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Abstract. We present a work-stealing algorithm for runtime scheduling
of data-parallel operations in the context of shared-memory architectures
on data sets with highly-irregular workloads that are not known a pri-
ori to the scheduler. This scheduler can parallelize loops and operations
expressible with a parallel reduce or a parallel scan. The scheduler is
based on the work-stealing tree data structure, which allows workers
to decide on the work division in a lock-free, workload-driven manner
and attempts to minimize the amount of communication between them.
A significant effort is given to showing that the algorithm has the least
possible amount of overhead.

We provide an extensive experimental evaluation, comparing the
advantages and shortcomings of different data-parallel schedulers in order
to combine their strengths. We show specific workload distribution pat-
terns appearing in practice for which different schedulers yield subop-
timal speedup, explaining their drawbacks and demonstrating how the
work-stealing tree scheduler overcomes them. We thus justify our design
decisions experimentally, but also provide a theoretical background for
our claims.

1 Introduction

In data-parallel programming models parallelism is not expressed as a set process
interactions but as a sequence of parallel operations on data sets. Programs are
typically composed from high-level data-parallel operations, and are declarative
rather than imperative in nature, which is of particular interest when it comes
to programming the ever more present multicore systems. Solutions to many
computational problems contain elements which can be expressed in terms of
data-parallel operations [12].

We show several examples of data-parallel programs in Fig. 1. These programs
rely heavily on higher-order data-parallel operations such as map, reduce and
filter, which take a function argument – they are parametrized by a mapping
function, a reduction operator or a filtering predicate, respectively. The first exam-
ple in Fig. 1 computes the variance of a set of measurements ms. It starts by com-
puting the mean value using the higher-order operation sum, and then maps each
element of ms into a set of squared distances from the mean value, the sum of which
divided by the number of elements is the variance v. The amount of work executed
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for each measurement value is equal, so we call this workload uniform. This need
not be always so. The second program computes all the prime numbers from 3 until
N by calling a data-parallel filter on the corresponding range. The filter uses
a predicate that checks that no number from 2 to

√
i divides i. The workload is not

uniform nor independent of i and the processors working on the end of the range
need to do more work. This example also demonstrates that data-parallelism can
be nested – the forall can be done in parallel as each element may require a
lot of work. On the other hand, the reduce in the third program that computes
a sum of numbers from 0 to N requires a minimum amount of work for each ele-
ment. A good data-parallel scheduler must be efficient for all the workloads – when
executed with a single processor the reduce in the third program must have the
same running time as the while loop in the fourth program, the data-parallelism
of which is not immediately obvious due to its imperative style.

Fig. 1. Data parallel program examples

It has been a trend in many languages to provide data-parallel bulk oper-
ations on collections [3–5,17,18]. Data-parallel operations are generic as shown
in Fig. 1 – for example, reduce takes a user-provided operator, such as number
addition, string concatenation or matrix multiplication. The computational costs
of these generic parts, and hence the workload distribution, cannot always be
determined statically, so efficient assignment of work to processors often relies on
the runtime scheduling. Scheduling in this case entails dividing the elements into
batches on which the processors work in isolation. Work-stealing [1,7,8,15,20] is
one solution to this problem. In this technique different processors occasionally
steal batches from each other to load balance the work – the goal is that no
processor stays idle for too long.

In this paper we propose and describe a runtime scheduler for data-parallel
operations on shared-memory architectures that uses a variant of work-stealing
to ensure proper load-balancing. The scheduler relies on a novel data struc-
ture with lock-free synchronization operations called the work-stealing tree.
To show that the work-stealing tree scheduler is optimal we focus on evaluat-
ing scheduler performance on uniform workloads with a minimum amount of
computation per element, irregular workloads for which this amount varies and
workloads with a very coarse granularity.

Our algorithm is based on the following assumptions. There are no fast, accu-
rate means to measure elapsed time with sub-microsecond precision, i.e. there is
no way to measure the running time. There is no static or runtime information
about the cost of an operation – when invoking a data-parallel operation we do



Near Optimal Work-Stealing Tree Scheduler 57

not know how much computation each element requires. There are no hardware-
level interrupt handling mechanisms at our disposal – the only way to interrupt
a computation is to have the processor check a condition. We assume OS threads
as parallelism primitives, with no control over the scheduler. We assume that
the available synchronization primitives are monitors and the CAS instruction.
We assume the presence of automatic memory management.

The rest of the paper is organized as follows. Section 2 describes related
work and alternative schedulers we compare against. Section 3 describes the
work-stealing tree scheduler. In Sect. 4 we evaluate the scheduler for different
workloads as well as tune several of its parameters, and in Sect. 5 we conclude.

2 Related Work

Per processor (henceforth, worker) work assignment done statically during com-
pile time or linking, to which we will refer to as static batching, was studied
extensively [13,19]. Static batching cannot correctly predict workload distrib-
utions for any problem, as shown by the second program in Fig. 1. Without
knowing the numbers in the set exactly, batches cannot be statically assigned to
workers in an optimal way – some workers may end up with more work than the
others. Still, although cost analysis is not the focus here, we advocate combining
static analysis with runtime techniques.

To address the need for load balancing at runtime, work can be divided into a
lot of small batches. Only once each worker processes its batch, it requests a new
batch from a centralized queue. We will refer to this as fixed-size batching [14].
In fixed-size batching the workload itself dictates the way how work is assigned
to workers. This is a major difference with respect to static batching. In general,
in the absence of information about the workload distribution, scheduling should
be workload-driven. A natural question arises – what is the ideal size for a batch?
Ideally, a batch should consist of a single element, but the cost of requesting work
from a centralized queue is prohibitively large for that. For example, replacing
the increment i += 1 with an atomic CAS can increase the running time of a
while loop by nearly a magnitude on modern architectures. The batch size has
to be the least number of elements for which the cost of accessing the queue is
amortized by the actual work. There are two issues with this technique. First, it
is not scalable – as the number of workers increases, so does contention on the
work queue (Fig. 6). This requires increasing batch sizes further. Second, as the
granularity approaches the batch size, the work division is not fine-grained and
the speedup is suboptimal (Fig. 8, where size is less than 1024).

Guided self-scheduling [16] solves some granularity issues by dynamically
choosing the batch size based on the number of remaining elements. At any
point, the batch size is Ri/P , where Ri is the number of remaining elements
and P is the number of workers – the granularity becomes finer as there is less
and less work. Note that the first-arriving worker is assigned the largest batch
of work. If this batch contains more work than the rest of the loop due to
irregularity, the speedup will not be linear. This is shown in Figs. 8-20 and 9-35.
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Factoring [10] and trapezoidal self-scheduling [21] improve on guided-self schedul-
ing, but have the same issue with those workload distributions.

One way to overcome the contention issues inherent to the techniques above
is to use several work queues rather than a centralized queue. In this approach
each processor starts with some initial work on its queue and commonly steals
from other queues when it runs out of work – this is known as work-stealing, a
technique applicable to both task- and data-parallelism. One of the first uses of
work-stealing dates to the Cilk language [2,8], in which processors relied on the
fast and slow version of the code to steal stack frames from each other. Recent
developments in the X10 language are based on similar techniques [20]. Work-
stealing typically relies on the use of work-stealing queues [1,7,8,15] and deques
[6], implementations ranging from blocking to lock-free. While in the past data-
parallel collections frameworks relied on using task-parallel schedulers under the
hood [11,17,18], to the best of our knowledge, the tree data structure was not
used for synchronization in work-stealing prior to this work, nor for data-parallel
operation scheduling.

