
Paris Avgeriou
Uwe Zdun (Eds.)

 123

LN
CS

 8
62

7

8th European Conference, ECSA 2014
Vienna, Austria, August 25–29, 2014
Proceedings

Software
Architecture

Lecture Notes in Computer Science 8627
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Paris Avgeriou Uwe Zdun (Eds.)

Software
Architecture
8th European Conference, ECSA 2014
Vienna, Austria, August 25-29, 2014
Proceedings

13

Volume Editors

Paris Avgeriou
University of Groningen
Johann Bernoulli Institute for Mathematics and Computer Science
Groningen, The Netherlands
E-mail: paris@cs.rug.nl

Uwe Zdun
University of Vienna
Research Group Software Architecture
Vienna, Austria
E-mail: uwe.zdun@univie.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09969-9 e-ISBN 978-3-319-09970-5
DOI 10.1007/978-3-319-09970-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945553

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These are the proceedings of the European Conference on Software Architec-
ture (ECSA), which is the premier European conference dedicated to the field of
software architecture. ECSA provides researchers and practitioners with a plat-
form to present and discuss the most recent, innovative, and significant findings
and experiences in the field of software architecture research and practice. The
eighth edition of ECSA was built upon a history of a successful series of European
workshops on software architecture held from 2004 through 2006 and a series
of European software architecture conferences from 2007 through 2013. ECSA
was merged with the Working IEEE/IFIP Conference on Software Architecture
(WICSA) in 2009 and 2012.

Apart from the traditional technical program consisting of keynote talks,
a main research track, discussion panels, and a tool demonstration track, the
scope of ECSA 2014 was broadened to incorporate a rich industry day aiming
to bring closer together the academic and industrial communities. The industry
day featured additional keynote talks, presentations, and a discussion panel,
with contributions by prominent software architects and other practitioners.
In addition, we also offered several workshops and tutorials on diverse topics
related to software architecture, as well as “MiniPLoP”, a Pattern Languages of
Programs mini-conference.

We received 91 submissions in the four main categories: full research papers
and experience reports, as well as “emerging” (short) research papers and ex-
perience reports. The conference attracted papers (co-)authored by researchers,
practitioners, and academics from 30 countries (Algeria, Australia, Austria, Bel-
gium, Brazil, Canada, China, Czech Republic, Denmark, Finland, France, Ger-
many, India, Iran, Ireland, Israel, Italy, Japan, The Netherlands, New Zealand,
Norway, Pakistan, Poland, Spain, Sweden, Switzerland, Tunisia, Turkey, UK and
USA). Each paper, independently of the category, was peer-reviewed by at least
three reviewers, and discussed by the Program Committee.

Based on the recommendations of the Program Committee, we accepted only
16 full papers out of 75 full papers submitted. The acceptance rate for the full
papers was 21.33% for ECSA 2014. In the “Emerging” research papers and
experience reports category, we accepted only three out of 16 papers submitted.
Based on the reviews and quality of the submissions, 15 full papers were invited
to be converted into “Emerging” research papers and experience reports.

It was a great pleasure to have four eminent keynote speakers at ECSA
2014. The industry day was opened by a keynote from Uwe Dumslaff, Vice
President and Chief Technology Officer at Capgemini, Germany. The second
keynote in the industry day was presented by Markus Völter, an independent
consultant, on “Language Shapes (Architectural) Thought.” The third keynote
was delivered by Hans van Vliet, professor at the VU University Amsterdam,

VI Preface

The Netherlands. Hans argued that “Architecting = Decision Making.” The
fourth and final keynote was given by Gregor Hohpe, who is Chief IT Architect
at Allianz, Germany, and spoke about “The Age of Architecture.”

We are grateful to the members of the Program Committee for helping us
to seek submissions and provide valuable and timely reviews. Their efforts en-
abled us to put together a high-quality technical program for ECSA 2014. We
are also indebted to the members of the Organizing Committee of ECSA 2014
for playing an enormously important role in successfully organizing the event
with several tracks and collocated events, especially the industry day. We also
thank the workshop organizers and tutorials presenters, who also made signifi-
cant contributions to the success of an extended version of ECSA. The ECSA
2014 submission and review process was extensively supported by the EasyChair
Conference Management System. We acknowledge the prompt and professional
support from Springer, who published these proceedings in printed and electronic
volumes as part of the Lecture Notes in Computer Science series. Finally, we are
grateful to the team of the of University of Vienna, for providing its facilities
and professionally trained staff for the organization of ECSA 2014.

June 2014 Paris Avgeriou
Uwe Zdun

Organization

General Chair

Uwe Zdun University of Vienna, Austria

Program Chair

Paris Avgeriou University of Groningen, The Netherlands

Organizing Committee

Tutorial Chairs

Philippe Kruchten University of British Columbia, Canada
Tomi Männistö University of Helsinki, Finland

Panel Chair

Eoin Woods UBS, UK

Industry Chairs

Olaf Zimmermann Hochschule für Technik Rapperswill
(HSR FHO), Switzerland

Uwe van Heesch Capgemini, Germany

Doctoral Symposium Chairs

Rick Kazman University of Hawaii, USA
Ivica Crnkovic Mälardalen University, Sweden

Publicity Chair

Henry Muccini University of L’Aquila, Italy

Workshop Chair

Danny Weyns Linnaeus University, Sweden

Tool Demo Chairs

Ipek Ozkaya Software Engineering Institute, Carnegie
Mellon University, USA

Rich Hilliard Independent Architect, USA

VIII Organization

Steering Committee

Paris Avgeriou University of Groningen, The Netherlands
Muhammad Ali Babar University of Adelaide, Australia
Ivica Crnkovic Mälardalen University, Sweden
Carlos E. Cuesta Rey Juan Carlos University, Spain
Khalil Drira LAAS-CNRS, University of Toulouse, France
Ian Gorton SEI, Software Engineering Institute, USA
Volker Gruhn University of Duisburg-Essen, Germany
Tomi Männistö University of Helsinki, Finland
Flavio Oquendo IRISA, University of Brittany, France
Uwe Zdun University of Vienna, Austria

Program Committee

Eduardo Almeida Federal University of Bahia and Fraunhofer
Project Center for Software and Systems
Engineering

Jesper Andersson Linnaeus University, Sweden
Muhammad Ali Babar University of Adelaide, Australia
Rami Bahsoon University of Birmingham, UK
Thais Batista Federal University of Rio Grande do Norte,

Brazil
Jan Bosch Chalmers University of Technology, Sweden
Janet Burge Miami University, USA
Rafael Capilla Universidad Rey Juan Carlos, Spain
Ivica Crnkovic Mälardalen University, Sweden
Carlos E. Cuesta Rey Juan Carlos University, Spain
Khalil Drira LAAS-CNRS, France
Laurence Duchien Inria, University of Lille, France
Cristina Gacek City University London, UK
Matthias Galster University of Canterbury, New Zealand
David Garlan Carnegie Mellon University, USA
Ian Gorton Software Engineering Institute,

Carnegie Mellon, USA
Volker Gruhn Universität Duisburg-Essen, Germany
John Grundy Swinburne University of Technology, Australia
Wilhelm Hasselbring Kiel University, Germany
Rich Hilliard Independent architect, USA
Paola Inverardi University of L’Aquila, Italy
Anton Jansen ABB Corporate Research, Sweden
Rick Kazman Software Engineering Institute,

Carnegie Mellon, and University of Hawaii,
USA

Gerald Kotonya Lancaster University

Organization IX

Philippe Kruchten University of British Columbia, Canada
Patricia Lago VU University Amsterdam, The Netherlands
Rogerio De Lemos University of Kent, UK
Anna Liu NICTA/UNSW, Australia
Jose Maldonado University of São Paulo, Brazil
Sam Malek George Mason University, USA
Tomi Männistö University of Helsinki, Finland
Nenad Medvidovic University of Southern California, USA
Raffaela Mirandola Politecnico di Milano, Italy
Henry Muccini University of L’Aquila, Italy
Elena Navarro University of Castilla-La Mancha, Spain
Robert Nord Software Engineering Institute,

Carnegie Mellon, USA
Flavio Oquendo IRISA, University of South Brittany, France
Mourad Oussalah University of Nantes, France
Ipek Ozkaya Software Engineering Institute,

Carnegie Mellon, USA
Claus Pahl Dublin City University, Ireland
Jennifer Perez Technical University of Madrid (UPM), Spain
Dewayne E, Perry The University of Texas at Austin, USA
Claudia Raibulet University of Milano-Bicocca, Italy
Juha Savolainen Danfoss, Denmark
Riccardo Scandariato KU Leuven, Belgium
Bradley Schmerl Carnegie Mellon University, USA
Judith Stafford University of Colorado Boulder, USA
Prabhakar Tadinada Indian Institute of Technology, Kanpur, India
Antony Tang Swinburne University of Technology, Australia
Bedir Tekinerdogan Bilkent University, Turkey
Rainer Weinreich Johannes Kepler University Linz, Austria
Danny Weyns Linnaeus University, Sweden
Eoin Woods UBS, UK
Elisa Yumi Nakagawa University of São Paulo, Brazil
Liming Zhu National ICT Australia
Olaf Zimmermann Hochschule für Technik Rapperswill

(HSR FHO), Switzerland

Table of Contents

Architecture Decisions and Knowledge

A Fresh Look at Codification Approaches for SAKM: A Systematic
Literature Review . 1

Rainer Weinreich and Iris Groher

Suitability of Software Architecture Decision Making Methods for
Group Decisions . 17

Smrithi Rekha V. and Henry Muccini

Modeling the Interactions between Decisions within Software
Architecture Knowledge . 33

Mohamed Soliman and Matthias Riebisch

Semi-automated Design Guidance Enhancer (SADGE): A Framework
for Architectural Guidance Development . 41

Mohsen Anvaari and Olaf Zimmermann

Combining Architectural Design Decisions and Legacy System
Evolution . 50

Sebastian Gerdes, Steffen Lehnert, and Matthias Riebisch

Architecture Patterns and Anti-Patterns

Specification and Detection of SOA Antipatterns in Web Services 58
Francis Palma, Naouel Moha, Guy Tremblay, and
Yann-Gaël Guéhéneuc

Co-evolving Pattern Synthesis and Class Responsibility Assignment in
Architectural Synthesis . 74

Yongrui Xu and Peng Liang

Ontology-Driven Pattern Selection and Matching in Software Design . . . 82
Tommaso Di Noia, Marina Mongiello, and Eugenio Di Sciascio

Reference Architectures and Metamodels

Towards an Improved Stakeholder Management for Software Reference
Architectures . 90

Samuil Angelov and Rich Hilliard

RA-Ubi: A Reference Architecture for Ubiquitous Computing 98
Carlos Alberto Machado, Eduardo Silva, Thais Batista,
Jair Leite, and Elisa Yumi Nakagawa

XII Table of Contents

Towards a Coordination-Centric Architecture Metamodel for Social
Web Applications . 106

Juergen Musil, Angelika Musil, and Stefan Biffl

Architecture Description Languages

Using Policies for Handling Complexity of Event-Driven
Architectures . 114

Tobias Freudenreich, Stefan Appel, Sebastian Frischbier, and
Alejandro P. Buchmann

Architecture-Based Code Generation: From π–ADL Architecture
Descriptions to Implementations in the Go Language 130

Everton Cavalcante, Flavio Oquendo, and Thais Batista

Generating EAST-ADL Event Chains from Scenario-Based
Requirements Specifications . 146

Thorsten Koch, Jörg Holtmann, and Julien DeAntoni

Enterprise Architecture, SOA and Cloud Computing

Architecture Strategies for Cyber-Foraging: Preliminary Results from a
Systematic Literature Review . 154

Grace A. Lewis, Patricia Lago, and Giuseppe Procaccianti

Adapting Enterprise Architecture at a Software Development Company
and the Resultant Benefits . 170

Krzysztof Jamróz, Dariusz Pitulej, and Jan Werewka

Service Development and Architecture Management for an Enterprise
SOA . 186

Thomas Kriechbaum, Georg Buchgeher, and Rainer Weinreich

Multi-tenant Architecture Comparison . 202
Jaap Kabbedijk, Michiel Pors, Slinger Jansen, and
Sjaak Brinkkemper

Integrating Service Matchers into a Service Market Architecture 210
Marie Christin Platenius, Steffen Becker, and Wilhelm Schäfer

Towards a Process to Design Architectures of Service-Oriented Robotic
Systems . 218

Lucas Bueno Ruas Oliveira, Elena Leroux, Katia Romero Felizardo,
Flavio Oquendo, and Elisa Yumi Nakagawa

Scalable Architectures for Platform-as-a-Service Clouds: Performance
and Cost Analysis . 226

Huanhuan Xiong, Frank Fowley, Claus Pahl, and Niall Moran

Table of Contents XIII

Components and Connectors

Enactment of Components Extracted from an Object-Oriented
Application . 234

Abderrahmane Seriai, Salah Sadou, and Houari A. Sahraoui

Gossiping Components for Cyber-Physical Systems 250
Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka,
Jaroslav Keznikl, Michal Kit, and Frantisek Plasil

A Property Description Framework for Composable Software 267
Alexander Frömmgen, Max Lehn, and Alejandro P. Buchmann

Layered Connectors: Revisiting the Formal Basis of Architectural
Connection for Complex Distributed Systems . 283

Amel Bennaceur and Valérie Issarny

Effort Estimation for Architectural Refactoring to Introduce Module
Isolation . 300

Fatih Öztürk, Erdem Sarılı, Hasan Sözer, and Barış Aktemur

Quality Attributes

Interoperability-Related Architectural Problems and Solutions in
Information Systems: A Scoping Study . 308

Hadil Abukwaik, Davide Taibi, and Dieter Rombach

fUML-Driven Design and Performance Analysis of Software Agents for
Wireless Sensor Network . 324

Luca Berardinelli, Antinisca Di Marco, and Stefano Pace

Runtime Enforcement of Dynamic Security Policies 340
Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes

Architectural Support for Model-Driven Performance Prediction of
Distributed Real-Time Embedded Systems of Systems 357

Vanea Chiprianov, Katrina Falkner, Claudia Szabo, and Gavin Puddy

Safety Perspective for Supporting Architectural Design of Safety-Critical
Systems . 365

Havva Gülay Gürbüz, Bedir Tekinerdogan, and Nagehan Pala Er

Architecture Analysis and Verification

How Do Software Architects Specify and Validate Quality
Requirements? . 374

Andrea Caracciolo, Mircea Filip Lungu, and Oscar Nierstrasz

XIV Table of Contents

Recommending Refactorings to Re-establish Architectural
Consistency . 390

Sebastian Herold and Matthias Mair

A Consistency Framework for Dynamic Reconfiguration in
AO-Middleware Architectures . 398

Bholanathsingh Surajbali, Paul Grace, and Geoff Coulson

Author Index . 407

A Fresh Look at Codification Approaches

for SAKM: A Systematic Literature Review

Rainer Weinreich and Iris Groher

Johannes Kepler University Linz, Austria
{rainer.weinreich,iris.groher}@jku.at

Abstract. The last 10 years have seen a rise of approaches for Software
Architecture Knowledge Management (SAKM), with a focus on codifica-
tion of architecture knowledge. Still there is no common meta-model for
describing architectural knowledge nor is there a common terminology
for the main concepts of such a model. While this might lead to the ques-
tion whether such a common meta-model is even possible, it is certainly
desirable. We decided to tackle this question based on the results of 10
years of research in this area. As part of a systematic literature survey we
analyzed and compared model-based approaches for SAKM. Specifically
we analyzed the models of SAKM approaches with the highest-rated
evidence for different knowledge management activities like capturing,
maintaining, reuse, sharing, and using. As a result we identified impor-
tant aims and elements of proven SAKM approaches, which could be
used as a driver for the next generation of AK codification approaches.

Keywords: Architecture Knowledge Management (AKM), AKM Cod-
ification Approaches, AKM Models, AKM Activities.

1 Introduction

The last 10 years have seen a rise of software architecture knowledge management
(SAKM) as a major research topic within software architecture research. Numer-
ous approaches for SAKM have been developed, most of them following the basic
notion of design decisions as first-class entities as proposed by Bosch in 2004 [1].
To preserve the otherwise tacit knowledge, the majority of the approaches devel-
oped within the last 10 years supports the codification (i.e., capturing, storing,
and retrieving) of architectural knowledge. An early template for representing
architectural knowledge has been presented by Tyree et al. [2]. It identifies cen-
tral elements like decisions, their rationale, and relationships between decisions.
This template has been the basis for many of the approaches that have been de-
veloped subsequently, yet a common meta-model for representing architectural
knowledge is still missing.

As part of our current work we are transforming the architecture management
infrastructure we have developed the past years (cf. [3]) into a service-based offer-
ing. This has led us to rethink the SAKM support of our approach. Specifically,
we assume that we can learn from existing approaches on SAKM, especially

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014

2 R. Weinreich and I. Groher

from those that have shown some evidence of their usefulness through empirical
studies or application in practice.

The work presented in this paper is part of a systematic literature review we
performed on SAKM papers published in the last 10 years. The literature review
is even broader than what can be presented in this paper, so we concentrate on
two research questions that are related to the objective outlined above: (1) What
are the main aims of approaches for SAKM within the last 10 years showing the
highest evidence for different knowledge management activities and (2) What
are the important elements of the SAKM models of these approaches.

The contribution of this paper is a list of requirements on a versatile approach
for SAKM that has been derived from published approaches within the last 10
years that have shown some evidence of their usefulness, and important elements
of an SAKM model that are the result of these requirements. A distinctive char-
acteristic of our study is that we are not only looking at specific papers but
that we are aggregating related papers and studies to approaches. A further dis-
tinctive characteristic is that we are not only looking at particular approaches
for SAKM but specifically at their support for a particular SAKM activity. The
provided evidence is specifically rated with regard to the supported activity.

Expected benefits of the presented work are a better basis for creating a
new and versatile approach for SAKM as part of our architecture management
infrastructure. Apart from this, the presented work could be a basis for next
generation SAKM approaches and a further step towards a commonly agreed on
model for SAKM. Such a unified model and terminology is still desirable, since
it might lead to a higher adoption rate of SAKM in practice.

2 Research Method

The systematic literature review has been performed following the guidelines of
Kitchenham [4]. The main goal of our study was to identify the focus of research
in terms of the different SAKM activities, how the activities are supported by
tools and techniques, the evidence provided for the different activities, and what
gaps exist in supporting the different activities. The study has been conducted
from June 2013 to February 2014 and thus only includes papers published before
June 2013.

2.1 SAKM Activities

Since we analyze how various approaches support SAKM activities, we briefly
define the activities investigated in this study. We derive the main activities
from two general definitions of knowledge management [5][6], which identify
knowledge creation, capturing, and application (using) as main activities. We
add additional activities like maintenance and reuse not contained in the orig-
inal definitions, and define the investigated activities as follows: AK Capturing
makes AK explicit by documenting knowledge about design decisions in a ded-
icated form; AK Maintaining refers to the activity of keeping the documented

A Fresh Look at Codification Approaches for SAKM 3

knowledge up-to-date; AK Sharing aims at distributing the documented knowl-
edge among different stakeholders and in different contexts; AK Using refers to
using the knowledge in different architecture-related activities such as architec-
ture analysis and architecture review; AK Reusing refers to using AK from one
project in another project.

2.2 Research Questions

Even though the primary goal of our systematic literature survey was the analysis
of support for the different SAKM activities, our search strategy (cf. Section
2.3) allows us to answer additional research questions since the primary studies
include existing codification approaches for SAKM published in the last 10 years.
In this study we analyze them to answer the following two research questions:

– RQ1: What are the main aims of approaches for SAKM within the last
10 years showing the highest evidence for different knowledge management
activities?

– RQ2: What are the main elements of the SAKMmodels of these approaches?

In RQ1 we analyze the selected approaches with respect to their goals. In RQ2
we identify the main elements of the SAKM models of the selected approaches
and discuss how they relate to the goals identified in RQ1.

2.3 Search Strategy

We used an automated search in four different scientific databases: IEEE, ACM,
Springer, and Elsevier. To identify a suitable search string we conducted a pilot
study on five venues (WICSA, ECSA, MODELS, QoSA) to verify and refine our
initial key words. In particular, we manually examined the venues for relevant
papers published in the last five years (since 1.1.2008). Table 1 shows the final
search string that resulted from this analysis. The automatic search process in
the four scientific databases yielded 440 publications.

2.4 Study Selection

First, we defined a number of inclusion and exclusion criteria for pre-selecting
papers for the final review: We only include papers available in electronic form
(I1), written in English (I2), written since 2003 (I3), and only take into account
peer-reviewed publications appearing in journals, conferences, and workshops
(I4). We exclude introductions to special issues, workshops, tutorials, confer-
ences, and conference tracks, as well as editorials (E1), and presentations and
short/extended abstracts (E2).

286 publications (about 65 % of the initial set of papers obtained by the
automatic search) were left after the exclusion of papers on the basis of the
formal criteria. All publications meeting all inclusion criteria and not meeting
any of the exclusion criteria were subjected to a voting stage. The voting stage

4 R. Weinreich and I. Groher

Table 1. Search string for automatic search in scientific databases

OR OR

software
architecture

AND

architectural knowledge,
architecture knowledge,
architecture decision,
architectural decision,
architecture decisions,
architectural decisions,

design issue, design issues,
design decision,
design decisions,
design rationale,
decision structure,
design reasoning,

architecture information,
architectural information,
knowledge management,
decision management

AND

model, models, modeling,
documentation,
documenting,

decision making,
decision-making,
decision process,

ontology, ontologies,
framework,

metamodel, meta-model,
metamodeling,

modelling (Br.E),
decision structure, capture,

representation, reuse,
sharing, recovery,

reasoning, evaluation,
analysis,

understanding

involved four researchers (2 senior researchers and 2 PhD students). Based on the
title and abstract of each publication the reviewers rated whether the publication
can contribute to answering the research questions or not. After the rating,
publications in which the researchers strongly disagreed were discussed by at
least two researchers with opposing opinions.

To determine the overall inter-rater agreement between the four reviewers we
calculated the Fleiss Kappa coefficient [7]. The final value was 0.78 and according
to Landis and Koch [8] this means substantial agreement. After the voting stage
62 papers (about 22 % of papers included after the application of the inclusion
and exclusion criteria) were selected to be potentially relevant for answering our
research questions. To ensure that no relevant publications had been forgotten,
we conducted a snowball sampling process [9]. We went through all references of
the 62 selected primary studies and searched for potentially relevant publications.
In total we found 1728 referenced publications. After removing multiple entries
984 referenced publications remained.

From the 984 references we excluded all publications that did not meet the
formal criteria or that were not within the scope of AKM. After applying the
formal criteria 72 potential publications were left of which 27 publications were
already in the list of selected primary studies. The voting (as described above)
for the remaining 42 publications resulted in 28 newly selected publications.

In total, 90 primary studies were selected through the search and selection
process described above. The data extraction was performed for this final set of
studies.

A Fresh Look at Codification Approaches for SAKM 5

2.5 Data Extraction and Synthesis

Each publication from the final set of publications was read in detail to extract
information about both the quality of the publication and specific information
about the approaches or concepts, like model-, process- and tool-support for dif-
ferent SAKM activities and the evidence provided. We also extracted information
about the main elements of a potential SAKM meta-model and/or ontology.

Each of the four reviewers extracted the data from about one fourth of the
overall papers. The extracted data of each paper was additionally cross-checked
by another reviewer. The papers were assigned randomly to the four reviewers.
Own publications were not self-extracted or checked. To get the same level of
knowledge with respect to the data to be extracted, we performed a first round
of extraction. Each reviewer extracted the data of one publication and all four
reviewers discussed the data of these four publications. Afterwards the data
extraction forms were adjusted according to the results of the discussions.

During the extraction process, we further excluded 14 publications, as they
either did not meet the formal criteria or because they could not contribute to
answering our research questions. This left us with a set of 76 papers we included
in our analysis.

Each publication in the final set was assessed for its quality. The quality
criteria are based on the protocol for a published systematic literature review
[10] and a systematic mapping study [11].

The quality assessment and the data extraction process were conducted in
parallel. In addition to general information about the selected study (such as
authors, title, year of publication, publication venue, research context, relevance
of approach) we focused on support for the different SAKM activities. We an-
alyzed whether and how capturing, maintaining, sharing, using, and reusing of
decisions are supported either by a model, a process, or a tool.

Regarding SAKM codification we asked about the representation of AK (for-
mal, informal, or semi-formal). If the approach was based on a decision model we
extracted the main elements and their purpose from the studies. We furthermore
extracted the goals and motivation of each study.

After extracting the data from all selected primary studies we grouped the
papers by approaches. Typically more than one paper is published for an ap-
proach, each having a different goal or focus. To be able to draw meaningful
conclusions from our study regarding existing SAKM approaches and their cod-
ification support we aggregated the results from the individual papers for each
approach. In total we identified 47 different SAKM approaches.

We then analyzed each approach with respect to the supported SAKM activ-
ities (capturing, sharing, using, maintaining, reusing) and the evidence provided
in the supported activities. The evidence levels are rated from 0.0 (no evidence) to
1.0 (evidence obtained from industrial practice). Additional evidence levels are 0.2
(evidence obtained from demonstration or working out toy examples), 0.4
(evidence obtained from expert opinions; evidence obtained fromobservations and
application examples in an industrial setting), 0.6 (evidence obtained from aca-
demic studies, case studies, or experiments), and 0.8 (evidence obtained from

6 R. Weinreich and I. Groher

industrial studies). We first assessed the evidence level for each supported activity
separately for each paper and then aggregated the evidence levels per approach
and activity.

In total we identified 47 different SAKM approaches containing 32 approaches
with support for capturing (27 with evidence), 11 with support for maintaining
(0 with evidence), 7 with support for sharing (3 with evidence), 21 with support
for using (15 with evidence), and 6 with support for reuse (4 with evidence).

3 Results Analysis

As described in the previous section, each approach has an associated overall
evidence level for each SAKM activity it supports. To get an equal distribution
of analyzed approaches over the different SAKM activities, we selected for each
activity the 3 approaches with the highest evidence level. If two approaches had
the same overall level of evidence for a specific activity, both were included. We
excluded approaches with an evidence level of less than 0.4 because this means
that only examples are presented in the respective papers. Table 2 lists the 7
approaches selected for comparison with their evidence levels in the different
SAKM activities1. In the table we only present approaches with evidence levels
greater than 0.2. Overall, the approaches offer the highest level of evidence for
capturing and using, while there is only little evidence both in number of ap-
proaches with evidence and in the provided evidence level for the other SAKM
activities.

Table 2. Selected approaches based on evidence levels of SAKM activities

Approach
Evidence
Capturing

Evidence
Maintaining

Evidence
Using

Evidence
Sharing

Evidence
Reusing

A1 PAKME [12][13] 0.8 0.8 0.8

A4 ADF [14][15][16] 0.8 0.6 0.6 0.8 0.6

A5 ABC/DD [17][18] 0.8 0.8 0.8 0.8

A8
Knowledge
Architect

[19][20] 0.8 0.8

A13 LISA [3][21] 0.6 0.8 0.8

A14 RADM [22] 0.4 0.4

A15 NDR [23][24] 0.6 0.4 0.6 0.4

3.1 RQ1: What Are the Main Aims of Approaches for SAKM
within the Last 10 Years Showing the Highest Evidence for
Different Knowledge Management Activities?

PAKME [12][13] is a web-based approach for SAKM, which provides a central
repository for managing AK through a web interface. The knowledge repository

1 A list of all approaches and associated papers we identified in the systematic litera-
ture review can be found at http://www.se.jku.at/akm_slr.zip

http://www.se.jku.at/akm_slr.zip

A Fresh Look at Codification Approaches for SAKM 7

supports two types of knowledge: (1) generic knowledge like general scenarios, pat-
terns, quality attributes, and design options and (2) project specific knowledge
including concrete scenarios, contextualized patterns, quality factors, and archi-
tecture decisions. The approach also supports distilling architecture knowledge
from patterns. A main characteristic of the approach is support for architecture
evaluation, where it has also been validated in an industrial setting.

Heesch et al. [14][15][16] propose a view-based architectural documentation
framework (ADF) for documenting architecture decisions in the sense of ISO /
IEC / IEEE 42010-2011. Available viewpoints are a Decision Detail (Decision
Rationale) viewpoint, a Decision Relationship viewpoint, a Decision Chronolog-
ical viewpoint, a Decision Stakeholder Involvement viewpoint, and a Decision
Forces viewpoint. The main driver for these views is stakeholder-related concerns
like “What decisions have been made?” or “Which stakeholders are affected by
a decision?”. A more comprehensive list of these concerns and a mapping of
concerns to stakeholders can be found in [14]. The approach has been validated
with regard to capturing support, support for understanding and review, and
support for reuse.

ABC/DD [17][18] is a decision-centric architecture design approach. The main
aim is to provide support for the design process. Issues (architecturally signifi-
cant requirements) lead to issue solutions. Issue solutions can be automatically
synthesized to candidate architecture solutions using rules for issue solution com-
patibility. By deciding on a candidate architecture solution it becomes an archi-
tecture decision and the involved issue solutions are automatically captured as
issue decisions. Also the pros and cons of the involved issue solutions become
the rationale of the issue decisions and collectively make up the rationale of the
architecture decision. Finally, the rationale of the architecture decision can be
manually extended by additional rationale provided by the people making the
decision.

The Knowledge Architect / Astron approach [19][20] supports the enrichment
of traditional architecture documentation with formal architectural knowledge
to facilitate automatic processing [19]. Main challenges to be addressed by the
approach include understandability, change impact analysis, design maturity as-
sessment, locating relevant AK, traceability, and trust. These challenges are
supported by activities for identifying documentation issues, defining a domain-
specific AK model, capturing AK, using AK, integrating AK, and evolving AK.
The approach only provides a validation for the first four activities and leaves out
the last two. Validation is limited to one challenge (understandability) and one
use case: incremental architecture review. The approach also provides support
for the description and the integration of different quantitative analysis models
[20] for analyzing complex software systems. Validation has been performed on
the context of sharing a cost model for a large telescope (www.skatelescope.org),
however with mixed results [20].

The LISA approach [3][21] aims at integrating architecture knowledge man-
agement into architecture design and implementation to facilitate agile and it-
erative development processes. As an architecture model is extracted from and

8 R. Weinreich and I. Groher

synchronized with an implementation, requirements and design decisions can be
added continuously during design and implementation. The approach supports
traceability between requirements, design decisions, design structures, and im-
plementation elements, and the automatic capturing of such traces during design
and implementation. The LISA toolkit provides multiple views for impact anal-
ysis on the basis of the captured traces. The AKM features of the approach
have been validated in an industrial project (using Scrum), though with mixed
results.

The goal of RADM [22] is to support proactive capturing of reusable back-
ground information about recurring design issues. A dedicated decision-making
process supports decision identification, decision making, and decision enforce-
ment. The process is supported by a meta-model for capturing and reusing
architectural decisions. The meta-model separates reusable information on de-
cisions (issues and proven solutions) from the outcome (project-specific infor-
mation about the decision made) to facilitate reuse. It is implemented in the
Architectural Decision Knowledge Wiki tool, a collaboration system and deci-
sion modeling tool. RADM has been practically applied to enterprise application
development and SOA.

NDR/TREx [23][24] supports the recovery of rationale from text documents.
The goal is to make use of design information that is hidden in casual and
semi-structured records such as emails, notes, or documents. Textual documents
are parsed and the extracted rationale is described in the NDR ontology using
Softgoal Interdependency Graphs (SIGs). After a manual validation the rationale
is stored in a knowledge base. Reuse of rationale is tool-supported by comparing
and reviewing different SIGs to explore alternative rationale. The approach has
been validated with regard to the extraction of rationale from text documents
and the comparison of the rationale of two projects.

Discussion of Results RQ1: In analyzing the aims and application scenarios
of the approaches with the highest evidence for the different knowledge man-
agement activities it becomes evident that a broad application of AKM is still
missing. Most of the approaches have been developed in the context of one in-
dustrial project or application scenario and have been driven by this scenario.
On the other hand, the application to different scenarios with some evidence
of their usefulness in practice uncovers important requirements for codification
approaches for AKM in general.

For example, the ADF highlights the importance of different views for differ-
ent stakeholder concerns and provides evidence of the usefulness for the captured
AK for use and review. PAKME highlights the need for supporting architecture
evaluation using AKM. Evaluation and review support is also one of the main ap-
plication scenarios of the ADF and of the Knowledge Architect. Extracting archi-
tecture knowledge from existing documentation are central aims of the Knowledge
Architect approach and of NDR. RADM, NDR, and also PAKME aim at support-
ing reuse; NDR through comparing the rationale of different projects; RADM and
PAKME through splitting generic knowledge from project-specific knowledge. An
example for AK-generic knowledge is patterns, which are supported by PAKME

A Fresh Look at Codification Approaches for SAKM 9

but also by other approaches not listed here (e.g., [25]). ABC/DD and RADM
specifically support the decision making process. LISA explores capturing deci-
sions and decision traces in an agile context. The main aims and areas of interest
of the discussed approaches are summarized in Table 3.

Table 3. Summary of the main goals of the analyzed approaches

Goals Approaches

Different stakeholder views ADF
Architecture evaluation PAKME, Knowledge Architect
Knowledge extraction Knowledge Architect, NDR

Reuse RADM, NDR, PAKME
Decision-making process ABC/DD, RADM
Capturing in agile processes LISA

3.2 RQ2: What Are Important Elements of SAKM Models of the
Selected Approaches?

Tyree and Ackermann [2] present a template for capturing decisions. They define
concepts like issue (to be addressed), decision (the outcome of the decision),
group, assumptions, constraints, positions (alternatives), argument (rationale),
implications, as well as related decisions, requirements, artifacts, and principles
as part of a decision documentation [2]. We use the concepts of the Tyree and
Ackermann template as a baseline for describing the concepts provided by the
other approaches.

The PAKME meta-model supports the documentation of architecture deci-
sions as part of the design history. PAKME provides templates for capturing
patterns and scenarios as AK. Scenarios are either user-defined or originate from
a pattern. Patterns consist of a name, a description, context, problem, solution,
and forces. The repository contains design options that are composed of patterns
and each of them is composed of tactics. Rationale for design options can also
be captured. An architectural decision is a selected design option. The concepts
are similar to what is provided in the Tyree template, except that PAKME
also supports the capturing of general design options. The repository is thus
divided into generic knowledge (general scenarios, patterns, quality attributes,
design options) and project specific knowledge (concrete scenarios, contextual-
ized patterns, quality factors, architecture decisions). Using of AK is supported
by searching the repository.

The AKMmodel of the ADF provides concepts like problem/issue, decision, de-
cision groups, arguments, alternatives, and related decisions, which can bemapped
directly to the concepts of the Tyree template. Additional elements are related
concerns, decision states, decision relationships, and decision history. Related con-
cerns include requirements, constraints, business goals, assumptions, risks, and
design rules. Most of these concepts again map to the elements in the Tyree tem-
plate. Decision states and decision relation types are taken from the Kruchten

10 R. Weinreich and I. Groher

Ontology [26]. The history contains decision state changes and is required for pro-
viding the Decision Chronology Viewpoint. All in all, the model is rather general,
resembling its intended use cases as outlined in the previous section.

The ABC/DD meta-model provides requirement, issue, solution, decision, and
rationale as the main elements. Notable is the separation of issue and architec-
ture solution, issue and architecture decision, and issue and architecture ratio-
nale. This is due to the fact that issue solutions are combined to form candidate
architecture solutions, which, when selected by the architect, become architec-
ture decisions. Pros and cons of an issue solution form its rationale. If an issue
solution becomes an issue decision because it is part of an architecture decision,
its rationale contributes to the rationale of the architecture decision and vice
versa. Since the model has mainly been created for supporting the decision pro-
cess, it lacks concepts like related decisions or concern though all issue decisions
within an architecture decision can be viewed as related.

The Knowledge Architect /Astron approach uses a basic AK (core) model,
which can be used for constructing a more (domain-) specific domain model. The
basic model only consists of related knowledge entities, which are created by au-
thors and which are described by artifact fragment, which are part of artifacts.
The authors have presented two domain models, one for AK in documentation
and one for quantitative analysis models. The elements of the AK meta-model
very much resemble the elements of the Tyree template: concerns (requirement,
risks) raise decision topics, which are addressed by potentially multiple alterna-
tives. The chosen alternative (with its rationale) is represented by the decision.
A quick decision resembles a decision with only one alternative. Since some of
the authors of the approach are also involved in the ADF described above, the
AK model also contains information about the status of a decision and decision
relationships as defined in the Kruchten ontology. The AK meta-model for quan-
titative analysis models supports the evaluation of different design options, or
alternatives. Each alternative is a design concept, which is specialized in one or
more scenarios, which in turn are analyzed using one or more analysis models.
The model also contains concepts for describing analysis functions in more de-
tail. For integrating different analysis models, a mapping can be defined between
them. Finally, additional concepts like review and rating are provided to support
the review and evaluation process itself.

The LISA meta-model provides concepts like concern, requirement, and design
decisions. Rationale is captured as part of design decisions. Requirements and
design decisions are first-class elements of the architecture model and specializa-
tions of the concept of an issue. Grouping of requirements and design decisions
and alternatives are supported through relations among issues. Relation types
are modeled according to the Kruchten ontology. The model also supports traces
from requirements and design decisions to architectural solution structures and
implementation artifacts. During automatic capturing of traces, existing traces
are used for proposing relations between design decisions (and requirements).

The RADM meta-model provides concepts like issue, alternative, and out-
come to capture AK. Issues represent single architectural design problems and

A Fresh Look at Codification Approaches for SAKM 11

alternatives are possible solutions to this problem. Outcome is an actual deci-
sion made to solve the design problem including its rationale. The separation
between alternatives and outcome fosters reuse of proactively captured design
issues and their proven solutions. RADM also provides topic groups to bundle
related issues and levels to represent different refinement levels. The concepts
provided in RADM can be mapped to the Tyree template. Issues and groups
are used in both approaches. Assumptions, arguments, and implications in the
Tyree template are modeled as attributes of decisions in RADM. Also, both sup-
port linking decisions to design artifacts. The main difference is the separation
of alternatives and outcomes in RADM that is driven by the reuse attempt.

The NDR ontology describes AK using Softgoal Interdependency Graphs
(SIGs). SIGs describe non-functional requirements as softgoals that can be de-
composed into more specific softgoals until they can be satisficed (satisfied suffi-
ciently) by one or more solutions (operationalizing softgoal in SIG). SIGs further
support the capturing of interdependencies among softgoals, argumentation ra-
tionale, and evaluation of adopted and discarded design decisions. Architectural
alternative, pattern, and technology are subclasses of operationalizing softgoal.
Driver, requirement, and issue are subclasses of softgoal. In NDR reuse is facil-
itated through comparison of different SIGs. The comparison algorithm checks
softgoals, claims, interdependencies, and argumentations for equality. NDR con-
cepts can be compared to the Tyree template as both provide concepts for de-
scribing issues and their solutions. The main difference is that NDR mainly
targets nonfunctional requirements to be modeled as softgoals whereas issues in
the Tyree template represent any kind of architectural design issue.

Discussion of Results RQ2: In analyzing the elements of the different SAKM
models with the highest evidence for the different knowledge management activ-
ities we found that the models are not that different, as they might seem at first
glance. Overall, the models typically contain a set of core elements to represent
issues, decisions, and rationale that map to the concepts provided in the Tyree
template. Nearly all models we analyzed support this set of concepts. Some mod-
els additionally provide support for capturing relationships between decisions.
The ADF and LISA use relationship types that map to the Kruchten Ontology.
Decision states are also captured in some models (e.g. ADF and Knowledge Ar-
chitect) but not all. A notable commonality between most approaches is the sup-
port for capturing traces between decisions and design artifacts. LISA and NDR,
for example, provide concepts for documenting how decisions are addressed in
the architecture. The common concepts of the analyzed SAKM models are listed
in Table 4. Some approaches are distinguishing with respect to reuse of decisions.
These approaches (e.g. RADM and PAKME) separate general knowledge from
project specific knowledge. This is typically achieved by supporting the captur-
ing of reusable knowledge in the form of patterns or recurring design options.
During decision making, a concrete option is selected and its rationale is cap-
tured. Finally, PAKME is very much focused on architecture analysis and thus
support concepts like quality attribute, quality factor, scenario, and risk.

12 R. Weinreich and I. Groher

In our analysis we did not include any approaches that focus on the maintaining
activity because none of these approaches did provide sufficient evidence. Even
though it is worth mentioning that some approaches exist that support evolution
and maintenance of architectural knowledge like ADDSS [27] and TVM [25].

Table 4. Summary of the common concepts supported by the analyzed approaches

Model Concepts Approaches

Issue
Tyree, ADF, ABC/DD, Knowledge Architect,
LISA, RADM, NDR

Requirement PAKME (ASRs), ADF, Knowledge Architect, LISA, NDR
Design Decision all

Decision Status Tyree, ADF, Knowledge Architect, LISA, RADM
Group Tyree, ADF, LISA, RADM
Assumptions Tyree, ADF, RADM

Alternatives all
Constraints Tyree
Rationale all

Implications Tyree, RADM
Related decisions Tyree, ADF, Knowledge Architect, LISA, NDR
Related artifacts (Tracing) Tyree, Knowledge Architect, LISA, RADM, NDR

Patterns PAKME, NDR
Scenario PAKME, Knowledge Architect, LISA
Quality attributes PAKME, LISA
Decision history ADF, PAKME

4 Threats to Validity

There are several factors that may influence the results of this study. These are
in particular factors that influence the search we conducted, the study selection
we performed, and the extraction of the data from the selected studies.

Reliability refers to the question whether the study is reproducible by other
researchers [28]. To ensure reliability we present the search terms, the sources of
our automatic search and the inclusion and exclusion criteria used. The voting
leaves room for variation between researchers, since researchers are likely to
have different opinions on whether a publication can contribute to answering
the research questions. To reduce this bias, four researchers performed the voting
in parallel and discussed publications where they strongly disagreed. The data
extraction and especially the quality assessment of the study strongly affect the
classification and thus the selection of approaches in this paper. To reduce the
personal bias in study assessment, the extracted data was checked by at least
two reviewers. Also, own publications were not self-extracted or checked and a
pilot extraction was performed. Furthermore, we looked at related studies (such
as [11]) and analyzed how papers that were contained in both our study and
the related study were rated. We found a strong agreement between the quality
assessment results in most cases.

A Fresh Look at Codification Approaches for SAKM 13

Construct validity refers to the question whether the constructs are measured
and interpreted correctly [28]. To ensure a common understanding of the relevant
concepts and terms we checked the relevant literature and analyzed the defini-
tions. To ensure that our search terms were accurate, we conducted a pilot study
to verify and refine the initial key words. To ensure a common understanding of
the data to be extracted from the studies we performed a pilot extraction. Each
reviewer extracted the data of one publication and four reviewers discussed the
data of these four publications. The data extraction forms were adjusted accord-
ing to the results of the discussions.

Internal validity refers to the question whether the study results really follow
from the data [28]. This does not really apply in our case, as we did not use any
statistical analysis in our study.

External validity refers to the question whether claims for the generality of the
results are justified [28]. The goal of this study is to identify the aims of SAKM
approaches with some evidence and the most important elements of the SAKM
models of these approaches. The approaches included in this study were identified
by a systematic literature review following the guidelines of Kitchenham [4].
From the set of identified approaches from the systematic review we selected for
each SAKM activity the 3 approaches with the highest evidence level to ensure
an equal distribution of studies among the different activities and to obtain a
representative set of studies.

5 Related Work

Li et al. [11] conducted a systematic mapping study to assess the state of the art
in how knowledge-based approaches are applied in software architecture. They
used similar inclusion and exclusion criteria and they also assessed the quality
of publications in a similar way. In contrast to our work, they did not combine
related publications. They state that knowledge capturing and representation
is most frequently used, which supports our results. Also architecture evalua-
tion has been identified as a very frequent application scenario. This result also
supports our findings, as knowledge using is the activity with the second most
approaches that provide evidence in our study.

Tang et al. [29] present a comparative study of five architecture knowledge
management tools. Also, concepts of the different AK tools have been com-
pared with the result that all tools support the concepts rationale and concern
from IEEE 1471-2000. Our study does not focus on tools but rather on AKM
approaches and analyzes them regarding their goals and model elements. The
results of our study also show that the analyzed models have many concepts in
common and largely match the concepts proposed in the Tyree template.

Tofan et al. [30] present a systematic mapping study to assess the state of
research on architectural decisions. They look at various aspects like support for
quality attributes and group decision making, which has not been a focus in our
study. In terms of documenting decisions they find that numerous approaches
for documenting decisions exist and conclude “so practitioners can incorporate

14 R. Weinreich and I. Groher

documentation approaches in their activities.” As we found that there is still
no sufficient evidence for basic requirements like maintenance of decisions in
existing approaches, we cannot support this specific claim. Also, the authors
did not combine papers to approaches nor did they compare the underlying
decision models. While they state that only half of the papers in their study
provide empirical evidence, they did not analyze the evidence with regard to the
supported knowledge management activities like we did in our work.

Shahin et al. [31] compared 9 models for capturing architectural design deci-
sions and related tools. Similar to our study they tried to map the important
elements of the surveyed models to the Tyree template. In contrast to our study,
Shahin et al. did not take the evidence of the approaches into account nor did
they systematically identify the models under comparison. Furthermore, they
did not take the different AKM activities into account.

6 Conclusion

Analyzing AKM codification approaches published in the last 10 years with the
highest rated evidence for a specific AKM activity shows that approaches for cap-
turing and using dominate. Capturing approaches with evidence aim to support
manual capturing, extraction from existing artifacts, and automatic capturing of
traces during design and development. The dominant use cases of the analyzed
approaches in terms of using are understanding and architecture evaluation. Also
approaches aiming to support reuse, decision making, and different stakeholder
views provide some evidence. A main finding is that there is still no evidence
for core knowledge management activities like AK maintenance and only weak
evidence for AK sharing and reusing. This is a prerequisite to address adoption
of AKM approaches in practice.

If we look at the supported concepts and model elements, the Tyree template
has been amazingly resilient over the last 10 years. The essential concepts of the
analyzed approaches still largely resemble the original concepts introduced in the
Tyree template. There is some difference in how these concepts are implemented,
but these differences are not significant. There is, however, no agreement on
the used terminology and this is something we as a research community need
to address in the future. A commonly agreed on terminology is a significant
part to foster broader adoption of the topic. Some approaches have introduced
additional concepts required to support specific use cases like scenarios in the
case of architecture evaluation and patterns as a means for easily capturing and
reusing decisions. But this only shows that these concepts are closely related to
design decisions and discussing this relationship in more detail could be another
step in better aligning the different terminology used in some approaches.

References

1. Bosch, J.: Software architecture: The next step. In: Oquendo, F., Warboys,
B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer,
Heidelberg (2004)

A Fresh Look at Codification Approaches for SAKM 15

2. Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE
Software 22(2), 19–27 (2005)

3. Weinreich, R., Buchgeher, G.: Towards supporting the software architecture life
cycle. Journal of Systems and Software 85(3), 546–561 (2012)

4. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical report, Software Engineering Group,
School of Computer Science and Mathematics, Keele University, UK, and Depart-
ment of Computer Science, University of Durham, Durham, UK (July 2007)

5. Davenport, T.H., Prusak, L.: Working knowledge: How organizations manage what
they know. Harvard Business School Press, Boston (1998)

6. Alavi, M., Leidner, D.E.: Review: Knowledge management and knowledge manage-
ment systems: Conceptual foundations and research issues. MIS Quarterly, 107–136
(2001)

7. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychological
Bulletin 76(5), 378 (1971)

8. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33(1), 159–174 (1977)

9. Goodman, L.A.: Snowball sampling. TheAnnals ofMathematical Statistics, 148–170
(1961)

10. Weyns, D., Ahmad, T.: Claims and evidence for architecture-based self-adaptation:
A systematic literature review. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957,
pp. 249–265. Springer, Heidelberg (2013)

11. Li, Z., Liang, P., Avgeriou, P.: Application of knowledge-based approaches in soft-
ware architecture: A systematic mapping study. Information and Software Tech-
nology (2012)

12. Babar, M.A., Northway, A., Gorton, I., Heuer, P., Nguyen, T.: Introducing tool
support for managing architectural knowledge: An experience report. In: 15th Con-
ference on the Engineering of Computer Based Systems, pp. 105–113. IEEE (2008)

13. Babar, M.A., Capilla, R.: Capturing and using quality attributes knowledge in
software architecture evaluation process. In: First International Workshop on Man-
aging Requirements Knowledge, MARK 2008, pp. 53–62. IEEE (2008)

14. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. Journal of Systems and Software 85(4), 795–820 (2012)

15. van Heesch, U., Avgeriou, P., Tang, A.: Does decision documentation help junior
designers rationalize their decisions?-a comparative multiple-case study. Journal of
Systems and Software (2013)

16. van Heesch, U., Avgeriou, P., Hilliard, R.: Forces on architecture decisions-a view-
point. In: 2012 Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA), pp. 101–110.
IEEE (2012)

17. Cui, X., Sun, Y., Xiao, S., Mei, H.: Architecture design for the large-scale software-
intensive systems: A decision-oriented approach and the experience. In: 2009 14th
IEEE International Conference on Engineering of Complex Computer Systems,
pp. 30–39. IEEE (2009)

18. Cui, X., Sun, Y., Mei, H.: Towards automated solution synthesis and rationale
capture in decision-centric architecture design. In: Seventh Working IEEE/IFIP
Conference on Software Architecture, pp. 221–230. IEEE (2008)

19. Jansen, A., Avgeriou, P., van der Ven, J.S.: Enriching software architecture docu-
mentation. Journal of Systems and Software 82(8), 1232–1248 (2009)

16 R. Weinreich and I. Groher

20. Jansen, A., de Vries, T., Avgeriou, P., van Veelen, M.: Sharing the architectural
knowledge of quantitative analysis. In: Becker, S., Plasil, F., Reussner, R. (eds.)
QoSA 2008. LNCS, vol. 5281, pp. 220–234. Springer, Heidelberg (2008)

21. Weinreich, R., Buchgeher, G.: Integrating requirements and design decisions in
architecture representation. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 86–101. Springer, Heidelberg (2010)

22. Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable
architectural decision models for enterprise application development. In: Overhage,
S., Ren, X.-M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880,
pp. 15–32. Springer, Heidelberg (2008)

23. López, C., Codocedo, V., Astudillo, H., Cysneiros, L.M.: Bridging the gap between
software architecture rationale formalisms and actual architecture documents: An
ontology-driven approach. Science of Computer Programming 77(1), 66–80 (2012)

24. López, C., Inostroza, P., Cysneiros, L.M., Astudillo, H.: Visualization and compar-
ison of architecture rationale with semantic web technologies. Journal of Systems
and Software 82(8), 1198–1210 (2009)

25. Che, M., Perry, D.E.: Scenario-based architectural design decisions documentation
and evolution. In: 2011 18th IEEE International Conference and Workshops on
Engineering of Computer Based Systems, ECBS 2011, pp. 216–225. IEEE (2011)

26. Kruchten, P.: An ontology of architectural design decisions in software intensive
systems. In: 2nd Groningen Workshop on Software Variability, pp. 54–61 (2004)

27. Capilla, R., Nava, F., Dueas, J.C.: Modeling and documenting the evolution of
architectural design decisions. In: Second Workshop on Sharing and Reusing Ar-
chitectural Knowledge- Architecture, Rationale, and Design Intent, SHARK/ADI
2007: ICSE Workshops 2007, p. 9. IEEE (2007)

28. Easterbrook, S., Singer, J., Storey, M.A.A., Damian, D.: Selecting empirical meth-
ods for software engineering research. In: Guide to advanced empirical software
engineering, pp. 285–311. Springer (2008)

29. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A.: A comparative
study of architecture knowledge management tools. Journal of Systems and Soft-
ware 83(3), 352–370 (2010)

30. Tofan, D., Galster, M., Avgeriou, P., Schuitema, W.: Past and future of software ar-
chitectural decisions–a systematic mapping study. Information and Software Tech-
nology (2014)

31. Shahin, M., Liang, P., Khayyambashi, M.R.R.: Architectural design decision: Ex-
isting models and tools. In: Joint Working IEEE/IFIP Conference on Software Ar-
chitecture, 2009 & European Conference on Software Architecture, WICSA/ECSA
2009, pp. 293–296. IEEE (2009)

Suitability of Software Architecture Decision Making
Methods for Group Decisions

Smrithi Rekha V.1,2 and Henry Muccini3

1 Amrita School of Business, Amrita Vishwa Vidyapeetham, India
2 Center for Research in Advanced Technologies for Education (CREATE),

Amrita Vishwa Vidyapeetham, India
3 Department of Engineering, Computer Science, and Mathematics,

University of L’Aquila, Italy
smrithirekha@gmail.com, henry.muccini@univaq.it

Abstract. Software architecture design decisions are central to the architecting
process. Hence, the software architecture community has been constantly striv-
ing towards making the decision-making process robust and reliable to create
high-quality architectures. Surveys of practitioners has demonstrated that most
decisions made by them are group decisions. Hence, for any tool or method to be
useful to them, it must include provision for making group decisions.

In this paper we analyse if and how current software architecture
decision-making techniques support Group Decision Making (GDM). We use an
evaluation framework with eight criteria, identified by the GDM community, to
evaluate selected SA decision-making techniques in order to check their adequacy
and suitability to support group decisions. As per our analysis, most of the selected
methods in their current form are not yet fully suitable for group decision making
and may need to integrate more aspects like provision for stakeholders to explic-
itly indicate their preferences, conflict resolution mechanisms, and group decision
rules meant to specify how stakeholders’ preferences are taken into account.

1 Introduction

Software architects find themselves making numerous decisions while architecting soft-
ware systems. These decisions could be related to the architecture style of the system,
technological or even economical decisions. The decision-making process is highly com-
plex since it has to satisfy multiple-criteria and the concerns of multiple-stakeholders. As
testified by related work [1,2,3], the software architecture (SA) decision-making process
involves several decision makers, that with their different skills and concerns, participate
in a (typically) distributed decision process. Looking at SA decision-making as a group
process helps in including perspectives and opinions of multiple stakeholders thereby
making the process more holistic in nature leading to a high quality system.

In this paper, we analyse the suitability of current SA decision-making methods
to support group decision making. We essentially want to provide an answer to two
main research questions, namely: RQ1) how to evaluate the architecture design deci-
sion methods’ suitability for group decision making?, and RQ2) how adequate existing
architecture design decision methods are for group decision making?

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 17–32, 2014.
c© Springer International Publishing Switzerland 2014

18 V. Smrithi Rekha and H. Muccini

For those purposes, we define an evaluation framework with eight criteria extracted
by a list identified by the group decision making (GDM) community. Then, we apply
such criteria to state of the art architecture design decision methods. Such an analysis,
we believe, will have the following benefits:

• pave the way for explicitly including multiple stakeholders into SA decision-making
methods and tools;

• help to accommodate the preferences of these stakeholders;
• facilitate a more democratic and robust method of SA decision-making where pref-

erences, priorities, objectives etc., are included to make optimal decisions.

The current tools and methods for capturing Architectural Design Decisions (ADDs),
which are typically modeled around the ISO/IEC/IEEE 42010 standard for architectural
description [4], do not explicitly cover all aspects of GDM. Given that most decisions in
practice are group decisions, it may be necessary to integrate GDM into these methods
and tools.

Our paper is organized as follows. In Section 2 we present background information
on various GDM techniques, the details of a comparative study as discussed by Saaty
and Vargas in their book titled Decision making with the analytic network process [5],
and a generic Group Problem Solving Model presented by Aldag in [6]. In Section 3 we
highlight the need for integrating GDM into mainstream SA decision-making. Details of
our evaluation framework and its application to various SA decision-making techniques
are presented in Section 4 and 5. Results are discussed in Section 6. Related work are
presented in Section 7, while conclusions and future work are discussed in Section 8.

2 Background

It is a common practice in organizations to involve groups for making decisions. While
making important decisions, groups are preferred to individuals as groups bring in a) di-
verse perspectives, b) greater information exchange, and c) better sense of involvement
and accountability [7]. Given these benefits, management researchers have evolved sev-
eral GDM methods for effective decision-making. Some popular GDM methods are:

• Brainstorming: it involves group discussion moderated by a facilitator. An alterna-
tive is brainwriting.

• Voting: participants vote on a predetermined set of alternatives and the solutions
with majority votes are selected.

• Nominal Group Technique (NGT): NGT encourages all members to participate
freely and prevents dominant ones from hijacking the discussions. This results in a
prioritized set of alternatives and recommendations.

• Delphi Technique: it involves several rounds of structured communication among
participants.

• Analytic Hierarchy Processing (AHP): considered to be one of the most effective
techniques, AHP involves pairwise comparison and ranking of alternatives, and
mathematically computing the best solution.

Suitability of Software Architecture Decision Making Methods 19

Other GDM methods include matrix evaluation, goal programming, conjoint analy-
sis, outranking and bayesian analysis.

Each of these methods has their own pros and cons. These plethora of GDM meth-
ods have helped decision-makers enhance the quality of decisions. In addition to this,
various other factors are said to influence the quality of decisions made by groups some
of which include group size, group cohesiveness, task significance, group norms and
group composition [8]. Each of these factors have been studied in great detail by sev-
eral researchers in the field of GDM.

The following Section 2.1 and 2.2 will introduce state-of-the-art GDM evaluation
criteria and a generic GDM model, respectively. Those will be used as the baseline to
answer RQ1 (how to evaluate the architecture design decision methods’ suitability for
group decision making?).

2.1 Criteria for Evaluating Group Decision Making Methods

A detailed comparison of the various techniques has been performed by Thomas L.
Saaty and Luis G. Vargas in [5]. These authors have identified and used 16 criteria for
evaluating various GDM methods. These criteria are reported and briefly illustrated in
Table 1.

Table 1. Criteria for evaluating GDM methods

Criteria Description
1. Leadership Effectiveness Importance given to Leader and provides other collaborative tools and the neces-

sary control mechanisms to guide the facilitator’s leadership actions in pursuing
the group’s achievement

2. Learning Facilitates group learning and enables one to produce the necessary materials to
facilitate learning beyond the membership of the group

3. Scope Involves problem analysis that serves as feedback to broaden problem abstraction
4. Development of Alternatives Alternatives evolve with group discussion and helps to satisfy certain properties

to ensure the validity of the outcome
5. Breadth Problem is modeled such that there are many distinct elements (criteria) that are

assumed to be independent of each other
6. Depth Problem is modeled such that each element is broken down into sub-elements,

each sub-element into sub-sub elements and so on down to the most detailed ele-
ments

7. Breadth and Depth of Analysis Facilitates careful thinking and review
8. Cardinal Separation of Alternatives Uses an interval scale, a ratio scale, or an absolute scale to rate the alternatives
9. Faithfulness of Judgment The method is elicited in the most elementary way (pairwise comparison with

respect to a property), expressed in a way that fits the decision maker best (numer-
ically, verbally, or graphically), or, if it is by design an objective method

10. Prioritizing Group Members Provides a method to determine the weights for the members as the group wishes.
11. Consideration of other Actors and
Stakeholders

Involves External Stakeholders and addresses the issue both explicitly and quan-
titatively

12. Scientific and Mathematical General-
ity

Theorems are axiomatized and generalizable in a natural and less taxing way by
not requiring many new assumptions

13. Applicability to Intangibles Measurement is applicable to intangibles and gives an assessment of their relative
importance, either absolutely or relatively, as the user wishes

14. Psychophysical Applicability Applicable psychophysically and addresses issues of stimulusresponse
15. Applicability to Conflict Resolution Facilitates finding the best solution for a group conflict that is understandable,

acceptable, practical, flexible, and has been demonstrated to work well in practice
16. Validity of the Outcome (prediction) The method uses cardinal measurement, but its mathematical validity sets limits

on the structural representation of a problem

20 V. Smrithi Rekha and H. Muccini

2.2 Generic Model of Group Decision Making

In order to understand whether the current SA decision-making methods are suitable
for GDM i.e to answer our RQ2, we use a generic model as a basis.

Our review of literature and the review presented in [6] reveals that though GDM
has been researched from many perspectives, most of the works look at specific as-
pects and there are very few works that give a generic model of GDM. We use the
General Group Problem-Solving (GGPS) model proposed in [6] which is actually an
expansion of the groupthink model proposed by Janis [9]. The GGPS model has four
components, namely: (a) antecedents conditions, (b) the group characteristics, (c) the
decision process characteristics, and (d) the decision process outcomes. The model is
comprehensive in that it covers several aspects of GDM with neutral connotation (as
opposed to the groupthink model of Janis). The antecedent conditions examine various
aspects preceding the GDM process like group structure, decision characteristics and
the decision making context. Once the group is formed, certain characteristics of the
group emerge that impact the decision-making process and its outcome.

The decision-making process has three important stages namely problem identifica-
tion, alternative generation and evaluation and choice. The outcome of the decision-
making process are the final decisions and their implementation. The model is shown
in Figure 1.

Both the evaluation criteria outlined in Section 2.1 and the GGPS model summarized
in this section are going to be used to shape our evaluation framework presented in
Section 4.

Fig. 1. Generic Group Problem Solving Model proposed by Aldag and Fuller [6]

Suitability of Software Architecture Decision Making Methods 21

3 The Rationale for GDM in SA

With more than 85% of the decisions made by software architects being group decisions
[1], [3], the SA community is yet to harness this vast body of literature available on
GDM. In this section we briefly discuss why we need to explicitly model GDM in the
SA decision-making process. The needs are as follows:

1. As discussed earlier, what is seen in practice is that most SA decisions are not
made in isolation but through a process of discussion and deliberation by a group
of experts who have different preferences. Group decision rules may be required to
process these preferences to arrive at optimal decisions.

2. A review of literature done by Falessi et al. in [10] points out that the various
methods so far used in SA decision-making are focused more on identifying qual-
ity attributes and alternatives, scoring them using pairwise comparison or other
ranking techniques and making a decision based on the scores. These methods in-
volve multi-criteria/multi-attribute decision-making. While a few of these include
multiple stakeholders, many of them do not account for group processes like brain-
storming alternatives, preference ranking, prioritizing stakeholders or using a group
decision support system. Hence these methods in literature may have to be extended
to suit the practical setting.

3. If at all the decision-making methods in literature involve several decision-makers,
they have predetermined set of alternatives from to choose from, i.e., the function
as a group only in certain stages of decision-making. This seems to be a limited way
of involving stakeholders. What may be required is a way of involving stakeholders
right from the problem identification, to generation of alternatives to arriving at a
consensus.

4. The results of our study of SA decision-making practices in the industry [1] shows
that GDM isn’t just about indicating preferences but a detailed process of: a) prepar-
ing documentation b) face-to-face and virtual discussions c) group members listing
alternatives and indicating preferences d) making trade-offs e)deciding to take risks
f) facing and resolving challenges and conflicts g) arriving at a consensus and make
a decision with or without arbitration.

5. Decision-making involves uncertainty i.e decision-makers may not have knowledge
about all the consequences of their decisions. This may be caused due to incomplete
information, inadequate understanding and undifferentiated alternatives [11]. Such
a situation may be better handled by a group of decision-makers who share different
perspectives and information thereby reducing the level of uncertainty.

Hence, a more holistic decision-making method is required for SA which accounts
for multiple stakeholder perspective and uses a combination of formal and non-formal
approaches to GDM.

4 Evaluation Framework

In this section we present details of the criteria that we use for checking the adequacy
of current SA decision-making methods to support GDM. The evaluation framework

22 V. Smrithi Rekha and H. Muccini

is primarily based on the GGPS model presented in Section 2.2. We draw these crite-
ria from the Decision Process Characteristics (see Figure 1.c) which focuses on vari-
ous steps in GDM, namely problem identification, survey of objectives, generation of
alternatives, evaluation, and selection based on decision rules. We also draw insights
from the criteria discussed by Saaty and Vargas in [5] (summarised in Section 2.1). We
have not used the evaluation criteria as-is but adapted them to suit SA decision-making.
While adapting we have combined a few criteria and process discussed in the two refer-
ences mentioned above as well from the steps involved in generic SA decision-making.
For instance the “Problem Identification” criteria is combination of “Problem Abstrac-
tion” from [5] and “Problem Identification” from [6]. “Preference Indication” is adapted
from “Cardinal Separation of Alternatives” from [5] and “Evaluation and Choice” step
from [6].

The evaluation criteria are as follows:

1. Problem Identification: We use this criteria to see if groups are involved right
from the problem identification stage where the problem is identified and defined,
broken down into sub-problems or issues and mapped to specific requirements.

2. Development of Alternatives: Instead of a pre-determined set of alternatives, the
process of identification of alternatives is integrated in the GDM process, where
the entire group discusses and identifies/filters the alternatives. There may be a
specific technique to identify alternatives and the GDM process shall also allow the
evolution of preferred alternatives during the process.

3. Preference Indication: The heart of any GDM process is the indication of prefer-
ences by the stakeholders. Hence there should be provision for multiple stakehold-
ers to indicate preferences either through a process of ranking or scoring through
comparisons or simple ratings. The preferences could be based on the criteria to be
satisfied by the system or any other organizational criteria.

4. Prioritizing Group Members: Not all group members are equally important. The
voice of senior experts could be more important than junior architects. Hence hi-
erarchy and expertise play an important role in GDM. The method could include
ways of prioritizing decision-makers.

5. Provision for Conflict Resolution: There should be explicit mechanisms of avoid-
ing conflicts or resolving conflicts if they occur. Conflict resolution is key to the
quality of decisions made. Conflicts could occur due to conflicting objectives, pres-
ence of a few dominant members in the group, political issues and task related is-
sues. So a formal conflict resolution strategy may be required or the process could
be fair enough that conflicts are as minimal as possible.

6. Group Decision Rules: Group decision rules help specifying how the preferences
of various stakeholders are taken into account. It could be the aggregation of var-
ious preferences in case of methods like AHP. Unanimity, plurality and minority
rules are used during voting. Complex mathematical calculations can be involved
to arrive at a decision. Decision rules can ensure that decisions are made in a timely
manner and that all stakeholder preferences are factored in.

7. Information Exchange and Recall: A very important factor in any GDM process
is the exchange of shared and unshared information [12], [13]. Shared information
is the one known by all, while unshared is that known only by one member in the

Suitability of Software Architecture Decision Making Methods 23

group. The success of a GDM lies in bringing out the unshared information during
the process of discussion so that optimal decisions are made. Balanced information
exchange can help to avoid issues like Groupthink [6]. Also, information recall is
a key factor impacting the effectiveness of decisions. The more information the
group is able to recall, the better the decisions would be [14]. Hence any GDM
process, specially if it is tool based, should facilitate appropriate representation of
information for quick and effective recall.

8. Revisiting Information: Individuals often come with certain preferential biases
before the GDM process [15] and during the discussion as more and more informa-
tion is exchanged, the members tend to revisit their preferences. Hence any GDM
process must be able to accommodate the revisiting of alternatives, preferences and
decisions made. It would also be appropriate if there was a way of members to
indicate their individual pre-group preferences to avoid discussion biases.

5 Evaluation of the Various SA Decision-Making Techniques

In this section we present our evaluation of various SA decision-making techniques
using the framework discussed in Section 4. We choose a subset from the several
SA decision-making methods discussed in [10] and [16] and apply our framework to
them. We have chosen reference works that do not have tool support but only discuss a
decision-making process/method.

The reference works we have chosen are represented in Table 2. The rationale for
choosing these works is as follows:

• SA decision-making involves several aspects that include right from understanding
the requirements to the generation of high-level architecture of the system. We
needed SA decision-making methods in literature that represented these wide range
activities. The selected references include COTS selection, architectural candidate
selection, architectural design decisions, components selection and evaluation of
scenarios thereby covering broad aspects of SA decision-making.

• There is no one single SA decision-making method. A variety of scientific meth-
ods of decision-making methods are available in literature. The subset of reference
works adopts many of these methods including Utility Function based methods,
Weighted Score methods, Trade-offs, Analytic Hierarchy Processing and Cost Ben-
efit Analysis Method (CBAM)1.

• Most of the reference works chosen involve conflicting multiple objectives. Hence
it may be useful to check their suitability to accommodate multiple stakeholder
perspectives as well.

1. Problem Identification: The methods discussed in [19], ATAM and CBAM 2
discussed in [25] and [21] involves several stakeholders who at the beginning elicit
and discuss a set of scenarios relevant to the problem. [27], [28] explicitly models the
presence of multiple-stakeholders by branching out on different nodes of a decision-
tree depending on the stakeholder concerns but does not discuss problem identification.

1 Hereafter we do focus on CBAM and not to the ATAM, since the former builds on the latter

24 V. Smrithi Rekha and H. Muccini

Table 2. Methods Selected for Applying Evaluation Framework

Methods and Authors Reference and Title
ArchDesigner: Al-Naeem et al [17]: A Quality-Driven Systematic Approach for Archi-

tecting Distributed Software Applications
Andrews et al [18]: A Framework for Design Tradeoffs
Comparative Evolution Process
(CEP):Phillips and Polen

[19]: Add Decision Analysis to Your COTS Selection
Process

BAREMO:Lozano et al [20]: BAREMO: How to Choose the Appropriate Soft-
ware Component Using the Analytic Hierarchy Process

CBAM 2: Moore et al [21]: Quantifying the Value of Architecture Design De-
cisions: Lessons from the field

Svahnberg et al [22]: A Quality-Driven Decision-Support Method for
Identifying Software Architecture Candidates

Vijayalakshmi et al [23]: Multicriteria Decision Analysis Method for Eval-
uation of Software Architectures

RGT: Tofan et al [24]: Capturing tacit architectural knowledge using the
repertory grid technique

Wallin et al [25]: Making decisions in integration of automotive
software and electronics: A method based on ATAM
and AHP

Stoll et al [26]:Guiding architectural decisions with the influenc-
ing factors method

Fabian Gilson and Vincent Englebert [27]:Rationale, Decisions and Alternatives Traceability
for Architecture Design

Orlic et al [28]:Concepts and diagram elements for architectural
knowledge management

Weihang Wu and Tim Kelly [29]:Managing Architectural Design Decisions for
Safety Critical Software Systems

AQUA: Heeseok Choi et al [30]:An Integrated Approach to Quality Achievement
with Architectural Design Decisions

Hoh In [31]:From Requirements Negotiation to Software Ar-
chitectural Decisions

Lars Grunske [32]:Identifying ”Good” Architectural Design Alterna-
tives with Multi-Objective Optimization Strategies

Qing Gu et al [33]:A template for SOA design decision making in an
educational setting

Carmen Zannier and Frank Maurer [34]:A Qualitative Empirical Evaluation of Design De-
cisions

Olaf Zimmermann et al [35]:Reusable Architectural Decision Models for Enter-
prise Application Development

Riebisch, Matthias and Wohlfarth, Sven [36]:Introducing impact analysis for architectural deci-
sions

Bingfeng Xu et al [37]:Making Architectural Decisions Based on Re-
quirements: Analysis and Combination of Risk-Based
and Quality Attribute-Based Methods

CEADA: Nakakawa et al [38]: Requirements for Collaborative Decision Making
in Enterprise Architecture

Suitability of Software Architecture Decision Making Methods 25

[26] gathers the opinion of several stakeholders in formulating the decision factors. [38]
provides detailed set of steps for collaborative decision-making. The steps discussed in
[38] not only focus on problem definition but on collaboratively defining organizational
goals. References [18], [22], [26], [30] and [32] start with the identification of alter-
natives or decision, decision factors, directly. They do not mention any specific prob-
lem identification stage that involves a group. Though both [17] and [20] are based on
AHP, only [20] discusses problem identification and building of a hierarchy tree for the
problem. [24], [29], [36], [37] and [31] start with the identification of topic, negative
scenarios, objectives and requirements respectively, all of which resembles problem
identification. However, none of the above works discuss the involvement of a group
in problem identification, definition and decomposition. Reference [23] does not start
with a problem identification stage.

2. Development of Alternatives: We expect that the alternatives will emerge and
evolve during the process of group discussion and a good GDM process should facil-
itate the same. In [21] the group discusses alternative responses (best, worst, desired
etc.) for a given scenario. Scenarios are generated in an iterative process as more and
more information is available. This is also the case with [31]. [25] and [38] discuss a
collaborative evolution of alternatives. References [19] and [22] both discuss the search
for suitable alternatives. References [17], [29], [32], [24] and [36] discuss steps where
alternatives/negative scenarios and criteria are identified. In [20] identification of alter-
natives is integrated into the step where a hierarchy tree for the problem is created. A
similar approach is used by [28] where there are alternate lines of reasoning. [23] and
[27] involve the identification of alternative architectures/solutions for a given set of
requirements. Each of these works, though talk of identification of alternatives, do not
seem to involve a group in discussing and deliberating upon suitable alternatives and
hence does not involve the development of alternatives. Reference [30], [18] and [26]
do not specifically talk of alternative solutions.

3. Preference Indication: Stakeholders participating in GDM shall be enabled to
indicate preferences. In [21] the alternative scenarios are scored and the stakeholders
vote the alternatives. The voting method has been chosen to enable the groups to arrive
at consensus in a timely manner. We find an explicit mention of several stakeholders in-
volved in indicating the preferences by a process of pairwise comparison of alternatives
and criteria satisfaction in [17]. Though not explicitly, [26] indicates the involvement of
a voting procedure to choose influencing factors and a binary approach to indicate pref-
erences. References [20], [22] and [25] are AHP-based, hence involve pairwise com-
parison of alternatives and scoring. Reference [19] evaluates the alternatives against
criteria and then ranks the alternatives. Reference [18] determines the value level of
each factor by using utility functions. A numerical approach that involves rating, rank-
ing or scoring is used by [23], [24], [32], [31], [29], [36] and [37]. [28], [27], [30] and
[38] vaguely discuss how alternatives are evaluated. However all these methods do not
seem to explicitly involve a group of people in ranking the alternatives.

4. Prioritizing of Group Members: Each group member brings in their unique ex-
pertise and hold different positions in the hierarchy, hence need to be treated differ-
ently. References [17] and [21] acknowledge that different stakeholders have different

26 V. Smrithi Rekha and H. Muccini

preferences but the stakeholders themselves are not ranked as per hierarchy or exper-
tise i.e all stakeholders are given equal weightage. Reference [38] involves multiple
stakeholders right from the start. The initial set of requirements and scope are defined
in consultation with senior members. None of the other works acknowledge the active
involvement of stakeholders hence do not talk of treating the stakeholders differently.
This could be due to several reasons: a) group members expect fairness and hence the
method adopted gives equal weightage to all stakeholders, b) current tools and methods
may not be capable of factoring in differences in hierarchy, and c) hierarchy could be
implicit in cases where the final decision lies in the hands of the senior most executive
in the organization.

5. Provision for Conflict Resolution: References [17] acknowledges that different
stakeholder groups have divergent views and preferences. But there is no mention of
inter or intra group conflict and hence conflict resolution mechanisms have not been
discussed. References [18] [28], [32] and [30] mention conflict but in a different con-
notation i.e conflicts occurring among decisions or between decisions and requirements
or criteria. The remaining works do not mention about conflicts of any type.

6. Group Decision Rules: Reference [17] accounts for multiple stakeholder pref-
erences by computing the geometric mean to arrive at the ranks. Reference [21] uses
the votes as weights along with the utility scores to make decisions. Group scoring is
summed up in [31]. [25] uses a combination of ATAM and AHP to combine multiple
stakeholder preferences. Though [38] discusses the presence of multiple stakeholders,
a specific decision rule is not mentioned. Other works involve value score computation
using aggregation but do not involve multiple stakeholder preferences hence no group
decision rule is discussed.

7. Information Exchange and Recall: For effective information exchange, an ac-
tive group discussion is required. [38] proposes CEADA method for Enterprise Archi-
tect which includes visualizations. In their future work, Al-Naeem et al. [17] plan to
develop a visual representation of their approach. This would probably facilitate better
information exchange and recall. Only [17] [21], [31] and [25] involve active groups.
There is no mention of visual representation of information like alternatives, criteria,
scores etc in each of the selected references. Reference [21] acknowledges elicitation
of information has been done keeping in mind the attention span and time availability
of members.

8. Revisiting Information: This is an important criteria as it facilitates group learn-
ing and evolution of preferences and decisions during the lifetime of the GDM process.
With the exception of [21] and [25], the other works do not specifically refer to a feed-
back mechanism where revisiting of alternatives or solutions can happen. [21] does it
in the second iteration where factors that were not given importance in the first iteration
due to time constraints are taken up and included in the decision-making process. Such
a step will help uncover more hidden information for better decision-making.

Suitability of Software Architecture Decision Making Methods 27

6 Discussion

Table 3 presents a summary of our evaluation of the six SA decision-making methods.
The reference works that involve a group while meeting a particular criteria are included
in the table. The ”*” indicates that the reference work satisfies the criteria only partially
or implicitly.

To summarise our findings and offer some suggestions in the light of each criteria:

Table 3. Reference Works that Address a Criteria

Criteria References
1. Problem Identification [21], [25],[26], [38]
2. Development of Alternatives [21], [31], [25], [38]
3. Preference Indication [21], [17], [26]*
4. Prioritizing of Group Members [38]*
5. Provision for Conflict Resolution None
6. Group Decision Rules [21], [31], [25], [38]
7. Information Exchange and Recall [17]*,[38]
8. Revisiting Information [21],[25]

1. Problem Identification: Except very few methods, all others do not have a spe-
cific problem identification step that involves a group. Some of these analyzed meth-
ods directly begin from identification of alternatives, which may be a limited way of
decision-making. It may be useful for methods to involve a group of stakeholders in
discussing the problem, breaking it down into sub-problems or specific issues. This en-
sures that the problem space is presented in a more granular form indicating a high
quality GDM practice as defined by [5].

2. Development of Alternatives: We see that very few of these methods allow
for a group to discuss and evolve alternatives. Multi-criteria decision-making methods
(MCDM) must allow for the generation and filtering of alternatives through a process
of discussion and deliberation which ensures more participation of group members [5].
When experts from various fields discuss, several alternative solutions emerge which
may be important for architecting the system. Hence it is best that a group is involved
even at this stage.

3. Preference Indication: Though the selected methods allow for preference indica-
tion in someway, it is mostly individuals who rank the alternatives. They do not seem to
allow multiple stakeholders to indicate preferences. When the entire group is involved
in ranking/rating the alternatives, the decisions are of high quality because they have
factored in the perspective and expertise of all the stakeholders involved.

4. Prioritizing of Group Members: It is surprising to note that none of the meth-
ods account for hierarchy or expertise differences among stakeholders. As criteria and
alternatives are prioritized, it would be useful to prioritize stakeholders based on some
criteria like seniority or expertise to make the process more robust [5]. However this

28 V. Smrithi Rekha and H. Muccini

need not be the general case. Some organizations have flat structures where all stake-
holders enjoy equal priority and have equal access to information.

5. Provision for Conflict Resolution: Again we see that no method accounts for
conflict management strategies. Conflicts are inherent to GDM. The sources of conflict,
levels of conflict and appropriate conflict resolution styles could be applied to the SA
decision-making method. Our interviews with practitioner demonstrates that collabora-
tive style of conflict resolution seems to be the most popular [1].

6. Group Decision Rules: Very few of the selected references allow for multiple-
stakeholder preference and hence they alone discuss decision-rules. The more rigorous
and scientific the decision-rule is, the better the quality of decisions made [5], [14].

7. Information Exchange and Recall: Two of the chosen methods seem to indicate
the presence of visual representation of information. Information recall has been found
to be key in making the knowledge pool more rich. It could be facilitated through the
use of charts, pictures or tool based representation of decision knowledge [13].

8. Revisiting Information: Only one method is iterative in nature. The more number
of times the group is able to exchange information, uncover unshared information and
revisit the alternatives, the higher the quality of decisions. Hence feedback should be an
inherent part of the GDM process [6].

Reflection: Most of the selected method, in their current form, do not seem to indi-
cate the involvement of groups in the decision-making process and hence may not be
directly suitable. This is indeed an unexpected result, considering that the playing the
role of a Software Architect brings him in contact with a number of diverse stakehold-
ers. The lack of support in current architecture design decisions methods might have
been brought by different factors, such as the need to first carefully understand how the
architecture design decision process works for individuals before moving to a group
decision making task, or the fact that current methods may inherit and expand over
state-of-the art work (e.g., the Questions Option Criteria) that where mostly focusing
on capturing concerns, alternatives, and criteria.

What may be required is an expansion of the current methods, based on our criteria,
to incorporate the views of multiple-stakeholders, their preferences, addressing of con-
flicts thereby enabling better flow information among all stakeholders. It may be more
useful for the various techniques to assume at a fundamental level that SA decision-
making is inherently a group process and hence must facilitate the participation of all
concerned.

7 Related Work

In this section we present details of few selected related works and why these works are
important for our analysis. The authors of [10] have done a detailed comparison of var-
ious decision-making methods for SA design. The main objective is to help architects
choose the best method as per their needs. They have formulated a characterization
schema, used to compare eight SA decision-making techniques in literature. We use

Suitability of Software Architecture Decision Making Methods 29

this paper for gaining knowledge of various decision-making techniques used in SA
literature. Tofan et al, in [16], have done an extensive and systematic study of state of
research in SA decisions. They have covered a total of 144 published papers and classi-
fied them based on their six research questions. This work has been very useful for us in
identifying those works that discuss SA decision process with or without tool support.
We apply our evaluation framework to a subset of the works discussed in this paper.

A detailed comparison of various Architectural Knowledge (AK) management tools
has been been presented in [39]. They compare five tools by using an evaluation frame-
work consisting of 10 criteria. The comparison is based on the various AK management
activities that take place during the SA life-cycle. They observe that architectural evo-
lution and design patterns are well supported by these tools which are not part of the
IEEE 42010 standard. They have observed that the current version of the tools lack
knowledge sharing facility which is key for collaborative activities. This has been an
important references for us to see if SA KM tools support GDM.

In our previous work [1], we have presented the findings of our study on GDM
in Software Architecture. We had interviewed 29 practitioners and researchers work-
ing on SA to understand how practitioners make group decisions in architecting soft-
ware systems, how practiced group decision-making techniques relate to state-of-the-art
techniques, and challenges companies face when making architecture-related group de-
cisions. Our main findings is that architectural decisions are made in reasonably sized
groups that interact both face-face and online. Though there is a lot of emphasis on doc-
umentation, there seems to be no specific tool for facilitating GDM. SA groups often
face a lot of issues and challenges that are found in management literature and making
time-bound decisions seem to be a top priority. They adopt a collaborative strategy to
manage conflicts. The analysis of survey responses and the findings from this previous
work motivates our current work as we see that the industry faces a lot of challenges
in decision-making and a more comprehensive SA decision-making method may be
required for creating good quality architectures.

Miesbauer and Weinreich conducted a survey with software architects, software team
leads, and senior developers from six different companies in Austria. They have pre-
sented their findings in [2]. They mainly look at how decisions are made in practice,
what kind of decisions are made and what factors influence these decisions. They have
classified the decisions types into 22 categories. They have noted that all architectural
decisions are made in groups with the final decision taken by a competent authority.
Among the several factors that impact decisions, Expertise, Requirements and Con-
straints have more impact.

Tofan et al have presented the results of their survey of 43 architects in [3]. They
identified the characteristics of ADDs, the factors that make decision-making difficult,
the differences between senior and junior architects and differences between good and
bad decisions.They have identified that only 14% of the decisions are individual deci-
sions the rest are all group decisions.

8 Conclusion and Future Work

The architecture design decision (ADD) process is a group decision making (GDM)
activity, as analyzed in a number of work [1,2,39,3]. Therefore, ADD methods shall

30 V. Smrithi Rekha and H. Muccini

incorporate practices and methods coming from the group decision making community.
The main research question we wanted to investigate through this research work is how
much of the group Decision Process Characteristics discussed in [6,5] have been taken
into consideration in existing ADD methods.

More specifically, we designed two research questions: RQ1) how to evaluate the ar-
chitecture design decision methods’ suitability for group decision making?, and RQ2)
how adequate existing architecture design decision methods are for group decision
making? As far as concern RQ1, we rely on and build upon the GDM evaluation criteria
proposed by Saaty and Vargas in [5] and on the General Group Problem-Solving model
proposed in [6]. We therefore extract eight criteria. Related to RQ2, we select a subset
of state of the art SA decision-making methods and apply our framework to them.

The results show that there is ample space for improvements. Some of the analyzed
ADD methods though implicitly acknowledge the presence of groups, need to bring
GDM to the fore where the entire process assumes and acknowledges the presence of a
group hence tailored to include collaborative decision-making.

We hope that this work can drive new research on this topic, and bring together
the ADD and GDM communities. Still, a lot needs to be done, and we plan to further
contribute on this direction by: i) including in our future work an analysis on how ADD
tools support GDM, and what shall be improved on existing tools, ii) running a survey
with practitioners to evaluate how much the proposed methods and tools improvements
are considered to be useful by them, iii) running a case study to evaluate how enhanced
ADD may improve the group decision making process with respect to the traditional
ADD methods. More specifically, we plan to select one (or more) tool supported ADD
methods, and enhance it based on the findings of this study and of our previous research
[1]. Then, the traditional and enhanced version of the approach/tool will be used by
different groups through a controlled experiment, so to record how much they like them
and the output itself.

References

1. Rekha, V.S., Muccini, H.: A study on group decision-making in software architecture. In:
Proc. WICSA 2014 the 11th Working IEEE/IFIP Conference on Software Architecture
(2014)

2. Miesbauer, C., Weinreich, R.: Classification of design decisions an expert survey in practice.
In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 130–145. Springer, Heidelberg (2013)

3. Tofan, D., Galster, M., Avgeriou, P.: Difficulty of architectural decisions a survey with pro-
fessional architects. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 192–199. Springer,
Heidelberg (2013)

4. ISO: ISO/IEC/IEEE 42010, Systems and software engineering — Architecture description
(2011)

5. Saaty, T.L., Vargas, L.G.: Decision making with the analytic network process. Springer
(2006)

6. Aldag, R.J., Fuller, S.R.: Beyond fiasco: A reappraisal of the groupthink phenomenon and a
new model of group decision processes. Psychological Bulletin 113(3), 533 (1993)

7. Ambrus, A., Greiner, B., Pathak, P.: Group versus individual decision-making: Is there a
shift? Economics Working Papers from Institute for Advanced Study (91) (2009)

Suitability of Software Architecture Decision Making Methods 31

8. Kerr, N.L., Tindale, R.S.: Group performance and decision making. Annu. Rev. Psychol. 55,
623–655 (2004)

9. Janis, I.L.: Groupthink. Houghton Mifflin, Boston (1983)
10. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques for soft-

ware architecture design: A comparative survey. ACM Computing Surveys (CSUR) 43(4),
33 (2011)

11. Lipshitz, R., Strauss, O.: Coping with uncertainty: A naturalistic decision-making analysis.
Organizational Behavior and Human Decision Processes 69(2), 149–163 (1997)

12. Dennis, A.R.: Information processing in group decision making: You can lead a group to
information, but you can’t make it think. Proceedings of the Academy of Management,
283–287 (1993)

13. Brodbeck, F.C., Kerschreiter, R., Mojzisch, A., Schulz-Hardt, S.: Group decision making
under conditions of distributed knowledge: The information asymmetries model. Academy
of Management Review 32(2), 459–479 (2007)

14. Hinsz, V.B., Tindale, R.S., Vollrath, D.A.: The emerging conceptualization of groups as in-
formation processors. Psychological Bulletin 121(1), 43 (1997)

15. Stasser, G., Titus, W.: Pooling of unshared information in group decision making: Biased
information sampling during discussion. Journal of Personality and Social Psychology 48(6),
1467 (1985)

16. Tofan, D., Galster, M., Avgeriou, P., Schuitema, W.: Past and future of software architectural
decisions a systematic mapping study. Information and Software Technology 56(8), 850–872
(2014)

17. Al-Naeem, T., Gorton, I., Babar, M.A., Rabhi, F., Benatallah, B.: A quality-driven system-
atic approach for architecting distributed software applications. In: Proceedings of the 27th
International Conference on Software Engineering, pp. 244–253. ACM (2005)

18. Andrews, A., Mancebo, E., Runeson, P., France, R.: A framework for design tradeoffs. Soft-
ware Quality Journal 13(4), 377–405 (2005)

19. Phillips, B.C., Polen, S.M.: Add decision analysis to your cots selection process. Software
Technology Support Center Crosstalk (2002)

20. Lozano-Tello, A., Gómez-Pérez, A.: Baremo: how to choose the appropriate software com-
ponent using the analytic hierarchy process. In: Proceedings of the 14th International Con-
ference on Software Engineering and Knowledge Engineering, pp. 781–788. ACM (2002)

21. Moore, M., Kazman, R., Klein, M., Asundi, J.: Quantifying the value of architecture design
decisions: lessons from the field. In: Proceedings of the 25th International Conference on
Software Engineering, pp. 557–562. IEEE Computer Society (2003)

22. Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A quality-driven decision-support
method for identifying software architecture candidates. International Journal of Software
Engineering and Knowledge Engineering 13(05), 547–573 (2003)

23. Vijayalakshmi, S., Zayaraz, G., Vijayalakshmi, V.: Multicriteria decision analysis method for
evaluation of software architectures. International Journal of Computer Applications 1(25),
22–27 (2010)

24. Tofan, D., Galster, M., Avgeriou, P.: Capturing tacit architectural knowledge using the reper-
tory grid technique (nier track). In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 916–919. ACM (2011)

25. Wallin, P., Froberg, J., Axelsson, J.: Making decisions in integration of automotive software
and electronics: A method based on atam and ahp. In: Proceedings of the 4th International
Workshop on Software Engineering for Automotive Systems, p. 5. IEEE Computer Society
(2007)

26. Stoll, P., Wall, A., Norstrom, C.: Guiding architectural decisions with the influencing fac-
tors method. In: Seventh Working IEEE/IFIP Conference on Software Architecture, WICSA
2008, pp. 179–188. IEEE (2008)

32 V. Smrithi Rekha and H. Muccini

27. Gilson, F., Englebert, V.: Rationale, decisions and alternatives traceability for architecture
design. In: Proceedings of the 5th European Conference on Software Architecture, Compan-
ion Volume, p. 4. ACM (2011)

28. Orlic, B., Mak, R., David, I., Lukkien, J.: Concepts and diagram elements for architectural
knowledge management. In: Proceedings of the 5th European Conference on Software Ar-
chitecture, Companion Volume, p. 3. ACM (2011)

29. Wu, W., Kelly, T.: Managing architectural design decisions for safety-critical software sys-
tems. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214,
pp. 59–77. Springer, Heidelberg (2006)

30. Choi, H., Choi, Y., Yeom, K.: An integrated approach to quality achievement with architec-
tural design decisions. JSW 1(3), 40–49 (2006)

31. In, H., Kazman, R., Olson, D.: From requirements negotiation to software architectural deci-
sions. In: Proc. From Software Requ. to Architectures Workshop STRAW (2001)

32. Grunske, L.: Identifying good architectural design alternatives with multi-objective optimiza-
tion strategies. In: Proceedings of the 28th International Conference on Software Engineer-
ing, pp. 849–852. ACM (2006)

33. Gu, Q., Lago, P., van Vliet, H.: A template for soa design decision making in an educational
setting. In: 2010 36th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), pp. 175–182. IEEE (2010)

34. Zannier, C., Maurer, F.: A qualitative empirical evaluation of design decisions. ACM
SIGSOFT Software Engineering Notes 30(4), 1–7 (2005)

35. Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable architec-
tural decision models for enterprise application development. In: Overhage, S., Szyperski,
C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 15–32. Springer,
Heidelberg (2008)

36. Riebisch, M., Wohlfarth, S.: Introducing impact analysis for architectural decisions. In: 14th
Annual IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems, ECBS 2007, pp. 381–392. IEEE (2007)

37. Xu, B., Huang, Z., Wei, O.: Making architectural decisions based on requirements: Analysis
and combination of risk-based and quality attribute-based methods. In: 2010 7th Interna-
tional Conference on Ubiquitous Intelligence Computing and 7th International Conference
on Autonomic Trusted Computing (UIC/ATC), pp. 392–397 (2010)

38. Nakakawa, A., Bommel, P.: Requirements for collaborative decision making in enterprise
architecture. In: Proceedings of the 4th SIKS/BENAIS Conference on Enterprise Information
Systems, The Netherlands, Nijmegen (2009)

39. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali Babar, M.: A comparative study of ar-
chitecture knowledge management tools. Journal of Systems and Software 83(3), 352–370
(2010)

Modeling the Interactions between Decisions

within Software Architecture Knowledge

Mohamed Soliman and Matthias Riebisch

Universität Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{soliman,riebisch}@informatik.uni-hamburg.de

Abstract. Software architecture is developed as a result of a selection
process for software architectural solutions. The complexity, diversity
and evolution nature of architectural solutions’ interactions forces the
architect to make critical design decisions based only on his own experi-
ence. Even though, the same design problem has already been addressed
by another architect in a similar situation. In this paper, we are pre-
senting a model for reusable software architectural knowledge to support
the architect within the design process in understanding the relationship
between the different architectural solutions, and how they impact the
architectural design reasoning. In addition, the model acts as a base for
organizational software architectural knowledge sharing. Our contribu-
tion in this paper is classifying and modeling the solutions and decisions’
interactions, as well as how the design decision can be used as a reusable
element for sharing the architectural experience.

Keywords: Software architecture, design decision, architecture knowl-
edge, design reasoning.

1 Introduction

The software architect is responsible on taking the most important design deci-
sions within the software design process. These architectural decisions [1] must
be identified early in the project lifecycle due to their long-term impact on the
system quality, and their tenacious behavior, which makes them quite expensive
to change [2]. Even with their well-known impact, the architect is forced to take
design decisions based solely on his personal experience, due to the enormous
amount of possibilities for interacting architectural solutions1, that must be se-
lected in a limited project budget and schedule. Morever, the current state of the
art approaches for architectural knowledge and solutions lack the required sup-
port for analyzing the interactions between solutions. Within this situation, the
architect is restricted in discovering the right series of architectural solutions,
and analyzing their impact on the system quality. This leads to sub-optimal
decisions, which can significantly influence the system quality.

1 In this paper, we use the term ’architectural solution’ to refer to the different solu-
tions that the architects use, such as patterns, tactics, technologies and products.

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 33–40, 2014.
c© Springer International Publishing Switzerland 2014

34 M. Soliman and M. Riebisch

One of the main reasons that promotes this problem is the heterogeneous
nature of architectural solutions, such that it is hard to set a common handling
during design between the different solutions. In the past two decades, several
classes of architectural solutions were captured separatly in the current state of
the art (e.g. architectural styles [3], patterns [3,4], tactics [2], unit operations
and different technologies and products). Each class is concerned with solving
different types of design problems using different notions. In addition, each class
is described originally in a different way, such that its arduous to combine two
members from different classes together. Nevertheless, a combination of various
members is required to develop the system software architecture. Such a diversity
nature of software architectural solutions represents a challenge within the design
process, because each solution has its unique impact on the subsequent design
decisions as well as on the behavior of other solutions.

In addition to the above-mentioned problems, the interaction between the ar-
chitectural solutions and decisions are constantly evolving, through new design
ideas that emerge everyday from the mind of the designers. Thus, maintaining
an evolvable reusable architectural knowledge2 would support the organisation
to share the design experience and solutions between the different software archi-
tects. This objective is derived by the notion of characterizing the architecture
design process as a knowledge intensive process [5], such that losing this knowl-
edge, recollecting and transferring it again is an expensive process. This idea of
maintaining an architectural knowledge would improve the quality and produc-
tivity of the software architecture design process within the organization through
learning, verification and improvement of existing solutions.

In this paper, we are proposing a model for a reusable software architectural
knowledge to support the architect and the organisations in reasoning about
software architecture design, as well as maintaining and sharing architectural
knowledge. We concentrated our work on trying to understand and model the
impact of selecting an architectural solution on the subsequent architectural de-
cisions and the reasoning process, as well as providing the fundamental elements
for sharing the architectural design decisions among different projects. This pa-
per is organized as follows. First, related work to architectural knowledge and
solutions are presented and discussed. Then, our research steps are explained,
follwed by our result model which is explained with several examples. The paper
ends with a discussion, future work, and some concluding words.

2 Related Work

In the patterns community, pattern languages are proposed (e.g. [6]). However,
the relationships between patterns are modeled in a high level, without specify-
ing clearly how the patterns interact with each other. Harrison et al. [7] mod-
eled the relationships between architectural patterns and tactics. Their approach

2 we use the term ’architectural knowledge’ to refer to the reusable information that
supports the architect within the design process.

Modeling Decisions Interactions in Architecture Knowledge 35

is based on relating the solutions through their impact on the system compo-
nents. Such modeling supports the architect to describe the solutions within
the software architecture. However, with less guidance on how to take the de-
sign decisions. Since the paradigm shift of modeling the software architecture as
a set of design decisions [1], several models and tools [8] have been proposed.
The main target for the former suggested approaches is to document and share
the design decisions of a specific software system for the sake of preventing the
software architecture erosion phenomena. The recent work by Zimmerman et.
al. [9] and its extension [10] distinguish between project specific design decision
outcomes and its reusable part of design issues and solutions. Zimmermann et
al. formally described the relationships between the design issues and the ar-
chitectural solutions, as a way to support the architect in the decision making
process. Neverthless, the distinct behaviors of the different types of solutions are
not explicitly described. To the best of our knowledge, there are no more recent
work which address the mentioned problem. Therefore, our approach in this pa-
per is an extension to the model proposed by Zimmerman et al. to address the
aforementioned points.

3 Research Method and Steps

To achieve our goal, we followed an inductive qualitative content analysis process
[11]. First, we analyzed the influence of selecting an architectural solution on the
design reasoning independent from other solutions. Then, we experimented with
the relationships between the different solutions. In order to implement these
steps, we selected samples from the architectural solutions. Two main criteria
were considered in the selection process: A) Diversity: The chosen solutions
belong to different classes, B) Popularity and success in the industry. The chosen
architectural solutions were the Layer architectural style, the MVC architectural
pattern, the architectural tactics by Bass et al. [2], basic unit operations and the
GoF design patterns. We performed our analysis through the design realization
steps, descriptions and examples provided in the solutions’ sources, as well as
case studies, which used the mentioned architectural solutions.

4 Reusable Software Architectural Knowledge Modeling

Fig. 1 shows our view for a high level contextual diagram for the reusable ar-
chitectural knowledge. The diagram shows how an architectural knowledge is
used within an organisation. First, the architect - influenced by the stakehold-
ers’ concerns and constrains - utilize the data and the reasoning logic within
the architectural knowledge in order to support him taking the design decisions
of the system. This process is followed by or intervened with capturing and
documenting the system design decisions, which would act later as a source for
enriching the architectural knowledge with new design solutions or logic in a sep-
arate harvesting process. Our main goal in this paper is to model the reusable
architectural knowledge in relation to other contextual entities.

36 M. Soliman and M. Riebisch

Reusable Architectural Knowledge

Architectural
Solutions

Design
Issues

Reusable Design
Decision

Decision
Factors

Existing Projects’ Artifacts

Project Design
Decisions

System Quality
Evaluation

Harvesting Designing Designing

Stakeholders

Software Architect

ders
Concerns

Softwar

Constrains

Organization

Solutions
g

Decision
e Architect

Design Decisions Capturing and Recording

Fig. 1. Reusable Architectural Knowledge Context Diagram

We describe our model into two sections. The first section concentrates on the
interaction between the architectural solutions and their influence on the design
reasoning process, while the second section shows how the design decisions can
act as a reusable component, in connection with existing software systems.

4.1 Solutions’ Interactions within a Reusable Architectural
Knowledge

Fig. 2 shows the proposed model. In the core of this model is the Design Issue
concept, which represents the architectural design problems 3 that the architects
need to solve, and associated to each design issue, there is a set of alternative
architectural solutions which address this design problem [9]. Each architectural
solution has a different impact on the quality attribute of the system, as well as
a different impact on the resulting structure of the system components. Based
on our described analysis process, we classified the architectural solutions into
two main types:

1. Triggering Architectural Solutions: They are the type of solutions that
have the ability to trigger new architectural design issues, such that in order
to complete the architectural design of these solutions, new architectural
design issues must be addressed. In this group belong architectural styles
and architectural patterns.

2. Elementary Architectural Solutions: These are architectural solutions
that do not trigger new architectural design issues. They are either as archi-
tectural unit operations (e.g. Component Decomposition) or solutions rec-
ommendations for a subsequent detailed design (e.g. Design Patterns [4]).

Architectural tactics [2] have a different nature as other solutions, such that it
is hard to classify them all in a single group. Therefore, we divided the tactics
among the two groups, into elementary and triggering tactics. Elementary tac-
tics are tactics that do not triger new architectural design issues. For example,
to improve the performance of a well-known process (e.g. Products sorting), se-
lecting or changing the algorithm usually would not produce new architectural

3 We diffrentiate between an architectural design issue and other detailed design or
implementation issues, based on the software architecture definition of Bass [2].

Modeling Decisions Interactions in Architecture Knowledge 37

-Importance
-IsRootIssue
-IsSolutionSpecific
-IsCommonIssue

DesignIssue

**
Directly related issues

Constrain

DesignConcept

*

*Influence the Issue

ArchitecturalPattern/Style

-QualitativeEvaluation
-QuantitativeEvaluation

ReusableDecisionEvaluation

* *

-QualityImpact
-Preconditions
-Postconditions

ArchitecturalSolution
1* Issue alternatives

ReusableDesignDecision

1

1

Selected Solution 1

1

Issue

ArchitectureDesignChange

1* Components Change

*

*
Trigger

DesignPattern

ElementaryArchitecturalSolution TriggeringArchitecturalSolution

1 0..*

Existing Decisions in Projects (Connection to AK contextual element)

ElementaryTactic TriggeringTacticUnitOperation

1

*

Solutions encapsulated

DecisionFactor

Functional Requirement

 Reusable Architectural Design Decisions

Architectural Solutions‘ Interactions

ProjectDesignDecision

Quality Attribute

Fig. 2. Reusable Architectural Knowledge Domain Model

design issues, however, it can produce algorithmic or implementation issues. On
the other hand, triggering tactics require more architectural design issues to be
addressed in order to realize the design of the tactic. For example, improving the
performance through caching, this would require to answer other design ques-
tions such as: which and where to cach the data? and how to synchronize the
cached data?

Architectural design issues vary in their importance, types, scope and position
within the reasoning process. Zimmerman et. al classified design issues based on
their abstraction level. In order to support the architect in understanding when
design issues occur within the reasoning process. We propose a classification for
design issues, based on their occurance within the design reasoning process and
their relationship to the architectural solutions.

1. Root Design Issues: They are design issues which are stimulated indepen-
dently from previously selected architectural solutions. Enterprise or princi-
pal high level design issues (e.g. deciding the high level architectural style of
the system or the main implementation technology) are popular examples
that belong to this group.

2. Solutions-Triggered Design Issues: They are design issues that must
be triggered based on a stimulation from a previously selected architectural
solution. We further classified these issues based on their relationship to the
architectural solutions into the following groups:
(a) Solution-Specific Design Issues: They can only be triggered as a

result of selecting a specific solution. They can’t be triggered by any
other solutions.

(b) Joined Design Issues: A common design issue which can be triggered
by different solutions.

38 M. Soliman and M. Riebisch

(c) Integration Design Issues: This is a type of design issue which is
conditionally triggered as a result of selecting two or more architectural
solutions. It represents the integration design problem between the dif-
ferent architectural solutions.

Fig. 3 shows an example of a subset of issues and solutions that are triggered
as a result of selecting the Layer architectural style and the MVC architectural
pattern. Both solutions were triggered as a result of two root design issues,
independently from any previous solution selected. However, they are influenced
by several decision factors (e.g. requirements, team structure, . . .). In order to
realize the design of both triggering solutions, several design issues have to be
addressed. For example, to define the Layer structure, an abstraction paradigm
(e.g. distance from hardware or complexity) must be defined, this decision can
depend on several factors (e.g. system domain). Similarly, in order to design the
relationship between the Model and Views/Controllers within the MVC pattern,
a ’change propagation mechanism’ (e.g. using a Publish-Subscribe pattern) must
be selected. Both of these issues are examples of solution specific design issues.
On the other hand, designing the domain components of the system is required
to be addressed for both solutions, however, for two different purposes. Firstly,
to define how objects are communicated between layers, and secondly to provide
a separation of concerns between the Model and View components. Finally, the
introduction of both the Layer and MVC solutions together triggers an issue,
whose purpose is the integration of both solutions components.

4.2 Reusable Architectural Design Decisions

In contradiction to other models, which consider an architectural design decision
only as a project-specific entity, we argue that design decisions taken within
different projects constitute a part of a reusable software architecture knowledge,
such that a design decision consists of three main elements; A) The design issue
addressed by this decision, B) The selected architectural solution, and C) The
decison factors which influence the selection of this architectural solution to the
design issue. The combination of the three elements acts as a reusable tuple
which can be used among other projects.

The quality and success of design decisions varies from one project to another,
such that a design decision concerned with a certain design issue and influenced
by the same factors may be supported by different architectural solutions with
different qualities. Therefore, a quality measurement factor should be associated
with each of the reusable architectural design decisions. This quality measure-
ment factor is originally obtained from the actual system quality or an evaluation
for the architecture of the harvested projects. Fig. 2 shows the connection of the
three tuples that constitutes a reusable architectural decision within the pro-
posed model, as well as how the quality evaluation values are associated to the
decisions and related to it’s original sources in referenced projects.

Modeling Decisions Interactions in Architecture Knowledge 39

Root Design Issue
Root Design Issue

Layer
Style
Layer

Selected Solution

MVC
Pattern
MVC

Selected Solution

 Define Abstraction
Paradigm and Layers

Solution Specific Design Issue

Trigger

 Decide MVC Change Propagation Method

 Application
Decomposition User Interface

Decomposition

Solution Specific Design Issue

Trigger

Which layer would the MVC
Model Component belongs

Design Domain
Components

D

Trigger

Depends on

Trig

Depends on

Joined Design Issues

n

ues
Trigger

Integration Design Issue

Conditional Trigger Conditional Trigger

Triggering
Solution

Triggering
Solution

Publish-Sub
Pattern

S

Selected Solution
Elementary

Solution

Fig. 3. An example showing the interaction of objects based on the proposed architec-
tural knowledge domain model

5 Discussion and Future Work

In our analysis work, we selected solutions, which are well known and more used
within the software development industry, specificly within the information sys-
tems domain. In addition, we considered various architectural solutions from
different groups, in order to discover the different relationships and their im-
pact on the design process. However, based just on this research, our results are
not yet generalized to all types of architectural solutions in different domains.
Throughout our analysis of solutions, we assumed that the design issues men-
tioned in their sources represent the expected solutions decisions. Neverthless, it
is possible that other design issues can be generated in different other contexts,
providing more relations.

The proposed model is a first step in our research plan, which seeks promoting
ideas and solutions for the purpose of architectural knowledge sharing within
organizations and architectural communities. Our plan involves several research
steps: A) Developing a process to support the architect in utilizing the model,
and how it relates with the existing design processes. B) Propose an approach for
the harvesting process, to show how the project specific decisions can contribute
to the architecture knowledge. C) Providing a tool support for the architect in
using the model within the design process. We are working to verify our model in
an industrial environment, through experimenting the model to support software
architects in driving architectural designs.

40 M. Soliman and M. Riebisch

6 Conclusion

The current state of the art describes the architectural solutions based on their
impact on the system components, without addressing their influence on the
decision making process. On the other hand, studies which are concerned with
modeling architectural design decisions tend to describe decisions as project
specific elements. We argue that using the design decision as a reusable element
for modeling the interaction between the solutions, as well as for sharing the
architecture knowledge, would support the architect within the design process.

In this paper, we made our first step towards our research objective. Through
proposing a conceptual model for a reusable architectural knowledge. The model
explained our classification of architectural solutions and design issues, as well
as their interrelationships. In addition, it showed how an architectural design
decision can be part of the reusable architectural knowledge, and how it would
interact with other entities in its context. The model can assist the architects in
selecting the right software architectural solutions path, and therefore, improving
the quality of the produced software architecture.

References

1. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions.
In: 5th Working Conf. on Software Architecture, pp. 109–120 (2005)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, 1st edn. John Wiley &
Sons (July 1996)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Softwaresystemen. Addison-Wesley Professional (1994)

5. Lago, P., Avgeriou, P., Capilla, R., Kruchten, P.: Wishes and boundaries for a
software architecture knowledge community. In: WICSA. IEEE Computer Society,
271–274 (2008)

6. Avgeriou, P., Zdun, U.: Architectural patterns revisited - a pattern language. In:
Longshaw, A., Zdun, U., eds.: EuroPLoP, UVK - Universitaetsverlag Konstanz,
pp. 431–470 (2005)

7. Harrison, N.B., Avgeriou, P.: How do architecture patterns and tactics interact? a
model and annotation. Journal of Systems and Software 83(10), 1735–1758 (2010)

8. Shahin, M., Liang, P., Khayyambashi, M.R.: Architectural design decision: Existing
models and tools. In: WICSA/ECSA. IEEE, pp. 293–296 (2009)

9. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

10. Capilla, R., Zimmermann, O., Zdun, U., Avgeriou, P., Küster, J.M.: An enhanced
architectural knowledge metamodel linking architectural design decisions to other
artifacts in the software engineering lifecycle. In: Crnkovic, I., Gruhn, V., Book,
M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 303–318. Springer, Heidelberg (2011)

11. Elo, S., Kyngas, H.: The qualitative content analysis process. Journal of Advanced
Nursing 62(1)(2), 107–115 (2007)

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 41–49, 2014.
© Springer International Publishing Switzerland 2014

Semi-automated Design Guidance Enhancer (SADGE):
A Framework for Architectural Guidance Development

Mohsen Anvaari1 and Olaf Zimmermann2

1 Norwegian University of Science and Technology, Trondheim, Norway
mohsena@idi.ntnu.no

2 University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
ozimmerm@hsr.ch

Abstract. Architectural decision making is a non-trivial task for architects in
the software development projects. Researchers have developed several con-
cepts, methods and tools to assist practitioners in their decision making and de-
cision capturing activities. One of these approaches is a decision identification
technique that creates architectural guidance models from decisions made in
previous projects and from knowledge about a domain found in the literature.
To apply this technique, significant manual knowledge engineering effort has to
be invested initially. In this paper, we introduce a framework that automatically
extracts architectural knowledge entities from architectural related documents
by applying natural language processing. A knowledge engineer then manually
post processes and fine-tunes the extracted knowledge entities. We applied
evaluation techniques from the information retrieval community to measure the
sensitivity and accuracy of the framework. Our results show that the automatic
approach has the highest recall and shortest processing time while the semi-
automatic approach has the highest precision.

Keywords: Architectural decision making, design guidance, information
extraction, natural language processing, automatic annotation.

1 Introduction

Architectural decision making is a non-trivial task for architects in software develop-
ment projects. Since 2000, researchers have developed several concepts, methods,
frameworks and tools to assist practitioners in their decision making and decision
capturing procedures [2][6][11]. However, a recent study shows practitioners still
have difficulties to make and manage decisions [13].

One of the difficulties the practitioners have in making decisions is recognizing
and highlighting architectural issues in a specific project to make decisions about
them (we call these issues architectural issues or decisions required). Our previous
study shows that architects mostly rely on their intuitions to recognize architectural
issues [1]. One of the promising approaches to help practitioners in their decision
making is a decision identification technique that enhances architectural guidance
(decisions required) from decisions made in previous projects and from knowledge

42 M. Anvaari and O. Zimmermann

about a domain that can be found in the literature. Through decision identification
rules, this approach tasks a knowledge engineer to study pattern languages, genre- and
style-specific extensions to software engineering methods, technical papers, industrial
standards and project documentation to identify architectural issues [15]. To do so,
the technique advises knowledge engineers to read the natural language texts of the
documents and to annotate the texts manually. The intention is to extract architectural
knowledge entities (i.e., issues, alternatives, outcomes1) from documents and to de-
velop an architectural guidance model from the extracted information. Such architec-
tural guidance model is a reusable asset containing knowledge about architectural
decisions recurring in a particular domain [16]. Several case studies have shown that
the developed architectural guidance is promising in assisting the practitioners in their
decision making, e.g. in SOA design and cloud computing [15]. However, this deci-
sion identification approach is manual; significant knowledge engineering effort that
has to be invested initially before benefits can be realized.

In this paper, we introduce a framework called Semi Automated Design Guidance
Enhancer (SADGE) that automatically extracts architectural issues (decisions re-
quired) from architecture documents by applying natural language processing (NLP)
first (we refer to this automated step as automatic approach). In a second step, a
knowledge engineer manually post processes and fine-tunes the extracted knowledge
entities to increase the accuracy of the framework (we refer to the first automated and
the second manual step together as semi-automatic approach). We validated and
evaluated the SADGE framework in an experiment with students. The intention of
this evaluation was to compare the effort, sensitivity and accuracy of architectural
entities extraction process between manual, automatic and semi-automatic ap-
proaches. More specifically, by conducting the experiment we were going to find out:

• Research Question (RQ) 1: Which approach does have the shortest processing time
for extracting the architectural entities?

• RQ 2: Which approach does have the highest sensitivity in extracting the architec-
tural entities?

• RQ 3: Which approach does have the highest accuracy in extracting the architectural
entities?
The contribution of this paper is twofold: 1) It applies NLP-based knowledge extrac-

tion to the architectural knowledge area and proposes a novel framework architecture
and process model for doing so. 2) It demonstrates the efficiency, sensitivity and accu-
racy of this framework in enhancing architectural guidance from architectural related
documents.

The rest of the paper is organized as follows. In the Section 2 we introduce the
framework by describing how we have developed the framework and how users
should operate and maintain the framework. Section 3 presents the design of the ex-
periment and analyses and discusses the result of the experiment. Section 4 describes
the related work in the software architecture domain. Finally, Section 5 concludes the
paper and outlines future work.

1 Architectural issue represents any design concern or problem that a decision should be made

about; alternative presents a solution to the problem and outcome is the chosen solution
among different alternatives [14].

 Semi-automated Design Guidance Enhancer (SADGE) 43

2 SADGE – Framework for Semi-Automatic Architectural
Knowledge Extraction

In this section, we explain how we developed the framework and how the framework
operates.

2.1 SADGE Framework Development

SADGE has to be set up first (by a researcher) before practitioners in the projects can
use it. As we mentioned earlier, the framework applies natural language processing
(NLP) to extract architectural knowledge entities from a document. There are two
main approaches in NLP to do so, machine learning approach and rule-based ap-
proach [5]. We tried both approaches, but due to the lack of enough training data, the
machine learning approach did not work well; therefore in the current version of the
framework we only use the rule-based approach. The stages of framework develop-
ment will be described in the following subsections.

D1. Initializing the annotation rule. For developing the annotation rules we
started with the simplest rule that an expert in the software architecture intuitively
applies to manually annotate a sentence: If a sentence contains at least one of the
terms from catalog of terms (a list of predefined keywords) annotate it as an architec-
tural issue. For example, an architect would annotate the sentence “determine your
validation strategy” in a document as an architectural issue (decision required) be-
cause of keywords “determine” and “strategy”. Therefore, to apply the rule, the key-
words (i.e., the catalog of terms) should be developed as well.

D2. Initializing the catalog of terms. To develop the catalog, we first interviewed
an expert in the software architecture domain and identified terms that the expert con-
siders as indicator to annotate a sentence as an architectural issue. When the first
versions of the rule and the catalog of terms became ready, we applied them on some
sample texts. We started by automatically annotating one document. To evaluate
the result, we compared the automatic annotated entities against the entities that had
been annotated manually by the expert. The evaluator presents the precision, recall,
f-measure2 and also shows those entities that have positively or negatively annotated.

D3. Evolving the annotation rule. When we applied the first version of the rule, the
average recall of automatic annotation was high but the precision was very low. Hence,
we decided to change the rule to reduce the amount of negatively annotated sentences
and increase the precision. We divided the catalog of terms into two catalogs: high pri-
ority terms and low priority terms. Then the new rule is presented in Fig. 1.

This rule resulted in a higher f-measure, so we replaced the first rule with the
newer version. To decide whether a term is a low priority term or high priority term,
we put the term in either category to see which one results to a higher f-measure.

D4. Evolving the catalog of terms. By looking at the sentences that should be an-
notated (according to the manually annotated text) but had not been annotated by the
automated annotator, we found new terms to add to the catalog of terms. This resulted

2 Precision, Recall and F-measure are the measures used in the information retrieval domain to

measure how well an information retrieval system retrieves the relevant entities requested by
a user. See [12] for definitions.

44 M. Anvaari and O. Zimmermann

Fig. 1. The rule for annotating “architectural issues”

to higher f-measure. We added other sample texts one by one and did the same proce-
dure for each text to develop the catalog of terms further. We finished the iterative
procedure when the improvement of f-measure was not significant anymore. In total,
we annotated seven documents that contained architecture related text. We selected
the sample texts from various types of documents to make them representative in the
software architecture domain. The texts were two industrial standards for software
integration, three software design guidelines and two academic papers.

D5. Refining the catalog of terms. There is a possibility that some of the terms
have positive impact on annotating one document whereas have negative effect on
annotating some other documents. So in this stage of the framework development we
decided to measure the impact of each of the terms on the average f-measure of all of
sample documents. To do so, we removed each term from the catalog of terms and
calculate the f-measure and then put the term back to check how the presence of a
term affects the average f-measure. Those terms that their presence had negative ef-
fect on the average of f-measure were removed from the catalog of terms perma-
nently. We call this stage of the development sensitivity test. The final version of
catalog of terms after conducting the sensitivity test is presented in Fig. 2. We should
mention that we use stemming for applying the annotation rule. Stemming is the proc-
ess of reducing a word to its root. Therefore the terms in Fig. 2 are the roots of the
terms and in the case another form of the word appears in a sentence the automated
annotator considers it as an instance of the term.

Fig. 2. Catalog of terms for annotating “architectural issues”

When both annotation rules and catalog of terms are developed, the framework is
ready to be used.

2.2 SADGE Framework Operation and Maintenance

The steps of framework operation and maintenance are described as follows. Note
that in sections 1 and 3 by automatic approach we mean step O2 of the framework
while O2 and O3 together make the semi-automatic part of the framework.

if
(a sentence contains at least one of the terms

 from the catalog of high priority terms)

 annotate it as an architectural issue
or

(contains at least two terms
 from the catalog of low priority terms)

High Priority Terms
agree on, choose

Low Priority Terms
approach, articulate, class, component, construct, concern, define, design, determine, different

employ, establish, evaluate, exchange, facilitate, framework, investigate, limitation, make
philosophy, principle, profile, provide, protocol, recommend, refactor, require, schema

select, service, several, strategy, support, topology, transaction management, type, various

 Semi-automated Design Guidance Enhancer (SADGE) 45

O1. Preparing documents for annotation. The input of the framework comprises
text files that can be either project documents or domain literature. The knowledge
engineer edits the text files in a way that the file doesn’t include non-text objects (for
example images) or non-relevant texts (cover page, table of contents, etc.). Then (s)he
converts the text files to the types that automated annotator accepts.

O2. Automatically annotate the documents. The knowledge engineer loads the
annotation rules, the catalog of terms, and the batch of text files to the automated
annotator. The automated annotator applies the rules and annotate the architectural
issues in the text files. The output of this step is a list of sentences that automated
annotator suggests as architectural issues. Besides, the knowledge engineer also re-
ceives a list of sentences that automated annotator doesn’t consider as architectural
issues.

O3. Manually fine-tune the results. The knowledge engineer in this stage looks
through the list of tool suggestions and reject the sentences that (s)he doesn’t consider
as architectural entities.

O4. Generate the design guide out of annotated text. Now that the annotated
sentences from all of the text files are finalized, guidance generator merges them and
produce design guide for a specific project. It includes all of the potential issues (deci-
sions required) in the project. The knowledge engineer can shorten the sentences,
classify issues into sub-projects and add alternatives (including pros and cons for each
alternative) to each issue. (S)he can also remove the redundant issues.

M1. Suggest new terms for catalog of terms. In step O3, the knowledge engineer
may find some terms that would be an indicator for annotating architectural issues. In
that case (s)he can suggest them to catalog enhancer.

M2. Add new terms to the catalog of terms: The catalog enhancer conducts the
sensitivity test for the suggested term and if the average f-measure is positive, the
term will be added to the catalog of terms. So the framework evolves during projects.

3 Framework Evaluation

The main purpose of developing SADGE is to reduce the efforts that manual approach
of decision identification technique demands. However, the accuracy and sensitivity of
the framework should not be too lower than manual approach; otherwise the frame-
work will not be effective. Therefore these three quality attributes of the framework
should be evaluated: processing time (effort), sensitivity and accuracy. The metrics we
use for evaluating the effort is time and for evaluating the other two attributes we use
the classical metrics in information retrieval domain, recall and precision. In the cur-
rent stage of the research, we preliminary evaluate the framework by conducting an
experiment with students. In the following sections, we first describe the design of the
experiment, then we present the results of the experiment and in the discussion section
we interpret and discuss the results and describe the potential threats to validity.

3.1 Evaluation Design (Setup)

Participants: We asked students of a bachelor’s program in information technology to
participate the experiment. They are familiar with the software architecture. However,

46 M. Anvaari and O. Zimmermann

they were not familiar with the concept of architectural knowledge (including architec-
tural issues). 19 students (randomly selected) participated in the experiment. We divided
them into two groups of ten and nine students. Before the experiment, an introduction
about the task and the concept of architectural issue were presented to the students.

Stages: In the first stage, students were supposed to read a text carefully and annotate
the sentences they think are architectural issues. In the second stage, the list of auto-
matically annotated sentences from the text given to group 1 in the first stage was given
to the students of group 2 and vice versa to avoid the testing effects. They were asked to
reject the sentences they disagreed with automated annotator to fine-tune the results.

