Each monster has a mathematical equation attached to it, and 
the subject should only hit a monster if the equation is correct. 50 % of all equa-
tions are correct.

The task has two adjustable parameters: the equation difficulty and the fre-
quency with which monsters are spawned. A new monster can spawn every 1.5, 
2.5, 4 or 6  s. An individual monster remains on the screen 2.5 times the spawn 
interval, so there are at most three monsters on the screen at any time. The equa-
tion difficulty has five possible levels, from very easy (e.g. 2 + 5 = 7) to very dif-
ficult (e.g. 45 + 33 + 63 = 141). With 5 equation difficulty levels and 4 temporal 
difficulty levels, there are 20 possible conditions in total.

The study protocol began with a practice round where the subject played until 
he/she was comfortable and understood the task. The questionnaire was demon-
strated, and the sensors were applied and calibrated. There was then a 60-s baseline 

Fig. 2   A subject performing 
the task with the ARMin 
robot while monitored with 
sensors

Fig. 3   A screenshot of the 
“whack a mole” task
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period during which subjects were asked to relax, not move, keep their eyes open, 
and remain silent. After the baseline period, subjects performed 19 60-s task peri-
ods, with each task period having a different combination of equation difficulty 
and monster spawn difficulty. Of the 20 possible combinations, only the easi-
est one (level 1 equations, one monster per 6 s) was omitted as it was found to be 
extremely boring for the subjects. The 19 combinations were presented in a random 
order that was generated differently for each subject.

Physiological measurements were taken continuously during the study. Each 
task period was followed by the questionnaire (Sect.  5.3) before the next task 
period began. Subjects were told to answer it for the preceding task period, not the 
entire task to then. After the 19th task period and questionnaire, the experiment 
was concluded.

5.3 � Measurements

5.3.1 � Questionnaire

The NASA-TLX (Hart and Staveland 1988) was used to obtain reference self-
report values of workload during the task. It has been extensively used in human 
workload studies, including previous closed-loop psychophysiological work 
(Wilson and Russell 2007). It consists of six scales: mental workload, temporal 
workload, physical workload, performance, effort and frustration. Subjects rate 
each on a visual scale from ‘very low’ to ‘very high’. A computerized version was 
presented, with the subjects moving a slider along the visual scale by pronating/
supinating their forearm in the robot. The selections were saved as numerical val-
ues from 0 to 100.

The task difficulty levels should affect the different NASA-TLX scales. 
Equation difficulty should affect mental and temporal workload, as subjects have 
to perform more complex mental arithmetic in the same amount of time. The 
monster spawn difficulty should affect both temporal and physical workload, as 
subjects must perform calculations faster and move their arm more often. Effort 
should increase with all workload types, though only up to a point; excessive 
workload may lead to a decrease in effort as subjects give up. Similarly, perfor-
mance should decrease and frustration should increase with increasing workload.

5.3.2 � Physiology

The primary measurement was EEG, which was measured with the g.GAMMAcap 
(g.tec Medical Engineering GmbH, Austria) and g.Butterfly active electrodes. 
Electrodes were placed at 14 locations of the International 10–20 system: Fz, F3, 
F4, F8, F7, Cz, C3, C4, Pz, P4, POz, O1 and O2. All signals were referenced to 
an electrode at position FPz and grounded with an electrode on the left earlobe. 
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Additionally, the EOG was recorded with two electrodes (Grass Technologies, 
USA): one to the upper right of the right eye and one to the lower left of the left 
eye. EOG was used only to correct ocular artefacts in the EEG. Both EEG and 
EOG were sampled at 600 Hz using a g.USBamp signal amplifier (g.tec).

In addition to EEG, four ANS responses were measured: the electrocardiogram 
(ECG), skin conductance, respiration and skin temperature. ECG was measured 
with three surface electrodes placed on the trunk. Respiration was measured using 
a thermistor flow sensor beneath the nose. Skin conductance was measured using a 
g.GSR sensor (g.tec). Electrodes were placed on the medial phalanges of the sec-
ond and third fingers of the nondominant hand. Peripheral skin temperature was 
measured using a g.TEMP sensor (g.tec) attached to the distal phalanx of the fifth 
finger of the nondominant hand. All ANS signals were sampled at 600 Hz using a 
second g.USBamp amplifier.

Finally, eye tracking was performed using the SMI RED 250 (SensoMotoric 
Instruments, Germany), a remote eye tracker placed underneath and slightly in front 
of the screen. Though it is more commonly mounted directly below the screen, 
it was moved forward to ensure that the distance between the eyes and tracker is 
within the optimal operating conditions. The sampling frequency was 250 Hz.

5.4 � Feature Extraction

Several features were extracted from the raw physiological signals for the baseline 
period and the 19 task periods. Each feature was calculated over the entire 60-s 
period.

5.4.1 � EEG

The EEG was first bandpass-filtered between 1 and 30  Hz. Eye movement and 
blink artifacts were then removed using a recursive least-squares filter with EOG 
as the noise reference. The power spectral density of each EEG channel was then 
calculated using Welch’s method. For each EEG channel, we calculated four fea-
tures used in previous studies:

•	 alpha power divided by total power,
•	 theta power divided by total power,
•	 alpha power divided by theta power,
•	 1/(alpha power + theta power).

These features can optionally be individualized for each subject by using the peak 
frequency method to set the borders of the alpha band (Goljahani et  al. 2012). 
Additional features based on the beta and gamma band were considered but later 
omitted due to concerns over data quality (see Sect. 5.6.1).
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5.4.2 � ANS Responses

From the ECG, intervals between two normal heartbeats (NN intervals) were 
extracted. Then, mean heart rate as well as three standard measures of heart rate 
variability (HRV) were calculated (Task Force, 1996): the standard deviation of NN 
intervals (SDNN), the square root of the mean squared differences of successive NN 
intervals (RMSSD), and the number of interval differences of successive NN inter-
vals greater than 50 ms divided by the total number of NN intervals (pNN50).

From the skin conductance signal, we detected all skin conductance responses 
(SCRs). A SCR is a transient increase in skin conductance whose amplitude 
exceeds 0.05 microsiemens and whose peak occurs less than 5 s after the begin-
ning of the increase. SCR frequency and mean SCR amplitude were calculated.

From the respiration signal, we calculated mean respiratory rate and standard 
deviation of respiratory rate.

From the temperature signal, we calculated the final skin temperature as the 
mean temperature during the last 5 s of each period. Additionally, the mean deriv-
ative of skin temperature was calculated over the entire period.

5.4.3 � Eye Tracking

Eye tracker feature extraction was done by the manufacturer’s provided software, 
BeGaze 3.1, which first segments the recorded signals into blinks, saccades (rapid 
gaze shifts from point to point) and fixations. It then outputs the number of blinks, 
number of saccades, and number of fixations as well as the mean blink duration, 
mean saccade duration, and mean fixation duration.

For saccades, BeGaze outputs the mean saccade velocity, saccade velocity 
variability and mean saccade amplitude. For fixations, it outputs the mean pupil 
diameter, the standard deviation of pupil diameter and mean gaze dispersion (the 
amplitude of small movements performed by the eyes during a fixation). Finally, it 
outputs the ratio of total fixation time and total saccade time.

All of these features can optionally be individualized for each subject by setting 
different thresholds for fixations, saccades and blinks in BeGaze 3.1.

5.5 � Psychophysiological Inference

Though we have previously worked extensively with classification algorithms 
(Koenig et al. 2011; Novak et al. 2011a), we chose to assign continuous values to 
each task period as suggested by other authors in rehabilitation robotics (Badesa 
et  al. 2012; Guerrero et  al. 2013). This was partially also why we selected the 
NASA-TLX as a reference—it measures each workload scale as a value between  
0 and 100.



88 D. Novak et al.

Stepwise linear regression was used to predict NASA-TLX reported values 
from the extracted physiological features. Since data were analyzed offline, cross-
validation was used to obtain the results. The regression algorithm was trained 
with three approaches:

•	 Leave period out: Trained with data from all but one task period of one subject, 
then tested on the subject’s remaining task period. Repeat for all subjects. In 
leave-period-out crossvalidation, EEG and eye tracking features were individu-
alized to each subject as described in Sect. 5.4.

•	 Leave subject out: Trained with data from all but one subject, then tested on 
the remaining subject. Repeat for all subjects. In leave-subject-out crossvalida-
tion, features were normalized for each task period. This was done for a period 
by subtracting the feature’s baseline value (obtained during the initial baseline 
period) from the current value and dividing the result by the baseline value.

•	 Adaptive leave subject out: Same as leave subject out, but after each task 
period, the regression weights are updated using information from that task 
period through Kalman filtering. It thus gradually adapts to the current subject. 
The approach is computationally the same as in our previous adaptive LDA 
(Koenig et al. 2011; Novak et al. 2011a), except with a regression rather than 
classification function.

The measure of regression quality was the mean absolute error between the 
reported and predicted workload; the lower the error, the better. Regression func-
tions were created separately for EEG, ANS and eye tracking data. Furthermore, 
to evaluate what accuracy would be achieved by a completely random regression 
function, regression functions were also created using twelve randomly generated 
features. These features’ values were generated randomly for each time period 
from either a normal (6 features) or a uniform (6 features) distribution.

5.6 � Initial Results and Discussion

5.6.1 � EEG Data Quality

An examination of the EEG data found major motion artefacts: regardless of 
the task difficulty, measured power in the beta and especially gamma bands was 
much higher during any task period than during rest (up to nearly triple the base-
line value). Tests before and after the official measurement protocol showed that 
high gamma activity is present even when no task is displayed and subjects sim-
ply move their arm inside the robot in a circular motion. Power in alpha and theta 
bands did not significantly increase when performing circular motions, and some-
times actually decreased during task periods.