3 Work-Stealing Tree Scheduler

In this section we describe the work-stealing tree data structure and the schedul-
ing algorithm that the workers run. We first briefly discuss the aforementioned
fixed-size batching. We have mentioned that the contention on the centralized
queue is one of it drawbacks. We could replace the centralized queue with a
queue for each worker and use work-stealing. However, this seems overly eager –
we do not want to create as many work queues as there are workers for each
parallel operation, as doing so may outweigh the actually useful work. We should
start with a single queue and create additional ones on-demand. Furthermore,
fixed-size batching seems appropriate for scheduling parallel loops, but what
about the reduce operation? If each worker stores its own intermediate results
separately, then the reduce may not be applicable to non-commutative opera-
tors (e.g. string concatenation). It seems reasonable to have the work-stealing
data-structure store the intermediate results, since it has the division order
information.

With this in mind, we note that a tree seems particularly applicable. When
created it consists merely of a single node – a root representing the operation
and all the elements of the range. The worker invoking the parallel operation can
work on the elements and update its progress by writing to the node it owns.
If it completes before any other worker requests work, then the overhead of the
operation is merely creating the root. Conversely, if another worker arrives, it
can steal some of the work by creating two child nodes, splitting the elements
and continuing work on one of them. This proceeds recursively. Scheduling is
thus workload-driven – nodes are created only when some worker runs out of
work meaning that another worker had too much work. Such a tree can also
store intermediate results in the nodes, serving as a reduction tree.

How can such a tree be used for synchronization and load-balancing? We
assumed that the parallelism primitives are OS threads. We can keep a pool of
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threads [15] that are notified when a parallel operations is invoked – we call these
workers. We first describe the worker algorithm from a high-level perspective.
Each worker starts by calling the tail-recursive run method in Fig. 2. It looks for
a node in the tree that is either not already owned or steals a node which some
other worker works on by calling findWork in line 3. This node is initially a leaf,
but we call it a subtree. The worker works on the subtree by calling descend
in line 5, which calls workOn on the root of the subtree to work on it until it is
either completed or stolen. In the case of a steal, the worker continues work on
one of the children if it can own it in line 11. This is repeated until findWork
returns ⊥ (null), indicating that all the work is completed.

Fig. 2. Work-stealing tree data-types and the scheduling algorithm

In Fig. 2 we also present the work-stealing tree and its basic data-types. We
use the keyword struct to refer to a compound data-type – this can be a Java
class or a C structure. We define two compound data-types. Ptr is a reference to
the tree – it has only a single member child of type Node. Write access to child
has to be atomic and globally visible (in Java, this is ensured with the volatile
keyword). Node contains immutable references to the left and right subtree,
initialized upon instantiation. If these are set to ⊥ we consider the node a leaf.
We initially focus on parallelizing loops over ranges, so we encode the current
state of iteration with three integers. Members start and until are immutable
and denote the initial range – for the root of the tree this is the entire loop
range. Member progress has atomic, globally visible write access. It is initially
set to start and is updated as elements are processed. Finally, the owner field
denotes the worker that is working on the node. It is initially ⊥ and also has
atomic write access. Example trees are shown in Fig. 3.

Before we describe the operations and the motivation behind these data-
types we will define the states work-stealing tree can be in (see Fig. 3), namely
its invariants. This is of particular importance for concurrent data structures
which have non-blocking operations. Work-stealing tree operations are lock-free,
a well-known advantage [9], which comes at the cost of little extra complexity
in this case.

INV1. Whenever a new node reference Ptr p becomes reachable in the tree, it
initially points to a leaf Node n, such that n.owner = ⊥. Field n.progress is
set to n.start and n.until≥n.start. The subtree is in the AVAILABLE state
and its range is 〈n.start,n.until〉.
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INV2. The set of transitions of n.owner is ⊥ → π �= ⊥. No other field of n
can be written until n.owner �= ⊥. After this happens, the subtree is in the
OWNED state.

INV3. The set of transitions of n.progress in the OWNED state is p0 → p1 →
. . . → pk such that n.start = p0 < p1 < . . . < pk < n.until. If a worker π
writes a value from this set of transitions to n.progress, then n.owner = π.

INV4. If the worker n.owner writes the value n.until to n.progress, then that
is the last transition of n.progress. The subtree goes into the COMPLETED
state.

INV5. If a worker ψ overwrites pi, such that n.start ≤ pi < n.until, with
ps = −pi − 1, then ψ �= n.owner. This is the last transition of n.progress and
the subtree goes into the STOLEN state.

INV6. The field p.child can be overwritten only in the STOLEN state, in
which case its transition is n → m, where m is a copy of n with m.left and
m.right being fresh leaves in the AVAILABLE state with ranges rl = 〈x0, x1〉
and rr = 〈x1, x2〉 such that rl ∪ rr = 〈pi, n.until〉. The subtree goes into the
EXPANDED state.

This seemingly complicated set of invariants can be summarized in a straight-
forward way. Upon owning a leaf, that worker processes elements from that leaf’s
range by incrementing the progress field until either it processes all elements or
another worker requests some work by invalidating progress, in which case the
leaf is replaced by a subtree such that the remaining work is divided between
the new leaves.

Now that we have formally defined a valid work-stealing tree, we provide
an implementation of the basic operations (Fig. 4). These operations will be
the building blocks for the scheduling algorithm that balances the workload.
A worker must attempt to acquire ownership of a node before processing its
elements by calling the method tryOwn, which returns true if the claim is suc-
cessful. After reading the owner field in line 14 and establishing the AVAILABLE
state, the worker attempts to atomically push the node into the OWNED state
with the CAS in line 15. This CAS can fail either due to a faster worker claiming
ownership or spuriously – a retry follows in both cases.

Fig. 3. Work-stealing subtree state diagram
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Fig. 4. Basic work-stealing tree operations

A worker that claimed ownership of a node repetitively calls tryAdvance,
which attempts to reserve a batch of size STEP by atomically incrementing the
progress field, eventually bringing the node into the COMPLETED state. If
tryAdvance returns a nonnegative number, the owner is obliged to process that
many elements, whereas a negative number is an indication that the node was
stolen.

A worker searching for work must call trySteal if it finds a node in the
OWNED state. This method returns true if the node was successfully brought
into the EXPANDED state by any worker, or false if the node ends up in the
COMPLETED state. Method trySteal consists of two steps. First, it attempts
to push the node into the STOLEN state with the CAS in line 35 after deter-
mining that the node read in line 29 is a leaf. This CAS can fail either due to
a different steal, a successful tryAdvance call or spuriously. Successful CAS in
line 35 brings the node into the STOLEN state. Irregardless of success or failure,
trySteal is then called recursively. In the second step, the expanded version of
the node from Fig. 3 is created by the newExpanded method, the pseudocode of
which is not shown here since it consists of isolated singlethreaded code. The
child field in Ptr is replaced with the expanded version atomically with the
CAS in line 39, bringing the node into the EXPANDED state.

We now describe the scheduling algorithm that the workers execute by invok-
ing the run method. There are two basic modes of operation a worker alternates
between. First, it calls findWork, which returns a node in the AVAILABLE state
(line 3). Then, it calls descend to work on that node until it is stolen or com-
pleted, which calls workOn to process the elements. If workOn returns false,
then the node was stolen and the worker tries to descend one of the subtrees
rather than searching the entire tree for work. This decreases the total number of
findWork invocations. The method workOn checks if the node is in the OWNED
state (line 47), and then attempts to atomically increase progress by calling
tryAdvance. The worker is obliged to process the elements after a successful
advance, and does so by calling the kernel method, which is nothing more than
the while loop like the one in Fig. 1. Generally, kernel can be any kind of a
workload. Finally, method findWork traverses the tree left to right and whenever
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it finds a leaf node it tries to claim ownership. Otherwise, it attempts to steal
it until it finds that it is either COMPLETED or EXPANDED, returning ⊥ or
descending deeper, respectively. Nodes with 1 or less elements left are skipped.

