
 123

LN
CS

 8
73

0

7th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2014
Istanbul, Turkey, September 22–25, 2014, Proceedings

Teaching and Learning Perspectives

Informatics
in Schools

Yasemin Gülbahar
Erinç Karatas (Eds.)

Lecture Notes in Computer Science 8730
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Yasemin Gülbahar Erinç Karataş (Eds.)

Informatics
in Schools
Teaching and Learning Perspectives

7th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2014
Istanbul, Turkey, September 22-25, 2014
Proceedings

13

Volume Editors

Yasemin Gülbahar
Erinç Karataş
Ankara University
Department of Informatics
Fatih Cad. No: 33
06110 Ankara, Turkey
E-mail:{gulbahar, ekaratas}@ankara.edu.tr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09957-6 e-ISBN 978-3-319-09958-3
DOI 10.1007/978-3-319-09958-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947965

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

“This proceeding is dedicated to Roland Mittermeir, our dear colleague
and mentor who passed away too early”

Preface

The International Conference on Informatics in Schools: Situation, Evolution,
and Perspective (ISSEP), co-hosted by Ankara University and Istanbul Univer-
sity in Istanbul, Turkey, is the 7th in the series of ISSEP conferences. Although
Informatics and Information and Communication technologies (ICT) can be used
interchangeably in different cultures, the main focus of this conference intends
to be informatics and computer science education. Hence, the aim of this con-
ference is to set up collaboration between researchers and practitioners in the
area of informatics education and computer science education in schools with a
different focus every year.

Informatics and computer science education shifts depending on the advances
in computing in terms of teaching, learning, thinking, and problem solving, as
well as many other innovative dimensions. The world talks about digital peo-
ple and curriculums intend to supply competencies for learners to teach digital
skills and informatics to create an information society. As also reported by the
joint Informatics Europe & ACM Europe Working Group on Informatics Edu-
cation (2013), informatics education has gained importance as the scientific and
engineering basis for the information society, and the global political discourse
about the importance of innovation, high technology and information technolo-
gies, however, not all the countries started to implement and see the real benefit
of informatics curricula due to various reasons. Although some European coun-
tries introduced successful informatics fundamentals into their curricula by the
1970s, these efforts have been dropped due to lack of awareness of the impor-
tance of informatics and the frequent misunderstanding that digital awareness
is all that needs to be taught [1].

Similarly, in a recent report named “Rebooting the Pathway to Success:
Preparing Students for Computing Workforce Needs in the United States” writ-
ten by Kaczmarczyk and Dopplick (2014), it is also underlined that rigorous
computer science education should play a core role in secondary education. The
findings of this report are rich, and applicable to every culture. According to the
report, education in the essentials of computer science is key, both for the indi-
vidual in terms of promising careers, and for a country developing and sustaining
a competitive 21st century workforce and succeeding in innovation [3]. On the
other hand, the critical, analytical and computational thinking concepts [2], to-
gether with problem solving skills, has gained more attention in recent years, and
many tools are being invented to teach these kinds of skills to learners through
programing logic. Many countries are looking to embed the appropriate tools
and procedures into curricula in order to impart the desired competencies to
learners.

Almost all countries are looking for better curriculums to teach computer
science and informatics concepts and they are trying to find the best ways for

VIII Preface

doing this. This conference series contributes to conceptual discussions about di-
dactics and implementation ideas for decision-makers and all stakeholders from
a research point of view. Thus, papers about computer science education, com-
petence measurement for informatics, emerging technologies and tools for infor-
matics, teacher education in informatics and curriculum Issues are included in
this volume.

The volume consists of two keynote papers and 13 contributed papers. The
latter were selected out of 33 submissions; i.e. 39% of papers were accepted for
these proceedings. Another 10 papers, 7 short papers and 4 workshop descrip-
tions are published in the local proceedings [4]. Altogether, ISSEP 2014 encom-
passed presentations covering research and theoretical papers, best practice and
country reports, and discussion papers from 18 countries.

The proceedings were opened with two papers by keynote speakers. Walter
Gander’s keynote aims to provide evidence for revealing that informatics has to
become a basic subject in the context of general education in our schools. Hence,
the paper starts with some historical background in Switzerland and continues
with the current situation, which is followed by the scope of general education
and importance of education as a basic subject. Walter Gander clearly discrim-
inates between the concepts, reminds us of the formula suggested by respected
authorities “Computer Science in Schools = Digital Literacy + Informatics” and
underlines that informatics is the science behind information technology. Thus,
he concludes with a clear judgement stating that digital literacy skills are short-
lived knowledge, changing with technology; whereas informatics is long living
knowledge, lasting forever and does not change with technology.

The keynote by G. Barbara Demo and Lawrence Williams describes diverse
Scratch activities proposed in different learning situations. The activities address
different competencies from simple to complex ones for different age groups. Es-
pecially in the beginner stages, Scratch seems to be a powerful tool, not only
for learners to create a complete product to present to other learners that en-
hances motivation, but also for teachers to introduce a number of fundamental
elements of computer science, such as algorithmic complexity. Hence, the re-
searchers underline the advantages of using Scratch for introducing programing
experience, since it is easier to switch to other programing languages or envi-
ronments. Moreover, they stated that Scratch assists and guides learners in the
process of achieving competencies about the logic of programing.

The next section, “Computer Science Education”, was the most popular
heading for this conference, and addresses issues of what to teach and how to
evaluate. Jǐŕı Vańıček discussed the issues of motivation, interactivity, multiple-
choice answers, and content topics for Bebras Informatics Contest on Informatics
and Computer Fluency, since these might be useful for authors of Bebras tasks,
as well as for creators of informatics curricula. Andreas Grillenberger and Ralf
Romeike pointed out that database concepts and examples commonly used in
computer science education need to be updated, based on facts such as the
rapidly growing impact of data processing, social and ethical implications of
big data, and privacy issues. Being a first implementation of Darmstadt Model

Preface IX

for a Latin American country, Nubia Alejandra Fecht and Ira Diethelm pro-
vided an analysis of computer science education in Venezuela using this model,
which hopefully provides insight for those who will develop, organize and eval-
uate CSE and ICT lessons. In their paper, Simone Opel and Torsten Brinda
explored the different aspects of Learning Field-orientated “Computer Science
Education”, in vocational computer science education and “Computer Science in
Context” in secondary education, by comparing the similarities and differences
of these concepts to derive requirements for a general model of these situated and
activity-orientated teaching concepts in computer science education. The paper
by Valentina Dagiene, Linda Mannila, Timo Poranen, Lennart Rolandsson and
Gabriele Stupuriene, shared the findings from a multi-national study of students’
results in the international IT contest “Bebras”, and concluded with the impor-
tance of finding more efficient and trustworthy ways of evaluating difficulty levels
upfront and choosing a suitable task set. As the last paper of the “Computer
Science Education” section, Nataša Kristan, Dean Gostǐsa, Gašper Fele-Žorž
and Andrej Brodnik presented a new system that supports both non interactive
and standardised interactive tasks, which they have successfully evaluated in
multiple competitions for a potential use in Bebras and related competitions.

In the continuing section named “Competence Measurement for Infor-
matics”, there are two papers on competences. Based on the compiled compe-
tence models that emerged from the project “Educational standards in
vocational schools”, Markus Brunner and Monika Di Angelo provide a didactical
concept, that meets the requirements of the educational standards in general,
and competence orientation in particular, and a proposal for the implementa-
tion of these educational standards in the competence area of industrial infor-
mation technology. Jonas Neugebauer, Peter Hubwieser, Johannes Magenheim,
Laura Ohrndorf, Niclas Schaper, and Sigrid Schubert intended to develop a the-
oretically and empirically sound competence model for the domains of system
comprehension and system modeling. This was developed alongside an evaluated
measurement instrument to assess competences of students in upper secondary
computer science education in German schools. They used the results to evalu-
ate the competence model, to revise the measurement instrument, and to define
proficiency levels in a competence level model by using the method of scale
anchoring.

Innovative use of technologies and tools are ways to change the methods
and approaches of how we teach. Hence, these issues are addressed under the
section named “Emerging Technologies and Tools for Informatics”. In
their paper, Janka Majherova, Hedviga Palasthy and Emilia Janigova analyzed
the use of emerging Internet technologies, known as Web 2.0, within secondary
education in Slovakia and compared the opportunities for sharing educational
materials, as well as the possibilities of accessing the Internet and its use by
pupils. Maciej M. Sys�lo and Anna Beata Kwiatkowska discussed the advice and
results from their observations and didactical experience gathered when teaching
about recursion in different contexts and on various education levels (K-12 and
tertiary).

X Preface

Teacher education has always been an important issue to be addressed. Often
enough, teachers lack competencies or the insight which is expected of them. Re-
searchers always point out the need to change curricula, however many graduates
jump into work without knowing these up-to-date changes and issues. Specific
issues about “Teacher Education in Informatics” are discussed by several
researchers. The paper by Claudio Mirolo outlined the basis of a core module as
part of a renewed program offered by the University of Udine, for the education
of prospective teachers of informatics, which aims at deepening the teachers’
awareness about the variety of coexisting views and their pedagogical implica-
tions. In their paper, Ana-Maria Stoffers and Ira Diethelm investigated teacher
profiles for planning informatics lessons, since teachers differ in their perception
of self and students’ roles, and in the explanations given for choosing teaching
methods, contents, and learning objectives.

The proceedings close with the section on “Curriculum Issues” with a pa-
per by Carlo Bellettini, Violetta Lonati, Dario Malchiodi, Mattia Monga, Anna
Morpurgo, Mauro Torelli, and Luisa Zecca. They reported on the design of pre-
viously conducted workshops which intended to give pupils the opportunity to
explore a computer science topic: investigate it first hand, make hypotheses that
can then be tested in a guided context during the activity, and construct viable
mental models.

With all of these valuable efforts and works, I believe informatics education
will become more and more recognized by the authorities and all stakeholders
each year. It is my sincere pleasure to thank all those who contributed to ISSEP
2014 with their academic insights. In addition to those already mentioned, there
are many people who also contributed to this conference in the preparation,
communication, reviewing, organizing, and publishing process. I would like to
extend my thanks to the members of Organizing and Programme Committee for
their time and conscientious work. Thanks also to Erinç Karataş and Müge Ad-
nan for helping with the proceedings, and finally, special thanks to Ira Diethelm
who provided guidance throughout the whole conference process.

References

1. Report of the joint Informatics Europe & ACM Europe Working Group
on Informatics Education. Informatics education: Europe cannot afford to
miss the boat (2013), http://www.informatics-europe.org/images/documents/
informatics-education-europe-report.pdf

2. Barr, V., Stephenson, C.: Bringing Computational Thinking to K-12: What
is Involved and What is the Role of the Computer Science Education
Community? ACM Inroads 2(1), 48–54 (2011), https://www.iste.org/docs/

nets-refresh-toolkit/bringing-ct-to-k-12.pdf?sfvrsn=2

3. Kaczmarczyk, L., Dopplick, R.: Rebooting the Pathway to Success: Preparing
Students for Computing Workforce Needs in the United States. Association for
Computing Machinery (ACM), New York (2014), http://pathways.acm.org/ACM_
pathways_report.pdf

Preface XI

4. Gülbahar, Y., Karataş, E., Adnan, M. (eds.): Informatics in Schools - Local Pro-
ceedings of the 7th International Conference ISSEP 2014 - Selected Papers. Ankara
University Press, Ankara (2014)

June 2014 Yasemin Gülbahar

Organization

Program Committee

Müge Adnan Mugla University, Turkey
Ayfer Alper Ankara University, Turkey
Bahar Baran Dokuz Eylul University, Turkey
Torsten Brinda Universität Duisburg-Essen, Germany
Valentina Dagiene Vilnius University, Lithuania
Ira Diethelm Oldenburg University, Germany
Çiğdem Erol Istanbul University, Turkey
Nuray Gedik Akdeniz University, Turkey
David Ginat Israel Institute of Technology, Israel
Yasemin Gülbahar Ankara University, Turkey
Jan Guncaga Catholic University in Ruzomberok, Slovakia

Sevinç Gülseçen İstanbul University, Turkey
Juraj Hromkovič ETH Zürich, Switzerland
Ivan Kalaš Comenius University in Bratislava, Slovakia
Erinç Karataş Ankara University, Turkey
Janka Majherova Catholic University in Ruzomberok, Slovakia
Roland Mittermeir Alpen-Adria-Universität Klagenfurt, Austria
Ferhan Odabasi Anadolu University, Turkey
Malgorzata Pankowska University of Economics in Katowice, Poland
Zerrin Ayvaz Reis Istanbul University, Turkey
Ralf Romeike Friedrich-Alexander University

Erlangen-Nürnberg, Germany
Carsten Schulte Freie Universität Berlin, Germany
Sue Sentence Computing at School Cambridge, UK
Simon Simon University of Newcastle, UK
Maciej Syslo UMK Torun, U. Wroclaw, Poland
Erkan Tekinarslan Abant Izzet Baysal University, Turkey
Sacip Toker Mehmet Akif Ersoy University, Turkey
Pelin Yüksel Inonu University, Turkey
Erman Yükseltürk Kirikkale University, Turkey
Soner Yildirim Middle East Technical University, Turkey
Recep Çakir Amasya University, Turkey

Additional Reviewer

Winczer, Michal

XIV Organization

Organizing Committee

Yasemin Gülbahar Co-chair Ankara University, Turkey
Sevinç Gülseçen Co-chair Istanbul University, Turkey
Soner Yildirim Middle East Technical University, Turkey
Erinç Karataş Ankara University, Turkey
Müge Adnan Mugla University, Turkey
Orçun Madran Hacettepe University, Turkey

Table of Contents

Keynotes

Informatics and General Education . 1
Walter Gander

The Many Facets of Scratch . 8
G. Barbara Demo and Lawrence Williams

Computer Science Education

Bebras Informatics Contest: Criteria for Good Tasks Revised 17
Jǐŕı Vańıček

Big Data – Challenges for Computer Science Education 29
Andreas Grillenberger and Ralf Romeike

Analysis of Computer Science Education in Venezuela Using the
Darmstadt Model . 41

Nubia Alejandra Fecht and Ira Diethelm

“Computer Science in Context” and “Learning Fields” in Vocational
Computer Science Education – Two Unlike Siblings? 54

Simone Opel and Torsten Brinda

Reasoning on Children’s Cognitive Skills in an Informatics Contest:
Findings and Discoveries from Finland, Lithuania, and Sweden 66

Valentina Dagiene, Linda Mannila, Timo Poranen,
Lennart Rolandsson, and Gabriele Stupuriene

A High-Availability Bebras Competition System . 78
Nataša Kristan, Dean Gostǐsa, Gašper Fele-Žorž, and Andrej Brodnik

Competence Measurement for Informatics

Competence Orientation in Vocational Schools – The Case of Industrial
Information Technology in Austria . 88

Markus Brunner and Monika Di Angelo

Measuring Student Competences in German Upper Secondary
Computer Science Education . 100

Jonas Neugebauer, Peter Hubwieser, Johannes Magenheim,
Laura Ohrndorf, Niclas Schaper, and Sigrid Schubert

XVI Table of Contents

Emerging Technologies and Tools for Informatics

Pupils in the Virtual World and Education . 112
Majherová Janka, Palásthy Hedviga, and Janigová Emı́lia

Introducing Students to Recursion: A Multi-facet and Multi-tool
Approach . 124

Maciej M. Syslo and Anna Beata Kwiatkowska

Teacher Education in Informatics

A Present-Day “Glass Bead Game”: A Framework for the Education
of Prospective Informatics Teachers Inspired by a Reflection on the
Nature of the Discipline . 138

Claudio Mirolo

Teacher Profiles for Planning Informatics Lessons . 150
Ana-Maria Stoffers and Ira Diethelm

Curriculum Issues

Extracurricular Activities for Improving the Perception of Informatics
in Secondary Schools . 161

Carlo Bellettini, Violetta Lonati, Dario Malchiodi, Mattia Monga,
Anna Morpurgo, Mauro Torelli, and Luisa Zecca

Author Index . 173

Informatics and General Education

Walter Gander

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
and Computer Science Department, Baptist University, Hong Kong

gander@inf.ethz.ch

http://www.inf.ethz.ch/personal/gander/

Abstract. Computer Science, Informatics, Information and Communi-
cation Technology (ICT), Computational Thinking, Digital Literacy and
New Media are just some examples of buzz words which are used and
discussed in schools by educators and by political authorities responsi-
ble for updating curricula. In many schools informatics is still missing
as a basic subject. STEM education still concentrates on teaching sci-
ence, technology, engineering, and mathematics. In this paper we show
that informatics has to become a basic subject in the context of general
education in our schools.

Keywords: Computer Science Education, Informatics, ICT.

1 Some Historical Notes

In the following we summarize the development in Switzerland, similar develop-
ments took place also in other countries. In the first decade after World War II
many universities started to built their own computers. At ETH we were lucky
to rent the Zuse Z4 machine from 1950 to 1955 [7]. In 1950 this was the only
working computer in mainland Europe in the institute of Eduard Stiefel, the
Seminar für angewandte Mathematik. In these pioneering years Eduard Stiefel
built with his collaborators their own machine, the ERMETH [4]. One of his col-
laborators, Heinz Rutishauser, developed together with colleagues from GAMM1

and ACM2 the programming language ALGOL [5] which I consider the Latin of
the programming languages. After Rutishauser passed away too early in 1970,
ETH continued to pioneering the field of programming languages with Niklaus
Wirth who developed PASCAL, and later MODULA and OBERON.

In spite of these great achievements, computer science was not recognized by
academia as a new basic science. It took years till the pressure from industry
was large enough to convince the ETH management and the other departments
to finally introduce 1981 a curriculum for computer science studies at ETH.

In schools the pocket computer was adopted and replaced slowly the slide
rule in the seventies, but it was only with the the advent of the personal com-
puter around 1984 that some responsibles for education showed interest to intro-
duce it in schools. Committees were formed to develop teaching material and to

1 Gesellschaft für Angewandte Mathematik und Mechanik https://www.gamm-ev.de/
2 Association for Computing Machinery http://www.acm.org/

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 1–7, 2014.
c© Springer International Publishing Switzerland 2014

https://www.gamm-ev.de/
http://www.acm.org/

2 W. Gander

study how to integrate computer science as a new subject in the STEM-oriented
tracks of the Swiss Gymnasia. The minister of education finally decided in 1986
to change the name of the subject “Descriptive Geometry” to “Applied Math-
ematics” and opened this way the door for young teachers to teach computer
science while giving the old teachers the opportunity to continue with descriptive
geometry till their retirement.

In 1986 the emphasis of the curriculum in computer science was to learn
to program and several schools developed successfully good textbooks for pro-
gramming in PASCAL. Since the personal computer at that time had almost no
software, creativity and spirit of discovery inspired the students, though at the
same time many teachers were frustrated by frequent breakdowns and system
changes. Many of those enthusiastic former high-school students – the first gen-
eration educated in computer science – are now successful computer scientists.
Michael Gove, the Secretary of State for Education in the UK, refers to that
spirit in his famous speech of January 20123

With minimal memory and no disk drives, the Raspberry Pi computer
can operate basic programming languages, handle tasks like spread sheets,
word-processing and games, and connect to wifi via a dongle – all for
between £16 and £22. This is a great example of the cutting edge of
education technology happening right here in the UK. It could bring the
same excitement as the BBC Micro did in the 1980s.

In the following years many applications were developed, computers became
ubiquitous, cheaper and easier to handle (e.g. the Macintosh) and the need
to develop your own applications vanished. Finally the Internet was born and
connected the world. Therefore a strong movement emerged 1995 in Switzer-
land that teaching programming in schools was no longer necessary. Instead one
should concentrate on teaching skills to make good use of the computers. As
the applications became more sophisticated and more complex, teachers had to
be trained first. The computer industry, in particular Microsoft and Intel, made
agreements with whole countries to train the schools on their products4.

2 Situation Today

Computers determine our life, we live in the digital age. We communicate elec-
tronically in social networks, we use e-mail and sms. Post-offices are shut down
because the paper correspondence has dramatically decreased. We use office
software for text processing, presentations and spreadsheet calculations. Books
are still being printed but at the same time also made available electronically5

3 https://www.gov.uk/government/speeches/

michael-gove-speech-at-the-bett-show-2012
4 http://partner-fuer-schule.nrw.de/stiftung/projekte/

abgeschlossene-projekte/intel-r-lehren-fuer-die-zukunft-i.html
5 http://www.digitalbookindex.com/about.htm

https://www.gov.uk/government/speeches/michael-gove-speech-at-the-bett-show-2012
https://www.gov.uk/government/speeches/michael-gove-speech-at-the-bett-show-2012
http://partner-fuer-schule.nrw.de/stiftung/projekte/abgeschlossene-projekte/intel-r-lehren-fuer-die-zukunft-i.html
http://partner-fuer-schule.nrw.de/stiftung/projekte/abgeschlossene-projekte/intel-r-lehren-fuer-die-zukunft-i.html
http://www.digitalbookindex.com/about.htm

Informatics and General Education 3

and devices have been developed for reading such digital books. Radio and tele-
vision have become digital and music can be downloaded as digital files from
servers. We are experiencing the dramatic change in photography: chemically
processed films have been replaced by electronic bit-strings. Search machines
have revolutionized the way we get our information – Wikipedia has become our
encyclopedia, libraries and archives are digitized and become available on-line.

In Switzerland 80% of the young people (age 12–19) possess a smart-phone.
The dependency of our youth on the so called “new media” is frightening. Ac-
cording to the Zurich drug prevention agency, doing without smart-phone for
three days, can cause already withdrawal symptoms in some adolescents6. It is
therefore not surprising that educators stipulate media teaching in the curricu-
lum reform which is currently discussed in Switzerland7.

The confusion is high because many persons equate computer science with
using new media. Fruitless discussions and disagreements are unavoidable when
people use the same words for different meanings, contents and in different con-
texts.

To much use of new media leads to “digital dementia” as Julian Ryall writes
in The Telegraph on 24 Jun 2013 8

Doctors in South Korea are reporting a surge in “digital dementia”
among young people who have become so reliant on electronic devices
that they can no longer remember everyday details like their phone num-
bers.

Informatics Europe9 and ACM Europe10 formed 2012 a task force to discuss
the issue of computer science education. This Working Group defined in their
report11:

Computer Science in Schools = Digital Literacy + Informatics

The report states:

Any citizen of a modern country needs the skills to use IT and its de-
vices intelligently. These skills, the modern complement to traditional
language literacy in language (reading and writing) and basic mathe-
matics, are called digital literacy.

6 http://www.tagesanzeiger.ch/zuerich/region/Wer-eine-Tendenz-zur-

Abhaengigkeit-hat-haelt-das-nicht-aus/story/26621914
7 http://www.lehrplan.ch/
8 http://www.telegraph.co.uk/news/worldnews/asia/southkorea/10138403/

Surge-in-digital-dementia.html
9 http://www.informatics-europe.org/

10 http://europe.acm.org/
11 Informatics education: Europe cannot afford to miss the boat. Report of the joint

Informatics Europe & ACM Europe Working Group on Informatics Education, April
2013 http://www.informatics-europe.org/images/documents/

informatics-education-europe-report.pdf

http://www.tagesanzeiger.ch/zuerich/region/Wer-eine-Tendenz-zur-Abhaengigkeit-hat-haelt-das-nicht-aus/story/26621914
http://www.tagesanzeiger.ch/zuerich/region/Wer-eine-Tendenz-zur-Abhaengigkeit-hat-haelt-das-nicht-aus/story/26621914
http://www.lehrplan.ch/
http://www.telegraph.co.uk/news/worldnews/asia/southkorea/10138403/Surge-in-digital-dementia.html
http://www.telegraph.co.uk/news/worldnews/asia/southkorea/10138403/Surge-in-digital-dementia.html
http://www.informatics-europe.org/
http://europe.acm.org/
http://www.informatics-europe.org/images/documents/informatics-education-europe-report.pdf
http://www.informatics-europe.org/images/documents/informatics-education-europe-report.pdf

4 W. Gander

Many modern primary and secondary school curricula have started to in-
clude digital literacy elements, teaching students to be comfortable with
the basic tools of the digital world.

Digital literacy should indeed be a required part of the education of all
Europeans. Its teaching should start in first grade and students should
be familiar with the basic skills by age 12.

Informatics on the other hand is the science behind information technology. The
report states.

For a nation or a group of nations to compete in the race for technology
innovation, the general population must in addition to digital literacy
understand the basics of the underlying discipline, informatics. On the
road to an information society, informatics plays the same enabling role
as mathematics and physics in previous industrial revolutions

3 General Education

The German word “Allgemeinbildung” refers to a so called general education
which one needs to develop oneself as a human being. It is the fundamental
knowledge which humans need to acquire to orient themselves in the world.

At the time of Leonardo da Vinci (1452-1519), a gifted person like him could
achieve general education by studying all available books. Today due to the
knowledge explosion even specialists have problems to keep up with the literature
in their field. It is said that half of all authors who have ever written something
are still alive . . .

The goals of the general education in Swiss Gymnasia are defined in the
regulations issued by the Conference of Directors of Education of the Cantons12.

Here is an excerpt from these regulations:

The aim of Secondary Education is to provide to the students basic
knowledge with respect to lifelong learning as well as to promote their
open-mindedness and the ability to independent judgments. The schools
are striving for a broad, balanced and coherent education and not to
provide specific skills or vocational training.

One of these goals is also:

High school graduates know and are familiar in their natural, technical,
social and cultural environment, and this in relation to the present and
the past, at national and international level.

12 Verordnung des Bundesrates/Reglement der EDK über die Anerkennung von gym-
nasialen Maturittsausweisen (MAR) vom 16. Januar/15. Februar 1995.
http://www.edk.ch/dyn/13723.php

http://www.edk.ch/dyn/13723.php

Informatics and General Education 5

Thus the purpose of general education is to provide fundamentals, long lasting
basic knowledge and not ephemeral knowledge. Furthermore this basic knowl-
edge is focused on natural, social and cultural but especially also on technical
environment.

Traditional fundamental technical subjects which are unquestioned are math-
ematics, chemistry, physics, biology. There is no high-tech without mathematics,
no engineering without physics and chemistry, no medicine without biology.

However, in our modern world nothing works without computer science! Com-
puter science has become a leading science, it is responsible for progress and
breakthroughs in all sciences. It is high time that informatics finally be estab-
lished as a basic subject in all schools.

Franklin D. Roosevelt said September 20, 1940 at the University of Pennsyl-
vania:

We cannot always build the future for our youth, but we can build our
youth for the future.

And Simon Peyton Jones wrote 2012:

European nations are harming their high school students, both educa-
tionally and economically, by failing to offer them an education in the
fundamentals of computer science.

4 Informatics as Basic Subject

Informatics should be introduced as one of the fundamental basic subjects in
our schools. However, the schools did not cope with the change of our society
to an information society in a digital world. As ACM and CSTA write in their
report Running on Empty: The Failure to Teach K-12 Computer Science in the
Digital Age13, the schools are lagging behind this development. The report finds
that

Major gaps exist in the adoption of computer science standards at the
secondary (high school) level. Only 14 states have adopted secondary
state education standards for computer science instruction to a signif-
icant degree (defined as more than 50% of ACM and CSTAs national
model computer science standards), leaving more than two-thirds of the
entire country with few computer science standards at the secondary
school level. Further, 14 states (and the District of Columbia) do not
have even one upper-level standard for computer science instruction as
part of their secondary education standards

Most states treat high school computer science courses as simply an elective
and not part of a students core. This is an amazing step backward since al-
ready in 1969, Sandra Forsythe, the wife of George Forsythe (the founder of the

13 http://www.acm.org/runningonempty/

http://www.acm.org/runningonempty/

6 W. Gander

computer science department in Stanford and one of the fathers of Silicon Val-
ley) had written a textbook for schools Computer Science, A First Course [1].
This book is remarkable – many fundamental topics can still be taught today
without changes: programming, algorithms, data structures (e.g. trees), stepwise
decomposition, procedure and functions.

What is the goal of informatics education? George Forsythe wrote already
1968 [2]:

The most valuable acquisitions in a scientific or technical education are
the general-purpose mental tools which remain serviceable for a lifetime.
I rate natural language and mathematics as the most important of these
tools, and computer science as a third . . .
The learning of mathematics and computer science together has peda-
gogical advantages, for the basic concepts of each reinforce the learning
of the other.

George Forsythe was indeed farsighted! It is amazing how precise he predicted
already 1963 the importance of computer science [3]:

Machine-held strings of binary digits can simulate a great many kinds of
things, of which numbers are just one kind. For example, they can sim-
ulate automobiles on a freeway, chess pieces, electrons in a box, musical
notes, Russian words, patterns on a paper, human cells, colors, electrical
circuits, and so on. To think of a computer as made up essentially of
numbers is simply a carryover from the successful use of mathematical
analysis in studying models . . .Enough is known already of the diverse
applications of computing for us to recognize the birth of a coherent body
of technique, which I call computer science.

Today informatics is the science of systematic, automated processing of infor-
mation (representation, storage, management and communication). The goals
of informatics as a basic subject is (a) to teach the students to understand the
principles and functioning of today’s digital world and (b) to train the students
in constructive problem solving.

Jan Cuny, Larry Snyder, and Jeannette M. Wing coined the term “Compu-
tational Thinking”14. What they mean is:

Computational Thinking is the thought processes involved in formulating
problems and their solutions so that the solutions are represented in a
form that can be effectively carried out by an information-processing
agent.

Jeannette M. Wing wrote in [6]:

It [Computational Thinking] represents a universally applicable attitude
and skill set everyone, not just computer scientists, would be eager to
learn and use.

14 http://www.cs.cmu.edu/~CompThink/

http://www.cs.cmu.edu/~CompThink/

Informatics and General Education 7

Computational thinking is a methodology for anyone to be used to solve
problems. Especially it applies to problems solving with computers. It involves
the following steps

– Analyze a task or problem, model and formalize it.
– Search for a way to solve it, find or design an algorithm.
– Program.
– Run the program: let the computer work, maybe correct, modify the program,

interpret the results.

Programming is an essential step in this process. It is an important activity for
all the students in general education. It is creative (there are often several ways
to solve a problem. It is constructive (the solution has to be constructed and
reached in finite steps). Programming finally teaches precise working (any small
error prevents the solution) and trains computational thinking.

5 Conclusions

We have argued that computer science in the school must consist of two parts:

1. Learn to make good use of IT and its devices. We call this Digital Literacy.
These skills are short living knowledge, they change with technology.

2. Learn the fundamentals of computer science which are essential to under-
stand our digital world. We call this Informatics. It is long living knowledge
which lasts forever and does not change with technology.

References

1. Forsythe, A., Kennan, T.A., Organick, E.I., Stenberg, E.: Computer Science, A First
Course. John Wiley & Sons (1969); 2nd edn. (1975)

2. Forsythe, G.: What to do till the computer scientist comes. Amer. Math. Monthly 75,
454–462 (1968)

3. Forsythe, G.: Educational implications of the computer revolution. In: Freiberger,
W.F., Prager, W. (eds.) Applications of Digital Computers, pp. 166–178. Ginn,
Boston (1963)

4. Neukom, H.: ERMETH: The First Swiss Computer. IEEE Annals of the History of
Computing 27(4), 5–22 (2005)

5. Rutishauser, H.: Description of ALGOL 60, Handbook of automatic computation,
vol. 1, Part b. Springer, Berlin (1967)

6. Wing, J.M.: Computational Thinking. Communications of the ACM 49(3) (2006)
7. Zuse, K.: The Computer – My Life. Springer (1993)

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 8–16, 2014.
© Springer International Publishing Switzerland 2014

The Many Facets of Scratch

G. Barbara Demo1 and Lawrence Williams2

1 Informatics Department, University of Torino
C.so Svizzera 185, 10149 Torino, Italy

barbara@di.unito.it
2 School of Sport and Education, Brunel University

Uxbridge, Middlesex, UB8 3PH, UK
lawrence.willams@brunel.ac.uk

Abstract. This paper describes different Scratch activities proposed in different
learning situations: for primary school-children aged about 9-10 years old; for
in-service teachers active in various levels and types of schools, but with very
low or without computing competences; for teachers and pupils in middle
schools; for students in their beginning two years of technical secondary school
(not necessarily specialized in informatics); and for future informatics teachers
having a good knowledge of computer science. In all of these situations,
Scratch has been introduced as a system for producing original stories, rather
than as a programming system. For beginners, this choice proves to be success-
ful in inspiring and motivating their intent to carry on with new activities. This
success is mostly due to the possibility of producing, in a relatively short time,
artifacts that teachers can immediately use in school; and the students feel they
have created a complete product to show to other students (or to the family and
to friends). Informatics experts, in particular informatics teachers, discover a
pedagogical methodology they are not used to for introducing to programming.
All the while, by using Scratch, we can introduce a number of fundamental
elements of computer science such as algorithmic complexity. Also, students go
through an introductory programming experience, making a faster and smoother
change to other programming languages and other environments. In general, the
use of Scratch supports and facilitates a process toward achieving competences
that many consider necessary to our future young people.

Keywords: fostering creativity, training teachers, basic computing compe-
tences.

1 Introduction

Among the fundamental informatics competences that everybody should acquire,
programming is the most concrete, and probably the most particular, aspect of compu-
ting for people having little or no acquaintance with computer science. Besides, it can
be a pleasant way of acquiring the basics of informatics, because one may produce
artifacts which are useful and enjoyable to interact with, provided that suitable
software is used. Scratch is one of the systems best suited to this purpose.

 The Many Facets of Scratch 9

Scratch has been developed at the MIT Media Lab by the Lifelong Kindergarten
group directed by Mitchel Resnick. The aim focused on building a system for begin-
ners where they could express themselves and their creativity while being introduced
to informatics [11]. It is not only a programming language: it also provides an envi-
ronment where a user finds several integrated tools (for drawing and recording, for
example). More generally, Scratch is a system for producing stories that can have one
or more characters (Sprites) acting on a Stage, with one or more Backgrounds, and
sounds of different types (for example voices, music, noises). Characters behave as
specified by means of code sequences, called Scripts. Here the word script is to be
intended mostly as referring to roles in the theatre, or cinema. Of course, characters
and their behaviours may be of quite diverse types: they can describe a journey; tell a
joke; outline a narrative episode which happened to the storyteller; can be the instruc-
tions for using or doing something; or a story can be an original creative story [13].
Besides this, in Scratch, we can specify solutions to different problems, which is what
programmers actually do while working in more sophisticated programming envi-
ronments [1]. Unfortunately, often teachers who are expert in informatics propose
traditional algorithms developed in a traditional way, as well, during the first activi-
ties with Scratch. Therefore, the students lose the opportunities for engagement in
original activities, nearer to the spirit of the system.

This paper describes a pedagogical methodology emphasizing the several facets of
Scratch. More specifically, section 2 concerns the use of Scratch for introducing to
computing students and teachers from all types and levels of education, having no, or
very little, informatics knowledge. In section 3, the focus is on how beginners are
asked to develop some personal story which helps them understand that some pro-
gramming components are present, also, in our everyday life. That means they are
already in our way of thinking. Section 4 concerns the use of Scratch in middle school
where interdisciplinary activities are particularly important to teachers and pupils.

All the activities described have been conceived, designed and developed:

• together with teachers, i.e. those who work in schools. They have also developed
these activities with their students. Indeed, we consider it vital to stimulate and col-
lect suggestions from teachers, and take into account their activities in schools

• in compliance with the European guidelines, to avoid juxtaposing initiatives which
often cause lack of depth and confusion in schools

• with a practical mind, considering the several difficulties normally present in
schools, such as disciplinary problems, poverty of means, and poverty of school
time, because often we can count on just one hour of continuity for an activity. As
an example: one of the scheduled projects could not be carried out because: “the
informatics laboratory does not exist any more: computers have been moved one
per classroom to maintain the digital class-register”, as one of the teachers said.

In all these situations, Scratch has proved to be a program development environment
that has been successful in inspiring and motivating pupils, with the intent to carry on
with new activities. These are suitable for producing, in a relatively short time, ma-
terial to be immediately used in school, or felt as a complete product to be shown to
other students (or even to the family and to friends). In the environments where we

10 G. Barbara Demo and L. Williams

carried out our experiences, Scratch has been shown to stimulate the pupils’ dedica-
tion to these activities, and the will to continue. We could not have the same working
atmosphere during introductory activities when we used different environments for
different programming languages.

In the last section, among conclusive comments, we suggest that other program-
ming environments using different languages are suitable to continue the experiences
for enhancing the informatics competences of students and teachers.

2 Introducing Computing

The first reason why story-telling fits introductory activities well is that it starts with a
simple coding exercise yet producing a stimulating result. Indeed a story is a sequence
of actions, performed by the different characters, one after the other (or in parallel, but
we do not consider this possibility with beginners). Despite this simplicity, the results
can be very stimulating for both children and adults: an example is the Solar System
Discovery developed by Lawrence Williams and his students.

See: http://www.literacyfromscratch.org.uk/index.htm
On Williams’ web pages one can find many other stories and interesting materials.
The above two reasons suggest we should centre on a short story as the first activi-

ty, especially for people knowing almost nothing about informatics. To be as simple
as possible, our beginning stories have characters’ actions synchronized simply on a
time base, i.e. “after n seconds from the start” a given script of character X begins.

The entire project methodology is based on an active learning paradigm defined by
Lawrence Williams, and already experimented with different groups of attendees in
Italy and in UK [9]. Notice how, our working group being English-Italian, we began
with stories in these two languages (more languages were developed after attendees
from different countries came to our workshops).

The steps of the first activity are the following:

a. a story is shown full screen (dialogues are in English for activities in Italy, vice
versa for activities in UK),

b. the components of the Scratch system are swiftly introduced
c. attendees are then asked to translate the first few sentences of the story in the

language they like better. This allows them to look into (and through) the code to
choose the sentences to be translated. During this step, usually attendees “dis-
cover” different aspects of the system presented in the previous step, for exam-
ple that one script belongs to one character, that one character may be associated
more than one script,

d. the translation step can result in different, though scaffolded, changes of the
original story regarding images, sounds and dialogue

e. results are uploaded in a shared environment, and discussed together.

During these steps, attendees work and produce something they immediately feel is
their own, something they can show and, for teachers, something they can propose to
their students. This approach is warmly appreciated by the participants.

 The Many Facets of Scratch 11

If new dialogues are introduced, they can cause problems in synchronizing the
characters’ actions. Comments on this aspect often lead to consideration of different
possibilities for the characters entering the scene, or performing some actions, thus
broadening the knowledge of the system. Also, discussing all together the story al-
ready implemented, and the changes made, gives a chance to share new aspects of the
system among participants.

Story-telling is particularly important in primary and middle schools, but not ex-
clusively. As already pointed out, an engaging story can be implemented with very
few commands used in a repeated pattern to produce the whole story. This aspect is
important for anyone new to programming. Obviously it is more important if we think
to a story-telling activity in a primary and middle school, where the focus of the learn-
ing, for the pupil, is not on the actual coding. Rather, the pupil is developing a narra-
tive, with characters and dialogue, and the coding is merely the tool for presenting the
story in an entertaining way. This means that when difficulties arise, the pupil wants
to overcome them in order to complete the story, rather than simply getting some
abstract coding correct. Besides, story-telling can be a common use of Scratch in all
disciplines of middle school.

3 Personal Stories and Concrete Programming

There are many projects proposing computing science activities without a computer
beginning, with the well known CS-unplugged project by Tim Bell, Ian H. Witten and
Mike Fellows [3], several contests for primary and middle schools such as the Bebras
contest that was started in Lithuania by Valentina Dagiene in 2004 [2, 6, 12], Olym-
pics of problem-solving started in Italy by Giorgio Casadei in 2006 with problems to
solve on paper [5].

Algorithms are not exclusive to the digital world: they have to do with our lives. In
2006, for the master course of the Italian MIUR “Enhancing teaching of scientific
disciplines in primary school”, attendees were presented with informatics activities
introducing them to programming mostly “unplugged”, based on discussing algo-
rithms present in our everyday normal life. Often educational robotics is seen as a
proper introduction to programming, because it gives the opportunity of “concrete
programming” i.e. making physical artifacts like small robots move around, avoiding
obstacles, as pupils would do if they were asked to [8].

The procedures for performing arithmetic operations that everybody learns in pri-
mary school are examples of algorithms which we normally use, without knowing the
name. Bringing everyday experiences into programming points out this relationship,
and makes first programming experiences easier. As an example, we have asked stu-
dents to tell their personal stories about going back home from school. One story was:
“On Tuesday, I go to my grandparents’ home, while the other days I go to my place.”
Another one was: “Going back home from school if we need bread I go to the bakery,
otherwise I go directly home for lunch.” This latter story wass specified in the Scratch
activity shown in figure 1.

12 G. Barbara Demo and L. Williams

In Scratch, we can explicitly transmit the relationship between some students’
behaviour and its specification in a programming language, beginning with pupils’
personal experiences, or personal stories such as holiday stories, for example. This
makes programming the concrete experience that is called concrete programming
dealing with educational robotics [8].

Fig. 1. “Going home from school: do we need bread?”

Scratch allows personal activities to become the story of the scene, because pupils
make a character (a sprite) behave like one of them would behave in several environ-
ments. In figure 1 the background shows a path going from school to a house with a
street on the left reaching a bakery (“panetteria”). When the sprite arrives at the
corner he asks, “Do we need bread today?” and goes to the bakery if the answer is
positive, otherwise he goes directly home.

In this way, a pupil describes the background what would be his/her environment,
draws his/her avatar/sprite, and specifies in Scratch the scripts for the sprite to have
his/her behaviour. The answer yes to the question, “Do we need bread?”, asked to the
user running the program, makes the sprite go to the bakery, then turn to go back to
the crossroad, and finally go home, as the schoolchildren would have done in case the
bread was not necessary.

These activities have been proposed to students from primary to first year of sec-
ondary school during lectures introducing programming, after story-telling activities.

Everyday life has plenty of stories like the School-bakery-home in figure 1. These
stories are problems already solved, because adults and young people live them every
day: they are our personal stories. Teaching characters to behave in the same way
only or basically requires learning how to express, in a digital environment, the ac-
tions we perform in our normal life. For someone attending lectures introductory to
computing, this is a going from story-telling to telling-my-story.

Other activities can be introduced similarly. In [8] the holidays that some school-
children spent in their summertime are “translated” into a journey for an NXT robot.
Arriving in the town where the grandmother of one student is living, and not finding
her at home, results in going to somewhere else, and then back until she arrives home.

 The Many Facets of Scratch 13

This is another example of a personal-story expressed using the repeat-until-
grandmother-arrives pattern that doesn’t require much explanation, and becomes the
repeat-until-condition-satisfied pattern in the student’s mind.

An evolution of the stage just described concerns developing “stories-with-
crossroads” or interactive stories i.e. more sophisticated stories having not only se-
quential actions yet with a development that depends on the interactions of the
sprites with the users who are looking at the story, or on the interactions with other
characters.

4 Interdisciplinary and Advanced Activities

From middle school, different disciplines are taught by different teachers. In Italy,
there is no discipline where teaching informatics is mandatory, nevertheless the Na-
tional Indications of the Education Ministry wish for having some programming ac-
tivity in the Technology discipline. The problem is that this discipline has only two
hours per week, and also when several other technologies are taught. Moreover, tech-
nology professors normally are architects having very little, if any, knowledge of
informatics. As a consequence, informatics risks having little place in primary
schools, and no place at all in the middle ones. To ride over this problem, it is impor-
tant to propose tools making easy-to-share activities among different disciplines, and
to spread introductory computing competences to as many as possible teachers and
students.

Among early interdisciplinary activities in a middle school, we had practical expe-
riences with simple linear equations in one variable involving Mathematics teachers.
It is easy to find examples of simple linear equations and lectures on how these can be
solved. It is uncommon to find how to put them into practice. While working on edu-
cational robotics, we discussed with teachers why modeling a problem by an equation
was not a frequent exercise. An example for measuring a path, with circuits covered
by a small robot, is proposed in [7]. In our Scratch activities, we discussed with the
mathematics professors the “guess a number” game that students sometimes play at
school, already described in [1]. We had the students develop a program in which a
cat asks the user sitting in front of the screen to do actions such as: “think of a number
between 1 and 9” (call it x), “now add 1”, “multiply the result by 2”, “subtract the
number you thought of at the beginning”, “subtract 4”. At this point the cat says “Tell
me the number you finished with”. Once the user says his/her answer, call it y, the
cat computes x=y+1 and says the original number x. In the referred case the result
comes from the equation 2(x+1)-x-4=y. The script with the commands that the cat
gives during the game is simply a sequence of instructions, followed by the number of
seconds before the next command is given. Input and output communication com-
mands are used. This, and similar experiences, normally lead to discuss and work
with Mathematics teachers, who analyze the game as an exercise on one variable
equation.

14 G. Barbara Demo and L. Williams

Another example is the photosynthesis activity: after a lesson about the photosyn-
thesis a story was developed by assembling together ideas and drawings from differ-
ent Scratch activities that pupils had implemented.

Other pupils have developed stories describing monuments and curiosities of their
country or where they tell jokes or outline narrative episodes that happened to them.

In a secondary school, students about 16 years old developed a Scratch video-game
on the “Divina Commedia” by Dante Alighieri. In it, the scenes include many distinc-
tive traits of the poem, and the player increases her/his score answering to questions
verifying his/her comprehension. In a technical secondary school a group of students
implemented the simulation of a token ring net: by using Scratch this activity was
developed in a short time and students were allowed to focus on the peculiar aspects
of the simulated net type.

It is worth noticing that, in a secondary school, when the informatics professor as-
signed typical algorithmic exercises, the students implemented their solutions with
sprites asking and answering in a story-telling fashion, with coloured environments
and jokes.

All the while, by using Scratch, we can introduce a number of fundamental ele-
ments of computer science such as algorithm complexity. An example is the activity
HighLow (altoBasso) shown in Figure 2 developed by the students Perno and Salis in
their second year of a technical secondary school in Torino. In HighLow, Smallfish
chooses an integer between 1 and 10000. Bigfish tries to guess the number with no
help other than “your number is too high”(“troppo grande”) or “…too low” (“troppo
piccolo”) told by Smallfish. The goal of the activity is to guess the number with the
lowest number of tries. The activity begins playing in class the game among students
trying different strategies. After a while, the students begin to specify their own strat-
egies and to express them in Scratch. Usually some groups of students come out with
a sort of binary search strategy as the one implemented in Figure 2.

Fig. 2. “HighLow” activity

 The Many Facets of Scratch 15

5 Concluding Remarks

The experiences here described have been developed over several years, ever-increasing
our appreciation of the Scratch environment for introducing computing science both to
students and teachers. After all, Scratch was not initiated as a programming environment
for a general use, and it is unreasonable to think of, or introduce it as such. Scratch au-
thors aimed at building an environment that was easy to use for creating digital stories.
Let’s remember that procedures were not available for a long time, and have been intro-
duced only through some extension project, for example the Berkeley ByOB project [4],
or the Scratch 2.0 version available from summer 2013. For students choosing to contin-
ue, and wanting to develop a deeper programming competence, we suggest, for example,
Python as the next language. It is a textual language, interesting because it maintains
some simplicity, but also it is offered in programming environments that are nearer to
those of languages more used in computing, such as C or Java.

We propose the activities here described as part of new curricula introducing to
computing science teachers and students in k-12 education. Since years computer
science researchers ask to change the curricula usually present in our schools mostly
offering digital literacy abilities to our students. It is worth noticing that also several
education researchers express critical evaluations toward the role played by the digital
tools as they are currently present in our schools [10]. We think that these two critical
attitudes, coming from two different directions, expose an undeniably problematic
state of the informatics presence in k-12 education. It could be positive for future
curricula if computer science and education researchers should converge, because of
their common negative judgements, and together conceive new informatics curricula.

As we said above, the activities here described were offered in training courses for
both in-service and future teachers, or directly to students and their teachers in
schools. Teachers with very low or no informatics knowledge have been guided to
practice the many different Scratch facets here described. The aim was that after our
workshops they could, by themselves, adjust in collaboration with their students, the
activities developed together.

The informatics teachers have learnt that informatics can be developed by telling
stories, and that, for example, the binary search can be developed as a riddle. Now,
using Scratch in the first two years of secondary schools, they have students develop-
ing coding as a story, even finding the maximum and minimum of a set of numbers.
Mathematics teachers have built, together with their students, activities where they
put in practice other parts of the curriculum. We mentioned here the idea of a game,
where linear equations in one variable are used; or simply they developed a memory
riddle for training in making calculations. Similar ideas have been developed in other
disciplines. In all cases, it turns out that Scratch allows us to see the computer, and
programming, also as powerful tools to express everyone’s creativity.

Acknowledgments. We are quite grateful to all the teachers and the students we
worked with particularly to those who are still creating and proposing with us to their
students and colleagues new educational activities. Discussions with Alberto Barbe-
ro, Alessandro Rabbone and Fabrizio Ferrari are always inspiring.