Material: In the first stage of the experiment each group received two pages of a
text from a book chapter on web application design guidance. The texts of two groups
are not identical. The book chapter is one of the documents we had used to evaluate
the automated annotator (automatic part of the framework). The reason we chose this
document among all of the tested documents was that this document had the smallest
deviation from the mean of precision and recall of annotating all of the documents
and therefore can be considered as a representative of the tested documents.

3.2 Evaluation Results

Table 1 summarizes the results of the experiment. In the manual approach, the stu-
dents spent nine minutes on average to annotate the architectural issues. The auto-
mated annotator ran the annotation procedure in two sec. In the semi-automated ap-
proach the students spent 3 minutes on average to reject those sentences they didn’t
agree is an architectural issue (we neglect the two second that automated annotator
ran the procedure). To calculate the recall and precision we needed reference texts.
Two experts in the software architecture domain annotated the two texts and the anno-
tated texts were used as the reference text. The recall and precision for all three ap-
proaches are presented in Table 1. In the next section, we analyse the results and dis-
cuss about their validity.

Table 1. Results of experiment

Approach Time
(min)

Recall
(%)

Precision
(%)

Manual 9 38 25
Automatic 0.03 86 57

Semi-automatic 3 55 62

3.3 Discussion

As Table 1 shows, automated annotator has the highest effort reduction (lowest anno-
tation time) and the highest recall while semi-automatic approach has the highest
precision. The effort reduction results are in correspondence to our expectation. Re-
garding the precision and recall, in the real projects we expect that when those practi-
tioners who are experts in the software architecture domain annotate a text manually,
both precision and recall should be near to 100 percent, because the practitioners’
knowledge are almost the same as our reference experts’ knowledge. Whereas here

 Semi-automated Design Guidance Enhancer (SADGE) 47

the results show that the recall and precision of student annotations are very low (38
and 25 respectively). The results for automated annotator are relatively high (86 and
57) and these show that if the people in charge of enhancing architectural guidance
are not expert enough, automated approach will perform more accurate and more
sensitive by spending much less time. We expected that the semi-automatic approach
has the highest precision rate that is in line with the experiment results; but we ex-
pected higher precision rate.

The other result that doesn’t meet our expectation is the recall rate of semi-
automatic approach. Although it cannot be higher than the automatic approach (be-
cause some of the positive results have been already neglected by the automated an-
notator) we expected that the recall would not be lower than the automatic approach.
But the results show that some of the positive results are rejected by the participants.
This might be caused by the expertise level of the participants. Our expectation is that
if the participants were expert enough in the domain, the semi-automatic approach
would have almost the same recall rate as the automatic approach and much higher
precision rate than the automatic approach. However, this hypothesis needs to be
investigated with subject matter experts.

Threats to validity: The potential threat to the internal validity of the evaluation is
the testing effect [4]. To avoid the issue, as we explained we divided the participants
into two groups and swapped the two documents between the groups. As a result the
group 1 in the second stage examined the sentences that group 2 had in the first stage
and vice versa.

The potential threat to the external validity of the research is the selection of the
material for the experiment because one document cannot be enough for generalizing
the evaluation of the framework. We were aware of this issue but to evaluate the
framework by applying it on diverse documents we would need to ask students to stay
much longer for the experiment that was not feasible. Also as we explained before
this document has the smallest deviation from the mean of accuracy and sensitivity of
annotating several documents that we tested the automated annotator on.

4 Related Work

Using NLP for knowledge extraction is not novel in software engineering. For in-
stance several researchers have developed tools and methods for generating object
oriented models from natural language texts by applying NLP [3][9][10]. However,
most of these methods and tools are applied on specific software documents such as
design documents and requirements specifications while more general or informal
texts such as meeting minutes, wikis and industrial standards are not considered. Be-
sides, the majority of work has been done to extract the object oriented data from the
documents whereas extraction of architectural knowledge (specifically architectural
decisions) is not mainly in focus. Even though, there is still few work focusing on
architectural knowledge extraction. Figueiredo et al. have developed a rule-based
NLP approach to search architectural knowledge entities in documents [7]. TREx is
another approach that annotates architectural related documents by applying NLP to
retrieve architectural knowledge entities (including issues, drivers, rationale) [8].
Although the development and operation stages of both approaches are very similar to

48 M. Anvaari and O. Zimmermann

SADGE, the catalog of terms and annotation rules are not presented in the papers nor
publicly accessible. Therefore, it is not possible to replicate the approaches and as a
result the comparison is not feasible. So the catalog of terms and annotation rules
presented in this paper are the contribution of our research to extracting architectural
issues from documents and generating architectural guidance.

5 Conclusion and Future Work

In this paper we introduced Semi-Automated Design Guidance Enhancer (SADGE), a
framework for obtaining design guidance from architectural knowledge in project
documents and domain literature. SADGE applies Natural Language Processing
(NLP) to the architectural knowledge domain to reduce the efforts of manually creat-
ing architectural guidance from architecture documentation. More specifically,
SADGE automatically annotates (highlight) the architectural issues to reduce the
knowledge engineering effort that has to be invested initially to identify architectural
knowledge from the documents.

We presented the five development stages of SADGE, D1 initializing the annota-
tion rule, D2 initializing the catalog of terms, D3 evolving the annotation rule, D4
evolving the catalog of terms, and D5 refining the catalog of terms. This makes the
design of the framework replicable for researchers.

The four operation steps of the SADGE are preparing documents for annotation (O1),
automatically annotate the documents (O2), manually fine-tune the results (O3), generate
the design guide out of annotated text (O4). The two maintenance steps of the framework
are (M1) suggest new terms for catalog of terms and (M2) add new terms to the catalog of
terms. This makes the application of the framework understandable for practitioners.

The results of the framework evaluation are: the automatic approach has the shortest
processing time (research question RQ1) and the highest sensitivity (RQ2) while the
semi-automatic approach has the highest accuracy (RQ3). In summary, using NLP in
the architectural knowledge domain reduces the amount of manual decision identifica-
tion work and has the potential to improve existing decision identification techniques.

Practitioners can use SADGE in the first stages of their architectural decision mak-
ing process to rapidly identify architectural issues (decisions required) that are relevant
to their project. This helps them accelerate the orientation in the problem-solution
space and, consequently, to make architectural decisions in a more confident way.

In the next stage of our research, we plan to improve the sensitivity and accuracy
of the automated annotator by applying machine learning algorithms (so far, we were
missing adequate training data, but we expect to receive more architectural related
documents from real projects in the industry). Furthermore, we plan to evaluate the
framework by conducting case studies that involve expert architects and also include
more real-world project documents.

References

1. Anvaari, M., Conradi, R., Jaccheri, L.: Architectural Decision-Making in Enterprises:
Preliminary Findings from an Exploratory Study in Norwegian Electricity Industry. In:
Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 162–175. Springer, Heidelberg (2013)

 Semi-automated Design Guidance Enhancer (SADGE) 49

2. Babar, M.A., Dingsøyr, T., Lago, P., van Vliet, H.: Software Architecture Knowledge
Management. Springer (2009)

3. Bajwa, I.S., Samad, A., Mumtaz, S.: Object Oriented Software Modeling Using NLP
Based Knowledge Extraction. European Journal of Scientific Research 35(01), 22–33
(2009)

4. Campbell, D.T., Stanley, J.C.: Experimental and Quasi-experimental Designs for Research.
Houghton Mifflin, Boston (1963)

5. Crowston, K., Liu, X., Allen, E.E.: Machine Learning and Rule-based Automated Coding
of Qualitative Data. Proceedings of the American Society for Information Science and
Technology 47(1), 1–2 (2010)

6. Falessi, D., Cantone, C., Kazman, R., Kruchten, P.: Decision-Making Techniques for
Software Architecture Design: A Comparative Survey. ACM Computing Surveys 43(4)
(2011)

7. Figueiredo, A.M., dos Reis, J.C., Rodrigues, M.: Improving Access to Software Architec-
ture Knowledge: An Ontology-based Search Approach. International Journal Multimedia
and Image Processing (IJMIP) 2(1/2) (2012)

8. López, C., Codocedo, V., Astudillo, H., Cysneiros, L.M.: Bridging the Gap between
Software Architecture Rationale Formalisms and Actual Architecture Documents: An
Ontology-Driven Approach. Science of Computer Programming 77(1), 66–80 (2012)

9. Perez-Gonzalez, H.G.: Automatically Generating Object Models from Natural Language
Analysis. In: 17th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 86–87. ACM, New York (2002)

10. Soeken, M., Wille, R., Drechsler, R.: Assisted Behavior Driven Development Using Natu-
ral Language Processing. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304,
pp. 269–287. Springer, Heidelberg (2012)

11. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A.: A Comparative Study of
Architecture Knowledge Management Tools. Journal of Systems and Software 83(3),
352–370 (2010)

12. Ting, K.M.: Precision and Recall, Encyclopedia of Machine Learning. Springer, US (2010)
13. Tofan, D., Galster, M., Avgeriou, P.: Difficulty of Architectural Decisions–A Survey with

Professional Architects. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 192–199.
Springer, Heidelberg (2013)

14. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing Architec-
tural Decision Models with Dependency Relations, Integrity Constraints, and Production
Rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

15. Zimmermann, O.: An Architectural Decision Modeling Framework for Service-Oriented
Architecture Design. PhD Dissertation, University of Stuttgart (2009)

16. Zimmermann, O.: Architectural Decisions as Reusable Design Assets. IEEE Software 28(1),
64–69 (2011)

Combining Architectural Design Decisions

and Legacy System Evolution

Sebastian Gerdes1, Steffen Lehnert2, and Matthias Riebisch1

1 Universität Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{gerdes,riebisch}@informatik.uni-hamburg.de
2 Technische Universität Ilmenau

Ehrenbergstraße 29, 98693 Ilmenau, Germany
steffen.lehnert@tu-ilmenau.de

Abstract. Software development is characterized by ongoing design de-
cisions that must take into account numerous requirements, goals, and
constraints. When changing long-living and legacy systems, former deci-
sions have to be considered. In order to minimize the risk of taking wrong
or misleading decisions an explicit representation of the relevant aspects
is crucial. Architectural decision modeling has proven to be an effective
means to represent these aspects, the required knowledge, and properties
of a potential solution. However, existing approaches do not sufficiently
cover the ongoing evolution of decisions and artifacts. They fail in par-
ticular to represent relations to existing systems on a fine-grained level
to allow for impact analysis and a later comprehension of decisions. Fur-
thermore, the effort for capturing and modeling of design decisions has to
be reduced. In our paper we integrate existing approaches for software
architectural design decision making. We extend them by fine-grained
traceability to elements of existing systems and explicit means for mod-
eling the evolution of decisions. We show how relevant decisions can easily
be identified and developers are supported in decision making.

Keywords: Software architecture, design decision, traceability, evolu-
tion, reengineering, legacy software.

1 Introduction

The majority of today’s software engineering efforts are spent on continuous
and evolutionary development of existing systems [1]. Hence, development faces
the ongoing integration, maintenance, and reengineering of existing (legacy) sys-
tems. An increasing amount of software is also composed of pre-existing building
blocks, such as COTS-components, which therefore represent another type of ex-
isting items that have to be considered during design decision making [2].

As software architectures cover many important design decisions, evolutionary
development of software systems demands for traceability between decisions and
the resulting artifacts to comprehend who made which decision when and why [3].

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 50–57, 2014.
c© Springer International Publishing Switzerland 2014

Combining Architectural Design Decisions and Legacy System Evolution 51

Additional traceability between (legacy) decisions is required to enable compre-
hensive change impact analysis in response to changes. However, this support is
not yet sufficiently provided by current research on the documentation and uti-
lization of design decisions. Therefore, our goals are to:

1. Support the evolution of design decisions.
2. Document the origins and potential impacts of design decisions.
3. Establish fine-grained couplings between design decisions, requirements, con-

straints, and elements of existing systems.
4. Reduce the effort for the modeling of dependencies.

To accomplish these goals, we consolidate the decision models as proposed
by Zimmermann [4] and Capilla et al. [5]. We augment the resulting decision
model with means for fine-grained traceability towards software artifacts which
are either impacted by the design decisions or contribute towards them, to help
developers understand the implications of their changes. As our main contri-
bution we illustrate how the evolution of every aspect of the decision model is
addressed by our approach to allow for a seamless documentation of design de-
cisions. We emphasize how developers are enabled to identify (legacy) decisions
relevant to their current tasks and how our approach helps developers to answer
the questions arising during software maintenance.

The remainder of this paper is organized as follows. In Section 2 we describe
requirements to design decisions, which will be derived from developer’s needs
represented by use cases. We introduce our revised decision model in Section 3
and explain how our model assists with decision making in Section 4. Related
work is discussed based on our requirements in Section 6 and finally Section 7
outlines future research and concludes the paper.

2 Requirements to Architectural Design Decisions

Before analyzing existing works on documenting architectural design decisions
we have to define valid criteria for the analysis of the proposed models. These
criteria are derived from studies that elicited questions frequently asked by devel-
opers during software maintenance and evolution [6,7,8]. These studies revealed
general information needs and special demands on software evolution, for which
they conducted interviews with developers working in different domains.

2.1 Derived Use Cases and Requirements

In a next step we distilled three use cases from these questions and illustrate
how they benefit from explicit design decisions and support developers.

Identifying Relevant Legacy Decisions: If legacy decisions shall support
developers with their current tasks, means going beyond simple text searches are
required for identifying relevant decisions by querying the set of legacy decisions
in a more structured way. The derived use case comprises the efficient access
to decisions by limiting the search space, focusing on relevant information, and
revealing links to elements of existing systems to support evolution.

52 S. Gerdes, S. Lehnert, and M. Riebisch

Decision Support Based on Legacy Decisions: Once relevant legacy
decisions are identified, they must be aligned with the current task to select
potentially suitable solutions. Afterwards and in combination with fine-grained
traceability towards software artifacts and requirements they enable change im-
pact analysis as one of the key requirements of developers [6]. Legacy decisions
and related requirements and constraints reveal why code was implemented in a
particular way, which is crucial when trying to understand the rationale behind
existing solutions and the evolution of code [6,8]. Historical decisions also expose
information about previous issues in terms of constraints, requirements, etc.

Documenting Design Decisions: Developers must be able to populate
the decision repository with recent decisions and related information to enable
further reuse. This task must be accomplished with as little overhead as possible.

Based on the needs and use cases, we distilled requirements for a metamodel
to capture design decisions, which can be summarized as follows.

1. Explicit support for evolution of decisions and related artifacts:
Considering the evolutionary characteristics of decisions will expose potential
pitfalls developers already experienced in the past.

2. Explicit traceability to related software artifacts: Fine-grained trace-
ability will show which legacy decision leads to certain artifacts, such as code
or models, which will make developers aware of potential impacts of changes.

3. Explicit traceability to constraints and requirements: This will reveal
the drivers of a decision and the reasons of the developer why code and design
are the way they are. They need to be represented as first-class entities.

3 Consolidated Metamodel for Design Decisions

Based on our requirements we propose a consolidated decision model which is
displayed by Figure 1 to better capture the evolution of decisions and their
relations to other software artifacts, requirements, and constraints.

3.1 Consolidating the Decision Model

The consolidation of the existing decision models is comprised of two steps aimed
to increase the applicability of the resulting model. Firstly, we remove several
elements from the models which are not necessary for documenting architectural
issues and decisions in a real-world context, but complicate the application of the
model for developers. Secondly, we revise the attributes of remaining elements
and purge those that do not contribute towards the comprehension of decisions.

The first element to be removed is the ADLevel as introduced in [4]. There are
two reasons, on the one hand its limited benefit when exploring legacy decisions
to assist developers to accomplish their task. On the other hand, the boundaries
between the different ADLevels are quite fluid and most classifications are rather
ambiguous, thus misleading developers when documenting issues and decisions.

Furthermore, we identified cases of redundancy in the existing models which
should be resolved to streamline the decision model. The first candidates are

Combining Architectural Design Decisions and Legacy System Evolution 53

wouldImpact

0..*

isDrivenBy

 0..*

issues

 0..*

satisfies

isDrivenBy

impacts 0..*

contains

 0..*

0..*

involves

refersTo

 0..*

1..*

 isSolvedBy

1..*
 hasOutcome

1

 realizes

dependsOn

 0..*

evolvedFrom

 subgroups

 0..*

ADEvolvableItem

name : String
backgroundReading : String
description : String
version : String

ADAlternative

pros : String
cons : String

ADDriver

ADOutcome

justification : String
status : String
assumptions : String
consequences : String

ADTopicGroup

ADIssue

motivation : String

ADArtifact

type : String

ADConstraint

ADRequirement

0..*

type : String

0..*

Fig. 1. Our revised decision model represented by a class diagram

ADRequirement, ADRequirementType, and ADRequirementsArtifact introduced
in [5]. We integrated the ADRequirementType as an attribute into ADRequire-
ment, thereby diminishing the need for a separate class (upper right corner of
Figure 1). Likewise, there is little conceptual difference between ADDesignAr-
tifact and ADRequirementsArtifact as both represent real software artifacts,
regardless of whether it is a free text, a use case, etc. By renaming ADDesignAr-
tifact into ADArtifact and by adding both an attribute type to it and a reference
from ADRequirement towards it we can omit the additional classes.

A similar level of redundancy can be observed in the instances of ADDesig-
nArtifact, ADDesignElementType, ADDesignElement, ADRuntimeElement, and
ADRuntimeArtifact. In this case we also propose to merge the classes into the
ADArtifact class (right side of Figure 1) for the following reasons: First of all,
for the traceability of decisions and issues with design elements the additional
layer as introduced by the ADDesignArtifact is not required if the granularity
of the traceability concept is refined. This will be discussed in detail in Section
3.3. Additionally, the ADDesignElementType is dispensable as this information
is already encoded in the metamodels of the actual design artifacts.

Finally, we have to reorganize and purge several attributes of the remaining
model constituents. To begin with, there is a redundancy in ADOutcome class
of [4], namely the candidateAlternatives attribute which is already encoded by
the isSolvedBy references of the containing ADIssue. This is likely to introduce
inconsistencies as architects and developers are forced to link the same entities
twice in two different places. There are also various attributes of the ADIssue
class which turned out to hamper the capturing of issues in practice or were
never used, but in turn complicated the representation of recorded informa-
tion. Therefore, the attributes phase, role, and shortName are removed from our
model. Moreover, the attribute scope is omitted and instead replaced by more

54 S. Gerdes, S. Lehnert, and M. Riebisch

fine-grained traceability links to software artifacts. This will be explained in
Section 3.3 because an issue can encompass more than just one type of artifact.

3.2 Addressing Software Evolution

The next important step towards an enhanced decision model is its support for
ongoing development by supporting the evolution of architectural issues, deci-
sions, alternatives, etc. to better reflect real development contexts. Yet current
models capture only a small excerpt of an ongoing evolution and thus have to
undergo major revisions to support the continuous development.

We observed that every aspect of a decision may evolve over time, including
the issues that triggered the decision, potential alternatives and the final out-
come of a decision. To address this phenomenon, we introduce the EvolvableItem
(left upper corner of Figure 1) as a base-class for ADIssue, ADOutcome, ADAl-
ternative, ADDriver, and ADTopicGroup. By adding the evolvedFrom relation
to the EvolvableItem it is possible to model the ongoing refinement and revi-
sion of entities, for example when new constraints were introduced or existing
requirements changed. This enables architects and developers to explore and in-
spect the various influences leading to the current state of the issue, decision,
alternatives, and so forth. Moreover, by providing the link back to the previous
version of a certain entity developers are able to trace and understand the effects
of changes. The mere presence of evolutionary links helps to inform developers
about changes of issues etc. which would be lost if all entities would simply
be overwritten or replaced. This is especially important for developers joining
development at a later stage to focus their attention on recent changes.

3.3 Interweaving Traceability Support and Decision Modeling

Finally, we incorporate an enhanced traceability scheme into our decision model
to allow for fine-grained traceability between its constituents. While we keep the
relations of Zimmermann and Capilla et al., we add further relations towards
software artifacts and provide means for linking dependent entities.

We first introduce impact -relations between ADOutcome entities and software
artifacts represented by the ADArtifact entity. Using these relations developers
can clearly highlight those artifacts that are impacted by a certain decision,
thus assisting with software maintenance. Likewise, potential impacts between
ADAlternatives and ADArtifacts can be expressed as wouldImpact -traceability
links to signify the consequences of implementing a certain alternative.

Secondly, developers must be able to link architectural issues with the involved
software artifacts, as the origin of an issue might result from their interplay. We
therefore add the involves-relation between ADIssues and ADArtifacts, which
acts as the inverse relation to the aforementioned impact -relation.

Moreover, the outcome of a decision (ADOutcome) might entail new archi-
tectural drivers, like for example when the decision to utilize a SQL-database
would impose a new constraint on the storage layer of the software. Hence, the
ADOutcome is also related through an issues-link with the ADDriver.

Combining Architectural Design Decisions and Legacy System Evolution 55

We further extend the scope the dependsOn-relation by moving it from the
ADIssue to the EvolvableItem, since our model should support traceability links
between different decision entities. As for example, an ADAlternative may de-
pends on a previously decided ADOutcome, which is not expressible with the
current models. Another advantage of this relation is that it provides informa-
tion about temporal dependencies. It indicates whether a decision has been made
before or after another one and would justify it from today’s perspective.

4 Supporting Decision Making and Comprehension

The following illustrates how our revised decision model assists developers deal-
ing with the use cases outlined in Section 2.1.

Identifying Relevant Legacy Decisions: As previously stated, simple text
searches are not the most feasible way to identify an entry point to documented
(legacy) decisions which are related to the current task. Instead, a more struc-
tured search approach should be used, both limiting the search space and re-
ducing irrelevant information at the same time. This can be accomplished by
exploring the topics in which architectural issues are grouped, allowing a step-
wise navigation through the available (legacy) data. We support this by using
hierarchic ADTopicGroup entities where the lowest level of topic groups finally
links towards architectural issues (ADIssue). By classifying and refining a current
problem, developers can navigate the topic hierarchy to find the topic group(s)
containing the most similar issues.

Decision Support Based on Legacy Decisions: Once an initial set of rel-
evant issues and decisions has been identified, the developer must be enabled to
decide which of those are most relevant to him. For this purpose three novel as-
pects of our decision model come into play. Firstly, with the help of our traceabil-
ity concept the developer can inspect the software artifacts that were impacted
by the decisions or which the decisions are based on. Hence, by correlating the
impacted artifacts to his current situation he can estimate potential impacts and
identify problems. This is further strengthened by the traceability of alternatives
and software artifacts to reveal artifacts which would have been impacted. Pre-
vious experiences allow to track and understand possible issues and support in
balancing current decisions. Secondly, due to our support for linking constraints
and requirements with issues, decisions and alternatives, a developer can judge
whether similar constraints hold for a project. If so, those (legacy) decisions
and alternatives, which do not meet the constraints, can be excluded. This is
especially important since similar issues appear in many projects, whereas the
outcome is project-specific due to project-specific constraints. Finally, analyzing
the “historical” development of a design decision might reveal issues a developer
is not yet aware of. By comparing the evolution of a decision, issues which oc-
curred at a certain point in time and might have altered the course of a decision
are revealed, thus enabling him to judge the impacts of similar scenarios on the
current case. Moreover, it allows to study the refinement of decisions over time
which might support in taking the right decision earlier.

56 S. Gerdes, S. Lehnert, and M. Riebisch

5 Evaluation Plans - The CoCoME Case Study

Our evaluation plan is built on the Common Component Modeling Example
(CoCoME)1 which was developed to evaluate and compare component-based
modeling approaches in a real world context based on the implementation of
a trading system for handling supermarket sales and enterprise management.
We identified two works that performed various refactorings on CoCoME using
different modeling methodologies and also documented their decisions, yet in
an unstructured and semi-formal manner [9,10]. Our goal is to apply our model
for the documentation of their decisions and to establish the linkage between
software artifacts, requirements, and constraints to support software evolution.

6 Related Work

Tang et al. [11] proposed AREL as a rationale-based architecture model to doc-
ument architectural design by means of a UML profile. However, the model lacks
dependencies to design elements from design alternatives, which would expose
potential impacts. Furthermore, it does not distinguish between constraints and
requirements and lacks direct linkage of interdependent decisions. Van Heesch et
al. [12] proposed a documentation framework consisting of four viewpoints for
architectural decisions, which satisfy several stakeholders’ concerns but neglect
fine-grained traceability to related software artifacts and requirements. Capilla
et al. [13] developed a web-based approach to capture and manage design deci-
sions, yet it still lacks support for ongoing evolution which is only supplied in a
partial manner [14] and fine-grained linking of decisions and software artifacts.
Furthermore, Capilla et al. [5] extended the metamodel of Zimmermann et al.
for decision modeling and reuse [4]. Due to their focus on capturing and reusing
decisions, the model has various shortcomings in regard to decision evolution and
traceability, which were not addressed in a comprehensive manner. They neglect
traceability links required for maintenance, i.e. traceability links from issues or
alternatives to fine-grained artifacts. Malavolta et al. [15] proposed an approach
for systematically defining traceability links between decisions to enable “deci-
sion impact analysis”. However, their linking concept does not provide means
to link decisions with artifacts impacted by them. Likewise, linking the artifacts
a decision is based on with the actual decision is also not possible either. Che
and Perry [16] introduced the Triple View Model (TVM) to manage the docu-
mentation and evolution of decisions. The core of TVM is almost identical to
Capilla’s model, hence both share the same disadvantages. Its major derivation
is its support for best practices that are interweaved with the decisions.

7 Conclusion and Future Work

Architectural design decisions provide urgently needed support for evolutionary
development, yet current approaches are not fully capable of capturing the evo-
lution of decisions and their fine-grained traceability. Thus we propose a revised

1 http://cocome.org/index.htm

http://cocome.org/index.htm

Combining Architectural Design Decisions and Legacy System Evolution 57

version of an architectural decision model for which we consolidated existing
decision models and extended them with comprehensive means for expressing
the evolution of their constituents to enable developers to trace the historical
development of decisions, their drivers, and their outcomes. We enhanced the ob-
tained decision model with means for fine-grained traceability to enable impact
analysis and to further strengthen the integration of decisions when changing
long-living software systems during software evolution. Currently, we evaluate
our approach in a controlled lab experiment and plan an industrial case study.
Further works will focus on the recovery of design decisions and the rationale
behind them, as well as on constraints induced by legacy systems to differentiate
their impact on design decisions and to underpin their necessity.

References

1. Vliet, H.: Software Engineering: Principles and Practice, 2nd edn. Wiley (2007)
2. Perry, D., Grisham, P.: Architecture and Design Intent in Component & COTS

Based Systems. In: ICCBSS 2005, pp. 155–164 (2006)
3. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design De-

cisions. In: 5th Working Conf. on Software Architecture, pp. 109–120 (2005)
4. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing

architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

5. Capilla, R., Zimmermann, O., Zdun, U., Küster, J.M.: An enhanced architectural
knowledge metamodel linking architectural design decisions to other artifacts in
the software engineering lifecycle. In: Software Architecture, pp. 303–318 (2011)

6. Ko, A.J., DeLine, R., Venolia, G.: Information Needs in Collocated Software De-
velopment Teams. In: 29th Intl. Conf. on Software Engineering, pp. 344–353 (2007)

7. Sillito, J., Murphy, G.C., De Volder, K.: Questions programmers ask during soft-
ware evolution tasks. In: SIGSOFT 2006/FSE-14, pp. 23–33 (2006)

8. Fritz, T., Murphy, G.C.: Using information fragments to answer the questions
developers ask. In: 32nd Intl. Conf. on Software Engineering, pp. 175–184 (2010)

9. Knapp, A., Janisch, S., Hennicker, R., Clark, A., Gilmore, S., Hacklinger, F.,
Baumeister, H., Wirsing, M.: Modelling the CoCoME with the Java/A Component
Model. In:Rausch,A.,Reussner,R.,Mirandola,R.,Plášil, F. (eds.)CommonCompo-
nent Modeling Example. LNCS, vol. 5153, pp. 207–237. Springer, Heidelberg (2008)

10. Küster, M., Trifu, M.: A case study on co-evolution of software artifacts using
integrated views. In: WICSA/ECSA 2012, pp. 124–131 (2012)

11. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

12. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. Journal of Systems and Software 85(4), 795–820 (2012)

13. Capilla, R., Nava, F., Pérez, S., Dueñas, J.: A web-based tool for managing archi-
tectural design decisions. SIGSOFT Softw. Eng. Notes 31(5) (2006)

14. Capilla, R., Nava, F., Dueñas, J.C.: Modeling and Documenting the Evolution of
Architectural Design Decisions. In: SHARK/ADI 2007, pp. 9–15 (2007)

15. Malavolta, I., Muccini, H., Smrithi Rekha, V.: Supporting architectural design
decisions evolution through model driven engineering. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 63–77. Springer, Heidelberg (2011)

16. Che, M., Perry, D.E.: Managing architectural design decisions documentation and
evolution. International Journal of Computers 6(2), 137–148 (2012)

Specification and Detection of SOA Antipatterns

in Web Services

Francis Palma1,2, Naouel Moha2, Guy Tremblay2, and Yann-Gaël Guéhéneuc1

1 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
{francis.palma,yann-gael.gueheneuc}@polymtl.ca

2 Département d’informatique, Université du Québec à Montréal, Canada
{moha.naouel,tremblay.guy}@uqam.ca

Abstract. Service Based Systems, composed of Web Services (WSs),
offer promising solutions to software development problems for com-
panies. Like other software artefacts, WSs evolve due to the changed
user requirements and execution contexts, which may introduce poor
solutions—Antipatterns—may cause (1) degradation of design and qual-
ity of service (QoS) and (2) difficult maintenance and evolution. Thus,
the automatic detection of antipatterns in WSs, which aims at evaluat-
ing their design and QoS requires attention. We propose SODA-W (Service
Oriented Detection for Antipatterns in Web services), an approach sup-
ported by a framework for specifying and detecting antipatterns in WSs.
Using SODA-W, we specify ten antipatterns, including God Object Web
Service and Fine Grained Web Service, and perform their detection in
two different corpora: (1) 13 weather-related and (2) 109 financial-related
WSs. SODA-W can specify and detect antipatterns in WSs with an average
precision of more than 75% and a recall of 100%.

Keywords: Antipatterns, Web Services, Specification, Detection.

1 Introduction

Service Oriented Architecture (SOA) has already become the prevailing archi-
tectural style used in the industry [6]. SOA helps developing low-cost, reusable,
and distributed business solutions by combining services, which are independent,
portable, and interoperable program units that can be discovered and invoked
through the Internet. In practice, SOA can be realised using various technologies
and architectural styles including SCA (Service Component Architecture) [5],
REST (REpresentational State Transfer), and Web services.

Web services is the leading SOA technology used nowadays to develop Service-
based systems (SBSs) [15]. Amazon, Google, eBay, FedEx, PayPal, and many
more companies, all leverage Web services. In the distributed systems literature,
the termWeb service is commonly used to refer to both SOAP-based and RESTful

Web services. Nevertheless, in this paper, we focus on SOAP-based Web services
because currently they are more widely adopted than those based on REST [15].

SBSs evolve to meet new requirements or to adapt to the changed execution
contexts, e.g., changes in transport protocols or in service contracts. Such changes

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 58–73, 2014.
c© Springer International Publishing Switzerland 2014

Specification and Detection of SOA Antipatterns in Web Services 59

may deteriorate the design and implementation, and worsen the QoS of Web ser-
vices, and may cause the introduction of poor solutions, known as Antipatterns—
in opposition to design patterns that are good solutions to recurring problems. In
general, it has been shown that antipatterns negatively impact the evolution and
maintenance of software systems [12].

God Object Web Service and Fine Grained Web Service are the two most
common antipatterns in Web services [4]. The God Object Web Service describes
a Web service that contains a large number of very low cohesive operations in
its interface, related to different business abstractions. Being overloaded with a
multitude of operations, a God Object Web Service may also have high response
time and low availability. In contrast, Fine Grained Web Service, with few low
cohesive operations, implements only a part of an abstraction. Such Web services
often require several other coupled Web services to complete an abstraction,
resulting in higher architectural complexity.

Despite the importance and extensive usage of Web services, no specification
and automated approach for the detection of such antipatterns in Web services
has been proposed. Such an approach to analyse the design and QoS of Web
services and automatically identify antipatterns would help the maintenance
and evolution of Web services. In fact, a few contributions have been made in
the literature for the detection of SOA antipatterns in Web services including
those in [14, 17, 18]. Yet, none of them provide the specification and all of them
focus on the static analysis of Web service description files (e.g., [17, 18]) or on
antipatterns in other SOA technologies (e.g., SCA [14]).

With the goal of assessing the design and QoS of Web services and filling the
gap in the literature, we propose the SODA-W approach (Service Oriented Detec-
tion for Antipatterns in Web services) inspired from SODA [14]. SODA, supported
by an underlying framework SOFA (Service Oriented Framework for Antipat-
terns), was the first approach dedicated to the specification and detection of
antipatterns in SCA systems; it is, however, restricted to SCA. Instead, SODA-W is
supported by an extended version of SOFA and is dedicated to the specification
of SOA antipatterns and their automatic detection in Web services. The extended
SOFA provides the means to analyse Web services statically, dynamically, or com-
bining them. Static analyses refer to measuring the structural properties of Web
services, whereas dynamic analyses invoke the real Web services and measure
different properties, such as response time.

Therefore, the main contributions of this paper that leverage SODA-W are: (1)
we add ten new metrics to our previous language proposed in [14] and adapt five
other existing metrics in SOFA, (2) we specify ten Web service-specific antipat-
terns and perform the structural and semantic analysis of service interfaces, and
finally (3) we perform detection for those ten antipatterns to validate SODA-W

with more than 120 Web services in two different experiments. For the valida-
tion, we implement detection algorithms for the ten SOA antipatterns from their
specifications, which we then apply on Web services. We perform the manual
validation of the detection results in terms of precision, recall, and specificity.

60 F. Palma et al.

Our results show that SODA-W allows to specify and detect SOA antipatterns with
an average precision of more than 75% and a recall of 100%.

The remainder of this paper is organised as follows. Section 2 surveys related
work on the detection of antipatterns, and in SBSs in particular. Section 3 lays
out the approach, SODA-W, along with the language and the underlying frame-
work, SOFA. Section 4 presents the experiments performed on Web services for
validating SODA-W. Finally, Section 5 concludes and sketches future work.

2 Related Work

SOA antipatterns, Web service-specific antipatterns in particular, and their spec-
ification and detection are still in their infancy. A few books and articles address
SOA antipatterns and most of the references are online [4, 13, 19]. Dudney et
al. [4] first suggested a list of 52 antipatterns that are common in service-based
architectures, and particularly in Web services. Antipatterns from that book are
described informally. Rotem-Gal-Oz et al. [19] in their book listed some other
SOA antipatterns also informally. In their paper, Král et al. [11] introduced seven
SOA antipatterns that appear due to the improper use of SOA principles and
standards. All the above works contributed to the existing catalogue of SOA

antipatterns, but did not discuss their specification or detection.
A number of detection approaches [10, 16, 21] exist for object-oriented (OO)

antipatterns. However, OO approaches are not applicable to the detection of
SOA antipatterns because: (1) SOA is concerned with services as building blocks,
whereas OO is concerned with classes, i.e., services are coarser than classes in
terms of granularity and (2) the highly dynamic nature of SOA compared to OO

systems. Just a few works studied the detection of SOA antipatterns in Web ser-
vices. Rodriguez et al. [18] performed detection for a set of Web service-specific
antipatterns related to WSDL proposed by Heß et al. [9]. However, the primary
focus of the work was not analysing or improving the design of Web services,
rather on the WSDL writing conventions to improve their discoverability.

Moha et al. [14] proposed the SODA approach for specifying and detecting
antipatterns in SCA systems (Service Component Architecture), relying on a
rule-based language to specify antipatterns at a higher-level of abstraction than
detection algorithms. In SODA, the detection algorithms are generated automat-
ically and applied on SCA systems with a high accuracy. However, the proposed
approach can only deal with local SCA components developed with plain Java
and cannot handle remote Web services.

In another study, Rodriguez et al. [17] described EasySOC and provided a
set of guidelines for service providers to avoid bad practices while writing WSDLs.
Based on some heuristics, the authors detected eight bad practices in the writ-
ing of WSDL for Web services. The heuristics are simple rules based on pattern
matching. The authors did not consider the design and QoS of the Web services
and analysed the WSDL files statically. In this paper, instead, we analyse the Web
services both statically and dynamically.

More recently, Coscia et al. [3] performed a statistical correlation analysis
between a set of traditional code-level OO metrics and WSDL-level service metrics,

Specification and Detection of SOA Antipatterns in Web Services 61

and found a statistically significant correlation between them. Still, the main
focus was not on identifying bad practices or poor design decisions in the service
interfaces. Also, Sindhgatta et al. [22] performed a thorough literature survey
on service cohesion, coupling, and reusability metrics, and proposed five new
cohesion and coupling metrics, which they described as new quality criteria for
service design. These metrics are even at the WSDL code-level; in contrast, we
assess the design and QoS of Web services.

Given the above limitations in the literature, we try to come up with a viable
solution for specifying and detecting SOA antipatterns in Web services.

3 Approach

We now describe the SODA-W (Service Oriented Detection for Antipatterns inWeb
services) approach dedicated to Web services (WSs). SODA-W involves three steps
from the specification of Web service-specific antipatterns to their detection.
Step 1. Specification of SOA Antipatterns : We identify the relevant properties of
Web service-specific antipatterns that we use to extend our previous domain-
specific language (DSL) [14]. We then use this DSL to specify antipatterns.
Step 2. Generation of Detection Algorithms : This step involves the generation
of detection algorithms from the specifications in the former step. In this paper,
we performed this step manually by implementing concretely the algorithms in
conformance with the rules specified in Step 1. We plan to automate this step.
Step 3. Detection of SOA Antipatterns : We apply the detection algorithms on a
set of real WSs to detect antipatterns.

The following sections detail the first two steps. The last step is discussed in
Section 4, where we perform the validation of SODA-W.

3.1 Specification of ��� Antipatterns

To specify SOA antipatterns, we performed a thorough domain analysis of an-
tipatterns for WSs. We investigated their definitions and descriptions in the lit-
erature [4, 9, 11, 13, 18] because these mostly discussed WS-specific antipatterns.
We identified a set of properties related to each antipattern, including static
properties related to service design, e.g., cohesion and coupling; and dynamic
properties, e.g., response time and availability. In general, static properties are
recoverable from service interfaces. In contrast, dynamic properties are obtained
by concretely invoking the WSs. We used these relevant properties to extend our
DSL from [14]. Using this DSL, engineers can specify SOA antipatterns in the form
of a rule-based language, using their own judgment and experience. A DSL al-
lows engineers to focus on what to detect without being concerned about how
to detect [2]. In fact, our DSL is implementation-independent, i.e., it can be used
regardless of the underlying technology of the system under analysis. However,
the DSL needs to be extended for each new technology.

The syntax of our DSL is shown in Figure 1 using a Backus-Naur Form (BNF)
grammar. We apply a rule-based technique for specifying antipatterns, i.e., each

62 F. Palma et al.

1 rule card ::= RULE CARD:rule cardName { (rule)+ };
2 rule ::= RULE:ruleName { content rule };

3 content rule ::= metric | relationship | operator ruleType (ruleType)+

4 | RULE CARD: rule cardName

5 ruleType ::= ruleName | rule cardName

6 operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric ::= id metric ordi value
8 | id metric comparator num value
9 id metric ::= ALS | ANIO | ANP | ANPT | ANAO | ARIP | ARIO | ARIM | CPL | COH | NCO
10 | NOD | NOPT | NPT | NVMS | NVOS | RGTS
11 | A | RT
12 ordi value ::= VERY HIGH | HIGH | MEDIUM | LOW | VERY LOW
13 comparator ::= < | ≤ | = | ≥ | >

14 rule cardName, ruleName, ruleClass ∈ string
15 num value ∈ double

Fig. 1. BNF grammar of rule cards for SODA-W

rule card combines a set of rules. The different constituents of our DSL are as
follows: a rule card is characterised by a name and a set of related rules (Figure
1, line 1). A rule (lines 3 and 4) is associated with a metric or it may combine
other rules using different set operators (line 6) including intersection (INTER) or
union (UNION). A rule can be a singleton rule or it can refer to another rule card
(line 4). A metric may involve an ordinary value or it can have a comparator
with a numeric value (lines 7 and 8). Ordinal values range from VERY LOW to
VERY HIGH (line 12), and are used to define values compared to other candidate
WSs under analysis. We use the box-plot statistical technique [1] to associate
ordinal values with numeric values, to automatically set thresholds. Finally, the
comparators include common mathematical operators (line 13).

Our metric suite (lines 9 to 11) includes both static (lines 9 and 10) and
dynamic metrics (line 11). In [14], we had a set of 13 metrics defined for SCA

domain. In this paper, we extend the DSL by adding ten new metrics specific
to the domain of WSs as shown in Table 1. We also adapt some previously
existing metrics (see Table 1). This adaptation is essential due to the non-trivial
differences between SCA and WSs. For instance, SCA applications are built with
components, while WSs use services as their first class entities. The other metrics
remain the same as in [14] as noted in Table 1.

The ARIP, ARIO, and ARIM metrics combine both the structural and seman-
tic similarity computation. Structural similarity uses the well-known Leven-
shtein Distance algorithm, whereas semantic similarity uses WordNet1(a) and
CoreNLP3(b). WordNet is a widely used lexical database that groups nouns,
verbs, adjectives, etc. into the sets of synsets, i.e., cognitive synonyms, each rep-
resenting a distinct concept. We use WordNet to find the cognitive similarity
between two (sets of) operations, messages, or port-types. We use Stanford’s

1 (a) wordnet.princeton.edu (b) nlp.stanford.edu/software/corenlp.shtml

wordnet.princeton.edu
nlp.stanford.edu/software/corenlp.shtml

Specification and Detection of SOA Antipatterns in Web Services 63

Table 1. The list of 19 metrics in SODA-W approach

Metrics Full Names Versions
ALS Average Length of Signatures new
ARIP Average Ratio of Identical Port-Types new
ARIO Average Ratio of Identical Operations new
ARIM Average Ratio of Identical Messages new
NCO Number of Crud Operations new
NOPT Number of Operations in Port-Types new
NPT Number of Port-Types new
NVMS Number of Verbs in Message Signatures new
NVOS Number of Verbs in Operation Signatures new
RGTS Ratio of General Terms in Signatures new
ANP Average Number of Parameters in Operations adapted
ANPT Average Number of Primitive Type Parameters adapted
NOD Number of Operations Declared adapted
ANIO Average Number of Identical Operations adapted
ANAO Average Number of Accessor Operations adapted
CPL Coupling same
COH Cohesion same
A Availability same
RT Response Time same

1 RULE CARD: GodObjectWebService {
2 RULE: GodObjectWebService {INTER
2 LowCohesion MultiOperation
2 HighRT LowA};
3 RULE: LowCohesion {COH VERY LOW};
4 RULE: MultiOperation {NOD HIGH};
5 RULE: HighRT {RT VERY HIGH};
6 RULE: LowA {A LOW};
7 };

(a) God Object Web Service

1 RULE CARD: FineGrainedWebService {
2 RULE: FineGrainedWebService {INTER
2 FewOperation HighCoupling
2 LowCohesion};
3 RULE: FewOperation {NOD LOW};
4 RULE: HighCoupling {CPL VERY HIGH};
5 RULE: LowCohesion {COH LOW};
6 };

(b) Fine Grained Web Service

Fig. 2. Rule cards for God Object Web Service and Fine Grained Web Service

CoreNLP: (1) to find the base forms of a set of signatures of operations, mes-
sages, or port-types and (2) to annotate them with the part-of-speech (POS)
tagger after we split the signatures based on the CamelCase.

Figure 2 shows the rule cards of the God Object Web Service [4] and Fine
Grained Web Service [4] antipatterns as discussed in Section 1. A God Object
Web Service (Figure 2(a)) is characterised by a high number of low cohesive
operations and results in very high response time with low availability. A Fine
Grained Web Service (Figure 2(b)) contains a fewer number of low cohesive
operations with a high coupling resulting in higher development complexity.
We also specify eight other WS-specific SOA antipatterns, whose rule cards are
available in Section 4.

3.2 Generation of Detection Algorithms

The second step involves the implementation of the detection algorithms from the
rule cards specified for each SOA antipattern. For each antipattern, we implement
all the related metrics following its specification and write the detection algorithm
in Java, which can directly be applied on any WSs. In the future, we will automate
this algorithm generation process following a similar technique presented in [14].

64 F. Palma et al.

3.3 Underlying Framework

We further develop the SOFA framework (Service Oriented Framework for An-
tipatterns) [14] to support the detection of SOA antipatterns in WSs. SOFA itself
is developed as an SBS based on the SCA (Service Component Architecture)
standards [5] and is composed of several SCA components. Figure 3 depicts the
SOFA’s key components: (1) Rule Specification—specifies rules relying on several
other components, such as Rule, Metric, Operator, and Boxplot. The Box-Plot
determines the ordinal values based on the numerical values computed for all
the services under analysis; (2) Algorithm Generation—generates detection algo-
rithms based on specified rules; and (3) Detection—applies detection algorithms
generated in Algorithm Generation component on WSs.

Fig. 3. The SOFA framework

We added a new Web Service Handler component to the SOFA to allow the
detection of Web service-specific antipatterns. The different functionalities per-
formed by the Web Service Handler component include: (1) given keywords, it
returns a list of WSs from a search engine, (2) it then filters broken service de-
scriptions or unavailable services, and finally (3) for all WSs, it generates a list
of SCA components. Concretely, these SCA components wrap WSs as our SOFA

framework can only introspect SCA components.
We extended the SOFA framework by: (1) adding ten new Web service-specific

metrics and (2) adapting five existing SCA-specific metrics. Combining those
new and adapted metrics, we specify ten Web service-specific antipatterns as
described in Figure 4 and perform their detection using SOFA. The addition of an
antipattern requires the implementation of each metric following its specification.
A metric can be reused for other antipatterns if they share the same metric in
their specifications.

We use FraSCAti [20] as SOFA’s runtime support. FraSCAti, itself developed as
an SCA 1.1 application [5], provides a runtime environment for SCA applications.

Specification and Detection of SOA Antipatterns in Web Services 65

Being based on SCA, FraSCAti can provide component-based systems on top of di-
verse SOA technologies including Web services. In SOFA, we wrap each technology-
specific services within an SCA component, thus providing a technology-agnostic
platform to detect SOA antipatterns.

4 Validation

We want to show the completeness and the extensibility of our DSL, the precise-
ness of the detection algorithms, and the specificity of our rule cards. Therefore,
we perform experiments with two sets of Web services (WSs) collected using a
search engine: (1) 13 weather-related and (2) 109 finance-related WSs.

4.1 Hypotheses

We state three hypotheses that we want to examine in our experiments.
H1. Generality: Our DSL allows the specification of various SOA antipatterns,
from simple to more complex ones. This hypothesis claims the applicability of
our SODA-W approach that relies on metric-based (i.e., 17 static and 2 dynamic
metrics) rule cards for specifying ten Web service-specific SOA antipatterns.
H2. Accuracy: The detection algorithms have an average precision of more than
75% and a recall of 100%, i.e., more than three-quarters of detected antipatterns
are true positive and we do not miss any existing antipatterns. Having a trade-
off between precision and recall, we presume that 75% precision is acceptable
while our objective is to detect all existing antipatterns, i.e., 100% recall. We
also show the specificity of the rule cards. This hypothesis claims the accuracy
of the specified rule cards and the detection algorithms.
H3. Extensibility: Our DSL and SOFA framework are extensible for adding new
metrics and new SOA antipatterns. In this hypothesis, we claim that the new
metrics can be added and combined to specify new SOA antipatterns and that
the SOFA framework can handle new antipatterns, including some specific to WSs,
and detect them automatically.

4.2 Subjects

We specify ten different SOA antipatterns that are commonly found in WSs by
applying our SODA-W approach. Figure 4 lists those Web service-specific SOA

antipatterns. Among those ten antipatterns, eight are collected from the liter-
ature [4, 9, 11, 13, 18]. We also define two new antipatterns, namely Duplicated
Web Service and Data Web Service inspired from OO antipatterns: Silo Approach
and Data Class. Figure 4 emphasises the relevant properties of each antipattern
in bold-italics. Figure 5 shows the specifications of those antipatterns. We give
concrete examples of those antipatterns and show how they manifest in practice
on our site2.

2 http://sofa.uqam.ca/soda-w/

66 F. Palma et al.

Ambiguous Name [18] is an antipattern where the developers use the names of interface elements
(e.g., port-types, operations, and messages) that are very short or long , include too general terms, or
even show the improper use of verbs, etc. Ambiguous names are not semantically and syntactically
sound and impact the discoverability and the reusability of a Web service.

Chatty Web Service [4] is an antipattern where a high number of operations are required to
complete one abstraction where the operations are typically attribute-level setters or getters. A
chatty Web service may have many fine grained operations for which: (1) maintenance becomes
harder since inferring the order of invocation is difficult and (2) many interactions are required,
which degrades the overall performance with higher response time.

����� Interface [7] is an antipattern where the design encourages services the RPC-like behavior
by creating CRUD-type operations, e.g., create X(), read Y(), etc. Interfaces designed in that way
might be chatty because multiple operations need to be invoked to achieve one goal. In general,
CRUD operations should not be exposed via interfaces.

Data Web Service typically contains accessor operations, i.e., getters and setters. In a distributed
environment, some Web services that may only perform some simple information retrieval or data
access operations. A Data Web Service usually deals with very small messages of primitive types
and may have high data cohesion.

Duplicated Web Service, corresponds to a set of highly similar Web services. Because Web
services are implemented multiple times as a result of the silo approach, there might exist common
or identical operations with the same names and–or message parameters.

Fine Grained Web Service [4] is a small Web service with few operations implementing only a
part of an abstraction. Such a Web service often requires several coupled Web services to complete
an abstraction, resulting in higher development complexity, reduced usability . Moreover, since the
related operations for an abstraction spread across services, individual services are less cohesive.

God Object Web Service [4] corresponds to a Web service that contains a large number of
operations related to different business abstractions. Often the client interactions break due to
frequent changes in the Web service definition, hence cause low availability . This antipattern affects
the reusability because the operations are very low cohesive. Moreover, being overloaded with a
multitude of operations, this antipattern may also result in high response time.

Low Cohesive Operations in the Same PortType [18] is an antipattern where developers place
low cohesive operations in a single prototype. From the Web services perspective, if the operations
belonging to the same prototype do not provide a set of semantically related operations, the prototype
becomes less cohesive.

Maybe It’s Not ��� [4] is an antipattern where the Web service mainly provides CRUD operations
with a large number of parameters. This antipattern causes poor system performance because the
clients often wait for the synchronous responses.

Redundant PortTypes [9] is an antipattern where multiple port-types are duplicated with the
similar set of operations. Very often, such port-types deal with the same messages. The Redundant
PortType antipattern may negatively impact the ranking of the Web Services.

Fig. 4. List of the ten SOA antipatterns in Web services

4.3 Objects

Unlike open-source systems in OO, freely available real WSs are difficult to find for
validating detection algorithms. There are some Web service search engines, like
eil.cs.txstate.edu/ServiceXplorer,programmableweb.com,myexperiment.
org, and taverna.org.uk, however, the number of such search engines is limited
and often may not provide healthy service interface.

We perform experiments on two different sets of WSs collected from a Web
service search engine, programmableweb.com. The first set includes 13 weather-
related WSs (keyword ‘Weather’); and the second set includes 109 finance-related
WSs (keyword ‘Finance’). The complete list of all service interfaces that we
experimented with is available online on our site2.

Specification and Detection of SOA Antipatterns in Web Services 67

1 RULE CARD: AmbiguousName {
2 RULE: AmbiguousName {INTER GeneralTerm
3 ShortORLongSignature VerbedMessage
4 MultiVerbedOperation};
5 RULE: ShortORLongSignature {UNION
6 ShortSignature LongSignature};
7 RULE: LongSignature {ALS VERY HIGH};
8 RULE: ShortSignature {ALS VERY LOW};
9 RULE: GeneralTerm {RGTS HIGH};
10 RULE: VerbedMessage {NVMS > 0};
11 RULE: MultiVerbedOperation {NVOS > 1};
12 };

(a) Ambiguous Name

1 RULE CARD: ChattyWebService {
2 RULE: ChattyWebService {INTER LowCohesion
3 HighDataAccessor MultiOperation
4 LowPerformance};
5 RULE: LowCohesion {COH LOW};
6 RULE: HighDataAccessor {ANAO VERY HIGH};
7 RULE: MultiOperation {NOD HIGH};
8 RULE: LowPerformance {INTER HighRT LowA};
9 RULE: HighRT {RT HIGH};
10 RULE: LowA {A LOW};
11 };

(b) Chatty Web Service

1 RULE CARD: CRUDyInterface {
2 RULE: CRUDyInterface {INTER ChattyInterface
3 HighCRUDOperation};
4 RULE: ChattyInterface {RULE CARD:
5 ChattyWebService};
6 RULE: HighCRUDOperation {NCO > 1};
7 };

(c) CRUDy Interface

1 RULE CARD: DataWebService {
2 RULE: DataWebService {INTER HighCohesion
3 PrimitiveParameter HighAccessor
4 LowParameter};
5 RULE: HighCohesion {COH HIGH};
6 RULE: PrimitiveParameter {ANPT HIGH};
7 RULE: HighAccessor {ANAO HIGH};
8 RULE: LowParameter {ANP LOW};
9 };

(d) Data Web Service

1 RULE CARD: DuplicatedWebService {
2 RULE: DuplicatedWebService {INTER
3 IdenticalPortType IdenticalOperation};
4 RULE: IdenticalPortType {ARIP HIGH};
5 RULE: IdenticalOperation {ARIO HIGH};
6 };

(e) Duplicated Web Service

1 RULE CARD: LowCohesiveOperations {
2 RULE: LowCohesiveOperations {INTER
3 MultiOperation LowCohesivePT};
4 RULE: MultiOperation {NOD HIGH};
5 RULE: LowCohesivePT {ARIO LOW};
6 };

(f) Low Cohesive Operations

1 RULE CARD: MaybeItsNotRPC {
2 RULE: MaybeItsNotRPC {INTER HighRT
3 HighCRUDOperation HighParameter};
4 RULE: HighRT {RT HIGH};
5 RULE: HighCRUDOperation {NCO VERY HIGH};
6 RULE: HighParameter {ANP HIGH};
7 };

(g) Maybe It’s Not RPC

1 RULE CARD: RedundantPortType {
2 RULE: RedundantPortType {INTER
3 MultiPortType MultiOps HighCohesivePT};
4 RULE: MultiPortType {NPT > 1};
5 RULE: MultiOps {NOPT > 1};
6 RULE: HighCohesivePT {ARIP VERY HIGH};
7 };

(h) Redundant PortTypes

Fig. 5. Rule cards for different SOA antipatterns in Web services

4.4 Process

We specified the rule cards for ten Web service-specific antipatterns and imple-
mented their detection algorithms using our SOFA framework. Then, we applied
those algorithms on the WSs and reported any existing antipatterns. We manu-
ally validated the detection results to: (1) identify the true positives and (2) to
find false negatives. The validation was performed by two students; we provided
them with the descriptions of antipatterns and the service description file for each
Web service along with its average response time. To measure the response time
regardless of the network latency and physical location of a Web service, using the
SAAJ3(a) standard implementation and SoapUI3(b), we arbitrarily invoked at least

3 (a) saaj.java.net (b) www.soapui.org/

saaj.java.net
www.soapui.org/

68 F. Palma et al.

three operations from each real Web service, measured their response times, and
took the average. We used precision and recall [8] to measure our detection accu-
racy. Precision concerns the ratio between the true detected antipatterns and all
detected antipatterns, and recall is the ratio between the true detected antipat-
terns and all existing true antipatterns. Finally, we also calculate the specificity
of our rule cards, i.e., the ratio between all WSs identified as non-antipattern and
total existing true negatives.

4.5 Results

Tables 2 and 3 present the detailed detection results for the ten SOA antipatterns.
Each table reports the antipatterns in the first column followed by the involved
WSs in the second. The third column shows the metric values for each Web
service once it is identified as an antipattern. The fourth and fifth columns
report the box-plot threshold values for each metric and the detection time for
each antipattern, respectively. The last two columns show the precision (P) and
recall (R) of our detection algorithms.

4.6 Details of the Results on 13 Weather Web Services

We briefly explain the detection results obtained from the first experiment as pre-
sented in Table 2. We identified five WSs involved in four antipatterns, namely,
Ambiguous Name, Fine Grained Web Service, Low Cohesive Operations, and
Redundant PortTypes. For instance, the AIP3 PV ImpactCallback in Table 2 is
identified as an Ambiguous Name antipattern because this Web service offers op-
erations with the signatures that (1) are very long (ALS=0.675), (2) use too many
general terms (RGTS=0.85), (3) deal with many messages having verbs in their
signatures (NVMS=26), and (4) have multiple verbs or action names (NVOS=7).
In comparison to the median values, those values are high, i.e., greater than
the median but less or equal to the max. Therefore, we appropriately detected
AIP3 PV ImpactCallback as Ambiguous Name and had a precision and recall of
100% as confirmed by the manual validation.

We also detected SrtmWs-PortType, ShadowWs-PortType, and Hydro1KWs-

PortType as Fine Grained Web Service antipatterns because they have very low
values for NOD (i.e., 2) and COH (i.e., 0.0). As calculated by the Box-Plot compo-
nent, the NOD values are low in comparison with the median of 5.5. Similarly, with
only two operations defined, the cohesion values are not significant compared to
other WSs, whose COH values are between 0.216 and 0.443. The manual validation
revealed the correct identification of this antipattern for ShadowWs-PortType

and Hydro1KWs-PortType. However, for the SrtmWs-PortType, the manual val-
idation suggested that the operations defined in its service interface could fulfill
an abstraction, and did not consider SrtmWs-PortType as an antipattern. Thus,
we have precision of 66.67% with 100% recall for this detection.

For this first experiment, our detection algorithms did not detect six other
antipatterns (see Table 2).

Specification and Detection of SOA Antipatterns in Web Services 69

Table 2. Details on detection results for 13 Weather-related Web services

Antipatterns Involved Metrics Boxplot Values Detect P R
Web Services Min|Median|Max Time

Ambiguous Name

ALS 0.675 0.027|0.463|0.675
0.69sAIP3 PV Impact- RGTS 0.85 0.0|0.0|0.85 [1/1] [1/1]

Callback NVMS 26 4|6|54 100% 100%
NVOS 7 1|3|20

Chatty none detected n/a n/a 300.23s – –Web Service
CRUDy Interface none detected n/a n/a 244.48s – –
Data Web Service none detected n/a n/a 1.03s – –
Duplicated none detected n/a n/a 1.21s – –Web Service

SrtmWsPortType
NOD 2 2|5.5|27

COH 0.0 0.0|0.216|0.443
Fine Grained

Hydro1KWsPortType
NOD 2 same as above 1.04s [2/3] [2/2]

Web Service COH 0.0 66.67% 100%

ShadowWsPortType
NOD 2 same as above

COH 0.0

God Object none detected n/a n/a 235.47s – –Web Service
Low Cohesive

ndfdXMLPortType
NOD 12 2|3|27 1.13s [1/1] [1/1]

Operations ARIO 0.221 0.221|0.473|0.998 100% 100%
May be none detected n/a n/a 235.47s – –It’s Not RPC

AIP3 PV Impact
NOPT 3 2|3|27

Redundant ARIP 0.378 0.378|0.378|0.378 1.11s [2/2] [2/2]
PortTypes AIP3 PV Impact- NOPT 9 same as above 100% 100%

Callback ARIP 0.378

Average 102.19s [6/7] [6/6]
85.71% 100%

4.7 Details of the Results on 109 Finance Web services

Table 3 shows the detail on each antipattern detected in the second experi-
ment with 109 Finance-related WSs. We briefly describe here some antipatterns:
ForeignExchangeRates and TaarifCustoms are both identified as the Chatty
Web Service and CRUDy Interface antipatterns because of their low cohesion
(COH≈0.015), high average number of accessor operations (ANAO between 50 and
72.22), high number of operations (NOD between 9 and 24), and high response
time (RT more than 3s), compared to other WSs. The box-plot values are shown
in the corresponding rows for each metric. However, the manual analysis did not
confirm ForeignExchangeRates as a Chatty Web Service because the order of
invocation of the operations could easily be inferred from the service interface.
The CRUDy Interface includes the rule card of Chatty Web Service in its specifi-
cation. Therefore, the detection of ForeignExchangeRates as a CRUDy Interface
was also not confirmed by the manual validation. Hence, we had the precision
of 50% and recall of 100% for these two antipatterns.

We also identified wsIndicadoresEconomicosHttpPost, wsIndicadores-

EconomicosSoap, and wsIndicadoresEconomicosHttpGet as Redundant Port-
Types antipattern with multiple identical port-types (i.e., NPT>1 and NOPT>1)
defined in their service interfaces, thus have ARIP=1.0, i.e., a very high value
compared to the median of 0.465. If a Web service has redundant port-types, it
is a good practice to merge them, while making sure that this merge does not
introduce a God Object Web Service antipattern. Seven other WSs were identified

70 F. Palma et al.

Table 3. Details on detection results for 109 Finance-related Web services

Antipatterns Involved Metrics Boxplot Values Detect P R
Web Services Min|Median|Max Time

Ambiguous Name

BLiquidity

ALS 0.576 0.013|0.226|0.81

1.02s

RGTS 0.682 0.0|0.613|0.75
NVMS 42 1|64|482
NVOS 7 0|6.5|48

CurrencyServerWebService

ALS 0.136

same as aboveRGTS 0.682

NVMS 42 [8/8] [8/8]
NVOS 5 100% 100%

...
ProhibitedInvestors- ALS 0.158

same as aboveService RGTS 0.684

NVMS 12

NVOS 4

ForeignExchangeRates

COH 0.155 0.0|0.25|0.667

1.89s

ANAO 50 0.0|0.961|100
NOD 24 1|12|70

Chatty RT 3286 172|1985|8592 [1/2] [1/1]
Web Service

TaarifCustoms

COH 0.116

same as above

50% 100%
ANAO 72.222

NOD 18

RT 4105

CRUDy Interface

ForeignExchangeRates

COH 0.155 0.0|0.25|0.667

1.81s

ANAO 66.667 0|0.96|100
NOD 9 1|11.5|70
RT 3113 172|1985|8592
NCO 9 0|9.5|62 [1/2] [1/1]

TaarifCustoms

COH 0.103

same as above

50% 100%
ANAO 72.222

NOD 18

RT 4105

NCO 18

Data Web Service none detected n/a n/a 0.91s – –
Duplicated none detected n/a n/a 1343.97s – –Web Service

XigniteTranscripts
NOD 4 1|12|70

Fine Grained COH 0.125 0.0|0.25|0.667 [2/2] [2/2]
Web Service

BGCantorUSTreasuries
NOD 3 same as above 0.85s 100% 100%

COH 0.083

God Object none detected n/a n/a 1.16s – –Web Service

ServiceSoap
NOD 24 1|12|70

242.49s

ARIO 0.253 0.0|0.435|1.0
XigniteSecuritySoap

NOD 25 same as aboveLow Cohesive ARIO 0.177

Operations [7/7] [7/7]

XigniteSecurityHttpPost
NOD 25 same as above 100% 100%

ARIO 0.177

XigniteCorporate- NOD 37 same as above
ActionsSoap ARIO 0.268

May be none detected n/a n/a 0.91s – –It’s Not RPC
wsIndicadores- NOPT 2 2|14|70

334.12s

EconomicosHttpPost ARIP 1.0 0.127|0.465|0.557
Redundant wsIndicadores- NOPT 2 same as above [3/3] [3/3]
PortTypes EconomicosSoap ARIP 1.0 100% 100%

wsIndicadores- NOPT 2 same as above
EconomicosHttpGet ARIP 1.0

Average 192.91s [22/24] [22/22]
91.67% 100%

as Low Cohesive Operations antipatterns (see Table 3), and two other WSs, i.e.,
XigniteTranscripts and BGCantorUSTreasuries as Fine Grained Web Ser-
vice. Both those WSs have a very small number of operations defined (NOD is 3
and 4) and have a low cohesion (COH between 0.083 and 0.125), compared to the
maximum values (i.e., 70 for NOD, and 0.667 for COH) from other WSs. Manual
analysis also confirmed their detection, hence, we have precision and recall of
100% for Redundant PortTypes and Fine Grained Web Service antipatterns.

Specification and Detection of SOA Antipatterns in Web Services 71

Again, for this experiment, we also did not identify four antipatterns on the set
of 109 Finance-related WSs. As in Section 4.6 (see Table 2), we do not consider
them to calculate the precision and recall. However, it is worth pointing out,
the manual validation for 109 WSs is indeed a labor intensive task, and for each
Web service it may take from 20 minutes to few hours based on the size of its
interface.

4.8 Discussion on the Hypotheses

Following the results, we examine here three hypotheses stated in Section 4.1.
H1. Generality: In this paper, we specified ten WS-specific SOA antipatterns
from the literature as shown in Figure 5 and described in Figure 4. We specified
simpler antipatterns with fewer rules, such as Low Cohesive Operations in the
Same PortType but also more complex antipatterns with composite rules, such as
CRUDy Interface that is composed of another rule card, i.e., Chatty Web Service.
We also specified antipatterns combining six different rules, Ambiguous Name
antipattern, for instance. Hence, this confirms our first hypothesis regarding the
generality of our DSL. In fact, engineers can only use this DSL after analysing
and integrating antipatterns properties to specify them.
H2. Accuracy: As shown in Tables 2 and 3, we obtained an average recall of
100% and an average precision of 88.69%. In the first experiment, with 13 WSs,
we have a precision of 85.71%, whereas for the second experiment with 109 WSs,
we have a precision and recall of 91.67% and 100%, respectively. Besides, we have
the specificity of 98% for 13 WSs and 99% for 109 WSs. Thus, on average, we hold
a precision of 88.69%, a recall of 100%, and a specificity 98.5%, which positively
support our second hypothesis on the accuracy of our detection algorithms.
H3. Extensibility: We claim that our DSL and the SOFA framework are exten-
sible for new antipatterns. In [14], we specified and detected ten antipatterns in
SCA systems using our framework. In this paper, we specified and detected ten
more Web service-specific antipatterns, and added them in the DSL and SOFA

framework. More specifically, we added ten new metrics, such as NVMS, NOPT,
RGTS, and NCO, etc. In addition, we added some variants of already existing met-
rics in the SOFA, i.e., NOD, ANIO, ANAO, etc. Furthermore, we added new Web
service-specific SOA antipatterns, such as Low Cohesive Operations in the Same
PortType, Maybe Its Not RPC, and so forth. The designed language is flexible
enough for integrating new metrics in the DSL. Our framework also supports the
addition of new antipatterns through the implementation of new metrics and
adaptation of existing ones to the new technology. This extensibility feature of
our DSL and framework thus supports our third hypothesis.

4.9 Threats to Validity

As future work, we plan to generalise our findings to other large set of WSs. How-
ever, we tried to minimise the threat to the external validity of our results by per-
forming two experiments with more than 120 WSs in two different domains. The
detection results may vary based on the specification of the rule cards, and the way

72 F. Palma et al.

the components are implemented in the SOFA framework. Internal validity refers
to the effectiveness of our approach and the framework. We made sure that the
SOFA itself does not introduce antipatterns, to minimise the threat to the inter-
nal validity. Engineers may have different views and different levels of expertise
on antipatterns, which may affect the specification of rule cards. We attempted to
lessen the threat to construct validity by performing the specification of rule cards
after a thorough literature review.

5 Conclusion

Web services are key artefacts for building Service-based systems. Like other
systems, SBSs evolve due to new user requirements, which may lead to the in-
troduction of antipatterns. The presence of SOA antipatterns may hinder software
maintenance and evolution. This paper presented the SODA-W approach (Service
Oriented Detection for Antipatterns in Web services) to specify and detect SOA
antipatterns in Web services. Detection of antipatterns in Web services requires
an in-depth analysis of their design, implementation, and QoS.

We applied SODA-W to specify ten common SOA antipatterns in Web services
domain. Using an extended SOFA framework (Service Oriented Framework for
Antipatterns), in an extensive validation with ten SOA antipatterns, we showed
that SODA-W can specify and detect different Web services-specific antipatterns.
We analysed more than 120 Web services and showed the accuracy of SODA-W
with an average precision of more than 75% and recall of 100%.

In future work, we plan to enhance our approach to support other SOA styles,
in particular REST services that follow different principles and standards for
service design and consumption. Furthermore, we plan to conduct additional
experiments with more Web services and antipatterns.

Acknowledgment. The authors are thankful to Ons Mlouki for initiating the
study. This study is supported by NSERC and FRQNT research grants.

References

1. Chambers, J., Cleveland, W., Tukey, P., Kleiner, B.: Graphical Methods for Data
Analysis. Wadsworth International (1983)

2. Consel, C., Marlet, R.: Architecturing Software Using A Methodology for Language
Development. In: Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP 1998 and
PLILP 1998. LNCS, vol. 1490, pp. 170–194. Springer, Heidelberg (1998)

3. Coscia, J.A.L.O., Crasso, M., Mateos, C., Zunino, A.: Estimating Web Service
Interface Quality Through Conventional Object-oriented Metrics. CLEI Electronic
Journal 16 (April 2013)

4. Dudney, B., Asbury, S., Krozak, J.K., Wittkopf, K.: J2EE AntiPatterns. John
Wiley & Sons Inc. (August 2003)

5. Edwards, M.: Service Component Architecture (SCA), OASIS, USA (April 2011),
http://oasis-opencsa.org/sca

http://oasis-opencsa.org/sca

Specification and Detection of SOA Antipatterns in Web Services 73

6. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR (August 2005)

7. Evdemon, J.: Principles of Service Design: Service Patterns and Anti-Patterns
(August 2005), msdn.microsoft.com/en-us/library/ms954638.aspx

8. Frakes, W.B., Baeza-Yates, R.A.: Information Retrieval: Data Structures & Algo-
rithms. Prentice-Hall (1992)

9. Heß, A., Johnston, E., Kushmerick, N.: ASSAM:ATool for Semi-Automatically An-
notating SemanticWeb Services. In:McIlraith, S.A., Plexousakis, D., van Harmelen,
F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 320–334. Springer, Heidelberg (2004)

10. Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., Ouni, A.: Design
Defects Detection and Correction by Example. In: IEEE 19th International Con-
ference on Program Comprehension (ICPC), pp. 81–90 (June 2011)

11. Král, J., Žemlička, M.: Crucial Service-Oriented Antipatterns, vol. 2, pp. 160–171.
International Academy, Research and Industry Association, IARIA (2008)

12. Mäntylä, M.V., Lassenius, C.: Subjective Evaluation of Software Evolvability Using
Code Smells: An Empirical Study. Empirical Software Engineering 11(3), 395–431
(2006)

13. Modi, T.: SOA Management: SOA Antipatterns (August 2006),
http://www.ebizq.net/topics/soa_management/features/7238.html

14. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry,
B., Jézéquel, J.-M.: Specification and Detection of SOA Antipatterns. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS,
vol. 7636, pp. 1–16. Springer, Heidelberg (2012)

15. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing Web Services Chore-
ography Standards the Case of REST vs. SOAP. Decision Support Systems 40(1),
9–29 (2005)

16. Munro, M.J.: Product Metrics for Automatic Identification of “Bad Smell” Design
Problems in Java Source-Code. In: Proceedings of the 11th International Software
Metrics Symposium. IEEE Computer Society Press (September 2005)

17. Rodriguez, J.M., Crasso, M., Mateos, C., Zunino, A.: Best Practices for Describing,
Consuming, and Discovering Web Services: A Comprehensive Toolset. Software:
Practice and Experience 43(6), 613–639 (2013)

18. Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Automatically Detecting
Opportunities for Web Service Descriptions Improvement. In: Cellary, W., Estevez,
E. (eds.) Software Services for e-World. IFIP AICT, vol. 341, pp. 139–150. Springer,
Heidelberg (2010)

19. Rotem-Gal-Oz, A., Bruno, E., Dahan, U.: SOA Patterns. Manning Publications
Co. (2012)

20. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
Component-Based Middleware Platform for Reconfigurable Service-Oriented Ar-
chitectures. Software: Practice and Experience 42(5), 559–583 (2012)

21. Settas, D.L., Meditskos, G., Stamelos, I.G., Bassiliades, N.: SPARSE: A Symptom-
based Antipattern Retrieval Knowledge-based System using Semantic Web Tech-
nologies. Expert Systems with Applications 38(6), 7633–7646 (2011)

22. Sindhgatta, R., Sengupta, B., Ponnalagu, K.: Measuring the Quality of Service
Oriented Design. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 485–499. Springer, Heidelberg (2009)

msdn.microsoft.com/en-us/library/ms954638.aspx
http://www.ebizq.net/topics/soa_management/features/7238.html

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 74–81, 2014.
© Springer International Publishing Switzerland 2014

Co-evolving Pattern Synthesis and Class Responsibility
Assignment in Architectural Synthesis*

Yongrui Xu and Peng Liang**

State Key Lab of Software Engineering
School of Computer, Wuhan University, Wuhan, China

{xuyongrui,liangp}@whu.edu.cn

Abstract. Architectural synthesis (AS) activity plays a key role in architecture
design as it essentially links the problem to the solution space. To reuse suc-
cessful design experience, architects may use architectural patterns in AS to
generate candidate solutions. In a pattern-based AS, there are two challenges:
one is class responsibility assignment (CRA) when using specific patterns and
the other is pattern synthesis which attempts to avoid the pattern constraint vi-
olations. In this paper, we propose a cooperative coevolution approach to assign
class responsibility and synthesize pattern automatically in a pattern-based AS.
We formally translate the problem of the automated pattern-based AS into a
multi-objective optimization problem, and describe the approach in detail.

Keywords: Automated architectural synthesis, class responsibility assignment,
architectural patterns, cooperative coevolution.

1 Introduction

During the architecting process, architects perform various activities for different
purposes towards the construction of the architecture of a software-intensive system.
Hofmeister et al. defined a general model of architecture design including three
activities, i.e., architectural analysis, architectural synthesis, and architectural evalu-
ation [1]. Architectural synthesis (AS) activity proposes a collection of candidate
architecture solutions, which are composed of a set of architectural elements (e.g.,
classes, components, and connectors) to address architecturally significant require-
ments (ASRs) identified during architectural analysis. AS is the core activity of archi-
tecture design as it essentially links the problem to the solution space of architecture
design. However, how to propose architecture solutions to a set of ASRs largely
depends on the experience of architects in traditional AS.

To reduce the complexity and reuse successful design experience when designing
software architectures, architects rely on a set of idiomatic architectural patterns,
which are packages of architectural design decisions and are identified and used re-
peatedly in practice [2], such as MVC, pipe and filter, and layer patterns. Using archi-
tectural patterns for architectural synthesis gets lots of benefits, and the architecture of

* This work is partially sponsored by the NSFC under Grant No. 61170025.
** Corresponding author.

 Co-evolving Pattern Synthesis and Class Responsibility Assignment 75

large and complex systems is increasingly designed by composing architectural pat-
terns [2]. However, existing research has observed that the resulting architecture of a
system does not always conform to the initial patterns employed which guide the
design at the beginning [3]. It is mainly due to the reasons that (1) existing work
mostly focuses on pattern recommendation and selection, but pays less attention to the
conceptual gap between the abstract elements and the implementation units in the
employed patterns; (2) each pattern has a set of design constraints when using it, and
architects may use the pattern being unaware of the constraints or misinterpreting the
constraints due to lack of experience (especially for novice architects). If the pattern
constraints are not satisfied, architects may have to redesign the architecture in order
to avoid negative impact to the quality of the system. In summary, most existing work
focuses on “architectural patterns recommendation and selection” instead of “archi-
tectural patterns implementation” which is part of architectural synthesis [1], and they
did not address how to arrange structural elements (e.g., components and connectors)
elegantly in a pattern to avoid the violations to the pattern constraints.

On the other hand, assigning responsibilities to classes is another vital task in object-
oriented architectural synthesis [4], in which responsibilities are represented in terms of
methods and attributes. Class responsibility assignment (CRA) has a great impact on the
overall design of the application [4], and many methods were developed to help recog-
nize the responsibilities of a system and assign them to classes [4] [5]. But one of defi-
ciencies of these works is that they addressed the CRA problem in isolation. In practical
software design, architects should not only consider CRA issues, but also think about
the quality impact of architecture (e.g., which patterns can be used to satisfy given
quality attributes). In most situations, the system quality attributes have great influences
on CRA (e.g., some responsibilities may be replicated in both client- and server-side
when using Client-Server pattern in order to improve the performance or reliability of a
system), and CRA should be considered together with the quality aspects of the system.

To this end, we propose a cooperative coevolution approach that aims at synthesiz-
ing pattern-based architecture solutions automatically. It is composed of two
processes: responsibility synthesis (RS) and pattern synthesis (PS). RS process ad-
dresses the CRA problem while PS process focuses on pattern implementation at
architectural level. This approach tries to avoid the violations to the pattern con-
straints while considering the responsibility assignment to architecture elements (e.g.,
classes) in the resulting architecture solutions. In our approach, we use meta-heuristic
search techniques (e.g., NSGA-II) to explore (i.e., to visit entirely new regions of a
search space) and exploit (i.e., to visit those regions that are explored within the
neighborhood of previous visited points) [6] pattern-based architecture design space
automatically when the populations of RS and PS cooperatively coevolve. On one
hand, we use pattern metrics that were proposed in our previous work [7] to evaluate
the pattern constraint violations; on the other hand, we use CK object-oriented metrics
to evaluate the quality of CRA [8]. We demonstrate how the proposed approach can
help architects arrange architectural elements with minimum constraint violations to
implement architectural patterns in specific design context. The contributions of this
work are: (1) the first attempt to consider responsibility synthesis (i.e., CRA) and
pattern synthesis simultaneously in pattern-based architectural synthesis; (2) translat-
ing the pattern-based architectural synthesis to a cooperative coevolution problem,
which can be automated.

76 Y. Xu and P. Liang

2 Background

For pattern synthesis (PS) process, our work is rooted in the concept of pattern me-
trics [7], which is based on pattern constraints. For responsibility synthesis (RS)
process, we employ the responsibility collecting techniques. We describe these con-
cepts and techniques as well as their relationships to our proposed approach below.

Architectural Pattern Metrics are used to measure the pattern constraint viola-
tions of candidate architecture solutions generated in automated architectural synthe-
sis in PS. We introduce the pattern metrics definition process and describe MVC pat-
tern metrics as an example in [7], which helps architects to translate the pattern con-
straints of an architectural pattern to its pattern metrics.

Responsibility Collecting Techniques help to collect responsibilities of a system
and the dependencies between the responsibilities. Some of these techniques directly
identify classes from requirements specifications that can be used to further collect
responsibilities of a system, such as common class pattern, and class responsibility
collaboration (CRC) card [5]. In this paper, we focus on the part of automated RS,
and we assume that the responsibilities of a system and their dependencies have been
collected and made available using abovementioned techniques.

Fig. 1 shows the relationship between our proposed cooperative coevolution ap-
proach for architectural synthesis (inside the rectangle) and the concepts and tech-
niques mentioned above. On one hand, architects use a definition process [7] to define
pattern metrics from constraints of the patterns they plan to use; on the other hand,
using certain responsibility collecting technique, architects acquire responsibilities
from requirement specifications. Pattern metrics and responsibilities are used as in-
puts for pattern synthesis and responsibility synthesis respectively in our approach to
finally generate architecture solutions. We will present the formal definition of the
automated pattern-based AS problem in the next section, which is further translated
into a cooperative coevolution problem detailed in Section 4.

Requirement
Specifications

Pattern
Constraints

Pattern Metrics

Pattern Metrics Definition Process

Pattern
Synthesis (PS)

Input

Responsibilities

Responsibility Collecting Technique

Responsibility
Synthesis (RS)

Input

cooperative coevolution

Candidate
Architecture

Solutions

Cooperative Coevolution Approach for

Automated Architectural Synthesis

Generate Generate

Process

Data

Document

Sequence

Fig. 1. The relationship between our cooperative coevolution approach and related techniques

3 The Problem

A pattern provides a generic solution for a recurring problem: a solution that can be
implemented in many ways without necessarily being “twice the same”, and there is

 Co-evolving Pattern Synthesis and Class Responsibility Assignment 77

no configurable generic implementations for patterns that cover their whole design
space [9]. However, every pattern has its invariable roles, such as model, view, and
controller in MVC pattern, and we define these invariable roles as the set of pattern
roles for each pattern, e.g., {model, view, controller} for MVC pattern.

Let R represent a set of responsibilities which are derived from requirement speci-
fications by responsibility collecting techniques, and every element in R represents
which class one specific responsibility belongs to. Hence the number of elements in R
equals the number of responsibilities, and let the number as n. In addition, let P
represent the pattern role that each responsibility plays for the chosen pattern plus the
connector type of all the relations among the responsibilities during pattern synthesis.
Let the number of relations between responsibilities as m, hence the number of ele-
ments in P equals to the number of responsibilities in R (i.e., n) plus the number of
relations (i.e., m). The first n elements in P represent the pattern role that each respon-
sibility plays in a specific pattern, while the last m elements indicate the connector
type (e.g., procedure call, event, and data access) [10] for each relation.

Fig. 2 depicts an example of R and P set that has two classes (Class 1 and Class 2)
with five responsibilities: three operations and two attributes, and there is a relation
between Operation 2 (O2) and Operation 3 (O3) that O3 depends on O2. This exam-
ple uses Layer pattern and the two classes are located in different layers. The number
of elements in R (i.e., number of responsibilities) is five, and each element indicates
which class the responsibility belongs to. For instance, O1 belongs to Class 1, while
Attribute 2 (A2) belongs to Class 2. Hence the value of R set is {C1, C1, C2, C1, C2}.
In Layer pattern, layers constitute the set of pattern roles. The first five elements in P
represent the layers that corresponding responsibilities belongs to, for example O1
belongs to Layer 0 (L0), while O3 belongs to Layer 1 (L1). In addition, as there is one
dependency between responsibilities O2 and O3, P set has one extra element which
describes the connector type of this relation, remote procedure call (RPC).

Attribute 1

Operation 1

Operation 2

Class 1

Attribute 2

Operation 3

Class 2

Layer 0 Layer 1

R:

P: L0 L0 L1 L0 L1 RPC

Responsibility Relation

C1 C1 C2 C1 C2

O1 O2 O3O1 A1 A2

Fig. 2. An example of R and P set in Layer pattern

Formally speaking, the automated pattern-based AS problem consists in establish-
ing an automated search for two optimal sets R and P following the definitions below:

• The individuals from the responsibility population (IndR): IndR is an individual
(chromosome) from responsibility population expressed as R set, and the value of
each element vi in R set represents one specific class. If two elements have the
same value, it means the responsibilities these two elements represent belong to the
same class. Therefore, vi represents one feasible design decision of responsibility
Ri, which assigns this responsibility to one class, in the whole design space.

• The individual from pattern population (IndP): IndP is an individual (chromosome)
from pattern population expressed as P set. P has two parts: responsibility and rela-
tion parts. The value of each element vi in responsibility part represents the type of

78 Y. Xu and P. Liang

pattern role for the corresponding responsibility. If two elements in the responsibil-
ity part have the same value, it means these two responsibilities play the same pat-
tern role for a given pattern (e.g., they are in the same layer in Layer pattern). For
relation part, the value of each element vi represents the connector type (e.g., RPC,
event) of this relation. Therefore, the value vi of each element in P also represents
one feasible design decision of pattern synthesis in the whole design space.
An optimal set R means this individual gets the highest score for evaluation metrics

of CRA in responsibility population, while an optimal set P means this individual has
the least pattern constraint violations in pattern population. For automated pattern-based
AS problem, our objective is to acquire the solutions which not only achieve a high
cohesion, low coupling and complexity design for CRA, but also have minimal pattern
constraint violations. Therefore, the problem can be featured as a multi-objective opti-
mization problem, and the responsibility and pattern population have a cooperative
coevolution relationship for acquiring the final optimal architecture solutions.

4 Cooperative Coevolution Approach

The proposed approach coevolves two populations: responsibility and pattern popula-
tions. Fig. 3 illustrates the cooperative coevolution procedure with following steps:

1. Population initialization: The two populations are randomly generated, taking into
account the set of responsibilities, pattern roles of these responsibilities, and all the
relations among these responsibilities. Each population has a fixed size to form in-
dividuals (i.e., a series of IndR and IndP), which is described in Section 3.

2. Calculating the fitness of population:
(a) Best individual selection for responsibility population (BestIndR): in the first

generation, an individual from responsibility population is randomly selected as
the best individual. From the second generation, BestlndR is the individual with
the best score for the fitness function defined in Section 4.2 for CRA problem.

(b) Best individual selection for pattern population (BestIndP): the best individual
from pattern population is selected. We define a fitness function in Section 4.2
to ensure BestIndP has the least pattern constraint violations.

3. Applying genetic operators. Genetic operators include selection, crossover, and
mutation operators [11]. In this step, for each population, a selection operator is
used to select parents from all individuals for the crossover operation which gene-
rates sons using a crossover operator. Then mutation is performed using a mutation
operator for each individual to produce the next generation for the two populations.

4. Stopping condition satisfied. If the limit of generations established by the input pa-
rameters of the meta-heuristic algorithm is reached, the execution of the coopera-
tive coevolution procedure is stopped. As there are two objectives to be optimized
(i.e., maximized cohesion metrics, minimized coupling and complexity metrics for
CRA; and minimized pattern constraint violations for pattern implementation at
architectural level), our approach returns a Pareto front (i.e., a set of solutions
represent the best possible trade-offs among the two objectives) constructed by
BestIndR and BestIndP when the stopping condition is satisfied.
It is expected that using this cooperative coevolution approach architects can ac-

quire optimized solutions with better CRA and minimized pattern constraint violations.

 Co-evolving Pattern Synthesis and Class Responsibility Assignment 79

In the following sub-sections, we describe representation of individuals for each popu-
lation, and the fitness functions in detail.

1. Initial

responsibility

population

1. Initial

pattern

population

2. Calculate

the Fitness

2. Calculate

the Fitness

4. Satisfy

Stopping

Condition?

4. Satisfy

Stopping

Condition?

3. Applying

Genetic

Operations

EndYes Yes

Pareto Front of

automated pattern-

based architectural

synthesis problem

Output

No No

3. Applying

Genetic

Operations

Fig. 3. Cooperative coevolution procedure of our approach

4.1 Representation of Individual

As illustrated in Fig. 2, there are two kinds of individuals, one is R set from responsi-
bility population, and the other is P set from pattern population. We describe them in
the next two sub-sections.
a) Individuals in Responsibility Population
To encode the class responsibility assignment of a system in a chromosome (i.e., R
set), we define the concept centroid responsibility (CR) similar to the concept centro-
id use case in [12]. In our approach, for each class, a CR is considered as a repre-
sentative of other responsibilities belonging to that class, and R set is represented as a
binary string of length n, where n is the total number of responsibilities. If the value
of an element is “1”, its corresponding responsibility is a CR; and otherwise when the
value of the element is “0”, then its corresponding responsibility is a non-CR. There-
fore, the number of “1” in the binary string of R set shows the number of classes. For
instance, one possible binary string in Fig. 2 is [10100], in which O1, O3 are CRs of
Class 1 and Class 2. For those responsibilities that are not CRs, they are assigned to
the most similar class. Here, the similarity between a non-CR and a class is equivalent
to the similarity between the non-CR and the CR of that class. For example, in Fig. 2,
if O2 is more similar to O1 compared with O3, then O2 is assigned to Class 1.

The core part of the encoding scheme for responsibility population is to define the
similarity function to calculate the similarity between any two responsibilities. When
using responsibility collecting techniques to collect the responsibilities of a system
and the dependencies between responsibilities, we can acquire many types of depen-
dencies between two responsibilities, such as Direct Method-Method dependency
(DMM), Direct Method-Attribute dependency (DMA), and Direct Responsibility-
Responsibility Semantic dependency (DRRS) [5]. For each type of dependency, we
use a binary matrix to show the presence or absence of dependencies between respon-
sibilities, and we use Jaccard binary similarity measurement [5] to calculate the simi-
larity between two vectors in binary matrix.

80 Y. Xu and P. Liang

As many types of dependencies (e.g., DMM) exist between two responsibilities,
we assign each dependency type a specific weight to calculate the similarity between
two responsibilities (e.g., Ri and Rj) using Formula (1), in which wk denotes the weight
of certain dependency type dep, Simdep(Ri, Rj) calculates the similarity between two
responsibilities with the binary matrix of dependency type dep, and n represents the
number of dependency types: Sim , ∑ ,∑ (1)

b) Individuals in Pattern Population
To encode the pattern synthesis of a system in a chromosome (i.e., P set), we use
integer number for both responsibility and relation part of P set. For responsibility
part, each integer number represents the pattern role for the corresponding responsi-
bility. For Layer pattern, the integer number represents the specific layer directly. For
instance, in Fig. 2, the responsibility part of P is [0,0,1,0,1], in which only O3 and A2
are in Layer 1, and other responsibilities belong to Layer 0. The maximum value of
the integer number equals the total number of responsibilities, which means in an
extreme condition, every responsibility belongs to a separate layer. For other patterns
(e.g., MVC), the specific value of the integer number represents a specific role in that
pattern (e.g., in MVC, 0 for model, 1 for view, and 2 for controller). For relation part,
each integer number represents the connector type for corresponding relation. For
example, we can use 0 to 6 to represent the 7 different connector types in [10].

4.2 Fitness Function

Many approaches have been proposed to address the CRA problem, and most of them
use object-oriented metrics which are based on the CK metrics to define their fitness
function. We also use these metrics. Formula (2) shows the fitness function for CRA
problem, which is used to maximize the overall cohesion and minimize the overall
coupling and complexity of software. The details about the cohesion, coupling, and
complexity metrics are introduced respectively in [5].

 Fitness Score SoftwareCohesion SoftwareCoupling SoftwareComplexity (2)

For pattern synthesis, our objective is to minimize the violations of pattern con-
straints. In our recent work [7], we proposed a definition process for pattern metrics,
which is composed of three steps (identify the roles of a pattern, the relations within a
pattern, and the domain related metrics). The definition process takes pattern con-
straints as input, and output a series of pattern metrics. Each metric measures the
number of violations for a specific type of pattern constraint. It is worth noting that
every pattern has its own metrics, and different metrics have different weights [7].
Hence we can quantify the pattern constraint violations for a specific pattern using
Formula (3), in which wk represents the weight of a specific metric metrick of the cho-
sen pattern, and n is the number of pattern metrics for that pattern. Fitness Score ∑ ∑ (3)

Architects can acquire architecture solutions which consider both CRA and pattern
synthesis. In each generation, the Pareto front can be established and updated with
these solutions automatically. When the cooperative coevolution procedure terminates,

 Co-evolving Pattern Synthesis and Class Responsibility Assignment 81

any solution of the Pareto front may be considered as optimal, since it means that no
further improvement can be made for an objective without degrading another.

5 Conclusions

Architectural synthesis essentially links the problem to the solution space and plays a
key role in architecting process from requirements to initial architecture design. How-
ever, due to its complexity, this architecting activity heavily depends on the expe-
rience of architects. In this paper, we propose a cooperative coevolution approach to
assign class responsibility and synthesize pattern automatically in the pattern-based
AS. We formally translate the problem of the automated pattern-based AS into a mul-
ti-objective optimization problem. One objective is to maximize the cohesion and
minimize the coupling and complexity of solutions for class responsibility assign-
ment, and the other objective is to minimize the pattern constraint violations for the
chosen pattern. We then describe the cooperative coevolution approach, including the
representation of the problem, and the fitness function to evaluate the solutions. In the
next step, we plan to conduct controlled experiments that compare the quality of ar-
chitecture design between the generated pattern-based AS solutions using our ap-
proach and the solutions by human architects based on the same design problems.

References

1. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A general
model of software architecture design derived from five industrial approaches. J. Syst.
Softw. 80(1), 106–126 (2007)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn. Addison-
Wesley Professional (2012)

3. Belle, A., El Boussaidi, G., Desrosiers, C., Mili, H.: The layered architecture revisited: Is it
an optimization problem? In: SEKE, pp. 344–349 (2013)

4. Bowman, M., Briand, L.C., Labiche, Y.: Solving the class responsibility assignment prob-
lem in object-oriented analysis with multi-objective genetic algorithms. IEEE Trans.
Softw. Eng. 36(6), 817–837 (2010)

5. Masoud, H., Jalili, S.: A clustering-based model for class responsibility assignment prob-
lem in object-oriented analysis. J. Syst. Softw. (2014)

6. Črepinšek, M., Liu, S., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: A survey. ACM Comput. Surv. 45(3), 1–33 (2013)

7. Xu, Y., Liang, P.: Automated software architectural synthesis using patterns: A coopera-
tive coevolution approach. In: SEKE, pp. 174–180 (2014)

8. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20(6), 476–493 (1994)

9. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture: On
Patterns and Pattern Languages, 1st edn. Wiley (2007)

10. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connectors. In:
ICSE, pp. 178–187 (2000)

11. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based Software Engineering:
Techniques, Taxonomy, Tutorial. In: Meyer, B., Nordio, M. (eds.) Empirical Software
Engineering and Verification. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012)

12. Hasheminejad, S.M.H., Jalili, S.: SCI-GA: Software component identification using genetic
algorithm. J. Object Technol. 12(2), 1–34 (2013)

Ontology-Driven Pattern Selection

and Matching in Software Design

Tommaso Di Noia, Marina Mongiello, and Eugenio Di Sciascio

Dipartimento di Ingegneria Elettrica e Dell’informazione – Politecnico di Bari
Via E. Orabona, 4 – 70125 BARI, Italy

{firstname.lastname}@poliba.it

Abstract. Design patterns are a meaningful technology for supporting
the construction and modeling of software systems. Besides their use
is related to the non-functional requirements fulfillment that is also an
open challenge in the field of software design. In this work we propose a
theoretical approach for modeling relationships and sequences of patterns
and for modeling the taxonomy that relates patterns with ensured non-
functional requirements for given application contexts. The approach
is based on the use of Description Logics for modeling the domain of
patterns and for reasoning tasks on the modeled domain. We developed
a framework for supporting the architectural modeling phase and used it
to verify the effectiveness of both the patterns conceptualization and the
use of non-standard reasoning tasks for querying the pattern ontology.

1 Introduction and Motivation

The past two decades have witnessed the explosive growth and diffusion of dis-
tributed systems that moved beyond traditional application areas, namely in-
dustrial automation, defense and telecommunication to several domains, such
as e-commerce, financial services, health care, and so on. Anyway, though the
quick and wide diffusion and the increasing ubiquity of distributed systems,
their design yet faces a number of challenges. Best practices in developing and
refactoring distributed systems mainly refer to the use and implementation of
reusable solutions conveyed through design models and patterns that provide
verified and tested solutions to given situations in distributed computing. Pat-
terns derive from the experience gathered by designers over the last three or
four decades and are based on the idea of finding solutions to given problems
by recalling a similar problem that has already been tackled and solved and by
adopting that abstract solution to solve the problem at hand [5], [3],[2]. Design
patterns are somewhat related to Non-functional requirements [7], that play an
important role in the design of a software system. Even though several quality
models are available to classify and characterize software quality [9], there is
not a formal definition and taxonomy of non-functional requirements, neither an
explicit definition of their treatment in software modelling and development.

To this purpose we propose a modeling solution for design patterns and non
functional requirements by using an ontology, that is a common terminology sup-
ported by semantics and algorithms linked to the reasoning services that allow

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 82–89, 2014.
c© Springer International Publishing Switzerland 2014

Ontology-Driven Pattern Selection and Matching in Software Design 83

one to query and retrieve in the given domain also on specific sub-problems. We
also implemented a framework to manage the ontology and run reasoning ser-
vices on it. The framework retrieves a set of patterns compliant with the set that
the experience would have proposed and selects the most appropriate solution
for the set of specified requirements. The remaining of this paper is organized
as follows. Section 2 recalls basics of ontologies and Description Logics. Section
3 describes the approach we use to model the ontology and defines a theoretical
algorithm. Section 4 draws the component based model of our framework and
presents a case study to explain the proposed idea. Section 5 presents a brief
state of the art. Conclusions and future works are drawn in the last section.

2 Ontologies and Languages for Reasoning Tasks

Description Logics (DLs) are a family of formalisms well-established in the field
of knowledge representation. In the following we only recap elements we use in
the presented approach and refer the interested reader to [1]. DLs are usually
endowed with a model-theoretic formal semantics. A semantic interpretation is
a pair I = (Δ, ·I), where Δ represents the domain and ·I is the interpretation
function. Basic elements of DLs are concept names, role names and individu-
als. The interpretation function ·I maps every concept to a subset of Δ, every
property to a subset of Δ × Δ and every individual to a single element of Δ.
Then, given a concept name CN , a role name R and an individual name a we
have: CNI ⊆ ΔI , RI ⊆ ΔI × ΔI and aI ∈ ΔI . The symbols � and ⊥ are
used, respectively, to represent the most generic concept and the most specific
concept. Hence their formal semantics correspond to �I = ΔI and ⊥I = ∅.
Concept names, role names and individual names can be combined to form con-
cept expressions. The ones allowed in our DL are built according to the following
syntax represented in the left-hand column of Table 1 where we use CN , R and
a to denote a concept name, a role name and an individual name respectively. In
the right-hand column of Table 1 the formal semantics of DL formulas is shown.
We call TBox (terminological box) a set of axioms of the form C � D (inclusion)
and C ≡ D (definition) with C and D being concept expressions. We say C is
subsumed by D w.r.t. T when T |= C � D; C is not satisfiable w.r.t. the ontol-
ogy T when it is subsumed by the most specific concept T |= C � ⊥. Besides
axioms encoding intensional information about a knowledge domain, we can
also have statements related to extensional information, i.e., about individuals
and their mutual relationships. In particular we have two possible expressions:
C(a) and R(a, b). The former stating that a is an instance of C, the latter saying
that b is related to a via R. The set of extensional statements are called ABox
(assertional box). A knowledge base is composed by a set a TBox and an ABox.

3 Problem Statement and Approach

Requirements for modeling Software andArchitecture Design aremade up of Func-
tional Requirements (FRs) and Non-functional Requirements (NRFs). While FRs

84 T. Di Noia, M. Mongiello, and E. Di Sciascio

Table 1. Syntax and formal semantics of the DL used in our approach

Syntax Semantics

Concept expressions

CN CNI ⊆ ΔI

� �I = ΔI

⊥ ⊥I = ∅
C
 D (C
 D)I = CI ∩DI

C � D (C � D)I = CI ∪DI

∃R (∃R)I =

{x ∈ ΔI | ∃y : (x, y) ∈ RI}
∃R.{a} (∃R.{a})I =

{x ∈ ΔI | (x, a) ∈ RI , aI ∈ ΔI}
∀R.C (∀R.C)I =

{x ∈ ΔI | ∀y : (x, y) ∈ RI → b ∈ CI}
¬C (¬C)I = ΔI \ CI

Syntax Semantics

TBox

C � D (C � D)I = CI ⊆ DI

C ≡ D (C � D)I = CI = DI

ABox

C(a) (C(a))I = aI ∈ CI

R(a, b) (R(a, b))I = (a, b)I ∈ RI

modeling and definition is strongly supported in software process development a
formal and rigorous method to model, implement and validate NFRs is still miss-
ing. Anyway, compliance of NFRs should be comprised and validated in the sys-
tem design and implementation since it would impact on the long-term value of
the system. In the set of NFRs a wide subset is made of quality attributes that
take part in the software quality evaluation and prediction. Nevertheless predic-
tion, evaluation and use of quality attributes is still an open challenge when build-
ing software systems. NFRs are related to design patterns that are interrelated in
sets of families grouped for problem areas [2]. Each problem area addresses a spe-
cific topic related to building distributed systems and intrinsically addresses some
specific non-functional requirements or quality attributes that are not explicitly
deductible.

Let us now consider the following typical problem of software design: ”‘Given
a set of requirements define the software design that (better) models the given
requirements”’. Generally its solution is based on empirical solutions depending
on the designer’s know-how and experience. Hence, the designer is looking for
the best design solution given a set of non-functional requirements given some
problem areas and/or pattern families related to the system. Providing an an-
swer to the previous question is not trivial as, for example, NFRs may be disjoint
with each other and cannot be satisfied at the same time; some families may not
contain patterns satisfying some of the non-functional requirements. Moreover,
the designer may not be aware of all the patterns available given a NFR or
given a pattern family. We propose to model the knowledge related to the pat-
terns domain via a set of Description Logics statements in order to have a high
level model of the domain we are dealing with and to represent relations among
non-functional properties. Moreover, we can exploit DL reasoning, in particular
instance retrieval to retrieve patterns satisfying a set of requirements. Patterns
are interrelated in sets of families grouped for problem areas [2]. Each problem
area addresses a specific topic related to building distributed systems Besides
each problem area intrinsically addresses some specific non-functional require-
ments or quality attributes that are not explicitly elicitable. So when we state

Ontology-Driven Pattern Selection and Matching in Software Design 85

Table 2. Families of patterns

Family Description NFRs

Distribution Infrastructure Patterns regarding middleware Stability
Performance
Scalability

Object Interaction Patterns that manage interac-
tion between objects in stan-
dalone programs

Scalability

Application Control Patterns used to separate inter-
face from applications core func-
tionality

Functionality
Maintainability
Security

Adaptation and Extension Patterns to ensure the adaptabil-
ity of applications and compo-
nents to specific environments

Adaptability
Extensibility
Evolution

Resource Management Patterns used to manage the life-
cycle and availability of resource
to clients

Quality of service
Performance
Scalability
Flexibility
Availability
Reliability
Portability
Security

that a pattern belongs to a family we assume that the pattern could inherit non-
functional requirements of that family, and then we state that a design pattern
has a given set of non-functional requirements. In Table 2 we summarize the
scope of some families and a number of nonfunctional requirements that each of
them ensures: a set of non-functional requirements can be intrinsically considered
inside each problem area. The set of non-functional requirements that we con-
sider belongs to two international quality models of software product: FURPS
[6] and ISO-IEC9126 [8]. The latter is a standard that defines a quality model
based on six main features: functionality, reliability, usability, efficiency, main-
tainability, portability while FURPS, developed by Robert Grady at Hewlett
Packard, is an acronym for: Functionality, U sability, U sability, Performance,
Supportability. In order to encode all the information related to non-functional
requirements, patterns and corresponding families we need a formalization of the
domain knowledge. The ontology we use to cope with this task can be seen as
composed by two main modules: the one describing at a very high level the con-
nections between patterns and families, the other modeling connections between
patterns and NFRs. The model is depicted in Figure 1 and its formal definition
is encoded in DL as:
· ∃isInFamily � Software design pattern
· � � ∀isInFamily.Families
· ∃nFR � Software design pattern
· � � ∀nFR.Non-functional requirement

Please note that the structure of the high level ontology we model makes it
possible to easily extend it to deal also with other elements, e.g, functional re-
quirements. Given the ontology we can state explicit facts about the description
of a pattern in terms of pattern family it belongs to and non-functional require-
ments it guarantees.

86 T. Di Noia, M. Mongiello, and E. Di Sciascio

Fig. 1. A graphical representation of our high-level ontology

Software design pattern(adapter pattern), Families(adaptation extension),
Non-functional requirement(adaptability), Non-functional requirement
(portability),
Non-functional requirement(stability), nFR(adapter pattern, portability),
isInFamily(adapter pattern, adaptation extension)
Besides the modelling of the relations represented in Figure 1, we use DL lan-
guage also to explicitly model relations between NFRs in the TBox. Consider
the non-functional requirements portability, adaptability, stability as previously
defined. With respect to our ontology they are defined as instances (individu-
als) of the class Non-functional requirement. Now we need to formally represent
relations between these individuals to model, for instance, interactions between
non-functional requirements. An example of mutual relation between NFRs is
the one between portability and adaptability. Indeed the former implies the lat-
ter. The above statement can be encoded with the Description Logics axiom
∃nFR.{portability} � ∃nFR.{adaptability}
We also know that a system cannot be adaptable and stable at the same time.
Hence, if a pattern guarantees adaptability it cannot guarantees also stability.
We encode such disjoint relations with the following DL statement
∃nFR.{stability} � ¬∃nFR.{adaptability}
Given the above formulation, if we are looking for the patterns that guarantee
adaptability and that belong to the adaptation and extension family we retrieve
all the individual instantiating the formula:
SoftwareDesignPattern � ∃nFR.{adaptability} � ∃isInFamily.{adaptation
extension}
Based on all the statements previously introduced we will get adapter pattern.
Indeed, by using automated reasoning we see that this pattern also guarantees
adaptability. Summing up, the ABox of the knowledge base we built is composed
by a set statements of the form:
· Software design pattern(p)
· Families(f)
· Non-functional requirement(nfr)
· isInFamily(p, f)
· nFR(p, nfr)

where p, f and nfr are individuals representing a pattern, a family of patterns
and a non-functional requirement respectively. On the other side, the TBox con-
tains statements of the following two types:
· ∃nFR.{a} � ∃nFR.{b}
· ∃nFR.{c} � ¬∃nFR.{d}

where a, b, c, d are instances of the class Non-functional requirement.

Ontology-Driven Pattern Selection and Matching in Software Design 87

Based on this modelling of the ABox and of the TBox, we may retrieve in-
stances of concept expressions in the form:
SoftwareDesignPattern�(∃nFR.{a}∃nFR.{b}. . . ∃nFR.{c}∃nFR.{d})
�(∃isInFamily.{x}∃isInFamily.{y}. . . ∃isInFamily.{z}∃isInFamily.
{t}) with x, y, z, t being instances of the class Families. The previous general
formula allows to look for patterns that satisfy one or more NFRs and belong to
one or more family patterns. Besides instance retrieval tasks, we can use auto-
mated reasoning also to check the consistency of the information encoded in the
knowledge base and, in case of inconsistency provide a possible explanation [4]
useful for knowledge revision. With respect to the statements encoded so far, we
see that a pattern that satisfies both portability and stability is not consistent.
Hence, while populating the knowledge base, it would be nice to have a service
that catches the inconsistency and provides ad explanation for it. A procedure
for consistency checking and explanation generation is provided in Algorithm
1. It computes the transitive closure T R of a pattern description p only with
respect to the information related to non-functional requirements (nFR : si).
Then, by looking at the elements available T R it checks if two or more NFRs are
conflicting with each others and adds them to the set EXP (for explanation).
Algorithm 1 uses the recursive function described in Algorithm 2 to compute
the transitive closure of a pattern description.

Data: A pattern description p and a TBox T
Result: The set of inconsistent sub-parts of p with the inconsistency explanation: EXP

1 T C = ∅;
2 EXP = ∅;
3 foreach nFR : si ∈ p do
4 T C = T C ∪ transitiveClosure(∃nFR.{si}, ∃nFR.{si}, T);
5 end
6 foreach (〈∃nFR.{x}, ∃nFR.{sk}〉, 〈¬(∃nFR.{x}), ∃nFR.{sj}〉) ∈ T C × T C, with k �= j do
7 EXP = (〈∃nFR.{x}, ∃nFR.{sk}〉, 〈¬(∃nFR.{x}), ∃nFR.{sj}〉);
8 end
9 foreach (〈¬(∃nFR.{x}), ∃nFR.{sk}〉, 〈∃nFR.{x}, ∃nFR.{sj}〉) ∈ T C × T C, with k �= j do

10 EXP = (〈¬(∃nFR.{x}), ∃nFR.{sk}〉, 〈∃nFR.{x}, ∃nFR.{sj}〉);
11 end

Algorithm 1. Inconsistency detection and explanation in a pattern de-
scription.

4 Framework Overview and System Evaluation

In this section we briefly expose the main functionalities of our framework. Cur-
rently the framework supports two main functionalities: insertion of a new pat-
tern or of a new non functional requirement and search of patterns or of non
functional requirements. The web based framework includes the Pellet1 reasoner
that uses standard services and a microreasoner that implements the algorithm
of inconsistency explanation.

As an example scenario let us consider in a Security Information and Event
Monitoring System (SIEM), the problem of designing a subsystem able to pro-
vide security services, like authentication and access control, and able to adapt
to the rapidly changing contexts of the spaces. The system evaluates events and

1 http://http://clarkparsia.com/pellet/

http://http://clarkparsia.com/pellet/

88 T. Di Noia, M. Mongiello, and E. Di Sciascio

1 Function transitiveClosure(gen, seed, T)is
Data: A piece of a pattern description of the form ∃R.{s} (seed) and an expression of

the form ∃R.{x} or ¬∃R.{x} (gen) generated starting from seed via the set of
axioms composing the TBox T .

Result: The transitive closure of seed.
2 switch gen do
3 case ∃R.{x}
4 if ∃R.{x} � ∃R.{y} ∈ T then
5 return {〈∃R.{x}, ∃R.{s}〉}∪ transitiveClosure(∃R.{y}, ∃R.{s}, T);
6 end
7 if ∃R.{x} � ¬(∃R.{y}) ∈ T or ∃R.{y} � ¬(∃R.{x}) ∈ T then
8 return {〈∃R.{x}, ∃R.{s}〉}∪ transitiveClosure(¬(∃R.{y}), ∃R.{s}, T);
9 end

10 return {〈∃R.{x},∃R.{s}〉};
11 end
12 case ¬(∃R.{x})
13 if ∃R.{y} � ∃R.{x} ∈ T then
14 return {〈¬(∃R.{x}), ∃R.{s}〉}∪ transitiveClosure(¬(∃R.{y}), ∃R.{s},

T);

15 end
16 return {〈¬(∃R.{x}), ∃R.{s}〉};
17 end

18 endsw

19 end

Algorithm 2. Computation of the transitive closure of a pattern descrip-
tion

security policies based on the context. We refer to an adaptive authentication
subsystem that when the user logs in, takes into account a number of context
parameters (IP and place, time and date, etc..) and decide whether or not to
authenticate the user and the mechanism by which to authenticate (more or less
secure mechanism). A non functional requirement here should be clearly adapt-
ability. The most appropriate architectural styles for realizing adaptability are
in the family of ”Adaptation and Extension”’, as the Adapter pattern. Besides,
patterns belonging to others families achieve other functionalities required by the
system and fulfill other non functional requirements. Other properties that the
system should provide are stability, availability and reliability – hence depend-
ability – and portability. The decision problem is that of selecting the strategy
that properly considers the right balance between attributes. In fact dynamic
adaptation can hamper both dependability, and stability hence the modeled ar-
chitecture must be the result of the best balancing between those parameters.
So the method should select the pattern or the combination of patterns that
provides the right balancing of the trade-off between stability and adaptability,
and between adaptability and dependability. Portability is instead implied by
adaptability.

To manage the interprocesses communication, let us consider patterns of
the “Distribution infrastructure” family: styles that require direct dependen-
cies among the components such as virtual machines or distributed objects can
hamper adaptability, so we choose patterns that support event-based interaction
such as publish-subscribe and implicit invocation.

Patterns useful for implementing publish-subscribe or implicit invocation can
be respectively Broker and Observer. Now, when implementing a Broker for a
component based system, we try to decouple a component from the technical

Ontology-Driven Pattern Selection and Matching in Software Design 89

details of its environment. In the described scenario we further need to integrate
components into diverse application deployment scenarios and execute them on
various system platforms without explicit programmer intervention. Also hav-
ing different ways of accessing to system resources and having different security
policies we need to initialize and provide a run-time context for the component.
This is a typical environment for the application of Container pattern. Container
defines operations that enable component objects to access the common middle-
ware services such as persistence, event notification, security. Container belongs
to “Resource Management” family that has reliability, availability and security
as NFRs, so ensures dependability. Observer inherits security as NFR from the
“Application Control” family.

5 Conclusion and Future Work

In this paper we introduce a formal model to relate non-functional requirements
and design patterns in a DL ontology. The scope of the ontology is to provide
a formal representation of the relations among design areas, non-functional re-
quirements and design patterns and to reason with such a representation to help
the designer during the selection of the right set of patterns that best match
the initial requirements. We are currently performing extensive experiments on
a structured benchmark to test the framework functionalities and performance
on simple and on composable schemes also in more advanced architectural en-
vironments.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

2. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-oriented software architecture:
A pattern language for distributed computing, vol. 4 (2007)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-oriented
software architecture: A system of patterns. John Wiley & Sons, Inc., New York
(1996)

4. Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic Matchmaking as Non-Monotonic
Reasoning: A Description Logic Approach. Journal of Artificial Intelligence Re-
search 16, 209–257 (2006)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
reusable object-oriented software. Pearson Education (1994)

6. Grady, R.B.: Successfully applying software metrics. Computer 27(9), 18–25 (1994)
7. Gross, D., Yu, E.: From non-functional requirements to design through patterns.

Requirements Engineering 6(1), 18–36 (2001)
8. ISO/IEC. Software product evaluation: Quality characteristics and guidelines for

their use (1991)
9. Naragani, D.P., Uniyal, P.: Comparative analysis of software quality models. Inter-

national Journal of Computer Science and Management Research 2(3) (2013)

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 90–97, 2014.
© Springer International Publishing Switzerland 2014

Towards an Improved Stakeholder Management
for Software Reference Architectures

Samuil Angelov1 and Rich Hilliard2

1 Software Engineering, Fontys University of Applied Sciences, The Netherlands
s.angelov@fontys.nl

2 Consulting software systems architect, USA
r.hilliard@computer.org

Abstract. A recent survey on software reference architectures (RA) indicates
their widespread usage. Among the leading problems when designing and
using RA, practitioners point to various aspects of stakeholder management
(e.g., stakeholder identification, involvement). In this paper, we identify and
analyze issues that lie at the basis of the problems reported in stakeholder man-
agement, with a goal to improve the state of the practice.

Keywords: Reference architecture, stakeholder management and identification.

1 Introduction

Software reference architectures have emerged as reusable resources for creating
software architectures within a domain of application [1]. Definitions for the term
software reference architecture (RA) and software architectures of individual systems
(SA) are discussed in [1], [2]. RA are used to lower costs, improve software quality,
improve communications, etc. While RA have an indisputable role in the software
community, practitioners indicate facing a substantial number of problems when de-
signing and using RA [3]. Among the leading problems reported during design are
the identification and involvement of stakeholders and the dissemination of the RA to
the stakeholders for usage. Problems reported during usage of RA are poor quality
and lack of clear benefits for the stakeholders [3], which indicate that stakeholder
management was not properly performed during the RA design. We conclude that
stakeholder management in RA is a problem that needs to be investigated.

Literature does not address particular methods for stakeholder management for RA
and knowledge from the design of system architectures must be applied to cases of
RA. In this paper, we show that RA exhibit a number of specifics that existing work
on stakeholder management in system architectures does not address. In Sections 2
and 3, we review the literature on stakeholders and stakeholder management and ana-
lyze the results from our literature overview, and build a model that we use for struc-
turing and positioning our research. In Section 4, we analyze RA and identify their
specifics compared to SA from the perspective of stakeholder management. In Sec-
tion 5, we validate our findings and draw final conclusions.

 Towards an Improved Stakeholder Management for Software Reference Architectures 91

2 Literature Review

We start our literature review with an overview of the domain of organizational
science, as it sets the fundaments of the stakeholder notion. Next, we discuss the
software engineering and software architecting domains.

2.1 Stakeholders in Organization Management

Definitions of “Stakeholder”. Freeman [4] defines a stakeholder in an organization
as “any group or individual who can affect or is affected by the achievement of the
organization’s objectives”. Mitchell et al. summarize definitions found in the organi-
zational literature until 1997 [5] and categorize them as either broad [4] or narrow
(based on various “relevance properties” an entity may have for an organization).
They point out that the notion of a “stake” is the leading one in defining who can be a
stakeholder. Project management methods (e.g., PRINCE2, PMI) naturally focus on
the relationship between entities and a project [6]. An overview of the historical de-
velopment of the stakeholder concept is provided in [7].

Stakeholder Categories and Methods. In [5], a method for stakeholder identifica-
tion is proposed. The method is based on three attributes: power, legitimacy and ur-
gency. Possession of one or more of these attributes indicates a stakeholder. Classes
of stakeholders are defined on the basis of combinations of the three attributes. The
method is applied in a number of case studies (e.g., in [8]). Two approaches for stake-
holder identification are discussed in [9]. In the first approach, named the relationship
approach, stakeholders are identified on the basis of their relations with the organiza-
tion. The types of relations which serve as a basis for the identification of stakehold-
ers are defined to be voluntarism, mutual benefit, and community membership. In the
second approach, named the assignment approach, the relations are based on moral
considerations. The classification scheme in [10] identifies two classes of stakehold-
ers, actively involved and passively involved. A stakeholders management process
model is proposed in [7]. Stakeholder identification, defined as the first step in this
process model, is based on the stakeholder categorization scheme proposed in [11],
where primary (critical for the organization’s survival), secondary (not critical), and
public (infrastructure and legislation framework providers) types of stakeholders are
defined. Vos and Achterkamp [10] argue that in addition to the stakeholder classifica-
tion, stakeholder identification should be augmented with procedural guidelines that
define how a stakeholder classification scheme should be applied to identify actual
stakeholders and that classification schemes should be context specific, shifting the
focus from the organization at-large to specific types of projects. In [7], [10] refer-
ences to other stakeholder classification schemes are provided.

2.2 Stakeholders in Software Engineering

Definitions of “Stakeholder”. Within software engineering, the focus on stakehold-
ers pertains to requirements definition: “Requirements are the basis for every project,
defining what the stakeholders (…) in a potential new system need from it” [12].

92 S. Angelov and R. Hilliard

The authors of [13] provide references to stakeholder definitions. According to [14], a
project stakeholder is “someone who gains or loses (…) as a result of that project”.

In software architecting, a software system stakeholder is an “individual, team, or
organization (or classes thereof) with interests in, or concerns relative to, a system”
[15]1. Stakeholders and their concerns drive architecture-related decisions, in particu-
lar architecture representation [16]. Rozanski and Woods [17], following IEEE Std
1471:2000 [15], define a stakeholder in a software architecture as “a person, group,
or entity with an interest in or concern about the realization of the architecture”.

Stakeholder Categories and Methods. Stakeholder categorization has been seen as
the core of stakeholder identification and management in software engineering. Ef-
forts to categorize stakeholders are reported for example in [18], [19], [17], [20].
McManus notes that “stakeholder involvement is generally context-specific;
what works in one situation may not be appropriate in another” [21]. He classifies
stakeholders into primary, secondary, external, and extended. Preis et al. propose a
stakeholder classification framework based on system science techniques [22]. The
stakeholders are divided into two classes: goal oriented and means oriented. A con-
ceptual summary of classifications schemes in the literature is provided in [23].

A number of efforts defining methods for stakeholder identification exist. Sharp et
al. [13] propose an approach for identification of stakeholders of a software system
based on categorizing the interactions in a project between the stakeholders. The
stakeholders are typed as baseline, satellite, client and supplier stakeholders. Baseline
stakeholders (users, developers, legislators and decision-makers) are the starting point
from which stakeholders of the other types are identified. In [14], an approach for the
stakeholder identification and managing their involvement is proposed. The stake-
holder classification scheme is based on the “onion model”, where stakeholders may
take different positions depending on how closely they are related to the system (at
the center of the onion). MacManus also pays attention to the stakeholders’ involve-
ment [21]. He notes that stakeholder involvement is based on the central goal and
project objectives. The work in [23] focuses on stakeholder identification in the
development projects for inter-organizational systems.

2.3 Stakeholders in Reference Architectures

In [1], the stakeholders are classified based on the number of RA receiving organiza-
tions, their role in the RA design process, and the type of organization they represent.
In a case study made of five Dutch municipalities [24], Galster et al. discuss two
stakeholder categories: the customers and software vendors who are applying RA.
Martínez-Fernández et al. [25] consider RA in a specific context: a software consul-
tancy company defining for their clients RA and define two types of stakeholders: the
RA team (software architects and architecture developers) and “concrete software
architecture teams” (the application builders). Cloutier et al. [26] mention stake-
holders of RA to be ranging from engineers to business managers and customers.
Notably, one of their conclusions is that further research on the stakeholders of RA is
needed.

1 The stakeholder concept is treated in a broader sense in [8] and [9].

 Towards an Improved Stakeholder Management for Software Reference Architectures 93

3 An Approach for RA Stakeholder Analysis

From the literature overview, it can be observed that the term “stakes” presents sever-
al ambiguities and that authors search for substitute terminology (e.g., “affect”, “in-
terest”). We use the definition from [15]: “A stakeholder of a P is an individual, team,
organization, or classes thereof, with an interest in P”. With respect to the issues at
stake, in organizational sciences the broad notion of “organization” (or “projects”
within it) is seen as the basic issue. In software engineering the issues at stakes lie in
the software system [16], [27], or in the project for its creation [14], [18]. The precise
issue at stake, however, is often weakly defined. In architecting, the focus lies on
identifying all stakeholders whose concerns will influence the architecture [16]. Most
efforts focus on providing one or a combination of categorization schemes that facili-
tate stakeholder identification. Specifically for RA, the stakeholder categories are
defined only for specific contexts [24], [28] or in an informal manner [1].

Fig. 1. Areas of stakes in software system design
and development

Fig. 2. Relationship between the stake-
holder sets [Venn diagram]

Based on our observations from the literature review, we define a model in which
we ascribe to each major sub-process and product of the notional software develop-
ment cycle an “area” with its stakeholders (see Fig. 1). The “stakeholder areas” cover
all the entities with an interest in the specific process or product. The “system stake-
holders” (stS) include stakeholders with developmental, technological, business, etc.
influences (as defined in [16]). The “development process stakeholders” (stSdev) are
the stakeholders of the development process. The “SA design stakeholders” (stSAde)
are those with concerns about the design process (architects, project leaders, project
managers, etc.). Obviously, an entity may be a stakeholder in several of the stake-
holder areas (see Fig. 2). The model in Fig. 1 is inspired by the approach of [5] and
our observation that the issues at stake need to be well-defined – we focus on the
elements of a project, i.e., main processes and products.

