
 123

LN
CS

 8
66

4

26th International Workshop, LCPC 2013
San Jose, CA, USA, September 25–27, 2013
Revised Selected Papers

Languages and Compilers
for Parallel Computing

Calin Cascaval
Pablo Montesinos (Eds.)

˘ ¸

Lecture Notes in Computer Science 8664

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Călin Caşcaval • Pablo Montesinos (Eds.)

Languages and Compilers
for Parallel Computing
26th International Workshop, LCPC 2013
San Jose, CA, USA, September 25–27, 2013
Revised Selected Papers

123

Editors
Călin Caşcaval
Pablo Montesinos
Silicon Valley
Qualcomm Research
San Jose, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-09966-8 ISBN 978-3-319-09967-5 (eBook)
DOI 10.1007/978-3-319-09967-5

Library of Congress Control Number: 2014949396

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publishers location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Message from the Chairs

The 26th Workshop on Languages and Compilers for Parallel Computing was held in
September 2013 in San Jose, California, USA. More than 50 researchers from around
the world gathered together to present their latest results and exchange ideas on topics
ranging from parallel programming models, compiler analysis techniques, parallel data
structures and parallel execution models, to GPGPU and other heterogeneous execution
models, code generation for power efficiency on mobile platforms, and debugging and
fault tolerance for parallel systems.

The Program Committee, with the help of external reviewers, selected 20 papers out
of 44 submissions for presentation at the workshop. Each paper had at least three
reviews and was extensively discussed in the committee meeting.

We were honored to have two outstanding keynote addresses at LCPC 2013. Prof.
Katherine Yelick, from University of California Berkeley and Lawrence Berkeley
National Laboratory, presented “Avoiding, Hiding and Managing Communication”.
She discussed how new systems are constrained in terms of both power density and
energy, and require new programming models as well as algorithmic work to reduce
the amount of communication. She demonstrated how PGAS languages reduce the
communication costs through overlap, caching and aggregation. As communication
hierarchies are becoming more complex (memory systems and interconnect), new
language and compiler techniques need to be developed. She also discussed work done
in her team on new parallel algorithms that use structure to reduce the amount of
communication, and discussed the challenges to automate such methods through
compiler transformations and auto-tuning.

David Sehr from Google presented our second keynote. He discussed compilation
technologies for executing native code in the browser. Browsers are currently available
on all platforms, and thus provide a common environment to deploy applications.
However, there are both performance and security considerations when executing
arbitrary code off the web into a complex engine such as the browser. David presented
Google’s design of Native Client (NaCL) and discussed the compiler challenges to
produce efficient code capable of running games at native speed. He concluded the
keynote with a live demonstration of the system.

In addition to the paper presentations, we were fortunate to have six invited speakers
who provided insights into new technologies and challenging research directions. We
would like to thank the speakers: Benedict Gaster (Qualcomm), Rastislav Bodik (UC
Berkeley), Jaejin Lee (Seoul National University, Korea), Samuel P. Midkiff (Purdue
University), Lawrence Rauchwerger (Texas A&M University), and George Almasi
(IBM Research).

The success of the LCPC 2013 workshop would not have been possible without
help from many people. We thank the Program Committee members for their time and
effort in reviewing papers. We thank Nancy May and Pamela Millart from Qualcomm
for their help with the local organization. We thank the Qualcomm admin staff for

providing support hosting the workshop. The LCPC Steering Committee, David Padua,
Lawrence Rauchwerger, Alex Nicolau, and Rudi Eigenmann, provided continuous
support and encouragement.

We also thank Intel Corp. for their generous support.
And finally, we would like to thank all the authors who submitted to LCPC 2013.

They made the workshop enjoyable.

September 2013 Călin Caşcaval
Pablo Montesinos

VI Message from the Chairs

Organization

Workshop Chairs

Călin Caşcaval Qualcomm Research, USA
Pablo Montesinos Qualcomm Research, USA

Program Committee

James Brodman Intel Corporation, USA
Călin Caşcaval Qualcomm Research, USA
Hironori Kasahara Waseda University, Japan
Keiji Kimura Waseda University, Japan
Pablo Montesinos Qualcomm Research, USA
Sanjay Rajophadhye Colorado State University, USA
Michelle Strout Colorado State University, USA
Peng Tu Intel Corporation, USA

Steering Committee

David Padua University of Illinois at Urbana-Champaign, USA
Lawrence Rauchwerger Texas A&M University, USA
Alex Nicolau University of California, Irvine, USA
Rudolf Eigenmann Purdue University, USA

Supporting Institution

Intel Corporation, Santa Clara, CA, USA

Referees

Farhana Aleen
Carmen Badea
Umeda Dan
Alexandre Duchateau
Akihiro Hayashi
Sunpyo Hong
Guillaume Iooss
Kazuhisa Ishizaka
Chi-Keung Luk

Fredrik Berg Kjolstad
Masayoshi Mase
Makoto Nakayama
Catherine Olschanowsky
Hideki Saito
Jun Shirako
Mamoru Shimaoka
Albert Sidelnik
Xinmin Tian

Tomoaki Tsumura
Yasutaka Wada
Cheng Wang
Youfeng Wu
Koichiro Yamashita
Akimasa Yoshida
Tomofumi Yuki
Yun Zou
Xing Zhou

Invited Talks

The Good, the Bad, and the Ugly:
Heterogeneous Programming Models

for Performance and Power in a Thermally
Constrained World

Benedict Gaster

Qualcomm

Abstract. Heterogeneous computing is being realized in modern SoCs, because
power and performance are key to delivering multimedia experiences in
mobiles devices that are limited by physical thermal limits. Programming these
devices is challenging - lack of shared virtual address spaces, different ISAs,
different performance capabilities, are just some of the factors that complicate
any programming model.

Heterogeneous programming can be pretty ugly in places and is not easy
for the first time developer, however, it has also been proven on multiple
devices, ranging from tiny mobile devices that fit a pocket, to supercomputers,
providing its users access to huge possibilities. In this talk I will reflect on the
good, the bad, and the ugly of design and feature capabilities of OpenCL 2.0
and it new formalized foundations for shared memory model programming and
support for data- and irregular- parallel workloads. With a particular focus on
OpenCL 2.0’s low-level features for high-level programming abstractions we
will discuss capabilities of Qualcomm’s task based programming model,
MARE, and how it might be integrated into a heterogenous platform supporting
OpenCL.

Bio

Benedict R. Gaster is an architect working at Qualcomm on next-generation
heterogeneous processors. Benedict has contributed extensively to the OpenCL’s
design. Benedict has a Ph.D in computer science for his work on type systems for
extensible records and variants.

Why Parallel Web Browsers?

Rastislav Bodik

UC Berkeley

Abstract. The quality of web browsers is reaching the point where HTML5 apps
begin to compete with native apps (see for example the Firefox OS or the
sencha.com Facebook app written entirely in HTML5). Thanks to the portability
of HTML5 apps, the adoption of the HTML5 would erode the domination of
closed mobile app platforms. To secure adoption of HTML5 on mobile devices,
mobile browsers may still need to improve, though— in responsiveness, energy
efficiency, programmability, as well as usability.

Our research group has been working on browser technologies since 2007.
We were the first to parallelize key browser components such as the lexer,
parser, CSS selectors and the layout engine. This talk will describe our recent
results and ongoing work. Our work divides into (i) technologies for
performance improvements, via code synthesis and parallelization; and (ii)
new techniques for programmability. From the performance category, I will
demo our browser-based GPU framework for real-time visualization of large
data. In the programmability category, I will show how we can equip the
browser with programming by demonstration, which allows users to automate
tasks, extract and visualize web data, and layout documents without knowledge
of CSS/HTML.

Bio

Ras Bodik is a Professor of Computer Science at UC Berkeley. He works on various
flavors of program synthesis, from programming by demonstration to compilers for
declarative languages. His group has applied synthesis to high-performance comput-
ing, web browser construction, algorithm design, document layout, and biology. Their
web browser project investigates how to run client application stacks on low-power
devices. He also designed a course on programming languages in which students
design learn small languages by constructing a small modern web browser.

SnuCL: A Unified Framework of OpenCL

Jaejin Lee

Seoul National University, Korea

Abstract. OpenCL is a programming model for heterogeneous parallel
computing systems. OpenCL provides a common abstraction layer across
different processor architectures, such as CPUs, GPUs, DSPs, FPGAs, and
Xeon Phi processors. OpenCL ICD (installable client driver) enables OpenCL
platforms from different vendors for different processors to coexist under a
single operating system instance. Applications choose a platform and dispatch
OpenCL API calls to the platform with ICD. However, current OpenCL has
two major limitations. First, to use different processors from different vendors
in a single application, programmers need to explicitly specify a specific
OpenCL platform for each processor. Moreover, OpenCL objects (buffers,
events, etc.) cannot be shared across different platforms. Second, OpenCL is
restricted to a system running a single operating system instance. To target a
cluster running multiple operating system instances, programmers must use an
OpenCL framework together with a communication library, such as MPI. This
talk introduces how to overcome the limitations of current OpenCL with
SnuCL. SnuCL is an OpenCL framework that provides the programmer with an
illusion of a single OpenCL platform image. It naturally extends the original
OpenCL semantics to a cluster system running multiple operating system
instances. Programmers do not need to explicitly specify a specific platform in
SnuCL, and OpenCL objects can be shared across different platforms. SnuCL is
open-source software developed at Seoul National University, Korea.

Bio

Jaejin Lee is the director of the Center for Manycore Programming and a professor in
the Department of Computer Science and Engineering at Seoul National University
(SNU), Korea. He received a PhD degree in Computer Science from the University of
Illinois at Urbana-Champaign (UIUC) in 1999. He also received an MS degree in
Computer Science from Stanford University in 1995 and a BS degree in Physics from
SNU in 1991. After obtaining the PhD degree, he spent a half year at the UIUC as a
visiting lecturer. He was an assistant professor in the Department of Computer Science
and Engineering at Michigan State University until 2002 before joining SNU. His
primary research focus in these days is on heterogeneous parallel programming
models, and building efficient heterogeneous supercomputers.

Characterizing and Detecting Smartphone
Energy Bugs

Samuel P. Midkiff

Purdue University

Abstract. Modern power constrained devices such as mobile phones require
programmers to explicitly manage whether components (including the
processor and display) are turned on or off. User defined defaults often give
a period of time that a component (e.g., the processor or display) will be on, but
after that time expires the device will shut down unless the program being
executed actively and explicitly prevents it. Other components, such as the GPS
unit, the GSM or wireless transmitters and receivers, and so forth may shut
down at any time, even during a call or while establishing a network
connection. The operating systems for these devices provide wake locks that
allow library and application programmers to force a component to stay active
until the wait lock is released. This talk will describe strategies for
automatically detecting these bugs. We will finish with a short discussion of
how this issue relates to parallelism and compiler infrastructure issues.

Bio

Samuel Midkiff is a Professor of Electrical and Computer Engineering at Purdue
University, where he has been since 2002. He received his PhD degree from the
University of Illinois at Urbana-Champaign in 1992 and worked at the IBM TJ
Watson Research Center from 1991 until 2002. He has had the pleasure of working on
the Parafrase, PTran, Ninja and Cetus compiler infrastructures. His research is
currently focused on energy bugs in mobile devices, using semantic information in
compiling and issues related to debugging parallel programs and web hubs.

KLA: A New Algorithmic Paradigm
for Parallel Graph Computations

Lawrence Rauchwerger

Texas A&M University

Abstract. This paper proposes a new algorithmic paradigm for parallel graph
computations, k-Level Asynchronous (KLA), that bridges the level-synchro-
nous and asynchronous paradigms for processing graphs.

The KLA paradigm allows vertex-centric fine-grained expression of
parallel graph algorithms, while enabling the level of asynchrony to be
parametrically varied from none (level synchronous) to full (asynchronous).
This enables improved efficiency by expeditiously using an appropriate
combination of expensive global synchronizations, as in level-synchronous
algorithms, and possibly more, but less expensive local synchronizations (and
potentially redundant work), as in asynchronous algorithms.

To enable the expression of a wide variety of graph algorithms in the KLA
paradigm, we classify algorithms into three categories based on the penalty
paid for asynchrony (e.g., cost of correcting a wrong guess), which
theoretically depends on the resilience (for correctness) of the algorithm to
message ordering. We propose how to best apply the KLA paradigm for each
category of algorithms and use it to implement several important classes of
graph algorithms including breadth-first search type computations (e.g., single-
source shortest paths), PageRank, k-core and pointer jumping.

Results of an implementation of KLA using the STAPL Graph Library
show good scalability to more than 16,000 cores for a variety of important
graph algorithms. Compared to traditional approaches, KLA improves
performance of certain graph algorithms on real-world graphs by 6x or more.

Parallel Programming for the Cloud

George Almasi

IBM Research

Abstract. Love it or hate it, cloud computing is here to stay. It is the chief
enabler of the race to bottom in cost of computing resources. Non-technology
companies are relying on it to replace their IT infrastructure; many technology
companies are betting their livelihoods on it; government[s] spy on it; in short,
most everybody has a stake in cloud computing.

This talk focuses on the languages used for setting up and running a large
cloud infrastructure compute farm. The cloud software infrastructure is a large
parallel distributed computation similar to an HPC compute farm. The
programming language approach taken is however fundamentally different. I
will discuss how the words “performance”, “scalability” and “consistency”
apply to a motley collection of 100K+ lines of Python, Ruby and shell scripts,
and how the best programming practices in these languages are used to deal
with issues familiar to “real” parallel programmers: threads, locks, mutual
exclusion, producer/consumer paradigms, fault tolerance etc., meanwhile
allowing the cloud architect to keep his/her sanity while deploying and
maintaining such a system.

Keynotes

Avoiding, Hiding and Managing
Communication

Katherine Yelick

EECS Department, University of California, Berkeley, CA, USA
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract. Future computing system designs will be constrained by power
density and total system energy, and will require new programming models and
implementation strategies. Data movement in the memory system and
interconnect will dominate running time and energy costs, making communi-
cation cost reduction the primary optimization criteria for compilers and
programmers. Communication cost can be divided into latency costs, which are
per communication event, and bandwidth costs, which grow with total
communication volume. The trends show growing gaps for both of these
relative to computation, with the additional problem that communication
congestion can conspire to worsen both in practice.

In this talk I will discuss prior work an open problems in optimizing
communication, starting with PGAS languages. This involves reducing the
communication cost, through overlap, and the frequency through caching and
aggregation. Much of the compile-time work in this area was done in the
Titanium language, where strong typing and data abstraction aid in program
analysis, while UPC compilers tend to use more dynamic optimizations. There
are still many open questions on the design of languages and compilers,
especially as the communication hierarchies become deeper and more complex.

Bandwidth reduction often requires more substantial algorithmic transfor-
mations, although some techniques, such as loop tiling, are well known. These
can be applied as hand-optimizations, through code generation strategies in
autotuned libraries, or as fully automatic compiler transformations. Less
obvious techniques for communication avoidance have arisen in the so-called
“2.5D” parallel algorithms, which I will describe more generally as “.5D”
algorithms. These ideas are applicable to many domains, from scientific
computations to database operations. In addition to having provable optimality
properties, these algorithms also perform well on large-scale parallel machines.
I will end by describing some recent work that lays the foundation for
automating transformations to produce communication optimal code for
arbitrary loop nests.

Bio

Katherine Yelick is the Associate Laboratory Director for Computing Sciences at
Lawrence Berkeley National Laboratory and a Professor of Electrical Engineering and
Computer Sciences at the University of California at Berkeley. She co-invented the
UPC and Titanium languages as well as techniques for self-tuning sparse matrix

kernels. She earned her Ph.D. in EECS from MIT and has been a professor at UC
Berkeley since 1991 with a joint appointment at LBNL since 1996. She has received
multiple research and teaching awards, is an ACM Fellow and serves on numerous
advising committee, including the California Council on Science and Technology and
the National Academies Computer Science and Telecommunications Board.

XX K. Yelick

Bringing Native Code to the Web

David Sehr

Google, Mountain View, CA, USA

Abstract. In this talk we discuss some of the security concerns we’ve faced
when compiling for web applications and how compilers are used to build
systems.

Bio

David Sehr is the lead of the Native Client project at Google. David co-founded this
effort, which uses software fault isolation to run untrusted native code securely in a
web browser or other environment. He has been at Google since 2007. Prior to that he
was a Senior Principal Engineer in the compiler team at Intel Corporation. He
received his Ph.D. from the University of Illinois at Urbana-Champaign in 1992.

Contents

Programming Models

Hierarchical Computation in the SPMD Programming Model 3
Amir Kamil and Katherine Yelick

Porting Applications with OpenMP Using Similarity Analysis 20
Wei Ding, Oscar Hernandez, Tony Curtis, and Barbara Chapman

Tasks

Task-Aware Optimization of Dynamic Fractional Permissions. 39
Christoph M. Angerer

Near Optimal Work-Stealing Tree Scheduler for Highly Irregular
Data-Parallel Workloads. 55

Aleksandar Prokopec and Martin Odersky

OpenCL Task Partitioning in the Presence of GPU Contention 87
Dominik Grewe, Zheng Wang, and Michael F.P. O’Boyle

Heterogeneous Computing

Compiling a High-Level Directive-Based Programming Model for GPGPUs . . . 105
Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun,
Sunita Chandrasekaran, and Barbara Chapman

Separate Compilation in a Language-Integrated Heterogeneous Environment. . . 121
Mike Murphy, Jaydeep Marathe, Girish Bharambe, Sean Lee,
and Vinod Grover

Parametric GPU Code Generation for Affine Loop Programs 136
Athanasios Konstantinidis, Paul H.J. Kelly, J. Ramanujam,
and P. Sadayappan

Power

OSCAR Compiler Controlled Multicore Power Reduction
on Android Platform . 155

Hideo Yamamoto, Tomohiro Hirano, Kohei Muto, Hiroki Mikami,
Takashi Goto, Dominic Hillenbrand, Moriyuki Takamura,
Keiji Kimura, and Hironori Kasahara

http://dx.doi.org/10.1007/978-3-319-09967-5_1
http://dx.doi.org/10.1007/978-3-319-09967-5_2
http://dx.doi.org/10.1007/978-3-319-09967-5_3
http://dx.doi.org/10.1007/978-3-319-09967-5_4
http://dx.doi.org/10.1007/978-3-319-09967-5_4
http://dx.doi.org/10.1007/978-3-319-09967-5_5
http://dx.doi.org/10.1007/978-3-319-09967-5_6
http://dx.doi.org/10.1007/978-3-319-09967-5_7
http://dx.doi.org/10.1007/978-3-319-09967-5_8
http://dx.doi.org/10.1007/978-3-319-09967-5_9
http://dx.doi.org/10.1007/978-3-319-09967-5_9

Folklore Confirmed: Compiling for Speed ¼ Compiling for Energy 169
Tomofumi Yuki and Sanjay Rajopadhye

Debugging

Effectively Recognize Ad hoc Synchronizations with Static Analysis. 187
Le Yin

AntSM: Efficient Debugging for Shared Memory Parallel Programs 202
Jae-Woo Lee and Samuel P. Midkiff

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 217
Konstantina Mitropoulou, Vasileios Porpodas, and Marcelo Cintra

Algorithms

Optimizing the LU Factorization for Energy Efficiency on a Many-Core
Architecture . 237

Elkin Garcia, Jaime Arteaga, Robert Pavel, and Guang R. Gao

An Input-Adaptive Algorithm for High Performance Sparse Fast
Fourier Transform . 252

Shuo Chen and Xiaoming Li

Caches

Aligned Scheduling: Cache-Efficient Instruction Scheduling
for VLIW Processors . 275

Vasileios Porpodas and Marcelo Cintra

Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops . . . 292
Munara Tolubaeva, Yonghong Yan, and Barbara Chapman

Compiler Optimizations for Non-contiguous Remote Data Movement 307
Timo Schneider, Robert Gerstenberger, and Torsten Hoefler

Transactional Memory

Combining Lock Inference with Lock-Based Software Transactional Memory . . . 325
Stefan Kempf, Ronald Veldema, and Michael Philippsen

Speculative Execution of Parallel Programs with Precise Exception Semantics
on GPUs . 342

Akihiro Hayashi, Max Grossman, Jisheng Zhao, Jun Shirako,
and Vivek Sarkar

Author Index . 357

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-09967-5_10
http://dx.doi.org/10.1007/978-3-319-09967-5_10
http://dx.doi.org/10.1007/978-3-319-09967-5_11
http://dx.doi.org/10.1007/978-3-319-09967-5_12
http://dx.doi.org/10.1007/978-3-319-09967-5_13
http://dx.doi.org/10.1007/978-3-319-09967-5_14
http://dx.doi.org/10.1007/978-3-319-09967-5_14
http://dx.doi.org/10.1007/978-3-319-09967-5_15
http://dx.doi.org/10.1007/978-3-319-09967-5_15
http://dx.doi.org/10.1007/978-3-319-09967-5_16
http://dx.doi.org/10.1007/978-3-319-09967-5_16
http://dx.doi.org/10.1007/978-3-319-09967-5_17
http://dx.doi.org/10.1007/978-3-319-09967-5_18
http://dx.doi.org/10.1007/978-3-319-09967-5_19
http://dx.doi.org/10.1007/978-3-319-09967-5_20
http://dx.doi.org/10.1007/978-3-319-09967-5_20

Programming Models

Hierarchical Computation in the SPMD
Programming Model

Amir Kamil(B) and Katherine Yelick

Computer Science Division, University of California, Berkeley, USA
{kamil,yelick}@cs.berkeley.edu

Abstract. Large-scale parallel machines are programmed mainly with
the single program, multiple data (SPMD) model of parallelism. While
this model has advantages of scalability and simplicity, it does not fit
well with divide-and-conquer parallelism or hierarchical machines that
mix shared and distributed memory. In this paper, we define the recur-
sive single program, multiple data model (RSPMD) that extends SPMD
with a hierarchical team mechanism to support hierarchical algorithms
and machines. We implement this model in the Titanium language and
describe how to eliminate a class of deadlocks by ensuring alignment of
collective operations. We present application case studies evaluating the
RSPMD model, showing that it enables divide-and-conquer algorithms
such as sorting to be elegantly expressed and that team collective oper-
ations increase performance of conjugate gradient by up to a factor of
two. The model also facilitates optimizations for hierarchical machines,
improving scalability of particle in cell by 8x and performance of sorting
and a stencil code by up to 40% and 14%, respectively.

1 Introduction

The single program, multiple data (SPMD) model of parallelism, in which a
program is launched with a fixed number of threads that execute throughout
the program, is the dominant programming model for large-scale distributed-
memory machines. The model encourages “parallel thinking” throughout the
program execution, exposing the actual degree of available parallelism, natu-
rally leads to good locality, and can be implemented by simple, low-overhead
runtime systems. Both message-passing models like MPI [19] and a number of
partitioned global address space (PGAS) languages like UPC [6], Titanium [23],
and Co-Array Fortran [20] use the SPMD model by default. Previous work on
Titanium also shows that the simplicity of the SPMD model can be used to
avoid certain classes of deadlocks, statically detect data races, and perform a set
of optimizations specific to the parallel setting [15,16].

While SPMD has proven to be a valuable programming model, the restrictive-
ness of the flat SPMD model does have drawbacks. Algorithms that divide tasks
among threads or that recursively subdivide do not fit well into a model with a
fixed number of threads executing the same code. SPMD programming languages
also tend to have a relatively flat machine model, with no distinction between
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 3–19, 2014.
DOI: 10.1007/978-3-319-09967-5 1

4 A. Kamil and K. Yelick

threads that are located nearby on a large-scale machine and threads that are
further apart. This lack of awareness of the underlying machine hierarchy makes
it difficult to reason about the communication costs between threads. While some
SPMD languages do address these issues with teams or virtual topologies, they
do not do so in a structured manner that provides flexibility and performance
but prevents deadlocks.

In this paper, we address the shortcomings above by defining the recursive
single program, multiple data (RSPMD) model. This model extends SPMD with
user-defined hierarchical teams, which are subsets of threads that cooperatively
execute pieces of code. We introduce new language and library features for hier-
archical teams and describe how to ensure textual alignment of collectives, elim-
inating many forms of deadlock involving teams. Our implementation is in the
context of the Titanium programming language, and we evaluate the language
additions on four applications. We demonstrate that hierarchical teams enable
the expression of divide-and-conquer algorithms with a fixed number of threads,
that team collectives provide better performance than hand-written communica-
tion code, and that hierarchical teams allow optimizations for the communication
characteristics of modern, hierarchical parallel machines.

2 Background

The single program, multiple data (SPMD) model of parallelism consists of a
set of parallel threads that run the same program. Unlike in dynamic task paral-
lelism, the set of threads is fixed throughout the entire program execution. The
threads can be executing at different points of the program, though collective
operations such as barriers can synchronize the threads at a particular point in
the program.

As an example of SPMD code, consider the following written in the Titanium
language1:
public stat ic void main (String [] args) {
System . out . println ("Hello from thread" + Ti . thisProc ()) ;
Ti . barrier () ;
i f (Ti . thisProc () == 0)

System . out . println ("Done.") ;
}
A fixed number of threads, specified by the user on program start, all enter main.
They first print out a message with their thread IDs, or ranks, which can appear
to the user in any order since the print statement is not synchronized. Then the
threads execute a barrier, which prevents them from proceeding until all threads
have reached it. Finally, thread 0 prints out another message that appears to
the user after all previous messages due to the barrier synchronization.

Prior work has shown the benefit of assuming textual alignment of collectives
[15]. Collectives are textually aligned if all threads execute the same textual
1 Throughout this paper, we highlight team operations in a bold, green color and
collective operations in bold purple.

Hierarchical Computation in the SPMD Programming Model 5

sequence of collective operations, and all threads agree on control-flow decisions
that affect execution of collectives. Discussions with parallel application experts
indicate that most applications do not contain unaligned collectives, and most
of those that do can be modified to do without them. Our own survey of eight
NAS Parallel Benchmarks [2] using MPI demonstrated that all of them only use
textually aligned collectives. Prior work has also demonstrated how to enforce
textual collective alignment using dynamic checks [17].

The work in this paper is in the context of the Titanium language, an explic-
itly parallel dialect of Java. Titanium uses the SPMD execution model and the
partitioned global address space (PGAS) memory model; the latter allows a
thread to directly access memory on any other thread, even if they do not physi-
cally share memory. Titanium’s memory model is actually hierarchical, exposing
three levels of memory hierarchy in the type system and compiler by distinguish-
ing between thread-local, node-local, and global data.

2.1 The RSPMD Model

While Titanium does have a memory hierarchy, like most other SPMD languages,
it does not have a concept of execution hierarchy. Some languages such as UPC
are moving towards an execution model based on teams, in which the set of pro-
gram threads can be divided into smaller subsets (teams) that cooperatively run
pieces of code. MPI has communicators that allow teams of threads to perform
collective operations. Similarly, the GASNet [5] runtime layer used in Titanium
now has experimental support for teams and team collectives. Teams in MPI,
UPC, and GASNet are non-hierarchical groupings of threads and do not place
restrictions on the underlying thread structure of a team. A thread can be a part
of multiple teams concurrently, making it easy to deadlock a program through
improper use of teams. Even correct use of multiple teams can be difficult for
programmers to understand and compilers to analyze, as they must reason about
the order of team operations on each thread. Finally, teams in MPI, GASNet,
and UPC do not have a hierarchical structure, so they cannot easily reflect the
hierarchical organization of algorithms and machines.

Instead of the flat teams of MPI, GASNet, and UPC, we introduce the recur-
sive single program, multiple data (RSPMD) programming model that uses hier-
archies of teams. In this model, threads start out as part of a single, global
team. This team can then be divided into multiple subteams, each of which can
be recursively subdivided. Multiple, distinct hierarchies can be used in different
parts of a program. Hierarchies can be created to match the underlying machine
hierarchy, as in the Titanium memory model, or to match an algorithmic hierar-
chy, as in divide-and-conquer algorithms. At each point in the program, a thread
is active in only a single team, and any collective operation that it invokes oper-
ates over that team. In Sect. 3, we take care to define RSPMD language exten-
sions that enforce this restriction and prevent misuse of teams that would result
in deadlock.

6 A. Kamil and K. Yelick

2.2 Related Work

While many current languages besides the SPMD languages mentioned above
are locality-aware, only a handful of them incorporate hierarchical programming
constructs beyond two levels of hierarchy.

In the Fortress language [1], memory is divided into an arbitrary hierarchy
of regions. Data structures can be spread across multiple regions, and tasks can
be placed in particular regions by the programmer. Hierarchically tiled arrays
(HTAs) [3] allow data structures to be hierarchically decomposed to match a
target machine’s layout, which are then operated over in a data parallel manner.
Other languages such as Chapel [7] and the hierarchical place trees (HPT) [21]
extension of X10 also have the concept of hierarchical locales. While these lan-
guages may be built on SPMD runtimes, they do not present the SPMD model
of execution to the programmer.

Nested data parallelism allows hierarchical algorithms to be expressed in the
context of data parallelism. The model has been implemented in NESL [4] and
in Haskell [13]. However, irregular algorithms can be difficult to express in the
data parallel model, and nested data parallel implementations have focused on
vector and shared-memory machines rather than hierarchical machines. They
also require more complicated compilers than SPMD languages.

The Sequoia project [9] incorporates machine hierarchy in its language model.
A Sequoia program consists of a hierarchy of tasks that get mapped to the com-
putational units in a hierarchical machine. The team parallel model defined by
Hardwick [11] is a data-parallel analogue of Sequoia, where threads are arranged
into a hierarchy of teams, each of which is operated over in a data-parallel
manner. Unlike RSPMD, this model does not allow the expression of explicit
parallelism. In both Sequoia and Hardwick’s model, communication is restricted
to between parent and child tasks or teams, making the models unsuitable for
many applications written in SPMD and PGAS languages.

The hierarchical single program, multiple data (HSPMD) model is in some
sense the inverse of the RSPMD model. In RSPMD, an initial, fixed set of threads
is recursively subdivided into smaller teams of cooperating threads. In HSPMD,
on the other hand, there is only a single thread initially, and each thread can
spawn a new set of cooperating threads. The Phalanx programming model uses
a version of HSPMD [10].

3 RSPMD Language Extensions

In this section, we define language extensions for Titanium to implement the
RSPMD model. In designing the new additions to the Titanium language, we had
a few goals in mind for the extensions to satisfy: safety, flexibility, composability,
and performance.

1. Safety. Team implementations in other SPMD languages and frameworks do
not generally impose any restrictions on their use. This can lead to circular
dependencies in team operations, resulting in deadlock. For example, a set

Hierarchical Computation in the SPMD Programming Model 7

of threads may attempt to perform a collective operation on one team, while
other threads attempt to perform a collective operation on a different team; if
the two teams overlap, then this situation results in deadlock. The Titanium
team extensions should prevent such dependencies, as well as ensure that
team collectives are textually aligned on all threads in the relevant team, as
is done for existing global collectives.

2. Flexibility. Many applications make use of different thread groupings at
different points in the program, such as a matrix-vector multiplication that
requires both row and column teams. The team mechanism should be flexible
enough to support such cases while still providing safety guarantees.

3. Composability. Existing code running in the context of a particular team
should behave as if the entire world consisted of just the threads in that team,
with thread ranks as specified by the team. This is to facilitate composition
of different tasks, so that a subset of threads can be assigned to each of them.
At the same time, the team mechanism should make it possible to interact
with threads outside of an assigned team if necessary.

4. Performance. Team operations should not adversely affect application per-
formance. This requires that team usage operations, which may be invoked
many times throughout an application run, be as lightweight as possible,
even at the expense of team creation operations that are called much less
frequently.

3.1 Team Representation

To represent a team hierarchy, we introduce a new Team object, which represents
a group of threads and contains references to parent and child teams, result-
ing in a hierarchy of teams. Like MPI or GASNet groups, Team objects specify
team structures separately from their usage; this is useful when a program uses
multiple different team structures or repeatedly uses the same structure, as in
Sect. 4.2, and also allows team data structures to be manipulated as first-class
objects.

Knowledge of the physical layout of threads in a program allows a program-
mer to minimize communication costs, so a new function Ti.defaultTeam()

returns a special team that corresponds to the mapping of threads to the
machine hierarchy, grouping together threads that share memory. The invoca-
tion Ti.currentTeam() returns the current team in which the calling thread is
participating.

Figure 1(a) shows the team hierarchy created by the following code, when
there are a total of twelve threads:

Team t = new Team () ;
t . splitTeam (3) ;
int [] [] ids = new int [] [] {{0 , 2 , 1} , {3}} ;
for (int i = 0 ; i < t . numChildren () ; i++)

t . child (i) . splitTeamRelative (ids) ;

Each box in the diagram corresponds to a node in the team tree, and the entries
in each box refer to member threads by their global ranks.

8 A. Kamil and K. Yelick

The code above first creates a team consisting of all the threads and then
calls the splitTeam method to divide it into three equally-sized subteams of four
threads each. It then divides each of those subteams into two uneven, smaller
teams. The splitTeamRelative call divides a team into subteams using IDs
relative to the parent team. In this case, each child u of team t is split into two
smaller teams, with threads 0, 2, and 1 of u assigned to the first subteam and
thread 3 of u assigned to the second. This behavior allows the same code to be
used to divide each of the three children of t, which would not be the case if
splitTeamRelative used global IDs.

Fig. 1. Examples of (a) a team hierarchy and (b) blocked matrix-vector multiplication.

The Team class provides a few other ways of generating subteams, though we
omit them for brevity. In addition, it includes numerous methods to query team
properties; for example, the class provides a myChildTeam method for determining
which child team contains the calling thread. Similarly, the teamRank method
returns the rank of a team in its parent, which can be used to write code that
is conditional on a team’s rank.

3.2 New Language Constructs

In designing new language constructs that make use of teams, we identified
two common usage patterns for grouping threads: sets of threads that perform
different tasks and sets of threads that perform the same operation on different
pieces of data. We introduce a new construct for each of these two patterns.

Task Decomposition. In task parallel programming, it is common for
different components of an algorithm to be assigned to different threads. For
example, a climate simulation may assign a subset of all the threads to model
the atmosphere, another subset to model the oceans, and so on. Each of these
components can in turn be decomposed into separate parts, such as one piece
that performs a Fourier transform and another that executes a stencil. Such
a decomposition does not directly depend on the structure of the underlying
machine, though threads can be assigned based on machine hierarchy.

Task decomposition can be expressed through the following partition state-
ment that divides the current team of threads into subteams:

partition(T) { B0 B1 . . . Bn−1 }

Hierarchical Computation in the SPMD Programming Model 9

A Team object (corresponding to the current team at the top level) is required as
an argument. The first child team executes block B0, the second block B1, and
so on. It is an error if there are fewer child teams than partition branches, or if
the given team arguments on each thread in the current team do not have the
same description of child teams. If the provided team has more than n subteams,
the remaining subteams do not participate in the partition construct. Once a
thread exits a partition, it rejoins its previous team.

As a concrete example, consider a climate application that uses the team
structure in Fig. 1(a) to separately model the ocean, the land, and the atmosp-
here. The following code would be used to divide the program:

partition (t) {
{ model_ocean () ; }
{ model_land () ; }
{ model_atmosphere () ; }

}
Threads 0 to 3 would then execute model_ocean(), threads 4 to 7 would run
model_land(), and threads 8 through 11 would model the atmosphere.

Since partition is a syntactic construct, task structure can be inferred directly
from program structure. This simplifies program analysis and improves under-
standability of the code.

Data Decomposition. In addition to a hierarchy of distinct tasks, a program-
mer may wish to divide threads into teams according to algorithmic or locality
considerations, but where each team executes the same code on different sets of
data. Such a data decomposition can be either machine dependent or required
by an algorithm, and both the height and width of the hierarchy may differ
according to the machine or algorithm.

Consider a parallel matrix-vector multiplication as in Fig. 1(b), where the
matrix is divided in both dimensions among 8 threads, with four thread columns
and two rows. To compute the output vector, threads 0 to 3 must cooperate in
a reduction to compute the first half of the vector, while threads 4 to 7 must
cooperate to compute the second half. Both sets of threads perform the same
operation but on different pieces of data.

A new teamsplit statement with the following syntax allows such a data-
driven decomposition to be created:

teamsplit(T) B

The parameter T must be a Team object (corresponding to the current team at the
top level), and as with partition, all threads must agree on the set of subteams.
The construct causes each thread to execute block B with its current team
set to the thread’s subteam specified in T , so that thread ranks and collective
operations in B are with respect to that subteam. As mentioned above, each
subteam also has a rank, which can be used to determine the set of data that
the subteam is to operate on.

10 A. Kamil and K. Yelick

As an example, the following code executes reductions across the rows of a
matrix:
teamsplit (t) {

Reduce .add(data [t . myChildTeam () . rank ()] , myData) ;
}
The reduction executes over the current team inside the teamsplit on each thread,
which is its associated child team of t. As a result, data from threads 0 to 3 are
reduced to produce a result for team 0, and data from threads 4 to 7 are combined
into a result for team 1.

It may be apparent that the partition statement can be implemented in terms
of teamsplit, with teams executing code based on their ranks. While this is true,
we decided that separate constructs for task and data decomposition would
result in cleaner and more readable code than a single construct combined with
branching.

Common Features. Both the partition and teamsplit constructs are dynami-
cally scoped, changing the team in which a thread is executing within that scope.
This implies that at any point in time, a thread is executing in the context of
exactly one team (which may be a subteam of another team and have child
teams of its own). Given a particular team hierarchy, entering a teamsplit or
partition statement moves one level down in the hierarchy, and exiting a state-
ment moves one level up. Statements can be nested to make use of multi-level
hierarchies, and recursion can be used to operate on hierarchies that do not have
a pre-determined depth. Consider the following code, for example:

public void descendAndWork (Team t) {
i f (t . numChildren () != 0)

teamsplit (t) { descendAndWork (t . myChildTeam ()) ; }
else

work () ;
}
This code descends to the bottom of an arbitrary team hierarchy before per-
forming work. A concrete example that uses this paradigm is the merge sort in
Sect. 4.2.

In order to meet the composability design goal, the thread IDs returned by
Ti.thisProc() are now relative to the team in which a thread is executing, and the
number of threads returned by Ti.numProcs() is equal to the size of the current
team. Thus, a thread ID is always between 0 and Ti.currentTeam().size()−1,
inclusive. A new function Ti.globalNumProcs() returns the number of threads in
the entire program, and Ti.globalThisProc() returns a thread’s global rank.

Collective communication and synchronization now operate over the cur-
rent team. Both the partition and the teamsplit construct are also considered
collective operations, so they must be textually aligned in the program. The
combination of the requirement that all threads must agree on the set of sub-
teams when entering a partition or teamsplit construct, dynamic scoping of the

Hierarchical Computation in the SPMD Programming Model 11

constructs, and textual collective alignment ensures that no circular dependen-
cies exist between different collective operations. In the next section, we describe
how textual collective alignment is enforced.

3.3 Alignment of Collectives

With the introduction of hierarchical teams, alignment of collectives must be
checked dynamically at runtime. The full details of dynamic alignment checking
are described elsewhere [14,17,18], but we will summarize the main ideas here.

Enforcement of collective alignment is divided into two phases, a local track-
ing phase and a collective checking phase. In the tracking phase, each thread
records the control flow decisions that it makes that may affect execution of
a collective. The Titanium compiler already statically computes which condi-
tionals may do so; such conditionals are a small subset of all conditionals in
a program, so the cost of tracking is low. Memory usage and communication
costs can be minimized by computing a running hash of all such control flow
decisions.

The checking phase occurs when a thread reaches a collective operation. Prior
to entering the collective, it waits for a broadcast of the alignment hash from
thread 0 in its current team. Once it receives thread 0’s hash, it compares it to
its own and generates an error if the two hashes do not match. Otherwise it
proceeds with the collective operation. If no thread generates an error, then all
agree on the hash, implying that they also agree on all control flow decisions
that affect the collective operation, guaranteeing textual alignment.

Dynamic alignment checking avoids deadlock by requiring that every collec-
tive operation be preceded by an alignment check. This check itself executes a
collective broadcast over a thread’s current team, but this collective is the same
on all the threads in the team, so it will never deadlock as long as a check is also
performed when changing team contexts.

Previous work has demonstrated that the cost of dynamic alignment tracking
and checking is negligible in actual programs [17]. In addition, an optional debug-
ging mode for alignment checking is provided, in which the control flow history
is compared between two threads whose hashes mismatch, and the earliest mis-
match is reported. This mode also does not measurably degrade performance.
Thus, not only is deadlock avoided with low overhead, but a meaningful error is
generated that directs the programmer to the source of the error. This may be
far from the point of detection, so alignment checking can facilitate debugging.

4 Application Case Studies

We now present case studies of four applications we used to guide the design
of the RSPMD language extensions and evaluate their effectiveness: conjugate
gradient, parallel sort, particle in cell, and stencil.

12 A. Kamil and K. Yelick

4.1 Test Platforms

We tested application performance on two machines, a Cray XE6 and an IBM
iDataPlex, both located at the National Energy Research Scientific Computing
Center (NERSC) at the Lawrence Berkeley National Laboratory (Berkeley Lab).
The Cray XE6, called Hopper, consists of two twelve-core AMD MagnyCours
2.1 GHz processors per node, each of which consists of two six-core dies. Each
die is referred to as a non-uniform memory access (NUMA) node, since each die
has fast access to its own memory banks but slower access to the other banks.
The IBM iDataPlex system, known as Carver, is a cluster of eight-core, 2.67 GHz
Intel Nehalem processors connected by a 4X QDR InfiniBand network. Memory
considerations limited us to 32 nodes for most benchmarks and prevented larger
problem sizes from being run on the IBM machine.

In most of the benchmark applications, we focused on optimizing distributed
performance. As a result, we used performance on a single shared-memory node
or NUMA node as the baseline for our experiments. Optimizing execution solely
on shared-memory multicores is beyond the scope of this paper.

4.2 Algorithmic Hierarchy

We began by examining two algorithms that are difficult to express in the flat
SPMD model: conjugate gradient and merge sort.

Conjugate Gradient. The conjugate gradient (CG) application is one of the
NAS parallel benchmarks [2]. It iteratively determines the minimum eigenvalue
of a sparse, symmetric, positive-definite matrix. The matrix is divided in both
dimensions, and each thread receives a contiguous block of the matrix, with
threads placed in row-major order. The application performs numerous sparse
matrix-vector multiplications, as described previously in Sect. 3.2. In addition to
the reductions mentioned there, in each iteration of the algorithm, the elements
of the source vector must be distributed to the threads that own a portion of
the corresponding matrix column. Thus, team collective operations are required
over both rows and columns of threads.

Prior to our language extensions, Titanium only supported collectives over
all threads in a program. Thus, the original Titanium implementation of CG
[8] required hand-written reductions over subsets of threads. These reductions
required extensive development effort to implement, test, and optimize.

The team implementation of CG, on the other hand, makes use of both row
and column teams. The existing CG code already computes the row and column
number of each thread; we use them to divide the threads into row teams with
a call to splitTeamAll(), which takes in the child team number and rank for the
calling thread as arguments. We then use makeTransposeTeam(), which swaps
the child team number and rank for each thread, to create column teams from
row teams.

Hierarchical Computation in the SPMD Programming Model 13

rowTeam = new Team () ;
rowTeam . splitTeamAll (rowPos , colPos) ;
columnTeam = rowTeam .makeTransposeTeam () ;

We use all-to-one reductions across each row team to send the result of that
row team to a single thread in the team. We then use a broadcast to send data
from that thread to all threads in the same column. Each reduction or broadcast
requires only a single library call, as shown below.

teamsplit (rowTeam) { // Reduce row r e s u l t s to one thread .
Reduce .add(allResults , myResults , rowTarget) ;

}
. . . // Perform requ i r ed cop i e s a c r o s s columns .
teamsplit (columnTeam) { // Broadcast from column source .

myOut . vbroadcast (columnSource) ;
}
The CG application demonstrates the importance of teams for collective

operations among subsets of threads. It also illustrates the need for multiple
team hierarchies and for separating team creation from usage, as the cost of
creating teams is amortized over all iterations of the algorithm.

Figure 2(a) compares the performance of the team-based version of CG to
the original hand-rolled implementation on a Cray XE6 and an IBM iDataPlex.
We show strong scaling (fixed problem size) results for the Class B problem size.
(Both axes in the figures use logarithmic scale, so ideal scaling would appear
as a line on the graphs.) As expected, the replacement of hand-written all-
to-all reductions with optimized GASNet all-to-one reductions and broadcasts
improves performance over the original version. We achieve speedups over the
original code of 1.6x for Class B at 128 threads on the XE6. On the IBM iDat-
aPlex, Class B only scales until 64 threads, at which point the team version is
2.1x as fast as the original code.

We also ran experiments using the Class D problem size, though the graph
is omitted for brevity. On the XE6, the team-based version achieves a speedup
of 1.5x over the original code at 1024 threads. On the IBM machine, Class D
achieves a speedup of 1.6x at 256 threads, at which point the original version
stops scaling, and 2.7x at 512 threads.

Shared-Memory Merge Sort. Merge sort is a canonical example of a divide-
and-conquer algorithm. An initial set of keys is recursively divided in half, until
some threshold is reached. The subsets are sorted individually and then recur-
sively merged with each other until all keys are in a single sorted set. This algo-
rithm can be parallelized on a shared-memory machine by forking a new thread
each time a set of keys is divided in two. However, since the SPMD model does
not allow new threads to be created, merge sort is difficult to express in the flat
SPMD model.

In the RSPMD model, however, merge sort is easily expressible by starting
with a team of all threads and then recursively dividing both the set of keys and
the team until only a single thread remains. Then each thread sequentially sorts

14 A. Kamil and K. Yelick

its keys, and the sorted subsets are merged in parallel by assigning each merge
operation to one thread from the subsets that are to be merged.

In order to express merge sort in this way, a team hierarchy is constructed
that consists of a binary tree, in which each node contains half the threads of
its parent. The following code constructs such a hierarchy, using the splitTeam

library method to divide a team in half.

stat ic void divideTeam (Team t) {
i f (t . size () > 1) {

t . splitTeam (2) ;
divideTeam (t . child (0)) ;
divideTeam (t . child (1)) ;

}
}
Then each thread walks down to the bottom of the team hierarchy, sequentially
sorts its keys, and then walks back up the hierarchy to perform the merges.
In each internal team node, a single thread merges the results of its two child
nodes before execution proceeds to the next level in the hierarchy. The following
code performs the entire algorithm. (The sequential sort and merge functions
are omitted for brevity.)
stat ic void sortAndMerge (Team t) {

i f (Ti . numProcs () == 1)
allRes [myProc] = SeqSort . sort (myData) ;

else {
teamsplit (t) { sortAndMerge (Ti . currentTeam ()) ; }
Ti . barrier () ; // ensure p r i o r work complete
i f (Ti . thisProc () == 0)

allRes [myProc] = merge (myRes () , otherRes () , newRes ())
}

}
As illustrated in the code above, the shared-memory sorting algorithm is very

simple to implement using the new team constructs. The entire implementation
is only about 90 lines of code (not including test code and the sequential quicksort
from the Java standard library) and took just two hours to write and test. This
sort is used as part of the larger distributed sort implementation below, so we
will defer performance results until then.

4.3 Machine Hierarchy

We now turn our attention to optimizing algorithms for hierarchical machines.
We examined three algorithms: distributed sort, stencil, and particle in cell.

Distributed Sort. The first algorithm we examined for hierarchical optimiza-
tions was distributed sorting, specifically the sample sort algorithm [12] on 32-bit
integers. This algorithm consists of two phases: an initial phase that computes
pivots based on a sample of all the keys and then redistributes the keys among
all threads according to the pivots, and a second phase that sorts keys locally.

Hierarchical Computation in the SPMD Programming Model 15

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128

Ti
m

e
(s

)

Cores

NAS CG Class B Total Time

Cray original
Cray team
IBM original
IBM team

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512M
ill

io
ns

 o
f K

ey
s/

Th
re

ad
/S

ec
on

d

Nodes (6 Cores/Node Cray, 8/Node IBM)

Distributed Sort
(10M Keys/Core Cray, 1M IBM)

Cray flat
Cray composed
Cray hierarchical
IBM flat
IBM hierarchical

Fig. 2. (a) Strong scaling performance of conjugate gradient; (b) distributed sort per-
formance, with a constant number of keys per thread

We explored three different versions of sample sort. The first is a flat version
that is purely distributed, ignoring the hierarchical structure of the machine.
This version uses sample sort across all threads and sequential sorting on each
individual thread. In this version, key redistribution requires n(n− 1) messages
where n is the total number of threads. The second is a composed version that
uses sample sort across nodes rather than threads, but then uses shared-memory
merge sort on each node. Here, key redistribution requires m(m− 1) messages,
where m is the number of nodes. However, the composed version uses only a
single thread per node for sampling and redistribution, so that it is equivalent to
composing a communication library such as MPI with a shared-memory library
such as Pthreads. The final version is hierarchical ; it improves on the composed
version by using all available parallelism in the sample and redistribution phase.
The RSPMD model enable this version to be expressed, since it exposes hierarchy
in the context of a single model.

The composed version, though it does not take full advantage of the hierarchy
exposed by RSPMD, does illustrate its composability features. The following is
the code required to implement the composed version, where sampleSort is the
sampling and redistribution code from the flat sample sort:

Team team = Ti .defaultTeam () ;
Team oTeam = team .makeTransposeTeam () ;
partition (oTeam) { { sampleSort () ; } }
teamsplit (team) { keys = SMPSort . parallelSort (keys) ; }

The RSPMD team constructs make this algorithm trivial to implement, requir-
ing only a few lines of code and 5 min of development time. The code calls
Ti.defaultTeam() to obtain a team in which threads are divided according to
which threads share memory. It then uses the makeTransposeTeam() library
call to construct a transpose team in which each subteam contains one thread

16 A. Kamil and K. Yelick

from each node. The partition construct is then used to perform the sampling
and redistribution on one of those subteams, after which the node teams exe-
cute the shared-memory sort. The team hierarchies in sampleSort() and in the
shared-memory sort compose cleanly, without any modifications required.

Figure 2(b) compares the number of keys sorted per thread per second in
the different versions of distributed sort. On both machines, the hierarchical
version scales better than the flat version, resulting in a speedup of 1.4x for the
hierarchical version over the flat version on 512 NUMA nodes (3072 cores) of
the XE6 and 1.2x on 32 nodes (256 cores) of the IBM iDataPlex. Since sorting
in general is not a linear time algorithm, the decrease in efficiency shown in
Fig. 2(b) at higher numbers of threads is not unexpected.

As can be seen in Fig. 2(b), the composed version performs significantly worse
than the flat and hierarchical versions on the Cray machine. Since the composed
version is equivalent to composing distributed and shared-memory libraries, this
demonstrates the importance of exposing hierarchy within a single model to
obtain optimal performance.

Stencil. As another example of comparing the composition of distributed and
shared-memory code to a true hierarchical version, we examined a stencil bench-
mark. A stencil is a nearest-neighbor computation over a structuredn-dimensional
grid and consists of multiple iterations in which the value of each grid point is
updated as a function of its previous value and those of its neighboring points. In
this benchmark, we execute a seven-point stencil over a three-dimensional grid.
Since we are primarily concerned with optimizing distributed communication, we
use a näıve, untuned shared-memory version of stencil as part of our experiments.

We compared two implementations of distributed stencil. As with distributed
sort, the composed version uses a single Titanium thread per node to perform
communication and multiple threads per node to perform computation in the
external library. We also wrote a hierarchical version that uses multiple threads

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128 256 512

Ti
m

e
(s

)

Nodes (6 Cores/Node Cray, 8/Node IBM)

Distributed Stencil
(2563 Points/Node, 100 Timesteps)

Cray composed
Cray hierarchical
IBM composed
IBM hierarchical

0.25

0.5

1

2

4

8

16

32

1 2 4 8 16 32 64 128 256

Ti
m

e
(s

)

Nodes (6 Cores/Node Cray, 8/Node IBM)

Distributed Particle in Cell
(2563 Sphere, 100 Timesteps)

Cray flat
Cray hierarchical
IBM flat
IBM hierarchical

Fig. 3. (a) Weak scaling performance of stencil; (b) strong scaling performance of
particle in cell.

Hierarchical Computation in the SPMD Programming Model 17

for both communication and computation. Figure 3(a) shows weak scaling (con-
stant problem size per thread) performance of the stencil variants. On both
machines, the hierarchical version outperforms the composed variant at higher
node counts, improving performance by up to 7 % on the Cray machine and 14 %
on the iDataPlex.

Particle in Cell. The final benchmark we examined was particle in cell, which
models the communication pattern in one phase of a heart simulation written
in Titanium [22]. In this phase, a set of particles interact with an underlying
three-dimensional fluid grid. We model this interaction by updating each fluid
cell with a value from each of the particles that the cell contains. Both particles
and the fluid grid are divided among the threads; however, a thread’s particles
are not generally located in its portion of the fluid, requiring communication to
perform updates.

We compared two versions of particle in cell. The flat version divides the fluid
grid and particles between each thread, which separately process their fluid cells
and particles, performing any required communication directly between different
threads. In the hierarchical version, the fluid and particles are divided among
nodes, and the threads in a node cooperatively process the node’s fluid cells and
particles. In this version, communication is aggregated between nodes.

Figure 3(b) compares the performance of the two versions of particle in cell on
a 2563 fluid grid with particles on the surface of a sphere. The flat algorithm does
not scale beyond 16 nodes on the Cray machine and 8 nodes on the IBM machine,
while the hierarchical algorithm scales up to 128 and 32 nodes, respectively. On
the other hand, the flat algorithm performs about twice as fast as the hierarchical
version up to the former’s scaling limits. This is largely due to the fact that the
Titanium and GASNet runtimes are not optimized for shared memory. As a
result, though the hierarchical algorithm does scale more, it requires four times
as many processors to improve running time beyond the best performance of the
flat algorithm.

5 Conclusion

In this paper, we presented RSPMD, an extension of SPMD that enables hier-
archical programming in an explicitly parallel model. We designed RSPMD
extensions to the Titanium language, combining a team data structure and
dynamically scoped usage constructs to prevent erroneous usage of teams. We
also described how to enforce textual alignment of team collectives at runtime,
further avoiding errors in using team collectives.

We implemented four benchmarks using the RSPMD model: conjugate gra-
dient, sorting, stencil, and particle in cell. We demonstrated that hierarchical
teams enable divide-and-conquer algorithms such as sorting to be implemented
elegantly, and that team collectives provide better performance and expressive-
ness than hand-written alternatives in conjugate gradient. We also demonstrated
that hierarchical teams enable optimizations for hierarchical machines to be

18 A. Kamil and K. Yelick

written in the context of a single programming model, enabling increased per-
formance in sorting and better scaling in particle in cell. We further showed that
our hierarchical model beats the standard mechanism of combining a distrib-
uted library with a shared-memory library in both sorting and stencil. These
results demonstrate that the RSPMD model provides significant expressiveness
and performance advantages over the flat SPMD model.

References

1. Allen, E., et al.: The Fortress language specification, Version 0.866. Sun Microsys-
tem Inc. (2006)

2. Bailey, D., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3),
63–73 (1991)

3. Bikshandi, G., et al.: Programming for parallelism and locality with hierarchically
tiled arrays. In: PPoPP ’06: Proceedings of the Eleventh ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (2006)

4. Blelloch, G.E.: NESL: a nested data-parallel language (3.1). Technical report CMU-
CS-95-170, Carnegie Mellon University (1995)

5. Bonachea, D.: GASNet specification, v1.1. Technical report UCB/CSD-02-1207,
University of California, Berkeley (2002)

6. Carlson, W., et al.: Introduction to UPC and language specification. Technical
report CCS-TR-99-157, IDA Center for Computing Sciences (1999)

7. Cray Inc.: Chapel Specification 4 (2005)
8. Datta, K., Bonachea, D., Yelick, K.A.: Titanium performance and potential: an

NPB experimental study. In: Ayguadé, E., Baumgartner, G., Ramanujam, J.,
Sadayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 200–214. Springer, Hei-
delberg (2006)

9. Fatahalian, K., et al.: Sequoia: programming the memory hierarchy. In: Proceedings
of the ACM/IEEE SC 2006 Conference on Supercomputing, SC ’06 (2006)

10. Garland, M., Kudlur, M., Zheng, Y.: Designing a unified programming model for
heterogeneous machines. In: Supercomputing 2012 (2012)

11. Hardwick, J.C.: Practical parallel divide-and-conquer algorithms. Ph.D. thesis,
Carnegie Mellon University (1997)

12. Huang, J., Chow, Y.: Parallel sorting and data partitioning by sampling. In: 7th
International Computer Software and Applications Conference (1983)

13. Peyton Jones, S.: Harnessing the multicores: nested data parallelism in Haskell.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 138–138. Springer,
Heidelberg (2008)

14. Kamil, A.: Single program, multiple data programming for hierarchical computa-
tions. Ph.D. thesis, University of California, Berkeley (2012)

15. Kamil, A.,Yelick, K.: Concurrency analysis for parallel programs with textually
aligned barriers. In: Proceedings of the 18th International Workshop on Languages
and Compilers for Parallel Computing (2005)

16. Kamil, A., Yelick, K.A.: Hierarchical pointer analysis for distributed programs. In:
Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 281–297. Springer,
Heidelberg (2007)

17. Kamil, A., Yelick, K.: Enforcing textual alignment of collectives using dynamic
checks. In: Proceedings of the 22nd International Workshop on Languages and
Compilers for Parallel Computing (2009)

Hierarchical Computation in the SPMD Programming Model 19

18. Kamil, A., Yelick, K.: Hierarchical additions to the SPMD programming model.
Technical report UCB/EECS-2012-20, University of California, Berkeley (2012)

19. Message Passing Interface Forum. MPI: A message-passing interface standard, ver-
sion 1.1 (1995)

20. Numrich, R., Reid, J.: Co-array Fortran for parallel programming. Technical report
RAL-TR-1998-060, Rutherford Appleton Laboratory (1998)

21. Yan, Y., et al.: Hierarchical place trees: a portable abstraction for task parallelism
and data movement. In: Proceedings of the 22nd International Workshop on Lan-
guages and Compilers for Parallel Computing (2009)

22. Yau, S.M.: Experience in using Titanium for simulation of immersed boundary
biological systems. Master’s thesis, University of California, Berkeley (2002)

23. Yelick, K., et al.: Titanium: a high-performance Java dialect. In: Workshop on Java
for High-Performance Network Computing (1998)

Porting Applications with OpenMP Using
Similarity Analysis

Wei Ding1,2(B), Oscar Hernandez1,2, Tony Curtis1,2,
and Barbara Chapman1,2

1 Department of Computer Science, University of Houston, Houston, USA
2 Oak Ridge National Laboratory, Oak Ridge, USA

{wding3,tonyc,chapman}@cs.uh.edu,
oscar@ornl.gov

Abstract. Computer architecture has undergone dramatic changes due
to technology innovation. Some emerging architectures, such as GPUs
and MICs also have been successfully used for parallel computation in
the today’s HPC field. Nowadays, people frequently have to port appli-
cation to a new architecture or system and to expand its functional-
ity for a better performance while in the meantime to meet the new
hardware environment need. However, many scientific application legacy
codes have a relative large size and long development cycle, so it’s a very
challenging job to port legacy codes to a new environment. And current
codes porting process is a manual, time-consuming, expensive and error-
prone process, which requires a team of people work together. Barely any
useful tools can be used to ease the porting process in High Performance
Computing (HPC). In this paper, we present a tool called Klonos, which
is designed for assisting scientific application porting. Based on similarity
analysis of code syntax and cost-model provided metrics, we are able to
find codes which can be optimized similarly without the need of profil-
ing the codes. The proposed porting plan can systematically guide users
for selecting subroutines in a way which maximizes the reuse of similar
porting strategy. We evaluate Klonos by applying it to a real scientific
application porting to a shared memory environment using OpenMP.
According to our experiment result, which shows that Klonos is very
accurate to detect similar codes which can be ported similarly.

1 Introduction

HPC systems have been continually evolving, driven by technology innovation in
computer hardware, operating systems, network protocols, and system libraries.
As a result, applications that have been developed and tuned for older systems
often require significant code changes to utilize the capabilities of the newer
systems. The process of code changes for a new system is called software porting.

This work was funded by the ORAU/ORNL HPC grant. This research used resources
of the Leadership Computing Facility at Oak Ridge National Laboratory and NICS
Nautilus supercomputer for the data analysis.

c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 20–35, 2014.
DOI: 10.1007/978-3-319-09967-5 2

Porting Applications with OpenMP Using Similarity Analysis 21

Fig. 1. Accelerator/Co-Processor Treemap of Top500 released in November 2012

In software engineering, software porting refers to the process of adapting soft-
ware originally designed for one computing environment so that an executable
program can be created for a different computing environment [28]. This process
is a task that frequently arises in HPC, and it poses particular challenges in this
domain.

On the roadmap toward exascale computing, a major challenge with respect
to supercomputer design is the need to provide higher levels of computational
power at dramatically lower rates of power consumption. The use of GPUs as co-
processors is rapidly becoming a popular and powerful way to perform parallel
computation. In Fig. 1, according to the Treemap (Accelerator/Co-Processor)
of the Top500 List [19], released in November 2012, we see that the emerging
co-processor such as GPUs and MICs are playing a greatly increased role in the
supercomputers listed in the Top500. On the one hand, these co-processor- (or
vector processor-) based heterogeneous systems provide more computation and
power balance, but on the other hand, complicate programming models, which
makes application porting more challenging than ever.

The Titan supercomputer at Oak Ridge National Laboratory is equipped
with NVIDIA graphics processing units (Kepler K20x GPUs). In order to migrate
codes to Titan, scientists need to know how to exploit not only the large number
of CPU cores, but also the GPUs that are configured on the nodes. They will
need to create new computational kernels with suitable granularity to exploit
the GPUs, while minimizing costly data movement, exploiting complex memory
subsystems, and mapping work to balance the overall load. They may need to
use a hybrid programming model, such as adding OpenMP [1,3] and accelerator
directives [12,13] to MPI applications [27], or they may introduce Pthreads [4]
or an API designed for accelerators [22,23].

CUDA and OpenCL are two popular programming APIs specifically used for
GPU programming, however programmers often have to restructure and write
kernels for running regions of code on GPU. Worse still, the syntax of CUDA or

22 W. Ding et al.

OpenCL code is quite different from the traditional C and Fortran languages,
which makes it almost impossible for programmers with no CUDA or OpenCL
background to understand and maintain the code. Directives-based program-
ming models like OpenMP, HMPP, PGI and OpenACC for GPU programming
that can greatly increase programming productivity, have been proposed to face
such challenges. Reference [14] have explored and compared popular program-
ming models used for GPUs, showing that a directives-based approach is able to
achieve similar or even better performance compared to CUDA and OpenCL. By
raising the level of abstraction, directives-based models will enable incremental
development and increase programming productivity, fast prototyping and retar-
getability for future new development environment and hardware. Reference [18]
summarizes the authors’ experience of porting a simulation of turbulent combus-
tion application to a GPU by using OpenACC. Although directives-based pro-
gramming models to some extent ease the programmability burden, the whole
porting process is still manual, time-consuming and error-prone.

Profiling tools are used to find computationally intensive code regions and
then offload them to GPUs, followed by either a manual or compiler-driven
restructuring for performance tuning. The quality of code porting relies solely
on the user’s programming experience. There are very few tools that can assist
the porting process. The whole process requires a lot of work, and worse still,
neither programmers or compilers can reuse previous experience for structurally
similar code. In order to ease the process of porting software to a new system, we
have created a tool called Klonos, which is able to provide a porting plan based
on similarity analysis. This tool allows programmers and compilers to reuse port-
ing experience as much as possible during the porting process. In this paper, we
use the OpenMP programming model as an example to show how we can apply
Klonos for porting serial code to a shared-memory programming environment.
The main contributions of this paper are that: (1) we adapt cost-model provided
metrics to capture code similarity in terms of optimization or porting, which
saves the trouble of running the application for profiling information collection;
(2) we propose a method for combining syntactic and cost-model-provided met-
rics clusters which aggregate similar subroutines that can be ported similarly.
(3) we validate the Klonos tool by applying it to a large scientific application
that is in production use. Our experiments shows that Klonos is an accurate
tool for detecting subroutines that can benefit from similar porting strategies,
and which reuse the programmers’ or compiler’s porting experience as much as
possible. For clarity, Table 1 explains terms used in this paper.

This paper is organized as follows: Sect. 2 summarizes related work for the
software porting. Section 3 describes the framework of Klonos and the cost model
metrics which we introduced for detecting subroutine similarity in terms of port-
ing or optimization. Section 4 evaluates Klonos tool for porting a real application
called GenIDLEST to a shared programming environment by using OpenMP.
Section 5 is the conclusion and future work.

Porting Applications with OpenMP Using Similarity Analysis 23

Table 1. Terminology used in the Klonos tool

Term Description

Similarity A percentage score used to describe the match between
a pair of sequences

Similarity distance matrix A matrix (two-dimensional array) containing the
distances, taken pairwise, of a set of subroutines.
Matrix size is N×N, N is the number of subroutines

Family distance tree A tree structure which is constructed based on the
similarity distance matrix. Inside the tree,
subroutines with similar code structure will be
grouped into one sub-tree

Porting strategy A solution for adapting a program to a different or new
platform while guaranteeing program correctness and
efficiency

Porting cluster A group of clusters with subroutines in each cluster
share the same syntactic and cost-model provided
metrics clusters

Porting plan A process of making plans for deciding the porting
orders among the porting groups to a new platform
in order to reuse porting strategies as much as
possible

2 Related Work

Various techniques are used to port software from one environment to another.
Two of these techniques used in the evolution of legacy codes are software refac-
toring and re-engineering. Additionally, a directives-based approach is used to
guide the compiler while minimizing code changes and retaining the original
syntax. With the help of code transformation tools, such restructuring work can
be carried out (semi-)automatically, greatly improving work productivity.

Software refactoring is an important technique for the development and evo-
lution of complex software systems. This technology saves development time and
effort by reusing much of the existing design and code. Reference [20] uses some
design tactics that assist users when evolving code from an existing software sys-
tem, rather than starting from scratch. However based on their proposed app-
roach, the onus is on the programmer to build a case model and object-oriented
design model. The development team must also go manually through a discovery
process to determine the structure of the code [8]. The discovery process is difficult
and time-consuming, and it also not trivial to determine architecture features from
the source code. Software re-engineering is the examination, analysis and alterna-
tion of an existing software system to reconstitute it for a new system. But this
technique usually comes with extremely high manual re-engineering costs, and
it’s hard to get a global view for code, data, process re-engineering. Additionally

24 W. Ding et al.

the re-engineered system might perform inadequately. We still needs a tool to
accurately provide us a code review.

A directives-based programming approach can be used to increase program-
mability and keep code concise. OpenMP serves as the de facto directives-
based standard for parallel programming on shared memory systems, and is now
deployed beyond pure HPC to include embedded systems, real time systems, and
accelerators [6]. This directives-based approach greatly increases programming
productivity, although it is not easy to write highly efficient code simply by
adding directives, as unexpected overheads or side-effects may be introduced. In
order to remedy this, several tools have been proposed: [16] develops an envi-
ronment integrated with a tool called CAPO [5] where the user can navigate
through both the program structure and performance data information in order
to make efficient optimization decisions during the process of porting sequen-
tial applications to parallel computer architectures. ParaWise [15] parallelizes
applications, including the automatic insertion of message passing communica-
tions and/or OpenMP directives. However, all of those tools are limited to the
compiler for the code analysis, no optimization strategies can be reused, and the
analysis capability is inaccurate in some cases.

A code transformation technique, [25] describes the porting strategy for
translating from COBOL to C/C++ based. However this tool is outdated since
COBOL is not used in the HPC field. There are some other tools such as
CHiLL [7], POET [30] which provide code transformation for a target system.
But the code transformation replies on users to manually write transformation
scripts, also it’s lack of capability of finding code regions which could apply code
transformation. TSF [21] is a pattern matching based code transformation tool
only for Fortran code engineering, but it’s lack of capability to find how similar
of the code regions could be applied for code transformation. Hercules [17] is
another code transformation tool that could be used to apply optimizing trans-
formations, but we still need a tool to identify code regions in which these trans-
formations could be applied. The Hercules project from Oak Ridge relies on a
transformation recipe and a compiler plug-in infrastructure to apply the transfor-
mation processes at compile time. Although early evaluations of Hercules suggest
that the pattern matching approach is feasible on current computer resources,
the task of defining patterns may become daunting to the programmer, and a
tool to assist with the creation of this pattern creation based on similar code is
needed.

3 Klonos Framework

Klonos [11] is the tool we designed for assisting software porting. This tool is
based on the similarity analysis with the help of the OpenUH [24] compiler. As
Fig. 2 shows, the main framework of Klonos is comprised of static, dynamic and
cost-model metrics collection and porting planning analysis.

Porting Applications with OpenMP Using Similarity Analysis 25

Code Sequence
Extraction

Source
Code

Database

Match Detection,
Filtering,

Aggregation of Results

AST

Sequence
Patterns

Executable

Compiler Infrastructure

Static & cost-
model-provided

metrics clustering

Run

Clustering
information

Mapping of
Similar Patterns
To Source Code

Extraction of very high level of

Annotated
porting planning

tree

Fig. 2. The KLONOS porting planning system

3.1 Static Metrics

For static metrics collection, we reply on the compiler to collect code syntactic
information. Additional functionality to track pattern information in the gen-
erated parse tree has been added to OpenUH as part of this work. During the
traversal process, each key operator or operand visited by the compiler will be
decoded into a unique character, which is defined by a node map that was defined
in advance. This maps the hierarchical source code information into a flattened
sequence. Next, a sequence alignment is constructed to evaluate the subroutine
syntactic similarity for each pair of subroutines. Based on the syntactic similar-
ity score for each pair of subroutines, a family distance tree is built, showing
the aggregation of structurally similar subroutines. This aggregation is called
a “syntactic cluster”. This method is easy to use and quite scalable compared
to the graph comparison method. Reference [10] describes these steps in more
detail.

3.2 Dynamic Metrics

Syntactic analysis is able to help find similar code quickly, which provides the
ability to apply similar optimization strategies to that code. However, simi-
lar code structure does not guarantee that similar optimization techniques will
apply. For example, the parallelization strategy for a particular loop structure
would be totally different if we alternate an array name which might introduce
loop-carried dependence. In order to ensure a particular optimization or paral-
lelization strategy can be safely applied for similar codes, code feature metrics
such as parallelization, vectorization, and memory access pattern related met-
rics need to be taken into consideration. In selecting dynamic metrics, we choose
metrics that are able to reflect and capture the memory behaviors of an appli-
cation. In [9], the following hardware counters were collected using AMD Code-
Analyst: “DC accesses”, “DC misses”, “DTLB L1M L2M”, “CPU clocks”, “Ret
branch” and “Ret inst”. Once those metrics are available, Weka [2] is used to

26 W. Ding et al.

create “dynamic clusters” for subroutines based on these code features, using the
K-means algorithm to calculate the Euclidean distance for each pair of
subroutines.

3.3 Cost-Model Metrics

The aggregated structural information provided by the static metrics, and the
aggregated behavioral information provided by the dynamic metrics combine to
identify a viable porting plan for an application. However, it is still impractical
to run an entire application to collect the performance sampling data, especially
for a large application which consists of millions lines of code. To analyse a very
large data set generated by such a run is difficult and time-consuming. Even if
it is possible to collect this kind of performance data, the output is sensitive
to the content of the input data and sampling information varies significantly
between different execution phases. It is also evident that many optimization or
code restructuring techniques used during porting are target specific, and lead
to variations in performance on different platforms. So different cost-models will
be used for different target systems. A cost model is a performance estimation
without regard to specific input data, and is used by the compiler to select
different optimization algorithms. OpenUH uses a shared memory processor cost
model to evaluate different combinations of optimizations and to decide if there
is enough work (in processor cycles) to gain from automatic parallelization of a
loop. The cost model is essential to evaluate whether it is worth applying static
optimizations to loops and consists of three major components: the processor,
cache, and parallel overhead [29]. The similarity of code is measured by analysing
the similarity of cost-model-based metrics. Sections of code that exhibit the same
metrics are likely to benefit from similar optimization and porting strategies. The
cost model provided metrics used are: estimated number of iterations, suggested
parallelization, loop parallelizable attribute, loop vectorizable attribute, loop
vectorized number, loop align peeled, work estimate, loop depth. These metrics
are key factors used in the cost model for optimization strategy selection, which
can accurately capture the internal code optimization characteristics.

4 Experiments

GenIDLEST is a Fortran program that simulates transitional and turbulent
flows in complex geometries [26]. This application features both shared mem-
ory (OpenMP) and distributed memory (MPI) parallelism, which leads to a
high degree of portability between computer architectures. This application is
thus ideal for the porting planning strategy verification that we propose to per-
form with the Klonos tool. First, we use Klonos to analyze the serial version
of GenIDLEST, and then generate a porting plan for a parallel version of the
code using OpenMP. By referring to the optimized GenIDLEST OpenMP code,
we are able to verify the accuracy of the proposed OpenMP porting plan with
Klonos.

Porting Applications with OpenMP Using Similarity Analysis 27

Fig. 3. The subroutine similarities of the GenIDLEST application

4.1 GenIDLEST Similarity Analysis

GenIDLEST has a total of 264 subroutines. Before we perform the syntactic sim-
ilarity analysis, we pre-process the generated sequence pattern files by exclud-
ing subroutines with only one function invocation inside them, since those files
only contribute noise through many highly syntactically similar pairs. After the
pre-processing steps, next we generate a similarity square matrix by comparing
each pair of subroutine sequences until all the subroutines have been consumed.
Figure 3 shows the 3D visualization of GenIDLEST subroutines. It lists the over-
all similarities among all the subroutines. Axes X and Y are subroutines, the Z
axis represents the similarity score for each pair of subroutines. The node map
legend shows the level of similarity. Red means high similarity and blue means
low, or no, similarity. The diagonal shows subroutine self-similarity. Figure 4 is a
circular family distance tree with height of 31. It shows the overall relationship of
syntactic similarity for GenIDLEST subroutines after pre-processing. The fam-
ily distance tree lists similarity relationships of 254 subroutines, which the total
number of subroutines after preprocessing that excludes subroutines with only
one function call inside.

Table 2 summarizes the statistics of the similarities of subroutines after pre-
processing. GenIDLEST has 1327 subroutine pairs that maintain syntactic sim-
ilarity of greater than 50 %, which means a majority of subroutines look similar
structurally.

4.2 Syntactic Clustering Analysis

Figure 5 shows the relationship of the number of correct porting similar sub-
routine pairs with setting different number of clusters based on code syntactic
similarity. In Fig. 5(a), we can the see the number of similar subroutine pairs
using similar porting directives decreases gradually as the syntactic based cluster
number increases. Figure 5(b) shows the ratio of similar subroutine pairs using

28 W. Ding et al.

Fig. 4. The overall family distance tree for GenIDLEST

Table 2. GenIDLEST subroutines
similarity statistics

Similarity range # of subroutine pairs

Similarity � 90 47

Similarity � 80 43

Similarity � 70 44

Similarity � 60 208

Similarity � 50 985

Similarity < 50 30804

Table 3. OpenMP directive encoding
code map

Directives Character map

$!OMP PARALLEL P

$!OMP DO D

$!OMP PARALLEL DO PD

Fig. 5. Syntactic-based cluster for GenIDLEST application

Porting Applications with OpenMP Using Similarity Analysis 29

similar porting directives over the total number of similar subroutine pairs from
the “syntactic cluster”. As we can see, the ratio is less than 40 %, which means
the porting accuracy is very low by only using cost-model provided metrics for
porting clustering.

To further divide hierarchical clustering into fine-grained syntactic groups,
we propose three methods to cluster the tree, based on: (A) the user inputs
the tree depth value, which is used to divide the tree. (B) a similarity distance
value serves as a threshold to divide the tree: if the distance between current
the node and its parent is greater than the distance threshold, then the current
node and its descendants will be separated into a subtree. (C) a combination
of the first two methods; this combination method clusters the tree based on
user input of tree depth and similarity distance. Our goal is to find a cluster
number that is able to put syntactically similar subroutine pairs into groups as
much as possible while maintaining a moderate group size. Based on previous
empirical experience, a syntactic value of 50 % is a suitable threshold [9], so in
our experiment we use that threshold value and the input depth of the tree for
clustering.

4.3 Cost-Model Metrics Clustering Analysis

To better understand the relationship between the cost-model-provided metrics
and similar optimization or porting strategy, we only used the cost-model metrics
to cluster the subroutines and then check the number of subroutine pairs which
use the same optimization directives or strategies. Figure 6(a) depicts the rela-
tionship between the number of subroutine pairs that use similar directives and
the number of clusters, which is set manually based on the cost-model metrics.
When changing the number of clusters based on the cost-model metrics, we can
see the number of subroutine pairs using similar directive strategies decreases
gradually until it reaches a constant. Figure 6(b) shows the ratio of subroutine
pairs using a similar porting strategy over the total number of subroutine pairs
that have been clustered with respect to different numbers of clusters. According
to this result, we find that relying purely on cost-model provided metrics for clus-

Fig. 6. Cost-model metrics based cluster for GenIDLEST application

30 W. Ding et al.

Fig. 7. Cost-model metric based clusters for GenIDLEST

tering subroutines results in low accuracy (below 46 %) for detecting subroutine
pairs that can be ported or optimized in the same way. To obtain a reasonable
number of clusters for cost-model metrics, we define and use a “Good ratio”
to set the number of clusters. “Good ratio a percentage score of the number of
subroutine pairs with syntactic similarity greater than 50 % over the total num-
ber of subroutine pairs in the clusters. We select a cluster number with highest
“Good ratio” to make structurally similar subroutines aggregated as many as
possible for similar porting experience reuse.

In Fig. 7, the Y-axis is the percentage of the number of subroutine pairs
with syntactic similarity greater than 50 % over the total number of subroutine
pairs in the clusters. We use the term “Good ratio” to define this percentage
score in the next text. The X-axis is the number of clusters manually set for
clustering subroutines based on cost-model metrics In this diagram, we can see
that the “Good ratio” is around 16 % when the number of clusters is set to
8 and 41 respectively. When setting up the number of cluster based on cost-
model provided metrics, we want to choose a cluster number which could result
in “Good ratio” while maintaining a moderate group size to void a scenario of
generating too many combined clusters. Considering this, we set the number of
cluster for cost-model metrics to 8 in our experiment.

4.4 Combination of Syntactic and Cost-Model Based Clusters

Relying solely on either syntactic or cost-model-provided metrics results in low
accuracy when detecting similar subroutine pairs that could be optimized or
ported similarly. By incorporating these two metrics we can greatly increase the
accuracy of the process of detecting subroutine pairs to be ported in the same
way.

In Sect. 4.3, we found that we can get a “Good ratio” by setting cost-model
provided cluster number to 8. To discover the relationship between those two
clusters, we tried different combinations of numbers of clusters for the syntactic
and cost-model-based clusters. To control the size of combined clusters, we set
cost-model provided clusters from 1 to 9 in the relationship of syntactic and
cost-model cluster analysis. Our goal is to accurately aggregate similar subrou-
tines into groups as much as possible, which provides the opportunity to find

Porting Applications with OpenMP Using Similarity Analysis 31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 18 26 28 30 33 34 38 42 48 49 54 55 57 61 81 190 230 . . .

“G
oo

d
ra
tio

”

2

of syntactic based clusters

Fig. 8. Combined syntax and cost-model metric clusters for GenIDLEST

subroutines that can be optimized in the same way. In Fig. 8, the X-axis is the
ratio of the number of subroutine pairs with syntactic similarity more than 50 %
over the total number of subroutine pairs based on current combined clustering
methods. The Y-axis is the number of clusters obtained by using different dis-
tance values from 0 to 100. Inside each cluster, we vary the number of clusters
based on the cost-model metrics, resulting in the “heart-beat” shape diagram.
We observe that the ratio reaches a peak in this diagram when setting the cost-
model metrics-based cluster to 8, which is exactly the number of cluster we can
get peak “Good ratio” value in our cost-model metrics analysis described in
Sect. 4.3.

4.5 Improved Verification Methodology

To increase the accuracy of verification, our improved methodology focuses on
the syntax of OpenMP directive comparison directly. We add functions into
the phase of code sequence extraction (described in Sect. 3.1). If any OpenMP
directive is detected in a subroutine, a separate “.opt” file will be generated:
this is used to record a loop position index from its corresponding subroutine
code sequence, and optimization sequences by encoding OpenMP directives into
sequences according to the code map defined in Table 3.

Assume we have subroutines A and B in a combined cluster group. There are
three cases that can be classified when comparing their similar optimization or
porting strategy: (1) Neither A nor B have corresponding “.opt” files. We treat
A and B in the same way, meaning neither of them could be optimized. (2) Only
one of A and B has a “.opt” file, which means one was optimized and the other
was not. Therefore A and B do not count as similar for optimization, and do
not use similar directives for porting. (3) Both A and B have “.opt” files. In this
case, we perform code sequence alignments first. We are able to see which loops
have been aligned by referring the loop index obtained from a code sequence

32 W. Ding et al.

back to the corresponding “.opt” file. For aligned loops, we check the OpenMP
encoded directive sequences directly to check if two similar subroutines can have
similar optimization directives applied to them for porting purposes.

4.6 Porting Strategy Verification

Based on analysis of clustering using syntactic and cost-model metrics listed in
Figs. 5 and 6, we found that either using syntactic distance or cost-metric metrics
only as cluster method will results in inaccurate clustering for making porting
planning. Our goal is to minimize the number of clusters while in the meantime
to make sure accuracy for clustering similar subroutines using similar porting
directives. According to Fig. 8 shows that we can have maximum similar pairs
ratios for subroutine pairs fall into the same syntactic and cost-model metrics
based cluster So we set up the number of code-model provided metrics cluster (or
short for cost-model cluster) to 8 in our experiment and then make a comparison
of the accuracy of porting. By setting distance value to 50 and depth to 5 based
on the shape of the tree, then we are able to divide the tree into 9 clusters for
syntactic cluster. By merging the syntactic and code feature clustering, we divide
the 254 subroutines into 25 groups. Subroutines within each group fall into the
same syntactic and code-model cluster. After combining syntactic and code-most
metric based clusters or combined cluster, next comes to step of verifying the
correctness of similar directives used for subroutines fall into combined cluster.
The ratio of all subroutine pairs using similar optimization reaches 49.51 % in
our experiment. Figure 9(a) shows the relationship of similar optimization ratio
over the 254 subroutines with respect to the syntactic similarity for subroutine
pairs which fall into the same syntactic and code-model cluster when setting the
cost-metrics based cluster number to 8. As the figure shows, the correctness of
using similar directive for parallelizing the code is almost 80 % for subroutine
pairs who fall into the same syntactic and code-model cluster with syntactic
similarity is greater than 50 %. Figure 9(b) shows the number of pairs using
similar porting strategy in detail.

Fig. 9. Verification of GenIDLEST porting planning analysis

Porting Applications with OpenMP Using Similarity Analysis 33

Higher syntactic similarity will result in using similar directive parallelization
strategy for subroutine pairs with the same syntactic and code feature cluster.
This result proves that our similarity based methodology is very effective and
accurate in detecting similar subroutines which could use similar porting or
optimization strategy. Using cost-model based metrics are accurate for capturing
code similarity in terms of optimization or porting, which saves the trouble of
running applications to collect profiling information.

5 Conclusions and Future Work

In this paper, we have expanded the notion of code similarity analysis to cost-
model-provided metrics for detecting similar porting strategies for similar sub-
routine pairs, thus avoiding the burden of running applications to gather profiling
information.

We have validated Klonos by applying it to GenIDLEST, a real scientific
application, that was originally written as serial code and then parallelized for
a shared memory environment using OpenMP. By referring to the optimized
OpenMP GenIDLEST code, we discovered that the OpenMP directives proposed
by Klonos are both accurate and effective. This porting approach is quite easily
extended to other directive based approaches for code migration to different
architectures (e.g. PGI, OpenACC, HMPP etc.).

Future work will include exploring cost-models for porting code to other
accelerators. We will also use data mining techniques to create a framework
which can automatically find combinations of syntactic and cost-model clusters
to increase porting accuracy. Additionally, we will implement a GUI to visualize
the process of generating porting plans.

References

1. OpenMP ARB. Openmp arb. http://openmp.org/wp/about-openmp/
2. Machine Learning Group at University of Waikato. Weka 3: Data mining software

in java. http://www.cs.waikato.ac.nz/ml/weka/
3. Jost, G., Chapman, B.M., van der Pas, R.: Using OpenMP: Portable Shared Mem-

ory Parallel Programming. The MIT Press, Cambridge (2007)
4. Buttlar, D., Nichols, B., Farrell, J.P.: Pthreads Programming. O’Reilly & Asso-

ciates Inc., Sebastopol (1996)
5. NASA Ames Research Center. Capo (computer-aided parallelizer and optimizer).

http://people.nas.nasa.gov/∼hjin/CAPO/index.html
6. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory

Parallel Programming, vol. 10. MIT Press, Cambridge (2007)
7. Chen, C., Chame, J., Hall, M.: CHiLL: a framework for composing high-level loop

transformations. Technical report, Technical Report 08–897, USC Computer Sci-
ence Technical Report (2008)

8. Davison, J., Mancl, D., Opdyke, W.: Understanding and addressing the essential
costs of evolving systems. Bell Labs Tech. J. 5, 44–54 (2000)

http://openmp.org/wp/about-openmp/
http://www.cs.waikato.ac.nz/ml/weka/
http://people.nas.nasa.gov/~hjin/CAPO/index.html

34 W. Ding et al.

9. Ding, W., Hernandez, O., Chapman, B.: A similarity-based analysis tool for porting
OpenMP applications. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the
Multicore-Challenge III. LNCS, vol. 7686, pp. 13–24. Springer, Heidelberg (2013)

10. Ding, W., Hsu, C.-H., Hernandez, O., Chapman, B., Graham, R.: Klonos:
similarity-based planning tool support for porting scientific applications. Concur-
rency Comput. Pract. Experience 25, 1072–1088 (2013)

11. Ding, W., Hsu, C.-H., Hernandez, O., Graham, R., Chapman, B.M.: Bioinspired
similarity-based planning support for the porting of scientific applications. In: 4th
Workshop on Parallel Architectures and Bioinspired Algorithms, Galveston Island,
Texas, USA (2011)

12. CAPS Entreprise. HMPP: A Hybrid Multicore Parallel Programming Platform.
http://www.caps-entreprise.com/en/documentation/caps hmpp product brief.
pdf

13. The Portland Group. PGI accelerator compilers (2010). http://www.pgroup.com/
resources/accel.htm

14. Hernandez, O., Ding, W., Chapman, B., Kartsaklis, C., Sankaran, R., Graham,
R.: Experiences with high-level programming directives for porting applications
to GPUs. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore -
Challenge II. LNCS, vol. 7174, pp. 96–107. Springer, Heidelberg (2012)

15. Johnson, S., Evans, E., Jin, H., Ierotheou, C.: The ParaWise expert assistant -
widening accessibility to efficient and scalable tool generated OpenMP code. In:
Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol. 3349, pp. 67–82. Springer, Hei-
delberg (2005)

16. Jost, G., Jin, H., Labarta, J., Gimenez, J.: Interfacing computer aided paralleliza-
tion and performance analysis. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V.,
Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part IV. LNCS,
vol. 2660, pp. 181–190. Springer, Heidelberg (2003)

17. Kartsaklis, C., Hernandez, O., Hsu, C.H., Ilsche, T., Joubert, W., Graham, R.L.:
Hercules: a pattern driven code transformation system. In: 2012 IEEE 26th Inter-
national Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), pp. 574–583. IEEE (2012)

18. Levesque, J., Sankaran, R., et al.: Hybridizing s3d into an exascale application using
openacc: an approach for moving to multi-petaflops and beyond. In: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, p. 15. IEEE Computer Society Press (2012)

19. Top500 List. Treemap - november 2012 (accelerator/co-processor). http://www.
top500.org/statistics/treemaps/

20. Mancl, D.: Refactoring for software migration. IEEE Commun. Mag. 39(10), 88–93
(2001)

21. Mével, Y.: Tsf: an environment for program transformations
22. Munshi, A.: The OpenCL Specification, October 2009
23. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Pro-

gramming Guide Version 3.0, March 2010. http://developer.nvidia.com/cuda
24. The OpenUH compiler project (2005). http://www.cs.uh.edu/∼openuh
25. Sampaio do Prado Leite, J.C., Sant’Anna, M., Francisco do Prado, A.: Porting

cobol programs using a transformational approach. J. Softw. Maintenance: Res.
Pract. 9(1), 3–31 (1997)

26. Tafti, D.: Genidlest a parallel high performance computational infrastructure
for simulating complex turbulent flow and heat transfer. APS Division of Fluid
Dynamics Meeting Abstracts, vol. 1 (2002)

http://www.caps-entreprise.com/en/documentation/caps_hmpp_product_brief.pdf
http://www.caps-entreprise.com/en/documentation/caps_hmpp_product_brief.pdf
http://www.pgroup.com/resources/accel.htm
http://www.pgroup.com/resources/accel.htm
http://www.top500.org/statistics/treemaps/
http://www.top500.org/statistics/treemaps/
http://developer.nvidia.com/cuda
http://www.cs.uh.edu/~openuh

Porting Applications with OpenMP Using Similarity Analysis 35

27. Vetter, S., Aoyama, Y., Nakano, J.: RS/6000 SP: practical MPI programming, vol.
SG24-5380-00 of 0738413658. vervante, August 1999

28. The Wikipedia. Software porting. http://en.wikipedia.org/wiki/Porting
29. Wolf, M.E., Maydan, D.E., Chen, D.-K.: Combining loop transformations consid-

ering caches and scheduling. In: Proceedings of the 29th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pp. 274–286. IEEE Computer Society,
Washington, DC (1996)

30. Yi, Q., Seymour, K., You, H., Vuduc, R., Quinlan, D.J.: POET: parameterized
optimizations for empirical tuning. In: Workshop on Performance Optimization
for High-Level Languages and Libraries, March 2007

http://en.wikipedia.org/wiki/Porting

Tasks

Task-Aware Optimization
of Dynamic Fractional Permissions

Christoph M. Angerer(B)

IBM Research – Zurich, Rüschlikon, Switzerland
han@zurich.ibm.com

Abstract. Boyland’s original work on fractional permissions introduced
a mechanism to statically reason about the correct use of shared memory
in concurrent programs. Permissions are linear capabilities that can be
passed from one task to another. By splitting a permission into fractions,
a task can grant multiple other tasks concurrent read access. Because
writing data requires the full permission–and by definition at most one
task can have the full permission–, fractional permissions prevent read/
write conflicts.

This paper presents an optimizing compiler for a dynamic variant of
fractional permissions where memory accesses are checked at runtime.
In this system, every object is associated with a list of tasks that have
read and/or write permission for the object. Tasks can grant read per-
mission to subtasks by splitting their own permission into fractions and
later collect those fractions back to re-gain the original permission.

To reduce the time and space overhead associated with permis-
sion checks, the compiler uses task-ordering information to minimize the
places where permission checks must be inserted. For three of the five
benchmarks we have investigated, the fully optimized version is within
10 % of the original version without fractional permissions. The aver-
age performance overhead over all benchmarks is 48 % which can be
attributed to the poor performance of one particular benchmark. (For
the other benchmarks, the average overhead is 15 %.)

With the rise of multithreaded programming, the number of programming errors
related to concurrency is constantly growing [1]. One prevalent type of bugs
found in concurrent systems are data races. A data race occurs when two con-
current accesses to the same memory location are not ordered by happens-before
relations and at least one of the accesses is a write. In practice, there are three
general approaches to design data-race free programs:

Language-enforced data-race freedom: Some languages guarantee data-race
freedom through their type systems [2,3]. From a high-level, the programmer
provides program and type annotations that describe how data is shared and
accessed by concurrent tasks. The languages’ type systems use the annotations
to prove that accesses to shared memory are ordered or the type checks fail oth-
erwise. In recent years, much research also went into transactional memory [4–6].
Transactional memory allows programmers to specify code regions that should
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 39–54, 2014.
DOI: 10.1007/978-3-319-09967-5 3

40 C.M. Angerer

be atomic; an accompanying runtime system implemented in hard- and/or soft-
ware protects the accessed memory from concurrent accesses thus preventing
data races.
Static verification and model checking: Static verification and model checking of
concurrent programs are approaches that—conceptually—exhaustively explore
the whole state space of the program to rule out potential data races [7,8].
The major challenge of model checking techniques is the state space explosion:
the number of states increases exponentially with the number of possible task
interleavings. Numerous approaches exist for reducing the state space that must
be effectively explored for guaranteeing data-race freedom.
Dynamic detection and testing: Systems for dynamic data-race detection aim at
finding data-races when they happen during program execution or testing. This
can be done online, that is, during program execution, or offline, by analyzing
a pre-recorded program trace. Dynamic detection cannot generally guarantee
the absence of data-races for all possible executions; rather, it focusses on data-
races in the observed execution traces. Dynamic data-race detection systems
further fall into two general categories: Precise and imprecise systems [9]. While
precise race detectors never report false positives, they can impose a significant
runtime overhead due to the additional bookkeeping they require. Imprecise race
detectors increase the performance by giving up precision but—as a result—may
report false alarms on data-race free programs.

This paper introduces a dynamic variant of fractional permissions [3] in which
the programmer explicitly manages task-access permissions for objects. In this
system, each object is associated with an access control list (ACL) that contains
all the tasks that are allowed to access the object.

A task is allowed to write an object if it is the only task in the object’s ACL
and therefore has full permission. In order for a task to read the object, however,
it is enough if the task is one of several tasks in the object’s ACL.

Each task in an object’s ACL conceptually owns a fraction of the full access
permission corresponding to the total number of tasks in the ACL. The system
can detect data-races by checking the current task’s access permissions on every
read and write operation. By imposing restrictions on when and how tasks are
allowed to modify an object’s ACL, the system further forces the programmer
to follow a structured access-right management regime and prevents privilege
escalation where a task A with low privileges tries to grant higher access privileges
to another task B.

There are two factors that result in a relatively large overhead for a direct
implementation of the dynamic fractional permissions system. First, the memory
for storing the ACLs for each object have a negative impact on the memory foot-
print, memory allocation, cache behavior, and garbage collection. And second,
checking whether a task has the correct access rights slows down every single
field-read and -write operation.

Because of the imposed runtime overhead, without optimizations dynamic
fractional permissions are impractical for real-world applications. We present
an optimizing compiler that significantly reduces the runtime overhead by only

Task-Aware Optimization of Dynamic Fractional Permissions 41

allocating ACLs for objects that may be shared between concurrent tasks as well
as removing access checks on read and write operations that are not conflicting
with concurrent accesses. The compiler uses a schedule analysis [10,11] to gather
information about possible execution orderings of the program tasks.