16 G. Barbara Demo and L. Williams

References

1. Barbero, A., Demo, G.B.: The Art of Programming in a Technical Institute after the Italian
Secondary School Reform. In: Proc. ISSEP 2011, Bratislava (2011)

2. Bebras Contest, International Contest on Informatics and Computer Fluency,
http://bebras.org/

3. Bell, T., Witten, I.H., Fellows, M.: CS Unplugged (1998), http://csunplugged.org
4. ByOB, Build Your Own Blocks 4.0, http://snap.berkeley.edu/ (last visited

March 1, 2014)
5. Casadei, G., Teolis, A.: k-12 Problem Solving Olympic Games. In: Proc. Didamatica

2009, Trento (2009) (in Italian)
6. Dagienė, V.: Informatics Education for New Millennium Learners. In: Kalaš, I., Mitter-

meir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 9–20. Springer, Heidelberg (2011)
7. Demo, G.B.: From Mini Rover Programs to Algebraic Expressions. In: Proceedings 10th

IEEE International Conference on Advanced Learning Technologies, ICALT, pp. 336–340
(2010)

8. Demo, G.B., Marcianò, G., Siega, S.: Concrete Programming using Small Robots in Pri-
mary Schools. In: Proc. 7th IEEE International Conference on Advanced Learning Tech-
nologies, ICALT (2007)

9. Demo, G.B., Williams, L.: Scratch Story-Telling for Introducing Computing to In-service
Teachers, Internal Report, Informatics Department of the University of Torino, Italy (Sep-
tember 2013)

10. Ranieri, M.: Le insidie dell’ovvio. Tecnologie educative e critica della retorica tecnocen-
trica (The Pitfalls of the obvious. Educational technologies and critique of the technology-
centred rhetoric). ETS Publisher, Pisa (2011) ISBN: 9788846727916 (in Italian)

11. Resnick, M., et al.: Scratch: Programming for All. ACM Communications 52(11), 60–67
(2009)

12. Sysło, M.M.: Outreach to Prospective Informatics Students. In: Kalaš, I., Mittermeir, R.T.
(eds.) ISSEP 2011. LNCS, vol. 7013, pp. 56–70. Springer, Heidelberg (2011)

13. Williams, L., Cernochova, M.: Literacy from Scratch. In: Proceedings of the 10th IFIP
World Conference on Computers in Education, WCCE 2013, Torun, Poland, July 2-5, pp.
17–27. Copernicus University Publ., Torun (2013)

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 17–28, 2014.
© Springer International Publishing Switzerland 2014

Bebras Informatics Contest:
Criteria for Good Tasks Revised

Jiří Vaníček

University of South Bohemia in České Budějovice, Czech Republic
vanicek@pf.jcu.cz

Abstract. The Bebras International Contest on Informatics and Computer Flu-
ency has significantly grown in the number of participating countries and par-
ticipants in recent years. Six years ago Dagienė and Futschek determined the
criteria for good contest tasks, which are frequently used by the International
Bebras Committee for selecting and improving tasks for national contest orga-
nizers. New experience and findings from several surveys allow us to reconsid-
er these criteria from a new viewpoint and to assess which of these criteria are
still actual, which need revisions and whether some new criteria are needed if
the process of creation of informatics tasks for the contest is to be improved.
The paper discusses the issues of motivation, interactivity, multiple-choice an-
swers and content topics. The reviewed criteria and categories might be useful
for authors of Bebras tasks as well as for creators of informatics curricula.

Keywords: teaching informatics, computer science education, informatics task,
informatics contest.

1 Bebras Contest and School Curricula

The Bebras project [1] can undoubtedly be regarded as one of the most important
milestones in the area of reintroduction of informatics content into schools across
Europe over the past few years. In contrast to “official” ways such as definition of
national curricula, taxonomy of learning objectives, outcomes and contents, the form
of an informatics contest designated for average eager pupils interested in technology
approaches the issue from the other pole: it looks for suitable topics and problems,
suitable situations, didactical transformations of the original informatics topic.

Contest tasks focus on problem solving [2]. The process of their creation begins
with authors from a number of participating countries, which is followed by an inter-
national workshop where tasks are selected and classified, improved and their word-
ing is refined, after which contests are prepared by individual nations, tasks translated,
finalized and used in the contest. This process is therefore a very good way to creation
of a rich set of tasks that can also be used in school curricula in many countries.

The tasks represent small isolated problems and situations that can be integrated in-
to the subject that is still very novel in schools in many of the participating countries.
Thus the Bebras contest may play an important role in creation of school curricula
from the “bottom”, from basic elements, from individual questions, on which broader

18 J. Vaníček

informatics concepts may be illuminated. School informatics is built on different
types of tasks than tasks used in the Bebras contest; it uses practical and more exten-
sive problems, projects, inquiries. The Bebras contest presents those types of tasks
that are not based on practical activities on the computer to demonstrate the acquired
skills. In this respect they are close to school mathematics, which also poses artificial
problems that define the didactical situation. These problems can address concrete
misconceptions of pupils, can focus on showing extreme situations in which under-
standing of a given concept is refined. The characteristics of informatics tasks in the
contest are similar in some of these parameters.

School informatics, especially in the area of teaching algorithmization, has been
using a whole range of software environments, microworlds and didactical program-
ming languages. These learning environments provide the background for concrete
practical tasks and more extensive pupils’ programming projects. Mathematics educa-
tors also use ways of creating learning environments based on one task. Wollring
mentions the relation “Task ⊂ Task format ⊂ Learning environment” and introduces
6 basic principles for designing learning environments: subject matter and meaning,
articulation and social organization, differentiation, logistics, evaluation and links to
other learning environments [3]. Learning environments that are close to children’s
everyday experience, e.g. Snake, Bus, Family, Stairs are used by Hejný in his scheme-
oriented approach to mathematics education [4]. Bebras tasks can make a convenient
starting point for creation of such learning environments that can be used in contest
tasks and that will conveniently supplement environments already used when teaching
algothmization. Creation of learning environments and research in problem posing
may be one of the possible future trends in didactics of informatics.

2 Criteria for a Good Task

The history of the Bebras international contest on informatics and computer fluency
(http://bebras.org) dates back to 2004 when Valentina Dagienė organized this contest
for the first time in Lithuania [1]. The main goal of the contest was to motivate pupils
to study informatics. The idea of “learning informatics through contest” has become
popular in a number of countries. Last year the list of participating countries featured
29 countries from 4 continents. The Czech Republic joined the contest in 2008. Czech
organizers’ intention was to demonstrate to pupils as well as to their teachers how
wide the field of informatics was [5]. This was in response to situation in informatics
education in the Czech Republic, where compulsory ICT education is limited to
information literacy, user-approaches to technology, to teaching how to consume
technology.

In 2008, Dagienė and Futschek (in cooperation with Hein, Pohl, Cock, Sysło) pub-
lished the paper Bebras International Contest on Informatics and Computer Literacy:
Criteria for Good Tasks, in which they classify tasks into two content categories and
formulate several key and recommended criteria for creation of informatics tasks. [6]
These principles proved to be very useful for us as authors and organizers. They
served as a good guide in coordination and selection of questions and their finaliza-
tion in international workshops. The listed criteria considerably contributed to im-
provement of task quality and the process of their preparation.

 Bebras Informatics Contest: Criteria for Good Tasks Revised 19

Six years have passed since publication of the paper. This is a sufficient period of
time for getting experience. It is now time to consider whether the listed categories
and criteria are still topical or whether other useful criteria should be introduced. Our
experience from work on the international team, our assessment of more than 300
tasks that have been used in the Czech national rounds of the contest within the past
six years and several surveys among contestants and teachers - school coordinators
serve as the starting point for discussion of some of the criteria.

3 What Should the Contest Be Testing?

Dagienė and Futschek mention that “users need also some thinking skills while apply-
ing technology” [6]. This could be referred to as computational thinking, whose defi-
nition for K-12 is currently much discussed on the grounds of CSTA and ISTE [7].
Computational thinking approach to informatics education at upper secondary schools
is also discussed by Syslo [8], the same approach can be come across in the concep-
tion of Slovak national curriculum framework for primary schools [9] and in Compu-
ting program of study in the national curriculum framework in England 2014 [10].

Dagienė and Futschek claim the best way to develop thinking skills is to solve
problems [6]. And it is true that this basic demand on a good informatics contest task
has been met over the years. Gradually, tasks asking about important personalities and
events of informatics history, tasks testing knowledge of facts or mastered knowledge
of e.g. some algorithms have disappeared from task proposals. Authors of tasks also
try to meet another demand that the contestants need no pre-knowledge when solving
a task [2, 6]. They try to include all the needed information in the assignment. How-
ever, this leads sometimes to very lengthy assignments. Authors face the dilemma
whether the additional information does not make the task less comprehensible and
clear.

We tried to verify this experimentally in the Czech national round in 2013. The
task used in this experiment was an interactive task about passage through labyrinth.
We wanted to test whether reading a long text of the assignment may not be more
difficult for the contestants than the possibility to discover the behavior of the system
experimentally. Two versions of the same task were prepared. 14-15 year old contes-
tants were assigned this task in the form of full verbal description of behavior of the
system. 10-11 year old contestants were assigned the same task shortened to one quar-
ter of the original length, only with basic instructions and a short task. When prepar-
ing the contest some teachers - pre-testers objected that the assignment for younger
pupils was too brief. The same objections could be heard from older contestants who
has taken the variant for younger contestants. However, younger pupils had no prob-
lems when solving the task in the competition. More than 90 % of the 6031 answers
were correct, which clearly shows that the contestants were able to grasp the brief,
incomplete assignment. This suggests that the possibility to discover rules on
one’s own may be more advantageous in certain questions than having to read them
formulated.

20 J. Vaníček

It is most difficult to provide all the relevant information in a contest task as re-
quired by the criterion if the task is related to everyday work with computer, digital
literacy or broader social context.

4 What Areas Should the Tasks Stem Out From?

Dagienė and Futschek introduce the following proposals of topics for the contest.
They are six:

INF Information comprehension - representation (symbolic, numerical, visual),
coding, encryption

ALG Algorithmic thinking including programming aspects
USE Using computer systems (e.g. search engines, email, spread sheets ets. - gen-

eral principles, but no specific systems.
STRUC Structures, patterns and arrangements - combinatorics, discrete structures

(graphs, etc.)
PUZ Puzzles - logical puzzles, games (mastermind, minesweeper, etc.)
SOC ICT and society, social, ethical, cultural, international, legal issues [6]

This is not the only existing proposal for categorization of contest tasks. E.g. Kalaš
and Tomcsányiová propose categorization of informatics tasks into four categories:
algorithmization, information comprehension, problem solving, digital literacy [11].

It is a question how well these topics cover the field of informatics and whether
tasks can be distributed equally into the different topics, whether the proportion of
tasks from each of the topics is about the same. To answer the question we analysed
all proposals that were sent by authors for review in 2012 and 2013. The analysis of
424 proposals shows that:

─ More than one half (216) of the tasks were classified by their authors as ALG type.
─ 23 % of the tasks could not be classified into one topic category, their authors

placed it into two (or more) topics simultaneously
─ Some authors were not happy with the offered topics and used their own classifica-

tion of the task type, e.g. languages, combinatorics, graph, logic, sequence,
constraints.

─ only 7 % of the tasks could be classified as USE (using ICT, digital literacy) and
only 2 % as SOC (social and legal issues in use of ICT)

─ other topics were represented as follows: INF 26 %, STRUC 19 %, PUZ 11 %.

The aim of defining topics is among others to guarantee that contests offer a variety in
content and cover the whole spectrum of informatics tasks. Current distribution of
tasks suggests that the topics are not well defined.

It seems purposeless to have a category that does not offer sufficient number of
tasks. That is the case of the topic SOC, in which not a single task was accepted in

 Bebras Informatics Contest: Criteria for Good Tasks Revised 21

2013. It looks like this topic is too narrow. It would sound logical to incorporate this
topic into the topic USE with which it shares its interconnectedness with everyday life
unlike other topics which are much more theory-based.

The topic ALG on the other hand seems to be too wide and should be divided into
subtopics. There are more possibilities for this subdivision:

─ classification according to skills needed for task solution (e.g. algorithm design,
error debugging and correction, search for output state, search for initial input state
before algorithm implementation, exploration of algorithm universality, feasibility,
selection of the most effective algorithm)

─ classification according to extent of formalization (procedures in everyday life
situations, algorithms using program structures, specialized algorithms for specific
classes of situations, algorithms by design paradigms, algorithms known from
theoretical informatics etc.)

─ classification according to type of algorithm (sorting, searching algorithms …)

The fact that many authors used their own categories related to mathematical or logi-
cal fundaments of informatics suggest that an additional useful topic LOG (MAT) –
constraints for making decisions, simple predicate logic, combinatorics, binary
systems) should be introduced. The topic PUZ could then focus on problem solving,
games and labyrinths, comprehension of rules, game strategies.

5 Digital Literacy in Tasks

The topic USE, which covers everyday use of ICT, digital literacy, user-centered
approach, use of applications, is an integral part of compulsory curriculum in many
countries. Blaho states that the field of ICT is often understood as mastering technol-
ogy, as initial stage to informatics [9]. Schubert and Schwill regard ICT education as
a framework of basic education in the area of informatics, communication and infor-
mation technology [12]. If tasks connected to use of computer applications are in-
cluded into contests like Bebras, the contest draws nearer to school curriculum and is
more easily acceptable by schools and teachers as it meets the general public under-
standing of informatics as something connected to use of computers.

How do pupils perceive an informatics contest? A survey was carried out in De-
cember 2012 in the Czech national round of the Bebras contest. The questionnaire
was answered by 13 %, i.e. 3500 contestants. Among other questions the respondents
were given the opportunity to express their opinions on the contest. Apart from the
expected classes of responses evaluating the contest (from “amazing” to “horrible”),
comments on the respondent’s performance (“why didn’t I manage?”) and technical
questions (“when will the lists of the best contestants be published?”), we could often
come across opinions in which the contestants (especially from upper secondary
schools) claimed the contest was not too much about informatics. Some of the partici-
pants’ comments follow:

─ “More questions from informatics next time, please.”
─ “This had nothing to do with Informatics!!!”

22 J. Vaníček

─ “Why is this called a c
computers?”

─ “The questions should
from mathematics.”

─ “I wonder what the cont
all?”

─ “The fact that one answe
[13].

Some of the comments i
ics contest as it is sat at a c
ics and computers. Howev
tasks are too artificial or d
acquire at schools of what
it solves is wrong. It is als
tasks on computers for wh
make decision, and forma
merely running applications
reasoning are problems from

Tasks from the topic US
life. Real-life situations co
knowledge or general know
computational thinking. Th
mentioned criteria of Dagie
knowledge of details of sp
mechanically, many intere
might prefer not to propos
rejection. In this point of vi
thus avoid the risk of conta
in this topis is very low, the

Fig. 1. Preferen

contest in informatics if only 2 (out of 15) tasks are ab

focus on IT much more. These questions seemed to

test questions have to do with informatics. Maybe nothin

ers on a computer doesn’t make this an informatics conte

imply that pupils believe the contest is called an inform
computer. These pupils see a distinction between inform
ver, the comments also imply that either the informa
distant from everyday life, or that pupils’ conception t
informatics is, of its basic concepts and types of proble

so possible that pupils are not used to be solving diffic
hose solution they would have to apply reasoning, lo
alize their answers. These skills are never needed w
s. Then they conclude that problems requiring thinking
m the realm of mathematics or logic [14].
SE are problematic as they must be anchored in every
onnected to digital literacy often ask for experience, p
wledge and can rarely be solved merely by reasoning
his results in a clash of these tasks with one of the ab
enė and Futschek [6], namely that no task can rely on p
pecific IT systems. If this much needed criterion is u
sting questions may be rejected. In consequence auth
se tasks in this category for uncertainty and fear of th
iew it is easier and safer to prepare a theory-based task
ct with everyday life situation. As the number of propo

e problem of application of this criterion is real.

nce in types of answers for different age categories

bout

o be

ng at

est.”

mat-
mat-
atics
they
ems
cult
gic,

when
and

yday
pre-
g or
ove
pre-
used
hors
heir
and
sals

 Bebras Informatics Contest: Criteria for Good Tasks Revised 23

Analogically tasks from the topic SOC related to legislation often face the situation
when the expected (moral) practice of a person does not correspond lo legislation.
Moreover, legislation may vary from one country to another and also within one
country in some period of time. The reason for rejecting SOC tasks is often preca-
riousness as the author’s proposed correct answer may not be correct in other coun-
tries or may not be the only possible answer in different interpretations.

Especially because of tasks from the topic USE, which are perceived as crucially
important in some of the participating countries and which not included in tests in
sufficient numbers, the pre-knowledge criterion should be reformulated in such a way
that tasks still do not require pre-knowledge of specific software applications but
allow use of situations from work with software commonly used.

6 Interactivity of Tasks

Dagienė and Futschek also demand that tasks “should have interactive elements
(simulations, solving activities, etc.)„ [6]. We investigated how interactivity of a task
contributes to its attractiveness.

In the questionnaire from 2012, the contestants also indicated their preferences in
tasks (Fig. 1). Our analysis of their answers shows that fewer than one half of the
contestants decidedly prefer interactive tasks. Interactive tasks are not even the most
popular task type in all categories [13].

In the same 2012 questionnaire, repeated in 2013, we also asked about popularity
and difficulty of the used tasks. The contestants were asked to choose from a list of
tasks the one they found most interesting and the one they found easiest. With two
exceptions, the most interesting task was one of the interactive tasks in all 10 catego-
ries. This shows that interactivity, if associated with a specific task, is evaluated diffe-
rently than interactivity in general.

Then we compared the ratio of interactive and other tasks in the answers. This
showed that, with the exception of the category Mini for primary schools, interactive
tasks were seen as much more attractive and therefore also easier. However, this was
not true universally; interactive tasks requiring work with keyboard (e.g. tasks simu-
lating the tool Find/Replace) were much less interesting than graphic drag and drop
tasks or tasks using mouse clicking. Thus we conclude that interactivity is attractive
because of its graphic component and manipulation with the mouse.

The reason why interactive tasks were not so favourably accepted in the youngest
category Mini might be that more than one half of all tasks in this category were in-
teractive. This inflation of interactivity might have caused loss of their attractiveness.

One must stress that interactivity may substantially change character of the task.
An experiment was carried in the national round in 2012 in which we prepared the
same task both as an interactive and multiple choice task. While the multiple choice
task was evaluated as average (the seventh most often selected as the most interesting
task out of 15), its interactive variant was selected as the most interesting.

24 J. Vaníček

The possibility to manipulate or simulate in the computer environment may affect
how pupils solve the task. They may be diverted from thinking to experimenting, to
error and trial strategy in which they prefer cognitively less demanding methods. This
might be one of the causes of popularity of interactive tasks. One must always consid-
er carefully whether the demand that a task be interactive does not make the task
much easier, of lower quality.

Attractiveness of interactive tasks may also result in a situation in which pupils pay
more attention and spend more time solving interactive tasks than multiple choice
tasks. This could then mean that interactive tasks are solved correctly by more contes-
tants due to this extra attention. We wanted to verify this hypothesis through the data-
base of 2013 national round. There were 34 454 contestants. We analysed
13 interactive and 57 non-interactive tasks. The outcome of this analysis does not
verify the hypothesis. The contestants spent on average 2.8 times shorter time solving
one interactive than non-interactive task.

7 Assignment and Motivation in Tasks

Dagiene and Futschek also mention that the story of the task plays a crucial role in
contestnats’ motivation [6]. Posing questions and tasks for the Beaver contest is often
approached as “dressing a CS task into an ICT attire”. In the pool of proposals from
previous years, one can discern several approaches to posing tasks:

─ finding some classical informatics task and giving it an attire of a simple story,
most often using the fairytale character of a Beaver-moderator, who introduces the
problem

─ taking a task which is primarily about computer science and searching for an eve-
ryday life situation or a situation which somebody could imagine as real-world that
corresponds to the original task problem

─ starting from application of informatics in another discipline (mathematics, phys-
ics, biology) and constructing a story with a real-world situation which illustrates
use of some informatics concept or principle used for its solution

─ observing the world around you (or your teaching) and letting it inspire you to
formulation of a task (usually from the topic USE).

─ starting from a practical task drilling the skill to use some application and posing a
multiple choice question. Changing the task from the instructional or practical (do
this, create this) to situational (a situation is described and a question is added).

The character of Beaver (beaver goes to school, beaver drives a car) is very frequent
in the pool of proposals. This personification of beaver brings paradoxical situations.
In some tasks e.g. the beaver eats meat or bridges are constructed for this water ani-
mal to get from one river bank to another. Tasks introduced through beaver “stories”
sometimes do not sound very real, or their solution does not sound practical. Contes-
tants’ especially upper secondary school contestants’) comments on tasks such as
“beaver did, beaver went, …” were full of irony. Older contestants found tasks with
people working on computer in place of beavers much more acceptable. However,

 Bebras Informatics Contest: Criteria for Good Tasks Revised 25

some contestants in categories for pupils younger than 13 claimed they liked the
beaver and demanded that “more tasks with the beaver” be included. Therefore the
authors of proposals should always bear in mind that the effect of motivating contes-
tants by this fairytale character changes with age.

When making proposals, authors also have to face the risks that their tasks may fa-
vour pupils who have had the opportunity to memorize the solving procedure. There
are some tasks that make use of a typical procedure characteristic for the particular
type of task and a mere application of the procedure leads to the correct solution. This
discriminates contestants who have not come across this type of task at school and
have not had the chance to memorize its solution. For example any square grid path
problem can be solved very easily if the contestant is familiar with the basic principle
that the number of possible paths to a given junction equals to the sum of possible
paths for all neighbouring previous junctions. If the contestant does not know this
principle it is very hard to discover it in the 3 minute time limit. Any task based on a
typical informatics problem described in literature bears the risk that some of the con-
testants will be familiar with its solving method.

Somewhat problematic is in our opinion the demand on political correctness of
tasks, i.e. the criterion that “Good tasks contain no gender, racial or religion stereo-
types.” [6]. Not underestimating the import of this proclamation, our experience from
totalitarian communist times makes us very cautious when putting this criterion for
contest tasks into practice. If e.g. a task in which a boy from Germany gives a piece of
ham to a boy from the Czech Republic is rejected because it could offend somebody’s
religious beliefs, it may be seen as limiting authors’ freedom. We could then also ask
whether the danger of the impact gender stereotype could have on success rate of girls
in solving a task would not result in rejection of a task in which girls string beads.

Responsibility for creation of a set of contest tasks for national rounds is in the
hands of national authorities and it should be their role to review the pool of proposals
sensitively and make decisions about the tasks’ political correctness in the context of
their own national culture, and only after if not acceptable in their cultural context
reject them or modify them. We think that such reviewing process on international
level is dangerous.

8 Quality of Wrong Choices

Quality of the task assignment is one of the criteria of good tasks to which much at-
tention is paid by Dagienė and Futschek: this involves wording of the question, cor-
rect answer and its justification. Rules for good assignment include e.g. the rule not to
use negation in questions as the contestant often overlook it or have problems with its
logic. Our experience of the process of task development from an international work-
shop and from analysis of a pool of proposals suggests that it is equally as important
to pay attention to formulation of the incorrect answers in multiple-choice tasks as
their quality may considerably influence task difficulty. The contestant chooses from
four choices and if some of these can be eliminated without actually understanding
the task, the chance that they will guess the right answer grows.

26 J. Vaníček

This can happen if

1. the set of choice answers is badly constructed
2. it pays off to go through all the choice answers and test them in the assignment ra-

ther than solve the problem
3. a common mistake missing among offered answers warns the contestant
4. there are weak choices just to make up the needed number of choices

Ad 1. Some sets of choice answers are constructed by deriving wrong variants from
the correct answer by minor modifications. The contestant, if experienced in taking
tests, sees that one of the offered answers shares characteristics with each of the other
variants, realizes it is the source variant and marks it as the correct one without actual-
ly understanding the issue.

Let us illustrate the point:

Question: What will be the output of this programme?
(we do not need to show the programme here)

a) Result: c=20
b) Result: c=36
c) Result: c=40
d) Result: c=20+c

Without having to read the task assignment we can infer that the right answer is a).
The numerical result of the calculation is the same as in answer d) and we can expect
answers b), c) to be consequences of a mistake in the calculation. Answer d) involves
a mistake of a different type. Although it is not worthless if the pupil finds the right
answer by such logical reasoning, it has nothing to do with his/her knowledge of in-
formatics, only with his/her knowledge of sitting tests.

Ad 2. If the author of a task wants the contestant to solve the task by thinking, the
choice answers should be in such a form that it does not pay off to test the choice
answers in the assignment. In ideal case reading of the assignment guides the contes-
tant to knowledge that directly points at the right answer whereas testing all variants
is very time demanding with a considerable risk of making a mistake.

The following set of choice answers Dice (the assignment is not important) is an
example of a set whose author avoided mistakes from 1 and 2:

a) draw_2A, draw_2, turn_90, draw_2
b) draw_2, turn_90, draw_2, draw_2A
c) draw_2A, turn_90, draw_2, draw_1
d) draw_2, draw_2A, turn_90, draw_2

This set of choices does not allow us to guess the correct answer without under-
standing the assignment and having the required knowledge. And it would be too time
demanding to test all the choices in the task assignment.

Ad 3. Especially in case that a task easily leads to various erroneous results (e.g.
calculation using an algorithm), it is crucial to ensure that the set of choice answers
includes the most likely mistakes. If the contestant makes a mistake and gets a result
that is not among the choice answers, he/she is alerted to the fact that his/her solution

 Bebras Informatics Contest: Criteria for Good Tasks Revised 27

is wrong. Thus the contest is less regular as some contestants being wrong get a hint
in this form while others do not. Apart from selecting choice answers carefully, au-
thors should also modify the task in such a way that their solvers do not make too
many different mistakes leading to too many different results.

Ad 4. If a contestant does not know the correct answer, he/she is likely to be trying
to guess it. Then existence of one or more obviously nonsensical answers that can be
eliminated at once without any knowledge of the topic considerably increases the
contestant’s chance to guess the correct answer. E.g. in case of questions requiring a
yes/no answer authors should ask about two phenomena simultaneously so that the
number of possible answers is extended (e.g. yes,yes/yes,no/no,yes/no,no).

The following is our proposal of a criterion for good multiple-choice task:

─ the problem in the task should offer a reasonable number of possible answers (nei-
ther too few, neither too many)

─ the incorrect answers should represent all the typical mistakes the contestant may
make while solving the task

─ the correct answer should not stand out (by its length, choice of words etc.)
─ every task should have a set of choice answers comparable in quality

9 Conclusion

Criteria for a good task for international informatics competition proved to be very
useful as they guide authors of proposals to posing more usable tasks.

─ Based on our findings we recommend that task topics be reorganized in such a way
that they become more useful in defining the content of national contests and that
they are representative of the field of informatics. We recommend that the topic
SOC be integrated in the topic USE and the topic ALG be split into additional cri-
teria. We recommend that the topic LOG (MAT) be added.

─ The contest becomes more comprehensible if contestants come across tasks that
they perceive as work with computer. That is why also tasks from everyday work
with computers should be included and the criterion demanding elimination of pre-
knowledge should be reconsidered as it may sometimes be counterproductive when
applied in the topic USE. This might be subject to discussion.

─ We propose that the criterion of suitable answers in multiple choice tasks be added;
attention must be paid to selection of the wrong variants as they affect quality of
the whole task.

─ Interactivity of tasks makes the contest more attractive if interactivity means mani-
pulation with mouse. On the one hand interactivity makes the contest more appeal-
ing, on the other hand it may affect the character and difficulty of the task, which
must always be taken into account.

─ If tasks stem out from real life situations, it will be appreaciated by older contes-
tants. Younger will enjoy motivation through the fairytale character of Beaver.

In conclusion we would like to stress the most important aspect of the contest: the
created solid and growing community of authors and researchers can significantly
contribute to future coordinated process of inclusion of informatics content into
school curricula in many countries.

28 J. Vaníček

References

1. Dagienė, V.: The Bebras Contest on Informatics and Computer Literacy – Students Drive
to Science Education. In: Joint Open and Working IFIP Conference, ICT and Learning for
the Net Generation, Kuala Lumpur, pp. 214–223 (2008)

2. Dagienė, V., Futschek, G.: Knowledge construction in the Bebras problem solving contest.
In: Kynigos, C., Clayson, J., Yiannoutsou, N. (eds.) Constructionism: Theory, Practice and
Impact, pp. 678–680, The Educational Technology Lab, Univ. of Athens, Athens (2012)

3. Wollring, B.: Kennzeichnung von Lernumgebungen für den Mathematikunterricht in der
Grundschule. In: Forschergruppe, K. (ed.) Lernumgebungen auf dem Prüfstand. Bericht 2
der Kasseler Forschergruppe Empirische Bildungsforschung Lehren – Lernen – Literacy,
pp. 9–26. Kassel University Press GmbH, Kassel (2008)

4. Hejný, M.: Vyučování matematice na 1. stupni ZŠ orientované na budování schémat:
Aritmetika. PedF UK, Praha (2013)

5. Vaníček, J.: Potenciální a skutečný dopad informatické soutěže do změn kurikula ICT v
České republice. In: Kalaš, I. (ed.) DidInfo´2012, Univerzita Mateja Béla, Banská Bystri-
ca, pp. 15–24 (2012) ISBN 978-80-557-0342-8

6. Dagienė, V., Futschek, G.: Bebras International Contest on Informatics and Computer Li-
teracy: Criteria for Good Tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008.
LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008)

7. Barr, V., Stephenson, C.: Bringing computational thinking to K-12: what is Involved and
what is the role of the computer science education community? ACM Inroads 2(1) (2011)

8. Sysło, M.M., Kwiatkowska, A.B.: Informatics for all high school students: a computation-
al thinking approach. In: Diethelm, I., Mittermeir, R.T. (eds.) ISSEP 2013. LNCS,
vol. 7780, pp. 43–56. Springer, Heidelberg (2013)

9. Blaho, A., Salanci, L.: Informatics in Primary School: Principles and Experience. In:
Kalaš, I., Mittermeir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 129–142. Springer,
Heidelberg (2011)

10. Computing. Programmes of study for Key Stages 1 - 4. National curriculum in England.
Computing at School Working Group (2013), http://media.education.gov.uk/
assets/files/pdf/c/computing%2004-02-13_001.pdf

11. Kalaš, I., Tomcsányiová, M.: Students’ Attitude to Programming in Modern Informatics.
Informática na Educação: Teoria & Prática 12(1), 127–135 (2009)

12. Schubert, S., Schwill, A.: Didaktik der Informatik, 2nd edn. Spektrum Akademischer Ver-
lag, Heidelberg (2011)

13. Vaníček, J.: Searching for CS Tasks in ICT Curricula at Lower Secondary School Level.
In: Reynolds, N., Webb, M., Syslo, M., Dagiene, V. (eds.) Learning While We are Con-
nected, Proceedings of 10th IFIP WCCE, vol. 3, pp. 119–120, Toruń: Uniwersytet Mikola-
ja Kopernika (2013)

14. Vaníček, J.: Computer Science Tasks and Topics as a Part of ICT Curricula in the Eyes of
Pupils and Teachers. Journal of Technology and Information Education 5(1), 67–74 (2013)

Big Data – Challenges

for Computer Science Education

Andreas Grillenberger and Ralf Romeike

Friedrich–Alexander–Universität Erlangen–Nürnberg (FAU)
Department of Computer Science, Computing Education Research Group

Martensstr. 3, 91058 Erlangen, Germany
{andreas.grillenberger,ralf.romeike}@fau.de

Abstract. Data processing is a central topic of computer science and
hence also in secondary computer science education, which includes stra-
tegies for storing, managing and retrieving data. In the context of Big
Data, this field changes tremendously: established ideas, such as avoiding
redundancies and storing data in a persistent and consistent way, are
dropped in order to speed up the access to distributed stored data as well
as its availability. Furthermore, with the rapidly growing impact of data
processing on everyone’s daily life, computer science education needs to
address these aspects as well as their social and ethical implications, such
as privacy issues.

This paper points out the major challenges that arise from the out-
lined developments by evaluating whether database concepts and exam-
ples commonly used in CS education need to be updated.

Keywords: Big Data, NoSQL, Data Management, Databases, Data
Analysis, Data Privacy, Challenges.

1 Introduction

The concept of data processing is central to computer science and hence to com-
puter science education. Not only manipulating data through programming, but
also the efficient storage, management and retrieval of data are seen as central
aspects. These topics are strongly affected by Big Data, a phenomenon that
arose in recent years and which introduced several new innovations. For exam-
ple, established concepts of data management, such as avoiding redundancies
and inconsistencies by saving data in normalized relational database manage-
ment systems (RDBMS), are dropped. Instead, newer database management
systems (DBMS), like the NoSQL databases, are optimized for performance and
distributed storage [11].

Other innovations come from the way Big Data affects everybody’s life, as Big
Data is fundamental to the functionality of various popular applications: search
engines, translation tools, social media (e.g. for friend finders), online shops (e.g.
for product recommendations) and so on.

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 29–40, 2014.
c© Springer International Publishing Switzerland 2014

30 A. Grillenberger and R. Romeike

In this paper we will point out major challenges computer science education
will have to deal with, when considering the new aspects arising from the out-
lined developments into teaching. First, Big Data is discussed in terms of its
innovations to data management. Then, we will provide the educational context
by analyzing the state of research on databases and Big Data in computer science
education. On this basis, we will derive and discuss the relevance of changes aris-
ing from these developments and we will describe the challenges within computer
science education.

2 Managing Big Data

The term Big Data describes the management and analysis of large amounts
of data with high complexity and varying structure. When dealing with Big
Data, typical database systems are reaching their limit: even if they can handle
the large volume of data, there will remain at least two even more complex
problems. The high changing rates of these data (velocity) require highly re-
sponsible databases, ideally without any blocking operations. Additionally, the
varying structure of data prevents database administrators of defining a data
schema. Such a schema is needed for ensuring data consistency when using com-
mon relational databases (RDBMS). As Laney [18] summarizes, Big Data can
be characterized by the three Vs “volume”, “velocity” and “variety” (cf. fig. 1).

These challenges when using the more or less standard RDBMS led to the
development of non-relational database management systems, commonly known
as NoSQL databases. This term is meanwhile used as a generic name for all
non-relational databases and is interpreted as “not only SQL”1 [11]. The main
characteristics of NoSQL databases are [11]:

– a non-relational data model,
– distributed and horizontally scalable,
– schema-free or only with weak restrictions on schema.

Also, in contrary to traditional databases, the NoSQL databases do not guar-
antee the ACID properties (Atomicity, Consistency, Isolation, Durability) [12].
Instead, they are described as Basically Available, Soft-state, Eventually con-
sistent (BASE) [11]. Such databases offer fast access to and high availability of
data, but cannot guarantee failure safety, as data are only written to permanent
storage periodically. Also, consistency of data cannot be ensured, because typi-
cally NoSQL databases do not enforce a defined data schema in order to reach
high performance and partition tolerance. According to the CAP theorem [4], it
is not possible to guarantee the three properties availability, consistency and par-
tition tolerance at the same time. Only two of these three characteristics can be
ensured concurrently, cf. fig. 2. So, traditional RDBMS mainly focus on consis-
tency and availability, and therefore need to drop partition tolerance—they are

1 In the original work on the NoSQL database [23], the term NoSQL was used in the
way “no usage of SQL”, because this RDBMS did not support SQL.

Big Data – Challenges for Computer Science Education 31

described as consistent-available (CA) according to the CAP theorem. In con-
trast, the NoSQL databases are typically optimized for distributed databases
with high performance and therefore must drop consistency (so they are de-
scribed as available and partition-tolerant (AP)). The third type—consistent
and partition-tolerant (CP)—is less widely spread and not associated to whether
RDBMS or NoSQL, as both types can be found in this category. In contrast to
these developments, the main topic in today’s database education is teaching
the concepts of (relational) database systems and the knowledge for dealing with
such systems. In order to fill up this gap between CS and database education,
the influence of these developments on CS education has to be discussed.

BIG

DATA

Velocity

Variety

Volume

structured

unstructured
real time

data analysis

> 60 GB created
per second

Fig. 1. Three Vs of Big Data

Availability

Partition
Tolerance

Consistency
CP

AP

CA

x

RDBMS

both:
RDBMS, NoSQL

NoSQL

not
possible

Fig. 2. CAP theorem

While the topic databases plays an important role in secondary school edu-
cation, with the growing impact of data and its analysis this topic needs to be
expanded. Data management describes the processes of storing and retrieving
data from databases as well as planning, organizing and utilizing these methods
[3]. This includes “practices that control, protect, deliver and enhance the value
of data and information assets” [8] which can be summarized as data safety,
data privacy and data analysis. Aspects of data management are often already
considered in computer science curricula, e.g. under the term “information man-
agement” in the ACM K-12 curriculum [24]. So, data management offers the
chance to bring these aspects together in one topic and to include several addi-
tional aspects.

3 Databases and Data Management in Computer Science
Education

The topic databases, which comprises the efficient storage, management and
retrieval of data, is central to secondary computer science education in sev-
eral countries (e.g. Germany [16], Austria [6,7]). The ACM curriculum for K-12
computer science [24] considers data management in the context of information
management: database systems, data modeling and the relational model, query

32 A. Grillenberger and R. Romeike

languages, data mining, hypertext and hypermedia, digital libraries. The UN-
ESCO/IFIP informatics curriculum for secondary schools [25] considers databa-
ses in two ways: Working with a database and designing a database. Numerous
publications especially in the late 1980s / early 1990s, discuss the relevance of
the topic for computer science at school (e.g. [26]). However, even though the
importance and influence of databases and data management is growing rapidly,
these topics were hardly discussed in computer science education within the last
years: Antonitsch [1] proposes databases as a topic in the context of information
retrieval by questioning the common approaches for database instruction. Other
publications on these topics mostly propose and/or discuss tools for enhancing
database education and in particular for supporting the teaching of SQL (for ex-
ample [14], [20]). The shortage of research in this field may be explained by the
few changes in the concepts of (relational) databases since they were established
by Edgar F. Codd. The main changes affected platforms; these are relevant for
the DBMS and for tools for using them, but not for the concepts of databases
themselves or for educational purposes. In contrary to the discussion in the data
management community, new models for database, like the NoSQL databases,
have not yet been discussed in the context of database education at school. The
same applies to higher education, where recently claims are made to consider
the emergence of NoSQL databases in the curricula [19].

In addition to these aspects from computer science, CS education is also af-
fected by social and ethical implications: while current teaching only considers
data privacy and safety as marginal topics, mainly integrated with other topics
like databases, nowadays the relevance of these aspects is changing tremendously.
As new possibilities are opened up for dealing with large amounts of data and to
gain new information by analyzing them, also new threats are emerging. Espe-
cially, there is a strong impact on data privacy and data security. Furthermore,
everyone needs to deal with data in daily life, as the impact of data and data-
driven applications is continuously increasing. Hence, there are clear differences
between the requirements coming from daily life and current teaching practice.

4 Challenges for Computer Science Education

As pointed out in the previous section, a gap between curricula / teaching prac-
tice and the state-of-the-art of computer science emerges from the recent devel-
opments. Moreover, there are also recognizable differences between the demands
of daily life and current CS education. In acknowledge to this issues, organiza-
tions such as the German Informatics Society start claiming that “Big Data is a
topic for education” [13]. However, by considering Big Data for teaching, com-
puter science education is faced with several challenges, which include revising
the curricula for the topics databases and data management in a critical way.
Key questions that need to be considered are:

– Which key concepts and principles are sustainable?
– Which topics may become outdated or need to be discussed in a different

light in the future?

Big Data – Challenges for Computer Science Education 33

– Which aspects does Big Data add?
– What does everyone need to know about and for dealing with Big Data?

Therefore, we will hereafter discuss the major challenges, with which computer
science education will have to deal when considering the new aspects coming
from the described topics in teaching of data management. This analysis does
not focus on a specific curriculum but applies generally to CS education, because
while typical curricula strongly differ in many aspects, there is a clear agreement
on important aspects in database education.

4.1 Discussing the Relevance of Database Concepts

There is agreement that general school education needs to emphasize persistent
concepts over skills that are only usable for a short time span. For computer
science, various sets of criteria for selecting topics with general educative value
have been proposed. The most influential ones are the “Great Principles of Com-
puting” by Denning [10] and the “Fundamental Ideas of Computer Science” by
Schwill [21]. One typical criterion is, that topics for general education need to
be relevant in various contexts. This criterion is named “horizontal criterion”
by Schwill, “broadly influential” by Denning. It prevents special aspects, which
are only relevant in few contexts, from being considered as relevant for gen-
eral education. Another criterion points out that only those concepts shall be
taught that are and will be historically relevant. Due to the recent develop-
ments in data management, e.g. Big Data, the concepts and principles currently
taught in school are now challenged. For example, RDBMS use an explicit data
schema [12], while NoSQL databases use an implicit one [11]. By forcing data
into matching the data schema defined by the user/administrator, RDBMS en-
sure consistency. This approach leads to long outage times if the schema has
to be modified, because then data has to be adopted to the new schema imme-
diately. Since today data often vary in structure over time, this would happen
too frequently. So, NoSQL databases prevent such outages by not-enforcing a
schema (so they have only an implicit one), but therefore they must deal with
inconsistent data. Hence, it has to be examined whether always enforcing a data
schema holds for a key concept of databases.

Another challenge is the altered significance of redundancy. While in RDBMS
data are typically stored in a in a normalized way in order to avoid redundancies
[12], the concept of redundant storage is used intentionally in NoSQL databases
[11] in order to store data in one place instead of spreading it over multiple
tables. Hereby, reading data from NoSQL databases is accelerated, because in
comparison with RDBMS no join operations are needed. Therefore, the challenge
for computer science is to rethink the idea of redundancy from something that
generally should be avoided to a method that is applied in order to achieve
certain specific goals. While redundancy in the context of RDBMS has been
only discussed in the context of database normalization, it should be discussed,
if the concept of redundancy holds for a fundamental idea of data management.

34 A. Grillenberger and R. Romeike

Even the small selection of differing concepts between RDBMS and NoSQL
databases described above, leads to important considerations, as differing aspects
cast a new light on meeting the criteria for general educational topics: until Big
Data became popular, it seemed obvious that the main concepts of relational
databases are as well main concepts of databases in general, because there were
mainly RDBMS. Nowadays, it is necessary to differentiate between relational
and non-relational databases, so it is easily recognizable, that for example the
concept of strictly normalizing data schemata is only fundamental to relational
databases. Therefore, the concepts concerning databases in general, and not
only concerning either RDBMS or NoSQL databases, have to be detected. When
looking at the described fundamental ideas and great principles, it is obvious that
only the concepts concerning the topic databases in general should be selected
for teaching in order to ensure teaching of general educative topics.

In conclusion, current considerations on which concepts of databases should
be part of computer science education need to be reconsidered in the light of
Big Data and data management by posing the question “Which concepts are
fundamental to databases?”.

4.2 Involving Big Data Examples into Teaching

Even though the intention to use examples of students’ everyday life by dis-
cussing offline databases held true until recent years, in future web databases
and large data collections will become more common to students and affect
their daily life more than offline databases. Furthermore, such databases offer
the chance to use public and up-to-date (open) data sources and hence open
up the possibility for students to gain insight into data by using analysis meth-
ods themselves. At the moment, database education especially discusses offline
databases, for example a member database of a sports club, of products the
students (or fictive persons) bought, or of music groups [15]. Some main aspects
of databases can hardly be demonstrated by such small examples, especially be-
cause some of them, like the product database, could be equally addressed in a
spreadsheet application. Since small databases are often used as local copy on
each computer, characteristics such as the multi-user capabilities of databases
cannot be realized. Taking into account the impact of Big Data, this problem
will be even intensified, because using small examples will not be possible for
illustrating the main characteristics of Big Data and data analysis, because they
are particularly based on the high number of available data. Especially, by using
small data sets it is not possible to obtain satisfying analysis results of statisti-
cal relevance. According to the mathematical law of large numbers, scattering is
minimized when analyzing large amounts of measures (data), while results are
strongly distorted when only analyzing small amounts of data.

Also, the changes in concepts of databases strongly affect selection of exam-
ples for teaching. While typical examples in database education are often chosen
in order to discuss databases considering the relational data model, normaliza-
tion, consistency and so on, these criteria for selection will clearly differ when
considering Big Data as topic for education. In the future the examples discussed

Big Data – Challenges for Computer Science Education 35

in class need to be able to clarify the possibilities of data analysis in order to
enable students to recognize main concepts and methods of data analysis.

Summarizing, small data sets will not be sufficient in future data manage-
ment education anymore; instead students need to be enabled to work with
large amounts of data themselves, so that they can recognize the advantages of
databases and data management. This also implies storing the data on a central
server, because of the quantity of data. Therefore, two main functionalities of
databases are emphasized implicitly: storing data in a central place and access-
ing them concurrently with many clients [12]. This results in the challenge to
determine and open up the possibilities to use the available data, mainly coming
from open data projects, in class. Hereby, teachers are enabled to provide ex-
amples that better fit the usage of databases in economy, but at the same time,
students are enabled to analyze data themselves and so recognize which kind of
data may be obtained by combining different data sets.

4.3 Teaching Data Analysis for Understanding Data Mining

Nowadays, data are a valuable resource. They often contain more information
than visible at a first glance. Hence, data mining is one of the most rapidly
growing business factors as well as a threat to data privacy. In order to provide
students with an understanding of the value of data as well as the possibilities
and threats of collecting, processing and evaluating personal data, this aspect of
data management should be added to the curriculum. According to the World
Economic Forum, “personal data will be the new ’oil’ - a valuable resource of
the 21st century” [27]. Just like any other resource, raw data must be made
usable before being able to benefit from them. For data, this is done by analysis:
unnecessary data are stripped, remaining data are aggregated, combined with
other data, and so on until a final result is usable. Yet in typical computer science
education examples, there is an emphasis on structuring data, storing them
in relational databases and retrieving them efficiently. However, only limited
new information is extracted from these data. A reason for this may be that
data are mainly retrieved from the database in the same way they were stored
before. Often these data are supplemented with results of aggregate functions,
but they only add few new information. In contrast, data analysis methods
offer the chance to discover more information and coherences by using the main
methods for data analysis [17], like:

– Clustering sorts new data sets into related groups (clusters) according to de-
termine similarities. For example, in social networks clusters of users sharing
the same interests may be determined in order to propose interesting groups
to a user.

– Classification as well as clustering aims for finding patterns in the data. How-
ever, by classification methods the categories are defined beforehand. Empha-
sis is put on determining characteristics and attributes of these categories.

36 A. Grillenberger and R. Romeike

– Association is used for determining interdependent occurrences of certain
events. This allows for finding inferences for interdependencies between data
sets. Such inferences are formulated as “if-then-relations” and can be used
in order to predict e.g. future behavior after occurrences of certain events.

Summarizing, a challenge for computer science education is to enable students
to understand data mining processes as well as using data analysis methods in
order to acquire new information. Therefore, concepts and topics of data analysis
need to be analyzed with respect to the criteria for selecting topics for general
education described above [10], [21].

4.4 Changes in the Relevance of Data Modeling

Key aspects of data analysis are the methods for structuring data, for interpret-
ing them and for recognizing their important aspects. Especially for structuring,
another fundamental idea of computer science is involved: (data) modeling. In
current teaching, static data modeling is typically applied in order to define data
structures before inserting the data into a database. In the future, the objective
of modeling will change: When working with data in order to analyze them,
typically prestructured data will be used, for example coming from Open Data
projects. Even if they are not structured explicitly, at least an implicit structure
is defined by the way they are stored. Therefore, structuring such data by hand
is not necessary anymore. But when using data analysis methods, static data
modeling will still be relevant for providing an overview over data sets. Also, es-
pecially when combining different data sets, it will be necessary to visualize data
structures as in most cases these data sets are not aligned for being combined,
because at the moment of structuring, future uses are often unknown.

Additionally, when working with NoSQL databases, the relevance of static
data modeling will decrease, because these databases do not enforce a data
schema. Instead, data is stored less spread, but rather coherent in ideally only
one database table/collection often structured exactly the way they are received
from the data sources. This is the case, as Big Data does not fit into a defined
schema, because of its varying structures. In particular, by saving data in a
coherent way retrieving them from the database is accelerated.

Not only static data modeling, but also dynamic modeling techniques are in-
volved when discussing data analysis. In particular, as data analysis consists of
complex processes and sequences of operations, the analysis process can clearly
be visualized and clarified by using sequence diagrams. By discussing data anal-
ysis in this way, the recurrence of the typical methods and operations of data
analysis is clearly visible. Therefore, these techniques would be emphasized in
comparison to only using a data analysis tool without discussing the methods
and operations used. In addition, sequence modeling also has a strong relevance
in daily life, as visualizing and discussing sequences of operations is necessary
in various fields, not only in computer science. Therefore, emphasizing sequence
modeling in data management education also raises its general educational value.

Big Data – Challenges for Computer Science Education 37

Summarizing, this leads to another challenge: At the moment, data modeling
is the main modeling technique when dealing with data in CS education. When
considering Big Data and data analysis, on the one hand the usage of data
modeling changes from mainly structuring data into also visualizing prestruc-
tured data. On the other hand, also process / sequence modeling will increase
in importance for planning data analysis processes.

4.5 Sharpening the View on Data Privacy

Since Big Data strongly affects the topic “data privacy”, it is not surprising
that several publications discuss aspects of Big Data and data analysis in this
context. These topics are commonly taught in the context of database education.
For example, the “simulation game data privacy”2 is a learning environment in
which students may discover threats for data privacy on their own. Such material
typically cover fundamental data privacy problems. But problems caused by
Big Data, which strongly differ, generally are not yet taken into consideration.
Therefore, data implicitly given to the vendors, like when clicking on a web page
link, increases in value. In this context, actual material on data privacy needs to
be reviewed and revised in order to cover new challenges for this topic.