Fig. 3. Areas of stakes in the case of RA, usage decoupled (S2)

stSstSdevstSAstSAde

S-m Dev.SA
Software
systemSA Design

stRAstRAde

RARA Design
Time

T [t1, }

94 S. Angelov and R. Hilliard

The process of elaborating a reference architecture is conceptually comparable to
the process of SA elaboration. Therefore, we extend the initial model with the corres-
ponding RA sub-process and product (see Fig. 3, time gap is explained in Section 4).
The stakeholders of the RA design process (stRAde) and the RA (stRA) are the new
elements in the scenario and are the focus of our research. We also investigate if
stakeholder management in the other elements changes when a RA is used.

4 Specifics of RA in Stakeholder Management

In this section, we identify the specifics (Si) of stakeholder management for RA con-
trasted with SA. The set of specifics was defined by studying and analyzing publica-
tions on RA (e.g., [2], [3], [25], [26], [28], [29]).

Looking at the types of purposes and goals of a RA design discussed in [3], [26],
[28], (e.g., “decrease development costs”, “speed up projects”, “standardization”), we
observe that they are predominantly stemming from stSAde and stSdev. In the case of
SA, the purposes and goals of architecting are defined by a balance of design, devel-
opment, and system drivers. These concerns are also relevant for a RA design, but
they are not defining the purpose and goals of a RA design.
S1 (New concerns, New dominant drivers): The purpose of a RA is typically targeted
towards stSAde and stSdev.
Consequences: The incentives for getting involved in a RA design project for re-
quirements elicitation and architecture evaluation may be lower for the stSA who are
neither stSAde nor stSdev. At the same time, the stSAde and SA-interested part of the
stSdev become the main beneficiaries of the effort. For the stSAde, this implies
changes in their roles, as they become consumers of the effort, while previously their
role was in producing a SA. Furthermore, the new purposes require the involvement
of new (not typical for SA) stRA. For example, standardization purposes can lead to
the introduction of standardization organizations [29]. Cost reduction and project
efficiency concerns may arise from the interests of higher management levels (e.g.,
program managers, governance bodies) and enterprise architects.
S2 (Usage Decoupled): The RA design and its usage may be separated with a substan-
tial period of time, often unknown at design-time (see Fig. 3). In certain scenarios, a
RA may be defined without any specific planned usages.
Consequences: The decoupling of usage from design means that concerns that need
to be reflected in the RA will come from stakeholders not seeing directly the results of
their inputs. This allows us to distinguish actual (where RA usage is planned) and
potential stRA (where the RA usage is not planned). Involvement and retention of the
potential stRA may be difficult due to insufficient motivation.
S3 (Multiple Applications): RA have a scope, i.e., they are intended to be applied
multiple times in different cases (see Fig. 4, where we indicate the possible multi-
organization application scenario with dashed lines).
Consequences: The multiple application contexts (potentially, across multiple organi-
zations) of a RA mean that the stakeholders for the application of a RA can differ
per application case. In the situations of very high (or unlimited) number of applica-
tion contexts, across multiple organizations, not all stakeholders can be involved

 Towards an Improved Stakeholder Management for Software Reference Architectures 95

Fig. 4. Multiple applications of RA (S3) and design organizations (S4)

and choices need to be made. To indicate the multiple application contexts, we refer
to the stakeholders of an eventual system i targeted by a RA as stSi, stSdevi, stSAi,
stSAdei.

S4 (Cross-organizational design): The design of RA can be of cross-organizational
nature, i.e., a RA may be designed by several, independent organizations (see Fig. 4).
Consequences: A cross-organizational effort puts the organizations involved in a RA
design in a complex communication and management situation. Different organiza-
tions may have different policies, rules, and strategies, leading potentially to conflicts
with the concerns of other stakeholders and the selection of the design organizations
is challenging. To tackle these problems a coordination (management) body of some
type may be introduced.
S5 (Long-life): A RA is an investment. It is intended to be applied over a period of
time in which the initial investment will pay out. A RA has a life beyond the life of
individual systems.
Consequences: The longer life of RA means that the stRAde need to remain active
after the initial design and ensure RA evolution for the time the RA is intended to be
maintained (leading to a more complicated management of the stRAde involvement).
S6 (Abstract): Because RA are to be applied in multiple contexts, they are typically
defined at a higher level of abstraction, where specific choices are deferred.
Consequences: RA may be harder to understand, use, and communicate due to this
increased abstractness. This may lead to an inability to (properly) apply a RA by its
users, frustration, criticism, etc. This may be the cause for stakeholders abandoning or
not (fully) engaging in RA application projects.

The specifics identified by us have not been addressed in the software engineering
and architecting literature on stakeholder management reviewed in Sections 2.2 and
2.3. Based on the consequences of the specifics, we have made a number of observa-
tions on the stRA and stRAde, which we summarize in Table 1.

Table 1. Observations on the stakeholders of RA

Stakeholders of RA Source
A stRAde is a stRA. definition
The stSAi and stSAdei of an eventual system i targeted by the RA are potential stRA. S1, S2, S3
For RA with efficiency goals, higher management roles (program managers, enterprise
architects) are stRA. For RA with standardization goals, standardization bodies are stRA.

S1

For stRAde from multiple organizations, a coordination body may be a stRAde. S4
stRAde may be stSAdei in order to obtain feedback on the RA and evolve it. S5

96 S. Angelov and R. Hilliard

5 Validation and Conclusions

As initial steps in establishing the validity of the specifics identified, we have studied
two well-documented RA: RASDS [30] and ESDS RA [31]. We sought evidence to
demonstrate the existence of the specifics. Both the Reference Architecture for Space
Data Systems (RASDS) [30] and the Earth Science Data System Reference Architec-
ture ESDS [31] exemplify all specifics, except for S4 in ESDS due to the single-
organization application scope of the RA. Next, we validated the specifics for
completeness. Our approach is to study “framework papers” that define the funda-
ments of RA and which were not used in our initial analysis. We have considered [26]
and [32] for this purpose, where [26] focuses on the RA purposes, contexts, and
processes and [32] on the RA elements making them complimentary in covering
the RA landscape. As a result from this step, we have identified the omission of the
“evolution” of RA, which has led to the addition of S5 to our list of specifics.

Therefore we conclude that the six specifics of RA identified do exist. Their criti-
cal role for stakeholder management can be traced back in their relation to the
problems reported in [3]. Existing literature on stakeholder management in system
architecting does not provide direct solutions for these specifics. We conclude that
a dedicated method for stakeholder management for RA is desired. The results pre-
sented in this paper are a first step towards such a method.

References

1. Angelov, S., Grefen, P., Greefhorst, D.: A Framework for Analysis and Design of Software
Reference Architectures. Inf. and Soft. Technology 54(4), 417–431 (2012)

2. Angelov, S., Trienekens, J.J.M., Grefen, P.: Towards a Method for the Evaluation of Ref-
erence Architectures: Experiences from a Case. In: Morrison, R., Balasubramaniam, D.,
Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 225–240. Springer, Heidelberg
(2008)

3. Angelov, S., Trienekens, J., Kusters, R.: Software Reference Architectures - Exploring
Their Usage and Design in Practice. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957,
pp. 17–24. Springer, Heidelberg (2013)

4. Freeman, R.E.: Strategic Management: A Stakeholder Approach. Pitman, Boston (1984)
5. Mitchell, R., Agle, B., Wood, D.: Toward a Theory of Stakeholder Identification and Sa-

lience: Defining the Principle of Who and What Really Counts. Academy of Management
Review 22(4), 853–886 (1997)

6. Project Management Institute, A Guide to the Project Management Body of Knowledge
(PMBOK Guide), 4th ed. Project Management Institute Inc., Pennsylvania (2008)

7. Preble, J.: Toward a Comprehensive Model of Stakeholder Management. Business and
Society Review 10(4), 407–431 (2005)

8. Parent, M., Deephouse, D.: A Case Study of Stakeholder Identification and Prioritization
by Managers. Journal of Business Ethics 75, 1–23 (2007)

9. Cappelen, A.: Two Approaches to Stakeholder Identification. Ethics and Economics 2(2),
1–9 (2004)

10. Vos, J., Achterkamp, M.: Stakeholder Identification in Innovation Projects - Going
Beyond Classification. European J. of Innovation Management 9(2), 161–177 (2006)

 Towards an Improved Stakeholder Management for Software Reference Architectures 97

11. Clarkson, M.: A Stakeholder Framework for Analyzing and Evaluating Corporate Social
Performance. Academy of Management Review 20, 65–91 (1995)

12. Hull, E., Jackson, K., Dick, J.: Requirements Engineering, 3rd edn. Springer (2011)
13. Sharp, H., Finkelstein, A., Galal, G.: Stakeholder Identification in the Requirements

Engineering Process. In: Proceedings of the Tenth International Workshop on Database
and Expert Systems Applications. IEEE Computer Society (1999)

14. Alexander, I., Robertson, S.: Understanding Project Sociology by Modeling Stakeholders.
IEEE Software 21(1), 23–27 (2004)

15. IEEE: Recommended Practice for Architectural Description of Software-Intensive
Systems.Std 1471-2000. IEEE (2000)

16. ISO/IEC/IEEE: Systems and software engineering —Architecture description. 42010,
ISO/IEC/IEEE (2011)

17. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives. Addison-Wesley Professional (2005)

18. Cotterell, M., Hughes, B.: Software Project Management. Int. Thomson Publishing (1995)
19. Newman, W., Lamming, M.: Interactive System Design. Addison-Wesley (1995)
20. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and

Case Studies. Addison-Wesley (2002)
21. McManus, J.: A Stakeholder Perspective within Software Engineering Projects. In: Pro-

ceedings of the 2004 IEEE International I Engineering Management Conference, vol. 2,
pp. 880–884. IEEE (2004)

22. Preiss, O., Wegmann, A.: Stakeholder Discovery and Classification Based on Systems
Science Principles. In: Proceedings of the Second Asia-Pacific Conference on Quality
Software, pp. 194–198. IEEE (2001)

23. Ballejos, L., Montagna, J.: Method for Stakeholder Identification in Interorganizational
Environments. Requirements Eng. 13, 281–297 (2008)

24. Galster, M., Avgeriou, P., Tofan, D.: Constraints for the Design of Variability-Intensive
Service-Oriented Reference Architectures – An Industrial Case Study. Information and
Software Technology 55(2), 428–441 (2013)

25. Martínez-Fernández, S., Ameller, D., Ayala, C., Franch, X., Terradellas, X.: Conducting
Empirical Studies on Reference Architectures in IT Consulting Firms. UPC (2012)

26. Cloutier, R., et al.: The Concept of Reference Architectures. Systems Engineering 13(1),
14–27 (2010)

27. Conger, S.: The New Software Engineering. International Thomson Publishing (1994)
28. Muller, G.: A Reference Architecture Primer (2008)
29. Angelov, S., Grefen, P., Greefhorst, D.: A Classification of Software Reference Architec-

tures: Analyzing their Success and Effectiveness. In: Joint Working IEEE/IFIP Conference
on Software Architecture, 2009 & European Conference on Software Architecture,
WICSA/ECSA 2009, September 14-17, pp. 141–150. IEEE, Cambridge (2009)

30. CCSDS: CCSDS Recommended Practice - Reference Architecture for Space Data
Systems. CCSDS, NASA (2008)

31. ESDS Reference Architecture Working Group: ESDS Reference Architecture for the
Decadal Survey Era. NASA ESDS Reference Architecture v1.0, NASA (2011)

32. Nakagawa, E., Oquendo, F., Becker, M.: RAModel: A Reference Model for Reference
Architectures. In: SPLC 2011 Proceedings of the 15th International Software Product Line
Conference, vol. 2(28). IEEE Computer Society (2012)

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 98–105, 2014.
© Springer International Publishing Switzerland 2014

RA-Ubi: A Reference Architecture for Ubiquitous
Computing

Carlos Alberto Machado1,2, Eduardo Silva2, Thais Batista2, Jair Leite2,
and Elisa Nakagawa3

1 Federal University of Paraíba, João Pessoa, PB, Brazil
2 Federal University of Rio Grande do Norte, Natal, RN, Brazil

3 University of São Paulo, São Carlos, SP, Brazil
carlos@ccen.ufpb.br, eduardoafs@ppgsc.ufrn.br,

{thais,jair}@ufrn.br, elisa@icmc.usp.br

Abstract. Successful ubiquitous systems need to integrate several underlying
technologies including different operating systems, advanced middleware, sev-
eral Internet protocols, sensors, actuators, I/O drivers and many others ele-
ments. This scenario means that ubiquitous systems software should cope with
different kinds of software/hardware components, programming languages, and
interaction protocols. In order to easy software development in this heterogene-
ous context, software architecture elements provide high abstractions that hide
the details of specific platforms. However, a clear and common understanding
of the elements that compose a ubiquitous system architecture and their rela-
tionship is still missing. Reference Architectures have been used to provide a
common ground and to give directions for the construction of software architec-
tures for different classes of systems. In this paper, we propose RA-Ubi, a ref-
erence architecture for ubiquitous systems that was build based on PROSA-SA,
a process for the establishment of new reference architectures. Following
PROSA-SA's steps, RA-Ubi defines the architectural requirements of ubiquit-
ous systems by following the literature about this subject, applying literature
systematic review technique. As main results, we present RA-Ubi reference
architecture detailing the role of each element and their relationships.

Keywords: Software architecture, reference architecture, ubiquitous computing.

1 Introduction

Ubiquitous Computing (UC) encompasses sensor-instrumented environments often
endowed with wireless network interfaces, in which devices, software agents, and
services are integrated in a seamless, transparent way and cooperate to meet high-
level goals for satisfying human users. This computational power distribution pro-
vides new functionality through support of personalized services and omnipresent
applications. Advances in technology have made ubiquitous computing permeate our
daily lives, even if we are not always aware of it. There are many challenges in ubi-
quitous computing [4]: (i) to handle the various types of events, such as application

 RA-Ubi: A Reference Architecture for Ubiquitous Computing 99

events, change of environment, data exchange events, and domain-specific events,
(ii) to adapt the system at runtime to support service discovering and location sensing,
(iii) to integrate various types of computational elements, such as smartphones,
sensors, actuators, and (iv) to manage their communications, including mobility and
security issues. Solutions to those problems are not trivial and may involve various
cooperating elements to support the system operation.

This heterogeneous, multi-faced nature hampers the design and implementation of
ubiquitous systems, and has increased the cost of building them. In order to systemat-
ically organize the main building blocks of a ubiquitous system, their responsibilities,
and their interactions, providing a clear and common understanding of the architec-
ture of this domain, a reference architecture (RA) [2] can be quite useful. As ubiquit-
ous systems are becoming commonplace in our daily life, it is essential to provide a
reference architecture to capture the essence of this important class of system and to
ensure standardization and interoperability between them. We envision that the future
of software architecture involves the definition of reference architectures to several
domains, mainly for those that encompass long-lasting and heterogeneous systems.
Considering the ubiquitous system domain, their critical aspects regarding complexity
and interoperability, demands a reference architecture for both architectural definition
and evolution of ubiquitous systems. Interoperability, one of the most essential re-
quirements of ubiquitous systems, can be achieved by a systematic and disciplined
architecture-centric development approach.

In this paper we present RA-Ubi, a reference architecture for ubiquitous systems. It
was built in a systematic manner, following the ProSA-SA [3] process for the estab-
lishment of new reference architectures. This process defines four basic steps that
involve literature reviews, requirements elicitation, development of the RA, and eval-
uation. Regarding to the evaluation process, we evaluated RA-Ubi by comparing its
elements with the elements of existing concrete ubiquitous systems. As main results,
we have observed that RA-Ubi can be considered an important contribution to the UC
area, by intending to support Ubiquitous Systems development.

This paper is structured as follows. Section 2 discusses the background on ubiquit-
ous computing, reference architecture, and the related work. Section 3 presents
RA-Ubi. Section 4 contains the final remarks.

2 Background and Related Work

2.1 Ubiquitous Computing

According to Weiser [1], UC is a form of invisible computing, whereas the computa-
tion devices are spread among the environments and interact to themselves in order to
provide services. UC aims to provide access to relevant information in a senseless
way, wherever users need at any time. Since computational systems are becoming
even more part of our daily lives, UC emerges as a solution that eases user’s life, by
hiding the devices interfaces and automatically handling mobility and communication
issues. In summary, mobility and context-awareness are the most notorious characte-
ristic of ubiquitous systems, followed by the implicit interaction. It means that as the
user moves on, ubiquitous systems should be able to retrieve and use context informa-
tion, to implicitly interact with the user using devices that are embedded in the

100 C.A. Machado et al.

environments, and to adapt to multiple environments. The context information must
be updated very often at run time, since the system must be able to interpret and make
decisions according to these data.

2.2 Reference Architecture

Software architecture defines a high-level structure of a software system as a set of
components and their relationship and properties. The software architectural design is
one of the most critical activities in system development, especially in large and com-
plex systems. In this context, reference architectures provide common understanding
and directions for the construction of concrete software architectures for a class of sys-
tems. It contains architectural elements, domain experiences, design rules, architectural
styles and other several elements that may be useful for specifying a concrete architec-
ture of a specific system, which is an instance of the reference architecture. For the es-
tablishment of RA-Ubi in a systemic way, we adopted the PROSA-RA process that
defines the following four steps for the establishment of reference architectures: (i) In-
formation Source Investigation, with the domain-related information as the main output;
(ii) Architectural Requirement Establishment, which produces the architectural re-
quirements and concepts; (iii) Reference Architecture Design, which produces the archi-
tectural description of the reference architecture; and finally (iv) Reference Architecture
Evaluation, which produces an evaluated reference architecture. .

2.3 Related Work

There are various reference architectures for different domains, such as service-
oriented systems [5], embedded systems [6], and robotic systems [7]. However, for
ubiquitous computing, there are very few proposals, and they target specific applica-
tions, such as smart environments [9]. In this subsection, we discuss three main
related works: Pervasive Computing Architecture (PCA) [10], Pervasive Service
Composition – Reference Model (PSC-RM) [11] and Smart Environment Software
Reference Architecture [9]. PCA [10] proposes an architecture that divides the per-
vasive computing in two parts: Network-oriented pervasive computing and Personali-
ty-oriented pervasive computing. The first one is focused on intelligent distributed
computing, mobile computing, etc. The second part deals with applications focused
on the user, as smart homes, smart cars, intelligent navigation. This second part en-
compasses four layers: application, middleware and security mechanism, computing,
and embedded system and hardware. PCA does not handle adaptation and mobility
issues. Thus, the reference architecture does not cover the whole purpose of ubiquit-
ous systems. PSC-RM [11] proposes a reference model for pervasive computing
focused on web services. It proposes a tree-layer structure, whereas the first one is
responsible for describing the services, human-computer interfaces, mobility issues,
P2P collaboration, etc. PSC-RM is a very complex reference model focused on ser-
vice composition. The reference model does not handle service discovery nor event
management, which are some of the main challenges of ubiquitous systems. Thus,
it is not enough for describing ubiquitous systems. The Smart Environment Software
Reference Architecture [9] proposes a reference model for smart environments.

 RA-Ubi: A Reference Architecture for Ubiquitous Computing 101

It organizes smart environments in tasks implemented by one or more architectural
components: Perception, Reasoning, and Acting. Although this work is proposed as a
reference architecture, it is not a real reference architecture since it does not define
architectural elements (components and interfaces) to be further used to derive con-
crete architecture for this domain. All the above-mentioned studies do not encompass
the architectural elements identified by a previous work [12]; thus, a new reference
architecture is needed.

3 RA-Ubi

This session presents RA-Ubi, a reference architecture for ubiquitous systems.
RA-Ubi was defined based on ProSA-RA. This process encompasses four steps: (i)
identification of information sources; (ii) requirements elicitation; (iii) reference
architecture design; and (iv) reference architecture evaluation. The evaluation is
available in the project website (http://consiste.dimap.ufrn.br/projects/ra-ubi).

Identification of Information Sources. In this work, several sources of information
were used to get knowledge about ubiquitous systems. In particular, RA-Ubi inherits
from our previous work [12] that reports a systematic review to identify in the exist-
ing literature the essential architectural elements for ubiquitous systems. Furthermore,
this work is also based on [8], which presents a systematic review that classified exist-
ing ubiquitous projects based on their characteristics.

Table 1. Ubiquitous Systems‘ Features, provided by [8]

Feature Description

Service Omnipresence The system must enable users to move around with the feeling of carrying
the computer services with them.

Invisibility The system must have the ability of integrating devices to such degree that
the user is no longer aware of them.

Context Sensitivity The system must be able to retrieve information from the environment in
which it is being used.

Adaptable Behavior The system must be able of dynamically adapting itself to the provided
services according to the current environment.

Experience Capture The system must be able to capture and register experiences for later use.

Service Discovery The system must be able to discover new services according to the envi-
ronment that it is being used

Function Composition The system must be able to create new services by composing existing
services.

Spontaneous Interoperability The system must be able to change its partners (i.e. sensors, actuators and
collaborating parts) during operation.

Heterogeneity of Devices The system must be able to migrate among devices, adjusting itself to each
of them.

Fault Tolerance The system must be able to recover from error states

102 C.A. Machado et al.

Elicited Requirements. The requirements of RA-Ubi are basically based on two
previous works. The first one [8] elicited a set of features of ubiquitous systems on 31
existing projects. We use these features as the basis for the requirements of our ref-
erence architecture. Table 1 summarizes the first set of requirements, which are based
on the features of ubiquitous systems.

The second work is our systematic review [12]. It has identified the most common
architectural elements of ubiquitous systems, based on the application-specific (smart
living) reference architecture and also on existing middleware for ubiquitous computing.

Reference Architecture Design. In order to define the reference architecture, the
elements identified as common were established as components of RAUbi. Although
simplistic, this approach gave a starting point to the reference architecture that may be
refined in a later process. After defined these components, it was necessary to specify
the communications among them, aiming to encompass all the features mentioned in
Table 1. This task was performed by using the knowledge acquired on previous stu-
dies and previous specifications of ubiquitous systems. Additionally, some experts’
suggestions were applied in order to create a more realistic reference architecture. The
experts are renowned researchers on ubiquitous computing domain, and their sugges-
tions aimed mainly to establish and fix some issues on the communication among the
components.

RA-Ubi was designed to encompass the essential elements of ubiquitous systems
based on the architectural requirements. In order to represent our architecture, three
architectural views are used: (i) the component view that is responsible for defining
the components of the architecture, their interfaces and how they communicate with
each other; (ii) the deployment view relies on the UML deployment diagram to show
how the components of RA-Ubi are organized in the system operating context. This is
a very important view for ubiquitous systems, since these systems use heterogeneous
devices; (iii) the process view, described using a set of activity diagrams, gives a bet-
ter understanding of the components communications, and the component behavior
while running a given task. An additional view, not detailed in this paper, is the
implementation view, which organizes components into packages, displaying their
dependency relationships.

Fig.1 depicts the component view of RA-Ubi, which is divided into four layers: In-
frastructure, Services, Context-Aware Computing, and Application. The first layer,
the Infrastructure layer, encompasses two elements: Sensor and Actuator. These ele-
ments are physical elements that the system needs to interact with the environment.
Sensors are responsible for collecting context information and Actuators are responsi-
ble for controlling some devices and for providing feedback to the user. The second
layer, named Services, contains the components responsible for providing the soft-
ware interface to access the physical elements of the first layer: Context Service, for
sensors data; and Actuation Service, for controlling actuators. A single context service
may involve several sensors, as a single actuation service may control several actua-
tors. They also need to handle the context data, using statistical methods to correct
missing values [9]. This layer provides the context information and actuator access
through the services; thus, the hardware elements of the first layer can only be ac-
cessed by those services. The third layer, named Context-Aware Computing, contains
the core elements of a ubiquitous system. It encompasses six components:

 RA-U

Fi

• Context Repository, resp
context data and actuato
the context service, in th
services, being also respo

• Event Module, responsib
provides an interface for
be defined through QoS
meters provided by the
Module is similar to an
and the context data;

• Composition Module, re
stores the composed data
definition of composed d

• The Reasoning Module
ever, it retrieves data fro

Ubi: A Reference Architecture for Ubiquitous Computing

ig. 1. Component Diagram of RA-Ubi

ponsible for storing and providing an interface to acc
or services. This component requests the context data fr
he second layer, and maintains a set of assessable actuat
onsible for updating the repository with new data;
ble for service and context data monitoring. This mod
r defining events and monitoring their triggers, which
 (Quality of Service) and QoC (Quality of Context) pa

e services, or through the context data itself. The Ev
n Observer (design pattern), since it monitors the servi

sponsible for composing context data. It retrieves data
a in the Context Repository. It provides an interface for
data and an interface for accessing these data;
has a behavior similar to the Composition Module. Ho
om the Context Repository and creates new context d

103

cess
rom
tion

dule
can
ara-
vent
ices

and
the

ow-
data,

104 C.A. Machado et al.

using Artificial Intelligence (AI) techniques. The new data is also stored in the
Context Repository. This module has two interfaces, as the Composition Module,
for manipulation and definition of the AI rules used in the reasoning process;

• Adaptation Module, responsible for adapting the system behavior according to the
events triggered by the Event Module. This module can create, remove or manipu-
late events and also change the system architecture. It may define states for the sys-
tem, and provide an interface for accessing the state definition;

• Coupling and Mobility Mechanism is responsible for the mobility aspect of the
system, which means that it handles mobility concerns as tracking devices and ser-
vice detection. It also deals with communication and mobile security problems.
This mechanism couples the available context information in an environment,
which can be used by the application. An environment consists of a set of complex
context data and system state, which are available depending on the whole system's
context. The application may define new environments, using the interface pro-
vided by the Coupling and MobilityMechanism. This mechanism creates, removes
and manipulates all the events, adaptation rules and data synthesis involved in any
environment. The Coupling and Mobility mechanism can be implemented as a
component, and also as a crosscutting concern.

Finally, the Application layer deals with the application specification and imple-
mentation, using the structure provided by the Context-Aware Computing layer.

Besides the previously mentioned layers, there is a crosscutting layer, the Security
Module. It can be implemented as a single component, but its implementation will be
usually spread and tangled among other components' implementation. The Security
Module implements access rules for the services, validates services, ensures the
communication between the system's elements and secures system's data. It is worth
saying that the elements present in RA-Ubi may be implemented and deployed in
various ways, depending on the system goals.

Additional diagrams, definitions and examples are available in the RA-Ubi web-
page: http://consiste.dimap.ufrn.br/projects/raubi/

4 Final Remarks

This paper presented RA-Ubi, a reference architecture for ubiquitous computing that
was built based on ProSA-RA, a process for the establishment of reference architec-
tures. RA-Ubi relies on UML diagrams to depict the different architectural views that
describe the architecture. It was developed based on existing systems and applications
for the domain of ubiquitous systems. The diagrams used in this paper and others are
available at the project webpage (http://consiste.dimap.ufrn.br/projects/ra-ubi). In
addition, the project webpage also contains an simple evaluation using a comparison-
based technique and focusing on a specific quality attribute of the architecture, reusa-
bility, in order to verify if it can be a basis for deriving concrete architecture, i.e., if
the elements of RA-Ubi cover the spectrum of existing systems and applications.

The main findings in our evaluation of RA-Ubi are: (i) some fundamental characte-
ristics of ubiquitous computing are missing in some of the first work in this domain,

 RA-Ubi: A Reference Architecture for Ubiquitous Computing 105

such as the Service Omnipresence, Service Discovery, and Spontaneous Interoperabil-
ity; (ii) recent works have a strong focus on reasoning and service composition;
and (iii) actuation services are often neglected on the existing projects, although the
importance of these components for providing feedback to the user.

As future work, RA-Ubi is being evaluated through other evaluation techniques,
such as scenario-based evaluation and architectural-prototype evaluation, adopting
other qualities attributes. Further evaluations are under development involving a
checklist and interview with specialists.

References

1. Weiser, M.: The computer for 21st century. In: SIGMOOBILE Mob. Comput. Commun.
Rev., pp. 3–11. ACM (1999)

2. Nakagawa, E.Y., Oliveira Antonino, P., Becker, M.: Reference architecture and product
line architecture: A subtle but critical difference. In: Crnkovic, I., Gruhn, V., Book, M.
(eds.) ECSA 2011. LNCS, vol. 6903, pp. 207–211. Springer, Heidelberg (2011)

3. Nakagawa, E.Y., et al.: Consolidating a Process for the Design, Representation, and
Evaluation of Reference Architectures. In: Proc. Working IEEE/IFIP Conf. of Software
Architecture (WICSA 2014), Sydney, Australia (2014)

4. Kumar, S.: Challenges for Ubiquitous Computing. In: Proceedings of the Fifth Internation-
al Conference on Network and Services (ICNS 2009), pp. 526–535 (2009)

5. Arsanjani, A.: A service-oriented reference architecture. In: IEEE IT Professional (2007)
6. Eklund, U., et al.: Experience of introducing reference architectures in the development of

automotive electronics systems. ACM Sigsoft Software Engineering Notes (2005)
7. Blackand, B., Knapp, C.: Reference architecture for mobile robotics. Technical Report,

National Instruments (2010)
8. Spínola, R., Travassos, G.: Towards a framework to characterize ubiquitous software

projects. Information and Software Technology 54, 759–785 (2012)
9. Fernandez-Montes, A., et al.: Smart Environment Software Reference Architecture. In:

Proc. of the Fifth Int. Joint Conference on INC, IMS and IDC (NCM 2009), pp. 397–403
(2009)

10. Liu, Y., Li, F.: PCA: A Reference Architecture for Pervasive Computing. In: Proc. of the
1st International Symposium on Pervasive Computing and Applications, pp. 99–103
(2006)

11. Zhou, J., et al.: PSC-RM: Reference Model for Pervasive Service Composition. In: Proc.
Fourth Int. Conf. on Frontier of Computer Science and Technology, pp. 705–709 (2009)

12. Machado, C., et al.: Architectural Elements of Ubiquitous Systems: A Systematic Review.
In: Proc. of The Eighth Int. Conf. on Software Engineering Advances (ICSEA 2013),
Venice, Italy, pp. 208–213 (2013)

Towards a Coordination-Centric Architecture

Metamodel for Social Web Applications

Juergen Musil, Angelika Musil, and Stefan Biffl

CDL-Flex, Institute of Software Technology and Interactive Systems,
Vienna University of Technology,

Favoritenstrasse 9/188, 1040 Vienna, Austria
{jmusil,angelika}@computer.org

stefan.biffl@tuwien.ac.at

Abstract. Social web applications like wikis, social networks, and
crowdsourcing markets have provided people with new dynamic forms
of communication and collaboration. Although communities have widely
adopted these systems, the methodological support for their architecting
is still at the beginning. Since social web applications are mediation envi-
ronments for human interaction, environment-based coordination models
like stigmergy have increased in relevance. Therefore, we propose the con-
cept of a Stigmergic Information System (SIS) architecture metamodel,
which embeds a stigmergy-like coordination model. The metamodel de-
fines key system elements and organizes a system into four layers: agent,
artifact data, analysis & control and workflow. The metamodel should
support the systematic investigation of common architecture elements,
their relations and interdependencies, and future approaches for the de-
scription and modeling of social web applications. In this work we in-
troduce the SIS architecture metamodel and evaluate the metamodel’s
validity with preliminary results from a pilot survey on groupware
systems.

Keywords: Architecture Metamodel, Collective Intelligence, Coordina-
tion, Social Web Application, Stigmergic Information System, Stigmergy.

1 Introduction

Over the last decade, new forms of online collaboration platforms like wikis,
social networks and crowdsourcing markets have enabled individuals to com-
municate and work together on problems effectively. While social web applica-
tions have been widely adopted in a variety of domains, the understanding and
methodological support for architecting and ”programming” them on a higher,
more abstract, system level is still at an early stage [4], [8]. Social web appli-
cations mediate the interaction among their users by realizing a certain coor-
dination model. Thus modifications of the coordination model highly affect a
social web application’s main regulatory capabilities. Therefore, research which
investigates the models and mechanisms for computational support of medi-
ated social interaction and human cognitive processes is highly relevant as well

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 106–113, 2014.
c© Springer International Publishing Switzerland 2014

An Architecture Metamodel for Social Web Applications 107

as approaches, which enable the systematic design and analysis of these socio-
technical systems [13], [16].
In this paper we explore the concept of a Stigmergic Information System (SIS)
architecture metamodel, which realizes stigmergy-like coordination and self-
organization and which also covers common key features of popular social web
applications. Stigmergy (from Greek stigma: sign, and ergon: work) is a nature-
inspired coordination mechanism to describe the environment-mediated task co-
ordination of social insects [2]. Stigmergy promotes awareness among agents
about the activities of other agents, which in turn reinforces their own activities
[16]. In computer science, stigmergy is well-known as an effective coordination
model, which provides computational systems with bottom-up, environment-
mediated coordination capabilities [1], [12], [16]. The SIS metamodel represents
a first step towards a common system model on which basis architectures for so-
cial web applications can be designed. Furthermore, the metamodel should also
assist in the identification of design patterns, thus support architecture decision
making and tradeoff considerations.

The remainder of this paper summarizes related work in section 2 and the
research question and approach in 3. The architecture metamodel concept is
detailed in section 4 and section 5 discusses preliminary results from the pilot
survey. Finally, section 6 concludes and outlines future work.

2 Related Work

This section presents an overview on architecting coordination in social web ap-
plications and the stigmergy model for self-organizational, environment-mediated
coordination.

The challenge of architecting social web applications is well known: In 2001,
Tiwana and Bush [17] presented with the KNOWeb architecture one of the first
approaches, which uses positive feedback mechanisms to deliberately reinforce
the social/knowledge exchange in distributed virtual communities. Girgensohn
and Lee [7] described their experiences from designing two “social interaction
web sites” for two social groups. Similar to Tiwana and Bush, they concluded
that in order to retain user engagement (1) the role of the social software sys-
tem as a merely supportive infrastructure is not sufficient, and (2) mechanisms
to maintain a continuous influx of new user contributions are needed. In recent
time, Dorn and Taylor [4] presented a human Architecture Description Language
hADL to describe collaboration structures and patterns in social web applica-
tions. Minder and Bernstein [8] focused on human computation and propose
with CrowdLang a programming framework for interaction mechanisms and the
design of human computation systems.

Software architectures are known, besides coordination languages, to be the
primary means to embed coordination models [3]. When using a computational
system to coordinate a multi-agent system (MAS) through stigmergy, the con-
cepts of environment and artifact are essential [14], [16]. Weyns et al. [19] noted
on the environment that it ”mediates both the interaction among agents and

108 J. Musil, A. Musil, and S. Biffl

the access to resources”. The artifact is used as a coordination medium, as an
environment abstraction, through which the agents communicate. Advantages
of environment-based coordination approaches are that processes can be decou-
pled in space and time as well as that producer and consumer can be anonymous
[15]. For social web applications, stigmergy is of particular relevance, since the
interaction between the human agents is predominantly mediated/regulated by
the software infrastructure [13]. Parunak [18] surveyed stigmergic computational
systems, which are used to coordinate human interactions. So far, some types of
social web applications (social networking services, wikis) have been identified
as stigmergic systems [13], [16], [18].

3 Research Question and Approach

The research question of this work is to explore the possibility of a hypo-
thetical metamodel with a built-in coordination mechanism, which is
capable to cover common key features of dominant social web appli-
cation types.

We follow best-practice processes from software architecture discovery and re-
construction (SAR) to derive and validate a conceptual architecture metamodel.
The metamodel should support the research for a future architecture viewpoint
in order to assist software architects in the description and modeling of social
web applications. We have chosen a hybrid bottom-up and top-down process
as described by Ducasse and Pollet [5], which follows a metamodel focus like
the CacOphoNy approach introduced by Favre [6]. Favre’s approach has been
deemed promising by Ducsasse and Pollet as it focusses on different abstraction
levels horizontally and vertically.

We proceed in three phases: (1) design of a hypothetical architecture meta-
model based on literature and experience from industry, (2) derivation of a cata-
logue of key features using the metamodel and formal concept analysis method,
and (3) top-down exploration of the architecture hypothesis’ validity in an ini-
tial pilot survey by mapping model constructs to features from systems from the
field. Insights from the pilot should support the design of a following large-scale
system survey.

4 The Stigmergic Information System (SIS) Architecture
Metamodel

This section presents the Stigmergic Information System (SIS) architecture meta-
model. An initial description of the SIS approach has been presented in [9],
where the overall system concept and its key areas have been outlined. Fur-
ther a simplified subset of metamodel elements has been described in [10]. This
work extends previous research by contributing (a) a coherent, hypothetical ar-
chitecture metamodel, and (b) a set of key features, with which systems can be

An Architecture Metamodel for Social Web Applications 109

tested for compliance with the proposed metamodel. A detailed description of
the metamodel and its elements can be found online in a technical report [11].

The SIS metamodel is organized in four layers: I. agent layer, II. artifact data
layer, III. analysis & control layer and IV. workflow layer (see Fig. 1). Human
agents in layer I provide a continuous stream of information, whereby layer II
and III form the computational coordination infrastructure, which maintains
and enforces the workflows from layer IV.

Fig. 1. UML class diagram of the hypothetical architecture metamodel for Stigmergic
Information Systems

I. Agent Layer: The agent layer encompasses types of human agents, who inter-
act with the system and are an active component in a SIS. Human agents are

110 J. Musil, A. Musil, and S. Biffl

divided into observers, who have read-only access to the artifact content, and
actors, who can also create artifacts and modify their content. Typically the ac-
tor role requires an agent to sign in with some sort of user account in the system.

II. Artifact Data Layer: The artifact data layer is the first coordination tier
and consists of the coordination artifacts and the actor records. A coordination
artifact (CA) is a characteristic tuple of attributes, which is the same for all
CAs within a SIS. The coordination artifacts are the passive components in a
SIS and store actor contributions, whereby actors can only modify the values
of the attributes, but not the attribute configuration of the tuple itself (e.g., a
wiki user can edit an article page, but she cannot modify the article page’s data
model). Also, CAs can be linked by actors via artifact links, which can be direct
via uni-/bi-directional links or indirect by joins of tags or categories. Each actor
has her own actor record (AR) that logs an actor’s activities within the SIS.
Activities, logged by the AR, are for example all artifact activities, logins, page
views, and clicks on trace links in notification messages.

III. Analysis & Control Layer: The analysis & control layer is the second co-
ordination tier and hosts the coordinator system and the subsystems for data
analysis and machine learning. Different to typical computational stigmergic
systems, where the active component is represented exclusively by autonomous
agents interacting through a passive environment, a SIS has with the coordinator
system an additional adaptive component, that reacts to changes in the CAs.
The information from the data analysis is the basis for the machine learning
subsystem, which uses dissemination mechanisms to create stimuli/trigger for
the actor base, based on artifact activities and according to defined workflows
from level IV. Dissemination mechanisms make the agents, in particular actors,
aware about ongoing activities in the artifact network and motivate them to
contribute to an artifact, whereby a contribution of one actor should trigger
contributions of other actors and so on. It can be discriminated between pull-
based and push-based mechanisms.

IV. Workflow Layer: The workflow layer is the third coordination tier and de-
fines the rules to orchestrate the layers below. Workflows are defined by the SIS
platform provider and composed of at least one activity performed by an agent
or the system. The workflow layer is conceptually responsible for maintaining
the perpetual feedback loop between agent base (layer I) and coordination in-
frastructure (layer II + III) and to improve SIS utility for the agent base.

5 Preliminary Results and Discussion

To evaluate the SIS metamodel’s validity and scope, we conducted a pilot survey
of 14 space/time-asynchronous groupware systems. Where possible, dominant
systems with high Alexa1 web-traffic rankings have been chosen. We examine

1 www.alexa.com (last visited at 06/18/2014)

www.alexa.com

An Architecture Metamodel for Social Web Applications 111

6 characteristic features, which we derived from the metamodel and a concept
lattice using formal concept analysis method. Features 1-4 focus on capabilities
of the individual coordination artifact and features 5-6 address data analytics
and tracking capabilities on the system level. The following key features of a SIS
have been identified:

1. Can any actor add a new coordination artifact?2

2. Can any actor contribute to parts of the coordination artifact of an other
actor, thus change its state?

3. Are actors able to create system-internal links to connect coordination arti-
facts?3

4. Are state changes of selected artifacts traceable for all actors and/or for-
warded to them (via dissemination mechanisms)?

5. Does the system have a user-driven recommender system?
6. Does the system keep track about the usage behavior of a single actor?4

A system has to meet all 6 features in order to comply with the SIS metamodel.
The pilot results (see Table 1) show that the inspected features have been con-
sistently found in the groups of social networking services, wikis, media sharing,
marketplace, review and recommendation sharing, crowdsourcing and knowledge
markets. All of the compliant systems are instances of modern social web appli-
cations. A feature, which should be observed in more detail in future research
and which is unique to SIS-conform social web applications, is the linkability of
artifacts using system-internal links. Although the terms ’folksonomies’, tagging,
and social graph have become buzz words in the last decade of web applications,
preliminary results indicate that this feature is indeed pivotal. Another impor-
tant feature is the creation of new artifacts by external users, which is also
common to other established groupware systems like internet forums, mailing
lists, version control systems and BitTorrent trackers.

6 Conclusions and Future Work

This work introduced a hypothetical architecture metamodel of social web appli-
cations, which embeds a stigmergy-like coordination model. The SIS metamodel
defines key elements and their relations and organizes a system in the four lay-
ers of agent, artifact data, analysis & control and workflow. In a pilot survey
we explored the metamodel’s validity for various types of groupware and social
web applications with a set of 6 characteristic key features derived from the
metamodel. Results of the pilot study indicate that the metamodel is capable

2 Access restrictions (password wall, pay wall, etc.) are not an exclusion criteria as
long as they affect all actors in the same way.

3 Examples are the friend-relationship in Facebook or Wikilinks in Wikipedia
(http://en.wikipedia.org/wiki/Help:Link#Wikilinks) (last visited at
06/18/2014).

4 Client-side tracking of usage behavior via cookies is not sufficient.

http://en.wikipedia.org/wiki/Help:Link#Wikilinks

112 J. Musil, A. Musil, and S. Biffl

Table 1. Features mapped to representative groupware instances

of describing certain types of social web applications and substantiate the hy-
pothesis that a coordination-centric perspective like the SIS metamodel has the
potential to provide a wider and more detailed viewpoint of the system.

For future work the following steps are planned: (1) Interviews with software
architects to get feedback on the metamodel for soundness and further refine-
ment. (2) A quantitative, comprehensive survey of systems from the field to
evaluate the metamodel’s validity and the identified key features, as well as to
investigate commonalities and variations in features. (3) An architecture anal-
ysis of a representative social web application to map metamodel elements to
system elements. Though it takes extensive validation in multiple steps to con-
clusively evaluate a metamodel that covers such a broad field, we see it as a
promising architectural research agenda in the time of socio-technical platforms
and networked societies.

Acknowledgments. This work was supported by the Christian Doppler
Forschungsgesellschaft, the Federal Ministry of Economy, Family and Youth and
the National Foundation for Research, Technology and Development, Austria.

References

1. Babaoglu, O., et al.: Design patterns from biology for distributed computing. ACM
Trans. Autonomous and Adaptive Systems 1(1), 26–66 (2006)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

An Architecture Metamodel for Social Web Applications 113

3. Ciancarini, P.: Coordination Models and Languages as Software Integrators. ACM
Computing Surveys 28(2), 300–302 (1996)

4. Dorn, C., Taylor, R.N.: Architecture-Driven Modeling of Adaptive Collaboration
Structures in Large-Scale Social Web Applications. In: Wang, X.S., Cruz, I., Delis,
A., Huang, G. (eds.)WISE 2012. LNCS, vol. 7651, pp. 143–156. Springer, Heidelberg
(2012)

5. Ducasse, S., Pollet, D.: Software Architecture Reconstruction: A Process-Oriented
Taxonomy. IEEE Trans. Software Engineering 35(4), 573–591 (2009)

6. Favre, J.-M.: CacOphoNy: Metamodel-Driven Architecture Recovery. In: Proc.
11th Working Conf. on Reverse Engineering (WCRE 2004), pp. 204–213. IEEE
CS (2004)

7. Girgensohn, A., Lee, A.: Making Web Sites Be Places for Social Interaction.
In: Proc. ACM Conf. on Computer Supported Cooperative Work (CSCW 2002),
pp. 136–145. ACM (2002)

8. Minder, P., Bernstein, A.: CrowdLang: A Programming Language for the System-
atic Exploration of Human Computation Systems. In: Aberer, K., Flache, A., Jager,
W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 124–137.
Springer, Heidelberg (2012)

9. Musil, J., Musil, A., Winkler, D., Biffl, S.: A First Account on Stigmergic Informa-
tion Systems and Their Impact on Platform Development. In: Proc. WICSA/ECSA
2012 Companion Volume (WICSA/ECSA 2012), pp. 69–73. ACM (2012)

10. Musil, J., Musil, A., Biffl, S.: Elements of Software Ecosystem Early-Stage De-
sign for Collective Intelligence Systems. In: Proc. Int’l Workshop on Ecosystem
Architectures (WEA 2013), pp. 21–25. ACM (2013)

11. Musil, J., Musil, A., Biffl, S.: Stigmergic Information Systems - Part 1:
An Architecture Metamodel for Collective Intelligence Systems. Technical
report, IFS-CDL 14-40, Vienna University of Technology (August 2014),
http://qse.ifs.tuwien.ac.at/publication/IFS-CDL-14-40.pdf

12. Omicini, A.: Nature-Inspired Coordination Models: Current Status and Future
Trends. In: ISRN Software Engineering 2013 (2013)

13. Omicini, A., Contucci, P.: Complexity and Interaction: Blurring Borders be-
tween Physical, Computational, and Social Systems. In: Bǎdicǎ, C., Nguyen, N.T.,
Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 1–10. Springer, Heidelberg
(2013)

14. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&AMeta-model for Multi-agent
Systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

15. Papadopoulos, G.A., Arbab, F.: Coordination Models and Languages. Advances in
Computers 46, 329–400 (1998)

16. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive Stigmergy:
Towards a Framework Based on Agents and Artifacts. In: Weyns, D., Van Dyke
Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140.
Springer, Heidelberg (2007)

17. Tiwana, A., Bush, A.: A social exchange architecture for distributed Web commu-
nities. Journal of Knowledge Management 5(3), 242–249 (2001)

18. Van Dyke Parunak, H.: A Survey of Environments and Mechanisms for Human-
Human Stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS
2005. LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006)

19. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

http://qse.ifs.tuwien.ac.at/publication/IFS-CDL-14-40.pdf

Using Policies for Handling Complexity

of Event-Driven Architectures

Tobias Freudenreich, Stefan Appel, Sebastian Frischbier,
and Alejandro P. Buchmann

Databases and Distributed Systems, TU Darmstadt, Darmstadt, Germany
lastname@dvs.tu-darmstadt.de

Abstract. Cyber-physical systems and the Internet of Things illustrate
the proliferation of sensors. The full potential of ubiquitous sensors can
only be realized, if sensors and traditional data sources are integrated
into one system. This leads to large, complex systems which are harder
to use and manage, and where maintaining desired behavior is increas-
ingly difficult. We suggest a novel approach to handle the complexity
of these systems: users focus on the desired behavior of the system and
use a declarative policy language (DPL) to state these behaviors. An
enhanced message-oriented middleware processes the policies and auto-
matically generates components which execute the policies. We compared
our approach against other approaches in a case study and found that it
does indeed simplify the use of cyber-physical systems.

1 Introduction

The number of sensors in today’s environments increases steadily. In our homes
the sheer number but also the different kinds of sensors have increased in recent
years. Similarly, companies rely more and more on sensor data to improve and
steer their processes, especially in production and logistics. Trends like cyber-
physical systems (CPS) or the Internet of Things illustrate this evolution further.

This calls for a new perspective on software architecture. In Event Driven Ar-
chitectures (EDAs) components get triggered by events [27]. In service Oriented
Architectures (SOAs) they are invoked by explicit calls. In modern architectures
both interaction paradigms coexist. This perspective shift comes at the price of
increased architectural complexity: EDAs are inherently distributed, the applica-
tion does not have direct control over the control flow, and language-support for
event processing is but well-supported. We believe that this complexity must -at
least in part- be handled by a middleware, which abstracts from this complexity.

Event handling today is done via complex event processing (CEP), which
proposes to construct more complex events out of simple ones, according to a
set of rules [24]. An event query language (EQL), as for example found in Esper
or Software AG’s Apama, allows for declaratively stating such rules. However,
this abstraction is still on a very low level. It requires expert developers to be
handled correctly. Even when handled by experts, the number of rules quickly

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 114–129, 2014.
c© Springer International Publishing Switzerland 2014

Using Policies for Handling Complexity 115

exceeds a manageable amount, creating a maintenance nightmare with (hidden)
dependencies among the rules and no indication why a rule was created.

Our goal is to allow domain experts without a profound computer science
background to use systems based on an EDA, as well as to provide developers
with a mechanism which abstracts from the architectural complexity of EDAs.
Thus, we introduce the abstraction of a policy. A policy is the conceptual repre-
sentation of a set of fine grained rules, which cooperate towards a common goal.
Policies abstract from rule management and architectural distribution. By allow-
ing users to state policies declaratively, we enable them to focus on what they
want to achieve, rather than how this is done exactly. Other approaches, sharing
the goal of simplifying the use of EBS by providing higher level abstractions,
focus on procedural workflows [2,19]. Declarative statements bear the advantage
of abstracting from implementation details, while procedural statements provide
more control of how a task is achieved. No concept is inherently superior.

We illustrate the idea of our approach with a typical example from the do-
main of situation monitoring originally proposed by Georgakopoulos et al. [18]:
A company wants to ensure the following: guests are allowed to walk around the
company area. However, in some restricted rooms, guests need to be accompa-
nied by an employee, otherwise an alarm should sound. There are already many
sensors in place to derive positions of people, e.g., RFID readers or cameras. 1

Ensuring this policy involves several steps (querying the database for a per-
son’s status, calculating absolute positions, checking in which room a person
is, correlating multiple position events). Each of these steps requires a number
of low-level CEP rules to encode. A common approach to reduce the number
of rules is to define event compositions, resulting in a more complex event hi-
erarchy. When adding more ”real-world” requirements, like different security
clearances, the set of rules quickly becomes hard to manage. We therefore advo-
cate a segmentation of the rule space into policies and a mechanism to express
them declaratively2:

IF
person A with a t t r i b u t e s t a tu s=’guest ’ IS INSIDE
room R with a t t r i b u t e s e cu r i t y=’ r e s t r i c t e d ’ AND
person B with a t t r i b u t e s t a tu s=’employee ’

IS NOT WITHIN 5m of A
THEN

sound alarm

We provide a generic middleware architecture and approach to automatically
process such policies. It can be instantiated by providing a domain model and
annotating data sources with metadata. Similar to a database expert creating a
database schema, providing this information is done only once. With this infor-
mation, we can generate Event Enrichment Components (EECs) which enrich

1 We were able to verify the validity of such a scenario in discussions with Software AG
(http://www.softwareag.com), a leading provider of business application software.

2 Note that this policy does not enforce B to be in the same room as A. We omit this
detail for presentation simplicity.

http://www.softwareag.com

116 T. Freudenreich et al.

Specification LayerDPL

Enforcement LayerEEC

mapping
domain model

Fig. 1. Policies are specified in DPL and mapped to executable code in EECs

events with additional knowledge. EECs enforce policies by evaluating derived
rules against incoming events.

Enabling domain experts to fully exploit CPS requires the following compo-
nents (Figure 1 provides an illustration): a) A user-friendly way of stating the
policies. We refer to this as the declarative policy language (DPL). b) A gram-
mar underlying DPL. c) A mapping from DPL to executable code (EEC). d) A
framework to capture domain concepts to support the mapping.

The contributions of this paper are:
– A novel approach to handle the complexity of cyber-physical systems and

event-driven architectures in general.
– A generic, declarative language to state policies and a middleware architec-

ture for processing them. The language can be mapped to multiple concrete
languages and implementations.

– An implementation with modern message-oriented middleware to map DPL
statements to executable code. Our implementation is in Java and based on
Apache ActiveMQ, an industry-strength middleware.

– An approach that preserves the benefits of event-driven architectures: new
sensors/producers can be added at runtime and the system remains flexible

The rest of this paper is structured as follows. Section 2 provides a detailed
description of the parts comprising our DPL-enabled middleware, including how
they interact. Section 3 compares our approach against Java and CEP-techniques
in a case study. We discuss related work in Section 4 and conclude in Section 5.

2 Technical Overview

In this section, we detail how to get from a policy to executable code. Therefore,
we first provide our domain model framework and the grammar for DPL. We
follow up with the description of the architecture and close with an illustration
of the interaction among the components with the example from Section 1

2.1 Domain Model Framework

We need domain models as background knowledge to generate executable code
from a policy. The purpose of this section is not to discuss suitable representa-
tion languages, but rather state the requirements of our approach. We therefore
introduce the individual elements and defer discussion about a suitable repre-
sentation to Section 2.3.

Using Policies for Handling Complexity 117

Concepts and Attributes. Every policy will refer to certain things. In the ex-
ample from Section 1 these are person and room. In that regard they are similar
to entities in a database schema. However, we chose to call them concepts (simi-
lar to description logic) to avoid confusion. Concepts are described by attributes
and may not have a direct representation (i.e. in a database). They might exist
implicitly only (e.g., because various events refer to it)

Relationships. Relationships connect concepts. A relationship is backed by
a relationship function, which evaluates for given instances if the relationship
holds. A relationship function uses attributes of the related concepts. More than
one relationship may exist between two concepts. For example, the employee and
room can be connected by the relationship works in and meets customers in.

Figure 2 shows an example illustrating the concepts, attributes and relation-
ships of our running example. The relationship inside refers to the attributes
position and coordinates of two opposing corners of a rectangular room. Thus,
when evaluating if a specific person is inside a specific room, the relationship
function will be passed the values of position and coordinates as its arguments.

room person

building

part of

inside

within

status

position

security

coordinates

Fig. 2. Example domain model related to the policy from Section 1

To support relationships like within, which need an additional parameter (e.g.,
5 meters), the framework must support parameterized functions.

Since relationship functions can be complex, we chose to keep them separate
from the structural definition to support separation of concerns. In our exam-
ple, one concern is to say that generally, persons can be inside rooms. Another
concern is to say what exactly the semantics of being inside a room is.

Another advantage of keeping the definition of the relationship functions sepa-
rate is reusability. Developers can reuse their function in different domain models
and a set of functions can be directly shipped with the middleware.

2.2 Policy Grammar

With usability in mind, we believe that the determinism of a formal language
outweighs the familiarity of natural language. Thus, policies must follow a formal
syntax. Figure 3 shows the grammar that generates DPL in EBNF notation.
The nonterminals concept, attribute, value, f-name, parameter and action are
not explicitly given, as they can be arbitrary strings.

118 T. Freudenreich et al.

po l i c y : := ’ IF ’ c ond i t i on s ’THEN’ act i on s

c ond i t i on s : := cond i t i on | cond i t i on s op cond i t i on s | ’ (’ c ond i t i on s ’) ’

cond i t i on : := concept−def funct i on concept−r e f

concept−def : := concept [a l i a s] ,

[’ with at t r i bu te ’ (a t t r i b u t e attr−op value)∗]

attr−op : := ’= ’ | ’ != ’ | ’< ’ | ’> ’ | ’<=’ | ’>=’

concept−r e f : := concept−def | a l i a s

funct i on : := [’ i s ’] [’NOT’] f−name [parameter] [’ of ’]

op : := ’AND’ | ’OR’

a c t i on s : := act i on+

Fig. 3. Grammar for policies in Extended Backus-Naur Form (EBNF)

Policies are divided into a situation description part and an actions part. The
first part contains a set of conditions, describing the desired situation. Conditions
are checked upon arrival of relevant events and, if met, the actions of the actions
part are triggered. Thus, policies are similar to event-condition-action rules [10].
However, policies abstract from the notion of events and let users think in the
descriptions of situations.

Concepts may have an alias for easier referencing within the policy. The with
attribute statement allows for filtering out instances of a concept not relevant
for the current statement. For example, guests and employees are persons, but we
are concerned about guests being alone in restricted areas. Functions connect two
concepts to a condition and may have a parameter, as indicated in Section 2.1.
The element ’of’ is only syntactic sugar: it makes policies more readable.

DPL is a generic language, which is instantiated by pairing it with a concrete
domain model. The resulting language is specific to the given domain, but may
map to several concrete programming languages like Java or C#.

2.3 Middleware Architecture

In event-driven architectures (EDAs), events (e.g., sensor readings) are reified
as event notifications. Due to a typically high volume of data and the benefits
of decoupling, EDAs adopt the publish/subscribe messaging paradigm [14]: soft-
ware components with an interest in events issue subscriptions for them with a
message-oriented middleware (MOM). Sensors act as event producers and send
event notifications in the form of messages to the MOM. There, a message broker
matches incoming messages against issued subscriptions and routes messages to
interested consumers.

Figure 4 shows the generic architecture of the middleware enabling declara-
tive behavior specification. We will detail the components in this section and
illustrate how they interact. Components are loosely coupled and communicate
asynchronously through a message bus. Interaction with the request/reply parts
of the EDA also happen through messages (e.g., an event-driven SOA, where
the action part of a policy fires a service-triggering event).

Message and Command Bus. A message bus connects event producers, aux-
iliary data sources (e.g., databases), the user interface, the policy engine as well

Using Policies for Handling Complexity 119

P1

DB1

DB2

message/command bus

P2

P3

policy
manager

ACTrESSdata source
registry

domain
model

policy
engine

message broker

user
interface

EECs

Fig. 4. Architecture of the DPL-enabled middleware

as the processing components. We use the existing messaging functionality of
the MOM. The command bus consists of special message channels. Thus, each
component is able to listen to commands asynchronously, which provides for
good decoupling and easy distribution.

Producers send events via the publish/subscribe messaging facility. Since all
messages pass through the broker, it can access message content.

User Interface. The user interface allows for creating, altering and deleting
policies. Creating a policy just requires writing it, choosing a unique name and
sending the policy to the middleware. We provide users with an Eclipse plugin
with content assist, syntax highlighting and syntax checking. Thus, users cannot
accidentally send erroneous policies to the middleware. Altering a policy follows
similar steps, except that the user first retrieves the policy by its name. Deletion
of a policy may happen implicitly or explicitly. An explicit deletion means the
termination by a user action, while implicit deletion happens as part of a policy’s
action part.

Policy Engine. The policy engine is the heart of our DPL-enabled middleware.
It serves as a coordinating component in a controller-like fashion: Upon receiving
a policy, the policy engine uses the policy manager to analyze the policy. Based
on the analysis, it generates Event Enrichment Components (EECs).

Conflicting Policies. Especially in multi-user environments policies might con-
flict. For example, one policy could state to close the windows if the temperature
is less than 25◦C (to preserve heat), while another policy requires opening the
windows if the temperature is greater than 23◦C (to preserve air quality).

Without proper semantic annotation of actions, it is impossible to automatically
analyze, on a semantic level, what the effect of an action is. Such semantic analysis
is out of scope of this paper and subject of future work. Currently, we support users
by displaying similar policies to them as they edit theirs. Similarity is chosen based
on the concepts and their attributes a policy is referring to.

120 T. Freudenreich et al.

Domain Model. The policy engine uses the domain model when generating
the EECs. We chose a custom representation in favor of more elaborate lan-
guages like OWL or RDF. The main reason for our choice is performance. Since
we integrate various, different, already existing data sources, their information
is not yet in the domain model. However, ontological reasoning requires this
information to be in the model. Inserting on demand, then reasoning severely
impacts performance. Alternatively, one could try keeping the model synchro-
nized with external data sources, which causes redundant data and consistency
problems. Adapters are a third option. For example D2RQ3 provides a relational
database as an RDF graph. However, we chose to use our custom representation,
as relationship evaluation causes less CPU utilization and sharing relationship
functions across processing nodes is easier. Reusing existing ontologies/domain
models is still possible, by simply registering them as an external data source.

Data Source Registry. The data source registry keeps track of all data sources.
The example from Section 1 illustrates that the suggested middleware has to in-
tegrate various data sources. We distinguish between two categories of data
sources: pull sources (e.g., databases) and push sources (e.g., sensors). Pull
sources follow a request/reply paradigm, while push sources typically interact in
a publish/subscribe fashion.

Data sources need to be annotated with metadata. The metadata specifies
about which concept the data source provides information and which format
the data have. For example, the employee table provides information about the
concept person.

The position of sensors is useful information and thus also included in the
metadata. Unlike location-based publish/subscribe [12,23], we use location in-
formation for enrichment, not routing.

Depending on the kind of data source, we distinguish between static and dy-
namic attributes: pull sources provide comparatively static, queryable informa-
tion, while push sources provide volatile, high frequency data in an event-based
fashion. Thus, we call attributes with associated pull sources static and those
with associated push sources dynamic attributes.

Policy Manager. The policy manager keeps track of all registered policies. It
is responsible for handling new and edited policies, as well as ensuring proper
shutdown of all related components when a policy is deleted.

When a policy is created or edited, the policy manager creates a policy logic
tree, based on the policy and the domain model. The policy logic tree represents
the policy’s concepts, their attribute constraints and relationships with other
concepts. The tree then enables the policy engine to make educated judgments
which data source to use for enrichment and which relationship functions to
evaluate.

We want to illustrate this with the running example: Figure 5 shows the policy
logic tree for our running example. The policy logic tree is then further analyzed.

3 http://d2rq.org/

http://d2rq.org/

Using Policies for Handling Complexity 121

status=‘guest‘
person A

security=‘restricted‘
room R

status=‘employee‘
person B

inside
NOT

within[5]
position position position

coordi-
nates

AND

Fig. 5. Policy logic tree for the running example

For edges connecting a static attribute with a dynamic attribute (e.g., inside),
the policy manager generates an EEC which is triggered for events providing
information about the dynamic attribute (e.g., position) and enriches them. For
edges connecting two dynamic attributes, the policy manager generates an EEC,
which reacts to events from event streams and correlates them. The resulting
events are further processed by nodes representing the logic operators. Changing
the domain model might force re-analyzing policies and re-generating EECs,
which our middleware can handle transparently.

ACTrESS. Cyber-physical systems are inherently heterogeneous systems, due
to their many different sensors. One example for heterogeneity are different
unit systems, e.g., Metric units vs. American Standard units. Thus, an event
saying temperature = 25 can only be interpreted correctly, if producer, bro-
ker, and consumer share the same understanding of what 25 means (and what
temperature means). Heterogeneity becomes even more complicated when we
take the structure and types of events into consideration.

In order to correctly interpret events, this heterogeneity has to be mediated.
The correct interpretation is vital both for the subscription matching in the bro-
ker and handling of events at the consumers. To achieve this, we designed and
built ACTrESS (Automatic Context Transformations in Event-based Software
Systems), which transforms incoming events to the desired format and interpre-
tation [15]. We proved ACTrESS to be type safe to avoid hard-to-trace runtime
errors [16].

ACTrESS enhances message-oriented middleware, by allowing producers and
consumers to tell the broker about their interpretation of data (independent of
each other). Based on this information, the broker then automatically transforms
messages.

For the DPL-enabled middleware we make use of ACTrESS. As pointed out
in Section 2.3 producers provide their data format in the metadata. We feed
this information into ACTrESS so it can transform incoming events to the needs
of the EECs. For example, the generated EECs will always receive absolute
Cartesian coordinates (x, y) , even if a sensor (e.g., a camera) sends events in
relative, polar coordinates (r, θ).

EECs. We distinguish between query-EECs and correlation-EECs.We illustrate
the need for this distinction with our running example:

Checking the inside edge of the policy logic tree (c.f. Figure 5) involves know-
ing a person’s and the rooms’ coordinates. Since person.position is a dynamic
attribute (c.f. above), computation is triggered by position events. All other

122 T. Freudenreich et al.

required information (the constraints and the rooms’ coordinates) are static at-
tributes and available via pull sources. Upon receiving a position event, the
(query-)ECC can query the external sources for the required information and
generate an enriched event based on the obtained information.

This is different from the within edge. In this case, both sides are dynamic
attributes and thus, their information is not readily available when the EEC
receives a position event. In this case, we must correlate multiple events. Such
correlation is best left to event stream processing engines like Esper4.

We designed EECs so they do not need to run on the same machine as the
middleware. This helps in distributing processing and keeping the overall system
scalable. EECs therefore subscribe to events from the message bus. At least one
EEC per policy is also responsible for invoking the specified action when all
conditions are met. Since EECs fulfill a certain event processing related task
(enriching events/ taking action), they can be implemented with Eventlets[1].
Eventlets encapsulate tasks in event-based systems and have a managed lifecycle.
This allows for instantiating one EEC per instance (e.g., one for every person),
resulting in an automatically managed, highly modular (and thus parallelizable
and scalable), distributed infrastructure.

The policy engine keeps track of all running EECs. We can stop an EEC if
its corresponding policy was deleted. The policy engine also allows for getting
various statistics about the EECs, e.g., how often they triggered the policy or
even the triggering frequency. We use publish/subscribe monitoring tools like
ASIA [17], to keep the monitoring overhead to a minimum.

2.4 Detailed Walkthrough

In this section, we want to illustrate the interaction between the components
with our running example from Section 1. We assume that the system has been
setup by an expert (e.g., loading the domain model and annotating data sources).

After receiving the policy, the policy engine analyzes it and generates three
EECs, based on the policy logic tree: (1) A query-EEC, subscribing to position
events and checking (by querying external sources) if the reported position be-
longs to an employee. If successful, the EEC generates an EmployeePosition

event. (2) A query-EEC, subscribing to position events and checking if the
reported position belongs to a guest and if that guest is inside a restricted
room. Upon successful detection, the EEC generates a GuestInsideRestricted
event. (3) A correlation-EEC, subscribing to EmployeePosition events and
GuestInsideRestricted events and checking (using event stream processing) if
the received events show a pattern which satisfies the policy’s conditions.

Position sensors (e.g., RFID readers) produce PositionEvents as shown in
Figure 6. As discussed in Section 2.3, we use ACTrESS to transform the local
position to a global one. After this transformation, the broker delivers the posi-
tion event to the two query-EECs. Depending on the status of the person with

4 http://esper.codehaus.org/

http://esper.codehaus.org/

Using Policies for Handling Complexity 123

<Pos i t ionEvent>
id = 5
at = (5 , 3)

</Pos i t ionEvent>

<EmployeePosit ion>
id = 5
at = (27 . 4 , 40 . 3)

</EmployeePosit ion>

<Gue s t In s i d eRe s t r i c t ed>
id = 5
at = (27 . 4 , 40 . 3)
room = 205

</ Gue s t In s i d eRe s t r i c t ed>

Fig. 6. Source event (left) and enriched events

id 5 (obtained by querying an external source), one of them generates an enriched
event (c.f. Figure 6).

For guests, the EEC queries an external source to obtain the room which
contains the position (27.4, 40.3). Finally, the correlation-EEC uses a stream
processing engine like Esper to correlate both event streams (e.g., with the EQL
statement given in Figure 7)

s e l e c t 1 from patte rn
[a=Gue s t In s i d eRe s t r i c t ed and not b=EmployeePosit ion]

where wi th in (a . at , b . at , 5)

Fig. 7. EQL statement (simplified) used by the EEC

When the EEC detects such a pattern, it generates a PolicyAction event,
which the middleware detects and invokes the alarm actuator.

3 Case Study

To strengthen and support our initial claim of simplifying the development of
cyber-physical systems and event-based systems in general, we use a case study to
compare three approaches along several criteria. The three competing approaches
are Java, EQL (Event Query Language used by Esper) and DPL. They represent
a solution to the evaluation example we give in the next section.

We do not provide a detailed performance analysis due to space reasons. In
light of modern cloud infrastructures, single node performance is less important.
Thus, we show that our approach is fully distributable (and thus parallelizable).

The generated EECs are autonomous components, which run independently of
each other. As indicated in Section 2.3, EECs can be implemented as Eventlets.
The execution of each EEC is thereby even further distributed. For example, the
Eventlet middleware separates the guest-EEC along id. Each EEC instance then
processes events for only a single person. The Eventlet middleware automatically
manages distribution of instances efficiently. We thus achieve a very fine grained
distribution/parallelism, which makes our approach easily scalable with virtually
any load.

3.1 Complete Example

For the evaluation, we slightly expand the example from Section 1. There are
publicly accessible areas in the company. For all other rooms, guests must be

124 T. Freudenreich et al.

accompanied by employees. Furthermore, there exist restricted areas where guests
are not allowed under any circumstances. We can express this in DPL:

IF
person A with a t t r i b u t e s t a tu s=’guest ’ IS INSIDE
room with a t t r i bu t e s e c u r i t y != ’ pub l i c ’ AND
person B with a t t r i b u t e s t a tu s=’employee ’ IS NOT WITHIN 5m of A OR

A IS INSIDE room with a t t r i bu t e s e cu r i t y = ’ r e s t r i c t ed ’
THEN

sound alarm

The exact EQL statements depend on the specifics of the stream processing
engine, the host language and how much functionality is pushed to the streaming
system. Thus, we outline how to achieve the above goal and try pushing as much
functionality to the streaming system as possible.

We need to make data from the database available to the streaming system,
by inserting them into a stream (for every table we need data from):

i n s e r t i n to UserStream s e l e c t ∗ from patte rn [t imer : i n t e r v a l (0)] ,
s q l : db1 [’ s e l e c t ∗ from users ’]

We need to generate higher-order events based on the conditions, for example:

i n s e r t i n to NonPublicEvent s e l e c t p . id , p . po s i t i on , r . room
from PersonPos i t ions as p , RoomStream as r
where i n s i d e (p . po s i t i on , r . c oo rd i na t e s)

and p . s t a tu s = ’ guest ’ and r . s e c u r i t y != ’ pub l i c ’

The function inside is a host language function made accessible to the streaming
system. This EQL statement assumes that there is a stream PersonPositions
which combines position events with user data. This illustrates the dependency
between different EQL statements. For our example, various such higher-order
events are necessary, whose definition we omit for brevity.

Finally, an alarm triggering mechanism based on the given conditions must
be specified:

i n s e r t i n to AlarmEvents s e l e c t ∗ from patte rn
[a=NonPublicEvent and not b=EmployeeEvent
or c=ForbiddenEvent]

where wi th in (a . po s i t i on , b . po s i t i on , 5)

The host language can subscribe to events matching this pattern, and upon
reception of an event, trigger the alarm.

We omit the Java-only code for implementing the given scenario, as we believe
the reader can imagine the effort to implement this in Java without any stream
processing support (like Esper provides).

3.2 Criteria

We want to evaluate our three candidate solutions with the criteria description
similarity, number of instructions, control, and change. We explain each
criterion in more detail:

Description similarity indicates how similar the solution is to the original
task (written in prose). We used the MCS method [26] which measures text

Using Policies for Handling Complexity 125

similarity on a semantic level. Similarity is measured on a scale from 0 to 1,
with a higher score meaning a higher similarity. We believe this metric to be
a good indicator of how close a solution is to the mental model of the user.

Number of Instructions refers to the length of the solution. We use lines of
code the solution requires as our metric. We do not count boilerplate code
or setup-related code (e.g., registering JMS clients).

Control means how much direct control the user has over what happens inside
the system. For example, choice of index structures and data structures.

Change indicates how well changes are supported. Changes might occur be-
cause the user wishes to change the behavior, but may also result from
changes to the system (e.g., the addition of new sensors). We assume the
presence of other policies in the system, which also need to work.

3.3 Results

Table 1 summarizes our results, which we detail in this section.

Table 1. Results of the Case Study

Java EQL DPL

Description similarity 0.08 0.33 0.62
Number of Instructions 158 34 9
Control ++ + -

Change -- - ++

Looking at the description similarity, the advantages for DPL are apparent.
While it is nowhere close to a natural language definition, DPL still matches the
description in some terms and the line of thought. EQL requires the definition
of more complex events and access to database data, all of which is not part
of scenario description. Java’s syntax prevents coming close to a description in
prose.

Implementing the given scenario with EQL requires considerably more in-
structions than using DPL. Many of the EQL statements are simply necessary
to prepare the raw data so it can finally be used in a pattern-statement. By using
DPL, the middleware takes care of all preparation through enrichment and lets
the user focus on the important part. Thus, DPL requires much less effort to
implement the scenario. Since the Java implementation cannot rely on stream
processing libraries, it takes even more instructions.

On the other hand, more middleware-enabled functionality means less control
for the end user. Thus, Java provides the most control, while stream process-
ing libraries usually provide many optional settings. DPL clearly provides little
control about how a policy is executed. Providing mechanisms for more control,
would complicate the language and execution, which is not our goal.

Changing policies is also much better supported in DPL. For example, if we
want to extend the restrictions to interns, in EQL, we will have to change the

126 T. Freudenreich et al.

definition of a NonPublicEvent. However, other parts of the system might still
depend on the current definition. Thus, the user has to either introduce a new
definition besides NonPublicEvent with the risk of doing unnecessary work (if
NonPublicEvent is in fact not used anywhere else), or the user has to analyze
all other EQL-statements to see if and how they depend on NonPublicEvent. In
Java, the user must analyze the code to check where the modifications need to be
made and which other parts of the code might be affected, requiring similar effort.
Assuming a correct setup of the additional knowledge (e.g., domain model), with
DPL, the user simply modifies the query and leaves the rest to the middleware.

In summary, we see the arguments above as good and convincing evidence
that DPL indeed, simplifies the development of event-driven architectures.

4 Related Work

Complex Event Processing (CEP) [24] is an active field of research. It is based
on stream processing and active databases, aiming at providing higher-level ab-
stractions with event patterns, filtering and aggregation. Low-level events are
combined according to rules. There is a plethora of complex event processing
and stream processing systems [9]. All systems however, try to improve per-
formance [29] or the expressive power of their rule language. Other works are
on improving the rule language design itself [22], but stick with the same con-
cept. Eckert et al. surveyed CEP languages [11], but all of them operate on a
lower abstraction than our approach and are thus comparable with EQL. Some
approaches advocate integrating event processing directly into major languages
like Java [13]. Reactive Programming [3] extends this idea by providing more
built-in language support to avoid common problems such as value propagation
inconsistencies. However, none of these approaches attempts changes as radical
as our approach.

Situation monitoring suggests such a perspective shift [4,18]. They argue that
users typically think of situations a computer system should be aware of and then
define reactions based on them. They provide tools for defining these situations.
Their approach faces some drawbacks in light of today’s distributed, dynamic
and heterogeneous systems: their approach does not use message-oriented mid-
dleware for forwarding events and they hard-wire information flows from specific
sensors to specific processing components. Similarly, behavioral programming
aims at ”constructing reactive systems [...] from their expected behaviors” [20].
They advocate thinking about a system as the composition of its behaviors,
where behaviors are reactions to events. However, they rely on explicitly defin-
ing the interactions and an a-priori knowledge of which events exist. Schiefer
et al. developed a graphical tool for specifying event-condition action rules [28].
While their approach certainly helps tackling the complexity of event-based sys-
tems, it still requires the technical knowledge of how events can be combined.

The Alarm Correlation Engine (ACE) allows for declaratively specifying con-
ditions and actions for alarms in a computer network, based on events [30]. Their
motivation, too, is to give domain experts a tool for specifying policies. How-
ever, their approach is highly tailored to networks, with a predefined correlation

Using Policies for Handling Complexity 127

database. Their solution is too rigid for modern event-driven architectures. Han-
dling multiple, heterogeneous data sources with the help of an ontology has been
explored in the field of query formulation [25,8]. Users are supported with sug-
gestions to the queries they are trying to construct. Among other hints, query
formulation systems suggest vocabulary based on the underlying ontology.

Higher-level approaches for simplifying the development of cyber-physical sys-
tems are Ukuflow, Event Stream Processing Units and MobileFog. Ukuflow al-
lows users to define workflows, which are then deployed and executed in a wireless
sensor network (WSN) [19]. Although targeted to WSNs, we believe the approach
can be adopted to event-driven architectures in general. Similarly, Event Stream
Processing Units (SPUs) support developers and domain experts by introduc-
ing an abstraction for event stream processing. Thus, event streams can easily
be integrated into the business process modeling. MobileFog abstracts from the
distributed nature of applications for event-driven architectures (called Future
Internet Applications) [21], based on the paradigm of fog computing [5]. All three
approaches rely on a procedural approach, while we use a declarative approach,
each with its unique advantages.

Policies can be viewed as a grouping mechanism of CEP queries. For example,
the policy given in Section 3.1 can be seen as a collection (group) of the EQL
statements (not technically, but conceptually). In that regard, our approach is
similar to constraint grouping techniques in DBMSs [7,6]. Constraint group-
ing aims at grouping database constraints into meaningful units, which can
be plugged in and out, without worrying about other dependencies. However
constraint grouping and query formulation have been designed for pull-based
interactions, while we specifically target push-based interactions.

5 Conclusion

In modern software architectures SOAs and Event-driven architectures coexist.
While the former has good architectural support the latter still suffers from a
lack of good abstractions. Particular challenges are distribution and no direct
control over the control flow. In this work we proposed a novel approach for han-
dling this complexity. Our approach allows users to focus on the desired behavior
of the event-driven parts, leaving architectural concerns like distribution to the
middleware. We allow for stating the behavior in a declarative way, expressed in
DPL. We implemented a prototype of our approach on top of a message-oriented
middleware used as a communication infrastructure. We rely on computer ex-
perts to do the initial setup of the system, similar to a database developed by
database experts for use by domain experts. Results from our case study show,
that our approach makes event-driven architectures much easier to use.

Our approach yields some tradeoffs: using a declarative approach allows for
easy specification but also means less control for the user. For example, window
sizes or the degree/strategy of distribution is beyond the user’s control. In terms
of system qualities, our approach clearly favors scalability over some others: by
automatically dividing the processing into small, independent processors, scaling

128 T. Freudenreich et al.

out is handled automatically, which is especially useful for cloud environments.
On the other hand, since we access messages and create new ones, encryption
and signatures require trust in our middleware. Even with trust, the necessary
key/certificate management becomes a challenge.

In future work, we want to exploit existing spatial database technology and
incorporate enhanced event detection from image processing. Furthermore, we
want to explore the benefits of dynamically moving EECs to other nodes in the
system when CPU load becomes too high. Especially for settings where multiple
users interact with a large system, we want to develop a policy conflict detection.
This involves making the meaning of actions (and probably also conditions) ex-
plicit to the policy engine. We can then use standard conflict resolution strategies
to avoid inconsistent system behavior.

Acknowledgment. Funded in part by the German Federal Ministry of Educa-
tion and Research (BMBF) grant 01IS12054. The authors assume responsibility
for the content.

References

1. Appel, S., Frischbier, S., Freudenreich, T., Buchmann, A.: Eventlets: Components
for the Integration of Event Streams with SOA. In: SOCA (December 2012)

2. Appel, S., Frischbier, S., Freudenreich, T., Buchmann, A.: Event stream processing
units in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 187–202. Springer, Heidelberg (2013)

3. Bainomugisha, E., Carreton, A.L., van Cutsem, T., Mostinckx, S., de Meuter, W.:
A survey on reactive programming. ACM Comput. Surv. 45, 52:1–52:34 (2013)

4. Baker, D., Georgakopoulos, D., Nodine, M., Cichocki, A.: From events to awareness.
In: IEEE Services Computing Workshops, SCW 2006, pp. 21–30 (2006)

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: MCC (2012)

6. Buchmann, A., Carrera, R.S., Vazquez-Galindo, M.A.: A generalized constraint
and exception handler for an object-oriented CAD-DBMS. In: OODS (1986)

7. Buchmann, A., de Célis, C.P.: An architecture and data model for CAD databases.
In: VLDB (1985)

8. Catarci, T., Di Mascio, T., Franconi, E., Santucci, G., Tessaris, S.: An ontology
based visual tool for query formulation support. In: Meersman, R. (ed.) OTM-WS
2003. LNCS, vol. 2889, pp. 32–33. Springer, Heidelberg (2003)

9. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv. 15, 15:1–15:62 (2012)

10. Dayal, U., Buchmann, A., McCarthy, D.: Rules are objects too: A knowledge model
for an active, object-oriented database system. In: Dittrich, K.R. (ed.) OODBS
1988. LNCS, vol. 334, pp. 129–143. Springer, Heidelberg (1988)

11. Eckert, M., Bry, F., Brodt, S., Poppe, O., Hausmann, S.: A cep babelfish: Languages
for complex event processing and querying surveyed. In: Helmer, S., Poulovassilis,
A., Xhafa, F. (eds.) Reasoning in Event-Based Distributed Systems. SCI, vol. 347,
pp. 47–70. Springer, Heidelberg (2011)

12. Eugster, P., Garbinato, B., Holzer, A.: Location-based Publish/Subscribe. In: 4th
IEEE International Symposium on Network Computing and Applications (2005)

Using Policies for Handling Complexity 129

13. Eugster, P., Jayaram, K.R.: EventJava: An extension of java for event correlation.
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 570–594. Springer,
Heidelberg (2009)

14. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

15. Freudenreich, T., Appel, S., Frischbier, S., Buchmann, A.: ACTrESS - automatic
context transformation in event-based software systems. In: DEBS (2012)

16. Freudenreich, T., Eugster, P., Frischbier, S., Appel, S., Buchmann, A.: Implement-
ing federated object systems. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920,
pp. 230–254. Springer, Heidelberg (2013)

17. Frischbier, S., Margara, A., Freudenreich, T., Eugster, P., Eyers, D., Pietzuch, P.:
Aggregation for implicit invocations. In: AOSD (2013)

18. Georgakopoulos, D., Baker, D., Nodine, M., Cichoki, A.: Event-driven video aware-
ness providing physical security. World Wide Web 10(1), 85–109 (2007)

19. Guerrero, P., Jacobi, D., Buchmann, A.: Workflow support for wireless sensor and
actor networks. In: DMSN (2007)

20. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

21. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile
fog: a programming model for large-scale applications on the internet of things. In:
MCC (2013)

22. Le, T.-G., Hermant, O., Manceny, M., Pawlak, R., Rioboo, R.: Unify event-based
and rule-based styles for developing concurrent and context-aware reactive appli-
cations. Technical report, LISITE, France (2012)

23. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In:
SIGKDD (2013)

24. Luckham, D.C., Frasca, B.: Complex event processing in distributed systems. Tech-
nical report, Stanford University (1998)

25. Mahalingam, K., Huhns, M.: An ontology tool for query formulation in an agent-
based context. In: COOPIS (1997)

26. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based mea-
sures of text semantic similarity. In: AAAI, vol. 6, pp. 775–780 (2006)

27. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems, vol. 1.
Springer, Heidelberg (2006)

28. Schiefer, J., Rozsnyai, S., Rauscher, C., Saurer, G.: Event-driven rules for sensing
and responding to business situations. In: DEBS (2007)

29. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: ACM SIGMOD (2006)

30. Wu, P., Bhatnagar, R., Epshtein, L., Bhandaru, M., Shi, Z.: Alarm correlation
engine (ACE). In: NOMS (1998)

Architecture-Based Code Generation:

From π-ADL Architecture Descriptions
to Implementations in the Go Language

Everton Cavalcante1,2, Flavio Oquendo2, and Thais Batista1

1DIMAp, Federal University of Rio Grande do Norte, Natal, Brazil
2IRISA-UMR CNRS/Université de Bretagne-Sud, Vannes, France

evertonrsc@ppgsc.ufrn.br, flavio.oquendo@irisa.fr, thais@ufrnet.br

Abstract. Architecture description languages (ADLs) should consider
both structural and runtime perspectives of software architectures, an
important requirement for current software systems. However, most
existing ADLs are disconnected from the runtime level, thus entailing
architectural mismatches and inconsistencies between architecture and
implementation. With the emergence of the new generation programming
languages for large-scale, dynamic, and distributed systems, this prob-
lem becomes worse since most existing ADLs do not capture the features
of this type of language. In this context, we investigate the generation of
source code in the Go programming language from architecture descrip-
tions in the π-ADL language as they are both based on the π-calculus
process algebra. We define the correspondences between π-ADL and Go
elements and present how architecture descriptions in π-ADL can be au-
tomatically translated to their respective implementations in Go through
a real-world flood monitoring system.

Keywords: Software architectures, Architecture description languages,
π-ADL, Programming languages, Mapping, Implementation, Go.

1 Introduction

The construction of new generation software systems requires languages that en-
able software architects to describe architectures of these systems by considering
both structural and runtime perspectives, and such descriptions need to be sup-
ported by programming languages that provide facilities to tackle the features
of these systems. However, as software architectures are typically defined inde-
pendently from implementation, most existing software architecture description
languages (ADLs) [1, 2] are disconnected from the runtime level, thus entailing
architectural mismatches and inconsistencies between architecture and imple-
mentation mainly as the architecture evolves. Therefore, even if a system is
initially built to conform to its intended architecture, its implementation may
become inconsistent with the original architecture over time.

This decoupling between architecture descriptions and their implementation
becomes worse with the emergence of new generation programming languages,

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 130–145, 2014.
c© Springer International Publishing Switzerland 2014

Architecture-Based Code Generation: From π-ADL to Go 131

such as the Go language [3]. Most existing ADLs do not properly address the
features of this type of languages, which are characterized by their purpose
of easily taking advantage of the modern multicore and networked computer
architectures, as well as providing concurrency capabilities. These features are
not well supported by existing mainstream programming languages such as C++
or Java, thus increasing the required complexity for constructing large-scale and
dynamic systems, which are becoming typical in several application domains.

In this context, this paper addresses the integration of π-ADL architecture de-
scription language [4] with the Go programming language for designing complex
systems. On one hand, π-ADL provides a formal, theoretically well-founded lan-
guage for describing dynamic software architectures by encompassing both struc-
tural and behavioral viewpoints, unlike most existing ADLs. In turn, Go is an
easy general-purpose language designed to address the construction of scalable
distributed systems and handle multicore and networked computer architectures.
Such an integration is mainly fostered by their common basis on the π-calculus
process algebra [5] and the straightforward relationship between elements of the
languages, such as the use of connections in π-ADL and channels in Go as means
of communication between concurrent processes. In this perspective, the purpose
of this paper is twofold: (i) to define the correspondences between the elements
of these languages, and; (ii) to present a process that defines how architecture
descriptions in π-ADL can be automatically translated to their respective source
code implementations in Go.

The remainder of this paper is organized as follows. Section 2 presents a brief
overview about the π-ADL and Go languages. Section 3 introduces the mapping
of π-ADL architectural descriptions to corresponding implementations in Go. In
Section 4 we illustrate our proposal by specifying the architecture of a real-world
flood monitoring system in π-ADL and showing how it can be automatically
translated to its respective implementation in Go. Section 5 briefly discusses
related work. Finally, Section 6 contains final remarks and directions to future
works.

2 Background

2.1 The π-ADL Architecture Description Language

π-ADL [4] is a formal language for describing dynamic software architectures
under both structural and behavioral viewpoints, i.e., in terms of the elements
that compose such architectures and their operation at runtime. It is part of a
family of languages designed to formally describe and refine dynamic software
architectures and to support automated verification at both design time and
runtime. In the last decade, π-ADL and its technologies have been applied in
several real-world scenarios and pilot projects for critical and large-scale systems.

π-ADL has as theoretical foundation the higher-order typed π-calculus pro-
cess algebra [5] (hence the name) and encompasses a formal transition and type
system. Such a basis is conformed to the language design principles of correspon-
dence, abstraction, and data type completeness [6]. Type completeness ensures

132 E. Cavalcante, F. Oquendo, and T. Batista

first class citizenship to all data types, i.e., they can be declared, assigned, per-
sisted, and have equality defined over them.

In π-ADL, an architecture is described in terms of components, connectors,
and their composition. Components represent the functional elements of a soft-
ware system, while connectors manage interactions among components since a
component cannot be directly connected to another component. Components
and connectors can be also composed to construct composite elements, which
may themselves be components or connectors. Components and connectors also
comprise a behavior, which expresses the interaction of an architectural element
and its internal computation and uses connections to connect and transmit val-
ues. In π-ADL, architectures, components, and connectors are formally specified
in terms of typed abstractions over behaviors.

As π-ADL is derived from π-calculus, it is grounded on the concept of com-
municating processes [7]. In π-calculus, communications/interactions between
concurrent processes take place through channels, which are abstractions that
enable the synchronization between such processes by sending and receiving
messages (values or even channels). Analogously, in π-ADL a component can
send/receive values via typed connections, which can send (output connections)
and receive (input connections) any value of the existing types as well as con-
nections themselves. In order to attach a component to a connector, at least a
connection of the former must be attached to a connection of the latter. Such an
attachment takes place by means of unification or value passing, so that attached
connections can transport values, connections or even architectural elements.

Figure 1 depicts the main architectural concepts of π-ADL. From a black-box
perspective, only connections of components and connectors and values pass-
ing through connections are observable. From a white-box perspective, internal
behaviors of such elements are observable.

Fig. 1. Main architectural concepts of the π-ADL language

Figure 2 illustrates a π-ADL description1 for a simple pipeline architecture
composed of two components (filters) linked through one connector (pipe). Filter
components transform data received from their input and send the transformed
data to their output, while pipe connectors transmit the output of one filter

1 More details about the syntax of architecture descriptions in π-ADL and its main
elements can be found in [4,8].

Architecture-Based Code Generation: From π-ADL to Go 133

to the input of another filter. The Filter component (Fig. 2-a) is declared
with two connections: (i) inFilter, an input connection for receiving data to
be processed, and; (ii) outFilter, an output connection for sending processed
data. The behavior of the Filter component encompasses the transform func-
tion, which receives data from the inFilter connection and returns data to be
sent through the outFilter connection. In such an architecture description, the
transform function is unobservable, i.e., internal. Similarly, the Pipe connector
(Fig. 2-b) is declared with two connections: (i) an input connection (inPipe)
that receives data as output of a filter, and; (ii) an output connection (outPipe)
that sends data to the input of another filter. Finally, the PipeFilter architec-
ture (Fig. 2-c) is specified as a composition in which two filter components (F1
and F2) and one pipe connector (P1) are instantiated. The attachments of these
architectural elements take place through the unification of the output connec-
tion of the filter F1 with the input connection of the pipe P1, and the unification
of the output connection of the pipe P1 with the input connection of the filter
F2. Therefore, data can be sent from filter F1 to filter F2 through the pipe P1

via the declared connections.

2.2 The Go Programming Language

Go [3] is a new general-purpose language that was launched as an internal project
at Google, Inc. in 2007 and became a public open-source project on November
2009. In 2012, Go was stably released as Go 1 by including a language specifi-
cation [9], standard libraries, and custom tools. In the last years, Go has been
used by Google and a variety of commercial and noncommercial organizations.
It is also integrated to the Google App Engine [10], the Google’s cloud-based
development platform.

Go was designed to address the construction of new generation large-scale
software systems, which are to be efficient, dynamic, and deployed on multicore
and networked computer architectures. In order to achieve these purposes, the
language aims to combine the lightweight, ease of use, and expressiveness of
interpreted and dynamically typed languages, such as JavaScript and Python,
with the efficiency and safety of traditional statically typed, compiled languages
such as Java. Moreover, it is possible to directly compile even a large Go program
to native code in few seconds.

One of the main features of Go is its lightweight support for concurrent com-
munication and execution through high-level operations, in contrast to the con-
siderable effort required to develop, maintain, and debug concurrent programs in
mainstream languages such as C++ and Java. In this perspective, the solution
provided by Go is threefold. First, the high-level support for concurrent pro-
gramming enables programmers to easily develop concurrent programs. Second,
concurrent processing is performed through goroutines, which are lightweight
processes (similar to threads, but lighter), which can be created and automat-
ically load-balanced across the available processors and cores. Finally, the au-
tomatic and efficient garbage collection relieves programmers of the memory
management typically required by concurrent programs.

134 E. Cavalcante, F. Oquendo, and T. Batista

Fig. 2. Description of a simple pipeline architecture in π-ADL

In Go, goroutines communicate by using typed channels, which are used as
means for sending and receiving values of any type. When a channel communi-
cation takes place, the sending and/or receiving channels (and their respective
goroutines) are synchronized at the moment of the communication [7]. Therefore,
explicit locking and other low-level details are abstracted away, thus simplify-
ing the development of concurrent programs. Furthermore, due to its theoretical
foundations on π-calculus, Go also supports the mobility of channels, i.e., chan-
nels are seen as first-class objects that can be transported via other channels.

Due to space restrictions, in Sections 3 and 4 we introduce just some elements
of Go used in the implementation code generated from architecture descriptions
in π-ADL. The interested reader is invited to refer to the complete specification
of the language, its main elements, and details about its syntax in [9, 11].

Architecture-Based Code Generation: From π-ADL to Go 135

3 Mapping π-ADL Architectural Descriptions to
Implementations in Go

This section presents how we can generate source code in the Go programming
language from π-ADL architecture descriptions. Section 3.1 defines the corre-
spondences between the elements of π-ADL to Go whereas Section 3.2 presents
a process used to perform such a translation between the languages.

3.1 Correspondences between π-ADL and Go

Table 1 summarizes the relationships between the main elements of π-ADL and
Go, each one detailed as follows.

Table 1. Summary of the correspondences between elements of π-ADL and Go

π-ADL Go

Component Function (goroutine)
Connector Function (goroutine)
Behavior Body of function (goroutine)
Connection Channel
Architecture Main function
Declaration of connections Maps of channels
Unification of connections Channels as parameters to goroutines
Basic types (except Any) Primitive types
Any type Empty interface
Unobservable elements Empty body

Components, Connectors, and Their Behavior. In a π-ADL architecture
description, components and connectors are created as abstractions that can be
instantiated within the specification of the architecture. In Go, components and
connectors are represented as functions that will be called as goroutines, thus
being equivalent to the notion of communicating processes in π-calculus. Such
functions are signed with the respective names of the components and connec-
tors that they represent and the body of these functions comprises the behavior
of such architectural elements.

Connections. As we have presented in Section 2, one of the main elements of
the π-calculus process algebra are channels, which are used as means of commu-
nication and synchronization between concurrent processes. In π-ADL, connec-
tions are used to send and/or receive values between architectural abstractions
(components and connectors) and their behaviors. Similarly (and then straight-
forwardly to π-calculus), the typed channels in Go are used to send and/or
receive values between processes (goroutines to be synchronized), so that con-
nections in π-ADL are mapped to channels in Go. The data type of the values
that are transmitted through a channel is the one specified in the declaration of
the connection.

136 E. Cavalcante, F. Oquendo, and T. Batista

Declaration of Connections. In the main function, maps2 of channels are cre-
ated in order to represent the set of connections associated to a component or
connector. These <string, channel> maps use as keys the names of the connec-
tions declared in the architecture description and map to the respective channel
object that represent the connection. Such maps are used in order to enable the
rastreability of the connection names when performing the translation from the
architectural description π-ADL to the respective code in Go.

Unification of Connections. In π-ADL, a connection of a component can be
attached to a connection of a connector in order to enable these elements to com-
municate. In Go, such a unification process takes place by passing the channels
regarding the connections to be unified as parameters of the functions (gorou-
tines) that represent behaviors of components and connectors. For example, in
order to unify a connection of a component to a connection of a connector, the
respective channel object regarding the former connection is passed as parameter
to the goroutine that represents the connector.

Architecture. The main element of an architectural description is the architec-
ture itself. In π-ADL, an architecture is specified as a composition of component
and connector instances. In Go, it is represented by the main function (func
main), which stands for the entry-point of a Go program (thus being the first
function called when the program executes) and has no parameters and type.
In order to create the instances of components and connectors, the goroutines
that represent such architectural elements are called within the main function.
In such calls, two parameters are provided: (i) the respective map of channels
that represent the connections of the component/connector, and; (ii) the channel
that represents the connection that will be unified to this component/connector.

Basic Types. π-ADL provides the following basic types: Natural, for non-
negative (natural) numbers; Integer, for integer numbers; Real, for real num-
bers; Boolean, for Boolean logical values, and; String, for character strings. Such
basic types are respectively mapped to the following Go primitive types: uint64,
for unsigned integer numbers; int64, for signed integer numbers; float64, for
floating point numbers; bool, for Boolean values, and; string, for character
strings. π-ADL also provides a special basic type called Any, which represents an
infinite union of types, so that values of the Any type consist of a value of any
type with a representation of such a type. For similar purposes, the Any generic
type is mapped to empty interfaces (interface{}), which are means of generic
typing in Go. As empty interfaces do not have defined methods, any type is able
to satisfy these interfaces.

Unobservable Elements. In π-ADL, an element (e.g., behavior, function, etc.)
can be set as unobservable, i.e., internal. In Go, this is represented as an element
with empty body.

2 A map (a.k.a. associative array or hash table) in Go is an unordered, non-sequential
collection of <key, value> pairs. They are used to search for a value through a key,
which works as an index that enables to access the value related to it.

Architecture-Based Code Generation: From π-ADL to Go 137

3.2 Mapping Process

Figure 3 depicts the technical process performed to generate source code in the
Go programming language from architecture descriptions in π-ADL. In the first
step, the grammar of π-ADL was specified by using Xtext [12], a framework
for developing programming languages and domain specific languages. Besides
the specification of the syntactic rules and automatic generation of the language
infrastructure, Xtext provides: (i) an abstract syntax tree, which is a tree rep-
resentation of the abstract structure of a source code; (ii) a code formatter,
integrated to a code editor; (iii) support tools for static syntactic analysis of the
source code; (iv) a parser, and; (v) a code generator, which is able to generate
code from a model in the defined language. From the grammar specification in
the Extended Backus-Naur Form (EBNF) notation, Xtext also generates a con-
formed meta-model of the language with all abstract elements that are part of
it and the relationships among them.

Fig. 3. Process for generating source code in Go from π-ADL architecture descriptions

From the grammar specification, Xtext uses a modeling workflow engine
(MWE2) to generate the π-ADL language infrastructure, which encompasses
components such as lexical analyzer, parser, and serializer, as well as source
code in the Java programming language for implementing each abstract element
of the language. Moreover, such an engine generates the entry point for imple-
menting a code generator, which is used for generating source code from the
textual model conformed to the grammar specification. This code generator was
implemented by using facilities provided by Xtend [13], a dialect of Java that
translates a textual model to source code. For this purpose, Xtend uses extension
methods and template expressions to specify how a given abstract element in the
input model can be translated to its representation in the source code to be gen-
erated. Therefore, these mechanisms provided by Xtend were used to translate

138 E. Cavalcante, F. Oquendo, and T. Batista

the abstract elements defined in the π-ADL grammar to their respective im-
plementation in Go based on the correspondences defined in Section 3.1. When
specifying an architectural specification in π-ADL, if it is correct according to
the syntactic rules of the language, the infrastructure automatically generates
Go source code from this specification when it is saved in the language editor.

More details about the mapping process, the Xtext grammar specification of
the π-ADL language, as well as the Eclipse-based projects used for generating
Go source code are available at the following URL address:

http://consiste.dimap.ufrn.br/projects/PiADL2Go/

4 Application

In this section, we illustrate our proposal by specifying the architecture of a
real-world flood monitoring system in π-ADL and showing how it can be au-
tomatically translated to its respective implementation in Go by following the
correspondences drawn in Section 3.1. Afterwards, we discuss how our proposal
supports key features of this system, in particular regarding large-scale, concur-
rency, distribution, and dynamicity.

4.1 An Illustrative Example: A Flood Monitoring System

Wireless sensor networks (WSNs) are composed of tiny embedded computers
with an embedded CPU, low power wireless networking capabilities, and simple
sensors [14]. Among the large number of real-world applications in which WSNs
have been increasingly employed, an interesting and promising scenario is the
flood monitoring in urban areas. During rainy seasons, floods are challenging to
urban centers traversed by large rivers due to material, human, and economic
losses in flooded areas. In order to minimize such problems, a flood monitoring
system can support monitoring urban rivers and create alert messages to warn
people in case of an imminent flood.

A successful example of WSN-based flood monitoring system is the one used to
monitor the Monjolinho River in São Carlos, Brazil [15]. This system is composed
of multiple sensor nodes, which measure the water depth of the river as an
indicator of the risk of flood, and a gateway station, which collects, analyzes,
and make such data available. Raw data measured by the sensors undergo some
processing and are forwarded to neighbor sensors until reaching the gateway
station. In case of an imminent flood, the system creates alert messages to warn
people about the risks. The communications between sensors among themselves
and with the gateway node take place through ZigBee wireless links. Figure 4
depicts the architecture of this WSN-based flood monitoring system, which is
composed of two sensor components (S1 and S2), one gateway component (G),
and a connector linking them (L1).

Figure 5(a) shows the specification of the Sensor component in π-ADL, which
is composed of three connections: (i) the sense input connection is used for re-
ceiving raw data measured by the sensor; (ii) the pass input connection is used

http://consiste.dimap.ufrn.br/projects/PiADL2Go/

Architecture-Based Code Generation: From π-ADL to Go 139

Fig. 4. Architecture of the WSN-based flood monitoring system

for receiving data from a neighbor sensor, and; (iii) the measure output con-
nection is used for sending data. The behavior of this component encompasses
the definition of the convertRawData function, which is responsible for prepro-
cessing the sensed raw data. Moreover, such a behavior can proceed through
two alternative options, as specified in the choose construct: (i) data received
via the sense input connection are processed by the convertRawData function
and then sent via the measure output connection, or; (ii) data received via the
pass input connection are directly sent (i.e., without any processing) via the
measure output connection. As partially shown in Fig. 5(b), this component is
implemented in Go by the Sensor function, which receives as parameters the
map of channels representing the set of named connections (as exemplified by
the map S1) and a channel representing the connection to be unified when this
goroutine is called within the main function. The Sensor function also com-
prises the declaration of a local function corresponding to the convertRawData

function specified in the behavior. In order to represent the choose construct
for alternative behavior options, the select instruction is used for selecting the
pairs of channels according to the reception of messages. The value to be writ-
ten to the measure output channel can be the one received in the sense input
channel (sensed data) or the one received in the pass input channel (data from
another sensor). The specification of the Gateway component in π-ADL and its
corresponding implementation Go follow the same approach.

Figure 6(a) shows the specification of the ZigBee connector in π-ADL, which
encompasses the input connection for receiving data and the output connection
for sending data. In turn, as shown in Fig. 6(b), this connector is implemented
in Go by the ZigBee function, which receives as parameters the map of channels
representing the set of named connections (as exemplified by the map L1) and a
channel representing the connection to be unified when this goroutine is called
within the main function. In the ZigBee function, the unification effectively takes
place through the assignment of the channel (connection) to be unified to the
input channel of the connector. Afterwards, the value in the input channel is
assigned to a variable (d) to be written to the output output channel.

140 E. Cavalcante, F. Oquendo, and T. Batista

Fig. 5. Description of the Sensor component in π-ADL and its corresponding imple-
mentation in Go

Finally, Fig. 7 shows the specification of the WSNFloodMonitoring architec-
ture in π-ADL, which corresponds to the main executable function (func main).
In this function, instances of the Sensor and Gateway components are created by
calling the respective goroutines that represent such elements and their behavior
with the respective maps of channels. The unifications of connections specified
within the composition behavior (compose) take place by passing the channels
as parameters to the goroutines. For instance, the calls to the ZigBee goroutine
unify the output connection measure of the components S1 and S2 to the con-
nector L1, so that the contents of the output channel of the formers are sent
to the input channel of the later. Similarly, the call to the Gateway goroutine
unifies the output connection output of the connector L1 to the component G.

4.2 Discussion

After illustrating our proposal in small-scale with a simplified architecture com-
posed of two sensor components, one gateway component, and one connector

Architecture-Based Code Generation: From π-ADL to Go 141

Fig. 6. Description of the ZigBee connector in π-ADL and its corresponding imple-
mentation in Go

(Fig. 4), we will discuss how it is possible to scale-up the system and support
distribution, concurrency, and dynamicity features.

In our mapping process from π-ADL to Go, components and connectors are
implemented as goroutines, which are lightweight processes. In this perspective,
increasing the number of architectural elements to be considered in the archi-
tecture in order to have a large-scale system does not promote a considerable
impact mainly due to the efficient support to the execution of lightweight gor-
outines provided by Go. Moreover, Go also supports elastic platforms. This is
the case of the flood monitoring system in which an increase of the number of
sensors implies increasing the hardware execution platform, as each sensor node
has its own processing unit.

Furthermore, Go natively provides an easy, lightweight support for the con-
current communication and execution of distributed programs mainly by using
goroutines. In this perspective, as the architectural elements of the flood moni-
toring system are logically and physically distributed, such features provided by
Go enable their concurrent execution and then foster an easy development of
this type of system.

Finally, there may be cases in which it is necessary to add, remove or replace
sensors or connections to the current flood monitoring system. Components and
connectors can be dynamically added to the system as the creation of these
elements is simply performed through new calls to the respective goroutines that
implement them. In case of replacing components and connectors, it is necessary
to make new calls to the goroutines that are to replace the elements and rearrange
the communication channels in order to enable their synchronization. Finally,

142 E. Cavalcante, F. Oquendo, and T. Batista

Fig. 7. Description of the WSNFloodMonitoring architecture in π-ADL and its corre-
sponding implementation in Go

when removing these elements, the goroutines associated with them are to be
blocked by closing the communication channels (connections) and the garbage
collector of the Go language will be in charge of dealing with their destruction.

5 Related Work

Supporting code generation through the translation of architecture descriptions
specified in an ADL to a programming language is not a new research sub-
ject [16,17], but it is still a relevant issue mainly due to the concern of maintaining
conceptual integrity between architecture representations and its corresponding
implementation code. However, as far as we are concerned, there is no work on
the integration of ADLs with new generation programming languages in order
to tackle the gap between architecture descriptions and their implementations.
In this section, we briefly discuss some existing work on the integration of archi-
tectures with implementation and its limitations.

The Medvidovic et al.’s work [17] is one of the first works on the relationship
between architecture descriptions and implementation languages. The proposed
approach encompasses Dradel, an environment for modeling, analyzing, evolv-
ing, and implementing architectures described in C2SADEL (C2 Software Ar-
chitecture Description and Evolution Language), which is an extension of the C2

Architecture-Based Code Generation: From π-ADL to Go 143

language designed to support architecture-based evolution. A Java class is gen-
erated for each component specified in C2SADEL and a method in such a class
is generated for each component service, with preceding preconditions and fol-
lowed postconditions both marked as simple comments. In addition, developers
need to provide an implementation for these application-specific methods.

ArchJava [18] is an extension to Java that tangles software architecture speci-
fications to Java implementation code in order to ensure the traceability between
architecture and code (that is, the conformation of the implementation with the
specified architecture) and to support the co-evolution of both architecture and
implementation. ArchJava adds new language constructs for specifying compo-
nents, the connections among them and their ports, and behavior of components
is implemented together the services that they provide. In terms of dynamicity
support, components can be dynamically instantiated in a similar way to or-
dinary objects and connected at runtime. Although ArchJava presents a fresh
approach as an architectural solution, it is limited in that it is more concrete than
“pure” ADLs because the language has a stronger implementation basis. As it is
essentially based on an informal Java foundation, an entire ArchJava architec-
ture cannot be subjected to formal reasoning, despite the formally well-founded
type system of the ArchJava component extensions [19]. Furthermore, the gener-
ated architectures are to be executed over a single Java Virtual Machine, which
is not suitable to take advantage of multicore and networked computer archi-
tectures for the construction of large-scale and dynamic systems, as the Java
programming language itself.

Finally, π-ADL.NET [20] is the result of the integration of π-ADL with the
.NET platform. In π-ADL.NET, formal architecture descriptions in π-ADL are
compiled to CIL (Common Intermediate Language), thus resulting in a code that
is able to access the existing resources provided by the .NET platform. By en-
abling the execution of the architecture description, π-ADL.NET supports run-
time analysis of the concrete architecture and it seeks to preserve architectural
integrity of the system at the implementation level. Therefore, π-ADL based
architectures remain formally verifiable at the implementation level. Despite its
intention of bringing a formally founded ADL to an implementation platform,
the main limitation of π-ADL.NET that makes it not well suited for new gen-
eration software systems regards the lack of counterparts when performing the
mappings from π-ADL to CIL or the .NET platform. For instance, in π-ADL,
behaviors and abstractions communicate through connections, which have no
corresponding elements in CIL, so that a .NET class was developed by hand to
emulate π-ADL connections, with requisite threading and synchronization func-
tionality. In turn, due to their common π-calculus basis, π-ADL connections are
straightforwardly mapped to channels in Go, which are first-class elements of
the language and can be easily managed mainly when synchronizing processes.
Furthermore, π-ADL.NET also lacks of support for distribution (that is easily
and natively supported by Go), thus becoming a constraint when implementing
distributed systems, a typical feature of new generation software.

144 E. Cavalcante, F. Oquendo, and T. Batista

6 Final Remarks

This paper addressed the integration of the π-ADL architecture description lan-
guage with the Go programming language in order to tackle the existing gap be-
tween architecture descriptions and their respective implementations in the con-
text of large-scale, dynamic, distributed and concurrent software systems. While
π-ADL provides a formal and theoretically well-founded language for describing
dynamic software architectures under structural and behavioral perspectives, Go
is a general-purpose language suitable for building large-scale distributed systems
deployed in multicore and networked computer architectures, which are features
that are not well supported by the current mainstream programming languages.
Due to their common basis on the π-calculus process algebra, one of the key
features of π-ADL that fosters its integration with Go is the use of connections,
which are represented in Go by channels and enable the communication and
synchronization between behaviors, implemented as lightweight concurrent gor-
outines. In this perspective, we have defined a comprehensive mapping process
between the elements of the π-ADL and Go languages, so that source code in Go
can be automatically generated from architecture descriptions π-ADL by using
facilities provided by Xtend extension methods within the Xtext framework for
grammar specification and code generation. In order to validate our proposal, we
have applied such a translation process to a real-world flood monitoring system.

In future works, we intend to expand our mapping process in order to ad-
dress some elements of π-ADL that were not considered in this paper, such as
constructed types and other behavior types. Moreover, we also intend to quan-
titatively evaluate our process by using model transformation metrics, as the
one discussed in [21]. Finally, we also intend to address dynamic reconfiguration
issued in terms of how reconfiguration actions specified at the architectural level
take place at the implementation level and vice-versa. In this context, it is also
important to verify and enforce structural, behavioral, and quality properties
before, during, and after the reconfiguration process itself.

Acknowledgments. This work was partially supported by the following insti-
tutions: CAPES, grant 11097/2013-2; CNPq, PVE grant 400449/2013-7; INES,
grant 573964/2008-4, and; the Brazilian National Agency of Petroleum, Natural
Gas and Biofuels, PRH-22/ANP/MCTI Program.

References

1. Clements, P.: A survey of architecture description languages. In: 8th International
Workshop on Software Specification and Design (IWSSD 1996), pp. 16–25. IEEE
Computer Society, USA (1996)

2. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

3. The Go Programming Language, http://golang.org

http://golang.org

Architecture-Based Code Generation: From π-ADL to Go 145

4. Oquendo, F.: π-ADL: An architecture description language based on the higher-
order typed-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT Software Engineering Notes 29(3), 1–14 (2004)

5. Milner, R.: Communicating and mobile systems: The π-calculus. Cambridge Uni-
versity Press, USA (1999)

6. Oquendo, F., Warboys, B.C., Morrison, R., Dindeleux, R., Gallo, F., Garavel,
H., Occhipinti, C.: archWare: Architecting evolvable software. In: Oquendo, F.,
Warboys, B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 257–271.
Springer, Heidelberg (2004)

7. Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21(8), 666–677 (1978)

8. Oquendo, F.: Tutorial on ArchWare ADL – Version 2 (π-ADL Tutorial). Technical
report, ArchWare Consortium (2005)

9. The Go Programming Language Specification, http://golang.org/ref/spec
10. Go Runtime Environment – Google App Engine,

http://developers.google.com/appengine/docs/go/

11. Balbaert, I.: The way to Go: A thorough introduction to the Go programming
language. iUniverse, USA (2012)

12. Xtext, http://www.eclipse.org/Xtext/
13. Xtend, https://www.eclipse.org/xtend/
14. Ueyama, J., Hughes, D.R., Matthys, N., Horré, W., Joosen, W., Huygens, C.,

Michiels, S.: An event-based component model for wireless sensor networks: A case
study for river monitoring. In: 28th Brazilian Symposium on Computer Networks
and Distributed Systems (SBRC 2010), pp. 997–1004. SBC, Brazil (2010)

15. Hughes, D., Ueyama, J., Mendiondo, E., Matthys, N., Horré, W., Michiels, S., Huy-
gens, C., Joosen, W., Man, K.L., Guan, S.U.: A middleware platform to support
river monitoring using wireless sensor networks. Journal of the Brazilian Computer
Society 17, 85–102 (2011)

16. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Ab-
stractions for software architecture and tools to support them. IEEE Transactions
on Software Engineering 21(4), 314–335 (1995)

17. Medvidovic, N., Rosenblum, D.S., Taylor, R.S.: A language and environment for
architecture-based software development and evolution. In: 21st International Con-
ference on Software Engineering (ICSE 1999), pp. 44–53. ACM, USA (1999)

18. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architec-
ture to implementation. In: 24th International Conference on Software Engineering
(ICSE 2002), pp. 187–197. ACM/IEEE Computer Society, USA (2002)

19. Aldrich, J., Notkin, D.: Architectural reasoning in archJava. In: Magnusson, B.
(ed.) ECOOP 2002. LNCS, vol. 2374, pp. 334–367. Springer, Heidelberg (2002)

20. Qayyum, Z.: Realization of software architectures using a formal language: To-
wards languages dedicated to formal development based on π-ADL. Ph.D. Thesis,
Université de Bretagne-Sud, France (2009)

21. Nguyen, P.H.: Quantitative analysis of model transformations. Master Thesis,
Technische Universiteit Eindhoven, The Netherlands (2010)

http://golang.org/ref/spec
http://developers.google.com/appengine/docs/go/
http://www.eclipse.org/Xtext/
https://www.eclipse.org/xtend/

Generating EAST-ADL Event Chains
from Scenario-Based Requirements Specifications

Thorsten Koch1, Jörg Holtmann1, and Julien DeAntoni2

1 Project Group Mechatronic Systems Design, Fraunhofer IPT
Zukunftsmeile 1, 33102 Paderborn, Germany

{thorsten.koch,joerg.holtmann}@ipt.fraunhofer.de
2 Univ. Nice Sophia Antipolis, I3S, UMR 7271 CNRS, Sophia Antipolis, France

julien.deantoni@polytech.unice.fr

Abstract. Real-time software-intensive embedded systems complexity,
as in the automotive domain, requires rigorous Requirements Engineering
(RE) approaches. Scenario-based RE formalisms like Modal Sequence Di-
agrams (MSDs) enable an intuitive specification and the simulative val-
idation of functional requirements. However, the dependencies between
events occurring in different MSD scenarios are implicit so that it is
difficult to find causes of requirements defects, if any. The automotive
architecture description language east-adl addresses this problem by re-
lying on event chains, which make dependencies between events explicit.
However, east-adl event chains have a low abstraction level, and their
relationship to functional requirements has seldom been investigated.
Based on the east-adl functional architecture, we propose to use its
central notion of event to conciliate both approaches. We conceived an
automatic transformation from the high abstraction level requirements
specified in MSDs to the low abstraction level event chains.

Keywords: Requirements engineering, embedded systems, automotive,
scenario-based specification, EAST-ADL event chains.

1 Introduction

The growing functionality and complexity of today’s embedded software-intensive
systems that are subject to real-time constraints, like in the automotive domain,
require rigorous development processes. This is especially true for the require-
ments engineering (RE) phase, since the detection and fixing of defects in the
system under development (SUD) in subsequent development phases cause costly
iterations [15].

On the one hand, scenario-based notations are well suited for the specifica-
tion of requirements due to their intuitive representation [10]. Scenarios describe
sequences of events of tasks that the SUD has to accomplish [10]. In previous
work, we conceived a scenario-based RE approach based on a recent Live Se-
quence Chart (LSC) [3] variant, so-called Modal Sequence Diagrams (MSDs) [8].
The scenario-based nature of MSDs enables a visual and intuitive specification

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 146–153, 2014.
c© Springer International Publishing Switzerland 2014

Generating Event Chains from Scenario-Based Requirements Specifications 147

of requirements. Furthermore, the underlying formal semantics allows validating
the requirements by means of the Play-out algorithm, originally conceived for
LSCs [9]. Our MSD Play-out approach implemented in the ScenarioTools1

tool suite considers assumptions on the environment [2] as well as real-time con-
straints [1] and is applicable to hierarchical component structures [11], which
makes it well suited for automotive systems.

On the other hand, the automotive architecture description language east-
adl allows the specification of particular events occurring in an automotive
architecture [5]. The specification of so-called event chains causally relates these
events to each other, which make dependencies between them explicit. Addi-
tional real-time constraints restrict the timing of the particular event occur-
rences. Furthermore, the formalization of east-adl event chains and timing
constraints [6,7] has recently made possible their validation by means of simula-
tion in the TimeSquare2 tool suite [4].

However, east-adl event chains only describe requirements on event occur-
rences of an automotive software architecture. Functional requirements are not
in their scope, and the relationship to scenario-based requirements has not been
investigated, yet. This missing link to functional requirements is problematic,
because the explicit dependencies between the events have to be specified in a
modeling notation with a very low abstraction level. Thus, the requirements en-
gineer has to manually extract the information in scenario-based requirements
and specify it again in an awkward manner by means of east-adl event chains,
which is time-consuming and error-prone.

In order to bridge the gap between both formalisms, we conceived an auto-
matic model transformation from MSDs to east-adl event chains using the
east-adl functional architecture as a common basis. In this paper, we present
a mapping from MSDs to east-adl event chains, which acts as a link between
both formalisms throughout a functional architecture. This enables an intuitive
specification of scenario-based requirements and reduces effort to obtain a low
abstraction level specification by means of east-adl event chains.

We illustrate the approach by means of an electronic control unit controlling
vehicle body functions, named Body Control Module (BCM). In the considered
use case, the BCM has to unlock all vehicle doors after a crash was detected
such that all passengers can safely escape or can be rescued from outside.

This paper is structured as follows: The following section introduces the fun-
damentals of MSDs and east-adl event chains. Sect. 3 presents the transfor-
mation approach. Sect. 4 covers related work. Finally, Sect. 5 summarizes this
paper and provides an outlook on future work.

2 Foundations

In this section, we introduce relevant foundations for the understanding of this
paper: some basic concepts of MSDs (Sect. 2.1) and the east-adl event chains
(Sect. 2.2). Both are illustrated on the running example.
1 http://scenariotools.org/
2 http://timesquare.inria.fr/

http://scenariotools.org/
http://timesquare.inria.fr/

148 T. Koch, J. Holtmann, and J. DeAntoni

2.1 Modal Sequence Diagrams

The MSD specification of our running example consists of the two MSDs CrashDe-
tected and CrashDetected-Hazard, depicted in Fig. 1. The first MSD describes the
requirements that the doors of the vehicle must be opened (message open) as soon
as a crash has been detected (message crashDetected). The MSD CrashDetected-
Hazard specifies the requirements that if the open operation fails (message doorSta-
tus(false)), a hazard operation is performed (message hazardOpen) to ensure that
the passengers of the vehicle can safely escape or can be rescued from outside.

Basically, an MSD consists of lifelines and messages. Lifelines describe struc-
tural entities, which can be distinguished into environment objects and system
objects. Environment objects are depicted as cloud symbols and represent the en-
vironment that is sensed and manipulated by the SUD (e.g., lifeline cs:CrashSensor
in Fig. 1a). System objects represent components of the SUD (e.g., lifelines
bcm:BCM and dl:DoorLock in Fig. 1). Messages, represented by arrows between
lifelines, define requirements on the communication between objects. Messages
sent from environment objects are called environment messages, whereas mes-
sages sent from system objects are called system messages. They have a temper-
ature and an execution time. The temperature of a message can be cold or hot
visualized by blue and red arrows in Fig. 1. It is used to distinguish between
provisional (cold) and mandatory (hot) behavior. The semantics of a hot mes-
sage is that other messages specified by the MSD are not allowed to occur at
this point in time, while for a cold message, other messages may occur [2]. The
execution kind of a message can either be executed, depicted by solid arrows,
or monitored depicted by dashed arrows. An executed message indicates that
the message must eventually occur, whereas a monitored message can but need
not to occur [2]. The MSD CrashDetected contains an alternative fragment, which
describes different alternative continuations of the scenario.

The scenario-based nature of MSDs enables a high-level specification of re-
quirements with separation of concerns. However, in big specifications the im-
plicit event dependencies between several scenarios (e.g., message doorStatus(false)

msd CrashDetected

dl:
DoorLock

crashDetected
open

doorStatus(true)alt

doorStatus(false)

cs:
CrashSensor

bcm:
BCM

(a) The MSD CrashDetected

msd CrashDetected - Hazard

dl:
DoorLock

bcm:
BCM

doorStatus(false)

hazardOpen

doorStatus(true)

(b) The MSD CrashDetected-Hazard

Fig. 1. MSDs for the crash detection use case

Generating Event Chains from Scenario-Based Requirements Specifications 149

«analysisFunctionPrototype»
bcm:BCM

AnalysisFunctionType
FunctionalArchitecture

«analysisFunctionPrototype»
dl:DoorLock

«analysisFunctionPrototype»
cs:CrashSensor

«event»
sE_crashDetected

«event»
rE_crashDetected

«event»
sE_close

«event»
rE_close

«event»
rE_doorStatus(true)

«event»
sE_doorStatus(true)

«event chain»
CrashDetected-EC

stimulus

response

«event»
sE_hazardOpen

«event»
rE_hazardOpen

«event»
rE_doorStatus(false)

«event»
sE_doorStatus(false)

Fig. 2. The BCM example functional architecture in east-adl including event chain
for alternative (2) of MSDs in Fig. 1

in both MSDs) can complicate the investigation of requirements defects like an
undesired activation of an MSD.