From these observations, we conclude that beta and gamma band features 
cannot be used in motor rehabilitation without extensive artefact removal. It is cur-
rently unclear how much effort this would require. Rehabilitation robots already 



89Passive Brain-Computer Interfaces for Robot-Assisted …

measure arm movement, which could be used as an input to a noise reduction  
algorithm. However, this would only help with arm motions, not with head 
motions, which likely have a larger effect. For our first investigation, we chose to 
only utilize alpha and theta band information.

5.6.2 � Correlations Between Game Difficulty and NASA-TLX

Pearson correlation coefficients were calculated separately for each subject, then 
averaged across subjects to obtain the final result. The mean correlation coefficient 
between equation difficulty and mental workload was 0.65 (range: 0.49–0.81) 
while the mean correlation coefficient between monster spawn frequency and tem-
poral workload was 0.67 (range: 0.49–0.82). Workload was thus indeed induced 
by the task as desired.

However, there were also significant correlations between the different NASA-
TLX scales. The mean correlation coefficient between mental and temporal work-
load was 0.41 (range: 0.07–0.71) while the mean correlation coefficient between 
temporal and physical workload was 0.42 (range 0.01–0.86). Effort was signifi-
cantly correlated with all three workload types, though interestingly the correla-
tion coefficients were negative in some subjects. The mean absolute correlation 
coefficients were 0.55 for effort and mental workload (range: −0.59 to 0.87), 0.46 
for effort and physical workload (range: −0.36 to 0.74) and 0.54 for effort and 
temporal workload (range: −0.60 to 0.90). Finally, the mean absolute correlation 
coefficient between effort and frustration was 0.52 (range: −0.62 to 0.85). The 
same subjects who have negative correlations between effort and workloads (3 out 
of 10) also have negative correlations between effort and frustration.

While these results depend on the task, they suggest two things. First of all, it 
is not necessary to try and measure all types of workload in rehabilitation robot-
ics, as they are correlated with each other. Second, subjects do sometimes respond 
to high workload by giving up and no longer putting as much effort into the task, 
as evidenced by negative correlation coefficients between effort and workload in 
some subjects.

For a motor rehabilitation task such as ours, we therefore suggest inferring two 
psychological dimensions from physiological measurements: the workload the 
subject is experiencing and how he/she is coping with it (actively or passively). 
This reinforces the suitability of the arousal/valence emotion model, which was 
used by previous studies (Badesa et al. 2012; Guerrero et al. 2013; Mihelj et al. 
2009), but was suggested to be suboptimal due to the inability of ANS responses 
to accurately measure valence (Novak et  al. 2010). An EEG-based passive BCI 
could measure valence more accurately than ANS responses, making this model 
more suitable. As different workload dimensions are difficult to separate in haptic 
and rehabilitation robotics (Novak et  al. 2011b), such a two-dimensional model 
would likely be sufficient in most cases. A model with more dimensions, however, 
would be suitable for rehabilitation scenarios that consist of alternative mental 
and physical challenges (e.g. Koenig et al. 2011; Mihelj et al. 2012). A promising 
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candidate in such a case would be the proposed but untested arousal/valence/phys-
ical workload model of Mihelj et al. (2009).

5.6.3 � Accuracy of Psychophysiological Inference

Since the NASA-TLX scales are significantly correlated, we present first results 
for estimation of mental workload and effort in Fig. 4. An example of reported and 
estimated (through leave-period-out linear regression) workload is shown for two 
subjects in Fig. 5.

All three physiological modalities estimated mental workload significantly bet-
ter than random in leave-period-out cross validation where the regression function 
is trained on other data from the same subject. The accuracy of both EEG and eye 
tracking was significantly better than that of ANS responses. However, no modal-
ity provided significantly better than random results in leave-subject-out cross val-
idation where the regression function is trained on data from other subjects.

ANS and EEG estimated effort significantly better than random, but again only 
in leave-period-out cross validation. ANS achieved a slightly better result than 
EEG, though the difference between the two was not significant. Leave-subject-
out results were poor and actually significantly worse than random estimation in 
the case of EEG and eye tracking. However, the adaptive algorithm was able to 
greatly decrease leave-subject-out error, reaching approximately the same accu-
racy as in the leave-period-out case.

These results suggest that both mental workload and effort can be estimated 
better than random with EEG or other physiological data. The estimation can be 
done in the presence of physical activity and with only a single initial baseline, 
though user-specific models are needed. Furthermore, they demonstrate that EEG 
has advantages over previously used ANS responses in a rehabilitation robot: it 

Fig. 4   Mean absolute error (difference between estimated and self-reported value in question-
naire units) for regression of mental workload (left) and effort (right) using autonomic nervous 
system responses, electroencephalography and eye tracking. The error when using random input 
data is shown for comparison
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is able to estimate mental workload significantly better than ANS responses. If 
subject-specific models are not available, the adaptive algorithm can be used to 
greatly increase the error. However, the current offline implementation assumes 
that the algorithm can always adapt perfectly after each task period, which would 
not be the case in reality.

6 � Conclusion and Outlook

In our review of the state of the art, we identified both EEG and fNIRS as prom-
ising passive BCI modalities for rehabilitation robotics. As the sensors need to 
be set up quickly in a rehabilitation environment, we should aim to minimize the 
number of electrodes/probes, use only frontal sites (not covered by hair), and use 
only dry (non-gelled) sensors, though not all of these goals may be achievable in 
practice. The two main practical problems in rehabilitation are the high level of 
physical activity, which results in motion artefacts, and the lack of baseline peri-
ods due to the need to maximize rehabilitation intensity.

In our first implementation with the ARMin III, we showed that EEG in the 
beta and especially gamma bands is strongly contaminated by motion artefacts, 
to the degree where such artefacts would be difficult to remove even with refer-
ence motion sensors. We therefore only used alpha and theta bands. Nonetheless, 
we were able to show that information from these two bands allows both mental 

Fig.  5   Reported and estimated workload (through leave-period-out linear regression) for two 
subjects over the entire study. The top graph represents a subject with relatively low estimation 
error while the bottom graph represents a subject with high error
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workload and effort to be estimated significantly better than random, with EEG 
outperforming ANS responses (previously used for task adaptation in rehabilita-
tion robotics) in mental workload estimation. The estimation algorithms are com-
putationally inexpensive and suitable for real-time use. However, subject-specific 
models or an adaptive (learning) algorithm are required. This may be due to the 
fact that subjects respond differently to workload, with some actually decreasing 
their effort as workload increases.

The immediate next step of our study is to compare the accuracy of EEG-based 
workload inference with the accuracy that can be achieved using nonphysiological 
data such as task score and movement information. Furthermore, we will attempt 
to identify the EEG channels that contribute the most to workload inference and 
thus attempt to minimize the number of channels used. We will develop algorithms 
to try and reduce motion artefacts in the EEG using either the robot’s built-in posi-
tion sensors or additional sensors to measure head movement. At the same time, we 
will conduct a second study to test whether fNIRS could provide a more convenient 
alternative to EEG. Finally, once an optimal, minimum-configuration setup is avail-
able, we will test it with actual patients undergoing motor rehabilitation to test both 
accuracy compared to healthy subjects and acceptance by the target population.
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Abstract  Brain-machine interfaces (BMIs) have largely been designed for  
performing single-targeted movements. However, many tasks involve planning 
a sequence of such targeted movements before execution. Hence a BMI that can 
concurrently decode the complete planned sequence before its execution can ena-
ble subjects to also perform these sequential movements. Moreover, such concur-
rent decoding may allow the BMI to consider the higher-level goal of the task to 
reformulate the motor plan and perform it more effectively. Here, we demonstrate 
that concurrent BMI decoding is possible. Using population-wide modeling, we 
discovered two distinct subpopulations of neurons in the rhesus monkey premotor 
cortex that allowed two planned targets of a sequential movement to be simulta-
neously held in working memory without degradation. Interestingly, this simul-
taneous representation occurred because each subpopulation encoded either only 
currently held or only newly added target information regardless of the exact 
sequence. Capitalizing on this stable representation, we developed a BMI that 
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concurrently decodes a full motor sequence in advance of movement and can then  
accurately execute it as desired.

Keywords  Brain-machine interface  ·  Neuroprosthetics  ·  Working memory  ·  
Sequential motor function  ·  Premotor cortex

An important motivation for the design of brain-machine interfaces (BMIs) has been 
their potential to restore lost motor function in individuals with neurological injury 
or disease (e.g., due to motor paralysis or stroke). In such cases, the envisioned role 
of the BMI is to decode intended motor function from neural activity in the relevant 
areas of the brain, and use this information to control an affected limb or prosthetic.

The design of such BMIs has received considerable attention in recent years 
(Chapin et  al. 1999; Wessberg et  al. 2000; Serruya et  al. 2002; Hochberg et  al. 
2006; Carmena et  al. 2003; Taylor et  al. 2002; Ganguly and Carmena 2009; 
Wolpaw and McFarland 2004; Velliste et  al. 2008; Moritz et  al. 2008; Mulliken 
et  al. 2008; Kim et  al. 2008; Li et  al. 2009; Chase et  al. 2009; Musallam et  al. 
2004; Santhanam et  al. 2006; Shanechi et  al. 2013, 2014). Work to date has 
principally focused on achieving the motor goal in tasks that involve single-
targeted movements, such as the task of moving a cursor on a display to an 
individual target location. However, in many natural tasks—such as playing a 
succession of notes on a piano—the goal is more complex, and the motor plan 
for achieving it can be viewed as a sequence of such simpler plan elements to be 
executed in order.

Our focus is on the design of BMIs that can achieve the goal of these sequential 
motor plans. Planned sequential behavior is a fundamental motor process in which 
all targets of a movement sequence are planned ahead of its initiation. Hence a BMI 
for performing this behavior would allow a person to plan a full motor sequence 
ahead of execution. For example, when picking up a cup and bringing it to one’s lips, 
a person normally formulates the full motor plan prior to its execution as opposed 
to planning and performing each of its elements individually and separately. Hence, 
the objective of such a BMI would be to perform the sequential behavior by decod-
ing the full sequence of elements of the motor plan concurrently and in advance of 
movement—thus requiring the consideration of a concurrent BMI architecture.