Also, new possibilities raise new threats in this field. Today, data is captured
continuously in daily life, for example obviously by smartphones and tablets, but
also in a more hidden way by cars, smart electricity meters, and such. With the
ability to analyze such large amounts of data, large parts of daily life may be
reconstructed and users profiles may be generated. By combining information
from different sources, gathering private data like friendship relations, hobbies,
habits and so on, is possible. This applies not only for obviously private data,
like friendship relations, or for personal data like name and birth date, but also
for data that seem harmless at the first glance: particularly meta-data, like date
and time a text message was sent on or the position a photo was taken at.

When discussing the threats for data privacy, methods for preventing such
analysis of own data should be pointed out. As with modern devices, (web)
applications and services, data are often collected in a hidden way, a first chal-
lenge is to recognize that a specific application/service/device might collect data.
Even when suspecting such a collection of data, it is hardly possible to prevent
it other than not using the application. Although, in certain cases it is possible
to distort data analysis, for example by using pseudonyms or by entering incor-
rect data. Thereby, no correct conclusions can be drawn from the data analysis,
when intentionally wrong data are spread in order to prevent differing between
genuine and false data, or when consistently using pseudonyms. But even with
pseudonymization, it cannot be ensured that no private data may be recognized
by data analysis: for example, when AOL released a strongly pseudonymized
set of search results in 2006, it was possible to discover contact data of persons
contained in this data set by using simple analysis methods [2].

2 http://www.informatik-im-kontext.de/index.php/entwuerfe/

planspiel-datenschutz-2-0, in German (last retrieved: 20th April 2014).

http://www.informatik-im-kontext.de/index.php/entwuerfe/planspiel-datenschutz-2-0
http://www.informatik-im-kontext.de/index.php/entwuerfe/planspiel-datenschutz-2-0

38 A. Grillenberger and R. Romeike

As discussed in several publications, CS education also should raise students
awareness on data protection and privacy, so these topics are part of various
curricula and educational standards (like the CSTA K-12 Computer Science
Standards [22] or the German Educational Standards for Computer Science [5]).
In current curricula, these aspects are often integrated with other topics, espe-
cially databases, and thus mentioned only marginally. This cannot satisfy the
relevance of these topics, neither at the moment nor in the future when privacy
problems will become even more important because of Big Data. This leads to
the challenge that the relevance of the topic data privacy as well as material for
teaching this topic at school need to be revised in order to fit new requirements.

5 Discussion

It is a grand challenge for computer science education on the one hand to aim for
teaching of long lasting concepts and principles of computer science, and on the
other hand to be consistent with current scientific developments. In the field of
data management, traditional concepts and teaching examples are challenged by
recent developments, such as Big Data, NoSQL and Open Data. By considering
these in data management education, various new and motivating aspects can
be found for teaching—with strong references to daily life of the students.

Using these new possibilities in data management education will clearly change
the face of this topic, which is currently limited to concepts of databases and their
application. In contrast, new concepts call for a stronger emphasis on broader
aspects of data management, e.g. still data storage (as in databases), but in
combination with data usage and data analysis. This will provide even more re-
lations to students’ daily life, especially by being educated in dealing with their
own (personal) data. In order to take the chance of involving such new possi-
bilities, several changes in CS education curricula will be required. Therefore,
it is necessary to take a more in-depth look on these aspects for being able to
evaluate which changes are promising and which are not.

Also, discussing Big Data in class allows a view on modern or newly emerging
professions, like the “data scientist” [9], which involves aspects from computer
science but also from mathematics and statistics. By discussing such fields of
applied computer science, also the view on the field of CS may be sharpened: a
typical bias on computer science is, that it mainly consists of programming. But
by having a look on such interdisciplinary fields like data analysis, it is obvious
that computer science involves more aspects than writing programs.

Nowadays everybody is affected by this field of computer science, because
Big Data is being collected and analyzed in many different systems of daily
use. Therefore, considering Big Data as topic in computer science education also
enables students to form better founded opinions on actual topics in society,
like on (early) data retention or on programs of intelligence services like the
NSA’s PRISM program. While it is commonly known, that in such projects
huge amounts of data are collected, often the consequences remain vague. At
this point, computer science education will help understanding possibilities of
analyzing such (big) data, as well as the related consequences.

Big Data – Challenges for Computer Science Education 39

References

1. Antonitsch, P.K.: Databases as a Tool of General Education. In: Mittermeir, R.T.
(ed.) ISSEP 2006. LNCS, vol. 4226, pp. 59–70. Springer, Heidelberg (2006)

2. Barbaro, M., Zeller, Jr., T.: A Face Is Exposed for AOL Searcher No. 4417749.
(August 2006), http://www.nytimes.com/2006/08/09/technology/09aol.html

3. Bodendorf, F.: Daten- und Wissensmanagement [Data and Knowledge Manage-
ment]. Springer-Lehrbuch, Springer (2005)

4. Brewer, E.: CAP twelve years later: How the “rules” have changed. Com-
puter 45(2), 23–29 (2012)

5. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS: Educational Stan-
dards for Computer Science in Lower Secondary Education. In: Proceedings of the
14th Annual ACM SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, ITiCSE 2009. ITiCSE ’09, pp. 288–292. ACM, New York
(2009)

6. Bundesministerium für Unterricht, Kultus und Kultur: Lehrplan der AHS-
Oberstufe, Fach Informatik, Pflichtgegenstände [Curriculum for the Austrian Sec-
ondary School, Subject “Informatics”, compulsory topics], http://www.bmukk.
gv.at/medienpool/11866/lp neu ahs 21.pdf

7. Bundesministerium für Unterricht, Kultus und Kultur: Lehrplan der AHS-
Oberstufe, Fach Informatik, Wahlpflichtgegenstände [Curriculum for the Austrian
Secondary School, Subject “Informatics”, compulsory topics], http://www.bmukk.
gv.at/medienpool/11876/lp neu ahs 21.pdf

8. DAMA International: The DAMA Guide to the Data Management Body of Knowl-
edge - DAMA-DMBOK. Technics Publications, LLC, USA (2009)

9. Davenport, T.H., Patil, D.J.: Data scientist: the sexiest job of the 21st century.
Harvard Business Review 90(10), 70–77 (2012)

10. Denning, P.J.: Great Principles of Computing. Commun. ACM 46(11), 15–20
(2003)

11. Edlich, S., Friedland, A., Hampe, J., Brauer, B., Brückner, M.: NoSQL [in German].
Hanser, Carl Gmbh + Co. (2011)

12. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. Addison Wesley
Publishing Company Incorporated (2011)

13. GI (Gesellschaft für Informatik e.V.): Handlungsempfehlungen an die politischen
Akteure [Recommendations for action at the Political Actors], Big Data Days
(2013), http://www.gi.de/fileadmin/redaktion/Hauptstadtbuero/
Handlungsempfehlungen.pdf

14. Grillenberger, A., Brinda, T.: eledSQL: A New Web-based Learning Environment
for Teaching Databases and SQL at Secondary School Level. In: Proceedings of the
7th Workshop in Primary and Secondary Computing Education, WiPSCE 2012,
pp. 101–104. ACM, New York (2012)

15. ISB (Staatsinstitut für Schulqualität und Bildungsforschung): Informatik am
Naturwissenschaftlich-technologischen Gymnasium, Jahrgangsstufe 9 (Handre-
ichung) [Informatics at the Scientifiy-Technological Secondary School in Bavaria
(Recommendations)] (2007)

16. ISB (Staatsinstitut für Schulqualität und Bildungsforschung): Lehrplan für das
Gymnasium in Bayern, Fach Natur und Technik [Curriculum for the Bavarian
Secondary School, Subject “Informatics”, Scientific & Technical Branch] (2009)

17. Kemper, A., Eickler, A.: Datenbanksysteme: eine Einführung [Database Systems:
An Introduction]. Oldenbourg (2006)

http://www.nytimes.com/2006/08/09/technology/09aol.html
http://www.bmukk.gv.at/medienpool/11866/lp_neu_ahs_21.pdf
http://www.bmukk.gv.at/medienpool/11866/lp_neu_ahs_21.pdf
http://www.bmukk.gv.at/medienpool/11876/lp_neu_ahs_21.pdf
http://www.bmukk.gv.at/medienpool/11876/lp_neu_ahs_21.pdf
http://www.gi.de/fileadmin/redaktion/Hauptstadtbuero/Handlungsempfehlungen.pdf
http://www.gi.de/fileadmin/redaktion/Hauptstadtbuero/Handlungsempfehlungen.pdf

40 A. Grillenberger and R. Romeike

18. Laney, D.: 3D Data Management: Controlling Data Volume, Velocity, and Variety.
Tech. rep., META Group (February 2001)

19. Luukkainen, M., Vihavainen, A., Vikberg, T.: Three Years of Design-based Re-
search to Reform a Software Engineering Curriculum. In: Proceedings of the 13th
Annual Conference on Information Technology Education, SIGITE 2012, pp. 209–
214. ACM, New York (2012)

20. Sadiq, S., Orlowska, M., Sadiq, W., Lin, J.: SQLator: An Online SQL Learning
Workbench. In: Proceedings of the 9th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2004, pp. 223–227. ACM,
New York (2004)

21. Schwill, A.: Fundamental ideas of computer science. Bull. European Assoc. for
Theoretical Computer Science 53 (1994)

22. Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunniff, D.,
Boucher Owens, B., Stephenson, C., Verno, A.: K–12 Computer Science Standards.
Computer Science Teachers Association, Association for Computing Machinery
(2011)

23. Strozzi, C.: NoSQL: a non-SQL RDBMS (1998),
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%page

24. Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C., Verno, A.: A Model
Curriculum for K–12 Computer Science. Final Report of the ACM K-12 Task Force
Curriculum Committee, CSTA (2003), https://www.acm.org/education/
education/curric vols/k12final1022.pdf

25. UNESCO/IFIP: Information and Communication Technology in Secondary Edu-
cation (2000), http://wwwedu.ge.ch/cptic/prospective/projets/unesco/en/

26. Witten, H.: Datenbanken - (k)ein Thema im Informatikunterricht? [Databases -
No Topic in Computer Science Education?]. LOG IN 2 (1994)

27. World Economic Forum: Personal Data: The Emergence of a New Asset Class
(2011), http://www3.weforum.org/docs/WEF ITTC PersonalDataNewAsset

Report 2011.pdf

All electronic sources were at last retrieved on 17th April 2014.

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%page
https://www.acm.org/education/education/curric_vols/k12final1022.pdf
https://www.acm.org/education/education/curric_vols/k12final1022.pdf
http://wwwedu.ge.ch/cptic/prospective/projets/unesco/en/
http://www3.weforum.org/docs/WEF_ITTC_PersonalDataNewAsset_Report_2011.pdf
http://www3.weforum.org/docs/WEF_ITTC_PersonalDataNewAsset_Report_2011.pdf

Analysis of Computer Science Education

in Venezuela Using the Darmstadt Model

Nubia Alejandra Fecht and Ira Diethelm

Carl von Ossietzky University, Computer Science Education,
26111 Oldenburg, Germany

{nubia.alejandra.fecht,ira.diethelm}@uni-oldenburg.de

Abstract. From time to time societies have to change their educational
system in order to adapt to new social or economic conditions. This
is especially necessary for teaching the subjects CSE and ICT because
their scientific background alters very quickly and their relevance grows
steadily. Venezuela had to meet this challenge in a way that cannot
really be compared with European circumstances because of the po-
litical, ideological and regional differences. For this study we went to
Venezuela where we conducted several interviews with representatives of
the Venezuelan educational system who are involved in Computer Science
Education (CSE). The interview data was analyzed using the Darmstadt
Model, a model created especially for analyzing the situation of CSE in
different countries. It was the first time this model was used to examine
the situation of a Latin American country. Our results provide further
information to people who have to develop, organize and evaluate CSE
and ICT lessons.

Keywords: educational system, sociocultural-related factors, curricu-
lum issues, policies, ideology, computer science education (CSE), Darm-
stadt Model (DM), Berlin Model (BM).

1 Introduction

To establish a new educational field is something other countries have done be-
fore, but it has possibly not been attempted before with the amount of effort
and consistency that Venezuela put into establishing CSE and ICT. This process
can therefore be called unique. It was not an organic process but a tremendous
effort undertaken by the state of Venezuela and especially by its president Hugo
Chavez. Chavez’ personal decision to present millions of Venezuelan students
with laptops is one example of his substantial role in this process. But whereas
great importance was attached to providing the technical equipment, training
the teachers and developing didactic materials for computer science were unfor-
tunately neglected. The most fundamental result of this development is the pre-
dominance of the subject ICT in comparison with the subject CSE in Venezuela.
This has especially one serious unintended consequence: Despite a considerable
improvement in computer related education in Venezuela, most of the students

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 41–53, 2014.
c© Springer International Publishing Switzerland 2014

42 N. Alejandra Fecht and I. Diethelm

remain mere users and consumers of technology. Not enough of them learn to
use the computer creatively or even understand how it works.

To analyze the situation of CSE scientifically we set up a qualitative study
based on the Darmstadt Model, which we briefly describe in section 2. We also
analyzed accessible papers on CSE in Venezuela and conducted and evaluated
interviews which we describe in section 3. We interviewed difference teachers who
work for public and private schools from different parts of the country as well
as representatives with different degrees of responsibility from the ministry of
education. The results of our analysis are presented in sections 4 and 5, followed
by the conclusion.

2 Theoretical Framework: The Darmstadt Model

The Darmstadt Model was created in 2011 to compare the situation of CSE in
different countries and to provide a basis for research and a transfer of research
results from one school or country to another. It is derived from the Berlin Model
and is the result of a qualitative analysis of reports from different countries. It
consists of three dimensions [7], see figure 1.

The first dimension is the ”Berlin Model Top Dimension”. This level contains
all parts of the Berlin Model. The second dimension is the ”Level of Responsibil-
ity”. On this level all significant decision makers are listed who, are responsible
for education in any way, whether at different levels of education authorities or
in schools. And the third dimension is called ”Educationally Relevant Areas”.
This level contains 13 categories, each with sub-categories.

Fig. 1. The Darmstadt Model, from [7]

Analysis of Computer Science Education in Venezuela 43

If one wants to use the Darmstadt Model to portray the status of CSE as
an international, constantly evolving science, it is necessary to define all terms
exactly and capture everything concerning CSE that is thought, written and
done in different countries, [7, p. 5]. When it comes to collecting information and
arranging it temporarily it is probably better to use only a few broad categories
rather than many well defined areas and concepts. This applies especially when
a relatively large group of people from different countries is involved.

The strength of the Darmstadt Model lies in its versatility. It can be used for
both collecting information and arranging it. The remaining weaknesses of the
Model will decrease the more it is used and it will be adapted to the reality of
life.

3 Qualitative Methodology

According to Landsheere [9] and others and due to the general lack of information
a qualitative study appeared to be the best way to meet the requirements of the
three dimensions of the Darmstadt Model. But it was never the aim to map
the situation of CSE in total but rather to produce a first picture by scientific
methods. We describe the planning and the theoretical basis of the interviews and
give some information about the interview partners and their regional positions.

Planning the Interviews: In preparation for our journey to Venezuela we
did a survey of the literature about CSE in Venezuela to gain a first insight
into the official point of view on CSE, [12,11,4,1,10,8]. The information from
these documents and the items of the Darmstadt Model served as a basis for
our questions. Because of the economic and political importance of the north we
expected to produce a meaningful and representative cross section of Venezuela’s
efforts and results in CSE by concentrating on the capital of Venezuela, Caracas,
and several states in the north including Tachira, Merida, Barinas and Trujillo,
see figure 2. We also got into contact with the Venezuelan Ministry of Education,
which helped us to arrange appointments, [12]. Based on the dimension ”Level of
Responsibility/Range of Influence” of the Darmstadt Model we decided to talk
to people of different levels of administration and in different functions regarding
CSE.

Interview Partners: We interviewed teachers working in the public system as
well as teachers working in the private system. At the Ministry of Education
we interviewed several people from the Canaima Project including teachers, sub
coordinators, developers and the main coordinator of that project. We also con-
ducted interviews with the education coordinator in the Anden region: (Merida,
Tachira, Trujillo and Barinas), the general director of curriculum in Merida.
(Area of Education Merida, Venezuela), and also with private primary-school
teachers, a coordinator at a private school and a secondary-school teacher of
computer science to 7th and 10th grades at a public high school. We also in-
terviewed an eighth grade student and a tenth grade student from a private
secondary school and the coordinator of the master of education program, a

44 N. Alejandra Fecht and I. Diethelm

Fig. 2. The Venezuelan states visited (colored red), from [14]

professor lecturing on algorithms, programming and statistics at a university. So
we had interview partners from almost all levels of responsibility and ranges of
influence.

Number of Questions and Length of the Interviews: We first prepared
a short list of open questions and formulated the following acceptable amount
of questions (see appendix table 1) that would not consume too much of the
interviewees’ time but would give the chance to go into detail. The list was
sent to each interviewee beforehand to give an overview and time for prepara-
tion. We tried to find questions that would produce important and applicable
answers regarding the educational areas, but would also not restrict the inter-
viewees in their answers. We hoped that the questions could trigger a discussion
in which even more valuable information could be obtained. Each of the ques-
tions matched an important aspect of the ”Educational Areas” of the Darmstadt
Model. Six similar interview forms, differing slightly according to the intervie-
wee’s level of responsibility were used for this study. We planned to interview
each person at his or her place of work. Being in their own environment would
allow them to walk around, and get further information (papers, handouts, etc.)
if necessary. We planned to audio tape the interviews and asked for permission
after a few sentences when the atmosphere got relaxed, but more than half of
them did not agree. As a consequence we only have handwritten notes on 12
of the 20 interviews and could only transcribe 8 of them in detail. Only these
8 interviews are the basis for our evaluation. The handwritten notes were only
used to re-examine our findings.

Preparing the Analysis and Coping with the Data: After the interviews
the audio tapes were first transcribed in Spanish and then translated into En-
glish1. While reading and transcribing and translating the interviews, we already

Analysis of Computer Science Education in Venezuela 45

started taking notes and decided to connect two axes of the Darmstadt Model.
With the axis ”Educational Areas” and the axis ”Level of Responsibility/Range
of Influence” we formed a grid that helped to take notes while reading the inter-
views and to put information in places where it could easily be found again later.
Having a grid with the most important interview data (statements, information,
immediate conclusions, ideas, links, etc.) also helped to get an overview of the
first findings. This enabled us to decide for which part of the analysis we already
had enough data.

All the interviews were conducted in a nice and friendly atmosphere. Some
people were very open and keen on fulfilling our need for information. Most of
our interview partners wanted to show us the best possible way of implementing
Venezuelan CSE. They were motivated by a sense of pride of their country. This,
of course, needs to be analyzed because we have to separate the information that
is colored by national pride from the real facts.

4 Analysis of Computer Science Education in Venezuela

This chapter is a summary of the results which were achieved in the bachelor the-
sis [3]. We sorted these resulting information into the following eight categories
referring to the second and third dimension of the Darmstadt Model, printed in
black in Fig. 1:

4.1 Policies

In order to investigate the education policy in Venezuela, the following questions
were not planned for the interview, but emerged spontaneously, during the inter-
view: 1. What were the main developments of the education policy in Venezuela
in the last decades? 2. How was CSE influenced by these developments?

This section gives a summary of the general policy of education in Venezuela.
It includes some information about reform programs and plans and their politi-
cal, legal and technical background. The focus lies on the second and third axes
of the Darmstadt Model.

CSE and ICT Before the Socialists: Between 1990 and 1998 Venezuela
started two programs in the field of CSE and ICT: A Computer for Every School.
The objective of the first project was to create a computer lab with 20 computers
for every school. The second project was planned for improving the training of
teachers [10]. Due to the lack of computers and instructors both projects had
very little impact.

Education Policy of the Socialist Party: When the socialist party came to
power education policy changed a lot.

1999: The New Government Introduces ICT in Venezuela: When the
new socialist government came to power in 1999, they were dissatisfied with the
effectiveness of computer science in secondary schools at the time. Therefore
they began working with the idea that the computer should be a resource for

46 N. Alejandra Fecht and I. Diethelm

all subjects and this was when the idea of ICT in schools gained momentum.
In addition, teachers were needed to prepare students for the use of the new
resources. The teachers had to impart the educational software to the students,
but first they had to learn how to use the technology appropriately themselves
and not be afraid to use it [3](I2, line 38).

The Legal Background 2000: Decree 825: Decree 825 was written and put
into effect in 2000 by the Venezuelan government. It regulated internet usage
and internet access for primary and secondary schools as well as for medical
institutions [6]. It supported the development of information technology and
communication in schools and in the communities [3](I2, line 142).

Plans for the Education Policy in Practice: Primary and secondary educa-
tion were the levels of the education system selected by the government in 2000
to incorporate ICT. A schedule for this process was created comprising three
stages [12]:

– The development of educational content for primary and secondary schools.
– The training of teachers in the use of ICT.
– The development of ICT, telecommunications, infrastructure and internet

connectivity.

2004: Bolivarian Missions: In addition to these laws and initiatives other
programs play a role in Venezuela, the so-called Bolivarian Missions.. These
social welfare programs [13] helped, among other things, in alphabetizing adults
and therefore had a significant impact on education. As a result the UNESCO
officially declared Venezuela an illiteracy-free territory in 2006.

2010: The Canaima Project: Since 2010, the Canaima Project has been ac-
tive. It began in 2009 in cooperation with Portugal. It is an educational program
to improve technological innovation amongst school children. This project espe-
cially provides teachers and all students in primary education with laptops [2].
National public schools, municipal and private schools subsidized by the state
participate in the Canaima Project. In 2013 the Canaima Project was extended
to include secondary schools. The intention was to promote the development of
the students by incorporating the use of technology in in all disciplines and in all
grades. Millions of the Canaima laptops have already been given to students of
different ages. Venezuela has developed a special operating system for this laptop
which is also called Canaima [2]. In the technical centers numerous teachers and
scientists work on additional educational software. Section 4.2 offers a detailed
description of this project.

The Technical Background: Venezuela has built various technical centers.
These centers can be used by students and teachers as well as by academics and
the local population. In 2008 the satellite ”Simon Bolivar” [5] was put into orbit.
This satellite was built with the help of China. This action had been planned and
prepared since 2005 because of the government’s policy to become more inde-
pendent of foreign countries, and because of the rapid growth of network usage.
This satellite transmits radio and TV and provides access to communication and

Analysis of Computer Science Education in Venezuela 47

the Internet for all primary and secondary schools in Venezuela, including the
most remote parts of the country.

According to the report ”Freedom on the Net 2011”, which was made by Free-
dom House and financed by the United Nations Democracy Fund, 46 per- cent
of the Venezuelan population have internet access [8]. This number will continue
to rise as it is planned to provide all primary and secondary school students with
a laptop. This project has helped to increase the number of internet connections
in homes. And it is also instrumental in covering all regions of Venezuela with
electrical power supplies because they were now needed for the internet and the
laptops in the schools.

The Political and Ideological Background: In 1999 Hugo Chavez, the leader
of the socialist party, came to power. He based his new policies on the heritage
of Simon Bolivar, a leader of the 19th century. In his tradition Chavez wanted
to deal with issues such as economic growth and alleviation of poverty. As one
important step in this direction, educational improvements played an important
role for the Venezuelan government.

In the area of CS and ICT the Venezuelan socialist party thought that train-
ing new generations in ICT would raise awareness of the issues concerning the
community and help the people to solve problems [3](I2, line 4).

4.2 Media

This section is oriented towards the second and third dimension of the Darmstadt
Model. No questions were planned to address this issue on its own. This category
was found in several answers to other questions or came up as a single topic
during the interviews.

From 2001 until now Venezuela created a huge countrywide infrastructure
of ICT. This infrastructure consists of three different pillars. The first pillar is
a dense net of numerous technical centers well equipped with ICT. A lot of
these centers are free for everybody to use. The second pillar is a free laptop for
every pupil attending a public school, and the third pillar is educational software
for every topic. Through this infrastructure every Venezuelan citizen has access
to ICT. Moreover, it is guaranteed that ICT is a part of the education for
almost every student. It is remarkable that the Venezuelan government does not
consider it necessary to integrate private schools, which amount to 30 per cent
of all schools, into its technical infrastructure[3](I1, line 77).

4.3 Sociocultural Related Factors in Venezuela

In order to investigate the sociocultural-related factors in Venezuela, questions
on the following topics were prepared: gender aspects concerning the students,
the influence of the overall economic situation in Venezuela and the influence of
public opinion and family socialization on CSE.

48 N. Alejandra Fecht and I. Diethelm

Gender Aspects: The Venezuelan government very much wants women to
equally participate in technical jobs. They successfully encourage them to take
up professions in this field of work.

Additional DM Related Information: The Venezuelan people are gener-
ally open-minded towards technical progress, information technologies and CSE.
There are some problems with parents, who do not care how their children treat
the laptops which they were given by the government[3](I4, line 8). The reasons
for this neglect can be indifference or a rejection of the Venezuelan Canaima
Project for political reasons. The economic situation of Venezuela has generally
improved over the last decade, but in recent months the situation deteriorated
a lot. If this economic downward trend should continue, the progress in CSE
would be in great danger. Without the economic power of a wealthy Venezuelan
middle class, the enforcement of CSE would be a demanding task left to the
government1.

4.4 Educational System

The Venezuelan educational system has many facets. With the public schools,
the semi-private schools, the Venezuelan private schools and the foreign private
schools it has principally four types of schools. In addition public secondary
education is split into two very different branches: the technical schools and the
Bolivarian schools.

Fig. 3. Educational System in Venezuela

One can look at these schools as school types five and six. The schools are
controlled by three authorities: by the Ministry of Education in Caracas, by the
respective regional authority and finally by the school itself. Especially in CSE
one can see the consequences of this mixed structure. Although CSE is taught

1 A government, that is weakened by the latest developments since Chavez died just
a few days before we conducted the interviews.

Analysis of Computer Science Education in Venezuela 49

in a remarkably high percentage of schools, CSE is not a subject everywhere.
Sometimes CSE is compulsory and sometimes it is not, sometimes two lessons
are given per week and sometimes three[3](I6, line 12). The schools have different
curricula. Moreover the Venezuelan state does not treat the schools equally. For
example the Canaima laptop is not given to private schools. Maybe there are
good reasons for all these differences. But this kind of split structure makes it
impossible to have a homogeneous education on a consistent high level.

4.5 Curriculum Issues

The Ministry of Education does not provide a definitive curriculum for CSE. Nei-
ther public nor private Venezuelan schools have a definitive curriculum for CSE.
So every school develops its own curriculum. For this reason you can probably
find differences concerning the curricula and the content of CSE not only be-
tween public and private schools, but also between any two schools in Venezuela.
The Venezuelan sate has made only one clear decision: It is not allowed to teach
CSE as a subject in primary schools.

4.6 Teacher Qualification

For the analysis of this category, the following axes of the Darmstadt Model are
used in this section:

– DM: 2 - Level of Responsibility/Range of Influence: Country, State, Region
School and Teacher

– DM: 3 - Educationally Relevant Areas: Teacher Education, Computer Sci-
ence Education, Certification and Training and Professional Experience

Like other countries, Venezuela needs to have enough well-trained teachers to
fulfill the educational mandate of CSE. Therefore, public school teachers have to
upgrade their teaching skills in the Canaima Centers. This can cause problems,
however, if teachers are forced to do so, especially in their spare time, or if they
belong to a low-wage group of professionals. If teachers are persuaded to teach
ICT or to integrate computers into their lessons, this can easily lead to poor
results. One interviewee told us that some teachers let the students play games
instead of teaching the subject properly.

Teachers who are opponents of the leading political party may undermine
the political efforts of the ministry of education, whether consciously or subcon-
sciously. Teachers state that they know far less about ICT than their students
and that they are expected to learn from their students as well as learn by do-
ing. A teacher who is not confident about a subject is not an ideal partner in
qualified education.

The exchange between the student and the teacher about ICT topics may have
a certain value, but is problematic in the long run. Students want a teacher who
is competent, whom they can rely on and who can give them further inspiration.
It is well-known that it is necessary to motivate teachers and students to deal

50 N. Alejandra Fecht and I. Diethelm

with the subject of ICT and CSE. Venezuela tries to achieve this by combining
ICT with regional topics and regional challenges. It remains to be seen if this
is going to work and achieve the results politicians would like to see for the
educational process itself and for the region.

That you can study CSE only at two universities is also a problem mentioned
by one of the interviewees. These two universities alone cannot cover the national
demand of all the students who want to attend this university course[3](I3, line
58). Additionally, the number of graduates does not satisfy the national demand
for teachers in schools. CSE is a young science in Venezuela’s university edu-
cation, which is still in an early stage of its development. The small amount of
universities offering the chance to study CSE reflects this.

4.7 Teaching Methods

Generally, the teaching methods in Venezuela do not differ much from the meth-
ods in Europe. The so-called ”humanistic approach” just gives teachers and
students a different role [3](I1, line 44). The student is supposed to find the
knowledge mainly by himself while his personal needs and his emotions are
taken into consideration by the school.

The teacher’s role is in a way diminished because he is only a consultant
and a helping hand. On the other hand he has the responsibility of helping the
students to develop and form their personalities. In addition this teaching style
requires a great amount of preparation because it is supposed to provide the
students with a challenging learning environment. The teacher has to design
this learning environment and give the students useful material to work with.
The students should then be motivated to use the space to learn in a reasonable
way. There is one specific feature that is mentioned in several interviews, the so-
called ”learning areas”. These comprise different subjects, that have been taught
separately before. Planning and conducting an interdisciplinary lesson increases
the demands on both the students and the teacher, especially when working with
the computer is added as an integrated topic. Working with a computer has to
be learned beforehand.

The question therefore is if the high level of conducting the lessons can be
achieved in everyday school work. A relevant consideration must be the fact that
neither a curriculum nor special didactic materials for CSE are available so far.
This means that teachers for CSE are more or less left alone concerning their
specific teaching methods.

4.8 Intentions

For this category we asked the question what Venezuelan students should know
and be able to perform after they have finished CSE classes. Lessons in CSE
mostly deal with product knowledge. Students only learn to use the usual pro-
grams. Conceptual knowledge and creative thinking are neglected. The popular
learning tools that are a big part of Canaimas’ support for school lessons for all
subjects do not offer children the chance to be creative. All these learning tools

Analysis of Computer Science Education in Venezuela 51

were made with the help of teachers and passed four different departments to
complete their validation.

5 General Results of the Categories Investigated

Venezuela has carried out 12 educational reforms in 30 years. This high amount
of educational reforms asked too much of the Venezuelan educational system,
causing it to become overloaded. The projects in CSE/ICT set the priority on
building up the technical infrastructure, but the teachers’ training, the devel-
opment of didactics and the construction of a nationwide curriculum were ne-
glected. Almost everything that was done served the field of ICT, whereas in
contrast CSE lacked attention and resources. However, the massive building-up
of ICT allowed citizens to get access to ICT. The Canaima Project guarantees
every student a computer to work with, even if their families are underprivileged.
The state of Venezuela attempts to give both genders equal opportunities and
support. Venezuelan citizens are open-minded towards technical matters.

The Canaima Project is afflicted with the neglect of some children who do
not appreciate a free laptop and do not take care of it. Some families also reject
the Canaima Project for political reasons[3](I4, line 8). The project probably
will not survive a major political change or a serious economic crisis. The school
system comprises many different areas and Venezuelan schools get influenced by
different sources, which makes it difficult to set and achieve consistent standards
in CSE. There is still no nationwide curriculum for CSE, therefore every school
has to design its own school plan.

Teachers try to change their teaching methods towards methods that are
action-orientated and focusing on discovery and experimental learning. Lessons
should be student-orientated rather than theoretical, and the students’ previous
knowledge has to be taken into account.

There are three ways in which to become a teacher for CSE/ICT, but all in
all they do not train enough teachers to fulfill the nation’s requirements. And
it is important to understand that, as a result of implementing the Canaima
Project, Venezuela needs more than the normal number of CSE teachers. The
most demanding way to become a teacher of CSE is to study at university, but
there are not enough places available. Therefore, Venezuela does not have enough
CSE teachers and therefore the quality of CSE often does not meet international
standards.

6 Conclusion

Venezuela’s government helped a wide range of citizens to get access to computer
technologies. This definitely is a great success. CSE could be improved greatly,
however, if conceptual knowledge was much more in the center of attention. To
strengthen conceptual knowledge in contrast to product knowledge would also
help to get more people to choose the subject CSE.

52 N. Alejandra Fecht and I. Diethelm

Venezuela’s situation underlines that setting up a technical infrastructure does
not automatically lead to more and better-qualified personnel. It is a particular
disadvantage if ICT instead of CSE is the main subject. Teacher qualification is
essential and should be promoted vigorously.

The results of this study are relevant to politicians, universities and schools.
Politicians who want to improve ICT and CSE can consider Venezuela’s situation
and proceedings. Teachers and students are generally interested in educational
approaches of other countries.

Other researchers planning to conduct similar studies will hopefully gain use-
ful information by this study. Our research in Venezuela can only be a beginning.
Every aspect of the Darmstadt Model needs to be analyzed further. Traveling
through a big country like Venezuela is a great challenge and it would be nearly
impossible for one person alone to collect the data needed to answer every aspect
of the model satisfactorily.

The method of a qualitative study based on interviews served us well, but it is
obvious that it necessarily has its limitations. First and foremost, not everybody
wants to give an interview. Secondly it would be necessary for a detailed picture
to conduct a great number of interviews, which is not always possible. For these
reasons a combination of different methods is probably the best way to conduct
a study like this. However, we got structured and hopefully valuable insight into
CSE in Venezuela.

References

1. Dirección general de curriculo: Ĺıneas estratégicas en el marco del proceso curric-
ular venezolano (2011), http://www.me.gob.ve/

2. Educativo, C.: Proyecto canaima (April 2014), http://canaimaeducativo.gob.ve
3. Fecht, N.: Analysis of the situation of computer science education in Venezuela

using the Darmstadt Model. University Oldenburg (2013)
4. Fundabit: Fundación Bolivariana de Informática y Telemática (2001)
5. Fundabit: Satélite Simón Bolivar (2007), http://fundabit.me.gob.ve/descargas

/revistas/Edicion-21.pdf

6. Gobierno de Venezuela: Decreto 825 (2000), http://www.funtha.gov.ve/doc pub/

doc 194.pdf

7. Hubwieser, P., Armoni, M., Brinda, T., Dagiene, V., Diethelm, I., Giannakos,
M.N., Knobelsdorf, M., Magenheim, J., Mittermeir, R., Schubert, S.: Computer
science/informatics in secondary education. In: Working Group Report, ITiCSE,
pp. 19–38. ACM, New York (2011)

8. Kelly, S., Cook, S.: Venezuela. In: Freedom on the Net 2011 - A Global Assessment
of Internet and Digital Media, pp. 355–367. Freedom House (September 2011)

9. Landsheere, G.D.: Empirical research in education. United Nations (1982)
10. Adrián, M., De Llano, J.: La informática educativa en la escuela. Colección Pro-

grama Internacional de Educadores Populares. Caracas: Federación Internacional
de Fe y Alegŕıa (2004)

11. Ministerio de Educación: Educación Inicial. Planificación y evaluación. República
Bolivariana de Venezuela (2005)

12. Ministerio de Educación: Reformas poĺıticas en la Educación venezolana (2013),
http://www.me.gob.ve

http://www.me.gob.ve/
http://canaimaeducativo.gob.ve
http://fundabit.me.gob.ve/descargas/revistas/Edicion-21.pdf
http://fundabit.me.gob.ve/descargas/revistas/Edicion-21.pdf
http://www.funtha.gov.ve/doc_pub/doc_194.pdf
http://www.funtha.gov.ve/doc_pub/doc_194.pdf
http://www.me.gob.ve

Analysis of Computer Science Education in Venezuela 53

13. Wiki: Bolivarian mission (2013), https://en.wikipedia.org/wiki/
Bolivarian mission

14. Wikimedia: Mapa de venezuela (2013), http://upload.wikimedia.org/
wikipedia/commons/6/6b/Venezuela Division Politica Territorial.svg

A Appendix

Table 1. Interview 1: Form to the Ministry of Education

Nr Content

1 What is the definition which is used in Venezuela to define Computing?

2 Educational System
Is computer science education obligatory in school?

3 Educational System
In what year do the children start with computer science education?

4 Socio-Cultural related Factors
Is there gender equality in computer science education?

5 Gender Aspects
What percentage of boys and girls take part in computer science education?

6 Curriculum Issues
How is the curriculum for computer science determined?
Does it apply to all 23 states or are there differences?

7 Would you be so kind as to give me the curriculum standards?

8 Teacher Qualification
Which qualification do teachers need?

9 Teaching Methods
Which approaches were used in the past and which approaches are used now to struc-
ture the lessons in the subject computer science?

10 Outcomes/Effects
What results are obtained by teaching computer science at schools?
Do you have any anecdote?

11 Extracurricular Activities
Is there a contest planned where pupils can test their computing skills every year?

https://en.wikipedia.org/wiki/Bolivarian_mission
https://en.wikipedia.org/wiki/Bolivarian_mission
http://upload.wikimedia.org/wikipedia/commons/6/6b/Venezuela_Division_Politica_Territorial.svg
http://upload.wikimedia.org/wikipedia/commons/6/6b/Venezuela_Division_Politica_Territorial.svg

“Computer Science in Context”

and “Learning Fields” in Vocational Computer
Science Education – Two Unlike Siblings?

Simone Opel and Torsten Brinda

University of Duisburg-Essen, Essen, Germany
{simone.opel,torsten.brinda}@uni-due.de

http://www.ddi.wiwi.uni-due.de

Abstract. Vocational and general computer science education in Ger-
many use different teaching approaches in some areas to educate their
students. Despite all differences of the school types and their goals of ed-
ucation, there are concepts and ideas which have separately developed,
but cover similar pedagogical, basic concepts. The concept of “Learn-
ing Field-orientated Computer Science Education” (LFCS – “Lernfeld-
konzept”) in vocational computer science education and “Computer
Science in Context” (CSiC – “Informatik im Kontext”) in secondary
education are such related concepts, as both follow the idea of teaching
computer science in an activity-orientated and multidimensional way by
developing suitable contexts and learning situations. In this paper we first
explore the different aspects of both concepts. Afterwards we compare the
similarities and differences of the concepts of “Learning Field-orientated
Computer Science Education” and “Computer Science in Context”. As
result of this comparison, we derive requirements for a general model
of these situated and activity-orientated teaching concepts in computer
science education.

Keywords: Vocational Education, Secondary Education, Computer
Science Education, Learning Fields, Contextualisation, Situated Learn-
ing, Computer Science in Context, Activity-orientated Learning.

1 Introduction

Contextualisation plays a major role in modern didactics as well as in computer
science education. For this reason, several contextualised approaches have also
been developed and implemented in computer science education, such as projects
based on anchored instruction [2] or cognitive apprenticeship [15] [31]. So far,
there seems to be a lack of comprehensive teaching concepts in which contex-
tualisation is anchored systematically. Existing approaches are the two German
developments “Computer Science in Context” (CSiC) for general education [13]
and “Learning Field-orientated Computer Science Education” (LFCS) at voca-
tional schools [17]. Whereas CSiC uses contexts from everyday life (e. g. “Email
for you (only)?” [11]), the LFCS has been developed to use contexts from the

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 54–65, 2014.
c© Springer International Publishing Switzerland 2014

“Computer Science in Context” and “Learning Fields” 55

professional life of the students (e. g. developing a marketing game for a fictional
company [20]).

These approaches originate from different types of school with miscellaneous
aims in computer science education. Nevertheless, they also have some common
aspects – like contextualisation as a common principle, or the current lack of
high-quality teaching units as yet. These accordances and differences carry a
chance to benefit from each other – to improve the respective approach, but also
to develop new teaching material.

Up to now, no common approach or general concept has been developed to
combine the different context-based approaches of secondary and vocational ed-
ucation. Therefore, our goal is to develop a general model for contextualised
computer science education to allow secondary, vocational and, in prospective
expansion, even higher education to benefit from each other.

To pursue this objective, we present relevant basic information about the
general and vocational education system in Germany in section two. In section
three we analyse and compare the approaches of CSiC and LFCS in detail. In
the fourth section we describe our resulting requirements for a general model of
contextualised computer science education and in the last section we draw our
conclusion.

2 General and Vocational Computer Science Education

In contrast to many other countries, Germany offers a variety of secondary
schools which students can attend on their way to professional life, such as
intermediate secondary (“Realschule”) or grammar schools (“Gymnasium”). Af-
ter attaining school-leaving qualification, students can take up training and ed-
ucation at companies and part-time vocational schools, a concept called “dual
vocational education and training”1. Based on individual interests and capabil-
ities, the student can decide himself or herself which type of school to choose,
but a common aim of all school types is to educate the students to master their
social and professional lives.

Computer science is a non-mandatory school subject in secondary education
in most federal states of Germany [30]. Describing the situation of German com-
puter science education is significantly exacerbated by the existence of different
school types in secondary education. Depending on the federal state and school
type, computer science as school subject is offered in different grades with dif-
ferent learning content and a wide variety of curricular concepts. Despite the
differences, all types of secondary schools in every federal state have the aim to
educate the students in order to attend either university or vocational education
and training. In the past years, a major conceptual change from input-orientation
to output-orientation could be observed in computer science education, which

1 During this time, students attend part-time schools for two up to three years, mostly
for one or two weeks, followed by two up or to four weeks of training at the company.
At the end of the training, students attend final examinations by the local chamber
of commerce and industry [19].

56 S. Opel and T. Brinda

is seen as a consequence of the poor performance of German secondary school
students in PISA 2001 [24]. Resulting advancements have been the development
of competence-based and output-orientated curricula (e. g. [18]) and of educa-
tional standards in secondary computer science education [10], which are seen
as a promising development [4].

Vocational schools are part of the mandatory secondary school system and also
include education and training for several professions in computer science, e. g.
computer specialists (“Fachinformatiker”). Students at dual vocational education
and training are apprentices and employees of their training companies as well as
students at part-time vocational schools. They are trained by their companies
for their profession and acquire a deep knowledge in all technologies used in
their companies. Furthermore, they are used to solving problems with the help
of self-directed working methods. This is one of the reasons activity-orientated
teaching methods are demanded at school by the curriculum [29]. The main aim
of vocational education and training is to prepare the students for the challenges
of their profession and lifelong learning.

Although the structures and aims of general and vocational computer science
education seem to be quite different, the question arises how both educational
partners could profit from each other and improve computer science education
in general.

3 A Criteria-Orientated Comparison of CSiC and LFCS

“Computer Science in Context” (CSiC) and the curricular concept of learning-
fields (LFCS) in vocational education are two different situated and activity-
orientated concepts, which seem to follow similar ideas. Although both concepts
demand holistic and interdisciplinary context-based lessons, there are several
differences between the concepts.

We established a set of criteria in an inductive way by analysing basic docu-
ments and descriptions of CSiC and LFCS. Afterwards, we selected which criteria
would be necessary for the prospective model: To embed the model into a the-
oretical basis, it is important to examine the respective competency models (3)
and the theoretical principles of both approaches (2). Another central aspect is
the contextualisation itself (5), which means how to find contexts and transfer
them into teaching units. Supporting acceptance of the model, we needed to in-
clude organisational (1, 4) and curricular (1) aspects. Finally, we compared both
approaches concerning these criteria:

1. Target group, obligation and foundation in curriculum
2. Underlying theoretical principles and concepts
3. Underlying competency model
4. Orientation on standards and superordinated aims
5. Contextualisation of teaching units

“Computer Science in Context” and “Learning Fields” 57

3.1 Learning Fields in Vocational Computer Science Education
(LFSC)

Vocational schools in dual vocational education and training are challenged by
the heterogeneity of their students concerning age and previous knowledge. To
master these challenges, the concept of LFCS has been developed [9] [27] [1],
evaluated and improved [3] [26] in the 1990s and represents a substantial part
of vocational education today.

Target Group, Obligation and Foundation in Curriculum: Schools in
dual vocational education are part of the mandatory secondary school system
in Germany. The curricular concept of LFCS is the obligatory basis of each
curriculum in dual vocational education, including the profession of computer
specialist [29]. For this reason, each curriculum consists of several learning fields
(between 10 and 13, depending on the chosen occupation) instead of traditional
subjects.

Underlying Theoretical Principles and Concepts: The concept of LFCS
is based upon the concept of activity-orientated lessons [12] and uses an activ-
ity classification system instead of a subject classification system [22]. Learning
fields (such as “networked IT systems”, “application development and program-
ming” or “business processes and operational organisation”) are defined as “top-
ical units which contain didactically reduced business and working processes.
They define several competencies the students should gain” [25], but they do
not include specific aims to be reached or skills to be acquired.

Learning fields describe the competencies which are necessary to master the
challenges of the respective occupation, e. g. of a computer specialist. Each learn-
ing field contains skills and competencies from one domain of working processes
and professional activities. This implies that a learning field can contain content
from several topics, as most working processes deal with different questions – e. g.
technical, economic or social issues. The aims of learning processes are described
as learning outcome. Learning outcome is the displayed behaviour and job per-
formance in different complex situations and is highly related to the concept
of action competency. The concept of LFCS also distinguishes between learn-
ing outcome and learning output, which is described as the measurable result of
education and learning processes as defined by traditional curricula [25].

Underlying Competency Model: The “Standing Conference of Ministers of
Education and Cultural Affairs of Germany” (CMECA) [25] describes how the
curricula have to be formulated and which competency dimensions have to be
noted. The CMECA uses the competency description by Roth [23]. He describes
a multidimensional structural model, which is not domain-specific and follows
an action-theoretical approach. Therefore, vocational education is considered as
a holistic educational process. According to the CMECA and Roth, the main
aim of vocational education for students is to gain a comprehensive professional
action competency ([25], p. 15). In this context, the CMECA defines action com-
petency as “the individual’s willingness and capability to behave appropriately
as well as socially and privately responsible in vocational, social and private

58 S. Opel and T. Brinda

situations”. Action competency consists of the three dimensions self, social and
issue competency. The CMECA additionally defines methodological, commu-
nicative and the competency how to learn as intrinsic, cross-sectional parts of
action competency.

Orientation on Standards and Superordinated Aims: The preamble of
each curriculum in vocational education contains CMECA’s demands that stu-
dents should gain “the capability of lifelong learning, personal reflection of own
activities, and a capability for flexibility and mobility” [28]. Another basic de-
mand is to strive for international comparability of educational processes [8].
For this purpose, the “European Qualification Framework” (EQF) has been de-
fined as a general description of skills and competencies to be gained in each
profession. The EQF is also characterised by learning outcome orientation and
competence orientation.

ContextualisationofTeachingUnits: According to the CMECA, the curricu-
lum should be implemented in so-called “learning situations” (“Lernsituationen”,
e. g. “development process of a game” [20]). Learning situations are curricular el-
ements and small topical teaching units which implement the curricular compe-
tence expectations by using professional tasks and working processes ([25], p. 32).
When developing learning situations, the teachers should always follow the curric-
ular situation principle, which helps to reflect whether the didactic decisions about
learning content and teaching methods would be appropriate [14]. These learning
situations should enable the students to gain competencies from different com-
petency dimensions as named above. The learning situations should also connect
theoretical knowledge with practical lessons to improve the action competency of
the students. In addition, the learning situations should be orientated towards the
action model of self-contained activity, one of the basic principles of vocational ed-
ucation. Developing meaningful learning situations with relevant contexts can be
difficult, even if teachers develop learning situations in groups as supposed by the
CMECA [22]. Hence, by enhancing already existing but individually incomplete
guidelines, a comprehensive, structured tutorial has been created and evaluated
[20] to lead the teachers through the process of designing learning situations.

In summary, the concept of LFCS has been developed for the usage in vo-
cational education. Its multidimensional and not domain-specific competency
model as well as several supporting tutorials and guidelines on how to imple-
ment a context into learning situations could be a valuable resource, even for
general computer science education.

3.2 Computer Science in Context (CSiC)

CSiC has been inspired by context-orientated approaches of other subjects such
as physics, biology and especially chemistry, because for “Chemistry in Context”
(ChiK) an empirically validated conceptual framework has been developed. For
this reason CSiC is being based on situated and student-orientated concepts as
well as on basic concepts of chemistry [21].

“Computer Science in Context” and “Learning Fields” 59

Target Group, Obligation and Foundation in Curriculum: The concept
CSiC has been developed for general secondary education. Since computer sci-
ence education at general secondary schools is a non-compulsory part of the
German school system, the implementation of CSiC in class is voluntary.

Orientation on Standards and SuperordinatedAims: CSiC is currently ori-
entated towards “educational standards for computer science in lower secondary
education” [10] [4]. Due to missing educational standards for upper secondary ed-
ucation, no teaching units for upper secondary schools have been developed as of
now.

Underlying Theoretical Principles and Concepts: A lack of publications
on basic concepts of computer science in everyday life of the students leads to
the consequence that CSiC has not been based on a substantial theoretical basis
in computer science. It is only based on the general concept of situated cognition
[13].

Underlying Competency Model: The CSiC concept is not directly based
on a specific competency model. Due to the orientation towards educational
standards, CSiC is indirectly based on the competency definition by Weinert
[32]. He defines competency – following a cognition-theoretical approach – as a
domain-specific disposition of accomplishment and capability to solve different
problems in a responsible way. This definition only refers to cognitive skills and
capabilities, connected to a motivational, volitional and social willingness and
capability ([32], p. 17–31).