2.2 EAST-ADL Event Chains

The Electronics Architecture and Software Technology - Architecture Description
Language (east-adl) is an architecture description language for automotive
embedded systems [5]. The east-adl provides a unified notion for all important
engineering information including the functional and non-functional properties
of the system.

In the east-adl [5, Part VI], an event is the abstract representation of a spe-
cific system behavior that can be observed at runtime. An event chain describes
the causal order for a set of functionally dependent events. Each event chain has
exactly one stimulus and response event, which describe the start and end point
of the chain. Furthermore, an event chain can be hierarchically decomposed into
an arbitrary number of sub-chains, so-called event chain segments that also have
exactly one stimulus and response event.

Fig. 2 depicts the east-adl functional architecture of the running example.
Furthermore, we add events and the event chain CrashDetected-EC to illustrate
the same interaction as specified in alternative (2) of the MSD CrashDetected acti-
vating the second MSD. Obviously, the specification of all particular events has a
lower abstraction level than the specification of message exchange within MSDs,
but the event chain makes the dependencies between both scenarios explicit.

3 Transformation Approach

In this section, we present our transformation approach for the generation of
east-adl event chains from MSD specifications using the east-adl functional
architecture as common basis. The transformation approach has been imple-
mented in the ScenarioTools tool-suite and covers the MSD messages, alter-
native fragments and real-time constraints. However, due to space limitations,

150 T. Koch, J. Holtmann, and J. DeAntoni

msd CrashDetected - Hazard

dl:
DoorLock

bcm:
BCM

doorStatus(false)

hazardOpen

doorStatus(true)

Environment MSDs
System MSDs

«event»
sE_door

Status(false)

«event»
rE_door

Status(false)

«event»
sE_door

Status(true)

«event»
rE_door

Status(true)

«event»
rE_hazard

Open

«event»
sE_door

Status(false)

«event»
rE_door

Status(false)

«event»
sE_hazard

Open

stimulus

response

Step 1: Generation of
Environment Event Chains

Step 3: Integration of System Event Chains into Reaching Environment Event Chains

Environment Event Chains System Event Chains

«event»
sE_door

Status(false)

«event»
rE_door

Status(false)

«event»
rE_open

«event»
sE_crash
Detected

«event»
rE_crash
Detected

«event»
sE_open

«event chain»
CrashDetected

-ECMult

stimulus

response

«event»
sE_door

Status(true)

«event»
rE_door

Status(true)

«event»
rE_hazard

Open

«event»
sE_hazard

Open

«event»
sE_door

Status(true)

«event»
rE_door

Status(true)«event»
rE_open

«event»
sE_crash
Detected

«event»
rE_crash
Detected

«event»
sE_open

stimulus

«event»
sE_door

Status(true)

«event»
rE_door

Status(true)

response

«event»
sE_door

Status(false)

«event»
rE_door

Status(false)

«event»
rE_open

«event»
sE_crash
Detected

«event»
rE_crash
Detected

«event»
sE_open

«event chain»
CrashDetected

-EC2

stimulus

response

«event»
sE_door

Status(true)

«event»
rE_door

Status(true)

«event»
rE_hazard

Open

«event»
sE_hazard

Open

«event»
sE_door

Status(true)

«event»
rE_door

Status(true)

response

Step 4: Split Event Chains

«event»
rE_open

«event»
sE_crash
Detected

«event»
rE_crash
Detected

«event»
sE_open

«event chain»
CrashDetected

-EC1

stimulus

msd CrashDetected

bcm:
BCM

dl:
DoorLock

crashDetected
open

doorStatus(true)alt

doorStatus(false)

cs:
CrashSensor

Step 2: Generation of
System Event Chains

Event Chains with Possibly
Multiple Response Events

Scenario Event Chains

Legend
Artifact Automatic Transformation Step

«event chain»
CrashDetected-EnvEC

«event chain»
CrashDetectedHazard-SysEC

Message Event Chain Segment Connection Event Chain Segment

response

Fig. 3. Overview of the Transformation Approach

we do not detail the transformation of real-time constraints in this paper (please
refer to [13] for more details about real-time constraint transformations).

Our transformation approach is implemented by means of QVT Operational
[14] model transformations (partially supported by Java black-box libraries) and
encompasses four steps, which are depicted in Fig. 3. In our approach, an east-
adl event chain is the description of the SUD’s reaction to an environment
message specified in an MSD. We call this type of event chain scenario event
chain, which is the final result of our transformation (i.e., CrashDetected-EC1 and
CrashDetected-EC2). The stimulus of a scenario event chain is always the sending
event of an environment message. In the following, we describe each step by
means of the running example.

Transformation Steps 1 and 2: For the first two steps, we divide the set of
MSDs into environment MSDs and system MSDs. We qualify an MSD as an

Generating Event Chains from Scenario-Based Requirements Specifications 151

environment MSD, if its first message is an environment message; or as a system
MSD, if its first message is a system message. These MSDs, representing a se-
quential order of messages, are respectively transformed into environment event
chains and system event chains. For each MSD message, the transformation al-
gorithm creates a message event chain segment by setting the sending event of
the message as stimulus and the receiving event to the response.

Based on the running example, the transformation algorithm starts with
the processing of the environment MSD CrashDetected. Therefore, it creates a
new environment event chain CrashDetected-EnvEC and a message event chain
segment for the first message crashDetected consisting of sE_crashDetected and
rE_crashDetected.

The next element that occurs in the MSD is the open message. The transfor-
mation algorithm creates again a message event chain segment and in addition
a connection event chain segment. A connection event chain segment preserves
the order of two subsequent messages, e.g., crashDetected and open. Therefore,
the stimulus of the connection event chain segment is set to the receiving event
rE_crashDetected, and the response to the sending event of sE_open.

The next element that occurs in the MSD is the alternative fragment. MSD
messages within the alternative fragment are transformed in the same way as
other MSD messages. However, to preserve the order between the last message
before the alternative fragment and the first message in each alternative, the
transformation algorithm creates a set of connection event chain segments from
rE_open to sE_doorStatus(true) and sE_doorStatus(false).

The two alternatives contain only one message, and thus, these messages are
the last messages in the MSD. For a last message, the transformation algorithm
has to consider two cases. First, if the message is not the first message in another
MSD (e.g., doorStatus(true)), the currently considered alternative is terminated
and the response event of the last message is added to the set of response events.
Second, if the message is the first message in another MSD (e.g., doorStatus(false)),
the transformation algorithm only marks the MSD as reachable. We call a system
MSD reachable, if and only if its first message occurs in another processed MSD.

In the second step, the transformation algorithm processes the reachable sys-
tem MSD CrashDetected-Hazard in the same manner, which results in the system
event chain CrashDetectedHazard-SysEC.

Transformation Steps 3 and 4: In the third step, the transformation algorithm
merges the system event chains with the event chains of the MSDs from which
they are reachable. To accomplish this step, the event chain CrashDetected-EnvEC
is first copied to a new event chain CrashDetected-ECMult. Afterwards, the event
chain segments and the response events of CrashDetectedHazard-SysEC are at-
tached to the event chain path that corresponds to the MSD message that has
reached the MSD CrashDetected-Hazard (path containing sE_doorStatus(false) and
rE_doorStatus(false)).

In Sect. 2.2, we stated that an event chain is only allowed to have one stim-
ulus and one response event. However, in our running example, the event chain
CrashDetected-ECMult contradicts this definition. Hence, in the fourth step, the

152 T. Koch, J. Holtmann, and J. DeAntoni

transformation algorithm splits all event chains with multiple response events
and creates a set of event chains; one for each response event (e.g., both occur-
rences of rE_doorStatus(true) in the event chain CrashDetected-ECMult). To accom-
plish this step, the transformation algorithm performs a backward search for each
response event. After the completion of this transformation step, we obtain the
two well-formed scenario event chains CrashDetected-EC1 and CrashDetected-EC2
that have exactly one stimulus and one response event.

After the application of the transformation approach, we can apply both sim-
ulation approaches in a complementary manner. On the one hand, requirements
engineers can simulate the particular scenarios in ScenarioTools and inves-
tigate the behavior emerging from the interplay of multiple scenarios. On the
other hand, they can simulate the resulting event chains within TimeSquare
and visualize explicit event dependencies between different scenarios, enabling
to detect requirements defects caused by undesired activations of MSDs.

4 Related Work

Chen et al. [17] propose a modeling approach for specifying timing requirements
on the base of functional requirements. They have extended the Problem Frame
formalism with the recent formalization [6,7] of east-adl event chains and tim-
ing constraints. The event chains and timing constraints have to be specified
awkwardly in the underlying formalization, which is in contrast with our more
intuitive representation of scenario-based requirements. Klein and Giese [12]
present Timed Story Scenario Diagrams (TSSDs), a visual notation for scenario
specifications that takes structural system properties into account. In TSSDs, it
is possible to specify time constraints that allow setting lower and upper bounds
for delays. There is no mention of analysis support for TSSDs. Priesterjahn et al.
[16] present an automatic approach that generates a timed failure propagation
model from a system model for fault tolerance analysis based on timed automata.
The transformation is similar to our approach, but they focus on reliability, while
we focus on timed requirements.

5 Conclusion and Outlook

In this paper, we presented a transformation approach from high abstraction
level scenario-based requirements to low abstraction level event chains while
using an east-adl functional architecture as common basis. We apply MSDs as
concrete formalism for scenario-based requirements and east-adl as modeling
notation for event chains. Our approach combines intuitive but formal scenario-
based requirements specifications on a high abstraction level with the possibility
to visually inspect explicit event chains induced by the scenarios.

The future work encompasses several aspects. On the one hand, we want
to evaluate our approach and the opportunities w.r.t. real-time requirements in
combining the two simulative validation approaches in a complementary manner.
On the other hand, we want to reuse the east-adl event chains in the subsequent
software development process within Autosar.

Generating Event Chains from Scenario-Based Requirements Specifications 153

Acknowledgments. This research is partially funded by the German Federal
Ministry of Education and Research (BMBF) within the Leading-Edge Cluster
“Intelligent Technical Systems OstWestfalenLippe” (it’s OWL) and is managed
by the Project Management Agency Karlsruhe (PTKA). This work is also par-
tially supported by the ANR INS Project GEMOC (ANR-12-INSE-0011).

References

1. Brenner, C., Greenyer, J., Holtmann, J., Liebel, G., Stieglbauer, G., Tichy, M.:
ScenarioTools real-time play-out for test sequence validation in an automotive case
study. In: Graph Transformation and Visual Modeling Techniques (2014)

2. Brenner, C., Greenyer, J., Panzica La Manna, V.: The ScenarioTools play-out of
modal sequence diagram specifications with environment assumptions. In: Graph
Transformation and Visual Modeling Techniques (2013)

3. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal
Methods in System Design 19, 45–80 (2001)

4. DeAntoni, J., Mallet, F.: TimeSquare: Treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012)

5. EAST-ADL Association. EAST-ADL Domain Model Specification: Version V2.1.12
(2013)

6. Goknil, A., DeAntoni, J., Peraldi-Frati, M.-A., Mallet, F.: Tool support for the analy-
sis of TADL2 timing constraints using TimeSquare. In: ICECCS, pp. 145–154. IEEE
(2013)

7. Goknil, A., Suryadevara, J., Peraldi-Frati, M.-A., Mallet, F.: Analysis support for
TADL2 timing constraints on EAST-ADL models. In: Drira, K. (ed.) ECSA 2013.
LNCS, vol. 7957, pp. 89–105. Springer, Heidelberg (2013)

8. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling 7, 237–252 (2008)

9. Harel, D., Marelly, R.: Come, let’s play: Scenario-based programming using LSCs
and the play-engine. Springer (2003)

10. Hassine, J., Rilling, J., Dssouli, R.: An evaluation of timed scenario notations.
Journal of Systems and Software 83(2), 326–350 (2010)

11. Holtmann, J., Meyer, M.: Play-out for hierarchical component architectures. In:
11th Workshop Automotive Software Engineering (ASE 2013). LNI, vol. P-220,
pp. 2458–2472 (2013)

12. Klein, F., Giese, H.: Joint structural and temporal property specification using
timed story scenario diagrams. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 185–199. Springer, Heidelberg (2007)

13. Koch, T.: Combining scenario-based and architecture-based timing requirements.
Master’s thesis, University of Paderborn, Paderborn (2013)

14. Object Management Group. Meta object facility (MOF) 2.0
query/view/transformation specification: Version 1.1, OMG document num-
ber: formal/2011-01-01 (2011)

15. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer (2010)

16. Priesterjahn, C., Heinzemann, C., Schäfer, W.: From timed automata to timed
failure propagation graphs. In: 4th IEEE Workshop on Self-Organizing Real-time
Systems (SORT 2013). IEEE (2013)

17. Chen, X., Liu, J., Mallet, F., Jin, Z.: Modeling timing requirements in problem
frames using CCSL. In: APSEC, pp. 381–388 (2011)

Architecture Strategies for Cyber-Foraging:

Preliminary Results from a Systematic
Literature Review

Grace A. Lewis1,2, Patricia Lago2, and Giuseppe Procaccianti2

1 Carnegie Mellon Software Engineering Institute, USA
2 VU University Amsterdam, The Netherlands

glewis@sei.cmu.edu, {p.lago,g.procaccianti}@vu.nl

Abstract. Mobile devices have become for many the preferred way of
interacting with the Internet, social media and the enterprise. However,
mobile devices still do not have the computing power and battery life
that will allow them to perform effectively over long periods of time
or for executing applications that require extensive communication or
computation, or low latency. Cyber-foraging is a technique to enable
mobile devices to extend their computing power and storage by offloading
computation or data to more powerful servers located in the cloud or in
single-hop proximity. This paper presents the preliminary results of a
systematic literature review (SLR) on architectures that support cyber-
foraging. The preliminary results show that this is an area with many
opportunities for research that will enable cyber-foraging solutions to
become widely adopted as a way to support the mobile applications of
the present and the future.

1 Introduction

Mobile Cloud Computing (MCC) refers to the combination of mobile devices and
cloud computing in which cloud resources perform computing-intensive tasks and
store massive amounts of data. Increased mobile device capabilities, combined
with better network coverage and speeds, have enabled MCC such that mobile
devices have become for many the preferred form for interacting with the In-
ternet, social media, and the enterprise. However, mobile devices still offer less
computational power than conventional desktop or server computers, and limited
battery life remains a problem especially for computation- and communication-
intensive applications.

Cyber-foraging is an area of work within MCC that leverages external re-
sources (i.e., cloud servers or local servers called surrogates) to augment the
computation and storage capabilities of resource-limited mobile devices while
extending their battery life. There are two main forms of cyber-foraging. One
is computation offload, which is the offload of expensive computation in order
to extend battery life and increase computational capability. The second is data
staging to improve data transfers between mobile devices and the cloud by tem-
porarily staging data in transit.

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 154–169, 2014.
c© Springer International Publishing Switzerland 2014

Preliminary Results from a Systematic Literature Review 155

The goal of this paper is to present the preliminary results of a Systematic
Literature Review (SLR) to discover software architecture solutions that sup-
port cyber-foraging and set the stage for future and necessary research in this
area. Section 2 presents a very brief summary of the SLR elements. Section 3
presents the analysis of the identified primary studies using a categorization of
architecture decisions that are relevant for cyber-foraging systems. A summary
of the observations and findings from the primary studies is presented in Section
4. Section 5 presents related work. Finally, Section 6 presents conclusions and
the next steps in our research.

2 Research Method

To identify work related to architectures for cyber-foraging an SLR was con-
ducted following the guidelines proposed in [1] and [2]. The research question was
stated as ”What software architecture and design strategies for cyber-foraging
from mobile devices can be identified in the literature?” The main data source
was Google Scholar and snowballing was used to complement the set of pri-
mary studies. Due to page limitations, the details related to inclusion and exclu-
sion criteria, search string used, search string validation, results of the multiple
search rounds, and threats to validity can be found at http://www.cs.vu.nl/

~patricia/Patricia_Lago/Shared_files/SLR-ArchCyberForaging.pdf. A
set of 57 primary studies was identified 1 Table 1 shows the computation of-
fload systems found in the primary studies and Table 2 shows the data staging
systems.

3 Analysis of Primary Studies

Defining an architecture for a system that uses cyber-foraging to enhance the
computing power of mobile devices requires making decisions on where, when
and what to offload, from the perspective of the mobile device. The systems from
the primary studies were analyzed to obtain the answers to these questions.

3.1 Where to Offload

In cyber-foraging, computation or data is offloaded to resources with greater
computing power. These resources are located in either single-hop or multi-hop
proximity of mobile devices.

Most of the systems in the studies (16/60 or 27%) offload to only Proximate
Disconnected resources, which are surrogates located in single-hop proximity of
the mobile device that can operate without being connected to a cloud resource.

1 The total of primary studies is 57 but the total of systems analyzed is 52 for com-
putation offload and 8 for data staging for a total of 60 systems because two of the
computation offload studies present two different systems and one study presents
systems for both computation offload and data staging.

http://www.cs.vu.nl/~patricia/Patricia_Lago/Shared_files/SLR-ArchCyberForaging.pdf
http://www.cs.vu.nl/~patricia/Patricia_Lago/Shared_files/SLR-ArchCyberForaging.pdf

156 G.A. Lewis, P. Lago, and G. Procaccianti

This is expected because of the advantages of lower latency and battery con-
sumption that come from using WiFi or short-range radio instead of broadband
wireless (e.g., 3G/4G) [3]. These systems therefore assume that the surrogate can
function stand-alone and offload computation is pre-provisioned (i.e., at system
deployment time) or provisioned at runtime from the mobile devices themselves.
However, many of these systems could be adapted to work with remote cloud
servers or any addressable offload target but would lose the advantage of lower
latency due to proximity.

Table 1. Computation Offload Systems in Primary Studies

System
Where When

What
Granularity Payload

P
ro
x
.D

is
co
n
n
ec
te
d

P
ro
x
.
C
o
n
n
ec
te
d

R
em

o
te

R
u
n
ti
m
e
D
ec
is
io
n

A
lw
ay

s
O
ffl
o
a
d

P
ro
ce
ss

F
u
n
ct
io
n

C
o
m
p
o
n
en

t

S
er
v
ic
e

A
p
p
li
ca
ti
o
n

C
o
m
p
u
ta
ti
o
n

P
a
rt
it
io
n
in
g
A
lg
o
.

P
a
ra
m
et
er
s

A
p
p
li
ca
ti
o
n
S
ta
te

D
ev

ic
e
C
o
n
te
x
t

S
o
u
rc
e
L
o
ca
ti
o
n

S
et
u
p
In
st
ru
ct
io
n
s

C
o
n
ti
n
u
o
u
s
D
a
ta

mHealthMon [4] X X X X

Mobile Agents [5] X X X X

Clone-to-Clone (C2C) [6] X X X X

Chroma [7] X X X X

Collaborative Applications [8] X X X X X
Computation and

Compilation Offload [9] X X X X

Cloud Media Services [10] X X X X

Roam [11] X X X X X X X

CloneCloud [12] X X X X

MAUI [13] X X X X X

Kahawai [13] X X X X

HPC-as-a-Service [14] X X X X X

OpenCL-Enabled Kernels [15] X X X X X X

Real Options Analysis [16] X X X X X

3DMA [17] X X X X

Spectra [18] X X X X

AlfredO [19] X X X X X

Collective Surrogates [20] X X X X X
Grid-Enhanced Mobile
Devices [21] X X X X X

Cloudlets [22] X X X X X

Virtual Phone [23] X X X X

Single-Server Offloading [24] X X X X

Cloud Operating System [24] X X X X X

Android Extensions [25] X X X X

ThinAV [26] X X X X X

Continued on next page

Preliminary Results from a Systematic Literature Review 157

Table 1. Continued from previous page

System
Where When

What
Granularity Payload

P
ro
x
.D

is
co
n
n
ec
te
d

P
ro
x
.
C
o
n
n
ec
te
d

R
em

o
te

R
u
n
ti
m
e
D
ec
is
io
n

A
lw
ay

s
O
ffl
o
a
d

P
ro
ce
ss

F
u
n
ct
io
n

C
o
m
p
o
n
en

t

S
er
v
ic
e

A
p
p
li
ca
ti
o
n

C
o
m
p
u
ta
ti
o
n

P
a
rt
it
io
n
in
g
A
lg
o
.

P
a
ra
m
et
er
s

A
p
p
li
ca
ti
o
n
S
ta
te

D
ev

ic
e
C
o
n
te
x
t

S
o
u
rc
e
L
o
ca
ti
o
n

S
et
u
p
In
st
ru
ct
io
n
s

C
o
n
ti
n
u
o
u
s
D
a
ta

Cuckoo [27] X X X X X X

ThinkAir [28] X X X X X

MACS [29] X X X X X X

Scavenger [30] X X X X X

AMCO [31] X X X X X X

MCo [32] X X X X X

PowerSense [33] X X X X

AIDE [34] X X X X X

Application Virtualization [35] X X X X X

PARM [36] X X X X

Resource Furnishing System [37] X X X X X

Cloud Personal Assistant [38] X X X X X

SOME [39] X X X X

SmartVirtCloud [40] X X X X X

Odessa [41] X X X X X
Smartphone-Based Social

Sensing [42] X X X X X

MAPCloud [43] X X X X X

VM-Based Cloudlets [44] X X X X X

IC-Cloud [45] X X X X X

SPADE [46] X X X X

Slingshot [47] X X X X
Offloading Toolkit and

Service [48] X X X X X X
Mobile Data Stream
Application Framework [49] X X X X X
Heterogeneous Auto-

Offloading Framework [50] X X X X

Weblets [51] X X X X

DPartner [52] X X X X X

Elastic HTML5 [53] X X X X X X

The second largest set of systems in the studies (15/60 or 25%) offloads to
Remote resources, such as an enterprise cloud or data center. However, unless
connectivity to an enterprise cloud is necessary for the system to function, these
systems could also offload to proximate connected or disconnected nodes.

Tied for the second largest set of systems in the studies (also 15/60 or 25%)
are those that offload to Remote or Proximate Disconnected resources. In

158 G.A. Lewis, P. Lago, and G. Procaccianti

Table 2. Data Staging Systems in Primary Studies

System
Where When

What
Data Type Data Operations

P
ro
x
.D

is
co
n
n
ec
te
d

P
ro
x
.
C
o
n
n
ec
te
d

R
em

o
te

R
u
n
ti
m
e
D
ec
is
io
n

A
lw
ay

s
O
ffl
o
a
d

D
a
ta

U
p
d
a
te
s

A
p
p
li
ca
ti
o
n
D
a
ta

D
a
ta

F
il
es

F
ie
ld
-C

o
ll
ec
te
d
D
a
ta

P
re
-F
et
ch

in
g

In
-B

o
u
n
d
P
ro
ce
ss
in
g

O
u
t-
B
o
u
n
d
P
ro
ce
ss
in
g

S
to
ra
g
e

Edge Proxy [54] X X X X
Mobile Information Access
Architecture for Occasionally-

Connected Computing [55] X X X X
Trusted and Unmanaged Data

Staging Surrogates [56] X X X X

Android Extensions [25] X X X X

Telemedik [57] X X X X X

Feel the World [58] X X X X X X

Large-Scale Mobile Crowdsensing [59] X X X X

Sonora [60] X X X X X X

general, these systems have offload targets that can function stand-alone and
are accessible over an IP network, whether local or remote.

The next set of systems (7/60 or 12%) offloads to Remote or Proximate Con-
nected resources, which are surrogates located in single-hop proximity of the
mobile device that need to be connected at runtime to a cloud resource. The of-
fload targets in these systems need access to a cloud resource in order to operate
properly, whether to obtain the code to be offloaded, access application data, or
offload computation or data to other cloud resources (i.e., surrogate acts as an
intermediary).

Finally, five out of 60 systems (5/60 or 8%) offload to only Proximate Con-
nected resources, and there are two data staging studies that can offload to all
three options (2/60 or 3%).

Most systems in the studies offload to a single known surrogate or cloud
resource. The reason is that the focus of the studies is on demonstrating the va-
lidity or efficiency of portions of the architecture, such as optimization engines or
partitioning algorithms, and not the operation of the full system. Some systems
include a component in the architecture to discover and select offload targets
based on (1) offload target broadcast, (2) a cloud directory service, (3) surrogate
managers that manage available surrogates, (4) local offload target lists, or (5)
an application or service directory.

Preliminary Results from a Systematic Literature Review 159

3.2 When to Offload

In general, offloading is beneficial when large amounts of computation are needed
with relatively small amounts of communication [61].

For most of the systems in the studies (33/60 or 55%) offloading is a Runtime
Decision. The majority of these systems perform a runtime calculation (often
called a utility function) to determine whether it is better to execute locally
or to offload computation by comparing predicted local execution cost against
predicted remote execution cost. Local execution cost typically takes into con-
sideration the energy consumed by local execution as well as the local execution
time. Remote execution cost typically considers the energy consumed by com-
munication based on payload size and network conditions, the communication
time based on payload size and network conditions, and remote execution time.

The systems that perform runtime calculations require developer input or
static profiling to obtain the initial values or models that are used in the calcu-
lation, such as required compute cycles, payload size based on input and output
parameters, and required energy for execution and communication. Other pa-
rameters such as current network conditions or load of the mobile device and
offload target are obtained at runtime. In addition, some systems use runtime
profiling to collect data at runtime to adjust the initial values. The goal is to
obtain more realistic values based on actual execution data.

The rest of the systems in the studies (27/60 or 45%) Always Offload com-
putation or data. For computation offload systems, the parts of the system that
are considered computation-intensive, or that simply cannot run on a mobile
device, are pre-determined and executed on offload targets. All the data staging
systems fall in this category, which is expected, because by definition the idea is
for the mobile device to send and receive data to and from an enterprise cloud,
either directly or via a surrogate. The decision-making process is not whether it
is efficient or not to stage data but when is the right time to do so.

3.3 What to Offload

What to offload involves two architecture decisions, but these are different for
computation offload and data staging systems.

Computation Offload Systems. For computation offload, one decision has to
do with the Granularity of the computation that is offloaded to the surrogate or
cloud resource and another has to do with the Payload that is sent from the client
to the surrogate or cloud resource in order to execute the offloaded computation.
Although these seem like low-level decisions, they have architecture implications
because they determine the components that are needed on the client and the
offload target.

All the systems in the studies have an offload client that runs on the mobile
device and an offload server that runs on the offload target to coordinate the
offload operation. The majority of the systems are designed such that the ap-
plications at runtime are not aware that computation is being offloaded. What

160 G.A. Lewis, P. Lago, and G. Procaccianti

changes between systems based on granularity are the development, build and
runtime dependencies between the offload client and target, as well as the amount
of state synchronization to guarantee the correct execution of applications.

For Granulairity, most systems offload at the Component, Class, Module, or
Task level (27/52 or 52%). The type of element that is offloaded varies greatly
between systems, but in general they are software elements that execute in-
side specific containers or runtime environments such as Java Virtual Machines
(JVMs), OGSi platforms, or custom-built environments that enable migration
between local and remote execution. The advantage of offloading at this level of
granularity is that for the most part these are self-contained elements, meaning
that they store their own state. Once an element is offloaded there is no need to
synchronize state with the local device unless the execution is returning to the
local device. However, except for the systems that rely on more standard envi-
ronments, such as JVMs and OGSi platforms, there are very tight dependencies
between the mobile execution environment and the execution environment on
the offload target, which creates limitations in terms of programming languages
and increases the effort required for application reuse because of the need to use
specific libraries and constructs to enable computation offload.

The second largest set of systems offloads Functions, Methods, or Operations
(11/52 or 21%). In many of these systems, developers manually mark the func-
tions that they consider offloadable. In addition to the same types of constraints
and requirements for applications and offload targets outlined for the first set of
systems, the challenge for these types of system is guaranteeing fidelity of results,
which means that executing locally or remotely should produce the same results.
Functions, methods and operations are part of a larger programming constructs
such as classes or programs that maintain state at runtime, typically expressed
as class attributes or global variables. This means that the system has to syn-
chronize state such that it is the same locally and remotely, either periodically
or sending it as an additional input/output of the offload operation.

Systems that offload full Applications, Programs or Servers of a client/server
application represent the third largest set of systems in the studies (7/52 or
13%). The advantage of offloading at this level of granularity is that execution
environments are much more generic, such as virtual machines or application
servers. This also increases application reuse because servers do not have to be
adapted to run on mobile devices. Clients are very thin and perform the func-
tionality that cannot be offloaded, such as user interface and sensor operations.
However, the rest of the computation is always offloaded, regardless of whether
it would be more efficient or not to be executed on the mobile device.

The fourth largest set of systems in the studies offload Services (6/52 or 12%).
Services in these studies are coarse-grained capabilities accessed via standard-
ize interfaces that have been identified by system developers as computation-
intensive. These systems do not have the requirements or constraints of the
systems that offload functions or components because by definition services are
self-contained. Once a decision is made to offload, the service is invoked and the
system either waits for a reply or receives the reply when it is ready.

Preliminary Results from a Systematic Literature Review 161

Finally, there is one system that offloads at the process level (1/52 or 2%).
In this system the mobile device is fully cloned inside a VM running on the
offload target. When the system encounters a computation block that is marked
for offload, the process enters into a sleep state and process state is transferred
from the mobile device to the clone VM. The clone VM integrates the process
state, executes the computation block from beginning to end, and then transfers
its process state back to the mobile device. The mobile device reintegrates the
process state and wakes up the sleeping process to continue its execution. This
system allows very fine-grained control of what portions of an application to
offload, but requires a very stable network connection to support state synchro-
nization.

Concerning Payload, for the majority of the systems the payload is the Invo-
cation Parameters to execute the remote computation (27/52 or 52%). All these
systems assume that the offloaded computation already exists on the offload
target, which leads to a small payload that simply depends on the size of the
parameter data types. However, these systems completely rely on the existence
and currency of the offloaded computation on the offload target, which in turn
would require more complex deployment processes.

For the next largest set of systems the payload is Computation and Invocation
Parameters (12/52 or 23%). This means that both the actual computation (code)
and its invocation parameters are sent from the mobile device to the offload
target.The offload target deploys the computation inside a container or execution
environment, executes it directly in a runtime environment, or distributes it
to other offload targets for deployment. Once the computation is running, the
mobile device sends the invocation parameters for the actual execution.

For the next set of systems the payload is Application State (2/52 or 4%).
The state of the application on the mobile device is synchronized with the offload
target so that the remote computation can be executed with the same state as
that on the application running on the mobile device. In both of these systems
the execution returns to mobile device and state is synchronized back in the
same way.

For a small set of systems the payload is Setup Instructions and Invocation
Parameters (2/52 or 4%). This means that the initial payload is the instructions
of how to set up the computation on the offload target. Once the computation
is running, the mobile device sends the invocation parameters for the actual
execution.

In the next set of systems (2/52 or 4%) the payload is Continuous Data from
Offload Target to Mobile Device. In Kahawai [13], a system targeted at GPU-
intensive applications such as games, the offload target maintains a high-fidelity
version of the graphics and a low fidelity version that matches the fidelity of
the mobile device. It compares both and sends a compressed video stream of
delta frames to the mobile device. The mobile device decompresses the stream
and applies the deltas to the frames that it renders locally. In the Resource
Furnishing System [37] the interaction with the offload target is done via a VNC

162 G.A. Lewis, P. Lago, and G. Procaccianti

client which means that GUI updates are continuously sent from the offload
target to mobile devices and applied locally.

In addition to Invocation Parameters, two systems offload the Partitioning
Algorithm that is part of the ”When to Offload” decision to determine what
computation executes locally and what computation is offloaded (2/52 or 4%).

For two systems the initial payload is local Application State so that the
mobile device and the offload target can synchronize state before invoking the
offloaded computation (2/52 or 4%). Once the computation is running, the mo-
bile device sends the Invocation Parameters for the actual execution.

On a smaller scale, for one system the initial payload is the Device Context
(1/52 or 2%), which in this case is device type, browser type, supported codecs,
screen size, network bandwidth, and latency, such that the appropriate media
processing components are selected. Once the computation is running, the mobile
device sends the Invocation Parameters for the actual execution. For one system
(1/52 or 2%), the initial payload is the Source Location, or where to obtain
the computation for installation on the offload target. Application State is then
transferred from the mobile device to the offload target. Once the computation
is running and the state is synchronized, the mobile device sends the Invocation
Parameters for the actual execution. Finally, for one system, the initial payload
is the Source Location (URL) of the offloaded computation and then it sends
the Invocation Parameters for the actual execution (1/52 or 1%).

Data Staging Systems. For data staging, one architecture decision has to do
with the type of data that is being staged and the other has to do with the
operations that are offloaded to the surrogate or cloud resource to be performed
on the data. As with computation offload, the answer to this question has ar-
chitecture implications because it requires different components on both sides
depending on how data is stored and forwarded.

Concerning Data Type, Field-Collected Data is sent to an offload target for
staging in three of the systems (3/8 or 38%). Staging sensor data addresses
storage limitations on mobile devices. In addition, data collected by a surrogate
can be shared by other mobile devices connected to the same surrogate or can
be fused or pre-processed before sending it to the enterprise.

Application Data is staged in three of the systems (3/8 or 38%). Data that is
like to be used by an application on the mobile device is retrieved from a cloud
resource and staged on a surrogate. The advantage in this case is lower latency
because the data resides in a nearby surrogate and not in a remote cloud.

One system uses the surrogate as an intermediary for Data Updates (1/8 or
13%). In Edge Proxy [54] the surrogate informs the mobile device when marked
areas of a web page have changed, so that the mobile device is only notified when
there are data updates. therefore limiting the amount of direct communication
to remote resources.

Finally, one system stages Data Files (1/8 or 13%). In Trusted and Unman-
aged Data Staging Surrogates [56] a surrogate stages data files that might be
needed by the mobile device. The advantage, as in staging application data, is

Preliminary Results from a Systematic Literature Review 163

lower latency because the files reside on a nearby surrogate and not in a remote
server. Access to the remote server is done by the surrogate and only when the
file is not available on the surrogate (similar to a cache miss) or when data on the
surrogate has changed and need to be consolidated with the data in the remote
server.

Concerning Data Operations on Surrogate, two systems perform Pre-Fetching
operations on the surrogate (2/8 or 25%). The goal is to pre-determine data that
is likely to be used by connected mobile devices, retrieve that data from cloud
resources, and then store it to reduce the latency of direct cloud access.

Two systems perform In-Bound Filtering or Pre-Processing of data that flows
from the enterprise (or cloud) to the mobile device (2/8 or 25%). The goal is to
pre-process data that is retrieved or pushed from cloud resources so that data
is ready to be consumed, or filtered such that the mobile device only receives
the data that it needs. The advantage is that the heavy computation and com-
munication to remote servers happens on the surrogates and not on the mobile
devices.

Two systems perform Out-Bound Filtering or Pre-Processing of data that
flows from the mobile device to the enterprise (or cloud) (2/8 or 25%). The goal
is for the surrogate to process data that is received from mobile devices such
that the data that is sent on to the cloud resource is ready for consumption by
the cloud resource (e.g., cleaned, filtered or merged data).

Finally, two systems use the offload target as an extension of the mobile
device’s storage system for Data Storage (2/8 or 25%). All data operations (i.e.,
CRUD operations) are performed on the surrogate.

4 Observations and Findings from Primary Studies

The primary studies show different and novel computation offload and data stag-
ing systems targeted at guaranteeing fidelity of results, and optimizing attributes
such as energy consumption, network bandwidth usage, and performance. For
computation offload systems, the offload mechanisms range from dynamic ap-
proaches in which the computation is provisioned from the mobile device to
more static approaches where the computation already exists on the offload tar-
get. For data staging systems, the capabilities of the offload target range from an
extension of the mobile device’s storage to sophisticated algorithms that predict
and stage the data that will likely be needed by the mobile device. As far as
distribution, the number of computation offloading systems (52) is much larger
than the number of data staging systems (8).

A preliminary analysis of the data shows the following gaps and opportunities
for architecture strategies for cyber-foraging systems.

– Understanding of quality attributes beyond energy, performance, network
usage, and fidelity of results: Many of the cyber-foraging systems, especially
those that perform runtime partitioning and offloading decisions, have very
complex algorithms for guaranteeing fidelity of results, and optimizing en-
ergy consumption, network bandwidth usage and performance. Disconnected

164 G.A. Lewis, P. Lago, and G. Procaccianti

operations and fault tolerance are supported by some systems in which the
local computation is a fallback mechanism if the remote computation fails.
However, there is very little consideration of other quality attributes that
are relevant to cyber-foraging systems, such as ease of distribution and in-
stallation, resiliency, and security.

– System-level architecture analysis: Related to the previous point, the sys-
tems in the studies tend to focus on enabling cyber-foraging between one
mobile device and one offload target. However, there is very little discus-
sion of system-level attributes that have to be considered when moving from
experimental prototypes to operational systems. For example:
• How do the systems perform when there are multiple devices trying to
offload to the same target?

• If there are multiple offload targets available, how does the mobile device
select the target that best fits its requirements?

• What happens if the mobile device loses connectivity to the offload tar-
get?

• In those mechanisms that require custom infrastructures or middleware,
what are the mechanisms for ensuring currency and compatibility of
mobile-side and server-side components if these may not have the same
distribution mechanisms?

• What are the tradeoffs between the quality attributes promoted by the
system and other quality attributes such as ease of distribution and
installation, resiliency and security?

– Large-scale evaluations: Most of the studies have very limited case studies
or evaluations. For example, even though studies talk about mobile cloud
computing the experiments are done in controlled environments over WiFi
connections, which is not representative of a real mobile cloud environment
with disconnections, high latency and multiple heterogeneous users and de-
vices.

– Architectures for data staging systems: The low number of primary studies
related to architectures for data staging, combined with an increasing num-
ber of data collection devices in the field and the Internet of Things (IoT),
show that it is a potential area for developing architecture patterns or tactics
that can be leveraged by software architects and developers of these types
of systems.

5 Related Work

There are several studies that survey the field of MCC and identify cyber-
foraging as a research area and challenge, but are not systematic literature
reviews and do not have an architecture focus. Abolfazli et al [62] present a
survey of cloud-based mobile augmentation (CMA) approaches, one of which is
cyber-foraging. One of the challenges stated by this work is the lack of a reference
architecture for CMA. Dinh at al [63] present a survey on MCC. Computation
offload is discussed as a technique for extending battery lifetime of mobile de-
vices and listed as one of the challenges for MCC. Fernando et al [64] present

Preliminary Results from a Systematic Literature Review 165

a more complete survey on mobile cloud computing. Some of the research that
addresses efficient computation offload and distribution to the cloud and how it
differs from traditional distributed systems is discussed in this paper. Kumar et
al [65] present a survey on computation offloading but focus primarily on the al-
gorithms used to partition and offload programs in order to improve performance
or save energy. Finally, Yu et al [66] present a survey on seamless application
mobility, which is the continuous or uninterrupted computing experience as a
user moves across devices. Code offloading is mentioned as a future direction for
seamless application mobility. The work that is most similar to ours is by Flinn
et al [67] that presents a discussion of representative cyber-foraging systems and
their characteristics. However, it is limited to a small number of systems and
does not follow a systematic process. To the best of our knowledge, ours is the
first systematic literature review related to architectures for cyber-foraging.

6 Conclusions and Next Steps

We presented preliminary results of an SLR in architectures for cyber-foraging
systems and analyzed the primary studies using a categorization of architecture
decisions related to what, when and where to offload computation and data from
mobile devices. The analysis allowed us to identify gaps and opportunities for
research in (1) quality attributes that are relevant to cyber-foraging systems,
such as ease of distribution and installation, resiliency, and security, (2) system-
level architecture analysis, (3) large-scale evaluations, and (4) architectures for
data staging systems. Our next steps are to further refine the analysis and cluster
the results to identify architectural tactics that can be employed by system
architects to build systems that use cyber foraging, with an analysis of the
quality attributes and tradeoffs related to each tactic.

Acknowledgments. This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a feder-
ally funded research and development center. This material has been approved for
public release and unlimited distribution (DM-0001173).

References

1. Dyba, T., Dingsoyr, T., Hanssen, G.: Applying systematic reviews to diverse study
types: An experience report. In: First International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM 2007, pp. 225–234 (September 2007)

2. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering. Keele University and Durham University Joint Re-
port, Tech. Rep. EBSE 2007-001 (2007)

3. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consump-
tion in mobile phones: A measurement study and implications for network ap-
plications. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, IMC 2009, pp. 280–293. ACM, New York (2009)

166 G.A. Lewis, P. Lago, and G. Procaccianti

4. Ahnn, J., Potkonjak, M.: Toward energy-efficient and distributed mobile health
monitoring using parallel offloading. Journal of Medical Systems 37(5), 1–11 (2013)

5. Angin, P., Bhargava, B.: An agent-based optimization framework for mobile-cloud
computing. Journal of Wireless Mobile Networks, Ubiquitous Computing, and De-
pendable Applications (JoWUA) 4, 1–17 (2013)

6. Aucinas, A., Crowcroft, J., Hui, P.: Energy efficient mobile m2m communications.
In: Proceedings of ExtremeCom 2012 (2012)

7. Balan, R.K., Gergle, D., Satyanarayanan, M., Herbsleb, J.: Simplifying cyber for-
aging for mobile devices. In: Proceedings of the 5th International Conference on
Mobile Systems, Applications and Services, MobiSys 2007, pp. 272–285. ACM, New
York (2007)

8. Chang, Y.-S., Hung, S.-H.: Developing collaborative applications with mobile
cloud-a case study of speech recognition. Journal of Internet Services and Informa-
tion Security (JISIS) 1(1), 18–36 (2011)

9. Chen, G., Kang, B.-T., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Chan-
dramouli, R.: Studying energy trade offs in offloading computation/compilation
in java-enabled mobile devices. IEEE Transactions on Parallel and Distributed
Systems 15(9), 795–809 (2004)

10. Cheng, B., Probst, M.: Hbb-next i d4.4.1: Intermediate middleware software com-
ponents for cloud service offloading. HBB-NEXT Consortium 2013, Tech. Rep.
(2013)

11. Chu, H.-H., Song, H., Wong, C., Kurakake, S., Katagiri, M.: Roam, a seamless
application framework. Journal of Systems and Software 69(3), 209–226 (2004)

12. Chun, B.G., Maniatis, P.: Augmented smartphone applications through clone cloud
execution. In: Proceedings of the 12th Conference on Hot Topics in Operating
Systems, p. 8. USENIX Association (2009)

13. Cuervo, E.: Enhancing mobile devices through code offload. Ph.D. dissertation,
Duke University (2012)

14. Duga, N.: Optimality analysis and middleware design for heterogeneous cloud hpc
in mobile devices. Master’s thesis. Addis Ababa University (2011)

15. Endt, H., Weckemann, K.: Remote utilization of opencl for flexible computation
offloading using embedded ecus, ce devices and cloud servers. In: Applications,
Tools and Techniques on the Road to Exascale Computing. Advances in Parallel
Computing, vol. 22, pp. 133–140. IOS Press EBooks (2011)

16. Esteves, R.G., McCool, M.D., Lemieux, C.: Real options for mobile communication
management. In: 2011 IEEEGLOBECOMWorkshops (GCWkshps), pp. 1241–1246.
IEEE (2011)

17. Fjellheim, T., Milliner, S., Dumas, M.: Middleware support for mobile applications.
International Journal of Pervasive Computing and Communications 1(2), 75–88
(2005)

18. Flinn, J., Park, S., Satyanarayanan, M.: Balancing performance, energy, and quality
in pervasive computing. In: Proceedings of the 22nd International Conference on
Distributed Computing Systems, pp. 217–226 (2002)

19. Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.: Calling the cloud: Enabling
mobile phones as interfaces to cloud applications. In: Bacon, J.M., Cooper, B.F.
(eds.) Middleware 2009. LNCS, vol. 5896, pp. 83–102. Springer, Heidelberg (2009)

20. Goyal, S.: A collective approach to harness idle resources of end nodes. Ph.D.
dissertation, School of Computing, University of Utah (2011)

21. Guan, T.: A system architecture to provide enhanced grid access for mobile devices.
Ph.D. dissertation, University of Southampton (2008)

Preliminary Results from a Systematic Literature Review 167

22. Ha, K., Lewis, G., Simanta, S., Satyanarayanan, M.: Cloud offload in hostile envi-
ronments. Carnegie Mellon University, Tech. Rep. (2011)

23. Hung, S.-H., Shieh, J.-P., Lee, C.-P.: Migrating android applications to the cloud.
International Journal of Grid and High Performance Computing (IJGHPC) 3(2),
14–28 (2011)

24. Imai, S.: Task offloading between smartphones and distributed computational re-
sources. Master’s thesis, Rensselaer Polytechnic Institute (2012)

25. Iyer, A.N., et al.: Extending android application programming framework for seam-
less cloud integration. In: 2012 IEEE First International Conference on Mobile
Services (MS), pp. 96–104. IEEE (2012)

26. Jarabek, C., Barrera, D., Aycock, J.: Thinav: truly lightweight mobile cloud-based
anti-malware. In: Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 209–218. ACM (2012)

27. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: A computation offload-
ing framework for smartphones. In: Gris, M., Yang, G. (eds.) MobiCASE 2010.
LNICST, vol. 76, pp. 59–79. Springer, Heidelberg (2012)

28. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dynamic resource
allocation and parallel execution in the cloud for mobile code offloading. In: 2012
Proceedings IEEE INFOCOM, pp. 945–953. IEEE (2012)

29. Kovachev, D., Klamma, R.: Framework for computation offloading in mobile cloud
computing. International Journal of Interactive Multimedia and Artificial Intelli-
gence 1(7), 6–15 (2012)

30. Kristensen, M.D.: Empowering mobile devices through cyber foraging. Ph.D. dis-
sertation, Aarhus University (2010)

31. Kwon, Y.-W., Tilevich, E.: Reducing the energy consumption of mobile applica-
tions behind the scenes. In: Proceedings of the 29th IEEE International Conference
on Software Maintenance, ICSM 2013 (2013)

32. Lee, B.-D.: A framework for seamless execution of mobile applications in the cloud.
In: Qian, Z., Cao, L., Su, W., Wang, T., Yang, H. (eds.) Recent Advances in CSIE
2011. Lecture Notes in Electrical Engineering, vol. 126, pp. 145–154. Springer,
Heidelberg (2012)

33. Matthews, J., Chang, M., Feng, Z., Srinivas, R., Gerla, M.: Powersense: power
aware dengue diagnosis on mobile phones. In: Proceedings of the First ACM Work-
shop on Mobile Systems, Applications, and Services for Healthcare, p. 6. ACM
(2011)

34. Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, T., Gu, X.:
Towards a distributed platform for resource-constrained devices. In: Proceedings of
the 22nd International Conference on Distributed Computing Systems, pp. 43–51.
IEEE (2002)

35. Messinger, D., Lewis, G.A.: Application virtualizaton as a strategy for cyber forag-
ing in resource-constrained environments. Carnegie Mellon Software Engineering
Institute, Tech. Rep. (2013)

36. Mohapatra, S., Venkatasubramanian, N.: Optimizing power using a reconfigurable
middleware. UC Irvine, Tech. Rep. (2003)

37. Ok, M., Seo, J.-W., Park, M.-S.: A distributed resource furnishing to offload
resource-constrained devices in cyber foraging toward pervasive computing. In:
Enokido, T., Barolli, L., Takizawa, M. (eds.) NBiS 2007. LNCS, vol. 4658,
pp. 416–425. Springer, Heidelberg (2007)

38. O’Sullivan, M.J., Grigoras, D.: The cloud personal assistant for providing services
to mobile clients. In: 2013 IEEE 7th International Symposium on Service Oriented
System Engineering (SOSE), pp. 478–485 (2013)

168 G.A. Lewis, P. Lago, and G. Procaccianti

39. Park, S., Choi, Y., Chen, Q., Yeom, H.: Some: Selective offloading for a mobile
computing environment. In: 2012 IEEE International Conference on Cluster Com-
puting (CLUSTER), pp. 588–591 (2012)

40. Pu, L., Xu, J., Jin, X., Zhang, J.: Smartvirtcloud: virtual cloud assisted appli-
cation offloading execution at mobile devices’ discretion. In: 2013 IEEE Wireless
Communications and Networking Conference (WCNC): Services and Applications
(2013)

41. Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govindan, R.: Odessa:
enabling interactive perception applications on mobile devices. In: Proceedings of
the 9th International Conference on Mobile Systems, Applications, and Services,
MobiSys 2011, pp. 43–56. ACM, New York (2011)

42. Rachuri, K.K.: Smartphones based social sensing: Adaptive sampling, sensing and
computation offloading. Ph.D. dissertation, University of Cambridge (2012)

43. Rahimi, M.R., Venkatasubramanian, N., Mehrotra, S., Vasilakos, A.V.: Mapcloud:
mobile applications on an elastic and scalable 2-tier cloud architecture. In: Pro-
ceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and
Cloud Computing, pp. 83–90. IEEE Computer Society (2012)

44. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

45. Shi, C., Pandurangan, P., Ni, K., Yang, J., Ammar, M., Naik, M., Zegura, E.:
Ic-cloud: Computation offloading to an intermittently-connected cloud. Georgia
Institute of Technology, Tech. Rep. (2013)

46. Silva, J.N., Veiga, L., Ferreira, P.: Spade: scheduler for parallel and distributed
execution from mobile devices. In: Proceedings of the 6th International Workshop
on Middleware for Pervasive and Ad-hoc Computing, pp. 25–30. ACM (2008)

47. Su, Y.-Y., Flinn, J.: Slingshot: deploying stateful services in wireless hotspots. In:
Proceedings of the 3rd International Conference on Mobile Systems, Applications,
and Services, MobiSys 2005, pp. 79–92. ACM, New York (2005)

48. Yang, K., Ou, S., Chen, H.-H.: On effective offloading services for resource-
constrained mobile devices running heavier mobile internet applications. IEEE
Communications Magazine 46(1), 56–63 (2008)

49. Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., Chan, A.: A framework for partition-
ing and execution of data stream applications in mobile cloud computing. ACM
SIGMETRICS Performance Evaluation Review 40(4), 23–32 (2013)

50. Zhang, Y., Guan, X.-T., Huang, T., Cheng, X.: A heterogeneous auto-offloading
framework based on web browser for resource-constrained devices. In: Fourth Inter-
national Conference on Internet and Web Applications and Services, ICIW 2009,
pp. 193–199. IEEE (2009)

51. Zhang, X., Kunjithapatham, A., Jeong, S., Gibbs, S.: Towards an elastic application
model for augmenting the computing capabilities of mobile devices with cloud
computing. Mobile Networks and Applications 16(3), 270–284 (2011)

52. Zhang, Y., Huang, G., Zhang, W., Liu, X., Mei, H.: Towards module-based auto-
matic partitioning of java applications. Frontiers of Computer Science 6(6), 725–740
(2012)

53. Zhang, X., Jeon, W., Gibbs, S., Kunjithapatham, A.: Elastic HTML5: Workload
offloading using cloud-based web workers and storages for mobile devices. In: Gris,
M., Yang, G. (eds.) MobiCASE 2010. LNICST, vol. 76, pp. 373–381. Springer,
Heidelberg (2012)

54. Armstrong, T., Trescases, O., Amza, C., de Lara, E.: Efficient and transparent
dynamic content updates for mobile clients. In: Proceedings of the 4th International
Conference on Mobile Systems, Applications and Services, pp. 56–68. ACM (2006)

Preliminary Results from a Systematic Literature Review 169

55. Bahrami, A., Wang, C., Yuan, J., Hunt, A.: The workflow based architecture for
mobile information access in occasionally connected computing. In: IEEE Interna-
tional Conference on Services Computing, SCC 2006, pp. 406–413. IEEE (2006)

56. Flinn, J., Sinnamohideen, S., Tolia, N., Satyanarayanan, M.: Data staging on un-
trusted surrogates. In: Proceedings 2nd USENIX Conference on File and Storage
Technologies (FAST 2003), San Francisco, CA, March 31-April 2 (2003)

57. Kundu, S., Mukherjee, J., Majumdar, A.K., Majumdar, B., Sekhar Ray, S.: Algo-
rithms and heuristics for efficient medical information display in pda. Computers
in Biology and Medicine 37(9), 1272–1282 (2007)

58. Phokas, T., Efstathiades, H., Pallis, G., Dikaiakos, M.D.: Feel the world: A mobile
framework for participatory sensing. In: Daniel, F., Papadopoulos, G.A., Thiran, P.
(eds.) MobiWIS 2013. LNCS, vol. 8093, pp. 143–156. Springer, Heidelberg (2013)

59. Xiao, Y., Simoens, P., Pillai, P., Ha, K., Satyanarayanan, M.: Lowering the barriers
to large-scale mobile crowdsensing. In: Mobile Computing Systems and Applica-
tions (2013)

60. Yang, F., Qian, Z., Chen, X., Beschastnikh, I., Zhuang, L., Zhou, L., Shen, J.:
Sonora: A platform for continuous mobile-cloud computing. Technical Report.
Microsoft Research Asia, Tech. Rep. (2012)

61. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: Can offloading compu-
tation save energy? Computer 43(4), 51–56 (2010)

62. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R.: Cloud-based augmenta-
tion for mobile devices: Motivation, taxonomies, and open challenges. IEEE Com-
munications Surveys Tutorials 16(1), 337–368 (2014)

63. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless Communications and Mobile
Computing 13, 1587–1611 (2011)

64. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: A survey. Future
Generation Computer Systems 29, 84–106 (2012)

65. Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B.: A survey of computation offloading
for mobile systems. Mobile Networks and Applications 18(1), 129–140 (2013)

66. Yu, P., Ma, X., Cao, J., Lu, J.: Application mobility in pervasive computing: A
survey. Pervasive and Mobile Computing 9, 2–17 (2012)

67. Flinn, J.: Cyber foraging: Bridging mobile and cloud computing. In: Satya-
narayanan, M. (ed.) Synthesis Lectures on Mobile and Pervasive Computing. Mor-
gan & Claypool Publishers (2012)

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 170–185, 2014.
© Springer International Publishing Switzerland 2014

Adapting Enterprise Architecture at a Software
Development Company and the Resultant Benefits

Krzysztof Jamróz2 , Dariusz Pitulej1,2, and Jan Werewka1,2

1 Department of Applied Computer Science
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Kraków, Poland

{Jan.Werewka,D.Pitulej}@agh.edu.pl
2 ATSI S.A. (Advanced Technology Systems International)

ul. Krakowska 386, 30-080 Zabierzów, Poland
info@atsisa.com

Abstract. This publication presents an approach to developing an enterprise
architecture at a software development company. That type of company differs
from other companies in relation to software usage and development, hence a
corresponding approach should be used. An efficient solution based on own
experience is proposed in this paper. The solution includes the following main
set of activities: defining a motivation model, adapting architecture modeling
tools, IT landscape creation products, building architecture capabilities in the
organization, implementing standards and guidelines, applying architecture
governance, defining the architect’s roles, managing risks, using architecture
governance. The proposed solution is introduced in an iterative way in the
software development company.

Keywords: Software architecture, enterprise architecture, architecture
governance, ArchiMate.

1 Introduction

Growing organizations, especially whose main business line is software development,
have to face many complicated issues connected with:

• An increase in the developed systems complexity;
• The problematic integration of new systems with existing ones;
• A poor business alignment of the developed systems. Organizations have

been facing growing obstacles in aligning these increasingly costly IT
systems with the business needs of customers;

• Problems with managing competencies of engineers who have the biggest
technical impact on software systems development;

• Too big mix of standards and technologies used by in-house developers.

Organizations wish to improve their effectiveness and competitiveness in all their
business lines. Any organization can benefit from understanding its structure,

 Adapting Enterprise Architecture at a Software Development Company 171

products, operations, technology and the relationships between them. To adopt IT
solutions in the best possible way, it is necessary to implement an enterprise
architecture.

An Enterprise Architecture (EA) can be regarded as a model describing the way in
which an organization achieves its current and future business objectives, using IT.
For an enterprise, it is important that, by applying enterprise architecture, it will align
its business and IT and thus become as competitive as needed. The implementation of
an enterprise architecture is important for all companies and gives them many benefits
[1,2,3]. Implementing an enterprise architecture in a software development company
is a very important task, which can have a two-fold effect. Firstly the company
improves its own organization on the basis of IT systems used for software
development, and secondly delivers software products to improve the customer’s
organization. The overall value of implementing the EA at IT enterprises varies
depending on the size and the complexity of the enterprise, the types and complexity
of the software products developed, the technological solutions used, and the software
services provided. It is possible to roll out architecture governance based on a
general-purpose architecture framework. However, tailoring such a universal tool that
can be used in any industry may be labor-intensive. Most EA architecture models are
two-dimensional and do not account for the influence and synergies between their
elements. Synergies can be achieved by introducing lean, agile and participatory
concepts. Consequently, an enterprise will be able to respond quickly to changes
coming from its internal and external environments.

The methodology applied at a software house should differ from the standard
solution and should use more responsive methods already adapted in the software
development industry. This article describes an approach already adapted to particular
needs of the software industry. The approach has to solve problems mentioned at the
beginning of this section while maintaining:

• a holistic view of the software systems developed at the company;
• a concerted development of architects’ competencies in all company

divisions;
• an embeddedness of the company’s business strategy in plans of the software

development.

The authors of this paper present an enterprise architecture deployment and
governance by using a holistic, lean approach at a software development company.

The paper starts with a review of the existing works. Since the authors did not find
a solution that could be directly applied to a Software Development Company (SDC),
a most suitable approach was adapted. Further sections describe the realization of key
activities related to the introduction of EA at the company. The authors explain
exactly which actions have been taken and present their thoughts and lessons learned
from the implementation phase. In the concluding section of this paper, there are
listed benefits resulting from the application of the described solution.

172 K. Jamróz , D. Pitulej, and J. Werewka

2 Related Works

In the process of adapting an enterprise architecture at a software development
company, a typical approach is to focus on the most popular frameworks. The
examples of how to apply enterprise prescriptive methodologies, such as TOGAF [5]
and the Zachman Framework, are known and described in the literature, e.g. [2].
TOGAF is a general tool for organizing or adapting the method of developing an
enterprise architecture and aims at providing a practical, easily-accessible,
standardized and industrial method of designing the enterprise architecture.

From the viewpoint of a software development company, it is interesting how to
align software development processes with the enterprise architecture. This very issue
is widely explored and described in existing publications [6, 7]. The global IT
industry also develops frameworks for wide sections of IT practice. The best-known
are COBIT (Control Objectives for Information and Related Technologies) and ITIL
(Information Technology Infrastructure Library). COBIT [12] enables clear policy
development and good practices for IT control throughout organizations. COBIT 5
makes enterprise architecture a mandatory discipline and draws a direct link with the
recommendations of TOGAF. The above mentioned reasons speak for using COBIT
as a governance framework for SOA (Service Oriented Architecture) [3] or
Information Technology [13]. ITIL outlines an extensive set of management
procedures that are intended to support businesses in achieving both quality and
value, in a financial sense, in IT operations. Paper [14] proposes a way of integration
by approaching ITIL from an EA perspective and puts forward a mapping of ITIL
concepts to EA, as well as a set of models representing the ITIL meta-model using the
ArchiMate modeling language.

Communicating enterprise architecture solutions incorporating software
development must be realized in a universal way. ISO/IEC/IEEE 42010 defines
architecture description (AD) standards and specifies requirements regarding
architecture descriptions [8]. Architecture description languages (ADL) are a form of
expression to be used in architecture descriptions. To conform to the AD standard, an
ADL must specify: the identification of concerns, the identification of stakeholders
having those concerns, the types of models implemented by the ADL, any
architecture viewpoints and correspondence rules. ArchiMate [9] is an architecture
description language that is mostly used for modeling the enterprise architecture and
is a very convenient tool for communicating solutions among business and technology
staff. For supporting the EA modeling activity, paper [10] proposes a Model Driven
Engineering (MDE) framework based on the ArchiMate language. In paper [11], an
ontological analysis of the BSVC (Business Strategy and Valuation Concepts) of an
ArchiMate extension and the associated notions of capability, resources and
competences are proposed.

In the process of adapting the enterprise architecture at a software development
company, the agile and lean approaches used in the IT branch must be taken into
account. A vision for such approach is illustrated in [1].

Literature provides some case studies related to applying a structured approach in
using enterprise architecture at software development companies. Paper [15] presents
an integrated service-oriented enterprise system development framework (called
the BITAM-SOA Framework), which focuses on business-IT alignment via

 Adapting Enterprise Architecture at a Software Development Company 173

communication, architecture and governance. In study [16], the joint effect of the
developer team structure and an Open Source Software (OSS) architecture on the
OSS development performance is examined. It was discovered that the developer
team structure and the software architecture significantly moderate each other’s effect
on the OSS development performance. Case study [17] investigates a lean governance
approach to software development. The Minimum Marketable Features (MMFs)
approach was used to identify the most valuable feature a customer needed, and
aimed to keep each software unit being built as small as possible. Decisions
concerning the software, initial estimates, and how the work have been broken down
into MMFs are recorded in the architecture. Developing, deploying and maintaining
software solutions is a major challenge for both the organization developing and
deploying the software and the one which is to use it. To ensure that these
organizations cooperate effectively, it is necessary to build broader and deeper
relationships that go beyond the simple rules of cooperation between the client and
the contractor. In [4], SMESDaD (Synergetic Methodology for Enterprise Software
Development and Deployment) is proposed. It concerns the operation and cooperation
of two organizations. One of these organizations is an SDC supplying software for the
main business line of the second company operating on the market.

3 Adapting Enterprise Architecture at a Software Development
Company

As shown in Related works, there are many ways of implementing an enterprise
architecture. TOGAF [5] is one of the most popular general solutions. One of its
biggest advantages is the fact that it is a broadly accepted standard, and the first step
to be taken by an organisation willing to implement it, is customising it for the
purposes of given business needs. In practice, however, TOGAF might turn out to be
too general for adjusting to the needs of a given type of enterprise. An example of a
scenario in which TOGAF may seem too difficult to adjust is the implementation of
enterprise architecture in a SDC type. TOGAF defines IT software as a set of
services/tools that are to support the activities of various business lines within an
organisation, but it does not by itself constitute an essence of the company operations.
The situation is different in the case of software development companies. Here, the
main systems that are developed simultaneously constitute the products whose market
standing determines the success or failure of the whole enterprise. Another problem
with implementing TOGAF or other general solution is the lack of a clear relationship
between the enterprise architecture built around TOGAF and the IT systems
architecture developed in the company. This problem can be particularly apparent in
the software development type of companies, in which taking care of the right
architecture of the developed systems represents one of the most important tasks of
the organisation.

Another issue related to the introduction of general purpose frameworks, like
TOGAF, is the difficulty of their adaptation to agile approach commonly used by
SDCs. Architecture Development Method (ADM) proposed by TOGAF seems to be
more suitable for waterfall management than for agile or lean methodologies (e.g.
Scrum or Kanban).

174 K. Jamróz , D. Pitulej, and J. Werewka

In relation to the described issues with adjusting TOGAF to the needs of building
the enterprise architecture in an SDC, the authors of this article were forced to look
for alternative solutions that would better fit the specific nature of SDC-type
companies. In book [1], the authors described eight main activities which should be
undertaken by enterprise architects at an SDC.

Activities proposed in [1] may be treated as a reference model that is a base for
developing the Enterprise Architecture methodology tailored to the specificity of
SDCs. The proposed methodology should enable developing the architecture
governance at an existing medium-sized company (50-500 developers). Bigger
companies (over 500 developers) usually create their own methodology strictly
designed to their own needs. For small companies (less than 50 developers) the cost
of introducing architecture governance may be bigger than the expected profits. The
created methodology is currently developed and deployed at a company employing
about 250 developers.

The architecture governance developed in the described SDC company is
composed from the following activities:

1) defining a motivation model;
2) adapting architecture modeling tools;
3) creating an IT landscape and mapping it to company products;
4) building architecture capabilities in the organization;
5) implementing standards and guidelines;
6) applying architecture governance;
7) defining the architect’s role in software projects execution;
8) managing risk in IT solutions using architecture governance.

The presented activities make it possible to obtain the main gains coming from the
enterprise architecture implementation in the organisation, i.e. the simplification of
the company IT landscape and a better adjustment of IT systems to business needs.
Additionally, a link can be found between the enterprise architecture-related activities
and the creation of the software architecture of systems under development. The
described approach integrates well with agile methodologies that are leveraged by IT
companies.

In the following part of the article, the authors present the adjustments of the
described eight activities to the purposes of implementing an enterprise architecture at
a medium-sized IT company (50-500 developers).

4 Case Study

To verify the described approach, we have to ensure that all development activities of
the SDC are properly aligned with its business goals. This can be done by adjusting
the SDC’s internal process and introducing mechanisms supporting software
architecture governance within it. Ensuring that all architecture decisions are taken in
accordance with the strategy of the enterprise is crucial.

 Adapting Enterprise Architecture at a Software Development Company 175

4.1 Defining a Motivation Model as a Bridge between the Business and IT
Solutions

The enterprise architecture should be modeled including, on the one hand, strategic
concerns and goals, and on the other, the information and technology structure [18].
ArchiMate 2.0 is a comprehensive enterprise architecture modeling language in which
a motivation layer was introduced, enabling modeling strategy with IT solutions.
Extensions proposed to the ArchiMate motivation layer introduce additional concepts
such as value, risks, resources, capabilities, competencies and constraints [19, 20].

Basing on the solutions, standards and in-house experience, an ORRCA (Open
Robust Reference Collaborative Architecture) methodology for architecture
governance was proposed and implemented. The best solution to create the correct
architecture governance at the SDC is the transition from both customer-related and
enterprise-architecture-related requirements to the final software architecture. The
proposal constitutes an attempt to create a meta-model that fills the gap and moves
from the enterprise architecture to software architecture. This gap is filled by creating
the meta-model [21] of the motivation and business layer. The considered meta-model
is based on the motivation and business layers described in the ArchiMate notation.
The proposed meta-model concerns the development of software systems for which a
bridge to business goals is essential.

The main task is to identify key requirements, goals and principles that are crucial
for enterprise and software architectures. Something that motivates the change at an
organization is modeled by a driver element in the ArchiMate motivation layer.
Typical reasons for change originate from what a company wants to achieve: to
reduce development costs, to be more competitive and to increase customer
satisfaction. Fig. 1 shows relations originating from the driver called ‘minimize costs
of software development’. The assessment is performed using the SWOT analysis (S-
strengths, W- weaknesses, O - opportunities, and T – threats). A principle is an
element of the ArchiMate motivation layer defining [9] a standardizing property of all
systems in a given context, or the way in which they are constructed. ORRCA defines
the following set of principles: lean architecture, architecture governance, component
reusability, integration readiness, portability, scalability, and data as an asset. The
principles viewpoint [9] allows the analyst or designer to model the principles that are
relevant to the design problem at hand, including the goals that motivate these
principles. In addition, relationships between principles, as well as their goals and
constraints, can be modeled. For example, principles may influence other meta-
model elements positively or negatively.

The presented ORRCA meta-model can be used by the SDC to create its own
architecture governance model facilitating the development of the system architecture
for its products. An architecture governance model based on ORRCA includes all
important factors that should be taken into account when creating a system
architecture for a given organization.

176 K. Jamróz , D. Pitulej, and J. Werewka

Fig. 1. Relations of drivers called ‘minimize costs of software development’

Benefits: Defining a motivation model as a bridge between the business and IT
solutions will promote better understanding and alignment with the development
direction.

Lesson learned: The organization had problems with defining IT Strategy
corresponding to its current market situation. An iterative approach turned out to be
the right solution. The starting point was to identify external and internal motivation
factors that influence IT development in the organization. Then, ArchiMate was used
to model the definition of the motivation layer. Also goals, drivers, concerns and
constrains were defined in ArchiMate. Defining the motivation layer allowed to reach
common views and goals in various enterprise departments. The next step will be to
create an IT Strategy whose subsequent steps will be mapped on the defined
motivation layer.

4.2 Adapting Architecture Modeling Tools

In order to support the process of modeling an enterprise architecture, different tools
were developed. An overall approach to modeling, communicating, and analyzing an
enterprise architecture, presented in [2], is to design an integrated enterprise
architecture workbench acting both as a modeling environment and the infrastructure
for integration with the existing modeling languages and tools.

One important feature of the modeling tools is the possibility to be used by a
broader audience. This means that models developed by the use of these tools should
also be easy to understand for stakeholders with no IT experience. The basic tools
which meet the demands of communicating the architecture are: BMC (Business
Model Canvas), ArchiMate and BPMN. The problem of aligning the architecture with
business is considered broadly. There are different tools proposed, but the BMC
approach [22, 23] is gaining popularity due to its simplicity, understandability and
expressiveness. The ArchiMate language was developed under the assumption that in

Enterprise

Minimize cost of software
development

W: Technical Debt increase
development costs

W: Wrong Architecture
decisions increase costs in

future

W: Monoli tic systems are hard
to scale and reuse

Minimize technical debt in
key, existing systems

Establish procedures to
continuously manage

technical debt

Refactor existing systems to
achieve proper grain

Establ ish processes to ensure
proper design of the

architecture

Develop competences of
software architects

Establ ish procedures to
properly identi fy architecture

decisions

S: Ochiestration of existing
systems is cost effective

Usage of common, integration
platform (eg. ESB)

Establ ish processes to ensure
analysis of existing solutions

before new development

Create service repository

W: Redundancy of systems
increase maintenance costs

 Adapting Enterprise Architecture at a Software Development Company 177

order to build an expressive business model, it is necessary to use relations linking
completely different fields: from business motivations to business processes, services
and infrastructure. A good example in which ArchiMate is applied is the integration
proposed in [14] by approaching ITIL from an EA perspective with a set of models
representing ITIL in the ArchiMate modeling language. On the one hand, this
proposal gives an architect the elements, relationships and models that represent best
practices in the IT service management, and on the other, formally models ITIL for
knowledge sharing, stakeholder communication and to contribute to the ITIL
discussion and validation.

The Business Process Modeling Notation (BPMN) allows [25] enterprise
architects, business analysts and application architects to work on the same readily
understandable model in order to obtain a business-process-driven software system.
To ensure a clear conceptual alignment between the business processes and the
software architectures, a solution based on the BPMN notation is proposed [26].

Benefits: The considered SDC has different tools in use, like UML, ArchiMate,
PBMN and BMC. In its communication with different stakeholders, ArchiMate,
BPMN and BMC are the most valuable. The right choice of architecture notation
tools allows useful viewpoints to be created for the architecture.

Lesson Learned: Proper modeling tools were chosen for particular areas of the
company. The BPMN notation was used to model company processes. Despite having
a complete process model, the creation of metrics to assess a quality of individual
processes was unsuccessful. BMC was partially implemented in the Product Owner
department. Unfortunately, BMC usage is still fragmentary and not optimal. The
ArchiMate notation was used to describe systems. They were modeled at the level of
components and relations between individual systems/components. Using BPMN,
BMC and ArchiMate has another big advantage, i.e., it improves communication with
stakeholders owing to the common language and the glossary of terms.

4.3 IT Landscape Creation and Mapping to Company Products

Before planning any changes and improvements within the enterprise, it is crucial to
know and understand its current state. The larger SDC, the more challenging this task
can be. A wide range of products, systems, and technologies in combination with
many different dependencies between these elements make the overall analysis very
complex. A useful tool for describing the ‘as-is’ state is the IT landscape. A properly
created landscape will also form a valuable source of information during the process
of planning future state and migration activities.
The SDC described in this article used the following approach:

1. All products being developed within the SDC were identified and assigned to
appropriate market segments.

2. Products were divided into systems they consist of. Common and reusable
parts were identified.

178 K. Jamróz , D. Pitulej, and J. Werewka

3. Additional properties were assigned to all systems, namely: a department
responsible for development, technologies used, and business services
provided.

4. Dependencies between systems were identified and documented.

During the development of the SDC’s IT landscape, 307 elements (segments,
products, systems, services, and technologies) and 1095 relations between them were
defined. The collected data became a valuable source of information for further
analyses and strategic planning.

Fig. 2. Migration costs-benefit analysis based on data from IT landscape

It turned out that, in some cases, the chosen technology was not cost-effective, for
example, software license fees were raising the deployment costs, although better
alternatives were available. Data from the landscape was used to find a system that
should be migrated to open-source technology alternatives. Fig. 2 presents the costs-
benefit analysis of the possible migration.

Another significant issue was the redundancy across different systems. It was
found that systems from different departments sometimes provide similar business
services. To optimize the development efforts, they could be integrated in a long term
period.

A large number of connections between systems grounds a high level of
complexity. IT landscape helps to manage this complexity. The analysis of the
gathered data revealed key systems that others depend on. Changes to these systems
must be done cautiously, not to impair other related systems. Fig. 3 presents relations
between systems. It is clear that some systems are strongly connected (e.g. T-45, G-
62), while other have fewer or no connections (e.g. E-25, E-35). There are also
notable relations between some groups of systems (e.g. T has many connections to G,
while there are no connections between H and G).

The exemplary SDC discussed here proves that IT landscape can serve as a good
starting point for introducing the Enterprise Architecture. It provides a good overview
of SDC products and helps to identify areas that could be improved in the future.

Benefits: IT landscape allows us to understand the complex environment of the SDC.
It can serve as a valuable source of information during the formulation of
development plans concerning company products.

S-1

S-3

S-4S-6 T-2G-2
G-3

G-4 G-5

G-6

C-2

C-4

€ 0

€ 10

€ 20

€ 30

€ 40

€ 0 € 100 € 200

M
ig

ra
ti

on
 B

en
ef

it
s x1

00
0

Migration Costs
x1000

 Adapting Enterprise Architecture at a Software Development Company 179

Lesson Learned: A need to make an inventory of IT artifacts was a cause for creating
the IT landscape, which then proved to be more valuable that initially expected. What
is more, the IT landscape turned out to be a good source of information about a
selection of the technology stack, allocation of programming resources and
interdependencies between systems.

Fig. 3. Relations between systems (full names replaced by IDs to improve readiness)

4.4 Building Architecture Capabilities in the Organization

The basic requirement for architecture governance is that the architect (taking
architectural decisions) should have the appropriate competences. Goals concerning
architecture competence development can be achieved by fulfilling the following
requirements: developing competences of software architects; continuously improving
technical skills of the development teams; involving individuals with high domain
knowledge and experience in projects; establishing processes that ensure the use of
agile techniques in the development of a software architecture; including analysis and
development of the software architecture in agile development processes.

Architects’ capabilities should be assessed and improved at the SDC. At the
examined company, architect positions were identified, roles and required
competences were described, and finally, the candidates were selected.

Vertical and horizontal models of career paths for all positions in the company,
including architects (fig. 4), were formulated. To be a solution architect, one has to be
a programmer with four years of experience in the field and with four competence
levels achieved one after the other: junior, specialist, senior and expert. The next
career level for a solution architect is that of the enterprise architect. An infrastructure
architect, on the other hand, can be previously an IT administrator, a tester or a
support engineer at the expert competence level. The target career path for an
infrastructure architect is the position of a solution architect.

This model of architect competence development and appraisal forms a part of the
proposed consistent methodology of maintaining architectural governance in the
company.

180 K. Jamróz , D. Pitulej, and J. Werewka

Software Engineer

Junior

Software Engineer

Specialist

Software Engineer

Senior

Software Engineer
Expert

IT Administrator

Junior

IT Administrator

 Specialist

IT Administrator

Senior

IT Administrator
Expert

Infrastructure Architect

Solution Architect

Enterprise Architect

Quality Engineer

Junior

Quality Engineer

Specialist

Quality Engineer

Senior

Quality Engineer
Expert

Technical Support

Junior

Technical Support

Specialist

Technical Support

Senior

Technical Support
Expert

Fig. 4. A diagram of career paths for architects’ positions

Benefits: The main benefit of building architecture capabilities is the clear definition
of competences and career paths which help to gain valuable competences.

Lessons Learned: Employees received the creation of architectural positions very
positively. Selection of candidates for the positions of architects was made by
recruiting volunteers. This enabled to identify people involved and willing to
undertake self-development. A talent management program was launched in the HR
department which would deal with, among others, a choice of training paths for the
candidates. Finally, the career paths and the role of architects were adapted to the
organizational structure of the company.

4.5 Implementation of Standards and Guidelines

The SDC described in this paper started introducing architecture standards with
defining Architecture Principles. Simply speaking, principles are sets of rules
supporting the strategy of the enterprise. They play an important role by charting the
direction of architecture activities and supporting the achievement of strategic goals.
The SDC has chosen Architecture Principles included within the ORRCA
methodology.

Further standards and guidelines were defined after the IT landscape had been
created and the current state of the enterprise had been analyzed. One of the
introduced guidelines specified a set of preferred technologies that should be used
across projects carried out at the company. The common technology stack ensures
compliance with the ‘Integration Readiness’ principle and additionally allows
resources to be shifted between different departments.
Benefits: Properly defined standards and guidelines support the execution of the SDC
strategy plans.
Lesson Learned: It was observed that one of the most important factors that
determine a high complexity of the IT landscape is the lack of corporate standards and
guidelines concerning, among others, the technology stack, a way of decomposing the
systems, and methods of their deployment. At the same time, too complex

 Adapting Enterprise Architecture at a Software Development Company 181

standardization reduces the level of innovation and “flexibility” in the development
groups. Currently, there are certain areas of the technology stack, including databases,
in which the standardization process is ongoing.

4.6 Applying Architecture Governance in Project, Program and Portfolio
Management

The IT landscape analysis should lead to choosing an appropriate approach to developing
particular systems. Systems that are the most important to a current operation of the
company and the ones without which it can still function should be identified.

In the presented example of an implementation, the company decided to divide all
systems into four categories. A division was based on metrics which accounted for
both technological and business aspects. The first category includes systems that are
the most crucial for the current operation of the company. The sale of systems from
this category brings the highest profit to the company and ensures its stable operation.
The next group of systems encompasses those which will form the key source of
income within approximately five years. The third category consists of systems whose
sale is still bringing profits, but their development is costly and the return on sales is
likely to fall. The last group contains systems whose costs currently exceed the profits
and this is almost certain to continue in the future.

Basing on the division of systems according to the presented key, the results of this
classification can be taken into consideration while planning the project work in the
company. It is particularly important to take care of systems from the first two
categories. It is obvious that the primary goal is to ensure that the requirements for the
systems that currently secure the company’s operation are fulfilled. However, it is also
important to allocate resources to work on systems that will be important in the future.
For systems from this category, paying attention to the regularity of the software
architecture and supervising its implementation is as important as maintaining their
continuous development. This stems from the fact that the planned lifecycle of such
systems is long, and if architectural errors are committed at the beginning, they may be
very difficult to rectify later on in the lifecycle. Additionally, the importance of the
system architecture comes from the fact that the system should be easy both to develop
and implement new requirements that are often not known beforehand.

For the systems classified to the third and fourth category, it is necessary to reduce
development work wherever possible. One of the ways to cut the expenses is an attempt
to substitute these systems by extending the versions of systems that are promising
(category 2) or that have a stable position on the market (category 1). In such a case, at
the same time we limit amount of work on the systems in which we do not plan to invest
in the future, and we can work on the systems that we want to promote.

Benefits: Categorization of systems based on the current and expected future market
position supports assigning priorities to projects carried out at the SDC.
Lesson learned: The result of the IT landscape analysis was a division of systems into
four presented categories. The classification was based on metrics that took into
account viewpoints of both technical and business persons. Unfortunately, introducing
changes into the program portfolio and project management resulting from the
conducted classification is much more difficult that classifying. Even more

182 K. Jamróz , D. Pitulej, and J. Werewka

problematic is the implementation of changes (for instance, suspending the
development of systems from the 4th category) in a way that do not disturb the value
stream of systems delivered to customers.

4.7 Defining the Architect’s Role in Software Project Implementation

An architectural team plays an important role at the SDC. It is responsible for
ensuring the technological integrity of the delivered systems. Moreover, the architects
have to accomplish the company’s strategies pertaining to the overall direction of the
developed systems.

In the presented implementation, the architectural team consists of enterprise
architects, solution architects (who are at the same time software architects), and
infrastructure architects. Systems developed in the company are divided into three
main functional units and one enterprise architect is responsible for each unit.
Furthermore, there are two additional enterprise architects responsible for the
coordination of work among units and the overall implementation of the board’s
strategy. Work of these enterprise architects is not assigned to a particular project but
rather consists in ensuring the compliance of all project work with the strategy
resulting from the enterprise governance of the firm.

Solution and infrastructure architects directly engage in project work. One solution
architect responsible for the preparation and supervision of the implementation of the
whole solution architecture should be assigned to each project. Additionally, if the
infrastructure is a key element of the project, the infrastructure architect takes part in
the project work as well. His or her role is to ensure that the design of what will be
used is correct. The work of solution architects is monitored by enterprise architects
who are responsible for ensuring that the solution architecture is compatible with the
strategy of the firm.

Solution architects should cooperate closely with project managers and other
people responsible for collecting client’s business requirements so that the developed
solution suits the client’s needs best.
Benefits: The right selection of the architecture team structure allows the enterprise
architecture to be efficiently implemented within the SDC. Enterprise architects are
responsible for the efficient implementation of strategy plans regarding the IT
evolution within the company. Solution and infrastructure architects are responsible
for a good alignment of systems to customer requirements by ensuring the technical
integrity of the created solutions.

Lesson Learned: At the beginning, it was assumed that a solution architect would not
be an active member of a project group. This solution proved to be incorrect because
it would lead to a situation in which the solution architecture is developed
independently of the implementation, and this might result in inconsistencies between
them. Additionally, separating solution architects from development teams would
require recruiting additional resources to the solution architects group. Unfortunately,
external recruitment of architects was unsuccessful, since they lacked sufficient
technical knowledge and experience. It turned out that the best solution for the above
mentioned problems was to assign a role of the solution architect to a member of the
development team who would be responsible for the development of the solution

 Adapting Enterprise Architecture at a Software Development Company 183

architecture. In addition, working as an active developer, he or she would be able to
make sure that the implementation is compatible with the architecture.

4.8 Managing Risk in IT Solutions Using Architecture Governance

In an enterprise architecture, the risk management plays an important role and applies
to all processes of an enterprise. General methods of dealing with risk at the enterprise
have been developed [27]. The enterprise architecture should include a risk
prevention and control mechanism. Paper [28] proposes an alignment between the
risk management governance and enterprise activities. Another example [29]
describes a business architecture model that describes the integration of the main
processes for IT Governance, IT Risk Management and IT Compliance (IT GRC).

The approach proposed in the paper is very similar to governance, risk and
compliance (GRC) solutions. The Integrated Governance, Risk and Compliance
(GRC) is becoming one of the most important business requirements for
organizations. The architecture governance proposed in this paper is structured in a
way that should decrease risks. The defined principles, goals, and requirements
should limit the possible risk. This does not mean that risk management should be
omitted. On the contrary, it should be closely integrated with the proposed
governance and motivation model. Integrating risk management into the organization
means considering the strategy, processes, people and the technology used.

Benefits: At the SDC, the main benefits stemmed from the knowledge of risk, and
this led to changes in some processes. Risk monitoring is included in the project,
portfolio, operation and HR management.

Lesson learned: The SWOT analysis of products and processes was conducted at the
SDC. It helps to make conscious decisions about changes in the products and
processes portfolio.

5 Conclusions

It seems that introducing architecture governance represents a good approach to
optimizing development activities of the SDC. The authors analyzed different
architecture frameworks and used the experience gained to create their own solution
that meets the specific needs and problems of the described enterprise. The proposed
solution is inspired by the approach presented in [1], which can be treated here as a
reference approach.

The Architecture Governance methodology ORRCA was introduced in the process
of adapting EA in the SDC. The in-depth analysis of the IT landscape allowed to
identify many areas with room for improvement. During the analysis, non-trivial
problems including an inefficient structure of redundancy in the developed systems
were found. To solve the discovered issues, a corrective action was planned and
partially introduced. It was necessary to create an architecture team composed of
enterprise, solution, and infrastructure architects with clearly defined responsibilities
in order to ensure the correct implementation of these plans

184 K. Jamróz , D. Pitulej, and J. Werewka

The proposed methodology was introduced iteratively at the software company.
Currently, the SDC described in this paper is at an early stage of introducing
architecture governance. Activities which were performed concerned different areas
and the experience gained is shortly described in lessons learned. The execution of all
plans is now at the initial stage, but the current results look promising. Some of the
solutions have already been successfully deployed, other need some organizational
changes before they can be thoroughly implemented, so that they do not disturb
software product delivery to customers.

References

1. Bente, S., Bombosch, U., Langade, S.: Collaborative Enterprise Architecture: Enriching
EA with Lean, Agile, and Enterprise 2.0 Practices. Morgan Kaufmann (2012)

2. Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and Analysis.
Enterprise engineering series. Springer (2009)

3. Hojaji, F., Shirazi, M.R.A.: A Comprehensive SOA Governance Framework Based on
COBIT. In: 6th IEEE World Congress on Services, pp. 407–414 (2010)

4. Rogus, G., Skrzyński, P., Szwed, P., Turek, M., Werewka, J.: SMESDaD – a Synergetic
Methodology for Enterprise Software Development and Deployment. In: Łebkowski, P.
(ed.) Aspects of production engineering and management. AGH University of Science and
Technology Press (2011)

5. The Open Group: TOGAF Version 9.1 (2009-2011), p. 692
6. Eeles, P., Cripps, P.: The Process of Software Architecting. Addison Wesley Professional

(2010)
7. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakeholders

Using Viewpoints and Perspectives. Addison-Wesley (2011)
8. ISO/IEC/IEEE: Systems and software engineering – architecture description.

ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-
2000), pp. 1–46 (2011)

9. The Open Group: ArchiMate 2.0 Specification (2009-2012), p. 183
10. Pena, C., Villalobos, J.: An MDE approach to design enterprise architecture viewpoints.

In: Seventh IEEE International Conference on E-Commerce Technology (CEC 2005),
pp. 80–87 (2010)

11. Azevedo, C.L.B., Iacob, M.-E., Almeida, J.P.A., van Sinderen, M., Pires, L.F., Guizzardi,
G.: An Ontology-Based Well-Founded Proposal for Modeling Resources and Capabilities
in ArchiMate. In: 17th IEEE International Enterprise Distributed Object Computing
Conference, pp. 39–48 (2013)

12. COBIT® 5: A Business Framework for the Governance and Management of Enterprise IT,
ISACA, ISBN 978-1-60420-237-3. United States of America (2012)

13. Radovanović D., Lučić D., Radojević T., Šarac M.: Information technology governance -
COBIT model, MIPRO 2011, Opatija, Croatia: pp. 1426-1429 (2011)

14. Vicente, M., Gama, N., da Silva, M.M.: Using ArchiMate to Represent ITIL Metamodel.
In: IEEE International Conference on Business Informatics, pp. 270–275 (2013)

15. Chen, H.-M., Kazman, R., Perry, O.: From Software Architecture Analysis to Service
Engineering: An Empirical Study of Methodology Development for Enterprise SOA
Implementation. IEEE Transactions on Services Computing 3(2), 145–160 (2010)

 Adapting Enterprise Architecture at a Software Development Company 185

16. Nan, N., Kumar, S.: Joint Effect of Team Structure and Software Architecture in Open
Source Software Development. IEEE Transactions on Engineering Management 60(3),
592–603 (2013)

17. Middleton, P., Joyce, D.: Lean Software Management: BBC Worldwide Case Study. IEEE
Transactions on Engineering Management 59(1), 20–32 (2012)

18. Cardoso, E.C.S., Almeida, J.P.A., Guizzardi, R.S.S.: On the Support for the Goal Domain
in Enterprise Modelling Approaches. In: 14th IEEE International Enterprise Distributed
Object Computing Conference Workshops, pp. 335–344 (2010)

19. Iacob, M.-E., Quartel, D., Jonkers, H.: Capturing Business Strategy and Value in
Enterprise Architecture to Support Portfolio Valuation. In: IEEE 16th International
Enterprise Distributed Object Computing Conference, pp. 11–20 (2012)

20. Azevedo, C.L.B., Almeida, J.P.A., van Sinderen, M., Quartel, D., Guizzardi, G.: An
Ontology-Based Semantics for the Motivation Extension to ArchiMate. In: 15th IEEE
International Enterprise Distributed Object Computing Conference, pp. 25–34 (2011)

21. Werewka, J., Jamróz, K., Pitulej, D.: Developing lean architecture governance at a
software developing company applying archiMate motivation and business layers. In:
Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. z. (eds.) BDAS 2014.
CCIS, vol. 424, pp. 492–503. Springer, Heidelberg (2014)

22. Osterwalder, A.: The Business Model Ontology: a proposition in a design science
approach. Dissertation, Universite de Lausanne, Ecole des Hautes Etudes Commerciales
(2004)

23. Meertens, L., Iacob, M., Jonkers, H., Quartel, D., Nieuwenhuis, L., van Sinderen, M.:
Mapping the business model canvas to ArchiMate. In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing, pp. 1694–1701. ACM (March 2012),
http://doc.utwente.nl/82858/

24. Vicente, P., da Silva, M.M.: A Business Viewpoint for Integrated IT Governance, Risk and
Compliance. In: IEEE World Congress on Services, pp. 422–428 (2011)

25. Business Process Model and Notation (BPMN), Version 2.0, OMG (2011),
http://www.omg.org/spec/BPMN/2.0

26. Dahman, K., Charoy, F., Godart, C.: From Business Process to Component Architecture:
Engineering Business to IT Alignment. In: 15th IEEE International Enterprise Distributed
Object Computing Conference Workshops, pp. 269–274 (2011)

27. Practice Standard for Project Risk Management, Project Management Institute (2009)
28. Barateiro, J., Antunes, G., Borbinha, J.: Manage Risks through the Enterprise Architecture.

In: 45th Hawaii International Conference on System Science (HICSS), pp. 3297–3306
(2012)

Service Development and Architecture

Management for an Enterprise SOA

Thomas Kriechbaum1, Georg Buchgeher2, and Rainer Weinreich3

1 RACON Software GmbH, Austria
thomas.kriechbaum@racon.at

2 Software Competence Center Hagenberg, Austria
georg.buchgeher@scch.at

3 Johannes Kepler University Linz, Austria
rainer.weinreich@jku.at

Abstract. We report on service development and architecture manage-
ment practices for an enterprise SOA in the financial domain. First we
describe how services are currently developed by one of the largest ser-
vice providers for the financial domain in Austria. Then we show how
we have introduced various practices and tools for architecture manage-
ment over the last years. We have specifically implemented support for
architecture extraction, architecture visualization, automatic architec-
ture analysis, and architecture reviews as part of quality gates in the
service development process. Finally, we report on lessons learned both
in the area of service development and architecture management as well
as on existing challenges and future work in this area.

Keywords: SOA, service-based development, enterprise architecture,
architecture management.

1 Introduction

The GRZ IT Group is one of the major service providers for financial institu-
tions in Austria and has been developing software for the financial domain for
over 40 years. Within this period the various software solutions developed by
the GRZ IT Group have evolved into a large scale Service-Oriented Architec-
ture (SOA). Currently, the SOA consists of about 170 subsystems (also called
service modules) providing about 1700 services. Each subsystem defines a num-
ber of related services for a specific task. Subsystems are the units of planning,
evolution, and deployment, and constitute a large system of systems (SoS) ar-
chitecture. In this paper we report on experiences with the development and
architecture management of services in this enterprise SOA.

The contributions of this paper are as follows: A set of practices for the de-
velopment of an enterprise SOA including a service development process model
and central architecture management activities, lessons learned regarding the
development and architecture management of an enterprise SOA, and a list of
open research challenges in this field.

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 186–201, 2014.
c© Springer International Publishing Switzerland 2014

Service Development and Architecture Management for an Enterprise SOA 187

The remainder of this paper is organized as follows: In Section 2 we describe
the context of the paper - this includes an overview of the domain, an archi-
tecture overview of the enterprise SOA, and an overview of the organization
structure including essential stakeholders and their concerns. Section 3 describes
the established service development and service life cycle process. In Section 4
we describe selected quality management activities performed by the architec-
ture management team. Lessons learned, open challenges, as well as current and
future work are discussed in Section 5. The paper is concluded in Section 6.

2 Context

GRZ IT Group develops and operates software for the financial domain in Aus-
tria, including software for end users (i.e., internet banking applications and por-
tals) and software for employees in banks (front and back office applications). In
2013 the GRZ IT Group had 780 employees and a turnover of 153 million Euros.
Applications are operated in multiple computing centers at different locations
in Austria. Developed applications need to be highly scalable and performant in
order to handle a large customer base. For example, in the second half of 2013
the internet banking application had to handle about 122 million page views per
month on average.

Domain 1

Domain 2

Application 1

Application 2

Application 2

Infrastructure

DWH

WM

DM

WM

WM

APP

SM

SM

SM

SM

SM

HM

HM

HM

DB

DB

DWH

DWH

Security Journaling Monitoring

3rd Party
App

3rd Party
App

WM ... Web Module
DM ... Desktop Module
App ... Mobile Application
SM ... Service Module
HM... Host Module
DB ... Database
DWH ... Data WarehouseOutput Management

Fig. 1. SOA Overview

188 T. Kriechbaum, G. Buchgeher, and R. Weinreich

2.1 System Overview

Figure 1 provides a conceptual overview of the enterprise SOA. The system
landscape is organized in multiple applications, which are clustered into business
domains. An application is further decomposed into multiple modules, which are
the units of versioning and deployment. Modules belong to different tiers of an
application. The client tier encompasses different kinds of client modules, like
web client modules (WM), desktop application client modules (DM), and mobile
application client modules for smartphones (APP). Clients use functionality via
web services provided by so-called service modules (SM) located in the service
tier. Service modules interact with a number of different subsystems: They can
use services provided by other service modules, they can call operations provided
by host modules (HM) of the mainframe tier, they can access data from database
management systems (DB) and from data warehouses (DWH) (e.g., reports), and
they can interact with 3rd party applications. The business logic of enterprise
applications is either implemented through services in service modules, or it
is implemented in host modules at the mainframe. In the latter case services
act as a facade for accessing the functionality implemented at the host. An
infrastructure tier further provides fundamental crosscutting functionality like
security, journaling, monitoring, and output management.

2.2 Organizational Structure

Development and operation of the enterprise SOA involves a large number of
different stakeholders. Stakeholders can be separated into project-specific and
project-independent stakeholders (see Figure 2). Project-specific stakeholders
form a project team for the duration of a project. This project team structure
is used for all major projects. Different roles are performed by different team
members - there are typically no team members taking the role of multiple
stakeholders.

Project Team

Domain Expert

Project
Manager

Product
Manager

Solution
Architect

Analyst

DeveloperTest Manager

Release and
Configuration
Management

System
Administrator

Designer

Architecture Management
Team

Architecture Manager

Software Architect

System Architect

Fig. 2. Enterprise SOA Stakeholders

Service Development and Architecture Management for an Enterprise SOA 189

In the following we describe central stakeholders with their concerns.
Domain Expert. Domain experts are representatives of regional banks. They

are the customers of the developed products and are responsible for negotiating
requirements among different regional banks, and for initiating and funding new
projects.

Product Manager. Product managers set the strategic direction of products.
They identify potential features of a product and suggest these features to the
domain experts. They also coordinate and prioritize system requirements on a
coarse level. Product managers exist independently of a particular project and
are not part of a project team.

Project Manager. Project managers are concerned with the management and
controlling of all project-related development activities.

Solution Architect. Solutions architects (together with product managers) are
responsible for defining the high-level architecture of a product, which includes
identification and specification of dependencies to other applications (SOA sub-
systems) and the identification of service candidates based on the system require-
ments and the coarse-grained architecture. Further, they participate in quality
gate reviews of applications developed by other teams.

Analyst. Analysts refine and manage the requirements provided by domain
experts and product managers. These refined requirements are then used for
refining the architecture and act as input for the designer. Analysts are not
directly involved in the service development life cycle.

Designer. The designer uses the service candidate descriptions and the refined
requirements and develops the detailed design of services. This includes the
design of data structures, internal components, and the detailed design of service
interfaces. Further, designers are responsible for negotiating modifications of
existing service interfaces with other designers.

Developer. Developers are responsible for implementing applications, services,
and unit tests.

Test and Quality Manager. Test and quality mangers are responsible for the
specification, coordination, and execution of tests and for other quality control
activities. This includes tests of functional correctness and of nonfunctional re-
quirements like performance and scalability.

Release and Configuration Manager. Release and configuration managers are
concerned with the coordination of all company-wide release activities, e.g., the
management of dependencies between product releases.

System Administrator. System Administrators are responsible for operating
released products in computing centers. This includes the runtime monitoring
of the enterprise SOA in order to detect problems in terms of performance and
scalability.

Architecture Manager. The architecture manager is the head of the architec-
ture management group. His responsibilities include the coordination of team
activities, the optimization of processes, and the development of architecture-
related guidelines based on the global business strategies.

190 T. Kriechbaum, G. Buchgeher, and R. Weinreich

Software Architect. Software architects are responsible for the definition of
the reference architecture (see Section 4) including the technology stack (see
Section 3.1).

System Architect. System architects are responsible for the definition of the
strategic system architecture (see Section 4).

3 Service Development and Service Lifecycle

Services and service modules (see Section 2.1) are at the heart of the enter-
prise SOA. In this section we present central principles guiding the development
of services and service modules. This includes an overview of the technologies
used (Section 3.1), the service development process (Section 3.2) and selected
practices for service development (Section 3.3).

3.1 Technology Stack

The technology stack defines the implementation technologies (i.e., used pro-
gramming languages, frameworks, and runtime environments) used for the ser-
vice development. A main driver behind the definition of the technology stack
was the aim to reduce the complexity and effort for implementing service-
oriented applications. Therefore, the enforced policies (i.e., security, auditing,
logging, monitoring, and standardized contracts) are covered by the provided
frameworks and service-containers whenever possible. The utilization of stan-
dard technologies and de-facto standard frameworks is a strategic aim to ensure
vendor-independence and to reduce any proprietary in-house development. The
technology stack has evolved over the years as new technologies and standards
were introduced by the Java EE platform itself. As some of our software appli-
cations have a long lifetime (10 years and longer) we currently have to support
three different versions of the technology stack that all are required to run on a
defined system infrastructure.

The first version of the technology stack, internally named Java Platform 1,
is based on the Java EE 1.4 technologies and an extensive in-house framework
that covers security, auditing, and configuration and composition of components.
Services are exposed as JAX-RPC-based web-services. Service-requests are prop-
agated to EJBs that encapsulate the business logic.

The second version, named Java Platform 2, is based on Java EE 5. The
proprietary configuration and composition framework was replaced by the Spring
framework. JAX-RPC was replaced by JAX-WS. EJB technology is still used
for exposing external services and for integration into the application server.

With the upgrade to a Java EE 6 compliant application server, we introduced
the third version of our technology stack, named jRAP SOA. In this version
we reduced in-house developed frameworks to the areas security, auditing, and
integration of business-logic on the mainframe, as these areas are not covered by
any standard technology. In jRAP SOA these components have been refactored
to ensure the required integration into CDI capable containers. Configuration

Service Development and Architecture Management for an Enterprise SOA 191

and component composition is now based on CDI. CDI technologies and exten-
sion mechanisms allow us to expose and integrate services with different com-
munication technologies as well as to annotate certain classes with important
architecture information.

3.2 Service Development Process

Services are identified and developed as part of the product development process.
Therefore, the service lifecycle has been embedded in the product development
lifecycle, which itself is structured into the phases analysis and management
of requirements, decomposition of the overall system into service- and client-
components, integration of the components, and release of a new product or
product version [9].

Id
en

tif
y

S
er

vi
ce

s A
rc

hi
te

ct
D

es
ig

ne
r

P
ro

je
ct

M
an

ag
er

Im
pl

em
en

t S
er

vi
ce

s

D
es

ig
ne

r
D

ev
el

op
er

A
rc

hi
te

ct

Specify Service
Interfaces

Identify External
Dependencies

Identify Services

Negotiate
Service Reuse

Update Dependencies
and Services

Instruct Service
Implementation

QG
Design

Adapt Service
Specification

Add Services to
Service Registry

Update Service
Registry

Add New Version
to Service Registry

Trigger Service
Deactivation

Request Security
Permissions

Te
st

er
S

ys
te

m

A
dm

in
is

-
tr

at
or

Implement
Service Logic

Synchronize with
Service Registry

Deploy and Monitor Service
Module in Preproduction

QG
Development

Test
Services

Adapt
Existing?

Yes

No

Compatible
Adaptions?

Yes

No

Issues?

Yes

No

Te
st

er

Fig. 3. Service Development Process

The service development process consists of a set of design/implementation
activities, which are intercepted by so-called Quality Gate (QG) reviews [10].

192 T. Kriechbaum, G. Buchgeher, and R. Weinreich

Only if a QG is passed, the development may continue, otherwise developed
products need to be reworked.

The service lifecycle is depicted in Figure 3. It starts with the solution architect
identifying the required systems and subsystems and their external dependencies
based on user requirements defined by the product manager. User requirements
are provided as a requirements definition, which has been reviewed as part of
the quality gate Requirements Definition. Depending on the required integration
level (UI, process, service, data) and the required degree of decoupling of appli-
cations and subsystems, the solution architect identifies the potentially required
services. Existing services are reused whenever possible.

The designer takes the list of proposed services (consumed and provided),
analyzes the existing services interfaces in detail, and tries to negotiate any
adaptation of existing service interfaces and service implementations if necessary.
The result of this negotiation process is a list of services that can be reused
without any changes, services that have to be adapted, and services that have
to be newly implemented.

Next, the solution architect updates the external view within the architec-
ture specification. He describes the services that are provided by the system
that is part of the product, and the services that are consumed by systems of
other products. Afterwards, the product manager/project manager initiates and
controls the necessary service implementation projects.

If a new service has to be implemented, the designer specifies the service
interface and publishes the new service to the service registry. The detailed
specification includes the coordination with the service consumers, as the service
negotiation during service identification does not cover all aspects of a detailed
service specification.

If an existing service has to be adapted, the designer updates the existing
service specification and checks whether the changes are compatible and do not
break existing service consumers or whether the changes are incompatible and a
new version has to be introduced. In the case of compatible changes, the adapted
service interface is published to the service registry. In the case of incompatible
changes, a new service version is added to the service registry and the deactiva-
tion process of the old service version is started.

As the designer is also responsible for specifying the required security policies,
the enforcement of these policies (e.g. permissions to access specific business
logic on the mainframe) is triggered before the implementation of the services is
started by the developer.

As part of the quality gate Design the architecture and the detailed design
including the service specifications are evaluated against the requirements spec-
ification and against the architecture and design guidelines of the reference ar-
chitecture. Based on the defined service specification the developer implements
the internal business logic or integrates existing (internal or external) services
and service compositions. The model-driven approach as described in Section
4.3 ensures that external service interfaces are compliant to the enforced SOA

Service Development and Architecture Management for an Enterprise SOA 193

guidelines. The developer is also responsible for implementing unit and integra-
tion tests that are executed during continuous integration and release builds.

As a precondition of the quality gate Development the developer extracts
the implemented architecture directly from the source code (see Section 4) and
synchronizes the extracted dependencies with the service registry. As part of the
quality gate Development it is verified that the system implementation conforms
to the specified architecture.

After deployment in pre-production zones, the test and quality team performs
different kinds of tests that have been defined in a test specification. Possible
tests are load and performance tests, tests of expected business functionality,
and static code analysis. The result of the (nonfunctional) tests and the archi-
tecture extracted from the source code are checked by the solution architect.
Any discovered issues are reported and discussed with the development team
and the product-manager/project-manager to determine, if any fixes should be
implemented before the service implementation can be released and transferred
to the release- and configuration management team.

3.3 Development Practices

When developing services we try to minimize the amount of complexity by keep-
ing a comprehensible set of concepts. As a result, the core business logic should
be very clear and straightforward to implement, to test, and to understand.
Dependencies to frameworks and technologies should be reduced to a minimum.

Development practices like Model-Driven Development (MDD), unit-testing
and continuous integration, a transparent integration into the container on top
of standard technologies, and a customized services registry based on a logical
information model are key factors in our SOA efforts. Some of these practices
have been optimized over years but are still part of a continuous adaptation pro-
cess, as more and more mission critical products and even persons in external
locations are using these concepts.

Model-Driven Development. Model-driven development has been introduced to
support a top-down-strategy for specifying and implementing services. The de-
signer not only provides a service-specification in the form of an informal docu-
ment but also in the form of a formally defined UML-model. This UML-model
contains all services as UML-interfaces and all entities modeled as UML-classes.
These UML-elements are annotated with specific UML-stereotypes that allow
providing information that is not covered by the UML-standard.

After the services and entities have been modeled, a code generator creates all
necessarymodules, configuration files and initial artifacts including service imple-
mentation stubs, and service client libraries that canbe used by a service-consumer
to integrate the provided services. The developer simply has to implement the ser-
vice logic as CDI-managed beans and does not have to deal with
container integration, protocol- and technology-specific endpoint-implementation,
mapping-logic, security integration, etc. Model-driven development has proven to
be an important success factor. For instance, the time required for integrating

194 T. Kriechbaum, G. Buchgeher, and R. Weinreich

existing services could be reduced from up to one day to just a few minutes by
simply adding a generated service client library as dependency.

Custom Annotations for Architectural Information. On top of standardized an-
notations we have developed a set of additional annotations for enriching the sys-
tem implementation with architectural information. This information is used for
automatically extracting the implemented architecture from the system imple-
mentation in order to keep architecture documentation (i.e., architecture models
and information in the service registry) up-to-date over time and to automate
architecture-related quality control activities (see also Section 4). For instance,
custom annotations are used for distinguishing different component types (data
access object components, service components, and components for accessing
functionality provided by the mainframe), and for associating modules with ap-
plications and domains in order to automatically update information in the
service registry.

Service Registry. Service development includes detailed planning activities for
which information about existing services is required (see also Section 3.2). For
instance, solution architects and designers need to be able to search for existing
services for reuse, and they need information where a particular service is cur-
rently used, if an existing service has to be changed. Information about services
is stored in a central service registry, which is updated whenever new services
are being published, existing services are modified, or when services are being
deactivated. Information in the service registry is based on a logical information
model (see Figure 4) reflecting the enterprise SOA consisting of domains, appli-
cations, and modules. A module represents an installable software artifact and
is the unit of deployment and versioning. A module is part of an application,
whereas the overall capabilities of an application can be partitioned into multi-
ple modules. Modules contain one or more components that can be services, UI
components, processes, data marts, or host programs. These component types
are technically defined as part of the reference architecture and managed within
the service-registry.

To support the process of service identification and the requirement to add
information to the service-registry as soon as possible in the service development
process we introduced the concept of ports, which can also be found in the
UML component model, as well as in the definition of WSDL. With ports is
it possible, to add public integration points without the need of knowing the
concrete interface or concrete component in advance. This permits managing
dependencies between service consumers and providers at an early stage in the
service lifecycle.

Stakeholders, e.g., designer, developer and architect, and additional docu-
ments (service specification, policies...) are assigned to modules to provide infor-
mation about contact persons and documentation that should help to find the
appropriate service for reuse.

Service Development and Architecture Management for an Enterprise SOA 195

Fig. 4. Service Registry Information Model

4 Architecture Management

Architecture management within the GRZ IT Group is concerned with the plan-
ning, development and controlling of the enterprise architecture and concrete
solution architectures (see Figure 5). The enterprise architecture acts as the
foundation and framework for solution architectures of single applications con-
stituting the enterprise SOA. It consists of the business architecture (i.e., the
business processes, and the domain model), the application architecture (i.e., the
functional description of the single applications of the enterprise SOA and their
relationships), the software architecture (i.e., the company-wide reference ar-
chitecture including technologies and frameworks for application development),
and the system architecture (i.e., the runtime environment for the enterprise
SOA including operating systems, application servers and databases).

In terms of the main architecture activities, Architecture Planning refers to
the definition of the enterprise architecture. Architecture Development encom-
passes periodic evaluations and adaptations of the enterprise architecture in
response to changes in business and technology. Finally, Architecture Control-
ling focuses on supporting solution architects during design activities and also
supports compatibility checking with the technical enterprise architecture.

Architecture Controlling activities are resource-intensive in terms of required
human resources. This high resource demand results from the huge number of
SOA subsystems, which have to be analyzed on a regular basis, as well as from
the fact that analysis activities (including their preparation activities) have to be
performed manually. In 2010 a joint research project between the GRZ IT Group,
the SCCH and the JKU started with the goal to reduce the resource demand
for EA controlling activities. As part of this research project we investigated
how different architecture-related activities can be automated and supported

196 T. Kriechbaum, G. Buchgeher, and R. Weinreich

Architecture Management

So
lu

tio
n

Ar
ch

ite
ct

ur
eProject

Project

Project

Project

Business
Strategy

Functional Architecture

Application Architecture

Business Architecture

Technical Architecture

System Architecture

Software Architecture

Operative Architecture Strategic Architecture

Fig. 5. Architecture Management Overview

with tools. Initially, we focused on single activities, which have evolved over the
last years to a comprehensive approach for EA controlling. Figure 6 depicts an
overview of our efforts. As shown in the figure, at the heart of our approach is a
centralized architecture information repository, in which all architectural infor-
mation is stored. Architectural information is automatically extracted from the
system implementation of SOA subsystems. Information from the architecture
information repository can be visualized with a view-based approach, automat-
ically analyzed, and used to support manual review processes (i.e., quality gate
reviews). Architecture information is synchronized with the service registry. In
the following we describe these aspects in more detail.

Architecture Information Repository. In order to provide all stakeholders with the
architectural information they need for their tasks, we have developed a central-
ized architecture information repository. By following a centralized repository
approach all stakeholders are collaboratively working on a single information
source (a single model). Changes made by one stakeholder (e.g., a review com-
ment) are immediately visible to all other stakeholders. The architecture infor-
mation repository is based on the LISA AIR model, a revision of the LISA model
[6]. The LISA AIR model is semi-formally defined. This allows us to create large
parts of the model automatically (along with manually defined parts). In addi-
tion, an architecture model can be maintained through incremental extraction
and it can be analyzed automatically.

Architecture Extraction. Keeping architectural information up-to-date can be
challenging since this is a time-consuming and tedious activity [3]. We automat-
ically extract the actually implemented architecture from the system implemen-
tation [8]. Because the software architecture is typically not completely contained
in the system implementation [4], we have defined a set of custom annotations
(see also Section 3.3) as part of the latest technology stack to enrich the sys-
tem implementation with architectural information and to facilitate architecture
extraction. Architecture extraction is performed incrementally in order not to
overwrite architectural information that has been defined manually.

Architecture Visualization. Information contained in the architecture informa-
tion repository is visualized using a view-based approach. Currently views for

Service Development and Architecture Management for an Enterprise SOA 197

Product SynchronizeExtractProduct

Product
- Web Modules
- Desktop Modules
- Service Modules
- Host Modules

Architecture
Information
Repository

Service
Registry

Visualization Automatic
Analysis

Quality Gate
Reviews

Fig. 6. Architecture Information Repository Overview

visualizing the internal configuration of service modules [8] and additional code
and module views are available. Additional views like views for visualizing web
and host modules, and a system of systems view focusing on the interaction be-
tween different service subsystems are under development. Architectural views
are connected with the system implementation. This makes it possible to navi-
gate from architectural views to the system implementation and vice versa.

Automatic Architecture Analysis. Architectural information contained in the ar-
chitecture information repository can be automatically analyzed. A configurable
set of predefined analyses continuously analyses information in the architecture
information repository for model completeness, model consistency, and archi-
tecture/implementation conformance [2]. In addition, we have developed a rule-
based approach for checking the conformance of service modules to reference
architecture rules defined as part of the global architecture [7].

Quality Gate Reviews. Not all kinds of architecture analysis can be performed
automatically. For example, quality gate reviews performed during the service
development process have to be performed manually. For each quality gate the
architecture management group has defined a questionnaire that has to be an-
swered during the review. We are currently working on support for this kind of
reviews in our architecture management infrastructure. Specifically, we provide
dedicated editors for defining quality gate questionnaires and for answering these
questionnaires during a quality gate review. Quality gate reviews are further sup-
ported by providing visualizations of the system architecture (see above). Review
comments can be linked to architecture diagrams, which facilitates tracing and
further discussion of detected issues. It is also possible to generate a detailed
report for quality gate reviews.

Service Registry Synchronization. The service registry is a central means for
searching for existing services, for tracking the life cycle of provided services,
and for analyzing the service usage. Information in the service registry is kept
up-to-date by synchronizing this information with information contained in the
architecture information repository.

198 T. Kriechbaum, G. Buchgeher, and R. Weinreich

5 Lessons Learned, Future Work, and Open (Research)
Challenges

In this section we report on our lessons learned, on current and future work, and
on open (research) challenges regarding the development of an enterprise SOA.

5.1 Lessons Learned

Model-Driven Development. MDD drastically facilitates service development.
Since technology/platform-specific code can be generated, developers can con-
centrate on the implementation of the business logic and do not require an in-
depth knowledge of the used frameworks and technologies any more. However,
this can make technical problem analysis difficult and often requires the help of
the framework/platform team for problem resolution. This means that develop-
ers still need to be educated in platform technologies. MDD also facilitates the
migration to new implementation technologies because technology-specific code
can be generated by reusing existing models. MDD also requires a shift in the
service design process in which formally defined models need to be created. Not
all designers are familiar with the creation of formal architecture models. Thus
in many project teams the designers only create informal textual service descrip-
tions, which then need to be converted into formal models by the developers.

Model-Based Architecture Management. Formally defined architecture models al-
low more efficient architecture controlling activities. Currently we automatically
extract the actually implemented architecture from the system implementation,
which can then be automatically analyzed for compatibility with the company-
wide reference architecture. The extracted architecture can also be synchronized
with the service registry and can be used as input for manual architecture review
activities (quality gates). If additional architecture models, like a model of the
intended architecture, are used in the development process, also the conformance
of the actually implemented architecture to the intended/designed architecture
can be checked automatically.

Architectural Information. Architectural information plays a vital role for many
development activities like SOA governance, service design, implementation,
test, and acquisition activities. For example, designers require architectural in-
formation for searching for reusable services; test managers require information
for the development of test concepts; the architecture management group re-
quires information for quality gate reviews and periodic assessments. Therefore
it is important that this information is available, complete, and up-to-date. Con-
cepts like a centralized service registry and a centralized architecture information
repository help providing stakeholders with the required information.

SOA Governance. SOA governance processes are a prerequisite for the successful
development of an enterprise SOA. Without governance, existing services are
not reused but developed redundantly. Also a high number of parallel service
versions would be in operation because clients would not be updated to new
services versions.

Service Development and Architecture Management for an Enterprise SOA 199

5.2 Current & Future Work

Adaptations of the Technology Stack.Making adaptations to the technology stack
is an ongoing activity performed as part of the architecture development process
(see Section 4). Adaptations are necessary in response to new and emerging
technologies (e.g., internet/web technologies like WebSocket and Java EE 7),
and in response to negative experiences with currently used technologies. For
instance, using web services with SOAP requires frequent releases, because even
adding optional information to the response message of the service breaks the
compatibility with defined contracts. Therefore, more tolerant technologies like
RESTful services with JSON are currently investigated for future versions of the
technology stack.

Architecture Information Repository. Our efforts of establishing an architecture
information repository are still at the beginning. In the future we plan to extend
our architecture information repository with additional views, i.e., a dedicated
system of systems view for visualizing and analyzing the dependencies between
client, services and host modules, and a dedicated context view for automatically
analyzing dependencies between applications and the system context.

Runtime Monitoring. Currently the service registry only contains design time in-
formation about services. We plan to extend this design time view with runtime
information about the actual service use. Such an integrated view allows the
identification of frequently used services, of services with performance problems,
and the exploration of runtime service interactions and dependencies. Further,
this information can be used for strategic planning of the evolution of the enter-
prise SOA.

Architecture Reviews. Architecture reviews (quality gates) are often difficult to
perform and results are often difficult to understand. The currently implemented
tool support facilitates performing reviews and understanding review results but
still requires validation and further adaptations with regard to the integration in
the development process and the presentation of results to various stakeholders.

5.3 Open (Research) Challenges

Architecture and Testing. Currently testing is focused on individual applications
and subsystems of a System of Systems (SoS). In an SoS context retesting the
whole system in case of changes of individual components is infeasible. Test-
ing needs to cross system boundaries. Better approaches for testing system of
systems architectures are required. One could imagine using architecture infor-
mation (e.g., dependencies to other systems) to analyze the impact of changes
and to identify systems and components that should be retested.

Architecture and Agility. The development and evolution of our enterprise SOA
currently follows a rather plan-driven process including strict analysis, design,
implementation, documentation and governance activities. Literature and
current trends in software development lead to the wish to introduce agile

200 T. Kriechbaum, G. Buchgeher, and R. Weinreich

methodologies and techniques by development teams. However, in the context of
enterprise applications and SOA as implemented for financial institutions with
many restrictions and company-wide regulations, it still is unclear how an agile
methodology can be established within existing organizational structures and
business processes. Approaches like Enterprise Scrum aim to combine high-level
business and governance processes and low-level agile development methodolo-
gies. In general, there is a tension between architecture-centric and agile method-
ologies [1], and this is even more evident in an enterprise SOA context. We need
more research on how to combine architecture and agile methodologies for such
large-scale systems with a long lifespan.

Architecture Management. Architecture information is not only a means for
learning and evaluation in enterprise systems but also a central means for orga-
nizing government processes and for supporting development and quality control
processes. In addition, many stakeholders are interested in different aspects of
the available architectural information to address their concerns. The different
stakeholders have already been addressed in architecture research and practice
through different views [5] on architecture information, but there is additionally
a need to provide the information in a central and timely manner. One way
to address this concern could be to provide architecture information as a ser-
vice which integrates architecture information from different sources. This also
requires means for keeping the required information consistent over time.

Architecture Knowledge Sharing. A SoS as defined by the SOA in our context is
characterized by different systems which are partly managed by largely indepen-
dent organizational units. However, changes to a subsystem often are not only
contained within the subsystem but may also affect other subsystems. However,
such changes cannot be communicated globally because of the resulting informa-
tion overload and subsequent ignorance by other organizational units. Thus we
need effective means to efficiently provide architectural information to exactly
the other organizational units and architect that might by affected by a change.

Service Development. A service-oriented software system as the one described in
this paper has a long lifespan. This is quite natural because it is a main charac-
teristic of such a system of systems that subsystems or individual components
and services are upgraded, extended, modified, and removed during the lifespan
of the system. A major problem in this regard is a change of the underlying tech-
nology platform because of side effects, which are hard to detect. For this reason,
migrations to a new technology platform are currently typically avoided, because
of the potential risks involved. This leads to additional costs for maintenance and
operation of multiple different technology stacks. Therefore, we need approaches
for minimizing the risks and for supporting platform evolution in such a sys-
tem. One approach might be to specifically include architecture information to
support such migrations as part of the system implementation.

Service Development and Architecture Management for an Enterprise SOA 201

6 Conclusion

The development of an enterprise SOA requires support for multiple stakehold-
ers with different concerns and strict development and government processes.
Architecture can be a central factor for supporting these stakeholders and pro-
cesses. We have shown how architecture can be used to facilitate quality control
activities within a SOA. But architecture might even be useful to address fur-
ther challenges we have identified like focused and targeted testing in a SoS
context, coordinating independently operating units through sharing of archi-
tectural knowledge, and facilitating platform migration in such a context. There
are also open questions in terms of how to deal with agility in such a strictly
controlled environment and how to provide architecture information in a central
and consistent way to support the various stakeholders involved.

References

1. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and architecture: Can they
coexist? IEEE Software 27(2), 16–22 (2010)

2. Buchgeher, G., Weinreich, R.: Continuous software architecture analysis. In:
Babar, M.A., Brown, A.W., Mistrik, I. (eds.) Agile Software Architecture. Aligning
Agile Processes and Software Architectures, pp. 161–188. Newnes (2013)

3. Clements, P.: Documenting software architectures: views and beyond. Addison-
Wesley, Upper Saddle (2010)

4. Hofmeister, C.: Architecting session report. In: WICSA 2005: Proceedings of the
5th Working IEEE/IFIP Conference on Software Architecture (WICSA 2005),
pp. 209–210. IEEE Computer Society, Washington, DC (2005)

5. Rozanski, N., Woods, E.: Software systems architecture: working with stakeholders
using viewpoints and perspectives., 2nd edn. Addison-Wesley, Upper Saddle River
(2011)

6. Weinreich, R., Buchgeher, G.: Towards supporting the software architecture life
cycle. Journal of Systems and Software 85(3), 546–561 (2012)

7. Weinreich, R., Buchgeher, G.: Automatic reference architecture conformance check-
ing for soa-based software systems. In: 11th Working IEEE/IFIP Conference on
Software Architecture (WICSA). IEEE Computer Society Press (2014)

8. Weinreich, R., Miesbauer, C., Buchgeher, G., Kriechbaum, T.: Extracting and fa-
cilitating architecture in service-oriented software systems. In: 2012 Joint 10th
IEEE/IFIP Working Conference on Software Architecture & 6th European Con-
ference on Software Architecture (WICSA-ECSA 2012). IEEE Computer Society
Press, Los Alamitos (2012)

9. Weinreich, R., Wiesauer, A., Kriechbaum, T.: A service lifecycle and information
model for service-oriented architectures. In: International Conference on Advanced
Service Computing (Service Computation 2009), pp. 346–352 (2009)

10. Westfall, L.: The certified software quality engineer handbook. ASQ Quality Press,
Milwaukee (2009)

Multi-tenant Architecture Comparison

Jaap Kabbedijk, Michiel Pors, Slinger Jansen, and Sjaak Brinkkemper

Department of Information and Computing Sciences
Utrecht University, The Netherlands

{J.Kabbedijk,M.Pors,Slinger.Jansen,S.Brinkkemper}@uu.nl

Abstract. Software architects struggle to choose an adequate architec-
tural style for multi-tenant software systems. Bad choices result in poor
performance, low scalability, limited flexibility, and obstruct software evo-
lution. We present a comparison of 12 Multi-Tenant Architecture (MTA)
patterns that supports architects in choosing the most suitable architec-
tural pattern, using 17 assessment criteria. Both patterns and criteria
were evaluated by domain experts. Five architecture assessment rules of
thumb are presented in the paper, aimed at making fast and efficient
design decisions. The comparison provides architects with an effective
method for selecting the applicable multi-tenant architecture pattern,
saving them effort, time, and mitigating the effects of making wrong
decisions.