This concurrent BMI functionality is thus distinct from that in prior BMIs 
whose objective is to decode and execute individual single targeted movements 
one by one, and hence have a sequential BMI architecture (Chapin et  al. 1999; 
Wessberg et  al. 2000; Serruya et  al. 2002; Hochberg et  al. 2006; Carmena et  al. 
2003; Taylor et  al. 2002; Ganguly and Carmena 2009; Wolpaw and McFarland 
2004; Velliste et  al. 2008; Moritz et  al. 2008; Mulliken et  al. 2008; Kim et  al. 
2008; Li et  al. 2009; Chase et  al. 2009; Musallam et  al. 2004; Santhanam et  al. 
2006; Shanechi et  al. 2012b, 2013). Because this latter objective corresponds 
to a low-level interpretation of the overall motor goal of the individual, such a 
sequential architecture is inherently limited. While such a BMI has the potential to 
restore or match original motor functionality, a compelling objective is the design 
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of a BMI that may be able to enhance such natural motor functionality by consid-
ering the motor goal at a higher-level.

A concurrent architecture could allow the BMI to consider the overall motor 
goal at a higher-level. This is a result of the BMI having information about all the 
motor plan elements at once and in advance of execution. This may allow the BMI 
to analyze the entire sequence prior to action to determine ways to perform the 
task more effectively. For example, the BMI might determine a way to accomplish 
the task more quickly, or more efficiently. Alternatively, based on additional sensor 
inputs, the BMI might determine that the planned sequence of movements would 
result in an accident with an obstacle, and thus modify the execution of the task to 
avoid such an accident.

The realization of BMIs that can perform and more effectively execute 
sequential motor function in this way will obviously require significant 
technological innovations. But as a key initial step, it requires considering a 
concurrent BMI architecture in which the elements of a planned motor task are 
decoded in parallel (i.e., at once), in contrast to the serial process of a sequential 
BMI. Hence, the feasibility of such BMIs hinges on the degree to which the 
elements of a motor plan sequence can, in fact, be decoded concurrently. This is 
the starting point for this work.

Prior work has demonstrated that premotor neurons in primates display selec-
tive responses to planned single-targeted movements before their initiation (Kurata 
1993; Messier and Kalaska 2000; Crammond and Kalaska 1994, 1996, 2000; 
Boussaoud and Bremmer 1999; Crutcher et al. 2004; Hocherman and Wise 1991). 
Such responses have been successfully exploited in the design of BMIs for sin-
gle-target tasks (Musallam et al. 2004; Santhanam et al. 2006). In comparison, the 
neural encoding of tasks requiring a sequence of targeted movements to be for-
mulated prior to execution is less well understood, and the design of real-time 
BMIs that can concurrently decode and then execute such sequential motor plans 
remains unexplored. Prior work has shown that an individual neuron can display 
a response that is selective to one or more elements of a sequential motor plan 
(Batista and Andersen 2001; Ninokura et al. 2003; Tanji and Shima 1994; Shima 
et al. 2007; Shima and Tanji 2000; Baldauf et al. 2008; Averbeck et al. 2002, 2006; 
Mushiake et  al. 1990, 2006; Ohbayashi et  al. 2003; Kettner et  al. 1996; Lu and 
Ashe 2005; Nakajima et  al. 2009; Saito et  al. 2005). However, little is known 
regarding how information about multiple elements of a sequential motor plan is 
simultaneously distributed across the whole premotor population during working 
memory, and whether these plan elements can be accurately and robustly decoded 
from the neural population in a concurrent manner.

Here, we find that sequential motor plans can be decoded simultaneously, accu-
rately, robustly, and in advance of movement from the neural activity in the pre-
motor cortex of monkeys. Additionally our study reveals a surprisingly structured 
encoding mechanism that is used by the premotor populations for these sequential 
plans and that, in turn, enables their accurate and concurrent decoding. Based on 
these findings, we develop and implement a real-time BMI that can concurrently 
decode a dual sequence of motor targets and then execute them as desired.
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1 � Methods

1.1 � Experimental Task

In the study, rhesus monkeys were trained to perform a task in which two targets 
were presented, in sequence, on a computer display. Each of the targets could 
randomly appear in one of four possible spatial locations (“up”, “down”, “left”, 
or “right”). Repeated locations were precluded, so there were a total of 12 
possible combinations (sequences) of two consecutive distinct target locations. 
After a blank-screen variable delay, a “go” cue appeared directing the monkeys 
to sequentially move a cursor from the center of the screen to each of the two 
remembered targets, in order (Dual-target task; Fig. 1a, b). We define the working 
memory period as the 500 ms blank-screen interval following presentation of the 
second target and before the earliest possible “go” cue. Therefore, the task here 
was a working-memory task in which the monkeys were required to serially add 
to working memory two randomly selected target locations in each trial and then 
simultaneously retain them in working memory prior to execution.

Fig.  1   Task design and experimental setup. a Schematic illustration of a standard dual-target 
task over a single trial. Task periods and their timings are displayed over a single trial from left to 
right. The right end of the panel in which the second movement is made is truncated to conserve 
space. b Experimental setup for the standard training sessions. c Experimental setup for the BMI 
sessions
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1.2 � Neural Recordings

Multiple-unit responses were recorded from the premotor cortex as the primates 
performed this task. Multiple planar silicone multi-electrode arrays (NeuroNexus 
Technologies Inc., MI) were surgically implanted in each monkey into the dorsal 
premotor (PMd) and the supplementary motor (SMA) areas. A Plexon multichan-
nel acquisition processor was used to amplify and band-pass filter the neuronal 
signals (150 Hz–8 kHz; Plexon Inc., TX). Signals were digitized at 40 kHz and 
processed to extract action potentials in real time by the Plexon workstation. 
Classification of the action potential waveforms was performed using template 
matching and principle component analysis based on waveform parameters. Only 
single, well-isolated units were used.

1.3 � Model Construction Using the Expectation-
Maximization (EM) Algorithm

We model the activity of each neuron under any given sequence as an inhomoge-
neous Poisson process whose likelihood function (using the theory of point pro-
cesses) is given by (Truccolo et al. 2005) 

where � is the time increment taken to be small enough to contain at most 
one spike, Nc

k  is the binary spike event of the cth neuron in the time interval 
[(k − 1)�, k�], �c(k|Si) is its instantaneous firing rate in that interval, Si is the ith 
sequence, and K is the total number of bins in a duration K�.

For each sequence and neuron, we estimate the firing rate �c(k|Si) using the 
neuronal data observed. One can find this using the peristimulus time histo-
gram (PSTH) that simply averages the number of spikes over any given window. 
However, to get a good estimate using the PSTH, one has to pick relatively large 
windows. This in turn masks the fine-scaled evolution of the firing rate. Also, 
there is no principled way for selecting a window size. Hence we instead use a 
state-space algorithm to find the firing rate (Smith and Brown 2003; Smith et al. 
2010). This approach consists of two models: A prior or state model that in general 
enforces any prior information available about the unobservable states—such as a 
simple continuity condition—and an observation model that relates the neuronal 
observations to these states. We take the state at time increment k, xk, to be the 
logarithm of the firing rate, i.e., xk = log(�c(k|Si)), or equivalently

and enforce a continuity condition on it by assuming that it evolves according to a 
linear first-order Gaussian model,

(1)p(Nc
1:K |Si) =

K
∏

k=1

(�c(k|Si)�)
Nc
k exp(−�c(k|Si)�) i = 1:12,

(2)�c(k|Si) = exp(xk),
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where ǫk is the zero-mean white Gaussian noise with variance σ 2
ǫ
. The observation 

model is in turn given by substituting (2) in (1). Here, θ = σ
2
ǫ
 is an unknown 

parameter of the model and should be estimated jointly with the state. Hence we 
use the expectation-maximization (EM) iterative algorithm to find the maximum 
likelihood estimate of θ and in turn estimate the firing rate (Smith and Brown 
2003; Dempster et al. 1977). Denoting the estimate of θ in the ith iteration by θ(i), 
its estimate in the i + 1th iteration after the maximization step is given by

where Wk = E[x2k |N
c
1:K ; θ

(i)] and Wk,k−1 = E[xk−1xk|N
c
1:K ; θ

(i)] are found from 
the  forward filter, fixed-interval smoothing, and covariance recursive algorithms 
in the expectation step as follows. Assuming that there are J total trials and denoting 
the causal filter state estimate by xk|k = E[xk|N

c
1:k; θ

(i)] and its variance by wk|k, and 

the smoothed state estimate by xk|K = E[xk |N
c
1:K ; θ

(i)] and its variance by wk|K, the 
recursions in the E-step are given by the forward filter recursions (Eden et al. 2004),

for k = 1, . . . ,K, where Nc
k (j) is the spike event in trial j, and by the fixed interval 

smoothing recursions (Smith and Brown 2003; Brown et al. 1998),

for k = K − 1, . . . , 0 and with initial condition xK|K and wK|K from the filter recur-
sions. We pick the initial conditions for the forward filter at each iteration of the 
EM algorithm as x(i+1)

0|0 = x
(i)
0|K and w(i+1)

0|0 = w
(i)
0|K. Finally the state-space covari-

ance algorithm gives all the terms needed for the M-step to find θ(i+1) in (3) using 
these recursions (Brown et al. 1998; Jong and Mackinnon 1988),

for k = 0, . . . ,K and

xk = xk−1 + ǫk ,

(3)θ
(i+1)

=
1

K

(

K
∑

k=1

Wk +Wk−1 − 2Wk,k−1

)

,

wk|k−1 = wk−1|k−1 + θ
(i)

xk|k−1 = xk−1|k−1

wk|k = (w−1
k|k−1 + Jexp(xk|k−1)�)

−1

xk|k = xk|k−1 + wk|k

J
∑

j=1

(Nc
k (j)− exp(xk|k−1)�),

Ak = wk|kw
−1
k+1|k

xk|K = xk|k + Ak(xk+1|K − xk+1|k)

wk|K = wk|k + A2
k(wk+1|K − wk+1|k),

Wk = wk|K + x2k|K ,



103A Concurrent Brain-Machine Interface for Enhanced Sequential …

for k = 0, . . . ,K − 1. The iterations of the EM algorithm are run until con-
vergence. The estimated firing rate at any time bin k = 1, . . . ,K is in turn the 
smoothed estimate, �̂c(k|Si) = exp(xk|K ) evaluated at the estimate of θ in the final 
iteration.