Contextualisation of Teaching Units: How to find suitable and relevant
contexts is still an intensely discussed question in computer science education
[7] [5]. According to ChiK, Koubek proposes to analyse a context (which can
also include interdisciplinary aspects) on whether it is relevant for the students’
life or society. As second step, he suggests to formulate the expectation which
competencies from educational standards should be gained during the teaching
unit. Based on these results, the teaching units can be developed containing
several teaching phases with a huge diversity of methods [13]. Up to now, several
useful teaching units such as “email for you (only)?” [11], “cyber bullying” or
“chat bots” have been developed and evaluated, but they only cover a minor
part of the area of computer science yet.

Considering this analysis of CSiC, the concept suffers from a lack of theoretical
foundation. Complemented by the missing concepts, it could be more promising
to implement the concept at secondary schools. For this reason the further de-
velopment of CSiC could be positively influenced by an existing general model
of contextualised computer science.

3.3 Synopsis of Approaches

As described in the previous chapters, the approaches of CSiC and LFCS differ
in several aspects. However, there is also accordance between the approaches:

60 S. Opel and T. Brinda

– Both concepts are based on the ideas that contextualisation would lead to a
higher level of motivation and interest as well as learning in contexts would
help the students to connect their knowledge to its application. The used
contexts should be multidimensional and interdisciplinary to promote the
gaining of different competencies.

– The development of material is seen as a task for teams of teachers which
support each other [6] [22].

– Different guidelines and proposals exist on how to develop and design teach-
ing units for both concepts which could be improved and joined.

Nevertheless, there is a substantial number of differences between the two
concepts:

– Target Group: Whereas CSiC has been developed for general secondary com-
puter science education, LFCS is part of vocational computer science edu-
cation.

– Obligation: In contrast to the compulsory curricular concept of LFCS, CSiC
is just a non-compulsory teaching concept for the subject of computer sci-
ence.

– Basis for Contextualisation: LFCS is part of vocational education and train-
ing. For this reason, the approach is based on the concept of activity-ori-
entation and contexts should originate directly from the professional life of
the students. Due to this professional context, vocational education could
benefit from realistic working processes which present a potential resource
to find suitable contexts.
Contexts for CSiC originate from the everyday life or social environment of
the students and follow the idea of situated cognition. Although several con-
text ideas have been developed, it seems to be difficult yet to find relevant
contexts.

– Underlying Competency Model: CSiC is indirectly based on the cognition-
theoretical model by Weinert [32], which describes competency as personal
disposition and knowledge base, shown as measurable performance. This
domain-specific and output-orientated competency model consists of several
levels which can be reached by students.
LFCS has been defined by the CMECA based on the action-theoretical
outcome-orientated competency model by Roth [23]. Competency consists
of several holistic dimensions and represents a hypothetical definition to
classify students’ action.

Regarding these differences, it appears that LFCS has a broader theoretical
basis than CSiC. For this reason, LFCS could be the main basis for the theoretical
framework of a general model of contextualised computer science education, as
described in the next chapter.

“Computer Science in Context” and “Learning Fields” 61

Fig. 1. Proposed General Model of Contextualised Computer Science Education –
Structure of the framework and transfer to application in practice

4 General Model for Contextualised Computer Science
Education

The description of the proposed model of contextualised computer science edu-
cation consists of two parts. First we describe the requirements towards a con-
ceptual framework, in a second step we introduce the usage of the model.

4.1 Requirements

As described in section 3, there are several criteria to be included into the static
framework of the model:

– For a theoretical foundation of the model, basic concepts of computer sci-
ence have to be selected. This step is necessary to systematically select the
relevant topics – relevant in everyday life – for computer science education
from the wide field of computer science. A theory-driven methodology has to
be developed to consider the inclusion of existing ideas, standards and con-
ceptual frameworks of computer science education as well as the structures
and basic concepts from computer science.

– Additionally, a suitable competency model has to be defined. We regard a
meaningful competency definition and its thorough implementation as fun-
damental aspect of the proposed model.

62 S. Opel and T. Brinda

The underlying competency model of LFCS describes a multidimensional
structural model which implies a holistic view on competencies to be gained.
It emphasises the structure of different dimensions of competence and does
not describe any competency levels. As this model defines the curricular basis
of LFCS, it is mandatory to include the definition for a general acceptance
in vocational computer science education.
The competency definition by Weinert [32] – as an indirect basis of CSiC
– focuses on domain-specific skills (which corresponds to “professional com-
petency” in LFCS) and disregards other competency dimensions. However,
this staged competency model enables us to define levels which the students
should gain. For this reason, competency levels should also be part of our
prospective model. Since existing competency models like the “competence
model for informatics modelling and system comprehension”, developed by
the MoKoM project [16], focus on the subject only, we cannot use them di-
rectly, but it has to be evaluated whether it could be useful to include ideas
from these models.

As shown in fig. 1, the two above-mentioned components establish the core of the
model and have to be defined first. Based on the model core, a set of criteria for
decision-making on whether a context idea is suitable to be implemented into
a teaching unit or learning situation has to be developed. This criteria set has
to be independent of vocational and general education. If required, the criteria
set could be expanded by specialised criteria for the purpose of vocational or
general computer science education.

The last element – but not an inherent part of the model – consists of a
collection of guidelines on how to implement a context idea into a teaching unit
or learning situation. At the time of publication, a variety of material is available
to support the development of learning situations which can be adapted and
expanded for the usage in general computer science education.

This description presents the static elements of the proposed model. In the
next chapter we describe the resulting usage and application of the model.

4.2 Application of Proposed Model

The main purpose of the model sketched above is to enable a comprehensible
and theory-based development of contextualised teaching units.

Each context idea – no matter whether from general or vocational education
– has to be reviewed by using the given set of criteria. Depending on the re-
sults of this review, the idea can either be accepted and thus seen as suitable
for implementation or rejected. During implementation, the guidelines support
the process by defining the work flow, offering validation checks or further re-
sources. The result of this work process should be a complete description of a
contextualised teaching unit or learning situation.

Following the work flow defined by the general model of contextualised com-
puter science education, the development of teaching material for contextualised
lessons could be standardised and optimised.

“Computer Science in Context” and “Learning Fields” 63

After successful evaluation and improvement of the model, extensions for
higher educations are conceivable.

5 Conclusion and Outlook

We started with the question whether CSiC and LFCS would be “unlike siblings”
in order to define the requirements towards a general model of contextualised
computer science education. As shown in section 3, both approaches are very
different, particularly concerning their theoretical foundation. Nevertheless, in
section 4 we could define resulting requirements to develop a theory-based model
to describe these concepts. As soon as these requirements are integrated into
a formal model description, it will be easier to develop teaching material or
to transfer teaching units from CSiC into learning situations and vice versa.
For this reason, our next steps will be to transfer these requirements into the
description of a prospective “General Model of Contextualised Computer Science
Education”.

References

1. Bader, R.: Das Lernfeld-Konzept in den Rahmenlehrplänen (German). Die berufs-
bildende Schule 50(7-8), 211–213 (1998)

2. Bareiss, R., Griss, M.: A story-centered, learn-by-doing approach to software engi-
neering education. In: Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE 2008, pp. 221–225. ACM, New York (2008)

3. Beek, H., Binstadt, P., Hertle, E.M., Kremer, H.-H., Sloane, P.F.E., Zöller, A.: Ab-
schlussbericht. BLKModellversuch “Neue Unterrichtsstrukturen und Lernkonzepte
durch berufliches Lernen in Lernfeldern” NELE (German) (2003)

4. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ict and cs - educational standards
for computer science in lower secondary education. In: Proceedings of the 2009
Conference on Innovation and Technology in Computer Science Education (ITiCSE
2009), pp. 288–292 (2009)

5. Diethelm, I., Dörge, C.: From context to competencies. In: Reynolds, N., Turcsányi-
Szabó, M. (eds.) KCKS 2010. IFIP AICT, vol. 324, pp. 67–77. Springer, Heidelberg
(2010)

6. Diethelm, I., Koubek, J., Witten, H.: IniK – Informatik im Kontext (German).
LOG IN (169/170), 97–105 (2011)

7. Engbring, D.: Einige Anmerkungen zum Begriff IniK (German). In: Diethelm, I.,
Dörge, C., Hildebrandt, C., Schulte, C. (eds.) Proceedings of 6th German Workshop
in Primary and Secondary Computing Education, Bonn, Köllen, pp. 119–124 (2010)

8. European Commission. Evaluation of the European qualification framework, EQF
(December 2013)

9. Fischer, M., Bauer, W.: Competing approaches towards work process orienta-
tion in German curriculum development. European Journal of Vocational Train-
ing 40(2007/1), 140–157 (2007)

10. Gesellschaft für Informatik (GI). Grundsätze und Standards für die Informatik in
der Schule: Bildungsstandards Informatik für die Sekundarstufe I. Log In (150/151)
(2008)

64 S. Opel and T. Brinda

11. Gramm, A., Hornung, M., Witten, H.: Email for you (only?): Design and imple-
mentation of a context-based learning process on internetworking and cryptogra-
phy. In: Proceedings of the 7th Workshop in Primary and Secondary Computing
Education, WiPSCE 2012, pp. 116–124. ACM, New York (2012)

12. Gudjons, H.: Handlungsorientiert lehren und lernen. Schüleraktivierung. Selb-
sttätigkeit (German). Projektarbeit, 6th edn. Klinkhardt, Bad Heilbrunn (2000)

13. Koubek, J., Schulte, C., Schulze, P., Witten, H.: Informatik im Kontext. Ein in-
tegratives Unterrichtskonzept für den Informatikunterricht (German). In: Körber,
B. (ed.) Proceedings of the 2009 German Conference on Informatics and Schools
(INFOS 2009), pp. 268–279. Bonn, Köllen (2009)

14. Kremer, H., Sloane, P.: Lernfelder Implementieren (German). Eusl, Paderborn
(2001)

15. Larkins, D.B., Moore, J.C., Rubbo, L.J., Covington, L.R.: Application of the cog-
nitive apprenticeship framework to a middle school robotics camp. In: Proceeding
of the 44th ACM Technical Symposium on Computer Science Education, SIGCSE
2013, pp. 89–94. ACM, New York (2013)

16. Linck, B., Ohrndorf, L., Schubert, S., Stechert, P., Magenheim, J., Nelles, W.,
Neugebauer, J., Schaper, N.: Competence model for informatics modelling and
system comprehension. In: Global Engineering Education Conference, Berlin (2013)

17. Maschmann, A.: Zur Umsetzung des Lernfeld-Konzepts im Kontext fächer-
systematischer Schulorganisation (German). Lernen & Lehren (2), 64–70 (2013)

18. Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen. Kern-
lehrplan für die Sekundarstufe II Gymnasium/Gesamtschule (German) (2013)

19. Opel, S., Brinda, T.: Learning Fields in Vocational IT Education – How Teachers
Interpret the Concept. In: Diethelm, I., Mittermeir, R.T. (eds.) ISSEP 2013. LNCS,
vol. 7780, pp. 147–158. Springer, Heidelberg (2013)

20. Opel, S., Höpfl, A., Brinda, T.: Practical implementation of learning fields in voca-
tional it/cs education - a guideline on designing learning situations. In: Caspersen,
M., Romeike, R., Knobelsdorf, M. (eds.) Proceedings of 8th Workshop in Primary
and Secondary Computing Education (WiPSCE 2013). ACM, New York (2013) (in
press)

21. Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., Ralle, B., the ChiK
Projekt Group: Chemie im Kontext – a symbiotic implementation of a context-
based teaching and learning approach. International Journal of Science Educa-
tion 28(9) (2006)

22. Riedl, A., Schelten, A.: Handlungsorientiertes lernen in technischen lernfeldern
(German). In: Bader, R., Sloane, P. (eds.) Lernen in Lernfeldern. Theoretische
Analysen und Gestaltungsansätze zum Lernfeldkonzept, Markt Schwaben, Eusl,
pp. 155–164 (2000)

23. Roth, H.: Pädagogische Anthropologie (German). Schroedel, Hannover (1971)
24. Schecker, H., Parchmann, I.: Standards and competence models: The German sit-

uation, ch. 8. Waxmann, Münster (2007)
25. Sekretariat der ständigen Konferenz der Länder in der Bundesrepublik Deutsch-

land. Handreichung für die Erarbeitung von Rahmenlehrplänen der Kultusmin-
isterkonferenz für den berufsbezogenen Unterricht in der Berufsschule und ihre
Abstimmung mit Ausbildungsordnungen des Bundes für anerkannte Ausbildungs-
berufe (German) (2011)

26. SELUBA. Modellversuch “Steigerung der Effizienz neuer Lernkonzepte und Un-
terrichtsmethoden in der dualen Berufsausbildung”: Abschlussbericht zum Model-
lverscuh SELUBA (2002)

“Computer Science in Context” and “Learning Fields” 65

27. Sloane, P.: Lernfelder als curriculare Vorgabe (German), pp. 187–203. Schneider
Verlag, Hohengehren (2001)

28. Sloane, P.F.E.: Bildungsstandards in der beruflichen Bildung – Wirkungssteuerung
beruflicher Bildung (German). Eusl, Paderborn (2007)

29. Staatsinstitut für Schulqualität und Bildungsforschung. Lehrplanrichtlinie für die
Berufsschule. Fachinformatiker/Fachinformatikerin, Fachklassen (German) (2007)

30. Starruß, I.: Synopse zum Informatikunterricht in Deutschland (German). Master’s
thesis, Technische Universität Dresden, Dresden (2010)

31. Vihavainen, A., Paksula, M., Luukkainen, M., Kurhila, J.: Extreme apprenticeship
method: Key practices and upward scalability. In: Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Education,
ITiCSE 2011, pp. 273–277. ACM, New York (2011)

32. Weinert, F.: Leistungsmessung in Schulen (German). Beltz, Weinheim and Basel,
Switzerland (2001)

Reasoning on Children’s Cognitive Skills

in an Informatics Contest: Findings and
Discoveries from Finland, Lithuania, and Sweden

Valentina Dagiene1, Linda Mannila2, Timo Poranen3, Lennart Rolandsson4,
and Gabriele Stupuriene1

1 Vilnius University, Lithuania
2 Åbo Akademi University, Finland, Linköping University, Sweden

3 University of Tampere, Finland
4 KTH Royal Institute of Technology, Sweden

Abstract. In this paper, we present the results from a multi-national
study of students’ results in the international IT contest ”Bebras”. Be-
bras provides motivating and game-like tasks in the format of multiple-
choice questions and interactive problems to students in grades 2–12.
Our study focuses on the results of nearly 8 000 students aged 10–13
in Finland (n=852), Sweden (n=201) and Lithuania (n=7 022), using
gender, task and country as the underlying variables. In addition to pre-
senting the overall results of the three student groups, we also analyse a
subset of tasks in common according to Bloom’s taxonomy and put for-
ward detailed results for these tasks with regard to gender and country.
The results show that there is no difference in performance between boys
and girls in this age group. Our findings also indicate that there was a
slight mismatch between the difficulty level of the tasks used in the con-
test and students’ actual abilities; finding more efficient and trustworthy
ways of evaluating difficulty levels upfront and choosing a suitable task
set is hence important for upcoming contests.

Keywords: Informatics education, computer science education, com-
puting education, competitions, “Bebras” contest, tasks, cognitive skills.

1 Introduction

The current status of informatics1 education is unsatisfactory in many coun-
tries [12]. Although computers, applications and information technology (IT) in
general is an increasingly natural part of the everyday work at schools, focus is
mainly put on basic digital literacy skills while the underlying principles are left
uncovered. This situation has been recognised as a problem in many countries
[17] and recently the introduction of computing in the curriculum in e.g. the

1 The terminology varies between countries, for instance, in the USA “Computer Sci-
ence” is a widely acknowledged term, while UK started to use “Computing” a few
years ago.

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 66–77, 2014.
c© Springer International Publishing Switzerland 2014

Reasoning on Children’s Cognitive Skills in an Informatics Contest 67

UK [4] and Estonia [16] has resulted in an increased debate throughout Europe.
Another problematic issue concerns the view of computing as a male-dominated
field, with girls losing interest in (or never even considering) computing as a
career already at an early stage.

Bringing informatics to schools through curriculum changes in the form of a
formal track is essential but this can also be supported in informal ways. Lately,
we have witnessed an increased number of initiatives (e.g. code.org, Codea-
cademy, Hour of Code) aiming at making programming accessible to everyone.
Similarly, the number of voluntary activities around informatics grows steadily
through e.g. clubs such as CoderDojos, CodeClubs and MakerSpaces. Another
similar activity is contests, for instance ”Bebras”, which is an international in-
formatics contest providing motivating and game-like tasks in the format of
multiple-choice questions and interactive problems to students in grades 2–12.

In this paper, we will focus on one specific age group (age 10–13) and analyse
and compare the results of students in three countries: Finland, Sweden and
Lithuania. Our goal is to bring light on the following questions:

– Are there notable differences in student performance among a) the three
countries and b) boys and girls at this age?

– What cognitive skills are addressed in a set of Bebras tasks?

In the following we briefly discuss the status of informatics education in Finland,
Sweden and Lithuania respectively. Next we describe the Bebras contest, after
which we present the study setting and the results from analysing students’
contest results. The paper ends with a discussion and some final words.

2 Informatics Education in Finland, Sweden and
Lithuania

Students in all three countries commonly start school at the age of seven, when
they enter comprehensive school. The structure and content of the education is
based on national core curricula, which are renewed on a regular basis.

In Finland, informatics (including e.g. programming) was a compulsory sub-
ject at upper secondary level until 1994. Today informatics is not included as an
independent subject in the current core curriculum for basic education (grades
1–9) [11], nor for upper secondary school level [10]. Instead IT is to be integrated
in a given set of focus areas, which essentially means that students should learn
to use technology in a responsible way and to use computers, software and net-
works for various purposes in different subjects. New core curricula will come
into force in 2016 and are currently being drafted. A larger focus on both the
use of informatics as well as e.g. programming, is to be expected.

In Lithuania, education is divided into three stages: primary (grades 1–4),
lower secondary (grades 5–10) and upper secondary (grades 11–12). In 1986–2005
informatics was a mandatory subject at upper secondary level, with a strong
focus on programming and algorithmic thinking (e.g. using Logo) [5]. In 2005
the subject was renamed to IT and the revisions resulted in less informatics

68 V. Dagiene et al.

topics being covered, focusing more on satisfying user needs and developing
computer literacy. The curricula does, however, still include mandatory courses
including e.g. programming. In grades 5–6 students should have approximately
15 lessons on Logo or Scratch. Similarly, in grades 9–10, there is a mandatory IT
subject with several optional modules covering algorithms and programming. In
grades 11–12, students can choose to learn several subjects at extended level, for
instance programming modules preparing for studies at tertiary level. Students
can also take an IT maturity exam, which mainly focuses on programming. New
curricula are expected to be developed in 2016, and guidelines for introducing
informatics and IT at all school levels are currently being drafted.

The current design of K-12 education in Sweden was established during the
1970s. Nine years of comprehensive school (primary and lower secondary educa-
tion) is followed by three or four years of upper secondary school studies. ICT
is commonly used as a tool at primary and secondary level for problem solving
in other subjects and literacy. However, there is no such subject in school as
computing or IT, as they are offered in Technology education in grades seven to
nine. At upper secondary level, education is divided into different programs, e.g.
focusing on natural sciences, technology, aesthetics or electronics. Programming
courses are mainly offered at upper secondary school, in two separate courses,
which are taken by students who attend one of the three programmes in tech-
nology, natural sciences or electronics. Hence, only a minority of students take
programming courses.

3 Bebras – An International Informatics Contest

Different contests and olympiads [15,13] are arranged with the goal of introducing
programming and other informatics domains to students. Contests make teaching
of programming more attractive for students [18]. During contests students get to
meet and compare their skills with peers from other schools, regions or countries
[6,7].

The international Bebras [3] contest on informatics and computer fluency has
been arranged since 2004 in a wide range of countries (29 countries took part
in 2013). The contest was established and held for the first time in Lithuania in
2004, whereas Finland joined the network in 2010 and Sweden in turn in 2012.
The main goals of the Bebras contest are to evoke interest in informatics among
all students at an early stage, motivate them to learn and master technology as
well as to develop their computational thinking skills [9].

The contest is organised in the second week of November in all participating
countries. Contest arrangements vary slightly between countries, commonly the
tasks are solved online under teacher supervision in a class room. The contest
has five age groups: Little Beavers (grades 2–3 in Finland/Sweden and grades
3–4 in Lithuania), Benjamin (for grades 4–5), Cadet (grades 6–7), Junior (grades
8–9) and Senior for the oldest students. Depending on the country, the contest
includes 15–21 tasks for each age group and students have 45–60 minutes time to
finish the contest. Some countries use only four age groups, and there might be

Reasoning on Children’s Cognitive Skills in an Informatics Contest 69

other small differences as well because participating countries have the freedom
to adjust task sets based on their school system.

Bebras tasks are created and discussed in English during an international
workshop, and each country then translates the tasks into the local language for
use in the local contest.2 Most of the problems are 4-choice questions related
to information comprehension, algorithmic thinking, use of computer systems,
combinatorics, discrete structures, puzzles or ICT and society [8]. In particular
for the younger age groups, there are also motivating interactive tasks, where
students answer by dragging and dropping objects, drawing lines, clicking on
items, writing answers in text boxes, etc.

A contest with too many difficult tasks risks discouraging many of the partic-
ipants, and vice versa, too many simple tasks will provide an incorrect view of
informatics. Therefore tasks are categorised according to three difficulty levels
- hard, medium and easy - with the intention to offer a balanced set of tasks
within each age group. The scoring is in relation to these difficulty levels, as
responses are mapped to 5, 4 or 3 points if correct, and -1,25, -1 and -0,75 points
if incorrect. An unanswered question does not affect points at all. Initial points
were given so that answering incorrectly to all questions gave 0 points. It should
be noted that some countries use slightly different scoring systems.

4 Study Settings

4.1 Data Collection

This study is based on an analysis of the results from the Bebras contest held in
November 2013 in Finland, Sweden and Lithuania. The total number of partic-
ipants in the three countries respectively is given in Table 1, together with the
corresponding distribution of boys and girls.

In order to answer our research questions (Section 1), we decided to focus our
attention on one age group. We chose Benjamin (highlighted with grey in Table
1) for several reasons:

– The gender distribution is most equal for this group in all three countries (if
not considering Minis).

– Students are still below the age where attitude changes towards computers
and ICT commonly occur [14].

– Lithuanian students of this age should have at least 15 mandatory lessons
on Scratch or Logo according to the IT curriculum.

Clearly, the number of Benjamins varied greatly between the three countries:
Lithuania had over 7 000 participants, Finland roughly 850 and Sweden around

2 In this process, it is naturally possible to arrive at somewhat different translations,
which still mean the same, but that can be e.g. easier or more complicated to the
students due to interpretations or misunderstandings in the translation phase. Fin-
land and Sweden prepared tasks and translations together and consequently there
should be only minimal differences between Finnish and Swedish task descriptions.

70 V. Dagiene et al.

Table 1. Number of participants in Finland, Sweden and Lithuania in 2013

Finland Sweden Lithuania
(X% boys, Y% girls) (X% boys, Y% girls) (X% boys, Y% girls)

Mini 826 (52%, 48%) 262 (49%, 51%) 2 176 (55%, 45%)

Benjamin 852 (50%, 50%) 201 (56%, 44%) 7 022 (54%, 46%)

Cadet 1 294 (55%, 45%) 451 (55%, 45%) 6 550 (57%, 43%)

Junior 1 281 (69%, 31%) 413 (54%, 46%) 6 490 (60%, 40%)

Senior 170 (78%, 22%) 471 (91%, 9%) 3 671 (68%, 32%)

Total 4 423 (58%, 42%) 1 798 (63%, 37%) 25 909 (58%, 42%)

200. Nevertheless, when implementing the same tasks in the countries, we believe
the differences in both language and school system contribute to a research
setting where specific concepts can be studied.

In Finland and Sweden, Benjamins are aged 10–11 (grades 4–5), whereas
Lithuanian Benjamins are a bit older (aged 11–13, grades 5–6). Students in this
age group need to solve 21 tasks during 45 minutes in Lithuania and 15 tasks
during the same time in Finland and Sweden. This is important to keep in
mind when analyzing the data, but on the other hand Lithuanian students were
somewhat older and might also have some experience with informatics concepts
from their education, which could even out the situation.

4.2 Methodology

Our analysis is divided into two parts: first, we give an overview of the Benjamin
results separately for each country as well as compared to each other. Second,
we select 12 tasks common to all three countries for closer examination.

As mentioned in Section 3, all Bebras tasks are categorized based on the prob-
lem type (algorithm, computer use, puzzle, etc.) and difficulty level during the
international workshop. In this study we also wanted to make a first attempt
at introducing a common framework for categorizing tasks based on cognitive
skill level. We chose Bloom’s taxonomy [1], which is widely used for classifying
educational objectives, and used content analysis of task descriptions for con-
ducting the categorization. The cognitive domain in Bloom’s taxonomy contains
six hierarchical levels starting from simply remembering going to more complex
cognitive skills:

1. Remembering: Recalling previously learnt information.
2. Understanding: Comprehending the meaning, translation, interpolation,

and interpretation of instructions and problems.
3. Applying: Using a concept in a new situation or unprompted use of an

abstraction.
4. Analyzing: Separating material or concepts into component parts so that

its organisational structure may be understood. Distinguishing between facts
and inferences.

5. Evaluating: Making judgments about the value of ideas or materials.

Reasoning on Children’s Cognitive Skills in an Informatics Contest 71

6. Creating: Building a structure or pattern from diverse elements. Putting
parts together to form a whole, with emphasis on creating a new meaning
or structure.

5 Results

5.1 Overall Performance in the Benjamin Age Group

The distribution of the total scores of Benjamins in the three countries are given
in Fig. 1, Fig. 2 and Fig. 3 respectively.

Fig. 1. Proportion of Lithuanian Benjamins achieving a given number of scores (7 022
participants, 21 tasks, maximum score 105)

Fig. 2. Proportion of Finnish Benjamins achieving a given number of scores (852 par-
ticipants, 15 tasks, maximum score 192)

As we can see from the Lithuanian and Finnish diagrams (Fig. 1 and Fig. 2),
the results in these countries nearly follow the normal distribution. In Lithuania,
the overall difficulty level of the tasks may have been somewhat too high for this
age group as the bell curve is shifted slightly to the left. The curve does, however,
show that the task set was in good balance: few students received scores around

72 V. Dagiene et al.

zero and few students reached the highest score. The Finnish curve is more
centred around the mid score, but shows some interesting drops in the graph
depicting boys’ results at this point.

Fig. 3. Proportion of Swedish Benjamins achieving a given number of scores (201
participants, 15 tasks, maximum score 192)

As stated above, there was a large difference in the number of participants in
the three countries: Lithuania’s diagram is based on contest data gathered from
over 7 000 participants and Finland’s illustrates the results of over 850 students.
In Sweden, however, the number of Benjamins was lower (201). This is quite
natural, given that this was only the second time that the contest was held.
Despite the low number of participants, the diagram still resembles a normally
distributed curve, with some spikes and shifted to the left. In the future, when the
contest will attract more participants, the results and the curve can be expected
to be smoother.

5.2 Analysis of Selected Tasks Based on Cognitive Domains

Traditionally Bloom’s taxonomy has been used to connect a particular teach-
ing or training element with a certain cognitive domain level. For instance, a
multiple-choice test is commonly regarded as an example of the first level - re-
membering or recalling information. When creating multiple-choice questions
for Bebras, each task should target a given cognitive skill, focusing on student
learning and understanding, not merely on recalling already known facts.

The task sets for Benjamins in Finland, Sweden and Lithuania had 12 tasks in
common: 10 multiple-choice and 2 interactive ones. We analysed the descriptions
for these tasks using content analysis according to their complexity from three
viewpoints: a) what types of informatics concepts are hidden in the task b) how
complex is the task in order of understanding, and c) do students need to follow
only the given instructions or should they also apply new knowledge obtained
from the task description? The results of the analysis are presented in Table 2.

Reasoning on Children’s Cognitive Skills in an Informatics Contest 73

5.3 Closer Analysis of 12 Tasks in Common

The proportion of correct answers for the 12 tasks in common are given in Fig.
4 and Fig. 5. The tasks are listed in order of difficulty level (assigned by the
contest organisers) from easy to hard.

Fig. 4. The difference in relation to gender and country for six of the tasks in common.
The difficulties are abbreviated as e = easy, m = medium and h = hard.

Fig. 5. The difference in relation to gender and country for the remaining six tasks.
The difficulties are abbreviated as e = easy, m = medium and h = hard.

As the diagrams illustrate, the assigned difficulty level matches the actual
difficulty level for many tasks (e.g. the first two easy ones and all the difficult
ones), whereas some tasks seem to have been either easier (e.g. ”Balls Trigger”)
or more difficult (e.g. ”Zebra Tunnel”) in practice.

The task description for ”Zebra Tunnel” was slightly different in Finland and
Sweden compared to in Lithuania. In Finland and Sweden the task required
students to choose the correct answer from four alternatives (multiple-choice),
whereas Lithuanian students were to calculate the answer and submit it in a
text box (short answer). Consequently, one can assume that this particular task
was more difficult for Lithuanian students as they needed to solve the task
precisely without getting any help from alternative answers provided in the task.

74 V. Dagiene et al.

Table 2. The 12 Bebras tasks in common, described in terms of cognitive domains
(revised Blooms taxonomy)

Task name Difficulty level What concepts are involved
in the task

Cognitive domain

Ice cream ma-
chine

Easy detecting an algorithm; machine
work; sequencing; loop

understanding description of
non-trivial process; detection the
operation of an algorithm; steps
of algorithm instruction

In the forest Easy graph; tracing; route planning;
backward strategy

understanding situation and
planning a route from the end;
separating and organising ob-
jects under given rules; distin-
guishing between input and re-
sult

Jeremy in the
bushes

Easy algorithm; robot navigation;
tracing

understanding given genera-
tive rules to an input and situa-
tion; following simple; 3–5 steps
algorithm instruction

Zebra tunnel Medium to follow instructions; algorithm
analysis; data structures: FIFO
(queue) and LIFO (stack)

applying non-trivial rules of be-
haviour of animals; there are rep-
resentation of two ways to put
data in a structure and retrieve it
later; steps of algorithm instruc-
tion

The impor-
tance of an
instruction

Medium instruction; human machine in-
struction; unambiquous instruc-
tion

understanding description of
processes and rules of behaviour
of your partner; imagine the
steps of an algorithms; interpre-
tation of instructions

Balls trigger Medium instructions; logics; trigger; logi-
cal gate

understanding given genera-
tive rules and instructions to
an initial state; following logical
derivation

The highest
tree

Medium
(Fin/Swe),
hard (Lit)

following instruction; repetition;
searching algorithm; local opti-
misation; global optimum

applying given few steps non-
trivial instructions with repeti-
tion; strictly following a list of
prescribed instructions

Spinning toy Hard binary tree representation; tree
traversal; operations abstraction

applying - identifying con-
stituent parts and functions of
an object; de-construct a pro-
cess, final state or final product;
applying high level abstraction

The takeaway Hard memory; management of data
structure; stack

applying a given complex rule
to the process; processing ob-
jects as data combinations (data
structures)

Frog trouble Hard shortest path; breadth-first
search algorithm

applying given instructions in
the process; going from one state
to another state; invention of ef-
ficient algorithm

Build the
bridges (inter-
active task)

Hard graph; tree; minimum spanning
tree; Kruskal’s algorithm; Prim’s
algorithm

creating - reviewing strategic
plan in terms of efficacy; building
a structure (bridges connecting
islands) from diverse elements
under rules; putting parts to-
gether to form a whole and to
count values

Drumming
(interactive
task)

Hard
(Fin/Swe),
easy (Lit)

iteration; repetition; loops; fol-
lowing instructions

analyzing sequences (rhythms)
and understanding repetition;
using patterns (component
parts) to organise required
structure

Reasoning on Children’s Cognitive Skills in an Informatics Contest 75

This difference might explain the sudden drop in performance for Lithuanian stu-
dents for this task (almost 10% difference in scores between Lithuanian students
and Finnish/Swedish students).

The two tasks having the highest proportion of correct answers (70% or more
of both boys and girls answering correctly) are ”Ice cream machine” and ”In the
forest”, in which Finnish students managed very well. The former of these tasks
addresses skills from the understanding domain, whereas the latter one maps
onto a higher level domain (analyzing). Interestingly, Lithuanian and Swedish
students have done almost equally well on both of these tasks.

The two tasks at the end of the diagram in Fig. 5, ”Build the Bridges” and
”Drumming”, appear to hold some difficulties. These are interactive in all three
countries. ”Build the bridges” expects students to create, e.g. use a cognitive skill
at the highest level. The task involves building a structure (bridges connecting
islands) from diverse elements under given constraints and rules, putting parts
together to form a whole and to count values.

Similarly, ”Drumming” addresses both creation and analysis skills as students
are required to build a sequence (rhythm) based on a set of given patterns
(components or parts). This task hence also assumes some understanding for
concepts such as repetition (iteration) and symbolic language, which can explain
the somewhat better results in Lithuania where students are expected to have
some background in programming. Another task associated with algorithms and
programming is ”The importance of an instruction” (Fig. 4), in which students
need to interpret and understand how to combine precise instructions. This task
was also solved with better results by Lithuanian students.

The results show that there is no notable difference in the performance of boys
and girls. Girls performed better than boys on several tasks, for example ”Ice
cream machine” (Lithuania and Finland), ”In the forest” (Finland and Sweden)
and ”The importance of an instruction” (Lithuania and Finland). Boys, on the
other hand, did better on for instance ”Jeremy in the Bushes”, ”Balls Trigger”
and ”Spinning Toy” in all three countries.

Finally, the diagrams indicate that there is close to no spread between the
countries for two tasks: ”The takeaway” and ”Build the bridges”. These two
tasks are interesting as the variables under investigation (gender, country and
task) seem to have minimal influence on the contest outcome. These tasks could
therefore be expected to hold non-biased qualities, in relation to the variables.

6 Discussion and Future Work

The distribution of scores from the three countries resemble the normal distribu-
tion to different extents. If the results from all three countries had been merged,
we would have ended up with something very close to an exemplary bell curve.
In this paper we, however, wanted to keep the student groups separate in order
to make it possible to reveal any issues between countries and gender.

76 V. Dagiene et al.

As stated in the introduction, informatics is still a male-dominated discipline,
but our results suggest that girls aged 10–13 manage equally well (or even better)
than boys in this contest. Overall, the results in relation to gender are quite
balanced (see Fig. 4 and Fig. 5). Since self-confidence and perceived self-efficacy
seem to play a big role for students’ choice of further studies [2], the Bebras
contest appears to be one way of increasing girls’ belief in their own skills and
knowledge in informatics. A more detailed analysis of the tasks (type, area,
content) solved better by boys and girls respectively would be very interesting,
as this could reveal some useful information on e.g. the characteristics of gender-
neutral tasks, i.e. tasks appealing to both boys and girls.

When comparing the results from the three countries, we can see a difference
in particular for tasks related to programming and algorithms (e.g. ”The im-
portance of and instruction” and ”Drumming”). Lithuanian students managed
notably better on these tasks, which can be explained at least partially by these
students having experience in Logo and/or Scratch. Hence, these students can
be expected to be familiar with instructions in the form of commands and pro-
cedures, whereas Finnish and Swedish Benjamins are most likely not exposed to
programming at school.

The tasks included in the 2013 contest seem to have been somewhat too
difficult for the Benjamin age group, as the bell curves are slightly shifted to the
left for all three countries. The diagrams in Fig. 4 and Fig. 5 give good indications
on how well the difficulty level assigned to a given task by the contest organisers
corresponds with the actual difficulty level. For instance, ”Zebra Tunnel” (Fig.
4) was originally labelled as a medium task, but having seen the results, we can
conclude that it seems to have been more difficult than expected. Deciding on a
suitable difficulty level for a given task upfront is quite difficult. Hence, coming
up with an efficient and valid way of creating good tasks and evaluating them
is a main priority both for us as researchers and for the Bebras community as
a whole. To some extent the actual difficulty level seems to correlate with the
classification in Bloom’s taxonomy. It might hence be worthwhile to classify each
task picked for a given age group before assigning the difficulty level.

The data presented in this paper do not provide any insight into the number
of “guesses”, that is, students merely choosing an answer at random instead
of leaving it blank. An initial review of the detailed response data from the
contests suggests that guessing is something worth further investigations, and
we will study this in an upcoming paper. As a selection process is omnipresent in
the school system, we will also continue our analysis by looking into the results of
other age groups in order to investigate e.g. if, and in that case when, a difference
in participation rates and results between boys and girls become notable.

Acknowledgements. The authors thank all members of the international Be-
bras contest community that took part in task development and in this way
influenced the outcome of this paper. In addition, we thank all the teachers and
students participating in the contest providing us with valuable data for our
research.

Reasoning on Children’s Cognitive Skills in an Informatics Contest 77

References

1. Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E.,
Pintrich, P.R., Raths, J., Wittrock, M.C.: A Taxonomy for Learning, Teaching, and
Assessing: A revision of Bloom’s Taxonomy of Educational Objectives. Pearson
(2000)

2. Ashcraft, C., Eger, E., Friend, M.: Girls in IT - The Facts. Tech. rep., NCWIT
(2012), http://www.ncwit.org/thefactsgirls

3. Bebras - international contest on informatics and computer fluency (2013),
http://www.bebras.org/

4. CAS working group. A curriculum framework for computer science and information
technology (2012)

5. Dagiene, V.: Curriculum for introducing information technology in Lithuanian pri-
mary education: Role of Logo. In: EuroLogo 2005: the 10th European Logo Con-
ference. Digital Tools for Lifelong Learning, pp. 211–218 (2005)

6. Dagiene, V.: Information technology contests - introduction to computer science
in an attractive way. Informatics in Education 5(1), 37–46 (2006)

7. Dagienė, V.: Sustaining informatics education by contests. In: Hromkovič, J.,
Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 1–12.
Springer, Heidelberg (2010)

8. Dagienė, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: Criteria for good tasks. In: Mittermeir, R.T., Sys�lo, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008)

9. Dagiene, V., Futschek, G.: Bebras, a contest to motivate students to study com-
puter science and develop computational thinking. In: Proceedings of WCCE 2013:
Learning While We are Connected, pp. 139–141 (2013)

10. The Finnish National Board of Education. National core curriculum for upper
secondary schools (2003)

11. The Finnish National Board of Education. National core curriculum for basic ed-
ucation (2004)

12. Guerra, V., Kuhnt, B., Blöchliger, I.: Informatics at school - worldwide. Tech. rep.,
Universität Zürich (2012)

13. Hakulinen, L.: Survey on informatics competitions: Developing tasks. Olympiads
in Informatics 5, 12–25 (2011)

14. Ilomäki, L.: The effects of ICT on school: teachers’ and students’ perspectives.
Ph.D. thesis, University of Turku (2008)

15. Poranen, T., Dagiene, V., Eldhuset, Å., Hyyrö, H., Kubica, M., Laaksonen, A.,
Opmanis, M., Pohl, W., Skupiene, J., Söderhjelm, P., Truu, A.: Baltic olympiads
in informatics: Challenges for training together. Olympiads in Informatics 3, 112–
131 (2009)

16. Progetiger - programming at schools and hobby clubs (2012),
http://www.tiigrihype.ee/en/programming-schools-and-hobby-clubs

17. Shut down or restart? The way forward for computing in UK schools, Royal Society
report (2012)

18. Verhoeff, T.: The role of competitions in education, future world: educating for the
21st century. In: A Conference and Exhibition at IOI 1997 (1997)

http://www.ncwit.org/thefactsgirls
http://www.bebras.org/
http://www.tiigrihype.ee/en/programming-schools-and-hobby-clubs

A High-Availability Bebras Competition System

Nataša Kristan1, Dean Gostǐsa1, Gašper Fele-Žorž1, and Andrej Brodnik1,2

1 University of Ljubljana, Faculty of Computer and Information Science, Slovenia
{natasa.kristan,polz,andrej.brodnik}@fri.uni-lj.si,

dean.gostisa@gmail.com
2 University of Primorska, Department of Information Science and Technology,

Slovenia

Abstract. In this paper we present a new system that can be used for
the Bebras and related competitions. The system supports both non-
interactive tasks consisting of a question and multiple choice answers
and standardized interactive tasks. It also contains a highly versatile
administration interface permitting individual teachers/mentors to or-
ganize their own competitions (class-wide, school-wide, ...) that can be
used in teaching of informatics. Furthermore, the system is also highly
scalable and can be distributed across multiple servers.

We have successfully evaluated the system in multiple competitions,
some with over 10,000 students. Because it is designed to support i18n,
it was easily localized and used in Slovenia and in Serbia.

1 Motivation

1.1 The Bebras Competition

In Slovenia there are three competitions run by ACM Slovenia [17]: Bober (Be-
bras, Beaver), RTK and UPM. Each of them is a part of or reflects some interna-
tional competition. Bober [3] is intended for primary (grades 3-8)1 and secondary
school (grades 9-12) children. RTK (grades 9-12) consists of several disciplines
from web programming to video production but also includes a national ver-
sion of an IOI-like (International Olympiad in Informatics) competition. There-
fore, the winners participate in the Central European Olympiad in Informatics
(CEOI) and are considered as participants for the IOI. The last competition
is UPM (Univerzitetni Programerski Maraton, Slovene for University Program-
ming Marathon) and is organized for university students. It is in fact a national
version of the ACM ICPC (ACM International Collegiate Programming Con-
test). The best teams from the UPM participate in the CERC (Central Europe
Regional Contest), a regional part of the ICPC.

Bober [4–7, 12] is a competition in algorithmic thinking, the main purpose
of which is to increase the interest of students in Computer Science. The idea
is to show them that a computer is not just a tool for communication, surfing
the internet, editing text, listening to music or watching movies, but rather

1 In Slovenia primary schools have 9 grades which we count as K-8 and secondary
school 4 grades, 9-12.

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 78–87, 2014.
c© Springer International Publishing Switzerland 2014

A High-Availability Bebras Competition System 79

an inexhaustible source of interesting problems (tasks). In most cases, to solve
a task, algorithmic thinking, logical deduction and problem solving skills are
required, but some tasks are also about the use of information technology and
its influence on society.

In Slovenia the competition is run in two rounds: school-wide in November
and nation-wide in January. In each round there are 15 tasks with a list of mul-
tiple choice answers. As the student enters the answer, it is saved automatically.
Furthermore, students are not penalized for unanswered tasks, while an incorrect
answer is penalized.

Moreover, the competition is divided into four categories: Bobrček (grades
3-5, international category Benjamin), Mladi bober (6-8, Cadette), Bober (9, 10,
Junior) and Stari bober (11, 12, Senior).

The Beaver competition was first organized in Slovenia in 2010 as a pilot
competition with 199 participants. The number of participants in the subse-
quent years has grown steadily with 3,454 taking part in the competition in
2011, almost 8,200 in 2012 and more than 11,500 in 2013. In 2013 there was
also a pilot competition organized in the category Cicibober (grades K-2) with
approximately 200 participants.

Each school has a coordinator and possibly several mentors depending on
the number of participants. The coordinators and mentors are responsible for
organizing and running the first round of the competition. The second round
(national level) is organized by the Programme committee appointed by the
ACM Slovenia. The Programme committee is also responsible for preparing
the tasks for both rounds. The national competition is organized with the help
of the three largest Slovenian universities. Each year, a different university hosts
the competition. In 2014, a model solution booklet [1] was also prepared by
the members of the Programming committee Janez Demšar and Špela Cerar.
Moreover, all tasks from Slovenian competitions since 2010 are available at the
website http://tekmovanja.acm.si/bober.

1.2 Existing Systems

For the first few years, we used the Finnish system called Majava [18]. Majava
was built using Rails, a rapid web development framework [13] in the program-
ming language Ruby [19]. With time, features were added to the system by
different developers. Some of these features break the separation between mod-
els, views and controllers. For example, although the system was designed to
be database-agnostic, its current version occasionally accesses the SQL database
directly and is therefore strongly tied to MySQL.

Indeed, there exist multiple alternative Bebras competition systems. Some of
them are closed source (e.g. the system used in Germany, Austria, Canada and
some other countries), some are simply using Moodle LMS (Italy) and some de-
veloped their own system. For example in France, a system with an optimized
front-end is used, which reduces the number of requests from clients to the server
and consequently the load on a server [14]. While the web workload is distributed,

80 N. Kristan et al.

all the web servers access a single relational database. The sessions are imple-
mented using Memcached technology [10], reducing the load on a database while
still maintaining a single session across all the web servers. If the web servers
become unavailable, competitors are provided with a coded message at the end
of their competition. They can send this coded message to the organizers over
e-mail and have their results entered into the system. To minimize the commu-
nication between the web server and the clients, results are only submitted at
the end of the competition with no backup in case a competitor’s web browser
crashes.

The architecture of the Latvian system is better separated into layers and
can be used on Amazon’s cloud [2]. It uses the S3 distributed data storage
service to serve the images used in the competition, potentially risking that an
attacker could access the images given the URL of an image, even if they are not
competing. The Latvian system is highly scalable and uses MySQL to store the
data regarding a competition, a caching system with periodic updates to reduce
the load on the database and DynamoDB (a fast, scalable NoSQL database) to
store the competitor’s answers. This system should scale to more than 100,000
competitors per hour.

1.3 The Design Requirements of a New System

As mentioned previously, we initially used the Finnish system Majava. The prime
reasons for this choice were the availability of it’s source code and the support we
got from our colleagues in Finland. However, we soon ran into some problems
with the system. The first one was localization to Slovene, where we noticed
that some text messages or words were hard-coded into the programme2. Also,
the task images were publicly available even for non-competitors (cf. French
system). Moreover, during the 2012 competition, the load on our server was so
heavy that we came almost to the edge of its capacity. However, the biggest
problem we encountered was the design issue that includes the administrative
interface. Namely, the Majava system was designed as a single round, one year
system, while in Slovenia we have a two round system with a heavy load on
school coordinators and mentors.

Although it is probably possible to extend the Majava system to serve our
needs, we decided to create our own system. First we put up a number of
functional requirements and complemented them with the system performance
requirements. The functional requirements included internationalization (i18n)
and later localization (l10n) to a specific language, support for a two round sys-
tem, and support for school coordinators and mentors. As a consequence, the
new system provides teachers with the possibility to prepare their own com-
petition and use it in the educational process. The performance requirements
included robustness and scalability to several tens of thousands of competitors.

2 For example, the levels of task difficulty (easy, medium and difficult) were used as
strings in the calculation of a final score for a student.

A High-Availability Bebras Competition System 81

More details of the system are described in the next section, which also in-
cludes an architectural overview of the system. It is followed by the evaluation
section and ends with conclusions and directions for future work.

2 A Distributed Competition System

We first describe the system performance requirements in more detail and then
present the system architecture that fulfills these requirements.

2.1 System Overview and Design

As the number of participants in Bebras competition steadily grows, the per-
formance requirements also grow. Since we ran into performance problems with
the Majava system in the 2012 competition, and since we expected even higher
participation (over 10,000) in 2013, we had to redesign the architecture of the
system. The new system would therefore have to be:

– High performance.
– Scalable.
– Fault-tolerant.

To achieve this, we decided to use a three-layer architecture consisting of a front-
end layer, a business logic layer, and a distributed database back-end layer [15].
As shown in Fig. 1, the front-end was implemented using HTML, CSS and
Javascript, the business logic layer was implemented in PHP using the Yii web
development framework [21], while MySQL Cluster was used as the database
back-end.

Fig. 1. The architecture of our system. The grey-filled boxes are the subject of this
article and represent our new system. The empty boxes represent the task preparation
system. The dotted boxes represent our future work.

82 N. Kristan et al.

2.2 Front-End

Competitor Front-End. To minimize the load on the web server, most of the
processing was moved from the web server to the client. The communication
between the web server and the client was reduced as much as possible while
still ensuring that possible web browser client crashes would not cause data loss.

After registering for the competition, each competitor is redirected to a page
which includes the CSS files and a Javascript application. The Javascript appli-
cation then loads the images and texts for all the tasks, which minimizes the
number of connections to the web server per client. Because the data is transfered
in one go, loading times can also be decreased. The Javascript application then
downloads the session state which might contain the answers by the competitor
from previous attempts and a unique random number. After loading all the data,
the first task is displayed. Since the duration of the competition is limited, the
start of the competition for a student is counted only from the moment when all
tasks have been loaded into their browser and the first task is displayed.

When the competitor switches to the next task, his/her answer is sent to
the server. This ensures that no answers are lost if the competitor’s computer
crashes – (s)he can move to another computer and continue with the competi-
tion. Moreover, Javascript application is designed to support the Bebras Task
Standard API including interactive tasks.

Administrative Front-End. Among other features, our system provides teachers
with competition tokens for students and also with the possibility to check and
download their results and diplomas. Moreover, it permits the organization of
multiple competitions in multiple countries, regions and schools. To facilitate
this, multiple administrative roles are defined:

System administrators have full access, including management of countries,
languages, competition categories, task difficulty levels and users.

Country administrators can manage regions, municipalities and schools. Fur-
thermore, they can also add mentors and assign school coordinators, set up
country-wide competitions, inspect results and decide which competitors get
to advance to the next round of the competition.

Mentors are provided with competition access codes for students that they
distribute to their students for a competition. Mentors also have access to
the results of their students.

Coordinators are mentors with special privileges with access to the results of
all students at a school, even those who have a different mentor. Moreover,
a coordinator validates new mentors from their school.