We explore alternative findWork implementations in Sect. 4. For now, we
state but do not prove the following claim. If the method findWork does return
⊥, then all the work in the tree was obtained by different workers that had
called tryAdvance except M < P loop elements distributed across M leaf nodes
where P is the number of workers. This follows from the fact that the tree grows
monotonically.

Fig. 5. Scheduling algorithm

Note that workOn is similar to fixed-size batching – the only difference is
that an arrival of a worker invalidates the node here, whereas multiple workers
simultaneously call tryAdvance in fixed-size batching, synchronizing repetitively.
The next section starts by evaluating the impact this has on performance.

4 Evaluation

As hinted in the introduction, we want to evaluate how good our scheduler is
for uniform workloads with a low amount of work per element. The reasons
for this are twofold – first, we want to compare speedups against an optimal
sequential program. Second, such problems appear in practical applications. We
thus ensure that the third and fourth program from Fig. 1 really have the same
performance for a single processor. We will call the while loop from Fig. 1 the
sequential baseline.

Parallelizing the baseline seems trivial. Assuming the workers start at roughly
the same time and have roughly the same speed, we can divide the range in equal
parts between them. However, an assumption from the introduction was that
the workload distribution is not known and the goal is to parallelize irregular
workloads as well. In fact, the workload may have a coarse granularity, consisting
only of several elements.
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For the reasons above, we verify that the scheduler abides the following
criteria:

C1 There is no noticeable overhead when executing the baseline with a single
worker.
C2 Speedup is optimal for both the baseline and typical irregular workloads.
C3 Speedup is optimal when the work granularity equals the parallelism level.

Workloads we choose correspond to those found in practice. Uniform work-
loads are particularly common and correspond to numeric computations, text
manipulation, Monte Carlo methods and applications that involve basic linear
algebra operations like vector addition or matrix multiplication. In Fig. 8 we
denote this workload as UNIFORM. Triangular workloads are present in pri-
mality testing, multiplication with triangular matrices and computing an adjoint
convolution (TRIANGLE). In higher dimensions computing a convolution con-
sists of several nested loops and can have a polynomial workload distribution
(PARABOLA). Depending on how the problem is formulated, the workload may
be increasing or decreasing (INVTRIANGLE, HILL, VALLEY). In combinato-
rial problems such as word segmentation, bin packing or computing anagrams
the problem subdivision can be such that the subproblems corresponding to
different elements differ exponentially – we model this with an exponentially
increasing workload EXP. In raytracing, PageRank or sparse matrix multiplica-
tion the workload corresponds to some probability distribution, modelled with
workloads GAUSSIAN and RANDIF. Finally, in problems like Mandelbrot set
computation or Barnes-Hut simulation we have large conglomeration of elements
which require a lot of computation while the rest require almost no work. We
call this workload distribution STEP.

All the tests were performed on an Intel i7 3.4 GHz quad-core processor with
hyperthreading and Oracle JDK 1.7, using the server VM. Our implementation is
written in the Scala programming language, which uses the JVM as its backend.
JVM programs are commonly regarded as less efficient than programs written in
C. To show that the evaluation is comparative to a C implementation, we must
evaluate the performance of corresponding sequential C programs. The running
time of the while loop from Fig. 1 is roughly 45 ms for 150 million elements in
both C (GNU C++ 4.2) and on the JVM – if we get linear speedups then we can
conclude that the scheduler is indeed optimal. We can thus turn our attention
to criteria C1.

We stated already that the STEP value should ideally be 1 for load-balancing
purposes, but has to be more coarse-grained due to communication costs that
could overwhelm the baseline. In Fig. 6A we plot the running time against the
STEP size, obtained by executing the baseline loop with a single worker. By
finding the minimum STEP value with no observable overhead, we seek to sat-
isfy criteria C1. The minimum STEP with no noticeable synchronization costs is
around 50 elements – decreasing STEP to 16 doubles the execution time and for
value 1 the execution time is 36 times larger (not shown for readability).

Having shown that the work-stealing tree is as good as fixed-size batching, we
evaluate its effectiveness with multiple workers. Figure 6B shows that the mini-
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Fig. 6. Baseline running time (ms) vs. STEP size

mum STEP for fixed-size batching increases for 2 workers, as we postulated earlier.
Increasing STEP decreases the frequency of synchronization and the communica-
tion costs with it. In this case the 3x slowdown is caused by processors having to
exchange ownership of the progress field cache-line. The work-stealing tree does
not suffer from this problem, since it strives to keep processors isolated – the
speedup is linear with 2 workers. However, with 4 processors the performance of
the naive work-stealing tree implementation is degraded (Fig. 6C). While the rea-
son is not immediately apparent, note that for greater STEP values the speedup
is once again linear. Inspecting the number of elements processed in each node
reveals that the uniform workload is not evenly distributed among the topmost
nodes – communication costs in those nodes are higher due to false sharing.
Even though the two processors work on different nodes, they modify the same
cache line, slowing down the CAS in line 20. Why this exactly happens in the
implementation that follows directly from the pseudocode is beyond the scope
of this paper, but it suffices to say that padding the node object with dummy
fields to adjust its size to the cache line solves this problem, as shown in Fig. 6D,
E.

The speedup is still not completely linear as the number of workers grows.
Our baseline does not access main memory and only touches cache lines in
exclusive mode, so this may be due to worker wakeup delay or scheduling costs
in the work-stealing tree. After checking that increasing the total amount of work
does not change performance, we focus on the latter. Inspecting the number of
tree nodes created at different parallelism levels in Fig. 7B reveals that as the
number of workers grows, the number of nodes grows at a superlinear rate. Each
node incurs a synchronization cost, so could we decrease their total number?

Examining a particular work-stealing tree instance at the end of the opera-
tion reveals that different workers are battling for work in the left subtree until
all the elements are depleted, whereas the right subtree remains unowned during
this time. As a result, the workers in any subtree steal from each other more
often, hence creating more nodes. The cause is the left-to-right tree traversal in
findWork as defined in Fig. 5, a particularly bad stealing strategy we will call
Predefined. As shown in Fig. 7B, the average tree size for 8 workers nears 2500
nodes. So, lets try to change the preference of a worker by changing the tree-
traversal order in line 70 based on the worker index i and the level l in the tree.
The worker should go left-to-right if and only if (i � (l mod �log2 P )) mod 2 =
1 where P is the total number of workers. This way, the first path from the root
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to a leaf up to depth log2 P is unique for each worker. The choice of the subtree
after a steal in lines 10 and 66 is also changed like this – the detailed imple-
mentation of findWork for this and other strategies is shown in the appendix.
This strategy, which we call Assign, decreases the average tree size at P = 8
to 134. Interestingly, we can do even better by doing this assignment only if the
node depth is below log2 P and randomizing the traversal order otherwise. We
call this strategy AssignTop – it decreases the average tree size at P = 8 to 77.
Building on the randomization idea, we introduce an additional strategy called
RandomWalk where the traversal order in findWork is completely randomized.
However, this results in a lower throughput and bigger tree sizes. Additionally
randomizing the choice in lines 10 and 66 (RandomAll) is even less helpful,
since the stealer and the victim clash more often.