Repeating this procedure for all neurons under each sequence and fitting the 
inhomogeneous Poisson models results in a continuous smoothed estimate of the 
rate function for each neuron under any given sequence and over the entire length 
of a trial.

1.4 � Maximum-Likelihood Decoder

Once models are fitted, a maximum-likelihood decoder is used to decode the 
intended sequence based on the neuronal activity in any period of interest. Using 
the likelihood model in (1) and assuming that neurons are conditionally independ-
ent given the sequence, the population likelihood under any sequence is given by

The predicted sequence, Ŝ, is thus given by

2 � Results

We recorded 281 well-isolated neurons from the supplementary motor area (SMA) 
and dorsal premotor cortex (PMd) over 11 sessions, for an average of 26 ± 6 cells 
(mean ± S.D.) per recording session. Using the inhomogeneous Poisson models 
for each neuron and under each sequence, we employed a maximum-likelihood 
decoder to quantify the probabilities that groups of neurons could correctly iden-
tify the first and second targets on a trial-by-trial basis during the working memory 
period (leave-one-out cross-validation). We used decoding accuracy as our meas-
ure of the amount of information encoded by a population of neurons about each 
target. Specifically, for an individual (first or second) target, we measured the per-
centage of trials in which the maximum-likelihood decoder correctly predicted 
the respective target from that population’s activity. Likewise, we measured the 
amount of information encoded about the full sequence as the percentage of trials 
in which both targets were correctly decoded.

Wk+1,k = Akwk+1|K + xk|Kxk+1|K ,

p(N1:C
1:K |Si) =

C
∏

c=1

K
∏

k=1

(�c(k|Si)�)
Nc
k exp(−�c(k|Si)�) i = 1:12

Ŝ = argmax
Si

p(N1:C
1:K |Si).
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2.1 � Accurate and Concurrent Encoding of the Motor 
Sequence by the Premotor Population

We find that neural population activity within the premotor cortex accurately 
encoded the location of both targets during the working memory period. During 
this period, the population correctly encoded the first and second targets on up 
to 85 and 82  % of the trials in a session, respectively. When considering all 12 
possible target combinations, the population encoded both targets correctly on up 
to 72 % of the trials in a session (Fig. 2a). Across all tested sessions, the popu-
lation correctly encoded the first and second targets on average on 76 ± 11 and 
56 ± 17 % of trials, respectively, both of which were significantly above chance 
(one-sided Z-test, P  <  10−15). Also, the population encoded both targets cor-
rectly on average on 45 ± 12 % of the trials across all sessions, which was also 
far higher than chance at 1/12 ≈ 8 % (one-sided Z-test, P < 10−15). These results 
were consistent across the two monkeys (P < 10−15 for both).

Fig.  2   Population decoding accuracy for a selected session. a Population decoding accuracy 
over time for the first target (red curve), second target (green curve), and the full sequence (blue 
curve). Each point on the curves indicates the decoding accuracy for the population over the pre-
ceding 500 ms window. Time at zero is aligned to the start of first target presentation. The red 
and green vertical bars indicate the times during which the first and second targets were pre-
sented, respectively. The first and second dashed black lines indicate the mean times at which the 
first and second “go” cues were given, respectively. The arrow indicates the time point of decod-
ing for the preceding working memory period (i.e., 0–500 ms from the end of the second target 
presentation). The dotted lines indicate the 99 % chance upper confidence bounds for the first tar-
get, second target, and sequence (out of 12 possibilities), with the same respective color scheme 
used above. b Number of cells sufficient to reach decoding accuracy asymptote during the work-
ing memory period for the same session. The first target (red curve), second target (green curve), 
and sequence (blue curve) accuracies are displayed as a function of the cumulative number of 
cells, in descending order of single-cell sequence accuracy. The number of cells needed to reach 
over 90 % of the population accuracy is indicated by the vertical dashed line
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2.2 � Robustness of the Encoding

Only a small number of cells were needed to decode the target sequence with high 
accuracy. When performing the decoding analysis over all trials, which employed 
all 12 possible target combinations, only 29 % of the population (7.5 cells) was 
needed, on average, to achieve higher than 90 % of the population sequence accu-
racy (Fig.  2b). When performing the decoding analysis over subsets of all trials 
that employed only 4 or 8 target combinations, population sequence accuracies in 
the best session were as high as 93 and 80 %, respectively. In these cases, decod-
ing from only 2 and 4 cells, respectively, was sufficient to achieve higher than 
90 % of these sequence accuracies.

2.3 � Real-Time Concurrent BMI for Sequential Movement 
Decoding and Execution

Motivated by the observation that both targets can be concurrently and accurately 
decoded from the responses of relatively few neurons in the premotor cortex, we 
developed a real-time BMI capable of predicting both targets simultaneously prior 
to the monkey’s motor response and then executing the targeted movements. In the 
associated experiments, we recorded a mean of 20 ± 2 cells per session from the 
premotor cortex of the same monkeys. Here, Poisson models were first fitted to the 
neural population activity during the working memory period prior to the “go” cue 
as the primates rehearsed a subset of target combinations that included either 4 or 8 
possible sequences over an average of 26 ± 2 training trials per sequence (Fig. 1b).

Using the Poisson models, sequence decoding accuracies for the set of 4 and 8 
sequences in these training sessions (found using leave-one-out cross-validation) 
were 79 ± 2 and 80 ± 3 % (Fig. 3; mean ± s.e.m.; one-sided Z-test, P < 10−15), 
respectively. Following training, the primates performed the same task as before, 
but with the cursor now being sequentially positioned by the BMI on the targets 
decoded from the recorded neuronal activity during the single preceding work-
ing memory period (Fig. 1c). Here, BMI-generated cursor movements were set to 
occur immediately following the presentation of the “go” cue and the added delays 
were selected to match the reaction times that the monkeys normally experienced 
when moving the cursor themselves following the “go” cue (obviously, cursor 
movements could be generated without the added delays if desired).

Both monkeys performed the four-sequence set, and one monkey performed 
the eight-sequence set using the real-time BMI. Sequence accuracies for the set 
of four and eight sequences were 72 ±  2 and 71 ±  4  %, respectively, both of 
which were significantly above chance (Fig. 3; mean ±  s.e.m., one-sided Z-test, 
P  <  10−15). These results established that two planned elements, i.e., the two 
intended sequential targets of movement, could be simultaneously predicted in 
advance of movement and then executed by a real-time BMI with high accuracy.
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We also examined the time required by the concurrent decoder to decode the 
sequence. We found that the sequence decoding accuracy for the set of 4, 8 and 
12 sequences reached 90  % of the maximum asymptotic accuracy possible, on 
average, 488 ± 135, 561 ± 119 and 641 ± 121 ms, respectively, after the initial 
presentation of the second target. In comparison, when performing the motor 
sequence, the minimum total time it took for the monkeys to both react to the two 
go cues and reach the two targets was, on average, 791 ± 93 ms.

2.4 � Population Encoding Structure Reveals a Novel 
Partitioning Mechanism

Observing that both target locations could be accurately and concurrently pre-
dicted from the neural population responses, we further examined the spatial and 
temporal structure of their encoding. In particular, we investigated how neurons 
within the premotor cortex were able to add new information about the second tar-
get to working memory without compromising the integrity of information about 
the first target that was already being held.

We find that most cells encoded significant information about only the first 
(currently held) or only the second (newly added) target during the working 
memory period. Moreover, this partitioning remained stable throughout recordings 

Fig. 3   Decoding accuracies 
on BMI trials. The gray 
bars indicate the monkeys’ 
average behavioral accuracy, 
maximum-likelihood 
cross-validation accuracy 
on the training data, and 
real-time BMI accuracy, with 
each corresponding s.e.m. 
The black bars indicate 
chance level accuracies. 
Performances using four 
sequences are displayed 
on the left, and using eight 
sequences are displayed on 
the right
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per day. Of the 281 neurons recorded in all sessions, 46 % had a target accuracy 
significantly higher than chance for at least one of the two targets during the 
working memory period (one-sided Z-test, P  <  0.01). Of these, 68  % encoded 
significant information about only the first currently held target, and 23 % encoded 
significant information about only the second added target (one-sided Z-test; 
P  <  0.01; Fig.  4). The percentage of cells that encoded significant information 
about both targets was only 9  % (one-sided Z-test; P  <  0.01) and, even among 
these, most had target accuracies much closer to one of the two subpopulations of 
cells that significantly encoded only one target (Fig. 5).

Fig. 4   Example of a second (added) target selective neuron. The subfigure at the upper left cor-
ner shows the first and second target accuracies of the cell as a function of time into the trial. The 
vertical bars/lines and their timings follow the same convention as Fig. 2. In all other subfigures, 
each top panel corresponds to a different sequence of movements with each row illustrating the 
spiking activity during a single trial and the black dots indicating the spike times. Each bottom 
panel indicates the corresponding mean firing rate estimates using the expectation-maximization 
procedure (black curve) and the corresponding peristimulus time histogram (PSTH) (magenta 
curve). The arrow indicates the working memory period. The subfigures in the same row corre-
spond to sequences with the same first target location. The subfigures in the same column corre-
spond to sequences with the same second target location. Note that repeated target locations were 
not used in the sequences, and hence there are 3 subfigures per row/column
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The two subpopulations of cells remained stable over time. In a given day’s 
session, most neurons remained dedicated to encoding only the first (currently 
held) or only the second (added) target. For the two subpopulations of cells that 
encoded significant information about the respective first and second targets alone, 
most (89 %) provided substantially the same level of accuracy in decoding their 
respective targets in the first and second halves of the recording session (χ2 test, 
P > 0.05).