The system also supports guests. Competition results for registered competitors
are stored and a mentor can view his or her results from competitions in previous
years. Competition results for guests are displayed immediately after finishing
the competition. Obviously, only training competitions made up of old, previ-
ously used tasks are accessible to guests.

A High-Availability Bebras Competition System 83

Task Entry. We decided to completely separate task creation from the compe-
tition itself. Tasks are created and managed on a separate system built in the
Python language using the Django web development framework. This system
supports multiple task revisions and online editing. All tasks, including simple
multiple choice tasks are converted into interactive tasks implementing the In-
teractive Task Bebras API. The interactive tasks are exported from the task
preparation system as zip files and imported into the competition system.

2.3 Business Logic Layer

The business logic layer is the most complex part of our system. To increase its
robustness, we used DNS parallel entries for its several running copies. To ease
development and enhance maintainability of the system, we used the Yii web
development framework. The framework provides an object-relational mapper.
The application is therefore database-agnostic. While we used the MySQL Clus-
ter database for the actual competition, development was done on an ordinary
MySQL database using the InnoDB back-end. The back-end could be replaced
by any one of the relational databases supported by PHP Data Objects. The
list of supported databases includes MySQL, Firebird, Informix, Oracle, ODBC,
PostgreSQL, SQLite and others. The business logic layer also restricts access to
task files such as pictures to registered competitors only.

2.4 Database Back-End

We ensured the robustness and scalability of the back-end by using MySQL
Cluster [20] as the database back-end. MySQL Cluster is a back-end for MySQL
using a Network DataBase (NDB) cluster as its storage engine. It supports
both sharding and failover and is therefore both reliable and scalable. Since
version 7.3, MySQL Cluster supports foreign key constraints which greatly eases
development. The main downside of MySQL Cluster is that by default it loads all
the primary keys in memory to improve performance. This means that memory
usage of the database server is greatly increased compared to the old system.

3 Evaluation

We give only a partial evaluation of the system. The reason for this is that the
development started pretty late and not all functionalities were available at the
time of the November round of the competition. The system is available at URL
http://bober.acm.si/.

3.1 System Configuration

Due to relatively high memory requirements, we deployed our system across three
Linux containers on two physical servers. The servers had two 16-core AMD
OpteronTM 6272 processors (32 cores) each running at up to 2.1GHz with 128GB

84 N. Kristan et al.

of RAM. Two of the containers were running on the same server and on the same
filesystem. The storage on the system with two containers was 2x3TB Serial AT At-
tachment 2 (SATA2) hard drives (WDC WD30EFRX-6) and 2x256Gbyte SATA3
Solid-State Devices (SSDs) (M4-CT256M4SSD2). Logical Volume Manager
(LVM) was used on all disks with SSDs configured as RAID1 with 190GB of the
SSDs used as cache using bcache [16] for the 3TB drives, while the single-container
system used a single 250GB SATA2 hard drive (ST3250310NS).

During the competition the system was continuously monitored for memory
consumption, CPU load, network traffic and database parameters on all servers
using the Zabbix system.

3.2 Functionalities

After the initial distribution of usernames and passwords to the teachers, all
communication went through the system. This includes announcement of com-
petition results and individual results of students to their mentors. Moreover,
all diplomas and certificates for students and teachers were distributed through
the system as well.

The system was localized to three languages (English, Slovene and Serbian)
and used in competitions with the last two languages. Localization proved to
be simple and quick and was accomplished in less than a week. The number of
included schools grew up to 227 with over 130 mentors for Slovenian compe-
titions and over 70 schools in Serbia. Note that by using a single system, the
administrative overhead was greatly reduced.

3.3 System Performance

Our system was successfully used in three large competitions: school-level and
finals in Slovenia, and school-level in Serbia. The school-level competition in
Slovenia was performed across four days and involved 11,653 competitors. The
school-level competition in Serbia was performed across five days and involved
6,280 competitors. The finals in Slovenia had almost 300 competitors competing
at the same time. The maximal number of students starting the competition in
the same hour was 727 with a maximum of 48 students starting the competition
within the same minute and with up to 6 students starting in the same second.

The system performance was measured only during various competitions and
we were not able to fully utilize the servers available given the number of simul-
taneous competitors. During the largest competition (school-level in Slovenia),
the load on the server with two containers never exceeded 35%, where the most
of the competitors were handled by the first server in our pool. As shown in Fig.
2, the maximal CPU utilization was always under 25%.

Moreover, Fig. 3 shows the maximal memory utilization was 23.13GB of total
128GB for the whole server running two containers. The memory consumption
of one distributed database instance was under 7GB while the consumption of
the rest of the web server was negligible. Because most of the data is pre-cached,
the competition itself had a negligible impact on the memory consumption.

A High-Availability Bebras Competition System 85

Fig. 2. The CPU load of a server running two instances of our system during a com-
petition involving over 10,000 students

Fig. 3. The memory consumption on a server running two instances of our system
during a competition involving over 10,000 students

Minimal System Requirements. The new competition system could be used on
any computer with PHP and MySQL. Based on performance data acquired
during competitions, we expect that a quad-core server with 8GB of RAM should
be enough to handle the number of competitors we had participating in our
competition. To ensure robustness and high availability two or three such systems
would need to be set up.

Anecdotally, during the finals in Slovenia, the load on the servers was so low
that the staff in charge of monitoring the system environment had to call the
organizers to check if the competition was still going on.

Potential Problems. Due to shortage of time and late development we ran no de-
tail load tests on our system. The only serious load test was the competition itself
and we encountered virtually no problems. Indeed, we are aware of two problems
only. One situation happened during the Slovenian finals where a small number
of client machines had an older version of InternetExplorer without Javascript
support for the front-end to function properly. The problem was resolved in less
than five minutes at no cost to the competitors as the competition is timed in-
dividually per competitor. The other situation happened during Slovenian first

86 N. Kristan et al.

round when a MySQL Cluster failed unexpectedly for unknown reasons. The
server was restarted automatically without the operator’s intervention and the
competition continued with no problems about ten minutes later.

4 Future Work

We built a robust and scalable system used in Slovenian and Serbian Beaver
competition. The system was built according to a three-layer architecture, each
layer on its own being designed to support scalability and robustness. Moreover,
the built system provides a sufficient level of administration support including
the possibility for teachers to access the data of their students and even organize
their own competitions. Nonetheless, the system is easy to localize to other
languages, which was exhibited by the localization to Serbian.

There are still a number of future directions. Due to late development, the
most obvious ones are to perform detail load and failover testing of the system,
and to prepare a more thorough documentation of the system [11]. Further-
more, the user experience in an administrative interface in particular needs an
improvement.

On the other hand, to bring even more scalability and robustness into the
system would require an architectural redesign of the competition part along
the lines of the Latvian system [2]. As already presented in Fig. 1, we could
introduce a temporary non-relational data store to keep the competitor’s answers
during the competition and later aggregate them into the central database. The
technology used would probably look like Google App Engine [8] for the business
logic layer and Google Datastore [9] for the database layer.

Last but not least, we would like to encourage further use of our system either
by joining to the installed version or take the code and build your own system.
All the code is available under a GPL license.

Acknowledgement. We gratefully acknowledge the help of Niko Colnerič with
the Majava system, Grega Pompe for writing the task creation system, Bojan
Pikl with implementing the application for automatic generation of diplomas
and certificates, and Milutin Spasić for helping to design the system, localizing
it to Serbian and helping to organize the competition in Serbia.

References

1. ACM Slovenia: ACM tekmovanja – Bober (2012), http://tekmovanja.acm.si/
bober (accessed February 03, 2014)

2. Balodis, M.: Mākon̄i izvietotas sistēmas slodzes test (2012)
3. Bebras: Bebras, international contest on informatics and computer fluency (2004),

http://bebras.org/ (accessed February 03, 2014)
4. Bell, T., Curzon, P., Cutts, Q., Dagiene, V., Haberman, B.: Introducing students to

computer science with programmes that don’t emphasise programming. In: Pro-
ceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education, pp. 391 (2011)

http://tekmovanja.acm.si/bober
http://tekmovanja.acm.si/bober
http://bebras.org/

A High-Availability Bebras Competition System 87

5. Dagienė, V.: Information technology contests: Introduction to computer science in
an attractive way. Informatics in Education 5(1), 37–46 (2006)

6. Dagienė, V.: Teaching information technology and elements of informatics in lower
secondary schools: Curricula, didactic provision and implementation. In: Proceed-
ings of the 3rd International Conference on Informatics in Secondary Schools -
Evolution and Perspectives: Informatics Education - Supporting Computational
Thinking, pp. 293–304 (2008)

7. Dagienė, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: Criteria for good tasks. In: Mittermeir, R.T., Sys�lo, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008)

8. Google Developers : Google app engine: Platform as a service,
https://developers.google.com/appengine/ (accessed February 03, 2014)

9. Google Developers: Google cloud datastore, https://developers.google.com/
datastore/ (accessed February 03, 2014)

10. Dormando: Memcached, http://memcached.org/ (accessed February 03, 2014)
11. Gostǐsa, D.: Visokorazpolojiva storitev tekmovalnega sistema v oblaku. Diploma

thesis, University of Ljubljana, Faculty of Computer and Information Science,
Ljubljana (2014) (Engl. translation: A high-availability cloud-based competition
system service)

12. Haberman, B., Cohen, A., Dagiene, V.: The beaver contest: Attracting youngsters
to study computing. In: Proceedings of the 16th Annual Joint Conference on In-
novation and Technology in Computer Science Education, pp. 378 (2011)

13. Hansson, D.H., et al.: Ruby on rails (2009), http://www.rubyonrails.org (ac-
cessed February 03, 2014)

14. Hiron, M.: Personal correspondence (2013)
15. Kate, M.: Scalable web architecture and distributed systems,

http://aosabook.org/en/distsys.html (accessed February 03, 2014)
16. Kent, O.: Bcache, http://bcache.evilpiepirate.org/ (accessed April 24, 2014)
17. Kristan, N., Brodnik, A.: Integrated ACM competitions website. In: Proceedings

of the 10th IFIP World Conference on Computers in Education: Learning While
We are Connected, pp. 174–175 (2013)

18. Majava: Majava kilpailu, http://www.majava-kilpailu.fi/ (accessed February
03, 2014)

19. Matsumoto, Y., Ishituka, K.: Ruby programming language. Addison Wesley Pub-
lishing Company (2002)

20. MySQL: MySQL Cluster CGE, http://www.mysql.com/products/cluster/ (ac-
cessed February 03, 2014)

21. yiiframework: The fast, secure and professional php framework, http://www.
yiiframework.com/ (accessed February 03, 2014)

https://developers.google.com/appengine/
https://developers.google.com/datastore/
https://developers.google.com/datastore/
http://memcached.org/
http://www.rubyonrails.org
http://aosabook.org/en/distsys.html
http://bcache.evilpiepirate.org/
http://www.majava-kilpailu.fi/
http://www.mysql.com/products/cluster/
http://www.yiiframework.com/
http://www.yiiframework.com/

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 88–99, 2014.
© Springer International Publishing Switzerland 2014

Competence Orientation in Vocational Schools –
The Case of Industrial Information Technology

in Austria

Markus Brunner1 and Monika Di Angelo2

1 HTL Krems, Department for Information Technology, Krems, Austria
markus.a.brunner@gmail.com

2 Vienna University of Technology,
Institute for Computer Aided Automation, Vienna, Austria

monika.diangelo@tuwien.ac.at

Abstract. As part of the project “Educational standards in vocational schools”
the responsible Federal Ministry compiled competence models, descriptors and
didactic examples for Informatics in technical high schools (HTL). The imple-
mentation of this project implies a paradigm shift for the vocational school
system, which requires a new pedagogic foundation. This paper presents a di-
dactical concept, that meets the requirements of the educational standards in
general and competence orientation in particular. A proposal for the implemen-
tation of these educational standards in the competence area industrial informa-
tion technology (INIT) is presented. The specification is based on selected
teaching sessions for micro controller technique. Learner-oriented teaching
methods are applied, along with procedures to promote the learners’ intrinsic
motivation and creativity in general. It became apparent that the competence
area INIT conveys remarkably demanding learning outcomes and its implemen-
tation proved challenging on multiple levels.

Keywords: vocational schools, competence orientation, educational standards,
technical high school, secondary education.

1 Introduction

Austria’s school system is in a flux, educational standards and competence orientation
are the two key topics. The declared objectives in this process are a sustainable in-
crease of quality and a better comparability of educational attainment.

This change is already partly implemented: in 2011, the Federal Ministry of Educa-
tion, Arts and Culture (bm:ukk) released new educational standards for the vocational
school system [1] which are orientated towards the development of well-defined
competences. To this end, the ministry compiled competence models, descriptors and
didactic examples for Informatics in technical high schools (HTL) as part of the
project “educational standards in vocational schools”.

These new curricula induce a twofold change: new contents and an orientation to-
wards competence attainment. While the adaptation of the contents is caused by the

 Competence Orientation in Vocational Schools 89

dynamics of IT, the change towards competences bears challenges on multiple levels.
The predominant method in the class rooms is still ex-cathedra teaching where the
students assume a rather passive role. This is in conflict with the characteristics of
competence orientation which calls for a paradigm shift in teaching. Therefore, new
didactic concepts have to be developed that cater to the new contents and the demands
of competence orientated teaching.

This paper deals with the development and implementation of a didactic concept
for the competence field “Industrial Information Technology” (INIT) within the voca-
tional schools for information technology (HTL for IT) as a case study. The pursuit of
this new concept entails the following central questions:

Q1: In which way should teaching be designed as to ensure the educational stan-
dards for the competence field INIT?

Q2: In which way can be ensured that individual learning goals are attained in
combination with personal and social competencies?

Q3: To what extent does a specific school influence the implementation of the new
curricula with respect to activity-oriented teaching methods?

Q4: In which way should teaching be designed as to foster creativity and intrinsic
motivation?

Section 2 of this paper discusses Austria’s approach towards competence orienta-
tion within the vocational schools for IT. In section 3 the case study is presented.
Finally, an evaluation and discussion can be found in section 4.

2 Competence Orientation at Vocational Schools for IT

Educational standards can be seen as precise and binding expectations regarding
competence attainments of the learners. A so-called competence model (c.f. section
2.2) serves as basis for the definition of the aspired competences, which include
operational competences with respect to the learning content. These competences
comprise expertise and methodological competences, as well as social and personal
competences. Competence orientation in education systems means a focus on foster-
ing the desired competences.

One of the reasons for a shift towards competence orientation lies in the compara-
bility of education systems. To that extent, the EU developed the European Qualifica-
tions Framework (EQF) [2] in 2008.

In order to improve the quality of informatics education by means of standards and
competences, there have been initiatives in Germany, like MoKoM [3] or the GI stan-
dards [4].

The current initiative in Austria is based on Weinert’s definition of competence
[5]. The legal basis for competence orientation in vocational schools in Austria is the
enactment of the respective curricula [6]. Details for the implementation can be found
in the ministry’s report “educational standards for vocational schools” [7].

90 M. Brunner and M. Di Angelo

2.1 Teaching Competencies

Austria’s new educational standards define the desired learning attainments in terms
of competencies. Adequate teaching methods are required for the learners to acquire
these competencies effectively [8, 9, 10]. These have to go beyond the conveyance of
factual knowledge.

The ministry’s report “teaching competencies” [11] still defines the main compo-
nents of teaching as planning, delivering, and assessment, which accounts for tradi-
tional teaching as well. New territory has to be conquered with regard to the teaching
methods: They should aim at establishing operational competence, skills and abilities,
along with personal and social competence. A major difference lies in the learner-
centered approach as opposed to traditional subject-centered or teacher-centered
methods. More specifically, learners are no longer mostly passive consumers of con-
veyed information, but are put to action.

In this sense the teacher becomes a learning coach, while the learners are encouraged
to actively work through the contents, thereby acquiring the desired competences. The
teacher’s responsibility shifts towards providing suitable conditions, materials and a pro-
ductive atmosphere. In addition to factual knowledge, an interdisciplinary embedding of
knowledge and skills plays a central role. For teachers this implies a coordination and
alignment with other teachers with respect to content and timing.

The ministry’s report [11] further identifies the following criteria as essential to
successful competence orientated teaching: Structured teaching with clearly defined
objectives; Diversity of methods, variable forms of learning; Assessment-free space
for exercises; Facilitation of experiencing competence increase; Motivating environ-
ment; Development of the ability to accept criticism; Sufficient time for learning
processes.

2.2 Competence Model

The ministry’s competence model defines the desired learning outcomes by means of
competences. It consists of the two dimensions “content” and “action”, as depicted in
fig. 1.

For a vocational school for information technology (HTL IT) the dimension “con-
tent” defines the contents that are taught in IT. These include software development,
IT projects, and systems engineering as competence fields. For the case study in this
paper the competence area industrial information technology (INIT) has been selected
which belongs to the competence field “systems engineering”. Other areas in this flied
are: electrical engineering and electronics for IT, basics of informatics, operating
systems, system integration and infrastructure, and decentralized systems.

The dimension “action” defines the cognitive effort. This is based on the revised
Bloom’s taxonomy [12] where the cognitive area of learning goals has been subdi-
vided into six categories: Remember, Understand, Apply, Analyze, Evaluate, and
Create. For Austria’s educational standards, the ministry combined the first two cate-
gories [13]. The ministry’s report “educational standards for vocational schools” [7]
serves as a basis for the dimension “action”, together with the more specific “educa-
tional standards for information technology” [14].

 Competence Orientation in Vocational Schools 91

Fig. 1. Competence model of a vocational school with focus on IT

2.3 Descriptors

As can be seen in fig. 1, descriptors are the intersection points of the dimensions
“action” and “content”. They describe the expectation in the form of resulting compe-
tences. The ministry defined a coding syntax [13] for the descriptors in order to uni-
quely assign them to competence areas:

<school type><school focus> - <content> . <index> - <action>

For the school type vocational school for information technology (HTL IT), the
code is IT, for the school focus “system engineering” the code is S. For basic topics
the code for the school focus is generally omitted. The code for content is a numerical
value indicating one of the main educational topics (in our case “systems engineer-
ing” is represented by 3). The index is used to distinguish multiple descriptors within
an educational topic. For basics the index can run up to 100. Indices with a value over
100 indicate focus topics. The code for actions is a letter, where A represents the cat-
egory “remember and understand”. To illustrate this coding, a few descriptors [13] are
listed below:

IT-5.1-B I am able to explain the main scalar data types of a high-level pro-
gramming language.

IT-3.23-D I am able to assess an operating system and to choose an appropriate
one for a given purpose.

According to [13] IT-5.1-B is assigned to the competence area software develop-
ment. The student should understand and be able to describe the taught contents

92 M. Brunner and M. Di Angelo

“scalar data types”. IT-3.23-D represents the 23rd competence in the area of systems
engineering at the level of analyzing.

3 Case Study at HTL Krems

For the case study the vocational school HTL Krems (http://www.htlkrems.ac.at) was
chosen. The school’s intent is to follow the state-of-the-art as closely as possible,
which was demonstrated by their great interest in participating in this case study. The
implementation of the developed didactic concept was done at the school’s depart-
ment for information technology.

The recently enacted new curricula [6] had to be applied for the first time in the
school year 2011/2012 for all first grades in the vocational school.

3.1 HTL (Technical High Schools)

Vocational Schools. Vocational schools take five years (from year 9 to 13) and award
a diploma that not only certifies professional qualifications but also allows university
access. This type of school is deeply rooted in the Austrian education system with a
fine tradition. According to [15] about half of the roughly 8000 diploma holder per
year opt for tertiary education. Those who enter the job market are very welcome by
employers [16].

In an international comparison it is hard to classify those diplomas. Within the
ISCED (International Standard Classification of Education) [17] it could be classified
between 4A and 5B [18]. To help with the international comparison of educational
qualification, Europe developed the European Qualification Framework (EQF) [2]
which defines attainment in the categories “knowledge”, “skills”, and “competencies”
at eight levels.

Technical High School for Information Technology (HTL IT). Within the range of
vocational schools there are the technical high schools, the so-called HTL, which
come in several different flavors, e.g. for Information Technology (IT). These school
types devote about half of the weekly hours to general subjects, and the remainder to
IT specific ones.

Among the IT specific subjects, the competence field “systems engineering” cov-
ers the most weekly hours, namely 31 over the five years. Systems engineering com-
prises the competence areas: electrical engineering and electronics for IT, basics of
informatics, operating systems, system integration and infrastructure, decentralized
systems, and industrial information technology (INIT).

Competence Area INIT. For the case study, the competence area INIT was selected
which is taught in years 4 and 5. The desired competences for those years [14] are
listed in the tables 1 and 2.

 Competence Orientation in Vocational Schools 93

Table 1. Descriptors for competence area INIT, competence levels A, B, and C

Content Remember/Understand Apply
Structure and functionality of
SPC and micro controller
systems

… know the basic structure
and functionality of SPC and
micro controller systems

… are able to apply SPC and
micro controller systems for
technical tasks in typical
settings within INIT

Development of typical
applications

Industrial field bus systems … know the structure of
typical industrial field bus
systems including their tech-
nologies and transmission
methods

… are able to apply technol-
ogies and methods of indus-
trial field bus systems

Table 2. Descriptors for competence area INIT, competence levels D and E

Content Analyze Create
Data processing, visualiza-
tion, and communication of
processes

… are able to plan, handle,
document and supervise IT
infrastructure for processes
in INIT

… apply SPC and micro
controller systems for devel-
opment of networked and
real-time systems in industrial
scenarios, and to implement
suitable mechanisms for
process communication
for these systems

Advanced topics in SPC and
micro controller

Development of specialized
systems

These competences are not assigned to a school year, neither in the curriculum nor
in the educational standards. So it is obviously left to the teacher’s responsibility.

3.2 Requirements

Based on the given constraints the following requirements for the teaching concept
could be derived. These requirements are intended for the school years 4 and 5 (over-
all years 12, 13). In order to increase clarity, four clusters have been formed:

Table 3. Requirements for pedagogy and learning psychology

 Cluster A: Pedagogy and learning psychology
A1 Consider aspects of natural, reasonable and incidental learning
A2 Harness different learning speed
A3 Set clear teaching goals and identify contents

94 M. Brunner and M. Di Angelo

Table 4. Requirements for competence-orientated teaching

 Cluster B: Competence-orientated teaching
B1 Put student to action by employing activity-oriented methods
B2 Consider individual performance

B3 Foster intrinsic motivation and creativity
B4 Use a range of diverse teaching methods
B5 Leave room for learning processes and reflection
B6 Support networked thinking and multidisciplinarity

Table 5. Requirements for legal and institutional constraints

 Cluster C: Legal and institutional constraints
C1 Descriptor “remember and understand” for micro controllers

C2 Descriptor “remember and understand” for SPC
C3 Descriptor “remember and understand” for industrial field buses
C4 Descriptor “apply” for micro controllers
C5 Descriptor “apply” for SPC
C6 Descriptor “apply” for industrial field buses
C7 Descriptor “analyze” for processes

C8 Descriptor “create” for micro controllers
C9 Descriptor “create” for SPC
C10 Foster development of social and personal competence
C11 Consider school specific implementation of INIT
C12 Practical instruction with focus on deepening knowledge

Table 6. Requirements for embedded systems

 Cluster D: Embedded Systems
D1 Consolidation of previous knowledge
D2 Consider 3S (science, skills, state-of-the-art)
D3 Introduction to embedded C (essential for practical exercises)
D4 Modular and open topics for projects with flexible and creative solutions
D5 Impede plagiarism, foster individual attainment

D6 Use free software
D7 Use evaluation kits
D8 Flexible grading – grade is based on several elective contributions
D9 Assignments with diverse levels of difficulty and degree of fulfilment

 Competence Orientation in Vocational Schools 95

3.3 Didactical Concept

Based on the above listed requirements the didactical concept for INIT for year 4 in a
HTL IT has been derived and is presented in fig. 2.

B1: Introduction
PC to micro controller

Theory units Practical exercisesThematic blocks

T1: Introduction

PE1: Embedded
software development

„Hello World“

T2: Micro controller

T3: Performance

selection criteria

T4: Relevant
componenrs and their

importance

T 5: Reflection and
outlook

T6: Project presentation

PE2: „How to use a
port“

PE3: Connection
of peripheral
components

PE4: I/O components
(ADW u. Interrupts)

PE5: Finalization of

B2: Functionality and
application of a
miicro controller

B3: Micro controller
components

SPC

Industrial field bus systems

Process: data processing, visualization, and communication

School week

1

2

3

4

5

6

7

8

9

10

11
-

20

21
-

30

31
-

35

C1

C4

C2
C5

C3
C6

P1

P2

classes and

Group project 2

Fig. 2. Teaching concept for Industrial Information Technology (INIT) in a HTL IT in year 4

As can be seen, an emphasis has been put onto micro controllers. Furthermore, not all
requirements are taught in year 4. The remaining requirements are rather taught in year 5.

96 M. Brunner and M. Di Angelo

4 Evaluation and Discussion

4.1 Evaluation

The change of paradigm towards competence orientation proved challenging for both,
teachers and students. Apart from obstacles in administration and organization, the
change to student-centered teaching makes great demands on teachers. Teachers are
used to being the center and to immediately react to fuzziness in the learning process.
This is in conflict with student-centered teaching which should allow sufficient space
for the student’s own exploration. Aside from necessary self-discipline, phases for
correction of the instructional process are required. This has to be adequately consi-
dered during planning.

Concerning methods which reflect the student-centeredness (e.g. group puzzle[9])
it must be reported that students do not necessarily appreciate them. Especially stu-
dents with a performance level well above average moan about the lack of balance
regarding the cost-benefit ratio. They spend a lot of time instructing others with little
gain for themselves. These students prefer ex-cathedra teaching because of the con-
densed information supply. Nevertheless, they appreciate the social aspect of the new
teaching methods. It would be interesting to see a long-term evaluation for differently
gifted groups of students.

With regard to the implementation it may be noted, that for grade 4 in HTL (over-
all grade 12) competencies are limited by the level “Apply”. Even for that, the
intended period of 11 weeks of instruction has been overly ambitious. More realisti-
cally, 15 weeks should be planned. The general division of the topics into three major
blocks proved useful. It turned out that a major difficulty lies in the strict two hour
limit for practical exercises. Especially, if specialized hardware was used which had
to be reassembled every time from scratch, valuable time was lost. The students,
however, did not complain extensively as the reassembly reinforced the general un-
derstanding of the circuits. Alternatively, pre-assembled hardware with peripheral
components could be used (e.g. buttons, LCD).

In order to accommodate for individualization within the practical exercises, indi-
vidual learning goals have been agreed upon. Especially students who work faster
chose their own additional tasks. Interestingly, this turned out to be motivating for
other students, as well. A possible reason for this effect could be the inspiring demon-
stration of the creative possibilities of the employed evaluation kit. Generally, it could
be observed that the chosen contents and exercises were conducive to the intrinsic
motivation of the students. It can be concluded that the employment of suitable hard-
ware kits seems essential.

Concerning multidisciplinary aspects, the competence areas “IT projects” has been
successfully coupled with the competence area “project management”. For “project
management” which is taught 4 hours per week, the students had to accomplish
projects with contents from INIT. Results show that the students’ choices for INIT
contents were highly ambitious and far beyond the content requirements.

 Competence Orientation in Vocational Schools 97

In summary it can be concluded, that the presented didactical concept served as a
solid basis for developing the desired competencies up to the level “apply”. There is
potential for improvement concerning the theory part “micro controller” which was
too ambitious for one teaching unit.

4.2 Discussion

The initially posed central questions can be answered as follows:

Q1: In which way should teaching be designed as to ensure the educational stan-
dards for the competence field INIT?

The presented concept had the educational standards as requirements, and therefore
shows a possible implementation strategy, but definitely not the only one. School
specific requirements were considered, as well. These might differ from other
schools, and again represent one of many possible implementations. The distinction
into theory and practice blocks was a school requirement, but proved useful. In order
to support the combination of theory and practice, the contents have been subdivided
into three major topics. Furthermore, the theory sessions have been designed in an
open way as to facilitate constructivist learning processes. The application of activity-
oriented teaching methods has been favored, as well as conceptual knowledge. Con-
trary to the theory session, the practical exercises (workshops) were more restrictive
with respect to the activity and expected results.

It has to be mentioned that there is only a single example in [14] for the compe-
tence area INIT. This is problematic since the educational standards are fairly general
and leave plenty of room for interpretation. Furthermore, it becomes evident that both,
the curriculum as well as the educational standards, are rather ambitious in view of
the available time frame. Therefore it should be discussed as to what extent the area
of SPC correlates with the profile of a HTL IT in general. Instead, it might be more
advisable to emphasize micro controllers.

Q2: In which way can be ensured that individual learning goals are attained in

combination with personal and social competencies?
The didactical concept is based on the idea of achieving personal and social skills

mainly during the theory sessions. In contrast, the practical exercises focus on indi-
vidual attainment as they demand the student’s own effort to find solutions. Later on,
the practical exercises include group work as well, where social interaction is a neces-
sary part of the task, but personal outcomes are defined, as well.

Q3: To what extent does a specific school influence the implementation of the new

curricula with respect to activity-oriented teaching methods?
The school specific requirement to distinguish theory and practice blocks bears ad-

vantages as well as disadvantages. Most students appreciate the concept “Theory
deals with general concepts, while practical exercises deal with a specific technolo-
gy.” Problems mainly arise from the organizational limit of 50-minutes sessions. The
consequences of splitting tasks over several sessions remain to be seen. Concerning
activity-oriented teaching methods, the average class size seems to be challenging.

98 M. Brunner and M. Di Angelo

In general, there is little flexibility for schools to influence class sizes; a deviation
from 50-minutes sessions is possible, but requires a huge organizational effort.

The requirement for sufficient time for reflection had to be planned ahead, but does
not pose a problem in general. Also multidisciplinary aspects have to be planned in
advance as it requires intensive coordination efforts by the participating teachers.

Q4: In which way should teaching be designed as to foster creativity and intrinsic

motivation?
The open approach to theory sessions provides space for personal development.

Activity-oriented methods are generally conducive to intrinsic motivation, as students
tend to acquit themselves well when asked to actively contribute.

An evaluation kit was used for the practical exercises. Thereby the students could
test their solutions on physical hardware which could be adjusted to the individual
tasks. Both, testing and individualization increased the motivation. There was a
choice of possible tasks, with the possibility of individual flair. Tasks were formu-
lated as questions or hypotheses with the intent to arise the student’s interest.

Furthermore, it can be stated that, due to the complexity of teaching competences,
teachers are required to exhibit an appropriate willingness, as well as sufficient skills
for this approach. This starts with a fundamental acceptance of competence orienta-
tion.

With the definition of descriptors, it seems that essential steps towards educational
standards for IT have been made, while some details are still missing. This can be
derived from the fact that the descriptors in [13] for the educational basics are a draft
version. Also, while the competence model in [13] uses five dimensions, the one in
[14] applies six dimensions. A synthesis of these two documents [13, 14] is advisable.
Additionally, to implement these educational standards, the completion of the proto-
typical instruction examples in [14] is of great importance. Furthermore, the coding
syntax of [13] was not applied in [14], which only represents a minor problem.

As stated by Reinbacher [19] as well, time will prove whether this approach to
competence orientation in vocational schools actually is an important step towards an
increase in quality. To achieve this long-term goal it is indispensable to provide a
fully developed competence model with descriptors that reflect the state-of-the-art.

In any case, the comparison between educational programs should be more feasible
than before.

References

1. Educational standards for vocational schools, Austria, http://www.bildungsst
andards.berufsbildendeschulen.at/en/leitideen.html

2. EQF – European Qualifications Framework (2008), http://eur-lex.europa.
eu/LexUriServ/LexUriServ.do?uri=CELEX:32008H0506%2801%29:EN:
NOT

 Competence Orientation in Vocational Schools 99

3. Linck, B., Magenheim, J., Nelles, W., Neugebauer, J., Ohrndorf, L., Schaper, N., Schubert,
S.: Empirical refinement of a theoretically derived competence model for informatics
modelling and system comprehension. In: Proceedings of IFIP-Conference Addressing
Educational Challenges: The Role of ICT (AECRICT), Manchester Metropolitan Universi-
ty, July 2-5 (2012)

4. Grundsätze und Standards für die Informatik in der Schule. LOG IN Nr. 150/151 (2008)
5. Weinert, F.E.: Concept of Competence: A Conceptual Clarification. In: Rychen, D., Sal-

ganik, L. (eds.) Defining and Selecting Key Competencies. Hofgrefe & Huber (2001)
6. Curricula for HTL (Bundesgesetzblatt Nr. 300/2011), Austria, http://www.htl.at/

fileadmin/content/Lehrplan/HTL_VO_2011/BGBl_II_Nr_300_2011.pdf
7. Bildungsstandards in der Berufsbildung – Projekthandbuch, http://www.bildungs

standards.berufsbildendeschulen.at/fileadmin/content/bbs/Han
dbuch_BIST_25.03.2013.pdf

8. Antonitsch, P.: On Competence-Orientation and Learning Informatics. In: Bezakova, D.,
Kalas, I. (eds.) Proceedings of ISSEP 2011, Informatics in Schools: Situation, Evolution
and Perspectives, Selected Papers (on CD). Library and Publishing Centre Comenius Uni-
versity, Bratislava (2011)

9. Reich, K. (ed.): Methodenpool, http://methodenpool.uni-koeln.de
10. Lersch, R.: Kompetenzfördernd unterrichten – 22 Schritte von der Theorie zur Praxis.

Pädagogik 12 (2007)
11. Fritz, U.: Kompetenzorientiertes Unterrichten – Grundlagenpapier. bm:ukk (ed.) (2011),

http://www.berufsbildendeschulen.at/fileadmin/content/bbs/KU
/Grundlagenpapier_KU_Maerz2011.pdf

12. Anderson, L.W., David, R., Krathwohl, D.R., et al. (eds.): A Taxonomy for Learning,
Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives.
Allyn & Bacon, Pearson Education Group, Boston (2001)

13. Höhere technische Lehranstalt für Informationstechnologie – Bildungsstandards in der Be-
rufsbildung, http://www.berufsbildendeschulen.at/fileadmin/
content/bbs/AGBroschueren/IT_V8.pdf

14. Höhere technische Lehranstalt für Informationstechnologie – Fachrichtungsstandard,
http://www.bildungsstandards.berufsbildendeschulen.at/filead
min/content/bbs/AGBroschueren/Fachrichtungsstandard_IT_08-
09-2011_Druck.pdf

15. Schneeberger, A.: Mittelfristige Perspektiven der HTL - Erhebung und Analysen zur Si-
cherung und Weiterentwicklung der Ausbildungsqualität (Juni 2008), http://www.ibw
.at/html/rb/pdf/rb_43_schneeberger.pdf

16. Schneeberger, A., Petanovitsch, A.: HTL und Qualifikationsbedarf der Wirtschaft - Analy-
sen zur Arbeitsmarktlage und europäischer Vergleiche (March 2009), http://www.
ibw.at/de/pruefungsunterlagen?page=shop.getfile&file_id=306&
product_id=288

17. UNESCO. International Standard Classification of Education (1997), http://www.
unesco.org/education/information/nfsunesco/doc/isced_1997.htm

18. Schneeberger, A.: Internationale Einstufung der österreichischen Berufsbildung -
Adäquate ISCED-Positionierung als bildungspolitische Herausforderung (May 2010),
http://www.ibw.at/de/pruefungsunterlagen?page=shop.getfile&f
ile_id=404&product_id=365

19. Reinbacher, T.: Lehre von Software-Verifikation in der Berufsbildung unter dem Aspekt
von Bildungsstandards. Master thesis, Vienna University of Technology (2010)

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 100–111, 2014.
© Springer International Publishing Switzerland 2014

Measuring Student Competences in German Upper
Secondary Computer Science Education

Jonas Neugebauer1, Peter Hubwieser3, Johannes Magenheim1, Laura Ohrndorf2,
Niclas Schaper1, and Sigrid Schubert2

1 University of Paderborn, D-33102 Paderborn, Germany
http://ddi.uni-paderborn.de

2 University of Siegen, D-57068 Siegen, Germany
http://www.die.informatik.uni-siegen.de

3 Technische Universität München, D-80335 München, Germany
http://www.ddi.tum.de

Abstract. Within the interdisciplinary research project “Measurement Proce-
dure for Informatics in Secondary Education (MoKoM)”, conducted at the Uni-
versities of Paderborn and Siegen with help from Peter Hubwieser, Technical
University of Munich, researchers aimed to develop a theoretically and empiri-
cally sound competence model for the domains of system comprehension and
system modelling, alongside an evaluated measurement instrument to assess
competences of students in upper secondary computer science education in
German schools. The competence model was thoroughly developed by conduct-
ing several theoretical and empirical steps. Based on the model measurement
items were constructed and compiled into an instrument with 87 items of vary-
ing complexity. The instrument was divided into six booklets and distributed to
over 800 computer science students in three German states. The returned 583
tests were analysed by means of the multidimensional item response theory, to
assess the item difficulty on the one hand and the student abilities on the other.
The results are used in several ways: to evaluate the competence model, to re-
vise the measurement instrument and to define proficiency levels in a compe-
tence level model by using the method of scale anchoring.

Keywords: Competence Modeling, Competence Measurement, Informatics
System Application, Informatics System Comprehension, Informatics Model-
ling, Secondary Education.

1 Motivation

The international discussion of educational standards triggered various projects of
competence modeling. For the majority of subjects normative competence models
were developed, which structure the competences of learners into dimensions and
sub-dimensions. But only for the main subjects (languages, mathematics) empirically
refined competence models were officially presented. For these concepts, empirical

 Measuring Student Competences in German Upper Secondary Computer Science 101

research and standardization of measurement are indispensable. In the area of Didac-
tics of Informatics the interdisciplinary research project “Measurement Procedure for
Informatics in Secondary Education (MoKoM)” developed such a model for German
secondary education. The MoKoM project started in 2009 and was funded by the
German Research Foundation (DFG). At that time no competence model for upper
secondary computer science education in Germany existed. Our research focused on
two selected parts of the curriculum: informatics system comprehension (ISC) and
object-oriented modeling (OOM). This selection offered the opportunity to investigate
the levels of application and the complexity of media functions of the informatics
system in the learning process of our target group. The specific objectives of our re-
search to measure ISC and OOM competences are:

1. To create a theoretically derived competence model (TCM);
2. To refine the TCM into an empirically derived competence model (ECM);
3. To design a measurement instrument on the basis of the ECM;
4. To evaluate the validity of the test instrument in a pre-test;
5. To apply the test instrument in a comprehensive test sample to examine the psy-

chometric quality, especially the validity according to the developed competence
model;

6. To develop a competence level model with descriptive proficiency levels.

In this paper we will summarize the development of our measurement instrument
and how it was applied to the specified target group. Then we will describe the analy-
sis of the gathered data and how the results can be interpreted. Finally, we will outline
the steps required to accomplish the last objective of creating a competence level
model.

2 Development of a Competence Measurement Instrument

The MoKoM competence model was created in two steps: The theory-driven analysis
of curricula and the refinement by means of empirical methods.

The sources for the analysis were carefully selected with the goal to consider the
most influential national and international curricula and syllabi. This includes the
ACM/IEEE Computing Curriculum 2001 [23] and the ACM Model Curriculum for
K-12 Computer Science [24]. The resulting model consisted of three cognitive dimen-
sions: K1 Basic Competences (including system application, system comprehension
and system development), K2 Informatics views and K3 Complexity, and a non-
cognitive dimension K4 [15].

To refine this model, 30 expert interviews were conducted with experienced per-
sons from the fields of computer science education, computer science in general and
computer science teachers. This was done using the Critical Incident Technique [3],
presenting each interviewee with four problem scenarios and asking them how they
would solve the given task. The interviews were recorded, transcribed and then ana-
lysed using the qualitative content analysis according to Mayring [18]. The results
were used to refine and restructure the theoretical model [13, 15, 16]. This led to the
final MoKoM competence model containing five competence dimensions: K1 System
Application, K2 System Comprehension, K3 System Development, K4 Dealing with

102 J. Neugebauer et al.

system complexity and K5 Non-cognitive competences (for a detailed description of
the model see [14]).

Based on the empirical competence model the test instrument was developed fol-
lowing the principles of Situational Judgment Tests (SJT) [26]. We intently regarded
experiences gained in large competence measurement studies like TIMMS [17], PISA
[2] and DESI [12]. Furthermore we followed expert knowledge from the field of work
and organizational psychology. Based on detailed competence descriptions, tasks for
every single competence item were created. After this, the answering format was
chosen following the cognitive level (e.g. multiple choice or open questions). Mul-
tiple tasks were grouped in a context suiting the target group to help the test takers to
identify with the tasks. To allow an objective and balanced evaluation, a comprehen-
sive grading manual was created alongside the test items. This contained different
sample solutions as well as approaches to grade answers [21].

The test instrument was initially used in a preliminary test with students from local
secondary schools. In addition, student computer science teachers from didactical
courses at the universities of Paderborn and Siegen were asked to review the instru-
ment. The main issues found during this pre-test were ambiguous wording and care-
less mistakes on the one hand and the difficulty of applicability of the tasks on the
other. Rewriting or extending the context of the tasks could easily fix the former. One
common example is the use of specific technical terms, which might not be familiar to
some of the test takers. One common problem was the misjudgment of the complexity
of a task and the resulting longer durations to solve them. To circumvent this, we
simplified some tasks by changing the format (e.g. creating a multiple-choice question
instead of an open question).

Due to the large amount of items, the test instrument was not applicable in a class-
room setting. Usually a German computer science class lasts 45 minutes, with com-
bining two lessons being common practice. To adapt the instrument to a 90-minute
timeslot, the items were divided into six blocks. Next, six booklets were compiled
from three item block each. Every one of these can be answered in about 80 minutes.
Together with a non-cognitive questionnaire on attitudinal, motivational and voli-
tional competences, the test can be accomplished in two school lessons. The applica-
tion of such arrangement called “matrix design” is possible due to the use of the Item
Response Theory to analyse the test results (see section 4). Though not all students
answer every task due to not having them in their booklet and thus produce a lot of
“missing values” in the final data, the IRT allows for the estimation of student abili-
ties in combination with the overall item difficulty. This methods allows for coherent
results even if the students worked on different subsets of items [5, 22].

3 Applying the Measurement Instrument

To get a large enough population we asked teachers from North Rhine-Westphalia to
participate. 17 teachers showed interest and contributed 26 classes with 522 students.
Since we couldn’t expect all booklets to be returned, we also asked 5 teachers from
Berlin, Hesse and Lower Saxony, who added 6 classes with a total of 82 students. In
Bavaria we had contacted 6 teachers at different gymnasiums and asked their students
to complete our test booklets. 244 students from 11 different classes (6 of grade 10 and
3 of grade 11) took part in the test. All this data was collected in the context of the

 Measuring Student Competences in German Upper Secondary Computer Science 103

compulsory subject “Informatics” that had started at Bavarian Gymnasiums in 2004. A
detailed overview of this subject was presented in [10]. According to the curriculum,
the current learning content of all responding students was focused on object-
orientation. The students of grade 10 had just finished the first half of introduction into
object-oriented programming, while those of grade 11 had already implemented recur-
sive data structures like lists and trees and were starting to learn the basic concepts of
software engineering and project management. The learning objectives of the object-
oriented course were described in [9]. In the grades before 10, the students had learned
to describe standards software by object-oriented models, to program robots, to
implement data flow diagrams on spread sheets and to design relational data bases (see
[8, 9]).

The test was carried out as a pen- and paper-test. The booklets were printed and
sent to teachers who volunteered to apply them in their classes. To prevent the stu-
dents from cheating, each teacher received two to three different booklets to distri-
bute, rather than just one. From more than 800 send out tests we received 583
completed and evaluable booklets back. 86% male and 14% female students with an
average age of 17.53 years worked on the tasks. 17% of them had an immigrant back-
ground. Their self-assessed proficiency in computer science on a scale from 1 to 6
averaged at 2.65 points. They had participated in computer science classes for a mean
of 3.46 years. Only 3.34% had dropped the subject in the interim.

The coding of items was done according to the aforementioned grading manual.
While the manual intended for the items to be coded as aggregate scores, this ap-
proach proved to be too inaccurate, since afterwards we were unable to reconstruct
what exactly was the problem within the item. Therefore, each task was separated into
multiple sub-items that could be graded as dichotomous codes (wrong/correct). Since
this was not possible for some of the more complex tasks, those items still were coded
with aggregate scores. Missing values had to be treated in two ways: items that were
missing from the booklet a student worked on were coded as normal missing
value, while items that were present, but hadn’t been worked on, were coded as ‘99’
to reliably separate them from each other.

4 Analyzing the Test Data

The gathered data was analyzed according to the Multidimensional Item Response
Theory (MIRT). The main goal was to evaluate the competence model and the mea-
surement instrument. To do so, several different IRT models were used to analyze the
empirical data and the results were compared to assess the best fitting model.

4.1 Multidimensional Item Response Theory

Compared to classical test theory, IRT models assume that personality traits cannot be
measured directly and test results can only be interpreted as an indicator for the exis-
tence and intensity of such a trait. Therefore, IRT models differentiate between latent
variables, that can’t be measured directly, but influence the response to a test item,
and manifest responses that are assumed to be the observable manifestations of the
latent traits [6, 20, 22]. Thus, the ability of the tested person can be inferred from the

104 J. Neugebauer et al.

responses. Furthermore it is assumed that any subject has a certain probability to an-
swer any item right or wrong. The difficulty of the item and the ability level of the
subject determine this probability. For example, a student with a high level regarding
a certain competence dimension is more likely to answer an item with a medium dif-
ficulty in that same dimension, than a student with a lower level. Prominent large
scale studies like PISA [2] and TIMSS [17] used IRT scaling methods to evaluate
student competences.

IRT has several advantages for the assessment of competences. For once, the esti-
mation of the item difficulties and student abilities does not require for every partici-
pant to work on every task of the test instrument. This allows for the use of a matrix
design with different booklets as described above. Furthermore, the estimated para-
meters can be interpreted on the same scale and easily related to each other [22].

Since competence structures are complex constructs, they often times result in mul-
tidimensional competence models. In our case this applies to the cognitive dimensions
K1 to K4 with the additional non-cognitive dimension K5. To evaluate the dimensio-
nality of the empirical data, multidimensional IRT models can be utilized, which as-
sume multiple latent variables (one per dimension) cause the deterministic responses
to a test. Furthermore, MIRT allows for the comparison of different models, by
analyzing the conformity of the theorized model to the empirical data [20].

Because of the utilized matrix design the data had to be recoded to deal with the miss-
ing values. There are two possible options to replace the aforementioned ‘99’ codings:
substitute them with a 0 (speed test) or as a missing value (power test). There are reason-
able arguments for both variants. Therefore, we analyzed both. Since the conclusions are
very similar though, this article will concentrate on the results of the speed option. To
calculate the MIRT analysis we used ACER ConQuest Version 2 [27].

4.2 Evaluating the Competence Dimensionality

To evaluate the structure of the competence model, we analyzed four different IRT
models with one to four assumed dimensions respectively. Since the test items were
crafted with the intent to test for one specific competence, a between-item multidi-
mensionality model was used in all cases [7]. Because not all items could be coded as
dichotomous responses, the partial credit model was applied to analyze dichotomous
and polytomous data alike. Starting with the one-dimensional model, for which it was
assumed that all items loaded on the same latent trait, every model added one addi-
tional dimension by theoretical reasoning along the competence model. The assign-
ment of the competence dimensions to the IRT models can be seen in table 1.

Table 1. Final deviance, estimated parameters and reliability for evaluated models

Model Final Deviance Estimated
Parameters

Reliability for dimension 1 to 4 (if avail-
able)

1-Dim 87379.09538 316 0.872 (K1,K2,K3,K4)

2-Dim 86695.99173 319 0.831 (K1) / 0.831 (K3)

3-Dim 86403.83657 323 0.749 (K1) / 0.806 (K2,K4) / 0.812 (K3)

4-Dim 85891.85717 328 0.779 (K1) / 0.763 (K2) / 0.861 (K3) /
0.759 (K4)

 Measuring Student Competences in German Upper Secondary Computer Science 105

To compare the models, the final deviance – an indicator of how well the empirical
data fits the IRT model - and count of estimated parameters reported by ConQuest can
be used [20, 22, 27]. Usually, both parameters should be as low as possible. If it is not
possible to choose the better model by comparing the values alone (because one value
is lower, while the other is bigger than the second models), a Chi-Square-Test can be
calculated, using the difference in deviance and the difference in estimated parameters
as the degrees-of-freedom. If the result is significant, the model with the smaller de-
viance is selected. Otherwise the model with the lower amount of estimated parame-
ters is deemed the better one. The parameters for each evaluated model can be seen in
table 1.

Table 2. Chi-Square statistics for model comparisons with difference in deviance and difference in
estimated parameters as degrees of freedom

 2-Dim 3-Dim 4-Dim

1-Dim χ 683.1, p .001 χ 975.26, p .001 χ 1487.24, p .001

2-Dim χ 292.15, p .001 χ 804.13, p .001

3-Dim χ 511.98, p .001

Since with increasing dimensions the deviance decreases and the number of para-
meters increases, a chi-square-test was calculated for every combination of models
(see table 2). Every time the result was statistically significant and since the models
with a higher number of dimensions have a lower deviance, it can be assumed that
they better match the empirical data than the models with fewer dimensions. Thus, the
four-dimensional model has the best model fit overall.