Fig. 7. Comparison of findWork implementations

The results of the five different strategies mentioned thus far lead to the
following observation. If a randomized strategy like RandomWalk or Assign-
Top works better than a suboptimal strategy like Predefined then some of its
random choices are beneficial to the overall execution time and some are disad-
vantageous. So, there must exist an even better strategy which only makes the
choices that lead to a better execution time. Rather than providing a theoretical
background for such a strategy, we propose a particular one which seems intu-
itive. Let workers traverse the entire tree and pick a node with most work, only
then attempting to own or steal it. We call this strategy FindMax. Note that
this cannot be easily implemented atomically, but a quiescently consistent imple-
mentation may still serve as a decent heuristic. This strategy yields an average
tree size of 42 at P = 8, as well as a slightly better throughput – we conclude
by choosing it as our default strategy. Also, the diagrams in Fig. 7 reveal the
postulated inverse correlation between the tree size and total execution time,
both for the Intel i7-2600 and the Sun UltraSPARC T2 processor (where STEP is
set to 600), which is particularly noticeable for Assign when the total number
of workers is not a power of two. For some P RandomAll works slightly better
than FindMax on UltraSPARC, but both are much more efficient than static
batching, which deteriorates heavily once P exceeds the number of cores.

The results so far go a long way in justifying that C1 is fulfilled. We focus
on the C2 and C3 next by changing the workloads, namely the kernel func-
tion. Figures 8 and 9 show a comparison of the work-stealing tree and the other



66 A. Prokopec and M. Odersky

Fig. 8. Comparison of different kernel functions I (throughput/s−1 vs. #workers)
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Fig. 9. Comparison of different kernel functions II (throughput/s−1 vs. #workers)

schedulers on a range of different workloads. Each workload pattern is illustrated
prior to its respective diagrams, along with corresponding real-world examples.
To avoid memory access effects and additional layers of abstraction each work-
load is minimal and synthetic, but corresponds to a practical use-case. To test
C3, in Fig. 8-5, 6 we decrease the number of elements to 16 and increase the
workload heavily. Fixed-size batching fails utterly for these workloads – the total
number of elements is on the order of or well below the estimated STEP. These
workloads obviously require smaller STEP sizes to allow stealing, but that would
annul the baseline performance, and we cannot distinguish the two. We address
these seemingly incompatible requirements by modifying the work-stealing tree
in the following way. A mutable step field is added to Node, which is initially 1
and does not require atomic access. At the end of the while loop in the workOn
method the step is doubled unless greater than some value MAXSTEP. As a result,
workers start processing each node by cautiously checking if they can complete
a bit of work without being stolen from and then increase the step exponen-
tially. This naturally slows down the overall baseline execution, so we expect the
MAXSTEP value to be greater than the previously established STEP. Indeed, on the
i7-2600, we had to set MAXSTEP to 256 to maintain the baseline performance and
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at P = 8 even 1024. With these modifications work-stealing tree yields linear
speedup for all uniform workloads.

Triangular workloads such as those shown in Fig. 8-8, 9, 10 show that static
batching can yield suboptimal speedup due to the uniform workload assump-
tion. Figure 8-20 shows the inverse triangular workload and its negative effect
on guided self-scheduling – the first-arriving processor takes the largest batch
of work, which incidentally contains most work. We do not inverse the other
increasing workloads, but stress that it is neither helpful nor necessary to have
batches above a certain size.

Figure 9-28 shows an exponentially increasing workload, where the work asso-
ciated with the last element equals the rest of the work – the best possible
speedup is 2. Figure 9-30, 32 shows two examples where a probability distribu-
tion dictates the workload, which occurs often in practice. Guided self-scheduling
works well when the distribution is relatively uniform, but fails to achieve opti-
mal speedup when only a few elements require more computation, for reasons
mentioned earlier.

In the STEP distributions all elements except those in some range 〈n1, n2〉
are associated with a very low amount of work. The range is set to 25% of the
total number of elements. When its absolute size is above MAXSTEP, as in Fig. 9-
34, most schedulers do equally well. However, not all schedulers achieve optimal
speedup as we decrease the total number of elements N and the range size goes
below MAXSTEP. In Fig. 9-35 we set n1 = 0 and n2 = 0.25N . Schedulers other
than the work-stealing tree achieve almost no speedup, each for the same reasons
as before. However, in Fig. 9-36, we set n1 = 0.75N and n2 = N and discover
that the work-stealing tree achieves a suboptimal speedup. The reason is the
exponential batch increase – the first worker acquires a root node and quickly
processes the cheap elements, having increased the batch size to MAXSTEP by
the time it reaches the expensive ones. The real work is thus claimed by the
first worker and the others are unable to acquire it. Assuming some batches are
smaller and some larger as already explained, this problem cannot be worked
around by a different batching order – there always exists a workload distribution
such that the expensive elements are in the largest batch. In this adversarial
setting the existence of a suboptimal work distribution for every batching order
can only be overcome by randomization. We omit the details due to reasons of
space, but briefly explain how to randomize batching in the appendix, showing
how to improve the expected speedup.

Finally, we conclude this section by comparing the new scheduler with an
existing scheduler implementation used in the Scala Parallel Collections [17] in
Fig. 10. The Scala Parallel Collections scheduler is an example of an adaptive
data-parallel scheduler relying a task-parallel scheduler under the hood [15].
The batching order is chosen so that the sizes increase exponentially. At any
point, the largest batch (task) is eligible for stealing – after a steal, the batch
is divided in the same batching order. Due to the overheads of preemptively
creating batch tasks and scheduling them, Scala Parallel Collections use a bound
on the minimum batch size.
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Fig. 10. (A) Matrix multiplication and (B) Mandelbrot sets on i7 and UltraSPARC
T2

In Fig. 10 we evaluate the performance of Scala Parallel Collections against
the new scheduler against two benchmark applications – triangular matrix multi-
plication and Mandelbrot set computation. Triangular matrix multiplication has
a linearly increasing workload. Scala Parallel Collections scale as the number of
processors increases on both the i7 and the UltraSPARC machine, although they
are slower by a constant factor. However, in the Mandelbrot set benchmark where
we render set in the part of the plane ranging from (−2,−2) to (32, 32), they do
not scale beyond P = 2 on the i7, and only start scaling after P = 16 on the
UltraSPARC. The reason is that the computationally expensive elements around
the coordinates (0, 0) end up in a single batch and work on them cannot be par-
allelized. The work-stealing tree offers a more lightweight form of work-stealing
with smaller batches and better load balancing.

5 Conclusion

We presented a scheduling algorithm for data-parallel operations that fulfills the
specified criteria. Based on the experiments, we draw the following conclusions:

1. Minimum batch size on modern architectures needed to efficiently parallelize
the sequential baseline typically ranges from a few dozen to several hundred
elements.

2. There is no need to make batches larger than some architecture-specific size
MAXSTEP, which is independent of the problem size – in fact, the approach
employed by guided self-scheduling and factoring can be detrimental.

3. Batching can and should occur in isolation – by having workers communicate
only when they run out of work batching can be more fine-grained (Fig. 6).

4. Certain workloads require single element batches, in which case batch size
has to be modified dynamically. Exponentially increasing batch size from 1
up to MAXSTEP works well for different workloads (Fig. 9).

5. When the dominant part of the workload is distributed across a range of ele-
ments smaller than MAXSTEP, the worst-case speedup can be 1. Randomizing
the batching order can improve the average speedup.

We hinted that the work-stealing tree serves as a reduction tree, and we show
the details in the appendix. We give some theoretical background to the con-
clusions from the experiments in the appendix as well. In the paper, we focused
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on parallel loops, but arrays, hash tables and trees are also eligible for parallel
traversal [3,17,18]. The range iterator state was encoded with a single integer,
but the state of other data structure iterators, as well as batching and stealing,
may be more complex. While the CAS-based implementation of tryAdvance
and trySteal ensures lock-freedom, CAS instructions in those methods can be
replaced with short critical sections for more complicated iterators – the work-
stealing tree algorithm is potentially applicable to other data structures in a
straightforward way.