Section 1 describes the dynamic fractional permission system and its imple-
mentation. The example presented in Sect. 2 illustrates how dynamic fractional
permissions can be used to dynamically enforce a data access policy in a
MapReduce(). The compiler optimizations are presented in Sect. 3 and eval-
uated in Sect. 4 before concluding in Sect. 6.

1 Dynamic Fractional Permissions

This section describes the three components of the dynamic fractional permission
system: access control lists (ACLs), permissions, and permission management
operations.

1.1 Access Control Lists and Permissions

At runtime, each object o is associated with an access control list (ACL). We
define a function ACL(o) to return the ACL of object o. The ACL is the set of
all task objects that share the full access permission for the object. The fraction
Frac(o,A) of the full permission that a task A owns for an object o directly
correlates to the number of tasks that are in o’s ACL. Frac(o,A) is defined as:

Frac(o,A) :=

⎧
⎨

⎩

1
‖ACL(o)‖ if A ∈ ACL(o)

0 else.

If A is in o’s ACL, it shares the permission equally with all other tasks in o’s
ACL. If A is not in o’s ACL, however, A’s fraction of o’s access permission is 0.

The system distinguishes the following three types of permissions, depending
on the fraction size:

Write Permission: A task A has write permission (or ‘full’ permission) for object
o if it is the only task in o’s ACL. We define the predicate isWritable(o,A)
to be true if Frac(o,A) = 1. Because A has the full permission, no other task
can gain access rights to o without A’s involvement. Therefore A can safely
write the fields of o without risking data-races. In addition, certain permission
management operations require the performing task to have full permission on
the object.

Read Permission: A task A has read permission (or ‘partial’ permission) to access
object o ifA is an element in the ACL. We define the predicateisReadable(o,A)
to be true if 0 < Frac(o,A) < 1. A read permission for object o, as the name
implies, allows a task A to read the fields of o but not write them. A task A with
read permission can grant read permission on o to another task B by adding B to
o’s ACL. This reduces the absolute value of the permission fraction that the tasks

42 C.M. Angerer

in o’s ACL own. However, adding B does not change the access rights a third task
C may have on o.

No Permission: A task A has no permission for object o if it is not an ele-
ment in o’s ACL. We define the predicate noAccess(o,A) to be true if
Frac(o, A) = 0. It is legal for A to own a reference to o but A is not allowed
to read or write o’s fields nor can A change o’s ACL in any way.

To implement a dynamic data-race detection, the compiler automatically
inserts assertions before all field accesses that check the current task’s read and
write permissions. If the check fails the program is aborted and an error message
is shown, reporting the offending program point, the required permission, and
the actual ACL. The detailed information in the error message together with
the early program termination helps the programmer to pinpoint the data-race.

1.2 Permission Management Operations

The dynamic fractional permissions system provides a set of operations that
allow a task A to manage the permissions for an object o. Depending on the
operation A wants to perform it must either have the full permission for o or a
fractional permission. This section informally describes the management opera-
tions and their semantics.

Split Permission: The most common explicit permission management operation
is for a task A to share its access permission on an object o with one or more other
tasks B. In order to split the permission, the issuing task A must have at least
read permission for o; that is, isReadable(o,A). Otherwise, the program is
aborted with an appropriate error message. In terms of o’s ACL, the operation
o.splitPermission(B) checks whether isReadable(o, currentTask)
and, if true, simply adds B to o’s ACL.1

Yield permission: A task A can transfer (yield) its permission for an object
o to another task B. After the yield, task B has the same permission (none,
read, or write) on o as A had before the yield. In any case, after the yield,
the issuing task A has no permission on o. In terms of o’s ACL, the operation
o.yieldPermission(B) executed by task A replaces the occurrence of task
A (if any) in o’s ACL with B.

A task can yield its permission explicitly in the code by executing the yield()
operation. A task can, however, also yield (or ‘give back’) its fraction of the per-
mission implicitly. When a task A finishes, the runtime system removes A from
all ACLs it is a member of. This automatically increases the absolute values of
the permission fractions of the affected objects. For an object that only had two
tasks A and B in its ACL, removing A from the ACL promotes task B’s permis-
sion to a full permission. Objects where A was the only task in their ACL become
permanently inaccessible (garbage) when A is removed.
1 The term split stems from the notion of fractional permissions. The whole permission

of size 1 is split between the n elements in the ACL such that each element has 1
n
th

of the permission.

Task-Aware Optimization of Dynamic Fractional Permissions 43

As an example where implicitly yielding permissions is helpful, consider the
ACL {W1, W2, W3, Join} for an object o. This ACL contains the three
worker tasks W1, W2, and W3 as well as a single Join task. While the workers are
executing, they can concurrently read o because they all have read permission.
Over time, the worker tasks will finish one after the other and each worker will
be removed from the ACL. In the end, the Join task is the only task in the
ACL. Join has collected the full permission and therefore has full access to o.

Link and unlink permission: By linking the permission of one object dependent
to another object master, dependent will share master’s ACL. Linking
allows the programmer to express ownership relations where the ACL for the
dependent is always kept in sync with the master’s ACL. When the permis-
sions are linked, only master’s ACL has to be managed explicitly. For a task A
to execute the expression dependent.linkToPermission(master) it must
have full permission on the dependent object; A’s permission on master is
not important, however. After the two permissions have been linked, A the same
permission for dependent as it had for accessing master.

Linked objects are unlinked with dependent.unlinkPermission-
(master). For unlinking, the executing task A must have the full permission
on the dependent (and therefore the master, since they are linked). After
the unlink operation, both objects master and dependent have their own
individual ACLs again, each of which only contains A.

Shared and immutable permission: The dynamic fractional permissions system
supports two special types of objects: immutable objects and shared objects.
Marking an object as shared or immutable is permanent and cannot be undone.
Immutability and sharing is implemented as two special types of ACLs.

The immutable ACL grants read access to every task, but no write access.
When a task A issues the operation o.immutablePermission(), the system
checks that A has read permission. If so, it replaces o’s ACL with the immutable
ACL.

The shared ACL grants read and write access to every task. By marking
an object to be shared, the programmer asserts to the system that he is aware
of the concurrent use of the object and manages concurrent accesses manually
(e.g., through locks or atomic sections). For shared objects, the system cannot
detect data-races. Calling the operation o.sharedPermission() requires the
issuing task A to have full permission for o. If this is the case, the system replaces
o’s current ACL with the immutable ACL.

2 Example: Map-Reduce with Dynamic Data-Race
Detection

Map-Reduce is a programming model for processing large data sets [12].
A MapReduce program consists of a Map() function that takes a key/value
pair as input and produces some intermediate data, and a Reduce() function

44 C.M. Angerer

that merges the intermediate data of multiple Map() tasks into either the final
result or the key/value inputs for the next Map-Reduce phase.

In a concrete implementation of a MapReduce computation, a detailed access
policy must be worked out to manage access to local and shared data structures.
For example, what tasks are allowed to read/write the intermediate objects
produced by the Map() tasks? Can one Map()-task access the intermediate
result of another Map() task? What tasks need read/write access to the results
after the MapReduce has finished? Especially larger applications are prone to
introduce inconsistencies in the access policies, resulting in potential data races.
With the dynamic fractional permission system, the programmer is forced to
explicitly manage the permissions a given task has on a given object. When
executing the program, dynamic checks will detect if the access permissions are
managed inconsistently and report errors accordingly.

In this example, we use the task model with explicit task ordering constraints
from [10]. In this model, task objects are ordered explicitly by ordering opera-
tions. For example, an expression compute → print in the source code spec-
ifies, that the task referenced by the variable compute must be finished before
the task referenced by print can start. The special keyword now gives the
programmer access to the currently executing task. By passing task objects to
methods and other tasks, programmers can specify complex task orderings in
a modular and flexible way while the compiler can use the explicit ordering
constraints to infer an abstract execution schedule.

Figure 1 shows one possible implementation of a single MapReduce step using
dynamic fractional permissions and tasks with explicit ordering constraints. The
program consists of three task methods: MapReduce() on line 3, the Map()
task on line 22, and the Reduce() task on line 33.

The MapReduce Task: The public MapReduce() task is the entry point to the
MapReduce computation. The second parameter input is an ArrayList of
Strings that comprises the input in this example. Following the now happens-
before later pattern described in our earlier work [13], MapReduce() expects as
its first parameter a task later that will continue once the whole MapReduce
step is over. On line 10, we use this reference to later to schedule the reduce
sub-task to finish before later starts; by the ordering established on line 18,
all created Map() tasks must happen before reduce and thus–transitively–
before later. This transitive ordering guarantees that the whole Map-Reduce
computation has finished before later continues execution, for example with a
second Map-Reduce step.

On line 6, the MapReduce() task creates a new Vector object into which
the concurrent Map() tasks will write their intermediate results. To indicate
that this Vector will be accessed in parallel, the programmer explicitly sets the
permission on the data object to be shared on line 7.

The data access policy for this example requires, that the MapReduce()
task has full write access to the input list. This means, that the current now
task is the only task in input’s ACL. For reasons of simplicity, MapReduce()
further requires that the this object is globally shared so that the Reduce()

Task-Aware Optimization of Dynamic Fractional Permissions 45

Fig. 1. Implementation of a single MapReduce step using dynamic fractional permis-
sions for data-race detection. Assertions are added automatically by the compiler.

task can later simply publish the result by writing the public result field
declared on line 2. The assertion on line 4, inserted by the compiler, dynam-
ically enforces this access policy. On lines 12 and 17, the MapReduce() task
splits its write permission for the input list and shares it with the Map() tasks
and the Reduce() task. After the MapReduce() task has finished it is auto-
matically removed from input’s ACL leaving the Map() tasks as well as the
single Reduce() task.

The Map Tasks: The compiler added an assertion on line 23 to check that each
Map() task has read permission for the input list and write permission for the
(shared) data vector. All Map() task instances read from the input list on

46 C.M. Angerer

line 25 and use it in the subsequent lines to compute some complex result object
mapped which it then stores in the shared data vector on line 29.

By linking the ACL for the mapped data object to the ACL of the input
list on line 28, the Map() tasks eventually transfer the full ownership for the
intermediate data to the reduce task. This is because whenever a Map() task
finishes, it is implicitly removed from the ACL of the input list. Therefore,
when finally the Reduce() task starts, it is the last task remaining in input’s
ACL and thus has re-gained full write permissions on the input list as well as
all the linked Data objects.

The Reduce Task: First, a compiler-inserted assertion asserts the correct access
rights on line 35. In this example, the Reduce() task then clears the input
array on line 37 so that it can be reused again. On line 38 Reduce() computes
the result by combining the intermediate data into a Result object r. For
illustrative purposes, r is then made immutable on line 40 and published to the
world by storing it in a public field on line 41. Equally, we could have decided
to pass the full permission from Reduce() to later if later needed to write
the data (e.g., in a subsequent MapReduce step).

Finally, line 43 explicitly yields the full write permission on input to later.
Note that the entry point MapReduce() required write permission on the
input list and therefore later cannot already have been in input’s ACL.
For this reason, the permission cannot be returned to later implicitly.

3 Task-Aware Optimization of Dynamic Fractional
Permissions

The following two sections describe the two general optimization steps the com-
piler performs: (1) Local optimization to eliminate redundant permission checks;
and (2) global optimization to remove space and time overhead associated with
permission management.

3.1 Eliminating Redundant Permission Checks

Redundant read and write checks can be eliminated locally by placing them as
early as possible in a method and then removing duplicate checks. Imagine, for
example, a task T1() that repeatedly accesses an object Obj through a variable
v1 without intermediate splits or yields of permission:
task T1() {
v1 = /*some object*/;
tmp1 = v1.f;
v1.f = 42;
tmp2 = v1.g;

}

A näıve insertion of permission checks would result in the following trans-
formed code:

Task-Aware Optimization of Dynamic Fractional Permissions 47

task T1() {
v1 = /*some object*/;
assert isReadable(v1, now);
tmp1 = v1.f;
assert isWritable(v1, now);
v1.f = 42;
assert isReadable(v1, now);
tmp2 = v1.g;

}

Clearly, such redundant read and write checks on v1 are unnecessary because
no other task can take away the given permission of T1().2 By moving the
checks as early as possible and then choosing the strongest permission check
(here isWritable()), the example can be transformed into the optimized
form with a single permission check:
task T1() {
v1 = /*some object*/;
assert isWritable(v1, now);
tmp1 = v1.f;
v1.f = 42;
tmp2 = v1.g;

}

Handling Permission Operations: A permission operation such as v1.yield-
Permission(v2) may change the type of permission the current task now
has on v1. Therefore, subsequent accesses to v1 require the compiler to insert
permission checks again. Consider the following example, which is similar to the
example from the previous section:
1 task T1() {
2 v1 = /*some object*/;
3 t1 = /*some task, may be ==now!*/;
4 assert isWritable(v1, now);
5 v1.f = 42;
6 v1.yieldPermission(t1);
7 //Need to check permission on v1 again!
8 assert isReadable(v1, now);
9 tmp2 = v1.g;

10 }

If t1 != now, the assertion on line 8 will always fail; however for the case
where t1 == now, the same check will succeed. Therefore, the check on line 4
is not sufficient and the compiler must insert the read check on line 8.

To capture the effects of read and write checks in the control-flow graph, the
compiler re-writes a permission operation such as v1.addPermission(t1) to
define a new SSA variable: v2 = v1.addPermission(t1). All subsequent
uses of v1 in the original control-flow graph are replaced by v2, inserting Φ-
nodes when needed. Through this transformation (treating a permission oper-
ation as a definition of a new SSA variable), permission checks can be placed
“as early as possible”, grouping them directly after the SSA variable definition.
After introducing the additional SSA variable definitions, the actual placement
of access checks is done by rules InsertReadCheck and InsertWriteCheck
described later in this section.
2 A task may return its permission and make an earlier write check fail while a later

check would succeed. For this reason, write checks cannot be moved across synchro-
nization operations and racefully yielding a permission is not guaranteed to succeed.

48 C.M. Angerer

3.2 Optimizing Permission Management

Permissions only have to be managed for objects that are potentially accessed in
parallel. For task-local objects or for objects that are only accessed from tasks
ordered by happens-before relationships, the management operations—including
the implicit creation of the initial ACLs by new statements—are unnecessary
and can be removed. Similarly, read and write checks only have to be performed
on objects that may be accessed in parallel. To effectively decide on what a
permission management operations are necessary, the compiler uses a schedule
analysis to find tasks that may execute in parallel.

Schedule Analysis: The goal of the schedule analysis described in our previous
work [10] is to determine whether at runtime two tasks may be executed in
parallel or whether they are always ordered by happens-before relationships.
Schedule analysis thus computes the relation Task × Task → Rel where Rel is
one of the following:

– Ordered: The two tasks are ordered if either all of their possible executions
are ordered by (implicit or explicit) happens-before relationships or if they
can never co-exist in a single run of the program (e.g., they are scheduled in
different branches of a conditional statement).

– Parallel: If two tasks are not ordered, they are considered (potentially)
parallel.

Figure 2 shows how the task-ordering information provided by the schedule
analysis is combined with traditional points-to and escape information to com-
pute the relation conflicting(v1,A, v2,B) containing sets of possibly conflicting
variable accesses.3

Clauses (1a) and (1b) implement a reachability analysis that compute all
pairs of tasks A and B that may access variables v1 and v2 respectively. The
points-to analysis in clauses (2a) and (2b) then checks if the variables may
actually reference the same object. If this is the case, clause (3) checks whether
the corresponding object(s) can escape its (their) creating tasks. If an object does
not escape its creating task it can be considered task-local and no conflicting
accesses are possible. If the object may escape, the schedule analysis in clause

Fig. 2. Combining points-to, escape, and schedule analysis.

3 Note that an analysis-time task A can be potentially parallel with itself if at runtime
several unordered instances of A may be created.

Task-Aware Optimization of Dynamic Fractional Permissions 49

(4) computes, whether the accessing tasks A and B may execute in parallel. Only
if all the above clauses are true, the compiler must conservatively assume that
the accesses through variables v1 and v2 may conflict.

Auxiliary Rules: The optimizations for removing unnecessary permission oper-
ations and for finding optimized locations to insert permission checks make use
of the helper functions shown in Fig. 3.

Fig. 3. Auxiliary functions used for optimizing dynamic fractional permissions.

The computation of variables that need a read check starts with rule Needs-
ReadCheck–Local which selects all variables v1 that may point to objects
that may be accessed in parallel by some other task. Rule NeedsReadCheck–
Phi then propagates this information backwards across Φ nodes inside the
surrounding method to mark all SSA variables that may reach the reading
operation. NeedsReadCheck–Global globally pushes the access information
about formal method parameters up to the callers. Placing the checks at the
site whether a method is called instead of leaving them inside the called method
optimizes the common case where utility functions are used with shared as well
as local objects.

The rules for NeedsWriteCheck are functionally equivalent to the Needs-
ReadCheck but start from read and write operations respectively.

Optimization Rules: Figure 4 shows the optimizations for finding unnecessary
permission management operations and for deciding on the locations, where
read and write checks must be inserted.

50 C.M. Angerer

Fig. 4. Rules used by the compiler to remove unnecessary permission operations and
to decide where read and write checks must be inserted.

UnnecessaryObjectACL selects operations Opnew corresponding to new-
statements that create objects Obj that are never accessed in parallel. For unnec-
essary Opnew, the permission system does not need to create an initial access
control list, because no permission check is ever done for the corresponding
object.

Similarly, UnnecessaryPermissionOperation chooses all operations Op1
corresponding to permission management that are performed on objects that
never appear in permission checks.

The InsertReadCheck and InsertWriteCheck rules implement the
mechanism for grouping permission checks described earlier. Both rules select the
earliest operations Op1 defining an SSA variable v1 without Op1 being a Φ node
or formal method parameter. For parameters to task methods, we decided to place
the permission checks at the beginning of a task, however, since there is no obvi-
ous advantage of pushing those checks to the creating task. As noted earlier, the
compiler treats permission operations as defining statements and therefore will
add permission checks whenever the corresponding ACLs may have changed.

4 Evaluation

This section presents the performance evaluation of the dynamic fractional per-
mission system. We compare four different optimization configurations with the
original versions of the benchmarks that do not use a permission system.

All experiments were run on a machine equipped with a Intel Core 2 Duo
2.8 GHz and 4 Gb of RAM. The compiler implementation is single threaded,
however, and therefore only one core is used during the compilation.

The benchmarks are taken from the ERCO project [14] and were chosen
because of their object-oriented parallelism where objects are used for inter-
task communication as opposed to numeric matrix and vector based applica-
tions such as the Java Grande benchmarks [15]. sor (successive over-relaxation

Task-Aware Optimization of Dynamic Fractional Permissions 51

over a 2D grid), and tsp (traveling salesman problem) are data- and task-
parallel applications with data access patterns of scientific codes; threads are
synchronized in a fork/join style based on barriers instead of locks. hedc is a
warehouse for scientific astrophysics data that implements a meta crawler for
searching multiple Internet archives in parallel. The individual queries are han-
dled by reusable worker threads. philo is a simulation of the dining philosophers
problem. elevator is a real-time discrete event simulator where elevators are
modeled as individual tasks that poll directives from a central control board.
Communication through the control board is synchronized through locks.

The effects of the individual optimization parts were evaluated by compiling
the benchmarks in four different configurations:

– In the None configuration, the compiler has no advanced analysis information
and must insert read and write checks on every memory access.

– In the Grouping configuration, redundant permission checks are avoided.
While being a global optimization, this configuration does neither use escape
nor schedule analysis information. This is achieved by removing clauses (3)
and (4) of the May-Be-Conflicting rule in Fig. 2.

– The third configuration ESC uses an escape analysis plus a points-to analy-
sis to decide whether two memory accesses executed by different tasks may
conflict (clause (3) but not clause (4) of Fig. 2).

– The third configuration ESC+SA adds scheduling information to the points-to
analysis and escape analysis to make the optimizations task aware.

Figure 5 shows the runtime overhead of the benchmarks compiled with the
None, Grouping, ESC, and ESC+SA configurations. The baseline of this com-
parison is the runtime of the original version without the dynamic fractional
permission system.

For three of the five benchmarks, the fully optimized version (ESC+SA) is
within 10 % of the original version. The average performance overhead over all

Fig. 5. Runtime overhead of different optimization levels for dynamic fractional per-
missions compared to the original version without a dynamic fractional permission
system.

52 C.M. Angerer

benchmarks is 48 % which can be attributed to the poor performance of the
philo benchmark. (Without philo, the average overhead is 15 %.)

In the philo benchmark, most objects are shared and accessed concurrently
and the compiler cannot remove expensive permission checks. This overhead
could be reduced significantly by making the compiler aware of immutable-
Permission() and sharedPermission() operations. The compiler does
not need to insert read (read/write) permission checks if it knows that an object
has been flagged as immutable (shared). The current implementation of the
optimizations does not know about immutable and shared permissions, how-
ever, and therefore does insert unnecessary read and write checks in the philo
benchmark.

5 Related Work

Fractional permissions: Boyland’s work on fractional permissions [3] introduces
a permission system where a single write permission of value 1 can be split
into infinitely many read permissions with values < 1. Permission fractions can
be distributed to subtasks and later reclaimed. If the system can prove that a
task has the original write permission or that it has successfully reclaimed all
fractions of the read permissions, the task can write the data. Because frac-
tional permissions guarantee that only one task at a time can have the full write
permission, data races are impossible. Terauchi [16,17] and Boyland [18] later
presented further improvements for inferring fractional permissions. As opposed
to the dynamic fractional permissions presented in this paper, the previous work
on fractional permissions focus on static techniques to prove data-race freedom
and therefore may statically reject programs that are otherwise safe.

SP-bags: The basic idea behind SP-bags, introduced by Feng and Leiserson’s [19]
and further refined by Raman et al. [20], is to attach two bags, S and P , to each
task. Each bag contains task IDs of descendent tasks that logically precede the
task or that operate in parallel respectively. Each memory location is instru-
mented to contain two additional fields, a reader task ID and a writer task ID.
Every time a shared memory location is accessed by a task, the algorithm uses
the S and P bags to check whether the current task can interfere with the task
that is recorded in the reader and/or writer fields. SP-bags share some similari-
ties with the dynamic fractional permissions but instead of the tasks managing
their own bags, dynamic fractional permissions use access control lists on objects.
It is an open question, however, whether one approach is more flexible than the
other or whether they are equally expressive.

Dynamic data-race detection: Dynamic data-race detectors basically fall into
two categories: precise detection, such as the RaceTrack [21] and FastTrack [9]
detectors, where every memory operation is checked for data races; and detec-
tors based on sampling, such as LiteRace [22] and Pacer [23]. With sampling,
not every memory access is checked but periodic samples are scanned for poten-
tial data races. Sampling therefore deliberately introduces some imprecision for

Task-Aware Optimization of Dynamic Fractional Permissions 53

the benefit of increased performance. Dynamic fractional permissions do check
every memory access and therefore fall under the category of precise detection.
However, while the above data-race checkers do not impose any restrictions on
the programmer, dynamic fractional permissions do enforce explicit permission
management.

6 Concluding Remarks

This paper introduces a dynamic variant of fractional permissions where the
programmer manually manages the splitting and recovering of permissions. The
manual management forces the programmer to come up with a rigid data man-
agement scheme and replaces the common ad-hoc approaches of current lan-
guages.

Permissions are maintained and checked at runtime. In the worst case, every
read and write access to an object requires checking the permission of the cur-
rent task, which introduces a significant runtime overhead. The optimizing com-
piler presented this paper makes use of a combination of points-to, escape, and
schedule analysis to remove permission checks whenever possible, significantly
reducing the overhead associated with fractional permissions.

References

1. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. SIGOPS Oper. Syst. Rev. 42, 329–
339 (2008)

2. Matsakis, N.D., Gross, T.R.: A time-aware type system for data-race protection
and guaranteed initialization. In: OOPSLA ’10, pp. 634–651. ACM, New York
(2010)

3. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

4. Moir, M.: Transparent support for wait-free transactions. In: Mavronicolas, M.
(ed.) WDAG 1997. LNCS, vol. 1320, pp. 305–319. Springer, Heidelberg (1997)

5. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA
’03, pp. 388–402. ACM, New York (2003)

6. Adl-Tabatabai, A.R., Kozyrakis, C., Saha, B.: Transactional programming in a
multi-core environment. In: PPoPP ’07, p. 272. ACM, New York (2007)

7. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI ’07, pp. 446–455. ACM, New York (2007)

8. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI ’04, pp. 14–24.
ACM, New York (2004)

9. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: PLDI ’09, pp. 121–133. ACM, New York (2009)

10. Angerer, C.M., Gross, T.R.: Exploiting task order information for optimizing
sequentially consistent java programs. In: PACT ’11, pp. 393–402 (2011)

11. Angerer, C.M., Gross, T.R.: Static analysis of dynamic schedules and its appli-
cation to optimization of parallel programs. In: Cooper, K., Mellor-Crummey, J.,
Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 16–30. Springer, Heidelberg
(2011)

54 C.M. Angerer

12. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI ’04, p. 10. USENIX Association, Berkeley (2004)

13. Angerer, C.M., Gross, T.R.: Now happens-before later: static schedule analy-
sis of fine-grained parallelism with explicit happens-before relationships. In:
Onward!/SPLASH ’10, pp. 3–10. ACM, New York (2010)

14. von Praun, C., Gross, T.R.: Object race detection. SIGPLAN Not. 36, 70–82 (2001)
15. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite. In:

Supercomputing ’01, p. 8. ACM, New York (2001)
16. Terauchi, T.: Checking race freedom via linear programming. In: PLDI ’08,

pp. 1–10. ACM, New York (2008)
17. Terauchi, T., Aiken, A.: A capability calculus for concurrency and determinism.

ACM Trans. Program. Lang. Syst. 30, 27:1–27:30 (2008)
18. Boyland, J.T.: Semantics of fractional permissions with nesting. ACM Trans.

Program. Lang. Syst. 32, 22:1–22:33 (2010)
19. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs.

In: SPAA ’97, pp. 1–11. ACM, New York (1997)
20. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Efficient data race detec-

tion for async-finish parallelism. In: Barringer, H., et al. (eds.) RV 2010. LNCS,
vol. 6418, pp. 368–383. Springer, Heidelberg (2010)

21. Yu, Y., Rodeheffer, T., Chen, W.: Racetrack: efficient detection of data race con-
ditions via adaptive tracking. In: SOSP ’05, pp. 221–234. ACM, New York (2005)

22. Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for
lightweight data-race detection. In: PLDI ’09, pp. 134–143. ACM, New York (2009)

23. Bond, M.D., Coons, K.E., McKinley, K.S.: Pacer: proportional detection of data
races. In: PLDI ’10, pp. 255–268. ACM, New York (2010)

Near Optimal Work-Stealing Tree Scheduler
for Highly Irregular Data-Parallel Workloads

Aleksandar Prokopec(B) and Martin Odersky

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
aleksandar.prokopec@gmail.com, martin.odersky@epfl.ch

Abstract. We present a work-stealing algorithm for runtime scheduling
of data-parallel operations in the context of shared-memory architectures
on data sets with highly-irregular workloads that are not known a pri-
ori to the scheduler. This scheduler can parallelize loops and operations
expressible with a parallel reduce or a parallel scan. The scheduler is
based on the work-stealing tree data structure, which allows workers
to decide on the work division in a lock-free, workload-driven manner
and attempts to minimize the amount of communication between them.
A significant effort is given to showing that the algorithm has the least
possible amount of overhead.

We provide an extensive experimental evaluation, comparing the
advantages and shortcomings of different data-parallel schedulers in order
to combine their strengths. We show specific workload distribution pat-
terns appearing in practice for which different schedulers yield subop-
timal speedup, explaining their drawbacks and demonstrating how the
work-stealing tree scheduler overcomes them. We thus justify our design
decisions experimentally, but also provide a theoretical background for
our claims.

1 Introduction

In data-parallel programming models parallelism is not expressed as a set process
interactions but as a sequence of parallel operations on data sets. Programs are
typically composed from high-level data-parallel operations, and are declarative
rather than imperative in nature, which is of particular interest when it comes
to programming the ever more present multicore systems. Solutions to many
computational problems contain elements which can be expressed in terms of
data-parallel operations [12].

We show several examples of data-parallel programs in Fig. 1. These programs
rely heavily on higher-order data-parallel operations such as map, reduce and
filter, which take a function argument – they are parametrized by a mapping
function, a reduction operator or a filtering predicate, respectively. The first exam-
ple in Fig. 1 computes the variance of a set of measurements ms. It starts by com-
puting the mean value using the higher-order operation sum, and then maps each
element of ms into a set of squared distances from the mean value, the sum of which
divided by the number of elements is the variance v. The amount of work executed
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 55–86, 2014.
DOI: 10.1007/978-3-319-09967-5 4

56 A. Prokopec and M. Odersky

for each measurement value is equal, so we call this workload uniform. This need
not be always so. The second program computes all the prime numbers from 3 until
N by calling a data-parallel filter on the corresponding range. The filter uses
a predicate that checks that no number from 2 to

√
i divides i. The workload is not

uniform nor independent of i and the processors working on the end of the range
need to do more work. This example also demonstrates that data-parallelism can
be nested – the forall can be done in parallel as each element may require a
lot of work. On the other hand, the reduce in the third program that computes
a sum of numbers from 0 to N requires a minimum amount of work for each ele-
ment. A good data-parallel scheduler must be efficient for all the workloads – when
executed with a single processor the reduce in the third program must have the
same running time as the while loop in the fourth program, the data-parallelism
of which is not immediately obvious due to its imperative style.

Fig. 1. Data parallel program examples

It has been a trend in many languages to provide data-parallel bulk oper-
ations on collections [3–5,17,18]. Data-parallel operations are generic as shown
in Fig. 1 – for example, reduce takes a user-provided operator, such as number
addition, string concatenation or matrix multiplication. The computational costs
of these generic parts, and hence the workload distribution, cannot always be
determined statically, so efficient assignment of work to processors often relies on
the runtime scheduling. Scheduling in this case entails dividing the elements into
batches on which the processors work in isolation. Work-stealing [1,7,8,15,20] is
one solution to this problem. In this technique different processors occasionally
steal batches from each other to load balance the work – the goal is that no
processor stays idle for too long.

In this paper we propose and describe a runtime scheduler for data-parallel
operations on shared-memory architectures that uses a variant of work-stealing
to ensure proper load-balancing. The scheduler relies on a novel data struc-
ture with lock-free synchronization operations called the work-stealing tree.
To show that the work-stealing tree scheduler is optimal we focus on evaluat-
ing scheduler performance on uniform workloads with a minimum amount of
computation per element, irregular workloads for which this amount varies and
workloads with a very coarse granularity.

Our algorithm is based on the following assumptions. There are no fast, accu-
rate means to measure elapsed time with sub-microsecond precision, i.e. there is
no way to measure the running time. There is no static or runtime information
about the cost of an operation – when invoking a data-parallel operation we do

Near Optimal Work-Stealing Tree Scheduler 57

not know how much computation each element requires. There are no hardware-
level interrupt handling mechanisms at our disposal – the only way to interrupt
a computation is to have the processor check a condition. We assume OS threads
as parallelism primitives, with no control over the scheduler. We assume that
the available synchronization primitives are monitors and the CAS instruction.
We assume the presence of automatic memory management.

The rest of the paper is organized as follows. Section 2 describes related
work and alternative schedulers we compare against. Section 3 describes the
work-stealing tree scheduler. In Sect. 4 we evaluate the scheduler for different
workloads as well as tune several of its parameters, and in Sect. 5 we conclude.

2 Related Work

Per processor (henceforth, worker) work assignment done statically during com-
pile time or linking, to which we will refer to as static batching, was studied
extensively [13,19]. Static batching cannot correctly predict workload distrib-
utions for any problem, as shown by the second program in Fig. 1. Without
knowing the numbers in the set exactly, batches cannot be statically assigned to
workers in an optimal way – some workers may end up with more work than the
others. Still, although cost analysis is not the focus here, we advocate combining
static analysis with runtime techniques.

To address the need for load balancing at runtime, work can be divided into a
lot of small batches. Only once each worker processes its batch, it requests a new
batch from a centralized queue. We will refer to this as fixed-size batching [14].
In fixed-size batching the workload itself dictates the way how work is assigned
to workers. This is a major difference with respect to static batching. In general,
in the absence of information about the workload distribution, scheduling should
be workload-driven. A natural question arises – what is the ideal size for a batch?
Ideally, a batch should consist of a single element, but the cost of requesting work
from a centralized queue is prohibitively large for that. For example, replacing
the increment i += 1 with an atomic CAS can increase the running time of a
while loop by nearly a magnitude on modern architectures. The batch size has
to be the least number of elements for which the cost of accessing the queue is
amortized by the actual work. There are two issues with this technique. First, it
is not scalable – as the number of workers increases, so does contention on the
work queue (Fig. 6). This requires increasing batch sizes further. Second, as the
granularity approaches the batch size, the work division is not fine-grained and
the speedup is suboptimal (Fig. 8, where size is less than 1024).

Guided self-scheduling [16] solves some granularity issues by dynamically
choosing the batch size based on the number of remaining elements. At any
point, the batch size is Ri/P , where Ri is the number of remaining elements
and P is the number of workers – the granularity becomes finer as there is less
and less work. Note that the first-arriving worker is assigned the largest batch
of work. If this batch contains more work than the rest of the loop due to
irregularity, the speedup will not be linear. This is shown in Figs. 8-20 and 9-35.

58 A. Prokopec and M. Odersky

Factoring [10] and trapezoidal self-scheduling [21] improve on guided-self schedul-
ing, but have the same issue with those workload distributions.

One way to overcome the contention issues inherent to the techniques above
is to use several work queues rather than a centralized queue. In this approach
each processor starts with some initial work on its queue and commonly steals
from other queues when it runs out of work – this is known as work-stealing, a
technique applicable to both task- and data-parallelism. One of the first uses of
work-stealing dates to the Cilk language [2,8], in which processors relied on the
fast and slow version of the code to steal stack frames from each other. Recent
developments in the X10 language are based on similar techniques [20]. Work-
stealing typically relies on the use of work-stealing queues [1,7,8,15] and deques
[6], implementations ranging from blocking to lock-free. While in the past data-
parallel collections frameworks relied on using task-parallel schedulers under the
hood [11,17,18], to the best of our knowledge, the tree data structure was not
used for synchronization in work-stealing prior to this work, nor for data-parallel
operation scheduling.

3 Work-Stealing Tree Scheduler

In this section we describe the work-stealing tree data structure and the schedul-
ing algorithm that the workers run. We first briefly discuss the aforementioned
fixed-size batching. We have mentioned that the contention on the centralized
queue is one of it drawbacks. We could replace the centralized queue with a
queue for each worker and use work-stealing. However, this seems overly eager –
we do not want to create as many work queues as there are workers for each
parallel operation, as doing so may outweigh the actually useful work. We should
start with a single queue and create additional ones on-demand. Furthermore,
fixed-size batching seems appropriate for scheduling parallel loops, but what
about the reduce operation? If each worker stores its own intermediate results
separately, then the reduce may not be applicable to non-commutative opera-
tors (e.g. string concatenation). It seems reasonable to have the work-stealing
data-structure store the intermediate results, since it has the division order
information.

With this in mind, we note that a tree seems particularly applicable. When
created it consists merely of a single node – a root representing the operation
and all the elements of the range. The worker invoking the parallel operation can
work on the elements and update its progress by writing to the node it owns.
If it completes before any other worker requests work, then the overhead of the
operation is merely creating the root. Conversely, if another worker arrives, it
can steal some of the work by creating two child nodes, splitting the elements
and continuing work on one of them. This proceeds recursively. Scheduling is
thus workload-driven – nodes are created only when some worker runs out of
work meaning that another worker had too much work. Such a tree can also
store intermediate results in the nodes, serving as a reduction tree.

How can such a tree be used for synchronization and load-balancing? We
assumed that the parallelism primitives are OS threads. We can keep a pool of

Near Optimal Work-Stealing Tree Scheduler 59

threads [15] that are notified when a parallel operations is invoked – we call these
workers. We first describe the worker algorithm from a high-level perspective.
Each worker starts by calling the tail-recursive run method in Fig. 2. It looks for
a node in the tree that is either not already owned or steals a node which some
other worker works on by calling findWork in line 3. This node is initially a leaf,
but we call it a subtree. The worker works on the subtree by calling descend
in line 5, which calls workOn on the root of the subtree to work on it until it is
either completed or stolen. In the case of a steal, the worker continues work on
one of the children if it can own it in line 11. This is repeated until findWork
returns ⊥ (null), indicating that all the work is completed.

Fig. 2. Work-stealing tree data-types and the scheduling algorithm

In Fig. 2 we also present the work-stealing tree and its basic data-types. We
use the keyword struct to refer to a compound data-type – this can be a Java
class or a C structure. We define two compound data-types. Ptr is a reference to
the tree – it has only a single member child of type Node. Write access to child
has to be atomic and globally visible (in Java, this is ensured with the volatile
keyword). Node contains immutable references to the left and right subtree,
initialized upon instantiation. If these are set to ⊥ we consider the node a leaf.
We initially focus on parallelizing loops over ranges, so we encode the current
state of iteration with three integers. Members start and until are immutable
and denote the initial range – for the root of the tree this is the entire loop
range. Member progress has atomic, globally visible write access. It is initially
set to start and is updated as elements are processed. Finally, the owner field
denotes the worker that is working on the node. It is initially ⊥ and also has
atomic write access. Example trees are shown in Fig. 3.

Before we describe the operations and the motivation behind these data-
types we will define the states work-stealing tree can be in (see Fig. 3), namely
its invariants. This is of particular importance for concurrent data structures
which have non-blocking operations. Work-stealing tree operations are lock-free,
a well-known advantage [9], which comes at the cost of little extra complexity
in this case.

INV1. Whenever a new node reference Ptr p becomes reachable in the tree, it
initially points to a leaf Node n, such that n.owner = ⊥. Field n.progress is
set to n.start and n.until≥n.start. The subtree is in the AVAILABLE state
and its range is 〈n.start,n.until〉.

60 A. Prokopec and M. Odersky

INV2. The set of transitions of n.owner is ⊥ → π �= ⊥. No other field of n
can be written until n.owner �= ⊥. After this happens, the subtree is in the
OWNED state.

INV3. The set of transitions of n.progress in the OWNED state is p0 → p1 →
. . . → pk such that n.start = p0 < p1 < . . . < pk < n.until. If a worker π
writes a value from this set of transitions to n.progress, then n.owner = π.

INV4. If the worker n.owner writes the value n.until to n.progress, then that
is the last transition of n.progress. The subtree goes into the COMPLETED
state.

INV5. If a worker ψ overwrites pi, such that n.start ≤ pi < n.until, with
ps = −pi − 1, then ψ �= n.owner. This is the last transition of n.progress and
the subtree goes into the STOLEN state.

INV6. The field p.child can be overwritten only in the STOLEN state, in
which case its transition is n → m, where m is a copy of n with m.left and
m.right being fresh leaves in the AVAILABLE state with ranges rl = 〈x0, x1〉
and rr = 〈x1, x2〉 such that rl ∪ rr = 〈pi, n.until〉. The subtree goes into the
EXPANDED state.

This seemingly complicated set of invariants can be summarized in a straight-
forward way. Upon owning a leaf, that worker processes elements from that leaf’s
range by incrementing the progress field until either it processes all elements or
another worker requests some work by invalidating progress, in which case the
leaf is replaced by a subtree such that the remaining work is divided between
the new leaves.

Now that we have formally defined a valid work-stealing tree, we provide
an implementation of the basic operations (Fig. 4). These operations will be
the building blocks for the scheduling algorithm that balances the workload.
A worker must attempt to acquire ownership of a node before processing its
elements by calling the method tryOwn, which returns true if the claim is suc-
cessful. After reading the owner field in line 14 and establishing the AVAILABLE
state, the worker attempts to atomically push the node into the OWNED state
with the CAS in line 15. This CAS can fail either due to a faster worker claiming
ownership or spuriously – a retry follows in both cases.

Fig. 3. Work-stealing subtree state diagram

Near Optimal Work-Stealing Tree Scheduler 61

Fig. 4. Basic work-stealing tree operations

A worker that claimed ownership of a node repetitively calls tryAdvance,
which attempts to reserve a batch of size STEP by atomically incrementing the
progress field, eventually bringing the node into the COMPLETED state. If
tryAdvance returns a nonnegative number, the owner is obliged to process that
many elements, whereas a negative number is an indication that the node was
stolen.

A worker searching for work must call trySteal if it finds a node in the
OWNED state. This method returns true if the node was successfully brought
into the EXPANDED state by any worker, or false if the node ends up in the
COMPLETED state. Method trySteal consists of two steps. First, it attempts
to push the node into the STOLEN state with the CAS in line 35 after deter-
mining that the node read in line 29 is a leaf. This CAS can fail either due to
a different steal, a successful tryAdvance call or spuriously. Successful CAS in
line 35 brings the node into the STOLEN state. Irregardless of success or failure,
trySteal is then called recursively. In the second step, the expanded version of
the node from Fig. 3 is created by the newExpanded method, the pseudocode of
which is not shown here since it consists of isolated singlethreaded code. The
child field in Ptr is replaced with the expanded version atomically with the
CAS in line 39, bringing the node into the EXPANDED state.

We now describe the scheduling algorithm that the workers execute by invok-
ing the run method. There are two basic modes of operation a worker alternates
between. First, it calls findWork, which returns a node in the AVAILABLE state
(line 3). Then, it calls descend to work on that node until it is stolen or com-
pleted, which calls workOn to process the elements. If workOn returns false,
then the node was stolen and the worker tries to descend one of the subtrees
rather than searching the entire tree for work. This decreases the total number of
findWork invocations. The method workOn checks if the node is in the OWNED
state (line 47), and then attempts to atomically increase progress by calling
tryAdvance. The worker is obliged to process the elements after a successful
advance, and does so by calling the kernel method, which is nothing more than
the while loop like the one in Fig. 1. Generally, kernel can be any kind of a
workload. Finally, method findWork traverses the tree left to right and whenever

62 A. Prokopec and M. Odersky

it finds a leaf node it tries to claim ownership. Otherwise, it attempts to steal
it until it finds that it is either COMPLETED or EXPANDED, returning ⊥ or
descending deeper, respectively. Nodes with 1 or less elements left are skipped.

We explore alternative findWork implementations in Sect. 4. For now, we
state but do not prove the following claim. If the method findWork does return
⊥, then all the work in the tree was obtained by different workers that had
called tryAdvance except M < P loop elements distributed across M leaf nodes
where P is the number of workers. This follows from the fact that the tree grows
monotonically.

Fig. 5. Scheduling algorithm

Note that workOn is similar to fixed-size batching – the only difference is
that an arrival of a worker invalidates the node here, whereas multiple workers
simultaneously call tryAdvance in fixed-size batching, synchronizing repetitively.
The next section starts by evaluating the impact this has on performance.

4 Evaluation

As hinted in the introduction, we want to evaluate how good our scheduler is
for uniform workloads with a low amount of work per element. The reasons
for this are twofold – first, we want to compare speedups against an optimal
sequential program. Second, such problems appear in practical applications. We
thus ensure that the third and fourth program from Fig. 1 really have the same
performance for a single processor. We will call the while loop from Fig. 1 the
sequential baseline.

Parallelizing the baseline seems trivial. Assuming the workers start at roughly
the same time and have roughly the same speed, we can divide the range in equal
parts between them. However, an assumption from the introduction was that
the workload distribution is not known and the goal is to parallelize irregular
workloads as well. In fact, the workload may have a coarse granularity, consisting
only of several elements.

Near Optimal Work-Stealing Tree Scheduler 63

For the reasons above, we verify that the scheduler abides the following
criteria:

C1 There is no noticeable overhead when executing the baseline with a single
worker.
C2 Speedup is optimal for both the baseline and typical irregular workloads.
C3 Speedup is optimal when the work granularity equals the parallelism level.

Workloads we choose correspond to those found in practice. Uniform work-
loads are particularly common and correspond to numeric computations, text
manipulation, Monte Carlo methods and applications that involve basic linear
algebra operations like vector addition or matrix multiplication. In Fig. 8 we
denote this workload as UNIFORM. Triangular workloads are present in pri-
mality testing, multiplication with triangular matrices and computing an adjoint
convolution (TRIANGLE). In higher dimensions computing a convolution con-
sists of several nested loops and can have a polynomial workload distribution
(PARABOLA). Depending on how the problem is formulated, the workload may
be increasing or decreasing (INVTRIANGLE, HILL, VALLEY). In combinato-
rial problems such as word segmentation, bin packing or computing anagrams
the problem subdivision can be such that the subproblems corresponding to
different elements differ exponentially – we model this with an exponentially
increasing workload EXP. In raytracing, PageRank or sparse matrix multiplica-
tion the workload corresponds to some probability distribution, modelled with
workloads GAUSSIAN and RANDIF. Finally, in problems like Mandelbrot set
computation or Barnes-Hut simulation we have large conglomeration of elements
which require a lot of computation while the rest require almost no work. We
call this workload distribution STEP.

All the tests were performed on an Intel i7 3.4 GHz quad-core processor with
hyperthreading and Oracle JDK 1.7, using the server VM. Our implementation is
written in the Scala programming language, which uses the JVM as its backend.
JVM programs are commonly regarded as less efficient than programs written in
C. To show that the evaluation is comparative to a C implementation, we must
evaluate the performance of corresponding sequential C programs. The running
time of the while loop from Fig. 1 is roughly 45 ms for 150 million elements in
both C (GNU C++ 4.2) and on the JVM – if we get linear speedups then we can
conclude that the scheduler is indeed optimal. We can thus turn our attention
to criteria C1.

We stated already that the STEP value should ideally be 1 for load-balancing
purposes, but has to be more coarse-grained due to communication costs that
could overwhelm the baseline. In Fig. 6A we plot the running time against the
STEP size, obtained by executing the baseline loop with a single worker. By
finding the minimum STEP value with no observable overhead, we seek to sat-
isfy criteria C1. The minimum STEP with no noticeable synchronization costs is
around 50 elements – decreasing STEP to 16 doubles the execution time and for
value 1 the execution time is 36 times larger (not shown for readability).

Having shown that the work-stealing tree is as good as fixed-size batching, we
evaluate its effectiveness with multiple workers. Figure 6B shows that the mini-

64 A. Prokopec and M. Odersky

Fig. 6. Baseline running time (ms) vs. STEP size

mum STEP for fixed-size batching increases for 2 workers, as we postulated earlier.
Increasing STEP decreases the frequency of synchronization and the communica-
tion costs with it. In this case the 3x slowdown is caused by processors having to
exchange ownership of the progress field cache-line. The work-stealing tree does
not suffer from this problem, since it strives to keep processors isolated – the
speedup is linear with 2 workers. However, with 4 processors the performance of
the naive work-stealing tree implementation is degraded (Fig. 6C). While the rea-
son is not immediately apparent, note that for greater STEP values the speedup
is once again linear. Inspecting the number of elements processed in each node
reveals that the uniform workload is not evenly distributed among the topmost
nodes – communication costs in those nodes are higher due to false sharing.
Even though the two processors work on different nodes, they modify the same
cache line, slowing down the CAS in line 20. Why this exactly happens in the
implementation that follows directly from the pseudocode is beyond the scope
of this paper, but it suffices to say that padding the node object with dummy
fields to adjust its size to the cache line solves this problem, as shown in Fig. 6D,
E.

The speedup is still not completely linear as the number of workers grows.
Our baseline does not access main memory and only touches cache lines in
exclusive mode, so this may be due to worker wakeup delay or scheduling costs
in the work-stealing tree. After checking that increasing the total amount of work
does not change performance, we focus on the latter. Inspecting the number of
tree nodes created at different parallelism levels in Fig. 7B reveals that as the
number of workers grows, the number of nodes grows at a superlinear rate. Each
node incurs a synchronization cost, so could we decrease their total number?

Examining a particular work-stealing tree instance at the end of the opera-
tion reveals that different workers are battling for work in the left subtree until
all the elements are depleted, whereas the right subtree remains unowned during
this time. As a result, the workers in any subtree steal from each other more
often, hence creating more nodes. The cause is the left-to-right tree traversal in
findWork as defined in Fig. 5, a particularly bad stealing strategy we will call
Predefined. As shown in Fig. 7B, the average tree size for 8 workers nears 2500
nodes. So, lets try to change the preference of a worker by changing the tree-
traversal order in line 70 based on the worker index i and the level l in the tree.
The worker should go left-to-right if and only if (i � (l mod �log2 P)) mod 2 =
1 where P is the total number of workers. This way, the first path from the root

Near Optimal Work-Stealing Tree Scheduler 65

to a leaf up to depth log2 P is unique for each worker. The choice of the subtree
after a steal in lines 10 and 66 is also changed like this – the detailed imple-
mentation of findWork for this and other strategies is shown in the appendix.
This strategy, which we call Assign, decreases the average tree size at P = 8
to 134. Interestingly, we can do even better by doing this assignment only if the
node depth is below log2 P and randomizing the traversal order otherwise. We
call this strategy AssignTop – it decreases the average tree size at P = 8 to 77.
Building on the randomization idea, we introduce an additional strategy called
RandomWalk where the traversal order in findWork is completely randomized.
However, this results in a lower throughput and bigger tree sizes. Additionally
randomizing the choice in lines 10 and 66 (RandomAll) is even less helpful,
since the stealer and the victim clash more often.

Fig. 7. Comparison of findWork implementations

The results of the five different strategies mentioned thus far lead to the
following observation. If a randomized strategy like RandomWalk or Assign-
Top works better than a suboptimal strategy like Predefined then some of its
random choices are beneficial to the overall execution time and some are disad-
vantageous. So, there must exist an even better strategy which only makes the
choices that lead to a better execution time. Rather than providing a theoretical
background for such a strategy, we propose a particular one which seems intu-
itive. Let workers traverse the entire tree and pick a node with most work, only
then attempting to own or steal it. We call this strategy FindMax. Note that
this cannot be easily implemented atomically, but a quiescently consistent imple-
mentation may still serve as a decent heuristic. This strategy yields an average
tree size of 42 at P = 8, as well as a slightly better throughput – we conclude
by choosing it as our default strategy. Also, the diagrams in Fig. 7 reveal the
postulated inverse correlation between the tree size and total execution time,
both for the Intel i7-2600 and the Sun UltraSPARC T2 processor (where STEP is
set to 600), which is particularly noticeable for Assign when the total number
of workers is not a power of two. For some P RandomAll works slightly better
than FindMax on UltraSPARC, but both are much more efficient than static
batching, which deteriorates heavily once P exceeds the number of cores.

The results so far go a long way in justifying that C1 is fulfilled. We focus
on the C2 and C3 next by changing the workloads, namely the kernel func-
tion. Figures 8 and 9 show a comparison of the work-stealing tree and the other

66 A. Prokopec and M. Odersky

Fig. 8. Comparison of different kernel functions I (throughput/s−1 vs. #workers)

Near Optimal Work-Stealing Tree Scheduler 67

Fig. 9. Comparison of different kernel functions II (throughput/s−1 vs. #workers)

schedulers on a range of different workloads. Each workload pattern is illustrated
prior to its respective diagrams, along with corresponding real-world examples.
To avoid memory access effects and additional layers of abstraction each work-
load is minimal and synthetic, but corresponds to a practical use-case. To test
C3, in Fig. 8-5, 6 we decrease the number of elements to 16 and increase the
workload heavily. Fixed-size batching fails utterly for these workloads – the total
number of elements is on the order of or well below the estimated STEP. These
workloads obviously require smaller STEP sizes to allow stealing, but that would
annul the baseline performance, and we cannot distinguish the two. We address
these seemingly incompatible requirements by modifying the work-stealing tree
in the following way. A mutable step field is added to Node, which is initially 1
and does not require atomic access. At the end of the while loop in the workOn
method the step is doubled unless greater than some value MAXSTEP. As a result,
workers start processing each node by cautiously checking if they can complete
a bit of work without being stolen from and then increase the step exponen-
tially. This naturally slows down the overall baseline execution, so we expect the
MAXSTEP value to be greater than the previously established STEP. Indeed, on the
i7-2600, we had to set MAXSTEP to 256 to maintain the baseline performance and

68 A. Prokopec and M. Odersky

at P = 8 even 1024. With these modifications work-stealing tree yields linear
speedup for all uniform workloads.

Triangular workloads such as those shown in Fig. 8-8, 9, 10 show that static
batching can yield suboptimal speedup due to the uniform workload assump-
tion. Figure 8-20 shows the inverse triangular workload and its negative effect
on guided self-scheduling – the first-arriving processor takes the largest batch
of work, which incidentally contains most work. We do not inverse the other
increasing workloads, but stress that it is neither helpful nor necessary to have
batches above a certain size.

Figure 9-28 shows an exponentially increasing workload, where the work asso-
ciated with the last element equals the rest of the work – the best possible
speedup is 2. Figure 9-30, 32 shows two examples where a probability distribu-
tion dictates the workload, which occurs often in practice. Guided self-scheduling
works well when the distribution is relatively uniform, but fails to achieve opti-
mal speedup when only a few elements require more computation, for reasons
mentioned earlier.

In the STEP distributions all elements except those in some range 〈n1, n2〉
are associated with a very low amount of work. The range is set to 25% of the
total number of elements. When its absolute size is above MAXSTEP, as in Fig. 9-
34, most schedulers do equally well. However, not all schedulers achieve optimal
speedup as we decrease the total number of elements N and the range size goes
below MAXSTEP. In Fig. 9-35 we set n1 = 0 and n2 = 0.25N . Schedulers other
than the work-stealing tree achieve almost no speedup, each for the same reasons
as before. However, in Fig. 9-36, we set n1 = 0.75N and n2 = N and discover
that the work-stealing tree achieves a suboptimal speedup. The reason is the
exponential batch increase – the first worker acquires a root node and quickly
processes the cheap elements, having increased the batch size to MAXSTEP by
the time it reaches the expensive ones. The real work is thus claimed by the
first worker and the others are unable to acquire it. Assuming some batches are
smaller and some larger as already explained, this problem cannot be worked
around by a different batching order – there always exists a workload distribution
such that the expensive elements are in the largest batch. In this adversarial
setting the existence of a suboptimal work distribution for every batching order
can only be overcome by randomization. We omit the details due to reasons of
space, but briefly explain how to randomize batching in the appendix, showing
how to improve the expected speedup.

Finally, we conclude this section by comparing the new scheduler with an
existing scheduler implementation used in the Scala Parallel Collections [17] in
Fig. 10. The Scala Parallel Collections scheduler is an example of an adaptive
data-parallel scheduler relying a task-parallel scheduler under the hood [15].
The batching order is chosen so that the sizes increase exponentially. At any
point, the largest batch (task) is eligible for stealing – after a steal, the batch
is divided in the same batching order. Due to the overheads of preemptively
creating batch tasks and scheduling them, Scala Parallel Collections use a bound
on the minimum batch size.

Near Optimal Work-Stealing Tree Scheduler 69

Fig. 10. (A) Matrix multiplication and (B) Mandelbrot sets on i7 and UltraSPARC
T2

In Fig. 10 we evaluate the performance of Scala Parallel Collections against
the new scheduler against two benchmark applications – triangular matrix multi-
plication and Mandelbrot set computation. Triangular matrix multiplication has
a linearly increasing workload. Scala Parallel Collections scale as the number of
processors increases on both the i7 and the UltraSPARC machine, although they
are slower by a constant factor. However, in the Mandelbrot set benchmark where
we render set in the part of the plane ranging from (−2,−2) to (32, 32), they do
not scale beyond P = 2 on the i7, and only start scaling after P = 16 on the
UltraSPARC. The reason is that the computationally expensive elements around
the coordinates (0, 0) end up in a single batch and work on them cannot be par-
allelized. The work-stealing tree offers a more lightweight form of work-stealing
with smaller batches and better load balancing.

5 Conclusion

We presented a scheduling algorithm for data-parallel operations that fulfills the
specified criteria. Based on the experiments, we draw the following conclusions:

1. Minimum batch size on modern architectures needed to efficiently parallelize
the sequential baseline typically ranges from a few dozen to several hundred
elements.

2. There is no need to make batches larger than some architecture-specific size
MAXSTEP, which is independent of the problem size – in fact, the approach
employed by guided self-scheduling and factoring can be detrimental.

3. Batching can and should occur in isolation – by having workers communicate
only when they run out of work batching can be more fine-grained (Fig. 6).

4. Certain workloads require single element batches, in which case batch size
has to be modified dynamically. Exponentially increasing batch size from 1
up to MAXSTEP works well for different workloads (Fig. 9).

5. When the dominant part of the workload is distributed across a range of ele-
ments smaller than MAXSTEP, the worst-case speedup can be 1. Randomizing
the batching order can improve the average speedup.

We hinted that the work-stealing tree serves as a reduction tree, and we show
the details in the appendix. We give some theoretical background to the con-
clusions from the experiments in the appendix as well. In the paper, we focused

70 A. Prokopec and M. Odersky

on parallel loops, but arrays, hash tables and trees are also eligible for parallel
traversal [3,17,18]. The range iterator state was encoded with a single integer,
but the state of other data structure iterators, as well as batching and stealing,
may be more complex. While the CAS-based implementation of tryAdvance
and trySteal ensures lock-freedom, CAS instructions in those methods can be
replaced with short critical sections for more complicated iterators – the work-
stealing tree algorithm is potentially applicable to other data structures in a
straightforward way.

A Appendix

We provide the appendix section to further explain some of the concepts men-
tioned in the main paper which did not fit there. The information here is provided
for convenience and it should not be necessary to read this section, but doing so
may give useful insight.

A.1 Work-Stealing Reduction Tree

As mentioned, the work-stealing tree is a particularly effective data-structure
for a reduce operation. Parallel reduce is useful in the context of many other
operations, such as finding the first element with a given property, finding the
greatest element with respect to some ordering, filtering elements with a given
property or computing an aggregate of all the elements (e.g. a sum).

There are two reasons why the work-stealing tree is amenable to implement-
ing reductions. First, it preserves the order in which the work is split between
processors, which allows using non-commutative operators for the reduce (e.g.
computing the resulting transformation from a series of affine transformations
can be parallelized by multiplying a sequence of matrices – the order is in this
case important). Second, the reduce can largely be performed in parallel, due to
the structure of the tree.

Fig. 11. Reduction state diagram

Near Optimal Work-Stealing Tree Scheduler 71

The work-stealing tree reduce works similar to a software combining tree [9],
but it can proceed in a lock-free manner after all the node owners have completed
their work, as we describe next. The general idea is to save the aggregated result
in each node and then push the result further up the tree. Note that we did
not save the return value of the kernel method in line 50 in Fig. 5, making the
scheduler applicable only to parallelizing for loops. Thus, we add a local variable
sum and update it each time after calling kernel. Once the node ends up in a
COMPLETED or EXPANDED state, we assign it the value of sum. Note that
updating an invocation-specific shared variable instead would not only break
the commutativity, but also lead to the same bottleneck as we saw before with
fixed-size batching. We therefore add two new fields with atomic access to Node,
namely lresult and result. We also add a new field parent to Ptr. We expand
the set of abstract node states with two additional ones, namely PREPARED
and PUSHED. The expanded state diagram is shown in Fig. 11.

The parent field in Ptr is not shown in the diagram in Fig. 11. The first two
boxes in Node denote the left and the right child, respectively, as before. We rep-
resent the iteration state (progress) with a single box in Node. The iterator may
either be stolen (ps) or completed (u), but this is not important for the new states
– we denote all such entries with ×. The fourth box represents the owner, the
fifth and the sixth fields lresult and result. Once the work on the node is effec-
tively completed, either due to a steal or a normal completion, the node owner π
has to write the value of the sum variable to lresult. After doing so, the owner
announces its completion by atomically writing a special value P to result, and
by doing so pushes the node into the PREPARED state – we say that the owner
prepares the node. At this point the node contains all the information necessary to
participate in the reduction. The sufficient condition for the reduction to start is
that the node is a leaf or that the node is an inner node and both its children are in
the PUSHED state. The value lresult can then be combined with the result val-
ues of both its children and written to the result field of the node. Upon writing

Fig. 12. Reduction pseudocode

72 A. Prokopec and M. Odersky

to the result field, the node goes into the PUSHED state. This push step can be
done by any worker ψ and assuming all the owners have prepared their nodes, the
reduction is lock-free. Importantly, the worker that succeeds in pushing the result
must attempt to repeat the push step in the parent node. This way the reduction
proceeds upwards in the tree until reaching the root. Once some worker pushes
the result to the root of the tree, it notifies that the operation was completed, so
that the thread that invoked the operation can proceed, in case that the parallel
operation is synchronous. Otherwise, a future variable can be completed or a user
callback invoked.

Before presenting the pseudocode, we formalize the notion of the states we
described. In addition to the ones mentioned earlier, we identify the following
new invariants.

INV6. Field n.lresult is set to ⊥ when created. If a worker π overwrites the
value ⊥ of the field n.lresult then n.owner = π and the node n is either in
the EXPANDED state or the COMPLETED state. That is the last write to
n.lresult.

INV7. Field n.result is set to ⊥ when created. If a worker π overwrites the
value ⊥ of the field n.result with P then n.owner = π, the node n was either
in the EXPANDED state or the COMPLETED state and the value of the field
n.lresult is different than ⊥. We say that the node goes into the PREPARED
state.

INV8. If a worker ψ overwrites the value P of the field n.result then the node
n was in the PREPARED state and was either a leaf or its children were in the
PUSHED state. We say that the node goes into the PUSHED state.

We modify workOn so that instead of lines 53 through 57, it calls the method
complete passing it the sum argument and the reference to the subtree. The
pseudocodes for complete and an additional method pushUp are shown in Fig. 12.

Upon completing the work, the owner checks whether the subtree was stolen.
If so, it helps expand the subtree (line 78), reads the new node and writes the
sum into lresult. After that, the owner pushes the node into the PREPARED
state in line 84, retrying in the case of spurious failures, and calls pushUp.

The method pushUp may be invoked by the owner of the node attempting to
write to the result field, or by another worker attempting to push the result up
after having completed the work on one of the child nodes. The lresult field
may not be yet assigned (line 92) if the owner has not completed the work –
in this case the worker ceases to participate in the reduction and relies on the
owner or another worker to continue pushing the result up. The same applies
if the node is already in the PUSHED state (line 94). Otherwise, the lresult
field can only be combined with the result values from the children if both
children are in the PUSHED state. If the worker invoking pushUp notices that
the children are not yet assigned the result, it will cease to participate in the
reduction. Otherwise, it will compute the tentative result (line 104) and attempt
to write it to result atomically with the CAS in line 106. A failed CAS triggers
a retry, otherwise pushUp is called recursively on the parent node. If the current

Near Optimal Work-Stealing Tree Scheduler 73

node is the root, the worker notifies any listeners that the final result is ready
and the operations ends.

A.2 Work-Stealing Tree Traversal Strategies

We showed experimentally that changing the traversal order when searching for
work can have a considerable effect on the performance of the work-stealing
tree scheduler. We described these strategies briefly how, but did not present a
precise, detailed pseudocode. In this section we show different implementations
of the findWork and descend methods that lead to different tree traversal orders
when stealing.

Assign. In this strategy a worker with index i invoking findWork picks a left-
to-right traversal order at some node at level l if and only if its bit at position
l mod �log2 P is 1, that is:

(i � (l mod �log2 P)) mod 2 = 1 (1)

The consequence of this is that when the workers descend in the tree the
first time, they will pick different paths, leading to fewer steals assuming that the
workload distribution is relatively uniform. If it is not uniform, then the workload
itself should amortize the creation of extra nodes. We give the pseudocode in
Fig. 13.

Fig. 13. Assign strategy

AssignTop. This strategy is similar to the previous one with the difference
that the assignment only works as before if the level of the tree is less than or
equal to �log2P . Otherwise, a random choice is applied in deciding whether
traversal should be left-to-right or right-to-left. We show it in Fig. 14 where
we only redefine the method left, and reuse the same choose, descend and
findWork.

74 A. Prokopec and M. Odersky

Fig. 14. AssignTop and RandomAll strategies

RandomAll. This strategy randomizes all the choices that the stealer and the
victim make. Both the tree traversal and the node chosen after the steal are thus
changed in findWork. We show it in Fig. 14.

RandomWalk. Here we only change the tree traversal order that the stealer
does when searching for work and leave the rest of the choices fixed to victim
picking the left node after expansion and the stealer picking the right node. The
code is shown in Fig. 15.

Fig. 15. RandomWalk strategy

FindMax. This strategy, unlike the previous ones, does not break tree traversal
early as soon as a viable node is found. Instead, it traverses the entire work-
stealing tree in left-to-right order and returns a reference to a node with the
most work. Only then it attempts to own or steal that node. As noted before,
this kind of search is not atomic, since some nodes may be stolen and expanded
in the meantime and processors advance through the nodes they own. However,
we expect steals to be rare events so in most cases this search should give an
exact or a nearly exact estimate. The decisions about which node the victim and
the stealer take after expansion remain the same as in the basic algorithm from
Fig. 5. We show the pseudocode for FindMax in Fig. 16.

Near Optimal Work-Stealing Tree Scheduler 75

Fig. 16. FindMax strategy

A.3 Speedup and Optimality Analysis

In Fig. 9-36 we identified a workload distribution for which the work-stealing
reduction tree had a particularly bad performance. This coarse workload con-
sisted of a major prefix of elements which required a very small amount of
computation followed by a minority of elements which required a large amount
of computation. We call it coarse because the number of elements was on the
order of magnitude of a certain value we called MAXSTEP.

To recap, the speedup was suboptimal due to the following. First, to achieve
an optimal speedup for at least the baseline, not all batches can have fewer
elements than a certain number. We have established this number for a particu-
lar architecture and environment, calling it STEP. Second, to achieve an optimal
speedup for ranges the size of which is below STEP·P, some of the batches have to
be smaller than the others. The technique we apply starts with a batch consist-
ing of a single element and increases the batch size exponentially up to MAXSTEP.
Third, there is no hardware interrupt mechanism available to interrupt a worker
which is processing a large batch, and software emulations which consist of check-
ing a volatile variable within a loop are too slow when executing the baseline.
Fourth, the worker does not know the workload distribution and cannot measure
time. All this caused a single worker obtain the largest batch before the other
workers had a chance to steal some work for a particular workload distribution.
Justifying these claims requires a set of more formal definitions. We start by
defining the context in which the scheduler executes.

Definition 1 (Oblivious conditions). If a data-parallel scheduler is unable
to obtain information about the workload distribution, nor information about the
amount of work it had previously executed, we say that the data-parallel scheduler
works in oblivious conditions.

Assume that a worker decides on some batching schedule c1, c2, . . . , ck where
cj is the size of the j-th batch and

∑k
j=1 cj = N , where N is the size of the range.

No batch is empty, i.e. cj �= 0 for all j. In oblivious conditions the worker does
not know if the workload resembles the baseline mentioned earlier, so it must
assume that it does and minimize the scheduling overhead. The baseline is not
only important from a theoretical perspective being one of the potentially worst-
case workload distribution, but also from a practical one – in many problems

76 A. Prokopec and M. Odersky

parallel loops have a uniform workload. We now define what this baseline means
more formally.

Definition 2 (The baseline constraint). Let the workload distribution be a
function w(i) which gives the amount of computation needed for range element i.
We say that a data-parallel scheduler respects the baseline constraint if and only
if the speedup sp with respect to a sequential loop is arbitrarily close to linear
when executing the workload distribution w(i) = w0, where w0 is the minimum
amount of work needed to execute a loop iteration.

Arbitrarily close here means that ε in sp = P
1+ε can be made arbitrarily small.

The baseline constraint tells us that it may be necessary to divide the elements
of the loop into batches, depending on the scheduling (that is, communication)
costs. As we have seen in the experiments, while we should be able to make the ε
value arbitrarily small, in practice it is small enough when the scheduling overhead
is no longer observable in the measurement. Also, we have shown experimentally
that the average batch size should be bigger than some value in oblivious condi-
tions, but we have used particular scheduler instances. Does this hold in general,
for every data-parallel scheduler? The answer is yes, as we show in the following
lemma.

Lemma 1. If a data-parallel scheduler that works in oblivious conditions respects
the baseline constraint then the batching schedule c1, c2, . . . , ck is such that:

∑k
j=1 cj

k
≥ S(ε) (2)

Proof. The lemma claims that in oblivious conditions the average batch size
must be above some value which depends on the previously defined ε, otherwise
the scheduler will not respect the baseline constraint.

The baseline constraint states that sp = P
1+ε , where the speedup sp is defined

as T0/Tp, where T0 is the running time of a sequential loop and Tp is the running
time of the scheduler using P processors. Furthermore, T0 = T ·P where T is the
optimal parallel running time for P processors, so it follows that ε · T = Tp − T .
We can also write this as ε · W = Wp − W . This is due to the running time
being proportionate to the total amount of executed work, whether scheduling
or useful work. The difference Wp −W is exactly the scheduling work Ws, so the
baseline constraint translates into the following inequality:

Ws ≤ ε · W (3)

In other words, the scheduling work has to be some fraction of the useful
work. Assuming that there is a constant amount of scheduling work Wc per
every batch, we have Ws = k · Wc. Lets denote the average work per element
with w. We then have W = N ·w. Combining these relations we get N ≥ k · Wc

ε·w ,
or shorter N ≥ k · S(ε). Since N is equal to the sum of all batch sizes, we derive
the following constraint:

∑k
j=1 cj

k
≥ Wc

ε · w
(4)

Near Optimal Work-Stealing Tree Scheduler 77

In other words, the average batch size must be greater than some value S(ε)
which depends on how close we want to get to the optimal speedup. Note that
this value is inversely proportionate to the average amount of work per element
w – the scheduler could decide more about the batch sizes if it knew something
about the average workload, and grows with the scheduling cost per batch Wc –
this is why it is especially important to make the workOn method efficient. We
already saw the inverse proportionality with ε in Fig. 6. In part, this is why we
had to make MAXSTEP larger than the chosen STEP (we also had to increase it due
to increasing the scheduling work in workOn, namely, Wc). This is an additional
constraint when choosing the batching schedule.

With this additional constraint there always exists a workload distribu-
tion for a given batching schedule such that the speedup is suboptimal, as we
show next.

Lemma 2. Assume that S(ε) > 1, for the desired ε. For any fixed batching
schedule c1, c2, . . . , ck there exists a workload distribution such that the scheduler
executing it in oblivious conditions yields a suboptimal schedule.

Proof. First, assume that the scheduler does not respect the baseline constraint.
The baseline workload then yields a suboptimal speedup and the statement is
trivially true because S(ε) > 1.

Otherwise, assume without the loss of generality that at some point in time
a particular worker ω is processing some batch cm the size of which is greater
or equal to the size of the other batches. This means the size of cm is greater
than 1, from the assumption. Then we can choose a workload distribution such
that the work Wm =

∑Nm+cm
i=Nm

w(i) needed to complete batch cm is arbitrarily
large, where Nm =

∑m−1
j=1 cj is the number of elements in the batching schedule

coming before the batch cm. For all the other elements we set w(i) to be some
minimum value w0. We claim that the obtained speedup is suboptimal. There is
at least one different batching schedule with a better speedup, and that is the
schedule in which instead of batch cm there are two batches cm1 and cm2 such
that cm1 consists of all the elements of cm except the last one and cm2 contains
the last element. In this batching schedule some other worker can work on cm2

while ω works on cm1 . Hence, there exists a different batching schedule which
leads to a better speedup, so the initial batching schedule is not optimal.

We can ask ourselves what is the necessary condition for the speedup to be
suboptimal. We mentioned that the range size has to be on the same order of
magnitude as S above, but can we make this more precise? We could simplify this
question by asking what is the necessary condition for the worst-case speedup
of 1 or less. Alas, we cannot find necessary conditions for all schedulers because
they do not exist – there are schedulers which do not need any preconditions
in order to consistently produce such a speedup (think of a sequential loop or,
worse, a “scheduler” that executes an infinite loop). Also, we already saw that a
suboptimal speedup may be due to a particularly bad workload distribution, so
maybe we should consider only particular distributions, or have some conditions

78 A. Prokopec and M. Odersky

on them. What we will be able to express are the necessary conditions on the
range size for the existence of a scheduler which achieves a speedup greater
than 1 on any workload. Since the range size is the only information known to
the scheduler in advance, it can be used to affect its decisions in a particular
implementation.

The worst-case speedups we saw occurred in scenarios where one worker
(usually the invoker) started to work before all the other workers. To be able to
express the desired conditions, we model this delay with a value Td.

Lemma 3. Assume a data-parallel scheduler that respects the baseline constraint
in oblivious conditions. There exists some minimum range size N1 for which the
scheduler can yield a speedup greater than 1 for any workload distribution.

Proof. We first note that there is always a scheduler that can achieve the speedup
1, which is merely a sequential loop. We then consider the case when the sched-
uler is parallelizing the baseline workload. Assume now that there is no minimum
range size N1 for which the claim is true. Then for any range size N we must
be able to find a range size N + K such that the scheduler still cannot yield
speedup 1 or less, for a chosen K. We choose N = f ·Td

w0
, where w0 is the amount

of work associated with each element in the baseline distribution and f is an
architecture-specific constant describing the computation speed. The chosen N
is the number of elements that can be processed during the worker wakeup delay
Td. The workers that wake up after the first worker ω processes N elements have
no more work to do, so the speedup is 1. However, for range size N + K there
are K elements left that have not been processed. These K elements could have
been in the last batch of ω. The last batch in the batching schedule chosen by
the scheduler may include the Nth element. Note that the only constraint on
the batch size is the lower bound value S(ε) from Lemma 1. So, if we choose
K = 2S(ε) then either the last batch is smaller than K or is greater than K.
If it is smaller, then a worker different than ω will obtain and process the last
batch, hence the speedup will be greater than 1. If it is greater, then the worker
ω will process the last batch – the other workers that wake up will not be able to
obtain the elements from that batch. In that case there exists a better batching
order which still respects the baseline constraint and that is to divide the last
batch into two equal parts, allowing the other workers to obtain some work and
yielding a speedup greater than 1. This contradicts the assumption that there is
no minimum range size N1 – we know that N1 is such that:

f · Td

w0
≤ N1 ≤ f · Td

w0
+ 2 · S(ε) (5)

Now, assume that the workload w(i) is not the baseline workload w0. For any
workload we know that w(i) ≥ w0 for every i. The batching order for a single
worker has to be exactly the same as before due to oblivious conditions. As a
result the running time for the first worker ω until it reaches the Nth element
can only be larger than that of the baseline. This means that the other workers
will wake up by the time ω reaches the Nth element, and obtain work. Thus,
the speedup can be greater than 1, as before.

Near Optimal Work-Stealing Tree Scheduler 79

We have so far shown that we can decide on the average batch size if we
know something about the workload, namely, the average computational cost of
an element. We have also shown when we can expect the worst case speedup,
potentially allowing us to take prevention measures. Finally, we have shown that
any data-parallel scheduler deciding on a fixed schedule in oblivious conditions
can yield a suboptimal speedup. Note the wording “fixed” here. It means that the
scheduler must make a definite decision about the batching order without any
knowledge about the workload, and must make the same decision every time –
it must be deterministic. As hinted before, the way to overcome an adversary
that is repetitively picking the worst case workload is to use randomization when
producing the batching schedule. This is the topic of the next section.

A.4 Overcoming the Worst-Case Speedup Using Randomization

Recall that the workload distribution that led to a bad speedup in our evalu-
ation consisted of a sequence of very cheap elements followed by a minority of
elements which were computationally very expensive. On the other hand, when
we inverted the order of elements, the speedup became linear. The exponential
backoff approach is designed to start with smaller batches first in hopes of hitting
the part of the workload which contains most work as early as possible. This
allow other workers to steal larger pieces of the remaining work, hence allowing
a more fine grained batch subdivision. In this way the scheduling algorithm is
workload-driven – it gives itself its own feedback. In the absence of other infor-
mation about the workload, the knowledge that some worker is processing some
part of the workload long enough that it can be stolen from is the best sign
that the workload is different than the baseline, and that the batch subdivision
can circumvent the baseline constraint. This heuristic worked in the example
from Fig. 9-36 when the expensive elements were reached first, but failed when
they were reached in the last, largest batch, and we know that there has to be a
largest batch by Lemma 1 – a single worker must divide the range into batches
the mean size of which has a lower bound. In fact, no other deterministic sched-
uler can yield an optimal speedup for all schedules, as shown by Lemma 2. For
this reason we look into randomized schedulers.

In particular, in the example from the evaluation we would like the sched-
uler to put the smallest batches at the end of the range, but we have no way of
knowing if the most expensive elements are positioned somewhere else. With this
in mind we randomize the batching order. The baseline constraint still applies
in oblivious conditions, so we have to pick different batch sizes with respect to
the constraints from Lemma 1. Lets pick exactly the same set of exponentially
increasing batches, but place consequent elements into different batches ran-
domly. In other words, we permute the elements of the range and then apply the
previous scheme. We expect some of the more expensive elements to be assigned
to the smaller batches, giving other workers a higher opportunity to steal a part
of the work.

In evaluating the effectiveness of this randomized approach we will assume a
particular distribution we found troublesome. We define it more formally.

80 A. Prokopec and M. Odersky

Definition 3 (Step workload distribution). A step workload distribution
is a function which assigns a computational cost w(i) to each element i of the
range of size N as follows:

w(i) =

{
we, i ∈ [i1, i2]
w0, i �∈ [i1, i2]

(6)

where [i1, i2] is a subsequence of the range, w0 is the minimum cost of computa-
tion per element and we � w0. If we ≥ f · Td, where f is the computation speed
and Td is the worker delay, then we additionally call the workload highly irregu-
lar. We call D = 2d = i2−i1 the span of the step distribution. If (N−D)·w0

f ≤ Td

we also call the workload short.

We can now state the following lemma. We will refer to the randomized
batching schedule we have described before as the randomized permutation
with an exponential backoff. Note that we implicitly assume that the worker
delay Td is significantly greater than the time Tc spent scheduling a single batch
(this was certainly true in our experimental evaluation).

Lemma 4. When parallelizing a workload with a highly irregular short step
workload distribution the expected speedup inverse of a scheduler using random-
ized permutations with an exponential backoff is:

〈s−1
p 〉 =

1
P

+ (1 − 1
P

) · (2k − 2d − 1)!
(2k − 1)!

·
k−1∑

i=0

2i (2k − 2i − 1)!
(2k − 2i − 2d)!

(7)

where D = 2d � P is the span of the step workload distribution.

Proof. The speedup sp is defined as sp = T0
Tp

where T0 is the running time of
the optimal sequential execution and Tp is the running time of the parallelized
execution. We implicitly assume that all processors have the same the same
computation speed f . Since we � w0, the total amount of work that a sequential
loop executes is arbitrarily close to D · we, so T0 = D

f . When we analyze the
parallel execution, we will also ignore the work w0. We will call the elements
with cost we expensive.

We assumed that the workload distribution is highly irregular. This means
that if the first worker ω starts the work on an element from [i1, i2] at some
time t0 then at the time t1 = t0 + we

f some other worker must have already
started working as well, because t1 − t0 ≥ Td. Also, we have assumed that the
workload distribution is short. This means that the first worker ω can complete
work on all the elements outside the interval [i1, i2] before another worker arrives.
Combining these observations, as soon as the first worker arrives at an expensive
element, it is possible for the other workers to parallelize the rest of the work.

We assume that after the other workers arrive there are enough elements left
to efficiently parallelize work on them. In fact, at this point the scheduler will
typically change the initially decided batching schedule – additionally arriving

Near Optimal Work-Stealing Tree Scheduler 81

workers will steal and induce a more fine-grained subdivision. Note, however,
that the other workers cannot subdivide the batch on which the current worker
is currently working on – that one is no longer available to them. The only batches
with elements of cost we that they can still subdivide are the ones coming after
the first batch in which the first worker ω found an expensive element. We denote
this batch with cω. The batch cω may, however, contain additional expensive
elements and the bigger the batch the more probable this is. We will say that
the total number of expensive elements in cω is X. Finally, note that we assumed
that D � P , so our expression will only be an approximation if D is very close
to P .

We thus arrive at the following expression for speedup:

sp =
D

X + D−X
P

(8)

Speedup depends on the value X. But since the initial batching schedule is
random, the speedup depends on the random variable and is itself random. For
this reason we will look for its expected value. We start by finding the expectation
of the random variable X.

We will now solve a more general problem of placing balls to an ordered set
of bins and apply the solution to finding the expectation of X. There are k bins,
numbered from 0 to k − 1. Let ci denote the number of balls that fit into the
ith bin. We randomly assign D balls to bins, so that the number of balls in each
bin i is less than or equal to ci. In other words, we randomly select D slots from
all the N =

∑k−1
i=0 ci slots in all the bins together. We then define the random

variable X to be the number of balls in the non-empty bin with the smallest
index i. The formulated problem corresponds to the previous one – the balls are
the expensive elements and the bins are the batches.

An alternative way to define X is as follows:

X =
k−1∑

i=0

{
number of balls in bin i if all the bins j < i are empty
0 otherwise

(9)

Applying the linearity property, the expectation 〈X〉 is then:

〈X〉 =
k−1∑

i=0

〈number of balls in bin i given that all the bins j < i are empty, and 0 otherwise〉

(10)

The expectation in the sum is conditional on the event that all the bins
coming before i are empty. We call the probability of this event pi. We define bi

as the number of balls in any bin i. From the properties of conditional expectation
we than have:

〈X〉 =
k−1∑

i=0

pi · 〈bi〉 (11)

82 A. Prokopec and M. Odersky

The number of balls in any bin is the sum of the balls in all the slots of that
bin which spans slots ni−1 through ni−1 + ci. The expected number of balls in
a bin i is thus:

〈bi〉 =
ni−1+ci∑

i=ni−1

〈expected number of balls in a single slot〉 (12)

We denote the total capacity of all the bins j ≥ i as qi (so that q0 = N and
qk−1 = 2k−1). We assign balls to slots randomly with a uniform distribution –
each slot has a probability D

qi
of being selected. Note that the denominator is not

N – we are calculating a conditional probability for which all the slots before
the ith bin are empty. The expected number of balls in a single slot is thus D

qi
.

It follows that:
〈bi〉 = ci · D

qi
(13)

Next, we compute the probability pi that all the bins before the bin i are
empty. We do this by counting the events in which this is true, namely, the
number of ways to assign balls in bins j ≥ i. We will pick combinations of D
slots, one for each ball, from a set of qi slots. We do the same to enumerate all
the assignments of balls to bins, but with N = q0 slots, and obtain:

pi =

(
qi
D

)

(
q0
D

) (14)

We assumed here that qi ≥ D, otherwise we cannot fill all D balls into bins.
We could create a constraint that the last batch is always larger than the number
of balls. Instead, we simply define

(
qi
D

)
= 0 if qi < D – there is no chance we can

fit more than qi balls to qi slots. Combining these relations, we get the following
expression for 〈X〉:

〈X〉 = D · (q0 − D)!
q0!

k−1∑

i=0

ci · (qi − 1)!
(qi − D)!

(15)

We use this expression to compute the expected speedup inverse. By the
linearity of expectation:

〈s−1
p 〉 =

1
P

+
(

1 − 1
P

)

· (q0 − D)!
q0!

k−1∑

i=0

ci · (qi − 1)!
(qi − D)!

(16)

This is a more general expression than the one in the claim. When we plug
in the exponential backoff batching schedule, i.e. ci = 2i and qi = 2k − 2i, the
lemma follows.

The expression derived for the inverse speedup does not have a neat analytical
form, but we can evaluate it for different values of d to obtain a diagram. As
a sanity check, the worst expected speedup comes with d = 0. If there is only

Near Optimal Work-Stealing Tree Scheduler 83

a single expensive element in the range, then there is no way to parallelize
execution – the expression gives us the speedup 1. We expect a better speedup as
d grows – when there are more expensive elements, it is easier for the scheduler to
stumble upon some of them. In fact, for d = k, with the conventions established
in the proof, we get that the speedup is 1

P +
(
1 − 1

P

) · c0
D . This means that when

all the elements are expensive the proximity to the optimal speedup depends on
the size c0 of the first batch – the less elements in it, the better. Together with
the fact that many applications have uniform workloads, this is also the reason
why we advocate exponential backoff for which the size of the first batch is 1.

Fig. 17. Randomized scheduler executing step workload – speedup vs. span

We call the term (q0−D)!
q0!

∑k−1
i=0 ci · (qi−1)!

(qi−D)! the slowdown and plot it with
respect to span D on the diagram in Fig. 17. In this diagram we choose k =
10, and the number of elements N = 210 = 1024. As the term nears 1, the
speedup nears 1. As the term approaches 0, the speedup approaches the optimal
speedup P . The quicker the term approaches 0 as we increase d, the better
the scheduler. We can see that fixed-size batching should work better than the
exponential backoff if the span D is below 10 elements, but is much worse than
the exponential backoff otherwise. Linearly increasing the batch size from 0 in
some step a = 2·(2k−1)

k·(k−1) seems to work well even for span D < 10. However, the
mean batch size ci = S

k means that this approach may easily violate the baseline
constraint, and for P ≈ D the formula is an approximation anyway.

The conclusion is that selecting a random permutation of the elements should
work very well in theory. For example, the average speedup becomes very close to
optimal if less than D = 10 elements out of N = 1024 are expensive. However,
randomly permuting elements would in practice either require a preparatory
pass in which the elements are randomly copied or would require the workers to
randomly jump through the array, leading to cache miss issues. In both cases
the baseline performance would be violated. Even permuting the order of the

84 A. Prokopec and M. Odersky

batches seems problematic, as it would require storing information about where
each batch started and left off, as well as its intermediate result – for something
like that we need a data structure like a work-stealing tree and we saw that we
have to minimize the number of nodes there as much as possible.

There are many approaches we could study, many of which could have viable
implementations, but we focus on a particular one which seems easy to imple-
ment for ranges and other data structures. Recall that in the example in Fig. 9-
36 the interval with expensive elements was positioned at the end of the range.
What if the worker alternated the batch in each step by tossing the coin to
decide if the next batch should be from the left (start) or from the right (end)?
Then the worker could arrive at the expensive interval on the end while the
batch size is still small with a relatively high probability. The changes to the
work-stealing tree algorithm are minimal – in addition to another field called
rresult (the name of which should shed some light on the previous choice of
name for lresult), we have to modify the workOn, complete and pushUp meth-
ods. While the latter two are straightforward, the lines 47 through 51 of workOn
are modified. The new workOn method is shown in Fig. 18.

Fig. 18. Randomized loop method

The main issue here is to encode and atomically update the iteration state,
since it consists of two pieces of information – the left and the right position
in the subrange. We can encode these two positions by using a long integer
field and a long CAS operation to update it. The initial 32 bits can contain
the position on the left side of the subrange and the subsequent 32 on the
right side. With this in mind, the methods tryAdvanceLeft, tryAdvanceRight,
notStolen, notCompleted and decodeStep should be straightforward.

We evaluate the new scheduler on the distribution from Fig. 9-36 and show
the results in Fig. 19. The first two diagrams (STEP2 and STEP3) show that
with the expensive interval at the beginning and the end of the range the work-
stealing tree achieves a close to optimal speedup. However, there is still a worst
case scenario that we have to consider, and that is to have a step workload with
the expensive interval exactly in the middle of the range. Intuition tells us that

Near Optimal Work-Stealing Tree Scheduler 85

Fig. 19. The randomized work-stealing tree and the STEP3 workload

the probability to hit this interval early on is smaller, since a worker has to
progress through more batches to arrive at it. The workload STEP4 in the third
diagram of Fig. 19 contains around 25% expensive elements positioned in the
middle of the range. The speedup is decent, but not linear for STEP4, since the
bigger batches seem to on average hit the middle of the range more often.

Having shown that randomization does help scheduling both in theory and in
practice, we conclude that the problem of overcoming particularly bad workload
distributions is an algorithmic problem of finding a batching schedule which can
be computed and maintained relatively quickly, leaving this task as future work.

References

1. Arora, N.S, Blumofe, R.D., Plaxton, C.G: Thread scheduling for multiprogrammed
multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’98, pp. 119–129. ACM, New York (1998)

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1996)

3. Buss, A., Harshvardhan, Papadopoulos, I., Pearce, O., Smith, T., Tanase, G.,
Thomas, N., Xu, X., Bianco, M., Amato, N.M., Rauchwerger, L.: STAPL: stan-
dard template adaptive parallel library. In: Proceedings of the 3rd Annual Haifa
Experimental Systems Conference, SYSTOR ’10, pp. 14:1–14:10. ACM, New York
(2010)

4. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G., Marlow, S.:
Data parallel Haskell: a status report. In: Proceedings of the 2007 Workshop on
Declarative Aspects of Multicore Programming, DAMP ’07, pp. 10–18. ACM, New
York (2007)

5. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R.,
Weizenbaum, N.: FlumeJava: easy, efficient data-parallel pipelines. In: Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’10, pp. 363–375. ACM, New York (2010)

6. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proceedings of the
Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’05, pp. 21–28. ACM, New York (2005)

86 A. Prokopec and M. Odersky

7. Cong, G., Kodali, S.B., Krishnamoorthy, S., Lea, D., Saraswat, V.A., Wen, T.:
Solving large, irregular graph problems using adaptive work-stealing. In: ICPP,
pp. 536–545 (2008)

8. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI ’98, pp. 212–223. ACM,
New York (1998)

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers, San Francisco (2008)

10. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: a method for scheduling
parallel loops. Commun. ACM 35(8), 90–101 (1992)

11. Intel Software Network. Intel Cilk Plus. http://cilkplus.org/
12. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)
13. Koelbel, C., Mehrotra, P.: Compiling global name-space parallel loops for distrib-

uted execution. IEEE Trans. Parallel Distrib. Syst. 2(4), 440–451 (1991)
14. Kruskal, C.P., Weiss, A.: Allocating independent subtasks on parallel processors.

IEEE Trans. Softw. Eng. 11(10), 1001–1016 (1985)
15. Lea, D.: A java fork/join framework. In: Java Grande, pp. 36–43 (2000)
16. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: a practical schedul-

ing scheme for parallel supercomputers. IEEE Trans. Comput. 36(12), 1425–1439
(1987)

17. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A generic parallel collection
framework. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II.
LNCS, vol. 6853, pp. 136–147. Springer, Heidelberg (2011)

18. Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates,
Sebastopol (2007)

19. Sarkar, V.: Optimized unrolling of nested loops. In: Proceedings of the 14th Inter-
national Conference on Supercomputing, ICS ’00, pp. 153–166. ACM, New York
(2000)

20. Tardieu, O., Wang, H., Lin, H.: A work-stealing scheduler for x10’s task parallelism
with suspension. In: Proceedings of the 17th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’12, pp. 267–276. ACM, New
York (2012)

21. Tzen, T.H., Ni, L.M.: Trapezoid self-scheduling: a practical scheduling scheme for
parallel compilers. IEEE Trans. Parallel Distrib. Syst. 4(1), 87–98 (1993)

http://cilkplus.org/

OpenCL Task Partitioning
in the Presence of GPU Contention

Dominik Grewe(B), Zheng Wang, and Michael F.P. O’Boyle

School of Informatics, The University of Edinburgh, Edinburgh, UK
{dominik.grewe,zh.wang}@ed.ac.uk, mob@inf.ed.ac.uk

Abstract. Heterogeneous multi- and many-core systems are increas-
ingly prevalent in the desktop and mobile domains. On these systems
it is common for programs to compete with co-running programs for
resources. While multi-task scheduling for CPUs is a well-studied area,
how to partitioning and map computing tasks onto the heterogeneous
system in the presence of GPU contention (i.e. multiple programs com-
pete for the GPU) remains an outstanding problem.

In this paper we consider the problem of partitioning OpenCL
kernels on a CPU-GPU based system in the presence of contention on
the GPU. We propose a machine learning-based approach that predicts
the optimal partitioning of OpenCL kernels, explicitly taking GPU con-
tention into account. Our predictive model achieves a speed-up of 1.92
over a scheme that always uses the GPU. When compared to two state-
of-the-art dynamic approaches our model achieves speed-ups of 1.54 and
2.56 respectively.

1 Introduction

Integrated GPUs are becoming ubiquitous for desktop PCs and mobiles. The
integrated GPU utilizes a portion of the system’s RAM rather than dedicated
graphics memory, which shares the same memory space with the CPU. They are
less costly when compared to the dedicated GPUs, while still providing parallel
computing resources for certain classes of applications. There is an increasing
number of applications that make use of the integrated GPU on PCs and mobiles.
On these systems it is typical to have multiple programs running at the same
time, competing for the shared resources including the GPU. Under such settings,
decisions about which computing device (the CPU or the GPU) to use to run
the program and how the work should be partitioned across different devices
have significant impact on the application’s performance.

While multi-task scheduling on the general purpose CPU is a well-studied area,
how to partitioning and map tasks onto the underlying platform in the presences
of GPU contention remains an outstanding problem. Currently the use of the com-
puting device is statically determine and hard-coded when the application is built.
Given that the availability of resources and the behaviours of the workload pro-
grams vary in a multi-programmed environment and have a dramatic impact on
the correct mapping and scheduling of work, entirely static approaches are likely to
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 87–101, 2014.
DOI: 10.1007/978-3-319-09967-5 5

88 D. Grewe et al.

fail. What is needed is an approach that can adjust the mapping decision accord-
ing to the dynamic computing environment by taking into consideration the target
program behavior.

Several methods for automatically mapping tasks to devices in a heteroge-
neous system have been proposed. Luk et al. [14] use offline profiling to determine
the best partitioning between the CPU and GPU while Grewe and O’Boyle [6]
apply machine learning techniques to predict the optimal partitioning. Both
approaches deliver good results but only under the assumption that no other
programs are running on the system. Ravi et al. [16] use a dynamic, “task farm”
approach for task mapping. They divide the task into a fixed number of chunks
and send one chunk to each device. When a device finishes processing it requests
a new chunk. As we will show in this paper, this dynamic approach delivers poor
performance in the presence of GPU contention.

In this paper a new task partitioning approach is introduced that explicitly
takes GPU contention (i.e., multiple programs are competing for the GPU) into
account. Unlike most dynamic approaches which require an online searching
phase to determine the best partition of work, it uses a machine learning-based
predictive model to directly predict the best work partition using code features
of the program and runtime information. Unlike previously dynamic approaches,
our scheme avoids the potential expensive online searching overhead by directly
predicting the best partitioning scheme. The other advantage is that our model
is automatically generated off-line at the factory. This avoids the pitfalls of using
a hard-wired heuristic that requires human modification whenever the hardware
changes.