4.3 Item Fit and Reliability

ConQuest calculates the EAP/PV reliability for each dimension, which can be com-
pared to Cronbach’s Alpha [22]. Table 1 shows the reliability for all dimensions in
each model. All values exceed 0.7 and can be considered acceptable. Unfortunately,
the reliability index decreases for the four-dimensional model with only the third
dimension having a value well over 0.8. The current measurement instrument seems
to measure latent trait levels for this dimension with notably more certainty than for
the other dimensions.

To further evaluate the models, the item fit for individual items can be examined.
The fit compares the predicted probabilities for each item within the model with the
observed responses. To do this, ConQuest calculates the weighted mean squares
(wMNSQ), which are expected to be 1 for perfectly fitting items. The wMNSQ for a
good fitting item should fall between 0.8 and 1.2, and the corresponding t-values, that
should not be greater than 1.96 [1, 27]. Furthermore, the discrimination parameter
shows how an item correlates to the overall test results. With the discrimination close
to 0, an item may not be useful to differentiate between students with high levels of a
trait and those with low levels. Values between 0.4 and 0.7 are considered good while
values above 0.3 can be considered as acceptable [19].

106 J. Neugebauer et al.

The data for all models (see table 3) showed a good item fit overall, but the percen-
tage of unfit items increased for models with more dimensions, from below 1% (2
items out of 292) for the one-dimensional to 4.7% (14 items) for the four-dimensional
model. In addition, the number of items that might have a bad fit according to the t-
values increased from 27 to 37 items. Unfortunately the discrimination parameters are
not very good for a large part of the items. Just 22.6% (66 items) are above the 0.4
threshold and even if we adjust the point at which an item is considered to have a too
small discrimination to 0.3, roughly 43.8% (128 items) remain under that line. Only
one item had a negative discrimination, which was close to 0.

Table 3. Range of mean squares, t-values and discrimination values for all models

Model wMNSQ t Discrimination
1-Dim 0.86≤wMNSQ≤1.3 -2,9≤t≤4.4 -0.04≤Disc. ≤0.58
2-Dim 0.77≤wMNSQ≤1.42 -4.1≤t≤5.2 -0.04≤Disc. ≤0.58
3-Dim 0.76≤wMNSQ≤1.42 -4,2≤t≤5.2 -0.04≤Disc. ≤0.58
4-Dim 0.65≤wMNSQ≤1.42 -5.7≤t≤5.3 -0.04≤Disc. ≤0.58

The low discrimination necessitates a throughout examination of the items in the
measurement instrument and how they fit to their corresponding dimension.

4.4 Difficulty Parameters and Latent Abilities

The main goal of IRT analysis is the estimation of two parameters: the item difficulty,
that denotes the probability of answering an item correct given a certain level of the
measured construct, and person parameters, that assess the level of the latent trait for
individual students. One advantage of IRT analysis is that both estimates can be ar-
ranged on the same scale and easily compared. The item-person-map for each model
visualizes the item difficulties on the right, by ordering them from more difficult (top)
to less difficult (bottom), and the latent trait levels on the left (grouping persons with
the same values together). Ideally, the item difficulties should be well dispersed
around the mean, having the most items in the medium difficulty range, but also pro-
viding items with high and low difficulties [20]. Additionally, the latent traits are
separated by dimension. Table 4 shows the maps for the on- and four-dimensional
models. As can be seen, the item difficulties are well distributed along the axis,
though there are some observations to be made.

First, there are some outliers in the upper part of each map. This indicates, that
some items are way to difficult for the targeted student groups, since no person was
estimated to have a high enough proficiency to solve these items with an adequate
probability.

Second, the latent traits in the different dimensions are somewhat uneven dis-
persed. While the one-dimensional model indicates, that the overall difficulty of the
test matches the ability of the population, the four-dimensional model reveals, that
only the third dimension can be considered well matched. Dimension 1 and 4 lack
items in the upper difficulty range, while dimension 2 necessitates less difficult items
to adequately assess its competences.

 Measuring Student Comp

Table 4. Overview of the esti

5 Discussion

The results from the MIRT
points to some areas that ne
plications for our research.

5.1 Analyzing the Resu

The results of the model co
that the four dimensional st
model is an appropriate re
results of the MIRT analysi
our model, since it has the
steps to construct the comp
ible result. Especially the th
measured with regards to it
bility of the four dimension
by the weighted mean squa
that don’t fit the empirical d

5.2 Implications for the

From the comparison of th
consequences for the overa
the estimates shows which
This can either be done by

petences in German Upper Secondary Computer Science

imated item parameters for the one- and four-dimensional mod

analysis show promise for our further work, though it a
eed to be improved. In this section we will discuss the

ults

omparison described in section 4.2 are a strong indicat
tructure of the (cognitive part of the) MoKoM compete

epresentation of the competences in question. The ove
is confirm the multidimensional competence structure fr
e best fit to the empirical data. The thoroughly conduc
petence model (see section 2) seem to have yielded a pla
hird dimension K3 System Development appears to be w
tem difficulty and item fit. This is also evident in the re
ns, which is the highest for the third. The item fit deno
ares and the t-values identifies exceptions in the item po
data as well as the other items and will have to be revise

e Measurement Instrument

he item difficulties and latent abilities in section 4.4 so
all instrument have been drawn. The overall distribution
dimensions have to be reinforced with easy or hard ite
making some items for that dimension easier/harder, or

107

del

also
im-

tion
ence
erall
rom
cted
aus-
well
elia-
oted
ool,

ed.

ome
n of
ems.
r by

108 J. Neugebauer et al.

replacing items with a low model fit. To adjust item difficulties, the definition of cri-
teria that are known to influence the item difficulty can be utilized. Since such a set of
criteria was developed as a necessary step for the characterization of proficiency le-
vels (see section 6), it should be possible to adjust the item difficulty within certain
parameters.

An examination of items with a low model fit shows a set of items that belong to
the same task in the measurement instrument. Within this task the students have to
structure the problem field of creating an online tool in smaller problems and select
the best tools for solving these. During the coding process of the student responses
these tasks were coded as dichotomous, one per correctly identified sub-problem. The
low fit of theses items might be a result of the close connection between the responses
to each individual item. For example, if one task requires the students to split a task
into two sub-problems and then to split one of the new problems into two sub-sub-
problems, the task would be coded as two dichotomous items. If a student splits the
first task immediately into three sub-problems, the first item would be coded as 1 and
the second as 0. Though he or she arrived at the correct solution of three sub-
problems, he or she skipped a step and does not get full points. Though this is reflect-
ed correctly in the coding of the items, the answer to the second item is somewhat
depended on the answer to the first. For this reason it might be advisable to code both
items together with three levels instead of two, giving 2 points for a correct solution
and 1 for the solution that skips one step.

The examination of items with a low discrimination reveals a number of multiple-
choice items that appear to be too ambiguous to be answered reliably by the students.
For example, the item “All available users are displayed in the chat room” was consi-
dered to be a useful requirement for the development of a chat system. The student
responses suggest that especially those with a high ability estimate thought otherwise.
A possible explanation might be that those students had privacy concerns regarding
this feature. Therefore, the item should be changed to “All available users, whose
status is set to ‘visible’, are displayed in the chat room”, to compensate for that. Also,
some of the ambiguity seems to stem from simple mistakes in the use of terminology.
For example, one item in the same context as above read: “All students of the school
can participate in the forum”. Here “forum” should have been “chat” and therefore
confused the students that worked on this task. This item should be removed from the
evaluation of the current results and be corrected for future assessments.

5.3 Student Competences

Though the main goals of this research were to evaluate the competence model and
measurement instrument and gather data to define proficiency levels (see section 6),
the distribution of item difficulties can show tendencies in the competences present in
upper German high school education. Without a refined competence level model the
description of student competencies will be improper, but at least we can have a de-
scriptive look at the student abilities in the different dimensions alongside the difficul-
ty of typical items in that area.

To be able to interpret the results more easily, the item difficulties and person esti-
mates were normalized using the PISA scale [2]. This way, the estimates have a mean
of 500 and standard deviation of 100. Looking at the normalized item difficulties,
the majority of items fall in the range of 400 to 600. In the range above 650 points

 Measuring Student Competences in German Upper Secondary Computer Science 109

there is a steep increase in difficulty with 13 items having up to 800 points on the
scale (3 standard deviations above the mean). In the range under 400 points the diffi-
culty also decreases fast with the easiest item having 228 points.

The five hardest items all belong to the competence dimension K4 Dealing with
system complexity. All items belong to the same assignment, which tasks the students
to deal with different components of a system. Most of the hardest items are from the
two dimensions K4 and K3, with 17 of the 20 items with the highest difficulty be-
longing to them. A substantial part of these deal with some form of UML notation. It
seems that this form of modeling systems was neglected in the assessed computer
science courses. On the other hand, 18 out of the 20 easiest items are from the dimen-
sion K2 System Comprehension. It seems like the evaluation of the internal and
external workings of a system are well taught. Especially the assessment of software
qualities and dealing with data structures was an easy task for most of the students.
The described trends continue for most of the items. A large part of the 50 hardest
items are from dimensions K4 and K3, while on the other end of the scale dimension
K2 dominates. This is also reflected in the means of the estimated difficulties for each
dimension. These are for K1 to K4 respectively: 501.64, 418.3, 531.06, 561.66. The
mean for Dimension K2 is almost one standard deviation below the global mean of
500 points, while K4 clearly seems to be the most difficult dimension.

6 Conclusions and Further Work

The evaluation of the competence model and the measuring instrument was a big step
for our research. The next important goal is the definition of descriptive proficiency
levels to form a competence level model. For this purpose, we will utilize an approach
that already proved useful in similar studies like TIMSS [11, 25] and DESI [12]. The
empirical data and the results from the MIRT analysis will be used to identify signifi-
cant thresholds in the ability levels of the tested students, where a predefined percen-
tage of students was not able to solve the next difficult items. The items adjacent to
these anchor points can be used to describe the demands to a competence level. To get
consistent and meaningful descriptions all items will also be rated by experts in sever-
al theoretically derived criterions to denote the demands of each item. By using
regression analysis, the criteria with the biggest influence on the difficulty can be
determined and used to calculate expected difficulties for certain combinations of
criteria. This way we will end up with more consistent proficiency levels, that are
independent from the actual items [4]. To be able to rate every item the test instru-
ment was split into four parts, each rated by two experts. Two additional experts then
discussed disagreements between the two raters and decided upon a final rating for
every criterion. The expert ratings have been completed by now and work on the defi-
nition and description of proficiency levels is under way.

References

1. Adams, R.J.: Scaling PISA cognitive data. PISA Programme for International Student As-
sessment (PISA). PISA 2000 Technical Report, pp. 99–108. OECD Publishing, Paris
(2002)

110 J. Neugebauer et al.

2. Adams, R.J., Wu, M.L. (eds.): PISA Programme for International Student Assessment
(PISA) PISA 2000 Technical Report. OECD Publishing, Paris (2002)

3. Flanagan, J.C.: The critical incident technique. Psychological Bulletin 5(4), 327–358
(1954)

4. Hartig, J.: Skalierung und Definition von Kompetenzniveaus. In: Klieme, E., Beck, B.
(eds.) Sprachliche Kompetenzen Konzepte und Messung DESI-Studie (Deutsch Englisch
Schülerleistungen International), pp. 83–99. Beltz, Weinheim (2007)

5. Hartig, J., et al.: Methodische Grundlagen der Messung und Erklärung sprachlicher Kom-
petenzen. In: DESI-Konsortium (ed.) Unterricht und Kompetenzerwerb in Deutsch und
Englisch. Ergebnisse der DESI-Studie, pp. 34–54. Beltz, Weinheim (2008)

6. Hartig, J., et al.: Modellierung von Kompetenzen mit mehrdimensionalen IRT-Modellen.
Projekt MIRT. In: Klieme, E., Leutner, D., Kenke, M. (eds.) Kompetenzmodellierung:
Zwischenbilanz des DFG-Schwerpunktprogramms und Perspektiven des Forschungsan-
satzes, pp. 189–198. Beltz, Weinheim (2010)

7. Hartig, J., et al.: Multidimensional IRT models for the assessment of competencies. Stu-
dies in Educational Evaluation 35(2), 57–63 (2009)

8. Hubwieser, P.: A smooth way towards object oriented programming in secondary schools.
In: IFIP (ed) Informatics, Mathematics and ICT: A Golden Triangle: Proceedings of the
Working Joint IFIP Conference IMICT 2007 (2007)

9. Hubwieser, P.: Analysis of Learning Objectives in Object Oriented Programming. In: Mit-
termeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 142–150. Springer,
Heidelberg (2008)

10. Hubwieser, P.: Computer Science Education in Secondary Schools – The Introduction of a
New Compulsory Subject. Transactions on Computing Education (TOCE) 12(4), 41
(2012)

11. Kelly, D.L.: Interpreting the Third International Mathematics and Science Study (TIMSS)
achievement scales using scale anchoring (Doctoral dissertation). Boston College Graduate
School of Education (1999)

12. Klieme, E., Beck, B. (eds.): Sprachliche Kompetenzen. Konzepte und Messung. DESI-
Studie (Deutsch Englisch Schülerleistungen International). Beltz, Weinheim (2007)

13. Lehner, L., Magenheim, J., Nelles, W., Rhode, T., Schaper, N., Schubert, S., Stechert, P.:
Informatics Systems and Modelling – Case Studies of Expert Interviews. In: Reynolds, N.,
Turcsányi-Szabó, M. (eds.) KCKS 2010. IFIPAICT, vol. 324, pp. 222–233. Springer, Hei-
delberg (2010)

14. Linck, B., et al.: Competence model for informatics modelling and system comprehension.
In: Proceedings of the 4th Global Engineering Education Conference, IEEE EDUCON
2013, Berlin, pp. 85–93 (2013)

15. Linck, B., et al.: Empirical refinement of a theoretically derived competence model for in-
formatics modelling and system comprehension. In: Proceedings of IFIP-Conference “Ad-
dressing Educational Challenges: the Role of ICT (AECRICT)”, Manchester (2012)

16. Magenheim, J., et al.: Competencies for informatics systems and modeling: Results of qua-
litative content analysis of expert interviews. In: Proceedings of the 1st Global Engineering
Education Conference - Educon 2010, pp. 513–521. IEEE Computer Society, Madrid
(2010)

17. Martin, M.O., Mullis, I.V.S.: Overview of TIMSS 2003. In: Martin, M.O., et al. (eds.)
TIMSS 2003 Technical Report. Boston College, Chestnut Hill, MA, pp. 3–20 (2004)

18. Mayring, P.: Qualitative Content Analysis. Forum: Qualitative Social Research 1, 2 (2000)
19. Moosbrugger, H., Kelava, A. (eds.): Testtheorie und Fragebogenkonstruktion. Springer,

Heidelberg (2008)

 Measuring Student Competences in German Upper Secondary Computer Science 111

20. Osteen, P.: An Introduction to Using Multidimensional Item Response Theory. Journal of
the Society for Social Work and Research 1(2), 66–82 (2010)

21. Rhode, T.: Entwicklung und Erprobung eines Instruments zur Messung informatischer
Modellierungskompetenz im fachdidaktischen Kontext (Doctoral dissertation). University
of Paderborn (2013)

22. Rost, J.: Lehrbuch Testtheorie–Testkonstruktion. Huber, Bern (2004)
23. The Joint Task Force on Computing Curricula Association for Computing Machinery

(ACM) IEEE Computer Society: Computer Science Curricula 2013: Curriculum Guide-
lines for Undergraduate Degree Programs in Computer Science. ACM, New York (2013)

24. Tucker, A. (ed.): A Model Curriculum for K-12 Computer Science: Final Report of the
ACM K-12 Task Force Curriculum Committee. Association for Computing Machinery,
New York (2003)

25. Watermann, R., Klieme, E.: Reporting Results of Large-Scale Assessment in Psychologi-
cally and Educationally Meaningful Terms. European Journal of Psychological Assess-
ment 18(3), 190–203 (2002)

26. Weekley, J.A., Ployhart, R.E. (eds.): Situational judgment tests theory, measurement, and
application. Lawrence Erlbaum, Mahwah (2006)

27. Wu, M.L., et al.: ACER ConQuest Version 2.0: Generalised item response modelling
software. ACER Press, Melbourne (2007)

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 112–123, 2014.
© Springer International Publishing Switzerland 2014

Pupils in the Virtual World and Education

Majherová Janka, Palásthy Hedviga, and Janigová Emília

Faculty of Education, Catholic University in Ružomberok, Ružomberok, Slovakia
{janka.majherova,hedviga.palasthy,emilia.janigova}@ku.sk

Abstract. In this article, we analyse the use of the virtual world of the Internet
within secondary education in Slovakia. We investigate the current use of
emerging Internet technologies, known as Web 2.0, in practice. We compare the
opportunities for sharing educational materials, as well as the possibilities of
accessing the Internet and its use by pupils. We recommended the digital ver-
sion of Bloom's taxonomy for establishing educational objectives for teaching
and learning with the support of ICT.

Keywords: virtual world, secondary education, digital competencies, digital
taxonomy.

1 Introduction

Currently, teachers and pupils are increasingly using the virtual world of the Internet
for obtaining and sharing educational materials. New possibilities are related to the
use of Web 2.0 technologies. An introduction of the concept of Web 2.0 is associated
with the emergence of blogs, social networks and websites, which have dynamic con-
tent and allow content sharing and interactivity among website visitors [12]. Web 2.0
allows users to add their own content to the web, which they have control over. Web
2.0 is built not only on the content, which is created by its owner, but also on the con-
tent, which is created by the community of web users. Examples of Web 2.0 are
blogs, Wikipedia, social media such as Facebook, Google+, Twitter, YouTube and
others.

The ability to understand information and use it in various formats from different
sources, presented through ICT, is part of the digital literacy of the young generation.
According to a study by the Institute for Public Affairs [17], the average value of the
index of digital literacy in Slovakia has increased from 0.33 points (on a scale from 0
to 1), in 2005, to 0.43 points, in 2011. The study points out that the school has the
most influence on the increase of digital literacy. In this research, young people
achieved approximately 60 percent better results than the overall average population,
while during the past ten years they have improved their abilities and skills in the
majority of ICT that is commonly available.

Monitoring the development of digital literacy, according to Velšic [17], has re-
vealed also two contradictory characteristics in the young generation. The first points
to the fact that 18-26 year olds have improved their knowledge and skills in the ma-
jority of ordinary information technologies and services. Young people have im-
proved in working and operating hardware, in working with multimedia, the Internet,

 Pupils in the Virtual World and Education 113

in the administration and installation of software, in the use of various Internet ser-
vices, communication technologies such as chat, IP telephony, discussion groups or
social networks.

Young people cope with some ICT with more difficulties. The greatest shortcom-
ings are related to “work on the network”. For example, the skill of transferring or
copying data via a local area network (LAN) is below average. Young people also
have similar problems in the case of searching for information and data in local com-
puter networks or when working with databases.

The development of digital literacy is related to the immediate objectives and tasks
of Informatics, as a compulsory school subject at primary and secondary schools. The
key competences, which pupils have acquired while studying Informatics and are able
to use them in other subjects, are for example [11].

• To present the acquired knowledge and apply it in everyday life.
• To creatively process information and use it while studying.
• To know how to analyse and use credible sources of information from the Internet.
• To locate, sort and process information.
• To apply knowledge to specific problems.
• To apply the acquired knowledge and skills through projects and cross-cutting

themes in other subjects taught.

Teachers of Informatics should take into account, while teaching, the fact that
today's pupils belong to a generation, which exalts new technologies and
is experimenting with them. New gadgets employ intuitive learning by the method of
“trial and error!”. They are not afraid to make mistakes, because they learn faster this
way. They use devices according to their experience and they have no problem
getting help online. They obtain information very quickly, favouring parallel
processing and multi-tasking. They give precedence to working with graphics over
text, as well as random access (hypertext), they work best when they are within a
network. For them, we use the well-known term "Digital Natives" (Generation Y).

Many teachers then belong to the group that Prensky in [16] labelled as “Digital
Immigrants” (Generation X). They must, while using ICT in teaching, think about
how to teach their students in the language of the “Digital Natives”. In this paper,
therefore, we attempt to describe the current state of Internet usage for the obtaining
and sharing of information within education, in Slovakia. We recommended the
digital version of Bloom's taxonomy for creating the educational objectives for
teaching and learning with ICT.

2 The Development of Digital Competences and Web 2.0

In Slovak schools, there is a visible effort concerning the modernisation of education.
Teachers are engaged in further education and implement a number of projects with
the support of ICT. They implement school equipment with modern didactic tech-
niques, in order that the teachers are able to implement teaching with ICT support for
different subjects. The onset of interactive techniques can be seen, especially in sci-
ence subjects, mathematics, foreign languages and, of course, at the lessons of Infor-
matics and Informatics’ Education. Technique alone, however, is not enough. What is
needed is also good quality digital content by [2] and [13].

114 M. Janka, P. Hedviga

Web 2.0 technology is cu
for almost all websites, netw
Tests portal (fig. 1, 2), wh
and interactive tests for th
[20]. The portal offers tea
(thematic plans, methodolo

Fig.

Increasingly, teachers an
such as the portal webnode
activities for schools. Stude
ing to their site - text, imag
amount of student accounts
dents. They can also set w
accessible only to selected v

As stated by Polčin [15]
tests, worksheets and teach
that are immediately usefu
contains very good search

a, and J. Emília

urrently the standard and at the same time is also necess
works and education portals. An example is the Interact

hich allows teachers to create and share learning mater
heir subjects (http://www.interaktivnetesty.s
achers of Informatics, a variety of educational mater
gies of lessons, curriculum presentations, tests, etc.).

1. Teaching materials from Informatics

Fig. 2. ALF interactive test

nd students create their own websites. They use online to
e.sk, to do it. This portal offers scope also for educatio
ents can upload and share whatever is beneficial for lea
es, videos, documents or galleries. Teachers can create
s and thus have an overview of the activities of their

which presentations will be open access and which will
visitors (http://edu.webnode.sk/) [21].
], teachers can already find plenty of interactive materi
hing aids at www.zborovna.sk [25], where new mater
ul in the classroom, are being updated daily. The po

options, user contributions, transparent categorisation

sary
tive
rials
k/)

rials

ools
onal
arn-
any
stu-
l be

ials,
rials
ortal
n of

content and a number of o
ments, for example, .doc, .
the virtual library zborovna
toes program for creating
choice of the correct answe
active exercises (fig. 3).

Fig

Teachers of informatics
system of electronic tests, c
library (fig. 4). The teacher
and pupils may sufficiently
pupil is evaluated by a mar
cessible to the pupils thems
pupil’s book. In contrast to
acquires the mark directly
system [24].

Fi

Pupils in the Virtual World and Education

other options. Available here are various formats of do
odt, .ppt, .pdf and links to other websites. Materials fr

a.sk are used by many teachers. Teachers use the Hot Po
interactive exercises, where they may form tests wit

er, as well as complimentary exercises and scrolling in

g. 3. E-Learning at portal edupage.org

often use the LMS Moodle system, as well as their o
created in the PHP language with the support of the jQu
r prepares a test according to the content of the curriculu
y prepare for the test, at home. After solving the test,
rk, which is written into a database of marks, which is
selves, as well as their parents. It is thus a sort of electro
other commonly used electronic pupil’s books, the teac
 from the test and he does not have to write it into

ig. 4. Interactive test from Informatics

115

ocu-
rom
ota-
th a
nter-

own
uery
um,
the
ac-

onic
cher

the

116 M. Janka, P. Hedviga, and J. Emília

Social networks are a separate chapter about using Web 2.0 in education. The phe-
nomenon of the Internet, such as Facebook, which is used by primary school pupils
(Generation Y), is for teachers (Generation X) often an unknown “territory”. Its
opportunities in education are still only a little explored in our country.

2.1 Survey Results

We conducted survey using a questionnaire, in which we investigated the use of the
Internet and social networking by pupils, in preparation for school. Our sample con-
sisted of 66 pupils, 28 girls and 38 boys, from two primary schools, in Bratislava and
Ružomberok. The average age of the respondents was 13 years. The questionnaire
consisted of 11 questions, some of which have been concluded with the selection of
one or more answers, some were open ended.

The results were compared with the results of research from all over Slovakia,
conducted in 2010 [7]. The sample then consisted of 303 pupils, with an average age
of 14 years. In the research results, almost all of the respondents from the sample
(99.7%), at least occasionally connect to the Internet, at least at school. 84.5% of the
respondents have an Internet connection at home. In each connection they most fre-
quently spend on average 1-2 hours (31.8% of the respondents), or 2-3 hours (24.8%
of the respondents). The girls did not differ from the boys in these characteristics. In
some indicators, however, the authors found statistically significant differences be-
tween the boys and the girls. That has been shown also by our survey.

In our sample, 98% of the respondents already have an Internet connection at
home. Most frequently, girls spend 1-2 hours on the Internet, boys spend a longer
time on the Internet, 34% spend more than 3 hours on the Internet (see fig. 5 and 6).

Fig. 5. Time spent on the Internet - boys

21%

26%19%

34%
1 hour

2 hours

3 hours

more than 3 hours

 Pupils in the Virtual World and Education 117

Fig. 6. Time spent on the Internet - girls

According to the results from the year 2010, the most popular Internet activities of
adolescents were, in first place, chatting (77%); watching videos, YouTube (66%);
downloading music, movies, software (63%), followed by social networks activity,
Facebook (51%), and playing games (51%). When evaluating the selection of activi-
ties, the differences between girls and boys can be seen.

In the sample of pupils in our survey, several indicators have changed. Among the
girls, the most popular activity is that of downloading movies and music (78%), and
social network activities (68%). In boys, in first place, are watching videos on You-
Tube (89%), and downloading (84%). Compared to the research in 2010, there was a
decrease in surfing the Internet, using e-mail, as well as in playing online games (in
boys and girls). The use of social networking and the downloading of music and mov-
ies has increased. In our view, these changes are related to the development of the use
of Web 2.0 technologies in Slovakia.

Table 1. Activities of pupils on the Internet (as a %)

Activity
2010 2014

girls boys girls boys
Chat 87 66.0 25 71.05
Games 38.9 66.0 10.71 52.63
YouTube 65.4 67.4 46.43 89.47
Facebook 60.5 41.8 67.86 71.05
The downloading of music,
movies and software

66.0 61.0 78.57 84.21

email 35.2 35.0 25 18.42
Surfing the Internet 34.6 43.3 7.14 28.95

36%

32%

3%

29%
1 hour

2 hours

3 hours

more than 3
hours

118 M. Janka, P. Hedviga, and J. Emília

Furthermore, in our survey we were interested in what kind of files the pupils are
downloading most frequently from the Internet, and whether they are providing some
materials themselves, e.g., from school. Girls and boys are most frequently download-
ing music and movies. Only 10% of boys and 13% of girls are not downloading any-
thing from the Internet.

Fig. 7. Downloading files from the Internet - boys

Fig. 8. Downloading files from the Internet - girls

Up to 66% of boys and 82% of girls stated that they do not provide any material
for the Internet. Many of the pupils appear to not realise that published photos or
statuses on the Internet can be also seen as disclosed information.

In the questionnaire, we also focused on the use of the Internet and social network-
ing in school. 98% of pupils stated that they use the Internet and a computer in order
to prepare for school. Teachers provide students with learning materials via the Inter-
net and they use it practically for all the subjects.

In the last question, we investigated whether or not pupils use Facebook when pre-
paring for school. The feedback showed that boys use Facebook, especially for com-
munication when doing their homework (93%), only a small percentage (7%) do not

10%

24%

31%4%

0%

28%

3%
no

games

music

picture

school

films

programs

13%

5%

38%14%

11%

19%
no

games

music

picture

school

films

 Pupils in the Virtual World and Education 119

have, or do not use, Facebook. In contrast, 65% of girls stated that they do not use
Facebook when preparing for school, the remaining 35% use it for communicating
and when doing their homework.

Fig. 9. The use of Facebook while preparing for school - boys

Fig. 10. The use of Facebook while preparing for school - girl

The pupils know and use mostly the portal Google to search for information, many
also know Wikipedia. We were interested whether pupils consider information received
on the Internet to be true and correct. More than half responded: “I do not know”. Ap-
proximately one third of pupils do not believe the information on the Internet.

To the question of which school subjects they need the Internet for, the primary
school pupils reported mainly the science subjects (the preparation of a project). The
sharing of teaching materials in electronic form (the presentation of the curriculum,
laboratory practice protocols), or electronic test solutions, becomes a matter of course.

3 Educational Goals and Digital Taxonomy

When setting goals for education in the subject of informatics, in the context of the
development of the digital competences of pupils, we can be motivated by new
approaches, according to a revised Bloom's taxonomy by Anderson [1]. A digital

5% 2%

61%

32%

I haven't got
Facebook

I don't use
Facebook

Chat

Homework

10%

55%

22%

13%

I haven't got
Facebook

I don't use
Facebook

Chat

Homework

120 M. Janka, P. Hedviga, and J. Emília

application of Bloom's taxonomy, for the conditions of learning in today's digital
world, was created by Churches [3, 4]. It lies in the linking of different levels of BT to
the specific activities of pupils, when using ICT.

The category of Remembering, in the revised Bloom's taxonomy, represents the usage
of memory for the designation and acquiring of knowledge, facts and definitions. We
focus on obtaining information, when using ICT at this basic level. The ability to re-
member everything needed, we can formulate by computer-oriented words, to search ("to
google"), to select, to cut, to save, and so on. It is also important that we do not lose the
discovered information, which in practice means using bookmarks (favourites). An ex-
ample of activity for the application of this level, when working with ICT, can be, in
addition to work with files and folders, also the knowledge of basic search on the Internet
(e.g. through the Google portal), and the ability of a pupil to solve an online test.

Understanding, represents constructing the importance of different types of knowl-
edge. Churches explains this level of digital competence as the ability to process the
information identified. The first sign of understanding may be that we know how to
structure the information in an appropriate manner. An appropriate activity with pu-
pils is, for example, the creation of a mind map.

The level of Applying connects and refers to situations where the student acquires
knowledge through products like models, presentations and interviews. When work-
ing with ICT, this level is represented by computer literacy, thus the ability to apply
computer skills through the most appropriate way. That means to apply the right tool
in the form of hardware and software. A typical process is the editing of various types
of information (graphics, text, numbers, etc.), and their publication within an online
environment.

The level of analysing lies in the fact that, pupils were able to show some signs of
functional literacy. This means that they should understand the meaning of informa-
tion, with which they work, and that they will be able to assess the credibility of the
obtained information. We teach them to be able to recognise the structure of informa-
tion content, as well as to identify the origin of the individual components and evalu-
ate the seriousness of the source.

The ability to assess is directly intertwined with analysis. Typical examples are
school blogs, electronic journals and the presentation outputs of project teaching.
Pupils then mutually react to their contributions and they learn to not only assess the
work of others, but even their own work.

Finally, this is followed by the category of Creating. Digital technologies now play a
major role in implementing most of the required tasks in teaching. Many teaching outputs
are produced by pupils, on the computer. It can be text, graphics, audio or video. It is
important that the result will be a unique product and the pupil will be able to pass on
something to the other classmates. A typical procedure applicable for this creation, is the
creation of presentations or the telling of digital stories. The creation and sharing of the
work done by pupils online, may be achieved, for example, through Google Docs.

In the following table, we present examples of pupil activities with their extension
for the use of digital technologies according to Churches [4]. The implementation of
individual activities varies, according to the particular subject. The selection of ap-
propriate educational programs, the creation of presentations and other electronic
materials for teachers, as well as technical support using an interactive white board, is
also connected to it, as stated by Gunčaga [9].

 Pupils in the Virtual World and Education 121

Table 2. Activities of pupils concerning digital taxonomy

Level Activities Digital addition

Creating designing, constructing,
planning, producing, invent-
ing, devising, making

programming, filming, animat-
ing, Blogging, Video blogging,
mixing, remixing, wiki-ing, pub-
lishing, video casting, podcasting,
directing/producing, creating
or building mash ups

Evaluating Checking, hypothesising,
critiquing, Experimenting,
judging, testing, Detecting,
Monitoring

(Blog/vlog) commenting, re-
viewing, posting, moderating,
collaborating, networking, re-
flecting, testing, validating.

Analysing Comparing, organising, de-
constructing, Attributing,
outlining, finding, structur-
ing, integrating

Mashing, linking, reverse-
engineering, cracking, mind-
mapping

Applying Implementing, carrying out,
using, executing

running, loading, playing, oper-
ating, hacking, uploading, shar-
ing, editing

Understanding Interpreting, Summarising,
inferring, paraphrasing, clas-
sifying, comparing, explain-
ing, exemplifying

Advanced searching, boolean
searching, blog journaling, tag-
ging, categorising and tagging,
commenting, annotating

Remembering Recognising, listing, describ-
ing, identifying, retrieving,
naming, locating, finding

Bullet pointing, highlighting,
bookmarking, social networking,
Social bookmarking, favourit-
ing/local bookmarking, Search-
ing, googling,

To achieve the stated educational objectives, we can use the curriculum of several
thematic areas of the subject Informatics, for example, Information Around Us (the
processing of textual and graphical information, spreadsheets, the presentation of
information); Communication Through ICT (searching for information on the Inter-
net, sharing),and Procedures and Problem Solving (the creation of algorithms and
programming) [12]. For teachers of Informatics, it is also important to know the proc-
ess of creating and assessing learning objectives, in accordance with new knowledge,
in order for teaching not to be formal, but to prepare pupils for practice [5] and [10].

4 Conclusion

The virtual world of the Internet has many advantages, which can be used in educa-
tion, such as an unlimited dissemination of information, speed, access to services at
anytime and anywhere. Using the virtual world of the Internet also brings certain

122 M. Janka, P. Hedviga, and J. Emília

risks. Teachers (not only) of Informatics, should know also this side of the movement
of pupils on the Internet. Experts are exploring the possibility of addiction of children
and young people from the virtual world. Gregusová [7], in her research, indicates
that not only addiction from computer and video games can be observed in children,
but also virtual relationships from surfing on the Internet and other addictions. Addic-
tions from the Internet represent an increased risk, especially for children of a school-
age. All Internet addiction has one main common feature, and by that they are quickly
and easily obtained pleasant feelings. A major risk of the virtual world is also making
contact with inappropriate people or cyberbullying.

How can teachers of Informatics help pupils with orientation in the maze of the vir-
tual world? Extending the learning objectives about the digital dimension of the
proper use of ICT can increase the effectiveness of teaching. In cooperation with the
development of other types of pupil literacy - reading, mathematical and natural sci-
ence, thus helps pupils with their inclusion in the information society. In teaching the
subject of Informatics, we have scope for the development of the following skills of
the pupils at a higher level:

• to locate, collect and process information and use it in a critical and systematic
way, to visit websites, or create them on their own,
• to assess their importance and distinguish between real and virtual information
• to use tools for the creation, presentation and understanding of complex information,
• to acquire, search and use Internet services.

The taxonomy of the digital competences of pupils may be an incentive for the
teachers of Informatics at primary and secondary schools, while updating the contents
of the subject of Informatics. Pupils from lower grades are already coming with
greater skills within the work with ICT, as from a few years ago. The linking of In-
formatics’ competencies with other key competencies will become an important as-
pect of teaching Informatics at all stages of education.

It is necessary to also prepare the future teachers of Informatics, on these aspects.
They often have conceptions about education from the time of their studies at primary
and secondary school. The benefit is when they experience pedagogical practices in a
modern school of the 21st Century and they will also use their own experiences with
the virtual world in pedagogical practice.

Acknowledgements. This work is supported by the Scientific Research Fund KEGA
010 TTU-4/2012 Development and validation of virtual excursions in high school and
VEGA 1/0087/13 Internet dependence and personality of type D.

References

1. Anderson, L., et al.: A Taxonomy for the Learning, Teaching and Assessing of Education-
al Objectives. Longman, New York (2001)

2. Černák, I.: The importance of the quality of education of current and future teachers: a vir-
tualisation learning environment and the new role of the teacher. In: Učiteľ, žiak a mo-
tivácia vo vzdelávaní včera, dnes a zajtra (The Teacher, Pupil and Motivation in Education
Yesterday, Today and Tomorrow), pp. 173–189. Raabe, Bratislava (2012) (in Slovak)

 Pupils in the Virtual World and Education 123

3. Churches, A.: Bloom’s digital taxonomy, http://edulibpretoria.files.
wordpress.com/2009/05/blooms-digital-taxonomy.pdf

4. Churches, A.: Edorigami, http://edorigami.wikispaces.com/Bloom%27s+
Digital+Taxonomy

5. Gazdíková, V.: Počítačové zručnosti žiakov základných škôl, potrebné pre e-vzdelávanie
(The computer skills of primary school pupils, necessary for e-learning). In: Acta Faculta-
tis Paedagogicae Universitatis Tyrnaviensis, ser. C, Trnava, vol. 11 (2007)

6. Gregussová, M., Drobný, M.: Deti v sieti (Children in the network). eSlovensko 2013
(2013)

7. Gregussová, M., Tomková, J., Balážová, M.: Teens in cyberspace. Iuventa, Bratislava
(2011)

8. Gülseçen, S., Çelik, S., Özdemir, S., Uğraş, T., Özcan, M.: Education in smart cities. In:
New Challenges in Education, pp. 126–129. Verbum, Ružomberok (2013)

9. Gunčaga, J.: GeoGebra in Mathematical Educational Motivation. Annals: Computer
Science Series, Tome 9, Fasc. 1, 75–84 (2011) ISSN 1583-7165

10. Jablonský, T., Kolibová, D., Matúšová, S.: European Values and Cultural Heritage - a New
Challenge for Primary and Secondary School Education, p. 201. University of Debrecen,
Debrecen (2012)

11. Kalaš, I.: Learning activities for students in the 21st Century. In: Kalaš, I. (ed.) DIDINFO
2012, pp. 35–46. UMB, Banská Bystrica (2012)

12. Majherová, J.: Revised Bloom taxonomy and competencies for using ICT. In: Gunčaga, J.,
Jablonský, T., Nižnanský, B. (eds.) Didactics – Interdisciplinary Dialogue 2010, Verbum.
Ružomberok (2011)

13. Mandić, M., Ivanović, M.: Experience of applying a Wiki in university courses. In: Kalaš,
I. (ed.) DIDINFO 2012, pp. 141–146. UMB, Banská Bystrica (2012)

14. Polčin, D., Majherová, J.: Rozvoj digitálnej gramotnosti žiakov v predmetoch fyzika
a informatika (The development of the digital literacy of students in Physics and Informat-
ics). In: Gunčaga, J., Nižnanský, B. (eds.) Didactics – Interdisciplinary Dialogue, Verbum.
Ružomberok (2011)

15. Polčin, D.: Objectives, tasks and the importance of the “Support Programme Digitalisation
of Schools” as an initiative of the centre of modern educational technologies EDULAB. In:
Gazdíková, V. (ed.) Didactics – Interdisciplinary Dialogue, pp. 177–183. Verbum,
Ružomberok (2012)

16. Prensky, M.: Digital Natives, Digital Immigrants. In: On the Horizon, MCB University
Press, 9(5) (October 2001), http://www.marcprensky.com/writing/prensky
%20-%20Digital%20Natives,%20Digital%20Immigrants%20-%20Part1
.pdf

17. Velšic, M.: Digital literacy through the optics of the young generation. Research report.
Microsoft Slovakia, s.r.o. & the Institute for Public Affairs, Bratislava (2013)

18. Velšic, M.: Digital literacy and the labour market. Research report. Institute for Public Af-
fairs, Bratislava (2010)

19. http://en.wikipedia.org/wiki/Web_2.0
20. http://edu.webnode.sk
21. http://interaktivnetesty.sk
22. http://www.datakabinet.sk
23. http://edupage.org
24. http://vincent.edupage.org
25. http://www.zborovna.sk

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 124–137, 2014.
© Springer International Publishing Switzerland 2014

Introducing Students to Recursion:
A Multi-facet and Multi-tool Approach

Maciej M. Syslo1,2 and Anna Beata Kwiatkowska2

1 Institute of Computer Science, University of Wroclaw
F. Joliot-Curie str. 15, 50-383 Wroclaw, Poland

syslo@ii.uni.wroc.pl
2 Faculty of Mathematics and Informatics, Nicolaus Copernicus University

Chopin str. 12/18, 87-100 Torun, Poland
aba@mat.uni.torun.pl

Abstract. In this paper we discuss a number of results and advices coming from
our observations and didactical experience gathered when teaching about recur-
sion in different contexts and on various education level (K-12 and tertiary).
Knowing the difficulty in introducing, explaining and using recursion, we dif-
ferentiate our approach, tools, and methods. Recursion can be introduced as a
‘real-life topic’ – see Section 2, and then software for visualization of recursive
computations (Section 3) can be very helpful to overcome some difficulties by
novices. Section 4 is on developing recursive thinking – we use two popular
topics – generating Fibonacci number and printing digits of a number – to ex-
plain how to introduce students to different aspects of recursion. Section 5 is
addressed to complexity of recursive computations – we discuss how to use re-
cursion in a most effective way.

We do not teach recursion as a separate topic or subject, it is rather a method
and a tool, the way of thinking, used in various situations. It is redundant in
some cases (Section 5.1), can be used as an approach alternative to iteration
(Sections 2 and 4.2), but our main focus is on its properties as a concept which
has a computational power in designing solutions of problems and running such
solutions on a computer.

Keywords: recursion, iteration, induction, algorithm visualization,
Fibonacci numbers, Horner’s rule, printing digits of a number, fast
exponentiation, divide and conquer.

1 Introduction

Recursion is one of the main concepts in computer science and still remains a chal-
lenge for both teachers and students – recursion has been found to be one of the most
difficult topics in discrete mathematics and in programming to master for students.
We present here various facets of recursion together with various tools and examples
which help teachers to explain and students to understand recursion as a discrete
mathematics concept and as a programming tool.

 Introducing Students to Recursion: A Multi-facet and Multi-tool Approach 125

Most of the textbooks focus on classical examples of recursion such as factorial,
the Fibonacci numbers, the Towers of Hanoi, Euclid’s algorithm, permutations, a
binary search, and quicksort in a very traditional way which do not really illustrate the
full potential of recursion and recursive thinking. There have been a number of papers
focused on some real-life examples of recursion such as parking cars [30], task dele-
gation [5], Cargo-Bot game [26] to contextualize learning of recursive operations and
recursive thinking. Recursive thinking is one of the competences within computa-
tional thinking, which comprises competences expected to be mastered in some range
by all citizens of the knowledge society, see [16], [3].

Recursion is a tool for problem-solving by decomposition of a problem into sub-
problems of the same kind – one has to specify two methods: decomposition of a
problem into subproblems and composition of the solutions of the subproblems into
the solution of the problem. Such approach is used in traversing a tree, in some sort-
ing algorithms, and generally in a divide and conquer method. In some other cases,
recursion is used to reduce a problem to the same problem but with reduced (smaller)
parameters, e.g. in factorial, binary search, Euclid’s algorithm.

Recursion and recursive algorithms can be categorized according to the type and
the number of recursive calls. We can distinguish the following recursions: linear,
multiple, nested, and mutual. In a linear recursion (e.g. factorial, summation of a se-
ries) at most one recursive call is allowed at a level of recursion, and a multiple recur-
sion may contain more than one recursive call at a level (e.g. the Fibonacci numbers,
the Tower of Hanoi, a binary tree traversals). A nested recursion appears in the Ack-
erman function and a mutual recursion in its simplest form is a system of two recur-
sions in which recursive calls in one recursion are to the other recursion, see [19] for
some interesting mutual recursions and their applications. A multiple recurrence is
called also exponential since its computational complexity is non-polynomial (see
Section 5, where we consider a system of two recurrence relations for the Fibonacci
numbers which are mutual as well as multiple.

There are several methods and tools for explaining recursion to students; see [13]:

• induction – a recursive function is defined in terms of itself (recursive calls) and
base case(s), for instance as a computer implementation of a recursive algorithm or
a function;

• runtime stack – implementation of recursion in a high level programming language
involves a stack for frames which contain local variables, parameters, return ad-
dress and other information; when a procedure is invoked a corresponding frame is
pushed onto the stack and it is popped off the stack when a called procedure re-
turns control to its calling procedure;

• the trace – when a procedure is called, a procedure name with its input parameters
is listed;

• the recursion tree – the tree in which nodes correspond to procedure calls: the par-
ent of a node is the procedure which called the node and the children of a node are
the procedures which that node calls; see [14] for an extended version of the recur-
sion tree called a recursion graph (RGraph).

Quite often more than one of these methods is used when introducing and explain-
ing a particular recursion or a recursive function, especially in visualization systems,
see Section 3.

126 M.M. Syslo and A.B. Kwiatkowska

There exists a close relation between two notions: (mathematical) induction and
(computational) recursion. The authors of [17] have summarized their investigations
as follows: ‘recursion is an executable version of induction’. To the question ‘which
of the two topics is simpler? which should come first in the learning sequence?’ they
answer: ‘recursion is initially more accessible than induction … it is not recursion per
se that is easier than induction. Rather, it is recursive activities with the computer that
are easier than inductive proofs with pencil and paper.’ We refer also to [23] for dis-
cussion how informatics education could contribute to mathematics education.

In this paper we focus on recursion as a mental tool for computing – to perform some
computations and to understand computational processes which stay behind recursion
and recursive objects. Moreover we illustrate that recursion naturally appears in formula-
tion of some problems and then as a method for their solutions. The main objective in
this paper is to illustrate how we introduce our students to various aspects of recursion
and explain the most important properties and facets of this concept and its application in
computing. With regard to recursion as a tool for computations, we also focus on com-
plexity of using recursive procedures, see Section 5. Recursion is a very powerful con-
cept in problem solving and designing algorithms, but from the computational point of
view, it is always profitable to implement a recursive solution as an iterative process,
since recursion may be considered as another way of looking at iteration.

In Poland, some students in K-12 may first encounter recursion in primary or mid-
dle schools when using Logo or Pascal, mainly for drawing recursive pictures (e.g.
fractals), and then in high schools when they choose informatics as an elective sub-
ject. Most of the examples explained in this paper are included in the textbook [11]
for students in high schools, which meets the curriculum and evaluation standards for
school informatics (at the high school level) approved by the Ministry of Education.
One can also find these topics in Level III (Computer Science as Analysis and De-
sign) in A Model Curriculum for K-12 Computer Science, published by ACM in 2003
[1] and also at Stage IV (ICT Specialization) in A Curriculum Structure for Secondary
Schools, published by IFIP/UNESCO in 2002 [15].

The example presented here were also used in the outreach project Informatics +
[25], addressed to more than 1000 high schools in 3 regions – more than 17 000 stu-
dents participated in this projects, at least half of them took some courses on introduc-
tory algorithmics and programming. At a tertiary level, students of informatics and
informatics related studies learn recursion as a mental and algorithmic concept and
tool in a course on discrete mathematics and as an algorithmic and programming tool
in programming courses. Recursion appears also in a course on algorithms and data
structures. Students encounter recursion as a problem-solving approach, technique,
heuristic, and tools (e.g. divide and conquer), and also as recursive structures (e.g.
binary trees) and schemes (e.g. search and traversal schemes, and sorting schemes).

2 Computer Science Unplugged

In the beginning, when introducing recursion to students, we usually follow an idea of
Ershov [7] and describe some activities, which consist of a number of steps, in a ‘re-
cursive way’ of performing these steps – the problem reduces to a simpler (smaller)
one. Other such problems are the Russian dolls and Open a present [2]. Ershov
proposed to eat porridge:

 Introducing Students to Recursion: A Multi-facet and Multi-tool Approach 127

procedure eat_porridge;
 if the plate is empty then Stop
 else
 eat a spoonful of porridge;
 eat_porridge

This example shows that in the successive calls of the eating procedure, the ‘size’ of
the problem becomes really smaller, and smaller, reduced by a spoonful of porridge at
each turn (step). The recursive calls stop when the plate is empty.

Since eating in a classroom is usually not allowed, we can use dancing for the same
purpose, moreover this can be done in the classroom by all students:

procedure dance;
 if the music is not played then Stop
 else
 make a step;
 dance

The stopping condition in this example also corresponds to lack of something –
music. Note here however that this stopping condition is external in a sense that the
music does not depend on the actions taken in the procedure – making steps to dance.

Both examples show that the stopping conditions as the base case in the procedural
approach to recursion need not to correspond to the end of decomposing problems
into smaller similar problems, as assumed in [12]. In fact, instead of decomposition
we have here a simple reduction of problems into smaller ones by removing one ele-
ment (a spoonful of porridge or a step).

If recursion is introduce when students are familiar with some basic program con-
structions for programming an iteration, we demonstrate that there is a simple way to
transform a recursive procedure to iteration, as shown in Fig. 1.

Eating porridge:
while the plate is not empty do
 eat a spoonful of porridge

Dance:
while music is played do
 make a step

Fig. 1. Eating porridge and dancing as iterations

A similar correspondence between conditional iteration and recursion is shown in Fig.
2 for approximating the square root of a with accuracy eps for the initial value x.

while abs(x*x - a) > eps do
 x:=(x+a/x)/2;

procedure sr_r;

if abs(x*x - a) > eps then
 x:=(x+a/x)/2;
 sr_r

Fig. 2. Iterative and recursive ways of calculating square root of a

128 M.M. Syslo and A.B. Kwiatkowska

3 Visualization of Recursion

A number of visual representations have been developed for recursive procedures –
they provide a visual aid to illustrate the concept of recursion.

In 1993, a software package – EI (Elements of Informatics) – was designed for
IBM PC by a team supervised by the first author to support teachers of informatics
and of related subjects, see [6]. The software, comprehensively tested and accompa-
nied by documentation and educational materials (more than 1 000 pages), was then
produced in 1 300 copies and delivered to high schools in which informatics was
taught as an elective subject. The package is still used in some schools.