A Appendix

We provide the appendix section to further explain some of the concepts men-
tioned in the main paper which did not fit there. The information here is provided
for convenience and it should not be necessary to read this section, but doing so
may give useful insight.

A.1 Work-Stealing Reduction Tree

As mentioned, the work-stealing tree is a particularly effective data-structure
for a reduce operation. Parallel reduce is useful in the context of many other
operations, such as finding the first element with a given property, finding the
greatest element with respect to some ordering, filtering elements with a given
property or computing an aggregate of all the elements (e.g. a sum).

There are two reasons why the work-stealing tree is amenable to implement-
ing reductions. First, it preserves the order in which the work is split between
processors, which allows using non-commutative operators for the reduce (e.g.
computing the resulting transformation from a series of affine transformations
can be parallelized by multiplying a sequence of matrices – the order is in this
case important). Second, the reduce can largely be performed in parallel, due to
the structure of the tree.

Fig. 11. Reduction state diagram
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The work-stealing tree reduce works similar to a software combining tree [9],
but it can proceed in a lock-free manner after all the node owners have completed
their work, as we describe next. The general idea is to save the aggregated result
in each node and then push the result further up the tree. Note that we did
not save the return value of the kernel method in line 50 in Fig. 5, making the
scheduler applicable only to parallelizing for loops. Thus, we add a local variable
sum and update it each time after calling kernel. Once the node ends up in a
COMPLETED or EXPANDED state, we assign it the value of sum. Note that
updating an invocation-specific shared variable instead would not only break
the commutativity, but also lead to the same bottleneck as we saw before with
fixed-size batching. We therefore add two new fields with atomic access to Node,
namely lresult and result. We also add a new field parent to Ptr. We expand
the set of abstract node states with two additional ones, namely PREPARED
and PUSHED. The expanded state diagram is shown in Fig. 11.

The parent field in Ptr is not shown in the diagram in Fig. 11. The first two
boxes in Node denote the left and the right child, respectively, as before. We rep-
resent the iteration state (progress) with a single box in Node. The iterator may
either be stolen (ps) or completed (u), but this is not important for the new states
– we denote all such entries with ×. The fourth box represents the owner, the
fifth and the sixth fields lresult and result. Once the work on the node is effec-
tively completed, either due to a steal or a normal completion, the node owner π
has to write the value of the sum variable to lresult. After doing so, the owner
announces its completion by atomically writing a special value P to result, and
by doing so pushes the node into the PREPARED state – we say that the owner
prepares the node. At this point the node contains all the information necessary to
participate in the reduction. The sufficient condition for the reduction to start is
that the node is a leaf or that the node is an inner node and both its children are in
the PUSHED state. The value lresult can then be combined with the result val-
ues of both its children and written to the result field of the node. Upon writing

Fig. 12. Reduction pseudocode
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to the result field, the node goes into the PUSHED state. This push step can be
done by any worker ψ and assuming all the owners have prepared their nodes, the
reduction is lock-free. Importantly, the worker that succeeds in pushing the result
must attempt to repeat the push step in the parent node. This way the reduction
proceeds upwards in the tree until reaching the root. Once some worker pushes
the result to the root of the tree, it notifies that the operation was completed, so
that the thread that invoked the operation can proceed, in case that the parallel
operation is synchronous. Otherwise, a future variable can be completed or a user
callback invoked.

Before presenting the pseudocode, we formalize the notion of the states we
described. In addition to the ones mentioned earlier, we identify the following
new invariants.

INV6. Field n.lresult is set to ⊥ when created. If a worker π overwrites the
value ⊥ of the field n.lresult then n.owner = π and the node n is either in
the EXPANDED state or the COMPLETED state. That is the last write to
n.lresult.

INV7. Field n.result is set to ⊥ when created. If a worker π overwrites the
value ⊥ of the field n.result with P then n.owner = π, the node n was either
in the EXPANDED state or the COMPLETED state and the value of the field
n.lresult is different than ⊥. We say that the node goes into the PREPARED
state.

INV8. If a worker ψ overwrites the value P of the field n.result then the node
n was in the PREPARED state and was either a leaf or its children were in the
PUSHED state. We say that the node goes into the PUSHED state.

We modify workOn so that instead of lines 53 through 57, it calls the method
complete passing it the sum argument and the reference to the subtree. The
pseudocodes for complete and an additional method pushUp are shown in Fig. 12.

Upon completing the work, the owner checks whether the subtree was stolen.
If so, it helps expand the subtree (line 78), reads the new node and writes the
sum into lresult. After that, the owner pushes the node into the PREPARED
state in line 84, retrying in the case of spurious failures, and calls pushUp.

The method pushUp may be invoked by the owner of the node attempting to
write to the result field, or by another worker attempting to push the result up
after having completed the work on one of the child nodes. The lresult field
may not be yet assigned (line 92) if the owner has not completed the work –
in this case the worker ceases to participate in the reduction and relies on the
owner or another worker to continue pushing the result up. The same applies
if the node is already in the PUSHED state (line 94). Otherwise, the lresult
field can only be combined with the result values from the children if both
children are in the PUSHED state. If the worker invoking pushUp notices that
the children are not yet assigned the result, it will cease to participate in the
reduction. Otherwise, it will compute the tentative result (line 104) and attempt
to write it to result atomically with the CAS in line 106. A failed CAS triggers
a retry, otherwise pushUp is called recursively on the parent node. If the current
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node is the root, the worker notifies any listeners that the final result is ready
and the operations ends.

A.2 Work-Stealing Tree Traversal Strategies

We showed experimentally that changing the traversal order when searching for
work can have a considerable effect on the performance of the work-stealing
tree scheduler. We described these strategies briefly how, but did not present a
precise, detailed pseudocode. In this section we show different implementations
of the findWork and descend methods that lead to different tree traversal orders
when stealing.

Assign. In this strategy a worker with index i invoking findWork picks a left-
to-right traversal order at some node at level l if and only if its bit at position
l mod �log2 P  is 1, that is:

(i � (l mod �log2 P )) mod 2 = 1 (1)

The consequence of this is that when the workers descend in the tree the
first time, they will pick different paths, leading to fewer steals assuming that the
workload distribution is relatively uniform. If it is not uniform, then the workload
itself should amortize the creation of extra nodes. We give the pseudocode in
Fig. 13.

Fig. 13. Assign strategy

AssignTop. This strategy is similar to the previous one with the difference
that the assignment only works as before if the level of the tree is less than or
equal to �log2P . Otherwise, a random choice is applied in deciding whether
traversal should be left-to-right or right-to-left. We show it in Fig. 14 where
we only redefine the method left, and reuse the same choose, descend and
findWork.
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Fig. 14. AssignTop and RandomAll strategies

RandomAll. This strategy randomizes all the choices that the stealer and the
victim make. Both the tree traversal and the node chosen after the steal are thus
changed in findWork. We show it in Fig. 14.

RandomWalk. Here we only change the tree traversal order that the stealer
does when searching for work and leave the rest of the choices fixed to victim
picking the left node after expansion and the stealer picking the right node. The
code is shown in Fig. 15.

Fig. 15. RandomWalk strategy

FindMax. This strategy, unlike the previous ones, does not break tree traversal
early as soon as a viable node is found. Instead, it traverses the entire work-
stealing tree in left-to-right order and returns a reference to a node with the
most work. Only then it attempts to own or steal that node. As noted before,
this kind of search is not atomic, since some nodes may be stolen and expanded
in the meantime and processors advance through the nodes they own. However,
we expect steals to be rare events so in most cases this search should give an
exact or a nearly exact estimate. The decisions about which node the victim and
the stealer take after expansion remain the same as in the basic algorithm from
Fig. 5. We show the pseudocode for FindMax in Fig. 16.
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Fig. 16. FindMax strategy

A.3 Speedup and Optimality Analysis

In Fig. 9-36 we identified a workload distribution for which the work-stealing
reduction tree had a particularly bad performance. This coarse workload con-
sisted of a major prefix of elements which required a very small amount of
computation followed by a minority of elements which required a large amount
of computation. We call it coarse because the number of elements was on the
order of magnitude of a certain value we called MAXSTEP.