Across a set of 22 benchmarks and 10 different contention scenarios the pre-
dictive model achieves a speed-up of 1.92 over using only the GPU and 1.23 over
using only the CPU. When compared to two dynamic approaches our approach
achieves speed-ups of 1.54 and 2.56 respectively.

2 Motivation

This section demonstrates the importance of explicitly taking GPU contention
into account when mapping programs to heterogeneous systems.

Figure 1 shows the running time of the nbody benchmark in three GPU con-
tention scenarios: no contention, and medium and heavy contention. The medium
and heavy contention scenarios are created by running a separate application
which uses the GPU alongside the target program to be optimized. More details
on which applications were used is given in Sect. 5.1. Along the x axis different
static partitioning configurations (represented as the percentage of work mapped
to the CPU) are explored. On an idle system (i.e. the no contention scenario) the
running time of using only the GPU (x = 0) is shorter than the running time of
using only the CPU (x = 100). This changes, however, when the GPU contention
is introduced. Similarly, the optimal partitioning between the devices changes in
different contention scenarios. When the system is idle, the best performance is
achieved by a 30–70 split but already in medium contention more work should be

OpenCL Task Partitioning in the Presence of GPU Contention 89

Fig. 1. Running time of the nbody benchmark in multiple GPU contention scenar-
ios for different partitionings. The diamonds indicate the optimal partitioning for the
corresponding contention.

assigned to the CPU, namely 50 %. In a heavy contention scenario the runtime
of the application increases significantly when some of the work is mapped to the
GPU. The best performance is thus achieved when only the CPU is used. The
partitioning that is optimal on an idle system (x = 30) leads to a 3x slow-down
over the optimal partitioning.

This example demonstrates the need for partitioning techniques that can
adapt to contention on the GPU. As the contention information can only be
obtained at runtime, any static schemes will fail to achieve good performance
on systems being shared by multiple co-running applications. What we need is a
dynamic scheme that can adapt to various GPU contention scenarios. The next
section will discuss the challenges to be tackled for designing such a dynamic
scheme in the presence of GPU contention.

3 Challenges in the Presence of GPU Contention

This work targets OpenCL applications because OpenCL is emerging as a
standard for heterogenous computing, which allows the same code to be executed
on different computing devices including CPUs and GPUs.

In OpenCL, kernels are launched through command queues. Each time a
kernel is being executed it passes through multiple phases, i.e. queueing, ready
and execution, as depicted in Fig. 2. Unlike the general purposed CPU where
multiple programs can run simultaneously by sharing the CPU time, only one
kernel is allowed to execute at a time1 on the GPU. An OpenCL kernel may
therefore have to spend an significant amount of time in the ready phase waiting
for the GPU to become available if the GPU is being used by another program.
Furthermore, GPU tasks are non-preemptive, i.e. once a task gains access to
the GPU no other task can use the GPU until the current task has finished
1 NVIDIA GPUs allow concurrent executions of kernels from the same application but

not from different applications.

90 D. Grewe et al.

execution. This means that a kernel scheduled to the GPU may have spent a
long time in the ready phase if a different applications has previously launched
a long-running kernel. Therefore, non-careful mappings of kernels onto the GPU
at the presence of other GPU workload can lead to longer waiting time and
result in poor performance. The goal of this work is to determine how the work
of OpenCL kernels should be partitioned across the CPU and the GPU to give
the best performance by taking the GPU contention into consideration.

The OpenCL API provides an interface for querying the starting and finish-
ing time of each of the phases as indicated by the labels in Fig. 2. This allows
one to get insights into the behavior of OpenCL applications in the presence
of GPU contention. Figure 3 shows the behavior of the nbody benchmark in the
presence of heavy contention. Each bar represents the running time of a kernel
launch, divided into the times spent in each of the three phases. During the first
few kernel executions the system is idle. Only halfway through the contention
is introduced on the respective device. This highlights the difference in behavior
on an idle system and one with resource contention.

Fig. 2. The three pases of launching and executing an OpenCL kernel. The labels
on top correspond to the CL PROFILING COMMAND * parameters passed to the
clGetEventProfilingInfo function of the OpenCL API.

When the system is idle the overall running time of each kernel is dom-
inated by the execution phase which is stable across these runs. Time spent
in the queueing and ready phases is minimal (they are not even visible in the
graphs) because no other applications compete for resources. The behaviour of
the application is the same and it takes around 19 ms to run on the GPU. When a
competing application is launched, however, the behavior is different. Under such
a setting, time spent in the execution phase on the GPU remains the same at
19 ms because the kernel will always have exclusive access to all GPU resources.
However, time spent waiting for the GPU to became available (the ready phase)
shows dramatic variation. Sometimes it is as low as on the idle system but it
can be as high as 120 ms (more than 6 times of the time spent in the execution
phase). The variation is due to other applications blocking the GPU. If a long-
running kernel has been launched before a kernel is submitted it has to wait
for the long-running kernel to finish. If, however, the long-running kernel is just
about to finish when the kernel is launched the wait time is small. The total exe-
cution time of a kernel launch therefore varies significantly even if the contention
is constant, i.e. a fixed co-running applications. In such heavy GPU contention

OpenCL Task Partitioning in the Presence of GPU Contention 91

Fig. 3. Profiling of kernel launches in the presence of GPU contention. Each bar shows
the total running time of a kernel launch; broken down into queueing, ready and execu-
tion times. During the first half the system is idle, then another application is launched
competing for resources of the GPU.

it is thus better to use the CPU which provides a much quicker running time
(25 ms v.s. 120 ms). This unpredictable behavior of OpenCL applications in the
presence of GPU contention provides a big challenge to schedulers trying to find
the best partitioning of a kernel across devices. The next section will describe
how we build a dynamic scheme that can adapt to the GPU contention using
predictive modeling.

4 Predictive Modeling

This section describes how a machine learning-based model can be built for
determining a good partitioning for OpenCL tasks in the presence of GPU
contention. The input to the predictive model contains information on both the
OpenCL kernel and the GPU contention. Its output is a ratio describing the
amount of work to map to the CPU and the GPU.

4.1 The Features of the Model

The inputs of model are two sets of numerical values, namely feature sets, that
represent the input program and the runtime contention. The first set of features
describe the OpenCL kernel itself. They are extracted using a static analysis
tool based on clang [12]. The second set of features characterize the contention
on the GPU device. These features are constructed from information readily
available via the OpenCL API.

Program Features. The program features contain information about the number
and types of instructions in a kernel. Additionally, the number of coalesced
memory accesses is determined. The benchmarks used for this study, as described
in Sect. 5.1, often contain vector data types because they were targeted towards
both CPUs and GPUs. Another feature is thus the number of vector operations
in the code. The full list of program features is shown in Table 1.

92 D. Grewe et al.

Table 1. List of program features used by the predictive model.

Program features

1: # global memory accesses

2: # compute operations

3: # conditionals and loops

4: communication-to-computation ratio

5: percentage of vector operations

6: percentage of coalesced memory accesses

7: # work-items

Contention Features. Contention on the GPU is experienced by increased delays
in the ready phase waiting for the device to become available (see Sect. 3). The
specific GPU kernel causing the contention does not have any other influence
on the remaining programs because access to the GPU is exclusive. The best
way to characterize GPU contention is thus to quantify this delay. Since the
delay exhibits a significant variance a single observation does not carry much
information. Therefore, to characterize the contention the average delay (using
the arithmetic mean) is computed over time.

4.2 Building the Model

Machine learning models are built by fitting a mathematical model to training
data. Training data are observations where both the features (input) and target
(output) are known. In our case the training data comprise a set of benchmarks
and contention scenarios together with the optimal partitioning in each case.
The process of obtaining this data is described in the next section. Once the
model has been built predictions for new programs and contention scenarios can
be made. This process is depicted in Fig. 4.

In order to model the problem of task partitioning a multi-class classification
model is used. Specifically, the model is based on support vectors machines
(SVMs) [3]. SVMs try to find hyperplanes in the feature space that separate
data points from two different classes. By combining multiple SVMs multi-class
problems can be modeled. In order to better find hyperplanes separating the
data, kernel functions are used to map the input data into a high-dimensional
space. More information on SVMs can be found in [2].

4.3 Collecting Training Data

A set of training programs and “workload” programs are used to collect training
data for the predictive model. The workload programs introduce contention on
the GPU by either using it for graphics or by executing OpenCL kernels on it.
A detailed discussion of which programs were used is given in Sect. 5.1.

OpenCL Task Partitioning in the Presence of GPU Contention 93

Fig. 4. Building the machine learning (ML) model.

Each combination of training and workload program is executed with differ-
ent partitionings of the training program. In total eleven different partitionings
are evaluated, ranging from CPU-only to GPU-only execution in steps of 10% as
shown in Fig. 1. To ensure a constant degree of contention the workload program
is started a few seconds ahead of the training program and input parameters are
chosen so that it only finishes after the training program has finished execution.

The best partitioning for each scenario is computed by finding the one with
the shortest overall running time. Since some benchmarks contain multiple ker-
nels this computation is done on a per-kernel basis using OpenCL profiling
information. The running time of a kernel that is partitioned across the CPU
and GPU is defined as the maximum running time across the two devices. The
optimal partitions form the targets of the predictive model. The features are col-
lected by performing static analysis on the training program and by recording
the incurred delay using the profiling functions provided by OpenCL.

4.4 Deployment of the Model

The model can only be evaluated at run-time because it partially relies on run-
time information. On the one hand, the number of work-items needs to be known
to compute the program features. This is often only known at run-time. Further-
more, the current GPU contention can obviously only be determined when the
program is actually running.

Computing the contention features involves monitoring the waiting times
on the GPU and computing the average waiting time as described in Sect. 4.1.
Only a window of waiting times of the last few kernel executions should be
used, however, to be able to adapt to changes in the contention. This informa-
tion can either be obtained through previous kernel executions of the program
(assuming it launches a sequence of kernels) or by sharing this information across
programs.

94 D. Grewe et al.

Table 2. Experimental setup.

CPU GPU

Model Intel Core i5-3570K Intel HD Graphics 4000

Core clock 3.40 GHz 1.15 GHz

Core count 4 16

Peak performance 108.8 GFLOPS 147.2 GFLOPS

System memory 8 GB

Operating system Windows 7 Professional SP 1

OpenCL SDK Intel SDK for OpenCL Applications 2013

5 Experimental Methodology

This section describes the setup used for evaluating the approach presented in
this paper. It details how and which aspects of the model were evaluated and
describes which other methods it was compared against.

5.1 Experimental Setup

Platform. All experiments were carried out on an Intel IvyBridge platform
with a quad-core CPU and an integrated GPU. Full details are shown in Table 2.
The aim of this work is to find the best partitionings of OpenCL kernels between
the CPU and the integrated GPU. The system was running on Windows 7
and the Intel SDK for OpenCL Applications 2013 [10] was used. Each mea-
sured run was repeated 10 times and the average execution time was recorded.

Integrated platforms such as the Intel IvyBridge chip are increasingly com-
mon in the desktop and mobile computing space. The trend is to further integrate
the CPU and GPU in order to allow close cooperation between the two types of
processors.

Benchmarks. We used 22 different benchmarks from the Intel SDK [10] and the
AMD SDK [1] to evaluate our approach. These benchmarks were chosen because
they are not specifically tuned for GPUs but for use on both CPUs and GPUs,
e.g. by using vector data types. They thus provide for more interesting parti-
tioning scenarios. In order to increase the set of training points each benchmark
was used with multiple input sizes.

The main computational parts of the benchmarks were executed repeatedly
to ensure a minimum running time of around 500 ms. This was done to expose
each benchmark to the fluctuations of GPU contention as shown in Sect. 3. It
further allows the online search method to find a good partitioning.

Contention Scenarios. To introduce contention to the system a range of appli-
cations using GPUs was used. These mainly include OpenCL benchmarks tar-
geting the GPU but also a video player application (VLC). Additionally, the
scenario of the idle system, i.e. without any contention, was evaluated. A list of

OpenCL Task Partitioning in the Presence of GPU Contention 95

Table 3. Contention scenarios. Ordered from lowest to highest contention.

Name Type Waiting time (µs)

none no contention 65

vlc video player 68

sobel-512 OpenCL application 759

monte carlo OpenCL application 1,306

sobel-1024 OpenCL application 3,228

aes-512 OpenCL application 8,471

sobel-2048 OpenCL application 12,584

aes-1024 OpenCL application 16,259

aes-2048 OpenCL application 21,944

sort OpenCL application 36,585

all contention scenarios is given in Table 3. The entries are ordered by how dis-
ruptive they are in terms of the average waiting caused as described in Sect. 4.1.

5.2 Comparison

Our approach is compared to three approaches: “oracle”, “task farm” and “online
search”. Unless stated otherwise, performance is shown as the speedup over CPU-
only execution.

Oracle. This is a theoretical scheduler that always picks the best static parti-
tioning. It thus provides an estimate of the upper bound performance available
in each scenario.

Task farm. This is a dynamic approach which splits each task into a fixed num-
ber of chunks. Initially, one chunk is sent to each device and devices request
more work after they have finished processing their chunk. For this evaluation
we specified the number of chunks to be 8, which leads to the best average
performance on the platform we used.

Online search. This dynamic approach finds a good partition over time. For each
kernel the scheme keeps track of what the partitioning between the CPU and
GPU is. The partition is represented by a split value which is the percentage of
work mapped to the CPU. The split value is set to 50 % initially, which will be
adjusted over time to balance the running times on the CPU and the GPU.

5.3 Evaluation Methodology

We evaluated our approach using the standard leave-one-out cross-validation
technique. When predicting for a certain benchmark and contention scenario no
data from that benchmark, including data from runs with different input sizes,
or that contention scenario were used in building the model. It was assumed that

96 D. Grewe et al.

Fig. 5. Speed-up over CPU-only execution averaged across all ten contention scenarios.
The GPU-only, oracle and predictive model achieve average speed-ups of 0.61, 1.48 and
1.24 respectively.

information about the GPU contention is available. Section 4.4 provides a brief
discussion on how this information can be obtained.

Each benchmark run contains multiple iterations of the main computational
phase of the program. This is a common scenario in, for example, linear algebra
applications or video processing. Having multiple iterations allows the online
search method to find a good partitioning between the CPU and GPU. Further-
more, due to the variable waiting time shown in Sect. 3 it is needed to achieve
consistent results.

6 Results

This section evaluates and analyzes the performance of the proposed approach.
Firstly, we compare our model and a scheme that uses only the GPU to an oracle
scheduler. Then, the performance of the two dynamic schemes is evaluated and
compared to our model.

6.1 Comparison to Oracle

Overall. Figure 5 shows the performance of the oracle and the predictive model.
Additionally, the performance of a GPU-only approach, which executes all ker-
nels on the GPU, is shown because OpenCL applications typically target the
GPU. The performance on each benchmark is shown, averaged across all ten con-
tention scenarios. The numbers are normalized to (parallel) CPU-only execution.

With the exception of five benchmarks, the GPU-only approach leads to on
average 1.5x slow downs over CPU-only execution. As shown in Sect. 2 GPU

OpenCL Task Partitioning in the Presence of GPU Contention 97

execution can be severely delayed in contention leading to increased running
times. The oracle results demonstrate, however, that when using the GPU in
the right way significant speed-ups can be achieved. An averaged speed-up of
1.43 (up to 2.47) can be observed across all benchmarks and contention scenarios.

Our predictive modeling approach achieves performance close to the oracle
for a number of benchmarks, e.g. DCT or Sobel Filter. For all but three bench-
marks it outperforms the GPU-only approach and in only two cases can slow-
downs over the CPU be observed. On average, the predictive model achieves a
speed-up of 1.23 which translates to 86 % of the oracle performance, compared to
45 % and 70 % for the GPU-only and CPU-only approaches, respectively. These
results demonstrate that the predictive model manages to adjust well to different
contention scenarios.

The overall accuracy of the model is 47.8 %, i.e. in almost half of all cases
the model picks the correct partitioning out of the 11 possibilities. A wrong
prediction does not necessarily lead to bad performance though. If the prediction
is only slightly off, the performance is often close to the optimum (Fig. 1).

Case Studies. To gain a better understanding of the results Fig. 6 shows per-
formance results for 3 of the 10 contention scenarios, namely none, monte carlo
and sort, representing no, medium and heavy contention respectively.

No contention. The average performance of the oracle in no contention is a
speed-up of 2.11. The oracle results show, however, that partitioning the work
between the CPU and GPU improves performance for all but one benchmark
(Floyd Warshall) over using only a single device. When there is no contention
on the GPU, the GPU-only approach leads to good performance because the
GPU generally outperforms the CPU. On average it achieves a speed-up of 1.64.
The predictive model outperforms the GPU-only scheme with an average speed-
up of 1.74.

Medium contention. When introducing medium contention on the GPU (Fig. 6b)
performance of the GPU-only method suffers significantly for some benchmarks,
e.g. God Rays and Median Filter, while staying strong for others, e.g. Binomial
Option or Reduction. On average, it slows the program down to 0.98 over the
CPU execution. By contrast, the predictive modeling approach leads to an aver-
age 1.20 speed-up across the benchmarks, which is not far from the 1.42 speed-up
of the oracle performance.

Heavy contention. In a heavy contention, the waiting time on the GPU increases
significantly. Therefore, in generally, we should avoid to map the program on
the GPU. The oracle approach is only able to achieve speedups on 3 out of 22
benchmarks, with an averaged speedup of 1.03 over the CPU-only scheme. It is
not supervised that in such a scenario the GPU-only approach performs poorly
(Fig. 6c). For only one benchmark, Monte Carlo Asian, an improvement over
CPU execution can be observed with some benchmarks have 100x slowdown. On
average, the GPU-only method leads to a slow-down of 6 times. Unlike the mas-
sive slow-down performance delivered by the GPU-only scheme, the predictive
model leads to only minor slow-down over the CPU execution, i.e. 3 %.

98 D. Grewe et al.

Fig. 6. Speed-up over CPU-only execution in three different contention scenarios: no
contention (a), medium contention with monte carlo as the workload program (b) and
heavy contention with sort as the workload program (c).

OpenCL Task Partitioning in the Presence of GPU Contention 99

Fig. 7. Speed-up over CPU-only execution averaged across all ten contention scenarios.
The task farm, online search and predictive modeling approaches achieve average speed-
ups of 0.45, 0.73 and 1.24 respectively.

Summary. The predictive model is able to adapt to contention on the GPU and
outperforms single-device approaches. When there is no contention the GPU typ-
ically outperforms the CPU but this is reversed when contention is introduced.
In all scenarios the predictive model is able to at least match the performance of
the fastest single-device strategy. The next section investigates the performance
compared to two dynamic mapping approaches (Fig. 7).

6.2 Comparison to State-of-the-Arts

Figure 5 shows the performance of the two dynamic approaches, task farm and
online search, as well as that of the predictive model. The performance of each
benchmark is shown, averaged across all ten contention scenarios. The numbers
are normalized to (parallel) CPU-only execution.

It can be seen immediately that both dynamic approaches fail to achieve
good performance in the presence of GPU contention. With a few exceptions,
e.g. Binomial Option or Mandelbrot, both approaches are not able to outper-
form the CPU-only approach. Especially the task farm mapper leads to slow-
downs in most cases. For all but one benchmark, namely Convolution, the online
search approach beats the task farm mapper. In only 5 of the 22 benchmarks does
either of the dynamic approaches outperform the predictive modeling approach.

On average, the task farm method leads to 2.2x slow-down and the online
search approach leads to 1.36x slow-down. In other words, both dynamic schemes
fail to achieve speedups when there is contention on the GPU. The predictive
model, on the other hand, achieves a speed-up of 1.24, demonstrating that using
the GPU in the right way can be very beneficial.

100 D. Grewe et al.

The benchmarks where the dynamic approaches, especially the online search
method, do well are the ones where GPU execution performs strongly even in
heavy contention scenarios, e.g. Binomial Option or Monte Carlo Asian, as
can be seen in Fig. 6c. Conversely, benchmarks where a GPU-only approach
performs poorly in heavy contention, e.g. Fast Walsh Transform or Floyd
Warshall, also show huge slow-downs on the dynamic approaches.

7 Related Work

Programming Frameworks for GPUs. As GPUs become ubiquitous for
computing, many programming models [8,9,11] have been proposed for GPU
programming. These approaches provide APIs to develop GPU applications. All
these approaches implicitly assume the GPU gives the best performance.

Program Mapping for GPUs. A number of approaches have been proposed
to partitioning a GPU program kernels across the CPU and the GPU [6,14].
However, those approaches assume the program runs in isolation and do not
consider the GPU contention.

Dynamic Task Scheduling. Previous work investigates hardware and operat-
ing system based approaches to schedule tasks on CPUs. For examples, symbiotic
job scheduling tries to find the best mix of jobs [5,17] on SMT processors; an
Parcae is a dynamic tuning framework [15] for CPU execution. Ravi et al. [16]
develop a dynamic approach to make task for heterogeneous systems. Their app-
roach searches for the best partition at runtime. However, the searching can lead
to significant runtime overhead. Our approach, by contrast, avoids this overhead
by directly predicting the portioning setting.

Predictive Modeling. In addition to optimizing sequential programs [4,13],
recent studies have shown that predictive modeling is effective in optimizing
parallel programs [18,20,21] or scheduling multiple programs on the CPU [7,19].
However, none of the previous research addresses the problem of task mapping in
the presence of workload contention on a heterogeneous platform with different
computing devices.

8 Conclusion

This paper has investigated the impact of contention for GPU resources on map-
ping OpenCL programs to CPU-GPU systems. Standard mapping techniques
fail to adapt to this type of contention because, unlike on the CPU, kernels have
exclusive access to the GPU and cannot be preempted. It is possible, however, to
adapt mapping decisions to GPU contention by explicitly taking it into account.
We have proposed a machine learning-based approach that uses information of
the contention as well as program characteristics to decide how to partition an
OpenCL kernel across the CPU and GPU. Across a set of 22 benchmarks and
10 different contention scenarios this method achieved a speed-up of 1.23 over

OpenCL Task Partitioning in the Presence of GPU Contention 101

CPU-only execution. This corresponds to 86 % of the performance of an ora-
cle approach. Two dynamic mappers, task farm and online search, only achieve
speed-ups of 0.48 and 0.80 respectively, thus actually slowing down the execution
time compared to the CPU-only method.

References

1. AMD. Accelerated parallel processing (APP) SDK (2013)
2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, New York (2006)
3. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin clas-

sifiers. In: Proceedings of the 5th Annual ACM Conference on Computational
Learning Theory, pp. 144–152 (1992)

4. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space
using genetic algorithms. In: LCTES ’99, pp. 1–9 (1999)

5. Eyerman, S., Eeckhout, L.: Probabilistic job symbiosis modeling for SMT processor
scheduling. In: ASPLOS ’10, pp. 91–102

6. Grewe, D., O’Boyle, M.F.P.: A static task partitioning approach for heterogeneous
systems using OpenCL. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 286–305.
Springer, Heidelberg (2011)

7. Grewe, D., Wang, Z., O’Boyle, M.F.P.: A workload-aware mapping approach for
data-parallel programs. In: HiPEAC ’11 (2011)

8. Han, T.D., Abdelrahman, T.S.: hiCUDA: a high-level directive-based language for
GPU programming. In: GPGPU ’09

9. Hormati, A., Samadi, M., Woh, M., Mudge, T., Mahlke, S.: Sponge: portable
stream programming on graphics engines. In: ASPLOS ’11

10. Intel. Intel SDK for OpenCL applications 2013 — intel developer zone (2013)
11. Kim, J., Kim, H., Lee, J.H. Lee, J.: Achieving a single compute device image in

OpenCL for multiple GPUs. In: PPoPP ’11
12. LLVM. Clang: a C language family frontend for LLVM. http://clang.llvm.org/
13. Long, S., O’Boyle, M.F.P.: Adaptive java optimisation using instance-based learn-

ing. In: ICS ’04
14. Luk, C.-K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous mul-

tiprocessors with adaptive mapping. In: MICRO 42 (2009)
15. Raman, A., Zaks, A., Lee, J.W., August, D.I.: Parcae: a system for exible parallel

execution. In: PLDI ’12, pp. 133–144
16. Ravi, V.T. Ma, W., Chiu, D., Agrawal, G.: Compiler and runtime support for

enabling generalized reduction computations on heterogeneous parallel configura-
tions. In: SC, pp. 137–146 (2010)

17. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous multi-
threaded processor. In: ASPLOS-IX, pp. 234–244 (2000)

18. Wang, Z., O’Boyle, M.F.P.: Using machine learning to partition streaming pro-
grams. ACM Trans. Archit. Code Optim. 10(3) (2013)

19. Wang, Z., O’Boyle, M.F.P., Emani, M.K.: Smart, adaptive mapping of parallelism
in the presence of external workload. In: CGO ’13 (2013)

20. Wang, Z., O’Boyle, M.F.P.: Mapping parallelism to multi-cores: a machine learning
based approach. In: PPoPP ’09 (2008)

21. Wang, Z., O’Boyle, M.F.P.: Partitioning streaming parallelism for multi-cores: a
machine learning based approach. In: PACT ’10 (2010)

http://clang.llvm.org/

Heterogeneous Computing

Compiling a High-Level Directive-Based
Programming Model for GPGPUs

Xiaonan Tian(B), Rengan Xu, Yonghong Yan, Zhifeng Yun,
Sunita Chandrasekaran, and Barbara Chapman

Department of Computer Science, University of Houston, Houston, TX 77004, USA
{xtian2,rxu6,yyan3,zyun,schandrasekaran,bchapman}@uh.edu

Abstract. OpenACC is an emerging directive-based programming
model for programming accelerators that typically enable non-expert
programmers to achieve portable and productive performance of their
applications. In this paper, we present the research and development
challenges, and our solutions to create an open-source OpenACC com-
piler in a main stream compiler framework (OpenUH of a branch of
Open64). We discuss in details our loop mapping techniques, i.e. how to
distribute loop iterations over the GPGPU’s threading architectures, as
well as their impacts on performance. The runtime support of this pro-
gramming model are also presented. The compiler was evaluated with
several commonly used benchmarks, and delivered similar performance
to those obtained using a commercial compiler. We hope this imple-
mentation to serve as compiler infrastructure for researchers to explore
advanced compiler techniques, to extend OpenACC to other program-
ming languages, or to build performance tools used with OpenACC pro-
grams.

1 Introduction

Computational accelerators that provide massive parallelism such as NVIDIA
GPGPUs and Intel Xeon Phi, or those that provide special-purpose application
engines such as DSP have become viable solutions to build high performance
supercomputers, as well as special-purpose embedded systems. However, one of
the critical challenges to fully exploit the hardware computation capabilities is
the need for productive programming models. OpenCL and CUDA are widely-
used low-level programming models designed for programming GPGPUs. These
two programming models require rewriting of most of the application program
from its CPU version that users want to offload to accelerators. This has been
known to be a non-productive approach.

OpenACC [5] is an emerging standard for programming accelerators in het-
erogeneous systems. The model allows developers to mark regions of code for
acceleration in a vendor-neutral manner. It is built on top of prior efforts adopted
by several compiler vendors (notably PGI and CAPS Enterprise). OpenACC is
intended to enable programmers to easily develop portable applications to max-
imize performance and power efficiency of the hybrid CPU/GPU architecture.
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 105–120, 2014.
DOI: 10.1007/978-3-319-09967-5 6

106 X. Tian et al.

Compiler implementation and enhancement in the model are underway by sev-
eral industry compilers, notably from Cray, PGI and CAPS. However, their
source codes are mostly inaccessible to researchers and they cannot be used
to gain an understanding of the OpenACC compiler technology or to explore
possible improvements and suggest language extensions to the model.

In this paper, we present our experience of constructing an OpenACC com-
piler in the OpenUH open source compiler framework [10], with goals to enable a
broader community participation and dialog related to this programming model
and the compiler techniques to support it. We also hope this implementation to
serve as compiler infrastructure for researchers that are interested in improving
OpenACC, extending the OpenACC model to other programming languages,
or building tools that support development of OpenACC programs. Specifically,
the features of the compiler and our contributions are summarized as follows:

1. We constructed a prototype open-source OpenACC compiler based on a
branch of main stream Open64 compiler. Thus the experiences could be
applicable to other compiler implementation efforts.

2. We provide multiple loop mapping strategies in the compiler on how to effi-
ciently distribute parallel loops to the threading architectures of GPGPU
accelerators. Our findings provide guidance for users to adopt suitable loop
mappings depending on their application characteristics.

3. OpenUH compiler adopts a source-to-source approach and generates readable
CUDA source code for GPGPUs. This gives users opportunities to understand
how the loop mapping mechanism are applied and to further optimize the code
manually. It also allows us to leverage the advanced optimization features in
the backend compilation step by the CUDA compiler.

We evaluate our compiler with several commonly used benchmarks, and
showed the similar performance results to those obtained using a commercial
compiler. The remainder of this paper is organized as follows: Sect. 2 gives an
overview of OpenACC model. Section 3 presents implementation details of the
OpenACC compiler. Section 4 shows the detail of runtime support. Section 5 dis-
cusses the results and evaluation. Section 6 provides a review of the related work.
Conclusion and future work are presented in Sect. 7.

2 Overview of OpenACC Programming Model

OpenACC is a high-level programming model that can be used to port exist-
ing HPC applications on different types of accelerators with minimum amount
of effort. It provides directives, runtime routines and environment variables as
its programming interfaces. The execution model assumes that the main pro-
gram runs on the host, while the compute-intensive regions of the program are
offloaded to the attached accelerator. The accelerator and the host have separate
memory, and the data movement between them need to be handled explicitly.
OpenACC provides different types of data transfer clauses and runtime call in

Compiling a High-Level Directive-Based Programming Model 107

its standard. To reduce the performance impacts of data transfer latency, Ope-
nACC also allows asynchronous data transfer and asynchronous computation
with the CPU code to enable overlapping of data movement and computation.

Fig. 1. OpenACC vector addition example

Figure 1 shows a sim-
ple OpenACC vector addi-
tion example. The acc data
directive, which identifies a
data region, will create a
and b in device memory
and then copy the respec-
tive data into device at the
beginning of the data region.
The array c will be copied
out after finishing the code
segment of the region. The
acc kernels directive means the following block is to be executed on device.
The acc loop directive causes the distributions of loop iterations among the
threads on the device.

3 Compiler Implementation

The creation of an OpenACC compiler requires both innovative research solu-
tions to the challenges of mapping high-level loop iterations to low-level thread-
ing architectures of the hardware, and also large amount of engineering work in
compiler development to handle parsing, transformation and code generations.
It also requires runtime support for handling data movement and scheduling
of computation on the accelerators. The compiler framework we are using is
OpenUH compiler, a branch of the open source Open64 compiler suite. Figure 2
shows the components of the OpenUH framework. The compiler is implemented
in highly component-oriented way and composed of several modules, each of
which operates on a multi-level IR called WHIRL. From top, each module trans-
lates the current level of WHIRL to its lower-level form.

We have identified the following challenges that must be addressed to cre-
ate an OpenACC implementation. First, it is very important that we create an
extensible parsing and IR systems to facilitate addition of new features of future
language revisions and to support aggressive compiler transformation and opti-
mizations. Fortunately, the extensibility of OpenUH framework and WHIRL IR
allow us to easily add those extensions with decent amount of work. Secondly, we
need to design and implement an effective means for the distribution of loopnest
across thread hierarchy of GPGPUs. We discuss in more details of our solutions
in Sect. 3.1. Thirdly, we need to create a portable runtime to support data han-
dling, reductions operations, and GPU kernel launching. Runtime support will
be discussed in more details in Sect. 4.

We decide to use the source-to-source approach, as shown in Fig. 2. WHIRL2C
tool has been enhanced to output compilable C program from the CPU portion

108 X. Tian et al.

FRONTENDS
(C/C++,F90,OpenMP,OpenACC)

IPA
(Inter Procedural Analyzer)

PRELOWER
(Preprocess OpenACC)

LNO
(Loop Nest Optimizer)

LOWER
(Transformation of OpenACC)

WOPT
(Global Scalar Optimizer)

WHIRL2C & WHIRL2CUDA
(IR-to-source for other targets)

CG
(Code for IA-32,IA-64,X86_64)

OpenUH Compiler Infrastructure
Source Code

with OpenACC
Directives

CPU Code GPU Code

Loaded
Dynamically

CPU Binary

General CPU
Compiler

NVCC
Compiler

PTX
Assembler

Runtime
LibraryLinker

Executable

Fig. 2. OpenUH compiler framework for OpenACC

of the original OpenACC code, and we have created a WHIRL2CUDA tool
that will produce NVIDIA CUDA kernels after the transformation of offloading
code regions. Compared to binary code generation, the source-to-source app-
roach gives much more flexibilities to users. It allows to leverage advanced opti-
mization features in the backend compilation step by nvcc. It also gives user
options to manually optimize the generated CUDA code for further performance
improvement.

3.1 Loop Transformation

Programmers usually offload the computation intensive loopnest to massive par-
allel accelerators. One of the major challenges of compiler transformation is to
create a uniformed loop distribution mechanism that can effectively map loop-
nest iteration across the GPU parallel system. As an example, NVidia GPG-
PUs has two level of parallelisms: block-level and thread-level. Blocks can be
organized as multi-dimensional in a grid and threads in a block can also be
multi-dimensional. How to distribute iterations of multi-level loopnest across
the multi-dimensional blocks and threads is a nontrivial problem.

OpenACC provides three level of parallelisms for mapping loop iterations to
the accelerators’ thread structures: coarse grain parallelism “gang”, fine grain
parallelism “worker” and vector parallelism “vector”. OpenACC standard gives
the flexibility of interpreting them to the compiler. For NVIDIA GPU, some
compilers map each gang to a thread block, and vector to threads in a block and
ignore worker [6]; other compilers map gang to the x-dimension of a grid block,
worker to the y-dimension of a thread block, and vector to the x-dimension of a
thread block [2]. There are also compilers that map each gang to a thread block,
worker to warp and vector to SIMT group of threads [7].

Compiling a High-Level Directive-Based Programming Model 109

Table 1. OpenACC and CUDA terminology mapping

OpenACC clause CUDA Comment

gang (integer expression) block If there is an integer expression for this gang
clause, it defines the number of blocks in
one dimension of grid

vector (integer expression) thread If there is an integer expression for this vector
clause, it defines the number of threads in
one dimension of block

In our implementation, we evaluated 8 loopnest mapping algorithms covering
single loop, double nested loop, and triple nested loop as shown in Figs. 3, 6, 7. If
the depth of the nested loop is more than 3, the OpenACC collapse clause will
be used. More specifically, gangs are mapped to blocks and vectors are mapped
to threads in each block. Both gang and vector can be multi-dimensional. The
worker clause is omitted in current OpenUH compiler. Table 1 shows the mapping
terminology we used between OpenACC and CUDA.

Memory coalescing is an important part that needs to take into careful con-
sideration in compiler loop transformation. Different mapping can heavily affect
the application’s performance. Adjacent threads (in x-dimension of a block) tak-
ing consistent memory space can improve performance. Therefore we need to
make sure the loop iteration mapped to vector x-dimension operates the contin-
uous memory operands. The single loop and the inner loop iteration in double
nested loop are mapped to x-dimension of threads. For triple nested loop, we
selected three examples that are typically encountered in the OpenACC pro-
gram. We mapped the innermost loop of Map3 1 and Map3 2 to operate on the
continuous memory, but in Map3 3 it is mapped to the outmost loop to compute
continuous memory. The reason of this mapping for Map3 3 is because we have
a particular stencil application requiring the pattern likes this.

Single Loop. N iterations are equally distributed among gangs and vectors.
Both gang and vector are one dimension. It means the grid and thread-block
are also one dimension. Each thread takes one iteration at a time and then
moves ahead with blockDim.x ∗ gridDim.x stride. Figure 3 show the mapping
and transformation for this single loop.

Fig. 3. One loop transformation.

110 X. Tian et al.

j

i

j

i

j

i

j

i

j

i

j

i

(a) (b) (c)

(d) (e) (f)

Fig. 4. Double nested loop iteration
distribution (color figure online).

Fig. 5. Triple nested loop iteration dis-
tribution (color figure online).

Double Nested Loop. Figure 4 shows the double nested loop iteration distri-
bution across gangs and vectors. The red one means current working area, green
one means the finished computation, and white means untapped. The axises i
and j represent the outer and inner loop iterations. Figure 4(a) shows the first
working area, and the next status is in Fig. 4(b). After finishing the last one in
j axis, working area moves ahead into another i iteration. The computation is
not finished until all the rectangles turn to be green. The stride (length of the
rectangle) in i and j depends on different mapping algorithms.

There are four different double nested loop cases, and the mapping algorithms
are different from each other. Figure 6 shows the mapping for each case:

– Both gangs and vector are one dimension. The outer loop is distributed across
the gang and inner loop is executed among threads in each gang. The stride
in i and j axis are gridDim.x and blockDim.x. The translated CUDA code
from this case is shown in Fig. 6 Map2 1.

– One dimensional gang, two dimensional vector. After the mapping, the outer
loop stride is gridDim.x∗blockDim.y and the inner loop stride is blockDim.x.
The translated CUDA code is shown in Fig. 6 Map2 2.

– Two dimensional gangs and one dimensional vectors. After the mapping, the
outer loop stride is gridDim.y and the inner loop stride is gridDim.x ∗
blockDim.x. The translated CUDA code is shown in Fig. 6 Map2 3.

– Both grid and block are two dimensions. After the mapping, the outer loop
stride is gridDim.y ∗ blockDim.y and the inner loop stride is gridDim.x ∗
blockDim.x. The translated CUDA code is shown in Fig. 6 Map2 4.

Triple Nested Loop. Figure 5 shows triple nested loop iteration distribution
across gangs and vectors. In this figure, the red one means current working area,
blue one means the finished computation, and green means untapped. The axises
i, j, and k represent the outermost, middle and innermost loop iterations. At
the first step, GPU takes computation from axis k in Fig. 5(a). When finishing,
working area moves ahead along the k axis Fig. 5(b) until all the computation

Compiling a High-Level Directive-Based Programming Model 111

Fig. 6. Translated CUDA code from double nested loop mappings

in k axis is done Fig. 5(c). After this, the computation will move to the next
j Fig. 5(d). Repeat the first step until j reaches the boundary. Once all the
computation on the j, k space are done, i moves a stride ahead, and reset j,
k axises Fig. 5(e). The computation repeats until all the computation is done
Fig. 5(f).

For the three different triple nested loops, Fig. 7 shows the mapping:

– Both gang and vector are two dimensional. After the mapping, the out-
most loop stride in i, j, k axises are griddim.x, blockDim.y ∗ griddim.y and
blockDim.x. The translated CUDA code is shown in Fig. 7 Map3 1.

– Two dimensional gang and three dimensional vector. After the mapping, the
outmost loop stride in i, j, k axises are blockDim.z, blockDim.y ∗ griddim.y
and blockDim.x∗griddim.x. The translated CUDA code is shown as Map3 2.

112 X. Tian et al.

Fig. 7. Translated CUDA code from triple nested loop mappings

– Both gang and vector are two dimensional. After the mapping, the outmost
loop stride in i, j, k axises are blockDim.x, blockDim.y ∗ griddim.y and
gridDim.x ∗ griddim.x. The translated CUDA code is shown as Map3 3.

4 Runtime Support

The OpenACC annotated source code is parsed by the compiler to extract the
device kernels and translate the OpenACC directives into runtime calls. Then
two parts of the code are generated: one part is the host code compiled by
the host compiler, another part is the kernel code compiled by the accelerator
compiler. The runtime is responsible for handling data movement and managing
the execution of kernels from the host side.

4.1 Runtime Library Components

The runtime library consists of three modules: context module, memory man-
ager, and kernel loader. The context module is in charge of creating and manag-
ing the virtual execution environment. This execution environment is maintained
along the lifetime of all OpenACC directives. All context and device related run-
times, such as acc init() and acc shutdown(), are managed by this module.

The memory manager helps to control the data movement between the host
and device. The compiler will translate the clauses in data and update directives

Compiling a High-Level Directive-Based Programming Model 113

into corresponding runtime calls in this module. OpenACC provides a present
clause that indicates the corresponding data list are already on the device, in
order to avoid unnecessary data movement. To implement this feature, the run-
time creates a global hash map that stores all the device data information.
Whenever a compiler parses a present clause, it will translate this clause to
the runtime call to check if the data list in the present clause are in the map.
If the data exists in the map, then there is no need for data movement. If the
data does not exist in the map, the compiler will issue a compilation error. Each
data structure in the map includes the host address, device address and the data
size so that we can find the device address given a host address or vice versa.
Note that the data allocated from acc malloc() and the data in the deviceptr
clause do not have a corresponding host address since they are only allowed to
use on the device.

The purpose of kernel loader module is to launch the specified kernel from the
host. After the kernel file is compiled by the accelerator compiler, the runtime
loads the generated file, setups the threads topology and pushes the correspond-
ing arguments list into the kernel parameter stack space, then launch the speci-
fied kernel. Since different kernels have different number of parameters, a vector
data structure is created to store the kernel arguments to guarantee that the
kernel argument size is dynamic. Another work to do before launching a kernel
is to specify the threads topology. The compiler parses the loop mapping strat-
egy and then generates the corresponding thread topology. The recommended
threads value in the topology is described in Sect. 4.2.

4.2 Gang and Vector Topology Setting

The threads topology is an important factor affecting application performance.
Since we map gangs to blocks in grid and vector into threads within each block,
the values of blocks and threads need to be chosen carefully. Too many blocks
and threads may generate potential scheduling overhead, and too few threads
and blocks cannot take advantage of the whole GPU hardware resources such
as cache and registers. The threads topology setting should consider exposing
enough parallelism in each multiprocessor and balancing the workload across all
multiprocessors. Different threads topology affects the performance differently.
Some results with different topology values are discussed in Sect. 5. In OpenUH,
if the user did not specify the gang and vector number, the default value will
be used. The default vector size is 128 because the Kepler architecture has quad
warp scheduler that allows to issue and execute four warps (32 threads) simul-
taneously. The default gang number is 16 since Kepler allows up to 16 thread
blocks per multiprocessor.

4.3 Execution Flow in Runtime

Figure 8 gives a big picture of the execution flow at runtime. In the beginning,
acc init() is called to setup the execution context. This routine can be either
called explicitly by the user or implicitly generated by the compiler. Next the

114 X. Tian et al.

acc_init()
(setup the context)

remaining data
in data clause

Is data in
the map

Allocate device
memory for this data,
and put it in the map

Copy this data from
host to device

Move to the next
data clause

Setup threads topology

Push kernel arguments

Load and launch kernel

Has reduction

Launch reduction
algorithm kernel

More kernels Copy result data from
device to host

acc_shutdown()
(cleanup the context)

Yes

No

Yes

No

Yes

No

Yes

No

Fig. 8. Execution flow with OpenACC runtime library

data clauses will be processed. There are different kinds of data clauses (e.g.
copyin, copyout and copy) and these data clauses may be in either of data,
parallel or kernels directive. If the data needs to be accessed from the device,
for instance those in copyin or copy or update device clauses, then they are
transferred from the host to device. These data clauses will be scanned and
processed. The purpose of this step is to make the data ready before launching
the kernels. After the data is ready, we will setup the threads topology and push
the corresponding arguments to the kernel. So far everything is ready and we
can safely load and launch the kernel. If the kernel needs to do some reduction
operation, after this kernel is finished a separate reduction algorithm kernel will
be launched. The result data, for instance those in copyout or copy or update
host clauses, will be transferred from the device to host. Finally acc shutdown()
is called to release all the resources and destroy the context.

5 Preliminary Results

We evaluated OpenUH OpenACC compiler implementation using performance
test suite from [3], Stencil benchmark from [13] and DGEMM written by our-
selves. The double precision numerical algorithms in these examples are on either
2D or 3D grids, and therefore they are highly suitable to test different loop map-
ping strategies. The experimental machine has 16 cores Intel Xeon x86 64 CPU
with 32 GB main memory, and a NVIDIA Kepler GPU card (K20). OpenUH
translates the original OpenACC program into host code and device code. The
host code is compiled by gcc 4.4.7 with -O0 and the device code is compiled by
nvcc 5.0 with“-arch=sm 35”, and then they are linked into an executable.

Compiling a High-Level Directive-Based Programming Model 115

Fig. 9. Double nested loop mapping. Fig. 10. Triple nested loop mapping.

Table 2. Threads used in each loop with double loop mappings

Benchmark Double loop Map2 1 Map2 2 Map2 3 Map2 4

Jacobi (2048× 2048) Outer loop 2048 1024× 2 2046 1023× 2

Inner loop 128 128 16× 128 16× 128

DGEMM (8192× 8192) Outer loop 8192 4096× 2 8192 4096× 2

Inner loop 128 128 64× 128 64× 128

Gaussblur (1024× 1024) Outer loop 1024 512× 2 1020 510× 2

Inner loop 128 128 8× 128 8× 128

5.1 Performance for Double Nested Loop Mapping

In the first stage, we compile these benchmarks with OpenUH compiler and
compare the performance difference among different loop mappings. Figure 9
shows the performance comparison in different benchmarks with different dou-
ble nested loop mappings. All of Jacobi, DGEMM and Gaussblur have double
nested parallel loops but they show different performance behavior. In Jacobi,
the data accessed from the inner loop are contiguous in memory while they are
non-contiguous when accessed from the outer loop. In all of our four double
nested loop mappings, the inner loop uses vector which means the threads exe-
cuting the inner loop are consecutive. In both vector and gang vector cases,
the threads are consecutive and the only difference is the length of concurrent
threads. In Jacobi inner loop, consecutive threads access aligned and consecu-
tive data and therefore the memory access is coalesced. In this case the memory
access pattern and the loop mapping mechanism match perfectly. That is why
the performance using all of the four loop mappings are close. Table 2 shows
the number of threads used in each loop mapping. Because Map2 1 and Map2 2
have less threads than Map2 3 and Map2 4 in the inner loop, the execution time
is slightly longer. Map2 1 and Map2 2 have the same performance since their
threads are the same in both the outer loop and inner loop. The performance

116 X. Tian et al.

behavior of Gaussblur is similar to Jacobi because their memory access pattern
and threads management are similar.

In DGEMM, the performance of Map2 2 and Map2 4 are better than the
other two mappings which is because they both have enough parallelism in each
block to hide memory access latency. The performance penalty in Map2 1 is due
to less parallelism in each block. Map2 3 has the worst performance as it does
not have enough parallelism in each block and has many thread blocks. Too
many blocks means more scheduling overhead as a block cannot be started until
all resources for a block is available.

5.2 Performance for Triple Nested Loop Mapping

Figure 10 shows the performance comparison in different benchmarks with dif-
ferent triple nested loop mappings. In Stencil, the data is stored in memory in
x → y → z order which means the data is firstly stored in x dimension, then
y dimension and lastly z dimension. The computation kernel, however, access
the data in z → y → x order which means the data accessed in the innermost
loop (z dimension) are not contiguous in memory but the data accessed in the
outermost loop (x dimension) are contiguous in memory. The loop Map3 3 uses
vector in the outermost loop and therefore the global memory access are coa-
lesced. This follows the most important rule when mapping the loop: consecutive
threads access consecutive data in memory. Hence the performance with Map3 3
is much better than the other two loop mappings. Note that the loop Map3 2
also used vector in the first loop, but its performance is worse than Map3 3.
This is because the threads in this vector are in z dimension and not consecu-
tive in CUDA context. The loop Map3 1 uses gang in the first loop and this also
indicates that the threads are not consecutive in this level, as the stride between
each thread pair is gridDim.x rather than 1. Table 3 shows the threads in each
loop of different benchmarks. In Stencil note that although the total number of
threads in Map3 1 is much more than that of Map3 3, its performance is still

Table 3. Threads used in each loop with triple loop mappings

Benchmark Triple loop Map3 1 Map3 2 Map3 3

Stencil (512× 512× 64) outermost loop 510 2 128

middle loop 255× 2 255× 4 255× 2

innermost loop 128 16× 64 62

Laplacian (128× 128× 128) outermost loop 63 2 128

middle loop 126× 2 32× 4 2

innermost loop 128 2× 64 126

Wave13pt (128× 128× 128) outermost loop 64 2 128

middle loop 124× 2 31× 4 2

innermost loop 128 2× 64 124

Compiling a High-Level Directive-Based Programming Model 117

poorer which is just because the memory access is uncoalesced. Laplacian and
Wave13pt have similar performance patterns in which the performance with loop
Map3 1 and 3 2 are much better than loop Map3 3. The reason is that their data
layout in memory matches the data memory access pattern indicated by the loop
mapping mechanism. For instance, in Laplacian the data accessed in the innter-
most loop are consecutive in memory and the threads specified by loop Map3 1
and 3 2 are also consecutive, as a result the data accesses are coalesced in GPU
and high performance can be achieved. With loop Map3 3, however, the used
loop clause is gang and the stride between threads is larger than 1 which means
the threads are not consecutive. As a consequence, the non-consecutive threads
try to access consecutive data and therefore the data access is not coalesced, and
finally the performance is penalized. The loop Map3 1 and 3 2 are similar and
the only difference is the thread increment stride. That can be explained why
the performance using these two loop mapping mechanisms are close.

5.3 Performance Comparison Between OpenUH and PGI
OpenACC

We also compared the performance for all benchmarks with PGI commercial
compiler. PGI 13.6 was used and both -O0 and -O3 optimization flags were
experimented, respectively. OpenUH only used -O0 since it has not applied any
optimization in generated GPU code. Figure 11(a) shows the performance dif-
ference between OpenUH and PGI compiler in double nested loop mapping.
Since PGI compiler always converts Map2 1 to 2 3 and Map2 2 to 2 4, we only
compare the performance between 2 3 and 2 4 loop mappings. We measured
the kernel time which indicates the efficiency of the kernel code generated by
compiler, and the total time which includes the kernel time, data transfer time
and the runtime overhead. The result shows that OpenUH is slightly better than
PGI compiler in the total time of Jacobi, DGEMM and Gaussblur. By profiling
all benchmarks, we found that the performance difference is due to PGI compiler
always creates two contexts to manage asynchronous data transfer even though
the async clause was not specified in the program. As a result, the runtime has
more overhead of creating another context and managing the synchronization of
all asynchronous activities. For the kernel time, OpenUH is still slightly better
than PGI in Jacobi and DGEMM, but slightly worse in Gaussblur. Overall the
performance in PGI compiler with -O0 and -O3 has no much difference, and the
performance variance between OpenUH and PGI is within a very small range
and OpenUH performance is very competitive comparing to PGI compiler.

Figure 11 (b) shows the performance comparison between OpenUH and PGI
compiler in triple nested loop mappings. It is observed that in Stencil the per-
formance of OpenUH is much worse than PGI compiler in loop Map3 2. We
believe that PGI did some memory access pattern analysis and can automat-
ically adjust its loop mapping mechanism, thus delivering better performance
than ours. Briefly speaking, in the outermost loop of Stencil, the data access is
not coalesced in OpenUH implementation as OpenUH assumes the data accessed
only from the innermost loop are contiguous in memory, whereas in this program

118 X. Tian et al.

Fig. 11. Performance comparison with different loop mappings

the data accessed only from the outermost loop are contiguous in memory. We
believe PGI compiler did data flow analysis which can automatically detect this
and change the loop mapping, so that the access to the outermost loop are
coalesced by threads. So far OpenUH has implemented the same loop map-
ping techniques, but it requires a memory access analysis model to dynamically
change the loop mapping, which is one of our ongoing work.

6 Related Work

There are both commercial OpenACC compiler and academic compiler efforts to
support high-level programming models for GPGPUs. CAPS compiler [1] also
uses the same source-to-source translation approach as ours. PGI OpenACC
accelerator compiler [4] use binary code generation approach. Cray compiler [7]
is another OpenACC compiler that can only be used in Cray supercomputers.
These three compilers have different mapping mechanisms as we discussed in
early section. Since both CAPS and Cray have different interpretations of gang,
worker and vector, we did not compare our results with these compilers for

Compiling a High-Level Directive-Based Programming Model 119

fairness reason. accULL [12] is another OpenACC compiler written in python
script. KernelGen [11] can port the existing code into Nvidia GPU without the
need of adding any directives. It requires the GPU to support dynamic paral-
lelism, so it is not as portable as OpenACC. OpenMPC [9] translates OpenMP
code to cuda and HiCUDA [8] is another directive-based model which is similar
to OpenACC but the user still needs to manage almost everything.

7 Conclusion

In this paper, we presented our effort of creating an OpenACC compiler in
our OpenUH compiler framework. We have designed loop mapping mechanisms
of single, double nested, and triple nested loops that are used in the compiler
transformation. These mechanisms will be helpful for users to adopt suitable
computation distribution techniques according to their application’s character-
istics. Our open-source OpenUH compiler can generate readable CPU code and
CUDA code, which allows user to further tune the code performance. The exper-
iments show that our compiler can generate code with competitive performance
to commercial OpenACC compiler.

Since this is our first baseline version, advanced features such as multi-
dimensional array movement, loop collapse, parallel construct and async, etc.
are under development. All the executions currently implemented are on syn-
chronization mode. Advanced compiler analysis and transformation techniques
will also be explored to further improve the quality of generated kernel codes.

Acknowledgements. This work was supported in part by the NVIDIA and Depart-
ment of Energy under Award Agreement No. DE-FC02-12ER26099. We would also like
to thank PGI for providing the compilers and support for the evaluation.

References

1. CAPS Enterprise OpenACC Compiler Reference Manual, June 2013. http://www.
openacc.org/sites/default/files/HMPPOpenACC-3.2 ReferenceManual.pdf

2. CAPS OpenACC Parallism Mapping (2013). http://kb.caps-entreprise.com/
what-gang-workers-and-threads-correspond-to-on-a-cuda-card

3. Performance Test Suite, June 2013. https://hpcforge.org/plugins/mediawiki/wiki/
kernelgen/index.php/Performance Test Suite

4. PGI Compilers, June 2013. http://www.pgroup.com/resources/accel.htm
5. The OpenACC Standard, June 2013. http://www.openacc-standard.org
6. Brent Leback, M.W., Miles, D.: The PGI Fortran and C99 OpenACC Compilers.

Cray User Group (2012)
7. Cray, C.: C++ Reference Manual (2003)
8. Han, T.D., Abdelrahman, T.S.: hiCUDA: high-level GPGPU programming. IEEE

Trans. Parallel Distrib. Syst. 22, 78–90 (2011)
9. Lee, S., Eigenmann, R.: OpenMPC: extended openMP programming and tuning

for GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE
Computer Society (2010)

http://www.openacc.org/sites/default/files/HMPPOpenACC-3.2_ReferenceManual.pdf
http://www.openacc.org/sites/default/files/HMPPOpenACC-3.2_ReferenceManual.pdf
http://kb.caps-entreprise.com/what-gang-workers-and-threads-correspond-to-on-a-cuda-card
http://kb.caps-entreprise.com/what-gang-workers-and-threads-correspond-to-on-a-cuda-card
https://hpcforge.org/plugins/mediawiki/wiki/kernelgen/index.php/Performance_Test_Suite
https://hpcforge.org/plugins/mediawiki/wiki/kernelgen/index.php/Performance_Test_Suite
http://www.pgroup.com/resources/accel.htm
http://www.openacc-standard.org

120 X. Tian et al.

10. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: an optimiz-
ing, portable OpenMP compiler. Concurrency Comput. Pract. Experience 19(18),
2317–2332 (2007)

11. Mikushin, D., Likhogrud, N.: KERNELGEN - a toolchain for automatic
GPU-centric applications porting (2012). https://hpcforge.org/scm/viewvc.php/
checkout/doc/sc 2012/sc 2012.pdf?root=kernelgen

12. Reyes, R., López-Rodŕıguez, I., Fumero, J.J., de Sande, F.: accULL: an Ope-
nACC implementation with CUDA and OpenCL support. In: Kaklamanis, C.,
Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp.
871–882. Springer, Heidelberg (2012)

13. Stratton, J.A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N.,
Liu, G.D., Hwu, W.: Parboil: a revised benchmark suite for scientific and commer-
cial throughput computing. Center for Reliable and High-Performance Computing
(2012)

https://hpcforge.org/scm/viewvc.php/checkout/doc/sc_2012/sc_2012.pdf?root=kernelgen
https://hpcforge.org/scm/viewvc.php/checkout/doc/sc_2012/sc_2012.pdf?root=kernelgen

Separate Compilation in a Language-Integrated
Heterogeneous Environment

Mike Murphy1(B), Jaydeep Marathe1, Girish Bharambe2, Sean Lee1,
and Vinod Grover1

1 NVIDIA Corporation, Santa Clara, USA
2 NVIDIA Corporation, Pune, India

{mmurphy,jmarathe,gbharambe,selee,vgrover}@nvidia.com

Abstract. Heterogeneous computing platforms are becoming more com-
mon in recent years. Effective programming languages and tools will play
a key role in unlocking the performance potential of these systems. In this
paper, we present the design and implementation of separate compilation
and linking support for the CUDA programming platform. CUDA pro-
vides a language-integrated environment for writing parallel programs
targeting hybrid systems with CPUs and GPUs (Graphics Processing
Unit). We present a novel linker that allows linking of multiple subsets
of GPU executable code. We also describe a link time optimization of
GPU shared memory layout. Finally, we measure the impact of separate
compilation with real world benchmarks and present our conclusions.

Keywords: Separate compilation · Linker · Heterogeneous · GPU

1 Introduction

Heterogeneous computing platforms are becoming widespread in recent years.
Such platforms are not just limited to supercomputing systems, but also being
deployed in personal computing environments. NVIDIA introduced CUDA for
programming CPU-GPU heterogeneous computing platforms in 2007 [1]. Since
then, the CUDA ecosystem has grown rapidly [10] and has spurred language
and tools development for effectively exploiting the performance potential of
such systems. OpenACC [11], OpenCL [6], and Microsoft AMP [14] are a few
other programming systems for heterogeneous computing.

With widespread increase in size and complexity of programs, it is impor-
tant to provide a programming environment that is intuitive to developers who
are used to creating software on non-heterogeneous systems. CUDA’s language-
integrated heterogeneous parallel programming approach is key for this goal.
CUDA modules contain code that executes on the CPU, GPU or on both proces-
sors. Functions and variables are annotated with execution spaces (CPU/GPU).
CPU code can create work on the GPU using an extended call syntax.

Our language-integrated approach is distinct from other frameworks such as
OpenCL, where the GPU program is embedded in a character string that is
explicitly passed to compiler API functions invoked by the CPU program.
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 121–135, 2014.
DOI: 10.1007/978-3-319-09967-5 7

122 M. Murphy et al.

Early versions of CUDA tools required the whole program at compile time.
This represented a significant hurdle from a software development and porting
perspective. In this paper, we describe our work to enable separate compilation
for CUDA in release 5.0, which removes this limitation. We believe this to be the
first language-integrated heterogeneous programming environment that provides
separate compilation and linking support.

In the rest of the paper, we use the terms device and host to refer to the
GPU and the CPU, respectively. By extension, device code and host code refer
to code entities that execute on the GPU and CPU, respectively. There are
several motivations for enabling separate compilation for device code:

Incremental Compilation Speedup: Requiring all device code to be in a sin-
gle translation unit increases the compile time and memory requirements for
the compiler toolchain. Incremental compilation is also not possible; if any
part of the device code is changed, the entire device code must be compiled
again. This slows down the edit-build-debug cycle during software develop-
ment. Separate compilation solves this problem by allowing code refactoring
into multiple translation units. A change to one translation unit requires
only that translation unit to be re-compiled, and the application to be re-
linked. This reduces the incremental compilation overhead, allowing faster
code development.

Ease of Porting: Most large applications have code factored into tens or even
hundreds of translation units. Separate compilation support eases the process
of porting such applications to the GPU.

Library Support: Separate compilation support enables linking against third
party libraries, allowing modular program development. User code may now
link against one or more libraries with device code, where the library and
user code are independently compiled, including the possibility of libraries
calling user-defined device callback functions.

In this paper, we make the following contributions:

– We present our design for separate compilation in the CUDA programming
environment. We introduce the device linker for linking separately compiled
device code objects.

– We describe how host-visible device entities are supported under separate com-
pilation.

– We present a novel device sub-link mechanism that allows groups of objects
to be linked separately, and co-exist in the generated program.

– We describe a device link time resource allocation algorithm for allocating
device shared memory.

– We evaluate the optimization tradeoffs in separate compilation mode com-
pared to the older whole-device-program compilation mode.

– We present performance metrics with real applications, comparing programs
built under separate compilation versus the whole-device-program mode.

Separate Compilation in a Language-Integrated Heterogeneous Environment 123

2 CUDA

CUDA consists of a programming language, a compiler and a runtime for het-
erogeneous parallel computing [1,10]. A typical target platform has two different
kinds of processors - the CPU and the GPU. The GPU can execute many threads
in parallel using multiple processors that contain local memories.

Figure 1 shows a simple CUDA program that multiples two vectors element
wise, in parallel.

__constant__ int factor = 0.5;

__device__ float multiply (float a, float b) { return a * b * factor; }

__global__ void vectorMultiply(float *A, float *B, float *C) {

C[threadIdx.x] = multiply (A[threadIdx.x], B[threadIdx.x]);

}

void hostFunc(void) {

float *A, *B, *C;

// allocate device memory for A, B, C and initialize A and B with data

// (not shown to save space)

vectorMultiply<<< 1, vectorLength>>>(A, B, C); // launch kernel on device

// copy C to host memory.

}

Fig. 1. An example CUDA program fragment

Functions annotated with device keyword execute on the GPU. Func-
tions annotated with global keyword are the entry point for GPU code
execution (kernel function). A function with no explicit annotation or marked
with the host keyword execute on the CPU. Thus, multiply is a device
function, hostFunc is a host function and vectorMultiply is an entry function
for GPU code execution.

Kernel functions can be launched from host code using the triple angle
bracket syntax (“<<<...>>>”). Namespace scope variables can be allocated
in specific GPU memory regions with annotations (e.g., constant).

3 Heterogeneous Separate Compilation

Figure 2 shows the CUDA separate compilation and linking framework. For each
translation unit, the CUDA frontend splits the host and device code into separate
parts. The device code is passed to the device compiler, generating a “fatbinary”.
A fatbinary contains the device machine code for one or more GPU architectures
in ELF format [5]. The fatbinary is transformed into a data array and embed-
ded in the host part of the CUDA source file generated by the frontend. This
combined program is then processed by the host compiler to produce an object

124 M. Murphy et al.

Fig. 2. Separate compilation and device linking

file. The object file can be linked against other objects on the host system to
produce a host executable or library.

Previous versions of CUDA did not support separate compilation of device
code, i.e., all device code entities accessed during a kernel launch had to be in
the same translation unit. The separate compilation framework described in this
paper removes this restriction, by using a new device linker that links the device
code entities from multiple object files.

The device linker extracts the device code embedded in the object files, carries
out the linking process, and generates another object file embedding the linked
device code image. The generated object also contains synthesized definitions for
host functions that are invoked during host startup (see Sect. 5). The synthesized
object file is presented to the host linker along with the original object files
to produce a host executable or library1. The device linker may be invoked
explicitly, it is also invoked implicitly by the compiler driver when the target is
a host executable2.

4 Host-Visible Device Entities

In a heterogeneous computing environment like CUDA, certain device entities
can be directly referenced in host code. For example, kernel functions can be

1 Original objects are required during host linking, since they may define host entities
(e.g., functions) with external linkage that are referenced from host code in other
objects.

2 In this case, the device linker ignores any object files without device code.

Separate Compilation in a Language-Integrated Heterogeneous Environment 125

launched from the host, but these functions contain code that executes on the
GPU. In this section, we detail how such “host-visible” device entities are sup-
ported under separate compilation.

The host-visible entities are global (kernel) functions, namespace scope
variables allocated in device or constant address space, textures and
surfaces. With separate compilation, the definition and reference to these entities
may be in different translation units. For example, consider the program below,
where the host-visible entities are defined in first.cu and referenced in second.cu.

first.cu:

__global__ void foo(void) {} // kernel

__device__ int devVar; // variable

__constant__ int constVar; // variable

texture<float> tex; // texture

surface<void, 2> surf; // surface

second.cu:

extern __global__ void foo(void); // kernel

extern__device__ int devVar; // variable

extern __constant__ int constVar; // variable

extern texture<float> tex; // texture

extern surface<void, 2> surf; // surface

void host_func(void) {

foo<<<1,1>>>(); // launch kernel

cudaGetSymbolAddress(..., devVar); // get address

cudaGetSymbolAddress(..., constVar); // get address

cudaBindTexture(...,tex,...); // bind texture

cudaBindSurfaceToArray(surf,...); // bind surface

}

As described in Fig. 2, the host code and device code are processed by dif-
ferent backend compilers. As a result, host-visible device entities need special
handling in the code passed to the host backend compiler. For each host-visible
entity defined in the current translation unit, the compiler frontend will create a
shadow entity (function, variable, etc.) with the same linkage, in the code passed
to the host compiler. References in the host code to the original device entity
will be updated to refer to the shadow entity. In addition, the compiler frontend
will insert registration code to be run during host start up. The registration code
creates a mapping from the shadow entity to the name of the original device
entity3. This mapping enables the CUDA driver to retrieve the device entity
being referenced from the host code. For example, the compiler frontend would
insert the following code for “foo” when generating the host-side code for first.cu
above:

3 Names of entities with static linkage are mangled with a unique translation unit
specific prefix.

126 M. Murphy et al.

void foo(void) { } // shadow function

// host code from first.cu

....

attribute((constructor)) __init(void) {

__register(&foo, "foo"); // map shadow entity to device entity

}

5 Multiple Device Links

5.1 Motivation

Existing separate compilation environments typically have a single link step.
Objects are combined into a single executable by the link step. In the CUDA
environment, linking device code in a single link step may negatively impact
the performance of the final linked code. The entry point for device execution is
a kernel function. Before a kernel is launched, the runtime ensures that the all
resources required by the kernel are available. The runtime requires that the com-
piler toolchain provide upper bounds on the resources used by the kernel and any
functions transitively invoked from the kernel. Examples of the resources that
need to be tracked are the maximum amount of shared memory needed by
the kernel and the maximum number of physical registers needed during the ker-
nel’s execution. To compute this information, the CUDA linker builds a callgraph
for each kernel function. However, in the presence of indirect function calls, the
call graph information may be conservative. As a result, the computed resource
usage values may be overly pessimistic. This may cause the kernel launch to fail
at runtime or to artificially restrict the number of parallel units of work that are
run simultaneously on the processor, degrading the throughput of the executing
programs4.

For example, consider the following two source files:

first.cu:

__device__ void first(void) {

__shared__ int arr \cite{bib4096};

...

}

__device__ void (*func_ptr)(void) = first;

second.cu:

__device__ void second(void (*fp)(void)) {

__shared__ int local \cite{bib1024};

fp();

...

}

4 Thus, it may reduce the the occupancy [7] of the GPU.

Separate Compilation in a Language-Integrated Heterogeneous Environment 127

The functions first and second are never invoked during the execution of
the same kernel. However, since the address of first is taken, the linker may
assume that first is invokable from the indirect call site in second. As a result, the
shared memory requirement for a kernel invoking second includes allocations

for both variables arr and local. If the entities from first.cu and second.cu never
interact, one solution is for the user to put the objects created from first.cu
and second.cu in different sub-linked object groups. The device linker is invoked
multiple times, with disjoint sets of objects participating in each link step. Since
the linker call-graph only considers objects participating in the current link step,
the call graph will be more precise and the shared memory requirement
calculations will therefore be more accurate.

This multiple device link facility is very useful for library writers, because
it enables performance isolation of library code from the user’s code. Objects
in the library that contain device code, and that are not supposed to directly
interact with the user’s device code, can be device-linked before the library is
shipped. This insulates the user’s device code and the library’s device code from
each other, with respect to the per-kernel resource requirement computation in
the linker. It may also lead to shorter device link times for the user’s code, since
objects from the pre-linked library will not participate in the user’s device link
step.

5.2 Constraints

The design for the multiple device link mechanism must support the following
constraints:

– As described in Sect. 4, registration code for host-visible device entities needs
a handle to the linked device image. The device linker must define a function
that provides this handle.

– The same object cannot be allowed to link in multiple device links. The object
file may contain definition of host-visible entities such as kernel functions; if
the entity is referenced in host code, the CUDA runtime would not be able to
uniquely determine the device entity being referenced if the object participates
in multiple device links. This restriction is consistent with the “one-definition-
rule” (ODR) semantics of the CUDA C language, derived from C++ [8].

– The device linker design places a restriction that host objects created by
the compiler cannot be modified by the device linker. This eliminates the
possibility of patching the object file, e.g., to insert a function call to the
linker generated function that returns a handle to the linked image5.

5 Patching object files during linking may also complicate “rule-based” build environ-
ments. These define rules to produce a “result” given one or more inputs, and the
input entities are not expected to be modified in the user-provided implementation
of the rule. Also, the object files may not be modifiable, e.g., because of file permis-
sions or because they contain objects that are part of multiple programs, such as a
system provided library.

128 M. Murphy et al.

5.3 Design

Each object is associated with a unique identifier, called the module-id. The
module-id uniquely identifies the object among all objects that participate in
any device link step. The module-id is computed by the device compiler and
embedded in the generated object file. The device compiler also synthesizes a
call to an externally defined function (“init-function”) in the generated object.
The init-function’s name is derived from the module-id, and is unique per object.
The init-function returns a handle to the linked device image, and the handle is
used to register host-visible device entities (Sect. 4). During device linking, the
linker synthesizes the definition for the init-function for every object, using the
embedded module-id.

How does the device compiler generate the module-id? It leverages the ODR
semantics of the CUDA C source language. ODR semantics require that a func-
tion or variable with extern linkage be defined exactly once in the complete
program6. If such a function or variable definition is present in the current trans-
lation unit, its name is used to derive the module-id, along with the file name
and path7.

Figure 3 shows an example with multiple device links. a.o and b.o participate
in the first device link, c.o and d.o participate in another one. The object files
generated from the source (.cu) files contains the module-id and the call to the

Fig. 3. Multiple Device Link Example

6 Some exceptions are template instantiations and inline function definitions. These
are ignored for module-id calculation.

7 In uncommon cases where no such function or variable is available, the current time
value is used along with the file name and path.

Separate Compilation in a Language-Integrated Heterogeneous Environment 129

init-function (e.g., init XXX). The object file generated by each device link step
contains the module-ids and the init-function definitions. The host linker binds
the init-function calls to the definitions present in the objects created by the
device link steps.

5.4 Detecting Error Scenarios

The above design ensures that the program will fail to build for some error cases:

– Object in Multiple Sub-links: If an object is involved in multiple device
links, the device linker will create the init-function definition for that object
multiple times. When the host linker is invoked, the program will fail to link
because of ODR semantics (a function with extern linkage can be defined
exactly once).

– Device Link Step Missing: As described above, the device compiler syn-
thesizes a call to the uniquely named init-function in every object. If this
object does not participate in any device link step, and is presented to the
host linker, the program will fail to link because of the missing definition of
the init-function.

6 No-Cloning Under Separate Compilation

Typical host programs have a single entry point (usually called “main”) which is
the starting point for execution. Under CUDA, each kernel represents an entry
point in the device code; there can be multiple kernels in a complete device
program. The kernel functions may call common device functions or reference
common data. Under the legacy compilation mode (i.e., without separate com-
pilation), the entire device code was compiled as a single translation unit. In
this case, a compiler optimization would clone the common device functions and
shared memory variables, per kernel. Thus, each kernel could be separately

optimized, for example:

– Since each kernel gets its own cloned version of the shared memory vari-
able, the shared memory layout can be computed independently of other
kernels. This has two benefits. First, the shared memory addresses can
be fixed before code generation, allowing optimizations such as constant fold-
ing. Second, the total size of the shared memory addressed by the kernel
may be reduced, since there is more freedom in assigning offsets to shared
memory variables.

– Global inter-procedural register allocation is possible for each kernel and the
versions of the device functions cloned for it; this allows better code genera-
tion, and can reduce the maximum number of registers used by the kernel.

Decreasing the resource requirements of the kernel (total registers
and shared memory used) can increase GPU performance by increasing GPU
occupancy [7], i.e., by reducing the number of cycles the GPU is stalled without
work.

130 M. Murphy et al.

Unfortunately, with separate compilation, this optimization is no longer
possible, since device function definitions may now be in a different translation
unit. We measure the impact of disabling this optimization in Sect. 88.

7 Optimizing Shared Memory Layout at Link Time

GPUs have limited memory space for shared memory, so it is important to
allocate shared memory objects in an optimal manner. This is complicated by the
fact that device code can have multiple kernels (entry points in device code), and
different kernels may access different shared memory objects. If a user declares
the shared memory variables local to a kernel, then it is obvious where they are
used, but typically users allocate the shared memory in global scope so that it
can be shared by multiple functions9. This provides us with an opportunity to
reduce the space requirements by overlapping shared memory objects that are
used in different kernels.

Consider the following example:

__shared__ int X[1000], Y[1000], Z[100];

__global__ void E() { X; Z; }

__global__ void F() { Y; Z; }

There are two kernels E and F, and three shared memory objects X, Y and
Z; if E uses X and Z, while F uses Y and Z, then we can overlap the allocation
of X and Y, thus only using 4400 bytes rather than 8400 bytes. However, this
requires doing data allocation at link time rather than having each object allo-
cate its own memory. This also requires the use of a link-time callgraph with
multiple roots (kernel functions). Determining the optimal allocation of such
shared memory can be thought of as a graph coloring algorithm. Graph coloring
is commonly used in the context of register allocation. In this case we apply it
to data allocation, and use the set of kernels reached as the interference graph.
The algorithm works as follows:

1. Search the relocations [5] to find all uses of shared objects.
2. Use the callgraph to find which shared objects are used by each kernel (so if

a non-kernel function F references a shared object, find all kernels that reach
F).

3. If no one uses the shared object, remove it. If only one kernel uses shared
object, move it to be local to kernel.

4. Build interference graph where each node represents the shared memory
object, and has edge between nodes when the sets of kernels they reach inter-
sect.

8 Disallowing device function cloning reduces overall program size. We found that this
significantly reduces overall compile time for a few large files in our repository (up to
7x reduction).

9 Shared memory variables can have extern specifiers and be in different translation
units.

Separate Compilation in a Language-Integrated Heterogeneous Environment 131

5. Sort the list of nodes so largest-size objects are allocated first.
6. Go through interference graph and assign each node to an allocation group

such that edges are always in a different group (color the graph).
7. Assign offsets to each allocation group (a group is set of overlapping objects).

The above scheme is not always optimal. Graph coloring assumes equal-size
registers; in our case the objects are not all equal sized. We allocate the largest
objects first to minimize the wasted space, but there can be situations where
several smaller objects that conflict with each other but not with a larger object
could all fit within the space of the larger object, in essence by doing a nested
allocation of the smaller objects. This situation requires completely independent
sub-graphs. We may modify our algorithm to account for this case, but so far
we have not seen this be an issue in the code we have processed, and thus have
refrained from the additional complexity. The algorithm is very effective for the
benchmarks we evaluated, as shown in Sect. 8. Typically all the shared objects
can be fit into just two allocation groups, the most complicated case we have
seen so far in real code has required only 4 allocation groups.

8 Results

Table 1 describes the benchmarks used for performance measurements. The Lawa
sources may be configured to be compiled as single file containing all the device
source code, or as separate files. We contrast the two build modes to illustrate
the potential advantages of separate compilation. The three other benchmarks
(Cublas, Cufft, Thrust) contain legacy CUDA code sources that put all device
code in a single file. We use these benchmarks to measure the impact of toggling
the cloning optimization (Sect. 6) and for measuring the effectiveness of the link
time shared memory allocation scheme (Sect. 7).

All measurements are done with the CUDA 5.0 release, running on a 64bit
Linux system with default full optimization. The separate compilation support is
also implemented on Windows and Mac systems, but the results are independent
of host platform so we only show the results for one platform.

8.1 Lawa

Figure 4 plots the compilation time for each source file in seconds, with Lawa
built in separate compilation mode. All except one file take less than 6 s to

Table 1. Benchmarks

Name Description #Files #Kernels #Lines

Lawa Library for adaptive wavelet applications 151 4 47 K

Cublas BLAS library 330 2178 90 K

Cufft Fast Fourier Transforms library 85 644 35 K

Thrust Parallel Algorithms library 111 1588 75 K

132 M. Murphy et al.

Fig. 4. Lawa compile time

Table 2. Lawa run time for kernels
K1–K4 (microseconds)

K1 K2 K3 K4 Total

Separate
compilation

146759 14263 975 38 162036

Whole program
compilation

147355 6360 977 38 154732

compile. The combined host and device link times were less than a second. The
dotted line in the same graph shows the build time when the Lawa device code
is compiled as a single translation unit (36 s)10. Doing a full build from scratch is
significantly slower with separate compilation, due to invoking the both the host
and device compilers multiple times, but incremental compilation where only
part of the program is rebuilt (which is typical of the edit-build-debug cycle and
one of the goals of separate compilation) is significantly faster (6 vs 36 s).

Table 2 compares the program runtime when built under separate compilation
versus the entire device code in a single file (“whole program compilation”). The
second kernel slows down significantly due to the lack of inlining when the file is
split. However, other kernels have comparable runtime, such that the overall run
time only degrades by 4.5 % in the separate compilation mode. To get better
performance with separate compilation, a user should look for hot spots and
potentially inline code in that area.

8.2 Impact of No-Cloning Versus Cloning

Figure 5 shows performance metrics when the benchmarks were built in no-
cloning mode, relative to the values for cloning mode11. Compile times for Cufft
and Thrust show little impact from no-cloning. The effect for Cublas is less
clear. Compilation time for some files decreased significantly, while it increased
for other files, though it remains almost unchanged for the vast majority.

The runtime impact of no-cloning was minimal for most tests, but did show
some negative impact on about 25 % of the Cublas tests. As described in Sect. 6,
disabling cloning inhibits certain optimizations that seem to impact these tests.

For all three benchmarks, the per-kernel shared memory does not change
significantly with no-cloning, for the vast majority of the kernels12. This indi-
cates that the link time shared memory layout optimization (Sect. 7) effectively
places the shared memory variables such that the per-kernel sizes approach the

10 90 % of Lawa’s compilation time is spent on device code so any improvements are
predominantly due to changes on the device side.

11 No run time reported for Thrust, since we don’t have performance tests for this
benchmark.

12 Only kernels with non-zero shared memory sizes are reported here.

Separate Compilation in a Language-Integrated Heterogeneous Environment 133

Fig. 5. Performance metrics for No-Cloning relative to Cloning.

“best case” sizes possible with cloning. Alternately, the benchmarks may pre-
dominantly contain shared memory variables accessed only by a single kernel, in
which case the layout optimization is not applicable. This is further explored in
Sect. 8.3 below.

As legacy CUDA code is recompiled under separate compilation mode, the
cloning optimization will be disabled. The fact that compile time, run time
and shared memory usage did not change significantly for the vast majority of
the cases should smooth the initial transition to separate compilation mode for
legacy CUDA programs.

8.3 Impact of Shared Memory Layout Optimization

Figure 6 shows the per kernel shared memory sizes with the link time layout
optimization discussed in Sect. 7. The values are relative to the sizes with the
optimization disabled and compiled under no-cloning mode. So 1.0 means there
was no change, 0.2 means that the optimized code reduced the space usage to
20 % of the original. The figure shows that the link time optimization is extremely
effective for Cublas and Thrust kernels, while there was no impact for Cufft. For
Cublas, the optimized layout was less than a quarter of the size of the non-

134 M. Murphy et al.

Fig. 6. Per kernel shared memory size with link time layout optimization, relative to
size with optimization disabled.

optimized layout, for almost half of the kernels. Similarly dramatic results can
be seen for the Thrust kernels.

9 Related Work

Several heterogeneous parallel programming systems have been developed over
recent years. OpenACC [11], OpenCL [6], Microsoft AMP [14], Cell [16], PGI
Accelerator [13] and PGI CUDA Fortran [12] are some of the prominent exam-
ples. OpenACC and PGI Accelarator provide pragma directives to control code
generation and variable placement for the associated heterogeneous co-processor.
AMP and CUDA Fortran provide a language-integrated environment similar to
CUDA. However, none of these environments currently allow separate compila-
tion and linking of device code.

OpenCL 1.2 adds support for separate compilation and linking of device code
fragments. This is quite different from our approach:

– Language integration: In OpenCL, the device code is represented as a string
embedded in host code. In CUDA, host and device code entities are part of
the same source program where kernel functions and device variables may be
accessed in host code. This makes programming simpler, but is challenging to
implement.

– Explicit (OpenCL) versus Implicit (CUDA) linking: OpenCL provides APIs to
explicitly link device code. In CUDA, the linking is implicit - it is orchestrated
by the compiler driver. This model is easier to use because it is similar to
existing host environments.

– Device Sub-linking (CUDA): The CUDA linker allows linking sub-groups of
device code. This feature is important for shipping pre-linked library code.

Cell supports device code link, in a similar manner to ours but the host and
device sources are compiled and linked separately.

Levine gives a short history of linking and suggests that the idea has been
around since 1947 [2].

Separate Compilation in a Language-Integrated Heterogeneous Environment 135

10 Conclusion

In this paper, we presented our design for separate compilation and linking
of embedded device code, in a language-integrated heterogeneous environment.
Separate compilation provides many advantages - the ability to support third
party libraries, compile time speedups with incremental builds and ease of port-
ing legacy programs to the heterogeneous environment. We described the linker
extensions for sub-linking subsets of device code objects. We also described a
link time scheme for optimizing shared memory layout. Finally, we evaluated
the cost of disabling cloning in separate compilation mode, and the effectiveness
of the shared memory layout optimization.

References

1. Buck, I.: GPU computing: programming a massively parallel processor. In: Inter-
national Symposium on Code Generation and Optimization (2007)

2. Levine, J.R.: Linkers and Loaders. Morgan-Kaufman, San Francisco, CA (1999)
3. Presser, L., White, J.R.: Linkers and loaders. ACM Comput. Surv. 4(3), 149–167

(1972)
4. Taylor, I.L.: Part 1 of 20 on linkers (2007). http://www.airs.com/blog/archives/38
5. ELF specification: System V Application Binary Interface (2010). http://www.sco.

com/developers/gabi/latest/contents.html
6. Khronos OpenCL Working Group: OpenCL Specification version 1.2 (2011).

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
7. NVIDIA Corporation: NVIDIA CUDA programming guide (2012)
8. The C++ Standards Committee ISO/IEC JTC1/SC22/WG21: 14882:2011(E),

Programming Languages C++ (2011)
9. Top500 Project: TOP500 Supercomputer Sites (2012). http://i.top500.org/

overtime
10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,

C.: Introduction. In: Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N.,
Meseguer, J., Talcott, C. (eds.) All About Maude - A High-Performance Logical
Framework. LNCS, vol. 4350, pp. 1–28. Springer, Heidelberg (2007)

11. OpenACC Corporation: The OpenACC Application Programming Interface
(2012). http://www.openacc.org/sites/default/files/OpenACC.1.0 0.pdf

12. The Portland Group: PGI CUDA Fortran Compiler (2012). http://www.pgroup.
com/resources/cudafortran.htm

13. The Portland Group: PGI Accelerator Compilers with OpenACC Directives (2012).
http://www.pgroup.com/resources/accel.htm

14. Microsoft Corporation: C++ AMP: Language and Programming Model (2012).
http://msdn.microsoft.com/en-us/library/hh265137.aspx

15. Intel Corporation: Intel Array Building Blocks (2012). http://software.intel.com/
en-us/articles/intel-array-building-blocks

16. Chow, Alex Chunghen: Programming the Cell Broadband Engine (2012). http://
www.gamasutra.com/view/feature/130278/programming the cell broadband .
php

17. LLVM: LLVM gold plugin (2013). http://llvm.org/docs/GoldPlugin.html

http://www.airs.com/blog/archives/38
http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/gabi/latest/contents.html
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://i.top500.org/overtime
http://i.top500.org/overtime
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.pgroup.com/resources/cudafortran.htm
http://www.pgroup.com/resources/cudafortran.htm
http://www.pgroup.com/resources/accel.htm
http://msdn.microsoft.com/en-us/library/hh265137.aspx
http://software.intel.com/en-us/articles/intel-array-building-blocks
http://software.intel.com/en-us/articles/intel-array-building-blocks
http://www.gamasutra.com/view/feature/130278/programming_the_cell_broadband_.php
http://www.gamasutra.com/view/feature/130278/programming_the_cell_broadband_.php
http://www.gamasutra.com/view/feature/130278/programming_the_cell_broadband_.php
http://llvm.org/docs/GoldPlugin.html

Parametric GPU Code Generation
for Affine Loop Programs

Athanasios Konstantinidis1(B), Paul H.J. Kelly1,
J. Ramanujam2, and P. Sadayappan3

1 Imperial College London, London, UK
{ak807,p.kelly}@imperial.ac.uk

2 Louisiana State University, Baton Rouge, USA
ram@cct.lsu.edu

3 The Ohio State University, Columbus, USA
saday@cse.ohio-state.edu

Abstract. Partitioning a parallel computation into finite-sized chunks
for effective mapping onto a parallel machine is a critical concern for
source-to-source compilation. In the context of OpenCL and CUDA,
this translates to the definition of a uniform hyper-rectangular parti-
tioning of the parallel execution space where each partition is subject to
a fine-grained distribution of resources that has a direct yet hard to esti-
mate impact on performance. This paper develops the first compilation
scheme for generating parametrically tiled codes for affine loop programs
on GPUs, which facilitates run-time exploration of partitioning parame-
ters as a fast and portable way of finding the ones that yield maximum
performance. Our approach is based on a parametric tiling scheme for
producing wavefronts of parallel rectangular partitions of parametric size
and a novel runtime system that manages wavefront execution and local
memory usage dynamically through an inspector-executor mechanism.
An experimental evaluation demonstrates the effectiveness of our app-
roach for wavefront as well as rectangularly-parallel partitionings.

1 Introduction and Related Work

The diverse and evolving hardware organization of modern GPUs highlights the
importance of search-based performance tuning in finding the right set of execu-
tion parameters for best software performance. The benefits of performing such
tuning at runtime (as opposed to iterative compilation), is that we can minimize
total compilation cost, simplify code generation and therefore enable fast design-
space exploration through parameterized OpenCL/CUDA programs that can be
reused across different GPU devices. Parametric tiling (also referred to as para-
meterized tiling in the literature) can realise these benefits as it produces tiled
loop nests with parametric tile sizes amenable to runtime search [12,16,17,20].

One of the fundamental properties of tileable loop nests, i.e., loop nests for
which tiling is a semantics-preserving transformation, is that it allows paral-
lel execution of tiles through wavefront (also known as pipeline) parallelism
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 136–151, 2014.
DOI: 10.1007/978-3-319-09967-5 8

Parametric GPU Code Generation for Affine Loop Programs 137

[15,25,26]. However, being able to produce wavefronts of parametric tiles is chal-
lenging. Solutions have been proposed for OpenMP targets by Hartono et al. [13]
and Baskaran et al. [4]. In particular, the first solution [13] constructs a space of
non-aligned rectangular tiles of parametric sizes proposed earlier [12] and then
utilizes an inspector-executor runtime that packs intra-wavefront tiles into bins
for parallel execution. On the other hand, Baskaran et al. [4] relies on a uniform
space of rectangular parametric tiles and proposes a relaxed Fourier-Motzkin
elimination algorithm in order to derive parameterized wavefronts of parallel
tiles statically.

In the context of GPU code generation, fixed-size tiling (i.e., tile sizes are
known at compilation time) remains the dominant approach [5,21,24,27]. With
fixed-size tiling, loop tiling can be modeled as an affine transformation [7,8] and
GPU code can be effectively produced by means of polyhedral code generation
[3,6]. Nonetheless, Yang et al. [27] showed that a syntax-based non-polyhedral
method for fixed-size tiling for GPUs can also be effective for dense linear algebra
programs.

To the best of our knowledge, this paper is the first to present a code gener-
ation strategy that enables parametric tiling for GPUs. In order to achieve this,
we address three main challenges. First, extracting and mapping parameter-
ized tile wavefronts for GPU execution can lead to significant load imbalance if
wavefronts are not mapped precisely to the hyper-rectangular execution space of
GPUs. Secondly, the intra-tile space needs to be parallelised as well in a manner
that efficiently exploits the fine-grained SIMD capabilities of GPUs. Finally, the
parametric nature of the produced code requires a dynamic local memory man-
agement mechanism that would allow us to allocate and use local memory buffers
dynamically. In this paper we provide solutions to these technical issues and
develop the first code generation algorithm that produces parametric GPU code
amenable to runtime tuning.

In some cases, avoiding wavefront parallelism altogether is possible [18]
and has motivated alternative parametric [14,19] and non-parametric [11] code-
generation schemes for GPUs. However, wavefront parallelism is a more general
method and therefore is the focus of our work.

2 Background

2.1 Compilation Flow

This paper focuses on a specific class of programs which are those that conform
to the restrictions of the affine transform theory [1,9,10]. These restrictions
guarantee that the control behavior of a computation as well as the data access
patterns involved, are precisely determinable at compile-time. In the rest of the
paper we will refer to such programs as Affine Loop Programs or ALPs.

Our compilation flow (Fig. 1) begins with a compilation unit written in a
sequential imperative language (e.g., C) that contains at least one ALP, anno-
tated with a preprocessor directive (e.g., #pragma). Those ALPs are then
extracted from the original program and enter a pre-processing stage embodied

138 A. Konstantinidis et al.

Fig. 1. Code generation flow, where E is a set of polyhedral dependences, Φ a set of
multi-dimensional affine transformations and P a syntactic form of a tilable program.

by an abstract affine transformation framework that consists of a model extrac-
tion, scheduling and syntax recovery module as shown in Fig. 1. Such frameworks
can be used in finding combinations of loop-nest transformations—in the form
of affine scheduling functions—that enable tiling [8]. This issue though goes
beyond the scope of this paper; we consider our input to be already sufficiently
transformed to enable tiling. Therefore, let Φ be a multi-dimensional affine trans-
formation that enables tiling and P the transformed syntax-tree of the program
based on Φ.

2.2 The OpenCL/CUDA Paradigm

The OpenCL1 platform model defines a central control processor called Host,
that coordinates a vector of parallel Devices. Each individual device is defined
as a set of functionally independent Compute Units and each compute unit as
a set of Processing Elements. We will refer to this abstract device model as the
physical processor space of a device.

Each device executes a Device Code following a data-parallel SIMT (Single
Instruction Multiple Threads) concurrency model. The device code is written as
special C-style functions called Kernels or Device Functions that are invoked by
the Host. The SIMT concurrency model indicates that a single Kernel is executed
concurrently across a set of threads called work-items. Work-items are organized
into uniform hyper-rectangular partitions called Work-Groups that are further
organized into an ND-Range – a hyper-rectangular space of Work-Groups. We
will refer to a work-group and nd-range configuration as the Virtual Processor
Space.

The OpenCL memory model exposes a 3-level abstract memory hierarchy
associated with each device. In particular, there is a Global Memory randomly
accessed by all threads, a software-managed Local Memory with a work-group
scope and a Private Memory (typically a register file), dedicated to each thread
separately. In this paper we are not considering the management of global mem-
ory which we assume to be an abundant resource.
1 In order to facilitate the generality of the definitions presented and used in the rest

of the paper, the OpenCL terminology will be primarily adopted.

Parametric GPU Code Generation for Affine Loop Programs 139

3 Parametric Tiling

The proposed code generation scheme relies on two independent preprocessing
steps corresponding to Sects. 3.1 and 3.2. The first step (see Sect. 3.1) utilizes
well-known techniques [4] for determining a parametric tile space for the input
program in the form of perfectly nested loops that scan a uniform space of
rectangular tiles with parametric sizes (see Fig. 2).

The second step (see Sect. 3.2) focuses on the intra-tile space, i.e., on the
rectangular execution space enclosed within each tile. The objective of these two
steps is to expose coarse-grained and fine-grained parallelism respectively either
through wavefronts (see dotted lines in Fig. 2) or through rectangularly parallel
loop dimensions if any (the trivial case).

Fig. 2. Two variations of a uniform space of rectangular tiles each one characterized
by different tile-sizes. The dotted lines indicate wavefront instances. Notice that the
total number of wavefront instances and the number of tiles for each wavefront instance
depend on the tile-size parameters.

3.1 The Tile Space

Our first step towards generating parametrically tiled code is to derive a set of dt
perfectly nested loops Li : i ∈ [1 · · · dt]—where dt denotes the innermost tileable
dimension of the program—that would scan the space of uniform rectangular
tiles of parametric sizes. For an imperfectly nested loop program, this space
corresponds to the convex hull of all execution domains. More specifically, we
begin by acquiring the new transformed domains D′

Si
for each statement Si in

the transformed syntactic tree P and then use a polyhedral library [23] in order
to get the convex hull DCH of the dt innermost dimensions of all D′

Si
. In the case

of imperfectly nested programs, we add semantics-preserving one-time-loops on
P prior to extracting D′

Si
. Note that DCH is a convex polyhedron by definition,

and therefore is represented by a single integer coefficient matrix where each
row represents a loop-bound expression. For the next step, we need different
data structures since parametric tiling cannot be represented in the polyhedral
model i.e., using integer coefficient matrices. For that purpose, we convert DCH

into a list of symbolic polynomial fractions as proposed by [4] and then apply
the following algebraic operations in order to get our tiled execution space ST :

140 A. Konstantinidis et al.

Introduce tile coordinates: Each coordinate xi of the original execution space
DCH , is expressed in terms of tile coordinates ti, intra-tile coordinates ui

and tile sizes Ti as follows: xi = ti ·Ti +ui for 0 ≤ ui < Ti. Finally, ST takes
the form: ST : lbi ≤ ti · Ti + ui ≤ ubi for i ∈ [1..dt].

Eliminate intra-tile coordinates: The intra-tile coordinates ui can be elim-
inated by making sure we include all non-empty tiles: ST :

(
lbi≤ti·Ti+Ti−1

ubi≥ti·Ti

)

for i ∈ [1..dt].
Get final tile loop-bounds: The resulting expressions though require addi-

tional processing since the tile coordinate variables appear as part of a prod-
uct (i.e., ti · Ti) that prevents us from constructing tile loops. We overcome
this by dividing all terms with Ti and since tile coordinates can only take
integer values, we enclose the resulting symbolic fractions into floor2 oper-

ators: ST :
(floor(lbi/Ti)+floor(1/Ti)−1≤ti

floor(ubi/Ti)≥ti

)
for i ∈ [1..dt]. The introduction

of floor operations though has an important impact on the resulting tile
loops. In particular, they produce a number of empty tiles, i.e., tiles that
do not include any valid points. These tiles are eliminated by our inspector-
executor mechanism (see Sect. 4) using the expressions of the previous step
as conditional predicates.