2.5 � Effect of Adding Information to Working Memory on the 
Integrity of Existing Information

In order to further examine how adding a new target to working memory affected 
the integrity of the currently held target, we disambiguated the process of holding 
information in working memory from that of adding information to it. The results 
were obtained from sessions in which the monkeys performed the standard 

Fig.  5   Distribution of first and second target information across the population. Scatter plot 
of the first and second target accuracies for the 129 cells that encoded significant information 
about at least one target during the working memory period (across 12 sequences). Statistical 
significance of the target accuracies was tested here at the 0.01 level. Red points indicate cells 
that encoded significant information about only the first target, green points indicate those that 
encoded significant information about only the second target, and black points indicate those 
that  encoded significant information about both targets. The inset indicates the proportion of 
cells  that encoded significant information about only the first, only the second or both targets 
during the working memory period with the same coloring scheme, above
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dual-target trials (as before), but also performed single-target trials in randomly 
interleaved fashion. Unlike dual-target trials, on single-target trials only the first 
target was presented and the second target presentation period was replaced 
with a blank-screen period of the same duration. The task timing was otherwise 
unchanged compared to the dual-target task.

We find that adding information about the second target location to working 
memory did not incur loss of information about the first target location. Of the 
cells that encoded significant information about the first target during working 
memory in single-target trials (one-sided Z-test, P < 0.01), most (74 %) provided 
the same level of accuracy in decoding the first target during working memory 
in dual-target trials, despite the addition of a second target (χ2 test, P  >  0.05). 
Moreover, for the whole population, there was also no significant difference in the 
first target accuracy during the working memory period when comparing dual-tar-
get and single-target trials across sessions (Wilcoxon’s signed-rank test, P = 0.69). 
These results demonstrate that the subpopulation encoding the first target and their 
responses remained largely unchanged when the second target was added to work-
ing memory and, therefore, the addition of information about the second target did 
not comprise the integrity of information already held about the first target.

3 � Conclusions

Collectively, our results establish the viability of concurrent decoding in a BMI. 
We find a novel functional structure within the premotor cortex that enabled accu-
rate and concurrent decoding of two planned motor targets across multiple spatial 
locations. During working memory, premotor populations are largely partitioned 
into two fundamentally disjoint subpopulations of cells—one dedicated to encod-
ing only the currently held (first) target and one dedicated to encoding only the 
newly added (second) target, irrespective of the specific sequence. Moreover, 
while the two target locations changed from trial to trial, the two encoding sub-
populations did not. Interestingly, the subpopulation dedicated to encoding the first 
target and their responses remained largely unchanged when the second target was 
added to working memory, so that the process of adding information did not com-
promise the integrity of existing information. Also remarkably, only a small num-
ber of neurons were sufficient to accurately predict the location of both targets, 
making the decoding of such information highly robust.

We also developed a concurrent BMI that decoded the sequential motor plans 
in advance of movement, accurately, and robustly. Such a concurrent BMI allows 
the subjects to plan a sequential motor task simultaneously and will therefore 
decode this sequence concurrently. This is in contrast to requiring the subject to 
plan and execute the elements of a sequential plan one by one, as in prior BMIs.

Additionally, a concurrent architecture provides the prospect of BMIs that can 
enhance natural sequential motor function by considering the higher-level goal of 
the motor activity and then reformulating the motor plan accordingly. Because the 
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full motor plan is simultaneously decoded upfront and in advance of movement, 
the higher-level goal of the task can, in principle, be analyzed before execution. 
For instance, this could allow designing a BMI that can perform the task more 
quickly, more flexibly, or more efficiently than originally conceived. Such a BMI 
may, for example, alter the order in which the elements of the motor sequence are 
executed depending on rapid or unpredictable changes in the environment (e.g., to 
avoid unanticipated obstacles), or correct the original sequence based on the per-
formance metrics of the task (e.g., proactively change a sequence of letters based 
on spelling rules). Significant technological innovations are obviously required for 
the realization of such BMIs. But our results demonstrate that the novel concurrent 
architecture that is a key requirement for such realization is feasible. As a sim-
ple but illustrative example of such a capability, we find that we could accurately 
decode the full sequence of two targets faster than it took the monkeys to select 
the sequence themselves.

Given these results, it is conceivable that a variety of higher-level motor func-
tions could be achieved in the future by such BMIs exploiting concurrent decod-
ing and the neural partitioning revealed in this study. As such, there may be broad 
implications for use in both clinical and non-clinical applications.
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Abstract  Electrocorticography (ECoG) is a promising technology for high per-
formance brain-computer interfaces (BCIs). To implement practical ECoG based 
BCIs, minimizing the invasiveness of the electrode implantation is critical. In 
this study, we advanced our recently proposed ‘N200 speller’ BCI paradigm that 
utilizes the attentional modulation of visual motion response. Non-invasive func-
tional magnetic resonance imaging (fMRI) was employed to localize the visual 
motion processing regions. The subdural electrodes within these fMRI defined 
regions were associated with a negative deflection around 200 ms post-stimulus, 
and a power increase of the high gamma (60–140  Hz) frequency range around 
100–500  ms post-stimulus, when the corresponding visual motion stimuli were 
attended. In subsequent BCI analyses, these electrodes showed top classification 
accuracies among all electrodes, suggesting the optimal locations for electrode 
implantation can be determined prior to surgery using fMRI imaging. Our findings 
demonstrate the feasibility of implementing a minimally invasive ECoG based 
N200 speller.

Keywords  Electrocorticography  ·  Visual motion processing  ·  N200  ·  High 
gamma  ·  Functional magnetic resonance imaging

1 � Introduction

Electrocorticography (ECoG) has attracted increasing interest as a neuroimag-
ing approach for advanced brain-computer interfaces (BCIs) over the past dec-
ade. Compared to EEG, ECoG has two major advantages for implementing 
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advanced BCIs. First, the spatial resolution of ECoG is much higher than that of 
EEG. ECoG records signals originating from brain tissues directly beneath the 
electrode surface (surface area of 1–10 mm2) with little influence from adjacent 
tissues (Bullock et  al. 1995; Nunez and Srinivasan 2006), whereas EEG’s spa-
tial resolution is at a multi-centimeter scale due to volume conduction of currents 
through tissues in the head. Such a fine spatial resolution makes ECoG ideal for 
capturing the cortical dynamics of sensory and cognitive functions that originate 
from relatively small brain regions (Liu et al. 2009; Mesgarani and Chang 2012; 
Vinjamuri et al. 2011). Second, low voltage, high frequency brain activity that is 
barely detectable in scalp EEG is readily observed in invasive ECoG recordings 
(Leuthardt et al. 2004). In the past few years, ECoG BCIs have achieved prom-
ising results using brain signals extracted from the motor cortex (Kubanek et al. 
2009; Miller et  al. 2010; Vinjamuri et  al. 2011), language-related brain regions 
(Leuthardt et al. 2011; Pei et al. 2011a), and auditory and visual cortex (Brunner 
et al. 2011; Wilson et al. 2006).

Nevertheless, real-life application of ECoG BCI demands mitigation of its 
invasive nature by minimizing both the size of the involved brain regions and the 
number of implanted electrodes. To date, ECoG BCI studies have been carried 
out with epilepsy patients, who underwent open skull surgery and implantation of 
large electrode arrays for clinical purposes. However, surgery of this type is both 
unnecessary and risky for most potential BCI users (e.g. patients with amyotrophic 
lateral sclerosis). Instead, electrodes for BCI purposes can be inserted through a 
burr hole into the brain, thus implementing a ‘minimally invasive’ BCI, given that 
sufficient information can be extracted within a limited cortical area.

2 � Motivation for a Minimally Invasive N200 Speller

Here we propose that the recently developed ‘N200 speller’ using motion onset 
visual evoked potentials (mVEPs) may serve as a suitable candidate for building 
minimally invasive BCIs (Guo et al. 2008; Jin et al. 2012). The N200 speller uti-
lizes the modulation effect of mVEPs by overt attention (i.e., eye gaze) for a spell-
ing application (Fig. 1a). The attended visual motion stimuli elicit a more negative 
peak around 200 ms post-stimulus (N200) over parietal-occipital areas than unat-
tended stimuli, and BCI user intent is recognized based on this difference. BCIs 
based on mVEPs can be considered as  an extension of the widely studied P300 
BCI (Donchin et  al. 2000; Farwell and Donchin 1988), which utilizes an atten-
tion-related positive event-related potential (ERP) peaking around 300 ms (P300) 
over the parietal cortex elicited by the attended visual flash stimuli. In terms of 
invasiveness, mVEP BCI is a better candidate than P300 BCIs, as visual motion 
processing (reflected by mVEPs in EEG) is believed to be highly focused in a 
small brain region known as the human middle temporal (MT) complex (Fig. 1b) 
(DeYoe et al. 1996; Huk et al. 2002; Zeki et al. 1991).
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In the N200 speller, visual motion stimuli were presented as brief rightward 
motion (150  ms) of vertical bars in the rectangle regions beneath the symbols. 
Similar to the classical P300 speller, the visual motion stimuli were presented 
either  by column or by row. The column and row stimuli corresponding to the 
attended symbol elicit stronger visual motion responses, constituting the basis for 
BCI classification. Hereby, a 36-choice spelling application can be realized on the 
basis of a series of binary decisions, based on whether the stimulus presented at cer-
tain time point is attended or not, by taking advantage of the visual speller design 
(Farwell and Donchin 1988; Hong et al. 2009). Compared with other types of ECoG 
BCIs for motor and speech decoding (Kubanek et al. 2009; Leuthardt et al. 2004, 
2011), relatively less information is required for the operation of the N200 speller.

