
Integrating Service Matchers

into a Service Market Architecture�

Marie Christin Platenius, Steffen Becker, and Wilhelm Schäfer

Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Germany

{m.platenius,steffen.becker,wilhelm}@upb.de

Abstract. Service markets provide software components in the form
of services. In order to enable a service discovery that satisfies service
requesters and providers best, markets need automatic service matching:
approaches for comparing whether a provided service satisfies a service
request. Current markets, e.g., app markets, are limited to basic keyword-
based search although many better suitable matching approaches are
described in literature. However, necessary architectural decisions for
the integration of matchers have a huge impact on quality properties
like performance or security.

Architectural decisionswrt. servicematchershave rarely beendiscussed,
yet, and systematic approaches for their integration into service markets
are missing. In this paper, we present a systematic integration approach
including the definition of requirements and a discussion on architectural
tactics. As a benefit, the decision-making process of integrating service
matchers is supported and the overall market success can be improved.

Keywords: Service Matching, Service Markets, Software Architecture,
On-The-Fly Computing.

1 Introduction

In the last decades, development turned from monolithic software products to-
wards more flexible, component-based and service-oriented solutions. On service
markets, service requesters can obtain software components that are provided
in form of readily deployed services (Software-as-a-Service). Till date, there are
only a few markets for this kind of services. However, following the example of
markets for software products comparable to services, e.g., apps, we can expect
service markets to rapidly increase in the future, too [12].

The more crowded service markets get, the more important becomes the qual-
ity and efficiency of the markets’ service discovery mechanisms. While most es-
tablished markets today are still limited to a relatively simple, keyword-based
search, in academia, there is a mass of research for comprehensive service match-
ing approaches, i.e., the analysis of whether the specifications of provided ser-
vices satisfy a requested service [4,10] considering also structural, behavioral,

� This work was supported by the German Research Foundation (DFG) within the
Collaborative Research Center “On-The-Fly Computing” (CRC 901).

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 210–217, 2014.
c© Springer International Publishing Switzerland 2014



Integrating Service Matchers into a Service Market Architecture 211

and quality properties. However, integrating a service matcher component imple-
menting such a matching approach into an existing service market is complicated
as there are different architectural possibilities with different consequences on
market success. For example, integrating a service matcher into the requester’s
client provides the benefit of customizability but it may lead to a bottleneck
that can slow down the whole discovery because many matching processes have
to be performed sequentially. On the other hand, integrating a service matcher
into the provider’s system can lead to serious security problems allowing service
providers to manipulate matching results but, depending on further parameters,
a better performance may be attainable. Problems like these lead to the con-
clusion that a more systematic approach for the integration of service matchers
on the architectural level is needed. However, until now, in literature, architec-
tural decisions wrt. service matchers have rarely been discussed and there is
no systematic approach for their integration into a market. Also applying clas-
sic software architecture decision-making methods has not been analysed wrt.
service matchers and their influence on markets yet.

In this paper, we present a systematic approach for the integration of service
matchers into a service market. This includes the definition of requirements and a
discussion on architectural tactics based on these requirements. The contribution
of this paper is an approach that can be used to integrate matchers into existing
markets. Thereby, the general success of service markets, impacted by the use of
service matching approaches, can be improved. An extended version of this paper
including an application example has been published as technical report [9].

In the next section, we briefly summarize the foundations for this work. In
Section 3, we derive requirements which we use to discuss integration tactics in
Section 4. Section 5 deals with related work. The paper is concluded in Section 6.

2 Service Markets and Matching

In this paper, we use the following definition of a service: A service is a software
component that is deployed and running on a service provider’s platform. One
example is Google Maps. Google Maps is a service offered by Google and it
provides the functionality of querying and showing a map of some location. A
service market allows trading, i.e., buying and selling, such services.

Although paradigms like Service-Oriented Architectures and Service-Oriented
Computing have been investigated for several years now, there are not many
established markets for services in the sense of readily deployed software com-
ponents till date. In the area of web services, there has been the service registry
standard UDDI but it has been officially discontinued years ago. However, along
with emerging cloud providers, some more platforms to obtain web services for
usage in the cloud appeared, e.g., Amazon Web Services [1]. Furthermore, there
are markets for software products similar to services, like software components
in the form of plug-ins (e.g., Eclipse Marketplace [14]) or apps. Schlauderer and
Overhage analysed StrikeIron [13], Salesforce’s AppExchange [11], and Google’s
Apps Marketplace (now Google Play [5]) as leading markets in 2010 [12].