Keywords: Multi-tenancy, architecture patterns, quality attributes.

1 Introduction

As a consequence of the current shift of on-premises software to the cloud [4],
software architects find themselves facing numerous new challenges related to
the adequacy of architectures for cloud software. A commonly used technique in
architecting for Software-as-a-Service (SaaS) is the use of the concept of multi-
tenancy, which is defined for this research as “a property of a system where
multiple varying customers and their end-users share the system’s services, ap-
plications, databases, or hardware resources, with the aim of lowering costs” [11].

Multi-tenancy can bring about many benefits. By serving the software service
from a centrally hosted location, clients are relieved from the responsibility of
purchasing and maintaining expensive in-house servers. The total cost of own-
ership decreases, giving the SaaS provider access to new potential customers
that previously could not afford the expenses [2]. In addition, the utilization
rate of hardware in a multi-tenant environment is higher than in a single-tenant
environment [12]. Furthermore, when multiple customers share application and
data instances, the total number of running instances will be lower than in a
single-tenant environment, catering the same number of customers. A low num-
ber of instances is beneficial for maintenance [9] and is beneficial for application
development [1].

However, multiple barriers withhold service providers frommassively switching
to multi-tenant environments. The challenges for multi-tenancy adoption include

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 202–209, 2014.
c© Springer International Publishing Switzerland 2014

Multi-tenant Architecture Comparison 203

performance [10], scalability, security [7], and the re-engineering of current software
applications [13]. Selecting the appropriate multi-tenant architecture is a complex
problem due to the existence of numerous alternative architectural patterns. Ben-
efits and barriers of multi-tenancy are identified and described in literature, but
the aspect of choosing an appropriate multi-tenant architecture based on software
vendors’ preferences has received little attention in literature. Finding the most
suitable multi-tenant architecture is crucial; it expresses a fundamental structural
organization schema for a provider’s software system.However, choosing the appro-
priate architecture is a wicked problem [5]. Accounting for all the challenges and
benefits complicates the decision process considerably [8].

This paper presents a comparisonof differentMulti-TenantArchitecture (MTA)
patterns, based on the themixedmethod research approach used within this study
(Section 2). The twelve different MTA patterns are shown in section 3, together
the MTA comparison matrix in section 4. We conclude with a discussion on the
comparison, together with threats to validity present and future work in section 5,
focussing on the importance of evaluating more effective methods in architectural
decision making.

2 Research Approach

The main research question of this research is formulated as follows:

RQ. How can a SaaS provider be supported in the decision process of choosing
an applicable multi-tenant architecture?

Three sub questions are answered in order to develop a decision model that
solves the main research question. The decision model consists of three funda-
mental elements, which need to be identified. The first element is a set of multi-
tenant architectures to choose from. Hence, the first sub question is defined as
follows:

SQ1. What distinctive layers in multi-tenant architectures can be defined? —
Using a Structured Literature Research (SLR), the distinctive layers in multi-
tenant architectures are identified in SQ1. For more details on the search query,
criteria, strategy and construction of trail searches, please see [11]. Instead of
searching directly for multi-tenant architectures and documenting them, a dif-
ferent approach is taken. First, different layers on which multi-tenancy can be
applied are identified. Then, generic multi-tenant architectures are identified,
based on these layers. The list of identified architectures is evaluated by domain
experts to ensure the list is complete and concise. The expert evaluation is not
only essential for checking the correctness of the list, but also to make sure the
identified architectures reflect relevant and implementable architectures.

SQ2. What are the relevant decision criteria for choosing an appropriate multi-
tenant architecture? — SQ2 aims at identifying the different decision criteria,
or architecturally significant requirements, related to multi-tenant architectures.

204 J. Kabbedijk et al.

The decision criteria are quantifiable attributes distinguishing between the dif-
ferent multi-tenant architectures. Similar to the identification of the MTAs, a
structured literature research is carried out to identify the list of criteria. The
identification process results in a large set of criteria, which is analyzed in order
to merge similar and delete unimportant attributes. Consequently, the complete-
ness and conciseness of the list is evaluated in an expert evaluation. Finally, the
multi-tenant architectures must be evaluated using the decision criteria, result-
ing in performance scores. The final sub question is stated as:

SQ3. How do the different multi-tenant architectures perform on the decision
criteria? — In SQ3, an evaluation is performed in which all MTAs are assessed by
domain experts on the identified decision characteristics. The evaluation serves
as a basis for MTA decision making.

3 Multi-tenant Architectures

The levels at which multi-tenancy can be applied, resulting from the literature
study, are shown in Table 1. All levels are listed together with the frequency of
occurrence (N) in literature. The different levels are depicted as layers in a stack
with decreasing granularity from top to bottom in Figure 1. The granularity
aspect translates to a sharing versus isolation continuum, where the lowest layer
has the lowest level of sharing with the highest level of isolation. For the highest
layer it is vice versa. When multi-tenancy is applied at a specific level, the levels
below that level are shared among tenants as well, but isolation occurs at the
levels above, i.e. for each tenant a dedicated instance is running. This applies to
the application and data layer independently.

Table 1. Multi-Tenancy levels identified in
literature

Multi-tenancy level N

Application Instance 16
Database Server 16
Database 15
Operating System 15
Hardware 14
Schema 14
Middleware 12
Virtual Machine 9
Application Server 4

Hardware
Virtual Machine

Operating System
Database Server

Database
Database Schema

Middleware
Application Server

Application Instance{

{D

A

Fig. 1. Multi-tenancy computing stack.
‘A’ and ‘D’ relatively indicate the Applica-
tion and Data related layer sets.

The final two levels of the stack in the data layer are the database and schema
level. These two levels were first described by Chong et al. [3]. When tenants are

Multi-tenant Architecture Comparison 205

consolidated in a single database, each tenant operates its own set of tables. In
schema-level multi-tenancy, isolation occurs at table row level.

The application related layer set (A) and the data related layer set (D) are
stacks commonly used in enterprise architecture in order to separate concerns [6].
Within this research the application layers and data layers are identified as sep-
arate layer sets, each containing different sub layers, as can be seen in Figure 1.

Consequently, three tenancy levels, indicated by a two letter abbreviation, are
identified in the Application related layer set (A). The different levels result from
identifying ascending levels of sharing among all layers on the set:

1. AD - A Dedicated Application server is running for each tenant, and there-
fore each tenant receives a dedicated application instance.

2. AS - A single Application Server is running for multiple tenants and each
tenant receives a dedicated application instance.

3. AI - A single application server is running for multiple tenants and a single
Application Instance is running for multiple tenants.

The first level corresponds to multi-tenancy enabled at the hardware or virtual
machine level. The second level is equal to application server multi-tenancy. The
third level is the same as multi-tenancy enabled at the application instance level.
In the Data related layer set (D) a service provider can select one the following
four tenancy levels:

1. DD - A Dedicated Database server is running for each tenant, and therefore
each tenant receives a dedicated database.

2. DS - A single Database Server is running for multiple tenants and each
tenant receives a dedicated database.

3. DB - A single DataBase server is running for multiple tenants, data from
multiple tenants is stored in a single database, but each tenant receives a
dedicated set of tables.

4. DC - A single database server is running for multiple tenants, data from
multiple tenants is stored in a single database and a single set of tables,
sharing the same Database sChema.

The first level is equal to multi-tenancy applied at the hardware or virtual
machine level. The second one corresponds to database server multi-tenancy.
The third alternative is the same as multi-tenancy applied to the database and
the final one is equal to database schema multi-tenancy.

From these options in both the application and data layer, the set of multi-
tenant architectures (MTAs) are constructed. Based on the tenancy levels within
the layers, the number of possible architectures is twelve. Because all MTAs
prescribe a specific tenancy level in set A and D, each architecture is defined as
a tuple:

MTA = 〈{AD,AS,AI} , {DD,DS,DB,DC}〉 (1)

206 J. Kabbedijk et al.

Each of the twelve MTAs can be seen as an architectural pattern in which
tenants (Tenant A, B and C in the example MTAs) communicate with a soft-
ware application consisting of an application layer and a data layer as shown in
Figure 2. For a complete overview of all MTAs please see [11].

Fig. 2. MTA〈AD,DS〉 - Dedicated Application Server & Shared Database Server

In Figure 2 the application layer is represented as a set of application servers
running one or multiple application instances. The data layer is displayed as a
set of database servers, running one or more databases, in which one or multiple
database schema’s exist. If one of these entities is shared among the tenants, its
color is gray. If its dedicated to only one tenant, its colored white. For the sake of
simplicity only three tenants are displayed in the architectures. A service provider
can offer his software application to more than three tenants, the patterns merely
presents possible arrangements of shared resources.

4 MTA Comparison Matrix

The MTA pattern comparison offers decision makers a method to make an in-
formed and balanced decision on the MTAs to consider implementing for their
software product. The MTA Comparison Matrix in Table 2 offers a high level of
detail, while also giving a quick overview of the strengths and weaknesses of all
patterns. Using the matrix, architects can get an overview of the consequences
of all different MTA patterns and assess the weight of the consequences for their
specific situation. Based on the consequences and the weights, architects can
select a subset of patterns to evaluate more thoroughly. To help in selecting a
subset for future analysis, this section presents some Rules of Thumb (RT) de-
rived from the comparison matrix and are helpful in giving decision makers a
quick overview of the most important consequences of an MTA assessment.

RT1. Focus on the database dimension — The effect of different MTAs
on decision criteria is largest on the database dimension. The MTA Comparison
Matrix shows the effect of database related decisions is higher than application
related decisions. Choosing between a set of MTAs, focus on database related
decisions first, and application related decisions after.

RT2. Sharing database tables enables serving of many tenants but
harms robustness — Selecting anMTA in which the database schema is shared

Multi-tenant Architecture Comparison 207

Table 2. Multi-Tenant Architecture Comparison Matrix (In color) - 1.0 indicates a
highly negative effect, by applying the pattern, on the decision criterion. 5.0 indicates
a highly positive effect.

Decision Criterion 〈A
D
,D

D
〉

〈A
S
,D

D
〉

〈A
I
,D

D
〉

〈A
D
,D

S
〉

〈A
S
,D

S
〉

〈A
I
,D

S
〉

〈A
D
,D

B
〉

〈A
S
,D

B
〉

〈A
I
,D

B
〉

〈A
D
,D

C
〉

〈A
S
,D

C
〉

〈A
I
,D

C
〉

D
is
t.

F
a
ct
o
r
(σ

2
)

Time Behavior 5.0 4.0 4.0 4.0 4.0 3.0 4.0 3.5 3.0 3.5 3.0 2.0 0.6

Resource Utilization 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 4.0 3.0 3.0 4.5 0.4

Throughput 4.5 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.2

Number of Tenants 1.0 3.0 3.0 3.0 3.5 4.0 3.0 4.0 4.0 3.0 4.0 5.0 1.0

Number of End-Users 2.5 3.5 3.0 3.0 3.5 3.5 3.0 3.5 4.0 3.5 4.0 4.0 0.2

Availability 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.1

Recoverability 5.0 4.5 4.5 4.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.1

Confidentiality 5.0 4.5 4.0 4.0 4.0 4.0 3.5 3.0 3.0 2.0 2.0 2.0 1.0

Integrity 4.5 4.0 3.0 4.0 3.5 3.0 3.5 3.0 3.0 3.0 2.5 2.5 0.4

Authenticity 4.5 3.5 3.0 3.5 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 0.2

Maintainability 1.5 2.5 3.0 2.0 3.0 3.5 2.5 4.0 4.0 3.0 4.0 5.0 1.0

Portability 5.0 5.0 5.0 4.5 4.5 4.5 4.0 4.0 4.0 3.0 3.0 3.0 0.6

Deployment Time 1.5 3.0 3.0 2.5 3.5 4.0 3.0 4.0 4.0 3.0 4.0 5.0 0.8

Variability 5.0 4.0 2.0 5.0 4.0 2.0 4.5 3.5 2.0 2.5 2.0 1.0 1.9

Diverse SLA 5.0 4.0 3.0 4.0 3.5 2.5 4.0 3.0 3.0 3.0 2.5 2.0 0.7

Software Complexity 5.0 4.5 4.0 4.5 4.5 3.5 4.0 4.0 3.0 2.5 2.5 2.0 0.9

Monitoring 1.0 2.5 3.0 2.5 3.0 3.0 3.0 4.0 4.0 3.0 4.0 5.0 1.0

(i.e. 〈A?, DC〉1) is beneficial if the software product serves many tenants and end-
users. The product is easy to maintain and monitor, and deployment time is mini-
mal. The recoverability of the system, on the other hand, is greatly compromised.
It is difficult to implement variability and tenant data may be at risk of unin-
tentional sharing. Based on this trade-off, SaaS providers should select 〈A?, DC〉
when designing a large scale software product with limited variability requirements.

RT3. Sharing application instances helps maintainability and perfor-
mance but harms variability — Choosing an MTA, decision makers can
decide to share the application instance among tenants (i.e. 〈AI,D?〉). Doing so
causes the maintainability and ease of monitoring to increase. Also the resource
utilization is better and the deployment time low. The variability of the soft-
ware product, however, is lower and more difficult to implement. Because of this,
SaaS should choose 〈AI,D?〉 when maintainability and performance efficiency
are important.

1 ‘?’ is used as a single character wild card.

208 J. Kabbedijk et al.

RT4. Ease of implementing variability differs greatly per MTA — Out
of all decision criteria, variability has the highest distinction factor. This means
the variability of a software product is for a significant part determined by the
implemented MTA. Choosing an MTA with a low tenancy level (i.e. 〈AD,DD〉,
variability is relatively easy to achieve. Selecting an MTA with a high tenancy
level however (i.e. 〈AI,DC〉), causes large problems implementing variability
over all tenant instances.

RT5. Dedicated servers improve performance and variability, but ham-
perscalability—Whenchoosing anMTAwithdedicated servers (i.e. 〈AD,DD〉)
the time behavior, recoverability, variability and confidentiality are expected to be
good, and software complexity low. The downside to this approach is the low scal-
ability of the system; when the number of tenants increases, dedicated servers be-
come hard tomaintain and hardware costs will rise. Choose 〈AD,DD〉 for software
products with a small user base that need to havehigh performance and a high level
of flexibility. Typically large enterprise applications fall in this category.

The rules of thumb listed in this section do not aim for completeness, but
rather give software architects and decision makers a collection of rules to guide
their architecture selection.

5 Discussion and Conclusion

The identification of the 12 different multi-tenant architecture patterns and the
comparison of the patterns, along with a list of assessment criteria and rules of
thumb, support SaaS providers in providing a concise and versatile method for
multi-tenant architecture assessment. In case specific assessment criteria orMTAs
are irrelevant to a decision maker for some reason, those elements can be easily
removed from the analysis, simplifying the selection of a suitable architecture. If
a SaaS provider feels important decision criteria are missing from the assessment
model, extra decision criteria can be added in the analysis. However, performance
values of the MTAs on these criteria can not be provided in this research.

We identify the following threats to validity to this study: 1. The small sam-
ple of 10 domain experts used may lead to biased results. A larger set would
potentially increase the generalizability of the results. 2. All experts are from
the same company. This threat is mitigated by the fact they are all employed
at different independent projects. 3. The comparison matrix is not evaluated in
practice in an extensive case study to test the applicability. By performing a
case study, the appropriateness of the matrix can be validated.

All are threats to external validity, as defined by Yin [14]. We suggest further
research to focus on demonstrating the analytic hierarchy process in conjunction
with the comparison matrix at several companies. Then, the ratings can be eval-
uated more thoroughly resulting in possible adjustments for these performance
values. Furthermore, the ratings provided in this research are based on subjective
judgements of ten experts. The accuracy of the ratings can be increased by sur-
veying a larger number of experts, causing a decrease of the standard deviation.

Multi-tenant Architecture Comparison 209

Acknowledgments. This research is funded by the NWO/ICT-Regie ‘Product
as a Service’ grant. Special thanks to Leen Blom and the experts willing to coop-
erate in our research. We would also like to thank Hans van Vliet for providing
valuable feedback.

References

1. Bezemer, C.P., Zaidman, A., Platzbeecker, B., Hurkmans, T., t Hart, A.: Enabling
multi-tenancy: An industrial experience report. In: Proc. of the Int. Conference on
Software Maintenance (ICSM), pp. 1–8. IEEE (2010)

2. Chong, F., Carraro, G.: Architecture strategies for catching the long tail. Tech.
rep., MSDN Library, Microsoft Corporation (2006)

3. Chong, F., Carraro, G., Wolter, R.: Multi-tenant data architecture. Tech. rep.,
MSDN Library, Microsoft Corporation (2006)

4. D’souza, A., Kabbedijk, J., Seo, D., Jansen, S., Brinkkemper, S.: Software-as-a-
service: Implications for business and technology in product software companies.
In: Proceedings of the Pacific Asia Conference on Information Systems (PACIS),
pp. 140–146 (2012)

5. Esfahani, N., Razavi, K., Malek, S.: Dealing with uncertainty in early software
architecture. In: Proc. of the Int. Symposium on the Foundations of Software En-
gineering, p. 21. ACM (2012)

6. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Pro-
fessional (2003)

7. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native multi-
tenancy application development and management. In: Proc. of the Int. Conference
on E-Commerce Technology (CEC), pp. 551–558. IEEE (2007)

8. Kazman, R., Asundi, J., Klein, M.: Quantifying the costs and benefits of architec-
tural decisions. In: Proc. of the Int. Conference on Software Engineering (ICSE),
pp. 297–306. IEEE Computer Society (2001)

9. Kwok, T., Nguyen, T., Lam, L.: A software as a service with multi-tenancy support
for an electronic contract management application. In: Proc. of the Int. Conference
on Services Computing (SCC), pp. 179–186 (2008)

10. Lin, H., Sun, K., Zhao, S., Han, Y.: Feedback-control-based performance regula-
tion for multi-tenant applications. In: Proc. of the Int. Conference on Parallel and
Distributed Systems (ICPADS), pp. 134–141. IEEE (2009)

11. Pors, M., Blom, L., Kabbedijk, J., Jansen, S.: Sharing is caring - a decision support
model for multi-tenant architectures. Tech. Rep. UU-CS-2013-015, Department of
Information and Computing Sciences, Utrecht University (2013)

12. Sääksjärvi, M., Lassila, A., Nordström, H.: Evaluating the software as a service
business model: From cpu time-sharing to online innovation sharing. In: Proc. of
the Int. Conference e-Society, Qawra, Malta, pp. 27–30 (2005)

13. Tsai, C.-H., Ruan, Y., Sahu, S., Shaikh, A., Shin, K.G.: Virtualization-based tech-
niques for enabling multi-tenant management tools. In: Clemm, A., Granville, L.Z.,
Stadler, R. (eds.) DSOM 2007. LNCS, vol. 4785, pp. 171–182. Springer, Heidelberg
(2007)

14. Yin, R.K.: Case study research: Design and methods, vol. 5. Sage (2009)

Integrating Service Matchers

into a Service Market Architecture�

Marie Christin Platenius, Steffen Becker, and Wilhelm Schäfer

Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Germany

{m.platenius,steffen.becker,wilhelm}@upb.de

Abstract. Service markets provide software components in the form
of services. In order to enable a service discovery that satisfies service
requesters and providers best, markets need automatic service matching:
approaches for comparing whether a provided service satisfies a service
request. Current markets, e.g., app markets, are limited to basic keyword-
based search although many better suitable matching approaches are
described in literature. However, necessary architectural decisions for
the integration of matchers have a huge impact on quality properties
like performance or security.

Architectural decisionswrt. servicematchershave rarely beendiscussed,
yet, and systematic approaches for their integration into service markets
are missing. In this paper, we present a systematic integration approach
including the definition of requirements and a discussion on architectural
tactics. As a benefit, the decision-making process of integrating service
matchers is supported and the overall market success can be improved.

Keywords: Service Matching, Service Markets, Software Architecture,
On-The-Fly Computing.

1 Introduction

In the last decades, development turned from monolithic software products to-
wards more flexible, component-based and service-oriented solutions. On service
markets, service requesters can obtain software components that are provided
in form of readily deployed services (Software-as-a-Service). Till date, there are
only a few markets for this kind of services. However, following the example of
markets for software products comparable to services, e.g., apps, we can expect
service markets to rapidly increase in the future, too [12].

The more crowded service markets get, the more important becomes the qual-
ity and efficiency of the markets’ service discovery mechanisms. While most es-
tablished markets today are still limited to a relatively simple, keyword-based
search, in academia, there is a mass of research for comprehensive service match-
ing approaches, i.e., the analysis of whether the specifications of provided ser-
vices satisfy a requested service [4,10] considering also structural, behavioral,

� This work was supported by the German Research Foundation (DFG) within the
Collaborative Research Center “On-The-Fly Computing” (CRC 901).

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 210–217, 2014.
c© Springer International Publishing Switzerland 2014

Integrating Service Matchers into a Service Market Architecture 211

and quality properties. However, integrating a service matcher component imple-
menting such a matching approach into an existing service market is complicated
as there are different architectural possibilities with different consequences on
market success. For example, integrating a service matcher into the requester’s
client provides the benefit of customizability but it may lead to a bottleneck
that can slow down the whole discovery because many matching processes have
to be performed sequentially. On the other hand, integrating a service matcher
into the provider’s system can lead to serious security problems allowing service
providers to manipulate matching results but, depending on further parameters,
a better performance may be attainable. Problems like these lead to the con-
clusion that a more systematic approach for the integration of service matchers
on the architectural level is needed. However, until now, in literature, architec-
tural decisions wrt. service matchers have rarely been discussed and there is
no systematic approach for their integration into a market. Also applying clas-
sic software architecture decision-making methods has not been analysed wrt.
service matchers and their influence on markets yet.

In this paper, we present a systematic approach for the integration of service
matchers into a service market. This includes the definition of requirements and a
discussion on architectural tactics based on these requirements. The contribution
of this paper is an approach that can be used to integrate matchers into existing
markets. Thereby, the general success of service markets, impacted by the use of
service matching approaches, can be improved. An extended version of this paper
including an application example has been published as technical report [9].

In the next section, we briefly summarize the foundations for this work. In
Section 3, we derive requirements which we use to discuss integration tactics in
Section 4. Section 5 deals with related work. The paper is concluded in Section 6.

2 Service Markets and Matching

In this paper, we use the following definition of a service: A service is a software
component that is deployed and running on a service provider’s platform. One
example is Google Maps. Google Maps is a service offered by Google and it
provides the functionality of querying and showing a map of some location. A
service market allows trading, i.e., buying and selling, such services.

Although paradigms like Service-Oriented Architectures and Service-Oriented
Computing have been investigated for several years now, there are not many
established markets for services in the sense of readily deployed software com-
ponents till date. In the area of web services, there has been the service registry
standard UDDI but it has been officially discontinued years ago. However, along
with emerging cloud providers, some more platforms to obtain web services for
usage in the cloud appeared, e.g., Amazon Web Services [1]. Furthermore, there
are markets for software products similar to services, like software components
in the form of plug-ins (e.g., Eclipse Marketplace [14]) or apps. Schlauderer and
Overhage analysed StrikeIron [13], Salesforce’s AppExchange [11], and Google’s
Apps Marketplace (now Google Play [5]) as leading markets in 2010 [12].

212 M.C. Platenius, S. Becker, and W. Schäfer

In service markets, there are different roles, e.g., service requesters and service
providers. Service requesters are interested in buying a service that fits to their
requirements. Providers offer and sell services. Furthermore, there can be trusted
third parties, e.g., a market operator, who provides and manages the market [12].
An actor can play several roles, e.g., intermediaries act as both requester and
provider at the same time.

Service providers make their service offers available to requesters by publish-
ing service specifications that help to discover their services. In most of today’s
markets, service specifications are either informal, describing a service’s func-
tional and non-functional properties using plain text mostly, or simple technical
descriptions, like the Web Service Description Language (WSDL) [3], limited to
the services’ signatures. In academia, there are already a lot of approaches for
more comprehensive but also machine-readable service specifications including
expressive formalisms like protocols, ontological semantics, pre- and postcondi-
tions, and many more [8]. Such comprehensive specifications enable a service
discovery taking into account technical, behavioral, as well as quality informa-
tion, based on service matching. Service matching is the process of comparing
the specification of a requested service, i.e., a request, to the specification of
a provided service, in order to determine whether the provided service satis-
fies the request. It can be part of many different use cases, e.g., automated
service composition, or used by service end-users. As an output, a matcher de-
livers a matching result which denotes how well a provided service specification
matches a request. For example, a very simple specification of Google Maps
could be getMap(Location):Map. Following the principles of simple signature
matching approaches, this provided specification would achieve a good matching
result with a request like searchMap(City):Map with City being a subtype of
Location. There are many automated and much more complex matching ap-
proaches in literature. For a classification and an overview of recent surveys,
refer to our earlier work [10].

3 Requirements for Matcher Integration

Figure 1 depicts an overview of the requirements collected for the integration
of matchers into service markets. A dependency from A to B means that the
fulfilment of B supports the fulfilment of A. Neither the requirements, nor the
dependencies are meant to be a complete collection as we focussed on the ones
that are most important in our context.

Due to page limitations, in this paper, we focus only on some of the require-
ments depicted in Fig. 1. For the complete list, refer to our technical report [9].
There, we also give an overview of the process and methodology we used to elicit
the requirements. The requirements we selected are described in the following.

(R5) Performance: Performance refers to the time to perform one matching
process, i.e., the time to determine how much a particular service satisfies
the request. It needs to be high in order to gain a good efficiency of the
overall discovery process (R4).

Integrating Service Matchers into a Service Market Architecture 213

Technical RequirementsMarket Requirements

(R1) Market
Optimality

(R2) Market
Fairness

(R10)
Comparability

(R7) Accuracy

(R5)
Performance

(R6)
Elasticity

Goal:
Market Success

(R4) Efficiency

(R12)
Availability

(R13) Security

(R11)
Consistency

(R3) No
Manipulability

Legend:

dependency

trade off

(R9)
Configurability

(R8) Provider
Feedback

(R14) No
Market Barrier

Fig. 1. Overview of the requirements for integrating a matcher into a market

(R6) Elasticity: Even if the performance of one matching process is good, the
discovery’s efficiency is still problematic when a huge amount of matching
processes is required. Thus, similar to cloud computing systems, in service
markets, the matching system needs to be elastic [6] in a way that it adapts
to the amount of required matching processes.

(R10) Comparability: If different services are matched to the same request,
services with the same matching result should satisfy the request equally well.
Similarly, services with better matching results should satisfy the requester
more than services with lower matching results. This has to hold, even and
especially, if those services are offered by different providers.

(R11) Consistency: Matching results are only comparable if they are consis-
tent. Dynamic markets, where providers can appear and disappear or change
their offers at any time, can lead to situations in which several versions of
a service or a service decription are available. It has to be avoided that this
dynamics leads to inconsistent matching results between different providers
so that comparability can be ensured.

(R13) Security: Matching results have to be secure so that they cannot be
manipulated by any service provider. For example, if aspects like reputation
of a service are matched, providers have to be prevented from cheating in a
way that they claim to have a better reputation than they actually have.

Figure 1 shows trade-offs between requirements by dotted arrows annotated
with a flash symbol. Because of such conflicting requirements, there may not
be one general best solution for all service markets. For a description of these
trade-offs, please refer to our technical report [9]

214 M.C. Platenius, S. Becker, and W. Schäfer

Fig. 2. Architectural alternatives for matcher integration

4 Integrating a Matcher Based on Architectural Tactics

When integrating the matcher into a market, there are different alternatives,
as depicted in Fig. 2. In Alternative A, the matcher is integrated into the re-
quester’s system and, therefore, deployed on the requester’s hardware. Here,
the requester’s system accesses the discovery system to get the specifications of
the provided services and forwards them to the matcher. Alternative B lets the
providers deploy the matcher on their own resources. In this case, the discov-
ery system forwards the request to the providers, where each provider matches
its service specifications against the request. In Alternative C, the matcher is
part of the discovery system and deployed on the market operator’s resources.
Instead of the market operator, this role can also be played by another trusted
third-party which is part of the market. The specifications of provided services
could still be located at the providers, or, alternatively, stored on the market
operator’s resources, too. As we can see, the question of where to integrate the
matcher is related to the question of who deploys the matcher.

Each of the three alternatives has different benefits and drawbacks and, in par-
ticular, a different impact on the fulfilment of our requirements. Table 1 lists these
benefits and drawbacks with respect to the requirements collected in Section 3. A
minus in the table means that it is difficult to satisfy the corresponding require-
ment, whereas a plus means that it is easier to satisfy it. Similarly to the architec-
tural tactics described by Bachmann et al. [2], the table depends on bound and
free parameters: Bound parameters are already fixed because their assignment
is the same for all service markets. Free parameters (highlighted in italics) need

Integrating Service Matchers into a Service Market Architecture 215

Table 1. Where to integrate the matcher?

Alternative A: Alternative B: Alternative C: w
Requester Provider Market Operator

R5
- (no caching) + +

?
depends on kind of requesters/providers

R6 depends on number of providers and requests at a time ?

R10 + - (conflict with R9 and R13) - (conflict with R9) ?

R11 - (not insurable) + - (not insurable) ?

R13 + - (high risk for manipulation) + ?

further assumptions to be assigned, i.e., the evaluation can have a different result
depending on the properties of a concrete service market. Furthermore, there is a
column about weights in order to allow influencing the overall evaluation by as-
signing special priorities to some requirements.Weights can be positive (e.g., +1),
if a requirement is particularly important, or negative (e.g., -1), if it is less impor-
tant compared to the other ones. Similar to free parameters, weights depend on
properties of concrete service markets, too. Thus, they are not yet assigned in this
general version of the table.

The table only covers the requirements selected in Sec. 3. For the complete
table, refer to our technical report [9]. In the following, we describe the evaluation
shown in Table 1.

(R5) Performance Regarding the performance, Alternative A seems not to be
a good solution. Matchers located at the service provider or a market opera-
tor provide the possibility to cache matching results and benefit from it when
similar requests are received. This possibility is not available for matchers
deployed at the requester’s because it would only pay off, if one requester
repeatedly states similar requests, which is not the case if the discovery
scenario works well and the requester already gets a satisfying result after
her first request. Furthermore, if the matcher runs on hardware with high
computation power, e.g., compute centers, this could speed up the matching
process, too. In contrast, if the matcher runs on a mobile device, a matching
process takes longer. Which role can provide the more appropriate resources
depends (amongst others) on the domain. For example, requesters in some
technical domain could be assumed to have better hardware available than
the typical hotel booking service user, whereas providers can be expected to
have access to more computation power than the requesters in both cases.

(R6) Elasticity For Alternative A, the amount of matchers increases with each
new requester and, thereby, also with the amount of stated requests. This is
good if there are many requests but only few service offers. For Alternative B,
the amount increases with each new provider, and, thereby, also with the
amount of service offers. If we have a market with many providers but only
few requesters, Alternative B is preferable. Alternative C suffers from the
fact that the market operator has to provide or pay a cloud infrastructure
in order to provide an elastic matching architecture.

216 M.C. Platenius, S. Becker, and W. Schäfer

(R10) Comparability Comparability is in conflict with configurability. This
especially holds for Alternative B and C: if providers use different matching
configurations, the matching results for services of different providers are
not comparable for the requester. However, if the requester has the matcher
and the possibility to configure it, this is no problem as all services from
different providers are matched with the same configuration. Comparability
among different requests is not needed as matching on service markets is one-
sided, i.e., we search an optimal allocation of services to requests but not
the other way around because software services are immaterial and (almost)
not capacity-constrained. In addition, comparability is also influenced by
security as, in the case of manipulation of matching results, comparability
cannot be ensured. This is a disadvantage of Alternative B because it is most
susceptible for manipulation (see R13). All in all, for R10, Alternative A is
the best solution.

(R11) Consistency Regarding consistency, Alternative A as well as Alterna-
tive C both have the disadvantage that it is not necessarily ensured that they
match the specification describing the provider’s current offer. Compared to
this, the provider has a better chance to ensure consistency because the
provider manages the specifications herself.

(R13) Security Security becomes a problem, in particular, if the provider de-
ploys the matcher. In this case, it is hard to keep the provider from manip-
ulating matching results. In contrast, the requester or the (trusted) market
provider can be assumed not to be interested in faking the results.

As we can see, there is no obvious answer to the question of where to integrate
the matcher. Each alternative has its advantages and disadvantages and some
aspects depend on the concrete environment, e.g., the market’s size. For this
reason, the table needs to be adapted to concrete application scenarios. For an
example of such an adaption refer to our technical report [9].

5 Related Work

Even though there is a lot of research for the single areas of software architec-
tures, service matchers, and service market mechanisms, the integration of ser-
vice matchers into a market has not been addressed on the architectural level,
yet. For example, Klusch [7] as well as Dong et al. [4] give overviews of semantic
service discovery architectures and classifies them into centralized and decentral-
ized architectures. However, the alternatives are not discussed with respect to
requirements for a matcher’s integration nor taking into account market mech-
anisms. Similarly, the architecture description of web services by the W3C [15]
distinguishes between a centralized server-sided scenario (similar to our Alterna-
tive C) and an index or peer-to-peer client-sided matching scenario (Alternative
A) However, only the requirements wrt. the dynamics and the scalability of the
environment are taken into account.

Integrating Service Matchers into a Service Market Architecture 217

6 Conclusions

In this paper, we presented a systematic approach for integrating a service
matcher into a service market. This approach includes the definition of require-
ments and a discussion on architectural tactics in order to enable a more in-
formed decision-making regarding architectural alternatives. Both practitioners
and researchers benefit from this paper. In practice, our results can be used to
integrate service matchers into existing or emerging service markets and thereby
supporting both requesters and providers by achieving their goals. In research,
this paper also represents a first attempt to bridge the gap between markets and
the mass of existing matching approaches in literature.

References

1. Amazon Web Services. Website, aws.amazon.com (last access: June 2014)
2. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics: A step toward

methodical architectural design. Technical report, Software Engineering Institute,
Carnegie Mellon University, CMU/SEI-2003-TR-004 (2003)

3. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services Description
Language Version 2.0 Part 1: Core Language. Technical report (2007)

4. Dong, H., Hussain, F.K., Chang, E.: Semantic Web Service matchmakers: state of
the art and challenges. In: Concurrency and Computation: Practice and Experi-
ence, vol. 25, pp. 961–988. Wiley Online Library (2012)

5. Google. Google Play - Website, play.google.com/ (last access: June 2014)
6. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity: What it is, and What it is Not.

In: 10th Int. Conf. on Autonomic Computing. USENIX (2013)
7. Klusch, M.: Semantic web service coordination. In: CASCOM: Intelligent Service

Coordination in the Semantic Web, pp. 59–104. Springer (2008)
8. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: Service description: A survey of

the general nature of services. Distributed and Parallel Databases Journal (2002)
9. Platenius, M.C., Becker, S., Schäfer, W.: Integrating Service Matchers into a Ser-

vice Market Architecture. Technical Report tr-ri-14-340, Heinz Nixdorf Institute
(2014)

10. Platenius, M.C., von Detten, M., Becker, S., Schäfer, W., Engels, G.: A Survey of
Fuzzy Service Matching Approaches in the Context of On-The-Fly Computing. In:
16th Int. Symposium on Component-based Software Engineering. ACM (2013)

11. Salesforce.com, Inc., Salesforce AppExchange, appexchange.salesforce.com (last
access: June 2014)

12. Schlauderer, S., Overhage, S.: How Perfect are Markets for Software Services? An
Economic Perspective on Market Deficiencies and Desirable Market Features. In:
Proc. of the 19th European Conf. on Information Systems (2011)

13. StrikeIron. StrikeIron - Website, http://www.strikeiron.com (last access: June
2014)

14. The Eclipse Foundation. Eclipse Marketplace, marketplace.eclipse.org (last
access: June 2014)

15. W3C. Web services architecture, w3.org/TR/ws-arch (last access: June 2014)

aws.amazon.com
play.google.com/
appexchange.salesforce.com
http://www.strikeiron.com
 marketplace.eclipse.org
w3.org/TR/ws-arch

Towards a Process to Design Architectures

of Service-Oriented Robotic Systems

Lucas Bueno Ruas Oliveira1,2, Elena Leroux2, Katia Romero Felizardo1,
Flavio Oquendo2, and Elisa Yumi Nakagawa1

1 Dept. of Computer Systems, University of São Paulo - USP, São Carlos, SP, Brazil
2 IRISA Research Institute, University of South Brittany, Vannes, France

{buenolro,katiarf,elisa}@icmc.usp.br,
{elena.leroux,flavio.oquendo}@irisa.fr

Abstract. Robots have supported several areas of society, making daily
tasks easier and executing dangerous, complex activities. The increasing
demand and complexity of these robots have challenged the design of
robotic systems, i.e., the software systems that manage robots. In this
context, Service-Oriented Architecture (SOA) has been pointed out as
a promising architectural style to structure such systems, arising the
Service-Oriented Robotic Systems (SORS). However, most of software
architectures of SORS are still developed in an ad hoc manner. This lack
of maturity reduces the potential of SOA in providing important quality
attributes, such as reusability and maintainability, therefore affecting
the overall quality of these systems. This paper presents ArchSORS, a
systematic process that supports the design of software architectures for
SORS. Experiment results have pointed out that ArchSORS can produce
architectures with more quality, thus contributing to robotics and the
areas of society that have gained with the use of robots.

1 Introduction

Over the last years, robots have increasingly supported different areas of society.
Robots are no longer used only inside factories, but inside houses [1] and on the
streets [2]. Due to this high demand, robotic systems used to control robots are
becoming larger and more complex, creating a great challenge to the develop-
ment of this special type of software system. Researchers have been investigating
different architectural styles focused on providing more quality for robotic sys-
tems. Robotic systems development has evolved from procedural paradigm to
object-orientation, and thence to component-based architecture [3]. More re-
cently, Service-Oriented Architecture (SOA) [4] become focus of attention as a
promising architectural style to develop more reusable, flexible robotic systems.

Using SOA, complex robotic systems can be developed by assembling func-
tionalities provided by independent, distributed software modules called services.
Designing robotic systems using SOA allows integration of heterogeneous hard-
ware devices and reuse of complex algorithms, since services are provided through
auto-descriptive standard interfaces. Due to its relevance, several works report-
ing the use of SOA in robotics are available in literature, such as those that we

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 218–225, 2014.
c© Springer International Publishing Switzerland 2014

Towards a Process to Design Architectures of SORS 219

identified in our previous work [5]. Besides that, development environments spe-
cially focused on the design of Service-Oriented Robotic Systems (SORS) can
be also found [6,7]. Nevertheless, few attention has been paid to the develop-
ment of SORS software architectures. Currently, most of software architectures
are designed in an ad hoc manner, without a systematic approach of develop-
ment, hampering the construction, maintenance, and reuse of robotic systems.
The consideration of quality attributes since the software architecture design is
a critical concern, as these systems are often used in safety-critical contexts.

The main objective of this paper is to present ArchSORS (Architectural De-
sign of Service-Oriented Robotic System), a process that aims at filling the gap
between the systematic development of service-oriented systems and the cur-
rent ad hoc approaches used to develop SORS. The ArchSORS process provides
prescriptive guidance from the system specification to architecture evaluation.
Results from our experiment indicate that ArchSORS has positive impact in
modularity, cohesion, and coupling of SORS software architectures, thereby im-
proving important quality attributes such as reusability and maintainability.

The remainder of this paper is organized as follows. Section 2 presents Arch-
SORS and describes its phases. Section 3 discusses on ArchSORS evaluation. In
Section 4, we present our conclusions and perspectives of future work.

2 Defining ArchSORS Process

ArchSORS is a process that promotes the systematic development of SORS
software architectures. It explicitly considers the identification and assessment
of constraints and quality attributes that are essential to robotic systems. The
process also encompasses the main phases proposed by the consolidated SOMA
(Service-Oriented Modeling and Architecture) method [8]. ArchSORS was estab-
lished based on SORS software architectures available in the literature [5], a set
of reference architectures that encompass knowledge of how to structure robotic
systems [9], and our expertise on critical embedded systems. Fig. 1 outlines the
overall structure of the ArchSORS process.

ArchSORS process is divided into five phases that can be applied in an itera-
tive, incremental manner. The phases are divided into a set of activities, which
are detailed into a comprehensive set of tasks. However, for sake of space de-
tailed information and diagrams are only available in the SPEM (Software &
Systems Process Engineering Metamodel Specification) version of the process1.
Since ArchSORS is an incremental process, SORS software architectures can be
successively refined from reference architectures into concrete architectures. In
short, to establish a software architecture using ArchSORS, it is first necessary
to characterize the robotic application and to produce the document of require-
ments (Step RSA-1). Following, in Step RSA-2, requirements are used to model
the application flow and to identify capabilities that the robotic system should
provide. In Step RSA-3, the functional architecture is described and represented
in terms of the services used to provide the identified capabilities. In Step RSA-4,

1 http://goo.gl/ykQ2d9

http://goo.gl/ykQ2d9

220 L.B.R. Oliveira et al.

Fig. 1. ArchSORS: a process for developing SORS software architectures

services of the functional architecture are further described and decisions about
hardware infrastructures are made, resulting in the technical architecture of the
SORS. Finally, in Step RSA-5, the SORS software architecture is evaluated using
architectural analysis methods. After that, if necessary, the evaluated architec-
ture is refined through new iterations on the design process. Software architects
(functional and technical) and robotics experts are involved and conduct the
phases of the process. These phases are detailed as follows.

2.1 Phase RSA-1: Robotic Application Characterization

In Phase RSA-1, the application is described in terms of goals, activities, and
characteristics about the robotic system and its operating environment. Addi-
tionally, applicable policies, rules, and constraints related to the robotic system
are identified. As a result, the document of requirements of the robotic system
is produced. The activities performed during this phase are detailed as follows.

RSA-A 1.1 – Initiate Project Activities: The main goals and characteris-
tics of the robotic application are defined, described, and documented. Robotics
specialists should perform brainstorm meetings to identify: (i) goals related to
the robotic application; (ii) activities that the robotic system should perform to
achieve these goals; (iii) the type of robotic system that will be developed, i.e.,
if the application involves a single robot, a team of robots, or a swarm; (iv) the
type of robot (or types of robots) that will be used, the characteristics related
to its mobility (if it will be mobile or non-mobile), the way it will move through
the environment, its size, and so forth; and (v) the environment where the robot
will be used (indoor, outdoor or both). At this point, no assumption is made on
which hardware devices will be used in the robotic system.

RSA-A 1.2 – Identify Policies and Rules: Robotic applications must
be conform with applicable policies and rules to be commercialized and used.
A policy, for instance, can be defined by a law that regulates the operation
of a given type of robotic system. Rules are restrictions on the robotic system
design and operation that must be respected to comply with a given policy.

Towards a Process to Design Architectures of SORS 221

For instance, to comply with a given law, the robotic system should enforce safety
by using redundant, independent sensors to measure distance from objects.

RSA-A 1.3 – Identify Constraints: Based on the decisions made in Ac-
tivity RSA-A 1.1, constraints related to the robotic application are identified.
These constraints are associate to both hardware requirements and real-time
operation. Infrastructure requirements, such as battery consumption, processing
power, network availability, and robot autonomy, are considered in the identifica-
tion of hardware constraints. Use scenarios are carefully identified and described
in the definition of real-time constraints. Afterwards, constraints associated to
these scenarios are detected and prioritized. As robotic systems are often used
in safe-critical domains, real-time constraints are very important and they must
guide the rationale behind service identification and composition.

RSA-A 1.4 – Identify Standards: Robotic systems may need to be certifi-
cated to ensure the compliance with policies imposed to its operation. To obtain
certification, development standards are applied both to robotic system and its
development process. Thus, at this point, all standards related to the SORS are
identified. Different standards can be applied to robotic systems and it depends
on its own characteristics and on the environment where it will be used.

RSA-A 1.5 – Define Functional Requirements: Based on the outcomes
of the previous activities, information related to the robotic system are obtained,
resulting in a set of functional requirements. These requirements represent the
functionalities that the SORS should provide to perform the robotic application.

RSA-A 1.6 – Define Quality Requirements: In this activity, quality
requirements of the SORS are identified considering: (i) application goals; (ii)
policies and rules; (iii) constraints; and (iv) standards associated to policies and
rules. Afterwards, brainstorm meetings are carried out to prioritize the most im-
portant quality requirements. In a previous study [10], we have already identified
a set of quality requirements considered as the most important to embedded sys-
tems. These requirements can be used as a starting point for this activity.

RSA-A 1.7 – Document SORS Requirements: Based on the results of
the two previous activities, the document of the SORS requirements is created.
This document will guide the description of the robotic application flow and sup-
port the identification of robotic capabilities. The document should be reviewed
by all stakeholders to ensure that it is correct, complete, and in accordance with
the robotic application goals and characteristics.

2.2 Phase RSA-2: Robotic Capabilities Identification

In Phase RSA-2, the robotic application is described in terms of functionalities
necessary to achieve robotic system goals, the flow between these functionalities,
and capabilities that are responsible for providing them. Thus, the application
flow is modeled and then decomposed into different robotic capabilities. A capa-
bility is a service candidate that may either be already available or need to be
developed. Descriptions of the activities of this phase are presented as follows.

RSA-A 2.1 – Model the Robotic Application Flow: During RSA-A 2.1,
the flow of activities of the robotic application is described using description

222 L.B.R. Oliveira et al.

languages such as Unified Modeling Language (UML)2 activity diagrams and
Business Process Model and Notation (BPMN)3. The robotic application is de-
scribed in terms of: (i) functionalities performed in parallel; (ii) functionalities
performed in sequence, i.e., that depend on the result of the execution of previous
functionalities; and (iii) functionalities that provide results based on the combi-
nation of results from other functionalities. Thereafter, the model is reviewed to
check whether it fulfills all functional and quality requirements.

RSA-A 2.2 – Decompose the Robotic Application: Based on the de-
fined model, the robotic application is decomposed into capabilities, which pro-
vide a set of functionalities of the SORS. To support this activity, we established
a taxonomy that lists a comprehensive set of service candidates for SORS [11].

RSA-A 2.3 – Identify Available Capabilities: Robotics experts iden-
tify capabilities that are already available and can be reused. These capabilities
are identified from different sources, such as: (i) robotic systems developed in
previous projects; (ii) repositories of services for SORS; (iii) development envi-
ronments, such as ROS and MRSD, which provide a set of native services for
SORS; (iv) companies that provide device drivers and other capabilities related
to their products; and (v) general purpose repositories, such as service brokers.
To support this activity, we proposed a service repository4 that automates the
aforementioned taxonomy to enable the discovery of services for SORS.

RSA-A 2.4 – Identify Assets that Can Be Wrapped: Previous projects
of non-service-oriented robotic systems are investigated to identify assets that
can be provided as capabilities. These assets are packages, software modules,
legacy applications, and algorithms (such as for localization and mapping) that
can be wrapped as capabilities and then provided as services for the robotic
system.

RSA-A 2.5 – Identify Assets that Can Be Refactored: Assets that
are useful for the robotic system but can not be provided directly as robotic
capabilities should also be identified. These assets have to be refactored in order
to be reused as capabilities of the robotic system.

RSA-A 2.6 – Rationalize Capabilities: Services of the SORS are obtained
based on the analysis of capabilities. Discussions are made to decide which ca-
pabilities will be exposed as services and which capabilities will be provided
as components that support these services. As a result, a document is created
to report: (i) capabilities related to the robotic application; (ii) functionalities
provided by each capability; (iii) architectural elements used to provide each
capability; and (iv) the design rationale related to these decisions.

2.3 Phase RSA-3: Robotic Architecture Modeling

During Phase RSA-3, services previously identified are described, modeled, and
composed, resulting in the functional software architecture of the SORS.

2 http://www.uml.org/
3 http://www.bpmn.org/
4 http://www.labes.icmc.usp.br:8595/RegistroServicoWeb/index.jsp

http://www.uml.org/
http://www.bpmn.org/
http://www.labes.icmc.usp.br:8595/RegistroServicoWeb/index.jsp

Towards a Process to Design Architectures of SORS 223

Therefore, interfaces, contracts, quality characteristics, and relationships of all
robotics services should be created. The following activities are carried out in
this phase.

RSA-A 3.1 – Specify Robotics Services: The document containing in-
formation about the robotic capabilities is updated and a detailed description of
the roles played by each service is created. This document links the requirements
of the robotic system to the requirements provided by each service.

RSA-A 3.2 – Model Robotics Services: Based on the updated capabili-
ties document, services of the robotic system are modeled. As mentioned before,
different types of ADL can be used to describe interfaces, contracts, and oper-
ations of the services in the architecture. In SORS, contracts, associated to the
interfaces, usually enforce three types of interaction: (i) synchronous Remote
Procedure Call (RPC); (ii) asynchronous RPC; and (iii) service subscription,
which is a long-term interaction in which the service client implements a han-
dler method to receive notifications from a service provider.

RSA-A 3.3 – Define Service Constraints: To ensure the compliance with
the overall robotic system constraints, each service must guarantee its individual
set of constraints. The clear description of constraints at architectural level is
crucial to the determination of which participant (i.e., concrete service) will be
able to provide a given service. Thus, the capabilities document is updated with
information about the constraints of each robotics service of the architecture.

RSA-A 3.4 – Describe Quality Attributes: Based on the quality require-
ments of the robotic system and the services constraints, quality requirements
related to each robotics service (i.e., QoS requirements) are identified and the
capabilities document is again update. QoS requirements represent information
about how functionalities of robotics services should be provided.

RSA-A 3.5 – Define Services Composition: The composition of robotics
services is defined and the relationship among service partners are detailed.
These partnerships are designed considering obligations of consumers and
providers defined in the service contracts. In addition, complementary informa-
tion about the interactions are described, such as service partners that should
be hosted in the same infrastructure. These constraints are used to support de-
cisions made during the design of the functional architecture described in the
next phase.

RSA-A 3.6 – Specify Robotics Components: Robotics services are of-
ten abstractions of functionalities provided by the coordination of one or more
components, i.e., capabilities that were not directly exposed as services. Thus,
relationships among services and components of the SORS should be described
and modeled using different representations, such as UML component diagrams.

RSA-A 3.7 – Document SORS Functional Architecture: The outcome
of Phase RSA-3 is a document describing the SORS functional architecture. This
document is produced by updating the capabilities document with all developed
models, the design rationale applied in the modeling, and all useful information
regarding the functional aspects of the robotic system.

224 L.B.R. Oliveira et al.

2.4 Phase RSA-4: Robotic Architecture Detailing

In this Phase RSA-4, the functional architecture is detailed in terms of modules
of software and hardware devices used to develop services of the robotic system,
resulting in the technical architecture of the SORS. Descriptions of the activities
conducted in this phase are presented as follows.

RSA-A 4.1 – Design of New Components: Services that are not available
for reuse and need to be developed are further detailed and represented. Different
diagrams can be designed, illustrating both design and runtime aspects of the
services. The representation of the internal structure of services may be done by
using ordinary object-oriented (OO) modeling and different design patterns.

RSA-A 4.2 – Design of Refactored Components: Services that provide
capabilities from existing robotics assets are designed. To perform the refactor-
ing, design documentation of the robotics assets is analyzed and new diagrams
representing the robotics components are created.

RSA-A 4.3 – Rationalize Technical Decisions: Technical architects and
robotics experts decide about hardware infrastructure and implementation stra-
tegies that will be used during the robotics services concretization. In addition,
decisions are made on how the services of the robotic system will be deployed. As
a result, a document reporting the rationale on service concretization is created.

RSA-A 4.4 – Detail SORS Concrete Architecture: Finally, the overall
structure of the functional architecture is described in a document containing
all information related to its design. Textual descriptions of the diagrams and
design decisions are documented. Additional views of the architecture, such as
deployment view, can also be created.

2.5 Phase RSA-5: Robotic Architecture Evaluation

In this phase, the SORS technical software architecture is evaluated and the
compliance with requirements and systems constraints is assessed. Different eval-
uation methods can be used to perform this evaluation, such as inspection check
lists and scenario-based methods. Moreover, the architectural description itself
should evaluated to identify and eliminate defects related to omission, ambiguity,
inconsistency, as well as strange and incorrect information. As a result, a more
reliable software architecture version of the robotic architecture is achieved.

3 Experimental Evaluation

In order to evaluate the ArchSORS process, we have performed an experiment
with 30 students of a preparatory course for the French national robotics com-
petition5. These students were divided into two groups: (i) one to design the
software architecture of a SORS using ArchSORS and (ii) other to design it in
an ad hoc manner. The software architectures were evaluated using metrics of

5 www.robafis.fr

www.robafis.fr

Towards a Process to Design Architectures of SORS 225

coupling, cohesion, and modularity, since these metrics directly impact on qual-
ity attributes such as modifiability, reusability, and buildability. Results pointed
out that students using ArchSORS designed software architectures that score
better in these three metrics and, therefore, tend to present higher quality.

4 Conclusion and Future Work

SOA has been increasingly adopted for the development of SORS, getting ad-
vantages of SOA and resulting in more flexible robotic systems. The main con-
tribution of this paper is to put forward ArchSORS, a process that intends to
systematize the development of SORS software architectures and, as a conse-
quence, to improve the quality of such systems. Experiment results point out
that ArchSORS can positively impact on the quality of SORS. As future work
we plan to perform a case study on the development of SORS using ArchSORS.

Acknowledgments. This work is supported by Brazilian funding agencies FAPESP
(Grant N.: 2011/06022-0) and CNPq (Grant N.: 142099/2011-2 and 474720/2011-0), as
well as the National Institute of Science and Technology on Critical Embedded Systems
(INCT-SEC) (Grant N.: 573963/2008-8 and 2008/57870-9).

References

1. iRobots: iRobot Roomba Vacuum Cleaning Robot. Online (2014)
http://www.irobot.com/us/learn/home/roomba.aspx (accessed in February
15, 2014)

2. Google: Google Driverless Car. Online (2014), http://goo.gl/NZ7Y2B
3. Brugali, D., Scandurra, P.: Component-based robotic engineering (Part I). IEEE

Robotics Automation Magazine 16(4), 84–96 (2009)
4. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-

puting: a research roadmap. International Journal of Cooperative Information Sys-
tems 17(2), 223–255 (2008)

5. Oliveira, L.B.R., Osorio, F.S., Nakagawa, E.Y.: An investigation into the devel-
opment of service-oriented robotic systems. In: SAC 2013, Coimbra, Portugal,
pp. 223–226 (2013)

6. Straszheim, T., Gerkey, B., Cousins, S.: The ROS build system. IEEE Robotics &
Automation Magazine 18(2), 18–19 (2011)

7. Jackson, J.: Microsoft Robotics Studio: A technical introduction. IEEE Robotics
& Automation Magazine 14(4), 82–87 (2007)

8. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.:
SOMA: A method for developing service-oriented solutions. IBM Systems Jour-
nal 47(3), 377–396 (2008)

9. Feitosa, D., Nakagawa, E.Y.: An investigation into reference architectures for mo-
bile robotic systems. In: ICSEA 2012, Lisbon, Portugal, pp. 465–471 (2012)

10. Oliveira, L.B.R., Guessi, M., Feitosa, D., Manteuffel, C., Galster, M., Oquendo,
F., Nakagawa, E.Y.: An investigation on quality models and quality attributes for
embedded systems. In: ICSEA 2013, Venice, Italy, pp. 523–528 (2013)

11. Oliveira, L.B.R., Osorio, F.S., Oquendo, F., Nakagawa, E.Y.: Towards a taxon-
omy of services for developing service-oriented robotic systems. In: SEKE 2014,
Vancouver, Canada, pp. 344–349 (2014)

http://www.irobot.com/us/learn/home/roomba.aspx
http://goo.gl/NZ7Y2B

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 226–233, 2014.
© Springer International Publishing Switzerland 2014

Scalable Architectures for Platform-as-a-Service Clouds:
Performance and Cost Analysis

Huanhuan Xiong1, Frank Fowley1, Claus Pahl1, and Niall Moran2

1 IC4 – The Irish Centre for Cloud Computing and Commerce, Dublin City University,
Dublin 9, Ireland

{huanhuan.xiong,frank.fowley,claus.pahl}@dcu.ie
2 Microsoft Ireland, Dublin 18, Ireland
 nimoran@microsoft.com

Abstract. Scalability is a significant feature of cloud computing, which ad-
dresses to increase or decrease the capacities of allocated virtual resources at
application, platform, database and infrastructure level on demand. We investi-
gate scalable architecture solutions for cloud PaaS that allow services to utilize
the resources dynamically and effectively without directly affecting users. We
have implemented scalable architectures with different session state manage-
ment solutions, deploying an online shopping cart application in a PaaS solu-
tion, and measuring the performance and cost for three server-side session state
providers: Caching, SQL database and NoSQL database. A commercial solution
with its supporting state management components has been used. Particularly
when re-architecting software for the cloud, the trade-off between performance,
scalability and cost implications needs to be discussed.

Keywords: Scalability, Platform-as-a-Service (PaaS), Session State Manage-
ment, Windows Azure Platform.

1 Introduction

Cloud computing has emerged as a technology facilitating a movement to treat IT
services as a commodity with the ability to dynamically increase or decrease capacity
to match usage needs on a pay-as-you-go basis. Customers can benefit from moving
their business to the cloud, in cost saving, improved scalability and performance and
automatic updates and easy maintenance, etc.

In the cloud computing technology stack [1], infrastructure has matured faster than
platform or software service technologies with respect to languages and techniques
used for architecting and managing respective applications [2]. Platform-as-a-Service
(PaaS) emerges as a focus for the near future with the increased complexity, com-
pared to more structured data for Software-as-a-Service (SaaS) or more standardized
structures of VMs and manipulation for Infrastructure-as-a-Service (IaaS).

PaaS is designed to support the entire application development lifecycle, allowing
organizations to quickly develop, design and deploy live, scalable architectures. Thus,
load-scalable architectures are largely handled by the PaaS providers, which increase

 Scalable Architectures for Platform-as-a-Service Clouds 227

or decrease the capacities of allocated virtual resources on demand. However, PaaS
users often consider re-architecting their software to make it cloud aware. Stateful
architectures, however, often hinder scalability solutions as state is harder to transfer
between virtual resources.

We present scalable architecture variants for PaaS that allow a service to allocate
resources (e.g. virtual machines) dynamically and temporarily without directly affect-
ing users. These architectures are based on different configurations of server-side
session state management, providing a mechanism for multiple servers to process
requests for the same session without losing the session state data, implementing
loose coupling between state and application services.

We have implemented scalable solutions based on server-side session state man-
agement, deploying an online shopping application in Windows Azure, and measur-
ing performance, scalability and cost under three server-side session state providers.
We demonstrate that considering different architectural solutions while re-architecting
for the PaaS cloud, we can have performance and scalability improvements as well as
cost benefits, but often trade-offs between technical and cost factors are inevitable.

The remainder of this paper is organized as follows. Section 2 introduces scalabili-
ty in cloud computing environments, including the scaling categories and metrics.
Section 3 describes the stateful architecture and the proposed stateless architecture
based on server-side session state management. Then, we set up an experiment and
evaluate the performance and cost of three session state modes in a real cloud envi-
ronment in Section 4, demonstrating and analysing the experimental results. Section 5
presents the related work to this project, and finally we give a conclusion in Section 6.

2 Scalability in Cloud Computing

Scalability is a significant feature in cloud computing [4], focussing on allocating and
managing resources efficiently. There are two primary approaches to scaling [5]:

• Vertical scaling, or scaling up, means increasing the capacity of individual nodes
through hardware improvements, e.g., change to other nodes with higher memory,
or increase the number of CPU cores.

• Horizontal scaling, or scaling out, means increasing the overall application capaci-
ty by adding more nodes. Each additional node typically has the equivalent memo-
ry and CPU capacity.

Most cloud providers offer scaling up and scaling out solutions, such as Amazon EC2
and Windows Azure [8]. We focus on horizontal scaling, which takes full advantage
of cloud technologies, i.e., we can use standard computers to implement high-
performance computing, use capacity on demand and can upgrade without downtime.

Scalability is a measure of the number of users a system can effectively support at
one time. Alternatively, if an application sustains consistent performance as the num-
ber of concurrent users grows, it is also scaling. Many scalability metrics have been
proposed in distributed computing and parallel computing environments [9-13]. We
propose three metrics to evaluate the scalability in our case: workload (concurrent

228 H. Xiong et al.

users), resource utilization and response time. In addition, we add cost as a perfor-
mance measure of a scalable cloud application.

3 Re-architecting Scalable Architectures for State Management

Internet applications often rely on HTTP - a stateless protocol that responds to each
client request without relating it to other requests. Adding state is possible, with re-
duced scalability, but is necessary for applications in e-commerce or banking, for
instance. In these applications, clients and servers need to exchange state information
to place HTTP request and response into a larger context [14], called a session.

Many web applications use sticky sessions, which assign each user to a specific
server node when they first visit. Once assigned, the load balancer directs all requests
from one client within the same user session to the same sever instance. Sticky ses-
sions are easy to code and fast to store session state, but reduce scalability.

Software [2] can be re-architected to benefit from stateless or properly managed
stateful cloud architectures. We propose loosely coupled architectural options, out-of-
process modes [15], for state management and services, allowing multiple server ma-
chines to share session state with each other, see Fig. 1.

Fig. 1. The stateless architecture

Stateless architectures allow any server to receive a session request. This server
fetches the session state from a state server or database before processing the request.
Session state information can be stored and shared across all services with high scal-
ability. There are 3 session state management modes: state server, SQL and NoSQL.

• State server: the principle is extracting the session ID from the request, performing
a cache lookup for the state dictionary stored in a separate server, and marking the
session as accessed to prevent its expiration.

• SQL database: the principle is extracting the session ID from the request and stor-
ing the state in an external SQL server database.

• NoSQL database: the principle is extracting the session ID from the request and
storing the state in an external NoSQL database.

In the two database modes, clients can continually query the databases by using the
unique session ID, and the application servers can save it in the databases for use

 Scalable Architectures for Platform-as-a-Service Clouds 229

across multiple requests or multiple clients. Additionally, in a cloud environment, we
need scalability among session state providers as well as across multiple applications,
using distributed cache, SQL state partitioning [16] or NoSQL database sharding. A
single state server or database could be a bottleneck of a scalable architecture, but
here, we focus on application scalability when deploying applications at PaaS level.

4 Experimental Evaluation

4.1 Experimental Platform

Windows Azure is Microsoft's cloud computing platform for IaaS (virtual ma-
chines), PaaS (cloud services) and applications. We deploy the testing environment
and applications on Azure Virtual Machines, and scale out/down the instances on
demand. At PaaS level, Azure offers different cloud services, such as Azure Cache,
SQL Azure, Azure Storage (tables or blobs), which are the suitable solutions for the
three session state modes. Then, we use CloudShop (online shopping cart software) as
the testing application, implementing the re-architected stateful-session to stateless-
session management solution. Furthermore, we utilize CSF telemetry [17] to monitor
and collect the diagnostic information for the different state management providers.
Thus, the experimental setting is described as follows:

• Cloud services (3 services): one for running the CloudShop App (2 small VMs
scaled to 3VMs during scalability load test), one for running CSF telemetry (2
small VMs) and one for CSF scheduler (1 small VM).

• SQL Azure (3 instances): one for the CloudShop App product database, one for
session states for SQL session management and one as a telemetry repository.

• Azure Storage (one storage account with 11 containers): five Table containers
(four for telemetry data, one for session data for storage session management), six
Blob containers (four for telemetry data, one for session data for storage session
management and one for scheduling and sharding configuration data storage).

We ran 4100 tests; each test case started with 25 active clients sending requests,
which gradually increased to 200 clients. All test cases had a duration of at least 10
min, simulating different loads varying the request per second (rps) from 80 to 90 rps.

4.2 Performance Analysis

Client-Side Performance. We measured the average page response time under the
different session state providers with the following four operations: browsing prod-
ucts, adding items to cart, removing items from cart, and checking out, see Fig. 2. The
horizontal axis represents the test time in minutes:seconds and the vertical axis
represents the page response time in seconds. Fig. 2 shows that Caching and
SQL Azure generally perform well, NoSQL database is almost the slowest solution.
Caching is always fast, and the SQL database runs more smoothly, while NoSQL
database takes approximate 2.5-3 times longer than caching.

230 H. Xiong et al.

Fig. 2. The average page response time under three session state providers

Server-Side Performance. We measured CPU and memory usage under different
session state providers, see Fig. 3. The horizontal axis represents the test time in mi-
nutes:seconds, and the vertical axis represents the % processor load time and commit-
ted memory in Mbytes separately. Fig. 3 shows that SQL Azure consumes the least
CPU. Cache has the worst CPU performance. Memory in caches is similar to SQL
Azure, while NoSQL has the worst memory performance.

Fig. 3. The CPU and memory usage under three session state providers

4.3 Cost Analysis

Azure Pricing Model. Windows Azure (based on actual pricing for December 2013),
serves as an example of a current Pay-as-you-go pricing model as follows:

• Computing: a virtual machine (small VM): 6.70 cent per hour or 49 euro per month
• Storage: 5 cent per GB per month, or 50 euro per TB per month

 Scalable Architectures for Platform-as-a-Service Clouds 231

• Storage transactions: 7 cent every one million transactions
• SQL database: 7.40 euro per GB per month (no charge for SQL transactions)
• Data transfer out: 9 cent per GB (no charge for data transfer in)

Azure Consumption Results. We used 6 VMs running 92 hours in accumula-
tive total. Three SQL database instances consumed 0.3 GB space, 11 storage contain-
ers utilized 0.06 GB storage space and consumed less than 2.5 million transactions,
the data transfer out consumed 2.14 GB in total. Thus, the Cache is the most expen-
sive solution; the NoSQL solution is the cheapest. One Worker Role means running a
VM (we use a small size) as the worker role. Increased Web Role CPU means con-
suming part of the Web Role CPU originally used for running the application. Thus,
the probability to scale out other homogeneous VM increases, as does acceleration of
costs.

4.4 Discussion

The details of a comparison of the scalability, performance and cost for the three ses-
sion state providers are shown in Table 1.

Table 1. Comparison of scalability, performance and cost for the three session state providers

 Azure Cache Azure SQL Azure NoSQL

Performance Best performance in page
response time in average

About 70ms slower than
Azure Cache

About 400ms slower
than Azure Cache

Cost Highest (One Worker Role
+ 10% increased Web
Role CPU)

About 1/3 cost comparing
with Azure Cache

Negligible (storage
cost +13% increased
Web Role CPU)

Scalability Scaling , consistent performance for end users as the number of concurrent users
grows (according to Fig.2 and Fig.3, the page response time, CPU and memory
usage is quite consistent by increasing the load amount)

Caching is the most expensive with the best performance, while Azure NoSQL sto-
rage dose not perform well in state management probably due to the inefficient com-
bination of Azure Blobs (for storage) and Azure Table (for index and query). As some
of the results are unexpected, more investigations are required. However, Microsoft
currently officially only supports caching as session state provider, which would ex-
plain the best performance as expected.

5 Related Work

So far the focus has been the migration process [2, 3], not re-architecting for perfor-
mance and scalability. In the EU FP7 project REMICS [18], significant advances in
languages and model-driven technologies for cloud migration have been explored,
without specifically evaluating QoS and cost concerns. Agrawal et al. [4] investigate
scalability, which relates to our work, but the problem is not approached from an
architecture perspective. Tsai et al. [11] explore scalability for SaaS applications,

232 H. Xiong et al.

which is less relevant to re-architecting. Ardagna et al. [6] propose scalability pat-
terns. In this regard, our architecture configurations can be considered as patterns.
Unlike these solutions, which link scalability to security concerns, ours takes costs
into account and evaluates the trade-off. In a similar vein, [7] focusses on perfor-
mance. These works consider earlier pre-cloud investigations as in [9] or [10].

The need for patterns, as in [6] or [19] emerges from the discussion here and else-
where [20]. Our contribution would be three patterns specific to state management.

6 Conclusion

We looked at scalable architectures for PaaS-based server-side session state modes,
including state sever, SQL databases and NoSQL databases. We implemented a loose-
ly coupled architecture between state and services and enabled multiple server ma-
chines to share the session state with each other.

To evaluate scalability, performance and cost of the three session state modes in
real cloud environments, we deployed an online shopping application in Windows
Azure. The results have shown that 1) all three modes implement application scalabil-
ity in session state management; 2) state service through caching has the best page
response for end users, but does need a lot of computing resources, while NoSQL
databases have the worst performance and SQL databases had the smoothest; and 3)
caching was the most expensive solution, while NoSQL was the cheapest. This sug-
gests that re-engineering software architectures for the cloud is beneficial.

The analysis presented in this paper leaves out some architectural configurations.
We plan to focus on more cloud database solutions, comparing the performance and
scalability between SQL partitioning technology and NoSQL databases. The indicated
link between the trade-off results and their formal representation as rules in a dynamic
configuration and load balancing solution shall be investigated.

Acknowledgments. The research work described in this paper was supported by the
Irish Centre for Cloud Computing and Commerce, an Irish national Technology Cen-
tre funded by Enterprise Ireland and the Irish Industrial Development Authority.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Communications of the
ACM 53(6), 50–50 (2010)

2. Pahl, C., Xiong, H.: Migration to PaaS Clouds – Migration Process and Architectural
Concerns. In: 7th IEEE International Symposium on the Maintenance and Evolution of
Service-Oriented and Cloud-Based Systems (MESOCA 2013), pp. 86–91 (2013)

3. Pahl, C., Xiong, H., Walshe, R.: A Comparison of On-Premise to Cloud Migration
Approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS,
vol. 8135, pp. 212–226. Springer, Heidelberg (2013)

4. Agrawal, D., El Abbadi, A., Das, S., Elmore, A.J.: Database scalability, elasticity, and au-
tonomy in the cloud. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I.
LNCS, vol. 6587, pp. 2–15. Springer, Heidelberg (2011)

 Scalable Architectures for Platform-as-a-Service Clouds 233

5. Michael, M., Moreira, J.E., Shiloach, D., Wisniewski, R.W.: Scale-up x Scale-out: A Case
Study using Nutch/Lucene. In: 2007 IEEE International Parallel and Distributed
Processing Symposium, pp. 1–8. IEEE (2007)

6. Ardagna, C.A., Damiani, E., Frati, F., Rebeccani, D., Ughetti, M.: Scalability Patterns for
Platform-as-a-Service. In: IEEE 5th International Conference on Cloud Computing,
pp. 718–725. IEEE (2012)

7. Iosup, A., Yigitbasi, N., Epema, D.: On the performance variability of production cloud
services. In: Proc. of IEEE/ACM CCGrid 2011, pp. 104–113. IEEE (2011)

8. Auto-scaling and Windows Azure, Microsoft pattern and practices,
http://msdn.microsoft.com/
en-us/library/hh680945v=pandp.50.aspx

9. Jogalekar, P., Woodside, M.: Evaluating the scalability of distributed systems. IEEE
Transactions on Parallel and Distributed Systems 11(6), 589–603 (2000)

10. Sun, X.: Scalability versus Execution Time in Scalable Systems. Journal of Parallel and
Distributed Computing 62(2), 173–192 (2002)

11. Tsai, W., Huang, Y., Shao, Q.: Testing the Scalability of SaaS Applications. In: IEEE
International Conference on Service-Oriented Computing and Applications (SOCA 2011),
pp. 1–4. IEEE (2011)

12. Intel White Paper, Two Tools Measure the Performance Scalability of Your Application,
http://software.intel.com/sites/products/Whitepaper/
MeasureApplicationPerformanceScalability_013012.pdf

13. Caceres, J., Vaquero, L., Rodero-Merino, A.P.L., Hierro, J.: Service scalability over the
cloud. In: Furht, B., Escalante, A. (eds.) Handbook of Cloud Computing (2010)

14. Kristol, D., Montulli, L.: HTTP State Management Mechanism, Network Working Group,
RFC 2965 (2000), http://www.ietf.org/rfc/rfc2965.txt

15. Patelis, A.: ASP.Net State Management Techniques, CODE Project (2007),
http://www.codeproject.com/Articles/17191/
ASP-Net-State-Management-Techniques

16. Volodarsky, M.: Fast, Scalable, and Secure Session State Management for Your Web
Applications. MSDN Magazine (2005),
http://msdn.microsoft.com/en-us/magazine/cc163730.aspx#S7

17. Fairweather, E.: Telemetry-Application Instrumentation, Azure CAT, Microsoft Wiki Ar-
ticle (2013),
http://social.technet.microsoft.com/wiki/contents/articles/
18468.telemetry-application-instrumentation.aspx

18. Mohagheghi, P., Sæther, T.: Software engineering challenges for migration to the service
cloud paradigm: Ongoing work in the REMICS project. In: IEEE World Congress on
Services (SERVICES 2011), pp. 507–514 (2011)

19. Wilder, B.: Cloud Architecture Patterns. O’Reilly, Sebastopol (2012)
20. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud Migration Research: A Systematic Review. IEEE

Transactions on Cloud Computing (2013)

Enactment of Components Extracted
from an Object-Oriented Application

Abderrahmane Seriai1, Salah Sadou1, and Houari A. Sahraoui2

1 Université de Bretagne Sud, IRISA, Vannes, France
{abderrahmane.seriai,Salah.Sadou}@irisa.fr

2 Université de Montréal, DIRO, Montréal, Canada
sahraouh@iro.umontreal.ca

Software architecture plays an important role for the application understanding before
its maintenance. Unfortunately, for legacy systems code often there is no corresponding
(or up to date) architecture. So, several work tackle this problem by extracting compo-
nents from the legacy system and define their links. Although these components allow
to get an architectural view of the legacy system, they still can’t be easily implemented
in a concrete framework. In fact, restructuring completely the legacy system facilitates
the mapping between the architectural elements and their corresponding ones in the
code. This paves the way to the future maintenance of the system.

Our approach aims to reach this complete restructuring. Thus it goes beyond what
exists in the state of the art by proposing a technique that makes components extracted
from object-oriented applications implementable within a concrete component model.
This is done by using class instances that compose the extracted components to infer
possible instances the components. Thus, we propose for each extracted component its
provided and required interfaces, and a way to construct its instances. We validated the
feasibility of the proposed approach through the Spring framework and we illustrated it
through a legacy Java application.

1 Introduction

Most existing works on extraction of components from a legacy system have as a main
aim the construction of an understandable architecture [10,17,2]. When the legacy sys-
tem is implemented in the object-oriented paradigm, a component is represented by a
cluster of classes with a set of provided methods and a set of required methods. Thus,
the identification of the components consists in finding the groups of classes that are
the most cohesive and loosely coupled. So, the obtained results have the advantage to
offer a more abstract representation via a component-oriented architecture view of the
object-oriented application.

The extracted software architecture facilitates the understanding of the legacy sys-
tem. However it needs to be complemented by a mapping between architectural ele-
ments and their corresponding ones in the code in order to facilitate the achievement of
maintenance. In fact, sets of classes, representing components, can not be easily pro-
jected onto a specific component model [2]. This problem is due to the shift from the
concept of object instances to the concept of component instances. Indeed, it is not
easy to infer a component instances from a set of class instances. Hence, the executable

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 234–249, 2014.
c© Springer International Publishing Switzerland 2014

Enactment of Components Extracted from an Object-Oriented Application 235

version of the application remains in its old form and therefore has no direct corre-
spondence with the architecture. Consequently, there is no direct mapping between the
architecture and the running application.

To solve this problem, we need to be able to project the extracted components on a
concrete component model. This will give the advantage of creating a direct mapping
between architectural elements and their equivalents in the code of the application. To
achieve this purpose, we need to (i) identify the interfaces of the extracted components
to make them consistent with the component paradigm concepts, and (ii) determine
how the concerned classes will be instantiated with respect to component instances.
This second concern, which is neglected in literature on component extraction, is im-
portant as it allows to formalize the notion of component instance, which is necessary
to make the application executable and at the same time its components reusable by
others applications.

In a recent work [16], we proposed a solution for the point (i) based on a static anal-
ysis of the extracted components. In this paper, we propose a solution for the point (ii).
Our approach considers that the extraction of components (cohesive groups of classes)
is already performed. It is based on the hypothesis that an instance of a component
consists of a connected set of instances of its classes. Thus, the objective is to iden-
tify all instances of classes representing an instance of a component in order to build
the component’s factory. This will provide the necessary means for the framework to
run the restructured application. Furthermore, the identification of the component in-
stances allows us to propose a dynamic approach to the identification of the component
interfaces.

To demonstrate the feasibility of our approach, we present its implementation within
the Spring component framework. After that, we apply it on a Java application that
we restructured into a component-based application with the approach presented in [2].
To validate the correction of the restructuring, we have replayed the application’s case
studies on its component-based version and the results were identical to those of its
object-oriented version.

The rest of the paper is organized as follows: in the next section we describe the
process of our approach. Sections 3 shows how to define instances of a component
starting from the objects of its classes. Then, the definition of the component’s inter-
faces and the creation of its instances is described in Section 4. In Scetion 5 we show
how our approach can be implemented using the Spring component framework. Before
concluding, we present the related work in Section 6.

2 Approach

The group of classes, which represents a component, are part of the definition of the
component descriptor. The descriptor of a component is equivalent to the class in the
object-oriented paradigm. Thus, what is lacking with the group of classes is the way to
build instances of the component. Indeed, to create a component-based application, as
in the case of an object-oriented application, it requires creating component instances
and binding them.

For this work, we propose the following definition for a component instance:

236 A. Seriai, S. Sadou, and H.A. Sahraoui

Fig. 1. Process of the proposed approach

Definition 1 : An instance of a component consists of all instances of its classes, which
have had connections during the execution of the application and thereby forming
a connected group.

Objects surrounded by a dashed line in figure 3 is an example of component instance.
To build component instances, we must first identify the instances of classes that com-
pose them and their links. This is why our approach, as shown in Figure 1, begins with
the execution of the application’s use cases in order to extract traces of method calls
between objects. This information will be summarized in an object call graph (step 1 of
the process).

The use of the application’s use cases is a way to get only objects that actually play
a role in the functionalities provided by the system. Thus, all the other objects from
classes held by the application are naturally avoided and have no chance to infer in the
proposed process.

By analysing all objects, instances of classes belonging to the same component, we
can find several connected groups. It is these groups of objects that represent instances
of the component. Thus, we can reduce the obtained object call graph to a component
call graph in order to focus on the relationships between component instances (step 2
of the process).

The identification of component instances is interesting only to deduce a way to
build them. For a given component, some of its instances may have similarities when
considering the type of their involved objects. Thus, these component instances suggest
a common constructor. Indeed, these component instances have a similar configuration
of their constituent objects that we define as follows:

Enactment of Components Extracted from an Object-Oriented Application 237

Definition 2 : Two instances of the same component belong to the same configuration
if and only if their subsets of objects, which are directly concerned by the compo-
nent’s incoming calls, are similar.

Definition 3 : Two sets of objects are similar if and only if they contain the same num-
ber of class instances for each involved class.

Finding all possible instance configurations for each component is the goal of the
step 3 of our process. Once the possible instance configurations of a component are
identified, we need to define a constructor for each of them. Subsequently, to each
configuration of instances, we associate a component provided interface (goal of the
step 4). Thus, with our approach, each component interface highlights one of its aspect,
which is emerged by the configuration. For a component, its required interfaces will be
defined according to the identified provided interfaces of all components on which it
depends.

In the following sections, we describe each step of our approach.

3 From Object to Component Call Graph

An important step in our approach is to identify component instances, and their bind-
ings, by considering the classes they hold. The component instances will consist of
objects from its classes. For this aim, we first construct an object call graph in order to
transform it into a component instance call graph.

3.1 Object Call Graph

The first step of our approach consists of identifying all possible class instances for the
entire application and build their links. This leads to the construction of a call graph
specific to class instances (objects).

To get this call graph, we run the application with all its use cases to capture the
execution traces. An execution trace corresponds to a directed tree T (V,E) where V is
a set of nodes and E a set of edges between nodes. Each node Vi represents an instance
of the class (Cli). An edge 〈Vi, Vj〉 indicates that an instance i calls a method of an
instance j. The root of T (V,E) corresponds to the entry point of the system.

As shown in Figure 2(left), the nodes of the tree are labeled by the identifier, the
actual types of the objects that are called and the concerned methods. As the execution
traces are based on method calls, it is possible to have nodes containing the same object
(same identifier) with calls on different methods. This is the case for object d0 which
appears twice for two different methods (see left part of Figure 2). So, these nodes are
grouped in the same one in order to get a graph where each object is represented by
exactly one node. Thus, the resulting node contains all called methods. An example
of such a transformation is given in the right part of Figure 2. The resulting graph
corresponds to what we call Object Call Graph (OCG).

3.2 Component Call Graph

The identification of component instances is based on our definition of component
instance (see Section 2). Thus, starting from the OCG of an application, we need to

238 A. Seriai, S. Sadou, and H.A. Sahraoui

a0:A

b0:B
mth1

c0:C
mth2

d0:D
mth3

d0:D
mth4

h0:H
mth7

e0:E
mth5

f0:F
mth6

b1:B
mth8

a0:A

c0:C
mth2

d0:D
mth3,
mth4

h0:H
mth7

e0:E
mth5

f0:F
mth6

b0:B
mth1

b1:B
mth8

Fig. 2. Example of execution trace tree (left) and its corresponding object call graph (right)

identify the sub-OCG that may be associated with each component. Recall that our
working hypothesis is that for each component, we know the classes composing it.
Thus, finding the sub-OCG associated with a component leads to find the sub-OCG
composed of all objects that are associated with the component.

Figure 3 (left side) shows examples of such a sub-OCG. Objects associated with the
same component are marked with the same symbol (circle, triangle or square). For in-
stance, the dimmed objects are associated with the same extracted component (triangle
symbol), which holds the classes A, B, C, D, E and J. When an object is marked
with several symbols, it means that it is used inside several components and thus, its
class is used to define these components. This situation arises when components ex-
change object references through service calls. We will discuss the responsibility of
creating this kind of objects in the next section.

By analyzing the sub-OCG of a component, we can identify sub-graphs. These sub-
graphs correspond to possible instances of the component. Figure 3 (right side) pro-
vides a representation of the OCG that is reduced to component instances. That is what
we call Component Call Graph (CCG). Thus, in a CCG, nodes are instances of com-
ponents, and edges correspond to calls between components. In other words, edges
correspond to calls between objects belonging to different components. For example,
instances of the component represented by the dimmed sub-OCG in the right part of
Figure 3 are shown as dimmed nodes in the right part of the same figure. One of these
instances is Comp1.1, which contains objects a1, b1, d0 and e0. The listed meth-
ods (mth14, mth15) are those called on these objects by instances of other compo-
nents. To each method name mthi, are associated the full method signature and the class
to which it belongs.

In the case of an object that is shared by several component instances, all calls to
(or from) this object, and coming from (or to) other objects held by these components,

Enactment of Components Extracted from an Object-Oriented Application 239

e0:E

d0:D a1:A

c1:C

b2:B

e1:E

b0:B

c0:C

m0:M

k0:K

o0:O

l0:L

main0:M
ain

n0:N

f1:F

g0:G

h0:H

f0:F

i0:I

b1:B

j0:J

a0:A

Comp3.0:COMP3

 {l0:L, n0:N }

Comp3.3:COMP3

 {c0:C}

Comp1.2:COMP1

{b0:B , a0:A }

Comp1.0:COMP1 Comp2.0:COMP2

 {j0:J, f1:F}

Comp2.1:COMP2

Comp1.1:COMP1

Comp1.2:COMP1

{mth1, mth2 } {mth3, mth4 }

{mth5 } {mth6} {mth7, mth8, mth9 } {mth10 }

{mth14, mth15 }

{main0:Main, m0:M,
o0:O, k0:K, b1:B }

{c1:C, b2:B , e1:E, j0:J}

{g0:G , h0:H, f0:F, i0:I } {b1:B, a1:A , d0:D, e0:E}

(a) (b)

Fig. 3. (a) Example of sub-OCG, (b) Example of component call graph

are considered internal and therefore, not visible at the CCG level. For example, in
the OCG of Figure 3, the object j0 belongs to two component instances of different
types (square and triangle). Thus, the call from c1 to j0 is considered internal to the
component instance of triangle type and the call from f1 to j0 is considered internal
to the component instance of square type. This is why in the corresponding CCG (right
part of the figure) there is no edge between the component instances Comp2.1 and
Comp1.1.

4 Interface Identification

By analyzing the instances of a component, we can identify similar configurations of
objects they contain. According to the definition given in Section 2, component’s con-
figurations help in defining its provided interfaces. At the same time, a configuration
of a component reflects one of its aspects. Thus, we can also use the configuration to
define a constructor for the component.

In the following, we describe our approach to identify configurations of a component
as well as the constructors associated with them.

4.1 Configuration Identification

In Figure 3, the two instances Comp1.0 and Comp1.1 of component COMP1 have in
common the fact that their accessible objects from outside (other components) are of the
same type (b0 and b1 of type B and shown in bold). Thus, these component instances
are associated with the same configuration. This configuration is characterized by the
fact of exposing an object of type B as an interface to other components.

The two component instances, which have given rise to this configuration, show that
only the methods mth1, mth2, mth14, and mth15 of the class B are used by the
other components. Moreover, one of the two instances of the component (Comp1.0)
requires an instance of another component (Comp2.0). As the latter belongs to a given
configuration, so we can link the dependency to this configuration.

Thus, we define a configuration as a triple (ObjInt, MethInt, ReqConf) where:

240 A. Seriai, S. Sadou, and H.A. Sahraoui

ObjInt corresponds to a set of objects belonging to component instances of the con-
figuration, which are called by other component instances.

MethInt corresponds to the union of sets of methods from component instances of the
configuration that other component instances use.

ReqConf is the set of configurations of component instances that are required by those
of the current configuration.

For instance, the configurations of the component given in the example above corre-
spond to the following triplets:

({b0:B,b1:B},{mth1,mth2,mth14,mth15},{configuration1 of COMP2})
and
({c0:C,c1:C},{mth6,mth7,mth8,mth9},{configuration1 of COMP2})

From a configuration of a component, we can deduce one of its provided interfaces
and some of its required interfaces. Indeed, the list of methods associated with the con-
figuration correspond to a provided interface of the component. Thus, each provided
interface is associated with one and only one configuration of the component. Further-
more, as the configuration requires configurations from other components, the provided
interfaces associated with those configurations define the required interfaces of the tar-
geted component.

Thus, the provided interfaces of a component correspond to the set of provided in-
terfaces suggested by its configurations. And its required interfaces correspond to the
union of the provided interfaces associated with the configurations required by its con-
figurations. From the example given above, we deduce the following required and pro-
vided interfaces:

Provided interfaces = {{mth1,mth2,mth14,mth15},
{mth6,mth7,mth8,mth9}}

Required interfaces = {{mth3,mth4}}.

From the list of objects held by a configuration, we can also define the necessary con-
structors for the component instances associated with this configuration. We will show
that in the next sub-section.

4.2 Component Constructors

With the notion of configuration, we have grouped a set of component instances around
the same provided interface. Although these instances are used through the same types
of objects, the way to create them is not necessarily the same.

Indeed, each object can have different constructors that can be used independently
to create component instances associated with the same configuration. Thus, we must
consider each component instance to analyse calls to constructors of its objects that
are directly concerned with the provided interface. The objectives of this analysis are:
(i) Identify objects whose construction is made by other components. (ii) Determine
the precedence of creating these objects. iii) Determine the different combinations of
constructors that are used to construct these objects.

Indeed, we are only interested in objects that are created outside of the component as
the other objects are necessarily created by objects from the same instance component
(connected graph).

Enactment of Components Extracted from an Object-Oriented Application 241

Component Descriptors Component instances

<INIT>(type1)

<INIT>(type1, type2)

<INIT>(type4)

<INIT>(type6)

<INIT>() <INIT>(type1)

<INIT>(type4)

<INIT>()

a1:A

a2:A

a3:A

b3:B

b2:B

b1:B e1:E

e2:E

e3:E

<INIT>(type3,type4)

Interf1

Fig. 4. Example of transformation of object constructors into a Factory method pattern

Figure 4 shows a component (Component1) that requires an interface of another
component (Component2). This interface concerns only objects of types A and B.
When tracing the different use cases, we distinguish three instances of component
Component2 that are associated with this interface (see the right part of the figure).
We note that the objects concerned by the interface were created by using different
combinations of their constructors.

The different combinations of object constructors are grouped as a Factory method
pattern. This pattern allows the construction of the various component instances that are
associated with the same configuration (required interface). Thus, each provided inter-
face of a component is associated with a Factory method pattern for the construction of
component instances to be used through this interface.

Calls to object constructors of a component instance are actually dispersed in the
component that uses this instance. Recall that each component instance is associated
with a given provided interface. Thus, a component that uses a component instance will
require an interface of the same type to which the component instance is associated
with. Therefore, any references to objects of the component instance that is in the user
component, must be transformed into a single reference to the component instance.

In the left part of Figure 4, component instances of Component1 use component
instances of Component2 through object references (aAtt and bAtt) of type A and

242 A. Seriai, S. Sadou, and H.A. Sahraoui

B. The type of these references must be replaced by the type of the required interface
(Interf1). Moreover, these references must be initialized with the same component
instance. This implies that each component instance holds its own identification, which
will be communicated to all the objects that constitute it. This is equivalent to the this
attribute in the object paradigm. As shown in Figure 4, the component’s classes will
be changed in order to add a reference to the component instance as an attribute and
a parameter in their constructors for initializing this attribute. The propagation of the
identifier of a component instance to all objects that constitute it will be initiated by
its associated Factory method pattern. Objects shared by different component instances
(necessarily from different components) will receive the identifier of the component
instance that created them.

Thus, calls to constructors of objects belonging to the required component instance
will be replaced by a request of required component instance from the component in-
stance to which the object belongs. As shown in the class F of Figure 4, bAtt = new
(var1, var2) is replaced by bAtt = compInst.getRef1Interf1(). This
implies that in the component descriptor, there is a getter method for each required
interface.

The call to the Factory method of the provided interface of a component can be set
in the component that requires this interface as it can be placed outside all components
and thus constitute the configuration file of the application. The choice of the con-
crete implementation of the Factory method pattern depends on the targeted component
framework. In the following section, we give a solution within the Spring component
framework.

5 Case Study

The objective of our approach is to make components extracted from an object-oriented
application projectable on a concrete component model. Thus, we chose the case of
Spring as a concrete model and framework. Our approach relies on the existence of
extracted components represented by sets of classes. In the past we had done this work
on a concrete application called Logo.

Below we give a brief description of the Logo application, followed by the tools
developed for the implementation of our approach and we conclude by showing how
the components are projected onto Spring by using the Logo application as example.

5.1 Logo Application

The Logo application consists in a language for learning programming and its inter-
preter. The latter has a graphical interface which allows writing the code and a window,
which shows the result of this code graphically. This system was selected for two rea-
sons: (i) its reasonable size allows us to perform a deep analysis of the results. (ii) we
already extracted its components. (iii) one of its developers was available to comment
the results.

The component-based architecture of the Logo interpreter, which was extracted
thanks to the approach proposed in [2], contains four components:

Enactment of Components Extracted from an Object-Oriented Application 243

– The Language Parser component is used to read the logo code, to interpret it ac-
cording to the Logo grammar, and to launch appropriate java treatments.

– The Evaluator that receives a list of instructions and evaluates them one after an-
other in the current lexical environment.

– The Graphical Display component displays the results of a Logo program that
makes the connection between the Logo code, its evaluation, and its visual results.

– The Graphical User Interface (GUI) component represents the graphical interface
through which beginner programmers interact with the application.

The components above consist of sets of classes.

5.2 Process and Tools

We defined a tool for each step of our process (see Figure 1). All the tools were imple-
mented in Java using JVMTI1. These tools are as follow:

Tracer: This tool allows the generation of execution traces (instances creation, method
calls, attribute access, etc). This was made using a custom extraction agent written
in C that utilizes the JVMTI API. This agent crops at each entrance or exit into/from
a method, the relevant information, such as the class and the instance where the
method is executed, the current thread, etc.

ObjectCallGraphBuilder: Using the traces provided by the Tracer, this tool con-
structs an object call graph.

ComponentConfigurationBuilder: Using information about contained classes for
each component and the object, this tool uses algorithms from graph theory to
generate connected sub-graph for each component (its different instances). It also
provides the component’s configurations.

ComponentInterfacesExtractor: This tool analyses dependencies between the ob-
jects involved in a configuration and those from the other components in order to
define: (i) the provided interface associated with the configuration. (ii) the compo-
nents that require this interface. (iii) the constructors for the component instances
associated with the interface.

ComponentToSpring: This tool generates the classes representing component
instances according to the Spring framework. It also modify classes of a component
in order to make their objects aware about the component instance they constitute.
Finally, it produces the configuration file for the application.

The first step of our experiment consists in executing scenarios corresponding to the
15 identified Logo use cases. Examples of such use cases are ”file creation/saving”,
”code writing in the editor”, ”code interpretation”, etc. Thanks to the Tracer, events
that occur in the Logo application during the execution of these use cases are collected.
Each event indicates which object calls which other object and on which method. Since
we are interested only in events involving classes of the Logo application, we filtered

1 Java Virtual Machine Tool Interface (JVMTI) API is a tool that provides both a way to inspect
the state and to control the execution of applications running in the Java virtual machine (VM)
(http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti)

http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti

244 A. Seriai, S. Sadou, and H.A. Sahraoui

all the noises produced by the agent tracer. Indeed, the used extraction agent is listening
to all events at each entrance or exit of methods, even those that come from libraries
and mouse/ keyboard events, etc.

After that, the ObjectCallGraphBuilder, and the ComponentConfigurationBuilderare
executed to build the component instance configurations for each component. After
the identifying component interfaces thanks to the ComponentInterfaceExtracor, the
ComponentToSpring tool produces the necessary classes to make the component-based
version of the application according to the Spring framework.

Bellow, we detail how these classes are generated.

5.3 Generated Code for Spring

As shown in Figure 5, each component is represented by an abstract class. All its con-
figurations correspond to concrete classes of the abstract class that represents it.

Fig. 5. Class diagram representing a component within the Spring framework

The interface associated with a configuration of a component is represented by a
Java interface as shown in the example below. Thus, each configuration implements its
corresponding interface.

public interface IEvaluationHandling {
public void initEnv(HashMap<String, Object> penv);
public Object evalList(ArrayList<Object> listInstruction);

}

Both interface method above come from two different classes. These are the classes of
the objects involved in the configuration associated with the interface. This interface is
implemented by the class that represents its configuration. The code below gives a brief
description of such a class.

public class ConfEvaluationHandling extends EvaluatorComp
implements IEvaluationHandling {

//required interface
IErrorHandling required1;

//Objects of the configuration
Library lib;
InputOutout inOut;

Enactment of Components Extracted from an Object-Oriented Application 245

// Constructor of component instances
public ConfEvaluationHandling(IErrorHandling req1){
//injection
required1=req1;
//creation of objects of component instances
ObjectFactory();
}

//customized Factory for this configuration
private void ObjectFactory(){
lib = new Library (this);
inOut = new InputOutout (this);
}

@Override
public void initEnv(HashMap<String, Object> penv) {
lib.initEnv(penv);
}

@Override
public Object evalList(ArrayList<Object> listeInstruction){
return lib.evalList(listInstruction);
}
...

}

This class inherits from the abstract class representing the component. This is the way to
associate a configuration to a component. The first attribute corresponds to the required
interface. It will be injected via the constructor of the class using the configuration file
(see below for an example). The two other attributes correspond to the objects that are
directly involved in the configuration. The Factory method ObjectFactory creates
the objects associated with the component instances. Note the ”this” given to construc-
tors of the objects that allows them to know the component instance to which they are
associated. Methods of the interface are implemented as redirections to the correspond-
ing objects.

Below you have an excerpt of the configuration file for the Logo application in its
component-based version.

<!-- Definition for EvaluatorComp-instance2 bean -->
<bean id="EvaluatorConf2"

class= "com.irisa.evaluatorcomp.ConfEvaluationHandling">
<constructor-arg ref="ParserConf1"/> </bean>

<!-- Definition for ParserComp-instance1 bean -->
<bean id="ParserConf1"

class="com.irisa.parsercomp.ConfErrorHandling">
<constructor-arg ref="GuiConf2"/> </bean>

<!-- Definition for GuiComp-instance2 bean -->
<bean id="GuiConf2"

class="com.irisa.guicomp.ConfEventsHandling">

246 A. Seriai, S. Sadou, and H.A. Sahraoui

...
</bean>

For the first created component instance (EvaluatorConf2) we can notice that the
reference on the component instance (ParserConf1) is injected via the constructor
of the component. This will be used for the required interface of the component instance
(EvaluatorConf2).

The main statements in the launcher of the Logo application in its Sprint version are
the follow:

IEventsHandling mainApp = (ConfEventHandling)
context.getBean("GuiConf2");

mainApp.main(args);

The first statement allows to retrieve an instance of the EventHandling component and
to use it through its IEventsHandling interface. This component contains the class that
holds the launcher (main method) of the Logo application, which is provided through
the IEventsHandling interface. Thus, the second instruction starts the application.

To validate the component-based version of the Logo application, we replayed the
15 use cases, which were used to extract execution traces, and we got the same results.
After that, we checked that the generated components can be used independently from
each other. We reused the EvaluatorComp component in an application that allows
to test the validity of Logo expressions through a command line. So we built a fairly
simple component that allows to enter a Logo expression through the standard input.
It requires the IEvaluationHandling interface of the EvaluatorComp compo-
nent. It uses mainly the evalList method to submit the proposed expression. The
returned result is translated into an understandable message and then printed on the
standard output.

Obviously, we used an instance of ParserComp component that is required by the
EvaluatorComp component. Apart from this component instance, which is perfectly
appropriate, the reuse of the component do not generate any problem.

6 Related Work

The reverse engineering research community has been actively investigating techniques
to decompose (partition) the structure of software systems into subsystems (clusters or
component). In this section we target only work concerning the recovery of components
in a legacy system.

6.1 Architecture Extraction

Software architecture plays an important role in at least six aspects of software devel-
opment: understanding, reuse, construction, evolution, analysis and management [6].
Many approaches and techniques were proposed in the literature to support software
architecture recovery [9,11,14,8,18,12,13], and often the problem is seen as a software
clustering problem. The software clustering problem consists of finding a good partition
of software modules based on various criteria, in particular, the dependencies among

Enactment of Components Extracted from an Object-Oriented Application 247

these modules [9]. Dependencies are extracted by static analysis, dynamic analysis, or
using a combination of both (so-called hybrid approaches).

Among the approaches that use static analysis, Pourhaji Kazem et al. [11] proposed
a genetic algorithm for clustering based on the weighted module dependency graph.
Saeed et al. [14] used the Rigi tool to extract the function dependency graph and pre-
sented a new clustering algorithm called the “combined” algorithm to implement soft-
ware architecture recovery. Mancoridis et al. [8] extracted the file dependency graph
from the source code and used a clustering algorithm based on a genetic algorithm.

With regard to approaches that use dynamic analysis, Yan et al. [18] described a
technique that uses run time observations about an executing system to construct an ar-
chitectural view of the system. In a previous work, we proposed an approach to restruc-
ture an object-oriented application into a component-oriented one [2]. This approach is
based on dynamic calls, i.e. actual calls at runtime with use cases, to determine the de-
pendencies between classes. These dependencies are then used by a genetic algorithm
to derive groups of classes representing components.

For hybrid approaches, Richner et al. [12] presented an environment supporting the
generation of tailorable views of object-oriented systems from both static and dynamic
information. Claudio Riva et al. [13] proposed a technique for combining the analy-
sis of static and dynamic architectural information to support the task of architecture
reconstruction.

All these work achieve the starting point of the approach proposed in this paper (ie,
sets of classes representing components). Thus, these work are complementary to our
approach.

6.2 Component Instance Identification

In the field of Component-oriented programming (COP) , where the components are
created from scratch (bottom-up approach) [4], a component instance is uniquely iden-
tified with regard to the other instances, and is obtained from a component class (com-
ponent descriptor), to enable use of the features associated with the component during
the execution time. A variety of component-oriented languages have been proposed in
the literature [4,3,5,19] to define components (component classes andor component
instances). These component languages are either dedicated to only software specifica-
tion and are not executable (eg. UML 2.0 [7]) or dedicated as well as to transform mod-
els [4,15] into executable codes or to write programs by hand. SCL [4] is an example
of the latter case, which defines the component by a descriptor that can be instantiated.

Regarding the field of restructuring object-oriented systems into component-based
systems, to the best of our knowledge, there is no work that identifies instances of
extracted components.

7 Conclusion

The work presented in this paper aims to complete work on the extraction of compo-
nents from legacy systems. Indeed, our approach allows to completely restructure an

248 A. Seriai, S. Sadou, and H.A. Sahraoui

object-oriented application into a component-based application. Thus, it makes perma-
nent mappings between elements from the extracted architecture and their correspond-
ing ones in the code of the application. Identifying the different instances of a com-
ponent highlights its various aspects. Defining the interfaces of a component based on
the various configurations of its instances is a way to make it reusable according to its
different aspects.

Thus, we performed this work as a continuation of the work we have already done
on the extraction of components from an object-oriented application [2]. Given the as-
sumption we made (ie, the components are represented as a set of classes), the proposed
approach also applies to all work on the extraction of components from object-oriented
applications. However, our approach requires the existence of use cases in order to
identify instances of components.

We have shown that instances of a component can be used to define its interfaces. We
have already proposed an approach for the identification of interfaces of a component
through a static analysis (on source code) of its dependencies on other components [16].
We used the same application as a case study (Logo) and we found some differences in
the identified interfaces. In fact, static analysis takes into account objects that may be
created but do not really exist in the context of the application (polymorphism). On the
other side, dynamic analysis allows to get objects related to classes dynamically loaded.
But the obtained interfaces are related to the context of the concerned application.

In one of our old work we presented an approach for component extraction that
relies on a combination of static analysis (on source code) and dynamic analysis (calls
between objects) [1]. This combination of the two approaches of analysis allowed to
better cover aspects of extracted components. We think this may be the case with the
definition of component interfaces. Thus, we expect in a future work the definition of
component interfaces based on a combination of the two types of analysis in order
to deduce dependencies between instances of components and getting more reusable
components.

References

1. Allier, S., Sadou, S., Sahraoui, H., Fleurquin, R.: From object-oriented applications to
component-oriented applications via component-oriented architecture. In: 9th IEEE/IFIP
Working International Conference on Software Architecture (WICSA), Boulder, Colorado,
USA, pp. 214–223. IEEE Computer Society (June 2011)

2. Allier, S., Sahraoui, H.A., Sadou, S., Vaucher, S.: Restructuring object-oriented applica-
tions into component-oriented applications by using consistency with execution traces. In:
Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE 2010. LNCS, vol. 6092, pp. 216–231.
Springer, Heidelberg (2010)

3. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: An open component
model and its support in java. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.
(eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Heidelberg (2004)

4. Fabresse, L., Dony, C., Huchard, M.: Foundations of a simple and unified component-
oriented language. Computer Languages, Systems & Structures 34(2-3), 130–149 (2008)

5. Fröhlich, P.H., Gal, A., Franz, M.: Supporting software composition at the programming
language level. Sci. Comput. Program. 56, 41–57 (2005)

Enactment of Components Extracted from an Object-Oriented Application 249

6. Garlan, D.: Software architecture: a roadmap. In: Proceedings of the Conference on the Fu-
ture of Software Engineering, ICSE 2000, pp. 91–101. ACM, New York (2000)

7. Object Management Group. Unified modeling language 2.1.2 super-structure specification.
Specification Version 2.1.2, Object Management Group (November 2007)

8. Mancoridis, S., Mitchell, B.S., Rorres, C.: Using automatic clustering to produce high-level
system organizations of source code. In: Proc. 6th Intl. Workshop on Program Comprehen-
sion, pp. 45–53 (1998)

9. Martin, F., Kessentini, M., Sahraoui, H.: Deriving high-level abstractions from legacy soft-
ware using example-driven clustering. In: International Conference on Computer Science
and Software Engineering, CASCON 2011, pp. 188–199 (2011)

10. Medvidovic, N., Jakobac, V.: Using software evolution to focus architectural recovery. Au-
tomated Software Eng. 13(2), 225–256 (2006)

11. Pourhaji Kazem, A.A., Lotfi, S.: An evolutionary approach for partitioning weighted module
dependency graphs. In: 4th International Conference on Innovations in Information Technol-
ogy, IIT 2007, pp. 252–256 (November 2007)

12. Richner, T., Ducasse, S.: Recovering high-level views of object-oriented applications from
static and dynamic information. In: Proceedings of the International Conference on Software
Maintenance, ICSM 1999, pp. 13–22. IEEE (1999)

13. Riva, C., Rodriguez, J.V.: Combining static and dynamic views for architecture reconstruc-
tion. In: Sixth European Conference onSoftware Maintenance and Reengineering (CSMR),
pp. 47–55. Nokia Research Center (2002)

14. Saeed, M., Maqbool, O., Babri, H.A., Hassan, S.Z., Sarwar, S.M.: Software clustering tech-
niques and the use of combined algorithm. In: Proceedings of the Seventh European Con-
ference on Software Maintenance and Reengineering, CSMR 2003, p. 301. IEEE Computer
Society, Washington, DC (2003)

15. Costa Seco, J., Caires, L.: A basic model of typed components. In: Bertino, E. (ed.) ECOOP
2000. LNCS, vol. 1850, p. 108. Springer, Heidelberg (2000)

16. Seriai, A., Sadou, S., Sahraoui, H., Hamza, S.: Deriving component interfaces after a restruc-
turing of a legacy system. In: 11th IEEE/IFIP Working International Conference on Software
Architecture (WICSA), Sydney, Australia. IEEE Computer Society (April 2014)

17. Washizaki, H., Fukazawa, Y.: A technique for automatic component extraction from object-
oriented programs by refactoring. Sci. Comput. Program. 56(1-2), 99–116 (2005)

18. Yan, H., Garlan, D., Schmerl, B., Aldrich, J., Kazman, R.: Discotect: A system for discover-
ing architectures from running systems. In: International Conference on Software Engineer-
ing, pp. 470–479 (2004)

19. Zenger, M.: Keris: evolving software with extensible modules. Journal of Software Mainte-
nance 17(5), 333–362 (2005)

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 250–266, 2014.
© Springer International Publishing Switzerland 2014

Gossiping Components for Cyber-Physical Systems

Tomas Bures1,2, Ilias Gerostathopoulos1, Petr Hnetynka1, Jaroslav Keznikl1,2,
Michal Kit1, and Frantisek Plasil1

1 Faculty of Mathematics and Physics, Charles University in Prague,
Prague, Czech Republic

2 Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, Czech Republic

{bures,iliasg,hnetynka,keznikl,kit,plasil}@d3s.mff.cuni.cz

Abstract. Developing software for dynamic cyber-physical systems (CPS) is a
complex task. One has to deal with the dynamicity and unreliability of the phys-
ical environment where the software resides in, while, at the same time, provide
sufficient levels of dependability and scalability. Although emerging software
engineering abstractions, such as dynamic ad-hoc component ensembles, pro-
vide a convenient way to structure software for dynamic CPS, they need to be
mapped to robust decentralized execution schemes in real-life settings. A par-
ticular challenge in this context is the robust distributed data dissemination in
dynamic networks. Gossip-based communication stands as a promising solution
to this challenge. We argue, that exploitation of application-specific informa-
tion, software architecture in particular, has a large potential for improving
the robustness and performance of gossip-based communication. This paper
proposes a synergy between high-level architectural models and low-level
communication models to effectively enable application-specific gossiping in
component-based systems. The synergy is exemplified on the DEECo compo-
nent model which is tailored to the needs and specifics of CPS, and evaluated
on an emergency coordination case study with realistic network configurations.

Keywords: Component, Ensemble, Gossip, Cyber-Physical Systems, MANET.

1 Introduction

Cyber-physical systems (CPS) are complex networked systems where the interplay of
software control with the physical environment has a prominent role. Examples range
from intelligent navigation systems (cars that communicate with each other and with
street infrastructure to minimize traffic congestion, fuel consumption, etc.) to emer-
gency coordination systems. Modern CPS are inherently distributed on a large scale
and consist largely of mobile devices. They are also increasingly depending on soft-
ware which has actually become their most intricate and extensive constituent [1].

Building software for large-scale software-intensive CPS via systematic software
engineering approaches is a notoriously difficult task. This stems from the fact that
CPS invalidate most of the assumptions that typically hold in software engineering of
general-purpose systems [2]. Whereas the challenges and opportunities of CPS cover

 Gossiping Components for Cyber-Physical Systems 251

a range of areas, in this paper we focus on the communication requirements of CPS.
In CPS, the physical substratum continuously evolves following the movement of
mobile devices. Locality of devices directly affects reachability and connectivity.
Communication between devices is opportunistic; there are no guarantees regarding
the stability and reliability of the established links. The network topology itself is
dynamic and often relies on ad-hoc means without any managing infrastructure. Fi-
nally, the environments where CPS operate (e.g., road networks, emergency sites) are
highly dynamic and inherently unpredictable.

At the same time, CPS have also a number of specifics that can be advantageously
exploited, such as the fact that by moving around in the environment, the wireless
devices effectively enlarge the physical area where information can be disseminated
[3]. Physical locality and location-dependency of data offer also a natural way to par-
tition the system and provide built-in scalability and robustness.

Looking at the state-of-the-art in distributed communication, gossip and epidemic
protocols provide an efficient way to address the aforementioned specifics. Gossip
protocols cope with node and network failures, are scalable due to their symmetric
nature, and can exploit the physical mobility of gossiping nodes [3]. The gossiping
paradigm has already been applied with success in both Internet-based systems and
wireless mobile ad-hoc networks (MANETs) [4].

The central idea in gossip protocols is the periodic and probabilistic data transmis-
sion from a source node to a set of selected peers [4–6]. They typically combine
probabilistic forwarding with counter-based, distance-based, and location-based
mechanisms. These mechanisms and configuration parameters are, however, only
available at the lower level of the software stack, often transparent to the applica-
tion/architecture layer. While this is reasonable for uniform data dissemination, it
becomes problematic when the spread of data depends on the architectural configura-
tion in question.

The problem lies in a significant abstraction gap between gossip protocols and ap-
plication-level architecture design using component models tailored to CPS.

In this paper, we aim at bridging this gap by incorporating concerns of gossiping
into sound software engineering abstractions, which allow for (i) systematic engineer-
ing of CPS via gossiping components and (ii) application-specific, scalable, and
efficient gossip-based communication. We do so in the context of DEECo [7] – a
component model that specifically targets dynamic, ever-changing architectures of
CPS by relying on the concepts of autonomous (soft) real-time components, and dy-
namic ad-hoc component ensembles. Our approach is not limited to DEECo though,
since it is based on the generic synergy between a set of high-level architectural ab-
stractions supporting dynamicity and low-level primitives of gossip-based protocols.

The rest of the text is structured as follows. In Section 2, we elaborate on a scena-
rio from an emergency coordination case study that provides the motivation for
architecture-based decentralized solution. Section 3 presents our approach and its
integration into DEECo, while Section 4 outlines the implementation. Following,
Section 5 presents the simulation-based evaluation results. Section 6 discusses key
contributions and emerging related challenges. Finally, in Section 7 we survey the
related work and in Section 8 we present our conclusions.

252 T. Bures et al.

Fig. 1. Motivating scenario: Mobile and stationary nodes cooperate via ad-hoc coordination
groups that span within designated boundaries

2 Motivating Scenario

To illustrate the need for effective mapping of architecture-level concepts to decentra-
lized communication schemes in CPS, we use a scenario taken from a firefighter
coordination case study1, which is a real-world real-scale case study for evaluating
distributed adaptive systems.

In the scenario, firefighters belong to tactical groups corresponding to the mission
in hand. In case of an emergency, a scouting team composed of a team leader and
several team members is initially dispatched to the operation site with the goal to
assess the criticality level of the situation in hand, so that appropriate strategic deci-
sions can be taken (e.g., mission escalation, request for additional teams). A strong
requirement for the effective cooperation of team members is efficient data dissemi-
nation – every member has to be notified in a timely manner about important events
and threats (e.g., low oxygen level in a particular room, firefighter in danger because
of high temperature level) so that the team can act collaboratively and proactively.

Firefighters are equipped with low-power devices with sensing and actuating capa-
bilities that are integrated into their personal protection equipment (being thus mo-
bile). The devices communicate primarily via wireless mobile ad-hoc network
(MANET) protocols (e.g., IEEE 802.15.4); additionally, some devices have IP con-
nectivity. Advantageously, the firefighters may exploit other devices on the fire scene
(e.g., on-site access points or devices of other emergency personnel) as network relays
to boost their wireless coverage and performance. For illustration, consider an opera-
tion site that consists of two buildings (Fig. 1).

Obviously, the key challenges stem from the dynamicity of the whole scenario; in
particular, the issues to be addressed include (i) MANET management and efficient
use of the communication medium and (ii) seamless inclusion of the related concepts

1 http://daum.gforge.inria.fr/

BUILDING #1 BUILDING #2

Coordination
Group

1

2IP

3

5

7

4
8

6

9
IP

2012IP

11

14

13

15

16IP

17

19

10
18IP

 Gossiping Components for Cyber-Physical Systems 253

in the high abstraction level employed in the design of the corresponding software
architecture.

2.1 A DEECo-Based Solution

A promising approach for developing software of dynamic CPS is to employ the
DEECo component model and its related methods and tools [7].

The design process in DEECo starts with identifying the main system components
and dynamic ad-hoc coordination groups – ensembles – that the components should
establish in order to cooperate for a common goal. In the scenario, ensembles reflect
the groups of firefighters exchanging measured data (e.g., temperature, oxygen level)
and the groups of officers exchanging strategic information (e.g., mission updates,
orders from the chief officer). For illustration, consider the ensemble definition in Fig.
2, lines 25-32. Here, the goal is to enable the members of a firefighting team to prop-
agate information on the measured temperature to the leader of the team so that
the leader can determine which firefighters are in danger. In general, an ensemble
definition in DEECo contains a condition specifying which components should be
considered for membership (lines 28-29), and a function that specifies knowledge

1. role TemperatureSensor:
2. missionID, temperature
3.
4. role TemperatureAggregator:
5. missionID, firefightersInDanger, temperatures
6.
7. component Firefighter13 features TemperatureSensor:
8. knowledge:
9. ID = 13, missionID = 1024, position = {50.075306, 14.426948}, oxygenLevel = 90%, temperature = 35.2
10. process measureTemperature (out temperature):
11. temperature Sensor.read()
12. scheduling: periodic(1000ms)
13. … /* other process definitions */
14. … /* other firefighter definitions */
15.
16. component Leader features TemperatureAggregator:
17. knowledge:
18. ID = 2, missionID = 1024, position = {50.075310, 14.426952}, firefightersInDanger = {1,3, …},
19. temperatures = {{1,30.7}, {2,25.0}, {3,35.2},…}
20. process findFirefightersInDanger(in temperatures, out firefightersInDanger):
21. firefightersInDanger analyze(temperatures)
22. scheduling: periodic(500ms)
23. … /* other process definitions */
24.
25. ensemble TemperatureUpdate:
26. coordinator: TemperatureAggregator
27. member: TemperatureSensor
28. membership:
29. member.missionID == coordinator.missionID
30. knowledge exchange:

31. coordinator.temperatures ← { (m.ID, m.temperature) | m ∈ members }
32. scheduling: periodic(500ms)

Fig. 2. Examples of DEECo components and ensembles of the firefighter coordination case
study

254 T. Bures et al.

exchange among the members (lines 30-31). A particular ensemble (i.e., an instance
of an ensemble definition) is identified by its coordinator which features a specific
role (line 26). It is instantiated and dissolved by the DEECo runtime environment
(Runtime further on), which periodically (line 32) checks the membership of potential
groups of coordinator-members. Within an established ensemble, Runtime periodical-
ly performs the knowledge exchange, which transfers data between the coordinator
and members.

A component in DEECo is an independent unit of computation and deployment. In
the scenario, components correspond to the actors of the system (active firefighter,
officer, relay node, etc.). For illustration, consider the two components in Fig. 2. Their
state is captured by knowledge (lines 8-9, 17-19) and functionality by processes (lines
10-12, 20-22). Every component features a number of roles, i.e., sets of knowledge
fields (lines 1-2, 4-5), which are used as the contract between the component and
ensembles. Processes are executed by Runtime in a time- or event-triggered fashion
(lines 12, 22). Each process execution consists of atomically reading (a part of) the
knowledge of the component, executing the process body, and atomically updating
the knowledge with the result.

Note that components in DEECo do not explicitly communicate with each other;
their only means of communication is knowledge exchange mediated by the ensem-
bles to which the components belong. A component may belong to a number of en-
sembles at a time (i.e., ensemble instances may overlap).

2.2 Challenges in DEECo-Based Solution

As shown above, DEECo provides a comprehensive set of concepts at a high level of
abstraction, coping with the dynamicity by means of component roles and ensembles.
However, mapping the concepts into a scalable and robust DEECo implementation is
challenging. The particular challenge lies in how and where to evaluate the member-
ship condition for every possible ensemble. This typically requires reasoning at the
system level, exploiting some form of global view over the system state. If this rea-
soning is encapsulated into a special-purpose entity in Runtime, this entity becomes a
bottleneck – single point of failure. In particular, such a centralized solution does not
scale when ensembles are to be formed among large numbers of components.

3 Gossiping in Ensembles

In order to mitigate the above issue, we have adopted a fully decentralized and robust
approach relying on gossiping for establishing ensembles and performing knowledge
exchange. In principle, we replace the network communication layer of DEECo by
gossip-based communication and extend the DEECo architectural model (the defini-
tion of ensembles in particular) by the concept of a communication boundary so as to
allow efficient functioning of the underlying gossiping mechanism.

To connect components at the architectural level with their physical deployment,
we define node as a hardware/software platform where a number of DEECo

 Gossiping Components for Cyber-Physical Systems 255

components are deployed (hosted in an instance of Runtime). Nodes communicate
with each other via their network interfaces depending on the available networking
infrastructure. Thus, component communication is constrained by the available net-
working infrastructure between the nodes the components are deployed on. Inspired
by the motivating scenario, we focus on combinations of IP-based networks (wireless
and wired) and MANET networks (which allow only for short range broadcast com-
munication). As a product of distributed communication among nodes, each node
obtains copies – replicas – of the knowledge of components hosted on (some of) the
other nodes.

The main principles of our approach to gossip-based ensemble creation and know-
ledge exchange can be characterized by the following points:

1. A node has its own awareness of ensemble instances existing in the system, specif-
ically of those that include the components deployed on the node. This awareness
is based on evaluating the membership with respect to the current knowledge of lo-
cal components and replicas of other components.

2. Based on the awareness obtained in (1), a node performs only knowledge exchange
that results in updating the knowledge of the local components using, again, the
current knowledge of the local components and replicas of others.

3. A node proactively disseminates component knowledge, so that every other node
has the replicas necessary for realization of (1) and (2).

The following describes the individual elements of our approach in more detail –
points 1 and 2 are explained in Section 3.1, while point 3 is elaborated in Sections 3.2
and 3.3.

3.1 Decentralized Evaluation of Ensemble Membership/Knowledge Exchange

Instead of forming ensembles by looking at a snapshot of the whole system (which
would imply that a global view on the system has to be available), we take a node-
centric approach. Every node periodically iterates over all known ensemble defini-
tions and checks whether a local component can act as a member or coordinator in an
instance of the ensemble definition, given its replicas. For each such ensemble in-
stance, it performs the corresponding knowledge exchange, which results in updating
the local components’ knowledge (but not the replicas).

As an example, consider an instance of the TemperatureUpdate ensemble (Fig. 2)
evaluated on the site of the coordinator. In this case, the knowledge exchange results
into updating the coordinator’s field temperatures.

Note that a consequence of this technique is that degradation of system performance
when no connectivity is available (e.g., due to appearance/disappearance/ mobility of
nodes) is gradual: each Runtime effectively operates on the locally available replicas
until they become too outdated to rely upon. Here, we count on one of the specifics of
CPS, namely on the fact that the values of most magnitudes in CPS (e.g., temperature in
Fig. 2) evolve gradually according to physical laws [8]. Practically this means that a
belief which is not too old may still be at least partly relevant. Another consequence is
that, due to belief outdatedness causing belief inaccuracy, it is possible for a component

256 T. Bures et al.

to behave as if it were in ensemble with a coordinator, which is not aware of it (and
vice-versa). These consequences are further analyzed in Section 6.2.

3.2 Asynchronous Knowledge Dissemination via Gossip

The decentralized solution presented in Section 3.1, requires that each node possesses
all the necessary replicas from the components that can potentially participate in en-
sembles with its local components. We enable this by asynchronous gossip-based
knowledge dissemination between all the components of a DEECo application.