Given a set ST of tile loops Li, we either determine a subset STP ⊆ ST of
parallel tile loops that can be mapped directly to a GPU or we resort to wavefront
parallelism. In the latter case, we utilize the relaxed Fourier-Motzkin elimination
(RSFME) algorithm proposed by Baskaran et al. [4] and get an outer wavefront
loop W surrounding dt parallel tile loops SWT . Because the shape of the parallel
tile space produced by RSFME is inherently non-rectangular and depends on the
wavefront instance w ∈ W, mapping it to a GPU device is challenging. In Sect. 4
we present our method for mapping SWT (w) into a GPU execution environment
through a runtime inspector-executor mechanism.

3.2 The Intra-tile Space

The situation within each tile appears to be simpler as it is just a rectangu-
lar execution space. Nevertheless, in order to preserve the legality of tiling we
need to respect the multi-dimensional affine transformations Φ embodied by the
transformed syntax P. Furthermore, we need to also identify parallelism within
each tile, which might come from parallel intra-tile dimensions or wavefront
parallelism.

In either case, parallel intra-tile points will be captured by the work-group
configuration (see Sect. 4) and executed by the device code in a SIMT fash-
ion. Since the respective work-group configuration will inherently respect the
tile bounds of the parallel intra-tile dimensions, we only need to replace the
respective syntactic loop bounds of P with if-guards and adjust non-parallel
loop bounds to be:
2 A floor operator returns the largest integer that is not greater than the actual result

of the fraction.

Parametric GPU Code Generation for Affine Loop Programs 141

SIseq : max(lbi, ti · Ti) ≤ xi ≤ min(ubi, ti · Ti + Ti − 1)

The result is a transformed syntax tree P ′ that will be embedded into the device
code (see Sect. 6 and Fig. 6).

In the case of wavefront parallelism, the situation is rather straightforward.
In particular, since the intra-tile space is essentially a rectangular bounding box
of size Ti across each dimension i ∈ [1..dt], the wavefront loops can be generated
for the intra-tile space using a loop-skewing transformation thanks to CLooG,
a polyhedral code generation tool [6]. We can then wrap these loops around P
and replace all but the outer wavefront loop with if-guards. In Sect. 4 we will
see that the wavefront conditions can actually be hoisted to the host code and
evaluated once using an inspector-executor mechanism. Therefore, P ′ in case
of intra-tile wavefront parallelism, is actually produced by replacing all loops
in P with if-guards and surrounding them with the sequential wavefront loop.
Keep in mind that in case of full-tile separation the if-guards corresponding to
parallel intra-tile dimensions (wavefront or rectangularly-parallel) are completely
avoided.

Sometimes, the derived affine transformation functions Φ will result in a
maximally fused loop-nest in an attempt to minimize sequential execution (or
scanning) overhead. However, in a GPU execution context this approach is not
always ideal as we see from the Jacobi-2d example of Fig. 3. In particular, we
notice that the affine transformations derived from the well-known Pluto schedul-
ing algorithm [8] resulted in a maximally fused program, where inter-statement
dependences carried by the transformed space dimensions i and j, prevent the
respective space loops (i.e., loops i and j) from being parallel. This situation
forces us to resort to wavefront parallelism on the intra-tile space as well. How-
ever, avoiding an intra-tile wavefront, whenever possible, can be highly beneficial
since the lightweight nature of GPU cores makes them particularly vulnerable
to the additional control overhead incurred due to wavefront parallelism.

Fig. 3. (a) The original Jacobi-2d kernel, (b) transformed Jacobi-2d kernel from the
Pluto scheduling algorithm [8], (c) proposed fusion structure derived from Algorithm 1.

142 A. Konstantinidis et al.

In order to overcome this problem, we develop Algorithm 1 which is applied
on Φ prior to acquiring P, in order to eliminate such inter-statement depen-
dences. Figure 3 (c) shows the result for the Jacobi-2d example. Note that Algo-
rithm 1 does not alter the affine transformations per se, but only the fusion
structure of the program by decoupling the strongly connected components scc
of the data-dependence graph ddg in an attempt to avoid wavefront parallelism –
a process similar to classic vectorization algorithms [2]. Furthermore, if the con-
dition of Line 5 is false, then the rest of the scheduling dimensions are unfused
(an operation equivalent to loop fission) and marked parallel. Therefore, in order
to ensure correctness of the respective parallel program, the decoupling of scc
imposed by Line 6 must be accompanied by intra-tile synchronization in between
those components.

Algorithm 1. Elimination of intra-statement dependences that can result in
unecessary intra-tile wavefronts. Let ddg be the directed dependence graph of a
d-dimensional program derived from a set of polyhedral dependence edges e ∈ E
each involving a source (srce) and a sink (sinke) statement.
1: procedure intraDepElimination(Φ,ddg,E)
2: scc[1 . . . n] ← ddg � Calculate scc with well-known algorithms
3: mark[1 . . . d] ← parallel � All loops marked parallel
4: for each i ∈ [1..d] do
5: if (�e ∈ E for which scc[srce] = scc[sinke]) then
6: CutScc(i,scc) � Add scc values to Φ on position i
7: return mark
8: end if
9: if (isParallel(i,Φ)=false) then

10: mark[i] = non-parallel
11: update E,ddg and scc � Remove satisfied dependences
12: if (E = �) return mark � Exit if no dependences left
13: end if
14: end for
15: return mark
16: end procedure

4 ND-Range and Work-Group Mapping

The ND-Range and Work-Group mapping process involves the task of mapping
parallel tiles and parallel intra-tile points on to the virtual processor space of an
OpenCL device, embodied by the ND-Range and Work-Group configurations.
For that, we introduce the concepts of Tile-Buckets and Thread-Buckets defined
as follows:

Definition 1. A Tile-Bucket is denoted by BT and contains the coordinates
of all parallel tile instances to be mapped into an ND-Range and it is of size
BTsize(w) = |SWT (w)| or BTsize = |STP | for wavefront or rectangularly parallel
tiles respectively.

Parametric GPU Code Generation for Affine Loop Programs 143

Definition 2. A Thread-Bucket is denoted by BI and contains the coordinates
of all parallel intra-tile points to be executed by each work-group.

Each bucket is populated dynamically by an inspector-executor mechanism
running on the host while each bucket entry (i.e., tile and intra-tile coordinates)
can be recovered from the device code using the built-in index variables.

With respect to the tile-bucket, in Sect. 3.1 we defined our parallel tiled
execution space as a vector of loop-bound expressions resulted from rectangularly
parallel tile dimension – STP – or wavefront parallelism – STW (w). These loops
can now be executed in any order from the host environment and can populate
the tile-bucket BT with tile coordinates. Note that the chosen execution order will
effectively define the layout of the mapping. This layout could be an arbitrary
permutation of the respective loops or a more complex layout like a diagonal
reordering [22] to avoid partition camping.

On the intra-tile level, if the number of parallel transformation dimensions
dpar ≤ dt is non-zero (see mark vector of Algorithm 1), then we have a
dpar-dimensional rectangle containing parallel execution instances that can be
mapped directly into a Work-Group (without the use of thread-buckets).

In case of intra-tile wavefront parallelism, bucket BI is split into multiple
buckets, each one corresponding to a wavefront instance w ∈ WI and containing
the parallel execution instances of w. Therefore, BI is defined as BI [WIsize][BIsize]
with WIsize and BIsize being defined as the maximum number of wavefronts and
the maximum number of points within a wavefront respectively. Both WIsize

and BIsize are symbolic expressions depending on tile sizes and can be calcu-
lated with polyhedral tools. In fact, since they are the same for each problem
dimensionality, they could be derived once and then reused for any program.

Notice that BIsize reflects the maximum number of intra-wavefront points
across all wavefront instances. We will use it for the work-group configura-
tion as it denotes the total amount of work-items per work-group. This means
that for wavefront instances with fewer intra-wavefront points, we will have idle
work-items. These work-items can be identified by a negative coordinate since
all valid intra-tile coordinates are non-negative by default.

5 Parametric Local Memory Management

The total number of work-groups is typically larger than the number of com-
pute units; therefore, local memory can be shared among multiple active work-
groups. If the collective demand for local memory exceeds its physical capacity,
the number of active work-groups per compute unit is reduced. This highlights
the tight balance between locality and parallelism. In particular, if the number
of local memory buffers per work-group is reduced, then the number of active
work-groups can be increased. On the other hand, if the local memory usage
of a single work-group exceeds the physical capacity, then the kernel invocation
will fail completely. In a tuning environment where tile sizes can take arbitrary
values, this situation can unnecessarily restrict the tuning space. We attempt to
overcome these problems by introducing the concept of Buffer Buckets:

144 A. Konstantinidis et al.

Definition 3. A Buffer-Bucket denoted by BB, is a collection of local-memory
buffers accompanied by a kernel descriptor mapping the respective buffer-bucket
to a specific device function.

Each buffer-bucket is characterized by a tunable capacity parameter called
the Local Memory Window Lw, that represents the per-work-group availability
of local memory. In particular, local memory buffers can be added to a buffer-
bucket by the host at runtime as long as its contents do not exceed Lw. If Lw is
exceeded, the respective buffer-bucket is closed and no more additions to it can
be performed; hence the order of addition matters. Furthermore, each addition
is accompanied by a kernel descriptor mapping the contents of the respective
buffer-bucket to a specific device function. The complete process is outlined
in Fig. 4. Note that the kernel invocation (on Line 8) requires a buffer-bucket
argument that specifies the device function to call and the total amount of local
memory to be allocated dynamically. In other words a buffer-bucket constructs
an execution environment in which the contained buffers are available for use.

Fig. 4. Mechanism for adding n buffers Bi : i ∈ [1..n] to a buffer-bucket BB which is
subsequently used for the kernel invocation. Note that the device function specified by
the Kernel(0) descriptor will not use any of the buffers.

We have developed a dynamic local memory management policy that ranks
the set of candidate local memory buffers and then utilizes the buffer-bucket
abstraction and the associated population mechanism (Fig. 4) to construct an
execution environment. This implies that n+1 kernel versions are needed, where
n is the total number of buffers; kerneln will use all n buffers, kerneln−1 will
use the best n − 1 buffers according to their rank, etc. In other words, buffers
are added incrementally according to their rank and if the addition of buffer
Bi : i ∈ [1..n] results in exceeding Lw, then all subsequent additions will fail
and the kernel using i − 1 buffers – indicated by the Kernel(i − 1) descriptor –
will be invoked. The ranking of the candidate local memory buffers is based on
temporal reuse, group reuse and self-spatial reuse.

Each buffer entry contains the total size of the respective buffer and a set of
parameters that are transferred to read-only constant memory and then used by
pre-defined data-movement procedures to move data in and out of the buffers.
More details on this will be discussed in Sect. 5.2.

Parametric GPU Code Generation for Affine Loop Programs 145

5.1 Buffer Definition

Let Fi be the multi-dimensional access function of array i, ignoring any constant
terms. Furthermore, let Ct

i be a set of integers denoting the absolute distance
between the maximum and the minimum constant terms across all textual refer-
ences to array i for each dimension. We define buffer Bi of i to be the rectangular
bounding box of Fi enlarged by the elements of Ct

i along each dimension; it is
characterized by two sets of symbolic expressions namely the footprint origins
Oi(t,T) and the footprint extents Ei(T), where t and T denote the vectors of
tile coordinates and tile sizes respectively. Figure 5 illustrates how buffer BA is
defined for the Seidel-2D kernel of Fig. 5(a), based on OA, EA and Ct

A. The Oi

and Ei expressions can be derived using lexicographic minimum and maximum
operations of Fi under the tile domain using existing polyhedral tools [23].

Fig. 5. (a) A skewed Seidel-2d kernel (b) global view of the access foorptint of A
coinciding with the buffer view for OA = {0, 0} and all constant terms being ignored
(c) buffer view of the access footprint of A if we consider all constant terms.

Note that we only consider a single access function for each array imply-
ing that we ignore any arrays that have multiple linearly independent access
functions for any dimension.

5.2 Moving Data in and Out of the Buffers

Since the buffer extents as well as the work-group configuration are parametric,
the movement of data in and out of the buffers need to be parametric as well,

146 A. Konstantinidis et al.

i.e., data movement is carried out without any assumption about the relation
between the layout of threads in a work-group and the buffer extents. Conse-
quently, we predefine a set of data-movement procedures that are used as runtime
API functions and can be incrementally optimized based on certain assumptions
pertaining to the thread and buffer layouts. For a 2-dimensional array, the basic
data movement procedures are presented in Algorithm 2, in which Cneg

i denote
the absolute value of the minimum negative constant term across all textual
references of array i for each dimension, and bi a set of global bounds associated
with i.

Algorithm 2. The basic move-in procedure of a 2-dimensional buffer Bi exe-
cuted on the device code by each thread.
1: procedure MoveInOut2DGeneric(Oi,C

neg
i ,Bi,bi,Fi(li))

2: li ← recover new thread layout with Bi params � Using modulo and division
3: gi ← (Oi − Cneg

i + li) � recover global coordinates
4: for (g1 : [0..bi[1]]) and (l1 : [0 : Ei[1]]) � Height traversal
5: for (g2 : [0..bi[2]]) and (l2 : [0 : Ei[2]]) � Width traversal
6: if (Fi(li)) � For Move-Out only
7: buffer[l1][l2] = global[g1][g2] � Reverse for Move-Out
8: end procedure

Note that in Line 2, a new thread layout is recovered. For a 2D buffer, this
layout is characterized by a width parameter which is specified by the buffer
allocation procedures shown in Fig. 4 and then stored in the device’s constant
memory for fast access by the data-movement procedures. In our current imple-
mentation of the buffer allocation runtime, we assume that the total number of
threads in a work-group is always greater than or equal to the buffer width; thus
we can effectively avoid the width traversal of Line 6.

The main difference between the move-in and move-out procedures is in Line
6. The condition on Line 6 involves Fi(li), a conditional expression that depends
on the buffer coordinates li and restricts the move-out procedures to operate
only on the elements that have actually been written by the respective tile (the
gray area in Fig. 5). Therefore, in order to determine Fi(li), we examine the
write accesses of the program and derive a conditional expression denoting their
convex hull for the domain of the buffer, i.e., a tile domain in which Oi(t,T) is
zero across all dimensions.

6 Code Generation

The code generation algorithm developed in this paper produces two pieces of
code: (i) the inspector-executor code that runs on the host side, and (ii) the
n + 1 kernels (where n is the total number of buffers used in the program) that
are executed on the device. Figure 6 shows a generic form of the produced code
that provides a clear outline of the code generation algorithm.

Parametric GPU Code Generation for Affine Loop Programs 147

Fig. 6. Generic output of the proposed code-generation algorithm

All the functions whose names are in uppercase in Fig. 6 constitute the
platform-independent runtime environment3 that supports the inspector-executor
mechanisms as well as the data-movement procedures and the tile/intra-tile recov-
ery methods that reside on the device code. In particular, the latter are using the
built-in work-group and nd-range index variables to access the tile and thread-
bucket entries which have been transferred to concurrent data structures by the
host code. More specifically, the tile-bucket entries are stored in global memory
and the thread-bucket entries are stored in image-memory while the buffer-bucket
entries are stored in constant memory. The condition in Line 23 in the intra-tile
wavefront code simply checks whether the corresponding thread-bucket entry is
negative.

The simplicity and robustness of the code generation algorithm indicates that
manual code generation is also possible and sensible since the code is produced
once and then used for runtime tuning across any GPU device. The parameter-
ized benchmarks that were used for our experimental evaluation along with the
inspector-executor runtime are publicly available4.

3 Currently supporting CUDA targets.
4 http://www.doc.ic.ac.uk/∼phjk/LCPC13

http://www.doc.ic.ac.uk/~phjk/LCPC13

148 A. Konstantinidis et al.

7 Experimental Evaluation

The purpose of our experimental evaluation is to assess two main properties of
the produced parameterized code. First of all, in the presence of rectangular
parallel tile spaces that do not require wavefront parallelism, we would like to
evaluate the effectiveness of our code in matching the performance of a statically
partitioned GPU code. Secondly, in the presence of wavefront parallelism, we
would like to assess the effectiveness of the proposed inspector-executor mecha-
nism in mapping wavefronts of tile and intra-tile instances onto a GPU execution
environment. For both experiments we compared our solution to PPCG [24]
(version c7179a0), which is a state-of-the-art C-to-CUDA compiler that uti-
lizes polyhedral analysis and code-generation for producing statically partitioned
CUDA code, i.e., the tile-sizes are compile-time constants. In both systems, the
Pluto [8] scheduling algorithm is used to enable tiling through affine transforma-
tions. The devices used for our experiments were the following NVIDIA GPUs:
(a) GT540M(CUDA 4.2), (b) GTX580(CUDA 4.2), (c) M2070(CUDA 4.2) and
(d) K20c(CUDA 5).

With respect to our first assessment, we used the well-known matrix multi-
plication example as a representative of rectangular parallel programs. Figure 7

Fig. 7. Comparison of execution time profiles for matrix-multiplication between static
(i.e., PPCG) and runtime partitioning (i.e., ptileGPU). Each diagram is normalized
based on worst execution time which was 2.467 s for GT540M, 0.234 s for GTX580 and
0.191 s for K20c.

Parametric GPU Code Generation for Affine Loop Programs 149

shows that for a given set of tile size configurations (horizontal axis), our parame-
terized code can successfully match the performance profile of PPCG while yield-
ing more than 5 times faster search time. On the other hand, Fig. 8 demonstrates
the effectiveness of the inspector-executor framework in mapping wavefront par-
allelism across a collection of stencil benchmarks. From those benchmarks, ADI
(Alternating Direction Implicit) and Seidel-2d utilize the thread-bucket feature
while Jacobi-1d, Jacobi-2d and FDTD-2D (Finite Difference Time Domain) uti-
lize Algorithm 1 to eliminate intra-tile wavefronts. All bars denote the best per-
formance within a given search space5 while the additional bars per-benchmark
show the respective performance when using less local memory buffers (the far

Fig. 8. Comparison of best performance within a given search space of partitioning
parameters (i.e., tile-sizes) between PPCG and ptileGPU. Each performance bar is
normalized based on best performance which was 4.13 GFLOPS for GT540M and
Jacobi-2d, 25.11 GFLOPS for M2070 and FDTD 2D and 33.03 GFLOPS for K20c and
FDTD 2D.

5 We used tile sizes ranging from 8 to 32 with a stride of 4 while on Jacobi-1d we
searched up to time tile sizes of 256.

150 A. Konstantinidis et al.

right bar denote the performance when no buffers are used) which highlights the
importance of the locality/parallelism trade-off discussed in Sect. 5.

8 Conclusions

In this paper, we have presented the first code generation algorithm that pro-
duces parameterized GPU code (using parametric tiling) for effective runtime
auto-tuning of affine programs. Experimental evaluation shows that the our
compilation and runtime system is effective in mapping wavefronts of paral-
lel parametric tiles, exploiting parametric intra-tile parallelism and managing
local memory dynamically.

Acknowledgments. This work was supported in part by the U.S. National Science
Foundation through awards 0811457, 0904549, 1059417 and 1205682. The authors
would also like to thank Codeplay Software and EPSRC for their support as well
as Louis-Noël Pouchet and Sanket Tavarageri for their valuable contributions.

References

1. Aho, A., Lam, M., Sethi, R., Ullman, J.: Optimizing for parallelism and locality.
In: Compilers: Principles, Techniques, and Tools. Pearson/Addison Wesley, Boston
(2007)

2. Allen, R., Kennedy, K.: Automatic translation of fortran programs to vector form.
ACM Trans. Program. Lang. Syst. (TOPLAS) 9(4), 491–542 (1987)

3. Ancourt, C., Irigoin, F.: Scanning polyhedra with DO loops. In: ACM Sigplan
Notices, vol. 26, pp. 39–50. ACM (1991)

4. Baskaran, M.M., Hartono, A., Tavarageri, S., Henretty, T., Ramanujam, J.,
Sadayappan, P.: Parameterized tiling revisited. In: CGO. ACM (2010)

5. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA code
generation for affine programs. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp.
244–263. Springer, Heidelberg (2010)

6. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT (2004)

7. Bastoul, C., Feautrier, P.: Improving data locality by chunking. In: Hedin, G. (ed.)
CC 2003. LNCS, vol. 2622, pp. 320–334. Springer, Heidelberg (2003)

8. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI. ACM (2008)

9. Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part i.
One-dimensional time. Int. J. Parallel Prog. 21(5), 313–347 (1992)

10. Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part II.
Multidimensional time. Int. J. Parallel Prog. 21(6), 389–420 (1992)

11. Grosser, T., Cohen, A., Kelly, P.H., Ramanujam, J., Sadayappan, P., Verdoolaege,
S.: Split tiling for GPUs: automatic parallelization using trapezoidal tiles. In:
GPGPU. ACM (2013)

12. Hartono, A., Baskaran, M.M., Bastoul, C., Cohen, A., Krishnamoorthy, S., Norris,
B., Ramanujam, J., Sadayappan, P.: Parametric multi-level tiling of imperfectly
nested loops. In: Supercomputing, pp. 147–157. ACM (2009)

Parametric GPU Code Generation for Affine Loop Programs 151

13. Hartono, A., Baskaran, M.M., Ramanujam, J., Sadayappan, P.: DynTile: paramet-
ric tiled loop generation for parallel execution on multicore processors. In: IPDPS.
IEEE (2010)

14. Holewinski, J., Pouchet, L.N., Sadayappan, P.: High-performance code generation
for stencil computations on GPU architectures. In: Proceedings of the 26th ACM
International Conference on Supercomputing, pp. 311–320. ACM (2012)

15. Irigoin, F., Triolet, R.: Supernode partitioning. In: POPL. ACM (1988)
16. Kim, D., Rajopadhye, S.: Parameterized Tiling for Imperfectly Nested Loops
17. Kim, D., Renganarayanan, L., Rostron, D., Rajopadhye, S., Strout, M.M.: Multi-

level tiling: M for the price of one. In: Proceedings of the 2007 ACM/IEEE Con-
ference on Supercomputing, p. 51. ACM (2007)

18. Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Effective automatic parallelization of stencil computations. In:
ACM Sigplan Notices, vol. 42, pp. 235–244. ACM (2007)

19. Meng, J., Skadron, K.: Performance modeling and automatic ghost zone optimiza-
tion for iterative stencil loops on GPUs. In: Supercomputing. ACM (2009)

20. Renganarayanan, L., Kim, D., Rajopadhye, S., Strout, M.M.: Parameterized tiled
loops for free. ACM SIGPLAN Not. 42(6), 405–414 (2007)

21. Rudy, G., Khan, M.M., Hall, M., Chen, C., Chame, J.: A programming lan-
guage interface to describe transformations and code generation. In: Cooper, K.,
Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 136–150.
Springer, Heidelberg (2011)

22. Ruetsch, G., Micikevicius, P.: Optimizing matrix transpose in CUDA. NVIDIA
CUDA SDK Application Note (2009)

23. Verdoolaege, S.: An integer set library for the polyhedral model. In: Fukuda, K.,
Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
299–302. Springer, Heidelberg (2010)

24. Verdoolaege, S., Juega, J.C., Cohen, A., Gómez, J.I., Tenllado, C., Catthoor, F.:
Polyhedral parallel code generation for CUDA. ACM Trans. Archit. Code Optim.
(TACO) 9(4), 54 (2013)

25. Wolfe, M.: Loops skewing: the wavefront method revisited. Int. J. Parallel Prog.
15(4), 279–293 (1986)

26. Wolfe, M.: More iteration space tiling. In: Proceedings of the 1989 ACM/IEEE
Conference on Supercomputing, pp. 655–664. ACM (1989)

27. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory optimiza-
tion and parallelism management. In: ACM Sigplan Notices, vol. 45, pp. 86–97.
ACM (2010)

Power

OSCAR Compiler Controlled Multicore Power
Reduction on Android Platform

Hideo Yamamoto1(B), Tomohiro Hirano1, Kohei Muto1, Hiroki Mikami1,
Takashi Goto1, Dominic Hillenbrand1, Moriyuki Takamura2, Keiji Kimura1,

and Hironori Kasahara1

1 Green Computing Systems Research and Department Center,
Waseda University Tokyo, Tokyo, Japan

{hideo,hirano,kmuto,mikami,tgoto,dominic,
kimura,Kasahara}@kasahara.cs.waseda.ac.jp
http://www.kasahara.elec.waseda.ac.jp/
2 Fujitsu Laboratories Ltd., Kawasaki, Japan

takamura.moriyu@jp.fujitsu.com

Abstract. In recent years, smart devices are transitioning from single
core processors to multicore processors to satisfy the growing demands
of higher performance and lower power consumption. However, power
consumption of multicore processors is increasing, as usage of smart
devices become more intense. This situation is one of the most funda-
mental and important obstacle that the mobile device industries face, to
extend the battery life of smart devices. This paper evaluates the power
reduction control by the OSCAR Automatic Parallelizing Compiler on
an Android platform with the newly developed precise power measure-
ment environment on the ODROID-X2, a development platform with the
Samsung Exynos4412 Prime, which consists of 4 ARM Cortex-A9 cores.
The OSCAR Compiler enables automatic exploitation of multigrain par-
allelism within a sequential program, and automatically generates a par-
allelized code with the OSCAR Multi-Platform API power reduction
directives for the purpose of DVFS (Dynamic Voltage and Frequency
Scaling), clock gating, and power gating. The paper also introduces a
newly developed micro second order pseudo clock gating method to
reduce power consumption using WFI (Wait For Interrupt). By inserting
GPIO (General Purpose Input Output) control functions into programs,
signals appear on the power waveform indicating the point of where the
GPIO control was inserted and provides a precise power measurement of
the specified program area. The results of the power evaluation for real-
time Mpeg2 Decoder show 86.7 % power reduction, namely from 2.79[W]
to 0.37[W] and for real-time Optical Flow show 86.5 % power reduction,
namely from 2.23[W] to 0.36[W] on 3 core execution.

Keywords: Smart device · Automatic parallelization · API · Power
control · Power reduction · Multicore processor · Android · WFI

c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 155–168, 2014.
DOI: 10.1007/978-3-319-09967-5 9

156 H. Yamamoto et al.

1 Introduction

Multicore processors have been attracting much attention and applied into a
wide variety of systems, such as personal computers, high performance comput-
ers, cloud servers and even embedded systems including smartphones, tablets
and automobiles [1–3]. In recent years, smart devices such as smartphones and
tablets have already been transitioning from single core processors to multi-
core processors to satisfy the growing demands of higher performance and lower
power consumption. However, power consumption of multicore processors on the
smart devices is increasing, as usage of these devices become more intense. This
situation is one of the most fundamental and important obstacle that the mobile
device industries face. Extending the battery life is a crucial problem for current
smart devices. To avoid the increasing power consumption, low power archi-
tectures like big.LITTLE [4] from ARM [5] have been introduced in the mobile
device industries. Some of the multicore processors that apply these architectures
are the NVIDIA Tegra3 [6] and the Samsung Exynos 5 Octa [7].

Although recent smart devices apply multicore processors in an attempt to
gain higher performance and lower power consumption, the anticipated results
require further advancement of cooperative hardware-software environment. To
realize such an environment, parallelization of software is crucial to fully utilize
the capability and potential of multicore processors. Current methods of paral-
lelization include OpenMP and MPI; however, manual optimization of software
lowers productivity and become extremely difficult when complexity of soft-
ware heightens. In order to ease software optimizations for multicore processors,
automatic parallelization compilers are needed. Previous and current works of
compilers include the SUIF Compiler [8], Polaris Compiler [9], PLUTO [10], and
the OSCAR Automatic Parallelizing Compiler [11,12]. Especially in the works
of the OSCAR Compiler, it has realized an automatic power reduction scheme
using DVFS, clock gating, and power gating [13,14]. The significance of this
compiler lies in the fact that it can both automatically parallelize an application
and control power at the same time. As for power reduction, other works propose
a compile-time static approach using detailed information of the program behav-
ior from compiler analysis [15–18]. Moreover, dynamic compiler approaches using
the information obtained at runtime and compile-time, have also been proposed
on a single processor execution [18,19].

This paper evaluates the power reduction control by the OSCAR Automatic
Parallelizing Compiler on ODROID-X2 [20], an Android [21] development plat-
form using real-time applications. Furthermore, by using WFI (Wait For Inter-
rupt) instructions, a pseudo clock gating method was developed, which enables
clock gating at an 500[us] interval. Compared to the power control of current
Android platforms, this method proves higher power reduction. To attain precise
power measurements, a new power measurement method was developed utilizing
the GPIO. This proposed method allows synchronization between the program
and the waveforms in the power measurements, which no other work has done
before to the best of the author’s knowledge.

OSCAR Compiler Controlled Multicore Power Reduction 157

This paper gives an overview of the current power control on Android plat-
forms in Sect. 2, the methodology in Sect. 3, an overview of the evaluation envi-
ronment Sect. 4, evaluation results in Sect. 5, and the conclusion of this paper in
Sect. 6.

2 Power Control on Current Android Platforms

This section provides an overview of the current power control on Android plat-
forms. The base of Android is made of Linux, and power control on Android is
realized through cpufreq, cpuidle, and hotplug [22].

CPUFreq. The cpufreq architecture allows frequency scaling of a target CPU
and is a basic driver installed in the Linux kernel. Controlling of frequency and
its corresponding voltage results in lower power of the target device. On the
Android device, dynamic frequency scaling is realized by using the ondemand
governor. This governor monitors the current usage on each core at certain time
intervals. When the load exceeds or falls below the threshold, frequencies are
made higher or lower dynamically.

CPUIdle. Many CPUs on Android devices support multiple idle levels, which
are differentiated by power consumption and the exit latencies from that idle
level. The cpuidle manages the level of idle on each core of the CPU and
realizes low power on the device. Linux determines to go idle when no processes
are there to execute. The levels of idle state is determined by the number of
function units that go to sleep on the CPU. Power consumption is very low
when many function units go to sleep, but returning from sleep takes much
time. On the other hand, when small amounts of function units go to sleep,
power consumption is not lessened much, but returning from sleep is very quick.
When the idle state continues for a certain time period, the depth of the idle
state goes deeper by default.

HotPlug. The hotplug is an extended function of cpufreq, which was devel-
oped specifically for the power control of multicore processors. When cpufreq
sets a core to the maximum frequency that runs for a certain period of time,
the hotplug adds another core to distribute the load. Similarly, when cpufreq
sets a core to the minimum frequency and the load stays low, the hotplug shuts
down excess cores to reduce power consumption.

However, utilizing these assets as power control inside applications takes
some to some tens of milliseconds, which is not suited for fine power control by
a compiler.

3 Power Reduction Control by the OSCAR Compiler

This section provides an overview of the power reduction scheme realized in the
OSCAR Automatic Parallelizing Compiler and the OSCAR API. Furthermore,

158 H. Yamamoto et al.

an explanation of the pseudo clock gating method controlled by the OSCAR
Compiler and the precise power measurement method will be given.

3.1 Multigrain Parallel Processing and Low Power Optimization
by the OSCAR Compiler

The OSCAR (Optimally Scheduled Advanced multiprocessor) Compiler exploits
multigrain parallelism, which consists of coarse grain task parallelism, loop iter-
ation level parallelism, and statement level near-fine grain parallelism. In order
to exploit multigrain parallelism, OSCAR compiler first decomposes a sequen-
tial C or Fortran program into coarse grain tasks named macro tasks(MTs),
such as basic block(BB), loop(RB), and subroutine call(SB). Using these MTs,
the OSCAR compiler would then analyze both the control flow and the data
dependencies among them, creating a macro-flow-graph (MFG). After creat-
ing the MFG, the compiler applies the earliest executable condition analysis
[23], which can exploit parallelism among MTs associated with both the control
dependencies and the data dependencies. The analysis result is represented as a
macro-task-graph (MTG).

If a MT is a subroutine call or a loop that has coarse grain task parallelism,
the OSCAR compiler hierarchically generates inner MTs inside that MT. Also,
loop iteration level parallelism is translated into coarse grain task parallelism by
loop decomposition.

These MTs are assigned to the processor cores, which is grouped into proces-
sor groups (PG) logically and hierarchically considering the parallelism in each
layer of the hierarchical MTG. If the MTG fluctuates at runtime or has condi-
tional branches, dynamic scheduling is applied. Otherwise, static scheduling is
applied to the MTG [24].

If there are idle or busy-waiting periods between MTs in a statically scheduled
MTG, the compiler tries to minimize total power dissipation by prolonging the
execution time of MTs with DVFS or applying clock gating and power gating
during the idle periods. This execution mode is named as the fastest execution
mode [14]. Note that the OSCAR compiler carefully controls DVFS, clock gating
and power gating not to prolong the program execution time in the case of the
fastest execution mode.

Similarly, if the deadline of an MTG is given and there are sufficient idle
periods until the deadline, the compiler also applies DVFS over MTs on the
critical path and applies its clock gating and power gating over idle periods not
on the critical path, so that total energy consumption can become as little as
possible. This execution mode is named as the realtime execution mode [14].

For example, a power-optimized MTG with a deadline is processed iteratively
as in the case of a movie player, this execution mode is called as real-time
execution mode. The experimental evaluations in this paper use the real-time
execution mode.

OSCAR Compiler Controlled Multicore Power Reduction 159

3.2 OSCAR Application Programming Interface

The OSCAR API (Application Programming Interface) is a parallel API for
executing the optimized code generated by the OSCAR compiler on various
shared memory multiprocessor and multicore systems, including server, desktop
computers and embedded systems [13].

The OSCAR API consists of a set of compiler directives based on a subset
of OpenMP. The OSCAR API employs user-level power control in addition to
thread creation and memory allocation considering local memory and distrib-
uted shared memory. The OSCAR compiler generates a parallelized program
by inserting these compiler directives. Then, an OpenMP compiler compile this
parallelized program into executable binary in the case of server platforms.

The standard API translator, which translates directives of OSCAR API
into runtime library calls, has been also developed especially for embedded sys-
tems. In this case, an ordinary sequential compiler like gcc finally generates the
parallelized executable binary for the target system.

For power control, the OSCAR API provides fvcontrol and get fv status
directives. The fvcontrol directive sets the power status of a hardware module
in a target system to a specified value. The get fv status acquires the current
power status from a specified hardware module.

The power status notation used in these directives is an integer value ranging
from -1 to 100. The value from 0 to 100 represents the percentage of clock
frequency of the specified hardware module. For example, 0 represents clock
gating, 100 is the maximum clock frequency, and 50 is half of the maximum
clock frequency. In addition, -1 denotes power gating.

The standard API translator translates fvcontrol and get fv status direc-
tives into oscar fvcontrol() and oscar get fv status() functions, respec-
tively. These functions wrap the runtime library calls for the target system.

3.3 Pseudo Clock Gating Method Using WFI

This section explains the newly developed pseudo clock gating method that has
been implemented in oscar fvcontrol for the OSCAR API.

The current power control method that can be utilized on consumer Android
devices is the cpufreq. However, this method require millisecond level latency,
which prevents high power reduction using the OSCAR compiler. In order to
reduce as much power consumption as possible on the Android platform, a new
clock gating method was developed. This method utilizes the WFI (Wait For
Interrupt) instruction, which is supported by the ARM architecture. The WFI
instruction gives a signal to the processor as a hint that there is no process to
be executed. This instruction suspends the execution on the processor core and
stops the clock. Specifically, the WFI instruction shuts down any instruction
issue of a new process until an interrupt or a debug event occurs [5]. To utilize
the characteristics of WFI as a low power optimization, additional functions were
inserted in the Linux Kernel to enable the WFI instruction to be issued directly

160 H. Yamamoto et al.

Fig. 1. Comparison of power waveform with/without pseudo clock gating

from the applications. Furthermore, this clock gating method is able to stop the
clock at a 500[us] interval.

Figure 1(a) shows the measurements of the electric current on each number of
cores without the implementation of the pseudo clock gating method. The graph
shows that as number of cores in usage increase, the electric current consumed on
the board increases from 500[mA] for 1 core to 2000[mA] for 4 cores. However,
by implementing the pseudo clock gating method, as shown in Fig. 1(b), the
electric current stays just below 500[mA] even if the number of cores in usage
increase. Figure 1(b) also shows that the proposed method stops the clock at
an interval of 500[us]. Compared to the power gating method using cpufreq,
which requires over 10[ms], the new pseudo clock gating method is higher in
precision and speed. By implementing this new method into the runtime library,
higher power reduction can be obtained on an Android platform by the OSCAR
Compiler.

3.4 Precise Power Measurement Method Using GPIO

This section explains the development of the precise power measurement method
using the GPIO (General Purpose Input Output) [25] pins on the ODROID-X2.
GPIO pins on chips are usually used for debugging or testing on embedded
systems by inputting commands and triggering interrupts. The Linux kernel
driver can control these GPIO pins. A state of a GPIO pin can be seen as an
event rising up and down on the voltage measurements.

A GPIO control function is prepared to change the state of GPIO from
user applications. The GPIO control function changes the state of the GPIO by

OSCAR Compiler Controlled Multicore Power Reduction 161

Fig. 2. Example of GPIO control functions

setting 1 or 0 as a parameter. Figure 2 shows how the GPIO is utilized on the
power measurements. Figure 2(a) shows a program example of inserting GPIO
control functions inside the MPEG2 Decoder program. Function gpio value
changes the state of GPIO from the application. Variable gpio specifies the
GPIO pin number and the second argument specifies the value to write into the
GPIO register. Figure 2(b) shows the waveforms of the GPIO and the MPEG2
Decoder in execution. The top voltage waveform shows the output state of the
GPIO. Similarly, the bottom power waveform shows the power consumption of
MPEG2 Decoder. This figure shows how precise and efficient the usage of GPIO
is in power measurements. The marks on the voltage waveform, (i) and (ii), corre-
sponds to the exact location of where the GPIO control functions were processed.
On the other hand, the precise power consumption can be measure by expliciting
the waveform for MPEG2 Decoder between GPIO signals rising up and down.
This precise measurement method using GPIO allows a causal relationship and
synchronization between the program and the power measurements.

4 Evaluation Environment

This section provides an overview of the environment used for power measure-
ments. Although there are many different kinds of smart devices with different
chips, a platform which enables power measurements are very rare, or do not
exist in the consumer market. Therefore, to take power measurements on an
Android platform, the evaluation environment itself had to be developed.

4.1 The Development of the Evaluation Environment

The ODROID-X2 [20] is a development board, which has the Samsung
Exynos4412 Prime chip. Within the Exynos4412 Prime [26], there are 4 ARM

162 H. Yamamoto et al.

Fig. 3. Modified circuit diagram of ODROID-X2

Cortex-A9 cores each with a maximum clock frequency of 1.7 GHz with 1 MB
shared L2 cache memory, 2 GB of dual channel LPDDR2 RAM is equipped on
the board. The frequency and voltage scaling cannot be controlled differently on
individual cores of this chip, but on all cores at the same time.

The ODROID-X2 development board is originally not designed for measur-
ing power consumption of any parts of the board. In order to measure the power
consumption of the cores on a chip some modifications are applied around the
PMIC (Power Management IC) [27], which acts as the controller of power source
of the CPU. PMIC on ODROID-X2 controls each power supply of the following
function units on the CPU: battery, cores, memory, interrupt controller, acceler-
ators, and so on. The modification of the circuit connected to the PMIC is shown
in the dotted line of Fig. 3. The modifications applied to the development board
are the following: altering the power source circuit of cores connected to the
PMIC, adding a 40[mΩ] shunt resistor, and placing a 10x gain instrumentation
amplifier. By placing an amplifier with 10x gain, the measurement of voltage
difference between both ends of the shunt resistor become precise. This newly
developed environment enables measurements of electrical current on cores from
tens of milliampere to thousands of milliampere.

4.2 Evaluated Applications on ODROID-X2

This section explains two real-time applications used for the power evaluations
on the ODROID-X2.

MPEG2 Decoder. MPEG2 Decoder is a standard video coding application
from MediaBench [28].

The OSCAR compiler exploits slice level parallelism from the program. The
deadline set for the MPEG2 Decoder is set to 60[fps] (16.6[ms] per frame).

OSCAR Compiler Controlled Multicore Power Reduction 163

Optical Flow. The Optical Flow is a benchmark application referenced from
OpenCV [29]. This real-time application tracks 16× 16 blocks between two
images by calculating the velocity fields.

OSCAR compiler exploits parallelism among calculations of velocity fields
from each block in two images. The deadline for Optical Flow is set to 30[fps]
(33[ms] per frame).

5 Evaluation of Power Reduction on ODROID-X2

This section presents the results of power evaluations on the modified ODROID-
X2. Power consumption for each evaluation is exploited by the proposed power
measurement method using GPIO mentioned in Sect. 3.4. The power reduc-
tion control parameters set in the OSCAR Compiler for frequencies are FULL
(1700[MHz]), MID(900[MHz]), and LOW(400[MHz]). Moreover, the cpufreq
governor on Android is set to ondemand for benchmark applications without
power control and userspace for benchmark applications with power control.

5.1 Power Consumption of MPEG2 Decoder on ODROID-X2

Figure 4 shows the power consumption results of MPEG2 Decoder for each num-
ber of processor element (PE). The power consumption of 1PE with power reduc-
tion controls consumed 0.63[W] (power reduced to 75.7 %) compared to 0.97[W]
on 1PE without power reduction controls. The power consumption of 2PE with
power reduction controls consumed 0.46[W] (power reduced to 24.5 %) compared
to 1.88[W] on 2PE without power reduction controls. The power consumption of
3PE with power reduction controls consumed 0.37[W] (power reduced to 13.3 %)
compared to 2.79[W] on 3PE without power reduction controls. The 0.37[W] for
3PE with power control resulted in 86.7 % power reduction against the ordinary
1PE execution without power control.

Fig. 4. Power consumption of MPEG2 decoder on ODROID-X2

164 H. Yamamoto et al.

Fig. 5. Power waveform of MPEG2 decoder for 1PE

Fig. 6. Power waveform of MPEG2 decoder for 3PE

Figure 5(a) shows the power waveform of 1PE without power reduction con-
trol. MPEG2 Decoder in this figure is running at maximum frequency (1700[MHz])
and the ondemand governor seems to automatically lower the frequency when wait-
ing for the deadline. Figure 5(b) shows the power waveform of 1PE with power
reduction control. This figure shows that the OSCAR Compiler had analyzed 1PE
of MPEG2 Decoder to run at FULL to meet the deadline time. Furthermore, by
implementing the proposed pseudo clock gating method mentioned in Sect. 3.3,
power consumption decreases to approximately 0[W] when waiting for the dead-
line. Similarly, Fig. 6(a) shows the power waveform of 3PE without power reduc-
tion control. In this figure, MPEG2 Decoder is running at maximum frequency
using 3PE. However, Fig. 6(b) shows that the OSCAR Compiler had analyzed 3PE
of MPEG2 Decoder is fast enough to run at LOW and meet the deadline time. This
figure exhibits the significance of having power reduction controls at an applica-
tion level on Android platforms. Furthermore, as explained in Fig. 5(b), the pseudo
clock gating lowers the power consumption to approximately 0[W] when waiting
for the deadline time.

OSCAR Compiler Controlled Multicore Power Reduction 165

Fig. 7. Power consumption of optical flow on ODROID-X2

5.2 Power Consumption of Optical Flow on ODROID-X2

Figure 7 shows the power consumption results of Optical Flow for each number
of processor element (PE). The power consumption of 1PE with power reduction
controls consumed 0.72[W] (power reduced to 75.8 %) compared to 0.95[W] on
1PE without power reduction controls. The power consumption of 2PE with
power reduction controls consumed 0.36[W] (power reduced to 24.0 %) compared
to 1.50[W] on 2PE without power reduction controls. The power consumption of
3PE with power reduction controls consumed 0.30[W] (power reduced to 13.5 %)
compared to 2.23[W] on 3PE without power reduction controls. The 0.30[W] for
3PE with power control resulted in 86.5 % power reduction against the ordinary
1PE execution without power control.

Figure 8(a) shows the power waveform of 1PE without power reduction con-
trol. Optical Flow in this figure is running at maximum frequency (1700[MHz])
and the ondemand governor seems to lower the frequency when waiting for the
deadline similar to Fig. 5. Figure 8(b) shows the power waveform of 1PE with
power reduction control. This figure shows that the OSCAR Compiler had ana-
lyzed 1PE of Optical Flow to run at FULL to meet the deadline time. Power
consumption decreases to approximately 0[W] when waiting for the deadline
using the pseudo clock gating. Figure 9(a) shows the power waveform of 3PE
without power reduction control. In this figure, Optical Flow is running at max-
imum frequency using 3PE. However, Fig. 9(b) shows that the OSCAR Compiler
had analyzed 3PE of Optical Flow is fast enough to run at LOW and meet the
deadline time. This figure exhibits the significance of having power reduction
controls at an application level on Android platforms. Furthermore, as explained
in Fig. 8(b), the pseudo clock gating lowers the power consumption to approxi-
mately 0[W] when waiting for the deadline time.

166 H. Yamamoto et al.

Fig. 8. Power waveform of optical flow for 1PE

Fig. 9. Power waveform of optical flow for 3PE

6 Conclusion

This paper evaluated the power reduction controls by the OSCAR Compiler on
an Android platform, ODROID-X2. A pseudo clock gating method was devel-
oped using WFI to realize a low-overhead, or 100[us] transition time, power
control by the compiler. All measurements in the evaluation were taken with
the precise power measurement environment using the GPIO. For the evalua-
tion, MPEG2 Decoder showed 86.7 % power reduction on 3PE from 2.79[W] on
ordinary execution to 0.37[W] on execution with power control by the OSCAR
compiler. Similarly, Optical Flow showed 86.5 % power reduction on 3PE from
2.23[W] on ordinary execution to 0.30[W] on execution with power control. The
results exibit that the proposed pseudo clock gating method and the low power
optimizations by the OSCAR Compiler enables significant power reduction on
the Android platform.

References

1. Taylor, M., Kim, J., Miller, J., Wentzlaff, D.: The raw microprocessor: a compu-
tational fabric for software circuits and general-purpose programs. IEEE Micro
22(2), 25–35 (2002)

OSCAR Compiler Controlled Multicore Power Reduction 167

2. Hammond, L., Hubbert, B., Siu, M.: The Stanford Hydra CMP. IEEE Micro 20(2),
71–84 (2000)

3. Friedrich, J., McCredie, B.: Design of the Power6 microprocessor, pp. 96–97 (2007)
4. Jeff, B.: Advances in big. LITTLE Technology for power and energy savings, pp.

1–11, (September) (2012)
5. ARM Corporation: Cortex-A9 Technical Reference Manual http://infocenter.arm.

com/help/topic/com.arm.doc.ddi0388i/DDI0388I cortex a9 r4p1 trm.pdf
6. NVIDIA Corporation: Whitepaper NVIDIA Tegra Multi-processor Architecture,

pp. 1–12
7. Samsung Electronics Co. Ltd.: White Paper of Exynos 5. vol. 1(1) (April 2011)

pp. 1–8
8. Amarasinghe, S., Anderson, J.: An overview of the SUIF compiler for scalable

parallel machines, vol. 667 (1995)
9. Blume, W., Doallo, R., Eigenmann, R.: Parallel programming with polaris. Com-

puter 29(12), 78–82 (1996)
10. Bondhugula, U., Ramanujam, J., Sadayappan, P.: Pluto: A practical and fully

automatic polyhedral parallelizer and locality optimizer. Technical Report OSU-
CISRC-10/07-TR70, The Ohio State University (October 2007)

11. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel
processing on SMP using openMP. In: Midkiff, S.P., Moreira, J.E., Gupta, M.,
Chatterjee, S., Ferrante, J., Prins, J.F., Pugh, B., Tseng, C.-W. (eds.) LCPC 2000.
LNCS, vol. 2017, pp. 189–207. Springer, Heidelberg (2001)

12. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical
parallelism control for multigrain parallel processing. In: Pugh, B., Tseng, C.-W.
(eds.) LCPC 2002. LNCS, vol. 2481, pp. 31–44. Springer, Heidelberg (2005)

13. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.:
OSCAR API for real-time low-power multicores and its performance on multi-
cores and SMP servers. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.)
LCPC 2009. LNCS, vol. 5898, pp. 188–202. Springer, Heidelberg (2010)

14. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.:
Compiler control power saving scheme for multi core processors. In: Ayguadé, E.,
Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC 2005. LNCS, vol.
4339, pp. 362–376. Springer, Heidelberg (2006)

15. Hsu, C.H., Kremer, U.: The design, implementation, and evaluation of a compiler
algorithm for CPU energy reduction. In: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation - PLDI ’03, p.
38 (2003)

16. Chen, G., Malkowski, K., Kandemir, M., Raghavan, P.: Reducing power with per-
formance constraints for parallel sparse applications. http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1420150

17. Xie, F., Martonosi, M., Malik, S.: Compile-time dynamic voltage scaling settings:
Opportunities and limits. In: ACM SIGPLAN Notices (2003)

18. Martonosi, M., Clark, D., Reddi, V., Connors, D., Brooks, D.: Dynamic-compiler-
driven control for microprocessor energy and performance (January 2006). http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1603505

19. Azevedo, A., Cornea, R., Issenin, I., Gupta, R., Dutt, N., Nicolau, A., Veiden-
baum, A.: Architectural and compiler strategies for dynamic power management
in the COPPER project. In: Innovative Architecture for Future Generation High-
Performance Processors and Systems IWIA-01, pp. 25–34 (2001)

20. Hardkernel: ODROID-X2. http://www.hardkernel.com/renewal 2011/products/
prdt info.php?g code=G135235611947

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1420150
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1420150
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1603505
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1603505
http://www.hardkernel.com/renewal_2011/products/prdt_info.php?g_code=G135235611947
http://www.hardkernel.com/renewal_2011/products/prdt_info.php?g_code=G135235611947

168 H. Yamamoto et al.

21. Google: Android Developers. http://developer.android.com/index.html
22. Linux: CPU hotplug Support in Linux(tm) Kernel. https://www.kernel.org/doc/

Documentation/cpu-hotplug.txt
23. Honda, H., Kasahara, H.: Coarse grain parallelism detection scheme of a fortran

program. Syst. Comput. Jpn. 22(12), 24–36 (1991)
24. Obata, M., Shirako, J., Kaminaga, H.: Hierarchical parallelism control for multi-

grain parallel processing, pp. 31–44 (2005)
25. ARM Information Center: GPIO Interfaces. https://www.kernel.org/doc/

Documentation/gpio.txt
26. SAMSUNG ELECTRONICS: Samsung Exynos 4 Quad (Exynos 4412) RISC

Microprocessor User’s Manual. (October) (2012)
27. SAMSUNG ELECTRONICS: Samsung Semiconductors Global Site. https://www.

samsung.com/global/business/semiconductor/product/poweric/overview
28. Lee, C., Potkonjak, M., Mangione-Smith, W.: MediaBench: A Tool for Evaluating

and Synthesizing Multimedia and Communications Systems, pp. 330–335 (1997)
29. Opencv. http://www.opencv.org

http://developer.android.com/index.html
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://www.kernel.org/doc/Documentation/gpio.txt
https://www.kernel.org/doc/Documentation/gpio.txt
https://www.samsung.com/global/business/semiconductor/product/poweric/overview
https://www.samsung.com/global/business/semiconductor/product/poweric/overview
http://www.opencv.org

Folklore Confirmed: Compiling
for Speed = Compiling for Energy

Tomofumi Yuki1(B) and Sanjay Rajopadhye2

1 INRIA, Rennes, France
tomofumi.yuki@inria.fr

2 Colorado State University, Fort Collins, USA
Sanjay.Rajopadhye@colostate.edu

Abstract. As we move towards exa-scale computing, energy is becom-
ing increasingly important, even in the high performance computing
arena. However, the simple equation, Energy = Power × Time, suggests
that optimizing for speed already optimizes for energy, under the assump-
tion that Power is constant. When power is not constant, a strategy that
achieves energy savings at the cost of slower execution is Dynamic Volt-
age and Frequency Scaling (DVFS). However, DVFS is currently applica-
ble only to the processor, and the entire system has many other sources
of power dissipation. We show that there is little to gain in compilers by
trying to trade off speed for energy using DVFS. It is best to produce
code that runs full-throttle, completing as quickly as possible, an app-
roach called “race to sleep.” Our result is based on analyses of a high-level
energy model that characterizes energy consumption, related to survey
of power consumption trends of recent processors for both desktop and
server, as well as Cray supercomputers.

1 Introduction

The main motivations behind the arrival of multi-core processors were power
and energy considerations. Increasing power density coupled with heat problems
rendered untenable the premise that steadily increased performance could be
achieved merely by steadily increasing processor clock speed. Multi-core proces-
sors were introduced based on the observation that multiple processors with
lower frequency consume less total power, while preserving performance through-
put [8]. Power and energy have been of great interest in the embedded systems
community, where they were constrained by limited power capacity or battery
life.

Even in the High Performance Computing (HPC) community, where the term
“performance” had previously been synonymous with speed, power and energy
are becoming more and more important. The annual cost for powering super-
computers, including their associated cooling systems, is now reaching 50 % of
the purchase cost of the machines and is expected to grow even further [24].
Power and energy are acknowledged to be the most difficult and pervasive chal-
lenges in order to achieve exa-scale computing [6]. In fact, if current hardware
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 169–184, 2014.
DOI: 10.1007/978-3-319-09967-5 10

170 T. Yuki and S. Rajopadhye

trends hold, there will remain a significant gap (a factor of 10–100) between pre-
dicted and required performance per watt, even under optimistic assumptions. It
is therefore natural to explore possible compiler optimizations for power/energy
efficiency.

It is known that current compiler optimizations also reduce total energy
cost [29,32]. Since the basic optimizations seek to speed up the computation,
the equation, Energy = Power × Time, implies that optimizing for speed also
optimizes energy, provided the average power remains constant. Moreover, many
of the speed enhancing optimizations have a second order benefit that also
reduces the power. For example, locality improving transformations like tiling
increase the number of references that access local memory, such as caches, rather
than off-chip memory. In addition to the low latency, caches also consume less
power per access. Many authors have made this observation, and there seems to
be a view in the folklore that in order to optimize for energy, compilers need to
do no more than what they have always been doing—optimize for speed.

However, this näıve analysis assumes that power remains constant, which
may not be true. Dynamic Voltage and Frequency Scaling (DVFS) is a technique
that allows to dynamically change the operating frequency and voltage. As we
shall see, DVFS implies that energy can be minimized by running as slowly as
possible, or at least, as slow as one can get away with, until the response time
becomes unacceptable and/or the components of the system, not governed by
DVFS rules, come into play.

A number of studies [7,14,17,27,31] show that a significant fraction of the
total power (more than 30 %) comes from various components of the system
that are not influenced by DVFS, such as motherboard, power supply unit,
and memory. Moreover, around half of the power consumed by the processor
comes from leakage power, where DVFS is significantly less effective. Thus, the
effectiveness of DVFS must be considered with the energy consumption of the
entire system included in the picture.

These considerations lead to the question whether there is any trade-off,
where compilers need to perform any “special” optimizations that solely target
energy savings, without necessarily reducing, or possibly even increasing execu-
tion time. We want to answer the question whether “is compiling for speed also
compiling for energy,” with respect to the use of DVFS. In this paper, we present
analyses based on a high-level energy model that characterize this trade-off.

The main focus of our work is compute-bound programs, including as a lim-
iting case, compute-I/O balanced programs and DVFS for processors. For these
class of programs, we identify conditions under which using the highest frequency
is most energy efficient. We show that on a large number of recent machines this
condition is met. Therefore, we conclude that compilers should simply work on
optimizing for speed.

2 Background

We first present an overview of various power/energy related aspects of proces-
sors that influence our model and analyses. Energy (E), Power (P), and Time

Folklore Confirmed: Compiling for Speed = Compiling for Energy 171

(T) are related by the equation: E = PT (more precisely, it is the integral over T
when P changes over time). If an optimization keeps P unchanged, and reduces
T , total energy consumption will decrease. The claim that optimizing for speed
implicitly optimizes for energy comes from this observation.

Equation 1 below gives the simplified model of power dissipation of CMOS
circuits [8]. The first term models the dynamic power consumption, where C is
the total capacitance, V is the supply voltage, f is the clock frequency, and α is
the “activity rate.” The second term is the static power consumption (the power
dissipated regardless of switching activity) where I0 is the leakage current.

Pproc = αCfV 2 + I0V (1)

Dynamic Voltage and Frequency Scaling (DVFS) is an architectural feature
that allows the supply voltage, and the corresponding running frequency to be
changed at run time. Voltage and frequency are known to be linearly related.
From Eq. 1, power dissipation increases quadratically with voltage and linearly
with operating frequency, DVFS can lead to cubic improvement in power dissipa-
tion. However, because of the linear relationship between voltage and frequency,
there is also a linear degradation in speed. But reduction in power dissipation is
cubic, and the degradation in execution time is only linear. To a first approxima-
tion, this leads to a quadratic reduction of energy as supply voltage is reduced.

Only the dynamic power component is amenable to DVFS optimization,
the static power component decreases only linearly, and there is no net energy
savings (in fact it is worse as we shall see later). Previously, dynamic power
dominated the power consumption by processors, and thus power/energy opti-
mizations focused on this component. It was predicted, and now observed, that
static power consumption would reach 50 % of the total power [14,23].

3 Energy Model and Implications

We now present our energy consumption model, starting from a base model and
progressively enhancing it. The following equation gives the energy consumption
at maximum voltage and frequency:

Ebase = (αCfmaxV 2
max + I0Vmax + Pc)Tmin = (Pd + Ps + Pc)Tmin (2)

where the variables are defined as follows:

– Pd: maximum frequency dynamic power consumption of the processor,
– Ps: maximum frequency static power consumption of the processor,

172 T. Yuki and S. Rajopadhye

– Pc: constant power; power consumed by various system components not influ-
enced by DVFS, but excluding those due to program activity (such as mem-
ory/disk accesses), and

– Tmin: is the execution time at the maximum frequency.

The energy consumed per access to memory/disk is not included in the model,
since the number of accesses to memory/disk does not change as a result of
frequency scaling. This is essentially a combination of E = P × T and Eq. 1.

The above is a crude approximation as DVFS may indirectly influence energy
consumption of various system components. For example, frequency of disk
accesses may change, which in turn make the disk to switch between active
and idle states more often, leading to larger energy consumption and vice versa.

Although we mentioned that the energy is the integral over time, product
is sufficiently precise for our analysis. This is because when applying DVFS,
programs are separated into relatively large regions where the frequency is fixed
for each region. Since changing the frequency via DVFS comes with a cost in
terms of both energy and time, frequent changes are not desirable.

3.1 Normalized Energy Model for DVFS

Under DVFS, let the operating voltage be V = xvvmax, where xv is the scaling
factor, 0 < xv,≤ 1. Similarly, for frequency, let the operating frequency be
f = xffmax, with 0 < xf ≤ 1. Finally, let the increased execution time be
T = xtTmin, with xt ≥ 1. We express energy as a function of the three scaling
factors

E(xf , xv, xt) = (αC(xffmax)(xvVmax)2 + I0(xvVmax) + Pc)xtTmin

=
(
xfx2

vPd + xvPs + Pc

)
xtTmin

We now normalize this by dividing by PdTmin to obtain the normalized energy
consumption,

En(xf , xv, xt) =
(
xfx2

v + xvRs + Rc

)
xt (3)

where

– Rs: ratio of static power with respect to dynamic power, and
– Rc: ratio of constant power with respect to dynamic power.

3.2 Relationship Between Voltage and Frequency Scale Factors

Although voltage and frequency are linearly related, a few subtle issues arise
when we precisely model their combined effect. The two scale factors are related
as given below. The widely accepted formula is based on a study of recent proces-
sors, by a number of authors [16,20,30].

xv =
2
3
xf +

1
3

(4)

Folklore Confirmed: Compiling for Speed = Compiling for Energy 173

We use this to eliminate xv in Eq. 3 to obtain:

En(xf , xt) =

(

xf

(
2
3
xf +

1
3

)2

+
(

2
3
xf +

1
3

)

Rs + Rc

)

xt (5)

3.3 Properties of the Energy Model

For now, we let the slowdown factor, be xt = 1
xf

. For compute-bound programs,
execution time scales directly proportional to scaling of frequency [14]. Since xf

is normalized, execution time for such programs can be expressed as 1
xf

(a more
nuanced analysis is provided in Sect. 3.4).

Let us show some of the important properties of our model that give insights to
how dynamic, static, and constant powers influence overall energy consumption.

Distributing 1
xf

and further expanding x2
v gives:

En(xf) =
(

4
9
x2
f +

4
9
xf +

1
9

)

+
(

2
3

+
1
3
x−1
f

)

Rs + Rcx
−1
f (6)

Taking the derivative of the above with respect to xf yields:

dEn

dxf
(xf) =

(
8
9
xf +

4
9

)

− 1
3
Rsx

−2
f − Rcx

−2
f

Further taking the second derivative with respect to xf yields:

d2En

dx2
f

(xf) =
8
9

+
2
3
Rsx

−3
f + 2Rcx

−3
f

The second derivative is always positive if Rs, Rc > 0, which leads to:

– dEn

dxf
= 0 will give the frequency with minimal energy consumption, and

– optimal frequency is less than 1 iff dEn

dxf
> 0 when xf = 1.

Based on the above, we compute the condition for optimal frequency being
1 (fmax):

dEn

dxf
(1) ≤ 0

=⇒
(

8
9

+
4
9

)

−
(

1
3
Rs + Rc

)

≤ 0

=⇒ 4 ≤ Rs + 3Rc

When static power is 50 % of the processor power, Rs = 1, we obtain Rc ≥ 1
as the solution, indicating that if components of the system unaffected by DVFS
consume about as much as the dynamic power of processors, then executing at
the highest frequency level is the optimal choice.

One additional remark we make is that the static power also works against
DVFS, and its degree is related to the fraction of voltage that do not scale along
with frequency in Eq. 4. This is because its linear power saving is cancelled by
the linear increase in execution time.

174 T. Yuki and S. Rajopadhye

3.4 Reducing the Impact on Execution Time

In the above, the influence of xf on execution time was expressed as xt = 1
xf

.
One may argue that many programs do not slow down as rapidly as frequency
is scaled. Although accurate modeling of the impact on execution time is out of
our scope, we provide additional analysis to show the implications of reduced
impact on execution time. As mentioned earlier, the impact on execution time
as a direct inverse of the normalized frequency may seem too steep for some
programs that frequently access memory. In this section, we extend our model
in Eq. 3 and add a variable to control the speed degradation.

We use a variable x, 0 ≤ x ≤ 1 and let xt = 1 + x(1
xf

− 1). The variable
x controls the speed degradation as frequency is scaled in a linear fashion. At
x = 1, xt = 1

xf
, which is what we used in the above, and at x = 0, xt = 1, no

degradation as frequency scales. We substitute xt in Eq. 3 to obtain:

Ex
n(xf , xv, x) =

(
xfx2

v + xvRs + Rc

)
(

1 + x(
1
xf

− 1)
)

To simplify our analysis, we write the energy as Ex
n = EA

n + EB
n , the sum of

two different sub-functions:

EA
n (xf , xv) =

(
xfx2

v + xvRs + Rc

)

EB
n (xf , xv, x) =

(
xfx2

v + xvRs + Rc

)
(

x

xf
− x

)

The respective derivatives1 after eliminating xv with Eq. 4 are:

dEA
n

dxf
(xf) =

(
12
9

x2
f +

8
9
xf +

1
9

)

+
2
3
Rs

d2EA
n

dx2
f

(xf) =
(

24
9

xf +
8
9

)

dEB
n

dxf
(xf , x) = x

[(
8
9
xf +

4
9

)

− 1
3
Rsx

−2
f − Rcx

−2
f

]

− x

[(
12
9

x2
f +

8
9
xf +

1
9

)

+
2
3
Rs

]

d2EB
n

dx2
f

(xf , x) = x

(
2
3
Rsx

−3
f + 2Rcx

−3
f − 24

9
xf

)

We can again observe that the second derivative of Ex
n(xf , x), d2Ex

n

dx2
f

(xf , x) =
d2EA

n

dx2
f

(xf) + d2EB
n

dx2
f

(xf , x), is always positive if Rs, Rc > 0, 0 < x ≤ 1, and 0 ≤
1 Derivations are not shown, as they are similar (but slightly more complicated) to

the derivation from Eq. 3.

Folklore Confirmed: Compiling for Speed = Compiling for Energy 175

xf ≤ 1. The second derivative also always positive if Rs, Rc > 0, 0 < x ≤ 1, and
0 ≤ xf ≤ 1. Thus, the optimal frequency is 1 (fmax) when:

dEx
n

dxf
(1, x) ≤ 0

=⇒
(

21
9

+
2
3
Rs

)

+ x

(
12
9

− 1
3
Rs − Rc

)

− x

(
21
9

+
2
3
Rs

)

≤ 0

=⇒
(

7
3

+
2
3
Rs

)

− x (1 + Rs + Rc) ≤ 0

The above leads to the following remarks:

– As expected, the above indicates that as x decreases, which means as penalty
on execution time with DVFS decreases, the inequality is less likely to be
satisfied.

– Static power (Rs) work for DVFS when x < 2
3 . This is when the linear decrease

in static power dissipation by DVFS starts to benefit overall energy consump-
tion.

– With lower x, especially below 2
3 , much larger Rc will be required to satisfy

the condition for fmax to be optimal.

The key implication is that as the program is less and less penalized by
scaling the operating frequency, the ratio of constant power (Rc) to processor
must become larger for the “go as fast as possible” strategy to hold, but the
general property is unchanged.

When the program execution time is not dominated by processor speed, we
can expect that other system components, such as the memory or network card,
are stressed, and therefore ratio of processor power in the total system load to
decrease [7,17,28].

Therefore, the behavior when degradation in speed is scaled is largely depen-
dent on the application characteristics. When the x is small, it is likely that
slowing the processor will be beneficial, since it is approaching memory-bound
programs. For relatively large x, required Rc will become larger, but it is prob-
able that going as fast as possible is still optimal. We also note that some of
the recent machines have Rc much larger than 1 as we show in Sect. 4, further
increasing the likelihood of this being the case.

3.5 Parallelism

So far, our analysis was completely independent of parallelism, although energy
is intimately tied to parallelism. Indeed, the advent of multi-core and many-core
processors was dictated by the needs of energy efficiency. We now tie the results
to parallelization. Our main message remains that energy efficiency is attained
by optimizing for speed, and that using DVFS to slow down the application to
achieve total energy gains will yield limited benefits at best. However, optimizing

176 T. Yuki and S. Rajopadhye

for speed is not necessarily the same as maximizing parallelism, and hence there
are a few special considerations.

Let us first assume that the program is perfectly parallelizable on an N -
core processor. Even in this optimistic situation, some of the components of
the processor, like cache or other on-chip memory, are shared among the cores.
In addition, regardless of the number of cores, the thermal envelope/budget
is usually allocated for a processor chip, and therefore, Rc is computed for a
processor chip, and not on a per-core basis. Therefore, if only one of the N cores
is being used, it is likely that the constant power is greater than 1

N . This leads
to the conclusion that utilizing all the cores if possible, is the optimal strategy,
unless parallel efficiency is low.

Now consider the situation where the program is not perfectly parallelizable.
The question of whether or not to parallelize, and if so, how aggressively, is
beyond the scope of this paper, and we do not attempt to answer it. Rather,
let us suppose that the decision to use some number p out of the N cores has
been made. Our analysis indicates that now, the best strategy is to make the
program execute as fast as possible. Basically, if a processor cannot save energy
by slowing down in sequential case, then trying to slow down processors in
parallel case cannot save energy as well. Note that one may apply our analysis
to each core, if per-core DVFS is supported, but the result remains the same.

The choice of the optimal p may involve a trade-off similar to that pointed
out by Cho and Melhem [10,11], but is also related to the application itself and
how scalable its parallelization is. If the program has poor parallel speedup, and
the decision is nevertheless to allocate an increasing number of processors to it,
then some of the other, non-energy related issues (i.e., the response time of the
program) are deemed to be important enough, to possibly override the gains of
energy savings by using fewer cores. This means that any compiler (and possibly
the programmer) should seek to provide the maximally scalable parallelization
possible.

4 Trends in Recent Machines

In this section, we present trends in recent machines based on a survey rang-
ing from desktop processors to Cray supercomputers. The goal of this section
is to verify the observation based on previous studies that the constant power
is around 1

3 of the total power consumption under load, so that even if a sig-
nificant fraction of the remaining 2

3 is used by processor, Rc ≥ 1 would still be
true, satisfying the condition for fmax to be the optimal frequency for energy
efficiency [7,17,27,31].

For desktop and server processors, we show that, even with conservative esti-
mates, ratio of constant power in the total system power under load is close to 1

3 .
We also show that the ratio of constant power has been relatively constant over
the last 5+ years. This is to be expected, since designers of different components
of the system try and fit their component to the same thermal envelope as pre-
vious generations. Therefore, if the ratio of static power consumption increases
in processor power, then Rc will also increase.

Folklore Confirmed: Compiling for Speed = Compiling for Energy 177

For Cray supercomputers, we present estimates of Rc for two recent machines,
and show that they are highly likely to exceed 1, also satisfying the condition.

4.1 Sources of Constant Power

Let us first describe various sources of constant power we use to estimate the
lower bound. Constant power is power consumed under high load that are not
affected by DVFS. Although there may be some relationship, it is not closely
related to idle power. Especially with recent architectures, where aggressive
power-gating is performed, idle power is likely to be much less than the con-
stant power.

Stand-By Memory Power Consumption. One of the sources of constant
power consumption is stand-by memory power. Recent study show that a 4 GB
DDR3 memory consume around 4 W in stand-by state [13]. Although memory
can also be put into low-power states that consume less power, unless the pro-
gram does not use memory at all, it cannot be put into low-power states for long
under heavy load. Therefore, we count 1 W per 1 GB of memory as part of the
constant power consumption.

Power Supply Unit. When a system draws power, alternate current must
be transformed to direct current, and significant amount of power may be lost
during this process. Efficiency varies greatly depending on the quality of Power
Supply Unit (PSU) and load, and it is considered efficient if the efficiency is
higher than 80 % [1]. We assume 85 % efficiency for commodity desktop machines,
90 % for servers, and 95 % for supercomputers.

Chipsets and Fans. Prior studies show that older chipsets consuming 20–
30 W, while some new designs reduce its consumption to 6 W [12,15,28]. Fans
also consume 10–15 W when active [15,28]. For the purpose of our estimation, we
consider 20 W per chip for processors with 45 nm or older process, and 10 W for
32 nm and 22 nm processors as constant power for both chipset and fan combined.
We believe this to be a safe lower bound based on the numbers above.

4.2 Desktop and Server Processors

We have collected a number of power consumption measurements for desktop
and server processors under heavy load. We show that the ratio of conservative
estimate of constant power; the sum of memory stand-by power, efficiency loss
by PSU, and estimated power consumption by chipsets and fans; is more than
30 % in most cases. This means that even if most of the remaining power is used
by the processor, the value of Rc will be around 1. Since there are other sources
of power consumption that are not included, such as accesses to memory/HDD,
and network cards, it is highly likely that Rc is well above 1 in most cases.

178 T. Yuki and S. Rajopadhye

We collected total system power consumption measurements from Anand
Tech [2], an online hardware review site, for various desktop processors. They
provide measurements under compute-intensive workload (x264 encoding), and
many components are kept consistent across different processors (e.g., same
memory and video card, but not motherboard). Since GPUs consume significant
amount of idle power, we exclude GPU idle power (25 W) from the measured
power consumption (the benchmark does not use GPU). The data set contains
46 data points, with Intel and AMD processors from 2008 to 2012. All machines
measured were equipped with 4 GB of memory.

The data set for server processors are from published SPECpower ssj2008
results [4]. The data set contains 255 data points, with Intel and AMD processors
from 2007 to 2012; excluding results that are either for a system with multiple
nodes, labeled non-compliant, or with imprecise processor name (i.e., only Xeon
with out specifying which model). The benchmark models server applications
with large number of user requests (“ssj” in the name stands for “Server Side
Java”). The metric we use from the published results is Average Active Power
(W) with 100 % target load, where the target load is calibrated to be the max-
imum throughput of the server computed as part of the benchmark run. Due
to the nature of the work load, 100 % load does not necessarily mean 100 %
processor utilization.

Figure 1 shows individual data points and means for each year for both desk-
top and server processors. The means are more than 30 % in all cases, where

2007 2008 2009 2010 2011 2012

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Constant Power Trends in Recent Processors

year

co
ns

ta
nt

 p
ow

er
 /

to
ta

l p
ow

er
 u

nd
er

 lo
ad

2007 2008 2009 2010 2011 2012

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

2007 2008 2009 2010 2011 2012

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

2007 2008 2009 2010 2011 2012

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

desktop (individual data points)
 server (individual data points)

desktop (mean)
 server (mean)

Fig. 1. Constant power in recent machines. Constant power is more than 30 % of the
total power under load in many cases. Also, the fraction of estimated constant power in
total system power is staying flat at the same level for both cases. Therefore, increase
in static power will gradually increase Rc used in our model.

Folklore Confirmed: Compiling for Speed = Compiling for Energy 179

79 % of desktop processors, and 69 % of server processors have more than 30 %
of constant power. This is an indication that the constant power is large enough
such that Rc will exceed 1. Moreover, we emphasize that our estimate of con-
stant power is conservative, and that actual constant power is likely to be higher
than our estimate.

Also, the benchmark used for server processors stress both disk and memory
to a great extent. In addition to our assumption that servers use more efficient
PSU, the difference in work is another explanation that we can provide for the
estimated constant power to consist lesser fraction of the total power in server
machines.

4.3 Cray Supercomputers

We also show that Rc is likely to be higher than 1 for Cray supercomputers.
Since precise power breakdown of supercomputers are not available, our analysis
is based on specifications of recent Cray supercomputers, summarized in Table 1.
Thermal Design Power (TDP) is the thermal envelope assigned to the Opteron
processor used within Cray, and we use TDP as the upper bound on power
dissipation by the processor.

We assume that Cray machines have PSU with 95 % efficiency, and only 5 %
is counted towards constant power. We further assume that 10 % of the power is
used for cooling fans, based on the measurements from Cray XT5 in Oak Ridge
National Laboratory [33].

In Table 2, we present estimates of Rc based on Table 1. Since the total system
power is specified as range, we compute the percentages for 2 scenarios, highest
and lowest total power. For each scenario, we estimate Rc where constant power
is memory + PSU (5 %) + cooling fans (10 %) and dynamic power is 50 % of
the total chip TDP. The estimate on Rc is further divided into 2 cases, one with
largest memory and the other with smallest memory. Finally, we compute how
much additional constant power (as a percentage of the total power) is required
to make Rc ≥ 1, when smallest memory size, which alway give the smallest Rc,
is used.

In the newer machines (XT6 and XE6), power consumed by processor as a
fraction of total power is lower than the previous generation. Although the higher

Table 1. Power consumption of a recent Cray supercomputer cabinet, based on man-
ufacturer specifications [3]. All these machines use AMD Opteron processors.

Cray Nodes Chips Memory Total TDP Total Memory

per per system per chip stand-by

node node power chip TDP power

XT5 96 2 16–32 GB 32–42.7 kW 95 W 18.24 kW 1.54–3.07 kW

XT6 96 2 32–64 GB 45–54.1 kW 115 W 22.08 kW 3.07–6.14 kW

XE6 96 2 32–128 GB 45–54.1 kW 115 W 22.08 kW 3.07–12.29 kW

180 T. Yuki and S. Rajopadhye

Table 2. Estimated Rc for Cray machines assuming different total system power. Rc

is computed by assuming dynamic processor power is 50 % of the TDP, constant power
is the sum of memory stand-by power, cooling fan (10 %), and PSU loss (5 %). The last
column is the fraction of total power that must be additionally included as constant
power for Rc ≥ 1 to hold, assuming the Cray was configured with smallest memory
size.

Cray Assumed Percentage Percentage Percentage Rc Rc Additional

system CPU memory memory max min Ps for

power TDP (min) (max) memory memory Rc ≥ 1

XT5 32 kW 57 % 5 % 10 % 0.86 0.69 8.70 %

42.7 kW 43 % 4 % 7 % 1.04 0.87 2.76 %

XT6 45 kW 49 % 7 % 14 % 1.17 0.89 2.71 %

54.1 kW 41 % 6 % 11 % 1.29 1.01 0.00 %

XE6 45 kW 49 % 7 % 27 % 1.72 0.89 2.71 %

54.1 kW 41 % 6 % 23 % 1.85 1.01 0.00 %

total power consumption is likely to be a combined effect of various factors, part
of the increase may be attributed to increase in memory capacity. As a result,
Rc is at least 0.89 for the new generation of machines.

For the earlier generation (XT5), the processor power can dominate up to
57 of the total power, and Rc can be as low as 0.69. However, the first scenario
assuming lowest total system power is likely to be too strong, since we assume
processor is running at its TDP. When we assume the highest total system power
and largest memory, all of the three machines exhibit Rc ≥ 1.

Moreover, we have not included power consumed by the network among
nodes and other cabinets, which is likely to add another few percent to constant
power. Thus, we conclude that current generations of Cray supercomputers is
highly likely to have Rc greater than 1, satisfying the conditions for the optimal
frequency to be fmax.

5 Related Work

Our work is definitely not the first to show that simply going as fast as possible
can also be energy efficient. Cho and Melhem [10,11] developed an analytical
model of energy consumption under DVFS with multiple processors. They iden-
tify that there are cases where slowing the processor may not lead to reduced
energy consumption, and that it is related to the fraction of total power unaf-
fected by DVFS. We distinguish our work in three key aspects:

– (i) we tie our analysis results back to current machines, to verify that the
constant power is significant enough for running as fast as possible to be
optimal,

– (ii) our model separates the influence of dynamic and static power consump-
tion of the processor, since the ratio of the two is also important, and

Folklore Confirmed: Compiling for Speed = Compiling for Energy 181

– (iii) we also extend the model to gain some insights for the case when execution
time does not linearly degrade as frequency is scaled.

Dawson et al. [14] have empirically shown that constant power dominates
(50 %–80 %) total power by measuring power consumption of two processors.
They also conclude that running as fast as possible and then going to sleep is
likely to be energy efficient. However, they do not have a model of how much
constant power is required for “racing-to-sleep” to be optimal. We complement
their work by showing that it holds for large range of more recent processors, and
also with Cray supercomputers. Our estimate of constant power is much more
conservative, since we do not include GPU idle power, and assume much lower
power consumption for chipsets. They have included 50 W for chipset and GPU
as constant power, whereas we only include 10–20 W for chipset and cooling fan
combined.

Our work focus on compute-bound (including compute-I/O balanced) appli-
cations. For memory-bound programs, where DVFS is considered more beneficial
due to reduced degradation in speed as frequency is scaled, the work by Le Sueur
and Heiser [25] had shown that the benefits of DVFS is also diminishing. One of
the observations was also that the constant power of the full system, which has
been overlooked in some energy optimizations based on DVFS, plays a significant
roll in the overall picture.

When DVFS Can Help

In this paper, we show that trading off speed with energy with DVFS is not
possible in most cases. However, there are a number of prior work that use
DVFS to save energy without increasing the execution time [9,18–22,26]. The
common idea behind these work is to utilize load imbalance across components
of the system.

For example, memory-bound computations allow processors to be slowed
down without affecting the execution time [19,20]. Similarly, different compo-
nents such as disks [18], or link interconnects [22,26] that are not utilized all
the time, can be turned off for energy efficiency. Load imbalance in parallel
applications [9,21] is another candidate for saving energy.

All of the above corresponds to techniques to bring programs into compute-
I/O balanced state in our terms, and are still useful optimizations to improve
energy efficiency. However, these techniques should be applied as a “last resort”,
after optimizing for speed. For instance, it does not make sense to make a pro-
gram (more) memory-bound such that DVFS can be applied. Efficient access
to memory will reduce the execution time and energy consumption. Similarly,
it does not make sense to increase load imbalance of parallel applications such
that DVFS can be applied. Developing methods for better load balancing will
simultaneously improve speed and energy efficiency.

In addition to the above, recent processors employ sophisticated frequency/
voltage scaling themselves, such as the Turbo Boost on Intel processors [5] These

182 T. Yuki and S. Rajopadhye

hardware controls are likely to be able to detect memory-bound regions of pro-
grams, and employ scaling themselves. Therefore, even such opportunities for
energy saving by compilers may also be diminishing.

Another domain where DVFS may help is embedded systems, where you have
much more flexibility than general purpose processors. Although the analysis in
this paper remains the same, the significance of processor power with respect to
the whole system power can vary widely between applications.

For some applications, the processor may be the dominant source of power
usage, and hence DVFS is more effective. However, the opposite is also true.
For example, screen and wireless card are the dominant power consumers in a
smartphone, making DVFS even less interesting.

6 Conclusion

We have presented our analysis based on our high-level model of power con-
sumption under DVFS. When the constant power in a system is comparable to
the dynamic power consumption of the processor, using DVFS to trade speed
with energy efficiency cannot be done, and it is best to run as fast as possible
to completion.

We showed through a survey of number of recent machines that it is highly
likely that most machines today fall under the condition where running as fast
as possible wins in terms of energy.

Therefore, we confirm the “folklore” we have been hearing regarding energy
optimization, and conclude that simply compiling for speed will also give better
overall energy efficiency.

Our analysis is based on a high-level model, and it is possible that some
class of problems can still benefit from DVFS. However, in this paper we have
ignored the cost of changing DVFS states, and also assumed that arbitrary fre-
quency/voltage can be selected. In practice, the cost of transition is not negligi-
ble, and available frequency/voltage configurations are limited, further limiting
the applicability of DVFS.

Our result may seem negative, but from compilers’ perspective, the problem
has been made simpler. We can focus on speed, and the resulting code will be
energy efficient. Until the time when the leakage power becomes a negligible
component again, which is when the game entirely changes, invalidating many
analyses including ours, compilers should focus on speed.

References

1. 80plus power supplies. www.plugloadsolutions.com/80PlusPowerSupplies.aspx
2. Anandtech. www.anandtech.com
3. Cray products. www.cray.com/Products/Products.aspx
4. Specpower, published at www.spec.org as of 6 May 2012. SPEC and the benchmark

name SPECpower ssj2008 are registered trademarks of the Standard Performance
Evaluation Corporation. For more information about SPECpower ssj2008. www.
spec.org/power ssj2008/

www.plugloadsolutions.com/80PlusPowerSupplies.aspx
www.anandtech.com
www.cray.com/Products/Products.aspx
www.spec.org
www.spec.org/power_ssj2008/
www.spec.org/power_ssj2008/

Folklore Confirmed: Compiling for Speed = Compiling for Energy 183

5. Intel R© Turbo Boost Technology in Intel R© CoreTM Microarchitecture (Nehalem)
based processors. White paper, November 2008

6. Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,
Franzon, P., Harrod, W., Hill, K., Hiller, J., et al.: Exascale computing study:
technology challenges in achieving exascale systems. Technical report, Defense
Advanced Research Projects Agency Information Processing Techniques Office
(DARPA IPTO) (2008)

7. Bircher, W., John, L.: Complete system power estimation: a trickle-down approach
based on performance events. In: Proceedings of the IEEE International Sympo-
sium on Performance Analysis of Systems & Software, pp. 158–168 (2007)

8. Chandrakasan, A., Sheng, S., Brodersen, R.: Low-power CMOS digital design.
IEEE J. Solid-State Circ. 27(4), 473–484 (1992)

9. Chen, G., Malkowski, K., Kandemir, M., Raghavan, P.: Reducing power with per-
formance constraints for parallel sparse applications. In: Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium, p. 8 (2005)

10. Cho, S., Melhem, R.: Corollaries to Amdahl’s law for energy. IEEE Comput. Archit.
Lett. 7(1), 25–28 (2008)

11. Cho, S., Melhem, R.: On the interplay of parallelization, program performance, and
energy consumption. IEEE Trans. Parallel Distrib. Syst. 21(3), 342–353 (2010)

12. Chun, B., Iannaccone, G., Iannaccone, G., Katz, R., Lee, G., Niccolini, L.: An
energy case for hybrid datacenters. ACM SIGOPS Oper. Syst. Rev. 44(1), 76–80
(2010)

13. David, H., Fallin, C., Gorbatov, E., Hanebutte, U., Mutlu, O.: Memory power
management via dynamic voltage/frequency scaling. Memory 300, 400 (2011)

14. Dawson-Haggerty, S., Krioukov, A., Culler, D.: Power optimization - a reality
check, Technical Report UCB/EECS-2009-140. Technical report, EECS Depart-
ment, University of California, Berkeley (2009)

15. Fan, X., Weber, W., Barroso, L.: Power provisioning for a warehouse-sized com-
puter. ACM SIGARCH Comput. Archit. News 35, 13–23 (2007)

16. Freeh, V., Kappiah, N., Lowenthal, D., Bletsch, T.: Just-in-time dynamic voltage
scaling: exploiting inter-node slack to save energy in MPI programs. J. Parallel
Distrib. Comput. 68(9), 1175–1185 (2008)

17. Ge, R., Feng, X., Song, S., Chang, H., Li, D., Cameron, K.: Powerpack: energy
profiling and analysis of high-performance systems and applications. IEEE Trans.
Parallel Distrib. Syst. 21(5), 658–671 (2010)

18. Heath, T., Pinheiro, E., Hom, J., Kremer, U., Bianchini, R.: Application transfor-
mations for energy and performance-aware device management. In: Proceedings
of the 2002 International Conference on Parallel Architectures and Compilation
Techniques, pp. 121–130 (2002)

19. Hsu, C., Feng, W.: A power-aware run-time system for high-performance comput-
ing. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, p. 1
(2005)

20. Hsu, C., Kremer, U.: The design, implementation, and evaluation of a compiler
algorithm for CPU energy reduction. In: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation, p. 48 (2003)

21. Kadayif, I., Kandemir, M., Chen, G., Vijaykrishnan, N., Irwin, M., Sivasubrama-
niam, A.: Compiler-directed high-level energy estimation and optimization. ACM
Trans. Embed. Comput. Syst. (TECS) 4(4), 850 (2005)

22. Kim, E., Yum, K., Link, G., Vijaykrishnan, N., Kandemir, M., Irwin, M., Yousif,
M., Das, C.: Energy optimization techniques in cluster interconnects. In: Proceed-

184 T. Yuki and S. Rajopadhye

ings of the 2003 International Symposium on Low Power Electronics and Design,
pp. 459–464 (2003)

23. Kim, N., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J., Irwin, M.,
Kandemir, M., Narayanan, V.: Leakage current: Moore’s law meets static power.
Computer 36(12), 75 (2003)

24. Koomey, J.G., Belady, C., Patterson, M., Santos, A., Lange, K.D.: Assessing trends
over time in performance, costs, and energy use for servers. Technical report,
Lawrence Berkeley National Laboratory, Stanford University, Microsoft Corpota-
tion, Intel Corporation, Hewlett-Packard Corporation (2009)

25. Le Sueur, E., Heiser, G.: Dynamic voltage and frequency scaling: the laws of dimin-
ishing returns. In: Proceedings of the 2010 International Conference on Power
Aware Computing and Systems, pp. 1–8 (2010)

26. Li, F., Chen, G., Kandemir, M.: Compiler-directed voltage scaling on communica-
tion links for reducing power consumption. In: Proceedings of the 2005 IEEE/ACM
International Conference on Computer-Aided Design, p. 460 (2005)

27. Mahesri, A., Vardhan, V.: Power consumption breakdown on a modern laptop. In:
Falsafi, B., VijayKumar, T.N. (eds.) PACS 2004. LNCS, vol. 3471, pp. 165–180.
Springer, Heidelberg (2005)

28. Meisner, D., Gold, B.T., Wenisch, T.F.: Powernap: eliminating server idle power.
In: Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 205–216 (2009)

29. Seng, J.S., Tullsen, D.M.: The effect of compiler optimizations on pentium 4 power
consumption. In: Proceedings of the 7th Workshop on Interaction Between Com-
pilers and Computer Architectures, pp. 51–56 (2003)

30. Sinha, A., Chandrakasan, A.: Jouletrack-a web based tool for software energy pro-
filing. In: Proceedings of the 38th Design Automation Conference, pp. 220–225
(2001)

31. Subramaniam, B., Feng, W.: Understanding power measurement implications in
the green500 list. In: Green Computing and Communications, 2010 IEEE/ACM
International Conference on & International Conference on Cyber, Physical and
Social Computing, pp. 245–251 (2010)

32. Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R., Baez, F.: Reducing power
in high-performance microprocessors. In: Proceedings of the 35th Design Automa-
tion Conference, p. 737 (1998)

33. Wenning, T., MacDonald, M.: High performance computing data center meter-
ing protocol. Federal Energy Management Program, US Department of Energy,
Resources on Data Center Energy Efficiency (2010)

Debugging

Effectively Recognize Ad hoc Synchronizations
with Static Analysis

Le Yin(B)

Institute of Computing Technology, Beijing, China
yinle@ict.ac.cn

Abstract. Ad hoc synchronizations are ubiquitous in multi-threaded
programs. They can cause data race detection tools to report a lot of
false warnings. The existing tools for automatically recognizing ad hoc
synchronizations limit their recognizing patterns to spin loops. In this
paper for the first time we give a formal definition of ad hoc synchro-
nization. Based on the definition we have implemented a static analysis
to recognize them. Compared with the best existing analysis tool, the
static analysis we have proposed has the same capability of recognizing
spin loop synchronizations; in addition to that, the analysis can recognize
ad hoc synchronizations which do not belong to the spin loop pattern.
We have applied the analysis to a suite of middle scale multi-threaded
Java programs. The experiment shows the analysis is effective and fast.

Keywords: Synchronization primitive · Ad hoc synchronization · Data
race detection · Static analysis

1 Introduction

Data races are generally thought as programming errors. When two threads
access the same memory location at the same time without synchronization,
and at least one of the accesses is a write, a data race happens. However, apart
from the data races that occur because of programmers’ carelessness, some data
races are introduced intentionally by programmers to implement user-defined
synchronizations among threads. Those data races are not errors but integral
parts of parallel algorithms. In this paper we call these user-defined synchro-
nizations ad hoc synchronizations.

Figure 1 presents two instances of ad hoc synchronization. Fig. 1(a) is a spin
loop synchronization used for enforcing the execution order between two threads:
thread 2 will not jump out of the spin loop until the value of Flag is set to one by
thread 1. The write and read on the variable Flag, which is called a sync variable
by Xiong et al. [14], form a true but harmless data race. Fig. 1(b) is a simplified
version of Dekker’s algorithm. The two sync variables Flag1 and Flag2 are used
as flags between threads to implement a critical region synchronization.

Ad hoc synchronizations are ubiquitous in multi-threaded programs
[4,5,13,14]. Programmers will implement and use their own synchronization
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 187–201, 2014.
DOI: 10.1007/978-3-319-09967-5 11

188 L. Yin

mechanisms either because the synchronizations provided by libraries are slow
or because some synchronization structures (e.g. barriers) they need are not
supported by libraries. The existing data race detection tools [6,9–12,15] gen-
erally are not aware of ad hoc synchronizations and a large part of the false
warnings reported by these tools come from this unawareness [13]. It is useful
to automatically recognize ad hoc synchronizations to make race detectors treat
them correctly to reduce false warnings. Krena et al. [5], Tian et al. [13] and
Jannesari et al. [4] have developed dynamical tools to detect ad hoc synchro-
nizations by analyzing run-time traces. The static tool SyncFinder proposed by
Xiong et al. [14] achieves the same target through analyzing source code. All
these methods identify spin loops checking conditions as the basic pattern of ad
hoc synchronizations.

X=1;
Flag=1;

while(Flag != 1) {;}

X is not initialized, but Flag is initialized to 0. Initially, Flag1 = Flag2 = 0;

Flag1 = 1;
if (Flag2 == 0) {

 Flag1 = 0;
}

Flag2 = 1;
if (Flag1 == 0) {

 Flag2 = 0;
}

(a) (b)

Thread 1 Thread 2
Thread 1 Thread 2

Fig. 1. Two examples of ad hoc synchronizations.

However, not all ad hoc synchronizations obey the spin loop pattern. For
example, the critical region synchronization in Fig. 1(b) is not implemented by
spin loops. It cannot be recognized by the existing static or dynamic tools.

To recognize ad hoc synchronizations like that, we present a formal definition
of ad hoc synchronization, which specifies more ad hoc synchronizations than
the spin loop pattern does. To our knowledge, it is the first formal definition of
ad hoc synchronization. Based on the definition, we have implemented a static
recognition analysis in a static data race detection tool, Chord [9]. Compared
with the best existing analysis tool, SyncFinder [14], the static analysis we have
proposed has the same capability of recognizing spin loop synchronizations. We
have applied the analysis to a suite of middle scale multi-threaded Java pro-
grams. The experiment shows our analysis can recognize all spinning-based ad
hoc synchronizations1; it also has identified other ones which do not belong to
the spin loop pattern. The ad hoc synchronizations recognized by our analysis
are all harmless data races.

2 Ad hoc Synchronization: Formal Definitions

In this section we give formal definitions of synchronization primitive and ad
hoc synchronization. We use the examples in Fig. 1 to illustrate each definition.
1 We have checked the data races reported by Chord manually and verified that no

spinning-based ad hoc synchronization in those data races is missed by our analysis.

Effectively Recognize Ad hoc Synchronizations with Static Analysis 189

Figure 2 represents the code in Fig. 1 in the form of memory accesses. Wt
v (Rt

v)
means a write (read) in thread t which accesses variable v. RCt

v is a special read
operation; it is defined formally in Definition 1. The racing memory accesses x
and y are recorded as (x, y).

W1
Flag

Thread 1 Thread 2

W1
X RC2

Flag

R2
X

(a)

W1
Flag1

RC1
Flag2

W1
data

W`1
Flag1

W2
Flag2

RC2
Flag1

W2
data

W`2
Flag2

Thread 1 Thread 2

(b)

Fig. 2. The code in Fig. 1 in the form of memory accesses.

2.1 The Key Idea

In a program, when a variable’s value is used to compute some condition to
determines which branch governed by the condition will be executed, the vari-
able carries control information. The purpose of synchronization is cooperation
among threads. To achieve this purpose control information need be communi-
cated from one thread to another to trigger particular processing logic of the
receiver.

When a shared variable is used to communicate control information between
two threads, it is first written by one thread and then subsequently read and
tested by another thread to see whether a certain condition has been satisfied.
Different outcome of the test determines different branch of code to be executed.
Such communication underpins ad hoc synchronization programming idioms. It
is based on this insight that we develop the definition of ad hoc synchronization.

2.2 Synchronization Primitive

Definition 1. Synchronization primitive: A synchronization primitive is a
racing pair (Wt1

v ,RCt2
v) where v is a shared variable and t1 and t2 are two dif-

ferent threads such that

– Wt1
v is a write on v by thread t1.