212 M.C. Platenius, S. Becker, and W. Schäfer

In service markets, there are different roles, e.g., service requesters and service
providers. Service requesters are interested in buying a service that fits to their
requirements. Providers offer and sell services. Furthermore, there can be trusted
third parties, e.g., a market operator, who provides and manages the market [12].
An actor can play several roles, e.g., intermediaries act as both requester and
provider at the same time.

Service providers make their service offers available to requesters by publish-
ing service specifications that help to discover their services. In most of today’s
markets, service specifications are either informal, describing a service’s func-
tional and non-functional properties using plain text mostly, or simple technical
descriptions, like the Web Service Description Language (WSDL) [3], limited to
the services’ signatures. In academia, there are already a lot of approaches for
more comprehensive but also machine-readable service specifications including
expressive formalisms like protocols, ontological semantics, pre- and postcondi-
tions, and many more [8]. Such comprehensive specifications enable a service
discovery taking into account technical, behavioral, as well as quality informa-
tion, based on service matching. Service matching is the process of comparing
the specification of a requested service, i.e., a request, to the specification of
a provided service, in order to determine whether the provided service satis-
fies the request. It can be part of many different use cases, e.g., automated
service composition, or used by service end-users. As an output, a matcher de-
livers a matching result which denotes how well a provided service specification
matches a request. For example, a very simple specification of Google Maps
could be getMap(Location):Map. Following the principles of simple signature
matching approaches, this provided specification would achieve a good matching
result with a request like searchMap(City):Map with City being a subtype of
Location. There are many automated and much more complex matching ap-
proaches in literature. For a classification and an overview of recent surveys,
refer to our earlier work [10].

3 Requirements for Matcher Integration

Figure 1 depicts an overview of the requirements collected for the integration
of matchers into service markets. A dependency from A to B means that the
fulfilment of B supports the fulfilment of A. Neither the requirements, nor the
dependencies are meant to be a complete collection as we focussed on the ones
that are most important in our context.

Due to page limitations, in this paper, we focus only on some of the require-
ments depicted in Fig. 1. For the complete list, refer to our technical report [9].
There, we also give an overview of the process and methodology we used to elicit
the requirements. The requirements we selected are described in the following.

(R5) Performance: Performance refers to the time to perform one matching
process, i.e., the time to determine how much a particular service satisfies
the request. It needs to be high in order to gain a good efficiency of the
overall discovery process (R4 ).



Integrating Service Matchers into a Service Market Architecture 213

Technical RequirementsMarket Requirements

(R1) Market
Optimality

(R2) Market
Fairness

(R10)
Comparability

(R7) Accuracy

(R5)
Performance

(R6)
Elasticity

Goal:
Market Success

(R4) Efficiency

(R12)
Availability

(R13) Security

(R11)
Consistency

(R3) No
Manipulability

Legend:

dependency

trade off

(R9)
Configurability

(R8) Provider
Feedback

(R14) No
Market Barrier

Fig. 1. Overview of the requirements for integrating a matcher into a market

(R6) Elasticity: Even if the performance of one matching process is good, the
discovery’s efficiency is still problematic when a huge amount of matching
processes is required. Thus, similar to cloud computing systems, in service
markets, the matching system needs to be elastic [6] in a way that it adapts
to the amount of required matching processes.

(R10) Comparability: If different services are matched to the same request,
services with the same matching result should satisfy the request equally well.
Similarly, services with better matching results should satisfy the requester
more than services with lower matching results. This has to hold, even and
especially, if those services are offered by different providers.

(R11) Consistency: Matching results are only comparable if they are consis-
tent. Dynamic markets, where providers can appear and disappear or change
their offers at any time, can lead to situations in which several versions of
a service or a service decription are available. It has to be avoided that this
dynamics leads to inconsistent matching results between different providers
so that comparability can be ensured.

(R13) Security: Matching results have to be secure so that they cannot be
manipulated by any service provider. For example, if aspects like reputation
of a service are matched, providers have to be prevented from cheating in a
way that they claim to have a better reputation than they actually have.