The N200 speller may further benefit from ECoG recordings with a broader 
frequency band response. Specifically, BCI classification may be facilitated by 
including the high gamma responses as a new feature, since visual motion process-
ing is reflected in both low frequency mVEP responses (Matsumoto et al. 2004) 
and high frequency (50–120 Hz) power increases (Rauschecker et al. 2011). In the 
ECoG-based visual motion BCI, we expected to see not only an attention-related 
negative peak around 200  ms post-stimulus, but also a stronger high gamma 
response by the attended visual motion stimuli than the unattended ones.

3 � ECoG BCI Experiment

Figure 1a shows the stimulation interface of the N200 speller. Visual motion stim-
uli were displayed on a 17-in. LCD monitor (DELL FP1708, USA) with 60 Hz 
refresh rate and 1,280  ×  1,024 resolution. The viewing distance was 50  cm. 

Fig. 1   The N200 speller BCI. a The N200 speller interface with the visual motion stimulus in 
the third row; b the hypothesized neural generator of the N200 component in the human MT 
complex
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Patients participated in two offline experiment sessions. Each session consisted of 
six blocks, in which the patients were instructed to attend to one of the virtual but-
tons as a target. The patients were required to mentally count the number of times 
the moving bar appeared in the attended button without moving their mouths. 
During one block, the six column stimuli and the six row stimuli were presented 
in a random order and were repeatedly presented either 10 or 15 times. The repeti-
tion number was decided prior to the experiment, depending on the patients’ phys-
ical state and willingness. In both sessions, the six virtual buttons on the diagonal 
of the speller matrix from top-left to bottom-right were sequentially used as the 
attentional target. A trial was defined as the EEG recording epoch relative to the 
stimulation of a single row or column stimulus, with trials of attended stimuli des-
ignated as target trials and trials of unattended stimuli as non-target trials.

To localize the functional regions of visual motion processing, patients par-
ticipated in an additional fMRI experiment prior to their electrode implantation. 
A classical localizer paradigm for visual motion area MT (middle temporal) was 
employed (Huk et  al. 2002). The patients passively viewed either static dots or 
center-out moving dots while having the fMRI scan (Fig. 2a).

Five epilepsy patients with subdural ECoG electrode coverage of human 
MT complex participated in this study. Two subjects (subject A and B) went 
through the fMRI experiment before electrode implantation surgery; the other 
three patients (subject C, D, and E) only had a structural MRI scan to evaluate 
their individual brain structures. The BCI experiment was carried out later in an 
offline manner, with ECoG recording. This study was approved by the Institutional 
Review Board of the hospital affiliated with Tsinghua University.

Fig. 2   a Visual stimuli used in the fMRI experiment for localizing the visual motion processing 
related brain regions; b fMRI BOLD activation patterns shown on inflated brain surfaces (left 
column) and on pial surfaces (right column, for the convenience of displaying the ECoG elec-
trodes). The red and blue circles were used to mark out the BOLD activation of the MT complex 
and the early visual cortex, respectively
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4 � Intracranial Responses Within the fMRI Defined Visual 
Motion Regions

As shown in Fig.  2b, fMRI showed an enhancement of the blood oxygen level-
dependent (BOLD) signal in the parietal-temporal-occipital junction (possibly the 
human MT complex), as well as part of the occipital cortices that is likely to be 
the early visual cortex. Within the fMRI-defined visual motion regions, the typi-
cal ECoG response is shown in Fig. 3. The ECoG responses were comprised of 
both a low frequency event-related potential (ERP) and a power increase at the 
high gamma frequency range (60–140  Hz). The observed negative deflection of 
the ERP amplitude around 200  ms after the stimulus onset resembles the scalp 
recorded N200 component in mVEPs, providing further evidence for the neu-
ral generator of the scalp N200 from the visual motion processing regions. More 
importantly, the high gamma power increase from post-stimulus 100–500  ms 
associated with overt visual attention suggests possibly distinct neural mecha-
nisms underlying ERPs and high gamma responses. Therefore, the high gamma 
responses may have unique contribution to BCI classification.

The ERPs and high gamma responses can also be compared based on their 
spatial distributions. To describe the ERP/high gamma responses associated with 
the overtly attended visual motion stimuli, the squared Pearson product-moment 
correlation coefficient (r2) was employed to characterize the difference in ampli-
tude distribution between task and baseline conditions of the target trials (Pei 
et  al. 2011b; Sheikh et  al. 2003; Wonnacott and Wonnacott 1977). Here, we 
took the mean area under the post-stimulus 500  ms of target ERP/high gamma 
power waveforms to represent the task condition, and the mean area under the 

Fig.  3   a Typical time-frequency response to overtly attended visual motion stimuli. The fre-
quency range and the time period of significant differences (p  <  0.05, paired t-test, p-values 
corrected using the false detection rate (FDR) method) between the attended condition and the 
baseline are outlined by the rectangular boxes. The electrode was from patient B, placed over the 
parietal-temporal-occipital junctions (marked by arrow in Fig.  3a). b Averaged visual motion-
related high gamma power envelopes and ERPs for target and non-target trials. The grey line 
indicates the time periods with significant differences between the target responses and the cor-
responding baseline (p < 0.05, paired t-test, FDR corrected)
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pre-stimulus 200  ms ERP/high gamma power to represent the baseline condi-
tion. As shown in Fig. 4, the ERP responses are more widely distributed, whereas 
the high gamma responses had a much more restricted spatial distribution, cov-
ering either the parietal-temporal-occipital junction, or more posterior part of the 
occipital cortex. Moreover, the high gamma responses elicited by the target stim-
uli were more prominent, as higher r2 values were obtained compared to target 
ERP responses (Fig. 4, warmer color for larger r2 value). The relatively restricted 
spatial distribution of the high gamma responses is in accordance with previous 
intracranial studies on motor functions, in which the authors concluded that the 
topographical distribution of high gamma responses were more discrete and soma-
totopically specific (Crone et al. 1998a, b). Hereby, our findings suggest that the 
observed high gamma responses are likely to be functionally specific for visual 
motion processing.

5 � Feasibility of an fMRI Guided Minimally Invasive BCI

The major concern for a practical minimal invasive BCI is whether the position 
for electrode implantation can be determined prior to surgery using non-invasive 
methods. In previous ECoG BCI studies, the ECoG electrodes used for BCI clas-
sification were mostly selected afterwards from electrode grids placed purely for 

Fig. 4   r2 values of ERP/high gamma activity, with red corresponding to the highest r2 values 
and yellow to the lowest r2 values. The r2 values are only shown on electrodes with statisti-
cally significant responses, while other electrodes are marked in white. The seizure electrodes 
excluded for further analysis are marked in green
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diagnostic purposes (Brunner et  al. 2011; Chang et  al. 2011). Intuitively, elec-
trode positions for BCIs could be determined based on the anatomical landmarks 
of the human brain, then placed over the intended brain regions using intraoper-
ative stereotactic navigation. Such procedures have been successfully applied in 
studies focusing on the primary motor cortex for movement decoding (Leuthardt 
et  al. 2009) and the posterior superior temporal gyrus for speech reconstruction 
(Chang et al. 2010; Pasley et al. 2012). However, anatomy based electrode locali-
zation does not ensure an accurate targeting of functional cortical areas, which is 
the basis for BCI decoding. Alternatively, non-invasive functional magnetic reso-
nance imaging (fMRI) technology may provide useful information for determining 
the electrode locations of visual motion BCI prior to the electrode implantation. 
The direct functional mapping of fMRI on an individual basis is ideal for poten-
tial BCI users who may have brain functions remapped due to disease or injuries 
(Johansson 2011; Murphy and Corbett 2009). Although ECoG and fMRI signals 
reflect brain response in different modalities, it has been reported that gamma 
band responses in motor cortex, as well as theta and gamma band responses in the 
human MT complex, are correlated with fMRI signals in their corresponding brain 
regions (Hermes et al. 2012; Rauschecker et al. 2011).

Here, we demonstrate the feasibility of a minimally invasive visual motion BCI 
speller by comparing the location of the ECoG electrode selected for BCI clas-
sification with the fMRI activation map. Using both the ERP and the high gamma 
response as features for BCI classification (averaging over three trials, binary 
classification of target vs. non-target) (Zhang et al. 2013), all the single-electrode 
accuracies (attended vs. unattended) of subject A and B are shown in Fig. 5a. The 
electrodes with the highest accuracies (marked by the red asterisks) were within 
the fMRI-defined regions (shown as black bars; see Fig. 2b for the electrode loca-
tions). Although an fMRI scan was not performed for the other three patients (C, 
D, and E), the selected single electrodes with best high gamma response were 
also confirmed to be located either on the MT area or the secondary visual cortex, 
according to anatomical labels. The spatial locations of the best BCI electrodes are 
plotted in Fig. 5b, and the coordinates of the best BCI electrodes for all patients in 
Talairach space and the corresponding anatomical labels are given in Table 1. The 
best BCI electrodes for patients C and E were located in the early visual cortex, 
whereas the best electrode for patient D was near middle temporal gyrus, which is 
in the vicinity of human MT complex.

For all five patients, the average classification accuracies from the best 
single electrodes were 75.48  ±  4.18  % when using the ERP feature and 
81.24 ±  6.23  % when using the high gamma feature. By combining the ERP 
and high gamma features together, significantly higher classification accuracies 
were achieved compared to the results using ERP/high gamma features alone 
(Fig.  5c, combined vs. ERP: 84.22 ±  5.54 % vs. 75.48 ±  4.18 %, p < 0.005, 
paired t-test; combined vs. high gamma: 84.22 ± 5.54 % vs. 81.24 ± 6.23 %, 
p < 0.05, paired t-test). In addition, high gamma features resulted in better clas-
sification accuracies than ERP features (81.24 ±  6.23  % vs. 75.48 ±  4.18  %, 
p < 0.05, paired t-test), which was consistent with the r2 results. The superior 
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Fig.  5   a Single-electrode classification accuracy for subject A and B. Electrodes within the 
fMRI-defined regions are shown as black bars. b The spatial locations of the best BCI electrodes 
for individual patients, marked in red. c Individual classification accuracy using ERP features, 
high gamma features or combined features

Table 1   Talairach coordinates of the electrodes selected for BCI classification

Subject Talairach coordinates of the selected electrodes

A Lateral occipital (25.6, −89.1, 22.2)

B Lateral occipital-middle temporal (58.2, −63.9, 3.2)

C Lateral occipital (−51.4, −70.6, −9.3)

D Lateral occipital-middle temporal (−38.2, −80.5, 25.7)

E Lateral occipital (−10.6, −97.4, 
−14.5)
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classification accuracy suggests that high gamma responses indeed contribute 
to BCI classification and sufficient information can be obtained for BCI control 
using a single-channel design.