– RCt2
v is a read on v by thread t2 and the value read is used to evaluate a branch

condition to determine whether the branch it guards in t2 will be taken. RC
stands for “Read for a Condition Test”.

Example: In Fig. 2(a) the racing pair (W1
Flag,RC2

Flag) is a synchronization prim-
itive. In Fig. 2(b) reads on Flag1 and Flag2 are all RC operations, so the data
races on these two variables are all synchronization primitives.

Note in Fig. 2(a) the variable Flag carries control information, while the
variable X does not, since no execution of any branch of code is dependent on

190 L. Yin

its value. So although X is written by Thread 1 and then read by Thread 2 just
like Flag, the racing pair (W1

X,R
2
X) is not a synchronization primitive.

Synchronization primitives are the most fundamental synchronization facil-
ities. They can be combined to implement complex synchronization functions.
However, a single synchronization primitive might or might not be enough for a
self-contained synchronization task. The case for the former situation is Fig. 1(a),
in which (W1

Flag,RC2
Flag), the only synchronization primitive, constitutes the spin

loop synchronization. The case for the latter situation is Fig. 1(b), in which four
synchronization primitives together constitute the Dekker’s critical region syn-
chronization. For the latter situation, any single synchronization primitive is just
a part of the whole synchronization algorithm.

So we need a synchronization conception which is higher than synchronization
primitive. That is ad hoc synchronization. An ad hoc synchronization is supposed
to perform a self-contained synchronization task; it consists of one or multiple
related synchronization primitives.

2.3 Ad hoc Synchronization

In this subsection, we at first introduce the definition of an equivalence relation
to describe the relatedness among synchronization primitives. Then we define
ad hoc synchronization on top of it.

Let M be the set of memory accesses in the program. Let R be the set of
data races. Let Rsp be the set of synchronization primitives. And let Rn be
the set of normal data races which are not synchronization primitives. We have
R = Rsp ∪ Rn.

Definition 2. ∼ is an equivalence relation defined on R. It consists of five rules:

x, y, z, w, u, v,W,RC ∈ M; (x, y), (z, w), (u, v) ∈ R; (W,RC) ∈ Rsp;

[rel 1] (x, y) ∼ (x, y).
[rel 2] (x, y) ∼ (z, w) if(z, w) ∼ (x, y).
[rel 3] (x, y) ∼ (u, v) if (x, y) ∼ (z, w)∧(z, w) ∼ (u, v).
[rel 4] (x, y) ∼ (W,RC) if x ∝ RC.

[rel 5] (x, y) ∼ (W,RC) if Lexit ∝ RC∧ x
po−−→ W ∧ Lexit

po−−→ y

If two racing pairs satisfy the relation ∼, they are called to be related to
each other. The rule [rel 1] means the relation ∼ is reflexive: any racing pair is
related to itself. The rule [rel 2] means ∼ is symmetric. The rule [rel 3] means
the relation ∼ is transitive: if (x, y) is related to (z, w) and (z, w) is related to
(u, v), then (x, y) and (u, v) are related. Because it is reflexive, symmetric, and
transitive, ∼ is an equivalence relation.

The rule [rel 4] says if, in the control flow graph of the program, the basic
block containing x is control-dependent [7] on the basic block containing RC (it
is recorded as x ∝ RC), then the racing pairs (x, y) and (W,RC) are related.

Effectively Recognize Ad hoc Synchronizations with Static Analysis 191

The rule [rel 5] says if, in the control flow graph of the program, the basic
block containing some exit statement of loop L is control-dependent on the basic
block containing RC (Lexit ∝ RC), x precedes W in the program order2 (x

po−−→
W), and Lexit precedes y in the program order (Lexit

po−−→ y), then (x, y) and
(W,RC) are related to each other.

Example:
For Fig. 2(a), according to [rel 5] we have (W1

X,R
2
X) ∼ (W1

Flag,RC2
Flag).

For Fig. 2(b), the procedure of applying the rules is as follows.

Step 1: W1
data ∝ RC1

Flag2

[rel 4]
====⇒(W1

data,W
2
data) ∼ (RC1

Flag2,W
2
Flag2)

Step 2: (W1
data,W

2
data) ∼ (RC1

Flag2,W
2
Flag2)

[rel 2]
====⇒(RC1

Flag2,

W2
Flag2) ∼ (W1

data,W
2
data)

Step 3: W2
data ∝ RC2

Flag1

[rel 4]
====⇒(W1

data,W
2
data) ∼ (RC2

Flag1,W
1
Flag1)

According to [rel 3], from the results of step 2 and step 3 we have (RC1
Flag2,

W2
Flag2) ∼ (RC2

Flag1,W
1
Flag1).

An ad hoc synchronization consists of one or multiple synchronization primi-
tives. If α is a synchronization primitive contained in an ad hoc synchronization
S, then the ad hoc synchronization can be recorded as Sα.

Definition 3. Ad hoc synchronization: An ad hoc synchronization Sα is an
equivalence class of α in Rsp with respect to the relation ∼3. It can be formally
presented as follows:

For α ∈ Rsp,Sα = {β | β ∈ Rsp ∧ β ∼ α}.

Since an ad hoc synchronization is an equivalence class of Rsp, all ad hoc
synchronizations in the program form a partition of Rsp: each synchronization
primitive belongs and only belongs to one ad hoc synchronization.

Example:
In Fig. 2(a) (W1

Flag,RC2
Flag) is not related to any other synchronization

primitive; it itself forms a spinning-based ad hoc synchronization. The four
synchronization primitive in Fig. 2(b) are related to one another; they form an
equivalence class. So data races on Flag1 and Flag2 form Dekker’s critical region
synchronization.

With synchronization primitives, programmers can build ad hoc synchro-
nizations of varying complexities, from simple ones with just one if statement
to sophisticated ones with multiple if and/or loop statements. Definition 3
includes more ad hoc synchronizations than the spin loop pattern, which is used
in the existing tools [4,5,13,14], can specify.

The property of equivalence class has two indications. First, related synchro-
nization primitives come together to form a stand-alone ad hoc synchronization
which is meant to have complete logic for synchronizing. In Fig. 4(b) Dekker’s
2 Program order is the order among statements statically specified in the source code.
3 ∼ is an equivalence relation in R. Rsp is a subset of R, so ∼ is also an equivalence

relation in Rsp.

192 L. Yin

algorithm contains four synchronization primitives, none of which can solely
synchronize two conflicting accesses on data. It is the four synchronization prim-
itives as a whole that can guarantee W1

data and W2
data are correctly synchronized.

Second, different ad hoc synchronizations are independent to one another.
An ad hoc synchronization can only synchronize conflicting accesses which are
related to it. For example, in the program containing the code of Fig. 4(a) and
(b), Dekker’s critical region synchronization only synchronize the accesses on
data; it does not synchronize accesses on X, which are not related to it.

It is based on these two indications that related synchronization primitives
are grouped as an ad hoc synchronization to see whether correct logic for synchro-
nization is implemented. How to judge the correctness of ad hoc synchronizations
is detailed in the next subsection.

2.4 The Correctness of Ad hoc Synchronizations

After Recognize ad hoc synchronizations in the program, how can we judge
whether they are implemented correctly? Since our analysis is implemented in the
tool Chord and Chord is targeted to Java programs, we resort to Java memory
model for this question. Java memory model [8], which is based on data-race-free
model [1], prescribes that a data race free program is correctly-synchronized. So
we have the following criterion:

Criterion 1. Ad hoc synchronizations are correctly implemented if, after all
synchronization primitives in the program are labeled as standard synchroniza-
tion operations, the program becomes data-race-free.

Java language specification [16] specifies that all the accesses on volatile vari-
ables are standard synchronization operations. So we can label synchronization
primitives by declaring variables accessed by them as volatile. In the rest of
this paper, we talk about the correctness of ad hoc synchronizations under the
condition that synchronization primitives are labeled.

To judge whether the program is data-race-free we should guarantee that in
any execution of the program there is no conflicting memory accesses occurring
adjacently: they are always separated by synchronization operations4. An exe-
cution of the program is a sequence of operations of the program. For a real
application containing hundreds of thousands of lines code, the number of its
executions is very large, and it is impractical to enumerate all the executions to
see whether conflicting accesses occur adjacently in them.

But in fact we do not need to check all executions of the program. Data races
are divided into groups according to their relatedness: related data races are put
into the same group. Note that the equivalence relation ∼ is used to judge
whether two data races are related to each other. We use Fig. 2 as examples.
4 Here we can not use the criterion that all conflicting accesses are under the guard of

the same lock to judge the program is data-race-free. For example, in Fig. 2(a) W1
X

and R2
X are not guarded by any lock, but they are synchronized by the spin loop.

The same is true of the accesses of data in Fig. 2(b).

Effectively Recognize Ad hoc Synchronizations with Static Analysis 193

Suppose the code in Fig. 2(a) and (b) are in the same program, then there are
two groups of data races in that program: one group is the data races in Fig. 2(a),
the other is the data races in Fig. 2(b).

After data races are divided into groups, we only need to check the executions
of memory accesses in each group. For a given group G, an execution of G is a
sequence of memory accesses in G, which is a subsequence of some execution of
the whole program. If two conflicting accesses x and y in G are always separated
by synchronization operations in any execution of G, we say x and y are correctly
synchronized within G. In other words, if there is no execution of G in which x
and y occur adjacently, we say x and y are correctly synchronized within G.

Theorem 1. If any two conflicting memory accesses in the program are cor-
rectly synchronized within the group which contains them, the program is data-
race-free.

Proof. Assume any two conflicting memory accesses in the program are correctly
synchronized within the group they belong to, but there is still a data race (x,y)
in the program. The group contains (x,y) is G(x,y). We have following results:
(1) Since x and y are correctly synchronized within G, x and y are separated

by synchronization operations in each execution of G.
(2) Since (x,y) is a data race, there must be an execution S of the program, in

which x and y occur adjacently. Removing all the operations in S except
those belonging to G, we get a sub-sequence S ′, which is an execution of
G. The result that x and y occur adjacently in S ′ contradicts (1). So the
assumption is not right.

For Fig. 2(a), the possible execution sequences are as follows (we use ‘x*’ to
mean the access x occurs zero or multiple times), in which W1

X and R2
X are always

separated by W1
Flag → RC2

Flag. So W1
X and R2

X are correctly synchronized in
the group containing them.

RC2
Flag∗ → W1

X → RC2
Flag∗ → W1

Flag → RC2
Flag → R2

X

For Fig. 2(b), there are executions in which W1
data and W2

data do not occur
at the same time. For example, in the sequence W1

Flag1 → RC1
Flag2 → W2

Flag2 →
RC2

Flag1 → W1
data → W1

Flag1, only W1
data occurs. In the sequence W1

Flag1 →
W2

Flag2 → RC1
Flag2 → RC2

Flag1 both of them do not appear.
However, for all the executions they both occur, W1

data and W2
data are always

separated by some synchronization primitive. Those executions are as follows.

... → W1
data → W`1

Flag1 → RC2
Flag1 → W2

data → ...

... → W2
data → W`2

Flag2 → RC1
Flag2 → W1

data → ...

Since there is no execution in which W1
data and W2

data occur adjacently, they
are correctly synchronized within the group containing them.

If conflicting accesses in a group are not correctly synchronized within the
group, it might indicate the ad hoc synchronization in the group is not imple-
mented correctly, and the program still has data races even after all synchro-
nization primitives are labeled as synchronization operations.

194 L. Yin

2.5 Discussion

The definition of synchronization primitives can capture structures that clearly
are not used for synchronization. A case is demonstrated in the following Figure.

...
x = 100;
...

if (x > y)
 max = x;
else
 max = y;

(a)

Thread 1 Thread 2 Thread 1 Thread 2

W1
x

RC2
x

R2
x

(b)

Fig. 3. A buggy data race recognized as a synchronization primitive.

Figure 3(a) is the example code and Fig. 3(b) is its representation of memory
accesses. Thread 1 writes x and Thread 2 computes the maximum of x and y.
(W1

x,RC2
x) is a synchronization primitive according to Definition 1. But in fact

the data race (W1
x,RC2

x) occurs because of the programmer’s carelessness: he or
she does not use x for synchronization.

However, the over-broadness of Definition 1 can be compensated by Defin-
ition 3. Related data races should be grouped together to see whether the ad
hoc synchronization is correctly implemented. The data races in Fig. 3(a) form a
group: G = {(W1

x,RC2
x), (W1

x,R
2
x)}. In the execution of G, RC2

x →W1
x →R2

x, W1
x

and R2
x occur adjacently. The code is not correct according to Criterion 1. In a

short word, if after marking synchronization primitives as standard synchroniza-
tion operations there are still data races in the program, it indicates that some
errors exist. At that time the programmer should review the racy code and do
some modifications.

3 The Static Analysis Algorithms

We have implemented the analysis for recognizing ad hoc synchronizations in the
tool Chord [9]. Chord statically checks whether two conflicting memory accesses
in a Java program are guarded by a common lock by analyzing source code
statically. Data races are at first detected by Chord, and then our analysis is
applied to them.

3.1 The Comes-from Analysis

To recognize synchronization primitives, RC operations must be identified at
first. The challenge of recognizing RC operations can be demonstrated by the
example in Fig. 4: the value of the variable a is read and assigned to another
variable b; it is b, not a, that occurs directly in the branch condition expression.

Effectively Recognize Ad hoc Synchronizations with Static Analysis 195

Furthermore, the accesses on a and b are located in different methods in the Java
program. To recognize the read on a is a RC operation (since its value can affect
some branch’s execution), the algorithm must perform inter-procedure analysis
to compute the information that b’s value comes from the read on a.

void foo()
{
 int b = bar();
 if (b>0)

}

int bar()
{

 // a is a shared variable
 return a; // Rda
}

Fig. 4. Recognize Rda as a RC operation.

To solve this problem, we use a value propagating algorithm to systematically
compute comes-from set for each variable. Rdu signifies a read operation on a
variable u. cf (v) signifies the comes-from set of a variable v. Rdu ∈ cf (v) means
v’s value can come from Rdu. For Fig. 4 we have cf (b)={Rda}. The algorithm
is an extension of Andersen points-to analysis [2]. Because the points-to analysis
is also a value propagating problem: the value of the address of a heap object is
propagated from one variable to another by some assignment. So what we need
is to extend Andersen points-to analysis on address value propagation to the
analysis on all types of value propagation.

Two rules are used to compute the comes-from set for each variable in the
program. T is the set of all thread-escape entities5 [3] in a multi-threaded pro-
gram. v ∈ T means v is a shared variable accessed by multiple threads. The
assignment v1 → v2 means v1’s value is assigned to v2.

[cf 1] [cf 2]
v1 → v2 v1 /∈ T

cf(v1) ⊆ cf(v2)
v1 → v2 v1 ∈ T

cf(v1) ⊆ cf(v2) Rdv1 ∈ cf(v2)

The rule [cf 1] says, for the assignment v1 → v2, if v1 is not thread-escape,
then all the reads in cf (v1) are included into cf (v2); the rule [cf 2] says, if v1
is thread-escape, then both Rdv1 in the assignment v1 → v2 and all the reads in
cf (v1) are included into cf (v2).

The comes-from set for each variable v in the program are initialized to ∅.
When the rules are applied, only reads on fields in thread-escape objects and
reads on static variables will be added into comes-from sets; those entities which
are local in one thread will not be involved in communications among threads
and so will not be added into comes-from sets.
5 Only thread-escape entities, which are accessed by multiple threads, will be involved

in the computation of the come from sets, because an object which is local to some
thread has nothing to do with communications among threads.

196 L. Yin

For the following code segment, assume a and c are thread-local variables
while r and b are thread-escape variables, and cf (r)=∅.

a=r; b=a; c=b; if(c>0){...}
The procedure of applying the rules for comes-from analysis to the code is

as follows.

[cf 2]: cf (a) = cf (r) ∪ {Rdr} = {Rdr}
[cf 1]: cf (b) = cf (a) = {Rdr}
[cf 2]: cf (c) = cf (b) ∪ {Rdb} = {Rdr, Rdb}

Note r and b are thread-escape and hence reads on them are added into
comes-from sets.

3.2 Recognizing RC operations and Synchronization Primitives

After the comes-from set for each variable is computed, the rules [rc 1], [rc 2]
and [sync] are used to compute synchronization primitives, where B is the set
of variables that occur directly in condition expressions and D is the set of reads
that occur in condition expressions; C is the set of RC operations; Rsp is the set
of synchronization primitives and R is the set of data races.

[rc 1] [rc 2] [sync]
Rd ∈ D

Rd ∈ C

v ∈ B Rd ∈ cf(v)
Rd ∈ C

Rd ∈ C (Wr,Rd) ∈ R

(Wr,Rd) ∈ Rsp

The rule [rc 1] says that reads occurring directly in condition expressions
are RC operations. The rule [rc 2] says that, if the variable v appears in some
branch condition expression (v ∈ B), and its value comes from Rd, then Rd is
a RC operation. The rule [sync] says that if Rd is a RC operation, then the
racing pair (Wr,Rd) is a synchronization primitive.

The three rules are applied to the code in previous subsection as follows: Rdc

∈ D, so Rdc is a RC operation by the rule [rc 1]. c ∈ B and cf (c) = {Rdr,Rdb},
so Rdr and Rdb are RC operations by the rule [rc 2]. Assume in the program
there exists a data race (Wrb, Rdb), then it is a synchronization primitive by the
rule [sync].

3.3 Group Related Synchronization Primitives

The rules in Definition 2 are used to group related data races. Synchronization
primitives in the same group form a stand-alone ad hoc synchronization.

The rules [rel 4] and [rel 5] plays a core role in finding related synchroniza-
tion primitives and the control dependency information is computed by using
the standard algorithm described by Steven S. Muchnick [7]. When applying the
rule [rel 5], we use dominator/post-dominator information to judge whether
one memory access precedes another in program order: if in the control flow
graph the block containing access x dominates the block containing access y or
the block containing access y post-dominates the block containing access x, then
x precedes y in program order. If x and y are in the same basic block, it is trivial
to judge their order.

Effectively Recognize Ad hoc Synchronizations with Static Analysis 197

4 Experimental Results

In this paper we focus on recognizing ad hoc synchronizations. Our analysis does
not judge whether an ad hoc synchronization it finds will cause errors. We run
our analysis on a suite of real Java applications and have found dozens of ad
hoc synchronizations. We verified manually those ad hoc synchronizations are
all harmless data races.

4.1 The Benchmarks and Platform

The first two programs are tsp, a traveling salesman problem solver and jtpcc,
a TPC-C benchmark [20]. Java Grande Benchmark Suite [17] contains eleven
programs, most of which are of scientific computation. raja is ray tracer with
graphic user interface [18]; jbb is the benchmark SPEC JBB2000 [19]. avrora
is AVR micro controller simulation program, it comes from Dacapo Benchmarks
[21]. Jigsaw is W3C’s leading-edge Web server [22]6. All the experiments were
done on a machine with a 3.2 GHZ quad-core Intel Xeon CPU with 8 GB memory.

4.2 The Summary of The Experiments

The experimental results are presented in Table 1. Column “SP” and “AS” give
the numbers of Synchronization Primitives and Ad hoc Synchronizations respec-
tively, where “AS” is further divided into two sub-columns “spin” (synchroniza-
tions of spin loop pattern) and “non-spin” (synchronizations not belonging to
spin loop pattern).

Table 1. The number of synchronization primitives.

Program LOC SP AS Time

spin non-spin T1(secs) T2(%)

tsp 706 11 0 11 81 0.90

jtpcc 4,462 1 1 0 7056 1.01

Grande 8,615 8 6 2 988 1.09

raja 10,692 1 1 0 5312 2.35

jbb 30,486 45 1 0 2029 6.21

avrora 114,361 9 4 2 7140 1.27

jigsaw 160,618 55 10 31 10080 0.97

SP: Sync Primitive AS: Ad hoc synchronization

There are 130 synchronization primitives reported; they form 59 ad hoc syn-
chronizations, in which there are 23 spin loop synchronizations. Most ad hoc
6 Chord can not process dynamic class loading in Java, which is used by jbb, avrora

and jigsaw. We modified these programs to make them analyzable to Chord.

198 L. Yin

synchronizations only contain one synchronization primitive, except in the pro-
gram jbb an ad hoc synchronization contains multiple synchronization primi-
tives, which will be discussed in detail in the following subsection. All the ad
hoc synchronizations are harmless races.

The last two columns are time data. The “T1” column is the total time
in seconds of data race detection and ad hoc synchronization recognition. The
“T2” column is the percentage of the recognition time vs the total time. Our
recognition analysis is fast: for most program it accounts for about one percent
of the total time.

4.3 Effectiveness of Recognition

Our ad hoc synchronization recognition is based on the result of data race detec-
tion in Chord. We have checked the data races reported by Chord [9] manually
and have verified no synchronization primitive is missed by our analysis. In the
rest of this subsection, we will discuss ad hoc synchronizations recognized in
detail.

There are four programs (barrier, lufact, moldyn, raytracer) in Java
Grande benchmark suite using the array IsDone[] to implement a tournament
barrier. For two threads myid1 and myid2 such that myid1 = myid2+ i*spacing,
thread myid2 will wait at S1 until thread myid1 reverses the value of IsDone[myid1]
at S2. The program sor in Grande benchmark suite uses array sync[][] to imple-
ment barrier synchronism. The worker thread id increments sync[id][0] to sig-
nal its work has been finished and wait for its “neighboring” threads id-1 and
id+1 to finish.

Reads on IsDone[] and sync[][] are all recognized as RC operations, and
those races on IsDone[] and sync[][] are recognized as synchronization prim-
itives, which are illustrated in Fig. 5.

smargorpybdesureirrabtnemanruotdenifed-resuehT)a(
barrier, lufact, moldyn, raytracer.

public void DoBarrier(int myid) {
 ...
 while(IsDone[myid+i*spacing] != donevalue){...}

IsDone[myid] = donevalue;
 ...
}

S1:
S2:

(b) The user-defined barrier used by
 program sor.

 ...
sync[id][0]++;

 if (id>0)
 while(sync[id-1][0] < sync[id][0]);
 if (id<JGFSORBench.nthreads-1)
 while(sync[id+1][0] < sync[id][0]);

S1:

S2:

S3:

Fig. 5. Ad hoc synchronizations in user-defined barriers.

The most complex ad hoc synchronization recognized by our analyses is that
in the program jbb, which is showed in Fig. 6(a). There are five writes on the
variable mode in main thread and eight RCs7 on it in a loop in transaction man-
ager thread. Together there are 40 (5 × 8) synchronization primitives, which are
7 There are five statements of ‘if (mode==RECORDING)’ in the loop, only one of which

is showed in Fig. 6(a) because of space limit.

Effectively Recognize Ad hoc Synchronizations with Static Analysis 199

related to one another and form a single ad hoc synchronization: main thread sets
mode to different value to represent different states in the transaction processing;
mode’s value is read and tested by transaction manager thread to do correspond-
ing jobs. Our analysis can correctly recognize and group these synchronization
primitives.

mode=RAMP_UP;
...
mode=RECORDING;
...
mode=RAMP_DOWN;
...
mode=STOP;
...
mode=DEFAULT_MODE;

while (mode != STOP) {
 if (mode==DEFAULT_MODE)
 ...
 if (mode==RECORDING)
 ...
 ...
 if (mode==DEFAULT_MODE)
 ...
} // end of while

S1:

S2:

S3:

S4:

S5:

S6:

S7:

(a) jbb

synchronized
void setUpdating(boolean b)
{
 if (updaingRunning && !b)
 repaint();
 ...

updatingRunning = b;
 notify();
}

void run() {
 while (true) {
 ...
 if (updatingRunning)
 repaint();

 }
}

Main Thread ImageDisplay Thread

(b) raja

Main Thread Transaction Manager

Fig. 6. Ad hoc synchronizations in jbb and raja.

The ad hoc synchronization recognized in raja is showed in Fig. 6(b). The
main thread sets updateRunning after finishing graphics computation. An image
display thread is checking updateRunning constantly in a spin loop to re-paint
the graphics.

It is common in multi-threaded programs that a shared variable is always
written under the guard of a lock, but freely read without any synchronization.
Data race in raja (Fig. 6(b)) is a case of this kind. Figure 7 shows another two
races caused by this reason.

For Fig. 7(a), different threads in tsp write MinTourLen under the protection
of the lock, but read it freely. For Fig. 7(b), working threads in jigsaw increment
loadedStore in a synchronized way, while collect thread reads it freely.

static void set_best(int best, int[] path) {
 if (best >= MinTourLen) return;
 synchronized(MinLock) {
 if (best < MinTourLen) {

MinTourLen = best;
 for (int i = 0; i < Tsp.TspSize; i++)
 MinTour[i] = path[i];
 }
 }
}

(a) low lock in tsp (b) low lock in jigsaw

synchronized void incrLoadedStore() {
loadedStore++;

 checkMaxLoadedStore();
}

void collect() {

 while (loadedStore > maxload)

}

Fig. 7. Low-locks in tsp and jigsaw.

Races in sync (on field shared counter), tsp (on fields prefix weight,
last), jtpcc (on field terminalsStarted) and many other races in jigsaw
are caused by this programming paradigm. All the reads in the races are RC
operations. These races are harmless synchronization primitives.

200 L. Yin

5 Related Work

Some tools have been proposed to automatically recognize ad hoc synchroniza-
tions of the spin loop pattern. The tools proposed by Krena et al. [5] and Tian et
al. [13] dynamically recognize in programs spin loops whose condition variables
do not change during three iterations. If the spin loop is not executed repeat-
edly, it can not be recognized. To overcome this drawback, Jannesari et al. [4]
instrument code on writes and reads of condition variables to make them dynam-
ically detectable. However condition variables may be data-dependent or control-
dependent on other variables (they are called Exit Dependent Variables, EDVs,
by Xiong et al. [14]). The signaling thread can indirectly modify the loop exit
condition in the signaled thread by modifying some EDV, which cannot be recog-
nized by the method proposed by Jannesari et al.. The static tool SyncFinder
proposed by Xiong et al. recognizes EDVs as sync variables through data flow
and control flow analyses [14]. It can recognize very complicated spin loops in
real world large-scale programs with few false positives.

for (deleted=0;;) {

 if (dbmfp->ref == 1)
 deleted = 1;

 if (deleted) break;
}

while (1) {
 int oldcount =

global->barrier.count;

 if (updatecount == oldcount) break;
 ...
}

(a) control dependency (b) data dependency

Fig. 8. Two complex spin loops recognized by SyncFinder.

For recognizing complex spin loops containing EDVs, our analysis has the
same ability as SyncFinder. The two spin loops in Fig. 8 are Fig. 1(c) and Fig. 5(a)
in the paper of Xiong et al. [14] respectively. Our analysis can recognize them
as can SyncFinder.

The variable dbmfp->ref is a EDV on which a loop exit condition is control-
dependent, while global->barrier.count is a EDV of data-dependency. The
variable dbmfp->ref is referenced directly in a branch condition expression and
the read on it is recognized as a RC operation. oldcount is referenced in a branch
condition and its value comes from global->barrier.count, so the read on
global->barrier.count is a RC operation too. If there exist racing writes for
these RC operations, the writes and corresponding RC operations are recognized
as synchronization primitives by our analysis.

Nevertheless, SyncFinder will miss the Dekker’s synchronization in Fig. 1(b).
It also will miss some synchronization primitives in the Fig. 6(a), such as the
synchronization primitive formed by the statements ‘mode=RECORDING’
and ‘if (mode==RECORDING)’, even though the condition ‘if (mode==
RECORDING)’ is located in a spin loop. Those ad hoc synchronizations can
be recognized correctly by our analysis.

Effectively Recognize Ad hoc Synchronizations with Static Analysis 201

6 Conclusion and Future Work

In this paper for the first time we give a formal definition of ad hoc synchro-
nization. Based on it a static analysis has been implemented and applied to a
suite of middle scale Java multi-threaded programs. The experiment shows the
analysis is fast and can recognize ad hoc synchronizations more than the spin
loop pattern used by the existing tools can specify.

References

1. Adve, S.V., Hill, M.D.: Weak ordering - a new definition. In: ISCA, pp. 2–14 (1990)
2. Andersen, L.O.: Program analysis and specialization for the C programming lan-

guage. Ph.D thesis, DIKU, University of Copenhagen, May 1994
3. Lee, K., Midkiff, S.P.: A two-phase escape analysis for parallel Java programs. In:

PACT, pp. 53–62 (2006)
4. Jannesari, A., Tichy, W.F.: Identifying ad-hoc synchronization for enhanced race

detection. In: IPDPS. IEEE (2010)
5. Krena, B., Letko, Z., Tzoref, R., Ur, S., Vojnar, T.: Healing data races on-the-fly.

In: PADTAD, pp. 54–64 (2007)
6. O’Callahan, R., Choi, J.-D.: Hybrid dynamic data race detection. In: PPoPP, pp.

167–178 (2003)
7. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-

mann Publisher, San Francisco (1997)
8. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL, pp. 378–

391 (2005)
9. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: PLDI,

pp. 308–319 (2006)
10. von Praun, C., Gross, T.R.: Object race detection. In: OOPSLA, pp. 70–82 (2001)
11. Perkovic, D., Keleher, P.J.: Online data-race detection via coherency guarantees.

In: OSDI, pp. 47–57 (1996)
12. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a

dynamic data race detector for multi-threaded programs. In: SOSP, pp. 27–37
(1997)

13. Tian, C., Nagarajan, V., Gupta, R., Tallam, S.: Dynamic recognition of synchro-
nization operations for improved data race detection. In: ISSTA, pp. 143–154
(2008)

14. Xiong, W., Park, S., Zhang, J., Zhou, Y., Ma, Z.: Ad hoc synchronization consid-
ered harmful. In: OSDI, pp. 1–8 (2010)

15. Xie, X., Xue, J.: ACCULOCK: accurate and efficient detection of data races. In:
CGO, pp. 201–212 (2011)

16. Subsection 8.3.1.4 in The Java Language Specification, Third Edition. http://java.
sun.com/docs/books/jls/third edition/html/j3TOC.html

17. Java grande benchmark. http://www.epcc.ed.ac.uk/research/java-grande/
18. Raja raytracer program. http://raja.sourceforge.net/
19. SPEC2000 Java Business Benchmark. http://www.spec.org/osg/jbb2000/
20. JTPCC TPC-C benchmark. http://jtpcc.sourceforge.net/
21. Dacapo Benchmarks. http://dacapobench.org/
22. W3C web server jigsaw. http://www.w3.org/Jigsaw/

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://www.epcc.ed.ac.uk/research/java-grande/
http://raja.sourceforge.net/
http://www.spec.org/osg/jbb2000/
http://jtpcc.sourceforge.net/
http://dacapobench.org/
http://www.w3.org/Jigsaw/

AntSM: Efficient Debugging for Shared
Memory Parallel Programs

Jae-Woo Lee and Samuel P. Midkiff(B)

School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 47907, USA

{jaewoolee,smidkiff}@purdue.edu

Abstract. This paper describes AntSM, a system that uses the inherent
parallelism of multi-threaded programs to reduce the overhead of statis-
tical and invariant violations detection-based debugging tools. The run-
time monitoring of these tools leads to high overheads. The key insight of
the AntSM system is that this overhead can be reduced in parallel pro-
grams by performing sampled monitoring across parallel regions of the
program that are performing similar actions. AntSM implements this
sampling using a combination of static and dynamic analyses to deter-
mine similar parts of the program executing in parallel and the number
of threads executing those parts of the program. Experimental results,
performed using the C-DIDUCE (a variant of DIDUCE for C) debugging
tool on eleven Pthreads benchmarks from the PARSEC suite, show mon-
itoring overhead is reduced by up to 18.14 times (and on average 8.73
times) on an eight-core machine relative to a naive port that performs
no sampling.

Keywords: Pthreads · Parallel program debugging · Anomaly detec-
tion · DIDUCE

1 Introduction

Writing correct sequential programs is a difficult task – bugs in these programs
cost the software industry billions of dollars in lost productivity each year [1].
Using more complicated parallel programming models will not reduce the num-
ber of sequential bugs, and may increase their number by adding to the overall
complexity of programming. Tools exist that identify statements that may be
related to sequential bugs and that allow the bugs to be identified quickly and
fixed. Because sequential bugs will continue to exist in parallel programs, these
tools will continue to be useful in parallel programming environments.

An important class of these tools detects invariant violations, and includes
tools such as DIDUCE [2], C-DIDUCE [3] and AccMon [4]1 that, in sequential
programs, have runtime overheads of up to 20X, 1.21X and 3X, respectively.
1 AccMon uses special hardware.

c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 202–216, 2014.
DOI: 10.1007/978-3-319-09967-5 12

AntSM: Efficient Debugging for Shared Memory Parallel Programs 203

A second class of debugging tools (e.g., [5–7]) looks for statistical variations in
program behaviors between correct and incorrect runs, and can also have high
runtime overheads. These overheads result from needing to monitor fine grained
program actions at runtime.

While a naive port of these tools to a parallel, shared memory platform is
possible, doing so is inefficient. The tools often rely on having a single data item
monitored for each program point of interest (e.g., every reference of a non-
floating point variable). The key insight of this paper is that different instances
of the same code executing in parallel in different threads are likely to behave
similarly, and that sampled monitoring over that code can reduce overheads with
only a small impact on accuracy.

The Ant Shared Memory (or AntSM) system exploits this key observation to
reduce the overhead of debugging tools when used with shared memory paral-
lel programs. AntSM uses the parallelism of the multi-threaded shared memory
program being monitored to reduce the overhead of the debugging tool, while
maintaining a high level of accuracy. It does this by first instrumenting the pro-
gram with calls to AntSM runtime library to collect and maintain information
about parallelism in the program. The program is then instrumented with mon-
itoring and other calls for the bug detection technique being used. At runtime,
the parallel structure of the program and the number of threads executing some
region of the program are used to perform an intelligently sampled monitoring.

We measure the effectiveness of AntSM with a case study using multi-threaded,
parallel Pthreads programs from the PARSEC benchmark suite [8] with injected
bugs like those in the Siemens Benchmark Suite [9]. Our debugging tool is C-
DIDUCE [3], an implementation of DIDUCE [2] targeting C instead of Java.
AntSM reduces the running time of the monitored program by up to 18.14 times
(and on average 8.73 times) on an eight-core machine relative to a naive port that
performs no sampling, with an accuracy that is close to monitoring all accesses.

To summarize, this paper presents the following technical contributions:

– It describes a debugging framework that allows sequential debugging tools to
be efficiently used with shared memory parallel programs;

– It describes in detail the AntSM runtime that maintains information about
parallelism to enable sampled monitoring;

– It describes a case study of AntSM using the C-DIDUCE [3] value invariant
tool with parallel C/C++ Pthreads programs;

– It provides experimental results showing the usefulness of AntSM.

The rest of the paper is organized as follows. Section 2 provides an overview
of the AntSM strategy. Section 3 discusses the AntSM runtime and instrumen-
tation techniques. Section 4 describes a case study of our framework, and Sect. 5
presents an experimental evaluation of the case study. Section 6 discusses related
work, and Sect. 7 provides our conclusions.

204 J.-W. Lee and S.P. Midkiff

2 Overview of the AntSM Strategy

To provide insights into AntSM’s strategy, we now contrast how it, and a straight-
forward port of a monitoring-based debugging tool, function. In this paper, we
use a statistical and invariance based debugging tool called C-DIDUCE (a vari-
ant of DIDUCE for C) that asserts the value invariant hypothesis. The value
invariant hypothesis states that a given variable takes on a small set of values
during its lifetime, even with different input data, and rarely occurring deviations
from this set of values indicate buggy or anomalous behavior.

DIDUCE and other invariance based tools typically have a training phase and
a checking phase. During the training phase, the program being debugged is run
with data that gives a correct answer. Each action of interest is monitored and
the outcome of that action is recorded. For DIDUCE, each variable reference is
monitored and the value seen is recorded in a compressed form. These outcomes
form an invariant set of outcomes that are true for correct executions. During
checking runs, each action of interest is monitored and the outcomes that are
deviations from the invariant set are monitored and recorded. This monitoring
and recording often incurs a high overhead, and it is this overhead that we seek
to reduce with our techniques. After the program executes, the deviations from
the invariant set are ranked. Frequently occurring deviations are considered more
likely to be invariants that simply were not seen during the training runs, and
are ranked lower. Rarely occurring deviations are considered more likely to be
signs of a bug, and are ranked higher.

A straightforward port of a tool would simply instrument a parallel program
as if it were a sequential program, and monitor all actions of interest in the
program. Ignoring overheads induced by the tool running in a parallel environ-
ment and needing to be thread-safe, this would produce the same overhead as
a sequential execution of the program that executed the same number of moni-
tored actions. Thus each thread executes all of the monitoring, a mode that we
call replicated monitoring.

One way to reduce the overhead of replicated monitoring is to have each of
the T threads executing the program monitor 1

T of the events. This performs a
distributed sampled monitoring across all T threads. This significantly reduces
the monitoring overhead but can lead to less accuracy in detecting anomalous
events that indicate a bug, as shown in Sect. 5.4. The loss of accuracy results
from each thread only sampling 1

T events, even in program regions that are
not executed by all T threads. This leads to some actions being severely under-
monitored or completely missed by monitoring.

AntSM takes a more intelligent approach, and by doing so achieves nearly the
low overhead of distributed monitoring and accuracy close to that of replicated
monitoring. A typical Pthreads program either spawns threads that directly
call a function that performs the thread’s share of the computation, or spawns
threads (i.e., a thread pool) that check a work queue, and invoke a function
implied by the queue entry to perform the computation. We call all these func-
tions that specify the computation root functions. By instrumenting and analyz-
ing the thread spawning points and the root functions, and tracking when threads

AntSM: Efficient Debugging for Shared Memory Parallel Programs 205

enter and exit root functions, the exact number of threads performing the com-
putation associated with the root function can be determined. This count, Tc,
can be used to perform sampling of 1

Tc
actions rather than 1

T actions, and avoid
severely undersampling program actions of interest. Moreover, because the func-
tions associated with a given root function are engaged in the same operation
on different data, sampling within these functions is more likely to be sampling
from a set of similar actions than simply randomly sampling across the entire
program, which should lead to higher accuracy. Within loops, this sampling is
implemented by each thread executing 1

Tc
iterations, and within straight-line

code, by each thread executing each 1
Tc

statements in the textual representation
of the program.

3 AntSM Runtime and Instrumentation

We now describe how code is analyzed and instrumented to enable AntSM’s
intelligent sampling strategy (see Fig. 1.)

First, root functions must be identified directly from the start routine argu-
ment to the pthread create function. Programs using a thread pool require
instrumenting all functions to log when the function is entered and exited, and
printing the function name and system thread ID. From this, a simple script

(a) Overview of the AntSM debugging system.

(b) AntSM Runtime and a runtime call graph. RF is a root function and the Fs represent
other functions. TP1 shows the case with a thread pool. Squiggly lines represent threads,
numbered by thread group ID.

Fig. 1. Steps performed by AntSM and the AntSM runtime system.

206 J.-W. Lee and S.P. Midkiff

can extract root function names. The logging of function names with the thread
id incurs about a 20X runtime overhead, but this task is required only once at
the time the root functions are identified. This is unnecessary if the programmer
already knows what functions are used for the root functions, by having the
programmer provide the function name list to the AntSM. Even when this is not
the case, we could identify the root functions within a few minutes to an hour
at most.

After root functions are identified, they are instrumented with calls to the
AntSM runtime library to monitor when a thread starts and finishes execut-
ing the root function. This information is made available to any code that is
executed within the root function or any function called (directly or indirectly)
from the root function. We refer to this code as a root reachable code, and the
threads executing it as a thread group. Each thread in the program is given a
“thread id” by the system. AntSM also maintains for each thread a local ID,
called the “group id”, where 0 ≤ group id < Tc and Tc is the number of threads
executing a particular root function. AntSM also maintains a mapping between
thread ids and group ids. This allows the thread to test if it should perform a
particular monitoring operation. Next, the program is instrumented with calls
to the debugging tool’s library to perform sampling. A training run is then per-
formed to build the initial invariant sets, and then one or more checking runs
are performed to identify potentially buggy program points. We now describe
these operations in more detail.

Algorithm 3.1. AntSM runtime library, antsm enter root
Input: root addr - an address of a root function
Output: Set of thread-local variables and thread-global variables

1: // thread-local: each thread keeps own copy of these variables
2: thread id ← syscall(SYS gettid) // system thread ID
3: group id // unique thread ID in its thread group assigned by AntSM
4: my root addr ← root addr // root function address
5: // thread-global: all threads share these variables
6: root map // thread id → root function address used by antsm exit root
7: group id map // thread id → thread ID in its thread group
8: thread cnt map // my root addr → runtime threads count
9: root map[thread id] ← my root addr

10: if thread cnt map[my root addr] is not set then
11: // this is the first thread that enters the function
12: group id map[thread id] ← group id ← 0
13: thread cnt map[my root addr] ← 1
14: else
15: group id map[thread id] ← group id ← thread cnt map[my root addr]
16: thread cnt map[my root addr] ← thread cnt map[my root addr] +1
17: end if

AntSM: Efficient Debugging for Shared Memory Parallel Programs 207

3.1 Code Instrumentation with AntSM Runtime Calls

To maintain the information about parallelism, i.e., how many threads are
executing some root reachable code, the AntSM runtime provides two library
functions - antsm enter root and antsm exit root. One purpose of this instru-
mentation is to track when a thread begins executing a particular root function,
and when a thread stops executing a root function. This allows the AntSM
runtime to know how many threads are executing each root function, i.e., the
value Tc for each root function. The second purpose of this instrumentation is to
ensure that all group ids lie between 0 and Tc −1. When the thread that finishes
executing a root function is not the thread with the highest valued group id, it
is necessary to adjust the group ids of the remaining threads to maintain the
constraint that all group ids lie between 0 and Tc − 1.

A call to antsm enter root, described in Algorithm 3.1, is inserted at the
beginning of each root function. The thread id and root function address are
captured in thread-local variables (lines 2 and 4). Line 9 associates the root
function’s address with the current thread. Because parallelism information is
kept for each root function, line 10 checks if another thread is already executing
the root reachable code. If not, in line 12 the current thread is given the group id
of 0 in the current thread group (the set of threads executing this root reachable
code) and the thread count is set to 1 (line 13). If other threads are executing
code from this root, the group id for this group is set to the number of threads
that were already executing code from the root (line 15) and the thread count
for this root is incremented (line 16). At this point, each thread executing a
root reachable code has access to its position within its thread group, and the
total number of threads in the thread group. Note that thread-local variables are
used to avoid unnecessary synchronization for better performance in the AntSM
runtime. In Algorithm 3.1, all the accesses to the thread-global data structures
must be guarded by the proper synchronization techniques. The hashmap vari-
ables (root map, group id map and thread cnt map) may be accessed by multiple
entering/exiting threads at the same time. Pthreads mutexes and condition vari-
ables with the read/write counters are used to synchronize the accesses.

A call to antsm exit root, described in Algorithm 3.2, is inserted at the exit
points of each root function. This function updates the count of threads executing
a root reachable code, and ensures the group id have values between 0 and Tc−1.
The function first decrements the thread count for the current thread group
(lines 4 and 5) and nulls out its entry in the group id map and the root function
map (lines 7, 8, 13 and 14) since the thread is no longer active in executing a
root reachable code. Because of the way the monitoring code is generated (as
described below), the group id must always be in the range, 0 ≤ group id <
thread cnt. Thus, if the current thread’s group id is less than the decremented
thread count (line 9), then the thread with the highest group id in its group will
have a group id equal to the thread count in its group. In this case, the thread
with its group id equal to thread count is found (line 10), and assigned the current
thread’s group id in its group (line 12). As in Algorithm 3.1, all accesses to
the thread-global data structures (root map, group id map and thread cnt map)

208 J.-W. Lee and S.P. Midkiff

Algorithm 3.2. AntSM runtime library, antsm exit root
Input: root addr - an address of a root function
Output: Set of thread-local variables and thread-global variables

1: // thread local and global variables are as in antsm enter root in Algorithm 3.1
2: // local (automatic) variable:
3: thread cnt
4: thread cnt ← thread cnt map[my root addr] −1
5: thread cnt map[my root addr] ← thread cnt
6: if group id map[thread id] = thread cnt then
7: group id map[thread id] ← NULL
8: root map[thread id] ← NULL
9: else if group id map[thread id] < thread cnt then

10: find group id map[thread idi] where root map[thread idi] = root addr
and group id map[thread idi] = thread cnt

11: // i between 0 and size[group id map] −1
12: group id map[thread idi] ← group id map[thread id]
13: group id map[thread id] ← NULL
14: root map[thread id] ← NULL
15: end if

must be also protected by the synchronization techniques. The same Pthreads
mutexes and condition variables with the read/write counters that are used in
the antsm enter root function are also used to synchronize these accesses.

For example, in the runtime call graph of Fig. 1, when an initial thread enters
a root function, RF1, the group id of 0 in its thread group, is assigned and the
associated thread’s count is increased by one (line 12 and 13 of Algorithm 3.1). If
three more threads execute the RF1 root function, each will execute lines 15 and
16 of Algorithm 3.1 (i.e., thread cnt map[RF1] is 4). If a thread with group id,
2, exits RF1 (giving a “true” condition in line 9 of Algorithm 3.2), the thread
with group id, 3, is found and its group id is replaced with the leaving thread’s
group id, 2 (lines 10 and 12 of Algorithm 3.2). Therefore, the range of thread IDs
in this group is maintained within the updated thread count of 3. The group id
for each thread group, set in lines 12 and 15 of Algorithm 3.1, is also used to
distribute monitoring as described in Sect. 3.2.

3.2 Instrumentation with Calls to the Debug Library

With AntSM, the sampled monitoring of program points is done within a thread
group. If the program point is in straight-line code (Fig. 2(b)), AntSM generates
the conditional statement:

if (group id == pgm pt id % Tc),

where group id ∈ {0, . . . , Tc − 1} and pgm pt id is the numerical ID given for
the current program point. Sampling in loops (Fig. 2(c)) is done by iteration
using an inserted loop iteration count, with 1

Tc
iterations monitored by each

AntSM: Efficient Debugging for Shared Memory Parallel Programs 209

Fig. 2. Debugging library instrumentation example.

thread. antsm enter root and antsm exit root cause the number of threads, Tc, to
change dynamically as threads enter and exit the root function, as was described
in Sect. 3.1. AntSM performs replicated monitoring (Fig. 2(a)) on code that is
never executed in parallel, i.e., not reachable from a root function.

4 A Case Study with C-DIDUCE and Value Invariant
Detection

We now present a case study of the AntSM system using the C-DIDUCE [3]
value invariant detection (VID) technique [2]. We note that AntSM can be used
with two large classes of debugging tools, as both allow sampled monitoring.
The first class contains invariant violation detection tools (e.g., [2–4,10]), which
look for violations of program invariants, of which DIDUCE and C-DIDUCE2

are two examples. They assert the value invariant hypothesis, which states that
a given variable takes on a small set of values (the invariant set) across different
program runs with different input data sets. Rarely occurring deviations from
this set of values are indicative of buggy or anomalous behavior. The second
class contains tools that find statistical variations in program behaviors that are
correlated to bugs (e.g., [5–7]) between correct and incorrect runs.

2 The differences between DIDUCE and C-DIDUCE come from the former targeting
Java and the latter C. These differences are explained in [3].

210 J.-W. Lee and S.P. Midkiff

VID tools first perform a training run to form an approximation to the
invariant set. DIDUCE associates each reference of a variable with an invari-
ant I = 〈Mt, V 〉, where V is the variables’ initial value, and Mt is the value of
an invariant mask after the t-th access. V is initialized to the variable value that
is seen when the reference is first executed, and M is initialized to be all 1’s. Let
wt be the t-th value of V observed at the program point.

As each value wt is observed, the test (wt ⊗V)∧Mt �= 0 is performed, where
⊗ is the bitwise XOR operation. If the test is true, the invariant is relaxed by
updating the mask so that M = Mt+1 ← Mt∧(wt ⊗ V). Intuitively, each update
of the mask results in the mask having a value of ‘0’ in bit positions where both
a ‘0’ and a ‘1’ have been previously seen. A mask position containing a ‘1’
indicates that all previous values only had a ‘1’ in that position, or that all
previous values only had a ‘0’ in that position. Whether only a ‘0’ or ‘1’ value
was seen is determined by inspecting the corresponding bit of V . Thus the test
determines if the value wt differs in one or more bits from all previously seen
values, and if it does, the mask is relaxed to indicate this.

In a production run with a different input (which presumably exhibits the
buggy behavior), values not in the (approximate) set of seen values are detected
by applying the invariant violation test. However, not all invariant violations are
treated equally. In particular, violations with values that are seen many times
are treated as being less important than violations with values that occur only
a few times, as they likely are values that should have been in the invariant
set. At the end of the run, the different violations are ranked, and a listing of
violations, in rank order, is produced. As with other debugging and anomaly
detection tools, the assumption is that lower ranked violations are less likely to
correlate to a bug, and that a programmer debugging a program will examine
the highly ranked violations, fix any indicated errors, and then either re-execute
the program, or re-train and re-execute the program.

4.1 Using C-DIDUCE with AntSM

When using AntSM with C-DIDUCE and Pthreads programs, a runtime ini-
tialization call is inserted at the beginning of the program to initialize the C-
DIDUCE runtime. This initialization records whether the run is a training or
checking run, allocates memory and initializes the invariant data structures.
Upon exiting the program, the invariant information is written to an output
file. In training mode, the output files contain the value invariant set for all
monitored points. In checking mode, the output files contain invariant violation
information.

5 Experimental Results

5.1 Implementation and Experimental Setup

Static root function analysis and instrumentation, described in Sect. 3, are imple-
mented in the LLVM compiler, v 3.1 [11]. When a thread pool is used, we find

AntSM: Efficient Debugging for Shared Memory Parallel Programs 211

Table 1. Summary of the PARSEC benchmark characters: “LOC” is lines of code;
“Monitored Points” is the number of static program points monitored; “Thread Pool”
says if the benchmark uses a thread pool; “Injected Bugs” is the number of bugs
injected; and “Original Speedup” is the speedup of the un-instrumented benchmark
going from 1 to 8 threads.

Name Application Domain LOC Monitored Thread Injected Original

Points Pool Bugs Speedup

blackscholes Financial Analysis 408 180 No 8 4.63

bodytrack Computer Vision 3066 6544 Yes 15 5.62

canneal Engineering 371 207 No 7 1.37

dedup Enterprise Storage 398 553 Yes 8 2.03

ferret Similarity Search 8940 9141 Yes 5 2.86

fluidanimate Animation 2733 1329 No 6 4.02

raytrace Visualization 3553 2757 Yes 7 1.28

streamcluster Data Mining 1720 978 No 6 3.46

swaptions Financial Analysis 994 898 No 14 7.98

vips Media Processing 98940 21168 No 10 7.63

x264 Financial Analysis 26437 14705 No 15 5.71

root functions as described in Sect. 3. All memory loads, stores, and return values
from function calls are monitored. We use eleven programs from the PARSEC
Pthreads benchmark suite [8] described in Table 1. Two programs from this suite
are not used: freqmine, which uses OpenMP, not Pthreads3, and facesim, which
LLVM cannot compile.

The bugs which are injected into our benchmark programs are the same kind
as those used in the original DIDUCE and C-DIDUCE studies and in the Siemens
bug benchmarks [9]. Five to fifteen bugs were injected into each benchmark, with
each bug injected into a different copy of the benchmark. To allow an accurate
comparison of our technique with C-DIDUCE, bugs are injected at frequently
executed program points. If a program point is not frequently executed, it is
possible that our sampling will miss “noise” and capture relatively more buggy
actions. This in turn makes our sampled executions appear better than full
monitoring. Because of this, the number of injected bugs is not proportional to
the lines of code in Table 1.

We used machines with two quad core Intel Xeon 2.33 GHz processors, 16 GB
of memory, and Linux 2.6.32 for the performance and accuracy experiments;
machines with 48 AMD Opteron 6176, 2.3 GHz processors, 256 GB of memory,
and Linux 2.6.32 were used for the scalability test. For the performance and
accuracy experiments, training runs were done using 2 threads and the small
dataset. Checking runs were done using 8 threads and the large dataset.
3 No significant technical challenge prevents us from using OpenMP.

212 J.-W. Lee and S.P. Midkiff

Fig. 3. Comparison of C-DIDUCE execution time overhead in checking mode. The
baseline is the execution time of the original benchmark with large dataset and no
instrumentation. Note that the vertical axis is on a log scale. The data label on each
bar shows the overhead (times) rounded to the nearest one. The number next to each
benchmark’s name represents the overhead reduction from Replicated to AntSM.

5.2 Performance of C-DIDUCE with AntSM

Figure 3 compares the overhead of different monitoring schemes. The baseline
is the original benchmark execution time (without any monitoring). The bars
labeled “Replicated”, “AntSM” and “Distributed” are for the naive replicated
monitoring scheme, AntSM’s sampled monitoring, and the distributed moni-
toring scheme, respectively. Note that the vertical axis is on a log scale. The
benchmark names are labeled with the reduction in overhead going from the
replicated scheme to the AntSM scheme (“Replicated” to “AntSM”). AntSM
shows up to 18.14 times overhead reduction (dedup) and an average reduction
of 8.73 times.

Two benchmarks with low overhead reduction are canneal (1.67X) and ray-
trace (1.01). As shown in Table 1, these benchmarks have a low original speedup,
indicating little parallelism and few opportunities for AntSM to perform sam-
pled monitoring. In particular, the raytrace benchmark executes almost entirely
sequentially. Measuring overhead in only the parallel section of raytrace gives an
overhead reduction of 2.17 for AntSM. The naive “Distributed” scheme gives the
best performance because this scheme performs a 1

T , where T is the number of
threads, sampling even in sequential areas of the program. As shown in Sect. 5.4,
“Distributed” has a lower accuracy than the other two schemes.

Training runs were done with 2 threads and the overhead reductions from
“Replicated” to “AntSM” (measured as with the checking runs) are 4.40X for
blackscholes, 3.55X for bodytrack, 1.39X for canneal, 0.97X for dedup, 2.17X for
ferret, 4.23X for fluidanimate, 1.08X for raytrace, 2.46X for streamcluster, 3.86X

AntSM: Efficient Debugging for Shared Memory Parallel Programs 213

Table 2. Scalability of C-DIDUCE with AntSM’s analysis and instrumentation.

Number of threads 4 8 16 32

blackscholes 6.94 11.64 22.49 44.16

bodytrack 5.96 10.54 13.81 15.59

canneal 2.25 2.48 2.59 2.64

dedup 2.81 3.13 3.58 5.48

ferret 9.03 20.69 35.67 45.51

fluidanimate 9.44 17.35 28.03 35.25

raytrace 1.03 1.05 1.06 1.07

streamcluster 9.17 29.48 71.52 127.77

swaptions 7.15 18.39 39.80 72.96

vips 10.25 25.37 52.64 98.03

x264 6.96 11.92 13.27 16.22

for swaptions, 1.78X for vips, and 1.80X for x264. Low overhead reductions occur
because the initial AntSM startup overhead is not amortized on a small number
of threads and smaller data set used for some benchmarks.

5.3 Scalability Results

We now present experimental data showing the scalability of AntSM when mon-
itoring value invariants. Table 2 presents the speedup of AntSM with an increas-
ing number of threads. The baseline case is the execution of C-DIDUCE with
AntSM in checking mode, executing with a single thread. As the table shows,
AntSM scales in most benchmarks as the number of threads increases. There are
three benchmarks showing low scalability (raytrace, canneal, and dedup) but as
shown in Table 1, the original speedup of those benchmarks are low, resulting in
the low scalability in AntSM as well.

5.4 Accuracy of C-DIDUCE with AntSM

Figure 4 shows the accuracy measurements for C-DIDUCE in a checking mode
run with “Replicated”, “AntSM” and “Distributed” monitoring. We injected 5
to 15 bugs into each benchmark. Each bug is a form of Value Mutation, which
changes an assignment like “a = x” into “a = x + c”, where c is an integer con-
stant. DIDUCE and C-DIDUCE rank anomalies as to how likely they are to be a
bug, and we report the rates for bugs occurring in the top 5, 10, 20, or 50 ranked
anomalies. Top X in Fig. 4 means that only bugs ranked in the top X violations
are considered to be successfully detected. Figure 4 shows that “AntSM” has
accuracy similar to “Replicated” in most cases while providing much better per-
formance. “AntSM” accuracy is equal to, or better than (5 cases) “Distributed”
in all cases. In particular, “AntSM” has higher accuracy than “Distributed” for

214 J.-W. Lee and S.P. Midkiff

Fig. 4. The comparison of accuracy among Replicated, AntSM, and Distributed.

the two benchmarks with a large sequential portion (raytrace and vips) in Top
50 because the “AntSM” checking uses replicated monitoring in the sequential
parts of the program while “Distributed” uses sampling.

Note that sometimes the sampling schemes (“AntSM” and “Distributed”)
are ranked higher than “Replicated” as with streamcluster of Top 5, raytrace
and x264 of Top 10, canneal and streamcluster of Top 20, and streamcluster of
Top 50. This is because the “Replicated” scheme performs more monitoring,
and thus can see more violation data, which may lower the ranking of detected
violations. The same reason holds between “AntSM” and “Distributed.”

6 Related Work

In [12], we discuss the Ant debugging framework for distributed memory pro-
grams. Although this framework has similar goals to our current work, it uses
very different techniques. In particular, it attempted to find program regions
executed by all processes by analyzing if statements involving the process id.
Monitoring was sampled within these regions. In this work, we sample within any
code that is executed in parallel, even when executed with a subset of threads.
This led to entirely different analysis techniques.

There is previous work on extending traditional debuggers to parallel pro-
grams. TotalView [13], Mantis [14], and Prism [15], and DETOP [16] support
traditional debugging techniques such as breakpoints for specifying the processes
or threads of interest. The work of Stringhini et al. [17] and Cheng et al. [18]
group similar MPI processes for targeting with traditional debugging actions.

AntSM: Efficient Debugging for Shared Memory Parallel Programs 215

AntSM differs from these by exploiting the application’s parallelism to reduce
the overhead of value invariant detection and statistical debugging tools.

Other tools look for outliers in the behavior of processes. These tools often
use statistical techniques to find clusters of similarly behaving processes based on
communication patterns, volumes, stack traces, and so forth. Outlier processes
are identified as they are likely to be exhibiting buggy behavior. Work in this area
includes that of Mirgorodskiy et al. [19], DMTracker [20], Arnold et al. [21,22]
and Hermes [23]. In contrast, AntSM uses analysis and runtime information to
improve the performance of the sequential debugging tools, and is orthogonal to
these approaches.

There are sequential program debugging tools, and we have mentioned some
of these earlier [2–4,6,7,10]. These tools are developed for sequential programs,
and a direct port will be equivalent to the “Replicated” technique.

7 Conclusions

This paper describes AntSM, a system for improving the performance of sequen-
tial debugging tools in parallel, shared memory Pthreads programs. AntSM uses
a combination of compile-time analysis and instrumentation, and runtime mon-
itoring, to intelligently sample events of interest for these tools. Our techniques
lead to significant performance improvements over a naive porting of these tools
and much better accuracy than a less intelligently applied sampling. This work
allows sequential bugging tools to be efficiently used to create more reliable and
robust parallel programs.

References

1. Software errors cost U.S. economy $59.5 billion annually. NIST News Release 2002–
10

2. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly
detection. In: Proceedings of the 24th International Conference on Software Engi-
neering, pp. 291–301 (2002)

3. Fei, L., Midkiff, S.P.: Artemis: practical runtime monitoring of applications for
execution anomalies. In: PLDI ’06, pp. 84–95, New York, NY, USA (2006)

4. Zhou, P., Liu, W., Fei, L., Lu, S., Qin, F., Zhou, Y., Midkiff, S.P., Torrellas, J.:
AccMon: automatically detecting memory-related bugs via program counter-based
invariants. In: Proceedings of MICRO’04 (2004)

5. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug
isolation. In: PLDI ’05 (2005)

6. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program
sampling. In: PLDI ’03, pp. 141–154 (2003)

7. Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: Sober: statistical model-based
bug localization. In: ESEC/FSE-13: 10th European Software Engineering Confer-
ence Held Jointly with 13th International Symposium on Foundations of Software
Engineering (2005)

8. The PARSEC Benchmark Suite. http://parsec.cs.princeton.edu

http://parsec.cs.princeton.edu

216 J.-W. Lee and S.P. Midkiff

9. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments of the effective-
ness of dataflow- and controlflow-based test adequacy criteria. In: International
Conference on Software Engineering, ICSE ’94, pp. 191–200, Los Alamitos, CA,
USA (1994)

10. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant
program invariants. In: Proceedings of the 22nd International Conference on Soft-
ware Engineering, pp. 449–458 (2000)

11. The LLVM Compiler Infrastructure. http://llvm.org
12. Lee, J.-W., Bachega, L.R., Midkiff, S.P., Hu, Y.C.: Ant: a debugging framework for

MPI parallel programs. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS,
vol. 7760, pp. 220–233. Springer, Heidelberg (2013)

13. Totalview user guide. Accessed 28 Sept 2012
14. Lumetta, S.S., Culler, D.E.: The mantis parallel debugger. In: SPDT ’96: Pro-

ceedings of the SIGMETRICS Symposium on Parallel and Distributed Tools, pp.
118–126, New York, NY, USA (1996)

15. Sistare, S., Dorenkamp, E., Nevin, N., Loh, E.: MPI support in the Prism pro-
gramming environment. In: Supercomputing ’99, pp. 22 (1999)

16. Wismuller, R., Oberhubera, M., Krammera, J., Hansenb, O.: Interactive debug-
ging and performance analysis of massively parallel applications. Parallel Comput.
22(3), 415–442 (1996)

17. Stringhini, D., Navaux, P., de Kergommeaux, J.C.: A selection mechanism to group
processes in a parallel debugger. In: Proceedings of 2000 International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA’00),
June 2000

18. Cheng, D., Hood, R.: A portable debugger for parallel and distributed programs.
In: Supercomputing ’94, pp. 723–732, November 1994

19. Mirgorodskiy, A.V., Maruyama, N., Miller, B.P.: Problem diagnosis in large-scale
computing environments. In: SC ’06, pp. 88. ACM (2006)

20. Gao, Q., Qin, F., Panda, D.K.: DMTracker: finding bugs in large-scale parallel
programs by detecting anomaly in data movements. In: SC ’07. ACM (2007)

21. Arnold, D.C., Ahn, D.H., de Supinski, B.R., Lee, G.L., Miller, B.P., Schulz, M.:
Stack trace analysis for large scale debugging. Parallel and Distributed Processing
Symposium, p. 64 (2007)

22. Lee, G.L., Ahn, D.H., Arnold, D.C., de Supinski, B.R., Legendre, M., Miller, B.P.,
Schulz, M., Liblit, B.: Lessons learned at 208k: towards debugging millions of cores.
In: SC ’08, pp. 1–9, Piscataway, NJ, USA (2008)

23. Strom, R.E., Bacon, D.F., Goldberg, A.P., Lowry, A., Yellin, D.M., Yemini, S.A.:
Hermes: A Language for Distributed Computing. Prentice-Hall Inc., Upper Saddle
River (1991)

http://llvm.org

DRIFT: Decoupled CompileR-Based
Instruction-Level Fault-Tolerance

Konstantina Mitropoulou1(B), Vasileios Porpodas1, and Marcelo Cintra1,2

1 School of Informatics, University of Edinburgh, Edinburgh, UK
K.Mitropoulou@sms.ed.ac.uk, v.porpodas@ed.ac.uk
2 Intel Labs Braunschweig, Braunschweig, Germany

mc@staffmail.ed.ac.uk

Abstract. Compiler-based error detection methodologies replicate the
instructions of the program and insert checks wherever it is needed. The
checks evaluate code correctness and decide whether or not an error has
occurred. The replicated instructions and the checks cause a large slow-
down. In this work, we focus on reducing the error detection overhead and
improving the system’s performance without degrading fault-coverage.
DRIFT achieves this by decoupling the execution of the code (original
and replicated) from the checks.

The checks are compare and jump instructions. The latter ones sequen-
tialize the code and prohibit the compiler from performing aggressive
instruction scheduling optimizations. We call this phenomenon basic-
block fragmentation. DRIFT reduces the impact of basic-block fragmen-
tation by breaking the synchronized execute-check-confirm-execute cycle.
In this way, DRIFT generates a scheduler-friendly code with more ILP.
As a result, it reduces the performance overhead down to 1.29× (on aver-
age) and outperforms the state-of-the-art by up to 29.7 % retaining the
same fault-coverage. The evaluation was done on an Itanium2 by running
MediabenchII and SPEC2000 benchmark suites.

Keywords: Compiler error detection · Fault tolerance

1 Introduction

The current techniques to improve performance and to reduce energy consump-
tion have made transistors more vulnerable to errors [6,24,29]. Soft Error Rate
(SER) increases as we move to small transistor technologies. In addition, tech-
niques like voltage scaling require transistors to operate at their voltage limit.
This increases SER further. An important class of hardware errors is transient
errors (a.k.a. soft errors) which occur only once and do not persist [28]. Although
transient errors are temporal phenomena, they can alter the program’s execu-
tion. For instance, in 2000, Sun Microsystems received several complaints from
customers such as America On-line, eBay, and Los Alamos Labs, who experi-
enced system failures because of transient errors [18].

This work was supported in part by the EC under grant ERA 249059 (FP7).

c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 217–233, 2014.
DOI: 10.1007/978-3-319-09967-5 13

218 K. Mitropoulou et al.

Hardware redundancy based error detection techniques are used in high-
availability systems and mission critical environments. Typical examples are
IBM’s G4 and G5 processors [26] and HP NonStop series processors [4]. Not
all systems can afford the cost of the extra hardware and design complexity of
hardware-based error detection. Compiler-based error detection might be prefer-
able instead. There are several reasons: 1. It is more flexible and cheaper than
the hardware design and it can be applied on-the-fly on any system. 2. It oper-
ates at a higher abstraction level restricting the error detection only to errors
that might affect application’s output. 3. It gives the designer the flexibility to
choose the program region that he wants to protect. Its main drawback is that
code duplication has negative impact on performance.

High fault-coverage compiler-based error detection (ED) methodologies face
the challenge of effectively managing the error detection overhead without sac-
rificing reliability. There are two approaches to this. Synchronized techniques
require that the original and redundant code execute in sync such that the exe-
cution is checked in strict intervals. In this way, the strict synchronization guar-
antees fail/stop behavior, but it has negative impact on the code’s performance.
On the other hand, decoupled approaches remove the strict synchronization
between the original and the redundant code, and they let them slip against one
another, while performing the checks slightly later, when convenient. Thus, the
program runs faster. However, the system looses its fail-stop capability since the
synchronization points are removed.

Compiler-based ED techniques increase the code size since they generate
redundant and checking code. This extra code can be executed either on the
same processor as the original code (single-core techniques) or on a separate
core (dual-core techniques). Each scheme is suited for different use scenarios.
On one hand, if there are spare cores and no energy restrictions (all the cores
are turned on), then the dual-core technique is the best option. On the other
hand, if there are no free cores, or the application is one that benefits from using
multiple cores, then wasting multiple cores for running the redundant code is not
wise. Under these circumstances, it might be preferable to apply the single-core
ED scheme on each thread of the multi-threaded application or each program of
a multi-programmed workload. DRIFT is an improved single-core technique.

Our work is based on the observation that the frequent checking of the syn-
chronized scheme becomes a performance bottleneck. This is a phenomenon we
refer to as basic-block fragmentation. The checks break the code into very
small basic-blocks with two exiting control edges (Fig. 1.1.b). The resulting com-
plex control flow acts as a barrier for aggressive compiler optimizations at the
instruction scheduling level, even for the most aggressive schedulers. For exam-
ple, in Fig. 1.1, the original basic-block BB1 (Fig. 1.1.a) splits into three basic-
blocks. The scheduler cannot easily move the instructions among basic-blocks
to improve ILP because it strictly must respect the program semantics. This
is an important restriction that prohibits the compiler from generating high
performance code for synchronized single-core ED. DRIFT introduces a novel
decoupled single-core technique that avoids the basic-block fragmentation and

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 219

BB1 BB1a

BB1b

BB1c
BB1b

BB1c

BB1a

EHR

EHR

EHR

EHR

EHR

EHR
(b) (c)

(a)

basic−block
fragmentation

control edge original code
replicated code check

EHR: Error Handling Routine

EXECUTE
EXECUTE

REPLICATED

COMPARE

EXECUTE
EXECUTE

REPLICATED

COMPARE

ERROR
?

ERROR
?

(a)

(b)

STOP

STOP

1 2

Fig. 1. 1. Control-flow graph for (a) code without ED, (b) synchronized ED (SWIFT)
and (c) decoupled ED code (DRIFT). 2. (a) Synchronized ED and (b) Decoupled ED.

improves the performance considerably by relaxing the synchronization between
original, replicated code and checks. It achieves this by clustering the checks
(Fig. 1.1.c) so as to keep the basic-blocks big. In this way, the code is not frag-
mented into many basic-blocks and can be scheduled more efficiently.

We note that, strictly speaking, our code generation scheme does modify the
code semantics. This, however, takes advantage of knowledge of ED semantics
(which are not available to a standard compiler) and does affect the semantics
of the original (non-ED) program. Therefore, the aggressive code motion that
we perform in DRIFT, could not have been done automatically by any compiler
optimization since the compiler is restricted to always preserving the program
semantics.

Our contributions are:

– This work is the first to point out a major performance bottleneck in synchro-
nized ED caused by basic-block fragmentation.

– DRIFT overcomes the basic-block fragmentation bottleneck by being the first
decoupled single-core ED scheme.

– DRIFT outperforms the state-of-the-art by up to 29.7 % reducing the perfor-
mance overhead down to 1.29× while retaining high fault-coverage.

The rest of the paper is organized as follows: Sect. 2 presents basic-block frag-
mentation problem and the proposed solution. Section 3 describes DRIFT algo-
rithm. Section 4 shows the experimental set-up. Section 5 discusses performance
and fault-coverage results. Section 6 overviews the related work. Section 7 con-
cludes this paper.

220 K. Mitropoulou et al.

2 Motivation

Synchronized VS Decoupled: In compiler-based error detection, decoupling
was first used in DAFT [32] so as to remove the overhead of synchronizing
between the main and the checker thread. In that case the main and checker
threads are decoupled and allowed to slip between each other. In synchronized
single-core error detection, checks are synchronization points where the code is
checked for errors and a control point is inserted in the code. In Fig. 1.2.a, it
is shown that the execution of the program is interrupted by the checks, which
are in the critical path of the program. Therefore, the need to synchronize very
often is a significant slowdown factor for compiler-based error detection. The
solution is to remove these synchronization points by decoupling the execution
of the code (original, replicated) from the checks. In Fig. 1.2.b, we see that the
program does synchronize since the checks can be executed some time later.
This boosts the performance of the program and reduces the error detection
overhead. Such performance improvement may come at the expense of reduced
fault coverage. However, as shown previously (e.g., [32]), the impact on fault-
coverage is not serious. This is further discussed in the Decoupled Single-Core
(DRIFT) Section.

Synchronized Single-Core limitations: In the Synchronized ED (Fig. 1.1.b),
all original, replicated and checking code is placed on the same thread. A check is
placed right before a non-replicated instruction. Every check compares the original
and the replicated code using a compare (CMP) instruction. If the check succeeds,
then the code continues executing (no jump), otherwise the control jumps (JMP)
to the appropriate error handling routine.

The performance bottleneck of this scheme due to such synchronization,
shows up as what we call basic-block fragmentation. This problem has two main
factors: 1. The complicated Control Flow: The frequent checks (CMP + JMP)
break the original code into a sequence of small basic-blocks with two outgoing
edges each. For example BB1 in Fig. 2.a gets split by ED into five basic-blocks
(Fig. 2.b). 2. Instruction scheduling: The complex control flow due to the checks
acts as a scheduling barrier for the instruction scheduling optimization (e.g.,
trace scheduling). Even with a speculative scheduler that schedules regions of
multiple basic-blocks, the control edges (due to the checks) limit the scheduler’s
ability to hoist instructions and extract adequate amounts of ILP. Any state-
of-the-art region-based instruction scheduler has some limitations in hoisting
instructions across basic-blocks: 1. It cannot hoist instructions with side-effects
over branches since this can break the program semantics. This restricts the
hoisting of system calls, and store instructions [11,14]. 2. If there is no hard-
ware support for deferring exceptions then dangerous instructions such as loads
and divisions cannot be hoisted either [15]. As a result, the scheduler generates
poorly performing schedules, with low ILP.

Decoupled Single-Core (DRIFT): In this paper we propose DRIFT, an ED
scheme that addresses the shortcomings of the Single-Core Synchronized scheme,
as described earlier. DRIFT is based on three ideas: 1. Optimized Control Flow:

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 221

r3=r2+100
r20=r10+16
[r20]=r3
r4=r2+200
r5=r4+r3
r30=r10+32
[r30]=r5

(p1) jmp

(p2) jmp

BB1
r3’=r2’+100
r3=r2+100
r20’=r10’+16
r20=r10+16
cmp p1,p0=r3,r3’

[r20]=r3
r4’=r2’+200
r4=r2+200
r5’=r4’+r3’
r5=r4+r3
r30’=r10’+32
r30=r10+32
[r30]=r5
cmp p3,p0=r30,r30’
cmp p4,p0=r5,r5’
(p1) jmp

BB2
(p2) jmp

BB3
(p3) jmp

BB4
(p4) jmp

cmp p2,p0=r20,r20’

before scheduling

r3’=r2’+100 r3=r2+100 r20’=r10’+16 r20=r10+160
BB1

1
2
3

[r20]=r3
r5’=r4’+r3’
[r30]=r5

cmp p1,p0=r3,r3’ r4’=r2’+200
r30=r10+32

r4=r2+200
r5=r4+r3 r30’=r10’+32
cmp p3,p0=r30,r30’ cmp p4,p0=r5,r5’cmp p2,p0=r20,r20’

(p1) jmp4

(p2) jmp5

BB3

BB2

(p3) jmp6

BB4
7 (p4) jmp

after scheduling
c) DRIFT (relax 4 checks)

original code

replicated code

check code

inter−block transfer

Control edge to
Error Handling
Routine

before scheduling
a) No ED (code without error detection)

after scheduling
BB1 BB1

r3=r2+100
[r20]=r3

r4=r2+200 r30=r10+32r20=r10+160
1
2

r5=r4+r3
[r30]=r5

BB1

BB2
cmp p2,p0=r20,r20’
(p2) jmp

[r20]=r3
r4’=r2’+200
r4=r2+200
r5’=r4’+r3’
r5=r4+r3
r30’=r10’+32
r30=r10+32

(p3) jmp

BB4

BB3

(p4) jmp

BB5
[r30]=r5

r3’=r2’+100
r3=r2+100
r20’=r10’+16
r20=r10+16

(p1) jmp
cmp p1,p0=r3,r3’

before scheduling

cmp p3,p0=r30,r30’

cmp p4,p0=r5,r5’

b) Synchronized ED

BB1
r3’=r2’+1000

1
2

cmp p1,p0=r3,r3’
r3=r2+100
cmp p2,p0=r20,r20’

r20=r10+16
r4’=r2’+200

r20’=r10’+16
r4=r2+200

after scheduling

3
BB2

BB3
4
5
6

[r20]=r3
r5=r4+r3

r30’=r10’+32r30=r10+32
r5’=r4’+r3’

7
BB4

8

9
BB5

cmp p3,p0=r30,r30’
(p3) jmp

cmp p4,p0=r5,r5’
(p4) jmp

[r30]=r5

Fig. 2. The code before and after instruction scheduling for (a) code without ED,
(b) synchronized ED and (c) DRIFT where four checks are executed together.

222 K. Mitropoulou et al.

Modifying the control flow of the application can enhance the ability of the
instruction scheduler to optimize the code. Since instruction schedulers are not
as effective across basic-blocks as within basic-blocks, larger basic-blocks are
better. This can be done by decoupling the execution of checks and by executing
them later together as a group. By contrasting Fig. 2.b versus Fig. 2.c, we observe
that DRIFT generates a much more instruction-scheduler friendly code than the
Synchronized scheme. 2. It is acceptable to break the semantics of the combined
original and replicated code, as long as the semantics of the original code are
respected. This unawareness of normal compilers to the semantics of ED code
is the main reason why the compiler cannot automatically generate decoupled
code (like the one DRIFT generates) out of the synchronized code. Therefore
the code of Fig. 2.c cannot have been generated by any compiler optimization.
Breaking the semantics in a controlled way is required for modifying the code
in such an aggressive way. 3. DRIFT’s decoupled semantics have no effect on
fault-coverage. As shown in [32], modifying the semantics of the application
with ED support, such that the checks are decoupled from the execution, has
a minimal impact on the effectiveness of error detection. This is because in the
usual case, the increased delay between the error and its detection is not great
enough to let the error propagate to the output. Moreover, it has been shown in
[7,13,31] that a significant number of errors such as ISA-defined exceptions can
be detected by the operating system. This is a fundamental feature of DRIFT,
which guarantees its high fault-coverage despite the modified semantics that
allow for better performance.

DRIFT motivating example: In Fig. 2, the example shows the code for 3
cases: 1. No error detection, 2. Synchronized ED and 3. DRIFT which decouples
4 checks. Each sub-figure shows the code before instruction scheduling (left) and
the scheduling table (right) of a hypothetical 4-issue machine. All ED, schemes
Fig. 2.b–c, contain the same number of checks and replicated instructions (red).
This is because all schemes have the same sphere of replication (see Sect. 3). In
this work, our baseline is SWIFT [22] which is the state-of-the-art single-core
error detection. In SWIFT, checks are added before store instructions. For exam-
ple the store instruction “[r20]=r3” has its inputs checked. The check “cmp p1,p0
= r3,r3”’ makes sure that the instructions “r3=r2+100” and “r3’=r2’+100” pro-
duce the same result.

Basic-Block Fragmentation: Checks split the code into numerous basic-blocks.
For example the original code of Fig. 2.a is a single basic-block, but the ED
code of Fig. 2.b spans over 5 basic-blocks (BB1-BB5). Therefore, checks act as
fragmentation points for the Control Flow Graph (CFG).

The difference between the Synchronized scheme (Fig. 2.b) and the DRIFT
scheme (Fig. 2.c) is the amount of fragmentation of the basic-blocks. The Syn-
chronized case is the most fragmented one, as checks are regularly injected into
the code (see Fig. 2.b left). On the other hand, DRIFT groups together multiple
checks. In the example of Fig. 2.c, it groups 4 checks together. We refer to this
grouping of checks as “decoupling” and the amount of checks being decoupled as
“decouple factor”. Increasing the check relaxation decreases the fragmentation
of basic-blocks (see Fig. 2.c left).

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 223

Performance and Schedule: To understand the impact of decoupling on perfor-
mance, we have to look into the instruction schedule tables (on the right side of
each sub-figure). The schedule is obtained after an inter-block instruction sched-
uler has scheduled across the basic-blocks of the ED code (left). Inter-block code
hoisting is marked with green. The Synchronized scheme is fragmented as checks
introduce edges into the control flow. These edges prohibit aggressive code hoist-
ing in several cases. For example, “[r20]=r3” of BB3 cannot be hoisted into BB2
or BB1 as it modifies unknown memory. For the same reason, “r[30]=r5” of BB5
cannot be hoisted as well.

Removing these control flow restrictions improves the schedule considerably,
as instructions can be hoisted and parallelized easily. For example in Fig. 2.c,
all instructions are within a single basic-block (BB1), which makes it straight-
forward for any scheduler to parallelize.

3 DRIFT

Sphere of Replication: Similar to other state-of-the-art compiler-based ED
techniques [22,30,32] DRIFT assumes that the memory is protected by its own
mechanisms like Error Correcting Code (ECC), parity checking or other mecha-
nisms. Therefore the data fetched from the memory is considered to be correct.
Thus the Sphere of Replication (SoR) in DRIFT is limited to within the proces-
sor only.

The instructions that are not replicated are: 1. Control Flow instructions
(e.g., branches, function calls). 2. Store instructions.

The code of the linked binary libraries is not protected. This can be changed
by recompiling them with DRIFT.

The non-replicated instructions are synchronization points since the checks
are inserted before them.

Decouple Factor: As explained in Sect. 2, DRIFT decouples the checks off the
critical path of the execution by grouping them. Each group of checks contains
up to N number of checks. We refer to this as decoupling N checks or setting
the decouple factor to N. Therefore the decouple factor is a knob that controls
the number of checks that are executed later together in a group. For example,
if the decouple factor is two, then the checks will execute in pairs. For small
values of the decouple factor, the program has similar (though slightly better)
behavior to the Synchronized ED and suffers from basic-block fragmentation.
As the decouple factor increases, more checks are clustered together giving the
scheduler the freedom to schedule the instructions more efficiently.

Increasing the decouple factor has two side-effects: 1. We slightly increase the
risk of allowing erroneous data to propagate to memory and corrupt the output
of the program. 2. We keep more values in predicate registers which increases the
predicate register pressure. This may cause performance degradation if it results
in register spilling. Moreover, for big values of decouple-factor, many checks are
executed together. This means that there might not be enough units to deal with
this workload. Therefore, there is a trade-off between the number of checks that

224 K. Mitropoulou et al.

are decoupled, the fault-coverage and the hardware capacity. We explore the
effect of the decoupled factor on both performance and reliability in the results
Section.

DRIFT algorithm is listed in Algorithm 1 and it operates in four steps:

1. Code Replication: The algorithm checks if an instruction can be replicated
(Algorithm 1.a line 11). If this is true, then an exact duplicate of the original
instruction (Algorithm 1.a line 13) is emitted just before the original one. The
original instruction and its replica are inserted into a table (Algorithm 1.a line
14). This table is used later in the algorithm to recall the replicated instruction
that corresponds to any original instruction.

2. Code Isolation: This step isolates the replicated code from the original code
(Algorithm 1.a line 17). The isolation makes sure that the replicated code does
not write on any of the original code’s registers. Register isolation does not let
the replicated code affect the original code’s execution in any way. This is done
by register renaming the replicated instructions. In short, the algorithm iterates
over all original instructions in the program (Algorithm 1.a lines 18, 19) and for
each of them it retrieves the corresponding replicate instruction from the table
(see step 1) (Algorithm 1.a line 21) and renames all registers written by the
replicated instructions along with each of their uses (Algorithm 1.a line 22). All
renamed registers are filled into a table which is used in step 3.

3. Emit checks: Next, the algorithm finds all the non-replicated instructions.
For each non-replicated instruction (Algorithm 1.b line 4), the algorithm finds
the registers that the non-replicated instruction reads. For each one of these
registers (Algorithm 1.b line 5), it emits one compare instruction right before
the non-replicated instruction. The compare instruction compares the original
register against the corresponding renamed one (it gets it by accessing the data-
structure of step 2). The synchronized ED technique emits a jump instruction
immediately after the compare instruction, it updates the control-flow and this
is the final step of the algorithm. On the other hand, DRIFT collects all the
compare instructions of a basic-block into the vector (CMP VEC) which is used
in step 4 to perform the grouping.

4. Decouple Checks: This function (Algorithm 1.b line 10) emit as many jump
instructions as the value of decouple factor. In more details, we push the instruc-
tions of CMP VEC into vector GROUP (line 12), until we either reach the max-
imum group capacity (= DECOUPLE FACTOR) (line 13) or we reach the end
of the basic-block (line 14). Once one of the above occurs, a jump is emitted for
each instruction in the group (line 15). For example, if the decouple factor is two
and the length of CMP VEC is six, then the conditional jumps will be emitted
in three pairs: two jump instructions are placed after the second, the forth and
the sixth compare instruction.

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 225

Algorithmorithm 1.a
1 relaxed_main (DECOUPLE_FACTOR)
2 {for each BB
3 replicate_insns (BB)
4 register_rename (BB)
5 CMP_VEC = emit_compare_insns (BB)
6 emit_jump_insns (CMP_VEC,

→DECOUPLE_FACTOR, BB)
7 }
8 /*Emit replicated instructions*/
9 replicate_insns (BB)

10 {for INSN in BB instructions
11 skip if INSN i) control-flow
12 ii) memory
13 emit an exact duplicate of INSN

→just before it
14 add the original and the duplicate

→ into the data structure
15 }
16 /*Code isolation.*/
17 register_rename ()
18 {for INSN in BB instructions
19 skip duplicates
20 INSN_ORIG = INSN
21 INSN_DUP = get_duplicate_of (

→INSN_ORIG)
22 rename_writes_and_uses (INSN_ORIG,

→ INSN_DUP)
23 }

Algorithmorithm 1.b
1 /* Inject the CMP instructions. */
2 emit_compare_insns (BB)
3 {for INSN in instructions:
4 skip all but the non-replicated

→instructions.
5 for each REG read by INSN:
6 Get REG_RENAMED(the renamed REG

→from the data structure).
7 Emit CHECK_INSN before INSN

→comparing REG with
→RENAMED_REG.

8 }
9 /*Decouple checks.*/

10 emit_jump_insns (CMP_VEC,
→DECOUPLE_FACTOR, BB)

11 {for CMP_INSN in CMP_VEC
12 push CMP_INSN into GROUP
13 if(GROUP has DECOUPLE_FACTOR

→members
14 OR end of BB reached)
15 Emit JMP_INSN.
16 Update Control Flow Graph.
17 }

4 Experimental Setup

We implemented our error detection scheme in a compiler pass in GCC-4.5.0 [1].
The DRIFT pass was placed just before the first instruction scheduling pass.

We evaluated our compiler-based error detection scheme using 9 benchmarks
from the Mediabench II video [8] and the SPEC CINT2000 [10] benchmarks.
These are the benchmarks that we managed to compile with our heavily modified
compiler.

All benchmarks were compiled with -O2 optimizations enabled. To prevent
optimizations such as Common Sub-expression Elimination (CSE) and Dead
Code Elimination (DCE) from removing the replicated code, we disabled them
at the late back-end stages of compilation, only for the ED schemes (they are
enabled in NOED). This is common-practice in compiler-based error detection
schemes (e.g., SWIFT [22]). The performance impact of these disabled phases is
negligible (1.5 % in the worst case and 0.3 % on average).

The performance evaluation was done on a DELL PowerEdge 3250 server
with 2× 1.4 GHz Intel Itanium 2 processors. For the fault coverage evaluation,
we used a modified SKI IA-64 simulator [2] (Table 1). The simulator is a cycle-
accurate Itanium 2 simulator, modified to allow fault injection.

5 Results and Analysis

We evaluated our scheme by measuring: 1. NOED which is the code with no
error detection, 2. SWIFT which is the state-of-the-art synchronized single-core

226 K. Mitropoulou et al.

Table 1. SKI IA64 configuration.

Processor: Itanium2 Cache (same as Itanium [17])

Issue width 6 Levels L1 L2 L3 Main

Instruction latencies Same as Itanium2 [17] Size 16KB 256KB 3MB ∞
Register file 128GP, 128FL, 64PR Block size 64B 128B 128B -

Branch prediction Perfect Associativity 4-way 8-way 12-way -

Latency(cycles) 1 5 12 150

error detection methodology [22]. For simplicity, SWIFT is usually implemented
with branch checking instead of control-flow checking [5,7]. These techniques
have the same overhead. The only difference is that control-flow checking veri-
fies the execution of a jump instruction. It should be noticed that data checking
is orthogonal to control-flow checking. This means that control-flow checking can
be plugged in the proposed technique as well without any performance degrada-
tion. 3. DRIFT was implemented with various decouple factors (DEC-2, DEC-4,
DEC-8, DEC-16, DEC-INF). For example, DEC-4 implies a decouple factor of
four. DEC-INF implies an infinite decouple factor which suggests that all checks
are placed at the end of the basic-block. A decouple factor of 1 is not measured
because it is equivalent to SWIFT.

DRIFT can be applied to multi-threaded applications to protect each of the
running threads. In some cases, scalable multi-threaded applications can benefit
more from single-core ED than dual-core ED. Because, in the latter case, half of
the cores will be used for ED only, hindering the scalability of the application.
A detailed comparison against a dual-core scheme is beyond the scope of this
paper.

The results are shown in Figs. 3 and 4. Each row shows the results of each
benchmark. The first column shows the normalized cycle count of all schemes.
The cycles are normalized to NOED. The second column presents the percentage
of basic-blocks that have a given number of checks. For example, in cjpeg, over
30 % of the basic-blocks have 2 checks (checks2). This measurement is based on
run-time information (we take into account the number of times each basic-block
is executed at run-time). The number of checks usually implies the basic-block
size. The last column shows the fault-coverage for all the configurations.

5.1 Performance Evaluation

The results of the first column in Figs. 3 and 4 validate our assumption that
basic-block fragmentation is a significant slow-down factor of the synchronized
single-core ED scheme (SWIFT). Both techniques were scheduled with the same
state-of-the-art GCC region-based speculative scheduler. In the case of SWIFT,
it is shown that the compiler cannot produce efficient code since the complicated
control-flow acts as a barrier to code motion optimizations. On the other hand,
DRIFT creates a scheduler-friendly code. As a result, the performance improve-
ment of DRIFT over SWIFT is up to 29.7 % (h263enc, DEC-4) and DRIFT
manages to decrease its overhead over NOED down to 1.29×.

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 227

Fig. 3. Results Part 1: The first column shows the performance improvement of DRIFT
over SWIFT and NOED, the second one presents the percentage of basic-blocks that
have a given number of checks and the third one shows the fault-coverage.

228 K. Mitropoulou et al.

0.00

0.50

1.00

1.50

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

181.mcf

0%

10%

20%

30%

40%

50%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

181.mcf

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r

D
is

tr
ib

u
ti

o
n

0.00

0.50

1.00

1.50

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

175.vpr

0%

10%

20%

30%

40%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

175.vpr

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r

D
is

tr
ib

u
ti

o
n

0.00

0.50

1.00

1.50

2.00

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

n
o
rm

al
iz

ed
 c

y
cl

es
 t

o
 N

O
E

D

300.twolf

0%

10%

20%

30%

40%

50%

checks0

checks1

checks2

checks3

checks4

checks5

checks6

checks7

cehcks8

checks9

checks10

checks11-20

checks21-30

checks31-40

checks41-50

checksR
EST

N
u

m
b

er
 o

f
B

B
s

 Number of Checks in BB

Distribution of BBs with given Checks

300.twolf

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
O

ED

SW
IFT

D
EC

-2

D
EC

-4

D
EC

-8

D
EC

-16

D
EC

-IN
F

E
rr

o
r

D
is

tr
ib

u
ti

o
n

Fig. 4. Results Part 2: Same as Part 1

DRIFT’s performance varies across benchmarks and it is largely affected by
the check distribution. Benchmarks like cjpeg, h263dec, mpeg2dec, 175.vpr and
300.twolf have small number of checks per basic-block. Therefore, a decouple
factor of 2 is enough to improve their performance. On the other hand, a larger
decouple factor benefits the applications that contain many checks per basic-
block (e.g., djpeg, h263enc and mpeg2enc).

The performance of some benchmarks, however, degrades as the decouple
factor reaches very high values (close to DEC-INF). This is the case for djpeg,
h263enc and mpeg2enc. These benchmarks have many basic-blocks with a high
number of checks (as shown in the second column). A high value of the decouple
factor in these cases can lead to high predicate register pressure. In addition, in
the end of each basic-block, we have a tree of compare instructions that slows
down the code. That’s why DEC-4 performs best for h263enc and mpeg2enc
(29.7 % and 28 % respectively) and DEC-INF is much worse.

Table 2 shows the decouple factor for which DRIFT achieves the best speedup
over SWIFT. From the above discussion, we can see that the best decouple
factor is a trade-off between basic-block fragmentation and register pressure.
The results show that DEC-4 is a good compromise between the two; DEC-4 is

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 229

Table 2. DRIFT’s best performance compared to SWIFT and NOED.

Benchmark Performance Slowdown Decouple Benchmark Performance Slowdown Decouple

gain over factor gain over factor

over SWIFT NOED over SWIFT NOED

cjpeg 11.1% x1.04 2,4 mpeg2enc 28% x1.39 4,8

djpeg 25% x1.2 8,16 181.mcf 2% x1.18 8

h263dec 17.7% x1.25 2 175.vpr 10.5% x1.31 4

h263enc 29.7% x1.48 4 300.twolf 5.1% x1.37 4

mpeg2dec 18.2% x1.24 2

Fig. 5. Binary code size for all benchmarks, normalized to NOED.

big enough to reduce the impact of basic-block fragmentation and small enough
to avoid register pressure.

Figure 5 shows that the binary size of SWIFT is about 2.5× greater than
NOED. This is expected due to the additional ED code injected into the code
stream. DRIFT generates slightly smaller binaries (2.3× greater than NOED),
which is further evidence that DRIFT improves the resulting schedule, because
the instructions are packed into fewer instruction bundles. As the decouple factor
increases the binary size is almost the same. Increasing the decouple factor in
benchmarks with small number of checks per basic-block does not change the
code any further. In benchmarks (e.g., djpeg, h263enc and mpeg2enc) with large
number of checks per basic-block, the ILP might increase as the decouple factor
increases, leading to more compact code, but the register spilling adds extra code
which counterbalances the code reduction.

5.2 Fault Coverage Evaluation

The fault coverage results presented in this paper are generated using SKI IA-64
simulator [2]. The simulator was modified to inject errors at the output registers
of instructions, which is common practice in the literature [5,7,22,30,32].

The fault coverage results are produced with Monte Carlo simulations. The
procedure starts with each original binary being profiled in order to count the
number of dynamic instructions. The fault injection is done as follows: a dynamic
instruction is randomly selected and one of its outputs is randomly picked for
injection. Then, a random bit of the register output is flipped. Errors are injected

230 K. Mitropoulou et al.

into general purpose and predicate registers. This process is repeated 300 times
for each benchmark and each configuration.

For our evaluation, we assume a Single Event Upset (SEU) fault model
(double-events are extremely rare [22]). This means that original binaries are
injected with one error per run. The binaries that support error detection are
much larger (2.3× larger on average than the original (Fig. 5)). A fair compari-
son between the original code and the error detection code requires keeping the
error rate fixed [22]. Thus, the error detection codes are injected with one error
per the number of dynamic instructions of the original binary. It has to be men-
tioned that, with this methodology, we do inject errors in the system libraries
which are out of DRIFT’s SoR.

The output of each Monte Carlo trial is classified into one of the following
five categories. 1. Benign Errors (aka masked errors) are the errors that do not
affect program’s output and they produce the same output and exit code as the
good execution. 2. The errors that DRIFT algorithm successfully detects are
classified as Detected. 3. Exceptions are caught by our custom exception handler
and are considered as detected (e.g., as in [32]). 4. Data Corrupt Errors, which
are the errors that cause wrong outputs without being detected. 5. Finally, some
errors result in infinite execution. Those errors are detected by our simulator
and we name them Time out Errors.