To recap, the speedup was suboptimal due to the following. First, to achieve
an optimal speedup for at least the baseline, not all batches can have fewer
elements than a certain number. We have established this number for a particu-
lar architecture and environment, calling it STEP. Second, to achieve an optimal
speedup for ranges the size of which is below STEP·P, some of the batches have to
be smaller than the others. The technique we apply starts with a batch consist-
ing of a single element and increases the batch size exponentially up to MAXSTEP.
Third, there is no hardware interrupt mechanism available to interrupt a worker
which is processing a large batch, and software emulations which consist of check-
ing a volatile variable within a loop are too slow when executing the baseline.
Fourth, the worker does not know the workload distribution and cannot measure
time. All this caused a single worker obtain the largest batch before the other
workers had a chance to steal some work for a particular workload distribution.
Justifying these claims requires a set of more formal definitions. We start by
defining the context in which the scheduler executes.

Definition 1 (Oblivious conditions). If a data-parallel scheduler is unable
to obtain information about the workload distribution, nor information about the
amount of work it had previously executed, we say that the data-parallel scheduler
works in oblivious conditions.

Assume that a worker decides on some batching schedule c1, c2, . . . , ck where
cj is the size of the j-th batch and

∑k
j=1 cj = N , where N is the size of the range.

No batch is empty, i.e. cj �= 0 for all j. In oblivious conditions the worker does
not know if the workload resembles the baseline mentioned earlier, so it must
assume that it does and minimize the scheduling overhead. The baseline is not
only important from a theoretical perspective being one of the potentially worst-
case workload distribution, but also from a practical one – in many problems
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parallel loops have a uniform workload. We now define what this baseline means
more formally.

Definition 2 (The baseline constraint). Let the workload distribution be a
function w(i) which gives the amount of computation needed for range element i.
We say that a data-parallel scheduler respects the baseline constraint if and only
if the speedup sp with respect to a sequential loop is arbitrarily close to linear
when executing the workload distribution w(i) = w0, where w0 is the minimum
amount of work needed to execute a loop iteration.

Arbitrarily close here means that ε in sp = P
1+ε can be made arbitrarily small.

The baseline constraint tells us that it may be necessary to divide the elements
of the loop into batches, depending on the scheduling (that is, communication)
costs. As we have seen in the experiments, while we should be able to make the ε
value arbitrarily small, in practice it is small enough when the scheduling overhead
is no longer observable in the measurement. Also, we have shown experimentally
that the average batch size should be bigger than some value in oblivious condi-
tions, but we have used particular scheduler instances. Does this hold in general,
for every data-parallel scheduler? The answer is yes, as we show in the following
lemma.

Lemma 1. If a data-parallel scheduler that works in oblivious conditions respects
the baseline constraint then the batching schedule c1, c2, . . . , ck is such that:

∑k
j=1 cj

k
≥ S(ε) (2)

Proof. The lemma claims that in oblivious conditions the average batch size
must be above some value which depends on the previously defined ε, otherwise
the scheduler will not respect the baseline constraint.

The baseline constraint states that sp = P
1+ε , where the speedup sp is defined

as T0/Tp, where T0 is the running time of a sequential loop and Tp is the running
time of the scheduler using P processors. Furthermore, T0 = T ·P where T is the
optimal parallel running time for P processors, so it follows that ε · T = Tp − T .
We can also write this as ε · W = Wp − W . This is due to the running time
being proportionate to the total amount of executed work, whether scheduling
or useful work. The difference Wp −W is exactly the scheduling work Ws, so the
baseline constraint translates into the following inequality:

Ws ≤ ε · W (3)

In other words, the scheduling work has to be some fraction of the useful
work. Assuming that there is a constant amount of scheduling work Wc per
every batch, we have Ws = k · Wc. Lets denote the average work per element
with w. We then have W = N ·w. Combining these relations we get N ≥ k · Wc

ε·w ,
or shorter N ≥ k · S(ε). Since N is equal to the sum of all batch sizes, we derive
the following constraint:

∑k
j=1 cj

k
≥ Wc

ε · w
(4)
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In other words, the average batch size must be greater than some value S(ε)
which depends on how close we want to get to the optimal speedup. Note that
this value is inversely proportionate to the average amount of work per element
w – the scheduler could decide more about the batch sizes if it knew something
about the average workload, and grows with the scheduling cost per batch Wc –
this is why it is especially important to make the workOn method efficient. We
already saw the inverse proportionality with ε in Fig. 6. In part, this is why we
had to make MAXSTEP larger than the chosen STEP (we also had to increase it due
to increasing the scheduling work in workOn, namely, Wc). This is an additional
constraint when choosing the batching schedule.

With this additional constraint there always exists a workload distribu-
tion for a given batching schedule such that the speedup is suboptimal, as we
show next.

Lemma 2. Assume that S(ε) > 1, for the desired ε. For any fixed batching
schedule c1, c2, . . . , ck there exists a workload distribution such that the scheduler
executing it in oblivious conditions yields a suboptimal schedule.

Proof. First, assume that the scheduler does not respect the baseline constraint.
The baseline workload then yields a suboptimal speedup and the statement is
trivially true because S(ε) > 1.

Otherwise, assume without the loss of generality that at some point in time
a particular worker ω is processing some batch cm the size of which is greater
or equal to the size of the other batches. This means the size of cm is greater
than 1, from the assumption. Then we can choose a workload distribution such
that the work Wm =

∑Nm+cm
i=Nm

w(i) needed to complete batch cm is arbitrarily
large, where Nm =

∑m−1
j=1 cj is the number of elements in the batching schedule

coming before the batch cm. For all the other elements we set w(i) to be some
minimum value w0. We claim that the obtained speedup is suboptimal. There is
at least one different batching schedule with a better speedup, and that is the
schedule in which instead of batch cm there are two batches cm1 and cm2 such
that cm1 consists of all the elements of cm except the last one and cm2 contains
the last element. In this batching schedule some other worker can work on cm2

while ω works on cm1 . Hence, there exists a different batching schedule which
leads to a better speedup, so the initial batching schedule is not optimal.

We can ask ourselves what is the necessary condition for the speedup to be
suboptimal. We mentioned that the range size has to be on the same order of
magnitude as S above, but can we make this more precise? We could simplify this
question by asking what is the necessary condition for the worst-case speedup
of 1 or less. Alas, we cannot find necessary conditions for all schedulers because
they do not exist – there are schedulers which do not need any preconditions
in order to consistently produce such a speedup (think of a sequential loop or,
worse, a “scheduler” that executes an infinite loop). Also, we already saw that a
suboptimal speedup may be due to a particularly bad workload distribution, so
maybe we should consider only particular distributions, or have some conditions
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on them. What we will be able to express are the necessary conditions on the
range size for the existence of a scheduler which achieves a speedup greater
than 1 on any workload. Since the range size is the only information known to
the scheduler in advance, it can be used to affect its decisions in a particular
implementation.

The worst-case speedups we saw occurred in scenarios where one worker
(usually the invoker) started to work before all the other workers. To be able to
express the desired conditions, we model this delay with a value Td.

Lemma 3. Assume a data-parallel scheduler that respects the baseline constraint
in oblivious conditions. There exists some minimum range size N1 for which the
scheduler can yield a speedup greater than 1 for any workload distribution.