6 � Concluding Remarks

In the present study, we investigated the possibility of implementing a minimally 
invasive BCI through a novel ‘N200 speller’ BCI paradigm. The ECoG electrodes 
within the fMRI-defined visual motion processing regions were found to show 
both strong ERP responses and high gamma power increases associated with overt 
visual attention. Using both ERP and high gamma features for BCI classification, 
the electrodes with top classification accuracies were located within the fMRI-
defined or anatomically defined visual motion regions. Our study demonstrates an 
implementation of an ECoG based visual motion BCI with a single subdural chan-
nel that can be implanted in a minimally invasive way employing pre-operative 
fMRI for target region localization.

Although the present study was conducted with epilepsy patients with elec-
trode grids implanted, our results support a practical ECoG BCI for other patients 
(Fig.  6). A minimally invasive BCI can be implemented by inserting the single 
subdural electrode through a burr hole onto the surface of cortex that the non-inva-
sive fMRI identifies as active during visual motion tasks. The reference electrode 
and the ground electrode can also be placed through the same burr hole, but on 
the outer surface of the skull. The BCI module, including an EEG amplifier and 
even a digital signal processing unit, can be implanted inside the body as well. 
Similar to impulse generators of a deep brain stimulation device package, such a 
unit can be placed under the skin of the chest, below the collarbone. The recog-
nized mental states (i.e., which letter on the virtual keyboard is attended) can then 

Fig. 6   Outlook: a fully implanted minimally invasive BCI at work
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be transferred wirelessly to external communication devices, thus realizing a fully 
implanted BCI. Together with the durable and stable ECoG signal quality for long-
term usage (Chao et al. 2010; Sperling 1997), a minimally invasive ECoG BCI is 
a promising tool for re-establishing a communication channel for disabled people.
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Abstract  We study the extent to which vibrotactile stimuli delivered to the head of a 
user can serve as a platform for a brain computer interface (BCI) paradigm. Six and 
ten head position setups are used to evoke combined somatosensory and auditory (via 
bone-conduction effect) brain responses, in order to define a multimodal tactile and 
bone-conduction-auditory brain computer interface (tbcaBCI) suitable for ALS-TLS 
patients with bad vision and suffering from an ear-blocking-syndrome. Experimental 
results on users performing online tbcaBCI, using stimuli with a moderately fast 
stimulus-onset-asynchrony (SOA), validate the tbcaBCI paradigm, while the feasibil-
ity of the concept is illuminated through information-transfer-rate analyses.

Keywords  Tactile and auditory BCI  ·  Somatosensory evoked potentials (SEP)  ·  
Auditory evoked potentials (AEP)

1 � Introduction

The state of the art BCIs rely mostly on mental, visual and motor imagery para-
digms, which require users to have healthy vision and often participate in long train-
ing. Recently alternative solutions have been proposed to utilize spatial, auditory 
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(Halder et al. 2009; Lelievre and Rutkowski 2013; Rutkowski et al. 2009; Schreuder 
et  al. 2010) or tactile (somatosensory) modalities (Mori et  al. 2013a, b, c; Muller-
Putz et al. 2006; van der Waal et al. 2012) in order to enhance brain-computer inter-
face comfort or to boost the information-transfer-rate (ITR) (Schreuder et al. 2010) 
achieved by users. The concept described in this chapter of utilizing the brain’s soma-
tosensory (tactile) modality opens up the attractive possibility of targeting the tac-
tile sensory domain, which does not rely on visual stimuli to elicit evoked potentials 
during visual computer applications or operation of robotic interfaces (prosthetic 
arm, vehicular robot, smart house appliance, etc.) or visual computer applications. 
The first successful trial to utilize steady-state somatosensory responses (SSSR) to 
create a BCI (Muller-Putz et al. 2006) targeted a very low stimulus frequency in a 
range of 20–31 Hz to elucidate the users’ steady-state activity, which was then used 
to create BCI commands. A very recent report (van der Waal et al. 2012) proposed 
using a Braille stimulator with a 100  ms long static push stimuli delivered to six 
fingers to evoke a somatosensory response related P300. Very encouraging results 
were obtained with 7.8 bit/min on average and 27 bit/min for the best user. Here we 
propose to combine the two above-mentioned modalities in the tbcaBCI paradigm, 
which relies on P300 response evoked by the audio and tactile stimuli delivered 
simultaneously via the vibrotactile exciters attached to the head positions (see Fig. 1), 

Fig. 1   User’s head with EEG cap embedded with dry g.SAHARA electrodes (orange) and vibro-
tactile and bone-conduction exciters (indicated by white arrows) attached
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thus benefiting from the bone-conduction effect for audio. This offers a viable 
alternative for individuals lacking somatosensory responses from the fingers or torso/
chest body locations, which prevents them from utilizing tactile BCI solutions as pro-
posed in Mori et al. (2013a, b), Severens et al. (2013), or for people suffering from 
the ear-blocking-syndrome (a middle ear effusion/negative pressure) (Gelinas 2007).

2 � Materials and Methods

In the experiments described in this chapter, eleven BCI-naive users (mean age 
21.82 with standard deviation of 0.87) and two experienced volunteers (mean 
age 32 with standard deviation of 14.14) took a part. All the experiments were 
performed at the Life Science Center of TARA, University of Tsukuba, Japan. 
The psychophysical and online EEG tbcaBCI paradigm experiments were con-
ducted in accordance with WMA Declaration of Helsinki-Ethical Principles for 
Medical Research Involving Human Subjects. The experimental procedures were 
approved and designed in agreement with the ethical committee guidelines of the 
Faculty of Engineering, Information and Systems at the University of Tsukuba, 
Japan. The BCI-naive users performed the experiments for monetary compen-
sation. The 100 ms long stimuli in the form of sinusoidal waves were delivered 
to each user’s head areas via the tactile exciters HiWave HIAX19C01-8 work-
ing in the range of 300–20,000  Hz. The vibrotactile stimulators were arranged 
as follows. The pairs of exciters were attached on both sides of the forehead, 
chin, and behind the ears respectively. During the online tbcaBCI experiments, 
the EEG signals were captured with a portable wireless EEG amplifier system, 
g.MOBIlab+, using eight dry g.SAHARA electrodes from g.tec, Austria. The 
electrodes were attached to eight electrode sites, Cz, CPz, P3, P4, C3, C4, CP5, 
and CP6, as in the 10/10 extended international system (see topographic plot in 
Fig.  2). The ground and reference electrodes were attached behind the left and 
right ears respectively. In order to limit electromagnetic interference, the user’s 
hand was also grounded with a conductive armband connected to the amplifier’s 
ground. No electromagnetic interference was observed from the vibrotactile 
activity on the head. The recorded EEG signals were processed by the in-house 
enhanced BCI2000 application using an SWLDA classifier with features drawn 
from 0 to 600  ms ERP intervals. The sampling rate was set to 256  Hz, with a 
high pass filter at 0.1 Hz, and low pass filter at 40 Hz. The stimulus-onset-asyn-
chrony (SOA) was 400 ms (250 ms for the two experienced users) and each stim-
ulus lasted 100 ms. The user was instructed to spell six (or ten for experienced 
users) digit random sequences of numbers ranging from 1–6 (or 1–10), which 
were represented by the locations of the vibrotactile exciters on the head in each 
experimental session. Each target was presented five times in a single spelling 
sequence, and the averages of five ERP responses (single trials) were later used 
for the classification.
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3 � Results

The area under the curve (AUC) of the ROC for feature plots marking the most 
discriminable latencies is depicted in Fig.  2. Topographic plots of the AUC dis-
tributions are also presented in Fig.  2, supporting the choice of the eight dry 
EEG electrodes covering the vertex and the parietal cortex locations. The aver-
aged ERP responses, from each EEG electrode depicted separately, with standard 
error bars from the eleven BCI–naive users are presented in Fig. 3 for the target 
and non-target digits. The results of online BCI interfacing sessions are sum-
marized in Table 1 in the form of mean accuracies above the theoretical chance 

Fig.  2   AUC analysis of tactile and bone-conduction BCI target versus non-target response 
discrimination. The top panels present two topographic head plots with electrode positions 
and spatial maps of the response at maximum and minimum AUC values as obtained from the 
bottom panel time series depicting this quantity for each electrode separately. The middle two 
panels depict the ERP responses to targets and non-targets together. A resulting AUC analysis of 
the two middle panel plots is presented in the bottom panel of the figure
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level of 16.6 % or 10 %, for BCI-naive and experienced users respectively. In our 
experiments, only a single BCI-naive user obtained 100 % online spelling accu-
racy for the six digit sequence with averages of five trials. One user was also 
unable to attain any control at all, with 0 % accuracy.

These preliminary yet encouraging results are a step forward in the search for 
the new “non-vision-based” BCI paradigms.