Package EI consists of 10 educational systems: We list here only those systems
which are of some use in teaching and learning recursion:

SB – a system for constructing and executing flow-charts of algorithms.

TP-TOOL – a set of tools for supporting learning of programming in Turbo Pascal.

DISC-MATH – a system consisting of 6 programs for supporting learning
algorithms and data structures: operations on list and tree data structures, sorting
algorithms, operations and algorithms on graphs, backtracking algorithms, a mod-
el of a universal computer (RAM).

ASD – a system for demonstrating and analyzing algorithms and data structures.

MET-NUM – a system for supporting learning numerical methods (computer realiza-
tion of mathematical calculations) and for performing some numerical calculations.

Fig. 3. A screen snapshot of Package EI – demonstration of a recursive procedure on a tree data
structure

Package EI, supported by very rich written educational materials, could be used in a
number of ways: by a teacher, during a lecture or exercises – to illustrate concepts and
their properties, and to demonstrate methods and algorithms; by students – during a
teacher’s demonstration, when working in groups and individually. Depending on the
preparation and expertise level of students, package EI could be gradually used:

 Introducing Students to Recursion: A Multi-facet and Multi-tool Approach 129

• as a toll for demonstrating concepts, their properties, methods and algorithms, e.g.
recursive sorting algorithms, searching in binary trees;

• as a demonstration tool in which the users can make experiments with different
values of parameters of their own choice, e.g. how sorting methods work on sorted
sequences;

• to plan and design exercises supported by the package, e.g. to compare efficiency
of various sorting algorithms;

• to write own programs utilizing some software modules available in the package,
e.g. write a complete program for transforming an expression to the RPN format.

In our vision, when we were designing and implementing Package EI, similarly to
Seymour Papert: the student programs the computer instead of the computer is being
used to program the student.

Some of the systems in the package EI have been redesigned and implemented for
the Windows environment, and now are available as open educational software, [6].

The screen snapshot in Fig. 3 shows an animation in which for a given (randomly
generated) expression tree, the expression in the Reverse Polish Notation (RPN) for-
mat is produced. The demonstration consists of: the trace (in upper right corner)
which is a list of the procedure name and input parameters, the full recursion tree, and
the recursive procedure (on the left) which recursively traverse the expression tree in
the post-order fashion and generates the expression in the RPN format.

Another system for visualization of recursion has been proposed in [4], see Fig. 4.
For each problem and its solution in the form of a recursive program in C++, pre-
sented are: the recurrence tree, the trace, the runtime stack and the complexity table
for a run of the program for parameters chosen by the user, who may watch its own
speed performance of the program with highlighted instructions and all data updated
at each step. Complete description of this system will appear elsewhere.

Fig. 4. A screen snapshot of another system for visualization of recursion – computing Fib(5)

130 M.M. Syslo and A.B. Kwiatkowska

4 Developing Recursive Thinking

There are a number of simple tasks we use to teach recursive thinking which result in
better understanding of recursion as a process of leading to recursive solutions in the
form of recursive algorithms and/or recurrence relations in the case when the goal is
to calculate some quantities.

4.1 Fibonacci Numbers

Recursion is most often introduced using the Fibonacci numbers, which originally
came out as the answer to the question about the population of rabbits in a rather non
realistic birth model. We used to introduce these numbers using another ‘story’
(which can be found in many textbooks) together with some real-world situations, in
which these numbers occur.

Here is the ‘story’ [23]: A professor S. has his office on the second floor and the
staircase from the first floor to the second floor consists of 12 (in general n) steps. He
is a very chaotic person and he takes one or two steps at a time. In how many ways
can he reach his office?

Fig. 5. Another context for introducing … the Fibonacci numbers

Students usually start to make pictures and calculations for staircases with 1, 2, 3, 4
… steps and obtain correct answers: 1, 2, 3, 5,… After a while, we ask them to guess
the next number. If they did not hear about Fibonacci numbers before, they have no
idea how these numbers are changing. Then we suggest them to look at the last step of
the staircase and try to answer, how Professor S. can reach this step – in this way we
move our students to think recursively. They suddenly see the rule – there are two
ways to reach a given step: taking either one or two steps at the end, so the following
relation is satisfied (see Fig. 5):

bi = bi – 1 + bi – 2, for i > 2

with b1 = 1, and b2 = 2, where bi denotes the number of ways Professor S. can reach
step i. We therefore obtain bi = Fi + 1, where Fi is the i-the Fibonacci number.

In a similar way we can develop with students an answer to the following question:
how many subsets does the set {1, 2, 3, …, n} have that contain no two consecutive
numbers? In this case, a subset of {1, 2, 3, …, n} with no two consecutive numbers

 Introducing Students to Recursion: A Multi-facet and Multi-tool Approach 131

can be obtained from a smaller subset ether by adding number n to a subset of {1, 2, 3,
…, n – 2} or taking a subset of {1, 2, 3, …, n – 1}.This again ends up with the Fibo-
nacci recurrence relation.

Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … look quite strange to students –
except the above relation, there is no regularity in this sequence. We usually avoid to
present Binet’s formula for bi, since it contains square roots and hence does not help in
understanding these integer numbers. However, as a means of contextualization, we are
very enthusiastic about real-world objects in which one can find Fibonacci numbers, such
as: pine cones, sunflowers, leaf arrangements in some plants, vegetables and fruits, etc.
Interesting is also the relation between Fibonacci numbers and the golden ratio – we refer
students to a chapter in [22] on application of Fibonacci numbers.

The solution method illustrated above, resulting in a recursive procedure or in a re-
currence relation, Ginat [10] calls ‘going backwards’ and treats as the core of recur-
sive thinking. He illustrates this approach with another nice problem: for two natural
numbers X and Y, such that X < Y, find the smallest number of operations +1 (add 1)
and x2 (multiply by 2) that are required to obtain Y from X.

The formula for the Fibonacci numbers can be used to explain that a difference be-
tween iteration and recursion lies in the way a formula is interpreted, as shown in
Fig. 6. In general, iteration is a repetition of the same procedure and recursion is a
reduction of a solution of a problem to simpler versions of the same problem. Recur-
sion may be interpreted in some cases as implementation of iteration.

Iteration Recursion

b1 = 1, b2 = 2, b1 = 1, b2 = 2,

bi = bi – 1 + bi – 2, for i = 3, 4, 5, … bi = bi – 1 + bi – 2, for i > 2

Fig. 6. Iteration versus recursion

Iteration means that numbers bi are calculated in the order: b1, b2, b3, b4, b5, b6, b7,
b8,… On the other hand, recursion is interpreted as follows: if we want to calculate bi,
for a given i, then if i = 1 then b1 = 1, if i = 2, then b2 = 2, and if i > 2, then bi = bi – 1 +
bi – 2, therefore to calculate bi we have to find bi – 1 and bi – 2 in a similar way using the
recursive formula.

4.2 Printing a Number

A quite popular programming task is to print an integer, digit by digit, starting with
the most important digit. This task sounds strange to some students since they can
easily print any integer n by using a simple instruction write(n). Nevertheless it is
worth to convince students that the best of this task is to come at the end.

There are two questions to be answered when attacking this task: (1) how to extract
a digit from an integer stored in a computer memory and (2) how to extract a digit at a
given position. Regarding the first question, students who are not familiar with the
computer representation of numbers think that integers are stored digit by digit in a
computer memory. Therefore it is important to make yet another assumption that we
have access to the value of a number but not to its digits, those should be extracted
from the value of a number.

132 M.M. Syslo and A.B. Kwiatkowska

To answer both questions it is important that students know how to calculate the
less important digit of a number – it is equal to the reminder when dividing a number
by 10 and it can be calculated using operation mod. Regarding the second question –
it could be answered with the help of the answer to the first question: if we want to
find the k-th digit of a number we have to cut off k – 1 right most digits. This can be
done recursively digit by digit, starting with the less important position. To this end,
another operation is useful – div, which produces integer value of division and
can be used to cut off a right (that is, a less important) part of a number. A complete
solution is given in Fig. 7 (the left column).

procedure Digits(n:int);
 if n < 10 then write(n)
 else begin
 Digits(n div 10);
 write(n mod 10)
 end

procedure Digits(n,p:int);
 if n < p then write(n)
 else begin
 Digits(n div p,p);
 write(n mod p)
 end

Fig. 7. Extracting digits from numbers represented in the decimal system (on the left) and
represented in the system with respect to the base p

There are a number of other interesting questions and tasks which can be answered
by small modifications of the program we have obtained for the original question. Let
us list some of them:

• print digits of a number starting from the less important one (hint: change the order
of two instructions);

• print digits of a decimal number in the representation with respect to the base p,
(2 ≤ p ≤ 10) – see Fig. 7 (the right column);

• compute the number of ones in the binary representation of a number (or the num-
ber of any digit in the representation of a number with respect to any base p);

• compute the sum of digits of a number in its representation with respect to any
given base p.

5 Complexity of Recursive Calculations

We focus here on a very important issue of any computations – complexity – with regard
to recursion. In general, recursion is used to considerably speed up computations.

5.1 A Recursive Version of Horner’s Rule

In the beginning we shortly explain to our students that computers (processors) per-
form only 4 basic arithmetic operations and therefore any other operation or function
must be calculated using these four operations. Polynomials, whose values can be
computed using only these four operations, play a very important role as functions which
can be used to approximate any other continuous function, such as sin, cos, tan, log (we
usually present some polynomial approximation formulas for trigonometric functions).

 Introducing Students to Recursion: A Multi-facet and Multi-tool Approach 133

Polynomials appear in school mathematics mainly in linear and quadratic equa-
tions. Indirectly, polynomials of higher degrees are used to represent numbers in
a positional system with respect to any base – the representation of a number is a
polynomial in the base of the system p with coefficients from the set of digits {0, 1,
2, …, p – 1}, see [21] and [22].

For a polynomial of degree n: nn
nn

n axaxaxaxw ++++= −
−

1
1

10)(,

expressed as: nnn axaxaxaxaxw +++++= −)))((()(1210 we get the

following computational procedure know as Horner’s rule to find)(zwy n= :

0ay = ,

iazyy +⋅= for ni ,,2,1 = .

We can also use the following expression:

nn
nn

n axaxaxaxw ++++= −
−−)()(1

2
1

1
0

to derive the following recursive procedure for computing the value of a polynomial:

00)(axw =

nnn axxwxw +⋅= −)()(1 for 1≥n .

We now ask students which of the above formulas for polynomial value calculations
is more efficient? To answer this question we ask students to write down all opera-

tions when)(3 zwy = is calculated using the recursive algorithm, performed during

the recursive call for n = 3. It is demonstrated in Fig. 8 that all the recursive calls are
nothing else as preparation to execute the usual Horner’s rule. Therefore it is no
advised to use recursion here.

Fig. 8. Recursive realization of Horner’s rule

00)(azwy ==

323)()(azzwzw +⋅=

212)()(azzwzw +⋅=

101)()(azzwzw +⋅= 1azyy +⋅=

2azyy +⋅=

3azyy +⋅=

Recursive calls Returns from recursive calls

134 M.M. Syslo and A.B. Kwiatkowska

5.2 Fast Exponentiation

Fast calculation of a power xn is a crucial step in real computations, for instance in the
RSA systems, where x and n are really very big numbers. In a simple exercise stu-
dents verify, how long it will take to calculate xn for a ‘small’ exponent consisting of
35 digits using the ‘school’ method which depends on performing n – 1 multiplica-
tions. Using the Windows calculator students may calculate that for n consisting of 35
digits, e.g. n = 12345678912345678912345678912345, when a 1 PFlops super com-
puter is used (it performs 1015 multiplications per second), it will take more than 108
years to find the value of xn.

We now discuss with students how we can perform exponentiation faster. To direct
them to a right answer, we ask how to decrease the number of multiplications when
the exponent is an even integer. They quickly come up with the formula x2k = (xk)2.
And then, how to deal with an odd exponent – students also come up quite quickly
with the formula x2k+1 = (x2k)x, which transforms this case to the case of even expo-
nent. Now we ask students to use these observations to find how to calculate for
instance x43. Repeated application of these rules lead to the following transformations
of the power:

x43 = (x42)x = ((x21)2)x = (((x20)x)2)x = ((((x10)2)x)2)x = (((((x5)2)2)x)2)x =

= ((((((x4)x)2)2)x)2)x = (((((((x2)2)x)2)2)x)2)x

Therefore, to compute power x43, we have to perform only 8 multiplications, in-
stead of 42 (squaring a number needs one multiplication).

The discussion now leads to the recursive formulation of the above method:

Students may wonder how many multiplications are used by this recursive algo-

rithm. To make some suggestions we show another algorithm for the same task in
which the binary representation of the exponent is expressed according to Horner’s
rule:

x43 = x((((1⋅2+0)⋅2+1) 2+0)⋅2+1)⋅2+1 = x(((1⋅2+0)⋅2+1) 2+0)⋅2+1)2x = x((1⋅2+0)⋅2+1) 2+0)2x)2x =
((((x(1⋅2+0)⋅2+1)2)2x)2x = = ((((x1⋅2+0)2x)2)2x)2x = ((((x2)2x)2)2x)2x

It is an interesting to notice that this procedure generates the same sequence of
multiplications as the recursive algorithm. Based on the latter interpretation of the
power n, one can observe that the number of multiplications depends on the length of
the binary representation of n and is equal to the number of binary positions in
the representation minus 1 plus the number of 1’s in the representation minus 1. Since
the length of the binary representation of n is proportional to log2n, the number of
multiplication needed to calculate xn is at most 2log2n.

=

− xx

xx
n

nn

)(

)(

1

1

22/

for n = 0

for n – even

for n – odd

 Introducing Students to Recursion: A Multi-facet and Multi-tool Approach 135

Finally we can estimate how many multiplication performs the recursive exponen-
tiation for n = 12345678912345678912345678912345. We have 2log2n < 210. It is
tremendous achievement in complexity what makes RSA cryptographic systems real-
ly practical – exponents used in such systems have 200-300 digits.

5.3 Fast Computing of Fibonacci Numbers

The Fibonacci recurrence relation is a multiple recursion since it contains two (that is
more than one) recursive calls at a level. It can be seen for instance in Fig. 4, that
multiple calls cause a great inefficiency in realization since a large number of the
same values is calculated many times. Therefore a multiple recurrence is also called
exponential since it leads to non-polynomial computations with regard to the problem
size.

Instead of recursion, a Fibonacci number can be easily computed using iteration
which starts with two initial values 1 and 1 and adds two last values at each step.
There are a number of such procedures based on the same recurrence relation for Fn,
see [21] and [22], all of them are of linear complexity in n.

In the previous section however we demonstrate that a linear-time algorithm might
be very impractical and we should concentrate on finding a method which is of loga-
rithmic complexity (see [24] for discussion on the role of logarithm in algorithmics).
There exists such an algorithm for computing Fibonacci numbers. It is based on a
similar idea as used in the recursive exponentiation – if we want to change a linear
process into a logarithmic one, we have to find a formula with recursive calls which
reduce the parameters values by about at least half. Fortunately there are such
relations for Fibonacci numbers:

This is a system of two multiple and mutual recursive relations in which the indices of
the Fibonacci numbers on the right-hand sides are about half of the indices of the
numbers on the left-hand side. Since the relations are multiple, it is advised to imple-
ment them using iteration, that starts with the base values. We have perform some
computational experiments with various recurrence relation for calculating the values
of the Fibonacci numbers (see details in [22]) and the algorithm suggested in the pre-
vious sentence conquered all the other algorithms for n > 30.

5.4 Divide and Conquer Methods

A divide and conquer algorithm, such as binary search, merge sorting, quick sorting,
is usually implemented in a form of a recursive procedure and this approach usually is
responsible for a logarithmic factor in a formula for complexity of the algorithm. Two
comments are in order.

2
12

22
112

10

2

1,0

nnnn

nnn

FFFF

FFF

FF

+=
+=
==

−

−−

1

2

≥
≥

n

n

136 M.M. Syslo and A.B. Kwiatkowska

In general, a computer program which involves recursion is usually shorter and
more ‘readable’ than its iterative counterpart, although its computer execution may
take much longer, especially when it involves multiple recursion, as illustrated by
Fibonacci number computations.

Logarithm and the logarithmic functions are very important in computing and in
computer science. It appears as a measure of data size in computer memory and more
important, it describes the number of steps in divide and conquer (recursive) algo-
rithms. Its importance follows from its very slow increase of values when the argu-
ment becomes large. The authors wrote another paper on the meaning and the use of
logarithms in informatics, in particular in school informatics, see [24].

6 Conclusions

Recursion is one of the main concepts in computer science and remains a challenge
for teachers and students. In this paper we discuss various facets of recursion and
present some advices, how to approach and to teach recursion, coming from our
didactical experience. Knowing the difficulty in introducing, explaining and using
recursion, we differentiate our approach, tools, and methods. Our main focus is on
recursion as a mental tool for computing – it naturally appears in formulation of some
problems and then as a method for their solutions. As a tool for computations, we also
focus on complexity of using and implementing recursive procedures.

We do not teach recursion as a separate topic or subject, it is a method and a tool,
the way of thinking, used in various situations. The examples of recursion and the
way we use them come from our textbooks based on the experience gathered while
working with students in K-12 and at university level. Although we have not yet done
any formal research on how successful is our approach, we are satisfied with students’
grades and the results of final high school examinations in informatics (matura). In
the near future we plan to run a project on testing various mental tools of computa-
tional thinking, such as: approximation, decomposition, recursion, and heuristics.

References

1. ACM K-12 Task Force Curriculum Committee, A Model Curriculum for K-12 Computer
Science. ACM (2003)

2. Ben-Ari, M.: Recursion: From Drama to Programs. J. of Computer Science Educa-
tion 11(3), 9–12 (1997)

3. CSTA: K-12 Computer Science Standards (2011), http://csta.acm.org/Research
/sub/CSTAResearch.html

4. Diduszko, P.: Rekurencja. System do Nauki Posługiwania się Rekurencją, Master Degree
Thesis, Institute of Computer Science, University of Wrocław (2013)

5. Edgington, J.: Teaching and Viewing Recursion as Delegation. J. Computing Sciences in
Colleges 23(1), 241–246 (2007)

6. Educational software, http://mmsyslo.pl/Materialy/Oprogramowanie
7. Ershov, A.P.: Basic Concepts of Algorithms and Programming to be Taught in a School

Course in Informatics. BIT 28, 397–405 (1988)
8. Ford, G.: A framework for Teaching Recursion. SIGCSE Bulletin 14(2), 32–39 (1982)

 Introducing Students to Recursion: A Multi-facet and Multi-tool Approach 137

9. Ginat, D., Shifroni, E.: Teaching Recursion in a Procedural Environment – How much
Should we Emphasize the Computing Model? SIGCSE Bulletin 31(1), 127–131 (1999)

10. Ginat, D.: Do Senior, CS Students Capitalize on Recursion? In: Proceedings ITiCSE 2004,
Leeds, pp. 82–86. ACM (2004)

11. Gurbiel, E., Hard-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M.: Informatics (In
Polish), vols. 1 and 2, Textbook for high school, WSiP, Warszawa (2002-2003)

12. Haberman, B., Averbuch, H.: The Case of Base Cases: Why are They so Difficult to Rec-
ognize? Student Difficulties with Recursion. In: ITiCSE 2002, Aarhus, Denmark, pp. 84–
88 (2002)

13. Haynes, S.M.: Explaining Recursion to the Unsophisticated. SIGCSE Bulletin 27(3), 3–6,
14 (1995)

14. Hsin, W.: Teaching Recursion Using Recursion Graphs. J. of Computing Sciences in Col-
leges 23(4), 217–222 (2008)

15. Information and Communication Technology in Education. A Curriculum for Schools and
Programme of Teacher Development, IFIP/UNESCO (2002)

16. ISTE: http://www.iste.org/learn/computational-thinking
17. Leron, U., Zaskis, R.: Computational Recursion and Mathematical Induction. For the

Learning of Mathematics 6(2), 25–28 (1986)
18. Naps, T., Roessling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korho-

nen, A., Malmi, L., MCNally, M., Rodger, S., Velazquez, J.: Exploring the Role of Visua-
lization and Engagement in Computer Science Education. SIGCSE Bulletin 35(2), 131–
152 (2003)

19. Rubio-Sanchez, M., Urquiza-Fuentes, J., Pareja-Flores, C.: A Gentle Introduction to Mu-
tual Recursion. In: Proceedings ITiCSE 2008, Madrid, pp. 235–239. ACM (2008)

20. Sooriamurthi, R.: Problems in Comprehending Recursion and Suggested Solutions.
SIGCSE Bulletin 33(3), 25–28 (2001)

21. Sysło, M.M.: Algorithms. WSiP, Warszawa (1997) (in Polish)
22. Sysło, M.M.: Pyramids, Cones and Other Algorithmic Constructions. WSiP, Warszawa

(1998) (in Polish)
23. Sysło, M.M., Kwiatkowska, A.B.: Contribution of Informatics Education to Mathematics

Education in Schools. In: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 209–
219. Springer, Heidelberg (2006)

24. Sysło, M.M., Kwiatkowska, A.B.: Think logarithmically! Accepted for KEYCIT, Potsdam
(Germany) (July 2014)

25. Sysło, M.M.: Outreach to Prospective Informatics Students. In: Kalaš, I., Mittermeir, R.T.
(eds.) ISSEP 2011. LNCS, vol. 7013, pp. 56–70. Springer, Heidelberg (2011)

26. Tessler, J., Beth, B., Lin, C.: Using Cargo-Bot to Provide Contextualized Learning of Re-
cursion. In: Proceedings ICER 2013, San Diego, pp. 161–168. ACM (2013)

27. Tung, S.-H., Chang, C.-T., Wong, W.-K., Jehng, J.-C.: Visual Representations for Recur-
sion. Int. J. Human-Computer Studies 54, 285–300 (2001)

28. Yang, F.-J.: Another Outlook on Linear Recursion. Inroads, SIGCSE Bulletin 40(4), 38–41
(2008)

29. Valazquez-Iturbide, J., Perez-Carrasco, A., Urquiza-Fuentes, J.: SRec: An Animation Sys-
tem of Recursion for Algorithm Courses. In: Proceedings ITiCSE 2008, Madrid, pp. 225–
229 (2008)

30. Wirth, M.: Introducing Recursion by Parking Cars. SIGCSE Bulletin 40(4), 52–55 (2008)

A Present-Day “Glass Bead Game”:

A Framework for the Education of Prospective
Informatics Teachers Inspired by a Reflection

on the Nature of the Discipline

Claudio Mirolo

University of Udine, Dept. of Mathematics and Computer Science
via delle Scienze 206, 33100 Udine, Italy

claudio.mirolo@uniud.it

http://www.dimi.uniud.it

Abstract. Informatics has an intrinsically multifaceted nature. The
usual approaches to plan classwork in the high school are organized
around concepts, principles, tools. However, each concept, principle, or
tool can be seen under diverse perspectives, in particular those held by
mathematicians, scientists and engineers, with quite different implica-
tions from a conceptual, methodological and epistemological point of
view. Accordingly, the learning issues and the pedagogical means to ad-
dress them are also different. Hence, it may be worth considering a com-
plementary approach in order to shift the focus from the notions to learn
to the (cognitive, methodological, creative) processes required from the
students, the latter being tightly connected to the aforementioned gen-
eral perspectives. The framework outlined in this paper is the basis of a
core module as part of the renewed program offered by the University of
Udine for the education of prospective teachers of informatics. This mod-
ule addresses in an integrated way the nature of our discipline and the
teaching of programming as a key activity to appreciate the distinctive
features of each perspective. It aims at deepening the teachers’ awareness
about the variety of coexisting views and their pedagogical implications.

Keywords: informatics education, secondary school, prospective teach-
ers, nature of informatics.

Under the shifting hegemony of now this, now that science or art,
the Game of games had developed into a kind of universal language

through which the players could express values
and set these in relation to one another.

Hermann Hesse, “Das Glasperlenspiel” (1943)

1 Introduction

Informatics is an intricate discipline, not only due to the interplay with almost
every aspect of human activity, but also because of its intrinsically multifaceted

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 138–149, 2014.
c© Springer International Publishing Switzerland 2014

http://www.dimi.uniud.it

A Present-Day Glass Bead Game 139

nature: as in the metaphor borrowed from Hesse’s masterpiece, the “game” aims
at a synthesis of different knowledge fields. The situation is particularly con-
fused in the school [25], where most teachers are not used to reflecting on the
actual nature of the activities that they propose under the hat of informatics.
In fact, doing informatics tends to incorporate almost everything that has to
do with ICTs, like the development of transferable operational skills (cognitive
invariants, general interaction patterns [3, 27]), or even the opportunistic use
of specific tools (where the focus is on the product, rather than on the way it
is produced [10]). Here our interest is in teaching informatics as a discipline. A
common approach to plan classwork in the high school starts from some content
in terms of concepts, ideas, tools to be introduced and elucidated through lessons
as well as practical labs [7, 24, 25]. However, each concept, idea or tool makes
only sense in the context of specific kinds of activities it is relevant to, and may
be seen differently according to the teacher’s (explicit or, more often, implicit)
perspective. In essence, the major such perspectives reflect some established
practice of mathematicians, scientists and engineers, which have quite different
implications from a conceptual, methodological and epistemological point of view
[13, 26]. Consequently, and most importantly, the learning issues and the peda-
gogical means to address them are different. In this paper it is then suggested
to integrate a complementary approach in order to shift the focus of attention
from the pieces of content to be learnt to the (cognitive, methodological, cre-
ative...) processes required from the students, the latter being tightly related to
the aforementioned general perspectives. Of course this doesn’t mean that con-
cepts and principles are not important, but a task where different perspectives
are confused may be exceedingly demanding to students and, at the same time,
elusive as to the actual goals of their work. Moreover, it is the experience of such
processes that is more likely to produce long-lasting learning effects.

According to these premises, the framework outlined in the next section is
the basis of a core module within the renewed program offered by the University
of Udine for the education of prospective high-school teachers of informatics.
The module addresses in an integrated way the nature of the discipline and the
teaching of programming as a key activity to understand it, with the aim of
deepening the teachers’ awareness about the variety of coexisting perspectives
and about the pedagogical implications of such perspectives. The rest of the
paper is organized as follows. Section 2 addresses the three main perspectives of
informatics as a discipline and some of their implications for computing educa-
tion. Then, section 3 illustrates possible instantiations of these perspectives in
the context of a programming project.

2 Three Disciplinary Perspectives

As mentioned in the introduction, informatics is a multifaceted discipline, part
of whose modi operandi are drawn from mathematics, science, engineering
[8, 9, 13, 16, 26], and it is precisely the processes carried out, both cognitively
and methodologically, that better characterize these different perspectives. Each

140 C. Mirolo

perspective, indeed, presupposes a particular view about the nature of the ob-
jects of study (ontology), the methods applied to acquire new knowledge about
them (methodology), and the nature of such knowledge (epistemology). Among
the works cited above, Eden (2007) has contributed an interesting discussion of
these topics from a philosophical standpoint [13]. Whether we agree or not on
his conclusions in favor of the primacy of a scientific perspective, his analysis
lays a good basis to reflect on the cognitive demands and on the pedagogical
implications inherent to the tasks assigned to students.

Although there may be “something unsatisfying about thinking of computing
as a blend of three sub-paradigms” [9], and perhaps a new, richer paradigm results
from such an irreducible mix, the originating perspectives still play an essential
role in the development of appropriate mental scaffolding. Said otherwise, the
acquirement of competencies of the type we find in mathematics, science and
engineering is conceivably a precondition in order for a peculiar computational
perspective to evolve: “Despite their inseparability, the three paradigms are dis-
tinct from one another because they represent separate areas of competence”
[8]. In what follows much of the discussion will be concerned with the sphere of
programming for a twofold reason: on the one hand, this is a core activity to
reflect on the nature of informatics; on the other, it provides a wealth of tasks
where each of the points addressed here can be experienced in its concreteness,
as we will see in the example of sect. 3.

Our basic question is: What is the nature of the informatics objects? And,
more specifically, what kind of “reality” can we ascribe to a program? Let us
consider, for instance, the following interesting quotation from Abelson’s et
al. (1984) influential textbook: “A computer language is not just a way of get-
ting a computer to perform operations but rather it is a novel formal medium for
expressing ideas about methodology. Thus programs must be written for people
to read, and only incidentally for machines to execute” [1]. In this excerpt two
divergent views of program are contrasted:

– program as a text, “written for people to read” (program-script [13]): i.e., a
cultural product, which may have an impact on our lives, but only indirectly,
through some mindful and knowledgeable intervention of a human actor.

– program as a process, intended “for machines to execute” (program-process
[13]): i.e., a phenomenal entity, which can affect the real world directly, in-
dependent of any informed human effort.

At one extreme, as a cultural product intended for humans — a medium to
share knowledge under a “procedural epistemology” [1] —, a program (text) can
be studied with the analytical methods drawn from the mathematical field. At
the latter extreme, as a phenomenal entity, a program (process) can be subjected
to scientific experimentation either to discover its properties or to test hypothe-
ses. In both cases, we imagine to deal with a program which is already available
in some way. A third view, revealed by the word structure in the title of Abel-
son’s et al. book, focuses on the design strategies that can eventually produce
as a result an appropriate program structure. In the ensuing subsections we will
elaborate in a little more depth on each of these perspectives.

A Present-Day Glass Bead Game 141

2.1 Mathematical Perspective

So, what is the nature of programs, algorithms, information? What kind of “re-
ality” can we ascribe to these concepts from a mathematical standpoint? Essen-
tially, these are abstract ideas that live in our mind: what mathematicians call
mathematical objects. The only concrete things we deal with — program texts,
flow-charts, trees. . . — are made up of notation, i.e., are semiotic representa-
tions [11] that denote mental (mathematical) objects. The main methodological
tools to study similar objects are theoretical analysis and logical deduction, that
allow us to gain a priori knowledge about them, independent of any actual in-
stantiation in a physical computing device. This is the standard approach of
theoretical computer science. In summary (table 1):

Table 1. Mathematical perspective (philosophical rationalism)

ontology semiotic representations denote abstract mathematical objects

methodology theoretical analysis, logical deduction

epistemology a priori knowledge based on complete formal characterizations

Now a key pedagogical issue, under this perspective, is that students have to
understand purely abstract objects. In this respect, it is interesting to elaborate
a little on Duval’s analysis of mathematics cognition [11, 12]. “From an episte-
mological point of view there is a basic difference between mathematics and the
other domains of scientific knowledge. Mathematical objects [...] are never acces-
sible by perception or by instruments [...]. The only way to have access to them
and deal with them is using signs and semiotic representations” [11]. Then, ac-
cording to him, two kinds of transformations play a central role: treatment and
conversion of representations. Treatments are essentially algorithmic transfor-
mations within a given semiotic register. Conversions are based on mappings
between different kinds of representations and are cognitively more complex
since they presuppose the recognition of the same denoted object, which must
be dissociated from the content of its representation. Thus, the peculiar thinking
processes of mathematics require the cognitive coordination of different semiotic
representations in order to compensate for the lack of direct (or instrumental)
access to the denoted entity.

Conceivably, treatments and conversions play an analogous role in the compre-
hension of the foundations of computing. This shouldn’t be surprising as far as
“algorithmic” treatments are concerned. But also conversions are worth consid-
ering for two main reasons. Firstly, the basic ideas relating to information coding
and algorithmic processing are abstract in nature and are to be approached by
analogy with mathematical knowledge. Moreover, these ideas are of great rele-
vance since they lay the grounds of any further learning progress in our discipline.
Second, in informatics we have constantly to do with mappings and/or conver-
sions between different types of representations of a same (either abstract or
real) entity. To sum up, a useful insight of Duval’s analysis for the teacher of

142 C. Mirolo

informatics is that the learning of some abstract object (e.g., information model,
algorithm) can be improved by exploring several heterogeneous representations
of it — not necessarily restricted to paper-and-pencil “artifacts.” Because of the
cognitive complexity of the involved mental processes, the teacher should also
pay attention to how confident students are while passing from a representation
of some kind to one of a different kind that denote the same abstraction.

2.2 Scientific Perspective

We start again from the ontological question: what kind of “reality” can we
ascribe to, say, a program from a scientific point of view? A program may be
simply too complex in order to make reliable predictions only based on formal
analysis of its text. Thus, as in the case of natural phenomena, the behavior
resulting from its execution can often be partly, or even totally, unknown in
advance. (Incidentally, notice that this is always the case when we are debug-
ging a program!) In similar situations a more viable approach is to consider the
program process on a par with related information processing phenomena that
we can find in nature, e.g. DNA transcription or “mental processes”, and study
it accordingly by testing hypotheses on its behavior through a combination of
deductive inference and scientific experimentation. As a consequence, what we
learn on a program is a mix of a priori and a posteriori knowledge, the latter be-
ing usually predominant. This approach is typical of some branches of computer
science like artificial intelligence. The above points are summarized in table 2:

Table 2. Scientific perspective (philosophy of science)

ontology program process on a par with information processing in nature

methodology inference from and experimental testing of hypotheses

epistemology a priori (inferential) and a posteriori (experimental) knowledge

Following recent trends in education, central to a scientific perspective are
the processes of scientific inquiry (or investigation) [19, 28, 29], which mainly
raise methodological issues. At its heart, the scientific method requires to figure
out hypotheses (models) and to test them against evidence derived from experi-
ments (sometimes direct observations), where the hypotheses may be formulated
either from previous/theoretical knowledge or from observations. “K-12 science
instruction typically focuses on the more basic inquiry skills, including observing,
inferring, predicting, measuring, and experimenting” [28]. It is then important
that the students develop the abilities to ask testable questions, to design and
carry out experiments, to analyze and make sense of the collected data. This is
not, however, an easy task for the teachers, who have to be well aware of the
relevant learning objectives, that go far beyond the operational skills necessary
to achieve the implied practical tasks [2, 4, 6]. In particular, research in sci-
ence education has pointed out that teachers often tend to confuse (structured)
inquiry instruction with hands-on or laboratory activities [28].

A Present-Day Glass Bead Game 143

In this last respect, the teachers of informatics should not overlook the risk
of confusion between the cognitive and operational levels, since we often pay
too much attention to “what students can do” rather than to “why they do it
that way.” As a further remark, the habitual debugging activity is worth more
careful consideration from a methodological standpoint, and precisely by taking
a scientific perspective. In the “diagnostic” phase, indeed, we have in mind a
model explaining what the program was supposed to do, but the experimental
evidence from program testing leads us to reject it. Then, in order to identify the
problem we have to figure out a more accurate model which is able to account
for the actual outcomes of the program. In light of this scientific view, a better
structured approach to debugging can be envisaged, where the work planning,
the goals, and the reasons for the choices are made explicit. More in general,
it is also necessary to distinguish between testing in science vs. testing in a
technological milieu (see next subsection). Although these kinds of practice may
look similar in that they use similar equipment, they are in fact quite different
both methodologically and epistemologically.

2.3 Technological Perspective

Once more, what kind of “reality” can we ascribe to a program? According to
Eden’s analysis [13], under a technological perspective we can only experience
a program as a bunch of data, its script, on some concrete carrier, and it is
regarded as useless to postulate the existence of some abstract, immaterial entity
denoted by the program text. The engineers’ attitude is also pragmatic as to the
methodology. Their main concern is the production of reliable systems, which is
attained by a regimented development and testing process where the quality is
assessed statistically. The complexity of software systems as well as the evolution
during their lifespan makes deductive reasoning impractical. As a consequence,
we have to content ourselves with a posteriori knowledge in terms of reliability.
This is the ordinary approach, for example, in the branch of software engineering.
The technological perspective is then summarized in table 3:

Table 3. Technological perspective (philosophical empirism)

ontology the only existing things are bunches of data on concrete carriers

methodology regimented development and (reliability) testing processes

epistemology a posteriori knowledge based on statistical reliability tests

A weakness of Eden’s picture in this case is that the design process, almost
hidden in a generic “regimented development” process, seems to lose the cen-
tral role it plays for an engineer. From a disciplinary standpoint, technological
knowledge is above all knowledge about the internal structure of artifacts and
about how such structure realizes a given function. Following Kroes’ philosophi-
cal analysis of this matter, the “dual nature” (structure vs. function) of artifacts
“leads to a question that is of crucial importance for understanding the nature of

144 C. Mirolo

design processes [...]: How can we account for the fact that designers are able to
bridge the gap between a functional and a structural description of a technical
artefact?” [17]. And the “gap” to bridge may actually be huge for the computing
technologies: “computer science is [...] a synthetic, an engineering, discipline.
[...] Especially important for us are system design problems characterized by
arbitrary complexity” [5].

A pedagogical strategy suggested by Frederik et al. [15] in order to address the
question raised by Kroes is to categorize the technological artifacts on the basis
of their structural and functional properties, and then to try to relate structures
to functions. A similar purpose can be achieved in informatics on the basis of
programming patterns and roles of variables patterns, e.g. [18, 20–22]. For more
general computing artifacts, it is also interesting to consider the path proposed
by Schulte (2012) to explore the structure behind function by experimenting
“different steps between use and design [...]: checking out or trial; use or apply;
configure or modify; and create or produce” [23]. Besides the issues connected
to design, an important component of a “regimented development” process is
the implementation of testing sessions. In this respect, the tools available to
the teacher are quite simple to use. Then, from an educational viewpoint, the
crucial aspect is planning a useful set of tests, a task that is again related to the
understanding of the structure of the software artifact.

3 An Example

We will now discuss one of the examples that have been proposed to the prospec-
tive teachers, in order to illustrate possible instantiations of the three disciplinary
perspectives introduced so far through a set of related programming tasks. It will
be presented as an integrated path where the students can explore a variety of
aspects connected with each such perspective. However, in some contexts it may
be unrealistic that the pupils work on all of these aspects to get a broad picture
of computer science. Some of the results may then be presented in more or less
depth, or some data may be provided directly by the teacher, depending on the
specific learning objectives. Alternatively, the students may work in groups on
different subtasks, in order to accommodate for different learning styles — even
though we cannot rely on a clear-cut matching between learning styles and dis-
ciplinary perspectives, see for instance the concise survey in [14]. The important
point is that the teacher has a clear idea of what sphere of competences (analysis,
investigation, design. . .) her/his students are expected to develop.

The example deals with a well known topic: the performance of sorting al-
gorithms. There are several reasons that can justify a similar choice. On the
one hand, sorting problems are quite common in everyday life as well as in the
students’ experience (e.g., in the use of a spreadsheet); on the other, the related
programming tasks are reasonably affordable at the upper secondary level. In
addition, the observation of the behavior of basic sorting algorithms can lead to
interesting and perhaps surprising discoveries. For the sake of simplicity, we con-
sider only two basic algorithms: insertion sort and quick sort. Conceivably, the

A Present-Day Glass Bead Game 145

algorithms’ behavior can be explained with the aid of animated visualizations
and all or part of the code may be made available in advance.

3.1 Working Like a Mathematician

Let us consider the following questions:

MAT1. Are the algorithms able to sort any data sequence?
Even in the presence of repetitions?

MAT2. Does it matter what algorithm is used?
And if it does, what is the best-performing one?

MAT3. Is it possible to find a significantly better algorithm?
Or perhaps do there exist inescapable performance bounds?

We are approaching our problems from a mathematical perspective whenever
we try to answer similar questions on the sole basis of the analysis of program
text. In particular, the algorithms’ performances are to be assessed in terms of
number of comparisons, operations, assignments, iterations, recursions. . . At
the upper secondary level the analysis of the average-case performance, that
provides most interesting information to answer the questions labeled MAT2,
can be simplified by roughly “adjusting” the (easier to understand) results for
the worst-case (insertion sort) or for the best-case (quick sort). It may also be
interesting to address the questions MAT3 by trying to estimate the depth of
a binary tree with as many leaves as the number of permutations of the data
to sort (see fig. 1b, where each node represents a data-pair comparison and the
branches correspond to the possible outcomes of the comparison). It is worth
remarking that, independent of the terminology, notation and formal precision
introduced in the classroom, the computational-complexity classes we denote
by θ(nlogn), θ(n2), etc., are abstract mental objects, to which the pedagogical
considerations of sect. 2.1 apply. For instance, the graphs drawn in fig. 1a are
just semiotic representations of our idea of theoretical trend, not the theoretical
trends themselves, even though they can reveal key properties related to this
concept. Likewise, the tree evoked in fig. 1b is a semiotic representation of an
algorithm, focusing on its potential computation paths.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

1

10

100

1000

10000

Lin QS IS

104

103

102

101

?

? ?

?

<

?

?

≥

< ≥ < ≥

< ≥ <

Fig. 1. (a) Juxtaposition of the graphs denoting the theoretical trends θ(n), θ(nlogn)
and θ(n2); (b) Pair-comparison nodes of the tree of all possible sorting paths

146 C. Mirolo

3.2 Working Like a Scientist

Under a scientific perspective, examples of pertinent questions are:

SCI1. How is it possible to measure computation times? How reliable
are these measures? To what extent can the results be generalized?

SCI2. How accurate are the “trend” models of sect. 3.1? What aspects
of the actual behavior can be predicted and what others cannot?

SCI3. Does anything interesting/unexpected emerge from observation?
And if it does, how can the discovery be explained?

The questions of group SCI1 guide us to address — and find solutions to — several
issues connected with devising an instrument of measure and an experimental
equipment, both implemented by a program in our context, namely:

– object of the measures (e.g., time costs in the average case);
– orders of magnitude and units of measure (e.g., milliseconds);
– instrumental accuracy (usually coarser than a millisecond) and reliability;
– occurrence of systematic (e.g. generation loops in the program) as well as

accidental (e.g., interferences of the operating system’s activity) errors;
– size of the sample (e.g., meaningful for measuring average times).

The problems raised by SCI2 suggest a structured inquiry [28] to test the “pre-
dictions” based on the theoretical models (answers to MAT2) against the exper-
imental evidence gathered to deal with questions SCI1. Moreover, they give the
opportunity to discuss how the collected data can be represented in a meaningful
way in light of the theoretical models — and, incidentally, this work can be help-
ful to better understand the theoretical stuff. An example is shown in fig. 2a,
that charts the ratio between measured trend and theoretical trend for quick
sort. (The more flattened graph is the result of an empirical adjustment of the
model.) The last questions, on the other hand, give rise to an open inquiry [28]
to discover new properties that are not accounted for by the theoretical models,
and to try to explain what has been observed. A potential finding is the perfor-
mance inversion for short data sequences illustrated in fig. 2b. In this respect, it
is interesting to ask why the theoretical models weren’t able to predict this kind
of behavior. More broadly, it is worth noting that here the scientific method is
applied to gain new knowledge about the objects of study of our discipline.

Fig. 2. (a) Observed vs. theoretical trend before/after empirical adjustment of the
model (quick sort); (b) Observed performance inversion for short sequences

A Present-Day Glass Bead Game 147

3.3 Working Like an Engineer

We complete this example with a few questions raised from a technological per-
spective:

ENG1. Is it possible to improve the performance of the “sorting artifacts”?
To this aim, how can the available components be assembled?

ENG2. How to ensure the reliability of the devised system?
How can the development process be organized?

ENG3. How can the “quality” of component integration be assessed?
Which parameters affect the quality? And how?

The questions labeled ENG1 concern the design process. Two important aspects
are implied. First, engineers apply scientific (and mathematical) knowledge to
achieve their goals: the key knowledge in this example is the “performance in-
version” observed in the last experience mentioned in the previous subsection.
Second, how such knowledge can be exploited is a matter of creativity. The only
constraints are established by the functional requirements, which include the
improvement of performance. Here we can figure out a straightforward solution
where the relationships between structure and function are clear: the almost-
sorted output of a slightly modified version of the quick sort unit provides the
input of an insertion sort unit that completes the sorting work (fig. 3). The design
consists in changing just one line of the code of quick sort (the base-case condi-
tion) and then calling the two units in sequence. As to the questions of group
ENG2, the reliability of the system can be ensured by testing the output of both
units for consistency during the development of the new “system” (e.g., through
the widespread unit-testing tools; lower ovals in fig. 3). The last questions are
concretely addressed on an empirical basis by tuning a threshold, the larger size
of a “short” interval in the base-case condition of quick sort, and by measuring
the overall system performances (upper ovals in fig. 3). As a final remark, this
example also illustrates neatly the different roles of measuring, e.g. times, in
science (acquiring knowledge) and engineering (ensuring/improving quality).

seq seq seqQuickSort InsertionSort

Testing:
sorting

Testing:
sorting

Tuning:
threshold

Measure:
times

Fig. 3. System design and development process planning

148 C. Mirolo

4 Conclusions

The framework outlined in this paper is inspired by a reflection on some ped-
agogical implications of the manifold nature of informatics. It is intended for
the education of prospective high-school teachers, and has been exploited to
structure a core module in a renovated program offered to them. The underly-
ing rationale is that the disciplinary content can be deeply understood only in
connection with the cognitive and methodological processes that are required
from students. A major aim is, therefore, to try to spread light on such pro-
cesses in order to help the teachers reflect about their practice in general, the
organization of hands-on and laboratory activities, the appropriateness of tak-
ing different perspectives in a given school context (e.g., technical vs. scientific
education) and the cross-disciplinary connections with other school subjects.

All of this provides an unconventional angle from which to approach instruc-
tional design, that seems to have stimulated the prospective teachers’ interest. In
particular, 3 of the 8 students who attended the module in Spring 2013 decided
to elaborate on it and conceived inventive paths to explore specific computing
problems under different perspectives. Further future work is being planned in
order to enrich the framework as to the cognitive and pedagogical dimensions.
Moreover, a collection of related examples and materials, to be tested within the
prospective teachers’ fieldwork experience, is under development.

Epilogue. The central character of Hesse’s novel is awarded the title of “Magister

Ludi” (Master of the Game). By swapping the words, “Ludi Magister” means a teacher

at a Roman school. Maybe the glass bead game is really relevant to school education.

References

1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer
Programs. MIT Press, Cambridge (1984)

2. Anderson, R.D.: Reforming science teaching: What research says about inquiry.
Journal of Science Teacher Education 13(1), 1–12 (2002)

3. Baudé, J.: Le développement de l’informatique et des technologies de l’information
et de la communication dans l’enseignement – et si la voie suivie n’était pas la
bonne? Revue Électronique de l’EPI, 95 (2007)

4. Bell, R.L., Blair, L.M., Crawford, B.A., Lederman, N.G.: Just do it? Impact of a
science apprenticeship program on high school students’ understandings of the na-
ture of science and scientific inquiry. Journal of Research in Science Teaching 40(5),
487–509 (2003)

5. Brooks Jr., F.P.: The computer scientist as toolsmith II. Communications of the
ACM 39(3), 61–68 (1996)

6. Crawford, B.A.: Learning to teach science as inquiry in the rough and tumble of
practice. Journal of Research in Science Teaching 44(4), 613–642 (2007)

7. Denning, P.J.: Great principles of computing. Commun. ACM 46(11), 15–20 (2003)
8. Denning, P.J., Comer, D., Gries, D., Mulder, M., Tucker, A., Turner, J., Young,

P.: Computing as a discipline. Communications of the ACM 32(1), 9–23 (1989)
9. Denning, P.J., Freeman, P.A.: The profession of IT: Computing’s paradigm. Com-

munications of the ACM 52(12), 28–30 (2009)

A Present-Day Glass Bead Game 149

10. Duchâteau, C.: Mais qu’est la didactique de l’informatique devenue? In: Baron,
G.L., Bruillard, E. (eds.) Le Technologies en Éducation: Perspectives de Recherches
et Questions Vives – Actes du Symposium, pp. 33–42. INRP, Paris (2002)

11. Duval, R.: A cognitive analysis of problems of comprehension in a learning of
mathematics. Educational Studies in Mathematics 61(1-2), 103–131 (2006)

12. Duval, R.: La conversion des représentations: un des deux processus fondamen-
taux de la pensée. In: Baillé, J. (ed.) Du mot au Concept: Conversion, Collection
“Sciences de l’éducation”, pp. 9–45. PUG, Grenoble (2007)

13. Eden, A.H.: Three paradigms of computer science. Minds and Machines 17(2),
135–167 (2007)

14. Felder, R.M., Brent, R.: Understanding student differences. Journal of Engineering
Education 94(1), 57–72 (2005)

15. Frederik, I., Sonneveld, W., Vries, M.J.: Teaching and learning the nature of tech-
nical artifacts. International Journal of Technology and Design Education 21(3),
277–290 (2011)

16. Hromkovič, J.: Contributing to general education by teaching informatics. In: Mit-
termeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 25–37. Springer, Heidelberg
(2006)

17. Kroes, P.: Design methodology and the nature of technical artefacts. Design Stud-
ies 23(3), 287–302 (2002)

18. Kuittinen, M., Sajaniemi, J.: Teaching roles of variables in elementary program-
ming courses. In: Proc. of the 9th ITiCSE, pp. 57–61. ACM, New York (2004)

19. Moeed, A.: Science investigation that best supports student learning: Teachers
understanding of science investigation. International Journal of Environmental and
Science Education 8(4), 537–559 (2013)

20. Muller, O., Ginat, D., Haberman, B.: Pattern-oriented instruction and its influence
on problem decomposition and solution construction. In: Proc. of the 12th ITiCSE,
pp. 151–155. ACM, New York (2007)

21. Proulx, V.K.: Programming patterns and design patterns in the introductory com-
puter science course. In: Proc. of the 31st SIGCSE, pp. 80–84. ACM, NY (2000)

22. Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., Kulikova, Y.: Roles of variables
in three programming paradigms. Computer Science Education 16(4), 261–279
(2006)

23. Schulte, C.: Uncovering structure behind function: The experiment as teaching
method in computer science education. In: Proc. of the 7th WiPSCE, pp. 40–47.
ACM, New York (2012)

24. Schwill, A.: Computer science education based on fundamental ideas. In: Proc. of
the IFIP TC3 WG3.1/3.5 Joint Working Conference on Information Technology,
pp. 285–291. Chapman & Hall, London (1997)

25. Seehorn, D. (ed.): K-12 Computer Science Standards – Revised 2011: The CSTA
Standards Task Force. CSTA & ACM (October 2011)

26. Tedre, M., Sutinen, E.: Three traditions of computing: what educators should
know. Computer Science Education 18(3), 153–170 (2008)

27. Vandeput, E.: Milestones for teaching the spreadsheet program. In: Proceedings of
EuSpRIG 2009 Conference, pp. 133–143 (2009)

28. VMSC Task Force: Teaching about scientific inquiry and the nature of science:
Toward a more complete view of science. The Journal of Mathematics and Science:
Collaborative Explorations 13, 5–25 (2013)

29. Windschitl, M.: What is inquiry? A framework for thinking about authentic sci-
entific practice in the classroom. In: Luft, J., Bell, R.L., Gess-Newsome, J. (eds.)
Science as Inquiry in the Secondary Setting, pp. 1–20. NSTA Press Book (2008)

Teacher Profiles

for Planning Informatics Lessons

Ana-Maria Stoffers and Ira Diethelm

Carl von Ossietzky University, Computer Science Education,
26111 Oldenburg, Germany

{ana-maria.mesaros,ira.diethelm}@uni-oldenburg.de

Abstract. Changing conditions and different educational concepts are
widely spread problems of secondary education in Informatics1. Due to
this fact suitable teacher training can only be designed if the precon-
ditions of Informatics teachers are being considered. Subjective theo-
ries play an important part in determining teachers’ lesson planning. In
this qualitative study subjective theories of Informatics teachers about
planning their lessons were examined. After a process of analysis and
grouping of results five profiles could be established. They describe the
variants of didactic structuring of teaching Informatics determined by
varying subjective theories of the teachers. These differ in their percep-
tion of the teachers’ and students’ roles and in the explanations given for
chosen teaching methods, contents and learning objectives. With these
categories we could distinguish between ”the self-confident expert”, ”the
student-oriented manager”, ”the creative pragmatist”, ”the inquisitive
collector” and ”the prudent newcomer”.