The third column of Figs. 3 and 4 shows that DRIFT and SWIFT are almost
identical in fault-coverage. In a few cases (h263enc and 181.mcf), some of the
detected errors in SWIFT are transformed into exceptions in DRIFT. As we
explained in Sect. 3, both SWIFT’s and DRIFT’s Sphere of Replication does
not include store instructions. Therefore, store instructions are not replicated.
In SWIFT, a check is inserted before every non-replicated instruction in order to
prohibit corrupted data to propagate to memory. DRIFT delays the execution
of some of the checks. Thus, some stores might be executed before verifica-
tion takes place, leading to exceptions raised by the system. These exceptions
are detected by our exception handler (as done in DAFT [32]). As in all high
fault-coverage techniques, Data-corruption and Time-out errors are very rare.
Therefore, DRIFT has practically the same fault-coverage as SWIFT even for
high values of the decouple factor.

In the performance evaluation (Sect. 5.1), we showed that a decouple factor
of 4 always improves system performance. The fault coverage results show that
it has very good fault-coverage as well.

Finally, we observe that the computational nature of the benchmark plays an
important role on fault coverage. For example, mpeg2enc, cjpeg and h263enc,
are encoding benchmarks which means that lots of data get compressed. This
may involve the process of sub-sampling, which by definition ignores the value of
parts of the input. If an error occurs on data that gets compressed, then it may
not propagate at all and it will not appear in the output of the program. For
this reason, NOED has almost 90 % benign errors. In this type of applications,
decoupling is less risky.

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 231

6 Related Work

Code redundancy can take various forms: instruction, thread and process redun-
dancy. EDDI [20] was the first to introduce compiler-base instruction-level
redundancy. SWIFT [22] significantly improves upon it by reducing the memory
overhead. SRMT [30] and DAFT [32] reduce overhead further by allocating the
replicated code and the checks to a second core.

Hardware Thread-level redundancy was introduced by AR-SMT [23].
This work proposed the idea of redundant multi-threading (RMT) on SMT cores.
The active thread executes the program and puts its results on a delay buffer.
The redundant thread executes the same instruction stream and compares the
results that it produces with the ones from the delay buffer. The committed
state of the redundant thread is also used as a recovery checkpoint.

Several works are based on AR-SMT and extend it. Reference [21] introduces
Simultaneous and Redundant Threaded (SRT) processors that take advantage
of an SMT processor’s extra thread contexts. Similarly, [19] uses the SMT idea
on CMPs proposing Chip-level Redundant Threading (CRT). References [12,27]
present techniques that exploit the idle cores for redundant thread execution.
The main disadvantage of redundant multi-threading is that it reduces the sys-
tem’s total throughput because it occupies more thread contexts and hardware
resources. Additionally, compared to compiler-based approaches, it requires cus-
tom hardware.

Process level redundancy (PLR) [25] replicates the processes of the appli-
cation and compares their outputs to ensure correct execution. The processes
synchronize to compare their outputs when the value escapes user space to the
kernel. RAFT [9] improves this scheme by removing the synchronization barri-
ers. PLR has small overhead since it checks fewer values than other approaches,
but this comes at the cost of maintaining multiple memory states.

Wang [31] introduced symptom-based error detection. The main idea is
that transient errors generate symptoms like memory exceptions, cache misses,
branch mis-predictions etc. These symptoms can be used for error detection. In
Shoestring [7], the error detection is based on symptoms, requiring less replica-
tion. This leads to better performance, but worse fault-coverage.

In hardware error detection, correctness is checked on hardware. Hardware-
based designs include the watchdog processors in [3,16]. The main idea is that
a smaller and simpler in design processor, which is considered safer, follows the
execution of the main processor. Commercial processors like IBM’s S/390 [26]
replicate the entire execution unit.

7 Conclusion

We presented DRIFT, the first work that explores and solves a significant per-
formance limitation in single-core error detection methodologies, namely, basic-
block fragmentation. DRIFT is based on the idea of decoupling which breaks
the execute-check-confirm-execute synchronization cycle existing in synchronized

232 K. Mitropoulou et al.

schemes. DRIFT decouples the execution of the code from the checks, resulting
in code that the scheduler can optimize better as it is no longer limited by
the complex control flow caused by the frequent checking. Our evaluation on
a real machine shows significant performance improvements up to 29.7 % and
average performance overhead of 1.29× compared to native, non-fault tolerant,
code. The performance gains have no impact on the fault-coverage compared to
synchronized schemes.

References

1. GCC: GNU compiler collection. http://gcc.gnu.org
2. SKI, an IA64 instruction set simulator. http://ski.sourceforge.net
3. Austin, T.: DIVA: a reliable substrate for deep submicron microarchitecture design.

In: MICRO (1999)
4. Bernick, D., et al.: Nonstop advanced architecture. In: DSN (2005)
5. Chang, J., et al.: Automatic instruction-level software-only recovery. In: DSN

(2006)
6. Constantinescu, C.: Trends and challenges in VLSI circuit reliability. IEEE Micro

23, 14–19 (2003)
7. Feng, S., et al.: Shoestring: probabilistic soft error reliability on the cheap. In:

ASPLOS (2010)
8. Fritts, J., et al.: Mediabench II video: expediting the next generation of video

systems research. In: SPIE (2005)
9. Ghosh, Y., et al.: Runtime asynchronous fault tolerance via speculation. In: CGO

(2012)
10. Henning, J.: SPEC CPU2000: measuring CPU performance in the new millennium.

IEEE Comput. 33, 28–35 (2000)
11. Hwu, W.-M.W., et al.: The superblock: an effective technique for VLIW and super-

scalar compilation. J. Supercomput. 7, 229–248 (1993)
12. LaFrieda, C., et al.: Utilizing dynamically coupled cores to form a resilient chip

multiprocessor. In: DSN (2007)
13. Li, M., et al.: Understanding the propagation of hard errors to software and impli-

cations for resilient system design. In: ASPLOS (2008)
14. Lowney, P.G., et al.: The multiflow trace scheduling compiler. J. Supercomput. 7,

51–142 (1993)
15. Mahlke, S., et al.: Sentinel scheduling for vliw and superscalar processors. In: ASP-

LOS (1992)
16. Mahmood, A., et al.: Concurrent error detection using watchdog processors-a sur-

vey. IEEE Trans. Comput. 37, 160–174 (1988)
17. McNairy, C., et al.: Itanium 2 processor microarchitecture. IEEE Micro 23, 44–55

(2003)
18. Michalak, S., et al.: Predicting the number of fatal soft errors in Los Alamos

national laboratory’s ASC Q supercomputer. IEEE Trans. Device Mater. Reliab.
5, 329–335 (2005)

19. Mukherjee, S., et al.: Detailed design and evaluation of redundant multithreading
alternatives. In: ISCA (2002)

20. Oh, N., et al.: Error detection by duplicated instructions in super-scalar processors.
IEEE Trans. Reliab. 51, 63–75 (2002)

http://gcc.gnu.org
http://ski.sourceforge.net

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance 233

21. Reinhardt, S., et al.: Transient fault detection via simultaneous multithreading. In:
ISCA (2000)

22. Reis, G., et al.: SWIFT: software implemented fault tolerance. In: CGO (2005)
23. Rotenberg, E.: AR-SMT: a microarchitectural approach to fault tolerance in micro-

processors. In: FTCS (1999)
24. Shivakumar, P., et al.: Modeling the effect of technology trends on the soft error

rate of combinational logic. In: DSN (2002)
25. Shye, A., et al.: Using process-level redundancy to exploit multiple cores for tran-

sient fault tolerance. In: DSN (2007)
26. Slegel, T., et al.: IBM’s S/390 G5 microprocessor design. IEEE Micro 19(2), 12–23

(1999)
27. Smolens, J., et al.: Reunion: complexity-effective multicore redundancy. In: MICRO

(2006)
28. Sorin, D.: Fault tolerant computer architecture. Synthesis Lectures on Computer

Architecture (2009)
29. Srinivasan, J., et al.: The impact of technology scaling on lifetime reliability. In:

DSN (2004)
30. Wang, C., et al.: Compiler-managed software-based redundant multi-threading for

transient fault detection. In: CGO (2007)
31. Wang, N., et al.: ReStore: symptom-based soft error detection in microprocessors.

IEEE Trans. Dependable Secure Comput. 3, 188–201 (2006)
32. Zhang, Y., et al.: DAFT: decoupled acyclic fault tolerance. In: PACT (2010)

Algorithms

Optimizing the LU Factorization for Energy
Efficiency on a Many-Core Architecture

Elkin Garcia(B), Jaime Arteaga, Robert Pavel, and Guang R. Gao

Computer Architecture and Parallel Systems Laboratory (CAPSL),
Department of Electrical and Computer Engineering,

University of Delaware, Newark 19716, USA
{egarcia,jaime,rspavel}@udel.edu, ggao@capsl.udel.edu

Abstract. Power consumption and energy efficiency have become a
major bottleneck in the design of new systems for high performance
computing. The path to exa-scale computing requires new strategies
that decrease the energy consumption of modern many-core architec-
tures without sacrificing scalability or performance. The development of
these strategies demands the use of scalable models for energy consump-
tion and the reorientation of optimization techniques to focus on energy
efficiency, evaluating their trade-offs with respect to performance.

In this paper, we investigate several optimization techniques to reduce
the energy consumption on many-core architectures with a software-
managed memory hierarchy. We study the impact of these techniques
on the Static Energy and the Dynamic Energy of the LU factorization
benchmark using a scalable energy consumption model. The main con-
tributions of this paper are: (1) The modeling and analysis of energy con-
sumption and energy efficiency for LU factorization; (2) the study and
design of instruction-level and task-level optimizations for the reduction
of the Static and Dynamic Energy; (3) the design and implementation of
an energy aware tiling that decreases the Dynamic Energy of power hun-
gry instructions in the LU factorization benchmark; and (4) the experi-
mental evaluation of the scalability and improvement in terms of energy
consumption and power efficiency of the proposed optimizations using
the IBM Cyclops-64 many-core architecture. We study the trade-offs
between performance and power efficiency for the proposed optimiza-
tions. Our results for the LU factorization benchmark, using 156 hard-
ware thread units, show an improvement in power efficiency between
1.68X and 4.87X for different matrix sizes. In addition, we point out
examples of optimizations that scale in performance but not necessarily
in power efficiency.

1 Introduction

The many-core revolution brought forward by recent advances in computer archi-
tecture has made feasible the integration of hundreds of processing elements
on a single chip. With these new architectures, several challenges have arisen.
Major efforts and progress have been made in order to achieve high performance
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 237–251, 2014.
DOI: 10.1007/978-3-319-09967-5 14

238 E. Garcia et al.

on these many-core chips. In particular, optimizations have been developed to
improve the number of Floating Point Operations per Second. However, recent
developments have shifted the focus to other constraints [1,2]. The design of
the new generation of exa-scale supercomputers is restricted by power require-
ments [3,4]. As a result, Energy efficiency and power consumption have become
an imperative.

Energy efficiency is limited by many factors. From the point of view of semi-
conductor manufacturing processes, the integration of hundreds of independent
processors on a single chip within a given area results in an increase in tem-
perature and leakage current. This, in turn, results in more energy and transis-
tors dedicated toward cooling and a deep rethinking of traditional architectures.
A feasible alternative is a many-core with a software-managed memory hierarchy
where the programmer controls data movement. This can free area previously
used for cache controllers and over-sized caches while providing more oppor-
tunities to improve performance and energy efficiency at the cost of a higher
complexity with respect to programmability.

An interesting case study is the IBM Cyclops-64 many-core architecture [5]
with 160 Thread Units able to run independent pieces of code and a software
managed memory hierarchy. Extensive studies on performance for the Cyclops-
64 have been performed in the past [6–8], energy efficiency has only recently
been studied with early efforts resulting in a scalable energy consumption model
for Cyclops-64 [9]. A deep understanding of this model can allow for the design
of specific optimizations to decrease energy consumption.

In this paper, we study and implement several techniques to target energy
efficiency on many-core architectures with software managed memory hierar-
chies. We study the impact of these techniques on the Static Energy and the
Dynamic Energy of LU factorization using a scalable energy consumption model
described by Garcia et. al. [9]. The main contributions of this paper are: First,
the modeling and analysis of energy consumption and energy efficiency for LU
factorization; second, the study and design of instruction-level and task-level
optimizations for the reduction of Static and Dynamic energy; third, the design
and implementation of an energy aware tiling for the LU factorization bench-
mark; and fourth, the experimental evaluation of the scalability and improve-
ment in energy consumption and energy efficiency of the proposed optimizations
using the IBM Cyclops-64 many-core. The proposed optimizations for energy
efficiency increase the power efficiency of the LU factorization benchmark by
1.68X to 4.87X, depending on the problem size, with respect to a highly opti-
mized version designed for performance.

The rest of this paper is organized as follows. In Sect. 2, we discuss the
Cyclops-64 architecture, the energy consumption model used and the basics of
a parallel LU factorization algorithm. In Sect. 3, we study the impact of sev-
eral optimizations in the Static and Dynamic Energy. In Sect. 4, we present
the experimental evaluation of the proposed optimizations. Section 5 examines
related work. Finally, we conclude and present future work in Sect. 6.

Optimizing the LU Factorization for Energy Efficiency on a Many-Core 239

Fig. 1. C64 architecture details

2 Background

2.1 A Many-Core Architecture: The IBM Cyclops-64

The IBM Cyclops-64 (C64) is a homogeneous many-core architecture designed
by IBM for High Performance Computing. A C64 chip consists of 160 single-issue
Thread Units (TUs) running at 500 MHz (see Fig. 1a). A pair of TUs share a sin-
gle 64-bit Floating-Point Unit (FPU). An FPU can execute a floating-point Mul-
tiply and Add instruction in one cycle, for a total performance of 80 GFLOPS.
C64 features a three-level software-managed memory hierarchy (completely vis-
ible to the programmer) instead of a hardware and automatic data cache. This
hierarchy consists of an On-Chip Scratch-Pad Memory Level (SP), an On-Chip
Global SRAM Memory Level (GM), and an External DRAM Memory Level.
Each TU has a 32 KB memory bank, with half of that assigned, by default, as
its SP. The SP can be accessed with low latency by the TU that owns it. The
remaining halves of all 160 TUs banks form the GM with an approximate size of
2.5 MB that is available to all the TUs. The External DRAM Memory has a size
of 1 GB divided into 4 memory banks and connected to the C64 chip through a
crossbar network. Figure 1b presents the sizes, latencies, and bandwidth of each
level of the Memory Hierarchy.

A C64 processing node needs a 1.2 V regulated power supply for the C64 chip
and a 1.8 V regulated power supply for the external DRAM and other glue logic.

2.2 Energy Consumption Model

The model proposed by Garcia et al. is a conceptually simple model that allows
scalability with high accuracy for the estimation of energy consumption [9]. This
is accomplished by dividing energy consumption into two components: Static
Energy and Dynamic Energy. The total energy consumed by a program, Λ, with
K different types of instructions, I, can be expressed as:

ET (Λ) = Es(t) +
K∑

j=1

Ed (Ij) (1)

240 E. Garcia et al.

Table 1. Energy coefficients e

Instruction e[pJ/Operation] Instruction e[pJ/Operation]

load dram 48924.10 store dram 51488.99

load sram 964.65 store sram 548.31

double mult. and add 245.27 double add 178.30

double mult. 210.15 integer mult. 225.43

integer add 127.65 and 126.69

move 105.48 load immediate 86.01

Static Energy, Es, is the sum total of energy lost due to leakage currents in
addition to the energy consumed by hardware units that operate continuously
and consume energy even when the system as a whole is idle (e.g. the clock).
Es is proportional to the execution time t, and an architecture dependent coef-
ficient e0.

Dynamic Energy, Ed, is the energy consumed during the execution of an
instruction, minus the leakage component. This is related to the power consump-
tion of all active transistors, registers, and logic. Ed is a function of the number
of executed instructions of each type Ij and its energy coefficient associated ej .

This model has been successfully tested on the Cyclops-64 chip. For this
particular architecture, the static coefficient is e0 = 63.11 W and a representative
subset of Dynamic Energy coefficients can be found in Table 1. A more detailed
explanation of the model can be found in Garcia et al. publication [9].

2.3 LU Factorization

The LU factorization is a matrix factorization which represents the product of
two matrices; a lower triangular matrix, L, and an upper triangular matrix, U.
This algorithm is often used in linear systems in order to solve linear equations.
Assuming A to be a square matrix, it can be represented as A = L×U . This type
of LU factorization is called without pivoting and is the one presented in this
document. An LU factorization with pivoting performs a permutation of the
rows or columns of the matrix A using one of several strategies such as Par-
tial Pivoting, Partial Scaled Pivoting, Total Pivoting, or Total Scaled Pivoting.
A comprehensive study of different pivoting strategies for LU factorization can
be found in [10].

Because the LU factorization is a well studied algorithm, there are many
variations such as the Linpack benchmark [11], High Performance Linpack (a
parallel version of Linpack) [12], and the SPLASH-2 suite [13].

The classical approach for parallel LU factorization in cache-based systems
uses fixed-size blocks that fit into cache to distribute the workload among threads.
As shown in Fig. 2, in the first step of the algorithm the matrix A is divided into
one Diagonal block and several Column, Row, and Inner blocks. Each block is
assigned to one processing element, which further divides the block into tiles
in order to improve data reuse and locality. At this point, the Diagonal block

Optimizing the LU Factorization for Energy Efficiency on a Many-Core 241

Fig. 2. Progress in each step of LU factorization

is computed individually by one processing element, followed by a concurrent
computation of the Column and Row blocks. Once all the Column and Row
blocks have been computed, the Inner blocks are processed. In the second step
of the algorithm, the Inner blocks of the previous step are grouped again into
one Diagonal block and several Column, Row, and Inner blocks, which are com-
puted following the rules previously mentioned. This is repeated until there is
only one Inner block, which is processed as a Diagonal block in the last step.
The progression of steps following this classical approach is illustrated at the
top of Fig. 2. As can be seen, the number of blocks (i.e. the number of tasks
assigned to the processing elements) decreases as the algorithm moves forward.
This is translated into an increasing number of processing elements becoming
idle, which lowers the performance of the application.

The Dynamic Repartitioning technique proposed by Venetis and Gao [14]
uses varying-size blocks in each step of the algorithm in order to optimize the
distribution of work among processing elements. As shown at the bottom of
Fig. 2, the size of the blocks is calculated at the beginning of each iteration
of the LU factorization. This size is calculated as a function of the number of
processing elements, so each processing element has at least one assigned task
(i.e. one block to process). This optimization has been proved to increase the
overall performance up to 2.8X in systems with a software managed memory
hierarchy [14].

3 Energy Optimizations

In this section we will study the impact of several optimizations on the energy
consumption of the LU factorization algorithm targeting systems with software
managed memory hierarchy such as C64. The impact of these optimizations can
affect the two sources of energy consumption described in Sect. 2.2: Static Energy
Es and Dynamic Energy Ed. Our baseline implementation is the LU factorization
without pivoting by Venetis and Gao [14]. They used the Dynamic Repartitioning
technique described in Sect. 2.3 and implemented a carefully designed register
tiling. All their optimizations were targeting high performance.

242 E. Garcia et al.

Fig. 3. Dynamic energy distribution for LU factorization of 840 × 840

While the increase in performance obtained by Venetis and Gao is reflected
in savings of Static Energy, this high performance LU implementation has some
drawbacks from the Energy consumption point of view: First, its register tiling
focuses on increasing locality and it is not aware of the energy consumption
of each instruction. Second, the static distribution of work does not consider
the variance in completion time of processing similar tasks in presence of shared
resources such as memory, crossbar interconnections, and FPUs. And finally, the
hierarchical division into blocks and further into tiles, produces an increasing
amount of smaller tiles in the borders of each block, which can hurt not just the
performance but also the energy consumption.

3.1 Energy Aware Tiling Design

To reduce the Dynamic Energy consumption of the LU factorization, we will
focus on the instructions that contribute the most to it. Using the Energy con-
sumption model described in Sect. 2.2, we characterized the Dynamic Energy of
the LU Factorization implementation optimized for performance by Venetis and
Gao [14] using the traces generated during the simulation of the application on
a C64 architecture and a matrix of 840 × 840 allocated in on-chip memory.

Figure 3 shows how the Dynamic Energy of the LU factorization increases
with the number of processors. As can be seen, Loads and Stores on the on-
chip memory (SRAM) are the instructions with the largest contribution to the
Dynamic Energy; this contribution also increases with the number of processors.
On the other hand, the Energy of Floating point operations remains constant
and the contribution of integer, logical, and other memory operations is not
significant.

In order to minimize the Dynamic Energy Ed for a particular algorithm
Λ, we propose to minimize the energy contribution of the most power hungry

Optimizing the LU Factorization for Energy Efficiency on a Many-Core 243

operations, in this case Loads LD and Stores ST with energy coefficients e1 and
e2. The minimization is done on a set of possible tilings T with parameters S
and L (e.g. shape and tile size). The optimization problem is shown in Eq. (2).

min
T (L,S)

Ed (Λ, T) ≈ e1 |LD| + e2 |ST|
subject to R (Λ, T) ≤ Rmax, T is parallel

(2)

There are two constraints in the optimization problem: The registers used by
the tiling (R(Λ, T)) need to fit in the available registers Rmax and the tiling has
to allow parallel execution. The former avoids unnecessary energy consumption
produced by register spilling and the later prevents solutions with low perfor-
mance due to increasing execution time produced by inability to exploit task
parallelism.

In order to solve this problem for LU factorization, we analyze the energy
consumption of each type of block (Diagonal, Row, Column and Inner) with sizes
M0 ×M0, M0 ×M1, M2 ×M0 and M2 ×M1 respectively. Each block is assigned
to a processor and further divided into tiles. There are 3 cases of sequences
to traverse the tiles (e.g. S0, S1 and S2) for each type of block. A detailed
explanation of the procedure to find the optimum tiling for the Inner block and
a summary of the results for the other type of blocks are presented in the next
paragraphs.

Inner Blocks: For the computation of an Inner block, a Row block and a
Column block are required. Row, Column and Inner blocks are divided into
tiles of L0 × L1, L2 × L0 and L2 × L1 respectively. The three possible sequences
of traversing tiles reuse tiles on a different operand: The Row block (case S0), the
Column block (case S1) and the Inner block (case S2). The problem formulation
for the Dynamic Energy is shown in Eq. (3).

min
L∈{L0,L1,L2},
S∈{S0,S1,S2}

f (L, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1M0M1

(
M2
L0

+ M2
L1

+ 1
)

+ e2M0M1M2
L0

if S = S0

e1M0M2

(
M1
L0

+ M1
L2

+ 1
)

+ e2M0M1M2
L0

if S = S1

e1M1M2

(
M0
L1

+ M0
L2

+ 1
)

+ e2M1M2 if S = S2

s.t. L0L1 + L0L2 + L1L2 ≤ Rmax, L0, L1, L2 ∈ Z
+

(3)

The non-linear optimization problem was solved using the Karush Kuhn
Tucker conditions. We assumed all the variables being positive and M0, M1 and
M2 being bigger or equal than L0, L1 and L2. In addition, we used the fact that
M1 and M2 are equal to M0 or M0 + 1. We found that the best solution was to
reuse the Inner tile (case S2) with parameters L0 = 1, L1 = N and L2 = N ,
with N2 + 2N ≤ Rmax. In this case, an Inner block is computed by dividing it
into tiles of N ×N elements and loading each Inner tile into the registers, which
act as accumulators for the partial results. Each partial result is calculated from
a pair composed of one tile of N ×1 elements of the corresponding Column block
and one tile of 1 × N elements of the corresponding Row block. The registers

244 E. Garcia et al.

Fig. 4. Optimum energy-aware tiling for an inner block

used as accumulators are stored back into memory only when there are no more
pairs of Column and Row tiles to process. An example of this process is shown
in Fig. 4

Row Blocks: To compute a Row block, this is divided into tiles of N × N
elements (with N being the same as for the Inner block). The process followed
to compute each Row tile is similar to the one used for an Inner tile. The main
difference is that the computation of a Row tile requires tiles of N × 1 elements
of the corresponding Diagonal block and tiles of 1 × N elements that have been
previously processed in the current Row block. Each Row tile to be processed is
loaded into the registers, which are used as accumulators for the partial results
of the computation of each pair of Diagonal and Row tiles. These registers are
stored back into memory when there are no more pairs to process.

Column Blocks: To compute a Column block, this is also divided into tiles of
N × N elements. Each Column tile is computed using tiles of 1 × N elements
of the corresponding Diagonal block and tiles of N × 1 elements that have been
previously processed in the current Column block. In order to minimize the
Dynamic Energy of loads and stores, each Column tile to be processed is firstly
loaded into registers. Then, these registers are used as accumulators for the
partial results computed for each pair of Diagonal and Column tiles. When there
are no more pairs to process, the content of the registers used as accumulators
is stored back into memory.

Diagonal Block: A Diagonal block can be seen as another matrix A′ that needs
to be LU-factorized. Consequently, the Diagonal block can be divided into tiles
of N × N elements, labeled as Diagonal, Column, Row, and Inner tiles. They
can be latter processed following the same rules used in the computation of the
matrix A and the same traversing of tiles previously described for the Column,
Row, and Inner blocks.

3.2 Minimizing Static Energy Using Pipelining

The design of specific tilings for energy consumption already targets Dynamic
Energy. However, the long latency of memory operations with respect to the

Optimizing the LU Factorization for Energy Efficiency on a Many-Core 245

latency of arithmetic operations can produce stalls, where each processor is wait-
ing for data required for computation. This scenario becomes worse if hundreds
of threads, starvation of shared resources and bandwidth limitations are consid-
ered. This behavior can increase the Static Energy consumption due to increasing
latency produced by contention.

In order to successfully minimize the impact of Static Energy, further opti-
mizations were done to the implementation of the tilings described in Sect. 3.1.
Each for loop was software-pipelined and unrolled twice, using different registers
for each unrolled iteration if possible and sharing registers when necessary.

Following Fig. 4, a for loop iteration computes a partial result for an Inner
tile of N × N elements using a Row tile of 1 × N elements and a Column tile
of N × 1 elements; the next iteration uses a different Row tile and a different
Column tile to compute the next cumulative partial result of the same Inner tile.
Consequently, a for loop that has been unrolled twice requires at least N2 +4N
registers. Since additional registers are required in the loop iterations for loop
control and pointers (a pointer for the Row tiles and a pointer for the Column
tiles; no pointer is necessary inside the loop for the Inner tile since this tile is
the same for all the iterations), some registers were shared between iterations in
order to decrease the requirement in the number of registers.

To diminish the impact of this register-sharing, the instructions of the loop
were later properly interleaved to ensure that memory-related instructions (i.e.
loads and stores) were already completed at the moment the registers involved in
such operations were used in a arithmetic instruction, decreasing the execution
time to directly impact the static energy.

3.3 Dynamic Task Scheduling for Energy Reduction

At this point, the fine-grain tasks have been optimized in order to decrease energy
consumption while using the performance-oriented Static scheduling proposed
by Venetis and Gao [14]. Even though the Dynamic Repartition technique is
meant to perform an optimized distribution of work among processing elements,
it does not take into account the undesirable delays produced by the competition
of access to shared resources (e.g. competition for memory bandwidth on shared
memory). This results in variations in the completion time between tasks of
the same size. As a consequence, the energy consumption per task will not be
uniform. This variation will be most significant with fine-grained tasks, such as
the tiles described for LU factorization. In the end, a static distribution of limited
work, even for cases of very regular tasks, will result in scenarios where the
unbalanced distribution of work will have a negative impact on the Static Energy
consumption. In addition, division of blocks into tiles produces a set of smaller
border tiles per block that are suboptimal in terms of energy consumption.

In order to overcome these problems, a Dynamic Scheduling of tasks was
used in the LU factorization, using the tile as a unit of work assigned to each
processing element, instead of a block. First, the matrix is divided into tiles of
N × N elements, which are processed following the LU factorization algorithm,
that is, first the Diagonal tile, then all the Column and Row tiles, and finally

246 E. Garcia et al.

all the Inner tiles. However, in this case, the assignment of tiles is not made
statically (as in Venetis and Gao [14]) but in a first-come first-served basis: A tile
is assigned to a processing element as soon as the processing element becomes
available (i.e. as soon as the processing element finishes the computation of the
previous assigned tile) and the tile dependencies are satisfied.

Dividing the matrix in tiles of N × N leads to a significant amount of tasks,
which could increase the overhead of the implementation and reduce the data
reuse. Nevertheless, the Dynamic Scheduling of tasks has ultimately a positive
impact in the Static Energy consumption of the application since it ensures a
better workload balance by keeping the number of idle processors low. This is
ultimately translated in a reduction of the execution time of the application. In
addition to this, the overhead associated with Dynamic Scheduling is diminished
thanks to the support of in-memory atomic operations in the C64 [15]. Using an
in-memory atomic operation such as L ADD, a Dynamic Scheduler can be easily
implemented with a counter for the number of tasks. Every time a processor is
available, it asks for a new task and increments the counter. Since this increment
is performed atomically in memory, additional round trips are avoided increasing
the throughput of this counter.

To increase the data reuse with Dynamic Scheduling and to avoid that a
Diagonal tile of N × N becomes a bottleneck for the whole algorithm (since no
tile can be processed until that tile is computed), the size of the Diagonal tile
can be increased to bN × bN with b ∈ N and b ≥ 2, while the sizes of other tiles
remain as N ×N . This reduces by b the number of steps required to compute the
LU factorization. The use of a tile as a unit of work for the Dynamic Scheduling,
instead of a block, decreases significantly the number of suboptimal border tiles,
decreasing the Dynamic Energy too.

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed optimizations
targeting energy consumption and power efficiency described in Sect. 3. We have
used the IBM C64 platform described in Sect. 2.1 and the energy estimations
using the model described in Sect. 2.2. All benchmarks were written in C with
hand-tuned assembly for the register tiling. Benchmarks were compiled with ET
International’s C64 C compiler with compilation flags -O3. We ran all of our
experiments using FAST [16], a highly accurate C64 simulator.

We implemented several versions of LU factorization using on-chip shared
memory. The power-aware tiling proposed in Sect. 3.1 uses N = 6 given the 64
registers per Thread Unit (TU) available in Cyclops-64. Also, for the Dynamic
Task Scheduling described in Sect. 3.3, we used b = 2 so the Diagonal tile is
12 × 12. The Static Energy coefficient e0 was computed using measurements on
a real chip and the number of TUs used, having in mind that 4 additional TUs
are reserved: 1 for executing the runtime system and other 3 for managing the
communication with other chips using a 3D mesh.

Our first set of experiments uses a matrix of 840 × 840, the maximum size
that fit in on-chip memory. We study the scalability of Dynamic Energy (Fig. 5a)

Optimizing the LU Factorization for Energy Efficiency on a Many-Core 247

Fig. 5. Scalability of energy consumption with the number of TUs

and Total Energy (Fig. 5b) using different number of TUs. As expected, our
Energy Aware tiling decreases the Total Energy with respect to the baseline
version that uses Dynamic Repartitioning. This is also true for the Dynamic
Energy up to 128 TUs. The software pipelining do not significantly impact the
Dynamic Energy because the instructions executed are practically the same but
this technique decreases Total Energy because the total execution time and
the Static Energy decreases. In addition, we noticed that the Dynamic Energy
consumption of our Dynamic Task Scheduling does not vary with the number of
TUs. The reason is that the size of the basic unit of work, the tile, is function of
architectural parameters such as the number of registers but it is not function
of the number of TUs like the blocks used in Dynamic Repartitioning. Our
approach using Dynamic Scheduling seems useful for decreasing dynamic energy
and total energy when the number of TUs surpasses 128. In addition, we noticed
that total energy and dynamic energy of the baseline implementation using 1 TU
are particularly high, compared with higher number of threads. The reason is
that the Diagonal register tiling used in the Diagonal block calculation is highly
inefficient compared with the other tilings; a serial execution computes an LU
Factorization as a single Diagonal block and exposing this fact.

We also study the impact of the optimizations proposed in terms of Power
Efficiency (the ratio between performance and power consumption) in order to
examine the trade offs between performance and power consumption. Figure 6a
shows the scalability of the Power Efficiency with respect to the matrix size using
the maximum number of TUs available, while Fig. 6b shows the scalability of the
Power Efficiency with respect to the number of TUs for the biggest matrix that
fits on SRAM.

For different matrix sizes on Fig. 6a, all the proposed optimizations increase
the power efficiency. The increase in power efficiency for the LU factoriza-
tion varies between 1.68X and 4.87X with respect to a highly optimized ver-
sion that targets performance (Our baseline that uses Dynamic Repartitioning).
The major returns of the techniques proposed are reached with small matrices.

248 E. Garcia et al.

Fig. 6. Power Efficiency and Performance for LU factorization

The optimization with the higher impact is the Dynamic Task Scheduling:
between 1.2X and 3.5X to the power efficiency.

A careful comparison of the behavior between Power efficiency (Fig. 6b) and
Performance (Fig. 6c) shows similarities when few threads are used. For the
baseline implementation, as well as for the Energy-aware tiling and the Software
Pipelining optimizations, the power efficiency drops after 128 TUs. This is related
to the fact that even though the execution time and Static Energy decreases
for an increasing number of TUs in all three implementations, the Dynamic
Energy increases because these optimizations schedule tasks based on blocks.
In contrast, the Power Efficiency of the Dynamic Task Scheduling optimization
increases properly with the number of TUs because this type of scheduling does
not only scales in terms of performance and Static Energy but also because it
keeps the Dynamic Energy constant with the number of TUs.

For the C64 architecture there is a big correlation between the performance
and the energy efficiency using few TUs given the high contribution of the static
energy to the total energy budget. However, this scenario changes when more
TUs are used. While all the techniques proposed improve the performance (as
seen in Fig. 6c), the power efficiency decreases after 64 TUs or 128 TUS for

Optimizing the LU Factorization for Energy Efficiency on a Many-Core 249

the Static scheduling techniques (as seen in Fig. 6b). On the other hand, the
Dynamic Task scheduling scales in Performance and Power Efficiency.

5 Related Work

As previously mentioned, the modeling of and optimization for energy consump-
tion is a well researched topic. Many models focus on scheduling and are based
on the overall amount of work per unit time [17] or energy [18]. These approaches
yield a simplified model that is comparatively easy to use. However, the options
and optimizations are limited by the coarse-grained approach.

In contrast, fine-grain approaches [19], like our own, exchange complexity
for the potential optimizations that can be applied. Previous works utilized
highly accurate, but highly complex, techniques to reduce energy consumption on
uniprocessor architectures. These required precise information about the under-
lying hardware and are based on a sturdy foundation of instruction scheduling
techniques [20]. This focus on the individual core worked well for uniprocessor
architectures but it is unclear how well it will scale for multi-cores. Additionally,
these models do not fit with the comparatively recent worldwide pursuit of energy
efficiency on multiprocessors: the development and analysis of hardware features
such as energy efficient off-chip memory and dynamic voltage selection [21].

6 Conclusions and Future Work

In this paper, we studied and implemented several optimizations to target energy
efficiency on many-core architectures with software managed memory hierarchies
using LU factorization. Our starting point was a highly optimized LU factor-
ization designed for high performance [14]. We analyzed the impact of these
optimizations on the Static Energy Es, Dynamic Energy Ed, Total Energy ET

and Power Efficiency. To facilitate this, we used a scalable energy consump-
tion model [9]. We designed and applied further optimizations strategies at the
instruction-level and task-level to directly target the reduction of Static and
Dynamic Energy and indirectly increase the Power Efficiency. We designed and
implemented an energy aware tiling to decrease the Dynamic Energy. The tiling
proposed minimizes the energy contribution of the most power hungry instruc-
tions. Our experimental evaluation of the scalability and improvement in energy
consumption and energy efficiency of the proposed optimizations was made using
the FAST simulator for the IBM Cyclops-64 many-core architecture. The pro-
posed optimizations for energy efficiency increase the power efficiency of the LU
factorization benchmark by 1.68X to 4.87X, depending on the problem size, with
respect to a highly optimized version designed for performance. In addition, we
point out examples of optimizations that scale in performance but not necessarily
in power efficiency.

Future work includes the implementation and energy analysis of a DRAM-
version of the LU factorization algorithm, the extension of the model and method-
ology to other algorithms (e.g. Linear Algebra and Graphs) and a study of the

250 E. Garcia et al.

impact on the energy consumption and power efficiency of the task size with
dynamic scheduling techniques. We are also interested in the relation between
optimum tiling for increasing performance and optimum tiling for energy effi-
ciency. Additionally, a hybrid approach combining the advantages of static and
dynamic scheduling [22] will be investigated.

Acknowledgements. This material is based upon work supported by the Department
of Energy [Office of Science] under Award Number DE-SC0008717. This work was
partly supported by European FP7 project TERAFLUX, id. 249013. We also thank
ET International, Inc. for its support during the course of experiments. Finally, we
thank the reviewers for their valuable suggestions.

References

1. Garcia, E., Orozco, D., Khan, R., Venetis, I., Livingston, K., Gao, G.R.: Dynamic
percolation: a case of study on the shortcomings of traditional optimization in
many-core architectures. In: Proceedings of 2012 ACM International Conference
on Computer Frontiers (CF 2012), Cagliari, Italy, May 2012. ACM (2012)

2. Garcia, E., Orozco, D., Khan, R., Venetis, I., Livingston, K., Gao, G.: A dynamic
schema to increase performance in many-core architectures through percolation
operations. In: Proceedings of the 2013 IEEE International Conference on High
Performance Computing (HiPC 2013), Bangalore, India, December 2013. IEEE
Computer Society (2013)

3. Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,
Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R.,
Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S.,
Yelick, K.: Exascale computing study: technology challenges in achieving exas-
cale systems. DARPA Information Processing Techniques Office (IPTO) sponsored
study (2008)

4. Torrellas, J.: Architectures for extreme-scale computing. Computer 42, 28–35
(2009)

5. Denneau, M.: Cyclops. In: Padua, D. (ed.) Encyclopedia of Parallel Computing:
SpringerReference, p. 145. Springer, Heidelberg (2011). www.springerreference.com

6. Garcia, E., Venetis, I.E., Khan, R., Gao, G.R.: Optimized dense matrix multipli-
cation on a many-core architecture. In: D’Ambra, P., Guarracino, M., Talia, D.
(eds.) Euro-Par 2010, Part II. LNCS, vol. 6272, pp. 316–327. Springer, Heidelberg
(2010)

7. Chen, L., Gao, G.R.: Performance analysis of cooley-tukey fft algorithms for a
many-core architecture, in Proceedings of the 2010 Spring Simulation Multiconfer-
ence, SpringSim ’10, (San Diego, CA, USA), pp. 81:1–81:8, Society for Computer
Simulation International, 2010

8. Orozco, D., Garcia, E., Gao, G.: Locality optimization of stencil applications using
data dependency graphs. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.)
LCPC 2010. LNCS, vol. 6548, pp. 77–91. Springer, Heidelberg (2011)

9. Garcia, E., Orozco, D., Gao, G.: Energy efficient tiling on a many-core archi-
tecture. In: Proceedings of 4th Workshop on Programmability Issues for Hetero-
geneous Multicores (MULTIPROG-2011); 6th International Conference on High-
Performance and Embedded Architectures and Compilers (HiPEAC), Heraklion,
Greece, January 2011, pp. 53–66 (2011)

Optimizing the LU Factorization for Energy Efficiency on a Many-Core 251

10. Chen, O.Y.: A comparison of pivoting strategies for the direct lu factorization. In:
Electronic Proceedings of the Eighth Annual International Conference on Technol-
ogy in Collegiate Mathematics Houston, Texas, 16–19 November 1995

11. Dongarra, J.J., Walker, D.W.: Software libraries for linear algebra computations
on high performance computers. SIAM Rev. 37, 151–180 (1995)

12. Dongarra, J., Luszczek, P., Petitet, A.: The linpack benchmark: past, present and
future. Concurrency Comput.: Pract. Exper. 15(9), 803–820 (2003)

13. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs:
characterization and methodological considerations. SIGARCH Comput. Archit.
News 23, 24–36 (1995)

14. Venetis, I.E., Gao, G.R.: Mapping the LU decomposition on a many-core archi-
tecture: challenges and solutions. In: Proceedings of the 6th ACM Conference on
Computing Frontiers (CF ’09), Ischia, Italy, May 2009, pp. 71–80 (2009)

15. Garcia, E., Orozco, D., Pavel, R., Gao, G.R.: A discussion in favor of dynamic
scheduling for regular applications in many-core architectures. In: Proceedings of
2012 Workshop on Multithreaded Architectures and Applications (MTAAP 2012);
26th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2012), Shanghai, China, May 2012. IEEE (2012)

16. del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: FAST: a functionally accurate simu-
lation toolset for the cyclops-64 cellular architecture. In: Workshop on Modeling,
Benchmarking, and Simulation (MoBS ’05), in Conjunction with the 32nd Annual
International Symposium on Computer Architecture (ISCA 05), pp. 11–20 (2005)

17. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
October 1995, pp. 374–382 (1995)

18. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced cpu energy.
In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing. The Kluwer Interna-
tional Series in Engineering and Computer Science, vol. 353, pp. 449–471. Springer,
Boston (1996)

19. Steinke, S., Knauer, M., Wehmeyer, L., Marwedel, P.: An accurate and fine grain
instruction-level energy model supporting software optimizations. In: Proceedings
of PATMOS, Citeseer (2001)

20. Lee, S., Ermedahl, A., Min, S.L.: An accurate instruction-level energy consumption
model for embedded risc processors. In: LCTES ’01: Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems,
New York, NY, USA, pp. 1–10. ACM (2001)

21. Andrei, A., Eles, P., Peng, Z., Schmitz, M., Hashimi, B.: Energy optimization of
multiprocessor systems on chip by voltage selection. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 15, 262–275 (2007)

22. Donfack, S., Grigori, L., Gropp, W., Kale, V.: Hybrid static/dynamic scheduling
for already optimized dense matrix factorization. In: 2012 IEEE 26th International
Parallel Distributed Processing Symposium (IPDPS), pp. 496–507 (2012)

An Input-Adaptive Algorithm for High
Performance Sparse Fast Fourier Transform

Shuo Chen(B) and Xiaoming Li

University of Delaware, Newark, DE, USA
{schen,xli}@udel.edu

Abstract. Many applications invoke the Fast Fourier Transform (FFT)
on sparse inputs, with most of their Fourier coefficients being very small
or equal to zero. Compared with the “dense” FFT algorithms, the input
sparsity makes it easier to parallelize the sparse counterparts. In general,
sparse FFT algorithms filter input into different frequency bins, and then
process the bins separately. Clearly, the performance is largely deter-
mined by the efficiency and the effectiveness of those filters. However,
sparse FFT algorithms are input-oblivious with regard to filter selec-
tion, i.e., input characters are not considered in the design and tuning of
their sparse filters, which leads to sub-optimal binning and consequently
hurts performance. This paper proposes an input-adaptive sparse FFT
algorithm that takes advantage of the similarity between input samples
to automatically design and customize sparse filters that lead to bet-
ter parallelism and performance. More specifically, given a sparse signal
that has only k non-zero Fourier coefficients similar to another known
spectral representation, our algorithm utilizes sparse approximation to
estimate the DFT output in the runtime sub-linear to the input size.
Moreover, our work automatically adapts to different input characteris-
tics by integrating and tuning several adaptive filters to efficiently pack-
age the non-zero Fourier coefficients into a small number of bins which
can then be estimated accurately. Therefore, the input-tuned filtering
gets rid of recursive coefficient estimation and improves parallelism and
performance. We evaluate our input-adaptive sparse FFT implementa-
tion in sequential case on Intel i7 CPU and in parallel versions on three
NVIDIA GPUs, i.e., NVIDIA GeForce GTX480, Tesla C2070 and Tesla
C2075. In particular, our performance is compared to that of the SSE-
enabled FFTW and to the results of a highly-influential recently pro-
posed sparse Fourier algorithm. In summary, our algorithm is faster than
FFT both in theory and implementation. Furthermore, the range of spar-
sity k that our approach can outperform dense FFT is larger than that
of other sparse Fourier algorithms.

1 Introduction

The Fast Fourier Transform (FFT) calculates the spectrum representation of time-
domain input signals. If the input size is N , the FFT operates in O(Nlog(N))
steps. The performance of FFT algorithms is known to be determined only by
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 252–271, 2014.
DOI: 10.1007/978-3-319-09967-5 15

An Input-Adaptive Algorithm for High Performance 253

input size, and not affected by the value of input. In real world applications,
however, input signals are frequently sparse, i.e., most of the Fourier coefficients
of a signal are very small or equal to zero. If we know that an input is sparse,
the computational complexity of FFT can be reduced. Sublinear sparse Fourier
algorithm was first proposed in [16], and since then, has been extensively stud-
ied in the literatures when applied to various fields [1,2,6,7,12,15]. A recent
highly-influential work [9] presented an improved algorithm in the running time
of O(k

√
NlogNlogN) to make it faster than FFT for the sparsity factor k up to

O(
√

N/logN).
The input sparsity makes it easier to parallelize FFT calculation. From a very

high point of view, the sparse FFT algorithms apply time-domain or spectrum-
domain filters to disperse inputs into separate bins, the computational complex-
ity of those filters being lower than O(Nlog(N)). The number of bins is usually
much smaller than N . After the dispersion, those bins can be further processed
separately, for example, even with straightforward DFT algorithms. Combin-
ing the two steps, sparse FFT algorithms can achieve complexity lower than
O(Nlog(N)).

Sparse FFT algorithms are easier to parallelize than normal FFT algorithms.
It is because the calculation on the bins are independent. It is also not hard to
see that the performance of sparse FFT algorithms, as well as how effectively
we can parallelize the following calculation on the bins, are largely determined
by the design of input filters. In fact, much of existing work on sparse FFT
algorithms focuses on improving the design of sparse filter.

However, the existing filters are really input-oblivious in the sense that their
design, unchangeable at runtime, does not consider input characteristics other
than input size. The current filters are designed based on the sole assumption
that inputs are sparse, but are ignorant to the knowledge of how exactly sparse.
The exclusion of input characteristics in filter design appears reasonable at first
look, because if we already know how exactly an input is sparse, i.e., its spectrum
representation, we don’t need to calculate the FFT at all.

Here we make an important observation. What if we don’t know the exact
spectrum representation of an input, but we know the input has a similar spar-
sity distribution to another signal whose spectrum representation is known, can
the sparsity similarity help improving the sparse FFT on the current input?
This paper gives a Y es answer. First of all, the sparsity similarity is common
in real-world sparse FFT applications. For example, in video compression, two
consecutive video frames usually have almost identical spectrum representations,
and differ only in the phases of some spectrum coefficients.

This observation motivates this paper. Our basic idea, also our main inno-
vation and contribution, is to use the sparsity similarity as a template to design
the customized filters for subsequent similar inputs, so that the filters lead to
less waste of calculation on those zero coefficient bins and can better express
parallelism in sparse FFT. In particular, our input-adaptive sparse FFT imple-
mentation particularly benefits FFT calculation in stream processing.

254 S. Chen and X. Li

The remaining of this paper is organized as follows. We first briefly introduce
existing sparse FFT algorithms and overview our approach. Then we present
how we customize filters based on the sparsity template, and how we use the
customized filters to reduce the overhead and the number of iterations in the
sparse FFT algorithm presented in [9], which our work is based on. And finally,
we compare the performance and accuracy of our input-adaptive sparse FFT
algorithm with FFTW and the latest sparse FFT implementation on synthetic
and real video inputs.

2 Overview of Sparse FFT Algorithms and Our Approach

In this section we overview prior work on sparse Fourier transform, and then
describe our contribution in that context.

A naive discrete Fourier transform of a N -dimensional input series x(n), n =
0, 1, ..., N − 1 is presented as Y (d) =

∑N−1
n=0 x(n)Wnd

N , where d = 0, 1, ..., N − 1
and twiddle factor Wnd

N = e−j2πnd/N . Fast Fourier transform algorithms recur-
sively decompose a N -dimensional DFT into several smaller DFTs [4], and reduce
DFT’s operational complexity from O(N2) into O(NlogN). There are many
FFT algorithms, or in other words, different ways to decompose DFT problems.
Prime-Factor (Good-Thomas) [8] decomposes a DFT of size N = N1N2, where
N1 and N2 are co-prime numbers. Twiddle factor calculation is not included in
this algorithm. In addition, Rader’s algorithm [17] and Bluestein’s algorithm [3]
can factorize a prime-size DFT as convolution. So far, all FFT algorithms cost
time at least proportional to the size of input signal. However, if the output of
a DFT is k-sparse, i.e., most of the Fourier coefficients of a signal are very small
or equal to zero and only k coefficients are large, the transform runtime can be
reduced to only sublinear to the signal size N .

Sublinear sparse Fourier algorithm was first proposed in [16], and since then,
has been extensively studied in many application fields [1,2,6,7,12,15]. All these
algorithms have runtimes faster than original FFT for sparse signals. However,
their runtimes have large exponents (larger than 3) in the polynomial of k and
logN , and their complex algorithmic structures impose restrictions on fast and
parallel implementations.

A highly influential recent work [9] presented an improved algorithm with
the complexity of O(k

√
NlogNlogN) to make it faster than FFT for k up to

O(
√

N/logN). The work in [10] came up with an algorithm with runtime O(klog
Nlog(N/k)) or even optimal O(klogN). These two approaches, however, only
computed a correct sparse Fourier transform in a certain probability and there-
fore cannot guarantee to generate a completely accurate output. Basically, the
new algorithm permutes input with random parameters in time domain to
approximate expected permutation in spectral domain for subsequent binning
of large coefficients. The probability has to be bounded to prevent large coeffi-
cients being binned into the same bucket. In addition, these algorithms iterate
over passes of estimating coefficients, updating the signal and recursing on the

An Input-Adaptive Algorithm for High Performance 255

reminder. Because dependency exists between consecutive iterations, the algo-
rithm can be parallelized only within iterations, but not inter-iteration. More-
over, the selection of the permuting probability, or the filter, is oblivious to input
characteristics.

In this paper, we address these limitations by proposing a new sublinear
algorithm for sparse fast Fourier transform. Our algorithm has a quite simple
structure and leads to a low big-Oh constant in runtime. Our sparse FFT algo-
rithm works in the context that the sparse FFT is invoked on a stream of input
signals, and neighboring inputs have very similar spectrum distribution includ-
ing the sparsity k. The assumption is true for many real-world applications,
for example, for many video/audio applications, where neighboring frames have
almost identical spectral representations in the locations of large Fourier coef-
ficients, and only differing in the coefficients’ values. Our main idea is to use
the output of the previous FFT, i.e., the spectral representation of the previous
input, as a template to decide, for the current input signal, how to most effi-
ciently bin large Fourier coefficients into a small number of buckets, and each
bucket is aimed to have only one large coefficient whose location and magnitude
can be then determined. In particular, an n-dimensional filter D that is concen-
trated both in time and frequency [9,10] is utilized for binning and to ensure
the runtime to be sublinear to N . What binning does is essentially to convolute
a permuted input signal with the selected filter in spectral domain. During the
binning, each bucket receives only the frequencies in a narrow range correspond-
ing to the length of pass region of the filter D’s spectrum, and pass regions of
different buckets are disjoint. The prerequisite of having such a pass region had
only one large coefficient is to make all adjacent coefficients have equal distance.
The information of likely coefficient locations used in the filter tuning is derived
from the sparsity template. We make use of a hash table structure to directly
permute coefficients in spectral domain to achieve the expected equal distanced
permutation. Figure 1 shows the example of our hash table based permutation in
spectral domain, where fi denotes non-zero Fourier coefficients and the numbers
shown above represent locations of the coefficients.

Note that we do not permute input in time domain to approximate the equal
distanced permutation with a certain probability bound, but rather directly
determine the expected permutation in spectral domain. And in addition each
bucket certainly bins only one large coefficient. Therefore our sparse FFT algo-

f1 0 f2 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f3 0 0 f4 0 0 0 0 0 0

f1 0 0 0 f2 0 0 0 f3 0 0 0 f4 0 0 0

Hash
Function

Original Sparse
Coefficients

Permuted Sparse
Coefficients

Fig. 1. Hash table based permutation.

256 S. Chen and X. Li

Object
Movement Time

T0 T1 T2 T3

Video Camera

T0 T1 T2 T3

Time
(x-axis)

object x(i,T0) object x(i-m1,T1) object x(i-m2,T2) object x(i-m3,T3)

Video Frames

m1 m2 m3

Fig. 2. Application of our input adaptive sparse FFT algorithm.

rithm is always capable of producing a determinatively correct output. Subse-
quently, once each bucket bins only one large coefficient, we also need to iden-
tify its magnitudes and locations. Instead of recovering the isolated coefficients
using linear phase estimation [10], we easily look up the hash table reversely to
identify binned coefficients. As a result, our algorithm has the runtime at most
O(k2logN).

Additionally, if all the distances of adjacent frequencies are larger than the
minimum length of filter’s pass region which is obtained from empirical search,
we can reduce the number of permutations and therefore further improve our
algorithm to O(klogNlog(klogN)).

Another notable contribution in our paper is the achievement of paralleliza-
tion to our sparse FFT algorithm. Since our algorithm is non-iterative with high
arithmetic intensity, data parallelism can be exploited from the algorithm. The
graphical processing units (GPUs) are used for the well-suited data parallel com-
putations. We parallelize three main sections in our algorithm: permutation to
input, subsampled FFT and coefficient estimation.

Our algorithm is evaluated empirically against FFTW, an efficient implemen-
tation of FFT with a runtime O(NlogN). For N = 227, our optimized sequential
and parallel algorithm outperforms FFTW for k up to about 219 and 221, which
is an order of magnitude higher than that in prior algorithms.

Finally, our algorithm are demonstrated to be adaptive to input charac-
teristics. In our evaluation, we use frames from a video camera recording the
movement of an object. At the beginning, we capture a video frame of that
object at initial time slot T0 and utilize our sparse FFT algorithm to generate
an output. Then we can use the information of that output to help efficiently
calculate sparse FFT outputs in subsequent time slots. As a result, our sparse
Fourier Transform algorithm saves much time to do the image/video processing
and compression. Figure 2 shows the example of application for our adaptive
sparse FFT algorithm.

In the following sections, we will describe our methods and their applications
in more detail.

3 Input Adaptive Sparse FFT Algorithm

In this section, we use several versions of the sparse FFT algorithm to explain the
evolution from a general sparse FFT algorithm to the proposed input-adaptive

An Input-Adaptive Algorithm for High Performance 257

parallel sparse FFT algorithm. We first describe a general input adaptive sparse
FFT algorithm which comprises of input permutation, filtering non-zero coef-
ficients, subsampling FFT and recovery of locations and magnitudes. Subse-
quently, we discuss how to save the number of permutations and propose an
alternatively optimized version for our sparse FFT algorithm to gain runtime
improvement. Moreover, general and optimized version are hybridized such that
we’re able to choose a specific version according to input characteristics. Addi-
tionally, we show how the performance of our implementation can be parallelized
for GPU and multi-core CPU. Finally, an example of real world application is
described for our input adaptive approach.

3.1 General Input-Adaptive Sparse FFT Algorithm

Notations and Assumptions. For a time-domain input signal x with size N
(assuming N is an integer power of 2), its DFT is x̂. The sparsity parameter
of input, k, is defined as the number of non-zero Fourier coefficients in x̂. In
addition, [q] refers to the set of indices {0, ..., q − 1}. supp(x) refers to the sup-
port of vector x, i.e. the set of non-zero coordinates, and |supp(x)| denotes the
number of non-zero coordinates of x. Finally, our sparse FFT algorithm works
by assuming the locations locj of non-zero Fourier coefficients can be estimated
from similar prior inputs, where j ∈ [k]. The location template is computed only
once for a sequence of signal frames that are similar to each other. The com-
puting of the template by our input-adaptive mechanism which is described in
Sect. 3.5. In particular, we invoke existing video processing technology, e.g., [14],
to detect the discontinuity in frames’ spectral similarities. Therefore, our algo-
rithm is able to compute sparse Fourier transforms for the extracted time-shifting
objects within the frames that have homogeneity in the scenes and spectrums,
but when we find that homogeneity is broken, our algorithm re-calculates the
template and restarts the input-adaptation.

Hashing Permutation of Spectrum. The general sparse FFT algorithm
starts with binning large Fourier coefficients into a small number of buckets by
convoluting a permuted input signal with a well-selected filter in spectral domain.
To guarantee that each bucket is to receive only one large coefficient such that its
location and magnitude can be accurately estimated, we need to permute large
adjacent coefficients of input spectrum to be equidistant. Knowing the possible
Fourier locations locj and their order j ∈ [k] from template, we make use of a
hash table to map spectral coefficients into equal distanced positions.

Definition 1. Define a hash function H: idx = H(j) = j × N/k, where idx is
index of permuted Fourier coefficients and j ∈ [k].

Next we want to determine the shifting distance s between each original
location loc and its permuted position idx to be sj = idxj − locj , j ∈ [k]. Since
shifting one time moves all non-zero Fourier coefficients with a constant factor, so
in worst case, it will only make one Fourier coefficient be permuted into the right

258 S. Chen and X. Li

equidistant location. In addition, since we have total k non-zero coefficients that
need to be permuted, therefore, at most k-time shiftings have to be performed
to permute all the coefficients into their equal distanced positions.

Moreover, the shifting factors obtained in spectral space should be translated
into correspondent operations in time domain so that they are able to take effect
with input signal xi, i ∈ [N]. In effect, shifted spectrum x̂loc−s is equivalently
represented as xiω

si in time domain, where ω = eb2π/N is a primitive n-th root
of unity and b =

√−1.

Definition 2. Define the permutation Ps(j) as (Ps(j)x)i = xiω
is(j) therefore

ˆPs(j)xi
= x̂(locj − s(j)), where s(j) is the factor of j-th shifting.

Therefore, each time when we change the factor s(j), the permutation allows
us to correctly bin large coefficient at location locj into the bucket. The length
of bucket is determined by the flat window function designed in the next section.

Flat Window Functions. In this paper, the method of constructing a flat
window function is same as that used in paper [9]. The concept of flat window
function is derived from standard window function in digital signal processing.
Since window function works as a filter to bin non-zero Fourier coefficients into
a small number of buckets, the pass region of filter is expected to be as flat
as possible. Therefore, our filter is constructed by having a standard window
function convoluted with a box-car filter [9]. Moreover, we want the filter to
have a good performance by making it to have fast attenuation in stopband.

Definition 3. Define D(k, δ, α), where k >= 1, δ > 0, α > 0, to be a flat
window function that satisfies:

1. |supp(D)| = O(k
α log(1δ));

2. D̂i ∈ [0, 1] for all i;
3. D̂i ∈ [1 − δ, 1 + δ] for all |i| ≤ (1−α)N

2k ;
4. D̂i < δ for all |i| ≥ N

2k ;

In particular, flat window function acts as a filter to extract a certain set
of elements of input x. Even if the filter consists of N elements, most of the
elements in the filter are negligible and there are only O(k

α log(1δ)) significant
elements when multiplying with x in time domain. In addition, the flat window
functions are precomputed in our implementation to save execution time, since
their constructions are not dependent on input x but only dependent on N and
k. We can lookup each value of the window function in constant time.

Figure 3 shows an example of Gaussian, Kaiser and Dolph-Chebyshev flat
window functions. Note that the spectrum of our filters D is nearly flat along
the pass region and has an exponential tail outside it. It means that leakage
from frequencies in other buckets can be negligible. By comparing the properties
of the three window functions, Dolph-Chebyshev window is an optimal one for
us to use due to its flat pass region as well as quick and deep attenuation in
stopband.

An Input-Adaptive Algorithm for High Performance 259

Fig. 3. An example of Dolph-Chebyshev, Gaussian, Kaiser flat window functions for
N = 1024.

Subsampled FFT. The coefficients binning process is to convolute input spec-
trum with flat window function. In actual, this convolution is instead performed
in time domain by first multiplying input with filter and then computing its
subsampled FFT. Suppose we have one N -dimensional complex input series x
with sparsity parameter k for its Fourier coefficients, we define a subsampled
FFT as ŷi = x̂iN/k where i ∈ [k] and N can be divisible by k. The FFT subsam-
pling expects the locations of Fourier coefficients in spectrum domain have been
equally spaced. The proof of k-dimensional subsampled FFT has been shown
in [9] and the time cost is in O(|supp(x)| + klogk).

Reverse Hash Function for Location Recovery. After subsampling and
FFT to the permuted signal, the binned coefficients have to be reconstructed.
This is done by computing the reverse hash function Hr.

Definition 4. Define a reverse hash function Hr: rec = Hr(idx) = idx
(N/k) , where

idx is index of permuted Fourier coefficients and rec is the order of recovered
coefficients.

Therefore, recovery of Fourier locations can be estimated as locrec by fetching
the locations using the reconstructed order of frequencies.

Algorithm. Combining the aforementioned steps, we can describe our sparse
FFT algorithm as following. Note that up to this point, we have not introduced
input adaptability, yet. Assuming we have a Fourier location template with k
known Fourier locations loc and a precomputed filter D,

260 S. Chen and X. Li

1. For j = 0, 1, 2, ..., k − 1, where j ∈ [k], compute hash indices idxj = H(j) of
permuted coefficients, and determine shifting factor sj = idxj − locj .

2. Compute y = D · Ps(x), therefore |supp(y)| = |s| × |supp(D)| = O(|s| k
α

log(1δ)). We set δ = 1
4N2V , where V is the upperbound value of Fourier

coefficients and V ≤ N .

3. Compute ui =
∑ |supp(y)|

k −1

l=0 yi+i|y|+lk where i ∈ [k].
4. Compute k-dimensional subsampled FFT ûi and make ẑidx = ûi, where i ∈

[k].
5. Location recovery for ẑidx by computing reverse hash function to produce

rec = Hr(idx) and finally output ẑloc(rec).

The Computational Complexity. We analyze the runtime of our general
sparse FFT algorithm: Step 1 costs O(k); step 2 and 3 cost O(|s| k

α log(1δ)); step
4 costs O(klogk) for a k-points FFT; step 5 costs O(k). Therefore total running
time is determined by O(|s| k

α log(1δ)). It is very rarely that initial Fourier coef-
ficients have equidistant locations, therefore |s| equals to |k| in general and the
runtime becomes O(k2

α log(1δ)) which is asymptotic to O(k2logN).

3.2 Optimized Input-Adaptive Sparse FFT Algorithm

In this section we introduce several transformations of our algorithm that improve
performance and facilitate parallelization. The complexity of general adaptive
sparse Fourier algorithm is asymptotic to O(|s| k

α log(1δ)) if initially no adjacent
Fourier coefficients are equally distanced. However, if the number of permutations
can be reduced, then |s| will be decreased. In fact, it is unnecessary to permute
all the Fourier locations to make them equidistant between each other. Since bin-
ning the sparse Fourier coefficients is a process of convoluting permuted input
spectrum with a well designed filter, so it is guaranteed that if length of filter’s
pass region ε is less than or equal to half of the shortest distance distmin among all
the adjacent locations of non-zero coefficients, i.e. ε <= distmin/2, then we don’t
need to permute all coefficients before we do a FFT. Moreover, in this way, we can
get rid of aliasing distortions during the binning and each pass region essentially
receives only one large coefficient. If we do not do this, aliasing error occurs and
we have to permute all spectral samples.

Next we continue to apply the flat window function D to compute filtered
vector y = Dx and then we want to compute a FFT for y to produce final
output ŷ. The form of FFT we use here is not a k-dimensional subsampled FFT
described previously, since the subsampled FFT requires that locations of non-
zero Fourier coefficients are permuted to be equidistant. Instead, we apply a
general FFT subroutine into calculation of ŷ. The size of the FFT is dependent
on the length of non-zero elements in y, which is O(k

α log(1δ)) determined by
non-zero region of window function D. We view the size of this FFT as a region
with length O(k

α log(1δ)) (i.e. O(klogN)) truncated from size N . Total number of
such truncated region is N

klogN . In addition, since k sparse Fourier coefficients are

An Input-Adaptive Algorithm for High Performance 261

distributed in a region consisting of N elements, we have to identify whether out-
put of O(k

α log(1δ))-dimensional FFT contains all non-zero Fourier coefficients. If
not, we would like to shift the unevaluated non-zero coefficient into the truncated
region. Our algorithms determines whether to do the shifting before computing
FFT. Since the locations of non-zero coefficients and length of truncated region
are known from template, we compare the locations with boundary of truncated
region to determine the shifting factor sf .

Input-Adaptive Shifting. There are two ways to do shifting:

1. If k <= N
klogN , we shift the first unevaluated non-zero coefficient into the

truncated region each time;
2. If N

klogN < k, we shift the unevaluated non-zero coefficient by a constant
factor klogN each time;

In the worst case, the first method performs shifting at most O(k) times,
while the second version takes time at most O(N

klogN). However, if all large
coefficients reside in only one truncated region, we need no shifting and hence
we obtain the best case. Meanwhile, the shifting sfi to spectral coefficients,
i.e. ŷi+sfi

corresponds to time domain operation by multiplying input signal yn

with a twiddle factor, i.e. yne−b2πsfin/N where b =
√−1. Therefore, the cost of

shifting for one time is the length of filtered vector y, i.e. O(klogN).

Optimized Algorithm. Adding the optimization heuristics and the input-
adaptive shifting, the improved sparse FFT algorithm works as following:

1. Apply filter to input signal x:
Utilize a flat window function D to compute the filtered vector y = Dx. Time
cost RT1 is O(k

α log(1δ)), i.e. O(klogN).
2. Spectrum shifting: Compare k and N

klogN to select one of the two shifting
methods and then do the shifting to filtered vector y. The step-2’s run-
time RT2 is O(klogN) ≤ RT2 < O(min{k, N

klogN } k
α log(1δ)), i.e. O(klogN) ≤

RT2 < O(min{k, N
klogN }klogN).

3. For e ∈ {1, 2, ...,min{k, N
klogN }}, each shifting event Ie is to compute

O(k
α log(1δ))-dimensional (i.e. O(klogN)-dimensional) FFT ẑe as ẑe,i = ŷi

in current truncated region, for i ∈ [O(k
α log(1δ)) = O(klogN)]. Final output

is ẑ. The step-3’s runtime RT3 is O(klogNlog(klogN)) ≤ RT3 < O(min{k,
N

klogN }klogNlog(klogN)).

Therefore, total runtime RT of the improved sparse FFT algorithm is O(klog
Nlog(klogN)) ≤ RT < O(min{k, N

klogN }klogNlog(klogN)).

3.3 Hybrid Input-Adaptive Sparse FFT Algorithm

Actually, it is clear from the complexity analysis of our general and optimized
sparse FFT algorithms that the two algorithm versions are best suit for different

262 S. Chen and X. Li

input characteristics. That is, the “optimized” version does not perform better
than the general version on all cases. We hybridize the two approaches by at
runtime selecting the most appropriate version based on input characteristics.

In our optimized version of sparse FFT algorithm, it is worth mentioning
that if the required length of pass region is too short, such a filter becomes hard
to construct in practice. Therefore, we define a threshold distTD of minimum
distance distmin. If distmin >= distTD, then the filter can be constructed to have
expected pass region. If distmin < distTD, then our general sparse FFT has to
be applied and all the Fourier locations have to be permuted to be equidistant.
The threshold can be obtained by empirical search offline.

Therefore, we make the following judgment on an input to decide which
algorithm version to apply for the specific input:

1. Determine shortest distance distmin among all adjacent locations of k large
coefficients:
Initialize minimum distance distmin = 0; For j ∈ 1, 2, ..., k − 1, compute
distances distj = locj − locj−1 between all k adjacent sparse Fourier locations
locj−1 and locj ; Then if distj <= distmin, update distmin = distj . The
runtime is O(k).

2. If distmin >= distTD, we choose to use optimized approach to save large
number of permutations; If distmin < distTD, then our general sparse FFT
has to be applied and all the Fourier locations have to be permuted to be
equidistant. The threshold can be obtained by empirical search in our filter
design process.

This resolution assists us to create an input-aware algorithm for sparse FFT
computation. The cost for the deciding process is only O(k), which can be
neglected compared with the runtime of either the general version or the opti-
mized version.

3.4 Parallel Input-Adaptive Sparse FFT Algorithm

Compared with the “dense” FFT algorithms or the existing sparse FFT algo-
rithms, our input-adaptive sparse FFT algorithm can be better parallelized.
Specifically, our algorithm is non-iterative with high arithmetic intensity in most
portions. The non-iterative nature exposes good coarse-grain parallelism. More-
over, data parallelism of each subsection can be exploited from the algorithm.
In this paper, we use Graphic Processing Units (GPUs) for the well-suited data
parallel computations. Several architectural-oriented transformations are applied
to fine-tune the algorithm for the GPU architecture.

Parallelism Exploitation and Kernel Execution. We first parallelize our
general sparse FFT implementation. Since data parallelism is a set of homo-
geneous tasks executed repeatedly over different data elements, we have such
parallelism existing in subsections of hashed index computation, filtering and
permuting input, subsampling FFT, and location recovery. Therefore, to achieve

An Input-Adaptive Algorithm for High Performance 263

high performance we construct GPU computational kernel for each subsection.
First of all, kernel HashFunc(), whose number of threads is k, is responsible to
compute hashed indices of permuted coefficients and to determine shift factors.
The loop of size k is decomposed and each scalar thread in kernel concurrently
works as each index j in the algorithm. In addition, kernel Perm() with total
number of threads k2logN is used to apply filter and permutation to input. Each
thread multiplies filter as well as shifting factor with input for one element. We
parallelize subsampling to input in kernel Subsample() with total k threads
before we launch our well-tuned FFT kernel TunedFFT (). Finally we obtain
output from location estimation kernel Recover() with k threads parallelizing
the loop of algorithm.

For the parallelization of our optimized version of sparse FFT algorithm, we
start to launch kernel Filtering() to parallelize loop size O(klogN) of applying
filter to the input. Subsequently, kernel Shifting() with min{k, N

klogN }klogN
threads is to make each thread shift one input element by a factor. For each
shifting event, our tuned FFT kernel TunedFFT () is launched before we gain
the output.

Performance Optimizations. Throughout our GPU implementation to two
versions algorithms, we take care of several important optimization techniques
that enable GPU performance to be improved significantly.

Since GPU global memory accesses are costly, it is crucial to optimize access
pattern in order to get maximum memory bandwidth. We organize memory
accesses to be coalesced which indicates that threads of a half-warp (16 threads)
access 16 consecutive elements at a time so that those individual accesses are
grouped into a single memory access. Since in our implementation, most ker-
nels have consecutive access patterns, therefore we enable coalesced accesses by
making the size of thread block be 16 × 2p where p ≥ 0, and set grid size to
#threads
blocksize .

Moreover, data sharing between kernels can be executed efficiently by increas-
ing data reuse inside local device memory. Host (CPU) and device (GPU) are
connected through a PCIe bus that has much larger latency and smaller band-
width than device memory. Therefore it is of great necessity to increase PCI
bandwidth by reducing the number of PCI transfers and keep much more data
in local device for reuse. In our implementation, we only have two transfers
between CPU and GPU. The first communication is to input all precomputed
data including input, Fourier locations and filter information into GPU from
CPU. The second transfer is to output final sparse-Fourier results from GPU
to CPU. Temporary results are kept into GPU memory and are reused between
kernels without transfering back to CPU.

Tuned GPU Based FFT Library. On GPU, our TunedFFT () kernel decom-
poses a 1D FFT of size N = N1×N2 into multi-dimensions N1 and N2, therefore
it enables the exploitation of more parallelism for parallel FFT implementation

264 S. Chen and X. Li

N2

N1

N2

N12

N11 N2

N11

N12/#streams

N12

N1W

N2W

N=N1*N2 stream 0
stream 1
stream 2
stream 3 N2

For each stream

1D FFT

Cooley–Tukey
decomposition

Further
decomposition

N11/#streams

Fig. 4. Working flow of well-tuned GPU based FFT.

on GPU architectures. All N1 dimensional 1D FFTs are first calculated in par-
allel across N2 dimension. If the size of N1 is still large after decomposition,
we would further decompose each N1 = N11 × N12 sized 1D FFT into two
dimensional FFTs with smaller sizes N11 and N12, respectively. On GPU, device
memory has much higher latency and lower bandwidth than on-chip memory.
Therefore, shared memory is utilized to increase device memory bandwidth.
N1W × N11 × N12 sized shared memory needs to be allocated, where N1W is
chosen to be 16 for half-warp of threads to enable coalesced access to device
memory. The number of threads in each block, for both N11 and N12-step FFTs,
is therefore N1W ×max(N11, N12) to realize maximum data parallelism on GPU.
To calculate each N1-step 1D FFT, a size N11 FFT is executed to load data from
global memory into shared memory for each block. Next, all threads in each
block are synchronized before data in shared memory is reused by the N12-step
FFT and subsequently written back to global memory. Experiment tests show
that such shared memory technique effectively hides global memory latency and
increases data reuse, both contributing to the performance on GPU. Figure 4
shows the working flow of such GPU based FFT framework.

3.5 Real-World Application

In this section, we demonstrate how our input adaptive algorithm works in real
world. Meanwhile, we illustrate how the Fourier location template is generated.
We use a sample of video recording in real application shown in Fig. 2. The video
sample uses a fix video camera to record the movement of a 2D object along x-
coordinate for a duration of time. For each time slot we obtain a 2D video frame
containing the object image which can be represented as a 2D matrix img(g, h)
whose values stand for color digits, where g ∈ [ro], h ∈ [col]. The number of
rows and columns is ro and col, respectively. Particularly, we substitute the 2D
matrix into a row-major 1D array xi = x(i = g ∗ col +h) = img(g, h). Assuming
the interval between the same object in two time-adjacent video frames is m, it
can be proved that shifting to img(g, h) is the same to xi since img(g, h − m) =
x(g ∗ col + h − m) = xi−m. Therefore, the process of video recording is modeled
as a time shifting process to xi and we want to compute its Fourier transform
x̂j for image/video processing and compression.

At the beginning, we capture input signal xi,T0 in a video frame at ini-
tial time slot T0 and calculate its Fourier transform x̂j,T0 using a dense FFT.

An Input-Adaptive Algorithm for High Performance 265

All locations of large Fourier coefficients and their order can be obtained for x̂i at
T0. Next we need to compute Fourier transform for xi−m1 at time T1. Since time-
shifted xi−m1 corresponds to x̂je

−b2πm1j/N in spectral domain, where b =
√−1,

hence the locations of non-zero frequencies in x̂j,T1 is same as those in x̂j,T0, but
only their values differ. As a consequence, we can make use of Fourier locations
gained from xi,T0 to compute sparse (not dense) FFT for xi−m1,T1 at T1 and
for xi−mt,T t at remaining time slots Tt. Therefore, our sparse algorithm saves
much time on dense FFTs since we only compute dense FFT once and then only
calculate sparse FFTs according to input characteristics we obtained previously.

Moreover, if time shifting factor mt is known, we can further directly multiply
x̂j,T0 at initial time T0 by e−b2πmtj/N to efficiently attain Fourier transform x̂j,T t

at remaining time Tt without a FFT. However, if shifting factor mt is unknown,
we cannot do this to get spectrums for xi−mt,T t. This situation is feasible in real
application. Suppose we use a video recorder to capture several video frames, but
sometimes we don’t know the time-shifted distance mt of the two frames. Hence,
we have to know m at first. The worst case is to match xi,T0 with xi−mt,T t and
determine mt in runtime of O(N2). Nonetheless, such a process can be efficiently
executed in O(N) time when applying the algorithm in [13]. Therefore, if mt

is unknown, we spend time of O(N) on finding mt and O(k) on multiplying
e−b2πmtj/N . Total runtime is O(N + k). In the evaluation section, we conduct
detailed evaluation to show our sparse FFT outperforms the performance of
above two situations including known mt and unknown mt.

4 Experimental Evaluation

In this section we evaluate our input-adaptive sparse FFT implementation and
its influence on a real-world application. We first discuss the environmental setup
that we use for the evaluation and then present performance results.

The double-precision performance evaluation is conducted on three heteroge-
neous computer configurations. Sequential implementation is executed on Intel
i7 920 CPU and the parallel case is run on three different NVIDIA GPUs, i.e.
GeForce GTX480, Tesla C2070 and Tesla C2075. For sequential version, we
evaluate our general and optimized sparse FFT approaches, and compare them
against three highly-influential FFT libraries: (1) FFTW 3.3.3 [5], the latest
FFTW which is the most efficient implementation for computing the dense FFTs.
In FFTW, Streaming Single Instruction Multiple Data Extensions (SSE) on Intel
CPU is enabled for better performance. (2) sFFT 1.0 and 2.0 [9], which is one of
the fastest sublinear algorithms of sparse FFT with an open source library. (3)
AAFFT 0.9 [11], which is another recent sublinear algorithm with fast empirical
runtime. For the parallel version, since there is no parallel sparse-FFT library for
us to use, we only compare our GPU based performance to four threads enabled
FFTW. The GPU performance reported here includes time of both computation
and data transferring between host and device. Furthermore, all FFTW libraries
we use are with two flags, i.e. ESTIMATE (a basic version marked as ’FFTW’
in the plots) and MEASURE (an optimal version marked as ’FFTW OPT’ in
the plots). The configurations of GPUs and CPU are summarized in Table 1.

266 S. Chen and X. Li

Table 1. Configurations of GPUs and CPU

GPU Global memory NVCC PCI

GeForce GTX480 1.5 GB 3.2 PCIe2.0× 16

Tesla C2070 6 GB 3.2 PCIe2.0× 16

Tesla C2075 6 GB 3.2 PCIe2.0× 16

CPU Frequency, # of Cores System memory Cache

Intel i7 920 2.66 GHz, 4 cores 24 GB 8192 KB

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

R
u
n
 T

im
e

(s
ec

)

Signal Size (N)

(a) Run Time vs Signal Size (k=64)

Our Algorithm
FFTW OPT

FFTW
sFFT 1.0

sFFT 2.0
AAFFT 0.9

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

R
u
n
 T

im
e

(s
ec

)

Number of Non-Zero Frequencies (k)

(b) Run Time vs Sparsity (N=2
27

)

Our Algorithm
FFTW OPT

FFTW
sFFT 1.0

sFFT 2.0
AAFFT 0.9

Fig. 5. Performance of our general sparse FFT in sequential case.

4.1 General Input-Adaptive Sparse FFT Algorithm

Both sequential and parallel version of our general sparse FFT are evaluated in
two cases: First, we fix the sparsity parameter k = 64 and plot the execution
time of our algorithm and the compared libraries for 18 different signal sizes
from N = 210 to 227. Second, we fix the signal size to N = 227 and evaluate the
running time under different numbers of non-zero frequencies, i.e. k.

Figure 5 shows our sequential sparse FFT on an Intel i7 CPU. In Fig. 5.a, we
fix k = 64 and change N . The running time of FFTW is linear in the signal size
N and sFFT 1.0/2.0 shows approximately linear in N when N > 220. However,
our general sparse FFT appears almost constant as the signal size increases,
which is a result of our sub-linear property in algorithm. AAFFT 0.9 also shows
constantly over different N but its runtime performance is worse than ours and
sFFT. Moreover, our approach demonstrates the fastest runtime over sFFT,
FFTW and AAFFT. For N ≥ 215 our algorithm is faster than FFTW, while
sFFT and AAFFT has to reach this goal for N ≥ 219 and N ≥ 224, respectively.
In Fig. 5.b, we fix N = 227 and change k. FFTW shows invariance in performance
since its complexity is O(NlogN) which is independent on k. Additionally, our
general sparse FFT has a faster runtime than basic and optimal FFTW for k
up to 11000 and 10000, respectively. However, sFFT 1.0, sFFT 2.0 and AAFFT
0.9 are faster than basic FFTW only when k is less than 8000, 9000 and 1000.
Therefore, our approach extends the range of k where our performance is faster

An Input-Adaptive Algorithm for High Performance 267

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

R
u
n
 T

im
e

(s
ec

)

Signal Size (N)

(a) Run Time vs Signal Size (k=64)

Our GTX480
Our Tesla C2070
Our Tesla C2075

Our 4 threads
FFTW OPT 1 thread

FFTW 1 thread

FFTW OPT 4 threads
FFTW 4 threads

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10
 100

 1000
 10000

R
u
n
 T

im
e

(s
ec

)

Number of Non-Zero Frequencies (k)

(b) Run Time vs Sparsity (N=2
27

)

Our GTX480
Our Tesla C2070
Our Tesla C2075

FFTW OPT 1 thread
FFTW 1 thread

FFTW OPT 4 threads

FFTW 4 threads
Our 4 threads

Fig. 6. Performance of our general sparse FFT in parallel case.

than dense FFT. Furthermore, our general algorithm performs better than other
compared FFT libraries on average.

Figure 6 shows the parallel versions of our sparse FFT on three high perfor-
mance GPUs. Since there is no parallel sparse FFT libraries for us to use, we
compare our parallel performance to single-thread and 4-thread FFTW. Addi-
tionally, to better show our GPU based performance we also add the implemen-
tation of our parallel version under 4 CPU threads. In Fig. 6.a, we fix k = 64
and change N . Both 1-thread and 4-thread FFTW are linear in the signal size
N , however, our parallel approach still appears constant as N increases. More-
over, our three GPU implementations are faster than 1-thread and 4-thread
FFTW when N ≥ 214 and N ≥ 215, while our 4-thread CPU case is exceeds
1-thread and 4-thread FFTW only when N ≥ 215 and N ≥ 216, respectively. In
Fig. 6.b, we fix N = 227 and change k. Specifically, our parallel performance on
GTX480, Tesla C2070 and C2075 has a runtime faster than 1-thread FFTW for
k up to 40000, 50000, 60000 and than 4-thread FFTW for k reaching to 20000,
30000, 30000, respectively. Meanwhile, our 4-thread CPU based implementation
exceeds 1-thread and 4-thread FFTW only when k is less than respective 15000
and 7000.

4.2 Optimized Input-Adaptive Sparse FFT Algorithm

Our optimized sparse FFT algorithm has two situations: the optimal status
assumes that all large coefficients reside in only one truncated region of length
O(klogN) so that we need no shifting; the average case neglects this assumption
but to compute for a random input over 10 runs then takes an average.

Figure 7 shows our optimized sparse FFT in sequential case. In Fig. 7.a, we
fix k = 64 and change N . Our optimized approach is sub-linear due to its
constant curve when N increases. In addition, the optimal and average case
of our optimized algorithm is faster than FFTW when N ≥ 214 and N ≥ 215,
respectively. However, sFFT 1.0/2.0 and AAFFT 0.9 has to achieve this purpose
for N ≥ 219 and N ≥ 224, respectively. In Fig. 7.b, we fix N = 227 and change

268 S. Chen and X. Li

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

R
u

n
 T

im
e

(s
ec

)

Signal Size (N)

(a) Run Time vs Signal Size (k=64)

Our Optimal
Our Average

FFTW OPT
FFTW

sFFT 1.0
sFFT 2.0

AAFFT 0.9

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10
 100

 1000
 10000

 100000

 1e+06

R
u

n
 T

im
e

(s
ec

)

Number of Non-Zero Frequencies (k)

(b) Run Time vs Sparsity (N=2
27

)

Our Optimal
FFTW OPT

FFTW
Our Average

sFFT 1.0
sFFT 2.0

AAFFT 0.9

Fig. 7. Performance of our optimized sparse FFT in sequential case.

k. Our optimal and average case has a runtime faster than FFTW for k up to
1000000 and 25000, respectively. However, sFFT 1.0, sFFT 2.0 and AAFFT 0.9
are faster than basic FFTW only when k is less than 8000, 9000 and 1000. On
average, our optimized algorithm performs better than other compared FFT
libraries.

Figure 8 shows the parallel performance of the optimized algorithm. The
experimental configuration is same as that in our general algorithm. In Fig. 8.a,
we fix k = 64 and change N . Our three GPU implementations are faster than
1-thread and 4-thread FFTW when N ≥ 213 and N ≥ 214. It is also faster than
the dense CUFFT 3.2 when N ≥ 215. In Fig. 8.b.c.d, we fix N = 227 and change
k. The performance of optimal algorithm on GTX480, Tesla C2070 and C2075
has a runtime faster than 1-thread FFTW for k up to 1500000, 2000000, 3000000
and than 4-thread FFTW for k reaching to 500000, 700000, 900000, respectively.
Meanwhile, performance of our optimized method in average case on GTX480,
C2070 and C2075 is faster than 1-thread FFTW for k up to 50000, 70000, 80000
and than 4-thread FFTW for k reaching to 30000, 40000, 50000, respectively. In
addition, our optimal version on the three GPUs is faster than dense CUFFT
when k reaches to 70000, 80000, 90000, while our average case on the GPUs
exceeds CUFFT for k up to 6000, 7000, 8000. Particularly, in Fig. 8.c, CUFFT
is also added in our Tesla C2070 test as kernel TunedFFT (). As a result, our
tuned GPU based FFT kernel is 21 % faster than CUFFT counterpart.

4.3 Evaluation of Real-World Application and Accuracy

We show an performance evaluation for better illustrating the real-world appli-
cation of video recording in Sect. 3.5. Suppose we capture total 10 video frames
in 10 time slots. The displacement between the object in adjacent two time slots
is set to 210 points. Figure 9.a shows the sequential performance of our hybrid
sparse FFT against to the dense FFT performance, i.e. FFTW, and to the per-
formance of two situations including known shifting factor m and unknown m.
X-axis represents the time slots Tt. Input signal size is N = 227 points and
k = 64. The test shows that our hybrid FFT in both sequential and parallel

An Input-Adaptive Algorithm for High Performance 269

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

R
u
n
 T

im
e

(s
ec

)

Signal Size (N)

(a) Run Time vs Signal Size (k=64)

Optimal GTX480
Optimal Tesla C2070
Optimal Tesla C2075

Average GTX480
Average Tesla C2070
Average Tesla C2075

FFTW OPT 4 threads
FFTW 4 threads

Dense CUFFT

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10
 100

 1000
 10000

 100000

 1e+06

R
u
n
 T

im
e

(s
ec

)

Number of Non-Zero Frequencies (k)

(b) Run Time vs Sparsity (N=2
27

) on GTX480

Optimal GTX480
FFTW OPT 1 thread

FFTW 1 thread

FFTW OPT 4 threads
FFTW 4 threads

Dense CUFFT

Average GTX480

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10
 100

 1000
 10000

 100000

 1e+06

R
u
n
 T

im
e

(s
ec

)

Number of Non-Zero Frequencies (k)

(c) Run Time vs Sparsity (N=2
27

) on Tesla C2070

Optimal Tesla C2070
FFTW OPT 1 thread

FFTW 1 thread

FFTW OPT 4 threads
FFTW 4 threads

Our CUFFT

Dense CUFFT
Average Tesla C2070

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10
 100

 1000
 10000

 100000

 1e+06

R
u
n
 T

im
e

(s
ec

)

Number of Non-Zero Frequencies (k)

(d) Run Time vs Sparsity (N=2
27

) on Tesla C2075

Optimal Tesla C2075
FFTW OPT 1 thread

FFTW 1 thread

FFTW OPT 4 threads
FFTW 4 threads

Dense CUFFT

Average Tesla C2075

Fig. 8. Performance of our optimized sparse FFT in parallel case.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7 8 9

R
u
n
 T

im
e

(s
ec

)

Time Slot (Tt)

(a) Performance of Application (N=2
27

, k=64)

FFTW OPT FFTW Known m Unknown m Our hybrid

 0

 1e-11

 2e-11

 3e-11

 4e-11

 5e-11

 6e-11

 7e-11

 8e-11

50 60 70 80 90 100 200 300 400 500

R
M

S
E

Number of Non-Zero Frequencies (k)

(b) Precision Evaluation (N=2
27

)

Comparison with FFTW

Fig. 9. Performance of a real-world application and accuracy of our algorithm.

version outperform the performance of all other compared situations. It demon-
strates that we can spend time to compute a dense FFT once to preprocess the
Fourier location template that we need for the FFTs in remaining time. Then
we can save much time by using our hybrid sparse FFT for all the subsequent
input signals. Furthermore, if the number of frames is large, our sparse FFT
outperforms sFFT as well as AAFFT on average in the real application.

270 S. Chen and X. Li

The accuracy of our sparse FFT implementation is verified by comparing
its complex Fourier transform (Fx, Fy) with FFTW’s output (fx, fy) for the
same double-precision input data. The difference in output is quantized as root
mean square error (RMSE) over the whole data set. The RMSE is defined as√∑N−1

i=0 [(Fx−fx)2+(Fy−fy)2]

2N
and is shown in Fig. 9.b for N = 227 and different k.

Overall, the RMSE is extremely small and demonstrates a good accuracy of our
algorithm.

5 Conclusion

In this paper, we proposed an input-adaptive sparse FFT algorithm that takes
advantage of the similarity between sparse input samples to efficiently compute
a Fourier transform in the runtime sublinear to signal size N . Specifically, our
work integrates and tunes several adaptive filters to package non-zero Fourier
coefficients into sparse bins which can be estimated accurately. Moreover, our
algorithm is non-iterative with high computation intensity such that parallelism
can be exploited for multi-CPUs and GPU to improve performance. Overall, our
algorithm is faster than FFT both in theory and implementation, and the range
of sparsity parameter k that our approach can outperform dense FFT is larger
than that of other sparse Fourier algorithms.

References

1. Akavia, A.: Deterministic sparse fourier approximation via fooling arithmetic pro-
gressions. In: The 23rd Conference on Learning Theory, pp. 381–393 (2010)

2. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decod-
ing. In: The 44th Symposium on Foundations of Computer Science, pp. 146–157.
IEEE (2003)

3. Bluestein, L.: A linear filtering approach to the computation of discrete Fourier
transform. IEEE Trans. Audio Electroacoust. 18(4), 451–455 (1970)

4. Duhamel, P., Vetterli, M.: Fast fourier transforms: a tutorial review and a state of
the art. Signal Process. 4(19), 259–299 (1990)

5. Frigo, M., Johnson, S.G.: The design and implementation of fftw3. Proc. IEEE
93(2), 216–231 (2005)

6. Gilbert, A., Guha, S., Indyk, P., Muthukrishnan, M., Strauss, M.: Near-optimal
sparse fourier representations via sampling. In: Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, pp. 152–161. ACM (2002)

7. Gilbert, A., Muthukrishnan, M., Strauss, M.: Improved time bounds for near-
optimal space fourier representations. In: Proceedings of SPIE Wavelets XI (2005)

8. Good, I.: The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc.
Ser. B (Methodological) 20(2), 361–372 (1958)

9. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for
sparse fourier transform. In: Proceedings of the 23th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1183–1194. ACM (2012)

10. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse fourier trans-
form. In: Proceedings of the 44th Symposium on Theory of Computing, pp. 563–
578. ACM (2012)

An Input-Adaptive Algorithm for High Performance 271

11. Iwen, M.: AAFFT (Ann Arbor Fast Fourier Transform) (2008). http://sourceforge.
net/projects/aafftannarborfa/

12. Iwen, M.: Combinatorial sublinear-time fourier algorithms. Found. Comput. Math.
10(3), 303–338 (2010)

13. Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM J. Com-
put. 6(2), 323–350 (1977)

14. Li, L., Huang, W., Gu, I., Tian, Q.: Foreground object detection from videos con-
taining complex background. In: Proceedings of the 11th ACM International Con-
ference on Multimedia, pp. 2–10. ACM (2003)

15. Mansour, Y.: Randomized interpolation and approximation of sparse polynomi-
als. In: Kuich, Werner (ed.) ICALP 1992. LNCS, vol. 623, pp. 261–272. Springer,
Heidelberg (1992)

16. Nukada, A., Matsuoka, S.: Learning decision trees using the fourier spectrum.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, pp. 455–464. ACM (1991)

17. Rader, C.: Discrete Fourier transforms when the number of data samples is prime.
Proc. IEEE 56(6), 1107–1108 (1968)

http://sourceforge.net/projects/aafftannarborfa/
http://sourceforge.net/projects/aafftannarborfa/

Caches

Aligned Scheduling: Cache-Efficient Instruction
Scheduling for VLIW Processors

Vasileios Porpodas1(B) and Marcelo Cintra1,2

1 School of Informatics, University of Edinburgh, Edinburgh, UK
v.porpodas@ed.ac.uk

2 Intel Labs Braunschweig, Braunschweig, Germany
mc@staffmail.ed.ac.uk

Abstract. The performance of statically scheduled VLIW processors is
highly sensitive to the instruction scheduling performed by the compiler.
In this work we identify a major deficiency in existing instruction schedul-
ing for VLIW processors. Unlike most dynamically scheduled processors,
a VLIW processor with no load-use hardware interlocks will completely
stall upon a cache-miss of any of the operations that are scheduled to run
in parallel. Other operations in the same or subsequent instruction words
must stall. However, if coupled with non-blocking caches, the VLIW
processor is capable of simultaneously resolving multiple loads from the
same word. Existing instruction scheduling algorithms do not optimize
for this VLIW-specific problem.

We propose Aligned Scheduling, a novel instruction scheduling algo-
rithm that improves performance of VLIW processors with non-blocking
caches by enabling them to better cope with unpredictable cache-memory
latencies. Aligned Scheduling exploits the VLIW-specific cache-miss
semantics to efficiently align cache misses on the same scheduling cycle,
increasing the probability that they get serviced simultaneously. Our
evaluation shows that Aligned Scheduling improves the performance of
VLIW processors across a range of benchmarks from the Mediabench II
and SPEC CINT2000 benchmark suites up to 20 %.

1 Introduction

Very Long Instruction Word (VLIW) processors are wide-issue statically sched-
uled processors. They are used in a wide range of domains: in GPUs (AMD’s
VLIW-5 architecture on Radeon GPUs and in APUs [4]), in embedded systems as
DSPs (Texas Instrument’s VelociTI, HP/ST’s Lx [8], Analog’s TigerSHARC [11],
BOPS’ ManArray [23]) and as targets of dynamic binary translation (e.g. Trans-
meta’s Crusoe [5,14]). A VLIW-like architecture (with many unique dynamic
hardware additions for run-time optimizations) is also used in servers (Intel’s
Itanium/Itanium2 EPIC architecture [20,27]).

Compared to dynamically scheduled processors, VLIW designs operate at an
attractive power/performance point. This is because they are by design both

This work was supported in part by the EC under grant ERA 249059 (FP7).

c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 275–291, 2014.
DOI: 10.1007/978-3-319-09967-5 16

276 V. Porpodas and M. Cintra

simple (no dynamic scheduling hardware [10]) and wide-issue. They rely on
the compiler’s instruction scheduling pass to optimally schedule instructions.
Instruction scheduling algorithms re-arrange the instructions of the input pro-
gram to hide pipeline latencies. Schedulers for VLIW processors in particular,
explicitly express instruction level parallelism (ILP) in long instruction words.