Proof. We first note that there is always a scheduler that can achieve the speedup
1, which is merely a sequential loop. We then consider the case when the sched-
uler is parallelizing the baseline workload. Assume now that there is no minimum
range size N1 for which the claim is true. Then for any range size N we must
be able to find a range size N + K such that the scheduler still cannot yield
speedup 1 or less, for a chosen K. We choose N = f ·Td

w0
, where w0 is the amount

of work associated with each element in the baseline distribution and f is an
architecture-specific constant describing the computation speed. The chosen N
is the number of elements that can be processed during the worker wakeup delay
Td. The workers that wake up after the first worker ω processes N elements have
no more work to do, so the speedup is 1. However, for range size N + K there
are K elements left that have not been processed. These K elements could have
been in the last batch of ω. The last batch in the batching schedule chosen by
the scheduler may include the Nth element. Note that the only constraint on
the batch size is the lower bound value S(ε) from Lemma 1. So, if we choose
K = 2S(ε) then either the last batch is smaller than K or is greater than K.
If it is smaller, then a worker different than ω will obtain and process the last
batch, hence the speedup will be greater than 1. If it is greater, then the worker
ω will process the last batch – the other workers that wake up will not be able to
obtain the elements from that batch. In that case there exists a better batching
order which still respects the baseline constraint and that is to divide the last
batch into two equal parts, allowing the other workers to obtain some work and
yielding a speedup greater than 1. This contradicts the assumption that there is
no minimum range size N1 – we know that N1 is such that:

f · Td

w0
≤ N1 ≤ f · Td

w0
+ 2 · S(ε) (5)

Now, assume that the workload w(i) is not the baseline workload w0. For any
workload we know that w(i) ≥ w0 for every i. The batching order for a single
worker has to be exactly the same as before due to oblivious conditions. As a
result the running time for the first worker ω until it reaches the Nth element
can only be larger than that of the baseline. This means that the other workers
will wake up by the time ω reaches the Nth element, and obtain work. Thus,
the speedup can be greater than 1, as before.
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We have so far shown that we can decide on the average batch size if we
know something about the workload, namely, the average computational cost of
an element. We have also shown when we can expect the worst case speedup,
potentially allowing us to take prevention measures. Finally, we have shown that
any data-parallel scheduler deciding on a fixed schedule in oblivious conditions
can yield a suboptimal speedup. Note the wording “fixed” here. It means that the
scheduler must make a definite decision about the batching order without any
knowledge about the workload, and must make the same decision every time –
it must be deterministic. As hinted before, the way to overcome an adversary
that is repetitively picking the worst case workload is to use randomization when
producing the batching schedule. This is the topic of the next section.

A.4 Overcoming the Worst-Case Speedup Using Randomization

Recall that the workload distribution that led to a bad speedup in our evalu-
ation consisted of a sequence of very cheap elements followed by a minority of
elements which were computationally very expensive. On the other hand, when
we inverted the order of elements, the speedup became linear. The exponential
backoff approach is designed to start with smaller batches first in hopes of hitting
the part of the workload which contains most work as early as possible. This
allow other workers to steal larger pieces of the remaining work, hence allowing
a more fine grained batch subdivision. In this way the scheduling algorithm is
workload-driven – it gives itself its own feedback. In the absence of other infor-
mation about the workload, the knowledge that some worker is processing some
part of the workload long enough that it can be stolen from is the best sign
that the workload is different than the baseline, and that the batch subdivision
can circumvent the baseline constraint. This heuristic worked in the example
from Fig. 9-36 when the expensive elements were reached first, but failed when
they were reached in the last, largest batch, and we know that there has to be a
largest batch by Lemma 1 – a single worker must divide the range into batches
the mean size of which has a lower bound. In fact, no other deterministic sched-
uler can yield an optimal speedup for all schedules, as shown by Lemma 2. For
this reason we look into randomized schedulers.

In particular, in the example from the evaluation we would like the sched-
uler to put the smallest batches at the end of the range, but we have no way of
knowing if the most expensive elements are positioned somewhere else. With this
in mind we randomize the batching order. The baseline constraint still applies
in oblivious conditions, so we have to pick different batch sizes with respect to
the constraints from Lemma 1. Lets pick exactly the same set of exponentially
increasing batches, but place consequent elements into different batches ran-
domly. In other words, we permute the elements of the range and then apply the
previous scheme. We expect some of the more expensive elements to be assigned
to the smaller batches, giving other workers a higher opportunity to steal a part
of the work.

In evaluating the effectiveness of this randomized approach we will assume a
particular distribution we found troublesome. We define it more formally.
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Definition 3 (Step workload distribution). A step workload distribution
is a function which assigns a computational cost w(i) to each element i of the
range of size N as follows:

w(i) =

{
we, i ∈ [i1, i2]
w0, i �∈ [i1, i2]

(6)

where [i1, i2] is a subsequence of the range, w0 is the minimum cost of computa-
tion per element and we � w0. If we ≥ f · Td, where f is the computation speed
and Td is the worker delay, then we additionally call the workload highly irregu-
lar. We call D = 2d = i2−i1 the span of the step distribution. If (N−D)·w0

f ≤ Td

we also call the workload short.

We can now state the following lemma. We will refer to the randomized
batching schedule we have described before as the randomized permutation
with an exponential backoff. Note that we implicitly assume that the worker
delay Td is significantly greater than the time Tc spent scheduling a single batch
(this was certainly true in our experimental evaluation).

Lemma 4. When parallelizing a workload with a highly irregular short step
workload distribution the expected speedup inverse of a scheduler using random-
ized permutations with an exponential backoff is:

〈s−1
p 〉 =

1
P

+ (1 − 1
P

) · (2k − 2d − 1)!
(2k − 1)!

·
k−1∑

i=0

2i (2k − 2i − 1)!
(2k − 2i − 2d)!

(7)

where D = 2d � P is the span of the step workload distribution.

Proof. The speedup sp is defined as sp = T0
Tp

where T0 is the running time of
the optimal sequential execution and Tp is the running time of the parallelized
execution. We implicitly assume that all processors have the same the same
computation speed f . Since we � w0, the total amount of work that a sequential
loop executes is arbitrarily close to D · we, so T0 = D

f . When we analyze the
parallel execution, we will also ignore the work w0. We will call the elements
with cost we expensive.

We assumed that the workload distribution is highly irregular. This means
that if the first worker ω starts the work on an element from [i1, i2] at some
time t0 then at the time t1 = t0 + we

f some other worker must have already
started working as well, because t1 − t0 ≥ Td. Also, we have assumed that the
workload distribution is short. This means that the first worker ω can complete
work on all the elements outside the interval [i1, i2] before another worker arrives.
Combining these observations, as soon as the first worker arrives at an expensive
element, it is possible for the other workers to parallelize the rest of the work.

We assume that after the other workers arrive there are enough elements left
to efficiently parallelize work on them. In fact, at this point the scheduler will
typically change the initially decided batching schedule – additionally arriving
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workers will steal and induce a more fine-grained subdivision. Note, however,
that the other workers cannot subdivide the batch on which the current worker
is currently working on – that one is no longer available to them. The only batches
with elements of cost we that they can still subdivide are the ones coming after
the first batch in which the first worker ω found an expensive element. We denote
this batch with cω. The batch cω may, however, contain additional expensive
elements and the bigger the batch the more probable this is. We will say that
the total number of expensive elements in cω is X. Finally, note that we assumed
that D � P , so our expression will only be an approximation if D is very close
to P .

We thus arrive at the following expression for speedup:

sp =
D

X + D−X
P

(8)

Speedup depends on the value X. But since the initial batching schedule is
random, the speedup depends on the random variable and is itself random. For
this reason we will look for its expected value. We start by finding the expectation
of the random variable X.