Fig. 3   Grand mean tactile and bone-conduction ERP visualization for all users, together with 
P300 responses for all electrodes used in the experiment. The eight EEG electrodes are depicted 
separately. The purple lines represent the targets, and the blue lines represent the non-targets. The 
P300 response is clearly visible in the 400–600 ms latency ranges

Table 1   Summary of the 
online tbcaBCI results with 
eleven BCI-naive and the  
two experienced users

Experimental parameter Naive users Experienced users

Number of commands 6 10

SOA (ms) 400 250

Number of averaged ERPs 5 5

Mean accuracy (%) 50 65

The best accuracy (%) 100 90

Mean ITR (bit/min) 3.22 7.17

The best ITR (bit/min) 12.90 12.17
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4 � Conclusions

This study demonstrated results obtained with a novel six-commands (or ten in 
case of BCI-experienced users) and the head locations based tbcaBCI paradigm 
developed and used in experiments with eleven BCI-naive and two experienced 
“body-able” users. The experiment results obtained in this study confirmed the 
validity of the tbcaBCI for interactive applications.

The results presented offer a step forward in the development of novel neu-
rotechnology applications. Since the online BCI did not yield high information 
transfer rates overall, the current paradigm would obviously need improvements 
and modifications. These needs determine the major lines of study for future 
research. However, even in its current form, the proposed tbcaBCI can be regarded 
as a practical solution for ALS-TLS patients (locked into their own bodies despite 
often intact cognitive functioning), who cannot use vision or auditory based inter-
faces due to sensory or other disabilities.

We plan to continue this line of the tactile and bone-conduction-auditory BCI 
research in order to further optimize the signal processing and machine learning 
(classification) methods. Next, we will test the paradigm with ALS-TLS patients 
in need for BCI technology.
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The preceding chapters described several of the most novel and promising BCI 
projects in 2013. The authors also extended the information in their original two-
page submissions with additional details, related work, newer directions, and 
discussion. In this concluding chapter, we announce the 2013 Award winner, 
discuss trends reflected in the awards, and preview next year’s BCI Award.

1 � The BCI Award 2013 Winner

This year’s jury had the biggest challenge in any BCI Award so far. With 169 sub-
missions, reviewing and scoring all submissions and then selecting ten nominees 
was not easy. The jury then had to select a winner, who was publicly announced in 
front of hundreds of other BCI researchers at the Fifth Annual BCI Conference in 
Asilomar, CA in June 2013. The winner also earned $3000, the statue, and an invi-
tation to the 2014 jury. Theresa Vaughan and the jury chose the winning project 
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because it scored high on all of the Award Criteria, and was particularly novel and 
promising, with significant potential to help a broad number of people.

The winning project was:
“A learning-based approach to artificial sensory feedback: intracortical 

microstimulation replaces and augments vision”

M.C. Dadarlata,b, J.E.O’Dohertya, P.N. Sabesa,b

aDepartment of Physiology, Center for Integrative Neuroscience, San Francisco, 
CA, US

bUC Berkeley-UCSF Bioengineering Graduate Program, University of California, 
San Francisco, CA, US

2 � Trends Reflected in the Awards

The BCI Awards help identify major trends in BCI research. Our BCI Award 
books have included tables that analyze different characteristics of the submitted 
projects. These tables help identify characteristics of BCI systems used in top BCI 
labs, thus reflecting which types of BCIs are most common in submitted projects. 
For example, Table 1 demonstrates that BCIs submitted to the BCI Awards typi-
cally analyze brain signals in real-time. This year, only 5.3  % of the submitted 
projects focused only on improved signal processing algorithms without real-time 
validation. The fact that over 150 real-time BCIs were submitted this year demon-
strates an impressive growth of BCI system capabilities over the last few years.

Table 2 shows the different input signals used in submissions across the years, 
with the last row presenting the number of projects that focused on developing 
new electrodes for BCI systems. Most of the projects use the EEG as input signal 
because it is relatively cheap and easy to measure. The table shows also that ECoG 
based systems are used despite their invasive nature, due to their better signal 
quality, higher spatial resolution and their ability to utilize high-gamma activity as 
a control signal. The percentage of projects using spike activity decreased slightly 
in 2013, but is still greater than projects that used fMRI or NIRS. 22 projects used 
other signals, such as physiological signals from the autonomous nervous system.

Table 3 summarizes the different mental activities used for control across dif-
ferent submissions that relied on EEG activity. In 2013, as with prior years, motor 
imagery based BCI system were strongly represented with about 25.4  % of the 

Table 1   Real-time BCIs and off-line algorithms in projects submitted to the BCI Awards

In all tables in this chapter, N reflects the number of submissions

Property N 2013 % 
(N = 169)

2012 % 
(N = 68)

2011 % 
(N = 64)

2010 % 
(N = 57)

Real-time BCI 156 92.3 94.1 95.3 65.2

Off-line 
algorithms

9 5.3 4.4 3.1 17.5
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submissions, followed by SSVEP/SSSEP/cVEP and P300/N200 based systems. 
The increase in SSVEP/SSSEP/cVEP based systems in 2012 and 2013 stems 
partly from on new stimulation principles like the code based stimulation (c-VEP), 
which leads to higher accuracy and faster election. A few ASSR BCIs were sub-
mitted, as in 2011.

Table  4 presents the overall application of the BCI, such as communication, 
control of a device or facilitating or studying rehabilitation. Table  4 shows that 

Table 2   Type of input signal for the BCI system

Property N 2013 % 
(N = 169)

2012 % 
(N = 68)

2011 % 
(N = 64)

2010 % 
(N = 57)

EEG 115 68 70.6 70.3 75.4

fMRI 7 4.1 1.5 3.1 3.5

ECoG 16 9.4 13.3 4.7 3.5

NIRS 5 3 1.5 4.7 1.8

Spikes 12 7.1 10.3 12.5 –

Other signals 22 13 2.9 1.6 –

Electrodes 11 6.5 1.5 1.6 –

Table 3   Type of control signal used for EEG based BCIs

Property N 2013 % 
(N = 169)

2012 % 
(N = 68)

2011 % 
(N = 64)

2010 % 
(N = 57)

P300, N200 20 11.8 30.9 25 29.8

SSVEP/SSSEP/cVEP 24 14.2 16.2 12.5 8.9

Motor imagery 43 25.4 30.9 29.7 40.4

ASSR 3 1.8 – 1.6 –

Table 4   Type of application

Property N 2013 % 
(N = 169)

2012 % 
(N = 68)

2011 % 
(N = 64)

2010 % 
(N = 57)

Control 34 20.1 20.6 34.4 17.5

Platform technology 28 16.6 16.2 9.4 12.3

Stroke neural  
plasticity

22 13.7 26.5 12.5 7

Wheelchair robot 
prosthetics

20 11.8 8.8 6.2 7

Spelling 14 8.3 25 12.5 19.3

Internet or VR game 10 5.9 2.9 3.1 8.8

Learning 9 5.3 1..5 3.1 –

Monitoring 8 4.7 4.4 1.6 –

Stimulation 6 3.6

(continued)
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most of the BCI projects still focus on systems to control external devices such as 
cursors, computers, etc. 16.6 % of the projects developed new platforms for either 
real-time or off-line BCI analysis. The percentage of stroke rehabilitation projects 
this year declined relative to 2012, but 2013 had far more total submissions than 
2012. Wheelchair control increased slightly from 8.8 to 11.8  %. Interestingly, 
spelling applications dropped from 25 % to only 8.3 %, which reflects that the field 
is branching out into new directions. Furthermore, some applications appeared for 
the first time 2013, while some applications from previous years were absent.

3 � Conclusion and Future Directions

The CEO of g.tec, Dr. Christoph Guger, once said that “The Annual BCI Research 
Award allows us to look back at highlights of BCI research in 20 years and see how 
the field changed”. Indeed, the Annual BCI Awards, supplemented by this book 
series, have so far been successful in encouraging and documenting the top BCI-
related research projects and teams. The 2014 BCI Awards use the same jury selec-
tion procedure, award criteria, award, and other details as previous BCI Awards.

g.tec has announced the jury and schedule for the 2014 BCI Award. The Host 
Institute is the Institute for Knowledge Discovery in the Technical University of 
Graz in Austria. The Chairman of the Jury, Gernot Mueller-Putz, has selected the 
following jury:

Deniz Erdogmus
Peter Brunner
Tomasz M. Rutkowski
Mikhail A. Lebedev
Philip N. Sabes

Property N 2013 % 
(N = 169)

2012 % 
(N = 68)

2011 % 
(N = 64)

2010 % 
(N = 57)

Authentification 
speech coma

5 3 – 9.4 –

Connectivity 4 2.4 1.5

Music 3 1.8

Sensation 2 1.2 – 1.6 –

Vision 2 1.2 1.5

Epilepsy 2 1.2

Depression – – 1.5 – –

Simulation – – 1.5 – –

Neuromarketing – – 1.5 – –

Simulation – – 1.5 – –

Mechanical ventilation – – – 1.6 –

Table 4   (continued)
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Submissions were due on July 1, 2014, and nominees were informed in August. 
The winner will be announced at an award ceremony at the Sixth Annual BCI 
Conference that TU Graz will host from September 16–19. Since the 2013 
Award received 169 submissions, the 2014 Award should be very competitive. 
Submission guidelines and other information about the 2014 Award, and other 
annual BCI Awards, can be found on bci-award.com.

The jury’s Award Criteria are identical to prior years. Hence, anyone consider-
ing a submission to a BCI Award may want to review the projects that have been 
nominated in earlier BCI Awards and consider how these projects scored well on 
the Award Criteria. For example, submissions should describe how the project 
is novel in different ways, operates in real-time, helps real-world users, and/or 
improves speed, accuracy, and/or usability.

Overall, this is a thrilling and dynamic time for the BCI research community. 
With so many new groups, ideas, and BCI directions, it can be difficult to iden-
tify the most impressive projects and trends. In this book, we reviewed the top 
BCI projects from 2013 and discussed BCI trends and broader ramifications. We 
enjoyed developing this book along with our contributors, and are very grateful to 
them for their contributions to our book and the research community. We are espe-
cially grateful to the jury for their major efforts to identify ten nominees and then 
the best project. We also wish to thank our many other colleagues in BCI research 
around the world for their ongoing efforts to make BCI systems into practical, 
helpful tools for more users. We also thank you, the reader, and sincerely hope you 
enjoyed this book.
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