The simplicity of the VLIW hardware design, however, comes at a cost:
VLIW processors are more sensitive to dynamic latencies triggered by micro-
architectural events, such as cache misses, than their dynamically scheduled
counterparts. This is because a traditional VLIW processor comes to a complete
halt upon a cache miss caused by any instruction in the long instruction word,
due to the absence of load-use hardware interlocks. Therefore even if there exist
instructions that could execute while the miss is being serviced, they do not
because the VLIW hardware does not allow it. We refer to these VLIW cache-
miss semantics as Stall-On-Miss (SOM) (Fig. 1c).

Performance can be improved once we deviate from the VLIW design philos-
ophy and introduce data hazard detection in hardware. This limits the processor
stalls to the cases when a VLIW instruction tries to use data that is not avail-
able (brought in by the Load-miss). We refer to this model as Stall-On-Use
(SOU) (Fig. 1d). In this model, the long instruction words remain intact and the
dependencies are tracked at the VLIW word level.

If we apply a full-blown register scoreboarding in hardware, we can break
down the instruction words into individual instructions and we can allow each
instruction to issue and stall independently of the others (Fig. 1e). This allows
for optimal pipeline throughput as the execution only stalls when dictated by
the data dependencies. This approach, however, requires hardware components
that are normally found in dynamically scheduled superscalar processors, thus
deviating from the VLIW design concept of keeping the hardware simple. This is
the reason why most VLIW processors are designed to be either SOM or SOU.
In this work we only consider the SOM and SOU models.

A SOU architecture requires Non-Blocking caches [15] to function. These
caches are equipped with a simple hardware mechanism that allows them to resolve
multiple misses simultaneously. Their impact on performance on dynamically

G

FH

A

B

C

E

D

a. DFG
F

1 B H

2 C G

0 A

3 D

4 E

F

H

GD

E

C

0 A

2

3

4

1 BB H

D

E

C G

0 A F

2

3

4

5

1

S
T

A
L

L1

0 A F

2

D

E

C G

B H3

4

5

6

S
T

A
L

L

Non−Load instruction

Flow Dependency
Load−MissLoad Hit Increasing Hardware Complexity

b. Cache Hit c. Stall−On−Miss (SOM) e. Full Scoreboardd. Stall−On−Use (SOU)

Fig. 1. Dynamic schedules of DFG (a) as we increase hardware complexity.

Aligned Scheduling: Cache-Efficient Instruction Scheduling 277

Or Cache−HIT
Non−Load instruction

Load−MISS instruction

D

A

B
B

C

D CDFG

C

A

2
1
0

3

long−latency A with B,C
a. Execution overlap of

BA0
1
2
3
4

Stall−On−Miss

S
T

A
L

L

D

b. No execution overlap of
Load−MISS A (only B)

Fig. 2. VLIW semantics of a regular long-latency instruction (a) VS a cache-miss (b).

scheduled processors is significant since they decrease the pipeline stalls. The per-
formance improvement however, on a VLIW processor with SOM semantics is not
as impressive under existing instruction schedulers.

Most schedulers can effectively deal with regular long-latency instructions,
such as integer division. They try to hide long latencies by executing other low-
latency instructions in parallel. Existing instruction schedulers consider Load
instructions as regular instructions of some latency: either low-latency (cache-
hit), high-latency (cache miss) or something in between. This effectively changes
how the scheduler treats the loads: as hits, misses or in between. This approach
works fine for dynamically-scheduled processors. The Stall-On-Miss semantics of
a VLIW processor however, require special treatment by the instruction sched-
uler. Figure 2 shows that trying to hide load miss latency by scheduling other
instructions in parallel is not suitable for VLIWs. This is because on a VLIW
with no load-use interlocks, the semantics of a regular long-latency instruction
(Non-Load instruction Fig. 2a) are different from a cache-miss of equal latency
(Load instruction Fig. 2b). On one hand the high-latency regular instruction A in
Fig. 2a can overlap its execution with B and C. On the other hand, cache-miss A
in Fig. 2b cannot overlap with instructions C or D due to Stall-On-Miss seman-
tics. Therefore such VLIW architectures require a radically different scheduling
approach for hiding cache-miss latencies.

This paper proposes Aligned Scheduling, a novel instruction scheduling algo-
rithm for statically scheduled VLIW processors with non-blocking caches that
treats Load instructions differently than existing schemes. It improves the toler-
ance of VLIW processors to cache-miss latencies by exploiting four concepts:

1. The VLIW-specific Stall-On-Miss or Stall-On-Use cache-miss semantics.
2. Non-blocking caches [15,28], that can service multiple cache misses simul-

taneously.
3. The statically provable Memory-Level Parallelism (MLP), that allows mul-

tiple memory Load operations to execute on the same VLIW cycle.
4. The explicit instruction parallelism of VLIW instruction words.

These concepts allow the instruction scheduler to hide cache-miss latencies
by aligning memory Load instructions together on the same cycle, in a smart
way. In this way, during execution, the probability that multiple Load instruc-
tions miss simultaneously increases. We refer to this effect of multiple aligned

278 V. Porpodas and M. Cintra

B

C

D

C

D

C

D

B

D

DC C D

Non−Load instruction

A

B

A A

B

A

C

A B A B

OVERLAP

MISS

more MISSesmore MISSes
a. Non−Aligned schedule b. Aligned schedule

i.Both HIT
1

0 0

1

2

3
ii.A MISS, B HIT

iii.Both MISS
5

4

3

2

1

0

S
T

A
L

L

S
T

A
L

L

i.Both HIT

0

1

0

1

2

3

0

1

2

3

S
T

A
L

L

S
T

A
L

L

iii.Both MISSii.A MISS, B HIT

Load−MISS instr.
Load−HIT instr.

Fig. 3. Two different schedules a and b under increasing miss conditions. Schedule b
(Aligned) exhibits miss-overlapping under heavy miss conditions (b.iii).

Load instructions missing simultaneously as miss overlapping (Fig. 3). Aligned
Scheduling proves particularly effective for VLIWs with no load-use hardware
interlocks (SOM), but as shown in the Sect. 5, it could potentially benefit SOU
under high miss latency conditions.

2 Motivation

The main concept that Aligned Scheduling is based on is the idea of miss overlap-
ping (Fig. 3). If the architecture supports non-blocking caches, then more than a
single outstanding cache miss can be serviced simultaneously. Instruction sched-
ulers currently do not exploit this feature of the architecture and tend to generate
schedules as in Fig. 3a, which perform well when there are no or few cache misses
(Fig. 3a i,ii) but are suboptimal when there are bursts of cache misses (Fig. 3a
iii). An optimized scheduler for VLIW should exploit the non-blocking caches to
schedule loads in parallel, whenever this is profitable. Aligned Scheduling does
so selectively and generates a schedule which still performs well under low cache
miss conditions (Fig. 3b i,ii) but manages to outperform the existing approaches
under bursts of cache misses (Fig. 3b iii).

The motivating examples (Fig. 4(a) and Fig. 4(b)) describe two different but
complementary heuristics that are used in Aligned Scheduling. Each example is
based on its own Data Flow Graph (DFG), Fig. 4(a)a and Fig. 4(b)a respectively.
Both DFGs contain Load instructions (green) and non-Load instructions (light
gray). The examples compare the schedules generated by two schedulers: (i) The
baseline scheduler (top sub-figures b,d,f), a state-of-the-art list-scheduler (like
the scheduler in GCC [1]) and (ii) Aligned Scheduler (bottom sub-figures c,e,g).
The colors on the DFG and schedules are consistent. Red represents a Load that
misses in the cache. The leftmost column of each figure (sub-figures b,c) shows
the static schedule produced by the scheduler. These schedules also happen to
match the dynamic (run-time) schedule when all Load instructions are hits. This
is why in both sub-figures b and c the loads are green, suggesting a cache-hit.
The other two columns show the case when all Loads miss: The center column
(sub-figures d,e) corresponds to a Stall-On-Miss (SOM) architecture and the
rightmost column (sub-figures f,g) corresponds to Stall-On-Use (SOU).

Aligned Scheduling: Cache-Efficient Instruction Scheduling 279

(all MISSes)
f. Baseline

(all MISSes)
d. Baseline

Y

X

Non−LOAD instr.
LOAD instr.

True
dependence

A
B

A
B

D

D

F

F

C

C

E

E A

B

A

B

D

D

F

F

C

C

E

E

Stall−On−MissAll Hits

3
2
1
0 0

1
2
3
4
5

A

B
D

F

C

E

A

B
D
F

C

E

5
4
3
2
1
0

st
al

l

st
al

l

(all HITs)

7
6
5
4
3
2
1
00

1
2
3

0
1
2
3
4
5
6

st
al

l
st

al
l

st
al

l
st

al
l

B

A

2D

F

C

E

a. DFG

1

2

3

4

3

b. Baseline

e. HLPL
(all MISSes) (all MISSes)(all HITs)

B
as

el
in

e
S

ch
ed

u
le

r

Stall−On−Use

g. HLPLc. HLPL

A
lig

n
ed

−H
L

P
L

(a) HLPL: (Hoist of Low-Priority Load).

b. Baseline
(all HITs)

LOAD HIT
LOAD MISS

Empty issue slot
Non−LOAD insr.

A
B

A
B

F

A
B

F

All Hits

F

D E

A

B C

a. DFG
0

1

2

3

0
1
2

0
1
2
3
4
5 5

4
3
2
1
0

(all HITs)
c. HLPL

(all MISSes) (all MISSes)
e. HLPL g. HLPLA

lig
n

ed
−L

L
P

L
B

as
el

in
e

S
ch

ed
u

le
r

d. Baseline

A C A C

E B

F

A C
B E

3
2
1
0 0

1
2
3
4
5
6
7

4
3
2
1
0

st
al

l

D

st
al

l

3

B E
D
F

C
D
F

C

st
al

l

D

C

D
F5

st
al

l
st

al
l

D

f. Baseline
(all MISSes) (all MISSes)

Stall−On−MissStall−On−Use

2

1

E E E

(b) LLPL: (Lower of Low-Priority Load).

Fig. 4. Aligned Scheduling heuristics. The numbers on the DFG are the instr. priorities
(Color figure online).

priority

Ready list

DFG Issue instr. sel.
by AlignedSched

update Ready list

Ready list

Select instruction

Best Instr

Aligned select

Fig. 5. Aligned Scheduling structure.

The baseline is a list scheduler, like the default scheduler in most industrial-
strength compilers (e.g. GCC). It prioritizes the ready instructions based on a
priority function (in this case the height of each node in the graph), and emits the
highest priority ready instruction into the schedule. Aligned Scheduling is also
a list-scheduler based algorithm, but differs from the baseline in the instruction
selection process (see Fig. 5 “Aligned-select”). The performance of a scheduler
is inversely proportional to the dynamic schedule length. In this example we
are interested in comparing the two schedulers in cache-hit (sub-figures b,c) and
cache-miss (sub-figures d,e and f,g) scenarios.

Both examples (Fig. 4(a) and Fig. 4(b)) motivate the main concept of Aligned
Scheduling, which is that the VLIW stall semantics require that a good schedule,
resilient to misses, should have Load instructions scheduled in parallel on the
same cycle, so that the cache misses can overlap in time.

280 V. Porpodas and M. Cintra

2.1 Hoisting of Low-Priority Loads (HLPL)

The first example (Fig. 4(a)) shows that a scheduler that hoists low-priority
Loads by giving preference to them instead of other higher priority instructions,
can improve performance under a burst of Load misses.

The highest priority instruction of the DFG of Fig. 4(a)a is Load A. At cycle
0, the scheduler’s ready list contains A, C and E. Since A is the instruction with
the highest priority (4), it gets issued at cycle 0. Next, an unmodified priority-
based list scheduler (Fig. 4(a)b,d,f) would select C with priority 3. The HLPL
heuristic of Aligned Scheduling, though, will select E with priority 2, since this
will allow for both Loads (A and E) to execute on the same cycle (Fig. 4(a)c,e,g).

If at run-time none of the Loads miss, the dynamic schedule will look exactly
like the static one (Fig. 4(a)b). If, however, at run-time both Load instructions
(A and E) miss, then the execution will look as in Fig. 4(a)d or Fig. 4(a)f, depend-
ing on the stall semantics. In this case, the run-time performance of the Baseline
scheduler is worse than the Aligned one for both Stall-On-Miss and Stall-On-Use
semantics.

The Aligned-HLPL heuristic makes sure that the low-priority Load instruc-
tions (like Load E), get hoisted and scheduled on the same cycle as high-
priority Load instructions, like Load A on cycle 0 (Fig. 4(a)c). This suggests
that unlike the baseline scheduler, in Aligned-HLPL instruction priority does
not always drive the scheduling algorithm. Instead low-priority Load instruc-
tions may take precedence over high-priority non-Load instructions. For example
the high-priority non-Load instruction C gets deferred to a later cycle than the
lower-priority E (Fig. 4(a)c). This leads to better performance under bursts of
misses, and still a good schedule under the “all HITs” case (Fig. 4(a)c,e,g).

2.2 Lowering of Low-Priority Loads (LLPL)

The previously described HLPL heuristic can only work if a high-priority load is
scheduled first on the current scheduling cycle. The LLPL heuristic complements
HLPL, by taking action when a high-priority non-Load instruction is scheduled
first on the current scheduling cycle.

The LLPL heuristic (Fig. 4(b)) avoids scheduling low priority Load instruc-
tions if the highest priority instruction on the current scheduling cycle is not a
Load. Even if there are no instructions left to schedule but Loads, LLPL will defer
them to some later cycle. This is beneficial for two reasons: 1. It guarantees that
the current cycle remains stall-free, since there are no Load instructions to miss.
2. It increases the chances that more Load instructions get grouped together
and aligned on a future cycle.

LLPL can be better explained through the example of Fig. 4(b). As in Sect. 2.1,
the Baseline scheduler is driven purely by instruction priorities and issue slot avail-
ability. Therefore Load C gets scheduled on a different cycle than Load B, as shown
in Fig. 4(b)b.

Aligned-LLPL however is not guided solely by the instruction priorities.
Instead it focuses on deferring low-priority Load instructions of the ready list

Aligned Scheduling: Cache-Efficient Instruction Scheduling 281

(e.g., C at cycle 0 which is not the highest priority instruction) to a later cycle
as long as the high priority instruction is not a Load (A at cycle 0). The end
result is that instruction C gets scheduled later (at cycle 1) along with Load B.

When all instructions are hits (“all HITs” scenario) both the Baseline and
Aligned Scheduling-LLPL perform equally well (Fig. 4(b)b and Fig. 4(b)c). When
both Loads miss however, Aligned-LLPL is faster (Fig. 4(b)d,f vs Fig. 4(b)e,g).
The speedup, is once again due to the overlapping of miss-latencies.

3 Aligned Scheduling

3.1 Overview

Aligned Scheduling is based on the commonly used list-scheduling algorithm. An
overview of how the common (baseline) list scheduling algorithm works is shown
in Fig. 5, without the “Aligned select” component.

The input to list scheduling is a Data Flow Graph (DFG) with its nodes
tagged with priorities. The priority can be calculated based on various heuris-
tics, a common one being the height from the bottom of the DFG. With the term
“ready instructions” we mean the instructions that have all their inputs calcu-
lated and available to them. The ready instructions of the DFG are placed into a
ready list and are sorted based on their priority. The highest-priority instruction
is selected and scheduled. Scheduling an instruction causes its DFG successors
to become ready and to be added to the ready list. The scheduler steps to the
next cycle under two conditions: (1) The ready list is empty, meaning that there
are no available instructions to schedule (2) The current cycle is full, so no more
instructions can be scheduled in it. This process repeats until all instructions in
the DFG are scheduled.

Aligned Scheduling (Fig. 5) adds the “Aligned select” phase to the common
list scheduling algorithm. This process is placed in between sorting the ready list
and scheduling an instruction. It uses the ready instruction list and the highest
priority instruction of the current cycle to make an informed decision on selecting
the instruction that should be scheduled at the current scheduling cycle. This is
where HLPL and LLPL are used. The instruction that “Aligned select” returns,
gets scheduled at the current cycle.

Although Aligned Scheduling is built on top of GCC’s EBB-region-based
scheduler, in principle the “Aligned select” step can be plugged in to other
schedulers as well (e.g., the Selective Scheduler [21], Modulo Scheduling
[6,16,18,24] etc.) without major modifications to these algorithms.

The Aligned Scheduling algorithm can be logically split in two parts: 1. The
main driver function (Algorithm1), which performs the high-level actions of
a list-scheduler. 2. The Aligned Scheduling selection function (Algorithm2)
which is used for the selection of the instruction that gets scheduled by the main
driver function.

282 V. Porpodas and M. Cintra

Algorithm 1. Aligned Scheduling
algorithm.

1 aligned ()

2 {

3 /* While there are unscheduled isntr. */

4 while (instructions left to schedule)

5 update READY_LIST with ready + deferred

↪→instr.

6 sort READY_LIST based on priorities

7 BEST_INSTR = READY_LIST [0]

8 while (READY_LIST not empty)

9 INSN=aligned_select(BEST_INSTR ,

↪→READY_LIST)

10 if (no INSN selected)

11 break

12 if (INSN can be sched. at CYCLE)

13 schedule INSN

14 remove INSN from READY_LIST

15 /* If failed , defer to cycle +1 */

16 if (INSN unscheduled)

17 remove INSN from READY_LIST and re

↪→-insert it at CYCLE + 1

18 /* READY_LIST is empty */

19 CYCLE ++

20 }

Algorithm 2. Aligned Scheduling instruc-
tion selection

1 /*In1: Highest prio. instr. of curr cycle

2 In2: List of ready instr. of curr cycle

3 Out: Instruction to schedule on cycle */

4 aligned_select (BEST_INSTR , READY_LIST)

5 {

6 if (BEST_INSTR is LOAD)

7 if (HLPL)

8 for INSTR in sorted READY_LIST

9 if (INSTR is LOAD)

10 return INSTR

11 return READY_LIST [0]

12 else if (BEST_INSTR is not a LOAD)

13 if (LLPL)

14 for INSTR in sorted READY_LIST

15 if (INSTR is not LOAD)

16 return INSTR

17 else

18 return READY_LIST [0]

19 else

20 return READY_LIST [0]

21 }

3.2 Aligned Scheduling Driver

The main driver function (Algorithm1) performs the main actions of a list-
scheduling algorithm adjusted to work with the Aligned Scheduling heuristics.
While there are instructions left to schedule (line 4) it keeps iterating. First, it
fills in the ready list with any ready instruction (line 5), then it sorts the ready
list (line 6) based on the instruction priorities (which is usually the height of the
instruction in the DFG). Next it finds the highest priority instruction for this
cycle and stores it into BEST INSTR (line 7).

The algorithm then schedules the ready instructions one by one (lines 8–17).
This part of the algorithm keeps iterating until: (1) the ready list is empty (line
8), or (2) no instruction is selected by the Align-selection function. The ready
list empties in two ways: 1. Scheduled instructions are removed from the ready
list 2. When no more instructions fit in the current cycle (due to insufficient
execution slots) then the ready instructions still get popped out of the ready list
without being scheduled and get deferred to the next cycle (line 17).

Instructions get selected from the ready list by the “aligned select()” function
(line 9). The implementation of this function is shown in Algorithm2. If no
instruction is selected by “aligned select” (i.e. there are no instructions left to
schedule in this cycle), then the algorithm breaks out of the innermost while
loop (lines 10–11) to abandon scheduling on the current cycle and to step to
the next cycle. This enables LLPL to leave a cycle partially scheduled even if
there are ready instructions left to schedule. Else, if an instruction has been
selected, then it gets scheduled and removed from the ready list (lines 12–14).
If, due to resource constraints (e.g., no more issue slots) the instruction cannot
be scheduled on the current scheduling cycle, then it is removed from the ready
list (lines 16, 17). Finally, if there are no instructions left in the ready list, it is

Aligned Scheduling: Cache-Efficient Instruction Scheduling 283

time to move to the next scheduling cycle (lines 18, 19) and restart with a fresh
ready list at the top of the outer loop (line 4).

3.3 Aligned Scheduling Selection

At the core of the Aligned Scheduling algorithm lies the aligned select ()
function (Algorithm2). This function decides which instruction, among the ready
ones, will be executed on the current scheduling cycle. This function makes use
of the HLPL and LLPL heuristics to decide on the instruction selected.

This function exploits the statically (at compile time) analyzable MLP to
improve the schedule’s performance of VLIW processors with non-blocking caches
under high cache-miss rate conditions. The end result of the instruction selection
(with the help of the driver function of Algorithm1) is a hoisting and lowering of
Load instructions aiming at grouping loads together as much as possible.

Internally, the selection algorithm is composed of two different but com-
plementary heuristics: The “Hoist of Low-Priority Load” (HLPL) heuristic as
demonstrated in the motivation Sect. 2.1 and the “Lower of Low-Priority Load”
(LLPL) heuristic as discussed in Sect. 2.2. If both are active, either HLPL or
LLPL executes depending on the type of the highest priority instruc-
tion (BEST INSTR) of the current scheduling cycle (Algorithm 2, lines 6,12).
If it is a Load then HLPL performs hoisting of other Loads. Else if it is not a
Load, then LLPL forms a Load-free cycle by lowering loads to later cycles. The
insight behind it is that the critical path should be honored. Therefore the high-
est priority instruction (BEST INSTR) of the cycle should guide the type of
instructions that are aligned with it. We can enable each or both of these heuris-
tics by controlling the HLPL and LLPL flags (Algorithm2 line 7 and line 13,
respectively).

The instruction hoisting/lowering of Aligned Scheduling is done in a bal-
anced way: 1. The Load hoisting and lowering is mild enough such that the
re-arranged instructions do not replace other highly-critical instructions. This
guarantees acceptable performance on a low cache-miss rate conditions. 2. The
Load hoisting and lowering is aggressive enough that the Load instructions
get grouped together so that we get high miss overlapping and performance
improvements on high cache-miss scenarios.

The first point is achieved by honoring the critical path and always scheduling
the highest priority instruction of the ready list (BEST INSTR) without any
delays (Algorithm 2 lines 9,15 guarantee this). Also the most critical instruction
guides the kind of hoisting/lowering that takes place (Algorithm2 lines 6,12).
The second point is achieved by selectively hoisting/lowering all lower priority
instructions.

HLPL: If BEST INSTR is a Load (Algorithm 2, line 6), then the HLPL
heuristic can be applied (line 7). It iterates over the list of sorted ready instruc-
tions (line 8) and selects the first load instruction encountered (lines 9, 10). If
there are no ready load instructions to choose from, HLPL will select a non-Load
instruction (line 11) as this can only be beneficial. This is because scheduling
non-Load instructions, after all Load instructions have been scheduled on the

284 V. Porpodas and M. Cintra

cycle, cannot cause any further stalls or delays for this cycle, so it can cause no
harm. Instead, deferring the execution of non-Load instructions to later cycles
can only degrade performance. HLPL will usually not harm performance under
low miss-rate conditions.

LLPL: In the opposite case, if BEST INSTR, the highest priority instruction
of the current cycle, is not a Load (line 12), the LLPL heuristic can be applied.
In short, LLPL creates a Load-free cycle. It does so by deferring the execution of
any Load instruction to future cycles. This is done by iterating across the ready
list (line 14) and selecting only non-Load instructions to schedule (lines 15, 16).
Unlike HLPL, when LLPL is “on” then even if there are no other non-Load
instructions left in the ready list, the algorithm will not select a Load, therefore
the current scheduling cycle will be partially empty. This is good for two reasons:
1. It guarantees that the current cycle does not stall (since it contains no Loads)
2. It enables future co-execution of Load instructions in later cycles. However,
LLPL could potentially harm performance as it deliberately leaves resources
under-utilized. LLPL proves to be an aggressive heuristic for high miss-rate
conditions, but can cause slowdowns on low miss-rate conditions.

Enabling both heuristics is usually the best practice, since the resulting per-
formance is usually better than either them in isolation (see Sect. 5).

4 Experimental Setup

The target architecture is a statically scheduled Stall-On-Miss/Stall-On-Use
VLIW, that uses the IA64 [27] instruction set due to widespread availability of
tools for this ISA. The architecture has a configurable issue width. It is worth
noting that the real Itanium processor used in servers is based on the EPIC
architecture, which although looking similar to a VLIW one, has many hard-
ware features not found in common VLIW architectures. One of these hardware
features is a hardware register scoreboard. Our target is a common VLIW with-
out the full-blown register scoreboard of the Itanium.

We have implemented Aligned Scheduling in the instruction scheduling pass
(haifa-sched) of GCC-4.5.0 [1] compiler for IA64.

We simulated the architecture on a modified version of SKI [2], IA64 cycle
accurate simulator that supports a configurable non-blocking cache hierarchy
and both SOM or SOU semantics. The issue width is configurable, ranging from
2 to 4 wide and each issue slot can execute an instruction of any type. The L1
cache is 16K-1way, with a block-size of 64 Bytes and a 1 cycle latency. The L2
cache is 256K-4way with a block size of 128 Bytes and an 8 cycle latency. Both
caches are non-blocking. The access to the main memory takes 150 cycles.

We evaluated Aligned Scheduling on 6 of the Mediabench II video [12] and 6
of the SPEC2000 CINT [3] benchmarks. All benchmarks were compiled with
several optimizations enabled (-O2) and both schedulers running. We ran all
benchmarks to completion.

Aligned Scheduling: Cache-Efficient Instruction Scheduling 285

5 Results and Analysis

We first present a detailed case study of Aligned Scheduling on the cjpeg bench-
mark of the Mediabench II benchmark suite (Sect. 5.1). We then present sum-
marized results for the rest of the benchmarks (Sect. 5.2).

5.1 Case Study: cjpeg

The cjpeg benchmark of the Mediabench II [12] video suite is a representative
example for evaluating Aligned Scheduling. This benchmark has a working set of
16KB which is small enough that we can test Aligned Scheduling across a broad
range of cache-miss scenarios (ranging from high miss-rates to low miss-rates)
by simply changing the L1 size.

Figure 6(a) compares the cycle counts of the Aligned Scheduling-{HLPL,
LLPL and BOTH} heuristics against the Baseline scheduling. The comparison
is done over various L1 cache sizes, ranging from 4KB to 32KB 1-way, and on
three different issue widths of the VLIW processor (issue 2–4). The L2 cache is a
256KB 4-way with 8 cycles latency. Figure 6(b) and (c) complements Fig. 6(a) by
providing the L1 and L2 miss rates respectively for each case. Finally, Fig. 6(d)
shows the amount of overlapping of cache misses and Fig. 6(e) shows the average
load latency. These figures provide some important insights on the strengths and
weaknesses of Aligned Scheduling:

a. The first thing to notice in Fig. 6(a) is that for the Stall-On-Miss semantics
and small L1 sizes, Aligned Scheduling outperforms the baseline by a consid-
erable margin, in fact it performs equally well or better than the baseline with
twice as much L1 memory (e.g., Fig. 6(a) 3/4-issue 4K, 8K SOM), improving
performance by about 20 %. Therefore, for small cache sizes, Aligned Scheduling
bridges half the performance gap between a SOM and a SOU architecture, with
no additional hardware. Aligned Scheduling performance improvements, how-
ever, decrease as the cache size increases. This is because cache misses become
less frequent (Fig. 6(b)), therefore the probability of them happening simultane-
ously (something that Aligned Scheduling could exploit) decreases. The point of
diminishing returns for cjpeg is the point when the working set size equals the
cache size (16KB). For sizes greater than 32KB, the L1 miss rate drops below
8 % and Aligned Scheduling cannot improve performance, but it does not hurt
it either.

b. The two Aligned Scheduling heuristics (HLPL and LLPL) work orthogonally
and when both enabled they act cooperatively. Enabling both (Aligned-BOTH
Fig. 6(a)) outperforms each individual heuristic Aligned-HLPL or Aligned-LLPL,
by a significant margin. This is true for both SOM and SOU semantics.

c. Aligned Scheduling performs better as the issue width increases. In
fact, for cjpeg, and for the degenerate VLIW case of 2-issue and for SOM
semantics, Aligned scheduling causes a slowdown. This is an example where the
alignment cost outweighs the benefit: Since the issue width is too narrow, the
cache misses cannot be effectively overlapped, therefore the scheduling penalty

286 V. Porpodas and M. Cintra

0.60

0.70

0.80

0.90

1.00

1.10

4K 8K 16K 32K GMean

N
or

m
al

iz
ed

 c
yc

le
s

 L1 Cache Size

Norm. Cycles (cjpeg,L2:256K4W,2-issue)

0.60

0.70

0.80

0.90

1.00

1.10

4K 8K 16K 32K GMean

N
or

m
al

iz
ed

 c
yc

le
s

 L1 Cache Size

Norm. Cycles (cjpeg,L2:256K4W,3-issue)

0.60

0.70

0.80

0.90

1.00

1.10

4K 8K 16K 32K GMean

N
or

m
al

iz
ed

 c
yc

le
s

 L1 Cache Size

Norm. Cycles (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM
Baseline-SOU

Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

(a) Normalized Cycle counts (cjpeg).

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4K 8K 16K 32K

L1
 m

is
s

ra
te

 (
%

)

 L1 Cache Size

L1 Miss rate (cjpeg,L2:256K4W,2-issue)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4K 8K 16K 32K

L1
 m

is
s

ra
te

 (
%

)

 L1 Cache Size

L1 Miss rate (cjpeg,L2:256K4W,3-issue)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4K 8K 16K 32K

L1
 m

is
s

ra
te

 (
%

)

 L1 Cache Size

L1 Miss rate (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM
Baseline-SOU

Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

(b) L1 cache miss rate (cjpeg).

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4K 8K 16K 32K

L2
 m

is
s

ra
te

 (
%

)

 L1 Cache Size

L2 Miss rate (cjpeg,L2:256K4W,2-issue)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4K 8K 16K 32K

L2
 m

is
s

ra
te

 (
%

)

 L1 Cache Size

L2 Miss rate (cjpeg,L2:256K4W,3-issue)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4K 8K 16K 32K

L2
 m

is
s

ra
te

 (
%

)

 L1 Cache Size

L2 Miss rate (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM
Baseline-SOU

Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

(c) L2 cache miss rate (cjpeg).

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

4K 8K 16K 32K GMean

N
or

m
al

iz
ed

 M
is

s
O

ve
rla

p

 L1 Cache Size

Miss Overlap (cjpeg,L2:256K4W,2-issue)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

4K 8K 16K 32K GMean

N
or

m
al

iz
ed

 M
is

s
O

ve
rla

p

 L1 Cache Size

Miss Overlap (cjpeg,L2:256K4W,3-issue)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

4K 8K 16K 32K GMean

N
or

m
al

iz
ed

 M
is

s
O

ve
rla

p

 L1 Cache Size

Miss Overlap (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM
Baseline-SOU

Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

(d) Normalized cache-miss overlapping (cjpeg).

0.00

1.00

2.00

3.00

4.00

5.00

6.00

4K 8K 16K 32K avg

M
em

 A
cc

es
s

T
im

e
(c

yc
le

s)

 L1 Cache Size

Memory Access Time (cjpeg,L2:256K4W,2-issue)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

4K 8K 16K 32K avg

M
em

 A
cc

es
s

T
im

e
(c

yc
le

s)

 L1 Cache Size

Memory Access Time (cjpeg,L2:256K4W,3-issue)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

4K 8K 16K 32K avg

M
em

 A
cc

es
s

T
im

e
(c

yc
le

s)

 L1 Cache Size

Memory Access Time (cjpeg,L2:256K4W,4-issue)

Baseline-SOM
Aligned-HLPL-SOM
Aligned-LLPL-SOM

Aligned-BOTH-SOM
Baseline-SOU

Aligned-HLPL-SOU
Aligned-LLPL-SOU

Aligned-BOTH-SOU

(e) Memory Access Time (i.e. the average Load latency) (cjpeg).

Fig. 6. Performance of cjpeg for issue widths (2–4 issue) and L1 cache sizes (4K–32K)

of issuing instructions ignoring their priorities outweighs the benefit of doing so.
For any issue width higher than 2, Aligned Scheduling improves performance
considerably. This is intuitive as the more the issue slots, the more loads can
get serviced in parallel, which is exactly what Aligned Scheduling is meant to
exploit.

Aligned Scheduling: Cache-Efficient Instruction Scheduling 287

d. An architecture with Stall-On-Use semantics can still benefit from Aligned
scheduling, though the performance improvement is less impressive. For small
cache sizes, the performance improvement is about 5 %, but as we get close to
the working set size, there is little or no improvement. The reason (explained in
Sect. 2) is that with SOU semantics there are fewer opportunities to increase the
miss overlap, beyond what the hardware provides.

e. A Miss-Overlap is the event of multiple cache misses being serviced in
parallel. The count of overlapping misses is a measure of the effectiveness of
Aligned Scheduling. Figure 6(d) shows that the performance improvements of
Fig. 6(a) are indeed caused by the increase in cache overlaps and not some other
scheduling side-effect.

f. According to Fig. 6(e), the effective average latency of a Load (Memory
Access Time) decreases with Aligned scheduling on wide-issue VLIW proces-
sors. This proves once more that the performance improvements are due to
overcoming the cache bottle-neck.

g. Finally, the L1 and L2 miss-rate (Fig. 6(b)) seems to be largely unaffected
by the application of Aligned Scheduling. This is because: (i) a miss is still
counted as a single miss even if it overlaps with another miss and (ii) Aligned
scheduling, does not cause large-scale memory access reordering that could affect
the cache behavior. Therefore Aligned Scheduling speedups are not due of fewer
misses but rather due to decreasing the total amount of time that the VLIW
processor has to wait for the misses to be serviced.

5.2 All Benchmarks

We now consider all benchmarks (Fig. 7). We measured the cycle count, the miss
rate on both L1 and L2 caches, the overlapping of cache misses, and the aver-
age memory access time. We ran the benchmarks on a 4-issue VLIW processor
with 16KB-1way L1 and 256KB-4way L2 cache (see Sect. 4). We focus on the
performance of Aligned Scheduling compared to the Baseline Scheduler, all on
SOM. We compare them against the Baseline on SOU, which is hardware sup-
ported and is therefore an estimate of the best we could expect from Aligned
Scheduling, a software-only approach. Aligned-SOM in Fig. 7, is equivalent to
Aligned-BOTH-SOM (both HLPL and LLPL enabled).

The results in Fig. 7 show that Aligned Scheduling works for a variety of
benchmarks and achieves significant speedups on this architecture configura-
tion. In memory-bound benchmarks (e.g. 181.mcf) it even manages to reach the
performance levels of the hardware-based SOU. Aligned Scheduling is successful
at increasing the count of misses that overlap, as shown in the Miss-overlap graph
of Fig. 7. In some cases (e.g. h263enc), the performance improvement can also be
attributed to a lower miss-rate, a side-effect of the instruction re-ordering. Only
few benchmarks (197.parser and 300.twolf) have fewer miss overlaps compared
to the baseline, but even in these cases the performance achieved is either close
to the baseline or better, due to overlapping fewer misses but ones of greater
latency, leading to better average memory access time.

288 V. Porpodas and M. Cintra

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

175.vpr
181.mcf

186.crafty
197.parser

255.vortex
300.twolf

N
or

m
al

iz
ed

 c
yc

le
s

 Benchmarks

Cycles (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

175.vpr
181.mcf

186.crafty
197.parser

255.vortex
300.twolf

M
is

s
ra

te
 (

%
)

 Benchmarks

L1 Miss rate (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

Baseline-SOM
Aligned-SOM

Baseline-SOU

0.00
10.00
20.00
30.00
40.00
50.00

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

175.vpr
181.mcf

186.crafty
197.parser

255.vortex
300.twolf

M
is

s
ra

te
 (

%
)

 Benchmarks

L2 Miss rate (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

Baseline-SOM
Aligned-SOM

Baseline-SOU

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

175.vpr
181.mcf

186.crafty
197.parser

255.vortex
300.twolfN

or
m

al
iz

ed
 M

is
s-

ov
er

la
p

 Benchmarks

Miss overlap (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

Baseline-SOM
Aligned-SOM

Baseline-SOU

0.00
5.00

10.00
15.00
20.00
25.00
30.00

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

175.vpr
181.mcf

186.crafty
197.parser

255.vortex
300.twolfM

em
 A

cc
es

s
T

im
e

(c
yc

le
s)

 Benchmarks

Mem Access Time (L1:16K1W-1c, L2:256K4W-8c, M:150c, 4-issue)

Baseline-SOM
Aligned-SOM

Baseline-SOU

Fig. 7. Cycle count, Miss Rates, Miss overlaps and average Memory Access Time for
6 of the Mediabench II and the SPEC CINT2000 benchmarks.

Some of the benchmarks however are marginally worse than the baseline with
175.vpr on this processor setup, reaching a slowdown of 2.5 %. These slowdowns
can be attributed to one of the following: 1. The small working set of most
benchmarks(e.g. it is 16KB for the majority of the Mediabench II [12]). There-
fore with the current cache setup Aligned Scheduling has a small headroom to
improve the cache behavior. As shown in Sect. 5.1 in Fig. 6(a), Aligned Schedul-
ing can indeed improve performance on such benchmarks as long as the cache
sizes are smaller than their working sets. 2. High sensitivity to the priority of
the critical path instructions. In such cases any instruction re-ordering done by
Aligned Scheduling can lead to a slowdown (this is true for 186.crafty, 255.vortex
and h263dec). In 175.vpr this effect is so strong, that even with substantially
increased miss-overlap (more than 20 %), it takes a performance hit. 3. Inability
of Aligned Scheduling to form more effective groups of Load instructions than
those formed by the baseline. This happens rarely (see “Miss overlap” in Fig. 7
djpeg,197.parser).

Benchmarks with high miss rates (L1 or L2) usually perform well under
Aligned Scheduling. As long as a benchmark has adequate amounts of stati-
cally analyzable MLP, and is not very sensitive on its critical path instructions
then a high miss rate should provide opportunities for Aligned Scheduling to
improve the execution cycles. This is evident in 181.mcf and h263enc. In par-
ticular h263enc, has a low L1 miss rate but a high L2 miss rate and gets a
performance improvement of about 7 %. This suggests that Aligned Schedul-
ing effectively overlaps some of the performance-critical high latency L2 misses,
leading to significant performance improvements.

Aligned Scheduling: Cache-Efficient Instruction Scheduling 289

6 Related Work

Non-blocking (also known as lockup-free caches) were introduced by [15] and
have been studied in detail since (e.g. [26,28]). Non-blocking caches are a cost-
effective optimization and are common in all processors, including VLIW ones.
Aligned Scheduling exploits the non-blocking feature to improve performance on
VLIW processors.

Instruction scheduling optimized for cache memories has been stud-
ied in the past. The majority of the work [7,13,17,19] focuses on improving
instruction scheduling for processors with non-blocking caches and stall-on-use
execution semantics. Balanced Scheduling [13] proposes a scheduling algorithm
for pipelined architectures that makes sure that the processors stalls less upon
a cache miss. The main goal of the instruction scheduler is to schedule the right
number of instructions after a load, such that, in case of a miss, there are enough
independent instructions to execute until the loaded value (that missed) is used
by an instruction. Lo et al. [19] improves Balanced Scheduling by applying ILP
enhancing optimizations. An extension to Balanced Scheduling is introduced in
[17], which proposes using profiling information to drive instruction schedul-
ing so that it makes more informed decisions. Ding et al. [7] proposes a static
cache-reuse model that helps the instruction scheduler make informed decisions
on the latency of a memory instruction. The paper shows that this produces
better schedules than considering all memory instructions as either all-hits or
all-misses.

Aligned Scheduling is very different from these approaches. It mainly tar-
gets VLIW processors that have Stall-On-Miss execution semantics, enabling
them to improve their performance close to that of Stall-On-Use. Therefore the
optimization that Aligned Scheduling introduces exploits a completely different
architectural feature. There is no indication that any of the schemes that target
stall-on-use semantics will consistently outperform our baseline on a stall-on-miss
VLIW target, which is why we do not compare against them.

The only work we are aware of that focuses on VLIW processors is Cache
Sensitive Modulo Scheduling [25]. It proposes a software-pipeline cyclic schedul-
ing algorithm that improves performance in one of two ways: it either schedules
memory instructions early or issues pre-fetch instructions. Both ways lead to
fewer cache misses, with the former one proving to be the most effective one.
This work is orthogonal to Aligned Scheduling as it focuses on the pre-fetching
problem rather than on grouping loads together.

Code optimizations that exploit the non-blocking caches have been
proposed in the past. Pai et al. [22] proposes an analysis and transformation
framework for optimizations that cluster misses together, leading to significant
performance improvements. The scheme involves high-level transformations, usu-
ally at loop level. Aligned Scheduling on the other hand, is a scheduling algo-
rithm, performing fine-grain optimization in the compiler back-end.

290 V. Porpodas and M. Cintra

7 Conclusion

This work proposes Aligned Scheduling, a new scheduling algorithm for VLIW
processors that generates schedules that are more resilient to cache misses than
the existing schemes. It does so by incorporating the micro-architectural knowl-
edge of non-blocking caches and the absence of load-use interlocks into the
scheduling algorithm. Aligned Scheduling exploits the statically known MLP to
group together Load instructions on the same cycle. This increases the probabil-
ity that cache misses overlap and get serviced simultaneously by the non-blocking
cache, therefore decreasing the amount of time the processor spends on cache
stalls. Our simulation results show that significant speed-ups can be achieved
across a wide range of benchmarks and VLIW architecture configurations.

References

1. Gcc: Gnu compiler collection. http://gcc.gnu.org
2. ski IA64 simulator. http://ski.sourceforge.net
3. SPEC benchmark. http://www.spec.org
4. Branover, A., et al.: AMD Fusion APU: Llano. IEEE Micro 32(2), 28–37 (2012)
5. Dehnert, J., et al.: The Transmeta code morphing software: using speculation,

recovery, and adaptive retranslation to address real-life challenges. In: CGO (2003)
6. Dehnert, J., et al.: Compiling for the Cydra. J. Supercomput. 7, 181–227 (1993)
7. Ding, C., Carr, S., Sweany, P.: Modulo scheduling with cache reuse information.

In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300,
pp. 1079–1083. Springer, Heidelberg (1997)

8. Faraboschi, P., et al.: Lx: a technology platform for customizable VLIW embedded
processing. In: ISCA (2000)

9. Fisher, J.: Trace scheduling: a technique for global microcode compaction. IEEE
Trans. Comput. 30(7), 478–490 (1981)

10. Fisher, J.A., Faraboschi, P., Young, C.: VLIW processors. In: Padua, D. (ed.)
Encyclopedia of Parallel Computing, pp. 2135–2142. Springer, Heidelberg (2011)

11. Fridman, J., Greenfield, Z.: The TigerSHARC DSP architecture. IEEE Micro
20(1), 66–176 (2000)

12. Fritts, J., et al.: Mediabench II video: expediting the next generation of video
systems research. In: SPIE (2005)

13. Kerns, D., Eggers, S.: Balanced scheduling: instruction scheduling when memory
latency is uncertain. In: PLDI (1993)

14. Klaiber, A., et al.: The technology behind Crusoe processors. Transmeta Corpora-
tion White Paper (2000)

15. Kroft, D.: Lockup-free instruction fetch/prefetch cache organization. In: ISCA
(1981)

16. Lam, M.: Software pipelining: an effective scheduling technique for VLIW
machines. In: PLDI (1988)

17. Lindenmaier, G., McKinley, K.S., Temam, O.: Load scheduling with profile infor-
mation. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000.
LNCS, vol. 1900, pp. 223–233. Springer, Heidelberg (2000)

18. Llosa, J.: Swing modulo scheduling: a lifetime-sensitive approach. In: PACT (1996)
19. Lo, J., et al.: Improving balanced scheduling with compiler optimizations that

increase instruction-level parallelism. In: PLDI (1995)

http://gcc.gnu.org
http://ski.sourceforge.net
http://www.spec.org

Aligned Scheduling: Cache-Efficient Instruction Scheduling 291

20. McNairy, C., et al.: Itanium 2 processor microarchitecture. IEEE Micro 23(2),
44–55 (2003)

21. Moon, S., et al.: An efficient resource-constrained global scheduling technique for
superscalar and VLIW processors. In: MICRO (1992)

22. Pai, V., et al.: Code transformations to improve memory parallelism. In: MICRO
(1999)

23. Pechanek, G., Vassiliadis, S.: The ManArrayTM embedded processor architecture.
In: Euromicro (2000)

24. Rau, B., Glaeser, C.: Some scheduling techniques and an easily schedulable hor-
izontal architecture for high performance scientific computing. In: Workshop on
Microprogramming (1981)

25. Sánchez, F., González, A.: Cache sensitive modulo scheduling. In: MICRO (1997)
26. Scheurich, C., et al.: Lockup-free caches in high-performance multiprocessors. J.

Parallel Distrib. Syst. 11(1), 25–36 (1991)
27. Sharangpanim, H., et al.: Itanium processor microarchitecture. IEEE Micro 20(5),

24–43 (2000)
28. Sohi, G., Franklin, M.: High-bandwidth data memory systems for superscalar

processors. In: ASPLOS (1991)

Compile Time Modeling of Off-Chip Memory
Bandwidth for Parallel Loops

Munara Tolubaeva(B), Yonghong Yan, and Barbara Chapman

Computer Science Department, University of Houston, Houston, Texas, USA
durriyekta@live.com

http://www2.cs.uh.edu/∼hpctools

Abstract. In this paper, we present a statistical model to predict the
off-chip memory bandwidth required by a parallel loop during its exe-
cution. It is a compile-time modeling technique that derives the correla-
tions between memory bandwidth requirement and data access patterns
of multithreaded applications. This model could be used by the compiler
and performance tools to predict when the sustainable memory band-
width of the system will be reached by the application during execution,
and to determine an optimal number of threads that should be configured
to execute a specific parallel loop according to its memory reference pat-
terns. Awareness of the performance impact of oversubscribed memory
bandwidth can also help programmers to take into account the addi-
tional latency caused by the contention, and to minimize the overhead
by tuning the memory access behavior of applications. We evaluated this
model in terms of both technical accuracy and prediction accuracy by
comparing the modeling results with the measured results. The evalua-
tion demonstrates its accuracy in both system bandwidth modeling and
application bandwidth modeling.

Keywords: Off-chip memory bandwidth · Performance modeling · Par-
allel loops · Contentions

1 Introduction

Multicore and multiprocessor systems are designed to allow clusters of cores
to share various hardware resources such as caches, memory bandwidth and
interconnects. Efficient use of these resources requires both to maximize the
sharing of these resources among concurrent threads, and also to minimize the
contentions and conflicts of using them. Software tools including compiler and
runtime systems play a very important role in optimizing and scheduling an
application with regards to the resource sharing and usage conflicts.

There has been a large amount of previous work that focus on increasing
the sharing of resources by runtime co-scheduling with the help of compiler
optimizations [6–8,15]. However, with the increase of the number of cores in a
system, and the increasing depth of memory hierarchy that comes with higher
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 292–306, 2014.
DOI: 10.1007/978-3-319-09967-5 17

Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops 293

non-uniformity of memory access, the inter-core resource conflict and contention
increase as well. Reducing the conflict use of shared resources becomes critical
when dealing with parallel applications on multicore and parallel systems. It is
very important that an application does not demand resources more than the
architecture can supply. If this is the case, the application may unnecessarily
stall due to unavailability (contention) of some resources.

Off-chip memory bus is a shared resource that is commonly used among
different cores on the same processor. Increasing the number of cores for a parallel
application may not necessarily increase the performance of the application if
the application requires more data than the memory bus can transfer at a time.
High contention for memory bandwidth may even cause a significant performance
degradation in parallel applications [12,21]. This situation is often referred to as
memory bandwidth bottleneck [7].

In this paper we present an off-chip memory bandwidth model developed to
estimate the bandwidth requirement of a parallel loop at runtime. This mech-
anism uses statistical polynomial curve fitting technique on a set of bandwidth
measuring data to derive the model that can be applied to other applications.
The main support for our model is provided by a compiler analysis to estimate
the number of memory accesses that would result in a cache miss. This paper
makes the following contributions:

– We introduce a modified STREAM kernel that is used with the curve fitting
technique to derive the statistical memory bandwidth model for a particular
system with regards to the parallelism and concurrent cache misses.

– We propose a compile-time statistical model that can be used to predict the
memory bandwidth requirement of parallel loops when being executed with
specific number of threads.

The model can serve as a cost model to determine an optimal configuration
of concurrent memory accesses and the number of threads to run a memory-
intensive loop with in order to prevent the memory bandwidth bottleneck. Know-
ing maximum number of concurrent memory accesses per thread would help
programmers, compilers as well as performance tuning tools to evaluate the
benefits of certain level of compiler optimizations. Knowing the memory band-
width performance with respect to the number of threads would also help in
deciding the best configuration of threads to run the application with.

The rest of the paper is organized as follows: Sect. 2 describes our exper-
iments performed for memory bandwidth analysis. Section 3 presents our sta-
tistical model derived from the bandwidth analysis step. Section 4 details the
evaluation setup for our model and presents the experimental results. Related
work is described in Sect. 5. Finally, Sect. 6 concludes the paper and suggests
directions for future research.

2 Memory Bandwidth Analysis

Computer vendors often provide a theoretical (peak) bandwidth of the mem-
ory system of a machine, and practically, the sustainable bandwidth is used to

294 M. Tolubaeva et al.

double a[N]; double b[N]; double c[N];
T1 = tick()
#pragma omp parallel for
for (i=0; i<N; i++) {

a[i] = b[i] + q*c[i];
}
T2 = tock()

Fig. 1. Original STREAM Triad kernel

double a[N][100]; double b[N][100]; double c[N][100];
T1 = tick()
#pragma omp parallel for
for (i=0;i<N;i++) {

a[i][0] = b[i][0] + q*c[i][0];
}
T2 = tock()

Fig. 2. Our Version of STREAM Triad kernel

represent performance of a memory system. The sustainable bandwidth could
be determined by performing benchmarking experiments with varied number
of threads and number of memory accesses, for example, the Triad kernel from
STREAM benchmark [14] shown in Fig. 1. The sustainable memory bandwidth
is computed using the Eq. 1 where T2 − T1 is the time it takes to run the kernel.

Bandwidth =
Datatransferred

T2 − T1
(1)

The sustainable memory bandwidth represents the maximum bandwidth of
the memory system that is available to applications. However, an application
often exhibits different memory bandwidths during its execution within the sus-
tainable bandwidth. To create a model for measuring the application memory
bandwidth, we slightly modified the STREAM Triad kernel to allow us to con-
trol the number of memory accesses, as shown in Fig. 2. Let us assume that the
default cache line size is 64 bytes. Figure 2 shows that three array references of
each iteration of the parallel loop will result in three cache misses, referred to as
concurrent cache misses of each thread. Then in the Eq. 1, the total amount of
data transferred would be equal to N ∗ #ofconcurrentmisses ∗ cachelinesize.
Unlike the original Triad kernel, using the concurrent cache misses approach,
we are able to co-relate the required memory bandwidth to the number of cache
misses happened in one iteration of the loop by each thread. This is an important
parameter that reflects the data access pattern of arrays in the loop. Program-
mers can change the access pattern of the loop body, thus to exhibit different
memory bandwidth requested. In our example, in order to increase the number
of concurrent cache misses per iteration, one needs to duplicate the statement
in the block and change the array indices as in Fig. 3.

Using the modified Triad kernel in Fig. 3, we measured the memory band-
width with regards to the number of threads and the number of concurrent cache

Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops 295

double a[N][100]; double b[N][100]; double c[N][100];
#pragma omp parallel for
for (i=0;i<N;i++) {

a[i][0] = b[i][0] + q*c[i][0];
a[i][16] = b[i][16] + q*c[i][16];
a[i][32] = b[i][32] + q*c[i][32];
...

}

Fig. 3. The STREAM Triad kernel with increased number of concurrent cache misses

Fig. 4. Crill system architecture

misses, and also studied the effect of data and thread placement on the over-
all bandwidth performance. All experiments were performed on a Non-Uniform
Memory Access (NUMA) system, named Crill, whose architecture is shown in
Fig. 4. The Crill system has two 2.2 GHz 12-core AMD Opteron processors,
where each processor has two 6-core CPU chips. The four CPU chips are inter-
connected through cache-coherent HyperTransport (HT) links, HT1, HT2 and
HT3. The three HT links differ in size: HT3 = HT2

2 = HT1
3 where HT3, HT2

and HT1 links connect node0 to node3, node0 to node2 and node0 to node1,
respectively.

Figure 5a shows the memory bandwidth achieved via local memory channel
when threads access the data located on the same NUMA node. Figures 5b, 6a
and b show the bandwidth performance achieved via each of the three HT links,
i.e. when threads access the data located on another node of the NUMA system.
The bandwidth performance results are represented with respect to the number
of threads executed the loop and the number of concurrent cache misses occurred
per iteration of the loop.

These experimental results showed that, in general, the maximum memory
bandwidth can be reached quite easily with a small number of threads and a small
number of concurrent cache misses. When this happens, increasing the num-
ber of threads and/or the number of concurrent cache misses won’t necessarily
increase the memory performance, but perhaps degrade the performance due

296 M. Tolubaeva et al.

(a) (b)

Fig. 5. Bandwidth achieved, on Crill architecture, through (a) local memory and
(b) HT-1 links for different number of threads and cache misses.

(a) (b)

Fig. 6. Bandwidth achieved, on Crill architecture, through (a) HT-2 and (b) HT-3
links for different number of threads and cache misses.

to the resource contention. Therefore, knowing when the sustainable memory
bandwidth is reached when executing a parallel loop under specific configura-
tions (number of threads and memory accesses in our example) would be helpful
for programmers, compilers, performance tuning tools to determine an optimal
configuration of execution, thus improving the resource utilizations.

3 Memory Bandwidth Model

The experimental data obtained from benchmarking our modified Triad kernel
allows us to correlate the parallelism (number of threads) and the data access
patterns (concurrent cache misses) to the memory bandwidth required at a par-
ticular point of execution of an application. Using those data, we are able to
derive a memory bandwidth model that accurately represents such correlation.
Our proposed bandwidth model is based on a polynomial curve fitting technique
[5]. In this approach, the results of our bandwidth experiments are considered as
a collection of data that can be represented as a function or a curve of interest.

Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops 297

Using the curve fitting technique, we generate the best fit function of bandwidth
to the input experimental data. Let τ represent the number of threads execut-
ing the loop and μ represent the number of concurrent cache misses occurring
per iteration of the loop. Using the curve fitting technique, we determine the
polynomial coefficients P of the curve.

fτ (μ) = p1μ
n + p2μ

n−1 + ... + pnμ + pn+1 (2)

Given P = {p1, p2...pn+1} where n refers to the polynomial degree, in our case
n = 5, our model can predict the required memory bandwidth fτ for given
number of threads and the number of concurrent cache misses using Eq. 2.

For a given computer system, by performing the experimental analysis using
kernels in Fig. 3 and then applying the curve fitting technique, we can obtain a
separate function that becomes a bandwidth model of the system. Using the gen-
erated model in a compiler, we can predict the maximum sustainable bandwidth
that an OpenMP loop can achieve for the given system.

The techniques we used made the following assumptions:

– Memory access dominates the execution time of the loop body, thus the time
spent to perform other instructions are neglected in this model. Since memory
access latencies are normally in hundreds of CPU cycles, this assumption is
valid for scientific kernels that exhibit up to moderate computation intensity.

– When relying on compiler analysis to obtain the concurrent cache misses for a
given loop, we assume the cache line size is 64 bytes and array variables used
inside the loop are declared cache aligned.

– The cache is fully associative. Set associative caches are complicated due to
the reason that knowing the corresponding line in a set an array reference will
be placed at compile time is very challenging. Moreover, assuming the fully
associative caches is mostly valid for high level associative caches [17].

We have also observed that the memory bandwidth does not depend on the
number of iterations of the loop due to the Equation in 3.

BW =
data

time
=

totaliterations × bytesperiteration

timeperiteration × totaliterations

#threads

=
#threads × bytesperiteration

timeperiteration

(3)
The Eq. (3) in fact shows that the bandwidth depends solely on the number of

threads, and the amount of data being transferred in one iteration as well as the
time spent to execute one iteration of the loop. According to the equation, the
sustainable bandwidth is not related to the number of iterations of a loop. We
conducted a set of experiments to validate whether this assumption is satisfied
in practice i.e. whether the memory bandwidth performance is really dependent
on the number of iterations or not. The experimental results given in Table 1
show that our theoretical assumption is correct. Therefore the loop boundaries
are not used as an input to our model, however they are used in determining the
number of concurrent cache misses that happen per iteration.

The model predicts the bandwidth performance for one loop iteration i.e. the
results are obtained for a specific iteration at a time. Accurately predicting an

298 M. Tolubaeva et al.

Table 1. Bandwidth versus I * J number of iterations

I (M = 106, K = 103) J Bandwidth (GB/s)

1.4 M 100 12.7

1.4 M 200 12.9

1.2 M 100 12.7

1.2 M 200 12.9

1 M 100 12.5

1M 200 12.9

800 K 100 12.9

800 K 200 12.9

600 K 100 12.6

600 K 200 12.7

400 K 100 12.9

400 K 200 12.7

average bandwidth performance for all iterations combined is very challenging if
there is large divergence of the behaviors of the loop body. Instead by evaluat-
ing iterations one-by-one, our model identifies the specific iterations where the
bandwidth performance may change drastically, and outputs the predictions for
these identified iterations only.

For a given OpenMP parallel loop, the concurrent cache misses are obtained
through compiler analysis. A separate compiler pass was implemented in Open64
compiler’s LNO phase [1] that is applied to the intermediate representation of
the source code to collect information about the loop and its memory references.
The loop itself supplies information such as loop boundaries, step sizes, index
variables and array references with regards to the index variables. The OpenMP
parallel and for directives have clauses (by default or user specified) such as
scheduling policy and chunk sizes to guide a compiler analysis and transformation
when parallelizing the loop among a given number of threads. The chunk size is
the number of iterations of the loop distributed to each thread. In cases when the
loop boundaries are not known at compile time, our model evaluates iterations in
one full scheduling step only. One full scheduling step contains a set of iterations
distributed to each thread in one scheduling cycle.

After the compiler collects all the necessary information about the loop, the
of concurrent cache misses happening per iteration is determined using an
analysis that was implemented in [19]. The method of determining the # of
concurrent cache misses at each iteration is performed as follows:

1. Compiler gathers details about each array reference such as array base name,
index variables, access type (read/write), and stores them in an array refer-
ence list.

2. Using the array reference list and each new value of loop indices, the compiler
then generates a list of cache lines separate for each thread that will be

Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops 299

accessed by the corresponding thread at specific iteration. This list, referred
to cache line ownership list, contains details about which cache line is being
read or written by a thread at that specific iteration. We can generate the
list by assuming that all array variables used inside the loop are aligned with
the cache line boundary. Compiler analysis in our model supports only static
scheduling policy allowing us to generate the cache line ownership list at
compile time. In static scheduling policy, the number of iterations are evenly
distributed to each thread and the scheduling order is determined by the
policy.

3. The compiler then generates a cache state for each thread separately. The
cache states store the current state of each thread’s private cache. The cache
states are updated everytime when a new cache line ownership list is generated
(from the previous step). At the last step, the compiler applies a stack distance
analysis [18] on the cache states, and determines which recently accessed cache
lines are a cache miss or a hit.

4 Evaluation of Memory Bandwidth Model

Our model is evaluated in terms of both technical accuracy and prediction accu-
racy. To demonstrate the technical accuracy, we compared the measured and
the modeled bandwidth results obtained from the Triad kernel experiments.
Figures 7 and 8 show the comparison of both the measured and the modeled
bandwidths for different # of concurrent cache misses. The number of threads
used in this experiment is 4. One can see that the curve fitting technique used
in the model is very accurate, thus making the technical accuracy of the model
very high.

To demonstrate the prediction accuracy, we evaluated our model using
OpenMP parallel loops from several widely known applications including Jacobi
method [4], Scalar Penta-diagonal solver (SP) and Multigrid kernel (MG) from

(a) (b)

Fig. 7. Comparison of measured and modeled bandwidths for STREAM Triad kernel
via (a) local memory and (b) HT-1 links on Crill architecture.

300 M. Tolubaeva et al.

(a) (b)

Fig. 8. Comparison of measured and modeled bandwidths for STREAM Triad kernel
via (a) HT-2 and (b) HT-3 links on Crill architecture.

NAS benchmarks [3]. We compared the measured bandwidth results obtained
by running the applications against the estimated bandwidth by our model. Our
model predicts bandwidth only for certain iterations of the loop. It is very chal-
lenging to accurately predict the bandwidth utilization for the whole execution
time period of the loop at compile time. This is because the bandwidth uti-
lization can change throughout the execution of the loop. Therefore, the model
does not estimate the average bandwidth utilization, instead it estimates the
bandwidth for specific iterations at a time.

The Jacobi kernel is a doubly nested OpenMP loop, hence the number of
cache misses per iteration varies based on the iteration being executed. Let
(i,j) be a notation to represent an iteration where the outer and inner loops’
indices are i and j, respectively. For the Jacobi loop, at the very first iteration
(1,1),considered that a cache line size is 64 bytes and array elements are of size
8 bytes, four concurrent cache misses will occur. For period of (1,2)–(1,7) itera-
tions, there will not be any cache misses. At (1,8) or any (1,m) iteration, where
m is a multiple of 8, there will be four cache misses again. This pattern is con-
tinued till the loop reaches (2,1) or any (*,1) iteration. At each iteration our
model re-analyzes the number of concurrent cache misses based on the current
cache states of each thread. As one can see, in Jacobi kernel, not all iterations
cause cache misses to happen, thus not all of the iterations require back and
forth memory accesses. Therefore, it would be technically incorrect to estimate
the memory bandwidth performance for all the iterations as a whole. Instead,
our model estimates the bandwidth performance for specific iterations such as
(1,1), (1,2), (1,8) etc. where the # of concurrent cache misses change, hence
the bandwidth performance changes. Moreover, since (1,1) and (1,8) incur the
same # of concurrent cache misses, we consider only one of them and elimi-
nate the other. Iteration (1,2) does not incur any cache misses, thus the model
does not perform any bandwidth predictions. In this way, our model estimates
the bandwidth performance for (1,1) iteration only which is depicted in Figs. 9
and 10.

Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops 301

(a) (b)

Fig. 9. Comparison of measured and modeled bandwidths for Jacobi kernel via
(a) local memory and (b) HT-1 links on Crill architecture.

(a) (b)

Fig. 10. Comparison of measured and modeled bandwidths for Jacobi kernel via
(a) HT-2 and (b) HT-3 links on Crill architecture.

Figures 9, 10, 11, 12, 13, and 14 show the comparison between the mod-
eled bandwidth estimations and the measured bandwidth values obtained from
using different memory links for the Jacobi, MG and SP kernels respectively.
The Jacobi kernel exhibits 4 cache misses at iterations (1,1), (1,8), (1,16), ...,
(2,1), (2,8) and so on (as discussed earlier), so the modeled bandwidth per-
formance results in Figs. 9 and 10 are obtained for 4 concurrent cache misses.
Figures 11, 12, 13, and 14 show the modeled bandwidth performance results
obtained for 7 and 2 concurrent cache misses, respectively.

Using our bandwidth prediction model, programmers, compilers, performance
analyzing or tuning tools will be able to know the loop’s bandwidth utilization
levels at various iterations at compile time. This information would be useful
in preventing the memory bandwidth bottleneck by decreasing the number of
memory references performed in the loop block, or by executing the loop with
fewer number of threads.

302 M. Tolubaeva et al.

(a) (b)

Fig. 11. Comparison of measured and modeled bandwidths for a kernel from MG
benchmark via (a) local memory and (b) HT-1 links on Crill architecture.

(a) (b)

Fig. 12. Comparison of measured and modeled bandwidths for a kernel from MG
benchmark via (a) HT-2 and (b) HT-3 links on Crill architecture.

(a) (b)

Fig. 13. Comparison of measured and modeled bandwidths for a kernel from SP bench-
mark via (a) local memory and (b) HT-1 links on Crill architecture.

Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops 303

(a) (b)

Fig. 14. Comparison of measured and modeled bandwidths for a kernel from SP bench-
mark via (a) HT-2 and (b) HT-3 links on Crill architecture.

5 Related Work

The topic of improving the efficiency of memory bandwidth has been studied
quite extensively in the literature. Reducing the memory bandwidth of applica-
tions has been studied in [2,7,13]. Compiler optimizations/techniques such as
loop fusion, store elimination, storage reduction are one of the methods that are
referred in those works for reducing the memory bandwidth pressure to the sys-
tem. Techniques to improve overall system performance, such as optimal memory
bandwidth partitioning techniques, have also been studied in [10,16,20].

Closely related work on modeling the off-chip memory bandwidth analyti-
cally or statistically has been performed in [9,11,12,21]. Authors of [12] have
used pChase benchmark to perform experimental multi-socket, multicore mem-
ory bandwidth study, using which they developed an analytical memory band-
width model. The model characterizes memory bandwidth performance at three
levels which are bandwidth per core, socket and node levels. The authors com-
pared the experimental results obtained from the pChase benchmark against
the modeled results for several multi-socket, multicore architectures. Their goal
was to model bandwidth performance for various architectures by generating
a model using the pChase benchmark and comparing the model against the
pChase benchmarking results for different architectures. In our paper we aim at
modeling bandwidth performance for various loop kernels by generating a model
based on the STREAM benchmark and predicting the bandwidth performance
based on a loop signature (# of threads and # of concurrent cache misses).

Authors of [11] analyzed the effect of memory controllers on a local and
remote memory bandwidth performance, and developed a model to evaluate
the performance of on-chip and cross-chip interconnect of a multicore processor.
Their model predicts the memory bandwidth performance based on the number
of processes running on local and remote nodes. Authors showed that in some
cases, accessing data via the cross-chip interconnect may be more advantageous
than accessing it from the local node in terms of the bandwidth usage. Our paper
at this time does not consider cases when the data is accessed both locally and
remotely. Nevertheless, we are planning to work on the idea in the near future.

304 M. Tolubaeva et al.

Authors of [21] proposed a performance model for OpenMP, MPI and hybrid
applications based on the memory bandwidth contention and communication
time. The model predicts the execution time of an application. Authors first mea-
sured the memory bandwidth for one and two cores using the STREAM bench-
mark. Using the performance data obtained from one and two cores, referred as
baseline values, the model predicts the execution time of an application on higher
number of cores. Their model, essentially, relies on the memory bandwidth ratio
of higher cores to baseline values. However, we believe that the memory band-
width ratio does not increase linearly as the number of active cores increases.
Therefore, our model does not rely on initial baseline values when predicting for
higher number of cores.

In [9] an analytic model to estimate the optimal cache size and the mem-
ory bandwidth for many-core based systems is proposed. The model is used to
estimate the lower-level memory bandwidth given the upper-level cache size and
the statistical behavior of a program. The model uses central limit theorem and
the stochastic behavior of cache misses that is generated using traces during
simulation.

6 Conclusions and Future Work

In this paper, we presented our compile time off-chip memory bandwidth model
and discussed how the defined model can be used to estimate the bandwidth per-
formance of OpenMP parallel loops. We used the statistical polynomial curve
fitting technique on a set of bandwidth measuring data obtained through exper-
iments by the modified STREAM benchmark. This model could be used by the
compiler and performance tools to predict when the sustainable memory band-
width of the system will be reached by the application during execution, and to
determine an optimal number of threads that should be configured to execute a
specific parallel loop according to its memory reference pattern. To evaluate our
memory bandwidth model, we compared the measured and the modeled band-
width performance results for several common-used OpenMP kernels such as
Jacobi, MG and SP from NAS benchmarks. Our experimental results show that
this model can be used for accurately estimating the memory bandwidth perfor-
mance at compile time. Our ongoing and future work include the enhancement of
this model to consider more factors that impact the memory performance, such
as hardware data prefetching. We also plan to develop a performance model
focusing on the impact of resource sharing and contention for parallel applica-
tions.

Acknowledgement. This work was supported in part by the National Science Foun-
dations Computer Systems Research program under Award No. CCF-0833201 and
Department of Energy under Award Agreement No. DE-FC02-12ER26099. The
evaluation platform used for this work was supported by the National Science Foun-
dation’s Computer Systems Research program under Award No. CNS-0833201 and
CRI-0958464.

Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops 305

References

1. The Open64 compiler. http://open64.sourceforge.net
2. Agarwal, D., Liu, W., Yeung, D.: Exploiting application-level information to reduce

memory bandwidth consumption. In: Proceedings of 4th Workshop on Complexity-
Effective Design (2003)

3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel benchmarks. Int. J.
Supercomput. Appl. 5(3), 63–73 (1991)

4. Black, N., Moore, S., Weisstein, E.W.: Jacobi method. http://mathworld.wolfram.
com/JacobiMethod.html

5. Coope, I.D.: Circle fitting by linear and nonlinear least squares. J. Optim. Theor.
Appl. 76(2), 381–388 (1993)

6. Ding, C., Kennedy, K.: Improving cache performance in dynamic applications
through data and computation reorganization at run time. In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 229–241 (1999)

7. Ding, C. Kennedy, K.: The memory bandwidth bottleneck and its amelioration by
a compiler. In: Proceedings of the 14th International Symposium on Parallel and
Distributed Processing (2000)

8. Jeremiassen, T., Eggers, S.J.: Reducing false sharing on shared memory multi-
processors through compile time data transformations. In: Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 179–188 (1994)

9. Lee, H.-J., Cho, W.-C., Chung, E.-Y.: Analytical memory bandwidth model for
many-core processor based systems. IEICE Electron. Express 9(18), 1461–1466
(2012)

10. Liu, F., Jiang, X., Solihin, Y.: Understanding how off-chip memory bandwidth
partitioning in chip multiprocessors affects system performance. In: Proceedings of
High Performance Computer Architecture (HPCA), pp. 1–12 (2010)

11. Majo, Z., Gross, T.R.: Memory system performance in a numa multicore multi-
processor. In Proceedings of the 4th Annual International Conference on Systems
and Storage (SYSTOR), pp. 12:1–12:10 (2011)

12. Mandal, A., Fowler, R., Porterfield. Modeling memory concurrency for multi-socket
multi-core systems. In: ISPASS, pp. 66–75 (2010)

13. Marchal, P., Gómez, J.I., Catthoor, F.: Optimizing the memory bandwidth with
loop fusion. In: Proceedings of the 2nd IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, pp. 188–193 (2004)

14. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25 (1995)

15. McKinley, K.S., Carr, S., Tseng, C.-W.: Improving data locality with loop trans-
formations. ACM Trans. Program. Lang. Syst. 18(4), 424–453 (1996)

16. Mohideen, R.M., Sankaranarayanan, V.: An analytical model for optimum off-chip
memory bandwidth partitioning in multicore architectures. In: Proceedings of the
2nd International Conference on Computer Science and Information Technology
(ICCSIT) (2012)

http://open64.sourceforge.net
http://mathworld.wolfram.com/JacobiMethod.html
http://mathworld.wolfram.com/JacobiMethod.html

306 M. Tolubaeva et al.

17. Sandberg, A., Eklov, D., Hagersten, E.: Reducing cache pollution through detec-
tion and elimination of non-temporal memory accesses. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–11 (2010)

18. Schuff, D., Parsons, B., Pai, V.: Multicore-aware reuse distance analysis. In: IPDPS
Workshop on Performance Modeling, Evaluation, and Optimization of Ubiquitous
Computing and Networked Systems (2010)

19. Tolubaeva, M., Yan, Y., Chapman, B.: Compile-time detection of false sharing via
loop cost modeling. In: Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 557–566 (2012)

20. Wang, R., Chen, L., Pinkston, T.M.: An analytical performance model for parti-
tioning off-chip memory bandwidth. In: Proceedings of the IPDPS (2013)

21. Wu, X., Taylor, V.E.: Performance modeling of hybrid mpi/openmp scientific appli-
cations on large-scale multicore cluster systems. In: CSE, pp. 181–190 (2011)

Compiler Optimizations for Non-contiguous
Remote Data Movement

Timo Schneider1, Robert Gerstenberger2, and Torsten Hoefler1(B)

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{timos,htor}@inf.ethz.ch

2 Technische Universität Chemnitz, Chemnitz, Germany
gerro@hrz.tu-chemnitz.de

Abstract. Remote Memory Access (RMA) programming is one of the
core concepts behind modern parallel programming languages such as
UPC and Fortran 2008 or high-performance libraries such as MPI-3
One Sided or SHMEM. Many applications have to communicate non-
contiguous data due to their data layout in main memory. Previous
studies showed that such non-contiguous transfers can reduce commu-
nication performance by up to an order of magnitude. In this work, we
demonstrate a simple scheme for statically optimizing non-contiguous
RMA transfers by combining partial packing, communication overlap,
and remote access pipelining. We determine accurate performance mod-
els for the various operations to find near-optimal pipeline parameters.
The proposed approach is applicable to all RMA languages and does not
depend on the availability of special hardware features such as scatter-
gather lists or strided copies. We show that our proposed superpipelin-
ing leads to significant improvements compared to either full packing or
sending each contiguous segment individually. We outline how our app-
roach can be used to optimize non-contiguous data transfers in PGAS
programs automatically. We observed a 37 % performance gain over the
fastest of either packing or individual sending for a realistic application.

1 Introduction

Communication of non-contiguous data is of utmost importance for real appli-
cation performance. The traditional approach, called “packing” is to copy non-
contiguous data into a single contiguous buffer that is then communicated over
the network. This practice originated in times where the network was orders
of magnitude slower than local processing and copying. However, today, local
copies (read and write from/to main memory on one machine) are only slightly
faster than remote copies using remote direct memory access (RDMA) over high-
performance interconnects (that offer read from main memory at the source
machine and write to main memory at the target machine).

The significance of RDMA networking goes beyond the higher bandwidth. It
also motivates new Remote Memory Access (RMA) programming models (e.g.,
UPC [21], Fortran 2008 Coarrays [14], or MPI-3 One Sided [13]) that allow full

c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 307–321, 2014.
DOI: 10.1007/978-3-319-09967-5 18

308 T. Schneider et al.

exploitation of the new hardware. RMA programming exposes the direct memory
access to the user who can issue remote memory writes and reads directly. In
addition, such RMA programs are easier to analyze by compilers than message
passing programs because the complex message matching problem [4] does not
apply (each remote access specifies the target buffer explicitly). This motivates
us to explore automatic optimizations, such as pipelining and partial packing,
for remote memory accesses.

We now demonstrate a typical parallel application using a simple
two-dimensional Laplacian stencil example. The serial version iterates over a
two-dimensional array and computes the value of each point from the old value at
that point and the old value at the neighboring points (aka. “five-point stencil”).
A two-dimensional decomposition for distributed memory parallelism requires
communication at the boundaries of each process. Depending on the array layout
in memory, one or more directions of communication will access non-contiguous
data.

For example, if matrices are stored in row-major order, then data exchanged
in the north-south direction is contiguous in local memory, while data exchanged
in east-west direction is non-contiguous. More formally, we can describe any
transfer of k Bytes (in total) as a set of k pairs (si, di) where 1 ≤ i ≤ k. Each
pair describes a single Byte of the transfer, which is copied from the address si at
the sender to di at the receiver. Without changing the semantics of the transfer,
we can sort the pairs, using si as a key in ascending order. A transfer is contiguous
if (∀i ∈ {1, . . . , k} : si = di + s1 − d1) ∧ (∀i ∈ {1, . . . , k − 1} : si = si+1 − 1),
otherwise, it is non-contiguous.

Programmers often pack data for all communication directions in order to
retain easy maintainability and portability of their code. The following list-
ing shows pseudo-code for the communication part of the Laplacian stencil
application:

1 for (int i t e r s =0; i t e r s <n i t e r s ; i t e r s++) {
compute 2d s t enc i l (array , . . .) ;

3 // swap arrays (omit ted f o r b r e v i t y)
for (int i =0; i<b s i z e ; ++i) sbufnorth [i] = array [i +1 ,1] ;

5 // . . . omit ted south , east , and west pack l oops
RMAPut(sbufnorth , rbufnorth , bs i ze , north) ;

7 // . . . omit ted south , east , and west communications
RMA Fence() ;

9 for (int i =0; i<b s i z e ; ++i) array [i +1 ,0] = rbufnorth [i] ;
// . . . omit ted south , east , and west unpack l oops

11 }

The loop at line 4 exemplifies the packing of data from the array (potentially non-
contiguous) into sbufnorth, a contiguous buffer. The contiguous buffer is then
communicated at line 6 (RMA Put represents the language-specific remote write,
e.g., assignment to a shared pointer in UPC). The call to RMA Fence represents
the language-specific synchronization method (e.g., upc fence).

Compiler Optimizations for Non-contiguous Remote Data Movement 309

As mentioned before, similar packing loops can be found in most parallel
distributed memory applications, for example WRF [20], MILC [3], NAS LU,
MG, SP and BT [22], and SPECFEM3D GLOBE [6]. In the following we will
not differentiate between packing and unpacking as they are symmetric—with
“packing” we refer to both packing and unpacking.

If copy overheads (in time and energy) have to be avoided, then one could
simply issue all the contiguous pieces using a separate transfer for each. This is
exemplified in the following pseudo-code for the same Laplacian application:

1 for (int i t e r =0; i t e r <n i t e r s ; ++i t e r) {
compute 2d s t enc i l (array , . . .) ;

3 // swap arrays (omit ted f o r b r e v i t y)
for (int i =0; i<b s i z e ; i++) {

5 RMAPut(array [i +1, 1] , array [i +1, 0] , s i z e , north) ;
// . . . omit ted south , east , and west communications

7 }
RMA Fence() ;

9 }

Instead of packing the array using a pack loop, all consecutive blocks are sent sep-
arately in the loops around lines 4 and following. We call this approach maximal
block communication. However, sending many small pieces (e.g., a single floating
point number in our example) can be very inefficient due to fixed overheads for
each transfer.

In this work, we demonstrate how partial packing combined with (super)
pipelining can improve the communication performance of many scientific codes
significantly. Figure 1 provides a high-level overview.

Explicit Datatype Specification. Some programming environments offer high-
level abstractions for specifying non-contiguous data accesses. MPI, for example,
allows the specification of datatypes that simplify and optimize non-contiguous
communications. We have shown in a previous study that runtime compilation
techniques can speed up the packing of MPI DDTs by a factor of seven [19], and
therefore make it competitive with manual packing. The proposed techniques in
this work automatically overlap packing and communication to enable further

Fig. 1. Methods for sending non-contiguous data in one-sided programming models.

310 T. Schneider et al.

optimization. In addition, most RMA programming models do not support
explicit datatype specifications making our technique necessary for optimizations.

Even if explicit datatype specification is offered, users tend to utilize pack
loops [18]. One can go as far and argue that explicit data-access declarations are
not necessary because copy loops and other communication constructs can be
easily identified using static analysis and transformed into more efficient repre-
sentations. For example, Kjolstad et al. demonstrated a simple static analysis
that detects and optimizes common pack loops [12].

Our work applies to both, library implementations and compiled code. How-
ever, we argue that (super)pipelining techniques are most efficient when the
communication and partial packing can be integrated into the application com-
putation. In this work, we step into this direction by modeling the optimization
of non-contiguous transfers by pipelining and overlapping packing and sending.

The detailed contributions of this paper are the following:

– We show how a compiler can generate an instruction sequence for near-optimal
copying of data into a temporary buffer. Our tuned copy code is up to two
times faster than copy functions such as bcopy and memcpy. The resulting
code shall be inlined as partial pack-code.

– We show how modeling communication and copy performance can be uti-
lized to transform a sequence of communication and pack statements into
an efficient pipelined schedule for a near-optimal combination of packing and
communicating.

2 Pipelining for Non-contiguous Put Operations

In the rest of this paper we assume that we have a set S whose elements are
tuples of the form (s, r, l). Each element of this set describes one block of data
which is l Bytes in size and resides on the sender at s and has to be transferred
to the receiver at address r. Furthermore we assume that S is minimal, that
means there exists no set S′ that describes the same data-movement pattern
with a smaller number of elements in the set.

A minimal set S can be constructed by simulating a program execution.
Each put operation would be recorded as one tuple of the set K. The set K can
be minimized to S using the following procedure: The tuples in K are sorted
according to their s elements and elements are checked pair-wise in the sorted
list. If (si + li = si+1) ∧ (ri + li = ri+1) then we can combine the tuples i and
i+1 into a new tuple (si, ri, li+ li+1). This procedure is repeated until a fixpoint
is reached. This can be extended to symbolic analysis, for example, by using
abstract interpretation [7].

Maximal block communication would now put every block (as identified by
a tuple) separately. Let the cost to issue a single put operation of length l be
Tput(l), and let x.l identify the l element in tuple x. The overall cost of maximal
block communication is:

T =
∑

a∈S

Tput(a.l)

Compiler Optimizations for Non-contiguous Remote Data Movement 311

Another option would be to search for certain features in the set S and exploit
them. One such feature is that, while the data is non-contiguous at the sender, it
is actually placed in a consecutive buffer at the receiver. A very common example
for this is the transposition of a matrix which is distributed across multiple
processes. Such a communication pattern is required in multi-dimensional FFT
codes and seismic wave propagation codes, such as SPECFEM3D GLOBE [18].
In such a case, instead of sending each element of S individually, we could also
copy all elements into a single temporary buffer on the sender side, and transfer
this buffer to the receiver using a single RMA put operation. In that case the
cost for the entire transfer would not only depend on the performance of the put,
but also of the copy operation, which we denote as Tcopy(l). The overall cost of
this scheme can therefore be expressed as:

T =
∑

a∈S

Tcopy(a.l) + Tput

(
∑

b∈S

b.l

)

When compared to the first scheme, it is clear that the second one can only
be faster if the difference between many small put operations and one big put
operation is big enough to offset the time required for the copy operations. This
has been exploited before [9], especially by systems which perform message vec-
torization. Small transfers attain a smaller bandwidth than bigger ones, due to
a constant latency and send overhead. In Fig. 2 we plot the time it takes to send
800 KB of data, with a different number of put operations, so that the size of
each put varies between 8 and 1000 Bytes.

We can see that if the transfer is realized with small puts, i.e., one double
precision floating point value per put, it takes 110 times longer to transfer the
data then using puts of size 1 KB. The reason is that each put operation has
some constant overhead on the host CPU and also on the Network Interface Card
(NIC). It seems like minimizing the number of put operations can lead to higher
performance. However, the benchmark above only considered communication
(on the NIC and CPU) and no parallel packing (on the CPU).

Fig. 2. Varying the number (and therefore the size) of put operations to transfer 800 KB
of data shows that bigger puts are more efficient than small ones.

312 T. Schneider et al.

The LogGP network model [1] models CPU and NIC overheads separately as
o and g. Those two terms may overlap and a put operation can be performed in
max(o, g). Therefore to minimize the total transfer time T it is beneficial to over-
lap some of the packing with put operations. This can be done by partitioning
the data movement operation expressed by the set S into a series of (non-empty)
partitions Pi (1 ≤ i ≤ n, we assume that elements in S can be split into multi-
ple pieces that belong to different partitions Pi). Copying the first partition P1

into the temporary buffer cannot be overlapped, similarly the sending of the last
partition Pn cannot be overlapped. Therefore the total time can be expressed as:

T =
∑
a∈P1

Tcopy(a.l) +
n∑

i=2

max

⎛
⎝Tput

⎛
⎝ ∑

b∈Pi−1

b.l

⎞
⎠,∑

c∈Pi

Tcopy(c.l)

⎞
⎠+ Tput

(∑
d∈Pn

d.l

)

Fixed pipeline. To minimize the total transfer time we would need to minimize
this function over all possible partitionings of S. This optimization problem can
be solved with traditional optimization methods or heuristics. A simple heuristic
would be to fix the size of the put operations we want to perform, and partition
S in such a way that all puts (except the last) are of this size. We call this
method the fixed pipeline method.

Superpipelining. The simple fixed-size-put scheme can be improved by increas-
ing the size of each partition Pi as we progress. The rationale for this is that
we should keep the size of the first put operation low, as the copy operations
before it cannot be overlapped with anything. On the other hand we want to
minimize the total number of puts. If we assume that ∀s : Tcopy(s) < Tput(s) we
can increase the size of each put. The goal is to keep the network (which is then
the bottleneck of the transfer) saturated. This will be the case if we ensure that
the time to pack the data for the i-th put operation is smaller than the time
taken to perform the i−1st put operation with which the copying is overlapped.
To compute the optimal pipeline, we need to know the functions Tput(s) and the
inverse of the function Tcopy(s), since we want to know how many Bytes we can
copy for the next put. This approach of gradually increasing the size of pipeline
stages to achieve optimal overlap and throughput is called superpipelining.

In the following we show a semi-analytic performance model for the perfor-
mance of RDMA put operations to get an approximation for Tput(s). Unfortu-
nately the performance of copy operations cannot be modeled that nicely due to
the vast number of influencing factors (cache state, cache sizes, cache associativ-
ity, instruction choice for the copy operation, unrolling of copy operations, etc.).
Therefore we propose a method to generate a fast copy code, which at the same
time gathers performance measurements which can be used to approximate the
inverse of Tcopy(s).

3 Data Movement Operations

Modern CISC architectures offer a plethora of instructions capable of copying
data in main memory. For this study we focus on x86-64, since it is the most

Compiler Optimizations for Non-contiguous Remote Data Movement 313

prevalent architecture in parallel computing today. On modern x86-64 archi-
tectures copying data between memory locations can be done in two different
ways. Most data-movement instructions only copy between registers and mem-
ory, therefore a copy between memory locations consists of two parts: Copying
the data from memory into a register and copying it back from the register into
a different memory location. In addition, the movs instruction family is able to
copy directly from memory to memory. There are many different ways how to
copy data in and out of a register. Perhaps the most well known one is the mov
instruction family (this includes all variants of the mov instruction for different
widths, i.e., movb to copies a single Byte, movw copies two Bytes, movl copies four
Bytes and movq copies eight Bytes). Being a CISC design, the x86 instruction
set also includes specialized instructions to copy strings: the load-string lods and
store-string instruction family stos. They essentially behave like the mov instruc-
tion, however, the programmer is free to choose where he places operands for
the mov instructions, those use the registers %rsi, %rdi for the source and desti-
nation address and use %rax as temporary buffer. All those instruction can only
operate on up to eight Byte at a time. With the SIMD extensions (i.e., SSE2
and AVX) load/store instructions became available that are able to load/store
16 (SSE2) or 32 (AVX) Byte from/to a register in one instruction.

SIMD instructions offer another interesting set of features to the programmer:
Not only can loads and stores be performed using much wider registers, but also
special loads and stores are offered for aligned data. Another novelty is the
introduction of non-temporal stores, which bypass the cache and write directly
into memory. Of course, writing directly into memory is much slower than writing
into the cache. However, when copying large blocks of data (larger than the
last level cache) it is useless to write any (but the last chunk) of data to the
cache, since this data will be evicted from the cache anyway by later writes.
Knowingly bringing useless data into the cache is of course suboptimal, since it
inflicts additional overhead because of the cache coherency protocol. Therefore
temporal store instructions also have to be considered carefully.

Another important choice the programmer (or compiler) has to make when
writing a copy-loop is the choice of the loop instructions he uses. When data is
copied using a movs instruction, a loop can be formed by simply prefixing this
instruction with the rep prefix. This prefix repeats the prefixed instruction until
the %rcx register is zero and decrements the %rcx register after each iteration.
The direction of operation (decrementing or incrementing %rsi and %rdi) is set
with the direction flag. Of course the rep prefix is only an option when the movs
instruction is used, as all other alternatives require more than one instruction
to perform a memory to memory copy operation. For those cases we again have
multiple options: We can use the loop instruction, which jumps to a label if
%rcx is not zero and decrements this register before each jump. However, with
this variant we have to adjust the value of the source and destination pointers
manually in the loop. The third option is to manually do a comparison at the
end of the loop body and then use an instruction of the jmp family to jump to
the start of the loop, depending on the result of the comparison.

314 T. Schneider et al.

Figure 3 gives an overview over the possibilities of combinations of data-
movement and loop forming instructions offered by the x86-64 instruction set.
Another variable the programmer has to consider is the unrolling factor of the
copy loop: the overhead of the branching instruction can be alleviated by per-
forming several copy operations inside of the loop body. However, since copy
operations are memory bandwidth bound, too much unrolling can also be detri-
mental to the performance since loading of the instruction stream also creates
memory pressure.

The x86-64 instruction set offers even more data-movement instructions (i.e.,
push/pop, compare-and-swap) which are not considered here since they are spe-
cialized instructions with more functionality than data movement and should
therefore always be slower than the simpler instructions.

We optimize the code used for copying automatically, using algorithm out-
lined in Fig. 4 select the optimal combination of data-movement instruction and
unroll factor combination for selected block sizes.

For each block size all possible combinations of instruction(-swidth) and
unroll factor is computed, since not every combination supports all sizes. The
measurement of the performance of each combination is repeated several times
(1,000 times in our case) and for each combination the median of those times is
computed. The optimal combination of instruction and unroll factor for a given
block size is then chosen.

This algorithm is performed for a number of sizes and assuming the source
data is in cache or not in cache. We tuned only sizes up to one Megabyte because
our superpipelining does not require larger blocks. The gathered information is
then used to construct a near-optimal sequence of CPU instructions to perform
the copy for packing.

The performance of our copy code, which we call fcopy is shown in Fig. 5. We
compare it to the memcpy() and bcopy() function. We optimize for two cases:
(1) the source data resides in cache (“Cache Hot”) and (2) the source data needs
to be loaded from main memory (“Cache Cold”). We assume that a compiler
analysis could determine the reuse distance of the to-be-copied data and decide
on the best instruction sequence.

Fig. 3. Data-movement and loop-
forming instructions on x86-64.

Fig. 4. Algorithm used to generate optimized
copy code.

Compiler Optimizations for Non-contiguous Remote Data Movement 315

Fig. 5. Performance of our copy code fcopy compared to the performance of memcpy
and bcopy on JYC and Daint. Our optimized code is up to seven times faster than
memcpy and up to 2.6 times faster than bcopy. Note that we optimized the code for
block sizes up to 1 MB (left of the dotted line).

For the performance data presented in this paper, we use two different
machines: JYC, the Blue Waters test system at the National Center for Super-
computing Applications, which consists of a single cabinet Cray XE6 (approx. 50
nodes with 1,600 Interlagos 2.3–2.6 GHz cores) and Piz Daint, a Cray XC30 at
CSCS with dual-socket 8-core 64-bit Intel SandyBridge CPUs clocked at 2.6 GHz.

4 Modeling Communication

To be able to model the performance of one-sided non-contiguous data transfers,
we need to model not only the performance of the local copying of data, but also
the performance of the remote memory copies.

One-sided data transfers follow the same general scheme, independent of the
actual API in which they are implemented: A synchronization epoch is started,
then a number of remote memory operations is started, after which the syn-
chronization epoch is again closed. Those operations are combined into a single
statement if synchronization is not relaxed. In our case however, the goal is to
overlap packing with RMA operations. Thus, we utilize a relaxed synchroniza-
tion model for our communication. In this model the time to execute n put
operations, with sizes si can be modeled as t = L + n × oput + G

∑n
i=1 si. This

model is similar to the LogGP model [1]. The constant overhead (latency, syn-
chronization overhead) is denoted as L, where oput is the overheads for the put
operation, which is independent of the size of the data buffer being transferred. In
LogGP we would differentiate between the overhead on the NIC, g and the over-
head on the host CPU o, however, in practice these values are hard to measure
independently. Therefore we model max(o, g) as oput. The inverse bandwidth of
the transfer is expressed by G.

We parametrize this model by performing between 1 and 50 puts in a loop,
each with the same data buffer size. The data buffer size is varied between a

316 T. Schneider et al.

single Byte and 800 KB. Then we fit the above model to the measured data. Each
measurement is repeated 50 times, and we use the median value to minimize the
effects of outliers due to noise.

The results of these measurements on JYC are plotted in Fig. 6 for out-
of-cache inter-node communication. We focus on inter-node communication in
this work, because on our test system intra-node communication is handled by
copying the data directly from the target to the destination buffer, using the
XPMEM [23] kernel module to access another processes address space. Since
this copy operation is not performed in an extra progression thread, overlapping
intra-node communication is therefore not possible.

If we use the data collected on JYC to parametrize our model we get L= 1 µs,
o= 0.68 µs (0.44 µs for in-cache data), G= 0.17 ns/B. This model fits the mea-
sured data quite well, the R2 value is 0.999. This means 99.9 % of the variance
observed in the data is explained by the model. For Daint the values are L= 1 µs,
o= 0.66 µs (same for in-cache data), G= 0.6 ns/B and an R2 of 0.979.

We can now use the performance model for communication and the data
collected during the construction of the copy method to determine optimal sizes
for the partitions of S which are transferred with a single put operation, and by
which factor we can increase this size for consecutive puts. To do this we look
at the quotient r = Tput (s)

Tcopy(s)
for different sizes s. This ratio is plotted in Fig. 7.

If r < 1 it means that we should never copy this much data into a tem-
porary buffer, the put will be faster than copying this data was, therefore we
will not enlarge the partitions of S beyond this point. If we plot that ratio for
our test system, we can see that for 500 KB and larger, collecting more data
(for a larger put operation) takes longer than sending it immediately, therefore
we stop to increase the size of the partitions, once we copied a block of size
500 KB. Note that Tcopy(s) is an upper bound for the performance of filling the
temporary buffer for a put of size s. The real performance of this operation

Fig. 6. Inter-node communication per-
formance on JYC. If we parametrize
the model with this data we get:
L= 1 µs, o= 0.686 µs, G= 0.17 ns/B.

Fig. 7. Relationship between put and
copy performance for different block sizes.
Below 10 KB puts are much more expen-
sive than additional copies, while above
500 KB it is slower to pack more data than
to send it over the network directly.

Compiler Optimizations for Non-contiguous Remote Data Movement 317

is
∑

a∈Pi
Tcopy (a.l) which can be much lower in case of very small consecutive

blocks in the data layout on the sender side, therefore the start value and the
rate at which to increase partition sizes have to be computed for each data lay-
out. Furthermore we can see that below 10 KB puts are much more expensive
than additional copies (the ratio is above 2), therefore it would be inefficient to
perform smaller puts. Because of that we start our superpipeline protocol with
an initial partition size of at least 10 KB.

5 Results

In this section we will demonstrate the performance of our optimization with two
examples. The first example is the matrix transpose part of an FFT code. The
consecutive blocks on the sender side are (depending on the total size) between
128 and 1792 Byte in size. On the receiver the data is stored in one contiguous
buffer. The stride between the blocks on the sender side (for a given total size)
is constant.