Figure 1 shows trade-offs between requirements by dotted arrows annotated
with a flash symbol. Because of such conflicting requirements, there may not
be one general best solution for all service markets. For a description of these
trade-offs, please refer to our technical report [9]



214 M.C. Platenius, S. Becker, and W. Schäfer

Fig. 2. Architectural alternatives for matcher integration

4 Integrating a Matcher Based on Architectural Tactics

When integrating the matcher into a market, there are different alternatives,
as depicted in Fig. 2. In Alternative A, the matcher is integrated into the re-
quester’s system and, therefore, deployed on the requester’s hardware. Here,
the requester’s system accesses the discovery system to get the specifications of
the provided services and forwards them to the matcher. Alternative B lets the
providers deploy the matcher on their own resources. In this case, the discov-
ery system forwards the request to the providers, where each provider matches
its service specifications against the request. In Alternative C, the matcher is
part of the discovery system and deployed on the market operator’s resources.
Instead of the market operator, this role can also be played by another trusted
third-party which is part of the market. The specifications of provided services
could still be located at the providers, or, alternatively, stored on the market
operator’s resources, too. As we can see, the question of where to integrate the
matcher is related to the question of who deploys the matcher.

Each of the three alternatives has different benefits and drawbacks and, in par-
ticular, a different impact on the fulfilment of our requirements. Table 1 lists these
benefits and drawbacks with respect to the requirements collected in Section 3. A
minus in the table means that it is difficult to satisfy the corresponding require-
ment, whereas a plus means that it is easier to satisfy it. Similarly to the architec-
tural tactics described by Bachmann et al. [2], the table depends on bound and
free parameters: Bound parameters are already fixed because their assignment
is the same for all service markets. Free parameters (highlighted in italics) need



Integrating Service Matchers into a Service Market Architecture 215

Table 1. Where to integrate the matcher?

Alternative A: Alternative B: Alternative C: w
Requester Provider Market Operator

R5
- (no caching) + +

?
depends on kind of requesters/providers

R6 depends on number of providers and requests at a time ?

R10 + - (conflict with R9 and R13 ) - (conflict with R9 ) ?

R11 - (not insurable) + - (not insurable) ?

R13 + - (high risk for manipulation) + ?

further assumptions to be assigned, i.e., the evaluation can have a different result
depending on the properties of a concrete service market. Furthermore, there is a
column about weights in order to allow influencing the overall evaluation by as-
signing special priorities to some requirements.Weights can be positive (e.g., +1),
if a requirement is particularly important, or negative (e.g., -1), if it is less impor-
tant compared to the other ones. Similar to free parameters, weights depend on
properties of concrete service markets, too. Thus, they are not yet assigned in this
general version of the table.

The table only covers the requirements selected in Sec. 3. For the complete
table, refer to our technical report [9]. In the following, we describe the evaluation
shown in Table 1.

(R5) Performance Regarding the performance, Alternative A seems not to be
a good solution. Matchers located at the service provider or a market opera-
tor provide the possibility to cache matching results and benefit from it when
similar requests are received. This possibility is not available for matchers
deployed at the requester’s because it would only pay off, if one requester
repeatedly states similar requests, which is not the case if the discovery
scenario works well and the requester already gets a satisfying result after
her first request. Furthermore, if the matcher runs on hardware with high
computation power, e.g., compute centers, this could speed up the matching
process, too. In contrast, if the matcher runs on a mobile device, a matching
process takes longer. Which role can provide the more appropriate resources
depends (amongst others) on the domain. For example, requesters in some
technical domain could be assumed to have better hardware available than
the typical hotel booking service user, whereas providers can be expected to
have access to more computation power than the requesters in both cases.

(R6) Elasticity For Alternative A, the amount of matchers increases with each
new requester and, thereby, also with the amount of stated requests. This is
good if there are many requests but only few service offers. For Alternative B,
the amount increases with each new provider, and, thereby, also with the
amount of service offers. If we have a market with many providers but only
few requesters, Alternative B is preferable. Alternative C suffers from the
fact that the market operator has to provide or pay a cloud infrastructure
in order to provide an elastic matching architecture.



216 M.C. Platenius, S. Becker, and W. Schäfer

(R10) Comparability Comparability is in conflict with configurability. This
especially holds for Alternative B and C: if providers use different matching
configurations, the matching results for services of different providers are
not comparable for the requester. However, if the requester has the matcher
and the possibility to configure it, this is no problem as all services from
different providers are matched with the same configuration. Comparability
among different requests is not needed as matching on service markets is one-
sided, i.e., we search an optimal allocation of services to requests but not
the other way around because software services are immaterial and (almost)
not capacity-constrained. In addition, comparability is also influenced by
security as, in the case of manipulation of matching results, comparability
cannot be ensured. This is a disadvantage of Alternative B because it is most
susceptible for manipulation (see R13 ). All in all, for R10, Alternative A is
the best solution.

(R11) Consistency Regarding consistency, Alternative A as well as Alterna-
tive C both have the disadvantage that it is not necessarily ensured that they
match the specification describing the provider’s current offer. Compared to
this, the provider has a better chance to ensure consistency because the
provider manages the specifications herself.