The main idea is that every node periodically publishes the knowledge of its local
components on the network. For MANETs, this translates to periodic broadcast within
the wireless range of the node. For IP networks, it translates to periodic sending to
randomly selected nodes. Upon reception of a component’s knowledge, a node proba-
bilistically decides whether to retransmit the received knowledge. The nodes that
perform such re-transmission then act as relays. Here, we rely on the probabilistic
convergence of gossip protocols [9], which ensures that every node will eventually
receive the knowledge of every component in a bounded number of steps. The nodes
that dynamically appear in the system join the publication and re-transmission of
knowledge automatically.

Note that this dissemination scheme dictates that all nodes potentially perform the
retransmission, not only the ones that are interested in the disseminated knowledge
(i.e., nodes hosting components that could be members of the ensemble which the
disseminated knowledge relates to).

3.3 Bounding the Gossip

Although the aforementioned gossip-based knowledge dissemination successfully
propagates the knowledge of all nodes to all nodes, it raises performance issues. Spe-
cifically, if a DEECo application is considered as a ubiquitous ecosystem in a real
environment, the application is potentially boundless w.r.t. network reachability. In
such a system, unlimited gossiping is not a viable option. Advantageously, in contrary
to the assumption of traditional gossip protocols discussed above, not every node is
interested in all the data being disseminated by all the components. Thus, certain ap-
plication-specific bounds should be established for knowledge dissemination.

For this purpose, we define for each ensemble its communication group as the set
of nodes to which the ensemble’s knowledge dissemination is limited. This set con-
sists of all the nodes where components forming the ensemble are hosted and all the
relays necessary for knowledge propagation. Relying on the fact that data is dissemi-
nated via gradual flooding, we define a communication boundary as the predicate
determining the limits of a particular communication group w.r.t. network topology.
The relays not satisfying the communication boundary will not participate in the dis-
semination. In a way, a communication group forms a dynamic, architecture-specific
network overlay for knowledge dissemination.

Naturally, a communication boundary includes all the nodes “potentially interest-
ed” in the disseminated replicas, while excluding as many of the other nodes as

 Gossiping Components for Cyber-Physical Systems 257

possible. Thus, a communication boundary forms a conservative approximation of the
ensemble membership. For example, given the pervasive application from Fig. 1, the
communication boundary for the ensemble definition in Fig. 2 can be formulated as
follows:

“For every mission, include all components within all the areas in which the par-
ticipants of the mission operate.”

In this example, the communication boundary reflects the fact that all components
satisfying the membership condition of the ensemble, i.e., those participating on the
same mission, operate in one of the predefined areas. Note however, that the commu-
nication boundary predicate is generic w.r.t. a particular mission – it determines a
number of different communication groups (thus approximating a number of different
ensemble instances), namely a distinct group per distinct mission.

To achieve its desired functionality, a relay has to evaluate a communication boun-
dary much more efficiently than membership condition, preferably using exclusively
locally-available information. Thus, we specify communication boundary as a predi-
cate over the local knowledge of the relay and the particular knowledge being disse-
minated.

Since “communication group” is an application-specific concept relating to appli-
cation architecture (namely to ensemble membership), we capture it by extending the
ensemble definition with a definition of the communication boundary. In addition, we
extend the existing concept of “role” to be applicable also at the level of nodes – we
say that a node supports a role if one of the components (representative) deployed on
the node has structurally-matching knowledge (structural matching enables designing
open-ended architectures).

Technically, a communication boundary is defined by a set of predicates (lines 13-
16 in Fig. 3). Each of these predicates, given a relay role and a replica role, deter-
mines whether a node that has a representative matching the relay role meets the
communication boundary for a replica that matches the replica role. Formally, the
communication boundary is a conjunction of these predicates (having the form of
implications). A relay role has to be either the coordinator or member role.

As an example, in Fig. 3 we show a revised version of the ensemble definition
from Fig. 2. Specifically, given a replica corresponding to the member role (Tempera-

tureSensor), the communication boundary includes all relay nodes featuring the Tempe-

ratureRelay role, which are in one of the mission areas specified by the replica. This is
captured on lines 13-14, which semantically form an implication: the line 13 forms
the antecedent (i.e., “if the relay has the role TemperatureRelay and the replica corres-
ponds to the member’s role”), while line 14 forms the conclusion. Note, that we have
extended the TemperatureSensor role and the knowledge of all the related components
to provide the information about mission areas. Similarly, on lines 15-16 the predicate
prevents any relaying of replicas matching the coordinator role (as there is no know-
ledge exchange towards the member). This can be illustrated on Fig. 1 as follows.
Provided that all nodes feature the TemperatureRelay role and given that the node 6
participates in a mission that is different to the mission of 9 and localized only to the
building #1, then this communication boundary prevents 9 disseminating knowledge
of 6 to building #2, as well as 3 from disseminating knowledge of 4. On the other

258 T. Bures et al.

hand, 9, as well as any node in building #1, will disseminate the knowledge of 6 with-
in the building #1. Moreover, 9 will disseminate knowledge of #4 and #7 also to the
building #2 via IP.

This part of specification of communication boundary aligns well with the know-
ledge dissemination in MANETs, where the set of potential recipients is limited by
their geographical locality. On the other hand, in large networks that enable routing
based on global addressing, such as IP networks, a necessary performance optimiza-
tion is to disseminate replicas only to recipients which themselves meet the communi-
cation boundary (rather than blindly pollute the entire IP network). To do this, given a
replica, a sender has to be able to (at least partially) assess the validity of the commu-
nication boundary with respect to the recipient.

To address this issue, we assume that well-known registries exist providing a relay
node the information which other IP-based nodes are part of a communication group
(given a particular replica). To avoid unnecessary centralization, such a registry is en-
semble specific. The registry either provides statically-defined recipients (well-known
relay nodes) or evaluates the communication boundary with respect to a recipient. In the
latter case, the potential recipient relay nodes provide the registry with the required relay
knowledge. Syntactically, the communication boundary definition contains a set of IP
addresses identifying the registries that are specific to the corresponding ensemble (line
17 in Fig. 3). Note that due to the nature of gossip, we do not require all the registries in
a given ensemble specification to contain the same information.

3.4 Gossip-Based Semantics

To allow for formal analysis of functional and timing properties and precise simula-
tions, as for instance given in Section 4, we have formalized the computational model
described in the previous section in terms of operational semantics, which also acts as
a thorough, detailed description of the computational model. Technically, based on
our previous work [10] we represent the semantics via a state transition sys-
tem generated by a set of inference rules. Additionally, considering (soft) real-time

1. role TemperatureRelay:
2. position
3.
4. role TemperatureSensor:
5. missionID, missionAreas, temperature
6.
7. ensemble TemperatureUpdate:
8. coordinator: TemperatureAggregator
9. member: TemperatureSensor
10. membership:
11. member.missionID == coordinator.missionID
12. boundary:
13. case relay: TemperatureRelay, replica: roleOf(member):
14. area replica.missionAreas: isInArea(relay.position, area)
15. case relay: any, replica: roleOf(coordinator):
16. false
17. ip-registry: 10.10.16.35, 10.10.16.112

Fig. 3. Example of a communication boundary definition in DEECo

 Gossiping Components for Cyber-Physical Systems 259

properties of CPS, the formalization allows only transition traces that are admissible
with respect to real-time periodic scheduling of the system processes, ensemble
knowledge exchange, and (gossip-based) knowledge dissemination. In a way, these
restrictions impose a fairness constraint on the transition traces. Due to space con-
straints, we refer the interested reader to the technical report [11] for a description of
the semantics.

4 Implementation

We have implemented2 the proposed approach by extending the current implementa-
tion of jDEECo (a Java implementation of DEECo Runtime). Specifically, we have
added support for the concept of communication boundary and the gossip-based
knowledge dissemination and ensemble evaluation presented in Section 3. Since these
concepts are closely connected to the network layer, we have also integrated jDEECo
with the OMNet++ simulation framework3 that provides an appropriate abstraction
for the network infrastructure, enabling precise discrete-time simulations (Fig. 4).

Fig. 4. jDEECo Runtime Framework – OMNet++ integration overview

From the perspective of the OSI (Open Systems Interconnection) model [12], our
implementation glues together the application layer given by jDEECo Runtime (along
with the deployed components and ensembles) with the underlying layers imple-
mented in OMNet++ (Fig. 4). An instance of jDEECo Runtime reflects a single unit
of network deployment (e.g., a mobile device). Apart from managing components,
scheduling of component processes’ execution and ensemble evaluations, jDEECo
Runtime automates knowledge management, including network communication

2 https://github.com/d3scomp/JDEECo
3 http://omnetpp.org/

Java Virtual Machine OMNet++

N
et

w
or

k
To

po
lo

gy
...

Host

802.15.4
NIC

jDEECo
Connector Network

Layer

Ethernet NIC

UDP Module

Host

Network
Layer

Ethernet NIC

UDP Module

802.15.4
NIC

jDEECo
Connector

jDEECo Runtime

Kn
ow

le
dg

e
D

is
se

m
in

at
io

nLocal Replicas

Firefighter4 Firefighter4Firefighter4Firefighter2

jDEECo Runtime

Kn
ow

le
dg

e
D

is
se

m
in

at
io

nLocal Replicas

Firefighter2 Firefighter4Firefighter4Firefighter4

...

260 T. Bures et al.

needed for knowledge replica dissemination. Each jDEECo Runtime continuously
advertises the knowledge of the locally deployed components and, additionally, acts
as a relay.

At the network layer, each jDEECo Runtime is bound to its OMNet++ counterpart
(namely OMNet host), with which it communicates via JNI (Java Native Interface)
calls. Every OMNet host is equipped with two kinds of Network Interface Cards
(NICs): one for MANET-based wireless (IEEE 802.15.4) and one for IP-based
(Ethernet) communication. Direct communication is implemented via UDP on top of
the Ethernet NIC, while MANET-oriented broadcast communication is performed via
the wireless NIC. For implementation, we relied on two extensions of OMNet++:
the MiXiM plugin delivering a detailed model of the 802.15.4 protocol and the INET
framework implementing the whole Ethernet stack.

Each jDEECo Runtime gossips knowledge replicas obtained from the network. We
specifically distinguish two cases: gossiping via MANET and direct gossiping. In
the case of MANET gossiping, a jDEECo Runtime calculates a probabilistic rebroad-
cast delay relying on RSSI (Radio Signal Strength Indicator); in case of direct gossip-
ing the data is retransmitted to a random set of peers using a fixed delay. To prevent
network overload, the rebroadcast is aborted in case a newer replica is received from
another peer. Additionally, MANET gossiping is aborted if the same replica comes
from the MANET NIC. The delay and aborting mechanism of MANET gossip is
based on the counter-based algorithm proposed in [6].

5 Evaluation

In this section, we show that our gossip-based ensemble evaluation is practically feas-
ible by providing measurements that answer the following fundamental questions: (1)
how the gossip-based ensemble evaluation scales with respect to the number of nodes
in the system, and (2) how the communication boundary improves the scalability.
Specifically, we do it by simulation and measurements of the motivating scenario
model.

Building on the implementation outlined in Sections 2 and 3, the evaluated scena-
rio consists of several deployed firefighter teams that partially overlap in terms of
radio signal coverage. Each team uses the other teams’ members as relays for know-
ledge dissemination in the overlapping areas to ensure the necessary wireless cover-
age. The objective of this scenario is to illustrate the performance gain of employing
communication boundary, which limits data sharing strictly to the overlapping re-
gions. Note that the communication boundary being used (Fig. 3) allows any node
that monitors its position, such as a device of other emergency personnel, to be equal-
ly included into the scenario and act as a relay; for brevity we include only firefight-
ers. The scenario combines MANET-based gossiping (with evenly distributed nodes
in the area) and direct gossiping realized by Ethernet-enabled nodes (a small fraction
of the nodes).

The scenario is affected a large number of factors, such as network density, size of
the overlapping regions, wireless communication range, gossip protocol configuration,

 Gossiping Components for Cyber-Physical Systems 261

etc. Therefore, we have simulated our system under a variety of configurations; howev-
er, due the space limits, this paper presents results for configurations varying in the
number of overlapping teams (thus also in the total number of nodes), while maintaining
a fixed node density (close to the highest density safely manageable by the implemented
MANET gossip protocol, as evaluated by Williams and Camp in [4]). The detailed in-
formation on the configuration parameters, which were set to match the realistic case
described in Section 2 as close as possible, as well as the simulation results for various
set-ups, can be found on the DEECo project website4.

The results presented in Fig. 5 show the leader-member end-to-end communication
time in a firefighting team (in particular, the time it takes a leader node to learn that a
member of its team is in danger, normalized by the hop distance between the two
nodes). Specifically, we compare the cases with and without communication boun-
dary. Not using communication boundary results into propagation of a team’s data
across all nodes; this causes global degradation of end-to-end communication perfor-
mance (corresponding to the performance limitations of the implemented gossip pro-
tocol). On the other hand, communication boundary localizes the team’s data disse-
mination and prevents the communication channels from overloading, which results
in stable performance (as long as the dynamic communication boundary does not
grow). Specifically, the communication boundary reduces the utilization of the shared
communication medium by preventing ”outside” data from penetrating deeper (than
necessary) into the team’s area. This reduces the overhead of the communication me-
dium; the freed capacity can be now utilized to handle dissemination of the team’s
data.

Fig. 5. Time for discovering a team Member in danger by a corresponding Leader

4 http://d3s.mff.cuni.cz/projects/components_and_services/

deeco/simulations

262 T. Bures et al.

6 Discussion

In this section we review the key contributions of our approach and discuss the main
related challenges that stem from the decentralized decisions on ensemble member-
ship and gossip-based communication.

6.1 Key Contributions

Integrating the DEECo concept of ensemble with gossip-based communication
enables for efficiently dealing with scenarios where system architecture is open-ended
and changes continuously; e.g., systems with high mobility of components or largely
unreliable communication links. To this end, the autonomicity of DEECo components
and best-effort style of communication provided by the gossip-based implementation
of ensemble knowledge exchange deliver means for assuring high infrastructural
resilience.

Although, due to the dynamic nature of ensembles, the gossip-based implementa-
tion of knowledge exchange requires disseminating knowledge to all the potential
members, possibly requiring all nodes to act as relays, communication boundary pro-
vides means to accurately reduce the dissemination to only those nodes, which are
actually needed considering the application-logic point of view. Moreover, as the
knowledge dissemination governed by the communication boundary exploits the con-
textual information available at the application level in the form of component know-
ledge (current position, temperature etc.), the possible set of relay nodes may change
dynamically according to data being disseminated and the state of the relay nodes, as
opposed to generic indicators for limiting communication, such as timestamps and
hop count.

Consequently, by accurately preventing data from flowing to irrelevant parts of
the system, the proposed communication boundary mechanism considerably improves
the utilization of the shared communication medium within the MANET network.
The gain in communication performance depends on how accurate estimate of a
membership the relevant communication boundary is.

6.2 Related Challenges

Belief Inaccuracy in Asynchronous Knowledge Dissemination. The belief a com-
ponent has about the knowledge of another component is essentially always outdated.
This outdatedness is mainly rooted in (i) network infrastructure performance (e.g.,
bandwidth, packet delays, medium access rate, etc.) (ii) MANET topology issues
(e.g., large hop distance between sender and receiver), and (iii) ineffective tuning of
the employed gossip algorithm (e.g., too long (re)transmission period).

The outdateness of belief determines its inaccuracy, i.e. the difference between the
value of the belief and the actual value of the knowledge. Depending on the nature
of data (i.e., continuous or discrete domain, rate of change), slight incoherence be-
tween knowledge and belief might be tolerated or accounted for during design [8].

 Gossiping Components for Cyber-Physical Systems 263

Advantageously, this is the case with most of CPS where real-world phenomena (e.g.,
position, oxygen level, velocity) are to be captured.

Split-Brain Situations in Ensembles. Due to the belief outdatedness and isolated
membership evaluation by each potential member, situations where different nodes
arrive at conflicting conclusions regarding ensembles may arise. This results in a
member acting as if it were in an ensemble having a coordinator who is not aware of
it (or vice-versa). As an example, consider an ensemble that is formed of the firefight-
er components (each hosted on a separate node) whose positions lie within a 10-meter
perimeter from a leader (coordinator). When a firefighter node steps out of the desig-
nated area, the corresponding firefighter component should not be part of the ensem-
ble. The coordinator, however, will only learn about that at the next time its host node
receives an up-to-date replica of that component. Until then, it will falsely consider
the firefighter component as a legitimate member of its ensemble.

In cases where belief outdatedness and topology dynamicity are not too high these
“split-brain” situations are of temporal nature. For deeper analyses, system simula-
tions (see Section 4) and timing analysis can be used to provide measurements of the
distribution of such inconsistencies and their duration.

Gossip Implementation. For our experiments we employed a basic version of coun-
ter-based gossiping [6] without emphasis on its optimization, as we did not intend to
evaluate the gossip protocol per se but rather the practical feasibility of gossiping
ensembles and the impact of the communication boundary. One of such optimizations
of the communication that we identified as an absolute necessity was stripping down
the size of the disseminated replicas. This is especially critical in MANET settings,
where the bandwidth is limited and larger replicas (more than approx. 128 bytes) lead
to fragmentation. In combination with the CSMA/CA medium access technique and
the hidden node problem [13] this leads quickly to network contention.

7 Related Work

The solution presented in this paper brings about the convergence of software compo-
nent models for CPS and gossip-based communication. Although there are some at-
tempts to achieve synergy between the two areas ([14–16]), they are set on a signifi-
cantly different track than our approach. In [14], the authors propose a conceptual
architecture and design framework for gossip. The framework is based on reusable
building blocks, where individual protocols are treated as monolithic black boxes. In
[15], the authors propose an API for programming gossip-based systems by analyzing
the identified recurrent design dimensions of gossip protocols – namely randomness,
neighborhood, and communication. Finally, in [16], the authors introduce a compo-
nent framework GossipKit, which aims at facilitating the development and testing of
gossip protocols by relying on reusable and modular gossip abstractions and standard
component-based composition techniques. In all of these approaches the focus is on
providing an architectural solution for building gossip-based middleware by means of
ready-made components/interfaces. We, in contrast, focus on modeling application

264 T. Bures et al.

logic by means of autonomous components which use gossip internally and partially
transparently as the primary means of their communication.

Regarding the state of the art in gossip-based communication, different variations
of the basic gossiping scheme have been proposed for different application domains
and with slightly different semantics ([17–19]). In MANETs gossiping translates to
probabilistic broadcasting within the wireless range of each node [3]. Probabilistic
forwarding is often combined with some other locally computable mechanism, such
as counter-based [6], location-based [20], distance-based [21], energy-based [22], or a
combination of these, to further reduce the number of retransmitted messages (with
respect to blind flooding). In our work we do not intend to extend or evaluate the state
of the art in gossip-based communication, but provide a method for architecting CPS
using abstractions that facilitate the efficiency of the gossip by relying on the architec-
ture-level context information.

Regarding component models and architectures supporting distributed dynamic
systems such as CPS, different approaches related to self-adapting/self-organizing
systems [23, 24], self-managing architectures [25], component-based architectures
[26, 27], and architectural models at runtime [28] have been proposed. The common
denominator of these approaches is the fact that they do not support high dynamicity
(which does not scale with the ever-changing landscape of CPS) or they do not readi-
ly map to decentralized architectures. DEECo, on the other hand, fits better the specif-
ics of CPS by relying on dynamic component grouping and implicit component
communication.

8 Conclusions

In this paper, we presented a synergy of software component model abstractions and
gossip-based communication primitives as a promising solution for engineering scal-
able dynamic decentralized cyber-physical systems. Our approach relies on providing
architecture-level descriptions that feature communication groups (captured by com-
munication boundaries) and allow us “driving” the gossip efficiently. The presented
experiments show that our approach is in principle feasible. Our current and future
work involves improving the scalability of our approach by various optimizations of
the gossip protocol (e.g., employing location-based algorithms where GPS-enabled
devices are required). Another direction is investigating timing constraints on the
gossip-based knowledge dissemination and exchange which will supplement the strict
real-time constraints already imposed on local component behaviors.

Acknowledgments. This work was partially supported by the EU project ASCENS
257414 and by Charles University institutional funding SVV-2014-260100. The re-
search leading to these results has received funding from the European Union Seventh
Framework Programme FP7-PEOPLE-2010-ITN under grant agreement n°264840.

 Gossiping Components for Cyber-Physical Systems 265

References

1. Beetz, K., Böhm, W.: Challenges in Engineering for Software-Intensive Embedded Sys-
tems. In: Model-Based Engineering of Embedded Systems, pp. 3–14. Springer (2012)

2. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: Proc. of ISORC 2008, Orlan-
do, FL, USA, pp. 363–369 (2008)

3. Friedman, R., Gavidia, D., Rodrigues, L., Viana, A.C., Voulgaris, S.: Gossiping on MA-
NETs: The Beauty and the Beast. ACM SIGOPS Oper. Syst. Rev. 41, 67–74 (2007)

4. Williams, B., Camp, T.: Comparison of Broadcasting Techniques for Mobile Ad Hoc
Networks. In: Proc. of MobiHoc 2002, pp. 194–205. ACM, Lausanne (2002)

5. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.-M.:
Lightweight probabilistic broadcast. ACM TOCS 21, 341–374 (2003)

6. Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., Sheu, J.-P.: The Broadcast Storm Problem in a Mo-
bile Ad Hoc Network. Wirel. Networks 8, 153–167 (2002)

7. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECo – an
Ensemble-Based Component System. In: Proc. of CBSE 2013, pp. 81–90. ACM,
Vancouver (2013)

8. Ali, R., Al, B.T., Gerostathopoulos, I., Keznikl, J., Plasil, F.: Architecture Adaptation
Based on Belief Inaccuracy Estimation. To appear in Proc. of WICSA 2014 (2014)

9. Drabkin, V., Friedman, R., Kliot, G., Segal, M.: RAPID: Reliable Probabilistic Dissemina-
tion in Wireless Ad-Hoc Networks. In: Proc. of SRDS 2007, pp. 13–22. IEEE, Beijing
(2007)

10. Barnat, J., Benes, N., Bures, T., Cerna, I., Keznikl, J., Plasil, F.: Towards Verification of
Ensemble-Based Component Systems. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS
2013. LNCS, vol. 8348, pp. 41–60. Springer, Heidelberg (2014)

11. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: Computation-
al Model for Gossiping Components in Cyber-Physical Systems. Charles University in
Prague, TR no. D3S-TR-2014-03

12. OSI: OSI Basic Reference Model: The Basic Model - ISO/IEC 7498-1,
http://standards.iso.org

13. Yoo, J., Kim, C.-k.: On the Hidden Terminal Problem in Multi-rate Ad Hoc Wireless Net-
works. In: Kim, C. (ed.) ICOIN 2005. LNCS, vol. 3391, pp. 479–488. Springer,
Heidelberg (2005)

14. Rivière, E., Baldoni, R., Li, H., Pereira, J.: Compositional gossip: A conceptual architec-
ture for designing gossip-based applications. ACM SIGOPS Oper. Syst. Rev. 41, 43–50
(2007)

15. Eugster, P., Felber, P., Le Fessant, F.: The “Art” of Programming Gossip-based Systems.
ACM SIGOPS Oper. Syst. Rev. 41, 37–42 (2007)

16. Taiani, F., Lin, S., Blair, S.G.: GossipKit: A Unified Component Framework for Gossip.
IEEE Trans. Softw. Eng. PP, 1–17 (2013)

17. Branco, M., Leitão, J., Rodrigues, L.: Bounded Gossip: A Gossip Protocol for Large-Scale
Datacenters. In: Proc. of SAC 2013, pp. 591–596. ACM, Coimbra (2013)

18. Khelil, A., Suri, N.: Gossiping: Adaptive and Reliable Broadcasting in MANETs. In:
Bondavalli, A., Brasileiro, F., Rajsbaum, S. (eds.) LADC 2007. LNCS, vol. 4746,
pp. 123–141. Springer, Heidelberg (2007)

19. Kermarrec, A.-M., Van Steen, M.: Gossiping in distributed systems. ACM SIGOPS Oper.
Syst. Rev. 41, 2–7 (2007)

20. Karp, B., Kung, H.T.: GPSR: Greedy Perimeter Stateless Routing for Wireless Networks.
In: Proc. of MobiCom 2000, pp. 243–254. ACM, Boston (2000)

266 T. Bures et al.

21. Cartigny, J., Simplot, D.: Border Node Retransmission Based Probabilistic Broadcast Pro-
tocols in Ad-Hoc Networks. In: Proc. of HICSS 2003, pp. 303–312. IEEE, Hawaii (2003)

22. Miranda, H., Leggio, S., Rodrigues, L., Raatikainen, K.: A Power-Aware Broadcasting
Algorithm. In: Proc. of PIMRC 2006, pp. 1–5. IEEE, Helsinki (2006)

23. Serugendo, G.D.M., Fitzgerald, J., Romanovsky, A.: MetaSelf – An Architecture and a
Development Method for Dependable Self- * Systems. In: Proc. of SAC 2010,
pp. 457–461. ACM, Sierre (2010)

24. Liu, H., Parashar, M., Hariri, S.: A Component Based Programming Framework for Auto-
nomic Applications. In: Proc. of ICAC 2004, pp. 10–17 (2004)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Proc. of
FOSE 2007, pp. 259–268. IEEE, Minneapolis (2007)

26. Baresi, L., Guinea, S., Tamburrelli, G.: Towards Decentralized Self-adaptive Component-
based Systems. In: Proc. of SEAMS 2008, pp. 57–64. ACM, Leipzig (2008)

27. Peper, C., Schneider, D.: Component engineering for adaptive ad-hoc systems. In: Pro-
ceedings of SEAMS 2008, pp. 49–56. ACM, Leipzig (2008)

28. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.: Models at Runtime to Sup-
port Dynamic Adaptation. Computer (Long. Beach. Calif.) 42, 44–51 (2009)

A Property Description Framework
for Composable Software

Alexander Frömmgen, Max Lehn, and Alejandro Buchmann

Databases and Distributed Systems Group (DVS), TU Darmstadt, Germany
{froemmge,mlehn,buchmann}@dvs.tu-darmstadt.de

Abstract The composition of software components can be used to fit
specific application needs. Finding feasible and, moreover, optimal com-
positions demands extensive domain knowledge from the developer—
with respect to both application requirements and used components.
Frameworks can provide support for the composition selection based on
requirements, component properties, and their dependencies. Their de-
scription, however, becomes complex in practice.

In this paper, we propose the ProDesc framework. It contains a prop-
erty description language with a bespoke type system for describing prop-
erties of software components and their operations. ProDesc can express
compositional variability, including dependencies of properties on the en-
vironment and on other components. A UML-like graphical notation and
transformations to feature diagrams support the software developer.

The most suitable component composition is selected based on a util-
ity function, which is evaluated during runtime. Our approach raises the
abstraction level, leads to a clear separation of concerns, reduces the
development time, and facilitates optimized software.

1 Introduction

Modern software development uses components as a central abstraction. The
composition of multiple components provides a certain functionality with par-
ticular properties. Developers need domain knowledge and time to choose the
most suitable composition; or they simply choose any feasible composition. De-
pending on the use case, different properties of the components are of importance
and influence the composition. This is particularly important if components, e.g.
those of the Java collection framework, are used for a variety of purposes in dif-
ferent scenarios. Desktop applications, for example, should be optimized for high
responsiveness, application servers should have a high throughput, and mobile
apps should focus on energy savings.

Consider a software developer who needs a map in their application for stor-
ing key-value pairs. The key-value store interface is implemented by multiple
components that use different data structures, e.g. trees and hash-tables. Differ-
ent data structures have different properties, e.g. with respect to computational
and memory complexity. Based on the knowledge about the usage scenario and
therefore its requirements, the developer has to choose between the different

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 267–282, 2014.
c© Springer International Publishing Switzerland 2014

268 A. Frömmgen, M. Lehn, and A. Buchmann

options. Furthermore, the key-value store component that is based on a hash-
table uses one of several available hash algorithms. As these algorithms can in
turn be provided by different components, the properties of the key-value store
component depend on the properties of the selected hash-component.

Obviously, the developer needs profound knowledge about all available com-
ponents and their properties to select the most suitable component composition.
Particularly challenging is the consideration of properties that depend on the
properties of other components. Finally, such design decisions are in most cases
not explicitly documented.

In this paper, we target the problems described above and introduce the
property description framework ProDesc for composable software. This frame-
work contains a description language with a bespoke type system to support the
developer. ProDesc allows to resolve the dependencies of properties between dif-
ferent components and balances between detailed modeling and ease of use. We
propose to use utility functions to express the requirements and preferences on
component compositions. During the development of the software, the compo-
nent properties and utility functions are specified. At compile time, a verification
of the properties and components ensures the correctness of the model. Assum-
ing a valid property description, ProDesc determines optimal compositions at
runtime. Additional tools such as transformations to feature diagrams support
the developer.

In Section 2, we discuss existing approaches for property description and com-
ponent selection. Based on this, we present an extended overview of the descrip-
tion model (Section 3), the type system (Section 4), and the property description
language (Section 5) of ProDesc. Afterwards, we describe a UML-like graphical
notation (Section 6). In Section 7, we present two model transformations to fea-
ture diagrams. Section 8 describes how the preferences of the software developer
are covered by the utility function. Additionally, we present an algorithm to de-
termine the optimal component composition. In the case study and evaluation
(Section 9), we discuss multiple examples and show performance measurements.
We close with a discussion and outlook.

2 Related Work

Several domains in software engineering deal with property description and op-
timization based on these descriptions. Before going into detail, we want to em-
phasize that ProDesc intentionally does not distinguish between functional, non-
functional and extra-functional properties [1], characteristics [2], attributes [3],
qualities [2], or service parameters [4], as those terms are used differently in the
literature. We handle all of them as properties because a differentiation is nei-
ther needed nor constructive for our approach. In contrast to most related work,
the presented approach is domain agnostic and does not introduce a vocabulary
or ontology. In the following, we discuss related work in the domains of UML,
component based systems, web service composition, and self-adaptive systems.

UML Based Approaches: Based on the observation that “most model-
ing languages provide support for the description of functional behavior, [but]

A Property Description Framework for Composable Software 269

describe non-functional requirements merely using simple comments or infor-
mal structures” [2], the UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms [2] introduces a catalog with QoS
characteristics and categories. The UML Profile for Schedulability, Performance
and Time [5], which models real-time characteristics, specifies properties like
response time, delay, and is blocking. Both profiles, however, do not provide a
general framework for specifying properties. In particular, there is no system-
atic approach to represent dependencies between components, properties and
the composition. Additionally, there is only minor support for a specification of
requirements and preferences based on the modeled properties.

Several approaches provide a more flexible definition of properties. Cysneiros
et al. [6] propose a Language Extended Lexicon to define vocabulary and to
reflect non-functional requirements in UML. Espinoza et al. [7] annotate non-
functional properties for quantitative analysis. Therefore, they distinguish be-
tween quantitative (measurable, countable, and comparable) and qualitative
properties and introduce concrete non-functional property types (duration-type,
rate-type, probability-type, size-type). Nevertheless, dependencies between prop-
erties and an explicit notion of compositional variability are still missing.

Component Based Systems: Automated software component retrieval sys-
tems focus on an increased software reuse. Morel et al. [8] use specifications
to abstractly represent implementations and theorem-provers to formally verify
reusability. In contrast, we assume that the developer already knows the required
interface and therefore concentrate on optimizing the component composition.

Multiple property description approaches are proposed for component models.
Zinky et al. [9] propose a QoS Description Language (QDL) complementary to
the interface description language (IDL) of CORBA. However, their concepts
concentrate on distributed systems and the middleware layer and do not consider
dependencies between multiple components in a composition.

Eichberg et al. [10] enrich the interface description of components using feature
models. Based on a list of desired variants, the so-called feature requirement
specification, a suitable component is determined. Lacking an explicit assessment
of different properties, only the number of instantiated components is optimized.

Web Service Composition: Dustdar et al. [11] present a comprehensive
survey on web service composition and the different composition approaches. For
example, the automated web service composition in [12] uses ontologies of QoS
metrics. The Web Service Level Agreement Language [4] (WSLA) can specify
properties of web services. A systematic description of the variability and their
properties is missing in all the presented approaches.

Leitner et al. [13] discuss cost-based web service composition optimization.
Rosenberg et al. [14] additionally use a QoS-aware composition model to apply
metaheuristic optimizations. Their findings might be transferred to our opti-
mization problem. However, these concepts concentrate on the optimization and
provide only limited property description support.

Adaptive Systems: Compositional adaptation uses dynamic recomposition
at runtime to achieve adaptable behavior. Therefore, a representation of the

270 A. Frömmgen, M. Lehn, and A. Buchmann

possible compositions is required. Bencomo et al. [15] use two domain-specific
languages. The OpenCOM DSL is used to specify components and interfaces.
As OpenCOM does not provide property description concepts, the Transition
Diagrams DSL specifies the possible adaptability as on-event-do-action policies.
The visualization of the variability as feature diagram is comparable with our
Component-as-Feature Transformation (Section 7.2).

Hallsteinsen et al. [16,17] use a utility function to determine and adapt to the
most suitable composition. Therefore, they annotate components with proper-
ties. The authors conclude that it is hard for developers to express properties
and utility functions. However, their approach lacks a clear type system and
a language to express these properties. Together with the support for complex
compositions and dependencies we believe that our approach enables the devel-
oper to express a wide range of properties and utility functions.

3 Overview of the Description Model

In this section, we give an extended overview of our description model and
present the meta-model of ProDesc.

A software developer who uses components has to choose between different
components which implement the same interface. We assume that the software
developer knows the interface she requires. In the example in Figure 1, the two
components C1 and C2 provide different properties. The properties of component
C1 might even depend on the component used for interface I2. The developer
needs time to choose the most appropriate component composition or simply
chooses any feasible composition. However, the developer’s choice is most prob-
ably not explicitly documented in the source code. Additionally, the choice might
depend on environment variables, e.g. the network availability, the energy supply,
CPU features or the display resolution.

Fig. 1. Simple variability example with multiple components and interfaces

Figure 2 illustrates the meta-model of ProDesc. The entities Component, Op-
eration, and Interface (top right box) have a direct counterpart implemented
in the host programming language. We assume a component is a modular unit
with well-defined interfaces (e.g. a single class or a class which encapsulates more
complex structures). The semantic of the three entities matches those of object
oriented languages. Like in UML, a component can use and realize interfaces [18].
Interfaces specify operations that the realizing component has to implement.

Interfaces, Components, Operations, and the Environment have Property In-
stances. A property instance has a name and refers to a property. The set of

A Property Description Framework for Composable Software 271

Fig. 2. The meta-model of ProDesc

property instances builds the vocabulary for the property description. The de-
veloper therefore has to specify the required property instances. A property can
be a concrete value or an expression which refers to other properties. Thus, an
expression can compose multiple properties. The type system and the different
types (bottom box) are explained in Section 4. A uses relationship between a
component and an interface can have multiple Required Properties, which are
Boolean Expressions and specify additional constraints.1

ProDesc concentrates on the domain of property description of composed
components. Following a clear separation of concerns, ProDesc only specifies
components, interfaces and operations as far as needed for the presented ap-
proach to minimize the modeling overhead.

The current implementation of ProDesc assumes that the concrete component
instance graph at runtime is an arborescence. However, it might be interesting
to weaken this assumption and add support for acyclic directed graphs in the
future. ProDesc does not assume a certain host language. A system might even
contain multiple components implemented in different programming languages
or wrappers for Web Services. In conjunction with the strategy pattern [19], a
component can represent an algorithm.

4 The Property Type System

ProDesc is designed to easily express and evaluate properties for complex compo-
sitions of components. Therefore, it has a strong type system which assigns each
expression an unambiguous type. Additionally, the language is statically typed,
which enables compile time checking and thus supports the software developer.

ProDesc has four built-in types which are inspired by Steven’s scales of mea-
surement [20]. The language does not use the common base types such as integer,
double, or char, as these are improper for property description. Instead, the built-
in types are specifically chosen to support property description and to be easy
1 The Required Properties should not be confused with the Object Constraint Lan-

guage (OCL). OCL expresses constraints on the known UML elements, e.g. classes,
attributes, and associations. Required Properties use the ProDesc properties.

272 A. Frömmgen, M. Lehn, and A. Buchmann

to use for the developer. In the following, we first present the four built-in types
and then specify the semantics of the different operations:

Boolean Type: The Boolean type has the same semantics as in other pro-
gramming languages. A Boolean property evaluates to true or false and can be
compared using the = and �= operators. Examples of Boolean properties from
the network domain are reliable and in order delivery.

Nominal Type: Nominal properties have one out of a finite set of possible
values. The set of different values implies no order and can therefore only be
compared using the = and the �= operator. Nominal properties are useful to
describe one of multiple options, e.g. WiFi, UMTS, or LTE.

Ordinal Type: Ordinal properties have one out of a finite sequence of dif-
ferent values. Thus, they can be compared using the operators =, �=, <, and >.
However, the distance between the different values is not specified. Therefore,
operations like addition and multiplication are not valid. Ordinal properties are
suitable for modeling properties, as they allow a good balance between modeling
detail and overhead. The developer can express a qualitative relation without
the need for expressing the exact quantitative difference, e.g. the execution time
could be low, medium, or high.

Ratio Type: Ratio properties have numeric values and are internally rep-
resented by double precision floating point values. They support most common
operators (Table 1) but require more detailed domain knowledge than the other
types. The Ratio type allows an accurate modeling of quantitative properties
such as the execution time in seconds and availability.

Table 1 specifies the operations based on the four built-in types, where [t] de-
notes a property or expression of the type t. The operations are used to compose
or aggregate other properties. Most of the operations have intuitive semantics,
e.g. the [t1] = [t2] operator evaluates to true iff [t1] and [t2] have the same type
and the same value. The [o1] := inc([o2]) operator returns the next higher value
of [o2]. If [o2] is the highest possible value, [o2] is returned. The [o] := min([o], ...)
operator returns the minimal value of the provided properties. The additional
ternary operator if [b] then [t1] else [t2] allows a case distinction. Depending
on the evaluation of the Boolean expression [b], [t1] or [t2] is returned.

We intentionally do not support user-defined types, as this would increase
the complexity of both description and utility expression. However, the native

Table 1. The operations on the four built-in types of ProDesc

Type Operations
Boolean [b] := [b] = [b] [b] := [b] �= [b] [b] := [b] && [b] [b] := [b] ‖ [b]
Nominal [b] := [n] = [n] [b] := [n] �= [n]
Ordinal [b] := [o] = [o] [b] := [o] �= [o] [b] := [o] < [o] [b] := [o] > [o]

[o] := inc([o]) [o] := dec([o]) [o] := min([o], ...) [o] := max([o], ...)
Ratio [b] := [r] = [r] [b] := [r] �= [r] [b] := [r] < [r] [b] := [r] > [r]

[r] := [r] + [r] [r] := [r] − [r] [r] := [r] ∗ [r] [r] := [r] : [r]
[o] := min([o], ...) [o] := max([o], ...)

A Property Description Framework for Composable Software 273

support of additional types and their operations such as probabilities and their
distribution, and support for θ-notation might be added in future releases.

5 Modeling Language

Based on the meta-model and the type system, we present the ProDesc descrip-
tion language syntax. In the following we describe the four parts of ProDesc
using simple examples. [] brackets emphasize optional keywords.

Property Definition: The property definition is used to specify property
instances with unique names. This is the vocabulary of the domain. Listing 1
shows an example for each built-in type. For nominal and ordinal properties, the
possible values are enumerated as sets and sequences respectively.
� �

1 property Reliable as boolean;
2 property Encryption as nominal {RSA, ECC, None};
3 property ExecutionTime as ordinal (Low, Medium, High);
4 property BatteryStatus as ratio;

� �

Listing 1. Example of the property definition in ProDesc.

Environment Definition: Properties of the environment are specified in the
optional environment definition. Listing 2 shows the definition of an external
environment variable. External variables are used for properties whose values
are not available at design time and therefore retrieved at runtime.
� �

1 environment {
2 BatteryStatus = [volatile] retrieveFromStaticMethod(
3 "InternalClass", "getBatteryStatus");
4 }

� �

Listing 2. Environment definition in ProDesc.

The ProDesc Framework supports two kinds of external variables. The de-
veloper can either specify a host language method which is invoked at runtime,
or explicitly set the value at runtime using a setter-method provided by the
framework. The retrieve methods are black boxes for the ProDesc Framework
and should have no side effects. The volatile attribute specifies that the external
variable might change during runtime. Therefore, ProDesc reads the variable
each time an optimal composition is determined. The externally retrieved values
are dynamically type checked and converted to the built-in types. Additional
sources for external variables (e.g. Web Services) can be used with a wrapper in
the host language. The Web Service Level Agreement Language [4] supports a
similar approach which allows to specify Web Services as a source for variables.

Interface Definition: The interface definition (Listing 3) specifies the prop-
erties of the implementing components and their operations. The implementing
component can override the property values and expressions of the interface.

274 A. Frömmgen, M. Lehn, and A. Buchmann

� �

1 interface IFoo {
2 Reliable;
3 Encryption = None;
4 operation IOp {
5 ExecutionTime = Medium;
6 }
7 }

� �

Listing 3. The definition of an interface with properties in ProDesc.

Component Definition: The component definition (Listing 4) contains mul-
tiple parts. The Boolean requires expression (line 2) determines under which con-
ditions the component can be instantiated. Based on the implemented interfaces
(line 1), the definition of concrete property values or expressions for all properties
specified in the interfaces is enforced. This is comparable with object-oriented
languages, where a class has to provide all methods of the implemented inter-
faces. The used interfaces (line 3) specify an alias which refers to the concrete
instance. A used interface can express requirements on the used components as
Boolean expression. Additionally, used interfaces can be optional.
� �

1 component CFoo implements IFoo {
2 requires Environment.BatteryStatus > 20;
3 uses [optional] IBar as alias [requires alias.reliable =←↩

true];
4 Reliable = alias.reliable [optional false];
5 Encryption = RSA;
6 operation IOp {
7 ExecutionTime = inc(alias.IOp.ExecutionTime);
8 }
9 }

� �

Listing 4. The definition of a component in ProDesc.

Expressions use the type system and operations presented in Section 4 to
compose properties based on the used components. The dot syntax allows to
reference components (line 4), operations (line 6), and the environment (line 2).
In case optional components are specified, the ProDesc Framework enforces that
each property value can be evaluated (line 4).

ProDesc can generate a description language template based on the interfaces
and classes in Java and generate Java templates based on the ProDesc descrip-
tion. Additional imports and exports (e.g. XMI-based) to support other tools
such as a model driven development infrastructure can be implemented easily.

Even though it violates the separation of concerns, properties can also be
specified in the host language. This reduces the modeling overhead. For Java,
ProDesc supports annotations as shown in Listing 5.
� �

1 @Property(name="EexcutionTime", value="High")
2 public void insert(String key, String value) {

� �

Listing 5. Example of the Java annotation for property specification.

A Property Description Framework for Composable Software 275

6 Graphical Notation

The graphical notation of ProDesc (Figure 3) is based on the well known class
and component diagrams in UML [18]. Interfaces are visualized using an explicit
notation (InterfaceI 2) or the ball-and-socket notation (InterfaceI 1). Components
are visualized as rectangles containing their properties, operations, and the prop-
erties of their operations. Required properties are annotated on the connecting
edge between the component and the interface or the socket.

Fig. 3. Example of the UML-like graphical representation of ProDesc

ProDesc therefore provides its own viewpoint on the overall architecture.
While the host language and UML class diagrams specify the attributes of com-
ponents, ProDesc describes the properties of components and their operations.

7 Feature Models

ProDesc can be transformed into feature models which are used in the Feature
Oriented Design Analysis to describe the feature-variability of systems. Features
“are user-visible aspects or characteristics of the domain” [21]. ProDesc benefits
from the established feature model analysis, such as the number of possible
configurations, core features which exist in all configurations, dead features which
are not available, and atomic sets of features which always appear together [22].

Feature diagrams, the graphical representation of feature models, introduce
a new viewpoint on the specification and allow domain experts to validate the
ProDesc description at design time. Thus, a feature configuration is an instance
of the model with concrete values for each feature.

In the following, we introduce the Property-as-Feature and the Component-
as-Feature transformation as simple rules. More sophisticated approaches, e.g.
QVT2, could be used as well.
2 http://www.omg.org/spec/QVT/1.1/

http://www.omg.org/spec/QVT/1.1/

276 A. Frömmgen, M. Lehn, and A. Buchmann

7.1 Property-as-Feature Transformation

The Property-as-Feature transformation interprets the properties as features
(Figure 4 left). This leads to a feature diagram which helps to reason about
possible property combinations. A feature configuration contains concrete values
for the properties and thus a concrete instantiation of a composed component.
Depending on the property type, different transformation rules are executed:

Boolean Property �→ optionalFeature
Nominal Property �→ alternativeFeature
Ordinal Property �→ alternativeFeature

Ratio properties cannot be transformed directly. Instead, the developer can
specify explicit intervals which are interpreted as ordinal values and transformed
to alternative features.

Fig. 4. The Property-as-Feature and the Component-as-Feature transformation

7.2 Component-as-Feature Transformation

Interpreting a component as a feature leads to a feature diagram which shows
possible component instantiations. A feature configuration of this model con-
tains the component instances that are created for one component composition.
Figure 4 (right) shows an example of such a transformation. The transformation
algorithm determines the dependencies between the components and creates an
alternative feature for mutually exclusive components.

8 Choosing the Optimal Composition

So far, we have described the property modeling. In this section, we show how
to express the utility function and how the optimal composition is determined.

A Property Description Framework for Composable Software 277

8.1 Expressing Utility

ProDesc strictly separates the property description and the assessment of prop-
erties. A general-purpose goal for a single component would be misleading, as
it depends on the requirements of the application. Even obvious assessments
like decrease memory consumption might be undesirable in cases where the ap-
plication focuses on energy consumption. Therefore, we propose to use a utility
function as the central connection between the modeled properties and the actual
application. ProDesc propagates the requirements through the entire component
composition graph. Based on this, the optimal composition is determined.

Listing 6 shows a utility function which minimizes the size and enforces ECC
(line 1). If there are multiple instances with the same size, the speed is maxi-
mized. In line 2, an instance of the component composition which implements
the IKeyValueStore interface is retrieved. The this-reference is needed to resolve
the calling instance and the dependencies in the composition.
� �

1 UtilityFunction uf = new UtilityFunction().min("size").
2 required("encryption=ECC").maxLowPrio("speed");
3 IKeyValueStore store = model.retrieveInstance(this, "alias",
4 IKeyValueStore.class, uf);

� �

Listing 6. Example of a utility function in Java.

Thus, the utility function makes the assumptions, design decision, and the
trade-offs of the software developer explicit. Different utility aggregation meth-
ods (e.g. weighted sums or products) can be specified easily. ProDesc supports
the generation of the overall utility function and provides additional analysis
such as a what-if analysis.

The utility function supports the following eight expressions:

• requires A boolean expression which has to evaluate to true.
• prefers A boolean expression which is prefered to evaluate to true.
• min, max An ordinal or ratio expression which should be minimized

or maximized.
• minLowPrio, An ordinal or ratio expression which should be minimized

maxLowPrio or maximized if the decision is not unique.
• minUntil, An ordinal or ratio expression which should be minimized

maxUntil or maximized until the specified value is reached.

8.2 Determining the Optimal Composition

Basic Algorithm: The design of ProDesc is driven by the goal of evaluating
the utility and determining the optimal composition. Figure 5 shows a basic
algorithm. The calculation of the utility (Step 2.2) is a recursive evaluation of
the utility expression (Section 8.1) and all their referenced properties.

Please note that the algorithm does not keep the whole composition space in
memory in Step 2. Instead, an iterator generates compositions sequentially and
therefore limits the memory consumption. Additionally, a composition only has

278 A. Frömmgen, M. Lehn, and A. Buchmann

to specify variant points which influence the properties of the utility function.
Compositional decisions which have no effect on the utility can be ignored.

Fig. 5. The basic algorithm to determine the optimal composition

The restricted support of external variables (method invocations without pa-
rameters and side effects) is important for a fast execution of the algorithm.
In order to decrease the selection overhead, our implementation of the ProDesc
framework compiles the optimization algorithm for a given property description
to Java byte code. The algorithm’s time complexity, however, is dominated by
the exponential explosion of the composition space.

Parallel Algorithm: A parallelized version of the presented basic algorithm
reduces execution time. Assuming that the composition space iterator requires a
small fraction α of the total time, we use one thread per core to parallelize step
2.1 and 2.2 with minimal synchronization overhead. Following Amdahl’s Law,
we expect a speedup s for n cores of s = 1

α+ 1−α
n

. The efficient parallization of
the iterator is more difficult and might be implemented in the future.

Further Optimizations Options: Due to the exploding size of the com-
position space, further optimizations could become necessary. Preprocessing at
compile time might reduce the computation at runtime, e.g. through the use of
generated rules. In the area of artificial intelligence, algorithms inspired by statis-
tical physics (simulated annealing) and evolutionary biology (genetic algorithms)
execute a nondeterministic search. Therefore, they might not find the optimal
composition but significantly reduce search complexity. Similar approaches are
applied for web service composition [13].

9 Case Study and Evaluation

In order to evaluate the presented approach, we have implemented the ProDesc
framework for Java. This includes a development environment as well as a run-
time environment. In the following, we discuss properties from a selection of
domains, such as the Java class library and networking, and show a concrete
modeling example. Additionally, we present performance measurements of the
selection algorithm.

A Property Description Framework for Composable Software 279

9.1 Use Cases
In the following, we exemplarily discuss properties of the Java class library, and
of the performance, the security, and the network domain.

Java: The Java class library contains several examples that could benefit from
ProDesc. The Java collections API provides interfaces for different collections,
e.g. Set, List, and Map. The developer has to choose between implementations
with different properties. As she might anticipate the concrete requirements (e.g.
that the insert performance is important but elements will not be deleted), a
utility-based selection is suitable and makes the design decision explicit. Based
on this abstraction, it would be even possible to provide more specialized imple-
mentations in the library without overwhelming the developer.

The various Stream, Reader, and Writer classes of the java.io package are
further examples. Currently, the developer chains implementations, e.g. a com-
pressing GZIPOutputStream and an encrypting CipherOutputStream to achieve
the desired functionality. A utility function that specifies that compression and
encryption are required improves the selection and code maintainability.

Performance: ProDesc can express the estimated execution time of opera-
tions as ratio or ordinal property. Since it is challenging to express the execution
time quantitatively, the ordinal type simplifies property description in most sce-
narios. Operations which use other operations can express their execution time as
the sum (sequential execution) or maximum (parallel execution) of the involved
operations. These concepts can be used for space requirements as well.

Security: Different encryption schemes from the security domain can be ex-
pressed as nominal properties. The properties and parameters of the schemes
(e.g. key size) can be expressed as well. ProDesc supports fundamental Boolean
properties like authentication or authorization. As components can abstract web
services, the properties from the different WS-* specifications, e.g. WS-Security
and WS-Trust, can be expressed as well.

Network: ProDesc can express properties from all layers of the networking
domain. For example, latency and bandwidth are ratio or ordinal properties;
reliability and ordered delivery are Boolean properties. Semantics in the area of
distributed systems as at most once or database isolation levels can be likewise
expressed easily.

9.2 Example
Based on the ProDesc description, shown in its graphical notation in Figure 6, a
software developer who requires a KeyValueStore can express the requirements
as a utility function. The selected composition for the utility function

require(Encryption!=None).require(Persistent).min(put.ExecutionTime)
depends on the environment (the hardware support for RSA) and leads to an-
other composition than

require(Encryption!=None).min(put.ExecutionTime).
The developer can use the optimal KeyValueStore without detailed knowledge
about the actual component composition. Newly developed components can be
easily described and added to the composition space.

280 A. Frömmgen, M. Lehn, and A. Buchmann

Fig. 6. Graphical notation of an extended example with multiple components

9.3 Performance

We evaluated the performance of the selection algorithm for different numbers of
interfaces and components (Table 2). For typical use cases, we expect less than
30 different components, which leads to a composition space size less than 1000.
This can be solved in a few milliseconds, which is acceptable for most usage
scenarios. The Java collections framework, for example, contains about 22 dif-
ferent collection implementations. As the results show, parallelization improves
the execution time as expected by up to 62%.

10 Discussion and Outlook

The presented property description framework ProDesc enables the convenient
and general-purpose description of properties of components and operations. Its
static type system and explicit representation of the compositional variability
simplifies the expression of property dependencies. The transformation to fea-
ture diagrams allows additional analysis. Utility functions make design decisions
more explicit and enforce a clear separation of requirements and properties. The
ProDesc framework increases the loose coupling of components, because the ap-
plication benefits from newly added components without any adjustment. All

A Property Description Framework for Composable Software 281

Table 2. Performance measurements for different numbers of components

Composition 20 50 100 1,000 10,000
Space Size [12 Comp.] [15 Comp.] [20 Comp.] [30 Comp.] [40 Comp.]

1
T

hr
ea

d Iterator 1.1 ms 1.1 ms 1.1 ms 1.2 ms 1.3 ms
Calculation 4.1 ms 4.2 ms 6.1 ms 11.2 ms 85.1 ms
Total Time 5.2 ms 5.3 ms 7.2 ms 12.4 ms 86.4 ms

2
T

hr
ea

ds Iterator 1.1 ms 1.1 ms 1.2 ms 1.2 ms 1.3 ms
Calculation 3.8 ms 4.0 ms 5.6 ms 7.3 ms 51.8 ms
Total Time 4.9 ms 5.1 ms 6.8 ms 8.5 ms 53.1 ms

these features facilitate a valid property description and an optimal component
composition, which leads to improved software. Even though ProDesc is devel-
oped to support composed components, it is well-suited for single component
selections.

Besides further performance optimizations of the selection algorithm, there
are multiple areas for future work. Based on the explicit variability model and
requirements of the components, automated testing could be extended to the
whole composition space. A runtime comparison between monitored properties
and the modeled properties might support the property modeling.

The presented approach allows to choose an optimal composition at runtime
based on the environment. However, the environment might change as well as
the utility function. We believe that the ProDesc framework can serve as a
foundation of compositional runtime adaptation [23].

Acknowledgments. This work has been funded by the German Research Foun-
dation (DFG) in the Collaborative Research Center (SFB) 1053 "MAKI - Multi-
Mechanism Adaptation for the Future Internet".

References

1. Glinz, M.: On Non-Functional Requirements. In: 15th IEEE International Require-
ments Engineering Conference, RE 2007, pp. 21–26 (October 2007)

2. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms Specification (2008)

3. Chung, L., Nixon, B.A., Yu, E.: Non-Functional Requirements in Software En-
gineering. The Kluwer International Series in Software Engineering. Kluwer
Academic (2000)

4. Ludwig, H., Keller, A., Dan, A.: Web Service Level Agreement (WSLA) Language
Specification. Technical report, IBM (2007)

5. UML Profile for Schedulability, Performance, and Time Specification (2005)
6. Cysneiros, L.M., Sampaio do Prado Leite, J.C.: Using UML to Reflect Non-

functional Requirements. In: CASCON. IBM Press (2001)

282 A. Frömmgen, M. Lehn, and A. Buchmann

7. Espinoza, H., Dubois, H., Gérard, S., Medina, J.L., Petriu, D.C., Woodside, C.M.:
Annotating UML models with non-functional properties for quantitative analy-
sis. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 79–90. Springer,
Heidelberg (2006)

8. Morel, B., Alexander, P.: SPARTACAS: Automating Component Reuse and Adap-
tation. IEEE Transactions on Software Engineering 30(9) (2004)

9. Zinky, J., Bakken, D., Schantz, R.: Architectural Support for Quality of Service
for CORBA Objects. Theory and Practice of Object Systems (1997)

10. Eichberg, M., Klose, K., Mitschke, R., Mezini, M.: Component Composition Using
Feature Models. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE 2010. LNCS,
vol. 6092, pp. 200–215. Springer, Heidelberg (2010)

11. Dustdar, S., Schreiner, W.: A survey on web services composition. Journal of Web
and Grid Services 1(1), 1–30 (2005)

12. Tosic, V., Patel, K., Pagurek, B.: WSOL - web service offerings language. In:
Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE
2002 and WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002)

13. Leitner, P., Hummer, W., Dustdar, S.: Cost-Based Optimization of Service Com-
positions. IEEE Transactions on Services Computing 6(2), 239–251 (2013)

14. Rosenberg, F., Müller, M.B., Leitner, P., Michlmayr, A., Bouguettaya, A., Dustdar,
S.: Metaheuristic Optimization of Large-Scale QoS-aware Service Compositions.
In: 2010 IEEE International Conference on Services Computing, pp. 97–104 (July
2010)

15. Bencomo, N., Grace, P., Flores, C., Hughes, D., Blair, G.: Genie: Supporting the
Model Driven Development of Reflective, Component-based Adaptive Systems. In:
Proceedings of the 30th International Conference on Software Engineering, ICSE
2008, pp. 811–814. ACM, New York (2008)

16. Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J.,
Mamelli, A., Papadopoulos, G.A.: A development framework and methodology
for self-adapting applications in ubiquitous computing environments. Journal of
Systems and Software 85(12) (2012)

17. Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjorven, E., Hallsteinsen,
S., Horn, G., Khan, M.U., Mamelli, A., Papadopoulos, G.A., Paspallis, N., Reichle,
R., Stav, E.: A comprehensive solution for application-level adaptation. Software:
Practice and Experience 39(4), 385–422 (2009)

18. OMG Unified Modeling Language, Superstructure (2011)
19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley,

Reading (1995)
20. Stevens, S.S.: On the Theory of Scales of Measurement. Science 103(2684) (1946)
21. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented

domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univer-
sity Software Engineering Institute (November 1990)

22. Benavides, D., Segura, S., Ruiz-Corts, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems (2010)

23. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. Computer 37(7), 56–64 (2004)

Layered Connectors
Revisiting the Formal Basis of Architectural Connection

for Complex Distributed Systems

Amel Bennaceur1,� and Valérie Issarny2

1 The Open University, Milton Keynes, UK
2 Inria Paris-Rocquencourt, France

Abstract. The complex distributed systems of nowadays require the
dynamic composition of multiple components, which are autonomous
and so complex that they can be considered as systems in themselves.
These components often use different application protocols and are im-
plemented on top of heterogeneous middleware, which hamper their suc-
cessful interaction. The explicit and rigorous description and analysis of
components interaction is essential in order to enable the dynamic compo-
sition of these components. In this paper, we propose a formal approach
to represent and reason about interactions between components using
layered connectors. Layered connectors describe components interaction
at both the application and middleware layers and make explicit the role
of middleware in the realisation of this interaction. We provide formal
semantics of layered connectors and present an approach for the synthe-
sis of layered connectors in order to enable the dynamic composition of
highly heterogeneous components. We validate our approach through a
case study in the area of collaborative emergency management.

Keywords: Component interaction, Layered connectors, Middleware,
Dynamic composition, Architectural mismatches.

1 Introduction

In 1994, Allen and Garlan published their seminal paper on formalising archi-
tectural connection [1], for which they received the ICSE most influential paper
award 10 years later. The authors put forward a vision, and a supporting the-
ory, that improved our understanding of software architecture by relying on
the elegance of formal methods to highlight the relation between the different
entities of a software system. These entities are components, which are meant
to encapsulate computation, and connectors, which are meant to encapsulate
interaction [22].

At the same time, another vision that focuses on the implementation of dis-
tributed systems has received an increasing attention among developers, that of
middleware. Middleware is a software entity logically placed between the appli-
cation and the operating system that provides an abstraction that facilitates the
� This work was performed when the author was at Inria.

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 283–299, 2014.
c© Springer International Publishing Switzerland 2014

284 A. Bennaceur and V. Issarny

communication and coordination of distributed components [25]. Fortunately,
the two visions are by no means antagonistic. Indeed, the influence of middle-
ware on the architecture of software systems has long been recognised [21] and
it has been admitted that middleware plays an important role in implementing
connectors [15,19]. However, this influence has not been explicitly formalised and
the relation between connectors and middleware remains ill defined. In this pa-
per, we show how the formalisms used in the literature to describe and analyse
architectural connection can be extended to reason about components interac-
tion at the middleware layer. Considering both the software architecture and
the middleware perspectives allows us to better understand the digital world
surrounding us and also empowers us with methodologies to solve many of the
problems inherent to this complex digital world.

One critical problem is that of architectural mismatches [9]. Architectural
mismatches occur when composing two, or more, software components to form a
system and those components make conflicting assumptions about their environ-
ment. Components may exhibit disparate data types and operations, and may
have distinct business logics, which results in application heterogeneity. Compo-
nents may also rely on different communication standards (e.g., CORBA or
SOAP) which define disparate data representation formats and induce different
architectural constraints, which results in middleware heterogeneity. Architec-
tural mismatches must be solved in order to enable components to be composed
successfully. Since connectors model the exchange of information between compo-
nents and the coordination of their behaviours, solving architectural mismatches
often amounts to finding or creating the appropriate connector that enables their
successful interaction. This connector acts as a translator that performs the data
conversions necessary to solve differences between components’ interfaces and as
a controller that coordinates components’ behaviours. The implementation of
this connector should also consider the different middleware solutions used by
the components involved.

As the modern digital world become increasingly populated with mobile and
ubiquitous computing technology, the scope and boundary of software systems
can be uncertain and can change. As a result, the connectors that regulate com-
ponents interaction cannot be designed and implemented beforehand, but rather
synthesised dynamically. Although much work has been carried out on connec-
tor synthesis [13], existing solutions have not fully succeeded in keeping pace
with the increasing complexity and heterogeneity of modern software, and meet-
ing the demands of runtime support. Solutions either (i) focus on application
heterogeneity and generate the connector that enable the composition of the
components, based on some domain knowledge, but fail to deploy them on top
of heterogeneous middleware [18,24,12,26,17], or (ii) deal with middleware het-
erogeneity while assuming developers to provide all the data translations and
behavioural coordinations that need to be made, as is the case with Enterprise
Service Buses (ESB) [10]. At the best of our knowledge, only Starlink [6] at-
tempts to tackle both application and middleware heterogeneity by providing a
runtime execution engine that allows developers to deploy translators and con-
trollers dynamically. However, it is the role of the developers to specify these

Formal Basis of Architectural Connection for Complex Distributed Systems 285

translators and controllers, which might be somehow restrictive considering the
domain expertise necessary to provide these specifications.

We argue that architectural mismatches are a cross-cutting concern and solu-
tions thereof must consider both application and middleware heterogeneity. On
the one hand, the application layer provides the appropriate level of abstraction
to reason about architectural mismatches and synthesise the appropriate con-
nectors based on knowledge specific to the application domain. On the other
hand, the middleware layer offers the necessary services for realising the syn-
thesised connector and instantiating the specific data structures and protocols
expected by the components at hand. Therefore, we propose a rigorous approach
to model and reason about components interaction from the application down to
the middleware layer. The objective is to provide a systematic solution for solving
architectural mismatches. To this end, we make the following contributions:

– Formalisation of components interactions at both the application and middle-
ware layers. We build upon pioneering work on the formalisation of architec-
tural connection by Allen and Garlan [1] to describe the role of middleware in
the formal description of connectors. The goal is to identify the mechanisms
used by middleware solutions to coordinate the behaviours of components
and their influence on components interaction regardless of the specific mid-
dleware implementation. We also make explicit the semantics of actions used
by the components, using ontologies. The result is the formal definition of
layered connectors that explicitly describe the coordination and the data ex-
change between components at both the application and middleware layers.
Consequently, we can verify the ability to specify and implement connectors
regulating the interaction between highly heterogeneous components.

– Synthesis of layered connectors in order to solve architectural mismatches.
We define an approach that exploits recent advances in both the fields of
software engineering and distributed systems to enable the synthesis of lay-
ered connectors in order to allow the composition of heterogeneous compo-
nents. Note that rather than focusing on a specific technique for translator
or controller synthesis, which we tackle elsewhere [4], we show how these
techniques can be made to work together in order to solve application and
middleware heterogeneity.

– Experimentation with a real-world scenario. To validate our approach, we
consider one representative application domain, that of emergency manage-
ment, as illustrated by the GMES1 initiative. GMES gives a special interest
to the support of emergency situations (e.g., forest fire) across different Euro-
pean countries. Indeed, each country defines an emergency management sys-
tem that encompasses multiple components that are autonomous, designed
and implemented independently, and do not obey any central control or
administration. Nonetheless, there are incentives for these components to
be composed and collaborate in emergency situations. In [2], we used this
scenario to illustrates the role of models@runtime is supporting interoper-
ability; in this paper, we specifically focus on the formal specification and

1 Global Monitoring for Environment and Security –http://www.gmes.info/

http://www.gmes.info/

286 A. Bennaceur and V. Issarny

synthesis of layered connectors to allow the dynamic composition of hetero-
geneous components.

The paper is structured as follows. Section 2 describes background work. Sec-
tion 3 presents the formal semantics of layered connectors and presents our
approach for their synthesis. Section 4 illustrate the approach using the emer-
gency management scenario. Finally, Section 5 concludes the paper and discusses
future work.

2 Background on Connectors

In this section we introduce the foundational concepts of our approach and
explain the relation with existing solutions for the formal description, synthesis,
and implementation of connectors.

Formal Basis of Architectural Connection. We consider as our starting
point the formalisation of architectural connection introduced by Allen and Gar-
lan [1], which uses process algebra to model the behaviours of components to-
gether with their interaction. More specifically, we use FSP (Finite State Pro-
cesses) [16] based on the follow-up work by Spitznagel and Garlan [24]. The
behaviour of a component is modelled using ports while a connector is modelled
as a set of roles and a glue. The roles specify the expected behaviours of the
interacting components while the glue describes how the behaviours of these
components are coordinated. The ports, roles, and glue are specified as FSP pro-
cesses. The syntax of FSP is summarised in Table 1 while we will assume that
the reader has some familiarity with FSP in what follows.

Table 1. FSP syntax overview

Definitions

set S Defines a set of action labels
[i : S] Binds the variable i to a value from S

Primitive Processes (P)

a → P Action prefix
a → P |b → P Choice
P (X =′ a) Parameterised process: P is described using parameter X and modelled

for a particular parameter value, P (a1)
P/{new_1/old_1, ...} Relabelling

Composite Processes (‖P)

P‖Q Parallel composition
forall [i : 1..n] P (i) Replicator construct: equivalent to the parallel composition P (1)‖...‖P (n)
a : P Process labelling

A component can be attached to a connector only if its port is behaviourally
compatible with the connector role it is bound to. Behavioural compatibility
between a component port and a connector role is based upon the notion of
refinement, which implies the inclusion of the traces of the expected behaviour
of the component in those of the observed behaviour of the component [1]. In
other words, it should be possible to substitute the role process by the port
process. Verifying behavioural compatibility allows us to check the presence

Formal Basis of Architectural Connection for Complex Distributed Systems 287

or absence of architectural mismatches. To solve architectural mismatches, we
must find or create a connector whose roles are behavioural compatible with
components’ ports.

Synthesis of Connectors. It is not always possible to find an existing con-
nector for managing interactions between heterogeneous components and it is
difficult and time consuming to design and implement a new connector from
scratch [19]. There are several compositional approaches for connector construc-
tion by reusing existing connector instances [24]. Nevertheless, with the increas-
ing emphasis on mobility and ubiquity of software systems, there is a growing
interest on synthesis of connectors. Rather than expecting a developer to specify
how the connector instances should be composed, solutions for connector synthe-
sis seek to analyse the ports of components in order to generate the connector
that enables their successful interaction. More specifically, the roles of this con-
nector are assumed to be same as the ports of the components involved, and a
glue is synthesised which guarantees that the components interact without errors
(e.g., deadlocks) and exchange meaningful data.

Formal methods focus on the behaviour of components, which they rigorously
analyse in order to reveal potential inconsistencies, ambiguities, and incomplete-
ness. Once potential execution errors are detected, they can be solved either
by eliminating the interactions leading to the errors or by introducing a con-
troller that forces the components to coordinate their behaviours correctly. Only
the introduction of a controller can keep the functionality of the system intact
by enabling its components to achieve their individual functionalities. Existing
solutions for the generation of controllers (e.g., [26,17,12]) often operate on a
high-level abstraction, which makes turning the generated controller into an im-
plementation challenging. Moreover, they often assume that the behaviours of
the components are described using the same set of actions or the correspondence
between the actions of components’ interfaces is provided.

Semantic Web technologies allow us to infer the translations necessary to
reconcile the differences between components’ interfaces. Ontologies play a key
role in the Semantic Web by formally representing shared knowledge about a
domain of discourse as a set of concepts, and the relationships between these
concepts [11]. Ontologies have been extensively used to automate the reasoning
about the information exchanged between software components, especially in
ubiquitous computing environments, so as to infer the translations necessary to
reconcile the differences in the syntax of this information [18]. However, ontology
reasoning techniques focus on differences at the application layer alone, assuming
the use of the same middleware underneath.

Middleware to Implement Connectors. The implementation of a connector
is often based on middleware since middleware provides reusable solutions that
facilitate communication and coordination between components [15,19]. How-
ever, while components and connectors are conceptually separate, middleware
solutions are often invasive since they influence the implementation of the compo-
nents as well. As a result, components implemented using different middleware
solutions are not able to work together. For example, a SOAP client cannot

288 A. Bennaceur and V. Issarny

invoke a REST service even if they use the same application data and obey
the same business logic. Therefore, other middleware solutions have been pro-
posed in order to reconcile the differences between middleware [10]. However,
when these middleware solutions follow different interaction patterns, e.g., shared
memory and publish/subscribe, the differences are such that they cannot always
be solved [7].

The connector classification introduced by Mehta et al. [20] provides a con-
venient framework that helps selecting the appropriate connectors according to
application requirements. It is also used to create a set of guidelines that specify
the conditions under which connectors can be composed. However, this set of
guidelines are based on some intuitive understanding and rules of thumb and
lack the formal basis necessary to make the solution sound and future proof.

The Need for Layered Connectors. In order to enable the dynamic compo-
sition of components, it is important to find the right level of abstraction so as
to reason about the interaction of these components automatically while keeping
enough details to turn the conclusions drawn during the reasoning phase into
a concrete artefact. It is difficult to deal with implementation-level differences,
as it involves managing many details that, although crucial, make the reasoning
very difficult, if not impossible. But an excessive abstraction is also useless as the
decision space toward refining the result of the reasoning and turning it toward a
concrete solution would be immense. Furthermore, knowledge about the domain
in which the components evolve is necessary in order to capture the meaning of
the information they exchange.

We introduce the concept of layered connector in order to capture the
application-level semantics of components interaction as well as the semantics of
the associated middleware solution. Through the concept of layered connectors,
we consolidate the techniques and solutions proposed in the fields of software
engineering and middleware in order to describe the semantics of components
interaction precisely. The goal is to reason about components interaction at a
level of abstraction that would allow us to solve architectural mismatches by
synthesising the appropriate layered connectors that act as (i) translators by en-
suring the meaningful exchange of data between components, (ii) controllers by
coordinating the behaviours of the components to ensure the absence of errors in
their interaction, and (iii) middleware by enabling the interaction of components
across the network so that each component receives the data it expects at the
right moment and in the right format.

3 Formal Specification and Synthesis of Layered
Connectors

We first show how the semantics of middleware solutions can be formalised using
a combination of formal methods and ontologies. Then, we describe how to
represent the relation between these middleware solutions and the application
implemented on top. Finally, we describe how to synthesis layered connectors in
order to enable heterogeneous components to interact successfully.

Formal Basis of Architectural Connection for Complex Distributed Systems 289

3.1 Middleware-Layer Connectors

Communication in distributed systems is always based on low-level message pass-
ing as offered by the underlying network. Expressing communication through mes-
sage passing is harder than using primitives proposed by middleware solutions [25].
While middleware solutions and implementations define diverse IDLs and message
formats, their interaction protocols follow comparably few interaction patterns,
a.k.a., communicationparadigms/types [25] or coordinationmodels/paradigms [10].
An interaction pattern defines the rules to coordinate the behaviours of the compo-
nents. InMehta et al. connector classification [20], these interactionpatternsmatch
with the connector types that provide communication and coordination services.
Our approach seeks to identify, capture and separate the core of a middleware so-
lution, represented by the interaction pattern it uses, from specific details related
to the format of messages. To this end, we introduce, for each interaction pattern,
an ontology that models the essential primitives of this interaction pattern, which
we use to specify the behaviours expected by the components implemented using
a middleware solution based on this interaction pattern as well as how these be-
haviours are coordinated. A specific middleware solution is modelled using special-
isation over the ontology that represents the interaction pattern on which the mid-
dleware solution is based. While in [14] we gave initial thoughts about an ontology
for middleware solutions, the lack of behaviour description for the interaction pat-
terns made it impossible to make a formal analysis of these solutions as well as to
verify transformations between different interaction patterns.

Remote Procedure Call. Remote procedure call (RPC) [5] represents the
most common interaction pattern in distributed systems. RPC directly and ele-
gantly supports client/server interactions with servers offering a set of operations
through a service interface and clients calling these operations directly as if they
were available locally. The interaction is supported by a pairwise exchange of
messages from the client to the server and then from the server back to the
client, with the first message containing the operation to be executed at the
server and associated arguments and the second message containing any result
of the operation. To interact according to RPC, the client and the server must
agree on the format of the messages they exchange as well as the encoding of the
data, which represent the arguments and results, enclosed in these messages.

<<owlClass>>
receiveResponse

<<owlClass>>
receiveRequest

<<owlClass>>
sendResponse

<<owlClass>>
methodName

<<owlClass>>
argument

<<owlClass>>
returnValue

0..1 + follows {some}

+hasInput {some}

+hasOutput {some}

+hasOutput {some}

+hasInput {some}

+hasOutput {some}

<<owlClass>>
SOAPRequest

<<owlClass>>
SOAPResponse

<<owlClass>>
sendRequest

0..1 + follows {some}

+hasInput {some}

<<owlClass>>
SendSOAPRequest

<<owlClass>>
ReceiveSOAPResponse

<<owlClass>>
ReceiveSOAPRequest

<<owlClass>>
SendSOAPResponse

Fig. 1. The RPC ontology specialised
with SOAP [14]

Client (X =′ op) = (sendRequest[X] → receiveResponse[X]
→ Client).

Server (X =′ op) = (receiveRequest[X] → sendResponse[X]
→ Server).

RPCGlue (X =′ op)=(sendRequest[X] → receiveRequest[X]
→ sendResponse[X]
→ receiveResponse[X] → RPCGlue).

‖RPCInteraction =((forall[op : Interface]Client(op))
‖ (forall[op : Interface]RPCGlue(op))
‖ (forall[op : Interface]Server(op))).

Fig. 2. RPC behavioural description

290 A. Bennaceur and V. Issarny

Figure 1 depicts the RPC ontology. The invocation of an operation is achieved
using sendRequest, which specifies the operation invoked using methodName and
the associated argument, possibly followed by a receiveResponse, which includes
the operation invoked together with the results returnValue. The server gets the
operation call using the receiveRequest primitive. If the result of this operation
is not empty, the server returns it using the sendResponse primitive. Figure 1
further shows how the RPC ontology is specialised to describe SOAP. Note
that even though SOAP supports the sending and reception of messages inde-
pendently, it is often used to realise RPC-based interactions, especially in the
context of Web Services. In this context, SOAPRequest includes methodName
and argument while SOAPResponse encompasses methodName and returnValue.

Figure 2 describes how the behaviours of the client and server are coordi-
nated. The variable op defines the operation signature that is made up of the
methodName, argument, and returnValue. The set of all operations signatures is
denoted by Interface. The precise definition of the Interface set is specific to the
application.

Distributed Shared Memory. Distributed Shared Memory (DSM) provides
developers with a familiar abstraction of reading or writing (shared) data struc-
tures as if they were in their own local address spaces. A DSM-based middleware
enables components to read and write data in the shared memory, regardless of
the exact location of the data. Nevertheless, the structure of the shared data is
defined at the application layer and the middleware does not provide any guaran-
tee about when data is made available and how long it will reside in the shared
memory. In other words, the synchronisation between the readers and writers
also needs to be managed at the application layer.

<<owlClass>>
read

<<owlClass>>
write

<<owlClass>>
dataChannel

<<owlClass>>
data

+hasIntput {some}
+hasOutput {some}

+hasInput {some} +hasOutput {some}

+hasOutput {some}

+IsAssociatedWith {some}

Fig. 3. DSM ontology [14]

Writer(X =′ data)=(write[X] → Writer).
Reader(X =′ data,Y =′ dataChannel) = (read[X][Y] → Reader).
SharedMemory(X =′ data) = (write[X] → P [X]),
P [X][a : DataChannels] = (if (X matches a)

then read[X][a : DataChannels]
→ P [X]).

‖DSMInteraction =((forall[data : Data]Writer(data))
‖ (forall[data : Data]SharedMemory(data))
‖ (forall[data : Data][dataChannel :
DataChannels]Reader(data, dataChannel))).

Fig. 4. DSM behavioural description

Figure 3 illustrates the DSM ontology. Two primitives are used: write, which
adds data to the shared memory and read, which retrieves data from the shared
memory. The dataChannel concept allows the selection of the data to read, while
every data is associated with some dataChannel.

The coordination of the behaviours of components, which can be considered
as readers or writers, is achieved through the shared memory as depicted in
Figure 4. Since FSP supports only finite state models, we must represent data
and dataChannel as sets. The precise definition of these sets depends on the
application that uses the DSM. Note that there is one process P per data item,
which deals with the several reads assuming that the data are persistent, i.e. the
data can be read infinitely often. The matches function indicates whether the

Formal Basis of Architectural Connection for Complex Distributed Systems 291

data channel specified in the read corresponds to the data managed by P . It is
the role of the middleware to implement the matches function.

Publish/Subscribe. Many applications require the dissemination of informa-
tion or items of interest from a large number of producers to a similarly large
number of consumers. Publish/subscribe middleware solutions provide an in-
termediary service, a broker, that ensures that information generated by pro-
ducers is delivered to the consumers that want to receive it. In other words,
publish/subscribe middleware solutions (sometimes also called distributed event-
based middleware) allow subscribers to register their interest in an event, or a
pattern of events, and ensure that they are asynchronously notified of events gen-
erated by publishers. The task of the publish/subscribe middleware is to match
subscriptions against published events and ensure the correct delivery of event
notifications. The expressiveness of publish/subscribe middleware solutions is
determined by the type of event subscriptions they support: either subscriptions
are made using specific topics (also referred to as subjects) which the events
belong to, or based on the content of the event.

<<owlClass>>
subscribe

<<owlClass>>
getEvent

<<owlClass>>
publish

<<owlClass>>
eventType

<<owlClass>>
event

0..1 + follows {some}

+hasOutput {some}
+hasIntput {some}

+hasOutput {some}
+hasOutput {some}

+hasOutput {some}

<<owlClass>>
unsubscribe

0..1 + follows {some}

Fig. 5. Publish/Subscribe ontology [14]

Publisher(X =′ event) = (publish[X] → Publisher).
Subscriber(X =′ event,Y =′ eventType)

=(subscribe[Y] → getEvent[Y] → Subscriber).
Broker =P ,
P =(subscribe[eventType : EventTypes]

→ MATCH [eventType]
| publish[Events] → P),

MATCH [eventType : EventTypes]
=(publish[event : Events] →

if (event matches eventType) then
getEvent[event] → MATCH [eventType]

else MATCH [eventType]).
‖PubSubInteraction=((forall[event : Events]Publisher(event))

‖ (Events : Broker){publish/Events.publish}
‖ (forall[event : Events][eventType :

EventTypes]Subscriber(event, eventType))).

Fig. 6. Publish/Subscribe behavioural de-
scription

Figure 5 depicts the Publish/Subscribe ontology. The subscribe primitive,
which is parameterised by eventType that defines a filter over the set of all
possible events, is used to express an interest in a set of events. The events are
delivered to subscribers using getEvent. The unsubscribe primitive is used to re-
voke a subscription. The publish primitive is used to disseminate an event event
to interested subscribers.

The behaviours of publishers and subscribers are coordinated using a broker
as described in Figure 6. Similarly to DSM, we represent event and eventType
as sets while the precise definition of these sets depends on the application that
uses the publish/subscribe middleware. Note that we define several MATCH
processes, each of which manages the subscriptions related to one specific event
type. The matches function indicates whether the published event is of the type
managed by the specific MATCH process. The middleware is in charge of im-
plementing this function.

To sum up, there are different interaction patterns that define specific rules
to coordinate the behaviours of components. While we present and formalise the

292 A. Bennaceur and V. Issarny

interactions patterns most commonly used in the development of middleware
solutions, we are aware that some middleware are not represented, e.g., stream-
based middleware solutions. The case of streaming solutions is to be explored in
future work.

3.2 Bridging the Application and Middleware Layers

Whether expressed as operation calls, data read and write, or event publication,
component interactions mainly consists in the production and consumption of
information. The production of information in the environment is modelled using
provided actions while the consumption from the environment is modelled using
required actions, with the understanding that required actions are received from
and controlled by the environment, whereas provided actions are emitted and
controlled by the component. More specifically, a required action 〈op, i, o〉, where
the symbols op, i, and o are references to concepts in a domain ontology O,
represents a consumption of a functionality op by sending the appropriate input
data i and receiving the corresponding output data o. The dual provided action2

〈op, i, o〉 uses the inputs and produces the corresponding output.

op = methodName
i = argument
a = returnV alue

op = dataChannel
i = data
a = data

op = eventType
i = eventType
a = event

Server

Client

Writer

Reader

Publisher

Subscriber

Provided Action

Required Action

RPC DSM

ReceiveRequest[methodName][argument]

ReceiveResponse[methodName][returnV alue]

SendResponse[methodName][returnV alue]

Write[data]

Read[dataChannel][data]

Publish[event]

Subscribe[eventType]

GetEvent[event]

Unsubscribe

SendRequest[methodName][argument]

<op, i, a>

<op, i, a>

Publish/Subscribe

Middleware LayerApplication Layer

Fig. 7. Mapping interaction patterns primitives to required/provided actions

All middleware solutions, regardless of the interaction pattern they are based
on, provide an abstraction that represents required and provided actions. Fig-
ure 7, which revisits that in [14], shows how the primitives associated with each
interaction pattern, and defined in the associated ontology, are mapped to re-
quired/provided actions. In RPC, the server provides an action whose function-
ality is expressed by the methodName, it uses as input argument and generates
returnValue. The associated client requires this same action. In DSM, it is the
writer that provides an action while the functionality is enclosed in the data
itself as data is associated with a specific dataChannel. The reader selects data
available on some dataChannel. In publish/subscribe, the publisher provides an

2 We use the overline as a convenient shorthand to denote provided actions.

Formal Basis of Architectural Connection for Complex Distributed Systems 293

action whose functionality is represented by the event type. The subscriber se-
lectively consumes these events by subscribing to a specific eventType, recalling
that each event is associated with some eventType.

The formalisation of middleware interaction patterns allows us to define, and
verify, transformations between required actions implemented using one interac-
tion pattern and provided actions implemented using another interaction pat-
tern. Furthermore, since every middleware solution specialises some interaction
pattern, these transformations can also be specialised with the primitives of
specific middleware solutions. For example, consider the case of a required ac-
tion implemented using RPC and a provided action implemented using DSM,
i.e. interaction between Writer and Client3. We can specify a transformation be-
tween Writer and Client that consists in intercepting the request and converting
the methodName and arguments into dataChannel. Then, using dataChannel to
read data, which is transformed into the appropriate returnValue and sent back
as a response to the client. This is formally specified as follows:

Client (X =′ op) = (sendRequest[X] → receiveResponse[X] → Client).
Writer(Y =′ data) = (write[Y] → Writer).
RPC2DSMGlue(X =′ op, Y =′ dataChannel, Z =′ data) = (receiveRequest[X] → translate[X][Y]

→ read[Y][Z] → translate[Z][X] → sendResponse[X] → RPC2DSMGlue).
‖RPC-DSM = ((forall[op : Interface]Client(op)) ‖ (forall[op : Interface]RPCGlue(op))

‖ (forall[data : Data]Writer(data)) ‖ (forall[data : Data]SharedMemory(data))
‖ (forall[op : Interface][data : Data][dataChannel : DataChannels]

RPC2DSMGlue(op, data, dataChannel))).

where the sets Interface, Data, and DataChannels, as well as the translations
translate[X][Y] and translate[Z][X] performed by RPC2DSMGlue, are specific
to the application. We can easily verify that ‖RPC-DSM is free from deadlocks.
Note that the specification of this connector depends on the translations per-
formed at the application layer. In the subsequent section, we show how these
transformations between interaction patterns can help implementing the layered
connector that regulates components interaction from the application down to
the middleware layer.

3.3 Synthesis of Layered Connectors

To enable the dynamic composition of highly-heterogeneous components, i.e.
components featuring differences at both the application and middleware lay-
ers, we must synthesise the layered connector that ensures that each component
receives the data it expects at the right moment and in the right format. Because
of space considerations and because the focus of the paper is on describing an
approach to solve architectural mismatches between highly-heterogeneous com-
ponents rather than on devising a specific approach for translator or controller
synthesis, we will present the gist of each synthesis step while details can be
found elsewhere [3].

The first step consists in using domain knowledge, which is represented us-
ing the adequate domain ontology, to calculate the correspondences between the
3 The description of all other possible cases can be found in [3].

294 A. Bennaceur and V. Issarny

actions required by one component and those provided by the other, that is
translator synthesis (see Figure 8, ❶). For each correspondence identified, we
associate a matching process that synchronises with each component and per-
forms the translations necessary to reconcile the differences in the syntax of the
input/output data used by each component.

The second step consists in composing the matching processes in a way that
guarantees that the components will reach their termination states without errors
such as deadlocks, that is controller synthesis (see Figure 8, ❷). In [3] we pro-
pose an approach that combines constraint programming and ontology reasoning
to compute the correspondences between the actions used by the components,
which we then use to synthesise the controller.

parsers/
composers

Translator Synthesis1

Concretisation3

Controller Synthesis2

Domain knowledge
(Ontology)

Layered Connector

fa
fb

fc

fa

fb fc

fa1

fa2

fb1

fb2

receiveRequest(opa1 , ia1)

fc

receiv
eRequ

est(opb1
, ib1)

read(opb2 , ib2 , ib2)

read(opc2 , ic2 , ic2)
read(opa2 , ia2 , ia2)

sendResp
onse(opa1

, oa1
) sendResponse(opb1 , ob1)

Parser 2

Parser 1

Model of
Component 1

Component 1

Model of
Component 2

Component 2

Composer 2

Composer 1

M
at

ch
in

g

p
ro

ce
ss

es
C

o
n

tr
o

lle
r

Fig. 8. Overview of our approach to the synthesis of layered connectors

Finally, concretisation entails the instantiation of the data structures expected
by each component and their delivery according to the interaction pattern de-
fined by the middleware based on which the component is implemented (see
Figure 8, ❸). To this end, we rely on the mappings defined in Section 3.2 to
refine the matching processes. In addition, the middleware ontologies, which are
specialised with the middleware solutions used by each component (see Figure 1),
serve specialising the transformations between the different interaction patterns.
We also assume that parsers and composers dedicated to specific middleware so-
lutions, can be used. A middleware-specific parser intercepts network messages
conforming to the associated middleware solution and processes them in order
to extract the relevant data. For example, a SOAP parser allows us to access the
methodName and argument fields without a need to parse the network messages.
In a dual manner, a middleware specific composer creates adequate network
messages given the necessary data. For example, a SOAP composer allow us to
create an appropriate SOAP response by simply giving the methodName and
returnValue. More specifically, we rely on the Starlink framework [6] to generate
parsers and composers for different middleware solutions.

Formal Basis of Architectural Connection for Complex Distributed Systems 295

4 Layered Connectors in Action: The GMES Case

To provide insight into the benefits of using the synthesis of layered connectors to
support the dynamic composition of heterogeneous components, we now present
the experiment we conducted in the context of the GMES initiative [8]. GMES is
the European Programme for the establishment of a European capacity for Earth
Observation. In particular, a special interest is given to the support of emergency
situations (e.g., forest fire) across different European countries. GMES makes a
strong case of the need for solutions to enable multiple, and most likely het-
erogeneous, components to collaborate in order to perform the different tasks
necessary for decision making. These tasks include collecting weather informa-
tion, locating the agents involved, and monitoring the environment.

Country 1 Country 2

Weather Service

Positioning-A

Weather Station Client

Positioning-BC2 Positioning-B Subscriber

UAV ClientUAVUGV

SOAP

SOAP

SO
AP

CORBA

AMQP

SOAP

Weather Station

Fig. 9. The GMES example

Figure 9 depicts the case where the emergency system of Country 1 is com-
posed of a Command and Control centre (C2) which takes the necessary deci-
sions for managing the crisis based on the information about the weather pro-
vided by the Weather Service component, the positions of the various agents
in field given by Positioning-A, and the video of the operating environment
captured by UGV (Unmanned Ground Vehicle). The components of Country 1
use SOAP to communicate. Country 2 assists Country 1 by supplying compo-
nents that provide C2 with extra information. These components are Weather
Station, Positioning-B, and UAV (Unmanned Aerial Vehicle). However, C2 can-
not use these components directly. Indeed, Weather Station is implemented us-
ing CORBA and provides specific information such as temperature or humidity
whereas Weather Service, which is used by C2, returns all of this information us-
ing a single operation. Furthermore, Positioning-A is implemented using SOAP
whereas Positioning-B is implemented using AMQP and hence communicates
according to publish/subscribe. Furthermore, UGV requires the client to login,
then it can move in the four cardinal directions while UAV is required to takeoff
prior to any operation and to land before logging out. Table 2 summarises the
differences between Country 1 and Country 2 components. We refer the inter-
ested reader to [8] for further details about each component. To enable C2 to
use the components provided by Country 2, the appropriate layered connectors

296 A. Bennaceur and V. Issarny

Table 2. Application and middleware differences in GMES cases

Case Application Differences Middleware Differences

Weather one-to-many SOAP vs. CORBA
Positioning one-to-one SOAP vs. AMQP (RPC vs. Pub/Sub)
Vehicle Control extra actions —

have to be synthesised. For space considerations we only describe the Weather
case in the following; the detailed description of all the cases can be found in [3].

The interface of C2 includes three required actions login, getWeather, and
logout. C2 first logs in, invokes getWeather several times, and finally logs out.
Since C2 interacts using SOAP, then each of the required actions is realised
by invoking the appropriate operation op, which belongs to the set {login,
getWeather, logout}, by sending a SOAP request and receiving a SOAP response,
which is formalised as follows:

set C2_weather_actions = {login, getWeather, logout}
C2_weather_role = (req.login → P1),
P1 = (req.getWeather → P1 | req.logout → C2_weather_role).
SOAPClient (X =′ op) = (req.[X] → sendSOAPRequest[X] → receiveSOAPResponse[X]

→ SOAPClient).

The interface of Weather Station encompasses three provided actions login
getT emperature, getHumidity, and logout. Weather Station expects clients to
login first, then ask for the temperature or humidity several times, and log out to
terminate. Note that the two actions getT emperature and getHumidity can be
performed independently. For each provided action, Weather Station receives a
CORBA request, which it processes, and then sends the corresponding response:

set WeatherStation_actions = {login, getTemperature, getHumidity, logout}
WeatherStation_role = (prov.login → P2),
P2 = (prov.getTemperature → P2 | prov.getHumidity → P2

| prov.logout → WeatherStation_role).
CORBAServer (X =′ op) = (prov.[X] → receiveCORBARequest[X]

→ sendCORBAResponse[X] → CORBAServer).
The first step is to compute the necessary translations between the actions of

C2 and Weather Station given some knowledge about the application domain
represented by the GMES ontology [8]. Beside the semantic correspondences
between the login and logout required and provided actions, there is also one
between the getWeather action required by C2 and the sequence of actions get-
Temperature and getHumidity provided by Weather Station. Once the correspon-
dence identified, we must compute the associated translation functions. There-
fore, in addition to the domain ontology, we also use XML schema matching
techniques to identify related elements between the schema of the input/output
data of the actions [23].

Each correspondence is associated with a matching process. Note though that
getWeather may be translated into getTemperature followed by getHumidity or
getHumidity followed by getTemperature, which results in some ambiguity with
which the controller must deal by selecting one of the matching processes. This
selection may be motivated by some non-functional property or the length of the
sequences of actions. In our example, let us assume that the selected matching
process translates the getWeather action required by C2 into the sequence of get-
Temperature followed by getHumidity provided by Weather Station. In addition,

Formal Basis of Architectural Connection for Complex Distributed Systems 297

the controller must compose the matching processes in the right order, i.e. first
matching the login actions, then getWeather with getTemperature followed by
getHumidity, and finally the logout actions. The resulting controller is as follows:

Controller = (req.login → prov.login → P),
P = (req.getWeather → prov.getTemperature → prov.getHumidity → P

| req.logout → prov.logout → Mediator).

Finally, the concretisation step involves dealing with differences between the
middleware solutions used to implement the two components. Let SOAPImpl
and CORBAImpl denote the middleware-layer connectors associated with the
SOAP and CORBA middleware solutions respectively, each of which is asso-
ciated with dedicated parsers and composers. Even though the format of the
requests/responses is different, the interaction pattern is the same and can be
transformed into primitives from the RPC ontology. The resulting layered con-
nector (‖WeatherSystem) is described as follows:
‖WeatherSystem = (C2_weather_role ‖ WeatherService_role ‖ Controller

‖ (forall[op : C2_weather_actions] SOAPImpl(op))
/{sendSOAPRequest/sendRequest, receiveSOAPResponse/receiveResponse}

‖ (forall[op : WeatherStation_actions] CORBAImpl(op))
/{receiveCORBARequest/receiveRequest, sendCORBAResponse/sendResponse}).

We can verify (using LTSA) that the synthesised layered connector is free from
deadlocks.

To evaluate the performance of our approach, we measured the time neces-
sary to execute each step of the synthesis. The results are reported in Table 3.
While the controller synthesis, which is performed using the approach described
in [3] and involves FSP behavioural analysis, takes few milliseconds to execute,
the translator synthesis and the concretisation necessitates around 1s as they
also requires dealing with XML and ontology processing. Still, the overall time
for the synthesis of layered connectors remains less than 2s. Furthermore, the
synthesis is performed only once and is definitely faster than hand-coding the
layered connector or even specifying it. In summary, the synthesis of layered
connectors allows us to deal with architectural mismatches by reconciling the
differences in the implementations of components at both the application and
middleware layers.

Table 3. Processing time (in ms) for each synthesis step in the GMES scenario

Case Weather Positioning Vehicle Control

Translator Synthesis 10031 9709 10256
Controller Synthesis 2 <1 7
Concretisation 809 903 465

5 Conclusion and Future Work

Enabling the dynamic composition of software components and solving their po-
tential architectural mismatches is a complex challenge that can only be solved
by appropriately combining different techniques and perspectives. In this paper,
we consider both the software architecture and the middleware perspectives and

298 A. Bennaceur and V. Issarny

propose an approach that brings together and enhances the solutions that seek
to solve architectural mismatches from these perspectives. Our core contribution
stems for the principled and rigorous approach to reason about components inter-
action using layered connectors, which formally describe components interaction
at both the application and middleware layers. In addition, the systematic ap-
proach for synthesising layered connectors lays firm foundations for supporting
dynamic composition in an increasingly heterogeneous world. The main idea is
to first extract the data translations using knowledge about the application do-
main and to synthesise the appropriate controller that enables the components
to interact successfully, then to refine this controller by taking into account the
characteristics of the middleware solutions underneath.

As part of our future work, we would like to study the impact of errors or
incompleteness in the specifications of the components or the domain ontology
in the synthesis of layered connectors. This is even more relevant when the
specifications are inferred using learning techniques. Therefore, we have to keep
monitoring the components and their environment to detect changes and update
the connectors accordingly. In this context, the incremental re-synthesis of lay-
ered connectors would allow us to respond efficiently to changes in the individual
components or in the ontology. Another direction is to consider the security as-
pect, both on how enabling composition may induce unanticipated threats, but
also how the increased ability to compose components dynamically may help
securing software systems by rapidly reacting to newly discovered threats.

Acknowledgments. We acknowledgeERC Advanced Grant no. 291652 (ASAP).

References

1. Allen, R., Garlan, D.: Formalizing architectural connection. In: Proc. of ICSE
(1994)

2. Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Issarny, V.: The role of mod-
els@run.time in supporting on-the-fly interoperability. Computing (2013)

3. Bennaceur, A.: Dynamic Synthesis of Mediators in Ubiquitous Environments. Ph.D.
thesis, Université Paris VI (2013), http://hal.inria.fr/tel-00849402/en

4. Bennaceur, A., Chilton, C., Isberner, M., Jonsson, B.: Automated mediator synthe-
sis: Combining Behavioural and Ontological Reasoning. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. SEFM, pp. 274–288. Springer,
Heidelberg (2013)

5. Birrell, A., Nelson, B.J.: Implementing remote procedure calls. ACM Trans. Com-
puting System (1984)

6. Bromberg, Y.-D., Grace, P., Réveillère, L., Blair, G.S.: Bridging the interoperability
gap: Overcoming combined application and middleware heterogeneity. In: Kon, F.,
Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 390–409. Springer,
Heidelberg (2011)

7. Ceriotti, M., Murphy, A.L., Picco, G.P.: Data sharing vs. message passing: synergy
or incompatibility?: an implementation-driven case study. In: Proc. of SAC (2008)

http://hal.inria.fr/tel-00849402/en

Formal Basis of Architectural Connection for Complex Distributed Systems 299

8. Connect Consortium: Connect Deliverable D6.4: Assessment report: Experiment-
ing with CONNECT in Systems of Systems, and Mobile Environments. FET IP
Connect EU project (2012), http://hal.inria.fr/hal-00793920

9. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard to
build systems out of existing parts. In: Proc. of ICSE (1995)

10. Georgantas, N., Bouloukakis, G., Beauche, S., Issarny, V.: Service-oriented dis-
tributed applications in the future internet: The case for interaction paradigm
interoperability. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 134–148. Springer, Heidelberg (2013)

11. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl-
edge Acquisition (1993)

12. Inverardi, P., Tivoli, M.: Automatic synthesis of modular connectors via composi-
tion of protocol mediation patterns. In: Proc. of ICSE (2013)

13. Issarny, V., Bennaceur, A.: Composing distributed systems: Overcoming the inter-
operability challenge. In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2012. LNCS, vol. 7866, pp. 168–196. Springer, Heidelberg (2013)

14. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-layer connector synthesis:
Beyond state of the art in middleware interoperability. In: Bernardo, M., Issarny,
V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 217–255. Springer, Heidelberg (2011)

15. Issarny, V., Kloukinas, C., Zarras, A.: Systematic aid for developing middleware
architectures. Commun. ACM (2002)

16. Magee, J., Kramer, J.: Concurrency: State models and Java programs. Wiley (2006)
17. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process

algebra and on-the-fly reduction techniques. IEEE Trans. Software Eng. (2012)
18. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Sys-

tems (2001)
19. Medvidovic, N., Dashofy, E., Taylor, R.: The role of middleware in architecture-

based software development. Int. Journal of Soft. Eng. and Knowledge Eng. (2003)
20. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connec-

tors. In: Proc. of ICSE (2000)
21. Nitto, E.D., Rosenblum, D.S.: Exploiting adls to specify architectural styles in-

duced by middleware infrastructures. In: Proc. of ICSE (1999)
22. Shaw, M.: Procedure calls are the assembly language of software interconnection.

In: Proc. of ICSE Workshop on Studies of Software Design (1993)
23. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-

capietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171.
Springer, Heidelberg (2005)

24. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proc. of ICSE (2003)

25. Tanenbaum, A., Van Steen, M.: Distributed systems: principles and paradigms.
Prentice Hall (2006)

26. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
TOPLAS (1997)

http://hal.inria.fr/hal-00793920

Effort Estimation for Architectural Refactoring

to Introduce Module Isolation

Fatih Öztürk1, Erdem Sarılı1, Hasan Sözer2, and Barış Aktemur2

1 Vestel Electronics, Manisa, Turkey
{fatih.ozturk,erdem.sarili}@vestel.com.tr

2 Department of Computer Science, Ozyegin University, Istanbul, Turkey
{hasan.sozer,baris.aktemur}@ozyegin.edu.tr

Abstract. The decomposition of software architecture into modular
units is driven by both functional and quality concerns. Dependabil-
ity and security are among quality concerns that require a software to
be decomposed into separate units isolated from each other. However, it
appears that this decomposition is usually not aligned with the decom-
position based on functional concerns. As a result, introducing module
isolation forced by quality attributes, while preserving the existing de-
composition, is not trivial and requires a substantial refactoring effort. In
this work, we introduce an approach and a toolset to predict this effort
prior to refactoring activities. As such, a selection can be made among
potential decomposition alternatives based on quantitative estimations.
These estimations are obtained from scalable analysis of module depen-
dencies based on a graph database and reusable query templates. We
discuss our experiences and evaluate our approach on a code base used
in a commercial Digital TV and Set-top Box software.

Keywords: Software architecture, reverse engineering, refactoring, mod-
ule isolation, effort estimation, dependability, security.

1 Introduction

Modularity is a key principle in software architecture design [12]. Decomposing
the system into separate, modular units is driven by functional concerns and a set
of relevant quality concerns such as dependability and security [2]. These quality
concerns usually require that certain modules are decomposed and isolated from
each other. For instance, distrusted modules must be isolated from the rest of
the system to increase security. This is usually achieved by sandboxing [15] and
placing each module into its own address space. Without such a fault isolation,
errors can propagate among the modules of the system.

Isolation is usually supported by the operating system (e.g., process isola-
tion [9]) or a middleware (e.g., encapsulation of Enterprise Java Bean objects
[4]). Regardless of the underlying infrastructure, the application software archi-
tecture must be decomposed so that certain parts of the system can be quaran-
tined. However, it appears that the required decomposition for module isolation

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 300–307, 2014.
© Springer International Publishing Switzerland 2014

Effort Estimation for Architectural Refactoring 301

is usually not aligned with the decomposition based on functional concerns. The
redesign and implementation of the whole system is likely to be an impractical
approach for large-scale legacy systems. On the other hand, refactoring the exist-
ing systems is not trivial either; it requires that the interactions of a module with
all the other parts of the system are captured and appropriately isolated [13].

In this work, we propose an approach and a toolset for predicting the refac-
toring effort for decomposition and implementation of software architecture for
module isolation. As such, a selection can be made among potential decompo-
sition alternatives based on quantitative estimations. In our approach, depen-
dencies among the software modules are captured with a compiler frontend and
stored in a graph database. These dependencies are queried based on a set of
reusable query templates. Queries are instantiated according to the evaluated
decomposition alternative. The novelty of our work is to facilitate the use of
scalable and interactive architectural queries. We discuss our experiences in the
application and evaluation of our approach by introducing module isolation to a
set of modules taking part in a commercial Digital TV (DTV) and Set-top Box
(STB) software architecture. We were able to estimate the required refactoring
effort for a large code base with 85% accuracy on the average.

The remainder of this paper is organized as follows. Section 2 presents the
industrial case study and a motivating example. We introduce our approach in
Section 3. The evaluation of the approach is presented in Section 4. Related stud-
ies are summarized in Section 5. Finally, in Section 6, we provide our conclusions
and discuss future work directions.

2 Industrial Case Study: DTV/STB Software

In this section, we introduce an industrial case study and a running example to
be used in the rest of the paper. We investigated a software system being devel-
oped and maintained by Vestel1, which manufactures DTV and STB systems.
Conditional access (CA) system providers are among the customers of the com-
pany. These customers have various requirements that are subject to certification
tests. One of these requirements is module isolation. Due to many different ex-
ternal interfaces such as USB and Ethernet, DTV and STB systems are exposed
to an increasing number of dependability and security threats. Therefore, CA
system providers require that certain modules of the system are isolated from
each other by running them on different processes.

Vestel has a legacy code base that includes approximately 8M lines of code
(LOC) in C/C++ excluding the chipset drivers (33M LOC including the drivers).
The overall code base is composed of 4 layers: i) Driver : includes the platform-
related software that is mostly in the kernel space; ii) Platform Integration Layer :
provides abstraction for the functions provided by the Driver layer; iii) Middle-
ware: implements the main business logic; iv) Application: implements the user
interface. Module isolation requirements usually affect the 3rd and the 4th layers.

1 http://www.vestel.com.tr

http://www.vestel.com.tr

302 F. Öztürk et al.

(a)

(b)

Fig. 1. Decomposition alternatives for the isolation of the web browser engine

For instance, it was required by a CA system provider2 that the web browser
functionality should be isolated from the rest of the system. To satisfy this re-
quirement, the corresponding module was planned to be isolated in a separate
process as depicted in a module view of the software architecture in Figure 1(a).
Refactoring a system for process isolation is not trivial for large code bases. It
requires that the interactions of the isolated module(s) with all the other parts
of the system are captured. All the function calls and direct accesses to shared
data must be redirected through inter-process communication (IPC). As a result,
additional glue layers and wrappers have to be developed [13].

There are usually many decomposition alternatives that satisfy a module iso-
lation requirement. The implementation of these alternatives require different
amounts of effort based on the module inter-dependencies. In fact, it was figured
out later in the architectural refactoring phase that the decomposition depicted
in Figure 1(b) was a better alternative in terms of effort. The development team
abondoned the attempts to do decomposition given in Figure 1(a), resulting in
wasted time and man-hours, and instead focused on Figure 1(b). In the following
section, we introduce our approach for estimating the refactoring effort to eval-
uate various decomposition alternatives with automated and scalable analysis.

2 Customer identity is undisclosed due to confidentiality agreements.

Effort Estimation for Architectural Refactoring 303

System
Source Code

Module Dependency
Analyzer

Template
queries

ArtifactTool

Graph Database
(Neo4J)

External Tool
Queries for
creating the

graph database

Decomposition
alternatives

Data flow

KEY:

Effort
Estimations

Decomposition
Analyzer

1

2

3

4

4

5 6

Fig. 2. The overall approach

3 The Approach

The overall approach is depicted in Figure 2. First, a static code analysis, called
theModule Dependency Analyzer, is applied to the system source code to identify
module inter-dependencies. The analyzer is implemented as an LLVM [10] com-
piler pass that runs on intermediate level code. (Therefore, the pass is runnable
on software written in any programming language provided that there is an
LLVM front-end that translates the code to LLVM Intermediate Representa-
tion. In our case study, the code base is written in C/C++.) The output of
the module dependency analyzer is a set of Cypher queries that build a graph
database with Neo4J [8] (step 2). Then, these queries are executed to create
a graph representation of all the identified module inter-dependencies (step 3).
In our case, two modules shown in Figure 1 were analyzed. These modules are
20K LOC in total. The size of the generated queries was 76K LOC. It took
around 3.5 hours to complete the execution of all the queries on a desktop com-
puter. The graph had 25K nodes and 60K edges. A small, representative example
is depicted in Figure 3. The graph database is built only once per code base.
Then, it can be utilized many times to evaluate various decomposition alter-
natives (step 5). Decomposition Analyzer takes decomposition alternatives and
template Cypher queries [8] as input (step 4). Each decomposition alternative
specifies the set of modules that are separated from each other. Figure 1 depicts
only the top level modules, each of which comprises many more modules. In our
case study, we specified 10 module interfaces that are separated as a result of
implementing the decomposition alternative depicted in Figure 1(b). Template
queries are instantiated based on the evaluated decomposition alternatives. They
also have coefficients to be adjusted based on the implementation. The execution
of the queries outputs effort estimations (step 6). In our case study, executing
the queries to evaluate 10 module interfaces took around 10 minutes.

We calculate the effort in terms of LOC to be written for glue layers and wrap-
pers [13] required for realizing a decomposition alternative. These LOC mainly
comprises IPC calls, callback handlers, and data (de)serialization implemented

304 F. Öztürk et al.

memory
A instruction

function
Caller

function
Callee

memory
B

Module
2

Module
1

ARG

HAS

FCF

CMC

FORMAL ARG
CALL

BIND

INCLUDEINCLUDE

Detected

Relationships

Evaluated

Relationships

CMC path

Fig. 3. Representation of module inter-dependencies as nodes and edges

for coupled modules that are isolated in different processes. Hence, the effort is
related to the amount of and the type of coupling among the isolated module
interfaces. The queries that are instantiated for evaluation first detect function
calls among such interfaces. Then, parameter bindings between formal and actual
parametres are analyzed. For every call to be redirected, complexity of parame-
ters and return value is calculated based on the use of pointers and nesting level
of classes and structures. Finally, effort required for each cross-modular function
call is summed up to represent total cost required for isolation of the given two
modules. Figure 3 represents a simple parameter binding between the function
Caller defined in Module 1 and the function Callee defined in Module 2. Here
FCF represents function call, CMC represents cross-modular function call, and
BIND represents parameter binding between two memory locations.

A sample truncated query for evaluating module dependency is given in List-
ing 1. Hereby, env.module2 and env.module1 are parameters that define the
separated modules (Line 5). The coefficient SIMPLE PARAM (Line 9) defines
the unit effort to handle a simple function argument. Nested argument structures
are captured and the corresponding unit effort is calculated separately (Line 12).

The utilization of a graph database and reusable template queries provides
scalability and genericity. Our analysis addresses the amount of coupling at the
module view level. However, the approach can also be applied to different types
of architectural views [5] by using appropriate set of template queries. In our
case, the toolset can provide an effort estimation based on the decomposition
structure and coefficients for unit costs. The coefficients can be adjusted based
on the underlying isolation framework.

4 Evaluation and Discussion

We examined the implementation depicted in Figure 1(b) for the 10 module
interfaces that are separated. We manually measured the real effort required
for the realization of this decomposition in terms of effective LOC [6]. We also
applied our approach on the previous version of the source code, before the

Effort Estimation for Architectural Refactoring 305

1 ...

2 match (x:folder) -[:INCLUDE *1..]

3 ->(caller:function) -[:FCF]->(callee:function)

4 <-[: INCLUDE *1..]-(y:file) where

5 x.name = env.module2 and y.name = env.module1

6 create unique

7 caller -[:CMC{ param_point :0, return_point :0}]-> callee;

8 ...

9 match a-[r: BIND]->b set r.point = SIMPLE_PARAM ;

10 match b<-[bind:BIND]-a-[LOAD *0..1]->() -[CAST *0..1]

11 ->() -[:IS_A]->(strct) with a,b,bind ,strct

12 set bind.point = strct.point;

13 ...

Listing 1. A truncated query template for dependency evaluation

decomposition is implemented. We obtained estimations regarding the separation
of the 10 module interfaces. We compared the estimated effort and measured
effort in terms of the relative error [1] measure. Results are listed in Table 1.
Estimations are 85% accurate per interface on the average. (We think that the
per-interface average of relative error is a better indicator of accuracy than the
relative error on the overall effort, which is much smaller: 1359 vs. 1306 ⇒ 4%
error.) In fact, if we do not consider the two exceptional interfaces, H and I, the
accuracy is 91%. In the following, we discuss the reasons for estimation errors
regarding these interfaces.

The measured effort is much less than the estimated effort for Interface H.
This interface is generally composed of getter functions that return primitive C

Table 1. Comparison of measured and estimated effort

Interface Measured Effort Estimated Effort Relative Error

A 128 133 0.04
B 94 78 0.17
C 175 189 0.08
D 102 88 0.14
E 80 66 0.17
F 321 302 0.06
G 65 68 0.05
H 165 211 0.28
I 125 70 0.44
J 104 101 0.03

Total 1359 1306 -

Average - - 0.15

306 F. Öztürk et al.

types. Serialization and extraction of the return values are identical for several
functions. Therefore, such identical operations are implemented in a helper func-
tion, which reduce the effort to a large extent. On the other hand, the estimated
effort is much less than the measured effort for Interface I, because this interface
employs complex C structs with callback function pointers. The use of these
callback functions are scattered among many modules. Hence, the isolation of
Interface I required extra effort for transferring these functions through IPC.

5 Related Work

Vespucci tool [11] captures structural dependencies in multiple complementary
views called slices. Each slice captures different types of dependencies to be
analyzed separately. In this work, we capture all the dependencies in a graph
database and query all types of dependencies regarding a certain part of the
system, which is subject to refactoring for module isolation.

The FLORA framework [13] comprises a set of tools to estimate the per-
formance overhead introduced by module isolation and optimize the software
architecture decomposition [14]. The estimation is based on a dynamic analysis
that collects statistics about the frequency of performed function calls and the
data access profile of the system. In this work, we aim at estimating the mainte-
nance effort for introducing module isolation. As such, we utilize static analysis.
We also utilize a graph database and a declarative graph query language to
achieve scalability [8].

Micro-kernel architectures [7] and operating systems with sealed processes [9]
have been introduced for flexible multiprocessing support and better isolation
to improve dependability and safety. To be able to exploit the multiprocessing
support for isolation, the application software must be partitioned to be run on
multiple processes. Our approach supports such a refactoring and predicts the
re-engineering effort for making use of the multiprocessing support.

There have been also other approaches [3, 4] to isolate software components
from each other. However, they do not consider the restructuring and partition-
ing of legacy software to introduce this isolation.

6 Conclusion and Future Work

Module isolation can be necessary to satisfy several quality concerns. However,
it appears that the required decomposition for module isolation is usually not
aligned with the decomposition based on functional concerns. Therefore, the re-
alization of this decomposition requires substantial maintenance effort. We have
introduced an integrated toolset that predicts the refactoring effort to introduce
module isolation by preserving the existing structure. We have illustrated our
approach in the context of an industrial case study to introduce module isolation
to a set of modules in a large code base. We obtained accurate estimations of the
refactoring effort. As such, our approach proved to be practical for large-scale
systems to support module isolation in software architectures.

Effort Estimation for Architectural Refactoring 307

As future work, we are planning to utilize our observations summarized in
Section 4 to improve the accuracy of our estimations. We also plan to perform
additional case studies.

Acknowledgements. We thank the software developers and managers at Vestel
Electronics for sharing their code base with us and supporting our analysis.

References

1. Alsmadi, I., Nuser, M.: Evaluation of cost estimation metrics: Towards a unified ter-
minology. Journal of Computing and Information Technology 21(1), 23–34 (2013)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

3. Buskens, R., Gonzalez, O.: Model-centric development of highly available software
systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Depend-
able Systems IV. LNCS, vol. 4615, pp. 163–187. Springer, Heidelberg (2007)

4. Candea, G., Fox, A.: Crash-only software. In: 9th Workshop on Hot Topics in
Operating Systems (HotOS), pp. 67–72. USENIX Assoc., Berkeley (2003)

5. Clements, P.C., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,
Nord, R., Stafford, J.A.: Documenting Software Architectures: Views and Beyond,
2nd edn. Addison-Wesley (2010)

6. Fenton, N., Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach,
2nd edn. Thomson Learning Inc. (2002)

7. Herder, J.N., Bos, H., Gras, B., Homburg, P., Tanenbaum, A.S.: Failure resilience
for device drivers. In: 37th IEEE/IFIP International Conference on Dependable
Systems and Networks, Edinburgh, UK, pp. 41–50 (2007)

8. Holzschuher, F., Peinl, R.: Performance of Graph Query Languages: Comparison of
Cypher, Gremlin and Native Access in Neo4J. In: EDBT/ICDT 2013 Workshops,
pp. 195–204. ACM, New York (2013)

9. Hunt, G., Aiken, M., Fähndrich, M., Hawblitzel, C., Hodson, O., Larus, J.,
Levi, S., Steensgaard, B., Tarditi, D., Wobber, T.: Sealing OS processes to im-
prove dependability and safety. SIGOPS Oper. Syst. Rev. 41(3), 341–354 (2007)

10. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Int. Symposium on Code Generation and Optimization
(CGO), pp. 75–87. IEEE Computer Society, San Jose (2004)

11. Mitschke, R., Eichberg, M., Mezini, M., Garcia, A., Macia, I.: Modular specifica-
tion and checking of structural dependencies. In: 12th Int. Conference on Aspect-
oriented Software Development (AOSD), pp. 85–96. ACM, New York (2013)

12. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

13. Sozer, H., Tekinerdogan, B., Aksit, M.: Flora: A framework for decomposing
software architecture to introduce local recovery. Software: Practice and Expe-
rience 39(10), 869–889 (2009)

14. Sozer, H., Tekinerdogan, B., Aksit, M.: Optimizing decomposition of software ar-
chitecture for local recovery. Software Quality Journal 21(2), 203–240 (2013)

15. Wahbe, R., Lucco, S., Anderson, T., Graham, S.L.: Efficient software-based fault
isolation. SIGOPS Operating Systems Review 27(5), 203–216 (1993)

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 308–323, 2014.
© Springer International Publishing Switzerland 2014

Interoperability-Related Architectural Problems
and Solutions in Information Systems: A Scoping Study

Hadil Abukwaik, Davide Taibi, and Dieter Rombach

University of Kaiserslautern
Gottlieb-Daimler-Straße 47

67663 Kaiserslautern, Germany
{abukwaik,taibi,rombach}@cs.uni-kl.de

Abstract. [Context] With the increasing industrial demands for seamless ex-
change of data and services among information systems, architectural solutions
are a promising research direction which supports high levels of interoperability
at early development stages. [Objectives] This research aims at identifying the
architectural problems and before-release solutions of interoperability on its dif-
ferent levels in information systems, and exploring the interoperability metrics
and research methods used to evaluate identified solutions. [Methods] We per-
formed a scoping study in five digital libraries and descriptively analyzed the
results of the selected studies. [Results] From the 22 studies included, we ex-
tracted a number of architectural interoperability problems on the technical,
syntactical, semantic, and pragmatic levels. Many problems are caused by sys-
tems’ heterogeneity on data representation, meaning or context. The identified
solutions include standards, ontologies, wrappers, or mediators. Evaluation me-
thods to validate solutions mostly included toy examples rather than empirical
studies. [Conclusions] Progress has been made in the software architecture re-
search area to solve interoperability problems. Nevertheless, more researches
need to be spent on solutions for the higher levels of interoperability accompa-
nied with proper empirical evaluation for their effectiveness and usefulness.

Keywords: Software interoperability, software architecture, information sys-
tems, scoping study.

1 Introduction

Interoperability among software systems endows them with the capability to meaning-
fully communicate and exchange information and services [1, 2]. However, interopera-
bility faces many challenges, e.g., different communication protocols, incompatible
architectures, heterogeneous data models, ambiguous meaning of information ex-
changed, and more. In response, several solution approaches have been proposed. On
one hand, integration solutions that focus on solving interoperability problems after they
happen are the most suggested ones. However, adopting any of these integration solu-
tions to overcome systems’ heterogeneity is expensive and requires significant effort
[3]. On the other hand, before-release architectural solutions are proposed to build inte-
roperability potentials in software systems with reduced cost. These architectural design

 Interoperability-Related Architectural Problems and Solutions in Information Systems 309

decisions have an immediate impact on systems’ components and connectors that can
be the main obstacle impeding interoperability [4]. Such a promise from the architectur-
al solutions makes them a powerful base for interoperability and hence they are the
main interest of this paper.

With the increasing complexity of information systems (ISs) and their interopera-
bility requirements, software architects need to choose from existing solutions that
support before-release interoperability. However, this task becomes a challenge with
the proliferated architectural solutions that are scattered across research fields [5]
(such as component-based software, open systems, enterprise application, etc.) with
focus on multiple interoperability issues (such as syntax, structure, semantics, etc.).
Also, having no evaluation results for proposed solutions is a significant issue which
questions their effectiveness and real value gained when adopting these solutions [6].

In the light of the big magnitude and high business value of interoperability among
ISs [7], it is important to alleviate the aforementioned task complexity and to support
software architects in choosing appropriate interoperability solutions. Hence, in this
research we performed a systematic scoping study in order to (1) identify the state-of-
the-art of interoperability architectural problems and before-release solutions in ISs,
and to (2) explore the state of evidence on the quality of the identified solutions. This
study helps practitioners to understand the state of research on interoperability-related
architectural approaches and to consider adopting them. Also, the findings provide
researchers with insights regarding future research topics to cover the identified gaps.

The rest of this paper is structured as follows. Section 2 introduces a background,
Section 3 overviews related work to our study and Section 4 outlines the design of the
scoping study. Section 5 reports the results and Section 6 discusses their implications.
While Section 7 presents the study limitations, Section 8 summarizes the conclusions.

2 Interoperability Levels - Background

Multiple classification models have been built for defining and organizing interopera-
bility levels in software systems. These models help in defining the compatibility
level between systems and the amount of effort required to enable them to work joint-
ly. Examples of interoperability models include: (1) the Levels of ISs Interoperability
(LISI) [8], (2) NC3TA Reference Model for Interoperability (NMI) [9] and (3) the
Levels of Conceptual Interoperability Model (LCIM) [10]. Whereas the LISI and
NMI focus on the technical level of interoperability, LCIM provides a more compre-
hensive classification from data sharing capabilities point of view which we see it as
an essential goal of interoperation in ISs. Therefore, we select LCIM to be our refer-
ence model for interoperability levels in this study.

LCIM encompasses seven levels which increase from no interoperability level to
conceptual interoperability level. Here we present a brief description for each of the
seven levels of the LCIM model: (1) No Interoperability: no connection or data shar-
ing with other systems. (2) Technical Interoperability: physical connection and data
exchange with other systems. (3) Syntactic Interoperability; similar structure for
information exchange and unambiguous data formats. (4) Semantic Interoperability:

310 H. Abukwaik, D. Taibi, and D. Rombach

shared reference model for information exchange and clear data meanings. (5) Prag-
matic interoperability: methods and procedures used by participating systems are
known by the others. Besides, understanding the context of the exchanged informa-
tion and how they are used is unambiguous. (6) Dynamic Interoperability: changing
data and operations over time in a participating component are comprehended by
other components. The effect of exchanging information is explicitly announced.
(7)Conceptual Interoperability: concepts and assumptions that components of the
domain operate on are aligned. This requires documenting conceptual models by en-
gineering methods allowing engineers to interpret and evaluate them.