We show the performance of the three strategies to transfer non-contiguous
data with RMA put operations explained in this paper in Fig. 8. When each
consecutive block is transferred individually, the achieved bandwidth is very
low, and grows for bigger problem instances due to the growth of the size of the
consecutive blocks. This method is labeled as Maximal Block (cf. Fig. 1). The
performance of this approach can be improved considerably by packing data on
the sender, prior to sending it. We can either pack all data and send it with
one put operation (labeled as Packed), or overlap packing and put operations.
If all (except the last) chunks have the same size, 20 KB in our example, labeled
as FP(20K) for fixed-pipeline we can improve the total bandwidth by 1.3 GB/s
(42 %, compared to Maximal Block). Our superpipeline protocol can achieve
an additional performance increase for the larger problem instances of about
652 MB/s (13 %, compared to FP) when the size of each put is increased by a

Fig. 8. Performance of different pipelin-
ing approaches on JYC for an FFT
code. Consecutive blocks at the sender
grow with the problem size from 128 Byte
blocks to 1792 Byte.

Fig. 9. Performance of different pipelin-
ing approaches on JYC for a data transfer
in SPECFEM3D GLOBE. For this trans-
fer, each block is 12 Byte in size.

318 T. Schneider et al.

factor of 1.3, while the first put is again 20 KB in size. This variant is labeled as
SP(20K, 1.3) where SP stands for superpipeline protocol.

Fig. 10. Performance comparison of
an irregular data transfer on JYC in
SPECFEM3D GLOBE. The blocks at
the sender are 4 Byte in size.

In Fig. 9 we conduct the same exper-
iment with a send data layout from
the SPECFEM3D GLOBE seismic wave
propagation simulation code [6]. Here the
individual consecutive blocks are much
smaller, only 12 Bytes in size, and their
size remains constant when the prob-
lem size is increased. The sender stride
between blocks is 24 Byte while the data
is put into a contiguous buffer at the
receiver. Since the blocks are so small,
Maximal Block performs much worse than
in the FFT example. In this plot, one
can clearly see that the performance gain
attainable by superpipelining depends
heavily on the speed of the copy opera-
tions. As long as the extent of the data layout fits (together with the pack buffer)
in the 2 MB L2 cache, the performance of superpipelining is much better than
that of fixed size pipelining. After that point their performance becomes similar
again. Superpipelined packing is 148 times faster than sending each block individ-
ually, up to 37 % faster than packing everything into one block before sending and
17 % faster than fixed-pipeline packing. To show the portability of our method
we conduct the same experiments on Daint, a Cray XC30 with Intel SandyBridge
CPUs. The results are plotted in Figs. 11 and 12. In Fig. 10 we perform the same
comparison with another data layout present in the SPECFEM3D GLOBE code,
where the data blocks on the sender are not stored with a regular stride, but in a
irregular fashion (indexed type in MPI). Each block is four Byte in size and the
data is stored consecutively on the receiver. Because of the small block size and
the resulting high copy overhead, the difference between the packing methods is
small. Superpipelining is 118 times faster than Maximal Block, 18 % faster than
Packed and up to 8 % faster than fixed size pipelining.

6 Related Work

Many compiler optimizations are based on peephole optimization techniques:
Matching rules are applied to an intermediate compilation result and if a match is
found, the code is replaced with a functionally equivalent, but faster, alternative.
Those transformations are often created manually by domain experts. How-
ever, approaches where the optimization opportunities are automatically
generated, similar to our approach of optimizing copy code, also have been sug-
gested. Superoptimization [2] tries to optimize an instruction sequence by gener-
ating all possible instruction sequences up to a certain length and checking if they
are functionally equivalent to the target instruction sequence. The problem with

Compiler Optimizations for Non-contiguous Remote Data Movement 319

superoptimization is the exponential growth of the search space with the length
of the considered instruction sequence and the number of available instructions.
The interest in superoptimization also seems to have become smaller since this
technique has been initially proposed — to the best of our knowledge, there is no
publicly available superoptimizer which includes the whole instruction set (incl.
AVX, SSE4, etc.) of a modern x86 CPU. Recent applications of superoptimiza-
tion techniques [17], use heuristics to keep the search space manageable.

Superpipelining [8] was first proposed to overlap memory registration with
RDMA operations. We extended this technique for copying non-contiguous data.
Santhanaraman et al. [16] suggested to use gather/scatter support offered by
modern network stacks [5,15] to implement MPI datatypes for two-sided point to
point transfers and collectives. Since MPI allows that sender and receiver specify
different datatypes in the respective send or receive call, this information (the
datatype layout) has to be communicated first. After that the non-contiguous
data is sent using an InfiniBand gather operation [15]. At the receiver, the data
is stored (possibly in a different layout) using an InfiniBand scatter operation. In
this work we are focusing on the one-sided programming model, where the sender
has complete knowledge over the data layout at the receiver. Furthermore we do
not rely on special hardware features for the transfer. The problem of transferring
data does not only occur in message passing and RDMA programming, but also
when programming for accelerators, which have a private memory, such as GPUs.
Jablin et al. [10] for example strive to optimize CPU to GPU communication
by using compiler passes and a run time layer which optimize the scheduling of
the communication, i.e., achieve communication-computation overlap by early
binding. Jenkins et al. [11] propose GPU kernels to pack MPI datatypes, which
gives large improvements over packing them with the host CPU.

Schneider et al. [19] also optimized the packing of MPI derived datatypes.
MPI DDTs are traditionally interpreted at runtime, which is often slower than
manual pack loops written for a specific case and optimized by the compiler

Fig. 11. Performance of different pipelin-
ing approaches on Daint for an FFT
code. Consecutive blocks at the sender
grow with the problem size from 128 Byte
blocks to 1792 Byte.

Fig. 12. Performance of different pipelin-
ing approaches on Daint for a data trans-
fer in SPECFEM3D GLOBE. For this
transfer, each block is 12 Byte in size.

320 T. Schneider et al.

at compile time. We mitigate that by generating machine code to pack MPI
DDTs at runtime. This increased packing performance by up to a factor of
seven. However, none of the pipelining techniques described in this work have
been used, the generated pack function pack the complete message into a buffer
before sending.

7 Conclusions

In this work we showed which optimizations a compiler for partitioned global
address space languages can perform, in order to accelerate non-contiguous data
transfers, without the requirement of special purpose hardware. We showed two
main targets for optimization: the scheduling of RMA put operations and the
instruction sequence used to copy small chunks of data into a temporary buffer
for sending them. We show an algorithm to optimize the copy code and show
that the resulting code outperforms readily available compiler builtins such as
memcpy and system functions such as bcopy. We show how pipelining copying
data and transferring it can improve performance and how we can leverage per-
formance models of the network operations, as well as performance data of the
copy code to choose suitable parameters for the suggested pipelining protocols.
All optimizations can be implemented in compilers for PGAS languages or RMA
libraries using well-known techniques.

Acknowledgments. We thanks the Swiss National Supercomputing Center (CSCS)
and the Blue Waters project at NCSA/UIUC for access to the test systems. We also
thank the anonymous reviewers for comments that greatly improved our work.

References

1. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: incorporat-
ing long messages into the logP model - one step closer towards a realistic model
for parallel computation. In: Proceedings of the 7th Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA’95), pp. 95–105 (1995)

2. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. ACM
SIGPLAN Not. 41(11), 394–403 (2006)

3. Bernard, C., Ogilvie, M., et al.: Studying quarks and gluons on MIMD parallel
computers. Int. J. High Perform. Comput. Appl. 54, 61–70 (1991)

4. Bronevetsky, G.: Communication-sensitive static dataflow for parallel message
passing applications. In: Proceedings of the 7th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO’09) (2009)

5. ten Bruggencate, M., Roweth, D.: DMAPP - an API for one-sided program models
on Baker systems. In: Cray User Group Conference (CUG’10) (2010)

6. Carrington, L., Komatitsch, D., et al.: High-frequency simulations of global seismic
wave propagation using SPECFEM3D GLOBE on 62 K processors. In: Proceedings
of the 22nd International Conference on Supercomputing (SC’08) (2008)

Compiler Optimizations for Non-contiguous Remote Data Movement 321

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL’77), pp. 238–252 (1977)

8. Denis, A.: A high performance superpipeline protocol for InfiniBand. In: Proceed-
ings of the European Conference on Parallel Processing, pp. 276–287 (2011)

9. Hiranandani, S., Kennedy, K., Tseng, C.W.: Evaluating compiler optimizations for
Fortran D. J. Parallel Distrib. Comput. 21(1), 27–45 (1994)

10. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.:
Automatic CPU-GPU communication management and optimization. ACM SIG-
PLAN Not. 46(6), 142–151 (2011)

11. Jenkins, J., Dinan, J., et al.: Enabling fast, noncontiguous GPU data movement
in hybrid MPI + GPU environments. In: Proceedings of the IEEE International
Conference on Cluster Computing (CLUSTER’12) (2012)

12. Kjolstad, F., Hoefler, T., Snir, M.: Automatic datatype generation and optimiza-
tion. In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’12), pp. 327–328 (2012)

13. MPI Forum: MPI: A Message-Passing Interface Standard. Version 3
14. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN

Fortran Forum 17(2), 1–31 (1998)
15. Pfister, G.F.: An introduction to the infiniband architecture. In: Hai, J., Toni, C.,

Buyya, R. (eds.) High Performance Mass Storage and Parallel I/O, pp. 617–632.
Wiley, New York (2001)

16. Santhanaraman, G., Wu, J., Panda, D.K.: Zero-copy MPI derived datatype com-
munication over infiniband. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 47–56. Springer, Heidelberg (2004)

17. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Proceed-
ings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’13), pp. 305–316 (2013)

18. Schneider, T., Gerstenberger, R., Hoefler, T.: Application-oriented ping-pong
benchmarking: how to assess the real communication overheads. J. Comput. 964,
279–292 (2013)

19. Schneider, T., Kjolstad, F., Hoefler, T.: MPI datatype processing using runtime
compilation. In: Proceedings of EuroMPI’13, September 2013

20. Skamarock, W.C., Klemp, J.B.: A time-split nonhydrostatic atmospheric model for
weather research and forecasting applications. J. Comput. Phys. 227(7), 3465–3485
(2008)

21. UPC Consortium: UPC language specifications. Version 1. 2 (2005)
22. der Wijngaart, R.F.V., Wong, P.: NAS parallel benchmarks version 2.4. Technical

report, NAS Technical Report NAS-02-007 (2002)
23. Woodacre, M., Robb, D., Roe, D., Feind, K.: The SGI AltixTM 3000 global shared

memory architecture (2005)

Transactional Memory

Combining Lock Inference with Lock-Based
Software Transactional Memory

Stefan Kempf(B), Ronald Veldema, and Michael Philippsen

Computer Science Department, Programming Systems Group,
University of Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen, Germany

{stefan.kempf,veldema,philippsen}@cs.fau.de

Abstract. An atomic block is a language construct that simplifies the
programming of critical sections. In the past, software transactional mem-
ory (STM) and lock inference have been used to implement atomic
blocks. Both approaches have strengths and weaknesses. STM provides
fine-grained locking but has high overheads due to logging and potential
rollbacks. Lock inference is a static analysis that computes which locks an
atomic block must acquire in order to guarantee atomicity. Lock inference
avoids both logging overhead and rollbacks, but with a growing number
of variables accessed in an atomic block, locking becomes coarse-grained
and hence reduces parallelism.

The first contribution of this paper is an approach that combines these
advantages without the drawbacks. A compiler analysis determines if lock
inference can achieve a fine-grained synchronization or if STM is better
for an atomic block. The generated code then either uses lock inference,
STM, or a combination of both that allows the atomic block to switch
from STM to lock inference during its execution. The second contribu-
tion are two optimizations that remove some of the limits of state-of-the-
art static lock inference analysis and therefore extend its applicability.
These optimizations make more atomic blocks amenable to fine-grained
lock inference.

We use the STAMP benchmark suite to prove the practicability of
our work. The reduced contention due to fine-grained locking and less
transactional overhead lead to execution times that are between 1.1 and
6.0 times faster than a pure STM or lock inference implementation.

1 Introduction

The ubiquitous availability of multicore processors has spurred research activ-
ity on new language paradigms that simplify concurrent programming. Atomic
blocks allow programmers to mark critical sections in the code, but the imple-
mentation of the atomicity is left to the compiler or runtime system. Two such
implementation approaches are software transactional memory (STM) and lock
inference, both of which have advantages and disadvantages. STM provides fine-
grained locking but its overheads due to logging of read/write accesses and due
to potential rollbacks negatively impact performance, especially if transactions
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 325–341, 2014.
DOI: 10.1007/978-3-319-09967-5 19

326 S. Kempf et al.

access many variables or if contention is high. Lock inference is a compiler analy-
sis that statically computes which locks an atomic block must acquire/release on
entry/exit in order to guarantee atomicity. This eliminates the logging overhead
and tends to produce faster code for small atomic blocks. But current lock infer-
ence approaches lead to coarse-grained locking (and thus reduced parallelism) if
an atomic block uses a larger or statically unknown number of shared variables.
For example, for an atomic block traversing the nodes of a linked list, lock infer-
ence cannot acquire one lock per node, but instead it must map all the nodes to
one global lock.

For a fast and fine-grained implementation of atomic blocks, we suggest a
combination of both techniques, where an atomic block either uses lock inference
(we say it runs in lock mode) or STM (it runs in TM mode), but it can also start
in TM mode and switch to lock mode during its execution. To our knowledge,
this paper is the first work to present such a combination.

Our first contribution is a compiler analysis that implements atomic blocks
with lock inference as long as a fine-grained locking suffices, and that uses trans-
actional memory for the remaining parts of the atomic block. Our second contri-
bution are two optimizations of state-of-the-art lock inference algorithms, namely
runtime loop inspection and specialized collection data structures. They let us
implement fine-grained lock inference even if the memory locations accessed by
an atomic block cannot be statically precomputed. Our evaluation using the
STAMP benchmarks proves that our technique is practical, since the reduced
contention due to fine-grained locking and less transactional overhead lead to
execution times that are between 1.1 and 6.0 times faster than a pure STM or
lock inference implementation.

Fig. 1. An atomic block.

The remainder of this paper first cov-
ers the building blocks of software transac-
tional memory and lock inference in Sec. 2.
Section 3 then discusses how we combine
lock inference and STM to implement atomic
blocks. Section 4 shows how the use of run-
time loop inspection and specialized con-
tainer data structures makes our combined
technique more aggressive. Section 5 evalu-
ates our approach, Sec. 6 discusses related
work, and Sec. 7 concludes and gives direc-
tions for future research.

2 Building Blocks

To understand when a combination of lock inference and STM is useful and how
it works technically, we need to briefly cover the foundations of both approaches.
We use the running example in Fig. 1 to illustrate the basic ideas. In its atomic
block, x, y.g, and the value fields (p.value) of the list elements are shared
variables.

Combining Lock Inference with Lock-Based Software Transactional Memory 327

2.1 Software Transactional Memory

Let us first describe the workings of a lock-based STM that protects accesses
to shared variables by means of mutexes. There are also lock-free STMs, but as
our approach combines STM and lock inference, we of course need a lock-based
STM. It is sufficient to only sketch the high-level ideas of lock-based STMs,
as the combinability of lock inference and lock-based STMs is not affected by
implementation details. (Some STMs acquire locks during a transaction while
others acquire locks at the end of the commit. Some STMs use in-place updates
of shared variables and perform undo-logging upon rollback while other STMs
update shared variables in the commit. Such implementation details are orthog-
onal to our approach.)

Fig. 2. . . . implemented with STM.

To implement atomic blocks, the compiler
of a lock-based STM instruments the code
of Fig. 1 and adds primitives of the STM
runtime library, as shown in Fig. 2. Upon
entering an atomic block, it creates a transac-
tion that manages all accesses to the shared
variables used in the block. Every read/write
access to a shared variable is rewritten to call
a transactional read/write routine. A trans-
actional write to a shared variable v does not
change v directly. Instead the new value for v
is stored in a write-log. A transactional read
of v first checks whether the write-log already holds a value for v. Otherwise, it
reads the value from main memory and creates an entry in a read-log to indi-
cate that v was read. Since the effects of atomic blocks appear to take effect
instantly, the values of shared variables that are read must have the same values
during the whole execution of the atomic block. A transactional read makes sure
this is the case before it returns the value read from memory. If the value has
changed in the meantime, the transaction aborts and restarts from the beginning.

At the end of the atomic block, the transaction commits. A commit (see
pseudo code in Fig. 3) acquires a lock for every variable that is to be updated
(stm acquire locks). We assume that there is some mapping from variables to
locks, for example by hashing a variable into an entry of a table of locks. This
prevents concurrent transactions from accessing the corresponding variables. To
prevent deadlocks, a transaction does not spin infinitely on a lock that is held by
another transaction. Instead, it releases all currently held locks and restarts if it
cannot acquire the lock in a finite number of spins. The transaction then checks
that all variables that were read from main memory still have their original val-
ues, i.e., that no concurrent transaction has modified them (stm verify reads).
In case of modifications, the transaction releases all locks and restarts. Otherwise
the transaction writes back all variables into main memory (stm writeback) and
finally releases all locks (stm unlock all).

328 S. Kempf et al.

Fig. 3. Pseudo code for the commit operation of an STM.

2.2 Lock Inference

While STM is a runtime approach, lock inference is a static interprocedural
compiler analysis. We cover the ideas of the basic lock inference analysis by
Gudka et al. [7] here. In Sec. 4, we will extend it with our optimizations.

A lock inference algorithm takes an atomic block as input and computes the
set of locks that the atomic block needs to acquire in order to ensure atomicity.
Upon entering the atomic block, all locks in the set are acquired in some order,
and at the block’s end, these locks are released. In contrast to an STM, the
body of the atomic block executes without any further instrumentation. Shared
variables are written directly to memory, since all accesses to them are protected
by the locks that were acquired initially. The strategies to prevent deadlocks
when acquiring multiple locks are similar to what STMs use, i.e., if the locks
cannot be acquired within a finite number of spins, all locks acquired so far
are released, and the acquiring starts over. Figure 4 shows how lock inference
transforms the atomic block of Fig. 1. (Ignore the comments in the code for
now.)

The computation of the locks that must be acquired uses a backwards analysis
that walks backwards through the code and visits every statement s of the atomic
block. When the analysis processes s, it computes the set of shared variables
that are potentially accessed on any path from s to the exit of the atomic block.
Once the analysis has terminated, the set computed for the first statement of the
atomic block holds all variables that the block potentially reads or writes. The
comments in Fig. 4 show the sets for every statement. We will show below how
this computation works in detail. At the first statement of the atomic block,
there is a path to the exit that uses x, which is therefore included in the set
of the first statement. Likewise, there is a path that uses y.g, but since y is

Combining Lock Inference with Lock-Based Software Transactional Memory 329

set to r.v in the middle of the block, the first set holds r.v.g in order to be
able to lock the memory location addressed by y.g. The value fields of the
list nodes are potentially accessed as well, but since their number is statically
unknown, the third item in the first set uses a finite representation to statically
refer to all nodes of the list. The compiler then maps every shared variable to a
lock and generates the appropriate lock and unlock statements. Although the
atomic block may access an unbounded number of variables, the original lock
inference approach always acquires a finite number of locks. In the example, all
nodes of the list are mapped to one global lock. The approach of Gudka et al.
works on Java and uses type locks, i.e., if p has the type Node, every p.value
gets mapped to a static lock field in the class Node. Of course, reader-writes locks
allow more parallelism when acquired in read mode for read-only variables. But
for simplicity we assume ordinary locks throughout the remainder of this paper.

Fig. 4. . . . implemented with lock inference.

Let us now follow
the lock inference algo-
rithm in detail. It starts
with the last statement
of Fig. 1, i.e., it processes
the branches individu-
ally and first analyzes
y.g=2. Since y.g is a
shared variable, it adds
it to the assignment’s
set. The same happens
for x=1. Since there are
two paths from the if-statement to the end of the atomic block and the analysis
cannot determine which branch will be taken at runtime, it must conservatively
assume that the if-statement accesses both variables. It therefore merges the
sets of both branches, i.e., the atomic block will later have to acquire locks for
x and y.g. Further up, y is set to r.v. The algorithm propagates the set of
the if-statement to that assignment and replaces all appearances of the LHS (y)
with the RHS of the assignment (r.v). Since the algorithm then needs to cap-
ture the effects of the entire loop, it performs a fix-point iteration on the loop
statements in order to compute the sets of shared variables. The comments at
the statements in the loop show the sets after the fix-point is reached. Elements
that were added in repeated iterations are shown in brackets. Since the above
rewriting transformation for assignments would lead to infinitely many rewrit-
ings for p=p.next, we use a finite representation that specifies that p could be
rewritten to p.next infinitely often. After the algorithm has processed the loop,
it reaches the first assignment and rewrites all occurrences of p as shown.

3 Combining Lock Inference with STM

Now that the basics of STM and lock inference have been covered, we can inves-
tigate how to combine STM and lock inference. Our goal is to implement every

330 S. Kempf et al.

atomic block with fine-grained synchronization and with as little overhead as
possible. If an atomic block uses a small statically known number of variables,
then the whole atomic block should run in lock mode since it provides fine-
grained synchronization with little overhead. If the number of shared variables
cannot be bounded at all, for example if the atomic block traverses the nodes
of a list, the whole atomic block better runs in TM mode, as we assume that
the benefits of fine-grained synchronization outweigh the transactional overhead.
The atomic block in Fig. 1 has a mixed flavor. It uses a statically unknown num-
ber of value fields of the list nodes, but also some of the variables are statically
known (x and r.v.g or y.g). For best performance, that parts of an atomic
block that access an unbounded number of variables do better in TM mode.
The other parts that access a statically bounded number of variables should run
in lock mode. Our technique therefore needs to address three challenges. First,
it must determine which parts of the atomic block should run in TM mode (if
any) and which parts should run in lock mode (if any). Second, it must also be
correct for concurrently running atomic blocks that access the same subset of
shared variables, regardless of the mode used for them. Third, for mixed flavor
of atomic blocks, we need a mechanism to switch from TM mode to lock mode.

Fig. 5. . . . implemented with a
switch from TM mode to lock mode
after the loop.

Switching from lock mode to TM mode is
impossible, as in lock mode changes to shared
variables directly affect their main memory
locations. After a switch from lock mode to
TM mode, a subsequent abort would require
undoing these effects. Hence, undo informa-
tion would need to be kept which negates the
benefits of lock inference and contradicts the
performance goals.

To determine which parts of an atomic
block should run in TM mode or lock mode,
and where to switch (if at all), a compiler per-
forms a lock inference analysis. In contrast to
Sec. 2.2, the algorithm does not necessarily
analyze the entire atomic block. The back-
wards analysis prematurely stops at a state-
ment that accesses an unbounded number of
variables (such as p.value=0 in Fig. 1). The
upper part of the atomic block, including this statement, therefore has to run in
TM mode. The remaining statements (already analyzed) can run in lock mode.
Note that the switch between modes cannot be inside a loop, or at a statement
that is executed more than once. Hence we hoist the switching out of loop nests
and up the method-call-graph. In Fig. 1, p.value=0 prematurely stops the lock
inference analysis. Hence this assignment and the surrounding loop has to run
in TM mode before we switch (at the line in Fig. 1). If the analysis does not stop
prematurely because an atomic block accesses a bounded number of variables it
can fully run in lock mode.

Combining Lock Inference with Lock-Based Software Transactional Memory 331

To allow an atomic block in TM mode to run concurrently to another atomic
block in lock mode, we let both modes protect an access to a shared variable with
the same mutex, i.e., the lock mode uses the TM mode’s stm lock routine (see
Fig. 3) to acquire locks. Then all atomic blocks will use the same locks for shared
variables, independent of their modes. This guarantees proper synchronization,
since an atomic block in TM mode cannot commit until an atomic block in lock
mode has released its locks. Vice versa, an atomic block in lock mode cannot enter
the critical section as long as a concurrently running block in TM mode commits.
Note that since our technique only uses lock inference for code fragments that
access a bounded number of variables, we never need to map multiple variables
to global locks as in Fig. 4. Every variable is mapped to an individual lock, as in
STM.

Figure 5 illustrates the switch from TM mode to lock mode. Above the line
there is a transaction that uses transactional operations to access p.value. For
the switch from TM mode to lock mode at the line in Fig. 1, the following con-
ditions must be met: since x and y.g will be used, locks for x and y.g must be
acquired. But before the code that runs in lock mode can access x and y.g, the
variables must have their most recent values in memory. Although it is not the
case in the example, it is possible that the code that ran in TM mode transac-
tionally wrote x or y.g. Therefore, all variables that were transactionally written
must be committed to memory, i.e., the switch from TM mode to lock mode needs
to acquire the respective locks, verify all variables that were transactionally read
and, finally write transactionally written variables back to memory. Note that
acquiring locks and verifying reads could abort and rollback the transaction. But
besides wasted execution time, the rollback is harmless since the atomic block
only has executed transactionally so far. After that point, the switch from TM
mode to lock mode was successful and the code can now directly access x and
y.g. The atomic block finishes by releasing all locks, i.e., the locks that were
acquired for lock mode and the locks that were acquired for the commit.

4 Optimizations

Although we can now often combine STM and lock inference to always guarantee
fine-grained synchronization with little overhead, it is a show-stopper for some
atomic blocks that the lock inference analysis sometimes has to give up because
the number of variables accessed is unbounded. In this section, we present two
optimizations (runtime loop inspection and specialized container data struc-
tures) that make more atomic blocks amenable to lock mode. These optimiza-
tions are enhancements of current lock inference algorithms and are not limited
to our mode-combining technique.

4.1 Runtime Loop Inspection

In the code on the left of Fig. 6 x, *p, z, A[i], and B[i] are shared variables.
With a standard lock inference algorithm, only the assignment z=2 can execute
in lock mode since the loop accesses an unbounded number of variables.

332 S. Kempf et al.

Fig. 6. Example for runtime loop inspection.

Although standard lock inference cannot determine statically which locks
the code must acquire, an added runtime mechanism can make more atomic
blocks amenable to lock inference. Remember that code that runs in lock mode
consists of three phases: lock acquisition, execution of the body of the atomic
block, and lock release. The idea is to clone a loop that accesses an unbounded
number of variables. The cloned loop only records which shared variables are
accessed but also acquires the corresponding locks. It is similar to an inspec-
tor [14]. Afterwards, the unchanged original loop (= executor loop) reads/writes
those variables. The compiler hoists the inspector into the lock acquisition phase
to acquire all the necessary locks up front so that the executor can run with-
out races. That way, an atomic block runs in lock mode and uses fine-grained
synchronization even though it uses an unbounded number of variables.

The code on the right of Fig. 6 shows the application of this technique. The
regular analysis has figured out that x (pointed to by p) and z need to be
locked initially. The clone of the original loop is hoisted up front into the lock
acquisition phase. The clone is stripped of all expressions that do not contribute
to the computation of addresses of shared variables. Instead of accessing those
variables, it acquires the corresponding locks. After that, the original body of
the atomic block is executed.

The transformation is applied to loops that we call inspectable. In an inspect-
able loop, (a) the inspector only reads shared variables that were locked before
(a dependence analysis finds that we must first lock and read B[i] to acquire
the lock for A[t]) and (b) the only side effects may be lock acquisitions. To
implement this optimization, an additional step before the backwards analysis
described in Sec. 2.2. Determines for every loop in an atomic block whether it is
inspectable. For inspectable loops, the lock inference analysis only needs some
straightforward propagation rules to compute the set of shared variables. See
the comments on the left of Fig. 6.

In the example, the whole atomic block can run in lock mode. The gener-
ated code initially locks every variable that is not part of an inspectable loop.
For the other variables, the compiler generates an inspector that locks shared
variables before it reads them, that replaces writes with lock acquisitions, and

Combining Lock Inference with Lock-Based Software Transactional Memory 333

that removes all other operations that do not contribute to the computation of
variable addresses or loop termination conditions. Other than that, the code of
the atomic block (including the executor loop) remains unchanged. At the end
of the atomic block all locks are released.

This technique is orthogonal to the switching from TM mode to lock mode,
i.e., it also works if only a part of the atomic block can run in lock mode.
If the atomic block of Fig. 6 held a non-inspectable loop that modifies all B[i],
the switch from TM mode to lock mode would happen after that loop, and
the analysis would generate the same lock acquisitions and (almost) the same
inspector as before. The switch from TM mode to lock mode then first acquires
locks before it writes transactionally written variables back into memory. The
inspector runs before the write-back operation and it now reads B[i] that were
transactionally written by the non-inspectable loop. For atomic blocks that run
in both TM mode and lock mode, our optimization therefore transforms ordinary
reads in an inspector into transactional reads if the compiler must assume that
the B[i] were changed in TM mode.

While an inspector acquires locks and may access the write-log, the original
loop accesses the write-log for writes and both the read-log and write-log for
reads. In some STMs, it also acquires locks during the transaction. Rewriting this
loop trades costly log accesses for small executor loop overhead and makes larger
parts of the atomic block amenable to lock inference, which reduces transactional
overhead.

4.2 Specialized Container Data Structures

The atomic block on the left of Fig. 7 performs the usual operations find, add,
and del on a container c. As container operations typically access a statically
unbounded number of elements, up to now, TM mode must be used.

Although TM mode provides fine-grained synchronization, turning sequential
container data structures into concurrent ones using transactions is sub-optimal
[2,8]. Since containers are typically implemented as linked data structures, two
atomic blocks that add different elements to the container (a conflict-free oper-
ation at the semantic level) may still lead to conflicting pointer updates and
hence aborting transactions.

The above runtime loop inspection does not help either, even if it made
the code amenable to lock inference. To add an element e to a container c, an
inspector still traverses and locks the data structure pointers of c until it reaches
the location where to insert e. Locking of all the traversed pointers increases the
probability that two atomic blocks adding different elements mutually exclude
each other.

Transactional predication [2] is known to solve the problem for TM mode by
using highly concurrent data structures. The idea is to only access the key/value
fields of elements transactionally, while the concurrent implementation performs
the addition/deletion of elements. This prevents low-level conflicts; only semantic
conflicts cause mutual exclusion of atomic blocks.

334 S. Kempf et al.

Fig. 7. Example for specialized container data structures.

We now present an analogous technique for lock inference. We build container
data structures into the language and provide implementations that compose
with both lock inference and transactional predication. The idea is that for
every add, del, or find operation on a key k, there is a corresponding cont lock
operation in the lock acquisition phase that only locks the container element e
corresponding to k instead of link pointers. The lock operation also returns a
pointer to e for the actual container functions to work with when executing the
atomic block.

Figure 7 shows the transformation. As the body of the given atomic block
operates on elements with the keys 5, 6, and 7, there is one cont lock call
per container operation. The resulting code afterwards performs its container
operations on the elements returned by the lock calls.

Let us first look at how we extend the lock inference algorithm. When the
backwards analysis now processes a statement, it checks whether the statement
is a built-in container operation. In that case, it adds the operation along with
its arguments to the set of shared variables, as shown in the comments on the
left of Fig. 7. The set at the first statement of the atomic block holds all the
shared variables that the atomic block will access plus the container operations
that it will perform. The generated code locks all shared variables and invokes
cont lock per container operation (with the container and the key as argu-
ments). The operations in the body of the atomic block are rewritten to use the
element returned by the corresponding call of cont lock.

There are two problems left open. First, cont lock always has to return a
reference to a container element, even if the element with the given key is not
present in the container. Second, since the atomic blocks now lock container
elements at the beginning, a del must be delayed until the atomic block is left.
Suppose that an atomic block performs a del(k) followed by an add(k). At the
start of the atomic block, the two added invocations of cont lock lock the same
element e. If the atomic block deleted e immediately, then (a) the mapping of
the second cont lock call from k to e would be destroyed and (b) a cont lock
for k in a concurrently running atomic block that happens between the del(k)
and the add(k) would lock some other element e’, i.e., the two blocks would
run concurrently despite the semantic conflict.

To simplify the discussion of the solutions for both problems, we use the
implementation details of a singly linked list as shown in Fig. 8. A similar

Combining Lock Inference with Lock-Based Software Transactional Memory 335

Fig. 8. Improved container operations for use in lock inference.

reasoning applies to other types of containers. Another simplification to ease
understanding is that the code in Fig. 8 is not thread-safe.

To solve the first problem, cont lock searches for the desired key (ignore
the removability/p.rm checks for now). If successful, it locks the key field and
returns a reference to the element. If the element is not present in the container,
cont lock creates a new dummy with the given key, locks it, and returns a
reference to it. The other container operations have to deal with these dummies.
For instance, add detects that an element was not already present if cont lock
returns a dummy.

To solve the second problem, an atomic block could keep a log of the elements
that need to be removed upon exit. Instead, we leave deleted elements in the
container, flag them as removed, and let the next atomic block actually purge
them when its cont locks traverse the container. Thus a deletion of an element
e has its rm set to the start timestamp (TS) of the deleting an atomic block. In
addition, the element is also turned into a dummy so that add can work correctly.
If later another atomic block’s cont lock sees an element with an coderm field
set to the TS of a terminated atomic block, the element is purged. This check
is needed twice, as there is a small window of time between a successful key
comparison and a lock operation, during which another atomic block may have
marked the element as removed. We use hazard pointers [13] to safely reclaim
memory of removed elements.

Our technique also works with container operations in atomic blocks that
concurrently executed in TM mode or that switch between modes. The reason is

336 S. Kempf et al.

that container operations in TM mode use transactional predication. Since this
technique accesses the key field of an element transactionally and cont lock
locks the key field, atomic blocks that run in different modes correctly mutually
exclude each other.

Although we presented our technique for a simplified singly linked list, our
prototype also provides the lock-free singly linked lists of Fomitchev et al. [5],
hash tables with the singly linked list as their foundation, the concurrent self-
balancing binary search tree from Bronson et al. [1], and a priority queue using
the concurrent heap implementation from Hunt et al. [5]. The overhead for
container operations and memory reclamation compared to a straightforward
implementation of a transactional container is comparable to the overhead of
containers that use transactional predication [2], since roughly the same amount
of instrumentation is needed.

5 Evaluation

We evaluate our approach on 6 of 8 programs of the STAMP benchmark suite [3]
(Genome, Intruder, Kmeans, Labyrinth, SSCA2, and Yada). We omitted the
other two codes since our prototype cannot handle them yet. As as most of their
atomic blocks cannot run in lock mode, we would see the run times of a pure TM
implementation anyways. We changed the codes to use lists, sets, etc. by calling
macros and adjusted the macro definitions to use either the original STAMP
containers or our specialized containers. All measurements were performed on a
2.66 GHz, 8 core Xeon (X5550) with 8 MB cache and 24 GB main memory, with
Linux 2.6, using 1, 2, 4, or 8 cores.

We time three versions of our runs: (a) Pure STM uses SwissTM [4] as STM.
We made its lock operations callable from lock mode and changed the commit
code to have the structure of the code in Fig. 2. (b) Pure lock inference. (c) Our
combined approach which is implemented as a whole-program analysis within
LLVM [12].

Figure 9 shows all execution times as speedups relative to the normalized
measurements of the single core STM (set to 1). The absolute execution times
are given above the bars. We omit single core measurements since the runtime
differences between the three configurations are irrelevant. We also omit single
core non-STM runs since we are interested in relative execution time differences
between pure STM/lock inference and our work. These differences are indepen-
dent of the chosen baseline.

The general results demonstrate that our combined technique and optimiza-
tions work well. For SSCA2 and Yada, our combined technique has about the
same performance as STM, but it outperforms STM in the other benchmarks,
since it provides the same fine-grained locking with less overhead. With the
exception of Kmeans, the combined approach is always better than lock infer-
ence, since the latter generates a coarse-grained locking in most benchmarks,
which reduces parallelism.

Let us now take a closer look at the results of the individual benchmarks.
SSCA2 is a benchmark with little contention. As the 10 small atomic blocks

Combining Lock Inference with Lock-Based Software Transactional Memory 337

2.

52
s

1.

77
s

2.

59
s

1.

28
s

0.

88
s

1.

77
s

0.

69
s

0.

54
s

1.

44
s

7.

91
s

6.

23
s

9.

30
s

5.

58
s

4.

68
s

 1
0.

07
s

4.

75
s

6.

75
s

 1
0.

71
s

7.

45
s

4.

18
s

2.

78
s

5.

38
s

3.

62
s

2.

06
s

5.

13
s

4.

65
s

2.

09
s

 2
3.

02
s

 2
2.

95
s

 4
4.

02
s

 1
9.

31
s

 1
2.

69
s

 4
4.

04
s

8.

66
s

7.

58
s

 4
5.

81
s

 2
3.

10
s

 2
2.

75
s

 2
2.

56
s

 1
9.

55
s

 1
9.

46
s

 1
9.

44
s

 2
1.

93
s

 1
8.

25
s

 2
0.

10
s

 1
7.

70
s

 1
8.

65
s

 2
6.

40
s

 1
1.

68
s

 1
2.

64
s

 2
7.

60
s

 1
0.

49
s

 1
0.

43
s

 2
8.

99
s

G
en

om
e,

 2

G
en

om
e,

 4

G
en

om
e,

 8

In
tr

ud
er

, 2

In
tr

ud
er

, 4

In
tr

ud
er

, 8

K
m

ea
ns

, 2

K
m

ea
ns

, 4

K
m

ea
ns

, 8

La
by

rin
th

, 2

La
by

rin
th

, 4

La
by

rin
th

, 8

S
S

C
A

2,
 2

S
S

C
A

2,
 4

S
S

C
A

2,
 8

Y
ad

a,
 2

Y
ad

a,
 4

Y
ad

a,
 8

Benchmark, number of cores

0

1

2

3

4

5

6

7

8

S
pe

ed
up

 a
nd

 a
bs

ol
ut

e
tim

e

STM
Combined
Lock Inference

Fig. 9. Speedups (higher is better) and absolute execution times.

access only up to 5 shared variables each, our technique cannot reduce the already
negligible STM overheads much. Turning 9 atomic blocks into lock mode and
having the last block switch from TM mode (access to 4 variables) to lock mode
(access to 1 variable) does hence not alter the runtimes - we see almost the same
results with pure lock inference.

From Yada’s 6 atomic blocks we can turn 5 into lock mode. Three of them
only use a bounded number of variables. One atomic block benefits from a spe-
cialized heap container class. The fifth block benefits from runtime inspection
and from a loop of hoisted cont lock calls. It traverses a thread-private vector
and adds some of its elements to the heap. Unfortunately, Yada’s largest and
longest-running atomic block must stay in TM mode as it is recursive and its
variable accesses cannot be statically precomputed. In total, our technique can
hence only improve performance by a factor of 1.4 to 2.8. Pure lock inference
is worst as it generates a coarse-grained locking for both the recursive atomic
block and the blocks that operate on the heap.

Kmeans has 3 atomic blocks. Two of them we can easily turn into lock mode.
The third block updates one element of an array A and several elements of an
array B. As the element of A is known at the entry of the atomic block and
the loop that changes B is inspectable, this block can also run in lock mode. In
total, our technique makes Kmeans run 1.1 to 1.9 times faster than pure STM.
The reason is that compared to STM, the loop that updates B runs without any
overhead. Pure lock inference needs to acquire a single global lock for the loop.
Although this is more coarse-grained than what our technique can achieve, it is
faster because Kmeans only has little contention.

Intruder also has 3 atomic blocks. There is one atomic block that removes
items from some queue, and another block that adds items to its queue.

338 S. Kempf et al.

The queueing codes are simple enough that both pure lock inference and our
technique can generate fine-grained synchronization for them. The third atomic
block assembles fragments of network packets. By means of an ID that is used
as a key into a map, each of the fragments refers to the packet it belongs to. The
map entry is a list of all fragments that belong to the same packet. The atomic
block keeps adding packets to their list until it sees the last fragment of a packet.
At that point it assembles the packet by traversing the list and by adding the
assembled packet to a queue. With our specialized maps and lists, we can turn
this atomic block into lock mode and outperform STM by a factor of 1.2 to 1.9
for small thread counts. Only for 8 threads STM is still 1.4 times faster. The
reason is that we generate a cont lock for the map entry of the input fragment
and lock the entire list to protect the traversal against concurrent modifications.
At higher thread counts, STM wastes less time compared to the sequential bot-
tleneck of locking the entire list. Compared to pure lock inference, we are 1.5 to
2.2 times faster because we generate a finer-grained locking for the third atomic
block.

Labyrinth also has 3 atomic blocks. One block removes an item from a queue
and both pure lock inference and our technique generate fine-grained synchro-
nization for it. Another block adds an element to a list, which we can turn into
lock mode by using a specialized container. The third block holds an inspectable
loop that traverses and updates shared elements stored in a thread-private vec-
tor. Pure lock inference generates a coarse-grained locking for the second and
third block, whereas all atomic blocks run in lock mode in our approach. For
these reasons, we are 1.1 to 1.4 times faster than STM and even 1.9 to 6.0 times
faster than pure lock inference.

Genome has 5 atomic blocks. The first block contains a loop that adds ele-
ments to a hash table, which runs in TM mode and uses transactional predication
for the hash table. In principle, this block could be made to run in lock mode
by generating an inspector with cont lock calls that store the references in
an array for later use by the executor. But with the exception of the heap in
Yada, our prototype currently does not support specialized container operations
within inspectable loops. We can run the remaining atomic blocks in lock mode
though. Two of them only insert into a specialized hash table. One of them holds
an inspectable loop that searches for the first element with a NULL field, which
is overwritten at the end of the loop. Turning 4 of 5 blocks into lock mode out-
performs STM by a factor of 1.3 and 1.4. It is also 1.4 to 2.7 times faster than
pure lock inference, because the latter has to use coarse-grained synchronization
for since 4 of the 5 atomic blocks due to their statically unbounded number of
variables.

6 Related Work

Usui et al. [15] combine TM and locks for their adaptive locks. We determine
the lock set automatically, but in their system, a programmer has to specify
which locks an atomic blocks needs. At runtime, an atomic block either acquires

Combining Lock Inference with Lock-Based Software Transactional Memory 339

the locks or it uses TM. A profiling mechanism determines which mode is more
efficient. However, their atomic blocks cannot switch from TM to locks during
execution. Moreover, all their atomic blocks use the same mode, while we allow
the modes to coexist concurrently.

FastLane [16] is an STM implementation that lowers transactional overheads
for low thread counts. An atomic block is either executed speculatively inside
a transaction or with little logging overhead by holding a global mutex. If the
thread count is low, using a single mutex has less overhead than the transactional
overhead. As in our work, transactions may run concurrently to the atomic block
that holds the global mutex. However, our approach is not limited to low thread
counts and our lock mode uses fine-grained locking instead of a single global
mutex.

As the building blocks of our work are transactional memory (TM) [9] and
lock inference [7], some optimizations from these fields are related to our
optimizations.

Transactional boosting [8] and transactional predication [2] provide efficient
container data structures to be used in transactions in order to avoid low-level
conflicts. We extend these ideas from their restricted applicability to TM only,
and ensure a fine-grained locking with lock inference in coexistence with TM.

The work of Golan-Gueta et al. [6] automatically determines a fine-grained
locking for container data structures. Like our specialized containers, it renders
atomic blocks that use containers amenable to lock inference. Unlike our work,
it is not designed for arbitrary code, e.g., for container operations embedded in
some larger atomic block. We could however use their work to derive fine-grained
synchronized containers from sequential code instead of building-in specialized
containers by hand.

It is important to reduce the number of locks that atomic blocks must acquire.
Zhang et al. [17] show how to compute a minimal lock assignment (MLA). Since
MLA is NP-hard, lock dominance [10] is an approximation algorithm. If one
atomic block needs locks a and b, and another atomic block needs locks b and c,
it is sufficient if both blocks only acquire b. Since lock dominance is performed
after lock inference, atomic blocks that access an unbounded number of variables
do not benefit from it, whereas our optimizations achieve fine-grained synchro-
nization. It is open research how to use lock assignment optimizations when
there is a coexistence of lock mode and TM mode.

Galois [11] is an optimistic parallelization system where programmers write
classes and a specification which methods can or cannot run concurrently to each
other. However, it is not a general technique to implement atomic blocks.

7 Conclusions

This paper has shown how the advantages of lock inference and transactional
memory can be combined in order to implement atomic blocks with fine-grained
synchronization and little overhead. We have also presented two optimizations
that remove some of the limits of state-of-the-art static lock inference. With those

340 S. Kempf et al.

optimizations, we (a) achieve fine-grained synchronization even if the number of
variables accessed is statically unbounded and (b) we see improved performance
on standard container types. The evaluation with a widely used benchmark suite
shows speedups between 1.1 and 6.0 compared to pure STM or pure lock infer-
ence. Future studies will examine how to combine our technique with upcoming
hardware transactional memory systems. Another line of future work will inte-
grate automatic fine-grained synchronization of containers and lock assignment
optimizations and extend them towards mode-combining.

References

1. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: PPoPP’10: Proceedings of the Symposium on Principles and Prac-
tice Parallel Programming, Bangalore, India, pp. 257–268, Jan 2010

2. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: Transactional predication:
high-performance concurrent sets and maps for STM. In: PODC’10: Proceedings
of the Symposium on Principles of Distributed Computing, Zurich, Switzerland,
pp. 6–15, Jul 2010

3. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford trans-
actional applications for multi-processing. In: Proceedings of the Symposium on
Workload Characterization (IISWC’08), Seattle, WA, pp. 35–46, Sep 2008

4. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
PLDI ’09: Proceedings of the Conference on Programming Language Design and
Implementation, Dublin, Ireland, pp. 155–165, June 2009

5. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC’04:
Proceedings of the Symposium on Principles of Distributed Computing, St. John’s,
Newfoundland, Canada, pp. 50–59, Jul 2004

6. Golan-Gueta, G., Bronson, N., Aiken, A., Ramalingam, G., Sagiv, M., Yahav, E.:
Automatic fine-grain locking using shape properties. In: OOPSLA’11: Proceed-
ings of the International Conference on Object Oriented Programming Systems
Languages and Applications, Portland, OR, pp. 225–242, Oct 2011

7. Gudka, K., Harris, T., Eisenbach, S.: Lock inference in the presence of large
libraries. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 308–332. Springer,
Heidelberg (2012)

8. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: PPoPP’08: Proceedings of the Symposium
on Principles and Practice Parallel Programming, Salt Lake City, UT, pp. 207–
216, Feb 2008

9. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. ACM SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

10. Hicks, M., Foster, J.S., Prattikakis, P.: Lock inference for atomic sections. In: Pro-
ceedings of the Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing (TRANSACT’06), Ottawa, Canada, pp. 304–315, June
2006

11. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. In: PLDI ’07: Proceedings of the Con-
ference on Programming Language Design and Implementation, PLDI ’07, San
Diego, CA, pp. 211–222, June 2007

Combining Lock Inference with Lock-Based Software Transactional Memory 341

12. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis and transformation. In: CGO’04: Proceedings of the International Symposium
on Code Generation and Optimization, Palo Alto, CA, pp. 75–85, March 2004

13. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

14. Saltz, J.H., Mirchandaney, R., Crowley, K.: Run-time parallelization and schedul-
ing of loops. IEEE Trans. Comput. 40(5), 603–612 (1991)

15. Usui, T., Behrends, R., Evans, J., Smaragdakis, Y.: Adaptive locks: Combining
transactions and locks for efficient concurrency. In: PACT’09: Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques,
Raleigh, NC, pp. 3–14, Sep 2009

16. Wamhoff, J.T., Fetzer, C., Felber, P., Rivière, E., Muller, G.: FastLane: improv-
ing performance of software transactional memory for low thread counts. In:
PPoPP’13: Proceedings of the Symposium on Principles and Practice Parallel Pro-
gramming, Shenzhen, China, pp. 113–122, Feb 2013

17. Zhang, Y., Sreedhar, V.C., Zhu, W., Sarkar, V., Gao, G.R.: Minimum lock assign-
ment: a method for exploiting concurrency among critical sections. In: Amaral,
J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 141–155. Springer, Heidelberg (2008)

Speculative Execution of Parallel Programs
with Precise Exception Semantics on GPUs

Akihiro Hayashi(B), Max Grossman, Jisheng Zhao, Jun Shirako,
and Vivek Sarkar

Department of Computer Science, Rice University, Houston, TX, USA
{ahayashi,jmg3,jisheng.zhao,shirako,vsarkar}@rice.edu

Abstract. General purpose computing on GPUs (GPGPU) can enable
significant performance and energy improvements for certain classes of
applications. However, current GPGPU programming models, such as
CUDA and OpenCL, are only accessible by systems experts through
low-level C/C++ APIs. In contrast, large numbers of programmers use
high-level languages, such as Java, due to their productivity advan-
tages of type safety, managed runtimes and precise exception semantics.
Current approaches to enabling GPGPU computing in Java and other
managed languages involve low-level interfaces to native code that com-
promise the semantic guarantees of managed languages, and are not read-
ily accessible to mainstream programmers.

In this paper, we propose compile-time and runtime technique for
accelerating Java programs with automatic generation of OpenCL while
preserving precise exception semantics. Our approach includes (1) auto-
matic generation of OpenCL kernels and JNI glue code from a Java-based
parallel-loop construct (forall), (2) speculative execution of OpenCL
kernels on GPUs, and (3) automatic generation of optimized and paral-
lel exception-checking code for execution on the CPU. A key insight in
supporting our speculative execution is that the GPU’s device memory
is separate from the CPU’s main memory, so that, in the case of a mis-
speculation (exception), any side effects in a GPU kernel can be ignored
by simply not communicating results back to the CPU.

We demonstrate the efficiency of our approach using eight Java bench-
marks on two GPU-equipped platforms. Experimental results show that
our approach can significantly accelerate certain classes of Java programs
on GPUs while maintaining precise exception semantics.

1 Introduction

Programming models for general-purpose computing on GPUs (GPGPU), such
as CUDA and OpenCL, can enable significant performance and energy improve-
ments for certain classes of applications. However, these programming models
provide system experts with low-level C/C++ APIs and require programmers
to write, maintain, and optimize a non-trivial amount of application code.

In contrast, large numbers of programmers use high-level languages, such
as Java, because these languages provide high-productivity features including
c© Springer International Publishing Switzerland 2014
C. Caşcaval and P. Montesinos (Eds.): LCPC 2013, LNCS 8664, pp. 342–356, 2014.
DOI: 10.1007/978-3-319-09967-5 20

Speculative Execution of Parallel Programs 343

type safety, a managed runtime, and precise exception semantics. However, the
performance of an application can often suffer due to runtime overheads caused
by the additional logic required to enforce these guarantees. In addition, using
heterogeneous systems to accelerate applications in these high-level languages
is a difficult and error-prone task. Accessing OpenCL or CUDA’s C/C++ API
from Java requires the use of the Java Native Interface (JNI) API, immediately
removing many of the programmability benefits of Java software development.

In our recent work [6], we introduced Habanero-Java [3] with OpenCL gen-
eration (HJ-OpenCL), an extension to the parallel HJ programming language.
HJ-OpenCL enables execution of parallel forall loops on any heterogeneous
processor in an OpenCL platform without any code change to the original
HJ source. However, this approach requires programmers to use a safe lan-
guage construct to explicitly specify conditions which are required to preserve
Java exception semantics. With the safe construct, the programmer provides
a boolean condition that ensures a parallel loop is not expected to throw an
exception and can be safely executed outside of the JVM. However, the use of
safe construct requires additional development effort. The runtime overhead of
manual exception checking is not negligible when running applications which
have indirect array access and non-affine array access.

In this work, we propose extensions to the compile-time and runtime tech-
niques introduced in HJ-OpenCL which preserve precise exception semantics
when executing a parallel forall loop outside the JVM. Unlike our previous
work, the compiler automatically translates a forall loop into two parallel rou-
tines. The first routine contains an equivalent OpenCL implementation of the
original forall loop, including all initialization, communication, and compu-
tation code required to transfer execution to an OpenCL device. The second
routine is a transformation and subset of the instructions in the original forall
loop which guarantees any runtime exception thrown by the original loop will
also be thrown by the transformed version. If an exception occurs during execu-
tion of this specialized exception-checking code, execution transfers to a JVM-
only implementation of the parallel loop. The runtime speculatively executes
the specialized-checking code and the full OpenCL implementation in parallel
to reduce the overhead of exception checking.

This paper makes the following contributions:

1. Automatic generation of OpenCL code from Habanero-Java for speculative
execution on GPUs.

2. Automatic generation of optimized and parallel exception-checking code for
execution on the multiple CPU cores.

3. Performance evaluation of the proposed scheme on multiple heterogeneous
platforms with CPU and GPU cores.

2 Motivation

While past evaluation of GPUs on extremely parallel and computationally heavy
applications have demonstrated clear performance benefits for appropriate appli-
cations [18,22], there still remain application domains which could make use of

344 A. Hayashi et al.

GPUs but do not. This missed opportunity is primarily caused by the sub-
par programmability offered by existing GPU programming models: CUDA and
OpenCL. In addition, these programming models are still only accessible from
low-level programming languages, out of the scope of most high-level program-
mers’ experience. To make the performance benefits of GPUs available to a wide
range of developers it is necessary to build interfaces which are similar to and
compatible with the managed languages in widespread use today. Arguably, the
most pervasive example of this category of programming languages is Java.

Today, Java programmers can manually utilize GPUs using CUDA and
OpenCL through JNI. However, native, OpenCL, or CUDA execution through
JNI eliminates one of the primary safety benefits of the Java development envi-
ronment: exceptions. Java’s precise exception semantics provide a Java pro-
grammer with safety guarantees in regards to the correct execution of their
application code. For example, these guarantees include checks for null pointer
references, out-of-bounds array accesses, and division-by-zero. On the other hand,
many natively compiled language provide no guarantees that a reference does
not jump into a completely separate array, or object. As a result, incorrect appli-
cation behavior can be difficult to diagnose in the absence of precise exception
semantics.

As an illustrative example we consider the case of sparse matrix-matrix mul-
tiplication. Executing this computation the JVM would ensure that the row and
column indices stored to represent a sparse matrix are within the bounds of a
full output matrix. However, if the Java programmer took advantage of JNI to
achieve improved performance through native execution all exception semantics
would be forfeit. To maintain the same guarantees, the programmer would have
to manually insert exception checking code in their Java or native code which
checked the stored row and column indices against the bounds of the output
matrix before submitting the kernel to the GPU. Doing so would increase code
complexity and future maintainability.

This work addresses the problem of melding the performance characteristics
of native GPU execution with the safety guarantees of JVM execution. It does
so by enabling execution of a parallel Java application on any OpenCL hard-
ware platform without any hand-written native code. This approach removes the
pain points of JVM-OpenCL applications while providing the benefits of both
managed and native execution.

3 Habanero Java Language

This section describes features of the Habanero-Java (HJ) parallel programming
language and compilation flow for supporting OpenCL code generation.

3.1 Overview of HJ Language

The Habanero Java (HJ) parallel programming language under development at
Rice University [3] provides an execution model for multicore processors that

Speculative Execution of Parallel Programs 345

builds on four orthogonal constructs, and was derived from early experiences
with the X10 [5] language:

1. Lightweight dynamic task creation and termination using async and finish,
future and forall constructs [19].

2. Locality control with task and data distributions using the place construct
[15].

3. Mutual exclusion and isolation among tasks using the isolated construct [21].
4. Collective and point-to-point synchronization using the phasers construct [10]

along with their accompanying phaser accumulators [11].

In HJ-OpenCL, programmers use the forall language feature to identify
parallel loops as candidates for OpenCL execution. The statement “forall(point
p : region) 〈stmt〉” indicates a parallel loop whose iteration space is defined by
a region. The region can be one- or multi-dimensional space, e.g., [0:M-1,0:N-1]
for a 2-D iteration space. Each iteration instance executes the loop body 〈stmt〉
for a distinct point in the iteration space. All forall loops end with an implicit
barrier. In addition, HJ-OpenCL supports all-to-all synchronization points in
those parallel loops [6] through the next statement. The HJ-OpenCL compiler
and runtime trust these annotations when generating and executing code on
GPUs.

3.2 Compilation Flow

Figure 1 illustrates the HJ compilation and runtime flow for HJ-OpenCL. The
HJ-OpenCL compiler leverages APARAPI [1], a comprehensive, open-source
framework for executing computational kernels from Java applications on
OpenCL devices. For this work we extended the APARAPI component that
generates OpenCL code from Java bytecode. In addition to OpenCL kernels,
glue code must be automatically generated to transfer execution and data from
the JVM to the OpenCL device and back. This functionality is provided inter-
nally by the HJ-OpenCL compiler, and includes the generation of JNI functions,
OpenCL API calls, and transformed bytecode.

In summary, the HJ-OpenCL compiler takes an HJ program as input, and
produces:

Fig. 1. Compilation and runtime flow

346 A. Hayashi et al.

1. Java CLASS files for execution on the JVM;
2. JNI glue code to mediate between the JVM and OpenCL kernels;
3. A Java CLASS file which contains the bytecode to be translated to OpenCL

kernels by the APARAPI bytecode translator.

4 Speculative Exception Checking Scheme

In the approach introduced in this paper, the HJ-OpenCL compiler from [6] is
extended to automatically generate exception checking code and OpenCL kernel
code for the forall loops in an HJ program. The exception checking code is a
specialized version of the original forall loop which replaces all stores with loads.
By enclosing this specialized loop with a Java try-catch block, HJ-OpenCL can
detect all runtime exceptions generated by the original forall loop. The details of
the code transformation algorithm for generating this exception loop is shown in
Sect. 4.2. The exception checking loop is run in parallel on CPU cores in parallel
with a speculatively and optimistically launched OpenCL kernel running on the
GPU. Optimizing the exception checking code is important for cases where it is
on the critical path of the application, i.e. where the exception checking code in
the JVM finishes later than the OpenCL kernel.

The rest of this Section is organized as follows: Sect. 4.1 introduces the
HJ-OpenCL runtime design. Section 4.2 describes optimizations applied to the
exception checking loop by the HJ-OpenCL compiler.

4.1 Speculative Exception Checking Runtime

Figure 2 illustrates the runtime interactions between the HJ runtime, the JVM,
the OpenCL runtime on the host, and the OpenCL kernel on the device. The
following steps (illustrated by the example generated code in Fig. 3) explain
the basic workflow of speculatively executing a forall loop on the GPU while
running exception checking code in the JVM.

Fig. 2. The execution model of speculative exception checking

Speculative Execution of Parallel Programs 347

1 public class Example {
2 stat ic { System . loadLibrary (‘ ‘ l i bCa l c ’ ’) ; }
3 public stat ic native void openCL Kerne l0 f i r s t (. . .) ;
4 public stat ic native void openCL Kernel0 second (. . .) ;
5 public stat ic void main (St r ing [] a rgs) {
6 . . .
7 boolean excpFlag = fa l se ;
8 /∗ (1) Specu la t i ve GPU execut ion through JNI ∗/
9 openCL Kerne l0 f i r s t (. . .) ;

10 /∗ (2) Exception Checking Code on JVM ∗/
11 try {
12 f o ra l l (po int [i] : [0 : N−1]) {
13 int dummy1 = A[i] ;
14 int dummy2 = B[i] ;
15 int dummy3 = C[i] ;
16 }
17 } catch (Exception e) {
18 excpFlag = true ;
19 }
20 /∗ (1) Second JNI Cal l ∗/
21 openCL Kernel0 second (excpFlag , . . .) ;
22 i f (excpFlag) {
23 /∗ (3) Orig ina l Implementaion ∗/
24 f o ra l l (po int [i] : [0 : N−1]) {
25 A[i] = B[i] + C[i] ;
26 }
27 }
28 }

Fig. 3. Generated code for Vector Addition by the HJ-OpenCL compiler

Step 1: The HJ runtime invokes the first JNI function. In the callee, the OpenCL
API is called to perform host-to-device data transfer and asynchronously
launch the corresponding OpenCL kernel on a device. The host application
immediately returns to JVM execution. Blocking data transfers are necessary
so that Java objects can be released before returning to the JVM. This step is
done in the native method call to openCL Kernel0 first() on line 9 of Fig. 3.

Step 2: The exception checking loop is run in the JVM, as seen on lines, seen
on lines 12–16 of Fig. 3. This loop is a transformation of the original forall
loop which:
1. Reduces computational load.
2. Reduces I/O load and eliminates any externally visible state change caused

by the loop.
3. Guarantees the same exceptions thrown by the original loop would also

be thrown by the transformed version.
Step 3: The HJ runtime invokes a second JNI call (line 21 of Fig. 3) which

waits for the completion of computation on the OpenCL device1, transfers
data from the device, and performs OpenCL cleanup. If an exception occurs
during execution of the exception checking loop, the OpenCL runtime does
not transfer any state back to the host and the HJ runtime executes the
original forall loop in the JVM, thus maintaining Java exception semantics.

1 The OpenCL runtime has to wait for the completion of the kernel execution even in
the event of an exception because there is no OpenCL API to terminate kernel on
device currently.

348 A. Hayashi et al.

4.2 Generation and Optimization of Exception Checking Code

This section describes how to generate and optimize the exception checking
code. The generated exception checking code must meet two requirements. It
must be side-effect free, i.e. have no memory store operations and no invocation
of system APIs. It must also preserve all exceptions which would be triggered
from the original forall loop. If either of these requirements cannot be met, the
HJ-OpenCL compiler aborts code generation and reverts to parallel execution
within the JVM.

The basic workflow of the generation and optimization of exception checking
code is described in Algorithm 1. It takes the original forall loop (L) as input
and generates the optimized exception checking code (OCC) as output. Before
applying Algorithm1, some analysis and transformations are performed to verify
the correctness of running the forall loop with speculative exception checking:

1. Side-effect analysis to identify procedures which potentially have side-effects.
2. Function inlining applied for all non-recursive functions invoked within the

forall loop.
3. Alias analysis which works out may or must equality between any two object

references.
4. Data dependence analysis which calculates def-use chains.

After pre-analysis and transformation, if the forall loop still contains unana-
lyzable array or procedures which may have side-effects, then it is not suitable for
speculative OpenCL execution and the HJ-OpenCL compiler aborts exception
code generation (Line 1).

Algorithm 1 begins by inspecting all array access statements in the forall

loop to retain any statements which may throw an ArrayIndexOutOfBounds
Exception. For each array store statement aStore, the HJ-OpenCL compiler
replaces the statement by an array read statement aLoad (lines 6–20) and tra-
verses the def/use chain (built by pre-analysis) to check its users. In the case
that the stored value is loaded by successors within the same loop iteration, the
compiler applies scalar replacement on the load statement with the stored value
and marks it as keep (lines 13–15). For the case that the store value is loaded
in the successors which cross loop iterations, the HJ-OpenCL the compiler sets
excpFlag with true (line 10–12) and aborts code generation. For the array load
statement, the HJ-OpenCL compiler marks it as keep (line 24–27). The last step
is to mark statements which derive denominator of division statement to keep
statement, as they may trigger an ArithmeticException.

After applying Algorithm1 to generate conservative exception checking code,
HJ-OpenCL compiler performs two optimization on the generated code to
eliminate redundancy: loop invariant code motion (LICM) and redundant load
elimination.

Figure 4 provides an example of HJ-OpenCL code generation and optimiza-
tion. Figure 4(a) contains the forall loop of a sparse matrix multiply application
in 3-address code. Figure 4(b) shows the same 3-address code, but optimized
by the HJ-OpenCL compiler for exception checking. Because there are indirect

Speculative Execution of Parallel Programs 349

Algorithm 1. Exception Checking Code Generation and Optimization
input : L: One Forall Loop
output: OCC: Optimized Checking Code

1 if loop has unanalyzable array references or method calls then
2 abort
3 end
4 // For Array Bounds Check;
5 A ← getAllArrayAccessStatement(loop);
6 foreach aStmt in A do
7 // Get All Loop Index at Current Loop Nest;
8 I ← getOuterLoopIndices();
9 if aStmt is ArrayStore(A[i1, i2, ..., in] ← x) then

10 transform aStmt to dummy ← A[i1, i2, ..., in];
11 markedList ← aStmt;
12 if A[i1, i2, ..., in] is used in followed statements then
13 if A[i1, i2, ..., in] drives array subscript in the future iteration then
14 abort
15 end
16 else
17 rename A[i1, i2, ..., in] to x in each statement (as in scalar replacement);
18 end

19 end
20 foreach ip such that 1 ≤ p ≤ n ∧ ip /∈ I do
21 S ← statements which derive ip (considering control flow);
22 markedList ← S ;

23 end

24 end
25 else if aStmt is ArrayLoad (x ← A[i1, i2, ..., in]) then
26 markedList ← aStmt ;
27 foreach ip such that 1 ≤ p ≤ n ∧ ip /∈ I do
28 S ← statements which derive ip (considering control flow);
29 markedList ← S;

30 end

31 end

32 end
33 // For ArithmeticException;
34 markedList ← ∀stmt such that stmt derives denominator;
35 // Delete not marked statement;
36 OCC ← ∀stmt in L such that stmt ∈ markedList;

350 A. Hayashi et al.

1 f o ra l l (po int [id] : [0 :M]) {
2 i 1 = row [id] ;
3 row begin = i1
4 i 2 = id + 1 ;
5 i 3 = row [i 2] ;
6 row end = i3 ;
7 i 4 = row end − row begin ;
8 for (i = 0 ; i < i 4 ; i++) {
9 for (j = 0 ; j < i n t e r ; j++)

{
10 i 5 = row begin + i ;
11 d1 = Av [i 5] ;
12 i 6 = row begin + i ;
13 i 7 = Aj [i 6] ;
14 d2 = x [i 7] ;
15 d3 = d1 ∗ d2 ;
16 d4 = sum + d3 ;
17 sum = d4 ;
18 }
19 }
20 y [id] = sum ;
21 }

(a) Original 3-address Code

1 f o ra l l (po int [id] : [0 :M]) {
2 i 1 = row [id] ;
3 row begin = i1
4 i 2 = id + 1 ;
5 i 3 = row [i 2] ;
6 row end = i3 ;
7 i 4 = row end − row begin ;
8 for (i = 0 ; i < i 4 ; i++) {
9 i 5 = row begin + i ;

10 d1 = Av [i 5] ;
11 i 6 = row begin + i ;
12 i 7 = Aj [i 6] ;
13 d2 = x [i 7] ;
14 }
15 dummy = y [id] ;
16 }

(b) Optimized 3-address Code

Fig. 4. Optimization example for sparse matrix multiply

accesses of arrays row, Av, Aj and x, the HJ-OpenCL compiler does not remove
statements which derive array subscripts of these arrays.

5 Performance Evaluation

This section presents experimental results for HJ-OpenCL on two platforms.
The first platform is an AMD A10-5800K APU. This APU includes an AMD

Radeon HD 7660D GPU with 6 Streaming Multiprocessors (SMs). The CPU of
the A10-5800K includes 4 cores, 16 KB of L1 cache per core, and 32 MB of L2
cache. Each SM in the GPU has exclusive access to 32 KB of local scratchpad
memory. The CPU and GPU can each access the same system memory, but
share bandwidth when doing so. While physical memory is shared, it is parti-
tioned between devices such that the CPU has 6 GB and the GPU has 2 GB. We
conducted all experiments on this system using the Java SE Runtime Environ-
ment (build 1.6.0 21-b06) with Java HotSpot 64-Bit Server VM (build 17.0-b16,
mixed mode).

The second platform has two hexacore Intel X5660 CPUs and two NVIDIA
Tesla M2050 discrete GPUs connected over PCIe. There is a total of 48 GB within
a single node that is shared by all 12 cores. Each GPU also has approximately
2.5 GB of global memory. Only 1 of the 2 available GPUs was used at a time to
evaluate this work. In this platform, we used the Java SE Runtime Environment
(build 1.6.0 25-b06) with Java HotSpot 64-Bit Server VM (build 20.0-b11, mixed
mode).

The eight benchmarks shown in Table 1 were used in our experiments.
Note that SparseMatMult, SAXPY and GEMVER have indirect array access.

Speculative Execution of Parallel Programs 351

Table 1. Information on the benchmarks used to evaluate HJ-OpenCL

Benckmark Summary Data size

SparseMatmult Sparse matrix multiplication from the Java Grande

Benchmarks [20]

Size C with N = 500,000

Doitgen Multi-resolution analysis kernel from PolyBench

[24], ported to Java

128 × 128 × 128

Crypt Cryptographic application from the Java Grande

Benchmarks [20]

Size C with N= 50,000,000

Blackscholes Data-parallel financial application which calculates

the price of European put and call options

16,777,216 virtual options

MRIQ Three-dimensional medical benchmark from

Parboil [23], ported to Java

Large size (64 × 64 × 64)

MatMult A standard dense matrix multiplication: C = A.B 1024 × 1024

SAXPY Sparse version of SAXPY from [12], ported to Java 25, 000 × 25, 000

GEMVER Sparse BLAS function from [12], ported to Java 10,000,000

The baseline for this evaluation was sequential Java. We tested execution on Open-
CL GPUs using HJ-OpenCL’s code generation and runtime in the following modes:

– No checking: execute the full computation on the GPU without any excep-
tion checking, removing precise Java exception semantics.

– Non-speculative execution: run the unoptimized or optimized exception
checking code in the JVM, followed by the full computation on the GPU.
This mode retains precise Java exception semantics but serializes exception
checking and computation, leading to higher overhead.

– Speculative execution: run the unoptimized or optimized exception check-
ing code in the JVM in parallel with the full computation on the GPU. This
mode retains precise Java exception semantics while minimizing overhead.

In the following sections, these five variants are referred to as HJ OpenCL
GPU(No checking), HJ OpenCL GPU(Non-speculative, unoptimized), HJ
OpenCL GPU(Non-speculative, optimized), HJ OpenCL GPU(Speculative,
unoptimized) and HJ OpenCL GPU(Speculative, optimized) respectively. We

Fig. 5. Performance improvements relative to sequential Java on the A10-5800K

352 A. Hayashi et al.

Fig. 6. Sample timeline of the Black-Scholes application on the A10-5800K

run each benchmark 10 times and report the median value as the result. Note
that we exclude the overhead of the OpenCL context and command queue cre-
ation from these measurements for precise measurements because we see timing
in variation.

5.1 Performance on AMD A10-5800K

Figure 5 shows the speedup numbers on the AMD A10-5800K APU relative
to the sequential Java version. On the AMD APU system, exception check-
ing is done in parallel on 4 cores. OpenCL(Speculative, optimized) approach
shows speedups of up to 21.1× relative to sequential Java, while maintaining
Java exception semantics. Only one benchmark (Polybench DoitGen) showed a
slowdown due to OpenCL execution on this platform, though (as we will see
later) it showed a speedup on the Westmere+Tesla platform. Performance dif-
ferences between OpenCL(No Checking) and OpenCL(Speculative, optimized)
range from 0.5 %(Polybench Doitgen) to 18.6 %(JGF-Crypt). JGF-Crypt,
BlackScholes, MRIQ and GEMVER each show significant improvement from
exception checking code optimization. For these applications, exception check-
ing takes longer than OpenCL execution. Additionally, deleting java.lang.Math
method calls which does not derive array index dramatically accelerates excep-
tion checking code for BlackScholes and MRIQ.

Polybench Doitgen, MatMult, and SAXPY exception checking code, these
benchmarks do not show speedup from optimization because the checking code
is not on the critical path.

Figure 6 shows a timeline of OpenCL execution on the AMD APU. Figure 6
was gathered using the OpenCL clGetEventProfilingInfo function to get infor-
mation on when commands are submitted to the device for execution, when
commands actually begin execution, and when commands complete execution.
Each row in the figure is categorized as either a pending operation, which shows
the time between a command being submitted and starting, or a running oper-
ation, which shows the time between a command starting and finishing. Each

Speculative Execution of Parallel Programs 353

Fig. 7. Performance improvements relative to sequential Java on Westmere

Fig. 8. Sample timeline of the Black-Scholes application on Westmere

operation is also categorized as either a kernel or transfer operation, and trans-
fer operations are broken down by the variable being transferred the direction
of transfer. h-d indicates a copy from the host system to the GPU, and d-
h indicates a copy from the GPU to the host. On the AMD APU, pending
time accounts for a significant amount of execution time for both transfers and
kernels. That is why no application shows speedup with speculative execution
unlike NVIDIA GPU. For example, the AMD OpenCL runtime does not start
three data transfers for the first 2.0E+08 (ns). This seems to be an issue with the
AMD OpenCL libraries. Despite this, we see a gap between the completion of the
kernel—running operation and the start of transfer—d-h—pending—dt1 opera-
tion. This indicates that the critical path on the AMD APU for Black-Scholes is
the exception checking code, which explains the significant improvements from
optimized exception checking in Fig. 5.

5.2 Performance on Westmere

Figure 7 shows the speedups on the Westmere platform with two NVIDIA Tesla
GPUs (of which we currently only use one) and two hexacore Intel CPUs.

354 A. Hayashi et al.

On this platform, exception checking is done by 12 cores. The proposed
OpenCL(Speculative, optimized) mode shows speedups of up to 331.0× rela-
tive to sequential Java while maintaining Java’s exception semantics. Perfor-
mance differences between OpenCL(No Checking) and OpenCL(Speculative,
optimized) vary from −2.4 %(MatMult)2 to 27.9 %(JGF-Crypt). JGF-Sparse-
MatMult, Polybench Doitgen, JGF-Crypt, BlackScholes, MRIQ and GEMVER
shows speedups from optimization because exception checking is on the appli-
cation’s critical path. Further, there is no difference in time between command
submission and actually starting work on it (See Fig. 8). Additionally, more
cores enable a shorter exception checking time. As a result speculative execution
enables performance improvement in the range of 2.0 % to 24.7 %.

6 Related Work

The GPU code generation has been widely supported in high level language
compilation systems.

Lime [7] is a JVM compatible language which generates OpenCL code auto-
matically. Lime provides language extensions that express coarse grain tasks,
SIMD parallelism. Its compiler generates Java bytecode, JNI glue code, and
OpenCL kernels.

RootBeer [13] compiles Java to CUDA by specifying the code region within
gpuMethod. The RootBeer compiler translates gpuMethod() method in Kernel
interface into CUDA kernel.

JCUDA [17] provides programming interface which can be used by Java
programmers to invoke CUDA kernels. Programmers can write Java codes that
call CUDA kernels with special interface and JCUDA compiler generates the
JNI glue code between the JVM and CUDA runtime by using this interface.

Android RenderScript [4] provides C-like programming model for GPUs. Pro-
grammer manually write a kernel and invoke it by using provided Java APIs.

To the best of our knowledge, none of these three systems (Lime, RootBeer,
JCUDA, RenderScript) preserve Java’s precise exception semantics with specu-
lative execution, as in our work.

There also been related work on eliminating redundant checks for null pointer
and array bound exceptions by generating dual version code. In Artigas et al. [2]
and Moreira et al. [9], Their work generates dual-version code which consists of
exception-safe regions and -unsafe regions. In exception-safe regions the compiler
can perform aggressive loop optimization such as loop tiling. In contrast, the auto-
matically generated exception-checking code in our approach that sets excpFlag
can express more general conditions than in this past work e.g., see Fig. 3.

There has also been related past work on array bounds check elimination.
Würthinger et al. [16] proposed an algorithm for Static Single Assignment (SSA)
form for the JIT compiler which eliminates unnecessary bounds checking.
ABCD [14] provides powerful array bounds checking elimination algorithm by
creating an SSA-based inequality graph. Von Ronne et al. [8] proposed an static

2 Theoretically this is unlikely, This is due to variation in timing.

Speculative Execution of Parallel Programs 355

annotation framework to reduce the overhead of dynamic checking in the JIT
compiler. These past results complement our work since the exception checking
code generated by our compilation system can be further optimized by these
techniques.

In the context of speculative execution for parallel processing GPGPU,
Paragon [12] runs the C/C++ loop speculatively, while monitoring the depen-
dencies. The runtime transfers the execution to the CPU in case a conflict is
detected. In contrast, we generate exception checking code that is executed on
the CPU.

7 Conclusions

In this paper, we introduce a new compile-time and runtime approach for acceler-
ating Java programs through automatic generation of OpenCL while maintaining
precise exception semantics. To maintain precise exception semantics, the HJ-
OpenCL compiler automatically generates code for the speculative execution of
OpenCL kernels on GPUs alongside optimized and parallel exception checking
code for execution on the CPUs.

On an AMD APU, our results show speedups of up to 21.1× relative to
sequential on the integrated GPU, only 0.8 % slower than unsafe execution on the
GPU. For a system with an Intel Xeon CPU and a discrete NVIDIA Fermi GPU,
the speedups relative to sequential Java are up to 331.0× on the GPU, equivalent
performance to unsafe execution. These experiments show that our approach can
automatically and effectively accelerate the execution of Java programs on GPUs
while maintaining precise exception semantics.

References

1. APARAPI. API for Data Parallel Java. http://code.google.com/p/aparapi/
2. Artigas, P.V., et al.: Automatic loop transformations and parallelization for Java.

In: Proceedings of the 14th International Conference on Supercomputing, ICS ’00,
pp. 1–10. ACM, New York (2000)

3. Cavé, V., et al.: Habanero-Java: the new adventures of old X10. In: PPPJ’11:
Proceedings of 9th International Conference on the Principles and Practice of Pro-
gramming in Java (2011)

4. Android Developers. Renderscript. http://developer.android.com/guide/topics/
renderscript/index.html

5. Ebcioğlu, K., Saraswat, V., Sarkar, V.: X10: programming for hierarchical paral-
lelism and nonuniform data access (extended abstract). In: Language Runtimes
’04 Workshop: Impact of Next Generation Processor Architectures On Virtual
Machines (Colocated with OOPSLA 2004), October 2004. www.aurorasoft.net/
workshops/lar04/lar04home.htm

6. Hayashi, A., et al.: Accelerating Habanero-Java program with OpenCL generation.
In: PPPJ’13: Proceedings of 10th International Conference on the Principles and
Practice of Programming in Java (2013, under submission)

http://code.google.com/p/aparapi/
http://developer.android.com/guide/topics/renderscript/index.html
http://developer.android.com/guide/topics/renderscript/index.html
www.aurorasoft.net/workshops/lar04/lar04home.htm
www.aurorasoft.net/workshops/lar04/lar04home.htm

356 A. Hayashi et al.

7. Dubach, C., et al.: Compiling a high-level language for GPUs: (via language sup-
port for architectures and compilers). In: Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, pp.
1–12. ACM, New York (2012)

8. Von Ronne, J., et al.: Safe bounds check annotations. Concurrency Computat.
Pract. Exper. 21(1), 41–57 (2009)

9. Moreira, J.E., et al.: From flop to megaflops: Java for technical computing. ACM
Trans. Program. Lang. Syst. 22(2), 265–295 (2000)

10. Shirako, J., et al.: Phasers: a unified deadlock-free construct for collective and
point-to-point synchronization. In: Proceedings of the 22nd Annual International
Conference on Supercomputing, ICS ’08, pp. 277–288. ACM, New York (2008)

11. Shirako, J., et al.: Phaser accumulators: a new reduction construct for dynamic
parallelism. In: IPDPS 2009 (2009)

12. Samadi, M., et al.: Paragon: collaborative speculative loop execution on GPU and
CPU. In: Proceedings of the 5th Annual Workshop on General Purpose Processing
with Graphics Processing Units, GPGPU-5, pp. 64–73. ACM, New York (2012)

13. Pratt-Szeliga, P.C., et al.: Rootbeer: seamlessly using GPUs from Java. In: 2012
IEEE 14th International Conference on High Performance Computing and Com-
munication 2012 IEEE 9th International Conference on Embedded Software and
Systems (HPCC-ICESS), June 2012, pp. 375–380 (2012)

14. Bod́ık, R., et al.: ABCD: eliminating array bounds checks on demand. SIGPLAN
Not. 35(5), 321–333 (2000)

15. Chandra, S., et al.: Type inference for locality analysis of distributed data struc-
tures. In: PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 11–22. ACM, New York
(2008)

16. Würthinger, T., et al.: Array bounds check elimination for the Java HotSpot client
compiler. In: Proceedings of the 5th International Symposium on Principles and
Practice of Programming in Java, PPPJ ’07, pp. 125–133. ACM, New York (2007)

17. Yan, Y., Grossman, M., Sarkar, V.: JCUDA: a programmer-friendly interface for
accelerating Java programs with CUDA. In: Sips, H., Epema, D., Lin, H.-X. (eds.)
Euro-Par 2009. LNCS, vol. 5704, pp. 887–899. Springer, Heidelberg (2009)

18. Fan, Z., et al.: GPU cluster for high performance computing. In: Proceedings of the
2004 ACM/IEEE Conference on Supercomputing, SC ’04, p. 47. IEEE Computer
Society, Washington, DC (2004)

19. Guo, Y., et al.: Work-first and help-first scheduling policies for async-finish task
parallelism. In: IPDPS ’09: International Parallel and Distributed Processing Sym-
posium (2009)

20. JGF. The Java Grande Forum benchmark suite. http://www.epcc.ed.ac.uk/
javagrande/javag.html

21. Lublinerman, R., et al.: Delegated isolation. In: OOPSLA ’11: Proceeding of the
26th ACM SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications (2011)

22. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinform. 9(Suppl
2), S10 (2008)

23. Parboil. Parboil benchmarks. http://impact.crhc.illinois.edu/parboil.aspx
24. PolyBench. The polyhedral benchmark suite. http://www.cse.ohio-state.edu/

pouchet/software/polybench

http://www.epcc.ed.ac.uk/javagrande/javag.html
http://www.epcc.ed.ac.uk/javagrande/javag.html
http://impact.crhc.illinois.edu/parboil.aspx
http://www.cse.ohio-state.edu/pouchet/software/polybench
http://www.cse.ohio-state.edu/pouchet/software/polybench

Author Index

Angerer, Christoph M. 39
Arteaga, Jaime 237

Bharambe, Girish 121

Chandrasekaran, Sunita 105
Chapman, Barbara 20, 105, 292
Chen, Shuo 252
Cintra, Marcelo 217, 275
Curtis, Tony 20

Ding, Wei 20

Gao, Guang R. 237
Garcia, Elkin 237
Gerstenberger, Robert 307
Goto, Takashi 155
Grewe, Dominik 87
Grossman, Max 342
Grover, Vinod 121

Hayashi, Akihiro 342
Hernandez, Oscar 20
Hillenbrand, Dominic 155
Hirano, Tomohiro 155
Hoefler, Torsten 307

Kamil, Amir 3
Kasahara, Hironori 155
Kelly, Paul H.J. 136
Kempf, Stefan 325
Kimura, Keiji 155
Konstantinidis, Athanasios 136

Lee, Jae-Woo 202
Lee, Sean 121
Li, Xiaoming 252

Marathe, Jaydeep 121
Midkiff, Samuel P. 202
Mikami, Hiroki 155

Mitropoulou, Konstantina 217
Murphy, Mike 121
Muto, Kohei 155

O’Boyle, Michael F.P. 87
Odersky, Martin 55

Pavel, Robert 237
Philippsen, Michael 325
Porpodas, Vasileios 217, 275
Prokopec, Aleksandar 55

Rajopadhye, Sanjay 169
Ramanujam, J. 136

Sadayappan, P. 136
Sarkar, Vivek 342
Schneider, Timo 307
Shirako, Jun 342

Takamura, Moriyuki 155
Tian, Xiaonan 105
Tolubaeva, Munara 292

Veldema, Ronald 325

Wang, Zheng 87

Xu, Rengan 105

Yamamoto, Hideo 155
Yan, Yonghong 105, 292
Yelick, Katherine 3
Yin, Le 187
Yuki, Tomofumi 169
Yun, Zhifeng 105

Zhao, Jisheng 342

	Organization
	Invited Talks
	The Good, the Bad, and the Ugly:Heterogeneous Programming Modelsfor Performance and Power in a ThermallyConstrained World
	Why Parallel Web Browsers?
	SnuCL: A Unified Framework of OpenCL
	Characterizing and Detecting SmartphoneEnergy Bugs
	KLA: A New Algorithmic Paradigmfor Parallel Graph Computations
	Parallel Programming for the Cloud
	Keynotes
	Avoiding, Hiding and ManagingCommunication
	Bringing Native Code to the Web
	Contents
	Programming Models
	Hierarchical Computation in the SPMDProgramming Model
	1 Introduction
	2 Background
	2.1 The RSPMD Model
	2.2 Related Work

	3 RSPMD Language Extensions
	3.1 Team Representation
	3.2 New Language Constructs
	3.3 Alignment of Collectives

	4 Application Case Studies
	4.1 Test Platforms
	4.2 Algorithmic Hierarchy
	4.3 Machine Hierarchy

	5 Conclusion
	References

	Porting Applications with OpenMP Using Similarity Analysis
	1 Introduction
	2 Related Work
	3 Klonos Framework
	3.1 Static Metrics
	3.2 Dynamic Metrics
	3.3 Cost-Model Metrics

	4 Experiments
	4.1 GenIDLEST Similarity Analysis
	4.2 Syntactic Clustering Analysis
	4.3 Cost-Model Metrics Clustering Analysis
	4.4 Combination of Syntactic and Cost-Model Based Clusters
	4.5 Improved Verification Methodology
	4.6 Porting Strategy Verification

	5 Conclusions and Future Work
	References

	Tasks�
	Task-Aware Optimization of Dynamic Fractional Permissions
	1 Dynamic Fractional Permissions
	1.1 Access Control Lists and Permissions
	1.2 Permission Management Operations

	2 Example: Map-Reduce with Dynamic Data-Race Detection
	3 Task-Aware Optimization of Dynamic Fractional Permissions
	3.1 Eliminating Redundant Permission Checks
	3.2 Optimizing Permission Management

	4 Evaluation
	5 Related Work
	6 Concluding Remarks
	References

	Near Optimal Work-Stealing Tree Scheduler for Highly Irregular Data-Parallel Workloads
	1 Introduction
	2 Related Work
	3 Work-Stealing Tree Scheduler
	4 Evaluation
	5 Conclusion
	A Appendix
	A.1 Work-Stealing Reduction Tree
	A.2 Work-Stealing Tree Traversal Strategies
	A.3 Speedup and Optimality Analysis
	A.4 Overcoming the Worst-Case Speedup Using Randomization

	References

	OpenCL Task Partitioning in the Presence of GPU Contention
	1 Introduction
	2 Motivation
	3 Challenges in the Presence of GPU Contention
	4 Predictive Modeling
	4.1 The Features of the Model
	4.2 Building the Model
	4.3 Collecting Training Data
	4.4 Deployment of the Model

	5 Experimental Methodology
	5.1 Experimental Setup
	5.2 Comparison
	5.3 Evaluation Methodology

	6 Results
	6.1 Comparison to Oracle
	6.2 Comparison to State-of-the-Arts

	7 Related Work
	8 Conclusion
	References

	Heterogeneous Computing
	Compiling a High-Level Directive-Based Programming Model for GPGPUs
	1 Introduction
	2 Overview of OpenACC Programming Model
	3 Compiler Implementation
	3.1 Loop Transformation

	4 Runtime Support
	4.1 Runtime Library Components
	4.2 Gang and Vector Topology Setting
	4.3 Execution Flow in Runtime

	5 Preliminary Results
	5.1 Performance for Double Nested Loop Mapping
	5.2 Performance for Triple Nested Loop Mapping
	5.3 Performance Comparison Between OpenUH and PGI OpenACC

	6 Related Work
	7 Conclusion
	References

	Separate Compilation in a Language-Integrated Heterogeneous Environment
	1 Introduction
	2 CUDA
	3 Heterogeneous Separate Compilation
	4 Host-Visible Device Entities
	5 Multiple Device Links
	5.1 Motivation
	5.2 Constraints
	5.3 Design
	5.4 Detecting Error Scenarios

	6 No-Cloning Under Separate Compilation
	7 Optimizing Shared Memory Layout at Link Time
	8 Results
	8.1 Lawa
	8.2 Impact of No-Cloning Versus Cloning
	8.3 Impact of Shared Memory Layout Optimization

	9 Related Work
	10 Conclusion
	References

	Parametric GPU Code Generation for Affine Loop Programs
	1 Introduction and Related Work
	2 Background
	2.1 Compilation Flow
	2.2 The OpenCL/CUDA Paradigm

	3 Parametric Tiling
	3.1 The Tile Space
	3.2 The Intra-tile Space

	4 ND-Range and Work-Group Mapping
	5 Parametric Local Memory Management
	5.1 Buffer Definition
	5.2 Moving Data in and Out of the Buffers

	6 Code Generation
	7 Experimental Evaluation
	8 Conclusions
	References

	Power
	OSCAR Compiler Controlled Multicore Power Reduction on Android Platform
	1 Introduction
	2 Power Control on Current Android Platforms
	3 Power Reduction Control by the OSCAR Compiler
	3.1 Multigrain Parallel Processing and Low Power Optimization by the OSCAR Compiler
	3.2 OSCAR Application Programming Interface
	3.3 Pseudo Clock Gating Method Using WFI
	3.4 Precise Power Measurement Method Using GPIO

	4 Evaluation Environment
	4.1 The Development of the Evaluation Environment
	4.2 Evaluated Applications on ODROID-X2

	5 Evaluation of Power Reduction on ODROID-X2
	5.1 Power Consumption of MPEG2 Decoder on ODROID-X2
	5.2 Power Consumption of Optical Flow on ODROID-X2

	6 Conclusion
	References

	Folklore Confirmed: Compiling for Speed = Compiling for Energy
	1 Introduction
	2 Background
	3 Energy Model and Implications
	3.1 Normalized Energy Model for DVFS
	3.2 Relationship Between Voltage and Frequency Scale Factors
	3.3 Properties of the Energy Model
	3.4 Reducing the Impact on Execution Time
	3.5 Parallelism

	4 Trends in Recent Machines
	4.1 Sources of Constant Power
	4.2 Desktop and Server Processors
	4.3 Cray Supercomputers

	5 Related Work
	6 Conclusion
	References

	Debugging
	Effectively Recognize Ad hoc Synchronizations with Static Analysis
	1 Introduction
	2 Ad hoc Synchronization: Formal Definitions
	2.1 The Key Idea
	2.2 Synchronization Primitive
	2.3 Ad hoc Synchronization
	2.4 The Correctness of Ad hoc Synchronizations
	2.5 Discussion

	3 The Static Analysis Algorithms
	3.1 The Comes-from Analysis
	3.2 Recognizing RC operations and Synchronization Primitives
	3.3 Group Related Synchronization Primitives

	4 Experimental Results
	4.1 The Benchmarks and Platform
	4.2 The Summary of The Experiments
	4.3 Effectiveness of Recognition

	5 Related Work
	6 Conclusion and Future Work
	References

	AntSM: Efficient Debugging for Shared Memory Parallel Programs
	1 Introduction
	2 Overview of the AntSM Strategy
	3 AntSM Runtime and Instrumentation
	3.1 Code Instrumentation with AntSM Runtime Calls
	3.2 Instrumentation with Calls to the Debug Library

	4 A Case Study with C-DIDUCE and Value Invariant Detection
	4.1 Using C-DIDUCE with AntSM

	5 Experimental Results
	5.1 Implementation and Experimental Setup
	5.2 Performance of C-DIDUCE with AntSM
	5.3 Scalability Results
	5.4 Accuracy of C-DIDUCE with AntSM

	6 Related Work
	7 Conclusions
	References

	DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance
	1 Introduction
	2 Motivation
	3 DRIFT
	4 Experimental Setup
	5 Results and Analysis
	5.1 Performance Evaluation
	5.2 Fault Coverage Evaluation

	6 Related Work
	7 Conclusion
	References

	Algorithms
	Optimizing the LU Factorization for Energy Efficiency on a Many-Core Architecture
	1 Introduction
	2 Background
	2.1 A Many-Core Architecture: The IBM Cyclops-64
	2.2 Energy Consumption Model
	2.3 LU Factorization

	3 Energy Optimizations
	3.1 Energy Aware Tiling Design
	3.2 Minimizing Static Energy Using Pipelining
	3.3 Dynamic Task Scheduling for Energy Reduction

	4 Experimental Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	An Input-Adaptive Algorithm for High Performance Sparse Fast Fourier Transform
	1 Introduction
	2 Overview of Sparse FFT Algorithms and Our Approach
	3 Input Adaptive Sparse FFT Algorithm
	3.1 General Input-Adaptive Sparse FFT Algorithm
	3.2 Optimized Input-Adaptive Sparse FFT Algorithm
	3.3 Hybrid Input-Adaptive Sparse FFT Algorithm
	3.4 Parallel Input-Adaptive Sparse FFT Algorithm
	3.5 Real-World Application

	4 Experimental Evaluation
	4.1 General Input-Adaptive Sparse FFT Algorithm
	4.2 Optimized Input-Adaptive Sparse FFT Algorithm
	4.3 Evaluation of Real-World Application and Accuracy

	5 Conclusion
	References

	Caches
	Aligned Scheduling: Cache-Efficient Instruction Scheduling for VLIW Processors
	1 Introduction
	2 Motivation
	2.1 Hoisting of Low-Priority Loads (HLPL)
	2.2 Lowering of Low-Priority Loads (LLPL)

	3 Aligned Scheduling
	3.1 Overview
	3.2 Aligned Scheduling Driver
	3.3 Aligned Scheduling Selection

	4 Experimental Setup
	5 Results and Analysis
	5.1 Case Study: cjpeg
	5.2 All Benchmarks

	6 Related Work
	7 Conclusion
	References

	Compile Time Modeling of Off-Chip Memory Bandwidth for Parallel Loops
	1 Introduction
	2 Memory Bandwidth Analysis
	3 Memory Bandwidth Model
	4 Evaluation of Memory Bandwidth Model
	5 Related Work
	6 Conclusions and Future Work
	References

	Compiler Optimizations for Non-contiguous Remote Data Movement
	1 Introduction
	2 Pipelining for Non-contiguous Put Operations
	3 Data Movement Operations
	4 Modeling Communication
	5 Results
	6 Related Work
	7 Conclusions
	References

	Transactional Memory
	Combining Lock Inference with Lock-Based Software Transactional Memory
	1 Introduction
	2 Building Blocks
	2.1 Software Transactional Memory
	2.2 Lock Inference

	3 Combining Lock Inference with STM
	4 Optimizations
	4.1 Runtime Loop Inspection
	4.2 Specialized Container Data Structures

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Speculative Execution of Parallel Programs with Precise Exception Semantics on GPUs
	1 Introduction
	2 Motivation
	3 Habanero Java Language
	3.1 Overview of HJ Language
	3.2 Compilation Flow

	4 Speculative Exception Checking Scheme
	4.1 Speculative Exception Checking Runtime
	4.2 Generation and Optimization of Exception Checking Code

	5 Performance Evaluation
	5.1 Performance on AMD A10-5800K
	5.2 Performance on Westmere

	6 Related Work
	7 Conclusions
	References

	Author Index