(R13) Security Security becomes a problem, in particular, if the provider de-
ploys the matcher. In this case, it is hard to keep the provider from manip-
ulating matching results. In contrast, the requester or the (trusted) market
provider can be assumed not to be interested in faking the results.

As we can see, there is no obvious answer to the question of where to integrate
the matcher. Each alternative has its advantages and disadvantages and some
aspects depend on the concrete environment, e.g., the market’s size. For this
reason, the table needs to be adapted to concrete application scenarios. For an
example of such an adaption refer to our technical report [9].

5 Related Work

Even though there is a lot of research for the single areas of software architec-
tures, service matchers, and service market mechanisms, the integration of ser-
vice matchers into a market has not been addressed on the architectural level,
yet. For example, Klusch [7] as well as Dong et al. [4] give overviews of semantic
service discovery architectures and classifies them into centralized and decentral-
ized architectures. However, the alternatives are not discussed with respect to
requirements for a matcher’s integration nor taking into account market mech-
anisms. Similarly, the architecture description of web services by the W3C [15]
distinguishes between a centralized server-sided scenario (similar to our Alterna-
tive C) and an index or peer-to-peer client-sided matching scenario (Alternative
A) However, only the requirements wrt. the dynamics and the scalability of the
environment are taken into account.



Integrating Service Matchers into a Service Market Architecture 217

6 Conclusions

In this paper, we presented a systematic approach for integrating a service
matcher into a service market. This approach includes the definition of require-
ments and a discussion on architectural tactics in order to enable a more in-
formed decision-making regarding architectural alternatives. Both practitioners
and researchers benefit from this paper. In practice, our results can be used to
integrate service matchers into existing or emerging service markets and thereby
supporting both requesters and providers by achieving their goals. In research,
this paper also represents a first attempt to bridge the gap between markets and
the mass of existing matching approaches in literature.

References

1. Amazon Web Services. Website, aws.amazon.com (last access: June 2014)
2. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics: A step toward

methodical architectural design. Technical report, Software Engineering Institute,
Carnegie Mellon University, CMU/SEI-2003-TR-004 (2003)

3. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services Description
Language Version 2.0 Part 1: Core Language. Technical report (2007)

4. Dong, H., Hussain, F.K., Chang, E.: Semantic Web Service matchmakers: state of
the art and challenges. In: Concurrency and Computation: Practice and Experi-
ence, vol. 25, pp. 961–988. Wiley Online Library (2012)

5. Google. Google Play - Website, play.google.com/ (last access: June 2014)
6. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity: What it is, and What it is Not.

In: 10th Int. Conf. on Autonomic Computing. USENIX (2013)
7. Klusch, M.: Semantic web service coordination. In: CASCOM: Intelligent Service

Coordination in the Semantic Web, pp. 59–104. Springer (2008)
8. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: Service description: A survey of

the general nature of services. Distributed and Parallel Databases Journal (2002)
9. Platenius, M.C., Becker, S., Schäfer, W.: Integrating Service Matchers into a Ser-

vice Market Architecture. Technical Report tr-ri-14-340, Heinz Nixdorf Institute
(2014)

10. Platenius, M.C., von Detten, M., Becker, S., Schäfer, W., Engels, G.: A Survey of
Fuzzy Service Matching Approaches in the Context of On-The-Fly Computing. In:
16th Int. Symposium on Component-based Software Engineering. ACM (2013)

11. Salesforce.com, Inc., Salesforce AppExchange, appexchange.salesforce.com (last
access: June 2014)

12. Schlauderer, S., Overhage, S.: How Perfect are Markets for Software Services? An
Economic Perspective on Market Deficiencies and Desirable Market Features. In:
Proc. of the 19th European Conf. on Information Systems (2011)

13. StrikeIron. StrikeIron - Website, http://www.strikeiron.com (last access: June
2014)

14. The Eclipse Foundation. Eclipse Marketplace, marketplace.eclipse.org (last
access: June 2014)

15. W3C. Web services architecture, w3.org/TR/ws-arch (last access: June 2014)

aws.amazon.com
play.google.com/
appexchange.salesforce.com
http://www.strikeiron.com
 marketplace.eclipse.org
w3.org/TR/ws-arch

	Integrating Service Matchers into a Service Market Architecture
	1Introduction
	2Service Markets and Matching
	3Requirements for Matcher Integration
	4Integrating a Matcher Based on Architectural Tactics
	5Related Work
	6Conclusions
	References