3 Related Work

Sedek et al. [11] have systematically reviewed the current architecture-based ap-
proaches used for building interoperability in e-government portal until 2011. Sedek
et al. reviewed previous works to identify a suitable approach for creating architec-
tures with higher interoperability. They identified 17 studies and analyzed them with
respect to: important characteristics of architectural aspect of e-government portal, the
interoperability and reliability achievements of the current e-government portal
architecture and the common limitations and strengths of the existing e-government
architectures. Sedek’s study concluded that current approaches lack improving the
architecture towards a high level of interoperability and reliability. They stated that
SOA and layered architectures are common in e-government portals. Also, they found
that mediators are incorporated in architectures to resolve technical and semantic
mismatches using approaches like Semantic Mediator Model and User Ontology.

To the best of our knowledge, the previously mentioned study is the only related
work to this scoping study. Our research extends the work of Sedek et al. by: (1) re-
viewing both architectural problems and solutions of interoperability on different
interoperability levels and (2) considering all types of ISs from different application
domains rather than focusing only on enterprise systems from the e-government do-
main. These extensions broaden the scope of the research along with its collected data
and strengthen the validity of the conclusions we build regarding the ISs interopera-
bility. Moreover, we aim at exploring the evidence on the identified solutions’ quality
by looking for used evaluation method which supports or rejects their claims.

4 Research Methodology

In this research we systematically study the nature and extent of software architecture
researches about interoperability problems and before-release solutions in ISs, to col-
late, summarize and disseminate research findings, and to identify research gaps.
Therefore, we performed a scoping study following the process proposed by Petersen
et al. [12] along with a data extraction form. Different than systematic literature re-
view [13], we aimed at a broad analysis for literature rather than an in-depth analysis

 Interoperability-Related Architectural Problems and Solutions in Information Systems 311

and quality assessment for selected papers. All materials of this study are available at
the scoping study webpage1.

4.1 Research Questions

The goal of this scoping study is to identify architectural problems and before-release
solutions of interoperability in the context of ISs from the view point of researchers
and software engineers. This goal is translated into the following research questions:

• RQ1: Which levels of interoperability are handled in literature with architectural
solutions? This question intends to determine the extent to which architecture re-
search addresses interoperability in terms of the levels of LCIM model.

• RQ2: What are the architectural problems faced when building interoperability
among ISs? This question intends to identify the issues and key drivers that need to
be considered while designing ISs to support the desired interoperability property.

• RQ3: What are the architectural solutions for handling the identified problems?
This question intends to identify the architectural design decisions and activities
proposed in literature to handle the identified interoperability issues.

• RQ4: How are architectural solutions for interoperability evaluated? This ques-
tion intends to explore the evidence provided on the quality of identified solutions
in terms of the used evaluation method.

• RQ4.1: What interoperability measures are used to evaluate the architectural solu-
tions? This question intends to investigate interoperability metrics used as a part of
the evaluation.

4.2 Data Sources and Search Strategy

According to the recommendations of Dybå et al. [6], we looked for published papers
in journals and conference proceedings of the following databases: IEEE Xplore,
ACM Digital Library, Springer Digital Library, Google Scholar, and Science Direct.
Having the data sources selected, we performed trial searches using various combina-
tion of search terms derived from our research questions. Based on the results we
defined our search terms as: (T1) Interoperability AND Architecture, (T2) Interopera-
tion AND Architecture, (T3) Interoperability AND Architectural Design, and (T4)
Interoperation AND Architectural Design. The search process was carried as follows:

• Stage 1: Pilot search the databases using the defined terms T1 to T4 separately and
then combined with the “OR” operation to remove duplicates. The search was ap-
plied on the titles and abstracts (4128 studies).

• Stage 2: As abstracts from stage 1 showed irrelevance to the research questions,
the database search was refined to be applied on titles only (246 studies).

1 http://wwwagse.informatik.uni-kl.de/staff/abukwaik/pub/

ECSA14/scoping-study.htm

312 H. Abukwaik, D. Taibi, and D. Rombach

• Stage 3: Inclusion/exclusion criteria, described in subsection 4.3, were applied on
the 246 studies based on keywords, abstracts, and conclusions (22 studies).

We note that the primary studies included in Sedek’s review were not a subset of our
study. This was beacause the titles of these studies focused on eGoverment rather than
interoperability and architecture. Consequently they were not retrieved in stage 2.

4.3 Inclusion and Exclusion Criteria

A study got included if it met all the inclusion criteria and none of the exclusion crite-
ria, otherwise it got excluded. Inclusion criteria are:

• I1. Studies with a main focus on interoperability problems and architectural solu-
tions in ISs.

• I2. Studies with architectural solutions supporting interoperability before release.

While exclusion criteria are:

• E1. Studies with writing language other than English.
• E2. Gray studies with unclear peer-review process (e.g., technical reports, short

papers, keynotes, abstracts, etc.).
• E3. Secondary studies about interoperability problems and solutions (i.e., related

works to this research).
• E4. Studies with minor interest in interoperability architectural aspects.
• E5. Studies proposing solutions for specific projects under restricted settings and

conditions that cannot be generalized to ISs

Separately, two researchers applied the criteria on the studies and in discussion ses-
sions, decisions about discrepant results were taken based on reached consensus. The
search was conducted in November 2013, and had no timeframe limitations to get a
broader coverage of studies related to our research questions. Note that we did not
contact authors of included studies seeking unpublished evaluation or other related
researches.

4.4 Data Extraction Strategy

Table 1 shows the fields that correspond to our predefined research questions. One
researcher extracted the data from the 22 included studies and another checked it
against the studies to ensure completeness and correctness of the extraction process.

4.5 Data Analysis

Qualitative data analysis was performed using an initial coding schema in a tabular
form including interoperability problems, interoperability levels, architectural solu-
tions, architectural components, and evaluation types. The coding schema provided
definition of concepts, categories, and criteria that guided the translation of raw data
into descriptions that answer the research questions.

 Interoperability-Related Architectural Problems and Solutions in Information Systems 313

Table 1. Data extraction form

 Field Description RQ

F1 Title Title of the paper

 D
ocum

en-
tation

F2 Author Writer(s) of the paper

F3 Year Year of publishing the paper

F4 Publication Name of Journal / Proceeding
F5 Keywords Keywords of the paper RQ1
F6 Objectives Stated goals of the study by the authors- free text RQ1
F7 IS type Kind of IS application which the study focuses on RQ2

F8
Interoperability
problem(s)

Object of the study which the study tries to solve (i.e.,
problem of interest) - free text

RQ2

F9 Interoperability level Level of LCIM that the study handles (see section 2) RQ1

F10
Architectural
solution(s)

Subject of the study that is proposed to solve the object
(i.e., solution of problem) - free text

RQ3

F11 Solution elements
Concrete elements of the proposed subject (i.e., com-
ponents of architectural solutions) - free text

RQ3

F12 Technology used
Technologies supporting implementation of proposed
subjects (e.g., XML, Web Services … etc.)

RQ3

F13 Solution evidence
Evidence provided on the quality of proposed subjects
(e.g., discussion, controlled experiment, case study,
etc.)

RQ4

F14
Interoperability
Metric

Quantitative measures used in the study evaluation to
describe the interoperability property achieved

RQ4.1

F15 Comments
Additional notes provided in the study (i.e., claimed
benefits, tradeoffs, limitations, or challenges) - free
text

RQ2.1

5 Results

5.1 Overview

The identified primary studies were 22 that were performed in diverse application
domains (e.g., eGovernment, eCommerce, eLearning, geographical, military, and
biomedical systems). As seen in Fig. 1, there is a little increase in the number of stu-
dies on interoperability after 2004.

Fig. 1. Year-wise distribution of selected studies

Studies were conducted in academic and industrial environments with 10 of 22, 45%,
collaboration between the two. Almost all studies (21 of 22, 95%) were published in

314 H. Abukwaik, D. Ta

conferences, while one stud
nating venue publishing m
solutions, i.e., each venue
studies. Also, one confere
“Distributed Applications a

5.2 Interoperability Ar

RQ1: Which levels of inte
al solutions?
To determine the interoper
F5, objectives F6, problem
we compared these concern

Figure 2 illustrates the di
included studies. Some stu
both the semantic and prag
the studies’ focus with a g
low share and disappeared
shares. In recent years, espe
tion of the inter-Cloud sys
conceptual levels got no sha

Fig. 2. Interop

RQ2: What are the archit
among ISs?
For each study, we examine
lem description F8. Then,
LCIM which shares and in
dies, we identified eight di
LCIM levels as seen in Tab

P1: Semantic heteroge
number (N) = 11). It conc
correctly interpret the mea
example, the authors of (S1

aibi, and D. Rombach

dy appeared in a journal. Remarkably, there is no a do
many studies on interoperability architectural problems

published one study except for one which published t
ence found dedicated to software interoperability nam
and Interoperable Systems”.

rchitectural Problems and Solutions

eroperability are handled in literature with architect

rability concerns of each study, we analyzed its keywo
m description F8, and solution advantages F15. Afterwar
ns to the description of LCIM levels.
istribution of the handled levels of interoperability over
udies addressed more than one level, e.g., S3 address
gmatic levels. Note that, semantic has the biggest share
rowing interest along the years while the pragmatic ha
after 2007. Syntactic and technical levels have converg
ecially 2012 and 2013, the technical level grasps the att
stems researchers (S18 and S22). Both the dynamic
are in the studies at all.

perability-level distribution over selected studies

tectural problems faced when building interoperabi

ed the interoperability problem it addresses from the pr
we mapped each problem to the corresponding level

ncludes its concerns. Synthesizing the problems of all
istinct architectural issues where seven of them related

ble 2.
eneity of data is the most common problem (occurre
cerns architects about designing interoperable systems t
ning of data elements being exchanged among them.
11) investigated designing interoperability among differ

omi-
and
two
med

tur-

ords
rds,

the
sing
e of
as a
gent
ten-
and

ility

rob-
l of
stu-
d to

ence
that
For
rent

 Interoperability-Related Architectural Problems and Solutions in Information Systems 315

GIS systems, and stated that it was a challenge due to the growing number of hetero-
geneous spatial data sources with semantic differences.

P2: Syntactical heterogeneity of data has been reported frequently (N = 7). It re-
quires architects to take into account the differences in data types, formats, and mod-
eling languages of interoperating systems. For instance, in (S6), Carvalho et al. stated
that exchanging geographic data among different layers on GIS required resolving its
different representations first.

P3: Heterogeneity of communication protocols, platforms, and technical
standards are considered as serious architectural problems (N = 7). It is essential for
interoperability to make design decisions that enable the system to establish commu-
nication with systems of different technical properties. In (S9), Rabhi observed that
developing cooperation among financial market systems required enormous effort due
to their variant technologies, communication interfaces, and network protocols.

P4: Heterogeneity of data context has been reported as a problem in the context
of financial and GIS systems (N=3). It is important for architects to reflect the con-
text in which the designed system functionalities and data can be used to assure mea-
ningful interoperability. For example, (S11) described possible context heterogeneity
to happen in interpreting a domain value of a CropType attribute in the designed sys-
tem. While in one land it could be “Wheat”, in the other it could be “Corn”.

Other stated problems include: P5: Heterogeneity of method signatures; P6: Mi-
sunderstanding of the sematic interoperability meaning; P7: Redundancy of da-
ta; and P8: Inadequacy of architecture framework supporting interoperability.

Table 2. Overview LCIM levels with their identified problems and solutions in the studies

Interoperability

Level

Problem ID Solution ID Study ID

Technical P3 Sol5 S4

Sol7 S9, S16, S17, S18, S20, S22

Sol10 S8

Syntactical P2 Sol5 S6

Sol7 S15, S16, S20

Sol8 S3

Sol9 S9

P5 Sol6 S4

P7 Sol13 S1

Semantic P1 Sol1 S14, S21

Sol2 S3, S5, S10, S12, S13

Sol4 S11

Sol3 S16, S19, S20

P6 Sol11 S2

Pragmatic P4 Sol2 S3, S11

Sol5 S6

n/a P8 Sol12 S7

316 H. Abukwaik, D. Taibi, and D. Rombach

RQ3: What are the architectural solutions for handling the identified
problems?
For each study we studied the interoperability solution it proposed from the architec-
tural solution F10, its components F11, and the used technology F12. Then we
mapped the solutions to the identified problems in RQ2 (see Table 2).

Sol1: Standards address semantic interoperability problems, e.g., (S21) unambi-
guous semantic metadata is achieved through a standard-based metadata repository
which provided formal description for the meaning of data types used in classes and
attributes of data systems. Also, (S14) proposed standard-based modeling for
processes and data between collaborating organizations.

Sol2: Ontologies solve semantic and context interoperability problems. For exam-
ple, (S13) proposed ontology-based blackboard architecture to facilitate user retrieval
for the correct service offered by eGovernment system based on his needs with less
effort. This was by modeling the basic concepts of services from a user perspective.

Sol3: Semantic mediator aligns semantically related concepts. We identified three
identified forms of mediators: formal-methods-based mediator aligns the behavior of
systems using their LTS models (S16), thesaurus-based mediator mediates concepts
using knowledge structures simpler than ontologies (S19), and standard-based media-
tor facilitates standardized information exchange and orchestration (S20).

Sol4: Wrapper encapsulates local data sources in export schema comprising the
main concepts of the real world entities. As described in (S11), a wrapper receives
queries from interoperating systems and translates them into a local form to enable
processing them and to retrieve the required information from the local system.

Sol5: Adaptor The adaptor embeds the connection state and logic to one or more
external systems, e.g., it can encapsulate a telnet-based connection to a remote Unix
host (S4). Also, (S6) proposed using adaptor component to transform data among
interfaces of different GIS devices.

Sol6: Facets provides different implementations for a standard interface of an ac-
tion. Hence, the action can be invoked by different system types through its corres-
ponding facet. In (S4), these facets are automatically generated by specialized tools.

Sol7: Middleware handles heterogeneities in communication protocols and data
formats. In (S16), Bennaceur et al. presented how on-the-fly middleware component
dynamically resolved heterogeneity of data formats in messages being exchanged
between distributed systems.

Sol8: External data models are concerned with representing all sources of data
that the system may exchange with other interoperating systems. In (S3), the authors
gave examples on external data to include relational database sources, XML sources,
HTML web wrapper sources, and computational procedures modeled as relations.

Sol9: Internet data formats are proposed to be used on the data level of distri-
buted systems to ensure wide applicability of the associated components (S9), i.e.,
using XML and its variants like FIXML with CORBA for handling the communica-
tion.

Sol10: Technical reference model guides in expeditiously selecting technical
standards using common vocabulary. According to (S8), this fosters interoperability
by providing appropriate system standard profiles.

 Interoperability-Related Archi

Sol11: Semantic referen
pabilities in systems by fu
quirements are categorized

Sol12: Enterprise arch
build interoperability amon
weakness es comp
frameworks.

Sol13: Central reposito
tems. For example, (S1) pr
on a phone device to enable

A recurring theme we ob
the service oriented archite
vice technology. This them
S17, S18, and S22). Also, w
particular application doma

5.3 Evidence on the Qu

RQ4: How are architectur
As seen in Fig. 3, 8 out of
their proposed solutions. B
quality of the identified solu

Fig. 3. Evalu

RQ4.1: What interoperab
solutions?
None of the studies includ
appraise achieving it in the

Studies with empirical
terms of query execution tim
and development easiness
and application heterogenei
panied with quantitative dat

Studies with toy examp
terests: (S2) argued providi

itectural Problems and Solutions in Information Systems

nce model guides developing semantic interoperability
ulfilling a set of semantic requirements. In (S2), these

as policy and governance, organization, and technology
hitecture framework provides a systematic blueprint
ng enterprise IS. In (S7), the identified framework resol
paratively determined in legacy enterprise architect

ory allows cooperative sharing of information among s
oposed using a central repository for installed applicati
e sharing resources and context data among them.
bserve in the findings is basing the identified solutions

ecture style (SOA), and implementing it with the web
e was reported in nine studies (S5, S6, S10, S12, S13, S

we found that the different solutions are not associated w
ain or research field, i.e., they are applicable in general IS

uality of the Identified Solutions

ral solutions for interoperability evaluated?
the 22 identified studies did not provide any evaluation

Because of the lack of empirical evidence regarding
utions, it was not possible to determine their effectivene

uation-method distribution over selected studies

bility measures are used to evaluate the architectu

ded in this scoping study used interoperability metrics
systems.
l evaluation focused only on assessing: performance
me (S1), feasibility in terms of concepts’ understandabi
(S7), and validity in terms of overcoming the interact
ity (S16). Noteworthy, neither (S7) nor (S16) was acco
ta.
ples described their solutions’ benefit against different
ing a good base for evaluating the maturity level of sem

317

ca-
re-

y.
t to
lves
ture

sys-
ions

s on
ser-

S14,
with
Ss.

n of
the

ess.

ural

s to

e in
ility
tion
om-

t in-
man-

318 H. Abukwaik, D. Taibi, and D. Rombach

tic interoperability capability of agencies; (S3) showed allowing context mediation
without rigidity imposed by changing original context models; (S13) explained how
end-users were provided with appropriate interfaces for published services; (S17)
illustrated how groupware requirements diversity could be more easily fulfilled by
controlling concurrency access to shared documents; (S19) clarified the feasibility of
achieving semantic interoperability with simpler structures rather than ontologies;
(S20) explained gained adaptivity, flexibility, and security; (S21) presented the feasi-
bility to make semantically interoperable data using ontologies and standards.

Studies with no evidence claimed to achieve autonomy, flexibility, and extensibil-
ity (S11) and to allow optimized provisioning of computing, storage, and networking
resources (S18). No reflection of such claims was found in the given examples.

6 Discussion

The study results reveal that software interoperability architectural problems and solu-
tions have been studied especially on the syntactic and semantic levels over the last
fifteen years. However, only a few studies proposing solutions to the higher LCIM
levels have been published. Also, results demonstrate the low evidence level of the
studies as the quality of their solutions was not properly evaluated in the included
papers of our scoping study. Consequently, we want to draw the attention to the fol-
lowing issues that should be overcome to advance the research area:

Architectural basis for Higher Levels of Interoperability. This scoping study
exhibits that research efforts have not addressed the dynamic and conceptual levels of
interoperability yet. In fact, standalone architectural solutions are not adequate by
themselves to comprehensively solve the aforementioned high levels. That is, a
broader interdisciplinary view is needed, which involves organizational, managerial,
and advanced technical decisions, e.g. using artificial intelligence methods and tech-
nologies. Accomplishing this interdisciplinary solution effectively needs the support
of a mature architectural basis. For example, unaligned models of business processes
would be better handled if constraints ambiguity of dynamically exchanged business
data had already been handled using mature architectural solutions.

Accordingly, we emphasize on the importance to reach a reasonable degree of arc-
hitectural maturity in backing interoperability on its higher levels. As indicated by
[14] , achieving a clear interoperability maturity level determines systems’ strengths
and weaknesses in terms of their likelihood to interoperate; and hence defines the
improvement priorities towards successful interoperability.

Prior Architectural Solutions to Support Interoperability Before Release. The
results show that researchers tend to deal with interoperability problems after facing
them, i.e., expensive posterior solutions [3]. Contrary, adopting prior architectural
solutions can save time and effort, e.g., designing and implementing an interface
adaptor for under construction system is less expensive than modifying a released
system and integrating it with new components [3]. Therefore, we call for pushing the
wheels of research in the direction of prior architectural solutions for interoperability.

 Interoperability-Related Architectural Problems and Solutions in Information Systems 319

Architectural Practices to Support Software Interoperability. In this study, on-
ly architectural design decisions have been found as architectural. However, software
architecture includes other activities that affect systems characteristics like architec-
tural analysis, synthesis, evaluation, and documentation [15]. It is thus of significant
importance to direct such activities towards improving interoperability potentials of
ISs and facilitating its tasks. For instance, it would be useful to have studies about
best practices to evaluate design patterns with regards to interoperability. Also, stu-
dies about architecture documentation activities that introduce specialized interopera-
bility views can help in analysis phases. Hence, researches on architectural activities
supporting interoperability are required and should reserve a place in future studies.

Empirical Evidence on the Quality of Proposed Solutions. Based on our col-
lected data, the majority of the identified architectural solutions have not been asso-
ciated with reliable validation. This can lead to difficulties for practitioners to proper-
ly adopt interoperability solutions and to systematically enhance them in future
works. Thus, it is important to provide trustworthy evidence like empirical evalua-
tions to raise the reliability of a solution and encourage adopting it. Such evaluation
should analyze a solution with respect to its achieved interoperability level, costs, and
any other claimed benefits. The experience reported in the field of evidence-based
software engineering explains the necessity of empirical evaluation to enable fast
adoption of good practices, improve products’ quality and minimize projects’ failures
[6].

Comparisons among Interoperability Architectural Solutions. The results show
that the identified interoperability architectural solutions have not been compared to
the already existing ones in literature. This is absolutely acceptable if solutions aim at
solving interoperability problems that have not been addressed before. However, a
proper justification on the preference of adopting a new solution over others address-
ing the same problem would be needed. Specifically, we call for comparing the expe-
rimental results of new solutions with results obtained from previous ones. Similar
recommendation has been proposed by Aleti et al. [16] in the context of building new
software architecture optimization methods. Moreover, it would be of additional help
if trade-offs of solutions are declared too. In this sense, the community would benefit
also from publicly sharing evaluation results to enable conducting comparisons.

Interoperability Metrics for Assessing Solutions. The included studies are in-
consistent in estimating the benefits of their solutions, i.e., they differ in both the
qualities they assessed and the metrics they used. This lack of consistency impedes
comparing the solutions and thus we could not infer the architectural characteristics
that influence the interoperability property of systems. Another issue is that, some
studies measured interoperability using indirect metrics that have unclear relation to
interoperability, e.g., autonomy, resource provisioning, security, and concurrency.

Hence, reporting bias represented in both inconsistency and indirectness should be
overcome through using valid and reliable measures of interoperability, These meas-
ures include interoperability models like: the Levels of Information Systems Interope-
rability (LISI) model [8], the Operational Interoperability Model (OIM) [17], the
LCIM [10], the System of Systems Interoperability (SOSI) model [18], and others.
Using these interoperability models can be a good base for reporting the results of the

320 H. Abukwaik, D. Taibi, and D. Rombach

previously discussed empirical evidence and comparisons on the quality of interope-
rability solutions. Though, it would be of greater benefit to come up with metrics that
can precisely quantify systems’ interoperability and clearly draw the lines between
semantic, pragmatic, and conceptual levels.

Combining interoperability solutions’ empirical evaluation, consistency in report-
ing results, and directness in assessing interoperability, we can definitely improve the
strength of evidence of these solutions. Thus, estimating effectiveness and interopera-
bility achieved when adopting these solutions can be more certain and trustworthy.

Reference Rules for Selecting Appropriate Interoperability Architectural So-
lutions. Currently, various interoperability architectural solutions have been identified
and some are addressing similar problems. Therefore, it is important to provide guid-
ing rules that define interoperability problems and assign them to their most suitable
architectural solutions. For example, it would be a valuable assistance for junior inte-
roperability architects facing a semantic data heterogeneity problem to have precise
directions on how to choose from alternative solutions like ontology-based, standards-
based and thesaurus-based mediations. Certainly, designers of such rules need to care-
fully take into account the different factors that may influence the effectiveness of
adopting a specific solution. These factors include available resources, system com-
ponents’ modularity and dependency, targeted interoperability level, system domain,
project size, developers’ experience, etc.

Tool Support for Interoperability. Another useful support for practitioners de-
signing and building interoperability would be to aid them with software tools that
can automatically identify potential interoperability problems between two systems
from their architectural models. More helpful these tools can be, if they can also sug-
gest plausible architectural solutions for the detected problems using the aforesaid
guidelines. For example, this can be implemented as a plug-in, to an existing software
architecture modeling language (e.g., UML), which provides an interoperability view,
reports architectural mismatches, and supports resolving these mismatches.

7 Limitation of This Study

Researcher Bias. (1) To produce unbiased conducting for the study, the selection
criteria and data extraction protocol were derived from the research questions and
reviewed by an independent researcher. For the same purpose, the study selection was
performed by two researchers. (2) To ensure correct inference in extracting data from
studies with poor or insufficient description, data extraction was performed by one
researcher and reviewed by another with discussions as needed. (3) To increase the
confidence about the outcome of interpreting the qualitative data, analysis results
were reviewed and discussed until agreement among the researchers. This was impor-
tant in cases where interoperability was described using different or no models. (4)
For a transparent and replicable study, data and results of each step were documented.

Publication Bias. Although we did the search in large electronic databases, we did
not contact authors to identify unpublished evaluation or other related researches.
Also, even with deriving the search terms from the research questions, software
engineering keywords are not standardized. Consequently, relevant studies might be

 Interoperability-Related Architectural Problems and Solutions in Information Systems 321

missed due to our search terms choice. For these reasons, we do not claim generaliz-
ing the results for the whole research field. However, this research covered a signifi-
cant part of the literature and provided valid results.

8 Conclusion

We have performed a scoping study to identify the architectural problems and solu-
tions for interoperability in ISs. Also, we pursued evidence on the identified solu-
tions’ benefits in the selected 22 studies. The studies were published between 1999
and 2013.

Our study contributes by listing faced interoperability problems in IS and mapped
them to the identified solutions. The study results reveal that while the technical, syn-
tactical, semantic, and pragmatic interoperability problems are addressed, dynamic
and conceptual ones still in need for research attention. The identified architectural
solutions vary to include ontologies for semantic issues, adaptors for syntactical dif-
ferences, middlewares for technical variations, and mediators for pragmatic problems.

Although most of the included studies justify their solutions using examples, many
did not present any evaluation method. Besides, no direct interoperability metric is
used to appraise the sought out interoperability.

In order to advance the software architecture research towards being a cornerstone
in achieving interoperability, we conclude the necessity for further research to: (1)
address interoperability on its higher levels, (2) provide empirical evidence for solu-
tions using reliable interoperability metrics, and (3) support interoperability architects
and developers with reference rules and tools. Findings also indicate a need to raise
the recognition of the interoperability topic within software architecture venues.

Acknowledgments. This research was performed as part of the PhD research of Hadil
Abukwaik under the supervision of Prof. Dieter Rombach. We thank Mohammed
Abufouda for replicating the selection of studies and the data extraction. Our thanks
also go for Liliana Guzmán, Dr. Matthias Galster, Dr. Matthias Naab, and the ano-
nymous reviewers for their valuable comments and guidance.

A Appendix: Selected Studies

ID Reference

S1 A. Brodt et al.: A mobile data management architecture for interoperability of
resource and context data. In MDM (2011)

S2 A. Ojo et al.: Semantic interoperability architecture for electronic government. In
dg.o (2009)

S3 A. Moulton et al.: Semantic Interoperability in the fixed income securities industry: A know-
ledge representation architecture for dynamic integration of web-based information. In HICSS
(2003)

S4 G. Hatzisymeon et al.: An architecture for implementing application interoperation with
heterogeneous systems. In DAIS (2005)

322 H. Abukwaik, D. Taibi, and D. Rombach

S5 L. Xianming et al.: Research on the Portlet Semantic Interoperability Architecture. In WCSE
(2009)

S6 D. de Carvalho et al.: Functional and device interoperability in an architectural model of
geographic information system. In SIGDOC (2007)

S7 J. Kim et al.: An enterprise architecture framework based on a common information technol-
ogy domain (EAFIT) for improving interoperability among heterogeneous information sys-
tems. In SERA (2005)

S8 S. Zhu et al.: Army enterprise architecture technical reference model for system interopera-
bility. In MILCOM (2009)

S9 F. Rabhi: Towards an open architecture for the integration and interoperability of distributed
systems. In Ent-Net at SUPERCOMM (2001)

S10 B. Powers: A multi-agent architecture for NATO network enabled capabilities: enabling se-
mantic interoperability in dynamic environments (NC3A RD-2376). In SOCASE (2008)

S11 E. Leclercq et al.: ISIS: a semantic mediation model and an agent based architecture for GIS
interoperability. In IDEAS (1999)

S12 M. Paul: Enterprise geographic information system (E-GIS): A service-based architecture for
geo-spatial data interoperability. In IGARSS (2006)

S13 G. Lepouras et al.: An active ontology-based blackboard architecture for web service intero-
perability. In ICSSSM (2005)

S14 C. Schroth et al.: UN/CEFACT Service-Oriented Architecture-Enabling Both Semantic And
Application Interoperability. In KiVS (2007)

S15 P. Arapi et al.: ASIDE: An Architecture for Supporting Interoperability between Digital Libraries
and ELearning Applications. In ICALT (2006)

S16 A. Bennaceur et al.: Towards an architecture for runtime interoperability. In ISoLA (2010)

S17 R. Maciel et al.: WGWSOA: A service-oriented middleware architecture to support groupware
interoperability. In CSCWD (2007)

S18 Y. Demchenko et al.: Intercloud Architecture for interoperability and integration. In Cloud-
Com (2012)

S19 D. Arize et al.: ThesIS: A semantic interoperability service for a middleware service oriented
architecture. In CSCWD (2013)

S20 R. Crichton et al.: An Architecture and Reference Implementation of an Open Health Informa-
tion Mediator: Enabling Interoperability in the Rwandan Health Information Exchange. In
FHIES (2013)

S21 G. Komatsoulis et al.: caCORE version 3: Implementation of a model driven, service-oriented
architecture for semantic interoperability. In J-BHI (2008)

S22 A. Mohtasebi et al.: Analysis of Applying Enterprise Service Bus Architecture as a Cloud Inte-
roperability and Resource Sharing Platform. In KMO (2013)

References

1. IEEE Standard Computer Dictionary, IEEE Std 610. A compilation of IEEE standard

computer glossaries (1991)
2. ISO/IEC 2382-1: Information technology, vocabulary, Part 1: Fundamental terms (1993)
3. Gonçalves, R., Müller, J., Mertins, K.: Enterprise Interoperability III: New Challenges and

Approaches. Springer (2007)
4. Davis, L., Payton, J., Gamble, R.: How system architectures impede interoperability. In:

Proceedings of the 2nd International Workshop on Software and Performance,
pp. 145–146 (2000)

5. Land, C.I.: Existing approaches to software integration–and a challenge for the future. In-
tegration 40, 58–104 (2004)

 Interoperability-Related Architectural Problems and Solutions in Information Systems 323

6. Dybå, T., Kitchenham, B., Jørgensen, M.: Evidence-based software engineering for practi-
tioners. IEEE Software 22(1), 58–65 (2005)

7. Loukis, , Charalabidis, : An empirical investigation of information systems interoperability
business value in European firms. Computers in Industry 64(4), 412-420 (2013)

8. C4ISR Interoperability Workig Group: Levels of information systems interoperability (lI-
SI). Technical Report, Department of Defense (1998)

9. Powers, B.J.: A multi-agent architecture for NATO network enabled capabilities: enabling
semantic interoperability in dynamic environments (NC3A RD-2376). In: Kowalczyk, R.,
Huhns, M.N., Klusch, M., Maamar, Z., Vo, Q.B. (eds.) SOCASE 2008. LNCS, vol. 5006,
pp. 93–103. Springer, Heidelberg (2008)

10. Turnitsa, C.: Extending the levels of conceptual interoperability model. In: Proceedings
IEEE Summer Computer Simulation Conference. IEEE CS Press (2005)

11. Sedek, K., Sulaiman, S., Omar, M.: A systematic literature review of interoperable archi-
tecture for e-government portals. In: 2011 5th Malaysian Conference on Software Engi-
neering (MySEC), pp. 82–87 (2011)

12. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. In: 12th International Conference on Evaluation and Assessment in Software
Engineering, vol. 17 (2008)

13. Kitchenham, B.: Procedures for undertaking systematic reviews,Joint technical report.
Computer Science Department, Keele University and National ICT Australia (2004)

14. Guédria, W., Chen, D., Naudet, Y.: A Maturity Model for Enterprise Interoperability. In:
Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872,
pp. 216–225. Springer, Heidelberg (2009)

15. Hofmeister, C., Kruchten, Nord, Obbink, Ran, America, P.: Generalizing a model of soft-
ware architecture design from five industrial approaches. In : 5th Working IEEE/IFIP Con-
ference on Software Architecture, pp.77–88 (2005)

16. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architecture
optimization methods: A systematic literature review. IEEE Transactions on Software En-
gineering 39(5), 658–683 (2013)

17. Clark, T., Jones, R.: Organisational interoperability maturity model for C2. In: Proceedings
of the 1999 Command and Control Research and Technology Symposium (1999)

18. Edwin, M., Linda, L., Patrick, P., Daniel, P., Meyers, B.: System of systems interoperabili-
ty (SOSI): Final report. Tech. rep. (2004)

fUML-Driven Design and Performance Analysis
of Software Agents for Wireless Sensor Network�

Luca Berardinelli, Antinisca Di Marco, and Stefano Pace

Dept. of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, 67100 L’Aquila, Italy

{luca.berardinelli,antinisca.dimarco,stefano.pace}@univaq.it

Abstract. The growing request for high-quality applications for wire-
less sensor network (wsn) demands model-driven approaches that facili-
tate the design and the early validation of extra-functional properties by
combining design and analysis models. for this purpose, uml and several
analysis-specific languages can be chosen and weaved through transla-
tional approaches. however, the complexity brought by the underlying
technological spaces may hinder the adoption of uml-based approaches in
the wsn domain. the recently introduced foundational uml (fuml) stan-
dard provides a formal semantics to a strict uml subset, enabling the
execution of uml models.

Leveraging fUML, we realize the Agilla Modeling Framework, an exe-
cutable fUML model library, to conveniently design agent-based software
applications for WSN and analyze their performance through the execu-
tion of the corresponding fUML model. A running case study is provided
to show our framework at work.

Keywords: fUML, Model-Driven Analysis, Tool Support, WSN.

1 Introduction

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous
sensors that cooperate to accomplish a task. Sensors are small, low-cost, wire-
less and battery-powered devices. They can be easily deployed to monitor several
environmental parameters and they create large-scale flexible architectures. Sen-
sors can be distributed everywhere and they enable different applications such
as domotics, disaster relief and alternate reality game.

The specific nature of sensors complicates the development of applications,
mainly because the quality of the services they provide is influenced by factors
like network availability, battery levels, and so on. Despite this, a WSN must
continue providing its services as long as possible, and with the best effort trying
to guarantee network longevity.

Traditionally, WSN applications have been developed following a code-and-fix
approach, that is, by directly programming nodes with the use of low-level prim-
itives. This approach, neglecting design and quality validation phases, results in
� This work is partially supported by the EU-funded VISION ERC project (ERC-

240555), and by PRESTO ARTEMIS project (GA n. 269362).

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 324–339, 2014.
c© Springer International Publishing Switzerland 2014

fUML-Driven Design and Performance Analysis of Software Agents for WSN 325

not structured, hard to maintain code with the risk of missing extra-functional
requirements and compromising the system usability. Indeed, the system’s extra-
functional properties must be considered as earlier as possible in the system
life-cycle to guarantee their fulfillment.

In this respect, the Model-Driven Engineering (MDE) paradigm may play a
capital role in the WSN domain. In MDE, models are used as the main system
specification throughout the whole development process for both design and
analysis purposes. Such models are then weaved through model transformations.
For example, architectural models can be defined on a high level of abstraction
and continuously refined until an executable system is (semi-) automatically
derived [1]. Similarly, different analysis models (e.g., queuing networks) can be
generated from design artifacts [2].

Translational approaches for model-driven analysis have the advantage that
existing techniques and tools for the target language can be directly exploited.
The major drawback, however, is that an additional level of indirection and
complexity is inevitable. Implementing the translation of models from the source
language (e.g., UML) into models of the target language used for the analysis is
a complex task, requiring a deep knowledge not only of the semantics of source
and target languages, but also of model transformation techniques.

Another challenge in developing translational approaches is translating back
the analysis results from the target language back to the source one. If this
backwards translation is missing, the analysis results may not be comprehensible
for the modelers, as they are usually only familiar with the source language.
The complexity of translating the analysis results back to the source language
lead to the unsatisfactory fact that only very few translational model-driven
analysis approaches provide the results on the level of the source models (cf. [2]
pointing this out for the software performance engineering domain). As a result,
these approaches do not gain the adoption they deserve outside the academia,
including also researchers and practitioners in the WSN domain.

These challenges are even more evident with UML, the most adopted general-
purpose modeling language in the MDE domain (as reported in a recent survey
on architectural languages [3]) as well as one of the most criticized languages
due to its lack of formal semantics. Adopting UML as the main notation for
live design models (i.e., not just for postmortem documentation purposes) re-
quires model transformations to generate analyzable and executable artifacts.
As a consequence, UML-based approaches usually span different technological
spaces [4] and require a non-negligible effort to set up a model-driven working
environment in terms of stakeholders’ know-how and tool support. To face these
challenges, France et al. [1] suggested the integration of the analysis algorithms
directly with the modeling language used in systems development.

Following this suggestion and with the aim of bringing the benefits of the
MDE paradigm into the WSN domain, we propose in this paper the Agilla
Modeling Framework (AMF). AMF is a model-driven, tool-supported approach
to design and analyze Agilla applications [5] through the Foundational UML
(fUML) [6], a new standard of the Object Management Group (OMG) that

326 L. Berardinelli, A. Di Marco, and S. Pace

defines the operational semantics of a (strict) UML subset. AMF provides a
fUML model library that supplies, at the same time, i) reusable design modeling
elements and ii) analysis algorithms for fUML models of Agilla applications.

The rest of the paper is organized as follows. Section 2 provides a quick back-
ground on Agilla and fUML. Section 3 illustrates the AMF framework and its
functionalities with the help of a case study. In Section 4, we focus on the per-
formance analysis functionality. Section 5 discusses about the opportunities and
current limitations of our approach. Finally, Section 6 reviews related works and
Section 7 concludes the paper outlining future research directions.

2 Background on Agilla and fUML

Agilla [5] is a bytecode-like programming language and a middleware (Agilla
MW) for mobile agents running on WSNs, based on TinyOS operating sys-
tem [7]. The Agilla MW runs on all the nodes of a WSN and allows creating,
migrating and destroying software agents at run-time, without service interrup-
tion. An agent behavioral specification consists of a list of statements from an
Agilla Instruction Set Architecture (ISA)1 and interpreted by an ad-hoc virtual
machine. The Agilla ISA includes general-purpose instructions to perform basic
tasks (e.g., obtaining a neighbor list, sensing) and migration instructions that
allow an agent to move or clone to another node. A code fragment is shown
in Figure 2. To support agent communication and migration, the Agilla MW
provides a shared memory based on tuple spaces [8]. A unique and distinct tu-
ple space is available on each node. For this reason, Agilla ISA also includes
tuple space operations to allow agents to both locally and remotely manage the
content of tuple spaces. The Agilla MW also provides further data structures
like a stack and three registers, namely an agent id, a program counter, and a
condition code. At run time, the stack stores input parameters and output re-
sults of instructions and, combined with values of registries, determines the next
instruction and task to execute.
Foundational UML (fUML) [6] is a new standard of the standardization body
OMG. It defines the operational semantics of a strict UML subset. The stan-
dard goes along with a Java-based reference implementation2 of an fUML vir-
tual machine for executing Classes, Common Behaviors, Activities, and Actions
UML language units. Since fUML does not introduce any heavyweight exten-
sion, any fUML model is compliant to UML. At run time, the fUML VM is in
charge of generating the so called instance model from given fUML model where
InstanceSpecifications, Links, and Slots model elements represent the run time
counterpart of Classes, Associations and Properties, respectively. In this respect,
the execution of fUML activities add, delete or modify elements of the instance
model. In essence, fUML enables the execution of UML models where i) struc-
tural elements are classes with their own properties, operations, and associations
while ii) the behavioral specification is modeled through UML activities.
1 http://mobilab.wustl.edu/projects/agilla/isa.html
2 http://fuml.modeldriven.org

http://mobilab.wustl.edu/projects/agilla/isa.html
http://fuml.modeldriven.org

fUML-Driven Design and Performance Analysis of Software Agents for WSN 327

3 The Agilla Modeling Framework

AMF is an ongoing work3 that aims at providing a fUML-based modeling and
simulation environment to design and analyze Agilla applications.

Figure 1 sketches the fUML-driven approach supported by AMF. Artifacts
and functionalities are depicted as rectangles and rounded boxes, respectively,
while dashed arrows connect functionalities and related artifacts with labels de-
tailing their relationships. In its first version ([9]), AMF supported a canonical
translational approach for generating Agilla code from annotated UML Activi-
ties. From [10] on, we started its porting process from UML to fUML. As a result,
AMF is now a fUML executable model library to be reused across UML-based
design artifacts. The AMF model library provides a predefined set of structural
and behavioral elements (namely, patterns) to design the software architecture
of Agilla applications as executable fUML models. In addition, following the
suggestion given in [1], it integrates analysis algorithms directly in fUML (i.e.,
as fUML Activities) for the sake of performance analysis of Agilla applications.

The choice of fUML as the main modeling notation stems from a recent survey
on industrial needs on architectural languages [3] where the authors document
the still growing and predominant adoption of UML but also the need for more
powerful analysis functionalities and tool support for UML-based approaches.
In addition, the need for a precise UML semantics is cleanly stated in [1].

Fig. 1. Actors, functionalities and artifacts in AMF

In this respect, AMF is an at-
tempt to exploit and assess
the potential benefits brought
by fUML in model-driven ap-
proaches. The main benefit
is avoiding translational ap-
proaches to different external
notations and related tech-
nological spaces [4] by inte-
grating algorithms and results
directly within the modeling
language used in systems development, as suggested by France et al. [1].

The AMF’s algorithms and related data structures are modeled through ac-
tivities and classes, respectively, and are part of an executable model library [11].
A UML model library is analogous to a class library in object-oriented program-
ming languages. It includes reusable classes, properties as well as operations
with their associated behaviors (a.k.a, methods [11]) as UML activities. The
modeling elements from a library can be suitably enriched with structural and
behavioral ones from the user-defined models by establishing relationships (e.g.,
generalizations, associations) and invoking operations (e.g., through call opera-
tion actions).

The AMF model library provides five functionalities, parsing, instruction se-
mantics simulation, trace generation, timing analysis, and performance analysis),

3 http://sealabtools.di.univaq.it/tools.php

http://sealabtools.di.univaq.it/tools.php

328 L. Berardinelli, A. Di Marco, and S. Pace

all implemented in fUML, i.e., through classes and activities. These functionali-
ties are illustrated below with the help of a case study.

Case Study. The Wildfire Tracking Application (WTA) is an existing case
study taken from [5]. The WTA software is deployed on a WSN distributed

Fig. 2. Agents’ code and control
flow

into a region that is prone to fires. It must
detect a fire and determine its perimeter.
When a fire starts, its movements are unpre-
dictable and WTA is implemented to con-
tinuously re-adapt the perimeter of the fire.
The original WTA is composed by five Agilla
agents. We choose two of them, namely the
Tracker and Reader agents, to show our ap-
proach and tool at work. The agents’ code
with its TASKS and fragments of their in-
ner instructions are shown in Figure 2.
The Reader runs on all the WSN nodes
and is programmed to sense the tempera-
ture at regular time intervals and to send
the value to a base station connected to a
PC, where the temperature level is evalu-
ated and where eventual alarms are trig-
gered. Once a fire has been detected, a
Tracker agent is injected in the WSN from
the base station to nodes. It starts running
(BEGIN) and clones itself to random neigh-
bors (RANDOM MOVE) that are not on
fire (CHECK_NEIGHBORS). The Tracker
agents collect real-time information about
the precise position of the fire, and deter-
mine its perimeter. The involved tasks (i.e.,
those labeled with BARRIER) are repeated
until the Tracker runs on all the neighbors
of the burning nodes (BARRIER_DONE).

Application Design. The AMF user models the structure and behavior of an
Agilla application using class and activity diagrams. Figure 3 shows an excerpt of
the structure and behavior of both the WTA and the AMF model library. The
AMF model library provides the generic structural elements, i.e., AppComp,
AgentComp, TaskComp, and InstrComp, from which the user-defined software
components have to be specialized. A hierarchy of user-defined classes is then
obtained, where the WTA agents, Reader and Tracker, have distinct associations
for each inner task. Given the class diagram of the WTA application architec-
ture, the fUML VM is able to generate, at run time, its corresponding instance
model. The link between the agent and task components and the corresponding
behavioral specifications is obtained through main() operations, added to both

fUML-Driven Design and Performance Analysis of Software Agents for WSN 329

agents and tasks components. As prescribed by fUML, the behavioral specifica-
tions of all these operations are given by executable UML activities: Figure 3
depicts the main() operations for the Tracker agent and its task BEGIN.

Fig. 3. Design of the WTA through the AMF model library

Additionally, further operations are required on agents for each owned TASK,
using its label as name: the Tracker agent requires, for example, twelve operations
as many as the tasks on its code (see Figure 2). These task-specific operations
are then invoked, through call operation actions [11], within an main() oper-
ations than model the agent’s behavior. Figure 3 shows this main() operation
for the Tracker. While the agent-level behaviors are completely modeled by the
AMF user, task-level behaviors can be created with the help of the AMF library
through predefined instructions taken from the AMF library. For example,
the white actions in the BEGIN::main() activity in Figure 3 can be dragged
and dropped from the library to be further refined by the user with instruction

330 L. Berardinelli, A. Di Marco, and S. Pace

parameters. In this respect, strings and integers can be modeled through Val-
ueSpecification actions [11]. At run time, their actual values flow through input
and output pins, depicted in Figure 3 as small black and white boxes on actions,
respectively.

Agilla provides 74 different instructions [5] and, then, the AMF model library
included a set of 74 ready to use instruction-level actions. In addition, In [10],
a set of recurrent patterns of instructions (e.g., to make leds on sensor nodes
blinking) are also included as predefined instruction-level activities (similar to
the BEGIN::main() activity in Figure 3) to be used assigned as is or merged
within main() operations of tasks.

Parsing. A properly designed Agilla application is parsed and the corresponding
instance model is generated. The parsing algorithm is an executable activity that
calls the addAgent(), addTask2Agent(), and addInstr2Task() operations of the
AppComp, AgentComp, and TaskComp library classes (see Figure 3) to generate
objects and links within the fUML instance model. Figure 4a shows an excerpt
of such instance model for the WTA, its Tracker agent and its task BEGIN.

Fig. 4. Excerpts from the WTA instance model: a) instances of Agilla structural units,
b) execution trace, c) performance analysis results

Instruction Semantics Simulation. In Agilla, the instruction semantics is
implemented as modifications of data structures provided by the Agilla MW like
the stack, the condition code registry and the tuple space [5].

In particular, we first model the semantics of two sets of Agilla instructions4:
i) those that access and modify the value of the condition code registry (like rdp,
rrdp, rrdpg, ceq and vicinity) and ii) those that determine the application
4 We refer the reader to [5] for further details on these and similar Agilla instructions.

fUML-Driven Design and Performance Analysis of Software Agents for WSN 331

control flow both by (un)conditionally jumping to a certain task (rjump, rjumpc)
with(out) reading the current value of the condition code registry or by stopping
the agent execution (halt). The Tracker’s code in Figure 2 shows how such
instructions can be combined within tasks to determine the its control flow.

In AMF, the instruction semantics is defined in fUML, i.e. through executable
activities associated to the execute() operations of InstrComp library classes (see
the Pushc, Rdp, Rjumpc library classes in Figure 3). The AMF library represents
the Agilla data structures in fUML through classes and properties so that, at
run time, the corresponding instance specifications and slot values are available
within the fUML instance model of any Agilla application.

Any InstrComp library class provides its own execute() operation with the cor-
responding executable activity implementing its own instruction semantics (i.e.,
whose actions directly access and modify the Agilla data structures). Instruction-
level executions always occur within the owning task and, in turn, within the
owning agent, like in a Russian wooden doll. For this reason, the AMF compound
structural elements, AgentComp and TaskComp, provide their own execute()
operation. Finally the correct scheduling of all these execute() operations is up
to Executor library classes (AppExecutor, AgentExecutor and TaskExecutor)5.
Their scheduling algorithms are modeled again by fUML activities associated
with their select_and_run operations. Currently, AMF supports a First-In-First-
Out (FIFO) scheduling policy. Explicitly modeling the semantics of instructions
as part of the AMF library frees the AMF users from explicitly modeling the
control flow of agents as required and shown in [10].

Timed Trace Generation. The AMF library includes a trace model repre-
sented as a hierarchical set of classes. AppExecTrace, AgentExecTrace, TaskEx-
ecTrace, and InstrExecTrace library classes are instantiated during the model
simulation when the corresponding behavioral units are scheduled. As a result,
an execution trace is built at run time and is part of the fUML instance model as
linked lists of instance specifications. Each trace corresponds to a path over the
control flow graphs shown in Figure 2. As an example, a BEGIN-DIE trace for
the Tracker is illustrated in Figure 4b. During the execution of the performance
analysis algorithm, these traces are further enriched with slots containing timed
values (e.g., the execution time of each unit) and exploited for the sake of timing
and performance analyses.

Timing Analysis. This AMF functionality has been originally presented in [10]
where we also explain how we measured the execution times of Agilla instruc-
tions over a predefined hardware platform [12]. In this new version of AMF, we
redesign the timing analysis algorithm (i.e., the corresponding executable activ-
ities) to make the timing analysis operating over execution traces, not available
in [10]. Now, given a timed execution trace of InstrExecTrace objects, the appli-
cation, task and agent execution times (ets) are calculated by summing the ets of
AgentExecTrace, TaskExecTrace and InstrExecTrace instances, respectively. For

5 Being a basic behavioral unit, an InstructionExecutor library class is not necessary
and its role is played directly by the execute() operations.

332 L. Berardinelli, A. Di Marco, and S. Pace

redesign this functionality, we followed the same design strategy applied for the
schedulers by distributing the implementation of the timing analysis algorithm
over operations provided by three TimeAnalyzer library classes (AppExecTime-
Analyzer, AgentExecTimeAnalyzer, and TaskExecTimeAnalyzer).

Performance Analysis. This is the new analysis functionality by AMF intro-
duced in this paper. The performance analysis algorithm leverages the Timing
Analysis and (then) the Timed Trace Generation functionalities to calculate the
average, minimum, and maximum response time of the modeled Agilla appli-
cation over a set of application-level execution traces. Section 4 illustrates this
functionality in detail.

Tool Support. Both the AMF library and the user-defined fUML model of
an Agilla application are UML models. Therefore any UML-compliant tool can
manage all the UML-based artifacts (boxes with the .uml tag) in Figure 1. How-
ever, only UML modeling tools also capable of simulating fUML models (the
m&s actor in Figure 1) can exploit all the AMF functionalities. The fUML stan-
dard is accompanied by a reference Java-based VM implementation and it is
available as plug in for open source and commercial UML modeling tools like
Papyrus6 and MagicDraw UML7, respectively. For AMF, we choose MagicDraw
UML and its plug in Cameo Simulation Toolkit to model and to simulate fUML
models, respectively. These two tools play a double role: i) they assist both the
AMF users in modeling and simulating an Agilla application and ii) they provide
us, as tool developers, an industrial-strength environment to design and simulate
our framework.

Figure 5a sketches the workflow of the AMF functionalities in Figure 1 through
a state machine-like notation. Given a properly designed fUML model of an Ag-
illa application extended by the AMF library, AMF runs all its functionalities
atop the fUML model simulation capability. After the parsing step that build up
the software structures within the fUML instance model, the Agilla instructions
(and then the containing tasks and agents) are scheduled and their timed execu-
tion traces saved at the same time. Then, timing and performance analysis steps
follow. In [10], we described how the execution times of the Agilla instructions
were measured on a real hardware platform [12] and how such timings were used
as parameters to run the timing analysis step. The next section illustrates the
new AMF performance analysis functionality applied on the WTA case study.

4 Performance Analysis with AMF

The performance analysis scenario for the WTA case study is graphically de-
picted on a sequence-like diagram in Figure 4c and replicated for clarity in
Figure 5b. It is not part of the WTA fUML model and used for the sake of
illustration.
6 www.papyrusuml.org
7 http://www.nomagic.com/

www.papyrusuml.org
http://www.nomagic.com/

fUML-Driven Design and Performance Analysis of Software Agents for WSN 333

Currently, AMF is able to simulate a single, multi-agent Agilla application
running on a sensor node. In this respect, the proposed scenario for WTA in-
cludes two agents, Tracker and Reader. The corresponding application-level ex-
ecution traces are generated accordingly, tracking the executed tasks and in-
structions for both agents. Graphically, these execution traces correspond to the
execution occurrences over lifelines as shown in Figure 4b.

Fig. 5. a) AMF functionalities workflow and b) the performance analysis step

The performance analysis algorithm requires two main input parameters:
i) the execution times (et) of each Agilla instruction and ii) a collection of
application-level execution traces. By leveraging such execution traces, AMF
can calculate the mean, maximum, and minimum response times (RTs) for the
simulated Agilla application and all its agents and tasks. We detail the perfor-
mance analysis tasks in the following.

Analysis Inputs. The execution times (ets) quantify the time required by a
seized resource to process a (software) request. In AMF, such requests are the
Agilla basic behavioral unit (instructions) and compound ones, (tasks, agents
and the whole application).

The AMF user has to input the instruction-level ets through a graphical
user interface (GUI)8 as shown in Figure 5b. We reuse, for our performance
scenario, the ets measured on the same target hardware platform used in [10].
As a consequence, the analysis results shown later can be considered platform-
specific, even though the reference hardware platform [12] has not been explicitly
modeled in the WTA model.

The second input to the performance analysis algorithm is a collection of timed
execution traces as generated by several simulation runs. In our performance
scenario, a couple of execution traces, one for Tracker and one for the Reader
agents, are generated for each simulation run and a new set of timed execution
traces are generated as part of the fUML instance model.
8 The GUI has been designed using the prototyping capabilities of MagicDraw(r).

334 L. Berardinelli, A. Di Marco, and S. Pace

The AMF user has to input the maximum number of runs as shown in Fig-
ure 5b. It acts as a stopping condition. In our performance scenario, we set this
value to 10. In accordance with the workflow sketched in Figure 5a, AMF re-
peats the Instruction Semantics Simulation, Trace Generation, Timing Analysis
and Performance Analysis steps 10 times. As a consequence, we collect in our
scenario 10 distinct sets of application-level traces, each containing a Tracker
and Reader timed execution trace.

To randomly generate different execution traces, i.e., different paths over the
control flow graph of a simulated agent, AMF models the Agilla condition code
register [5] as a uniformly distributed binary random variable whose value can be
ignored (0) or trigger a jump to another task (1). For this purpose, we integrate
the JavaScript Math object within the fUML activities modeling the instruction
semantics of Agilla instructions (like rdp, rrdp, rrdpg, ceq and vicinity). Then
the Math.random() method is invoked to generate a new condition code value
whenever the corresponding instruction is executed.

Analysis and Results. In AMF, task-, agent- and application-level execution
traces are further augmented with other three timed properties, namely arrival
time (at), waiting time (wt), and completion times (ct). The combination of these
four timed properties allows the simulation of a conflict over access to a shared
computing resource among agents running on the same node. All these timed
properties are modeled as integer values representing times in microseconds (μs).
In particular:

– at is the time when the Agilla behavioral unit is ready to be run by the
proper Executor instance.

– wt quantifies the time elapsed before the behavioral unit access the shared
computing resource.

– ct is the time when the behavioral unit has completed its execution and
releases the shared resource.

All the remaining timed properties are calculated by the performance analysis
algorithm and assigned to the proper execution traces. In particular, in our
performance scenario, we consider both Tracker and Reader agents ready for
execution when the WTA application starts (i.e., at=0). Once all the timed
properties of the collected execution traces have been calculated, the RT of the
WTA application can be obtained. In our scenario, the RT can be intuitively
quantified as the time required to execute the sequence diagram in Figure 5b,
i.e. the interval between the instant when the WTA application starts and the
instant when the Reader agent stops. For example, the application-level RT is
obtained as the difference between the ct of the latest executed agent (in this
case, the Reader) and the at of the first one (i.e., the Tracker). In a similar way,
the RTs can be calculated for each agent and task by considering only cts and
ats saved on the corresponding AgentExecTrace and TaskExecTrace instances.
Figure 4c shows how the performance results are saved within the WTA instance
model: they are modeled as ordered lists of slot values associated to the right
properties (ats, wts, ets, and cts) within instances of AppExecTimeAnalyzer,
AgentExecTimeAnalyzer, and TaskExecTimeAnalyser library classes.

fUML-Driven Design and Performance Analysis of Software Agents for WSN 335

Fig. 6. RT (in μs) of the whole WTA and its
Tracker and Reader agents

We finally collect and display
the results in the bar charts in
Figure 6. The WTA RT varies
from a minimum of 149905 μs to
a maximum of 413864 μs. In par-
ticular, the Reader RT is a con-
stant value across all the simu-
lation runs (147359 μs) due to
its simple control flow graph (two
sequential tasks always executed
at each run, see Figure 2) while
the RT of the Tracker may vary
according to the complexity of
its randomly generated execution
trace. For sake of illustration, we
report the execution trace analyzed during the fourth and sixth runs by the ids
of the corresponding tasks (see the control flow graph in Figure 2). In particular,
for these two runs, AMF tracked 13 task executions including the three loops
starting from the BARRIER_LOOP task (id=5).

5 Discussion

It is worth noting that, in this paper, we are extending the analysis capabilities
of AMF with the intent of showing the suitability of fUML for i) the design
and analysis of WSN applications, and ii) the design of more and more complex
analysis tools as fUML model libraries, at the same time. In accordance with our
background and research goals, we primarily focus on assessing the exploitation
of fUML and related technologies in the WSN and extra-functional analysis
domains.

We consider AMF and, more in general, the underlying fUML-driven approach
proposed in this paper, an initial as well as a first practical evaluation of the
impact that fUML and its related technologies may have i) on expectations from
UML practitioners and ii) on future research directions in MDE [1,3]. With
this work, we show that both the design and analysis of WSN as well as tool
development are feasible activities with fUML. While pursuing our goals, we
experienced both opportunities and limitations related to the usage of fUML.

fUML is a young OMG standard, published on February 2011. It makes a strict
(and then easier to learn) subset of UML executable. By leveraging their current
background in UML, both researchers and practitioners can already adopt it
for their specific purposes. At the time of writing, the (positive or negative)
impact of fUML on daily modeling activities still has to be assessed (e.g., [3] was
concluded in July 2011).

fUML promotes model reuse through executable model libraries, like AMF,
and it may be compared to a new programming language that, however, still
suffers from the lack of an adequate support in term of built-in libraries. In

336 L. Berardinelli, A. Di Marco, and S. Pace

AMF, for example, we had to model from scratch common auxiliary data struc-
tures like queue and stack. The modeling effort required to create executable
model libraries may then be high. For example, fUML activities are much more
detailed than non-executable ones and so far usually disregarded details, like in-
put/output pins, have to be systematically modeled to allow a correct execution.
Being aware of this, we worked on AMF for its users to simplify the modeling
of agents’ control flows.

In addition, still few UML modeling tools exist that provide plug ins to
support the simulation of their models. We choose MagicDraw and its plug
in Cameo Simulation Toolkit to support the modeling and simulation tasks in
AMF. However, being fUML models also valid UML models, such artifacts may
be exchanged among any UML modeling tools supporting common serialization
formats (e.g., XMI and Eclipse UML).

In this work, we are adopting fUML to design, from scratch, an analysis
tool.From [10] on, the AMF executable model is growing fast to support its new
functionalities, including also possibly heavy computational tasks, like perfor-
mance analysis is.

To the best of authors’ knowledge, AMF represents the first attempt to design
performance analysis algorithms through fUML-compliant activities as part of a
reusable UML model library. During this task, we experienced some scalability
issues that limited the complexity of our performance scenario (e.g., larger work-
loads). For example, Tatibouet et al. [13] pinpointed the lack of central control
unit in charge of managing discrete events and their timings. They also provided
solution in the form of a fUML model library that both extends and preserves
the original fUML semantics. Moreover, AMF can be seen as a layered tool in-
frastructure and all the AMF functionalities run within a hosting UML Modeling
environment that, in turn, run on top of a Java Virtual Machine. This layered
infrastructure may worsen the perceived scalability issues for analysis tools, like
AMF, running on the topmost layer. Even though assessing the maturity level
of fUML and its underlying technology for performance analysis is out of scope
of this paper and left for future work, we imagine that the possible integration
of [13] with our library will help both in re-designing the current AMF’s perfor-
mance analysis algorithms and in modeling new ones. The experience gained in
designing AMF will help in widening our research goals to integrate other (ex-
isting) model-based analysis approaches (e.g., reliability), possibly applied on
industrial case studies [14].

6 Related Work
In this work, that directly stems from [10], as well as in [15] and [16], we pursue
a similar goal but aiming at a tighter integration between fUML and analysis
methodologies. In particular, we showed in [15] and [16] how performance anal-
ysis can be conducted on annotated fUML models by generating and analyzing
traces compliant with a fUML run time metamodel [17]. Tool support is provided
through a Java-based Eclipse plug-in that suitably interacts with the fUML VM
during its execution. In [10] and in this subsequent work, we further emphasize

fUML-Driven Design and Performance Analysis of Software Agents for WSN 337

the role and importance of fUML by directly designing (that is, implementing)
the analysis tool as a fUML model library.

In [10,15,16] and in this work as well, the expected benefits of directly utilizing
the execution of UML models for carrying out model-based analysis are twofold:
(i) the costly translation of UML models into formal languages dedicated to
specific analysis purposes is avoided and, hence, (ii) the implementation and
maintenance of supporting analysis tool sets is eased significantly. With AMF
approach presented in this paper, we offer both of these benefits and showcase
them by developing a performance analyzer that implements an analysis method
directly on UML models for WSN applications. A translation of UML models
into a performance model can now be omitted and it is not necessary to use
additional external tools for performance analysis purposes.

[18] presents a model-driven framework based on MathWorks tools, in which
an application developer can model a WSN application by using Stateflow con-
structs and then generate code. In [19], the authors introduce a UML-based
framework where a system model (i) is extended with a new profile for rep-
resenting NesC application along with the supporting hardware platform, and
(ii) is annotated with performance parameters defined in MARTE. Thereafter
they apply a set of transformations to this enhanced UML model that targets a
Queueing Network performance model to carry out a performance analysis of the
WSN application. AMF differs from [18,19] since it targets Agilla agents and the
analysis technique is based on simulation of UML without demanding a trans-
formation to different notations for analysis purposes. The current supported
analyses are functional, timing and performance ones.

In [20], the OMNeT++ simulation environment is presented. It is a complete
environment capable of simulating various kinds of networks, including WSNs.
Even if OMNeT++ is a complete environment, it is difficult to use and, instead
of directly providing simulation components for computer networks, queuing
networks or other domains, it provides the basic machinery and tools to write
such simulations. In addition, while Omnet++ models are created with a spe-
cific description language with its own graphical editor, our models as well as
our simulation environment are both based on UML, shortening the learning
curve for developers that are not expert in functional simulation, timing and
performance analysis.

In [21], a model-driven approach is used to separately model the software
architecture of a WSN, the low-level hardware specification of the WSN nodes
and the physical environment where nodes are deployed in. The framework uses
these models to generate executable code to analyze the energy consumption of
the modeled application.

Finally, there are several ongoing research efforts towards the exploitation of
fUML in MDE approaches for verification and validation activities. Benyahia et
al. [22] evaluate how well the current fUML semantics supports the formalization
of concurrent and temporal semantic aspects, which is required for the design
and analysis of real-time embedded systems. They illustrate how the standard
fUML execution model, as well as the fUML VM, have to be extended for this

338 L. Berardinelli, A. Di Marco, and S. Pace

purpose to explicitly incorporate a scheduler into fUML that, at each step of the
model execution, determines the activity node to be executed next according to
certain scheduling policies (e.g., first-in-first-out (FIFO)). The same limitation
has been addressed by Abdelhalim et al. [23]. In contrast to Benyahia et al. [22],
they do not propose an extension of the standard fUML execution model but
rather present a model-based framework that translates fUML activities into
communicating sequential processes (CSP) for performing a deadlock analysis
detecting possible scenarios leading to deadlocks shown on UML sequence dia-
grams.

7 Conclusion
We developed a model-driven approach that allows both modeling and the trace-
driven performance analysis of software for WSN nodes running the Agilla mobile
agents-based middleware. We adopted fUML, a strict executable UML subset,
as design notation for AMF users and as well as development language for AMF
itself. We provided modeling guidelines to AMF users in order to obtain an
executable specification directly in UML, without the need of learning ad-hoc
notations and tools. In this respect, thanks to its fUML native compatibility
with UML, our approach is tool-supported by construction and can leverage
many existing, industrial-strength UML-based tools. AMF is an ongoing work
and, in this paper, we highlighted its new performance analysis capabilities. We
show the modeling framework and the performance analysis at work on the WTA
case study.

As future research goals, we plan to improve the design and scalability of
existing analysis algorithms in fUML. We also plan to integrate new analysis
algorithms for the sake of energy consumption, reliability, and trade-off analyses.

References

1. France, R.B., Rumpe, B.: Model-driven development of complex software: A re-
search roadmap. In: Future of Software Engineering, pp. 37–54 (2007)

2. Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software Performance
Analysis. Springer (2011)

3. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: A survey. IEEE Trans. Softw. Eng. 39(6) (2013)

4. Bézivin, J.: Model driven engineering: An emerging technical space. In:
Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 36–64.
Springer, Heidelberg (2006)

5. Fok, C.L., Roman, G.C., Lu, C.: Agilla: A mobile agent middleware for self-adaptive
wireless sensor networks. ACM Trans. Auton. Adap. 4(3), 16 (2009)

6. OMG. Semantics of a foundational subset for executable UML models (2011)
7. TinyOS Operating System for WSNs, http://www.tinyos.net/
8. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.

Syst. 7(1), 80–112 (1985)
9. Di Marco, A., Pace, S.: Model-driven approach to Agilla agent generation. In:

IWCMC 2013 Conference - Wireless Sensor Networks Symposium (July 2013)

http://www.tinyos.net/

fUML-Driven Design and Performance Analysis of Software Agents for WSN 339

10. Berardinelli, L., Di Marco, A., Pace, S., Marchesani, S., Pomante, L.: Modeling and
timing simulation of agilla agents for WSN applications in executable UML. In:
Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168,
pp. 300–311. Springer, Heidelberg (2013)

11. OMG. UML, Superstructure, Version 2.4.1 (2011)
12. Memsic MicaZ mote, http://www.memsic.com/wireless-sensor-networks/
13. Tatibouet, J., Cuccuru, A., Gérard, S., Terrier, F.: Principles for the realization of

an open simulation framework based on fuml (wip). In: Proc. of the Symposium
on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, p. 4.
Society for Computer Simulation International (2013)

14. Gouvêa, D.D., et al.: Experience with model-based performance, reliability, and
adaptability assessment of a complex industrial architecture. Software and System
Modeling 12(4), 765–787 (2013)

15. Berardinelli, L., Langer, P., Mayerhofer, T.: Combining fUML and profiles for non-
functional analysis based on model execution traces. In: QoSA (2013)

16. Fleck, M., Berardinelli, L., Langer, P., Mayerhofer, T., Cortellessa, V.: Resource
contention analysis of service-based systems through fUML-driven model execu-
tion. In: Proc. of NiM-ALP, p. 6 (2013)

17. Mayerhofer, T., Langer, P., Kappel, G.: A runtime model for fUML. In: Proc. of
the Int’l Workshop on Models@run.time (MRT 2012) at MODELS (2012)

18. Mozumdar, M.M.R., Lavagno, L., Vanzago, L., Sangiovanni-Vincentelli, A.L.: Hi-
lac: A framework for hardware in the loop simulation and multi-platform automatic
code generation of WSN applications. In: Symposium on Industrial Embedded Sys-
tems (SIES), pp. 88–97. IEEE (2010)

19. Berardinelli, L., Cortellessa, V., Pace, S.: Modeling and analyzing performance
of software for wireless sensor networks. In: Int’l Workshop on Soft. Eng. Sensor
Network App. (SESENA), pp. 13–18. ACM (2011)

20. OMNeT++ project web site, http://www.omnetpp.org/
21. Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., Muccini,

H.: A model-driven engineering framework for architecting and analysing wireless
sensor networks. In: Int’l Workshop on Soft. Eng. Sensor Network App. (SESENA),
pp. 1–7 (2012)

22. Benyahia, A., Cuccuru, A., Taha, S., Terrier, F., Boulanger, F., Gérard, S.: Ex-
tending the standard execution model of UML for real-time systems. In: Hinchey,
M., Kleinjohann, B., Kleinjohann, L., Lindsay, P.A., Rammig, F.J., Timmis, J.,
Wolf, M. (eds.) DIPES 2010. IFIP AICT, vol. 329, pp. 43–54. Springer, Heidelberg
(2010)

23. Abdelhalim, I., Schneider, S., Treharne, H.: An integrated framework for checking
the behaviour of fUML models using CSP. Int’l Journal on Software Tools for
Technology Transfer, 1–22 (2012)

http://www.memsic.com/wireless-sensor-networks/
http://www.omnetpp.org/

Runtime Enforcement of Dynamic Security
Policies

Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes

Universidad de Málaga, Andalucía Tech, Spain
{horcas,pinto,lff}@lcc.uma.es

http://caosd.lcc.uma.es/

Abstract. The security policies of an application can change at runtime
due to several reasons, as for example the changes on the user preferences,
the lack of enough resources in mobile environments or the negotiation of
security levels between the interacting parties. As these security policies
change, the application code that copes with the security functionalities
should be adapted in order to enforce at runtime the changing security
policies. In this paper we present the design, implementation and evalu-
ation of a runtime security adaptation service. This service is based on
the combination of autonomic computing and aspect-oriented program-
ming, where the security functionalities are implemented as aspects that
are dynamically configured, deployed or un-deployed by generating and
executing a security adaptation plan. This service is part of the INTER-
TRUST framework, a complete solution for the definition, negotiation
and run-time enforcement of security policies.

Keywords: Security enforcement, Security policy, Aspect-Oriented Pro-
gramming, Dynamicity.

1 Introduction
A security policy is a set of rules that regulate the nature and the context of
actions that can be performed within a system according to specific roles (i.e.
permissions, interdictions, obligations, availability, etc) to assure and enforce
security [1]. The security policies have to be specified before being enforced. This
specification can be based on different models, such as OrBAC [2], RBAC [3],
MAC [4], etc. and describes the security properties that an application should
meet. Once specified, a security policy is enforced through the deployment of
certain security functionalities within the application. For instance, the security
policy “the system has the obligation of using a digital certificate to authenticate
the users that connect using a laptop” should be enforced by deploying, within
the application, “an authentication module that supports authentication based
on digital certificates”.

However, the security policies of an application can change at runtime due
to many reasons, as for example the changes on the user preferences, the lack
of enough resources in mobile environments or the negotiation of security levels
between the interacting parties. As these security policies change, the appli-
cation code that copes with the security functionalities should be adapted in
order to enforce at runtime the changing security policies. In this sense, the use

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 340–356, 2014.
c© Springer International Publishing Switzerland 2014

Runtime Enforcement of Dynamic Security Policies 341

of the Autonomic Computing (AC) paradigm [5] is nowadays widely accepted
by the distributed systems community to endow distributed systems with this
dynamicity or self-management capacities.

Following the typical MAPE-K loop of the AC paradigm, where “MAPE”
stands for Monitoring-Analysis-Plan-Execution and ‘K’ stands for Knowledge,
the development of a software system with self-adaptation of the security func-
tionalities consists on providing support to: (1) model the security information,
including the identification of those features that are foreseen that may change
at runtime and the mapping with the security functionalities (Knowledge); (2)
model the security functionalities that need to be deployed in order to enforce
a required security level (Knowledge); 3) monitor the runtime environment to
listen for changes (e.g. contextual changes, user preferences changes, changes on
the resources availability) that may affect security (Monitor); 4) analyze how the
occurred changes affect the security configuration of the application (Analysis);
5) define a plan with the set of changes that need to be performed in the current
security configuration (Plan Generation), and 6) dynamically adapt the security
configuration according to the plan generated (Plan Execution).

In this paper we focus on presenting how the security knowledge can be mod-
eled making use of a Dynamic Software Product Line (DSPL) [6] approach, and
how the generation and execution of the reconfiguration plan can be developed
using Aspect-Oriented Programming (AOP) [7]. On the one hand, DSPL are an
accepted approach to manage the runtime (security) variability of applications.
DSPLs produce software capable of adapting to changes, by means of binding
the variation points at runtime [6]. This means that the variants of the DSPL
are generated at runtime. On the other hand, the AOP technology is very ap-
propriate to implement the dynamicity that is required in our approach. AOP
produces more modular software with a better separation of concerns and this
facilitates the runtime weaving and/or unweaving of the security functionality.
The rest of the MAPE-K loop (i.e. the monitoring and analysis phases) are out
of the scope of this paper.

Part of this work has been developed in the context of the FP7 European
Project INTER-TRUST [1]. INTER-TRUST is a framework for the specifica-
tion, negotiation, deployment and dynamic adaptation of inter-operable security
policies. Concretely, the modules that perform the dynamic generation and ex-
ecution of the security adaptation plan are also part of INTER-TRUST1. How-
ever, the use that we make of DSPLs to represent the security information and
to generate the security configurations at runtime is specific of our approach.

After this introduction, the paper is organized as follow. Section 2 presents our
proposal following the MAPE-K loop. Section 3 describes the knowledge, while
Section 4 explains how to generate a new security configuration from the security
policies. Section 5 and Section 6 describes the generation of the adaptation plan
and the execution of the plan respectively. Section 7 evaluates our proposal.

1 They are open source and can be downloaded from https://github.com/
Inter-Trust/Aspect_Generation/tree/demonstrator-version

https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version
https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version

342 J.-M. Horcas, M. Pinto, and L. Fuentes

Security Adaptation Service

KNOWLEDGE

Aspectual knowledgeSecurity configurations
Security variability

specifications
Security policies Security aspects

Aspect Generation

(difference between
configurations)

Aspect Weaver

Application

<<aspect>>
Encryption

<<aspect>>
Authentication

<<aspect>>
Signature

<<aspect>>
Hashing

...

change
notification

new security
configuration

security
adaptation plan

monitoring

MONITOR ANALYSIS PLAN EXECUTE

MAPE-K loop

Monitoring

(context, resources,
user preferences,...)

Adapting
Security Policy

(OrBAC, RBAC, MAC,…)

Resolving Security
Configuration

CVL: VSpecs, variation
points, aspects

new
security policy

SpringAOPAspectJ SpringAOPAspectJ

AspectJ SpringAOP

Fig. 1. Our MAPE-K loop approach and the Security Adaptation Service

Finally, Section 8 discusses the related work, and Section 9 presents conclusions
and future work.

2 Our proposal

Figure 1 provides an overview of our proposal. As previously said, we follow the
MAPE-K loop of the AC paradigm. An important part of the MAPE-K loop
is the Knowledge, which in our approach represents all the information that is
needed to adapt the applications to the changes on the security policies. The
details about the Knowledge are provided in Section 3.

In the MAPE-K loop, the dynamic adaptations are driven by changes on
the runtime environment. As shown in Figure 1, in our approach these changes
are monitored and analyzed by the Monitoring and the Adapting Security
Policy modules. These modules will depend on: which changes the application is
interested on, such as changes in the context, changes in the user preferences, lack
of enough resources in mobile environments, or negotiations of the security levels
between interacting parties; the languages used to define the security policies
(e.g. OrBAC [2], RBAC [3], MAC [4]), and the reasoning engine used to analyze
and adapt those policies. The proposal presented in this paper is independent of
a concrete design and/or implementation of these modules and thus the details
about them are out of the scope of this paper. Basically, we will rely on existing
approaches. For instance, in the context of the INTER-TRUST framework the
monitoring is performed by the Montimage Monitoring Tool (MMT) [8] and the
security policies are specified and analyzed using OrBAC [2].

Thus, this paper mainly focuses on the Resolving Security Configuration,
the Aspect Generation and the Aspect Weavermodules that form the Security
Adaptation Service (gray shaded in Figure 1). Firstly, the Resolving Security

Runtime Enforcement of Dynamic Security Policies 343

Configurationmodule is in charge of selecting the proper configuration of the se-
curity functionality that needs to be deployed into the application in order to fulfill
the requirements specified in the new security policy. All the possible security con-
figurations are specified using a DSPL. Concretely, we use the Common Variability
Language (CVL) [9] to specify and resolve the variability of the security function-
alities. The details of this approach can be found in [10]. The main difference of
both papers is that in [10] we used a SPL based on the use of CVL to generate
a particular configuration of security during the design of applications. Now, we
have extended that approach to use those security models at runtime and to inte-
grate it in our Security Adaptation Service. These security functionalities are
encapsulated into aspects by using AOP.

Secondly, the new security configuration is sent to the Aspect Generation
module that dynamically generates a generic security adaptation plan with the
actions that need to be performed with the security aspects (e.g. add a new
aspect, remove an aspect, re-configure an aspect,. . .), taken into account the
difference between the current security configuration deployed within the ap-
plication and the new security configuration required, and using the available
aspectual knowledge of the application (e.g. pointcuts and advices definitions).

Finally, the Aspect Weaver module executes the security adaptation plan at
runtime by performing the particular actions of the AOP framework being used
(e.g. weave/unweave). This module supports different AOP frameworks (AspectJ
and Spring AOP) since the use of a unique AOP solution does not cover all the
dynamicity, expressiveness, versatility, and performance requirements that the
applications may need. For instance, Spring AOP allows weaving aspects at run-
time (in contrast to AspectJ), and thus, we can add new security functionalities
at runtime that were not taken into account when the application was initially
deployed.

The Security Adaptation Service represents a generic solution that can be ap-
plied to many types of applications (e.g. pervasive applications, service-oriented
applications, etc.) and can be used for the adaptation of any functionality, not
only security. For instance, to illustrate our approach, we use an e-voting case
study which is one of the demonstrators of the INTER-TRUST project where
security requirements are complex and can change at runtime. This case study is
provided by a enterprise partner of INTER-TRUST and a complete description
of the e-voting application can be found in [1].

3 Knowledge

The knowledge represents all the information required in order to adapt the
applications to changes on the security policies. The knowledge is available at
runtime and includes: (1) the security policies that can be specified in any se-
curity model (e.g. OrBAC); (2) the security variability specifications; (3) the
current security configuration deployed within the application; (4) the security
aspectual knowledge; and (5) a repository with the security aspects files (i.e.
class files, jar files, xml files,. . .).

344 J.-M. Horcas, M. Pinto, and L. Fuentes

<<aspect>>
Encryption

<<aspect>>
Authorization

TrustInteroperability [1..*] ChannelProtection [1..*] Filtering [1..*] MessageSecurity [1..*] DataSecurity [1..*]

Authentication Unlinkability

FilteringTrust

IPSec

Authorization

AccessControl [1..*]

1..1

Pseudonymity

Privacy [1..*]

1..1

WifiSecurity

1..1

Signature

Authenticity

Hashing

Integrity Confidentiality Cypher

1..*

Authentication_CU

Authorization_CU

Trust_CU

Unlinkability_CU

Pseudonymity_CU

IPSec_CU

WifiSecurity_CU Signature_CU

Filtering_CU Hashing_CU

Confidentiality_CU

<<aspect>>
Trust

<<aspect>>
Unlinkability

<<aspect>>
Pseudonymity

<<aspect>>
IPSec

<<aspect>>
WifiSecurity

<<aspect>>
Filtering

<<aspect>>
Signature

<<aspect>>
Hashing

Security Functionalities

Cypher_CU

<<aspect>>
Authentication

Security

0..*

V
a

ri
a

b
ili

ty
 s

p
ec

if
ic

a
ti

o
n

s
tr

ee
V

a
ri

a
ti

o
n

 p
o

in
ts

B
as

e
m

o
de

l

Authenticity implies Integrity
V

ar
ia

b
ili

ty
 m

o
d

el

ChoiceFeature [1..*]

CompositeVariability_Cv

Variable: Type
1..n

between 1 and n
selections

Constraint

ConfigurableUnit_CU

mandatory
feature

optional
feature

reference between
variation points and

features

binding between
variation points

and functionalities

Legend

1 or more
instances

yes/no
decision

specify a
value of a type

intricate relationships
among features

container of
variation points

container of
specifications trees

selections in a
configuration

Fig. 2. Modeling security concepts in CVL

On the one hand, as previously said, the security knowledge is specified making
use of DSPLs to manage the security variability at runtime. Figure 2 represents
the security variability modeled in CVL. Top of Figure 2 shows the abstract part
in which all the security concerns, functionalities, attributes and parameters that
can be re-configured at runtime are specified — i.e. the variability specifications
tree for security. Bottom of Figure 2 shows a representation of the particular im-
plementation of the security functionalities encapsulated into aspects. Details of
the parameters of each security concern in the variability specifications tree and
in the aspects are hidden in Figure 2 to simplify it. Figure 3 shows a complete
example for the authentication functionality and will be detailed in the next
section. Finally, the security features of the tree and the specific functionality of
the aspects are linked by using the CVL variation points2 (middle of Figure 2).
A particular selection of the features in the tree defines a particular configu-
ration of the aspects. This configuration will be generated by the Resolving
Security Configuration module, taking as input the requirements specified
in the security policies.

On the other hand, the aspectual knowledge used by the Aspect Generation
module depends on the application and on the implementation of the aspects
since this information includes the points of the application where the security

2 A complete description of CVL can be found in http://www.omgwiki.org/
variability/

http://www.omgwiki.org/variability/
http://www.omgwiki.org/variability/

Runtime Enforcement of Dynamic Security Policies 345

Listing 1.1. Security aspectual knowledge.
1 <ak:pointcuts>
2 <ak:pointcut id="Voter" exp r e s s i on=" execut ion (∗ ∗ Connection .∗ (

Voter , . .)) && th i s (Vote rCl i ent) " />
3 <ak:pointcut id="sendingVoteJP" exp r e s s i on=" execut ion (pub l i c ∗

Elec t ionVote . sendVote (Vote , . .)) && args (Vote) " />
4 </ak:pointcuts>
5 <ak:advices>
6 <ak:advice id=" c e r t i f i c a t eAu th " classname="uma. caosd . sas .

Authent i cat ion"><ak:functional it ies>
7 <ak:functionality id=" au then t i c a t i on#d i gC e r t i f i c a t e " />
8 <ak:functionality id=" au then t i c a t i on#x5 0 9 c e r t i f i c a t e " />
9 </ ak:functional it ies></ak:advice>

10 <ak:advice id="userPassAuth" classname="uma. caosd . sas .
Authent i cat ion"><ak:functional it ies>

11 <ak:functionality id=" au then t i c a t i on#userPassword" />
12 </ ak:functional it ies></ak:advice>
13 <ak:advice id=" encrypt " c lassname="uma. caosd . sas . Encryption"><

ak:functional it ies>
14 <ak:functionality id=" c o n f i d e n t i a l i t y#encrypt " />
15 <ak:functionality id=" c o n f i d e n t i a l i t y#rsa−encrypt ion " />
16 </ ak:functional it ies></ak:advice>
17 </ak:advices>
18 <ak:advisors>
19 <ak:advisor id=" certAuth " advice−r e f=" c e r t i f i c a t eAuth " pointcut−

r e f="Voter" />
20 <ak:advisor id="userPassAuth" advice−r e f="userPassAuth " pointcut

−r e f="Voter" />
21 <ak:advisor id="encryptRSA" advice−r e f=" encrypt " pointcut−r e f="

sendingVoteJP" />
22 </ak:advisors>

functionality can be incorporated (i.e. the pointcuts definitions) and the list of
functionalities provided by each aspect (i.e. the advices). The aspectual informa-
tion is represented in a mapping table with the information needed to relate the
different security functionalities required by the security configuration with the
available advices implemented in the aspects. This information also includes the
associations between the defined pointcuts and the advices — i.e. the advisors,
following the Spring AOP terminology. The excerpt XML file in Listing 1.1 is an
example of the aspectual knowledge for the e-voting application. We observe the
lists of pointcuts (lines 2–7), the list of advices with the functionalities provided
by each aspect (lines 9–38), and the list of advisors (lines 40–50).

4 Resolving Security Configurations
This section describes the generation a new security configuration that enforces
the new security policy received from the Adapting Security Policy module.

When a request of a new security policy is received, the Resolving Security
Configuration module extracts the security information from the rules of the
security policy, selects the proper security features, and assigns the appropri-
ate parameters in the security variability specifications tree of the DSPL. For
instance, Figure 3 shows a particular configuration for the authentication func-
tionality in the e-voting application, and thus the required configuration for the
attributes and parameters of the authentication aspect. The configuration in-
cludes the use of an X.509 digital certificate as authentication mechanism; this

346 J.-M. Horcas, M. Pinto, and L. Fuentes

Authentication Functionality

Identity: Object

Country: String

Organization: String

OrganizationUnit: String

CommonName: String

DigitalCertificate UserPassword

X.509Certificate

TrustedCA

Authentication

1..1

Credentials

Digital
Certificate

X.509 Certificate

Certificate Authority
C:String = “ES”

O:String = “Fábrica Nacional de

Moneda y Timbre”

OU:String = “FNMT”

CN:String = “CERT.FNMT.ES”

CA

Authent.
Algorithm

User
Password

Private Key
alias:String = “voter001”

keyStore:String = “VotersRepository”

PK

V
a

ri
a

bi
lit

y
sp

e
ci

fi
ca

ti
o

n
s

tr
ee

V
ar

ia
ti

on
 p

o
in

ts
B

as
e

m
od

e
l

<<aspect>>
Authentication

Advice

Pointcut

SessionKey

KeyAlias: String

KeyStore: String

:ParametricSlotAssignment
slotIdentifier = “target”

:ObjectSubstitution
target = “Digital Certificate”

:ParametricSlotAssignment
slotIdentifier = “C”

:ParametricSlotAssignment
slotIdentifier = “O”

...

:ObjectSubstitution
target = “Authent. Algorithm”

:ObjectSubstitution
target = “Authent. Algorithm”

......

V
ar

ia
b

ili
ty

 m
o

d
el

owner: Object = Voter

Fig. 3. Variability Modeling of Authentication functionality

Listing 1.2. New security configuration aspects.
1 <sca:aspects>
2 <sca:aspect id=" Authent i cat ion">
3 <sc a : j o i n p o i n t id="Voter" />
4 <sca : funct iona l i t ies>
5 <sca : functional ity id=" au then t i c a t i on#d i gC e r t i f i c a t e " />
6 <sca : functional ity id=" au then t i c a t i on#x 5 0 9 c e r t i f i c a t e " />
7 </ sca : funct ional it i es><sca:configuration>
8 <sca:parameter name="SessionKey">
9 KeyAlias=" vote r001" , KeyStore=" VotersRepos i tory"

10 </sca:parameter><sca:parameter name="TrustedCA">
11 C="ES" , O="Fabrica nac i ona l de moneda y timbre" , OU="FNMT" , CN

="CERT.FNMT.ES"
12 </sca:parameter></ sca:configuration></sca:aspect>
13 </ sca:aspects>

means that the authentication aspect must use an advice that implements an au-
thentication algorithm based on digital certificates. Moreover, the configuration
also includes the parameters for the certificate authority (TrustedCA) such as
the information about the organization that issued the certificate, and the values
of the session key to be used with the certificate (KeyAlias and KeyStore). Note
that only one kind of authentication mechanism can be selected at the same time
for the same instance of the aspect. But, the variability model allows creating
and configuring different instances of each aspect.

Then, when the CVL engine is executed at runtime, it resolves the variability
and automatically generates a configuration of the security aspects that enforces
the new security policy. Listing 1.2 shows the new configuration generated for
the authentication aspect. This new configuration must be deployed within the
application, so this configuration is notified to the Aspect Generation module.

Runtime Enforcement of Dynamic Security Policies 347

Aspect Generation

Security Aspectual Knowledge

Mapping
Configurations-

Aspects

Current security
configuration

Configuration
Difference

Generic Aspect
Adaptation Plan

Generation

Knowledge provision

new security
configuration

consults

generates

Aspects repository
(.class/.jar/XML files)

Aspect Weaver

Execute Security Adaptation Plan

(AOP framework dependent)

SpringAOPAspectJ ...

Security Adaptation Plan

Fig. 4. Aspect Generation and Aspect Weaver architecture overview

Listing 1.3. Current security configuration deployed in the application.
1 <sca:aspects>
2 <sca:aspect id=" Authent i cat ion">
3 <s c a : j o i n p o i n t id="Voter" />
4 <sca : funct ional it i es>
5 <sca : functional ity id=" au then t i c a t i on#userPassword" />
6 </ sca : funct ional i t ies></ sca:aspect>
7 <sca:aspect id="Privacy" . . . />
8 <sca:aspect id=" S ignature " . . . />
9 <sca:aspect id="Hashing" . . . />

10 <sca:aspect id="Pseudonymity" . . . />
11 <sca:aspect id=" Un l i n k ab i l i t y" . . . />
12 </ sca:aspects>

5 Aspect Generation

The Aspect Generationmodule receives notifications about a new security con-
figuration to be deployed, and dynamically generates a generic security adapta-
tion plan with the actions that need to be performed with the security aspects
currently deployed in the application. This module is independent from the AOP
framework used to weave the aspects. Its architecture and internal components
are specified in top of Figure 4.

The Security Aspectual Knowledge component represents the part of the
knowledge related to the security aspects (e.g. classnames, functionalities) and to
the applications (e.g. pointcuts) that the Aspect Generation module requires
(Listing 1.1), as well as the current security configuration of the aspects deployed
in the application (Listing 1.3). The information is incorporated at the initializa-
tion of the module and can be updated at runtime, including the incorporation
of new aspects (pointcuts and/or advices) to the aspect repository.

The Configuration Difference component analyses the notified new con-
figuration and the aspectual knowledge and determines whether the security
aspects, currently instantiated in the application, fulfil the new configuration or

348 J.-M. Horcas, M. Pinto, and L. Fuentes

Listing 1.4. Security adaptation plan
1 <sap:ADD>
2 <sap:advisor id="certAuth " />
3 <sap:advisor id="encryptRSA" />
4 <sap:advisor id="decryptRSA" />
5 </sap:ADD>
6 <sap:REMOVE>
7 <sap:advisor id="userPassAuth " />
8 <sap:advisor id="Pseudonymity" />
9 <sap:advisor id=" Un l i n k ab i l i t y" />

10 </sap:REMOVE>
11 <sap:CONFIGURE>
12 <sap:advisor id="certAuth " ><sap:configuration>
13 <sca :paramete r name="SessionKey">
14 KeyAlias=" vote r001" , KeyStore=" VotersRepos i tory"
15 </ sca :paramete r><sca :paramete r name="TrustedCA">
16 C="ES" , O="Fabrica nac i ona l de moneda y timbre" , OU="FNMT" , CN

="CERT.FNMT.ES"
17 </ sca :paramete r></ sap:configuration>
18 </ sap:advisor>
19 </sap:CONFIGURE>

some changes must be done in the deployed aspects. To do that, we calculate the
difference between the current security configuration deployed in the application
and the new requested configuration. Then, using the aspectual knowledge and
the security configuration calculated, the Generic Aspect Adaptation Plan
Generation component generates a list of actions that need to be performed
within the aspects in order to satisfy the security configuration calculated —
i.e. generates the security adaptation plan. The list of actions are independent
from the AOP framework and are based on the concept of advisor — i.e. the
advice with the functionality and the associated pointcut defining the points of
the application where the functionality takes place (see the aspectual knowledge
in Listing 1.1). The possible actions are:

1. ADD. Deploys a new advisor within the application.
2. REMOVE. Undeploys an advisor currently deployed in the application.
3. CONFIGURE. Re-configures the parameters of an advisor currently de-

ployed in the application or to be deployed.

For instance, as a result of the difference between the current security config-
uration deployed in our e-voting application (Listing 1.3) and the new configura-
tion to be deployed (Listing 1.2), the list of actions to fulfill the calculated new
configuration are presented in Listing 1.4. Since the authentication mechanism
has changed, we need to remove the userPassAuth advisor and add a certAuth
advisor, but we also need to configure the new certAuth advisor with the ap-
propriate parameters (lines 16–28). Moreover, there are some other advisors to
be added (encryptRSA and decryptRSA) and to be removed (Pseudonymity
and Unlinkability) — see the selections of Figure 2. Advisors related to the
Privacy, Signature, and Hashing aspects do not change, so no actions need to
be performed for these three aspects.

Runtime Enforcement of Dynamic Security Policies 349

The security adaptation plan is the input to the Aspect Weaver module de-
scribed in the next section.

6 Aspect Weaver
The Aspect Weaver module receives a security adaptation plan and dynamically
weaves, unweaves, and configures the security aspects at runtime interacting
directly with them. Bottom of Figure 4 overviews the architecture of this module.

Since the security aspects can be implemented in more than one AOP frame-
work in order to fulfill all the application needs, the Aspect Weaver module
works as a wrapper that translates the generic security adaptation plan to the
particular syntax of the AOP weaver being used (AspectJ, Spring AOP, etc).
This means that different instantiations of the Execute Security Adaptation
Plan component of this module for using different AOP weavers are available.
The output of this component is a direct interaction with the selected AOP
weaver in order to add, remove, and configure the corresponding aspects into
the applications.

The specific actions to be performed depend on the dynamicity provided by
each AOP weaver. On the one hand, the AspectJ weaver only supports compile-
time and load-time weaving, while the Spring AOP weaver supports run-time
weaving. This means that, in case of the AspectJ weaver, the security aspects
need to be woven with the application at compile- or load-time weaving. However,
we improve the dynamicity of our solution by using the if() pointcut construc-
tor that AspectJ provides to define a conditional pointcut expression which will
be evaluated at runtime for each candidate join point3. This mechanism increases
the degree of dynamicity by coding patterns that can support dynamically en-
abling and disabling advice in aspects [11,12]. An example of the use of this
mechanism to increase the dynamicity of the AspectJ aspects is shown in List-
ing 1.5. The Authentication aspect includes two advisors (certificateAuth
and userPassAuth) that can be enabled or disabled at runtime by changing the
advisor status. These advisors associate the pointcut with the proper advices
defined in the aspect. The execution of each advice is based on the conditional
pointcut to be evaluated at runtime. So, in this case, the action of adding (de-
ploying) an advisor corresponds to enabling an advisor, and removing (undeploy-
ing) an advisor corresponds to disabling an advisor. This is done by the custom
instance of the Execute Security Adaptation Plan component for AspectJ.

On the other hand, in the case of the Spring AOP aspects, the actions cor-
responding with the addition/deletion of an advisor are real operations allowed
by the Spring AOP API4 and are implemented following the proxy-based mech-
anism used by the Spring AOP framework to perform the run-time weaving. In
this case, the instance of the Execute Security Adaptation Plan component
for Spring AOP is in charge of managing all the Spring artifacts (e.g. advisors,
proxies, XML configuration files,. . .) and performing the appropriate actions
specified in the adaptation plan.
3 http://eclipse.org/aspectj/doc/released/progguide/index.html
4 http://projects.spring.io/spring-framework/

http://eclipse.org/aspectj/doc/released/progguide/index.html
http://projects.spring.io/spring-framework/

350 J.-M. Horcas, M. Pinto, and L. Fuentes

Listing 1.5. Authentication aspect in AspectJ.

1 public aspect Authent i cat ion {
2 . . .
3 pointcut Voter (Vote rCl i ent v) : execut ion (∗ ∗ Connection . ∗ (Voter ,

. .)) && this (v) ;
4 pointcut c e r t i f i c a t eAu th (Vote rCl i ent v) : i f (Advi sorsStatus .

i sEnab led (" c e r t i f i c a t eAu th ")) && Voter (v) ;
5 pointcut userPassAuth (Vote rCl i ent v) : i f (Adv i sorsStatus . i sEnab led (

"userPassAuth")) && Voter (v) ;
6
7 Object around(Vote rCl i ent v) : c e r t i f i c a t eAuth (v) {
8 Ce r t i f i c a t eAu th en t i c a t i o n auth = new Ce r t i f i c a t eAu th en t i c a t i o n (

AdvisorsParameters . getParams (" c e r t i f i c a t eAu th ")) ;
9 i f (auth . au then t i c a t e (v . getVoter ()))

10 proceed () ;
11 }
12
13 Object around(Vote rCl i ent v) : userPassAuth (v) {
14 UserPassAuthent icat ion auth = new UserPassAuthent icat ion(

AdvisorsParameters . getParams ("userPassAuth")) ;
15 i f (auth . au then t i c a t e (v . getVoter ()))
16 proceed () ;
17 }
18 . . .
19 }

7 Evaluation

Our approach uses consolidated software engineering technologies (DSPLs and
AOP), and a proposed standard language (CVL). So, in this section we first
qualitatively discuss our work to argue about its correctness, maintainability,
extensibility, separation of concerns, and reusability, from the point of view of
the use of DSPLs and AOP. Regarding AOP, in spite of its benefits, the main
concern about the use of this technology in real projects is the performance
overhead introduced by AOP. This means that a critical part of the evaluation
of our approach should be the evaluation of the performance overhead intro-
duced by the use of a specific AOP weaver. As part of our participation in the
INTER-TRUST project, the Aspect Generation and the Aspect Weaver mod-
ules presented in this paper has been used to implement a demonstrator of the
project that provides dynamic adaptation of security for an e-voting applica-
tion5. This demonstrator has been evaluated both quantitatively, by controlled
tests performed for the implementation of the Aspect Generation and Aspect
Weaver modules, and qualitatively, by collecting the opinion of software devel-
opers with different expertise on both security and AOP. The main results of
this evaluation are discussed in this section.6

5 The code and the documentation of this demonstrator can be downloaded from
https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-
version

6 For more detailed information the reader can consult the project deliverables [13,14].

https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version
https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version

Runtime Enforcement of Dynamic Security Policies 351

7.1 Qualitatively Results

Correctness. DSPLs and AOP do not improve the correctness of applications
or security functionalities as such. However, modularizing security function-
alities in separate modules with AOP considerably facilitates the verification
of the security properties of an application since a security expert does not
have to check all the modules in the base application to ensure that all secu-
rity requirements are correctly enforced. Instead, only the code of the aspects
and the definition of the pointcuts where the aspects will be introduced need
to be checked. Additionally, it is well-known that the use of AOP can intro-
duce vulnerabilities and security risks [15]. In our proposal, the Monitoring
module is responsible for testing the behavior of the aspects [8] preventing
these kinds of issues.

Separation of Concerns. The use of AOP improves modularization by allow-
ing the separation of crosscutting concerns (i.e. the security functionalities
in our approach). Moreover, following the MAPE-K loop we separate the dif-
ferent phases of our approach maintaining the independence of each module
and facilitating the replacement of them.

Maintainability and extendibility. The use of DSPL allows us to easily re-
configure the security functionality according to the changes in the security
policies. The variability model used (Figure 2) can also be extended to cover
more security concerns.

Reusability. Our proposal is a generic solution that can be applied to many
types of applications. The main drawback is that we cannot reuse completely
the generated aspects for all the applications because they contain applica-
tion dependent knowledge (e.g. pointcuts in the case of AspectJ). However,
the security functionality (advices) can be reused in different contexts.

7.2 Performance overhead of AOP

AOP has important benefits in comparison to OO, such as achieving a better
modularization of crosscutting concerns, improving the maintainability and the
dynamic evolution of applications both at design and at runtime. These benefits
are at the cost of a certain performance overhead, produced by the weaving
process. In this evaluation, the main goal is to measure this performance overhead
for the different AOP weavers and weaving mechanisms that we have used in the
Aspect Weaver module, so we can reason about the suitability of using AOP
for the Security Adaptation Service.

We have measured the time overhead introduced by the weaving process based
on the lifetime of the application (compile-time, load-time, and run-time weav-
ing) when the aspects are instantiated (Table 1) and when the advices of the
aspects are executed (Table 2). We also consider the scalability of our solution
when more than one aspect are applied at the same join point of the application.
Results are summarized in Figure 5 and Figure 6. We observe that the overhead
introduced by the AOP weavers is lower than the one initially expected. Accord-
ing to the data in Table 1, there is a penalty when the aspects are instantiated,

352 J.-M. Horcas, M. Pinto, and L. Fuentes

Table 1. Aspect weavers performance: aspects instantiation time (in milliseconds)

#aspect at the same join point: 1 5 10 20 50 100 1000
Compile-time weaving (AspectJ) 58.79 61.40 64.54 71.51 92.69 119.34 535.31
Load-time weaving (AspectJ) 19.81 20.91 30.11 53.72 109.46 196.22 1410.35
Run-time weaving (Spring AOP) 28.81 29.25 28.48 29.36 23.73 23.84 32.77

Fig. 5. Aspect weavers performance: aspects instantiation time

but, once the aspects have been created, the execution of them are faster (see
Table 2). In any case, the results are similar for both the compile-time and
load-time weaving. However, as expected, the runtime weaving introduces more
overhead when the aspects are executed. Moreover, both AspectJ and Spring
AOP weavers provide a great degree of scalability since a high number of as-
pects can be simultaneously applied at the same join point without reaching a
non-acceptable performance overhead.

7.3 Results of the Software Developers Questionnaire

In [14] you can find a questionnaire about the usefulness of the INTER-TRUST
framework in general, and in particular about the ‘Aspect Generation and As-
pect Weaver’ demonstrator. That questionnaire was filled by evaluators that
were selected mainly among software developers with different backgrounds and
different levels of knowledge and experience in security issues and AOP.

Five participants who were experts in security modeling and negotiation
answered the questions related to the Aspect Generation and Aspect Weaver
demonstrator. In general, the results obtained are mainly in line with the ex-
pected target values (see [14] for more details about the metrics used to evalu-
ate the demonstrator and the expected target values). However, some answers
indicate that improvements can still be done for the next version of the demon-
strator (and consequently, for the next version of the Aspect Generation and
the Aspect Weaver modules). For instance, some evaluators were not convinced
about the capacity of the Aspect Generation and Aspect Weaver modules to
automatically deploy the security policies using aspects, its capacity for weaving
the proper aspects or the runtime management of security policies and contex-
tual information.

Additionally, five participants who were experts in security testing and moni-
toring also answered the questions related to the demonstrator. As for the experts
on security modeling and negotiation, the results obtained were mainly in line
with the expected target values.

Runtime Enforcement of Dynamic Security Policies 353

Table 2. Aspect weavers performance: aspects execution time (in nanoseconds)

#aspect at the same join point: 1 5 10 20 50 100 1000
Compile-time weaving (AspectJ) 683 1280 1706 2560 5120 9813 106665
Load-time weaving (AspectJ) 426 854 1280 2560 4693 8960 111785
Run-time weaving (Spring AOP) 443301 439035 457808 474447 447568 479140 451408

Fig. 6. Aspect weavers performance: aspects execution time

Finally, four participants who were experts in AOP answered the question-
naire. In general, we can say that the results obtained from AOP experts are
better than the expected target values. Only one expert in AOP has considered
that the security rules are not automatically deployed in the application original
code. Since the rest of answers to this question are ‘quite likely/extremely likely’,
we understand than the reviewer probably did not understand well either the
question or how the modules functions regarding the automatic deployment of
the aspects.

7.4 Discussion

The evaluation results obtained support our decision to use DSPLs and AOP in
the design and implementation of our runtime Security Adaptation Service.
However, we need to complete the evaluation with more interesting and con-
clusive empirical experiments. For instance, we need to evaluate the overhead
of using AOP when different degrees of dynamicity are considered (e.g. when
adding/removing advices and pointcuts) or when different instantiation mod-
els are used (e.g. aspect per object, aspect per control cflow,. . .). Moreover, we
have not evaluated the global overhead introduced by the complete Security
Adaptation Service, but only for the aspect solutions. Also, we need to in-
crease the number of participants in the evaluation questionnaire in order to
evidence the benefits and usefulness of our approach.

8 Related Work
There are a lot of works that try to deal with runtime adaptation of security. For
instance, in [16] the authors present a policy-based approach for automating the
integration of security mechanisms into Java-based business applications. They
use security@runtime, an Domain Specific Language (DSL) for the specification
of security configurations based on authorization, obligation and reaction poli-
cies. Our approach, in contrast, is suitable for using security policies specified in

354 J.-M. Horcas, M. Pinto, and L. Fuentes

any model (e.g. OrBAC), since the mapping between the policies and the secu-
rity functionalities is made in an abstract level of the variability model. Another
difference with our approach is that we separate the monitoring of changes in
the application and the integration of the security functionality following the
MAPE-K loop while they integrate the security functionalities at the same mon-
itoring events. Moreover, they implement the security rules in separate classes
but this code is application dependent while in our approach the security rules
do not need to be hard-coded, improving the evolution of the policies.

In [17] the authors use policy-based security profiles for making logical and
knowledge-based decisions within open service environments and it uses a lay-
ered holistic model [18] for describing security — i.e. security requirements are
defined using security profiles that describe the interlinking of security policies to
instances of services. However, in our approach, the security policies are decou-
pled from the specific knowledge of the application and from the implementation
of the security functionality in aspects, and this improves the reusability of both
the security policies and the security functionalities.

Model-Driven Security (MDS) are often used to adapt dynamically security
following different approaches: UMLSec [19], SecureUML [20], OpenPMF [21,22],
SECTET [23], etc. For instance, in [24], models@runtime is used to keep syn-
chronized an architectural model with a policy, but this approach only supports
access control policies and not any kind of security functionality as in our se-
curity adaptation service. This is a general limitation in many security policy
based approaches because they are mainly focused only on access control or au-
thorization concerns ([21,22,25,26]) or focused only on a specific domain such as
mobile cloud ([27]) or Service Oriented Architecture (SOA) ([21,22,23,25]).

There are also some generic approaches for reconfiguration at runtime that are
not focused only on security concerns. In [28], Gamez et al. propose a reconfigu-
ration mechanism that switches among different architectural configurations at
run-time. The configurations are based on the specialization of feature models,
and the reconfiguration plans are automatically generated from the differences
among them. They propagate changes in configurations at architectural level
instead of directly aspects implementation, as we do.

9 Conclusions and Future Work

We have presented a complete solution for the run-time enforcement of security
policies following the MAPE-K loop of the AC paradigm that endow multiple
kinds of applications with this dynamicity and self-management capacities. We
have described in detail a security adaptation service based on the combination
of DSPL and AOP technologies, where the security functionalities are imple-
mented as aspects that are dynamically configured, deployed or un-deployed by
generating and executing a security adaptation plan. These technologies bring
significant benefits to our proposal, including a better modularization, maintain-
ability, extendibility, and reusability.

Runtime Enforcement of Dynamic Security Policies 355

As part of our future work, we plan to complete the evaluation of our Security
Adaptation Service with empirical studies in order to evidence its benefits and
usefulness.

Acknowledgment. Work supported by the European INTER-TRUST FP7-
317731 and the Spanish TIN2012-34840, FamiWare P09-TIC-5231, and MAGIC
P12-TIC1814 projects.

References

1. FP7 European Project INTER-TRUST: Interoperable Trust Assurance Infrastruc-
ture, http://www.inter-trust.eu/

2. Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y.,
Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In:
POLICY, pp. 120–131 (2003)

3. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3),
224–274 (2001)

4. Sandhu, R.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
5. IBM: Autonomic Computing White Paper - An architectural blueprint for auto-

nomic computing. IBM Corp. (2005)
6. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product

Lines. Computer 41(4), 93–95 (2008)
7. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,

Irwin, J.: Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

8. Mallouli, W., de Oca, E.M., Wehbi, B., Fuentes, L., Pinto, M.,
Horcas, J.M., Benab, J.B., Prez, J.M.M., Ayed, S., Cuppens, N.,
Cuppens, F., Toumi, K., Cavalli, A., Kerezsi, E.: Specification and design
of the secure interoperability framework and tools - first version. Deliverable
D4.2.1, FP7 European Project INTER-TRUST (2013),
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST-T4.2-
MI-DELV-D4.2.1-SpecDesSecInterFram

9. Haugen, O., Wąsowski, A., Czarnecki, K.: CVL: Common Variability Language.
In: SPLC 2012, vol. 2, pp. 266–267 (2012)

10. Horcas, J.M., Pinto, M., Fuentes, L.: Closing the gap between the specification and
enforcement of security policies. In: TrustBus (2014)

11. Andrade, R., Ribeiro, M., Gasiunas, V., Satabin, L., Rebelo, H., Borba, P.: As-
sessing idioms for implementing features with flexible binding times. In: CSMR,
pp. 231–240 (2011)

12. Andrade, R., Rebelo, H., Ribeiro, M., Borba, P.: Aspectj-based idioms for flexible
feature binding. In: SBCARS, pp. 59–68 (2013)

13. Arrazola, J., Merle, L.: Specification of the evaluation criteria. Deliverable D5.2,
FP7 European Project INTER-TRUST (2013),
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST+-++D5.
2+Specification+of+the+evaluation+criteria/72c26aff-51fa-4117-b9ba
-7afcac8468e0

http://www.inter-trust.eu/
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST-T4.2-MI-DELV-D4.2.1-SpecDesSecInterFram
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST-T4.2-MI-DELV-D4.2.1-SpecDesSecInterFram
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST+-++D5.2+Specification+of+the+evaluation+criteria/72c26aff-51fa-4117-b9ba-7afcac8468e0
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST+-++D5.2+Specification+of+the+evaluation+criteria/72c26aff-51fa-4117-b9ba-7afcac8468e0
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST+-++D5.2+Specification+of+the+evaluation+criteria/72c26aff-51fa-4117-b9ba-7afcac8468e0

356 J.-M. Horcas, M. Pinto, and L. Fuentes

14. Bernab, J.B., Perez, J.M.M., Skarmeta, A.F., Pasini, R., Viszlai, E., Mallouli, W.,
Toumi, K., Ayed, S., Pinto, M., Fuentes, L., Horcas, J.M., Arrazola, J., Merle, L.,
Frontanta, J.L.V.: Results of first evaluation. Deliverable D5.3, FP7 European
Project INTER-TRUST (2013),
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST-T5.3-
UMU-DELV-D5.3-ResultsFirstEval-V1.00.pdf/f8547c6e-bdbe-4be2-ade9-
0698876d4423

15. Win, B.D., Piessens, F., Joosen, W.: How secure is AOP and what can we do about
it? In: SESS, pp. 27–34. ACM (2006)

16. Elrakaiby, Y., Amrani, M., Le Traon, Y.: Security@runtime: A flexible mde ap-
proach to enforce fine-grained security policies. In: Jürjens, J., Piessens, F., Bielova,
N. (eds.) ESSoS. LNCS, vol. 8364, pp. 19–34. Springer, Heidelberg (2014)

17. Tan, J.J., Poslad, S.: Dynamic security reconfiguration for the semantic web. En-
gineering Applications of Artificial Intelligence 17(7), 783–797 (2004)

18. Tan, J.J., Poslad, S., Titkov, L.: A semantic approach to harmonizing security
models for open services. Applied Artificial Intelligence 20(2-4), 353–379 (2006)

19. Jrjens, J.: Secure Systems Development with UML. Springer (2010)
20. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML models

to access control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91
(2006)

21. Lang, U.: OpenPMF SCaaS: Authorization as a service for cloud amp; SOA appli-
cations. In: CloudCom, pp. 634–643 (2010)

22. Lang, U.: Cloud & SOA application security as a service. In: ISSE 2010 Securing
Electronic Business Processes, pp. 61–71 (2011)

23. Katt, B., Gander, M., Breu, R., Felderer, M.: Enhancing model driven security
through pattern refinement techniques. In: Beckert, B., Bonsangue, M.M. (eds.)
FMCO 2011. LNCS, vol. 7542, pp. 169–183. Springer, Heidelberg (2012)

24. Morin, B., Mouelhi, T., Fleurey, F., Traon, Y.L., Barais, O., Jézéquel, J.M.:
Security-driven model-based dynamic adaptation. In: ASE, pp. 205–214 (2010)

25. Dong, W.: Dynamic reconfiguration method for web service based on policy. In:
Electronic Commerce and Security, 61–65 (2008)

26. Gheorghe, G., Crispo, B., Carbone, R., Desmet, L., Joosen, W.: Deploy, adjust and
readjust: Supporting dynamic reconfiguration of policy enforcement. In: Kon, F.,
Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 350–369. Springer,
Heidelberg (2011)

27. Cho, H.S., Hwang, S.M.: Mobile cloud policy decision management for mds. In:
Lee, G., Howard, D., Kang, J.J., Ślęzak, D. (eds.) ICHIT 2012. LNCS, vol. 7425,
pp. 645–649. Springer, Heidelberg (2012)

28. Gamez, N., Fuentes, L.: Software product line evolution with cardinality-based
feature models. In: Schmid, K. (ed.) ICSR 2011. LNCS, vol. 6727, pp. 102–118.
Springer, Heidelberg (2011)

http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST-T5.3-UMU-DELV-D5.3-ResultsFirstEval-V1.00.pdf/f8547c6e-bdbe-4be2-ade9-0698876d4423
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST-T5.3-UMU-DELV-D5.3-ResultsFirstEval-V1.00.pdf/f8547c6e-bdbe-4be2-ade9-0698876d4423
http://inter-trust.lcc.uma.es/documents/10180/15714/INTER-TRUST-T5.3-UMU-DELV-D5.3-ResultsFirstEval-V1.00.pdf/f8547c6e-bdbe-4be2-ade9-0698876d4423

Architectural Support for Model-Driven

Performance Prediction of Distributed
Real-Time Embedded Systems of Systems

Vanea Chiprianov, Katrina Falkner, Claudia Szabo, and Gavin Puddy

School of Computer Science
University of Adelaide

name.surname@adelaide.edu.au

Abstract. Systems of systems (SoS) are large-scale systems composed
of complex systems with difficult to predict emergent properties. One of
the most significant challenges in the engineering of such systems is how
to predict their non-functional properties such as performance, and more
specifically, how to model non-functional properties when the overall sys-
tem functionality is not available. In this paper, we define an approach
to SoS performance prediction based on the modelling of system inter-
actions and their impacts. We adopt an Event Driven Architecture to
support this modelling, as it allows for more realistic and flexible perfor-
mance simulation, which enables more accurate performance prediction.
We introduce a generic architecture and present its instantiation in a
software architecture for the performance prediction of defence SoS. Our
architecture allows for loose coupling, interoperability, and adaptability
and facilitates sustainable evolution of the performance model of the SoS.

1 Introduction

Systems of systems (SoS) are large-scale concurrent and distributed systems that
are comprised of complex systems [1]. SoS are complex systems themselves, and
thus are distributed and characterized by interdependence, independence, co-
operation, competition, and adaptation [2]. In the context of defence, SoS are
concerned with interoperability and synergism of Command, Control, Comput-
ers, Communications, and Information (C4I) and Intelligence, Surveillance, and
Reconnaissance (ISR) systems [3]. Defence SoS are characterized by long life-
cycles, hard constraints on non-functional properties to meet the requirements
of space, weight and power, and conformance to regulations and standards. These
characteristics are reflected at the SoS level as well.

These challenges imply it is necessary to explore the expected performance
by investigating several alternatives to system architecture, incorporating per-
formance and space, weight and power requirements within the analysis. As
they are conducted at the architecture level, such investigations provide a coarse
grain prediction about the performance of a defence SoS, and not precise pre-
dictions. Investigating non-functional properties of SoS comprise all the issues

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 357–364, 2014.
c© Springer International Publishing Switzerland 2014

358 V. Chiprianov et al.

associated with the investigation of non-functional properties of composing sys-
tems. Moreover, there are challenges related to the specific nature of SoS [1], [2].
The decentralized, distributed nature of SoS require an emphasis on interface
architecting to foster collaborative functions among its composing independent
systems. The heterogeneity of the composing systems require interoperability
and integration approaches. All these factors increase the difficulty of analysing
non-functional properties of SoS.

One approach to allow the early checking of meeting non-functional perfor-
mance requirements is performance prediction modelling. In this paper, we adopt
the definition of software performance prediction introduced by [4]: ’the process of
predicting (at early phases of the life cycle) and evaluating (at the end) based on
performance models, whether the software system satisfies the user performance
goals’. Similarly, we require that our understanding of performance prediction be
based upon the provision and evaluation of an existing performance model. Pre-
diction of software performance has developed from early approaches based on
abstract models to model-driven engineering [5] based approaches. Model-driven
engineering techniques use Domain Specific Modelling Languages (DSMLs). A
DSML is defined in this paper to be a language that offers expressive power
focused on a particular problem domain through appropriate notation and ab-
stractions.

System execution modelling (SEM) [6], a recent development from research
into measurement-based performance prediction, provides detailed early insight
into the non-functional characteristics of a DRE system design. System exe-
cution modelling supports the evaluation of overall (software) system perfor-
mance, incorporating component interactions and the performance impact of
3rd party software such as middleware. These approaches [6], [7], [8] support
detailed performance modelling of software systems, thus enabling predictions of
performance through execution of representative source code of behaviour and
workload models deployed upon realistic hardware testbeds.

While these approaches address the challenges of performance prediction of
individual systems, cf. a review in Section 5, new mechanisms are needed to
address the performance prediction of SoS. We review the requirements for such
mechanisms, in Section 2. To fulfil them, we introduce in this paper a software
architecture pattern for the SEM-based performance prediction of SoS, in Sec-
tion 3. This generic software architecture provides a rich connection mechanism
between performance models of individual, standalone, composing systems. Be-
ing based on event driven architecture, it allows for more realistic and flexible
performance simulation, which enables more accurate performance prediction.
We instantiate this generic architecture into a specific architecture for the per-
formance prediction of defence SoS, in Section 4.

2 Requirements

To determine the requirements for the modelling environment designed to
support the performance prediction of SoS within defence DRE systems, we

Architectural Support for Model-Driven Performance Prediction 359

undertook extensive discussions with stakeholders from the defence industry.
The requirements detailed below influence our proposed software architecture.
1. Loose coupling. The systems that form an SoS are independent, but also
need to interoperate and interact. Towards this, a mechanism that allows the
description of loosely coupled interactions is needed.
2. Interoperability of composing systems. Different formalisms or modelling lan-
guages may be used to model performance prediction across the SoS. Moreover,
to simulate realistic interconnectivity conditions between systems, different sim-
ulators (e.g. network simulators) may be used. A means to interconnect all these
heterogeneous performance prediction models is necessary.
3. Interaction specification. The mechanism allowing the specification of loose
interactions between composing systems of the SoS needs to be precise enough
so as to limit the emergence of unexpected interactions to the point that they
can be analysed as part of the performance prediction process. This also implies
that the mechanism should allow for repeatability.
4. Time and data distribution. Because of its distributed nature, the performance
prediction model of an SoS needs time and data distribution mechanisms between
its composing performance models.
5. Adaptability. Both at the composing system and the SoS level, architectural re-
configurations (e.g. different types of middleware) within the performance mod-
els are necessary in order to analyse different architectural alternatives. Thus, a
mechanism to generate code for a specific architectural configuration is necessary.
6. Sustainable evolution. The performance model of an SoS needs to accommo-
date models of composing systems being added, removed, and changed. The
addition of new models, conforming to new formalisms, is related to the interop-
erability challenge. Removing models may impact the interaction specifications.

3 Software Architecture for Performance Prediction of
Systems of Systems

The software architecture of our system addressing the requirements defined
above is presented in Fig. 1, described in a formalism inspired from UML com-
ponent diagrams. To predict the performance of a SoS, the performance of each
of the composing systems needs to be predicted. This is due to the indepen-
dent nature of the standalone composing systems of the SoS. Therefore, for each
composing system, a Performance Model of the System (PeMS) is necessary.
For each of these composing PeMS we use a SEM approach. In addition to the
composing PeMS, a mechanism to specify the interaction of the loosely coupled
interoperable composing systems is necessary.

The performance models of a system are integrated in our architecture using
an event-driven approach. We base our architecture on the Event Driven Ar-
chitecture (EDA) [9]. In an EDA, a notable event is immediately disseminated
to all interested parties (human or automated). The interested parties evaluate
the event, and optionally take action. The creator of the event (event genera-
tor) has no knowledge of the event’s subsequent processing, or of the interested

360 V. Chiprianov et al.

Fig. 1. Generic Software Architecture for Performance Prediction of SoS

parties (event sink). This makes EDA an extremely loosely coupled and highly
distributed architecture. In terms of implementation, after an event has been
triggered, a notification is produced and propagated to an event processing en-
gine. The engine may order events according to a priority criteria, or may do
other type of processing specified in the activity associated with the event. Next,
it publishes the event notification on the event channel, which propagates it to
all interested parties. The event sinks detect and decide whether to consume it.

In addition to addressing the loose coupling requirement, EDA also addresses
the sustainable evolution requirement. Since the EDA event generator knows
nothing about the event sinks, this enables an open-ended extension approach,
in which event generators do not need to be modified to include new event sinks.
Therefore, adding, removing and changing PeMS is simplified. The EDA event
channel can be enhanced with a time and data distribution management bus.
Such a bus, as long as it is independent of technologies used to describe PeMS,
and is distributed, enables the interoperability of the PeMS.

The PeMS may be thought of as a component that provides an interface,
and may use other interfaces, as shown in Fig. 1. It is described using a specific
formalism. Independent of this formalism, we model the interactions with other
PeMS using event generators and event sinks. The event generators of a PeMS
produce event notifications that are sent to an Event Processing Engine, which
orders them in a queue using a priority criteria. The engine processes the first
event in the queue, and executes its associated activity. It next publishes the
event notification on the Event Channel. The event channel may use different
patterns, such as Reactor or Proactor [10], and propagates the event notification
to all interested parties. The event sinks of all other PeMS detect it and may
decide on an action. Event generators and sinks are introduced in the PeMS in
ways specific to their formalism.