We will now solve a more general problem of placing balls to an ordered set
of bins and apply the solution to finding the expectation of X. There are k bins,
numbered from 0 to k − 1. Let ci denote the number of balls that fit into the
ith bin. We randomly assign D balls to bins, so that the number of balls in each
bin i is less than or equal to ci. In other words, we randomly select D slots from
all the N =

∑k−1
i=0 ci slots in all the bins together. We then define the random

variable X to be the number of balls in the non-empty bin with the smallest
index i. The formulated problem corresponds to the previous one – the balls are
the expensive elements and the bins are the batches.

An alternative way to define X is as follows:

X =
k−1∑

i=0

{
number of balls in bin i if all the bins j < i are empty
0 otherwise

(9)

Applying the linearity property, the expectation 〈X〉 is then:

〈X〉 =
k−1∑

i=0

〈number of balls in bin i given that all the bins j < i are empty, and 0 otherwise〉

(10)

The expectation in the sum is conditional on the event that all the bins
coming before i are empty. We call the probability of this event pi. We define bi

as the number of balls in any bin i. From the properties of conditional expectation
we than have:

〈X〉 =
k−1∑

i=0

pi · 〈bi〉 (11)
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The number of balls in any bin is the sum of the balls in all the slots of that
bin which spans slots ni−1 through ni−1 + ci. The expected number of balls in
a bin i is thus:

〈bi〉 =
ni−1+ci∑

i=ni−1

〈expected number of balls in a single slot〉 (12)

We denote the total capacity of all the bins j ≥ i as qi (so that q0 = N and
qk−1 = 2k−1). We assign balls to slots randomly with a uniform distribution –
each slot has a probability D

qi
of being selected. Note that the denominator is not

N – we are calculating a conditional probability for which all the slots before
the ith bin are empty. The expected number of balls in a single slot is thus D

qi
.

It follows that:
〈bi〉 = ci · D

qi
(13)

Next, we compute the probability pi that all the bins before the bin i are
empty. We do this by counting the events in which this is true, namely, the
number of ways to assign balls in bins j ≥ i. We will pick combinations of D
slots, one for each ball, from a set of qi slots. We do the same to enumerate all
the assignments of balls to bins, but with N = q0 slots, and obtain:

pi =

(
qi
D

)

(
q0
D

) (14)

We assumed here that qi ≥ D, otherwise we cannot fill all D balls into bins.
We could create a constraint that the last batch is always larger than the number
of balls. Instead, we simply define

(
qi
D

)
= 0 if qi < D – there is no chance we can

fit more than qi balls to qi slots. Combining these relations, we get the following
expression for 〈X〉:

〈X〉 = D · (q0 − D)!
q0!

k−1∑

i=0

ci · (qi − 1)!
(qi − D)!

(15)

We use this expression to compute the expected speedup inverse. By the
linearity of expectation:

〈s−1
p 〉 =

1
P

+
(

1 − 1
P

)

· (q0 − D)!
q0!

k−1∑

i=0

ci · (qi − 1)!
(qi − D)!

(16)

This is a more general expression than the one in the claim. When we plug
in the exponential backoff batching schedule, i.e. ci = 2i and qi = 2k − 2i, the
lemma follows.

The expression derived for the inverse speedup does not have a neat analytical
form, but we can evaluate it for different values of d to obtain a diagram. As
a sanity check, the worst expected speedup comes with d = 0. If there is only
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a single expensive element in the range, then there is no way to parallelize
execution – the expression gives us the speedup 1. We expect a better speedup as
d grows – when there are more expensive elements, it is easier for the scheduler to
stumble upon some of them. In fact, for d = k, with the conventions established
in the proof, we get that the speedup is 1

P +
(
1 − 1

P

) · c0
D . This means that when

all the elements are expensive the proximity to the optimal speedup depends on
the size c0 of the first batch – the less elements in it, the better. Together with
the fact that many applications have uniform workloads, this is also the reason
why we advocate exponential backoff for which the size of the first batch is 1.

Fig. 17. Randomized scheduler executing step workload – speedup vs. span

We call the term (q0−D)!
q0!

∑k−1
i=0 ci · (qi−1)!

(qi−D)! the slowdown and plot it with
respect to span D on the diagram in Fig. 17. In this diagram we choose k =
10, and the number of elements N = 210 = 1024. As the term nears 1, the
speedup nears 1. As the term approaches 0, the speedup approaches the optimal
speedup P . The quicker the term approaches 0 as we increase d, the better
the scheduler. We can see that fixed-size batching should work better than the
exponential backoff if the span D is below 10 elements, but is much worse than
the exponential backoff otherwise. Linearly increasing the batch size from 0 in
some step a = 2·(2k−1)

k·(k−1) seems to work well even for span D < 10. However, the
mean batch size ci = S

k means that this approach may easily violate the baseline
constraint, and for P ≈ D the formula is an approximation anyway.

The conclusion is that selecting a random permutation of the elements should
work very well in theory. For example, the average speedup becomes very close to
optimal if less than D = 10 elements out of N = 1024 are expensive. However,
randomly permuting elements would in practice either require a preparatory
pass in which the elements are randomly copied or would require the workers to
randomly jump through the array, leading to cache miss issues. In both cases
the baseline performance would be violated. Even permuting the order of the
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batches seems problematic, as it would require storing information about where
each batch started and left off, as well as its intermediate result – for something
like that we need a data structure like a work-stealing tree and we saw that we
have to minimize the number of nodes there as much as possible.

There are many approaches we could study, many of which could have viable
implementations, but we focus on a particular one which seems easy to imple-
ment for ranges and other data structures. Recall that in the example in Fig. 9-
36 the interval with expensive elements was positioned at the end of the range.
What if the worker alternated the batch in each step by tossing the coin to
decide if the next batch should be from the left (start) or from the right (end)?
Then the worker could arrive at the expensive interval on the end while the
batch size is still small with a relatively high probability. The changes to the
work-stealing tree algorithm are minimal – in addition to another field called
rresult (the name of which should shed some light on the previous choice of
name for lresult), we have to modify the workOn, complete and pushUp meth-
ods. While the latter two are straightforward, the lines 47 through 51 of workOn
are modified. The new workOn method is shown in Fig. 18.

Fig. 18. Randomized loop method

The main issue here is to encode and atomically update the iteration state,
since it consists of two pieces of information – the left and the right position
in the subrange. We can encode these two positions by using a long integer
field and a long CAS operation to update it. The initial 32 bits can contain
the position on the left side of the subrange and the subsequent 32 on the
right side. With this in mind, the methods tryAdvanceLeft, tryAdvanceRight,
notStolen, notCompleted and decodeStep should be straightforward.

We evaluate the new scheduler on the distribution from Fig. 9-36 and show
the results in Fig. 19. The first two diagrams (STEP2 and STEP3) show that
with the expensive interval at the beginning and the end of the range the work-
stealing tree achieves a close to optimal speedup. However, there is still a worst
case scenario that we have to consider, and that is to have a step workload with
the expensive interval exactly in the middle of the range. Intuition tells us that
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Fig. 19. The randomized work-stealing tree and the STEP3 workload

the probability to hit this interval early on is smaller, since a worker has to
progress through more batches to arrive at it. The workload STEP4 in the third
diagram of Fig. 19 contains around 25% expensive elements positioned in the
middle of the range. The speedup is decent, but not linear for STEP4, since the
bigger batches seem to on average hit the middle of the range more often.

Having shown that randomization does help scheduling both in theory and in
practice, we conclude that the problem of overcoming particularly bad workload
distributions is an algorithmic problem of finding a batching schedule which can
be computed and maintained relatively quickly, leaving this task as future work.
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