There may be multiple Event Processing Engines within the architecture.
Each orders, in a queue, the events generated by several PeMS. The choice
of which PeMS events should be ordered by a certain Engine may be decided
through loading algorithms. Alternatively events may be grouped as Complex
Events, that can be handled by the Complex Event Processing component of

Architectural Support for Model-Driven Performance Prediction 361

that Engine. All Event Processing Engines publish the event notifications di-
rectly on the Event Channel. This ensures a highly distributed, loosely coupled
architecture that facilitates scalability and fault tolerance as the possibility of
single point of failures or choke-points is reduced.

We introduce a Scenario domain specific modelling language (DSML) to spec-
ify interactions. It is built on top of the SoS performance prediction software
architecture, containing concepts specific to EDA, and thus generic with respect
to the composing PeMS. It is used to describe interactions between composing
PeMS. The Scenario DSML also contains entities that are specific to the type
of SoS whose composing systems’ interactions are being described. For example,
a defence SoS will contain Organisations with Units in an Environment, while
an enterprise SoS may contain Actors interacting with Components, Devices,
following certain Processes, etc. The Scenario DSML is presented in more detail
in [11]. Complementary to it, we allow the user to interact with the model, to
visualise its performance results. This visualisaton component can be extended
to replace the Scenario DSML only with user commands.

The Scenario DSML uses model-driven engineering and code generation tech-
niques to facilitate adaptability. For example, from the scenario model, code can
be generated to different middleware implementations of the event channel or
bus. The adaptability requirement is met also inside the PeMS, as it is possible
to reconfigure each model with a different middleware.

In summary, the software architecture of our system answers the identified
requirements, and is generic with respect to the composing PeMS, being agnostic
of them, with the exception of event generators and sinks.

4 Specific Software Architecture for Performance
Prediction of DRE Defence Systems of Systems

We have instantiated the Software Architecture for Performance Prediction of
Systems of Systems to the domain of Defence. As part of this instantiation, the
performance model of a system is modelled as a system execution model, using
the Component Workload Emulator Utilization Test Suite (CUTS) formalisms,
as described in Section 4.1. To instantiate the Event channel, we chose the Data
Distribution Service (DDS), due to its extensive support of non-functional prop-
erties through QoS policies that support various time and data management
mechanisms. We adopt a global wall clock time management pattern. DDS uses
a Publisher-Subscriber (Observer) pattern.

The Event Generator is modelled specifically for the SEM, as an Effector
worker, which describes the behaviour of the model when it sends an output.
As discussed above, the Effector worker is a mechanism to implement the Event
Generator in a way specific to the formalism used to describe the performance
model. Similar to the Event generator, the Event sink is modelled in a way
specific to the performance model formalism we chose, i.e., the system execution
model, as a Sensor worker. A Sensor Worker models the system execution model
behaviour when it receives an input. To communicate with the Event channel,

362 V. Chiprianov et al.

i.e. the DDS bus in our case, a DDS subscriber - a mechanism specific to DDS -
is necessary as well. Complementary, to send information on the DDS bus, the
Activity attached to an Event must have a DDS publisher mechanism.

The Event Processing Engine is implemented in C++, containing a generic
queue for all types of events. The priority criterion for ordering the events in
the queue is based the conditions that guard the triggering of an event, e.g.,
conditions based on specific values of input parameters. These conditions are
part of the Scenario DSML, described below.

4.1 Software Architecture for Performance Prediction of DRE
Defence Standalone Systems

For completeness, we include here a discussion on our performance analysis and
prediction process for a standalone SEM, described using CUTS formalisms. It
has five steps: Model; Execute; Predict; Evaluate; and Evolve [12]. A DRE system
is first modelled from different points of view. The modelling step includes the
modelling of the DRE system’s performance constraints together with scenarios
of exercising the system in different conditions. From these models, distributed
code is generated for different platforms of interest. The generated code is exe-
cuted in the second step and information about its execution on various platforms
is captured and aggregated into performance metrics. In the evaluation step, the
metrics are shown to the expert through context-specific visualisations, such that
(s)he can decide if the model fulfils the performance requirements. Depending
on the expert’s decision, modifications may be proposed to the initial models.
These modifications may explore several alternatives, and each may result in a
new generation of alternatives in the evolution step. The process continues from
the modelling step and stops only when the expert decides to do so. We defined
an architecture and associated tools to implement this process [13]. Executing
the SEM code within its indicated deployment produces Execution traces and
Basic metrics about the system performance.

5 Related Work

Predicting the performance of SoS has a number of approaches, e.g. a systematic
review [14] identifies nine. For example, [15] presents a data-centric, capability-
focused process for analysing architectures of SoS. An executable model of the
architecture and the performance of the SoS is defined and its results are used
to analyse and evaluate the performance of the SoS architecture. However, the
SoS is treated like a standalone system; one model is defined for the entire SoS,
not a model for each of its composing systems, as we do. Other approaches deal
with developing metrics for performance measurement. For example, [16] adapts
the notion of technical performance measure to SoS, proposing a hierarchical
metric called SoS performance measure. However, it focuses strictly on defining
a measurement metric, while our approach is much more complete.

Architectural Support for Model-Driven Performance Prediction 363

There are numerous works on model-based performance engineering, including
comprehensive surveys [4], [17], [18] that explore the many approaches, method-
ologies, and case studies. Several researchers explore the potential for modelling
performance based on a complete understanding of the system architecture. UML
MARTE defines a UML profile, which provides for the inclusion of non-functional
requirements (i.e. performance, reliability, scalability) as UML models, which can
be analysed as part of the development process. Our approach is complemen-
tary to that provided by MARTE, in that we provide support for emulation of
performance models above existing middleware and hardware to support early
performance evaluation within multiple realistic deployment scenarios, in addi-
tion to integrated analysis and visualisation.

6 Conclusion and Perspectives

In this paper, we proposed a software architecture for predicting the performance
of SoS. We focused on SoS for which event-based modeling and simulation is
pertinent. Based on the Event Driven Architecture, our architecture allows con-
necting heterogeneous performance models of composing systems (PeMS) using
Event Channels. It is generic with respect to the composing PeMS, being agnos-
tic of them, with the exception of event generators and sinks. We instantiated
this generic architecture into an architecture for predicting the performance of
Distributed Real-time Embedded defence SoS.

The PeMS are assumed to be solved by simulation. The Performance Mod-
elling process for each composing system of the SoS has five steps: Model; Exe-
cute; Predict; Evaluate; and Evolve. To implement this process we used System
Execution Modelling tools and Modelling Languages and tools that we defined
using a Model Driven Engineering approach, but other ways of defining the Per-
formance Models can be envisaged and easily included, for example with UML
MARTE. This shows the genericity of our architecture in including heteroge-
neous performance modeling formalisms.

However, several avenues for future work still exist. In the generic software
architecture, we are investigating alternatives for the Event Processing Engine(s)
to allow the specification of various loading and other complex event processing
criteria. In the specific architecture, we are looking into ways to integrate network
and other simulators to provide for even mode detailed performance analysis.

References

1. Jamshidi, M.: System of systems engineering - new challenges for the 21st century.
IEEE Aerospace and Electronic Systems Magazine 23(5), 4–19 (2008)

2. Dagli, C.H., Kilicay-Ergin, N.: System of Systems Architecting, pp. 77–100. John
Wiley & Sons, Inc. (2008)

3. Manthorpe, W.H.: The Emerging Joint System of Systems: A Systems Eng. Chal-
lenge and Opportunity for APL. J. Hopkins APL Tech. Digest 17, 305–310 (1996)

4. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in soft. dev.: a survey. IEEE Trans. on Soft. Eng. 30, 295–310 (2004)

364 V. Chiprianov et al.

5. Beydeda, S., Book, M., Gruhn, V. (eds.): Model Driven Software Development.
Spinger (2010)

6. Hill, J., Schmidt, D., Slaby, J.: System Execution Modeling Tools for Evaluating the
Quality of Service of Enterprise Distributed Real-time and Embedded Systems. In:
Designing Software-Intensive Systems: Methods and Principles, pp. 335–371 (2008)

7. Paunov, S., Hill, J., Schmidt, D., Baker, S., Slaby, J.: Domain-Specific Modeling
Languages for Configuring and Evaluating Enterprise DRE System Quality of Ser-
vice. In: 13th IEEE Intl Symp and Wksh on Eng. of Comp. Based Sys. (2006)

8. Hill, J., Schmidt, D., Edmondson, J., Gokhale, A.: Tools for continuously evaluating
distributed system qualities. IEEE Software 27(4), 65–71 (2010)

9. Michelson, B.M.: Event-driven architecture overview. Technical report, Patricia
Seybold Group (2006)

10. Schmidt, D.C., Stal, M., Rohnert, H., Bushmann, F.: Pattern-oriented Software
Architecture: Patterns for Concurrent and Networked Objects. Wiley (2000)

11. Falkner, K., Chiprianov, V., Falkner, N., Szabo, C., Puddy, G.: Modeling scenar-
ios for the performance prediction of distributed real-time embedded systems. In:
Military Communications and Inf. Systems Conf., Canberra, Australia, pp. 1–6
(2013)

12. Falkner, K., Chiprianov, V., Falkner, N., Szabo, C., Puddy, G.: A model driven
engineering method for DRE defence systems performance analysis and prediction.
In: Bagnato, A., Indrusiak, L.S., Quadri, I.R., Rossi, M.G. (eds.) Industry and
Research Perspectives on Embedded System Design. IGI-Global (accepted, 2014)

13. Falkner, K., Chiprianov, V., Falkner, N., Szabo, C., Hill, J., Puddy, G., Fraser, D.,
Johnston, A., Rieckmann, M., Wallis, A.: Model-driven performance prediction
of distributed real-time embedded defence systems. In: The 18th Intl Conf. on
Engineering of Complex Computer Systems, Singapore, pp. 155–158 (2013)

14. Klein, J., van Vliet, H.: A Systematic Review of System-of-systems Architecture
Research. In: The 9th Intl ACM Sigsoft Conf. on Quality of Software Architectures,
QoSA 2013, pp. 13–22. ACM, New York (2013)

15. Ge, B., Hipel, K.W., Yang, K., Chen, Y.: A data-centric capability-focused ap-
proach for system-of-systems architecture modeling and analysis. Systems Engi-
neering 16(3), 363–377 (2013)

16. Volkert, R., Stracener, J.T., Yu, J.: A framework for performance prediction during
development of systems of systems. Intl J. of System of Syst. Eng. 3, 76–95 (2012)

17. Smith, C.: Introduction to soft. performance engineering: origins and outstanding
problems. In: 7th Intl. Conf. on Formal Meth. for Perf. Evaluation, pp. 395–428
(2007)

18. Koziolek, H.: Performance evaluation of component-based software systems: A sur-
vey. Performance Evaluation 67(8), 634–658 (2010)

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 365–373, 2014.
© Springer International Publishing Switzerland 2014

Safety Perspective for Supporting
Architectural Design of Safety-Critical Systems

Havva Gülay Gürbüz, Bedir Tekinerdogan, and Nagehan Pala Er

Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
havva.gurbuz@bilkent.edu.tr,

{bedir,nagehan}@cs.bilkent.edu.tr

Abstract. Various software architecture viewpoint approaches have been intro-
duced to model the architecture views for stakeholder concerns. To address
quality concerns in software architecture views, an important approach is to de-
fine architectural perspectives that include a collection of activities, tactics and
guidelines that require consideration across a number of the architectural views.
Several architectural perspectives have been defined for selected quality con-
cerns. In this paper we propose the Safety Perspective that is dedicated to en-
sure that the safety concern is properly addressed in the architecture views. The
proposed safety perspective can assist the system and software architects in de-
signing, analyzing and communicating the decisions regarding safety concerns.
We illustrate the safety perspective for a real industrial case study and discuss
the lessons learned.

Keywords: Software architecture design, software architecture modeling, soft-
ware architecture analysis, safety-critical systems.

1 Introduction

To address quality concerns in software architecture views, an important approach is
to define architectural perspectives that include a collection of activities, tactics and
guidelines that require consideration across a number of the architectural views [6]. In
this context, Rozanski and Wood define several architectural perspectives for selected
quality concerns such as security, performance, scalability, availability and evolution.
In order to capture the system-wide quality concerns, each relevant perspective is
applied to some or all views. In this way, the architectural views provide the descrip-
tion of the architecture, while the architectural perspectives can help to analyze and
modify the architecture to ensure that system exhibits the desired quality properties.

An important concern for designing safety-critical systems is safety since a failure
or malfunction may result in death or serious injury to people, or loss or severe dam-
age to equipment or environmental harm. It is generally agreed that quality concerns
need to be evaluated early on in the life cycle before the implementation to mitigate
risks. For safety-critical systems this seems to be an even more serious requirement
due to the dramatic consequences of potential failures. For coping with safety several
standard and implementation approaches have been defined but this has not been
directly considered at the architecture modeling level. Hence, we propose the Safety

366 H.G. Gürbüz, B. Tekinerdogan, and N. Pala Er

Perspective that is dedicated to ensure that the safety concern is properly addressed in
the architecture views. The proposed safety perspective is defined according to the
guidelines as described by Rozanski and Woods [6]. The safety perspective can assist
the system and software architects in designing, analyzing and communicating the
design decisions regarding safety concerns. We illustrate the safety perspective for a
real industrial case study and discuss the lessons learned.

The remainder of the paper is organized as follows. Section 2 presents the pro-
posed safety perspective. Section 3 illustrates the safety perspective for an industrial
case study. Finally, section 4 presents the conclusion.

2 Safety Perspective

Rozanski&Woods provide the following guidelines [6] to define a new perspective:
• The perspective description in brief in desired quality
• The perspective's applicability to views
• The concerns which are addressed by the perspective
• An explanation of activities for applying the perspective to the architectural design.
• The architectural tactics as possible solutions when the architecture doesn't exhibit the

desired quality properties the perspective addresses
• Some problems and pitfalls to be aware of and risk-reduction techniques
• Checklist of things to consider when applying and reviewing the perspective to help make

sure correctness, completeness, and accuracy

Table 1 shows the proposed safety perspective description including the above
points. In the following we shortly discuss the each point.

Table 1. Brief Description of Safety Perspective

Desired
Quality

The ability of the system to provide an information about safety-related decisions and
ability to control and monitor the hazardous operations in the system

Applicability Any systems which include hazardous or safety-critical operations
Concerns Failures, Hazard, Risks, Fault Tolerance, Availability, Reliability, Accuracy,

Performance
Activities Identify hazards, Define risks, Identify safety requirements, Design safety model,

Assess against safety requirements
Architectural
Tactics

Avoid from failures and hazards, Define failure detection mechanisms, Mitigate the
failure consequences

Problems
and Pitfalls

Describing the fault tolerance, No clear requirements or safety model, Underestimated
safety problems

Table 2 shows how the safety perspective affects each of the architectural views as
defined by Rozanski and Woods [6]. For all the seven views the safety perspective
seems to be useful and can reshape the corresponding view. The activity diagram in
Fig. 1 shows the activities for applying the safety perspective. The first step includes
the identification of the hazards followed by the definition of risks. This is followed
by identifying and detailing the safety requirements. After the safety requirements
safety models are designed and the safety requirements are assessed. In the following
section we explain each activity using an industrial case study.

 Safety Perspective for Supporting Architectural Design of Safety-Critical Systems 367

Table 2. Applicability of Safety Perspective to Architectural Views

View Applicability

Functional View The functional view allows determining which of the system's functional elements
considered as safety critical.

Information View The information view helps to see the safety-critical data in the system

Concurrency
View

While designing the safety-critical systems, some elements need to be isolated or inte-
grated in runtime. Therefore this will affect the system's concurrency structure.

Development
View

Applying this view can help to provide a guideline or constraints to developers in order
to raise awareness for the system's safety critical elements.

Deployment View Applying this view can help to determine the required hardware, third-party software
requirements and some constraints for safety.

Operational View Safety implementation includes critical and complex operations. Therefore, operational
view needs to consider safety critical elements to describe system's operation properly.

Context View Applying this view can help to understand which types of users will use the system and
which external systems are necessary to make sure the system operates correctly.

Fig. 1. Applying the Safety Perspective

3 Case Study

In this section we show the application of proposed safety perspective approach by
using an avionics control system project of a company. To illustrate the application of
the proposed safety perspective we have selected "displaying aircraft altitude data" as
an example requirement for our case study. Altitude is defined as the height of the
aircraft above sea level. Pilots depend on the displayed altitude information especially
when landing.

3.1 Activities for Safety Perspective

This section explains how the activities given in Fig. 1 are applied to our case.

Identify Hazards
In order to identify and classify hazards, preliminary hazard analysis can be con-
ducted which should include the list of all hazards, their probable causes and conse-
quences, and the severity. Hazard severity levels are defined as catastrophic, critical,
marginal or negligible in [2]. Hazard identification activity is performed with domain
experts (avionics engineers and pilots), system engineers and safety engineers.

368 H.G. Gürbüz, B. Tekinerdogan, and N. Pala Er

We have selected "displaying wrong altitude data" hazard related to selected re-
quirement as an example hazard to illustrate the remaining activities. The possible
causes of this hazard are loss of/error in altimeter device, loss of/error in communica-
tion with altimeter device and error in display device. Aircraft crash is identified as
the possible consequence of this hazard. Severity of this hazard is identified as cata-
strophic since possible consequence of the hazard is aircraft crash.

Define Risks
To define risks, estimation of probability of hazard occurrence for each hazard should
be carried out. In [2], occurrence definitions are defined as frequent, probable, occa-
sional, remote or improbable. Based on the hazard severity and hazard occurrence
class identification, risks should be assessed and categorized as high, serious, medium
or low [2]. After the risk definition, risk assessment should be conducted by methods
such as fault tree analysis, event tree analysis, simulation etc. For our case study, our
design criterion is to design the system such that the probability of occurrence of all
catastrophic failures should be improbable. Since the selected hazard is catastrophic
hazard, the probability of occurrence is improbable. According to severity category
and probability of occurrence, the risk category of the selected hazard is medium.

Identify Safety Requirements
After the hazard identification and risk assessment, software safety requirements
should be determined to construct a safety model. Safety requirements can be identi-
fied by using different methods such as preliminary hazard analysis [7], top-down
analysis of system requirements and specifications [7] and fault tree analysis [5].
Additionally, there are some other methods which combine the several existing tech-
niques to derive safety requirements. To illustrate this step, we produce "Probability
of displaying wrong altitude should be improbable" as a high-level safety requirement
related to selected hazard. Many low-level safety requirements can be generated from
this high-level safety requirement. Examples of the generated low-level safety re-
quirements are (1)"Altimeter data should be received at least two independent altime-
ter devices.", (2) "If the difference between two altimeter values received from two
altimeter devices is more than a given threshold, the altimeter data should not be
displayed and a warning should be generated.", (3)"Altimeter data should be shown
on at least two independent display devices ".

Design Safety Model
To present the safety-critical elements or components in the system a safety model is
needed that can be derived from safety requirements. One way to create a safety mod-
el of the system is defining an extension mechanism to UML models [3]. UML exten-
sion can be achieved by adding stereotype to UML diagrams. Another approach to
design a safety model is defining a domain-specific language [12]. Another way to
express safety model is using automata [14].

This activity is an iterative process. The models are created first and then they are
checked against the safety requirements. The models can be changed according to
these checks. We prefer to show two versions of the architecture for our case study.

 Safety Perspective for Supporting Architectural Design of Safety-Critical Systems 369

The first version is designed without considering the safety requirements. It is
modified after safety requirements are identified, that is, after safety perspective is
applied, which results in the second version. The reasons of the modifications will be
explained in the next section (assessment section). The left part of the Fig. 2 shows
the deployment diagram of the first version, which includes one avionics control
computer (AvionicsComputer), one altimeter device (Altimeter), and one display
device (GR_Display). The deployment diagram of the second version, after applying
the safety perspective, is shown in the right part of the Fig. 2. The second version
includes two avionics control computers (AvionicsComputer1 and AvionicsCompu-
ter2), two altimeter devices (Altimeter_1 and Altimeter_2), and two display devices
(GR_1_Display and GR_2_Display). Avionics control computer contains following
modules: M1153 Manager (M1553), A429 Manager (A429), Navigation Manager
(NAV), Graphics 1 Manager (GR_1), Graphics 2 Manager (GR_2), Health Monitor
(Health_Monitor).

Fig. 2. Deployment View for the First Version (left) and for the Second Version(right)

M1553 Manager receives data from the devices connected to MIL-STD-1553
communication channels. Similarly, A429 Manager receives data from the devices on
the ARINC-429 communication channels. MIL-STD-1553 and ARINC-429 are two
widely known communication standards used in avionics systems. These two manag-
ers just receive the data and send it to the required modules. They do not make any
calculations on the data. Navigation Manager receives the altimeter data from M1553
Manager and A429 Manager and makes the range check and difference check calcula-
tions on the altimeter data. If the difference between two altimeter values received
from two altimeter devices is more than a given threshold, a warning data is pro-
duced. The altimeter data and warning data are sent to Graphics Managers. Graphics
Managers drive two graphical displays according to the received data. A well-known
standard called DVI is used to drive graphical displays. SC (Safety Critical) stereo-
type is defined to tag the safety-critical modules in the second version of the deploy-
ment diagram. SC stereotype differentiates the safety-critical modules from the rest of
the modules.

370 H.G. Gürbüz, B. Tekinerdogan, and N. Pala Er

Assess Against Safety Requirements
After designing the system's safety model, it should be assessed to check whether it is
consistent with identified safety requirements. There is only one altimeter device and
one display device in the first version of the architecture so low-level safety require-
ments 1 and 3 are not satisfied. We adapted the first version and included one
additional altimeter device and one additional display device in the second version of
the architecture. There are two different altimeter devices and two different display
devices in the second version so low-level safety requirements 1 and 3 are satisfied.

Redundancy is also accomplished for the avionics control computer in the second
version of the architecture. There are two avionics computers which can communicate
to each other for heartbeat messages (through UDP protocol). They run according to
master/slave paradigm. Only one of the avionics computers can be master at a given
time. If slave avionics computer cannot receive heartbeat messages, it can become
master. Both of them can receive altimeter data and can display it on graphical display
devices but only the master computer does it.

Safety requirement 2 is also satisfied in the second version of the architecture. Na-
vigation Manager checks the altitude data and produces either the altitude data or a
warning for altitude. If altitude data is produced, it is displayed on both graphical
devices by Graphics Managers. If a warning is generated, a warning symbol is dis-
played on the graphical devices instead of altitude. Health monitoring is another
tactic which is applied in order to increase the safety of the system. Health monitor
checks the status of the modules. If there is a problem related with a module, it can
restart the module. Health monitors are also used to determine master/slave condition.
Heartbeat messages are sent and received by health monitors.

3.2 Architectural Tactics

Architectural tactics can be considered as possible solutions when the architecture
does not exhibit the required quality properties addressed by the perspective. In order
to avoid from failures and hazards, one way is making the system as simple as possi-
ble. Another way is applying redundancy [13] by replicating the components in the
system. The other way is N-version programming proposed by Chen and Avizienis
[1]. By using N-version programming technique, different designs can be created for
each version of the system in order to determine design faults from safety perspective.
If hazards and failures occur, system should be able to detect them. In order to detect
the failures, failure detection mechanisms can be derived from safety requirements
[8]. Another tactic for failure detection is heartbeat [ref] which offers a mechanism
for periodically monitoring the aliveness and arrival rate of independent runnables. At
the architecture design level, based on the hazard identification and risk definition,
consequences of failures can be predicted and reduced/prevented. Redundancy and
replication also can be used in order to mitigate from the failure consequences.

Several architectural tactics are utilized for our case study. The first architectural
technique is redundancy. Several parts of the system are designed as redundant in

 Safety Perspective for Supporting Architectural Design of Safety-Critical Systems 371

order to satisfy both safety requirements and high availability needs. This technique is
applied to avoid from failures and mitigate the failure consequences. Health monitor-
ing technique is applied for failure detection of the safety-critical modules. Table 3
summarizes the applied tactics. Similar tactics can be applied for other identified cata-
strophic hazards.

3.3 Checklist

In this section, we provide checklists in Table 4 for requirements capture and archi-
tecture definition to consider when applying and reviewing the perspective to help
make sure correctness, completeness, and accuracy. We have applied the checklist to
our case study. Results are presented in third column of Table 4. All items in the
checklist are answered as yes except for the item 9. Since our case study doesn't in-
clude any safe state, this question is answered as not applicable.

Table 3. Architectural Tactics for the Case Study

Tactic Avoid. Detect. Mitigate
If one of the altimeter devices produces wrong altimeter output, this
fault is detected by Navigation Manager and a warning is generated

If one of the display devices crashes and cannot display altitude data,
the other one continue to display it.

If master avionics computer is not available, the slave avionics comput-
er becomes master and starts to operate.

If a safety-critical module fails, this failure is detected by health moni-
tor. The module is re-started.

Table 4. Checklist Table

No Explanation Y/N/NA
1 Have you identified safety-critical operations in the system? Yes
2 Have you identified possible failures and hazards including causes and consequences

of them?
Yes

3 Have you worked through the hazard severity and occurrence information to define
the risks?

Yes

4 Have you identified availability needs for safety of the system? Yes
5 Have you worked through example scenarios with your stakeholders so that they

understand the planned safety risks the system runs?
Yes

6 Have you reviewed your safety requirements with external domain experts? Yes
7 Have you addressed each hazard and risk in the designed safety model? Yes
8 Is the design of safety model as simple as possible and highly modular? Yes
9 Have you identified safe states and fully checked and verified them for completeness

and correctness?
NA

10 Have you produced an integrated overall safety design of the system? Yes
11 Have you defined the fault tolerance of the system? Yes
12 Have you applied the results of the safety perspective to all effected views? Yes
13 Have domain experts reviewed the safety design? Yes

372 H.G. Gürbüz, B. Tekinerdogan, and N. Pala Er

3.4 Applicability to Views

Table 5 lists the application of safety perspective to the views for our case study.

Table 5. Safety Perspective Application for the Case Study

View Applicability to the case study
Functional Safety-critical modules are determined (see right part of the Fig. 2)
Information Safety-critical data is determined (altitude data)
Concurrency Not applicable
Development Requirement Standard, Coding Standard, Design Decisions, Reviews / Checklists and

common processing required are defined.
Deployment There are two avionics control computers, two altimeter devices and two display devic-

es. (see right part of the Fig. 2)
Operational Check the correctness of the loaded binaries, Software Configuration Management and

Software Problem Reporting for safety-critical defects are defined, maintenance and
user training are provided.

Context External devices related with safety-critical features are determined.

4 Conclusion

Safety-critical systems need to be carefully designed and analyzed because a failure
may result in death or serious injury to people, or severe damage to equipment. Here-
by, the architecture design plays a crucial role to support the overall design and reali-
zation of the system and ensure the required level of safety. Addressing quality
concerns at the architecture view level has been actually based on either defining a
new viewpoint [2] or using architecture perspectives [7], each with their own merits.
In our earlier work we have considered the explicit modeling of viewpoints for quality
concerns [9][10][11]. Unfortunately, so far no architectural perspective has been de-
fined for the safety concern. Based on the guidelines by Rozanski and Woods [7] we
have proposed a safety perspective that can be used in the design of safety-critical
systems. We have applied the safety perspective in a real industrial context. The safe-
ty perspective helps the designers to explicitly reason about and document the design
decisions regarding the safety concern. In this respect, the safety perspective appeared
not only to be useful as a guidance tool for assisting the safety engineer and the archi-
tect, but it also helped in the early analysis of the architecture. In our future work we
aim to apply the safety perspective for several other domains and consider the trade-
off analysis with the perspectives for other quality concerns. Further we also aim to
define a viewpoint for safety.

References

[1] Chen, L., Avizienis, A.: N-Version Programming:A Fault-Tolerance Approach to Relia-
bility of Software Operation. In: Fault Tolerant Computing, FTCS-8, pp. 3–9 (1978)

[2] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford,
J.: Documenting Software Architectures: Views and Beyond, 1st edn. Addison-Wesley
(October 2002)

 Safety Perspective for Supporting Architectural Design of Safety-Critical Systems 373

[3] MIL-STD-882D, Standard Practice for System Safety, Department of Defense (2000) (re-
trieved January 22, 2014)

[4] Pataricza, A., Majzik, I., Huszerl, G., Várnai, G.: UML-based design and formal analysis
of a safety-critical railway control software module. In: Proc. of Symposium Formal Me-
thods for Railway Operation and ControlSystems (FORMS 2003), Budapest, pp. 125–132
(2003)

[5] Ramezani, R., Sedaghat, Y.: An Overview of Fault Tolerance Techniques for Real-Time
Operating Systems. In: 3th International Conference on Computer and Knowledge Engi-
neering, pp. 1–6 (2013)

[6] Rausand, M., Hoylan, A.: System Reliability Theory, Models, Statistical Methods, and
Applications. Wiley, USA (2004)

[7] Rozanski, N., Woods, E.: Software Architecture Systems Working with Stakeholders Us-
ing Viewpoints and Perspectives, 1st edn. Addison-Wesley (2005)

[8] Software Safety Guide Book, NASA Technical Standard (2004)
[9] Sojer, D., Christian, B., Knoll, A.: Deriving Fault-Detection Mechanisms from Safety

Requirements. In: Computer Science- Research and Development, pp. 1–14. Springer
(2011)

[10] Sözer, H., Tekinerdogan, B.: Introducing Recovery Style for Modeling and Analyzing
System Recovery. In: 7th IEEE/IFIP Working Conference on Software Architecture,
Vancouver, Canada, February 18-22, pp. 167–176 (2008)

[11] Sözer, H., Tekinerdogan, B., Aksit, M.: Optimizing Decomposition of Software Architec-
ture for Local Recovery. Software Quality Journal 21(2), 203–240 (2013)

[12] Tekinerdogan, B., Sözer, H.: Defining Architectural Viewpoints for Quality Concerns. In:
Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 26–34.
Springer, Heidelberg (2011)

[13] Wasilewski, M., Hasselbring, W., Nowotka, D.: Defining requirements on domain-
specific languages in model-driven software engineering of safety-critical systems. In:
Lecture Notes in Informatics Software Engineering Workshopband, pp. 467–482 (2013)

[14] Wu, W., Kelly, T.: Safety Tactics for Software Architecture Design. In: 28th Annual In-
ternational Computer Software and Applications Conference, Hong Kong, pp. 368–375
(2004)

[15] Yu, G., Wei Xu, Z.: Model-Based Safety Test Automation of Safety-Critical Software.
In: International Conference on Computational Intelligence and Software Engineering,
pp. 1–3 (2010)

How Do Software Architects Specify

and Validate Quality Requirements?

Andrea Caracciolo, Mircea Filip Lungu, and Oscar Nierstrasz

Software Composition Group, University of Bern, 3012 Bern, Switzerland
{caracciolo,lungu,oscar}@iam.unibe.ch

http://scg.unibe.ch

Abstract. Software architecture is the result of a design effort aimed at
ensuring a certain set of quality attributes. As we show, quality require-
ments are commonly specified in practice but are rarely validated using
automated techniques. In this paper we analyze and classify commonly
specified quality requirements after interviewing professionals and run-
ning a survey. We report on tools used to validate those requirements and
comment on the obstacles encountered by practitioners when performing
such activity (e.g., insufficient tool-support; poor understanding of user’s
needs). Finally we discuss opportunities for increasing the adoption of
automated tools based on the information we collected during our study
(e.g., using a business-readable notation for expressing quality require-
ments; increasing awareness by monitoring non-functional aspects of a
system).

Keywords: Software architecture, empirical study, quality requirements,
validation.

1 Introduction

The primary task of a software architect is to define and specify a suitable
high-level design solution that fulfills all major technical and operational re-
quirements. The document describing the architecture provides requirements and
guidelines that will help in maintaining the conceptual and technical integrity
of a software product. Quality requirements describe expected characteristics
of specific aspects of the system, from its implementation to its observable be-
havior. They may refer to externally visible product qualities (e.g., performance
requirements) or to implementation details that support them (e.g., legitimate
module dependencies). Ensuring the enforcement of quality requirements and
their deriving constraints should prevent architectural decay and make the sys-
tem more adaptable to new, emerging requirements [3].

In this study we set out to survey whether the definition of quality require-
ments is a common practice in IT companies. We want to understand whether
this activity is systematic and supported by tools and processes or rather based
on personal assumptions and using makeshift tools. Finally, we are interested
whether quality requirements, given their importance, are also automatically
validated as the software system evolves.

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 374–389, 2014.
c© Springer International Publishing Switzerland 2014

http://scg.unibe.ch

How Do Software Architects Specify and Validate Quality Requirements? 375

Previous studies [7,8,13] propose solutions for specifying architectural invari-
ants. Other studies [1,18,19,10] rank non-functional qualities (e.g., performance,
usability, availability, etc.) by carrying out surveys. In neither case is effort made
to explore quality attributes from the point of view of practitioners.

In our study we focus on the following research questions:

1. What kind of quality requirements do architects define in practice?
2. How are quality requirements specified?
3. How are quality requirements validated?

To answer these questions, we use empirical methods to identify quality at-
tributes that practitioners consider when designing their architecture. Further-
more we analyze how practitioners specify quality requirements in their docu-
mentation and explore the various techniques that are used for validation.

We observe that architects do not always adopt automated techniques to
validate quality requirements and when they do, they automatically verify only
a small subset of all the specified requirements. We discuss possible obstacles that
might cause this situation as well as research opportunities that could lead to a
general improvement in the practice of quality requirements validation (Section
5). Among the identified opportunities we consider the advantages of adopting a
business-readable declarative language for specifying quality requirements. We
also explore the benefits of promoting architectural visibility by introducing
continuous validation support for user-defined quality requirements in current
monitoring platforms (e.g., Sonarqube).

2 Research Method

This paper uses a mixed research methods strategy: sequential exploratory design
[4]. This approach consists of two different research methodologies: a qualitative
investigation followed by a quantitative validation survey which triangulates the
results of the first.

In the first study, we focused on collecting qualitative data. The goal of this
study was to gain a possibly comprehensive overview of the state of practice in
the definition and validation of quality requirements. The questions have been it-
eratively refined by conducting three internal pilot interviews with PhD and mas-
ter students with professional experience in the field. The final list of questions,
used as loose guideline for the actual interviews, is available on our web site1.
Fourteen people working for six different organizations agreed to participate in
our study (Table 1). More than 70% of the participants have been contacted
indirectly through an intermediary and had no relevant links to the academic
community. The remaining subjects were contacted directly and belonged to our
industrial collaboration network. All interviews were carried out independently,
leading to a set of complementary and partially overlapping observations. A total
of approximately 18 hours of conversation have been recorded.

1 http://scg.unibe.ch/research/arch-constr/study

http://scg.unibe.ch/research/arch-constr/study

376 A. Caracciolo, M.F. Lungu, and O. Nierstrasz

Table 1. Interview study participants. Candidates with an asterisk worked in projects
aimed at supporting architectural design. The remaining candidates worked as soft-
ware architects or project managers in medium to large projects and have more direct
experience in architectural design.

Role Org. Project (domain; type) team size

A CEO, architect C1 government / enterprise <5
B business manager C2 government / enterprise 10-50
C project manager C3 insurance / enterprise >50
D architect C4 logistic / enterprise(integration) <5
E developer C4 logistic / enterprise(integration) <5
F CTO C5 banking / enterprise >50
G architect C2 government / enterprise 5-10
H architect C2 government / enterprise 10-50
I architect C6 logistic / enterprise(migration) >50
J* developer C2 government / development support tool <5
K architect C5 banking / enterprise 5-10
L architect C6 transportation / control systems 5-10
M* developer C5 banking / source code analysis >5
N* architect C5 banking / development support tool 5-10

The main outcome of this qualitative study was the list of quality attributes
presented in Table 2. These quality attributes were inferred by analyzing the
interviews and synthesizing the main concerns using coding techniques [17]. To
support this activity, we identified and labeled quality requirements in interview
transcriptions as well as the documentation files (i.e., Software Architecture
Documents, Developer guidelines) that we collected at the end of several inter-
view sessions. To gather more evidence that the observations coming from the
first study actually reflected the state-of-practice of a broader community, we
created an e-survey. Over a time span of two months we collected 34 valid and
complete responses. Invitations were sent to professionals selected among indus-
trial partners and collaborators (i.e., convenience sampling method), including
people involved in the first phase of the study. The survey was also advertised
in several groups of interest related to software architecture hosted by LinkedIn
and on Twitter2 (i.e., voluntary sampling method). Survey participants were
asked to specify whether the quality attributes identified in the first study were
ever encountered in a past project, their perceived level of importance (on a scale
from 1 to 5, with 5 being the highest), the formalism adopted to describe them
and the testing tool used for their validation. A complete copy of the survey can
be found on our web site1.

3 Learning from Practitioners: A Qualitative Study

During interviews, we tried to elicit a possibly wide range of distinct architec-
turally significant quality attributes. We asked our respondents to enumerate

2 http://www.linkedin.com; http://www.twitter.com

http://www.linkedin.com
http://www.twitter.com

How Do Software Architects Specify and Validate Quality Requirements? 377

those concerns that could be considered fundamental for their architecture. For
each of those, we asked them to describe their main properties and the form
in which they were typically specified. Table 2 shows all identified quality at-
tributes. For each quality attribute, we also present additional details collected
during our quantitative study (columns 3-6 in Table 2).

Quality attributes are categorized based on the closest matching ISO-25010[11]
quality characteristic. For simplicity’s sake, we decided to pair each attribute
with one single category. For clarity, we also published some explanatory re-
quirements for all presented quality attributes on our web site1.

Table 2. Taxonomy of quality requirements (grouped by supported quality characteris-
tic). Columns (from left to right): Matching quality characteristic; Quality requirement;
Evaluated importance (first, second and third quartile); Participants who encountered
the requirement in a previous project (familiarity); Participants who specified the re-
quirement using a formal notation. Columns 3-6 contain data collected during our
quantitive study.

Quality Quality Attribute Importance Form.

Characteristic (Internal / External / Process) Q1 Q2 Q3 Fam. Not.

Performance Response time (E) 3 4 5 15% 14%

Throughput (E) 3 4 4 26% 13%

Hardware infrastracture (I) 2 3 4 29% 0%

Compatibility Signature (I) 3 4 4 18% 52%

File location (I) 1 3 4 29% 18%

Data structure (I) 2 3 4 29% 47%

Communication (I) 2 4 4 15% 22%

Usability Visual design (E) 2 3 3.5 9% 21%

Accessibility (E) 1 2 3.5 50% 0%

Reliability Availability (E) 4 4 5 15% 14%

Recoverability (E) 2 3 5 32% 5%

Data integrity (I) 3 3 4 18% 23%

Event handling (I) 2 3 4 35% 25%

Software update (P) 1 2 3 59% 0%

Security Authorization (E) 4 4 5 3% 23%

Authentication (E) 3 4 5 21% 12%

Data retention policy (I) 2 3 4 12% 13%

Maintainability Meta-annotations (I) 1 3 4 32% 39%

Code quality (I) 2 3 3.5 15% 19%

Dependencies (I) 2.5 3 4 18% 53%

Naming conventions (I) 2 3 3 12% 38%

Portability Software infrastracture (I) 3 3 4 24% 8%

3.1 Identified Quality Attributes

We now comment on the identified quality attributes.

378 A. Caracciolo, M.F. Lungu, and O. Nierstrasz

Performance: performance was often mentioned as being a key concern.
Requirements on response time and throughput are commonly part of the accep-
tance criteria defined with the customer at the beginning of a project. Several
respondents (e.g., A, B) define latency requirements on the execution of specific
tasks (e.g., The system has to answer each request within 10 ms). Others (e.g.,
A, D) set limits for the accepted throughput (e.g., The system must be able
to execute a certain task 10’000 times per hour). These requirements are often
validated by collecting timestamps during execution or simulating high traffic
load with a script. Hardware infrastructure requirements, specifying the hard-
ware resources required to support a specific software implementation, also play
a role in determining performance.

Compatibility: multiple interviewees (B, F, J) mentioned communication
as one of the most important aspects in their architecture. F built a client
simulator to test conformance with the prescribed communication protocol and
check syntactical/semantical data consistency.N defined a guideline stating that
data has to be passed from one layer to the other using Data Transfer Objects. G
wrote a detailed specification of all service interfaces composing his application
(signature attribute). This included details regarding accepted parameter values
and activity diagrams describing the message exchange protocol. Interoperability
between different components and tools often requires files to be placed into
pre-determined folders or structure files according to a given shared schema (file
location attribute).

Usability: visual design and compliance to accessibility guidelines were men-
tioned as typical requirements for application front-ends. H developed a web
interface that had to conform to a set of rules defined in the corporate visual
style guide. This requirement was satisfied by defining global stylesheets and
forcing their inclusion into all related applications.

Reliability: robustness and fault-tolerance are important features for almost
any kind of application. H’s application was required to guarantee 96% avail-
ability and a clear recovery procedure was defined for each type of fault that was
likely to occur. Data integrity is also a major concern. K managed to maintain
internal data consistency by defining data type classes for all supported business
value types. H and G constrained field values specifying Hibernate or Spring
formatting annotations. Specific rules were also defined to regulate strategies for
handling events (e.g., exceptions, notifications) and update software packages
(e.g., libraries).

Security: security is also considered critical and is often tested thoroughly.
Verification becomes a necessity when the system is directly exposed to a large
untrusted audience. Testing seems to have lower priority if the application is just
deployed within an intranet (E). Most of the time, widely known frameworks
(e.g., JAAS) are used to implement authentication and authorization rules.

Maintainability: class dependencies and syntactic code invariants are com-
monly considered tightly related to software architecture. H even claims that
“dependencies between modules are the main characteristic of a software archi-
tecture”. Requirements on these two aspects are defined to support architectural

How Do Software Architects Specify and Validate Quality Requirements? 379

principles (loose coupling, high cohesion) and minimize the cost of future main-
tenance.

Portability: requirements related to software infrastructure configuration are
common. Prescriptions on technologies to be adopted can be found in almost ev-
ery specification document. J, for example, specifies that the “persistence layer”
of his application must use Hibernate as a persistence framework. Software in-
frastructure requirements are often related to rules addressing compatibility is-
sues (i.e., file location, data structure).

3.2 Specifying Quality Requirements

All the participants of our study describe their quality requirements in one or
more text documents. The vast majority adopt a well-known standard template
(e.g., 4+1[12], togaf3, arc424). Textual documentation is always complemented
with diagrams based on a common shared visual language (e.g., UML, BPML,
BPEL, flowchart, informal notation).

Documentation Audience. Documentation is written to satisfy the needs of
three main stakeholders: customers, architects and developers.

For Customers: documentation is written to meet contractual requirements.
In this case documentation is often seen as a burden for the architect and pro-
vides limited support to practitioners working on the project. It provides a non-
technical specification that can be used to prove compliance to agreed require-
ments during a post-development validation phase (G).

For Architects: documentation is written to maintain a general overview of
the system and support high-level design reasoning. Some respondents believe
that developers are not interested in reading about architecture. “Developers
only care about functionality and tend to ignore non-functional properties” (E).
This assumption supports the idea that architecture and implementation are on
different levels of abstraction and are hard to link together. Low effort is usually
dedicated to keep documentation aligned and up-to-date with changes originated
in the implementation. I stated that he rarely got any sort of feedback from the
assumed recipients of his documentation work.

For Developers: documentation is a map, providing a high-level description
of the system to technical users involved in the development process. It is par-
ticularly useful as an initial entry-point for new developers learning about the
system. D said that “new developers start by reading the documentation, look
into the code and finally sort out remaining doubts by talking with colleagues”.
Documentation is used to transfer knowledge, is open for change and needs to
be kept up-to-date.

Documentation Intent. In our study we identified two type of documentation
styles: descriptive and prescriptive.

3 http://www.opengroup.org/togaf
4 http://www.arc42.de

http://www.opengroup.org/togaf
http://www.arc42.de

380 A. Caracciolo, M.F. Lungu, and O. Nierstrasz

Descriptive Documentation: is meant to provide sufficient evidence to
support developers in decision making activities. It is not written to set precise
guidelines and rules but to help developers in evaluating alternatives and make
good design choices. Architects writing “descriptive documentation” are usually
skeptical about enforcing design rules through documentation. D said that “doc-
umented rules are often perceived as pedantic and restrictive”. He added that
“forcing developers to learn them beforehand is a failing strategy and often leads
to poor results” because “they could be ignored and neglected”. Apparently a
much better approach is to provide useful feedback to developers when they
break such rules.

Prescriptive Documentation: is more oriented towards the definition of
strict guidelines and rules. The goal is to limit developers in their design choices
in order to guarantee high-level properties (e.g., maintainability). In this case,
it’s often convenient to express quality requirements in a clear and objective way.
Most of the documents collected during our studies contained coding guidelines
(general practices and syntax format rules) and quality requirements regarding
data values and event handling.

Formalization of Quality Requirements. Quality requirements are rarely
described formally. Formal specification is only used in practice to support spe-
cific verification tools. In this case, users are forced to extract architectural rules
from the specification document and encode them in a separate file using a
tool-specific notation.

In rare cases, companies develop their proprietary description language. N
worked in a company where all developed applications are documented as visual
diagrams based on a proprietary meta-model. Their models include a hierar-
chically organized set of interlinked logical components. All types of entities
are characterized by various properties (e.g., interface structure for components;
message format, protocol, integration type for communication links). Each sys-
tem, consisting of a set of components, is mapped to the specific infrastructural
entity on which it is supposed to be deployed. This last information is used to
feed a semi-automatic process for verifying the actual deployment configuration.
N said that the documentation model adopted in his company is very helpful
for keeping information consistent, accurate and closed to interpretation.

In other cases, users face the lack of usability of current specification mecha-
nisms. D, for example, decided to verify package dependencies using a specific
testing framework (JDepend). Unfortunately the test specification required by
the adopted tool was not readable enough to be included in the official doc-
umentation. To solve this problem, he decided to specify the requirements in
a spreadsheet and build a parser to generate a corresponding set of tests. In
this case, having a simplified and testable representation of architectural rules
justified the cost for building a conversion tool.

3.3 Validating Quality Requirements

We observed that quality requirements are validated using various approaches.

How Do Software Architects Specify and Validate Quality Requirements? 381

Manual Validation. According to the answers collected during our study, one
way of validating quality requirements is simply by running the system and
manually checking some operational properties (e.g., Response time, Authenti-
cation). This validation strategy is usually preferred when automated testing
tools are not available or exist but are too expensive to buy or customize. Scal-
ability is sometimes verified by generating a large number of requests using a
script and evaluating responsiveness by interacting with the application through
an additional session. Properties that manifest themselves in source code (e.g.,
Code conventions), are often checked through code reviews. As mentioned by
L, “the number of existing [testing] tools is far from being exhaustive”. He said
that “companies rarely see the value of investing time in researching new testing
techniques”. In many cases manual validation seems to be the most viable and
frequently chosen alternative.

No Validation. Some respondents avoid the need for direct verification by re-
lying on a framework or code generator. If the framework is not developed inter-
nally, the fact that certain quality requirements are actually fulfilled is based on
trust. J, responsible for the development of an internal framework used across
multiple company projects, said that “frameworks should not be invasive but
support the developer by simplifying his tasks and reducing possible design de-
cisions in a non-invasive way”. Frameworks that are built to limit implementation
choices, as confirmed by M, are not well perceived by developers. A framework
should convince developers to use its functions by offering useful services that
contribute to reducing the cost of development (J). Code generators are typ-
ically used to simplify the maintenance and creation of modules that depend
on business needs that vary through time. Our interviewees agreed on the fact
that building testing tools is usually not an economically viable option. Building
testing tools is also seen as a challenging task requiring advanced programming
skills.

Automated Validation. When possible, architects prefer to use automated
techniques. This can be done by writing programmatic tests or relying on tools
developed by a third party. Existing tools do not always fit the needs of our re-
spondents. Multiple respondents said that some of the currently available tools
were lacking in flexibility and usability. F worked on a project where compo-
nents could be identified by looking at the suffix of class names. All the tools he
tried supported package name matching as the only mapping strategy. K was
working on a system based on the OSGi framework5. He was not aware of any
tool that allowed him to automatically check whether the specified dependencies
existing between the OSGi bundles composing his system were actually consis-
tent with the architectural specification. The only way to verify the alignment
between implementation and specification was to manually inspect large XML
configuration files.

5 http://www.osgi.org/

http://www.osgi.org/

382 A. Caracciolo, M.F. Lungu, and O. Nierstrasz

Most of the tools force users to operate on an overly technical level. This
fact prevents non-technical stakeholders from accessing valuable information and
introduces new costs for setting-up and maintaining architectural tests. Current
testing solutions require the user to specify testing rules in separate files. Quality
requirements must be specified twice: in the official documentation using natural
language (for supporting communication and reasoning) and in a purpose-built
formal specification file (for supporting a specific testing solution). The resulting
fragmentation leads to increased costs for maintaining multiple specifications
aligned and consistent.

4 Corroborating the Evidence: A Quantitative Study

To confirm the validity of our impressions on a larger scale, we developed a
second study. This study was aimed at obtaining a more uniform overview on
how quality attributes (identified in the first study and presented in Table 2)
are considered by practitioners.

We now report some of the main observations resulting from the analysis of
the obtained results.

O1. Most requirements are not formally specified : Our survey confirms that
very few requirements are formally or semi-formally specified (Table 2). In fact,
only 2 quality requirements (Signature, Dependencies) out of 22 are formally
specified more than 50% of the time. Signature quality requirements are specified
using UML with custom profiles, XSD and IDLs (OMG IDL, MIDL, WSDL). De-
pendencies are described using tool-specific notations (e.g., JDepend, ndepend,
macker, DCL, SOUL), Java annotations and UML with custom profiles. Oth-
ers (Data structure, Naming conventions) are also quite frequently formalized.
Naming conventions can be specified using regular expressions, EBNF gram-
mars, tool-specific notations (e.g., SOUL for IntensiVE) or Java (e.g., plugins
for Checkstyle and PMD). Data structure quality requirements are either spec-
ified using standard schema definition languages (DTD, XSD) or semi-formal
modeling notations (ER, UML).

O2. Automated testing is not commonplace: Results show that the use of
automated techniques (i.e., using white-/black-box testing or tools) for validat-
ing quality requirements is not commonplace (Figure 1). On average, 59% of
the surveyed population adopts non-automated techniques (e.g., code review or
manual validation) or avoids validation completely. Based on the results of our
survey (Figure 1), the following quality requirements are mostly validated manu-
ally: Dependencies (10 users), Visual design (8), Naming conventions (7), Com-
munication (5). Quality requirements that remain most often unvalidated are:
hardware infrastructure (50% of respondents), recoverability (48%) and software
update (44%). Automated validation is not commonplace and is mostly adopted
to validate quality requirements regarding end-user properties (e.g., Response
time, Throughput) and security (e.g., Authorization, Authentication, Data reten-
tion policy). Table 3 shows which tools are used by the participants of our survey
to validate the identified quality attributes.

How Do Software Architects Specify and Validate Quality Requirements? 383

Fig. 1. Survey results: various approaches for validating quality requirements

O3. Tool support for automated validation is insufficient : One of the reasons
why automated validation is not widespread seems to be related to the scarce
availability of industrial-strength tools matching some practitioner’s needs. A
number of quality attributes (e.g., Code dependencies, Naming conventions) can
be checked with a large number of tools, while others (e.g., Data integrity, Meta-
annotations), considered as equally important, can only rely on a much smaller
range of solutions.

O4. User’s needs are still not completely recognized : Figure 1 shows that several
requirements are also more frequently validated manually than automatically.
The most striking examples are Data structure, signature, dependencies. This
suggests the possibility that some requirements are still left unaddressed and
need to be investigated further by conducting on-the-field studies. We believe
that further analysis of emerging requirements could lead to new opportunities
for future research in the field of tool development and tool building support.

O5. Emphasis is given to secondary requirements : Another interesting obser-
vation is that quality attributes that have been most frequently encountered in
past work experiences (e.g., Software update, accessibility) generally do not have
a significant impact on the outcome of an industrial project (See “familiarity”
and “importance” columns in Table 2). Further studies should analyze current
design and specification methodologies and propose improvements on existing
documentation practices.

384 A. Caracciolo, M.F. Lungu, and O. Nierstrasz

Table 3. Survey results related to tool-aided architectural constraints testing. Columns
(from left to right): Constraint name; respondents using third-party tools for testing
the constraint; adopted tools.

Constraint Tool Reported Testing Tools

authorization 15% SoapUI / other: Framework (JAAS)

throughput 26% Meter, LISA, Selenium, Lucust, Gatling, HP LoadRunner

response-time 17% JMeter, LISA, Selenium

data retention policy 8% no tool specified

authentication 3% other: Framework (JAAS, Spring)

data integrity 8% Moose / other: db-constraints, Framework

visual design 4% other: Framework

code quality 39% Sonar, Findbugs, Code critics, Checkstyle, Emma, Clover

meta-annotation 19% dclcheck

accessibility 0% no tool specified

communication 8% Moose, dclcheck

availability 10% DynaTrace, Gomez, Shell script + Selenium, Pingdom

event handling 12% dclcheck, Moose

data structure 16% Moose / other: Custom tools

software infrastr. 8% other: Automated declarative provisioning

signature 7% Moose, JMeter, soapUI

dependencies 22% SAVE, dclcheck, Patternity, Jdepend, Ndepend, Macker,
IntensiVE, SmallLint, DSM tool

recoverability 0% no tool specified

software update 0% no tool specified

hardware infrastr. 6% no tool specified

file location 0% other: Guaranteed by framework

naming conventions 11% Code critics, Checkstyle, PMD, FxCop, IntensiVE, Petit-
Parser

O6. Tools do not take advantage of existing formalizations : Figure 1 shows that
some constraints (e.g., dependencies, naming conventions) are more often for-
mally specified than automatically validated. However, formally specifying con-
straints without automatically verifying them is less than optimal. Based on our
analysis, we observe that some adopted notations do not provide sufficient details
to support validation (e.g. UML for describing signature) and other notations
are not fully taken advantage of by the existing tools (e.g. regular expressions
for describing naming conventions). We think that more empirical studies are
needed in order to expose actual formalization practices. The results of these
studies might expose common flaws of existing notations and provide concrete
evidence of practitioner’s needs.

5 Discussion

In this section we discuss some general strategies that could help address the
issues raised in the previous section.

How Do Software Architects Specify and Validate Quality Requirements? 385

Reduce the Gap between Specification and Implementation. As ob-
served, many of the current tools force the user into a needlessly technical ex-
ercise. Several dependency testing tools (e.g., JDepend, Dependometer), for ex-
ample, not only require the test specification to be written using a technical
notation (i.e., Java or XML), but also offer poor documentation on how to do
so.

Architects should be able to express their concerns in a single uniform format.
Respondent G said that having the option to embed a formal (yet readable) test
specification of his architectural rules in a Word document would be extremely
appealing to him. This would allow him to write well-formed testing rules in a
familiar environment with the additional benefit of automatic validation.

Terra et al. [20] and Marinescu et al. [15] proposed two different DSLs (Do-
main Specific Languages) for expressing quality requirements (See section 7).
Both languages serve the purpose of encoding valuable information in a testable
yet readable format. Unfortunately the expressiveness of such DSLs is strongly
defined by the capabilities of the underlying tool. Völter [21] reports on a case
study where a DSL is defined progressively by interacting with the customer.
The language, grammar and support tooling is developed iteratively and will
eventually be used as the basis for code generation and analysis. Cucumber6, a
behavior-driven development framework, is based on a similar concept. Tests are
written by non-technical stakeholders and are checked by building an interpreter
that translates the text into actual unit tests.

These approaches show that having business-readable descriptions of rele-
vant design properties helps keeping alive the conversation between all involved
stakeholders. It also shows that a well engineered DSL is useful for encoding
information in a uniform and unambiguous manner, which can turn useful for
supporting more sophisticated testing activities. We believe that users should
not be asked to describe their quality requirements within the boundaries de-
fined by a testing tool. Instead, tools should be employed to verify user-defined
rules on a best effort basis.

Increase Awareness through Continuous Feedback. Several respondents
(G, H, J) use Sonarqube as a guide for driving code review activities. Sonar-
qube aggregates code analysis reports from multiple sources and presents them
in a customizable web-based interface. Information is constantly kept up-to-date,
well integrated and easy to navigate. All aspects exposed by the tool relate to
general low-level characteristics of the system that are typically of little interest
for architects. The strength of Sonarqube mostly seems to be bound to its inte-
grability (analysis can be configured to run as a build step in a wide range of
continuous integration servers), the concreteness of its result and the fact that
all information are current and kept up-to-date.

Having seamless access to a comprehensive set of system-wide properties and
infringed rules is a good way to exercise control over non-functional aspects
of an implementation. If architects had the chance to define domain-specific

6 http://cukes.info

http://cukes.info

386 A. Caracciolo, M.F. Lungu, and O. Nierstrasz

rules for testing design constraints that are relevant for their architecture, they
would be able to reach a higher and more targeted level of control. Our in-
tuition is that monitoring platforms, such as Sonarqube would largely benefit
from being integrated with highly customizable DSL-based tools (e.g., DCL[20],
InCode.Rules[15]). Being able to specify similar and more articulated rules on
this and other aspects of the system would eventually reduce the generality of
the results minimizing the number of false warnings and optimizing review-time.

6 Threats to Validity

Internal Validity. During our first study, we tried to gather impressions and
opinions by conducting semi-structured interviews. Our goal was to gather a
clear answer to all the research questions presented in the introduction. All
discussions have therefore been partially moderated by the interviewer. We did
our best to minimize the influence of the interviewer on the respondent, but we
cannot exclude the existence of biased answers. Some observations or questions
made by the interviewer might have induced the respondent to articulate his
answer in an unnatural way. The effect of a similar threat should have been
mitigated by the number of different answers to the same question.

Users taking part in the survey had the right to remain anonymous. 41% of
them chose not to share any identifying personal information (i.e., email ad-
dress). Among those, 71% (29% of the total population) did not specify their
professional title. Due to this lack of information, we are unable to make general
statements over the population participating to the survey. It would anyway be
reasonable to assume that most of the people were either architects or profes-
sionals playing a comparable role. The fact that we contacted people belonging
to our industrial collaborators network and that we posted invitations only on
architecture-oriented virtual communities should support our hypothesis.

External Validity. Another limitation could be seen in the relatively modest
number of participants who participated in each phase of the study. The first
study involved 14 respondents, while the survey counted 34 valid results. These
numbers could appear small, but in fact are comparable to those reported by
similar studies. Four out of five of all the interview-based studies centered around
non-functional requirements [1] involve 14 or fewer participants. If we consider
the surveys related to the same topic [1], we see that two out of four studies
draw their conclusions based on fewer than 34 responses.

7 Related Work

In our work we discuss the nature of quality requirements and report on the tech-
niques used for their verification. We examine both topics from a very pragmatic
point of view, taking in consideration concrete examples and specific informa-
tion. To the best of our knowledge, no other empirical study covers the same
topics adopting a similar standpoint.

How Do Software Architects Specify and Validate Quality Requirements? 387

Several surveys related to NFRs (non-functional requirements) have been car-
ried out (See related work by Ameller et al. [1]). The main outcome of all these
studies often consists of a ranking showing how non-functional requirements com-
pare based on the level of importance attributed by the users. All these studies
focus on generic quality characteristics ignoring actual quality attributes that
practitioners address in the requirements. Our study provides new insights from
a complementary point of view, showing which quality attributes are considered
relevant and providing details of their validation.

Poort et al. [18] found a statistical correlation between the verification of
NFRs and project success. According to their results, the benefits of verification
are also more significant if NFRs are verified in early stages of a project. In our
study we explore how NFRs get actually validated in practice.

Various research contributions show that architecture-related requirements
can be formalized using ADLs (architectural description languages). ADLs al-
low to model an architecture as a set of interlinked components enriched with
a pre-defined meta-annotations. These models are typically weakly related with
the implementation. Tools are sometimes provided for checking the semantic
consistency of relationships and annotations but only at the model level. More-
over, there is scarce evidence that the general concepts defined in ADLs (i.e.,
Components, Ports, etc.) actually reflect the the way architects think about
their architecture. Case studies, showing evidence of the practical utility of the
language, can only be found for a few of the most prominent ADLs (i.e., AADL
[6,5] and xADL [2]). We think that the lack of support for testing concrete archi-
tectures combined with the possible mismatch between offered features and real
needs can be the cause of the — by now confirmed [14] — failure of adoption of
ADLs by the general public. In this paper we draw observations that could help
making ADLs more effective and useful.

Recent research efforts try to make up for these limitations by proposing
more test-oriented ADLs. Terra et al. [20] proposed a specification language for
expressing restrictions on the existence of certain types of relationships (e.g.,
access, extension) between sets of classes. Marinescu et al. [15] supports the
specification of undesired dependencies and class-level anti-patterns. Both ADLs
are supported by custom-built testing tools that enable rule verification at the
code level. Other languages (i.e., SOUL [16] and LePUS3/Class-Z [9]) are more
formal and support more complex specifications. They provide the means to
validate quality requirements at code level, but also require considerable training
before usage.

8 Conclusion

We presented the results of two empirical studies that explore how quality re-
quirements are defined and validated in practice. The studies show that archi-
tects care about the validation of quality requirement but are often unable to
make best use of the currently available tools.

We observe that the present offering of tools is limited in number and that
several solutions are not able to satisfy common requirements (see section 5).

388 A. Caracciolo, M.F. Lungu, and O. Nierstrasz

Practitioners are rarely willing to develop solutions for governing architectural
decay and are not motivated to formalize their quality requirements. Current
formalization notations are typically strongly tied to specific testing solutions
and are often lacking in readability. To improve this situation, we propose some
ideas for specifying quality requirements and for reducing the cost of validation.
Future testing solutions should take advantage of existing formalizations and
provide functionalities that fulfill empirically recognized requirements.

In the future we plan to apply some of the discussed ideas by experimenting
with new solutions for supporting the specification and validation of quality
requirements.

Acknowledgment. We thank Erwann Wernli for valuable discussions regard-
ing the content of this paper, and we thank the anonymous reviewers and the
shepherd assigned to this paper for their many helpful suggestions. We gratefully
acknowledge the financial support of the Swiss National Science Foundation for
the project “Agile Software Assessment” (SNSF project No. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015). We also thank CHOOSE, the special interest group
for Object-Oriented Systems and Environments of the Swiss Informatics Society,
for its financial contribution to the presentation of this paper.

References

1. Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects consider
non-functional requirements: An exploratory study. In: 2012 20th IEEE Interna-
tional Requirements Engineering Conference (RE), pp. 41–50 (September 2012)

2. Boucké, N., Garcia, A., Holvoet, T.: Composing structural views in xADL. In:
Moreira, A., Grundy, J. (eds.) Early Aspects Workshop 2007 and EACSL 2007.
LNCS, vol. 4765, pp. 115–138. Springer, Heidelberg (2007)

3. Carrière, S.J., Kazman, R.: The perils of reconstructing architectures. In: Proceed-
ings of the Third International Workshop on Software Architecture, ISAW 1998,
pp. 13–16. ACM, New York (1998)

4. Creswell, J.W., Vicki: Designing and Conducting Mixed Methods Research, 1st
edn. Sage Publications, Inc. (August 2006)

5. Feiler, P., Gluch, D., Hudak, J., Lewis, B.: Embedded systems architecture analysis
using SAE AADL. Technical Report CMU/SEI-2004-TN-005, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania (2004)

6. Feiler, P., Gluch, D., Woodham, K.: Case study: Model-based analysis of the mis-
sion data system reference architecture. Technical Report CMU/SEI-2010-TR-003,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania (2010)

7. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language
(AADL): An introduction. Technical report, DTIC Document (2006)

8. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, ch. 3, pp. 47–67. Cambridge University Press, New York (2000)

9. Gasparis, E., Nicholson, J., Eden, A.: Lepus3: An object-oriented design description
language. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI),
vol. 5223, pp. 364–367. Springer, Heidelberg (2008)

How Do Software Architects Specify and Validate Quality Requirements? 389

10. Haigh, M.: Software quality, non-functional software requirements and it-business
alignment. Software Quality Control 18(3), 361–385 (2010)

11. ISO/IEC. ISO/IEC 25010 — Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software
quality models (2010)

12. Kruchten, P.B.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50
(1995)

13. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
architectures. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989,
pp. 137–153. Springer, Heidelberg (1995)

14. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: A survey. IEEE Transactions on Software Engineer-
ing 39(6), 869–891 (2013)

15. Marinescu, R., Ganea, G.: inCode.Rules: An agile approach for defining and check-
ing architectural constraints. In: 2010 IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), pp. 305–312 (August 2010)

16. Mens, K., Kellens, A.: IntensiVE, a Toolsuite for Documenting and Checking Struc-
tural Source-Code Regularities. In: Proceedings of the 10th European Conference
on Software Maintenance and Reengineering, CSMR, pages 10, pp. 239–248 (2006)

17. Miles, M.B., Huberman, M.: Qualitative Data Analysis: An Expanded Sourcebook,
2nd edn. Sage Publications, Inc. (1994)

18. Poort, E.R., Martens, N., van de Weerd, I., van Vliet, H.: How architects see non-
functional requirements: Beware of modifiability. In: Regnell, B., Damian, D. (eds.)
REFSQ 2011. LNCS, vol. 7195, pp. 37–51. Springer, Heidelberg (2012)

19. Svensson, R., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt, R.: Qual-
ity requirements in industrial practice — an extended interview study at eleven
companies. IEEE Transactions on Software Engineering 38(4), 923–935 (2012)

20. Terra, R., Valente, M.T.: A dependency constraint language to manage object-
oriented softwarearchitectures. Software:Practice andExperience39(12), 1073–1094
(2009)

21. Voelter, M.: Architecture as language: A story. InfoQ (February 2008)

Recommending Refactorings
to Re-establish Architectural Consistency

Sebastian Herold1 and Matthias Mair2

1 Lero–The Irish Software Engineering Research Centre
University of Limerick, Limerick, Ireland

2 Department of Informatics, Clausthal University of Technology
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

Abstract. Keeping the software architecture of a system and its implementation
consistent can be tough. The larger and more complex a software system is, the
more likely software architecture erosion occurs. This effect can lead to a de-
crease of quality with respect to adaptability, maintainability, or reusability.

Refactorings can help to reverse software architecture erosion through sys-
tematically applying them to resolve architecture violations. However, it can be
difficult in complex systems to manually resolve all violations in an efficient way
due to the complex interdependencies between them.

In this paper, we propose a new approach to the automatic recommendation
of refactorings to resolve architecture violations based on a meta-heuristic search
for an efficient set of refactorings. The approach is applied to resolve architectural
dependency violations using the “move class” refactoring.

1 Motivation

The software architecture of a software system influences greatly quality properties
regarding its development and maintenance such as adaptability, maintainability, or
reusability [4]. An appropriate intended software architecture manifesting the most fun-
damental design decisions enables a system to evolve and to be adapted to changing
requirements more easily.

However, the more complex a software system is and the longer it evolves, the more
likely software architecture erosion occurs [10]. This term describes the divergence
of the intended software architecture and its realization. The reasons for architecture
erosion are manifold, e.g., bug-fixing or adapting to new requirements [7]. In the long
term, progressing erosion leads to unmaintainable software that requires to be replaced
by completely and expensively redeveloped systems [12].

One way to deal with software architecture erosion is to repair architecture viola-
tions, e.g., through reengineering and refactoring techniques [3]. In these approaches,
architectural violations are identified and refactorings are applied in order to resolve
them and to restore architecture consistency.

However, repairing architecture erosion requires a broad understanding of the—
rather complex—system, the causes of violations, and interdependencies between them.
Thus, it might be difficult for software engineers to find a good or even optimal way to
refactor it. For example, violations of dependency constraints (e.g., caused by misplaced

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 390–397, 2014.
c© Springer International Publishing Switzerland 2014

Recommending Refactorings to Re-establish Architectural Consistency 391

classes) defined by the software architecture might influence each other; moving classes
to resolve a violation can create new ones; violations might become obsolete of others
are resolved in a certain way.

In this article we present preliminary results of our work on developing an approach
which leverages flexible first-order logic architecture checking mechanism and com-
bines it with meta-heuristic search techniques to recommend a suitable set of refac-
torings. The developed algorithm is tested in experiments in which consistency with
architectural dependency constraints is re-established. The results show that the recom-
mended refactoring sequences are effectively computed and represent efficient measures
to repair the detected violations.

2 Problem

According to Eden et al. [2], a software architecture can be represented as set of log-
ical constraints about possible realisations. A realization conforms to an architecture,
if and only if it fulfils that set of logical statements. For example, the layered archi-
tecture pattern defines constraints about allowed dependencies among elements of the
system’s realization. Repairing software architecture erosion can hence be understood
as transforming a realization not fulfilling the logical statements of an architecture into
a realization that does. Refactorings can be understood as the available basic repair
actions to construct this complex transformation.

As outlined in [8], the problem of finding an optimal set of repair actions for an
eroded system is undecidable. This implies that we have to perform an exhaustive search
for the optimal sequence. However, the search-space of this problem is very “broad”
depending on the number of available repair actions and possible places for application,
making an exhaustive search impossible for large systems. The Move Class refactoring
alone has cp−1 possible applications for c classes and p possible places to move classes
[3].

Hence, most related approaches limit themselves to special cases of the general prob-
lem by reducing the set of considered architectural aspects, e.g. dedicated bad smells,
and by considering a fixed set of refactorings. This might simplify consistency checking
to something less complex than first-order logic model checking but naturally reduces
the cases of erosion that can be detected; in particular, user-defined or system-specific
violations and repair actions cannot be considered.

3 Related Work

The following approaches all aim at providing automatic tool support for finding places
for adequate refactorings in a software system. They differ in the kind of architectural
erosion they can detect, the refactorings they support, and the technique they use to
determine the refactorings to be applied.

Seng et al. describe in [13] an approach to determine refactorings to improve class
structures. They apply a genetic algorithm to optimize a given object-oriented system
with a vector of several metrics as fitness function. The refactorings they consider are
those from Fowler’s catalog that focus on the internal structure of classes.

392 S. Herold and M. Mair

The approach proposed by Dietrich et al. detects four different motifs in dependency
graphs of programs [1]. Motifs are graph representations of general antipatterns; motif
detection can basically seen as graph pattern matching. The only repair action that is
considered to remove motifs in a software system is to remove dependencies. A meta-
heuristic search is applied which executes the removal resolving the largest number of
motifs first.

Shah et al. apply Move Class refactorings to resolve dependency cycles in software
systems [14]. They apply a meta-heuristic search technique according to first-ascent
hill-climbing [11] whereas the number of dependency cycles is the function to mini-
mize. The result is a set of class movements that resolves as many dependency cycles
as possible.

In [15], architectures are specified using the Dependency Constraint Language. Its
main elements are coarse-grained components, that are mapped to source code units,
and dependency constraints. A consistency checking tool for this kind of architectures
is complemented by a recommendation system for refactorings. However, recommenda-
tions are made only locally, i.e. for each single violation, not taking inter-dependencies
between refactorings into account.

It can be concluded that most existing approaches that are applicable to determine a
set of refactorings restrict the kind of architectural constraints that can be checked and
support only a fixed set of repair actions. In contrast to these approaches, we propose
an approach that tries to tackle the problem without reducing the expressiveness of
supported architectural constraints and allowing user-defined repair actions.

4 Proposed Approach

The proposed approach consists of three main components: detection of architecture
violations in a software system, specification of refactorings for violations, and recom-
mendation of a set of refactorings for a given set of violations.

4.1 Detecting Architectural Violations with ArCh

In order to detect architecture violations, we use the Architecture Checker (ArCh) tool
[6]. It implements the approach to architecture consistency checking proposed in [5]
which focuses on applicability in heterogeneous development scenarios in which many
different architectural aspects require to be checked on a large set of different artefacts.
For this purpose, models/source code of a software system are transformed into a joint
instance of an ontology that abstracts from specific meta models/languages1. Architec-
tural constraints can be specified by a software architect as first-order logic expressions
over this ontology.

ArCh is able to deal with user-defined architectural meta models and user-specific
architectural constraints, given a transformation into the applied ontology, and speci-
fications of the constraints as annotations complementing the meta model. The archi-
tectural model used in this paper—to which ArCh is not restricted— is based on very

1 Currently, transformations for Java, UML, and several domain-specific architectures are
available.

Recommending Refactorings to Re-establish Architectural Consistency 393

IsAllowedToUse

Module Package

@ArChRule {
constraint = "(illegalDependencies ?this ?trgModule ?src ?trg)"
@Repair {
name = "Move source class."
pre = "(and (isAllowedToUse ?m ?trgModule)(mapsTpPkg ?m ?p))"
action =
"(retract (inPackage ?src ?q))
(assert (inPackage ?src ?p))
..."
ranking = "(vfanio ?src)}"
@Repair {
name = "Move target class."
..." }

-mapsToPkg

-src -trg

Fig. 1. Meta Model for Architectural Modules and Annotation for ArCh

simple module and dependency concepts captured in the meta model depicted in Fig. 1.
Architectures define modules that can be understood as coarse-grained logical units. A
mapping defines how modules are mapped to packages/namespaces of the source code
(mapsToPkg). A relationship between modules indicates that modules may use other
modules (isAllowedToUse). The actual dependencies in the source code must be lo-
cal to packages mapped to the same module, or “run parallel to” the dependencies in
the architecture. The annotation indicates that for each instance of Module the logical
proposition illegalDependencies(...) will be checked, which captures this constraint on
dependencies and returns every tuple of source code elements violating it. The specifi-
cation of this expression is omitted for the sake of brevity and can be found in [5].

4.2 Defining Repair Actions

In order to define what should be done if violations of architectural constraints are
found, the annotation of architectural meta model elements can contain Repair sections.
In Fig. 1, the annotation for Module contains two Repair sections2. Each repair section
consists of a precondition part and an action part. The precondition expresses (in terms
of the available relationships of the ontology used in ArCh) which condition has to hold
for the action to be applicable. For example, the upper precondition in Fig. 1 describes
that for the following action, we are only interested in modules ?m and corresponding
packages ?p that are allowed to access ?trgModule, which restricts the corresponding
candidate set of packages for the “move class” refactoring.

The corresponding action part describes the refactoring as a sequence of operations
on ArCh’s knowledge representation and reasoning system. The command retract re-
moves a fact from the knowledge base while assert adds a fact. Our repair action con-
sists simply of moving a class to a different package by updating the package the class
is contained in. We also allow post-processing steps after refactorings, e.g. to execute
renaming of classes to avoid name conflicts if there exists a class in the target package
with the same name as the moved one. We omit the details of this renaming for the sake
of brevity.

2 We depict only the first in detail, the second one is specified analogously.

394 S. Herold and M. Mair

Fig. 2. High-level pseudo-code for recommendation algorithm

Input:
AV := Set<Architecture Violation>, S := Software system (architecture ∪ implementation)
RS := Set<Refactoring Operation>

1: procedure search(S, AV, RS)
2: List<Refactoring Operation> applicableRefactorings := getApplicableRefactorings(AV)
3: sortByRanking(applicableRefactorings)
4: for (refactoring : applicableRefactoring) do
5: System S’ := execute(S, refactoring)
6: Set<Architecture Violation> AV’ := detectArchViolations(S’)
7: if (|AV ′| < |AV |) then
8: RS := append(RS, refactoring)
9: search(S’, AV’, RS)

10: break
11: end if
12: end for
13: end procedure
Output:

RS := Recommended set of refactoring operations

4.3 An Algorithm for Recommending Sets of Repairs

As outlined in Sec. 2, the search space for the problem of finding sets of repair actions is
very broad. Meta-heuristic search algorithms hence seem to be an appropriate solution
to this problem. In the given scenario, the goal of such an algorithm is to minimize the
number of architectural violations with as few refactoring steps as possible for a given
system and given set of available repair actions.

Due to the characteristic of a heuristic search, it is not possible to guarantee an over-
all optimal output—fewest refactoring steps to minimize the number of violations—and
hence the best set of refactoring operations. However, such algorithms often produce
sufficiently good solutions for practical problems in reasonable time. The proposed
algorithm is a variant of the first-ascent hill-climbing search algorithm [11]. Starting
at position x0, this algorithm tries to minimize/maximize a function f (x) by comput-
ing the function for elements in the neighbourhood of x. If it finds an element y with
f (y) < f (x) or f (y) > f (x), respectively, it repeats the search for y. It terminates, if no
such y is found. In our case, the starting position is a software system (software archi-
tecture and implementation). The function to minimize is the number of violations. The
neighbourhood of a position (a software system) consists of all software systems that
could result from executing an applicable refactoring to one of the violations.

The high-level pseudo-code in Fig. 2 describes the search algorithm. The input pa-
rameters are the system description in form of the intended architecture and the given
implementation, a set of architecture violations AV , and a set of refactoring operations
RS which is initialized with the empty set and will contain the recommended sequence
after the algorithm has terminated.

Recommending Refactorings to Re-establish Architectural Consistency 395

The method “getApplicableRefactorings” in line 2 computes all applicable refactor-
ing operations for the architecture violations AV specified by the annotations described
in Sec. 4.2. The applicable refactorings are ranked; in contrast to a “pure” first-ascent
hill-climbing algorithm, we do not randomly select an element from the neighborhood.
The ranking function is declared in the annotation (s. Fig. 1). The movement of a class
into a different module should be ranked higher, the more likely that class is at a wrong
place. We define3

v f anio(c) :=
1
2

(
IncomingViolations(c)

IncomingDeps(c)
+

OutgoingViolations(c)
OutgoingDeps(c)

)

It holds that 0 ≤ v f anio(c) ≤ 1. Informally spoken, the value of this metric for a
classifier is great, if the ratio of architecture violating dependencies is high for the class.
The applicable refactorings are primarily ranked by their specific ranking function and
secondarily by the total number a refactoring has been computed as possible solution to
any violation.

Given this ranking, the algorithm executes a repair action virtually (line 5). If it
resolves more violations than it raises, the repair action is added to the recommended
set of repair actions, and the algorithm is called recursively for the (virtually) modified
system. The algorithm terminates if there are no more violations or no more improving
repairs.

5 Experimental Results

The presented algorithm has been tested by applying it in experiments with synthetic
software systems since it is difficult to get access to a representative group of eroded
real-life systems for which both intended architecture and implementation are accessi-
ble. However, the investigated kind of architecture is motivated by industrial practice;
we hence think that the experiments are generalizable.

For the experiments, random realizations of an architecture consisting of give mod-
ules were generated. The allowed usage relationships ordered modules hierarchically
into a layering, allowing accesses only from upper modules to lower modules. A set
of 1,000 classifier was generated and inserted into the packages following a uniform
distribution. After that, 5,000 usage dependencies were generated between classifiers
in a way that was architecturally consistent. After that, classes were moved to different
modules with a certain probability to simulate erosion; different degrees of erosion were
simulated by varying this probability. Among other values, we recorded for each run of
the experiment (a) the relative size of the recommended set of refactorings compared
with number of initial classifier movements introducing violations, and (b) the num-
ber of architecture consistency checks executed during search. We compared the values
for the proposed algorithm with those measured for a simple first-ascent hill-climbing
search.

The results over five test runs showed that both algorithms are able in nearly every
test run to recommend a set of refactorings that would resolve all dependency violations.

3 More precisely: if there are no incoming/outgoing dependencies for a class, the corresponding
fraction is replaced by 0.

396 S. Herold and M. Mair

The proposed algorithm, however, misplaces classifiers in less cases to modules differ-
ent from the original system structure. Moreover, the sequences generated by the pro-
posed algorithm are significantly shorter than the sequences computed by first-ascent
hill-climbing. Their relative lengths are on average 107.7% for the proposed algorithm
vs. 153.7% for first-ascent hill climbing. These results let us assume that the violation
fan-in fan-out metric used to rank possible refactorings leads to a significant improve-
ment for the selection of constructive refactorings.

The most striking result is the significantly outperforming runtime behaviour of the
proposed algorithm. The function that is minimized by the algorithms, the number of vi-
olations, is computationally complex since it is basically first-order logic model check-
ing. Nearly the complete runtime of the search algorithm is spent checking architec-
ture conformance after virtually executed refactorings. In our experiments, each single
check took about 200ms. The proposed algorithm outperforms first-ascent hil-climbing
by about factor 7–10.

One threat to validity of the experiments is the question whether they are valid rep-
resentatives of real-life, eroded systems. In the experiments, erosion was created by
moving classifiers to different modules, such that it is quite logical to resolve violations
of dependency constraints by moving classifiers back to a valid position.

We tested the algorithm also for the open-source text editor jEdit for which a layered
structure was identified in [9]. 325 dependency violations were identified and a set of
refactorings eliminating ca. 70% was recommended. Reason for the lower results are
the causes of violations that could not (or should not) be removed by moving classi-
fiers, such as cyclic dependencies, callbacks, etc. This example, however, also shows
that there is a need for a flexible approach that can be extended for new violations and
refactorings; in our immediate future work, we plan to define more heterogeneous sets
of repairs and to evaluate the proposed algorithm again. Furthermore, it has to be in-
vestigated how the approach performs when different kinds of violations have to be
repaired; this case has not been considered by the experiments yet.

Finally, the consideration of the human effort leads to a discussion of the prag-
matics of the proposed approach. The costs of maintaining the additional information,
i.e., specification of architectural rules and of actions resolving violations, which con-
stitute additional artefacts, must not eliminate the benefits of preserving architecture
consistency.

6 Conclusion

This article describes a new approach that aims at repairing software architecture ero-
sion by recommending refactorings to resolve architecture violations. Most of the ap-
proaches of the state of the art focus on a small subset of erosion cases. In contrast
to these approaches, we combine a very general and expressive consistency checking
technique with a simple meta-heuristic search algorithm to compute efficient refactoring
sets. We show in experiments for a limited set of constraints and available refactorings
that the proposed algorithm performs well.

The results, however, are preliminary since the very expressive consistency checking
technique to avoid architecture erosion is applied to only a single aspect of architec-
ture erosion, namely dependency violations. In the immediate future, we will apply it

Recommending Refactorings to Re-establish Architectural Consistency 397

to more complex architectures with heterogeneous sets of constraints and more possi-
bilities to refactor a system back to architectural consistency again. Nevertheless, the
results are promising steps towards an extensible framework providing effective means
for reversing architecture erosion and re-establishing consistency.

Acknowledgement. This work was supported, in part, by Science Foundation
Ireland grant 12/IP/1351 to Lero - The Irish Software Engineering Research Centre
(www.lero.ie).

References

1. Dietrich, J., McCartin, J., Tempero, E., Shah, S.M.A.: On the existence of high-impact
refactoring opportunities in programs. In: Australasian Computer Science Conf., vol. 122,
pp. 37–48. ACS (2012)

2. Eden, A., Hirshfeld, Y., Kazman, R.: Abstraction classes in software design. IEE Proc. -
Softw. 153(4), 163–182 (2006)

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)
4. van Gurp, J., Bosch, J.: Design erosion: Problems and causes. J. Syst. Softw. 61(2), 105–119

(2002)
5. Herold, S.: Architectural Compliance in Component-Based Systems. Ph.D. thesis, Clausthal

University of Technology (2011)
6. Herold, S., Rausch, A.: Complementing model-driven development for the detection of soft-

ware architecture erosion. In: 5th International Workshop on Modeling in Software Engi-
neering (MiSE) at ICSE 2013, pp. 24–30 (2013)

7. Lindvall, M., Muthig, D.: Bridging the software architecture gap. IEEE Computer 41, 98–101
(2008)

8. Mair, M., Herold, S.: Towards extensive software architecture erosion repairs. In: Drira, K.
(ed.) ECSA 2013. LNCS, vol. 7957, pp. 299–306. Springer, Heidelberg (2013)

9. Patel, S., Dandawate, Y., Kuriakose, J.: Architecture recovery as first step in system appreci-
ation. In: 2nd Workshop on Empirical Studies in Reverse Engineering (WESRE) at the 13th
Working Conference on Reverse Engineering, WCRE 2006 (2006)

10. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT
Softw. Eng. Notes 17, 40–52 (1992)

11. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2003)
12. Sarkar, S., Ramachandran, S., Kumar, G.S., Iyengar, M.K., Rangarajan, K., Sivagnanam, S.:

Modularization of a large-scale business application: A case study. IEEE Softw. 26(2), 28–35
(2009)

13. Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings for improv-
ing the class structure of object-oriented systems. In: Proc. 8th Conf. on Genetic and Evolu-
tionary Computation, pp. 1909–1916. ACM (2006)

14. Shah, S.M.A., Dietrich, J., McCartin, C.: Making smart moves to untangle programs. In:
Proc. 16th Europ. Conf. on Software Maintenance and Reengineering, pp. 359–364. IEEE
(2012)

15. Terra, R., Valente, M.T., Czarnecki, K., da Silva Bigonha, R.: Recommending refactorings to
reverse software architecture erosion. In: Proc. 16th Europ. Conf. on Software Maintenance
and Reengineering, pp. 335–340. IEEE (2012)

A Consistency Framework for Dynamic Reconfiguration
in AO-Middleware Architectures

Bholanathsingh Surajbali1, Paul Grace2, and Geoff Coulson3

1 Smart Research Development Centre, CAS Software AG, Karlsruhe, Germany
b.surajbali@cas.de

2 IT Innovation, University of Southampton, Southampton, UK
pjp@it-innovation.soton.ac.uk

3 School of Computing and Communication, Lancaster University, Lancaster, UK
geoff@comp.lancs.ac.uk

Abstract. Aspect-oriented (AO) middleware is a promising technology for the
realisation of dynamic reconfiguration in distributed systems. Similar to other
dynamic reconfiguration approaches, AO-middleware based reconfiguration re-
quires that the consistency of the system is maintained across reconfigurations.
AO middleware based reconfiguration is an ongoing research topic and several
consistency approaches have been proposed. However, most of these approaches
tend to be targeted at specific narrow contexts, whereas for heterogeneous dis-
tributed systems it is crucial to cover a wide range of operating conditions. In
this paper we address this problem by exploring a flexible, framework-based
consistency management approach that cover a wide range of operating condi-
tions ensuring distributed dynamic reconfiguration in a consistent manner for
AO-middleware architectures.

1 Introduction

A fundamental challenge for distributed systems is their need to support dynamic re-
configuration in order to maintain optimal levels of service in diverse and changing en-
vironments. In response to this challenge, aspect-oriented AO-middleware [1], [2], [3],
[4] has recently emerged as a suitable architecture to build reconfigurable distributed
systems. The core concept of AO-middleware is that of an aspect: a module that deals
with one specific concern and can be changed independently of other modules. Aspects
are made up of individual code elements that implement the concern (advices) which
are deployed at multiple positions in a system (join points).

Dynamic reconfiguration of distributed systems requires assurances that the recon-
figuration does not leave the system in an inconsistent state that can potentially lead to
incorrect execution or even complete system failure. In AO-middleware environments
reconfiguration inconsistencies arise from a range of characteristic sources - for exam-
ple, if an encryption mechanism is added to the source of a communication channel, a
corresponding decryption mechanism must be added to the sink of the channel; a given
system must be reconfigured transactionally such that a given change is applied either
to all of a specified set of targets, or to none; or a given system must be reconfigured
such that it must not expose more security vulnerabilities than it was exposed to ini-
tially. In general, avoiding these sources of inconsistency is a difficult task due to the

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 398–405, 2014.
c© Springer International Publishing Switzerland 2014

A Consistency Framework for Dynamic Reconfiguration 399

diversity of distributed applications (e.g. centralised/decentralised, static/mobile, small
scale/large scale etc) and also because of diverse application-specific factors (e.g. vary-
ing dependability requirements, or varying trade-offs between consistency and scalabil-
ity). Relying on the application developer to ensure the consistency of the system is not
feasible under such heterogeneous conditions. Moreover, a one-size-fits-all approach to
consistency management is not feasible either. Instead, multiple consistency strategies
should be supported within a framework-based approach so that appropriate strategies
can be applied to each set of arising circumstances.

This paper therefore focuses on this latter perspective: that of identifying and mit-
igating the numerous incidental threats that can lead to inconsistent reconfigurations
in AO-middleware systems. To address this perspective we present a novel distributed
consistency framework, named COF for AO middleware environments that maximises
the probability of consistent dynamic reconfiguration in the face of incidental factors. A
key contribution is our approach itself is highly configurable and reconfigurable, as the
frameworks mechanisms for detecting and repairing threats are themselves composed
of dynamically woven aspects.

The rest of the paper is organised as follows. Section 2 presents, a threat taxonomy
of the various threats to consistency to AO-middleware architectures prone. Then, in
Section 3, we describe the COF framework, followed by Section 4 evaluating COF
performance overhead. Finally, Section 5 discusses related work and we offer our con-
clusions in Section 6.

2 Threat Taxonomy

In this section, we present a list of threats which may jeopardise the consistency of a crit-
ical distributed system due to dynamic reconfigurations. To illustrate the “big picture”
of our approach we present Fig.1 a generalised system model of an AO-middleware
platform; this illustrates one AO-middleware instance for simplicity but the model is
repeated across nodes in the distributed system. The model consists of five core entities:
(i) the reconfiguration agent representing the entity initiating reconfiguration requests;
(ii) a configurator, which acts on the reconfiguration request; (iii) an AO-middleware
platform providing the necessary abstraction to support the composition and reconfig-
uration of distributed aspects to underpin the distributed application services; (iv) a set
of infrastructure servers providing a set of infrastructure services to the system, such
as hosting the system repositories (containing aspect software) and (v) the communi-
cation service providing exchange of messages and events among the different address
spaces (referred as nodes) in the distributed environment. Also within the model, we
identify a set of core join points (numbered 1 to 5 in Fig.1) at which aspects can be
woven within a given instance of the AO-middleware deployed at each node. Hence,
these are the points where the consistency framework solutions (in the form of threat
aspects) are deployed to ensure consistency is achieved.

Compositional Threats. These relate to conflicting dependencies of reconfiguration
resulting in negative interactions between system entities. For instance, some aspects
are inherently dependent on each other such as a decryption aspect is dependent on the
corresponding encryption aspect. Therefore, the order in which aspects are woven is

400 B. Surajbali, P. Grace, and G. Coulson

Fig. 1. Generalised model for AO-middleware platforms

crucial: e.g., encryption must be put in place before its associated decryption. Further,
“remote aspects” [1] which are used by several distributed client nodes can be a source
of inconsistency; for example, if a cache implemented as a remote aspect is removed
without the consent or even the awareness of its client nodes, errors can arise when
clients attempt to communicate with the cache. Finally, semantic conflicts can occur
due to incompatibilities of the reconfigured aspect with the rest of the system as may
arise in the deployment of logging and privacy aspects [10]. Moreover, the composi-
tion order in which aspects are woven can also affect their interactions, for example, if
a cache advice is executed before an authentication advice, clients may be able to get
access to resources without first authenticating themselves.
Operational Threats. The inherently unstable characteristics of the networks and nodes
employed in the scenario increase the chances that a reconfiguration will be compro-
mised. For example, application nodes may fail to apply a requested reconfiguration if:
i) the node is overloaded or has crashed; ii) the node’s local policy forbids it to make the
requested change; iii) aspects may still be performing computations when an attempt
is made to remove or recompose them. Such factors can clearly lead to parts of the
intended reconfiguration not being carried out, and consequent inconsistency. Further,
aspects to be reconfigured into the system are typically stored in infrastructure service
repositories which may get congested with requests, or themselves crash, meaning that
aspects may not be available to be deployed in some cases or at some times. Addi-
tionally, different repository instances may have different versions of the aspects: e.g.
different versions of the encryption aspects may be produced over time, so that differ-
ent nodes configure different versions and be inconsistent with each other. Finally, if
reconfiguration-related messages are lost, re-ordered, duplicated or delayed, the consis-
tency of the reconfiguration can be compromised. For example, a fragmentation aspect
may be deployed but not the corresponding reassembly aspect.
User Threats. These refer to threats introduced to the AO-middleware system model by
the reconfiguration agent; this can be the developer/administrator, or software runtime
code initiated by some authority manager (e.g. in self-managed systems). For example,
if a reconfiguration request is not properly checked, it may proceed while containing
errors (for example wrongly formed declarative reconfiguration specifications) which
may lead to incorrect actions and system inconsistency when the reconfiguration is
applied. Similarly, a reconfiguration request may be unauthorised or reconfiguration

A Consistency Framework for Dynamic Reconfiguration 401

Fig. 2. Consistency Framework (COF)

messages may be spoofed by malicious nodes in an attempt to compromise consis-
tency. In addition, reconfiguration requests may arise simultaneously in the system so
that reconfiguration-related messages relating to distinct requests may be interleaved
and potentially received in different orders at different nodes. For example, one request
may ask to replace the fragmentation aspect with a different algorithm, while another
asks for it to be removed. There will clearly be different outcomes depending on the
execution order of these two requests and furthermore the outcomes might be different
at different nodes.

3 Consistency Framework (COF)

The consistency framework (COF) as shown in Fig.2 addresses the reconfiguration
threats defined in the threat taxonomy. Importantly, COF defines a canonical set of
threat aspects that mitigate the threats found in the taxonomy, and an associated set of
join point strategies to guide the application of the threat aspects within diverse AO-
middleware implementations.

3.1 Consistency Configurator

The Consistency Configurator acts as a unit of autonomy making decisions about when
and how to perform consistent reconfiguration. The Consistency Configurator is con-
nected to the Remedy Action repository providing appropriate remedy actions to the
Consistency Configurator for each reconfiguration. The Remedy Action uses a “condi-
tion action” approach that evaluates the reconfiguration request and instructs the Consis-
tency Configurator to deploy appropriate threat aspects using the three main consistency
engines. The consistency engines each evaluate the corresponding join points if they al-
ready have the required threat aspects. If the join points are present, an acknowledgement
is returned to the Consistency Configurator, otherwise threat aspects are loaded from the
Threat Aspect Repository and deployed at the defined join points.

402 B. Surajbali, P. Grace, and G. Coulson

On receiving a reconfiguration request with consistency threat aspects, the Consis-
tency Configurator checks the aspect threat specification, associated with the reconfig-
uration script with the Remedy Action. The list of aspects required to be deployed for
the reconfiguration is returned to the Consistency Configurator, which then sends to
each consistency engine the list of threat aspects required at the join points. Each of
the consistency engines then checks using the Aspect Repository if the threat aspect is
present at the AO-middleware platform join point. If the threat aspect is present, the
consistency engine returns an acknowledgement back to the Consistency Configurator
for the reconfiguration to proceed. If no threat aspect is woven at the join point, then
the consistency engines requests the instantiation of the threat aspect from the Threat
Repository. The threat aspect instances, as well as the join point where the threat aspect
needs to be woven are sent to the AO-middleware platform weaver. In case, a threat
aspect is already woven and needs to be replaced, the Consistency Configurator first
ensures that the reconfigured threat aspect is not performing any computation.

3.2 Compositional Consistency Engine

The Compositional Consistency Engine (CCE) addresses compositional threats in AO-
middleware architectures by encapsulating and deploying:

– a coordination protocol such as Necoman protocol [5] and a transaction protocol
encapsulated as an aspect and woven as a “before” advice at the top of the commu-
nications stack at join points 4 and 5 to address dependency inconsistencies.

– a caretaker aspect that proxies the aspect being reconfigured at join point 2 to
address unsynchronised unbinding of distributed aspects; such that on receiving a
message from a client the caretaker instructs the client that the aspect has been
removed.

– semantic reasoning and resolution engine (SRE) [6] to query and resolve possible
sources of inconsistency at join points 1 and 4 to detect semantic conflicts from
incoming reconfiguration requests (from the reconfiguration agent) or from recon-
figuration requests sent from the network.

– the Resolving Cyclic Dependencies Engine (ReCycle) [7] to detect cyclic inconsis-
tencies from incoming reconfiguration requests from the reconfiguration agent or
from incoming requests from the network by encapsulating and weaving ReCycle
as aspect at join points 1 and 4.

3.3 Operating Environment Consistency Engine

The operating environment consistency engine component addresses the various dis-
tributed operating environment reconfiguration threats by encapsulating and deploying:

– a transaction aspect at the communication interface (join point 5) to detect local
node disruptions and provide consensual decision making on what to do when these
occur (e.g. accept the partial failure or roll back).

– replication [8] and load balancing strategies [9] aspects at the interface to the in-
frastructure services (join point 3) to detectinfrastructure service failures.

– a reliability threat aspect at join points 4 and 5 to create a reliable communication
service to handle communication failures.

A Consistency Framework for Dynamic Reconfiguration 403

3.4 User Consistency Engine

The user consistency engine component addresses the various user defined reconfigu-
ration threats by encapsulating and deploying:

– a reconfiguration validator aspect to validate the reconfiguration script against poli-
cies to ascertain the correctness of the reconfiguration operation at join point 1 to
resolve badly formed requests.

– an authentication aspect as “before” advice at the AO-middleware platform’s com-
munication interface at join points 4 and 5 to address unauthorised reconfigura-
tions. This ensures only authentic users can adapt the system. Furthermore, in an
un-trusted environment, additional encryption and decryption aspects can be wo-
ven at the communication interfaces (i.e. join point 4 and 5 respectively) of the
sender and receiver (e.g. public or private cryptography algorithms can be used).

– a distributed concurrency aspect at join point 1 so that each reconfiguration re-
quest is isolated within a critical section addressing simultaneous reconfigurations
inconsistencies.

4 Performance of COF

We now assess the performance characteristics of COF in two AO-middleware plat-
forms we have considered (i.e. AO-OpenCom [4], and the JBoss AOP version of DyReS
[10]). For this we use an experimental setup based consisting of a small network of four
standalone workstations employed as shown in Fig.3a: a 1.8 GHz Core Duo 2 PC with
3GB RAM (node A); a 3.4 GHz Pentium IV PC with 1GB of RAM (node B); and a
2.8GHz Pentium IV PC with 1 GB of RAM (node C); a 1.33 GHz Core Duo 2 laptop
with 2GB of RAM (node D). All of these are connected via a 100Mbps local area net-
work. Each evaluation machine was installed with the AO-OpenCom and DyReS frame-
work which was executed on a Java 1.7 virtual machine (VM). Based on this setup, the
different threat aspect are represented in Fig.3b and the reconfiguration we perform is
to dynamically weave a symmetric AES [11] encryption/decryption aspect across each
of the nodes. The overhead results are shown in Table 1. It should be pointed that we do
not claim that these results are in any sense definitive. Rather, they are indicative of the
order of magnitude of overhead to be expected of COF deployments. In particular, the
numbers are specific to our implementations.

Table 1. Reconfiguration of COF with AO-OpenCom and DyReS

Overhead Using COF (ms) Steady State Latency Time (ms)
AO-OpenCom DyRes AO-OpenCom DyRes

Without COF 1994 5311 1724 5852
With COF 2995 7241 1724 5860

We can see that the base time to perform the reconfiguration without COF varies con-
siderably across the two platforms: AO-OpenCom is fastest, with DyReS taking 2.66
times longer. The longer time taken by DyReS over AO-OpenCom is attributed mainly
to the former’s use of the NeCoMan coordination protocol [12], which seems to incur

404 B. Surajbali, P. Grace, and G. Coulson

Fig. 3. Experimental setup to evaluate COF

a high degree of inter-node chattiness. In terms of the COF-induced overheads, AO-
OpenCom and DyReS respectively take 1.25 and 1.36 times longer than their respective
without-COF baselines, indicating that the overheads of COF are stable across all two
implementations. Furthermore, the fact that the with-COF case for AO-OpenCom takes
less time than DyReS indicates that COF overheads seem to be well within acceptable
ranges.

5 Discussion and Related Work

Threat aspects are not completely orthogonal - in particular, the order in which they are
composed is important, and executing aspects at some common join point in a “wrong”
order could lead to problems (e.g. situations in which a message needing to be processed
by a particular aspect has already been consumed by another). This ordering issue is
particularly important for join points at the top of the communication stack (join point
4, 5) at which point numerous aspects are woven; for example, where both the consensus
and reliability threat aspects are woven, the reliability aspect should come first to ensure
that the consensus protocol uses a reliable communications service. In general, COF
mandates a particular order for the weaving of the threat aspects and enforces this order
using attributes attached to each aspect.

Few AO middleware platforms have addressed the challenges of performing consis-
tent dynamic reconfiguration. DyMac [1], FAC [13] and CAM/DAOP [2] are compo-
nent and aspect-based middleware frameworks that take a more principled approach to
distribution by offering distributed aspects. They both support distributed aspect com-
position but no support for consistency and dynamic reconfiguration. Damon [3] is
a distributed AO-middleware offering dynamic reconfiguration with remote pointcut
and remote advice capabilities similar to AO-OpenCom and DyMac. However, the ap-
proach does not provide any consistency mechanisms for use during reconfiguration.
Both DJasCo [14] and ReflexD [15] use a consistency protocol to ensure that when-
ever an aspect is woven at a specific host, mirrors are also woven at other involved
hosts. However, they do not consider any other consistency threats as discussed in the
threat taxonomy. Lasagne [2] offers semantic consistency support to prevent dangerous
combinations of aspects, and offers atomic weaving of aspects. It also checks for unau-
thorised clients requesting aspect composition. However, it does not offer solutions for
operating-environment threats and several other threats.

A Consistency Framework for Dynamic Reconfiguration 405

6 Conclusions and Future Work

In this paper we have presented a framework-based approach to consistency main-
tenance over dynamic reconfiguration operations for AO-middleware platforms. We
believe that our threat taxonomy is representative of the type of threats that should be
considered by all dynamic AOP platforms. Importantly, COF applies an aspect-oriented
approach to consistency management, so the solutions it identifies are described in
terms of “threat aspects” and can be applied using the native compositional model of the
target AO-middleware platform. Furthermore, the evaluation result show COF: i) abil-
ity to handle reconfiguration threats; ii) flexibility of the framework as applied to two
AO-middleware platforms; and iii) overheads are acceptable. In future we plan to in-
vestigate embedding our approach in a self-managing, autonomic environment in which
reconfiguration requests are initiated by the platform itself as opposed to the user.

References

1. Lagaisse, B., Joosen, W.: True and transparent distributed composition of aspect-
components. In: van Steen, M., Henning, M. (eds.) Middleware 2006. LNCS, vol. 4290,
pp. 42–61. Springer, Heidelberg (2006)

2. Loughran, N., Parlavantzas, N., Colyer, A., Pinto, M., Sánchez, P., Webster, M.: Survey of
aspect-oriented middleware (2005)

3. Mondejar, R., Garcia, P., Pairot, C., Urso, P., Molli, P.: Designing a distributed aop runtime
composition model. In: Proc. of ACM Symposium on Applied Computing. ACM (2009)

4. Surajbali, B., Grace, P., Coulson, G.: Ao-opencom: An ao-middleware architecture support-
ing flexible dynamic reconfiguration. In: 17th ACM Sigsoft Conference on Component-
Based Software Engineering. ACM (2014)

5. Janssens, N., Joosen, W., Verbaeten, P.: Necoman: middleware for safe distributed-service
adaptation in programmable networks. Distributed Systems Online (2005)

6. Surajbali, B., Grace, P., Coulson, G.: A semantic composition model to preserve (re) config-
uration consistency in aspect oriented middleware. In: Proceedings of the 8th International
Workshop on Adaptive and Reflective Middleware. ACM (2009)

7. Surajbali, B., Grace, P., Coulson, G.: Recycle: Resolving cyclic dependencies in dynamically
reconfigurable aspect oriented middleware (2010)

8. Beloued, A., Gilliot, J.M., Segarra, M.T., André, F.: Dynamic data replication and consis-
tency in mobile environments. In: Proc. Doctoral Symposium on Middleware. ACM (2005)

9. Minson, R., Theodoropoulos, G.: Adaptive support of range queries via push-pull algorithms.
In: Principles of Advanced and Distributed Simulation. IEEE (2007)

10. Truyen, E., Janssens, N., Sanen, F., Joosen, W.: Support for distributed adaptations in aspect-
oriented middleware. In: Proc. of the 7th International Conference on AOSD. ACM (2008)

11. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M.: Report on the development
of the advanced encryption standard (aes). Technical report, DTIC Document (2000)

12. Truyen, E., Joosen, W.: Run-time and atomic weaving of distributed aspects. In:
Rashid, A., Akşit, M. (eds.) Transactions on Aspect-Oriented Software Development II.
LNCS, vol. 4242, pp. 147–181. Springer, Heidelberg (2006)

13. Pessemier, N., Seinturier, L., Duchien, L., et al.: A component-based and aspect-oriented
model for software evolution. Journal of Computer Applications in Technology (2008)

14. Navarro, L., Benavides, D., Südholt, M., et al.: Explicitly distributed aop using awed. In:
Proc. 5th International Conference on AOSD. ACM (2006)

15. Tanter, É., Toledo, R.: A versatile kernel for distributed AOP. In: Eliassen, F., Montresor, A.
(eds.) DAIS 2006. LNCS, vol. 4025, pp. 316–331. Springer, Heidelberg (2006)

Author Index

Abukwaik, Hadil 308
Aktemur, Barış 300
Angelov, Samuil 90
Anvaari, Mohsen 41
Appel, Stefan 114

Batista, Thais 98, 130
Becker, Steffen 210
Bennaceur, Amel 283
Berardinelli, Luca 324
Biffl, Stefan 106
Brinkkemper, Sjaak 202
Buchgeher, Georg 186
Buchmann, Alejandro P. 114, 267
Bures, Tomas 250

Caracciolo, Andrea 374
Cavalcante, Everton 130
Chiprianov, Vanea 357
Coulson, Geoff 398

DeAntoni, Julien 146
Di Marco, Antinisca 324
Di Noia, Tommaso 82
Di Sciascio, Eugenio 82

Falkner, Katrina 357
Felizardo, Katia Romero 218
Fowley, Frank 226
Freudenreich, Tobias 114
Frischbier, Sebastian 114
Frömmgen, Alexander 267
Fuentes, Lidia 340

Gerdes, Sebastian 50
Gerostathopoulos, Ilias 250
Grace, Paul 398
Groher, Iris 1
Guéhéneuc, Yann-Gaël 58
Gürbüz, Havva Gülay 365

Herold, Sebastian 390
Hilliard, Rich 90
Hnetynka, Petr 250
Holtmann, Jörg 146

Horcas, Jose-Miguel 340

Issarny, Valérie 283

Jamróz, Krzysztof 170
Jansen, Slinger 202

Kabbedijk, Jaap 202
Keznikl, Jaroslav 250
Kit, Michal 250
Koch, Thorsten 146
Kriechbaum, Thomas 186

Lago, Patricia 154
Lehn, Max 267
Lehnert, Steffen 50
Leite, Jair 98
Leroux, Elena 218
Lewis, Grace A. 154
Liang, Peng 74
Lungu, Mircea Filip 374

Machado, Carlos Alberto 98
Mair, Matthias 390
Moha, Naouel 58
Mongiello, Marina 82
Moran, Niall 226
Muccini, Henry 17
Musil, Angelika 106
Musil, Juergen 106

Nakagawa, Elisa Yumi 98, 218
Nierstrasz, Oscar 374

Oliveira, Lucas Bueno Ruas 218
Oquendo, Flavio 130, 218
Öztürk, Fatih 300

Pace, Stefano 324
Pahl, Claus 226
Pala Er, Nagehan 365
Palma, Francis 58
Pinto, Mónica 340
Pitulej, Dariusz 170
Plasil, Frantisek 250
Platenius, Marie Christin 210
Pors, Michiel 202

408 Author Index

Procaccianti, Giuseppe 154
Puddy, Gavin 357

Rekha V., Smrithi 17
Riebisch, Matthias 33, 50
Rombach, Dieter 308

Sadou, Salah 234
Sahraoui, Houari A. 234
Sarılı, Erdem 300
Schäfer, Wilhelm 210
Seriai, Abderrahmane 234
Silva, Eduardo 98
Soliman, Mohamed 33
Sözer, Hasan 300

Surajbali, Bholanathsingh 398
Szabo, Claudia 357

Taibi, Davide 308
Tekinerdogan, Bedir 365
Tremblay, Guy 58

Weinreich, Rainer 1, 186
Werewka, Jan 170

Xiong, Huanhuan 226
Xu, Yongrui 74

Zimmermann, Olaf 41

	Preface
	Organization
	Table of Contents
	Architecture Decisions and Knowledge
	A Fresh Look at Codification Approaches for SAKM: A Systematic Literature Review
	1Introduction
	2Research Method
	2.1SAKM Activities
	2.2Research Questions
	2.3Search Strategy
	2.4Study Selection
	2.5Data Extraction and Synthesis

	3Results Analysis
	3.1RQ1: What Are the Main Aims of Approaches for SAKM within the Last 10 Years Showing the Highest Evidence for Different Knowledge Management Activities?
	3.2RQ2: What Are Important Elements of SAKM Models of the Selected Approaches?

	4Threats to Validity
	5Related Work
	6Conclusion
	References

	Suitability of Software Architecture Decision Making Methods for Group Decisions
	1Introduction
	2Background
	2.1Criteria for Evaluating Group Decision Making Methods
	2.2Generic Model of Group Decision Making

	3The Rationale for GDM in SA
	4Evaluation Framework
	5Evaluation of the Various SA Decision-Making Techniques
	6Discussion
	7Related Work
	8Conclusion and Future Work
	References

	Modeling the Interactions between Decisions within Software Architecture Knowledge
	1Introduction
	2Related Work
	3Research Method and Steps
	4Reusable Software Architectural Knowledge Modeling
	4.1Solutions' Interactions within a Reusable Architectural Knowledge
	4.2Reusable Architectural Design Decisions

	5Discussion and Future Work
	6Conclusion
	References

	Semi-automated Design Guidance Enhancer (SADGE):A Framework for Architectural Guidance Development
	1 Introduction
	2 SADGE – Framework for Semi-Automatic ArchitecturalKnowledge Extraction
	2.1 SADGE Framework Development
	2.2 SADGE Framework Operation and Maintenance

	3 Framework Evaluation
	3.1 Evaluation Design (Setup)
	3.2 Evaluation Results
	3.3 Discussion

	4 Related Work
	5 Conclusion and Future Work
	References

	Combining Architectural Design Decisions and Legacy System Evolution
	1Introduction
	2Requirements to Architectural Design Decisions
	2.1Derived Use Cases and Requirements

	3Consolidated Metamodel for Design Decisions
	3.1Consolidating the Decision Model
	3.2Addressing Software Evolution
	3.3Interweaving Traceability Support and Decision Modeling

	4Supporting Decision Making and Comprehension
	5Evaluation Plans - The CoCoME Case Study
	6Related Work
	7Conclusion and Future Work
	References

	Architecture Patterns and Anti-Patterns
	Specification and Detection of SOA Antipatterns in Web Services
	1Introduction
	2Related Work
	3Approach
	3.1Specification of SOA Antipatterns
	3.2Generation of Detection Algorithms
	3.3Underlying Framework

	4Validation
	4.1Hypotheses
	4.2Subjects
	4.3Objects
	4.4Process
	4.5Results
	4.6Details of the Results on 13 Weather Web Services
	4.7Details of the Results on 109 Finance Web services
	4.8Discussion on the Hypotheses
	4.9Threats to Validity

	5Conclusion
	References

	Co-evolving Pattern Synthesis and Class ResponsibilityAssignment in Architectural Synthesis
	1 Introduction
	2 Background
	3 The Problem
	4 Cooperative Coevolution Approach
	4.1 Representation of Individual
	4.2 Fitness Function

	5 Conclusions
	References

	Ontology-Driven Pattern Selection and Matching in Software Design
	1Introduction and Motivation
	2Ontologies and Languages for Reasoning Tasks
	3Problem Statement and Approach
	4Framework Overview and System Evaluation
	5Conclusion and Future Work
	References

	Reference Architectures and Metamodels
	Towards an Improved Stakeholder Managementfor Software Reference Architectures
	1 Introduction
	2 Literature Review
	2.1 Stakeholders in Organization Management
	2.2 Stakeholders in Software Engineering
	2.3 Stakeholders in Reference Architectures

	3 An Approach for RA Stakeholder Analysis
	4 Specifics of RA in Stakeholder Management
	5 Validation and Conclusions
	References

	RA-Ubi: A Reference Architecture for UbiquitousComputing
	1 Introduction
	2 Background and Related Work
	2.1 Ubiquitous Computing
	2.2 Reference Architecture
	2.3 Related Work

	3 RA-Ubi
	4 Final Remarks
	References

	Towards a Coordination-Centric Architecture Metamodel for Social Web Applications
	1Introduction
	2Related Work
	3Research Question and Approach
	4The Stigmergic Information System (SIS) Architecture Metamodel
	5Preliminary Results and Discussion
	6Conclusions and Future Work
	References

	Architecture Description Languages
	Using Policies for Handling Complexity of Event-Driven Architectures
	1Introduction
	2Technical Overview
	2.1Domain Model Framework
	2.2Policy Grammar
	2.3Middleware Architecture
	2.4Detailed Walkthrough

	3Case Study
	3.1Complete Example
	3.2Criteria
	3.3Results

	4Related Work
	5Conclusion
	References

	Architecture-Based Code Generation: From pi-ADL Architecture Descriptions to Implementations in the Go Language
	1Introduction
	2Background
	2.1The pi-ADL Architecture Description Language
	2.2The Go Programming Language

	3Mapping pi-ADL Architectural Descriptions to Implementations in Go
	3.1Correspondences between pi-ADL and Go
	3.2Mapping Process

	4Application
	4.1An Illustrative Example: A Flood Monitoring System
	4.2Discussion

	5Related Work
	6Final Remarks
	References

	Generating EAST-ADL Event Chains from Scenario-Based Requirements Specifications
	1Introduction
	2Foundations
	2.1Modal Sequence Diagrams
	2.2EAST-ADL Event Chains

	3Transformation Approach
	4Related Work
	5Conclusion and Outlook
	References

	Enterprise Architecture, SOA and Cloud Computing
	Architecture Strategies for Cyber-Foraging: Preliminary Results from a Systematic Literature Review
	1Introduction
	2Research Method
	3Analysis of Primary Studies
	3.1Where to Offload
	3.2When to Offload
	3.3What to Offload

	4Observations and Findings from Primary Studies
	5Related Work
	6Conclusions and Next Steps
	References

	Adapting Enterprise Architecture at a SoftwareDevelopment Company and the Resultant Benefits
	1 Introduction
	2 Related Works
	3 Adapting Enterprise Architecture at a Software DevelopmentCompany
	4 Case Study
	4.1 Defining a Motivation Model as a Bridge between the Business and ITSolutions
	4.2 Adapting Architecture Modeling Tools
	4.3 IT Landscape Creation and Mapping to Company Products
	4.4 Building Architecture Capabilities in the Organization
	4.5 Implementation of Standards and Guidelines
	4.6 Applying Architecture Governance in Project, Program and PortfolioManagement
	4.7 Defining the Architect’s Role in Software Project Implementation
	4.8 Managing Risk in IT Solutions Using Architecture Governance

	5 Conclusions
	References

	Service Development and Architecture Management for an Enterprise SOA
	1Introduction
	2Context
	2.1System Overview
	2.2Organizational Structure

	3Service Development and Service Lifecycle
	3.1Technology Stack
	3.2Service Development Process
	3.3Development Practices

	4Architecture Management
	5Lessons Learned, Future Work, and Open (Research) Challenges
	5.1Lessons Learned
	5.2Current & Future Work
	5.3Open (Research) Challenges

	6Conclusion
	References

	MAAM: A Multi-Tenant Architecture Assessment Model
	1Introduction
	2Research Approach
	3Multi-tenant Architectures
	4MTA Comparison Matrix
	5Discussion and Conclusion
	References

	Integrating Service Matchers into a Service Market Architecture
	1Introduction
	2Service Markets and Matching
	3Requirements for Matcher Integration
	4Integrating a Matcher Based on Architectural Tactics
	5Related Work
	6Conclusions
	References

	Towards a Process to Design Architectures of Service-Oriented Robotic Systems
	1Introduction
	2Defining ArchSORS Process
	2.1Phase RSA-1: Robotic Application Characterization
	2.2Phase RSA-2: Robotic Capabilities Identification
	2.3Phase RSA-3: Robotic Architecture Modeling
	2.4Phase RSA-4: Robotic Architecture Detailing
	2.5Phase RSA-5: Robotic Architecture Evaluation

	3Experimental Evaluation
	4Conclusion and Future Work
	References

	Scalable Architectures for Platform-as-a-Service Clouds:Performance and Cost Analysis
	1 Introduction
	2 Scalability in Cloud Computing
	3 Re-architecting Scalable Architectures for State Management
	4 Experimental Evaluation
	4.1 Experimental Platform
	4.2 Performance Analysis
	4.3 Cost Analysis
	4.4 Discussion

	5 Related Work
	6 Conclusion
	References

	Components and Connectors
	Enactment of Components Extractedfrom an Object-Oriented Application
	1Introduction
	2Approach
	3From Object to Component Call Graph
	3.1Object Call Graph
	3.2Component Call Graph

	4Interface Identification
	4.1Configuration Identification
	4.2Component Constructors

	5Case Study
	5.1Logo Application
	5.2Process and Tools
	5.3Generated Code for Spring

	6Related Work
	6.1Architecture Extraction
	6.2Component Instance Identification

	7Conclusion
	References

	Gossiping Components for Cyber-Physical Systems
	1 Introduction
	2 Motivating Scenario
	2.1 A DEECo-Based Solution
	2.2 Challenges in DEECo-Based Solution

	3 Gossiping in Ensembles
	3.1 Decentralized Evaluation of Ensemble Membership/Knowledge Exchange
	3.2 Asynchronous Knowledge Dissemination via Gossip
	3.3 Bounding the Gossip
	3.4 Gossip-Based Semantics

	4 Implementation
	5 Evaluation
	6 Discussion
	6.1 Key Contributions
	6.2 Related Challenges

	7 Related Work
	8 Conclusions
	References

	A Property Description Framework for Composable Software
	1Introduction
	2Related Work
	3Overview of the Description Model
	4The Property Type System
	5Modeling Language
	6Graphical Notation
	7Feature Models
	7.1Property-as-Feature Transformation
	7.2Component-as-Feature Transformation

	8Choosing the Optimal Composition
	8.1Expressing Utility
	8.2Determining the Optimal Composition

	9Case Study and Evaluation
	9.1Use Cases
	9.2Example
	9.3Performance

	10Discussion and Outlook

	Layered Connectors
	1Introduction
	2Background on Connectors
	3 Formal Specification and Synthesis of Layered Connectors
	3.1Middleware-Layer Connectors
	3.2Bridging the Application and Middleware Layers
	3.3Synthesis of Layered Connectors

	4Layered Connectors in Action: The GMES Case
	5Conclusion and Future Work
	References

	Effort Estimation for Architectural Refactoring to Introduce Module Isolation
	1Introduction
	2Industrial Case Study: DTV/STB Software
	3The Approach
	4Evaluation and Discussion
	5Related Work
	6Conclusion and Future Work
	References

	Quality Attributes
	Interoperability-Related Architectural Problemsand Solutions in Information Systems: A Scoping Study
	1 Introduction
	2 Interoperability Levels - Background
	3 Related Work
	4 Research Methodology
	4.1 Research Questions
	4.2 Data Sources and Search Strategy
	4.3 Inclusion and Exclusion Criteria
	4.4 Data Extraction Strategy
	4.5 Data Analysis

	5 Results
	5.1 Overview
	5.2 Interoperability Architectural Problems and Solutions
	5.3 Evidence on the Quality of the Identified Solutions

	6 Discussion
	7 Limitation of This Study
	8 Conclusion
	A Appendix: Selected Studies
	References

	fUML-Driven Design and Performance Analysisof Software Agents for Wireless Sensor Network
	1Introduction
	2Background on Agilla and fUML
	3The Agilla Modeling Framework
	4Performance Analysis with AMF
	5Discussion
	6Related Work
	7Conclusion
	References

	Runtime Enforcement of Dynamic Security Policies
	1Introduction
	2Our proposal
	3Knowledge
	4Resolving Security Configurations
	5Aspect Generation
	6Aspect Weaver
	7Evaluation
	7.1Qualitatively Results
	7.2Performance overhead of AOP
	7.3Results of the Software Developers Questionnaire
	7.4Discussion

	8Related Work
	9Conclusions and Future Work
	References

	Architectural Support for Model-Driven Performance Prediction of Distributed Real-Time Embedded Systems of Systems
	1Introduction
	2Requirements
	3Software Architecture for Performance Prediction of Systems of Systems
	4Specific Software Architecture for Performance Prediction of DRE Defence Systems of Systems
	4.1Software Architecture for Performance Prediction of DRE Defence Standalone Systems

	5Related Work
	6Conclusion and Perspectives
	References

	Safety Perspective for SupportingArchitectural Design of Safety-Critical Systems
	1 Introduction
	2 Safety Perspective
	3 Case Study
	3.1 Activities for Safety Perspective
	3.2 Architectural Tactics
	3.3 Checklist
	3.4 Applicability to Views

	4 Conclusion
	References

	Architecture Analysis and Verification
	How Do Software Architects Specify and Validate Quality Requirements?
	1Introduction
	2Research Method
	3Learning from Practitioners: A Qualitative Study
	3.1Identified Quality Attributes
	3.2Specifying Quality Requirements
	3.3Validating Quality Requirements

	4Corroborating the Evidence: A Quantitative Study
	5Discussion
	6Threats to Validity
	7Related Work
	8Conclusion
	References

	Recommending Refactorings to Re-establish Architectural Consistency
	1Motivation
	2Problem
	3Related Work
	4Proposed Approach
	4.1Detecting Architectural Violations with ArCh
	4.2Defining Repair Actions
	4.3An Algorithm for Recommending Sets of Repairs

	5Experimental Results
	6Conclusion
	References

	A Consistency Framework for Dynamic Reconfiguration in AO-Middleware Architectures
	1Introduction
	2Threat Taxonomy
	3Consistency Framework (COF)
	3.1Consistency Configurator
	3.2Compositional Consistency Engine
	3.3Operating Environment Consistency Engine
	3.4User Consistency Engine

	4Performance of COF
	5Discussion and Related Work
	6Conclusions and Future Work
	References

	Author Index