Keywords: subjective theories, educational reconstruction, designing
learning environments.

1 The Role of Teachers’ Subjective Theories

For an emerging subject teacher education is crucial. Teacher education for In-
formatics does not have a long tradition, yet, and many challenges to cope with.
In many countries CS or Informatics has been introduced or strengthened in the
last few years like in New Zealand, the US, Great Britain and also parts of Ger-
many. First results from New Zealand like [12] for our subject or for the natural
sciences like [11] show the big role of teachers and teachers perceptions and per-
sonal attitudes in implementing (new) curricula. The framework of Educational
Reconstruction for Computer Science Education [3] also lists the teachers’ per-
spective as one central factor for designing Informatics lessons or investigating
them.

Lister et al. analyzed in [8] the understanding of teaching of computing aca-
demics and found differing ways that CS academics understand teaching. They

1 Here, we use Informatics synonymously to Computer Science.

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 150–160, 2014.
c© Springer International Publishing Switzerland 2014

Teacher Profiles for Planning Informatics Lessons 151

suggest ”that academics who are aware of the range of understandings will be
better able to decide how to design a revision or a new offering.”

Quite often teacher have difficulties even to identify themselves as Informatics
teachers. Ni’s and Guzdial’s findings in [10] ”indicate that current HS teachers
teaching CS courses do not necessarily identify themselves as CS teachers. They
have different perceptions related to CS teaching. Four kinds of factors can con-
tribute to these perceptions: teachers educational background and certification,
CS curriculum and department hierarchy, availability of CS teacher community,
and teachers perceptions about the field of CS.”

One phenomenon that confirms that is that teachers do not use the tools
and material researchers provide for their teaching, see [7] and [11], not to the
expected extend or in the intended way. In order to develop and provide teacher
trainings and material for Informatics teachers and their lessons we have to know
more about them. We already know that they differ; but not in which way. If
we knew different types or profiles how Informatics teachers plan their lessons
we could provide suitable trainings and material for different kinds or types of
teachers.

In Informatics the planning of lessons on a specific topic differs considerably
from teacher to teacher. Dann already in [2] pointed out how important subjec-
tive theories for the design of lessons are. Their differences in planning lessons are
influenced by teachers’ different subjective theories of the subject and by their
concepts of how Informatics should be taught. According to Dann ”subjective
theories of teachers are partially acquired during the formal teacher education,
but also during their years as students at school and especially during the years
as practicing teachers.” This and the fact that there are still many different ways
to become an Informatics teacher it is plausible that the subjective theories of
Informatics teachers would vary in a wide range, more than in other subjects.

This study deals with the question how these subjective theories can be ar-
ranged in groups to provide us with an instrument for describing Informatics
teachers. This would be a big help for designing further trainings and material,
because they characterize the participants of in-service training. For successful
courses and long-term changes they must take the participants’ prerequisites and
requirements into account and start off from there.

Informatics as a subject in secondary schools in Germany consists of topics
including programming, but also using and understanding systems that process
information as computers and networks in general, it therefore also deals with
modeling, interpretation and theoretical, social and legal aspects of computing
and automation, see [1]. Thus, the topic ”networks / Internet” served us as an
important topic for teaching on the one hand. And on the other hand, even
though it is not a central part of many national or international curricula, it
left much space for different perceptions what content is connected with it, how
lessons could be designed, what focus is set and how this decisions are made.

To give an insight into the study we begin by discussing the research ques-
tion and then go on to describe briefly the design of the study that consists of
the analysis of semi-structured interviews as a basis for the development of the

152 A.-M. Stoffers and I. Diethelm

profiles. The design and conduction of the interviews has already been described
in detail in previous papers by us [9]. In this paper, we focus on the steps for
creating profiles which we describe in section 4 and the detailed description of
the profiles as a result of this process in section 5. We end with conclusions and
an outlook.

2 The Research Question

To determine the subjective theories of Informatics teachers we put our emphasis
on their structuring of Informatics lessons and on the importance they attach to
students’ conceptions. Based on Kelly [5] and Groeben [4] we define subjective
theories as individual cognitive structures of self- and world views that have the
function of explanation and prediction.

Our central question therefore is: What are teachers’ subjective theories about
designing Informatics lessons?

Using semistructured interviews, we asked Informatics teachers how they
would structure and carry out a a number of lessons for the topic ”networks
and the Internet”. The chosen focus is an important topic which offers a great
and creative variety of teaching approaches and at the same time has seldom
been on the agenda of courses for teacher training.

The selection of interview partners was determined by various characteristics
which will be explained in the following chapter. The objective was to find dif-
ferent subjective theories of teachers. And therefore it was more important to
find a wide spectrum of opinions rather than to fine one particular opinion more
often than another one.

3 The Sample

For the purpose of finding different subjective theories on designing CS lessons
it is not important how often one particular subjective theory is represented
but how much these theories differ from each other. Our criterion for selection
therefore was the probability of considerably differing theories.

We interviewed fifteen teachers altogether, three of them were female and
twelve male. One of them worked at a junior high school, four at comprehensive
schools and ten at senior high schools. The youngest was 27 and the oldest 57
years old. Five teachers were teaching in junior high at grade 6 as the lowest
level. Another five teachers had been teaching Informatics in both junior and
secondary high schools. The remaining five teachers were teaching in senior high
schools only.

The teachers’ experience was distributed quite evenly: Six had a teaching
experience of less than five years, seven had been teaching Informatics for a
period of five to twenty years. Two of the teachers answered that they had been
teaching Informatics for a period of twenty to thirty years.

Teacher Profiles for Planning Informatics Lessons 153

The question about their additional teaching subjects revealed that nearly
all of them were teaching mathematics as well. Of the fourteen teachers teach-
ing mathematics along with Informatics seven were also teaching physics. And
only two of the teachers had been trained (at university or in-service) to teach
Informatics.

The ways towards teaching Informatics or achieving the qualification to teach
Informatics appeared to be very different. Five teachers do not have a formal
qualification to teach Informatics and are either in charge of an optional study
group in Informatics or teach Informatics in a compulsory optional course. They
learned the content and teaching of informatics on their own. Five teachers had
either studied Informatics as an additional subject during their time at university
or had acquired a basic degree in Informatics. One teacher had participated in
an intensive two-year in-service training for teachers of Informatics and had
obtained the formal qualification for teaching Informatics. Four teachers said
they had studied Informatics at university.

4 The Process of Building the Profiles

The individual steps of the evaluation are represented in the flow chart below,
see fig. 1. The first step is the coding of the data. Here categories are being
assigned to passages in the text. A category is a term which by being assigned
to certain text passages helps to understand empirical phenomena of the data.

The transcribed interviews and the coding guidelines are the necessary input
for the evaluation. In the first loop of the flow chart the whole data is being
searched. In the coding process either an existing category is being assigned to a
passage or a new category is being generated for coding this passage. When the
whole text has been coded the individual categories are dimensionalized. In a sec-
ond loop all categories are being searched and dimensionalized. We will explain
this process of dimensionalization with an example later on in this section.

After coding the interviews there are four more steps to be performed to get
the types aimed at. Fig. 2 shows the steps of creating types, see [6].

Coding the data however is not sufficient for understanding the phenomenon
under investigation. The coding process scans the empirical field, but without
subsequent evaluation it remains a mere description. For realizing the objective
of our research, which is to present the whole spectrum of subjective theories of
Informatics teachers, it becomes necessary to develop a typology.

According to [6, p:85] we understand typology as ”the result of a grouping
process where a range of objects is classified on the basis of one or several
features into groups or types, aiming at the greatest possible similarity within
one particular type and the greatest possible dissimilarity between the individual
types”. Since a type does not describe a person but a particular kind of teaching
design, it is necessary to state clearly that the evaluation of this study does not
refer to types of teachers as persons. The generated types describe nothing more
than a way of designing lessons in Informatics, so that one single teacher can
represent several types.

154 A.-M. Stoffers and I. Diethelm

Fig. 1. Evaluation steps

As fig. 2 shows the first step is the development of relevant analyzing dimen-
sions. This is achieved in two steps. After a deductive coding of the transcribed
interviews a second coding of the interviews took place, this time inductively.
Thus the given categories of the interviews were extended by new categories,
based on the data. These extended categories we call dimensionalized, see [6].
The similarities and dissimilarities of the teachers can be described on the ba-
sis of these dimensions. An example for these two steps in developing relevant
analyzing dimensions will be described as follows:

In the first step a category learning objectives may have been found. This
only shows that the teacher in that interview said something about the learning
objectives he or she meant to achieve in his or her teaching. This category on its
own does not show if there are any other teachers who considered the same learn-
ing objectives important. Therefore the second step is necessary. In the second
step the category of learning objectives can be split up into several categories
like learning objectives in the fields of content knowledge or comprehension or

Teacher Profiles for Planning Informatics Lessons 155

Fig. 2. The Construction of Types [6]

the use of the Internet. These new categories are used for analyzing the data and
comparing the different interviews.Therefore we choose among others the dimen-
sions: teaching methods, learning objectives, student’s role, learning objectives
and teaching content.

The second step in type building consists of grouping the cases and analyz-
ing the empirical regularities. The analysis of the empirical regularities of the
cases is based on the dimensions mentioned above. They can describe empirical
differences or similarities between the cases. A similarity might be that in some
interviews teacher describe the same teaching objectives or the same role. On
this basis the grouping of the cases can be carried out. You then have to check
whether internal homogeneity and external heterogeneity have been achieved.
Internal homogeneity is given if, as an example, the interviews of one group de-
scribe the same teacher’s role and interviews of another group show a different
role of the teacher in class.

In a third step an analysis of meaningful relationships is the basis for gen-
erating types. After the second step, when cases were grouped on the basis of
empirical regularities, an analysis of meaningful internal and external relation-
ships within the groups is the next step. Grouping the cases is not sufficient
when the aim of the study is to understand these relationships. This analysis
may lead to new perspectives considering the grouping of cases or the dimensions
of comparison. Therefore these first three steps can be carried out several times.
For example you may associate during this step a described teachers’ role of one
group with the defined students’ role in the same group of cases.

156 A.-M. Stoffers and I. Diethelm

After having established the types, the last step is to characterize them. In
spite of using the method of type-building for the evaluation, the sample is too
small to really qualify as complete type-building. The field of Informatics teach-
ers could not be covered representatively. Therefore we will use the term profiles
instead. They serve as a first grouping and analysis of Informatics teachers and
will be taken as a basis for further research.

5 Profiles of Informatics Teachers

The profiles are described on the basis of five resulting dimensions:

– The teacher’s role in the planning and the teaching process
– The student’s role in the teaching process
– The methods of Informatics teaching
– The choice of content in Informatics teaching
– The intended teaching objectives in Informatics teaching

During the evaluation process these dimensions proved to be adequate for de-
scribing the performance of a teacher and for emphasizing the differences between
the generated profiles. But also there are similarities between individual profiles,
for example the learning objectives between the profile The Self-Confident Ex-
pert and the profile The Creative Pragmatist are quite similar but the methods
of teaching used to achieve the learning objectives differ in many aspects. As a
result these five profiles are as follows:

5.1 The Self-Confident Expert

This profile is characterized mainly by self-confidence, confidence in one’s own
knowledge and expertise. Teachers with this profile show a high degree of pro-
fessional and didactic competence. Their didactic decisions are well-founded and
their choices can be justified at any point. These teachers deliberately chose to
teach Informatics and are passionate about Informatics in any situation.

They understand their teaching-role as guiding and controlling the learning
process. They feel responsible not only for presenting the subject matter but
also for motivating the students. The whole learning process is controlled by the
teacher, the learning objectives are clear and the students are skillfully guided
towards achieving them.

Under the guidance of the teacher the students work independently, but
they carry out relatively short and set assignments. They rely on the special
knowledge which they learned from their teacher.

The teaching methods are varied and always adjusted to the stage of the
learning process and above all well-founded and justified.

The learning content is being chosen to demonstrate the nature of Infor-
matics to the students. The objective is to give every student an idea of what
Informatics is about.

The learning objective is to achieve a basic understanding of the content of
Informatics. The need for this basic understanding is motivated by the conviction
that the fundamental ideas of Informatics are a part of general education.

Teacher Profiles for Planning Informatics Lessons 157

5.2 The Student-Oriented Manager

This profile is characterized by strong confidence in students. Teachers consider
their students to be independent, responsible young people who are capable of
deciding what they want to learn. Some students’ competence is rated so highly
that they are allowed to take over the teacher’s role. In these cases the teacher
leaves not only the professional but also the didactic decisions to the students.

The teacher’s role is to attend his students’ learning process without re-
stricting their independence. The teacher permits students to design and guide
the teaching and intervenes only when necessary. They believe their students
capable of choosing the learning content sensibly and teaching themselves.

The students are totally independent. They have the chance of planning their
learning process completely on their own. They take over the teacher’s role and
plan their lessons.

The teaching methods result from the students’ independence. Often pro-
jects are carried out which are a product of individual work. Teachers with this
profile do not prescribe teaching methods.

The content is determined by the students’ wishes. Their interests decide
about the choice of topics.

The learning objectives result from the independent project work of the
students. This teaching concept enables students to acquire many competences
like the ability to work independently and to present the results. Problem solving
also plays a part in project work.

5.3 The Creative Pragmatist

Teachers with this profile are characterized by their endeavor to offer lively and
hands-on teaching. Their teaching focuses on problem-orientated learning. The
students are to find out for themselves what the new contents mean to them and
why it makes sense to learn them. In order to achieve this, the teacher tries to
make his lessons exciting, motivating and student-activating.

The teacher’s role is to find fascinating methods and tasks which will moti-
vate the students. The teacher has a very clear idea of the kind of problem that
will motivate the students to understand certain contents and consider them
important.

The students discover the contents through the tasks they are given. They
think about how to understand and solve the given problems. They are purpose-
fully motivated to learn and think about problems.

The methods depend on the contents, for this type is very conscious of
the context between method and contents. Therefore methodical considerations
depend on content considerations and are chosen accordingly.

The contents are to be the basis of Informatics. Teachers with this profile
select contents which are part of a general education, topics which especially
those students should know about who are not going to choose Informatics as
their priority.

The one learning objective above all teaching contents and didactic deci-
sions is to educate students to become responsible adult citizens.

158 A.-M. Stoffers and I. Diethelm

5.4 The Inquisitive Collector

Characteristic for this profile is great confidence in researchers and specialists.
Teachers with this profile are very interested in new research results about teach-
ing and learning processes and like integrating them into their teaching.

It is the teacher’s role to use good teaching materials and be informed about
new didactic ideas. They attend in-service training quite often where they learn
how to present certain content and teach accordingly. Their teaching materials
do not need to be adapted or changed at all since the scientists designed them
well enough.

The students learn a lot from these good teaching materials. They take part
in a well-structured teaching process which is systematized by precise instruc-
tions and tasks.

The teaching methods result from the material provided at in-service train-
ings.

The contents are also determined by in-service training courses. The courses
reflect the contents which play a part in didactic discussions at university and
therefore are of great importance for the subject at that point in time.

The learning objective is for the students to achieve basic knowledge in the
respective fields of Informatics.

5.5 The Prudent Newcomer

This profile is distinguished by a prudent selection of contents and methods.
Teachers with this profile are highly motivated and attempt to use all their
knowledge and creativity to teach well. They do not have much teaching experi-
ence on the one hand but on the other hand the didactic principles they learned
are still fresh in their minds and are used in their teaching design.

They have the necessary professional and didactic knowledge to design their
teaching according to the students’ ideas. They take the students’ ideas on the
topics into account and their teaching is directed at changing these, if necessary.

Under the teachers’ strict guidance the students work to master the contents.
They are being motivated to think carefully about their own conceptions of the
topic and revise them.

The adopted methods match the contents and the students’ ideas. Great
importance is set on methodological diversity.

In their selection of contents teachers with this profile follow the curriculum
which has been agreed on by the Informatics faculty at their school. If that
curriculum offers alternative contents, these teachers choose contents which they
feel confident about and can teach well.

The main learning objective is to change existing students’ conceptions of
a particular topic, for these are not considered to be suitable.

6 Conclusions and Future Work

The determined profiles give a first impression of the characteristics that influ-
ence how Informatics teachers structure their teaching. No teacher corresponds

Teacher Profiles for Planning Informatics Lessons 159

completely with one profile, which means that pure profiles are not to be found.
They are exaggerated, so to speak, in order to emphasize the respectively rele-
vant features of teaching design.

Comparing the encountered profiles with the professional identity of CS teach-
ers’ described by Ni and Guzdial [10] we can state that the prudent newcomer
and the self-confident expert both understand themselves as CS teachers’. In our
results the self-awareness of being a CS teacher can lead to self-confidence on
the one hand or to prudence on the other.

Although these profiles only allow a first insight, they are nevertheless helpful
for designing teacher trainings. They can be used for better adjusting the training
to the teachers. Not all profiles will be represented at each training course, but
it can be assumed that these profiles will apply to the participating teachers. A
good training course must be addressed to all these profiles.

As all of our interview partners were attendees of some of our in-service train-
ings it must be pointed out that one or more profiles could be missing because
they might belong to teachers that are not attending in-service trainings.

Having constructed the profiles now further steps are necessary. One objective
of our study is to compare the profiles with existing didactic concepts to design
teacher trainings for Informatics teachers. The resulting guidelines will enable
each didactic specialist to check his further education course to ensure that it
takes all profiles into account.

For example, the analysis of the profiles showed that teacher of different pro-
files need to learn from each other. As an exaggeration the self-confidence teacher
could learn from the inquisitive collector the benefit of using ready-made mate-
rials. On the other hand the inquisitive collector could learn how to expand the
materials or he could get the self-confidence to create them on his own. There-
fore a guideline for in-service CS teachers’ trainig might be to give teachers’ the
opportunity to learn from each other.

In addition to these guidelines another objective of this study is to design
an exemplary teacher training on the topic of networks and the Internet that
addresses all these profiles. Then, this might be used as a guideline for planning
trainings for Informatics teachers in general.

References

1. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS: Educational stan-
dards for computer science in lower secondary education. In: Proceedings of the
14th Annual ACM SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, ITiCSE 2009, pp. 288–292. ACM, New York (2009),
http://doi.acm.org/10.1145/1562877.1562965

2. Dann, H.D.: Subjective theories and their social foundation in education. In: von
Cranach, M., Doise, W., Mugny, G. (eds.) Social Representations and the Social
Bases of Knowledge, pp. 161–168. Hogrefe & Huber, Lewiston (1992)

3. Diethelm, I., Hubwieser, P., Klaus, R.: Students, teachers and phenomena: Educa-
tional reconstruction for computer science education. In: Proceedings of the 12th
Koli Calling International Conference on Computing Education Research, Koli,
Finland (2012)

http://doi.acm.org/10.1145/1562877.1562965

160 A.-M. Stoffers and I. Diethelm

4. Groeben, N., Scheele, B.: Dialogue-hermeneutic method and the “research program
subjective theories”. Forum Qualitative Sozialforschung/Forum: Qualitative Social
Research 1(2), 9 (2001), http://nbn-resolving.de/urn:nbn:de:0114-fqs0002105

5. Kelly, G.A.: The psychology of personal constructs. Routledge, London (1991)
6. Kluge, S.: Empirically grounded construction of types and typologies in qualita-

tive social research. Forum Qualitative Sozialforschung/Forum: Qualitative Social
Research 1(1) (2000), http://www.qualitative-research.net/index.php/
fqs/article/view/1124

7. Levy, R.B.B., Ben-Ari, M.: We work so hard and they don’t use it: Acceptance of
software tools by teachers. In: Proceedings of the 12th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education, ITiCSE 2007, pp.
246–250. ACM, New York (2007), http://doi.acm.org/10.1145/1268784.
1268856

8. Lister, R., Berglund, A., Box, I., Cope, C., Pears, A., Avram, C., Bower, M.,
Carbone, A., Davey, B., de Raadt, M., Doyle, B., Fitzgerald, S., Mannila, L., Kutay,
C., Peltomäki, M., Sheard, J., Simon, K., S., Traynor, D., Tutty, J., Venables,
A.: Differing ways that computing academics understand teaching. In: ACE 2007:
Proceedings of the Ninth Australasian Conference on Computing Education, pp.
97–106. Australian Computer Society, Inc., Darlinghurst (2007)

9. Mesaroş, A.M., Diethelm, I.: Exploring computer science teacher’s subjective the-
ories on designing their lessons. In: Bezakova, D., Kalas, I. (eds.) Proceedings of
the 5th International Conference on Informatics in Schools: Situation, Evolution
and Perspectives, ISSEP 2011, Selected Papers. Library and Publication Centre,
Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava
(2011)

10. Ni, L., Guzdial, M.: Who am I?: Understanding high school computer science teach-
ers’ professional identity. In: Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, SIGCSE 2012, pp. 499–504. ACM, New York
(2012), http://doi.acm.org/10.1145/2157136.2157283

11. Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., Ralle, B., The
ChiK Project Group: “Chemie im Kontext”: a symbiotic implementation of a
context-based teaching and learning approach. International Jounal of Science Ed-
ucation 28(9), 1041–1062 (2006)

12. Thompson, D., Bell, T., Andreae, P., Robins, A.: The role of teachers in implement-
ing curriculum changes. In: Proceedings of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE 2013, pp. 245–250. ACM, New York (2013),
http://doi.acm.org/10.1145/2445196.2445272

http://nbn-resolving.de/urn:nbn:de:0114-fqs0002105
http://www.qualitative-research.net/index.php/fqs/article/view/1124
http://www.qualitative-research.net/index.php/fqs/article/view/1124
http://doi.acm.org/10.1145/1268784.1268856
http://doi.acm.org/10.1145/1268784.1268856
http://doi.acm.org/10.1145/2157136.2157283
http://doi.acm.org/10.1145/2445196.2445272

Extracurricular Activities for Improving the

Perception of Informatics in Secondary Schools

Carlo Bellettini1, Violetta Lonati1, Dario Malchiodi1, Mattia Monga1,
Anna Morpurgo1, Mauro Torelli1, and Luisa Zecca2

1 Dip. di Informatica, Università degli Studi di Milano
2 Dip. di Scienze Umane per la Formazione,
Università degli Studi di Milano-Bicocca

Abstract. In order to introduce informatic concepts to students of Ital-
ian secondary schools, we devised a number of interactive workshops con-
ceived for pupils aged 10–17. Each workshop is intended to give pupils the
opportunity to explore a computer science topic: investigate it firsthand,
make hypotheses that can then be tested in a guided context during the
activity, and construct viable mental models. This paper reports about
how we designed and conducted these workshops.

1 Introduction

Several voices have been recently raised to urge a new understanding in schools
of the nature and scope of informatics. A report issued by the UK Royal Society
on UK schools [14] has documented clearly how a focus on the instrumental value
of Information and Communication Technologies (ICTs) failed to lead pupils and
teachers to develop any real knowledge of computing sciences. While informatics
and computational thinking have the potential to be very formative for pupils,
and several core aspects of computing are sufficiently basic to be taught as a fun-
damental subject in all the secondary schools, among the general public—but
sometimes also among the teachers who are responsible of conducting courses
of informatics1—the scientific discipline is often blurred by the use of office au-
tomation tools, or the Internet communication facilities and their social impact.
Although these activities might indeed need special skills, they can be presented
and mastered without referring to computing at all. Therefore, to be able to
show to pupils the appeal of a rigorous scientific discipline we believe it is im-
portant to focus again on the basics of informatics. Thus, we started devising
some enrichment program activities aimed at presenting and discussing the core
of informatics as the “automatic processing of information”.

We wanted to expose to informatics a variety of pupils of different ages, not
necessarily involved in a computing curriculum or with a previous knowledge of

1 We recently asked to a group of prospective teachers of informatics to define the dis-
cipline with a statement: 5 out of 17 identified informatics with communication tech-
nologies or other devices and a recurring theme was the emphasis on the improvement
“of life quality”. Common misconceptions among teachers are reported also by [13].

Y. Gülbahar and E. Karataş (Eds.): ISSEP 2014, LNCS 8730, pp. 161–172, 2014.
c© Springer International Publishing Switzerland 2014

162 C. Bellettini et al.

information or programming, therefore we developed an approach based on play-
ful activities which imply a mix of tangible and abstract object manipulations:
a strategy which we call algomotricity [6,4,5].

Table 1 summarizes the grades of the pupils to which we proposed the work-
shops. Each activity was designed to focus on one fundamental concept:

information What is information? How can symbols/numbers be used to rep-
resent it?

processing How can information be manipulated/changed in order to produce
new knowledge?

automation Which manipulations can be performed by a mechanical inter-
preter? How this can be done?

Table 1. Workshops proposed

Grade 4th–7th 8th–11th 12th–13th

information Wikipasta Human Pixels Human Pixels (advanced)

automation Mazes Mazes (advanced)

processing Greedy Money (simplified) Greedy Money

The workshops are described further in Section 3, here we just recall their
main focus:

Wikipasta. In this workshop pupils are posed the problem of describing the
typographic aspect of a text. By playing with pieces of pasta and other small
objects, they are led through a game to the discovery of mark-up languages
and then introduced to a lightweight “wiki” syntax. The final activity on the
computer is about editing Wikipedia-like pages.

Human Pixels. After being shown a video of animations made in stadiums by
coordinated soccer teams supporters (so called “human LCD”), pupils are
asked to discuss how to set up a very simplified version of such animations.
They eventually discover grids, sampling, resolution, compression and com-
plete the activity by using a multi-view editor showing a picture along with
different representations as a matrix of numbers.

Mazes. In this workshop pupils are faced with the problem of guiding someone
through a simple maze. Pupils first focus on the task of verbally guiding a
human robot (a blindfolded mate) through a simple path. Initially they are
allowed to freely interact with the robot, then they are requested to propose
a very limited set of primitives and to compose them into a program to be
executed by the robot, with the possibility of exploiting three basic control
structures (if, repeat-until, repeat-n-times). After this, pupils are provided
with a visual programming language (a simplified version of MIT Scratch)
and are asked to write programs guiding a sprite through mazes of increasing
complexity.

Extracurricular Activities for Improving the Perception of Informatics 163

Greedy Money. In this workshop pupils are requested to think about greedy
strategies: they start by proposing an algorithm for the change-making prob-
lem with a set of coins that admits a greedy solution. Then they try to apply
the same strategy to a scheduling problem and evaluate its suitability in find-
ing the optimal solution.

Initially we tested such workshops in a lower-level and in an upper-level sec-
ondary school [4,5]. As a result, we could refine the design of these activities,
and we prepared a set of two-hours workshops which we proposed to classes of
20–25 pupils. In 2013 a total of 26 classes attended our workshops, the activities
are ongoing and we have currently planned 26 workshops also for this year.

The article is organized as follows: Section 2 discusses our methodological
approach, Section 3 details the activities carried out in the workshops, and Sec-
tion 4 draws some conclusions.

2 Methodological Approach

All the proposed workshops share a common strategy, which we call algomotric-
ity. As the name suggests (this neologism is a portmanteau combining algorithm
and motoric), this approach exploits kinesthetic learning activities [1], having
the aim of informally exposing pupils to a specific informatic topic, followed by
an abstract learning phase devoted to let students build their mental models of
the topic under investigation and a final computer-based phase to close the loop
with their previous acquaintance with applications.

Our approach took inspiration from several papers in computer science ed-
ucation (for example [3,7,12,2]), and it is clearly rooted on the Experiential
Learning Theory (ELT), specifically on Problem based learning (PBL). ELT de-
fines learning as “the process whereby knowledge is created through the trans-
formation of experience. Knowledge results from the combination of grasping
and transforming experience. . . . Immediate or concrete experiences are the ba-
sis for observations and reflections, these reflections are assimilated and distilled
into abstract concepts from which new implications for action can be drawn.
These implications can be actively tested and serve as guides in creating new
experiences” [11]. PBL designs an educational environment based on experien-
tial learning organized around the investigation, explanation, and resolution of
meaningful problems. In PBL, students work in small collaborative groups and
learn what they need to know in order to solve a problem [10].

In our workshops we designed allosteric environments [9] advocating a non-
direct transmission of knowledge in favour of active work on part of the learner
who constantly reworks her/his mental models in order to learn something new.
Following this methodology, the teacher has the very delicate task of avoiding
any predefined, generic way of presenting concepts. Rather, the instructor has
to adapt to each pupil in order to give her/him suggestions interfering with
her/his (mis)conceptions, setting up a so-called “didactic environment” [9]. This
is typically done by putting pupils in new situations and assign them goals to
reach whithout (or with just a few) hints about how to reach them.

164 C. Bellettini et al.

Thus the teacher is a sort of mediator [9] who, having clearly in mind the
goal of an activity, helps pupils toward this goal without forcing them to follow
a specific path2. This requires a trade-off between free exploring and external
constraints: the didactic environment should suitably limit the available degrees
of freedom so that pupils can effectively and proficiently explore the solutions’
space without either getting lost or having the feeling that there is only one right
answer. Moreover pupils should have a real possibility to make mistakes.

This kind of set-up fits particularly well our learning goals, where pupils are
facing a somehow new subject, as we are focused on internal aspects of algo-
rithmics and information representation and/or processing, and not on learning
how to use specific computer applications.

All activities ended with a computer-based phase, where pupils were con-
fronted with specially conceived software in order to exploit what they had
learned during previous phases. This is also necessary in order to match at least
in part the expectations of pupils, who often identify informatics with the use
of a computer.

Pupils were asked to work in groups, to encourage confrontation and peer-
knowledge exchange, in all steps of the activities. The steps should be carefully
designed according to Vygotsky’s concept of zone of proximal development [15].
This requires a suitable choice of the difficulty of each step, both avoiding too
gradual a path, resulting in bored pupils losing interest in the overall activity,
and steep steps causing pupils to get lost. Moreover, the importance of the
teacher’s flexibility emerges also in this respect, because a same sequence could
be adequate for some pupils and not for other ones. It is also very important to
plan each step so that the activity makes sense per se in order to keep the pupils
engaged [8].

3 Description of Workshops

This section describes more in depth the workshops activities we proposed (ex-
cept for “Wikipasta”, which was extensively presented in [5]). Each of the work-
shops, lasting two hours and conceived for groups of approximately 20–25 stu-
dents, was carried out in a room with enough space to ensure that pupils could
move around in order to perform the tasks assigned to them.

The workshops start with a preliminary discussion devoted to let pupils ex-
press how they perceive informatics: at the beginning the conductor introduces
the ethymology of the word “Informatics” and explains it as the “automatic
processing of information” and pupils are asked to write on a sticky note their
definition of the term on which the workshop is going to focus (see Table 1).
All definitions are gathered together and clustered on a whiteboard, highliting
common keywords. At the end of this process the conductor summarizes these
keywords in order to let a group definition emerge from the notes written by
pupils.

2 Rather, the instructor should be able to exploit unexpected events to point out
relevant issues not necessarily foreseen in the original design.

Extracurricular Activities for Improving the Perception of Informatics 165

The core of each workshop consists of a phase where pupils engage in one or
more game-like activities, followed by a teamwork session based on the interac-
tion with expressly developed software tools.

A discussion phase ends each workshop. Its aims are to let pupils both recon-
sider their initial point of view about informatics and recognize a link between
the game-like and the computer-based tasks.

3.1 Human Pixels

At the beginning of this workshop, pupils are shown a video of animations made
by a group of soccer supporters in Korea3. In this video, each supporter wears
a special shirt with different colors in its front and back part, where a third
color can be shown by pulling two lateral flaps. When looked at from sufficiently
afar, the group is perceived as an image and each supporter acts as a pixel. As
supporters change the color of their shirts in sync and with sufficient velocity,
the final result is an animation.

Pupils are then asked to form small groups (two or three persons) and to
propose a method for showing a simplified version of such an animation, where
each pupil of the class uses a black and a white paper sheet instead of the
above mentioned shirt. The goal is to reproduce a simple message (e.g., “Hello”)
through subsequent visualizations of the letters occurring in it. After each group
has presented its idea, all pupils take a collective decision about how to organize
the animation.

Although occasionally one of the proposed methods suggests to work with only
black (or only white) sheets and changing each time the position of the students
to let them shape the various characters (essentially discovering a representation
in which every “pixel” is positioned relatively to another, as in Fig. 1(a)), pupils
most of the times opt for:

1. building the equivalent of a black-and-white bitmap representation for each
character occurring in the message (see Fig. 1(b));

2. positioning chairs in a rectangular grid;
3. assigning each student/pixel to a chair;
4. letting each student take note or memorize if the pixel s/he represents has

to be set or reset in correspondence of the various characters, that is when
s/he will have to use the black and when the white sheets.

Typically pupils also understand that some form of synchronization is neces-
sary, and achieve it through a person who beats the time. A camera films the
students so that they can test if the animation renders correctly (see Fig. 1(c)).
Indeed, all pupils got a working animation, often also experimenting with vari-
ations such as animations with sliding characters.

As a final activity, pupils are introduced to a software especially conceived for
editing bitmap images in a multiview interface. This interface shows a simple

3 See http://www.youtube.com/watch?v=tipHJlLUzNk; we actually use a shortened
version.

http://www.youtube.com/watch?v=tipHJlLUzNk

166 C. Bellettini et al.

(a) (b)

(c)

Fig. 1. A sample of proposed “relative” (a) and bitmap (b) representation of the char-
acters occurring in the animation. In (c) some pupils realizes a frame in the animation.

image along with different rasterized representations, such as a bitmap- and a
RGB-based, respectively for black and white and for color images, and a com-
pressed view based on a run-length encoding. Pupils are asked to play with the
tool and discover how to modify an image by working on each of the different
representations.

3.2 Mazes

This workshop focuses on programming. The kinestethic activity consists in
letting pupils drive a mate through a given path. Pupils are divided into two or
three groups of approximately the same size, and within each group the following
actors are chosen:

– a robot, who, blindfolded, will have to follow the given path;
– a driver, speaking aloud instructions to the robot;
– a care taker, ensuring that the pupil playing the robot does not get hurt or

fall.

The path is chosen according to the age of pupils, ranging from a simple L-shape
to S- or 8-shape (see Fig. 2(a–c)). Moreover, the task includes the additional
requirements that the robot grab one object placed in a fixed position and sit on
a chair at the end of the path.

Pupils perform two rounds of such activity: in the first one they interact freely
with the robot ; in the second one they are asked to write a program to be read
by the driver and executed by the robot, with the following constraints:

Extracurricular Activities for Improving the Perception of Informatics 167

(a) (b) (c)

Fig. 2. Different paths for the algomotorial activity in the Mazes workshop: (a) L-
shaped. (b) S-shaped. (c) 8-shaped. Paths are shown in increrasing order of difficulty.

– each group has to agree beforehand on the sequence of instructions that the
driver will give the robot ;

– they must work using at most four different instructions: students are given
sticky notes of four different colors, and each time one of a certain color is
used, it must always carry the same instruction;

– basic control structures (if, repeat-until, repeat-n-times) are available to sim-
plify the program: the elementary semantics of these are explained;

– from a syntactic point of view, each instruction has to be written on a sticky
note, stacking notes on a paper sheet in order to build a sequence of instruc-
tions, in case writing control structures around the sticky notes they refer
to (see Fig. 3).

As a final step, after pupils have checked that their program allows the robot
to correctly carry out the task, each of the programs set up by a group is executed
by the robot of another group. Although groups have worked on the same maze,
swapping programs has the effect of highlighting the following facts:

– programs are often specially tailored on some characteristics of the robot
(e.g., its step or shoe size),

– instructions are sometimes ambiguously or not precisely expressed (e.g., turn
left, without specifying the angle).

In the second part of the workshop, pupils are introduced to a simplified
version of the Scratch programming language4 with the task of moving an Al-
addin lamp shaped sprite in virtual mazes of increasing complexity (shown in
Fig. 4(a)–(e)). Pupils in pairs are challenged to write programs letting the sprite
reach the exit of the mazes with the aim of minimizing the number of used
instructions. Such minimality constraint lets pupils naturally apply specific con-
trol structures such as repeat-n-times and repeat-until, respectively in the mazes
shown in Fig. 4(c),(d), and (e).

3.3 Greedy Money

Groups of 2/3 pupils are asked to write down the algorithm they automati-
cally execute when giving a change with the aim of using the smallest number of

4 http://scratch.mit.edu/

http://scratch.mit.edu/

168 C. Bellettini et al.

Fig. 3. A “program” containing sequences of instructions and control structures

(a) (b) (c)

(d) (e)

Fig. 4. Mazes used in Scratch. (a) L-shaped. (b) Standard maze. (c) Staircase. (d) Saw.
(e) Spiral.

Extracurricular Activities for Improving the Perception of Informatics 169

coins/bills. A set of play money can be used in order to test the algorithm
through a step-by-step execution. Each group, in turn, describes its algorithm
while the remaining ones test it. Most groups propose a procedure that manages
to accumulate the change through subsequent additions of one coin or bill having
the highest value yet not exceeding the residual change. Some use a more efficient
approach exploiting the remainder of the division between the residual change
and a coin/bill nominal value.

Thus the conductor can highlight commonalities, specifically:

1. the initial solution was the empty set;
2. coins and bills have been initally sorted in decreasing order of their nominal

value;
3. coins and bills have been considered in such order, adding them to the solu-

tion until their value was higher than the residual change.

At this point, the conductor can generalize such approach to a more abstract
procedure which builds the solution to a generic optimization problem by con-
sidering a set of objects in a given order, and for each of them deciding whether
or not it has to be added to the solution according to a feasibility criterion. It
should be emphasized that this constitutes an example of a greedy procedure,
in that each object is considered only once for (possibly multiple) addition to
the solution, without any possibility to remove objects previously added to the
solution.

The second part of the activity consists in asking groups to apply such ap-
proach to a scheduling problem, namely that of maximizing the number of movies
to be seen in a film festival whose program contains several, partially overlap-
ping movies. Pupils are guided to find the analogies between this problem, the
one concerning money change and the abstract description of a greedy proce-
dure. Table 2 highlights such analogies: for instance, pupils tend to easily spot
that movies, as well as coins/bills, play the role of objects. Analogously, the
feasibility criteria are that of checking whether: i) a movie overlaps with other
ones already in the solution, and ii) the considered coin/bill has a nominal value
smaller than the residual change. Things change when considering the sorting
order: the one based on nominal value naturally emerges in the first problem. On
the second one there are several alternatives: starting or ending time , number
of intersections with the remaining movies, or movies’ length (either ascending
or descending). Once all alternatives are clear, groups are asked to verify which
criteria ensure the greedy solution to maximize the number of seen movies. More
precisely, pupils are asked to find counter-examples to drop non-optimal criteria.
A software supports the execution of this activity, generating at random a set of
movies (cfr. Fig. 5(a)), rearranging them according to a chosen sorting criterion,
and applying the greedy procedure (cfr. Fig. 5(b)).

Consider for instance the case shown in Fig. 5(b). With movies sorted accord-
ing to decreasing overlapping numbers, finding a counter-example is easy. The
greedy procedure would suggest to view only one movie (the highlighted one on
the top), discarding all the remaining ones. Anyway, it would be possible to see
four different movies: the fifth, the seventh, the eighth and the ninth from the

170 C. Bellettini et al.

Table 2. Comparison between the scheduling and money change problem and the more
general greedy approach

Change problem Scheduling problem

Objects coins/bills movies
Sorting order nominal value, decreasing several alternatives
Feasibility criterion value not greater than the resid-

ual change
no overlapping between one
movie and the ones already
added to the solution

(a) (b)

Fig. 5. The software showing a randomly generated set of movies (a) and applying
them the greedy procedure according to a selected sorting criterion (b)

top. Students in different groups tend to find counter-examples for all criteria,
except the one based on increasing ending time. The conductor can thus show
an informal proof of the optimality of such criterion. In a final recap, students
are warned about the fact that a greedy procedure does not always lead to the
optimal solution. This happens for instance if using the non-optimal criteria for
the film festival problem. It could also happen for the money change problem
when considering a different set of coins/bills. Examples of such money system
are the imperial British one or the one described in Harry Potter’s books.

4 Conclusions

The power of informatics lives in its interplay between abstraction and con-
creteness: abstract ideas are implemented by concrete programs and real word
machines. When presented in secondary schools, however, this power is often
hindered by a predominant focus on using computer applications, thus infor-
matics risks to be perceived as a bag of ready-to-use recipes, with almost no
space for creativity, understanding and cleverness. Algomotricity is our attempt
to present abstract symbolic manipulations in a very concrete way, but without
starting from computers. Computers come at the end, just to close the concep-
tual loop with the previous acquaintance of the pupils with the ubiquitous ICT
tools. We designed our workshops with a twofold goal:

– propose a methodological approach to informatics teachers, and
– present some core aspects of informatics to pupils of different grades and

their teachers.

Extracurricular Activities for Improving the Perception of Informatics 171

From a broader perspective, we aim at conveying a view of informatics as a
scientific discipline, as opposed to the current perception of this field. We also
paid attention in designing workshops requiring resources that are commonly
available or easy to prepare (pasta, colored sheets, . . .), and the software used
is downloadable for free and runs on standard PCs. All classes participated with
engagement in the proposed activities, collaborating, discussing different points
of view, and showing satisfaction for their achievements. Many pupils admitted
that their idea of informatics and of the job of ICT professionals was different
before they attended the workshop. For example, the idea of informatics as a
challenging discipline where creativity and collaborative work are often needed
was new to many. A teacher in a lower secondary school, in an interview we
made after a workshop, told us:

“I did some experiments in teaching mathematics by concrete tasks,
and I found them very important at this age, because pupils have great
difficulties with abstraction, especially in the first year. The language
of informatics is hard for my pupils because it is symbolic, abstract, it
requires precision. . . They use computer applications by trial and errors,
without reflection. From the workshop, I believe pupils learned that it
is difficult to avoid ambiguities: for them it is difficult to put themselves
in others’ shoes. . . ”

In fact, while informatics in Italy has been recognized as an independent
academic discipline since the ’70s, teachers with an informatic background are
rather rare in non-vocational schools. Thus, while other abstract disciplines, like
mathematics, have a certain tradition and established practices in secondary
education, no such culture exists for informatics. Thus, we believe our workshops
could represent a valuable experience to support teachers, and we want to use
them as the starting point for a further action research.

Acknowledgments. We would like to thank the interuniversity research center
matematita (http://www.matematita.it/) who hosted the workshops, and all
the schools who partecipated to the activities.

References

1. Begel, A., Garcia, D.D., Wolfman, S.A.: Kinesthetic learning in the classroom.
In: Proc. of the 35th SIGCSE TSCSE, pp. 183–184. ACM, New York (2004),
http://doi.acm.org/10.1145/971300.971367

2. Bell, T., Rosamond, F., Casey, N.: Computer science unplugged and related
projects in math and computer science popularization. In: Bodlaender, H.L.,
Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370,
pp. 398–456. Springer, Heidelberg (2012), http://dl.acm.org/citation.
cfm?id=2344236.2344256

3. Ben-Ari, M.: Constructivism in computer science education. Journal of Computers
in Mathematics and Science Teaching 20(1), 45–73 (2001)

http://www.matematita.it/
http://doi.acm.org/10.1145/971300.971367
http://dl.acm.org/citation.cfm?id=2344236.2344256
http://dl.acm.org/citation.cfm?id=2344236.2344256

172 C. Bellettini et al.

4. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M.:
Exploring the processing of formatted texts by a kynesthetic approach. In: Proc.
of the 7th Workshop in Primary and Secondary Computing Education, WiPSCE
2012, pp. 143–144. ACM, New York (2012)

5. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M.:
What you see is what you have in mind: constructing mental models for format-
ted text processing. In: Diethelm, I., Arndt, J., Dünnebier, M., Syrbe, J. (eds.)
Informatics in Schools ISSEP 2013 — Selected Papers, Commentarii Informaticae
Didacticae, vol. 6, pp. 139–147. Universitätsverlag Postdam, Germany (2013)

6. Lonati, V., Monga, M., Morpurgo, A., Torelli, M.: What’s the fun in informatics?
Working to capture children and teachers into the pleasure of computing. In: Kalaš,
I., Mittermeir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 213–224. Springer,
Heidelberg (2011)

7. Curzon, P., McOwan, P.W., Cutts, Q.I., Bell, T.: Enthusing & inspiring with
reusable kinaesthetic activities. In: Proc. of the 14th Annual ACM SIGCSE Confer-
ence on Innovation and Technology in Computer Science Education, ITiCSE 2009,
pp. 94–98. ACM, New York (2009), http://doi.acm.org/10.1145/1562877.
1562911

8. De Vecchi, G., Carmona-Magnaldi, N.: Faire construire des savoirs (2ème ed.).
Hachette Education, France (2003)

9. Giordan, A.: From constructivism to allosteric learning model. In: UNESCO Con-
ference on Science Education 2000+ (1996), http://www.ldes.unige.ch/ang/
publi/articles/unesco AG 96/unesco96.htm

10. Hmelo-Silver, C.E.: Problem-based learning: What and how do students learn?
Educational Psychology Review 16(3), 235–266 (2004)

11. Kolb, D.A., Boyatzis, R.E., Mainemelis, C., et al.: Experiential learning theory:
Previous research and new directions. Perspectives on Thinking, Learning, and
Cognitive Styles 1, 227–247 (2001)

12. Pattis, R.E.: Karel the Robot: A Gentle Introduction to the Art of Programming,
1st edn. John Wiley & Sons, Inc., New York (1981)

13. The CSTA Curriculum Improvement Task Force: The new educational imperative:
Improving high school computer science education. Tech. rep., Computer Science
Teachers Association (February 2005), http://csta.acm.org/Communications
/sub/DocsPresentationFiles/White Paper07 06.pdf

14. The Royal Society: Shut down or restart? The way forward for computing in UK
schools (January 2012), http://royalsociety.org/education/policy/
computing-in-schools/report/

15. Vygotsky, L.: Mind in Society: Development of Higher Psychological Processes.
Harvard University Press, Cambridge (1978)

http://doi.acm.org/10.1145/1562877.1562911
http://doi.acm.org/10.1145/1562877.1562911
http://www.ldes.unige.ch/ang/publi/articles/unesco_AG_96/unesco96.htm
http://www.ldes.unige.ch/ang/publi/articles/unesco_AG_96/unesco96.htm
http://csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_06.pdf
http://csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_06.pdf
http://royalsociety.org/education/policy/computing-in-schools/report/
http://royalsociety.org/education/policy/computing-in-schools/report/

Author Index

Bellettini, Carlo 161
Brinda, Torsten 54
Brodnik, Andrej 78
Brunner, Markus 88

Dagiene, Valentina 66
Demo, G. Barbara 8
Di Angelo, Monika 88
Diethelm, Ira 41, 150

Emı́lia, Janigová 112

Fecht, Nubia Alejandra 41
Fele-Žorž, Gašper 78

Gander, Walter 1
Gostǐsa, Dean 78
Grillenberger, Andreas 29

Hedviga, Palásthy 112
Hubwieser, Peter 100

Janka, Majherová 112

Kristan, Nataša 78
Kwiatkowska, Anna Beata 124

Lonati, Violetta 161

Magenheim, Johannes 100
Malchiodi, Dario 161
Mannila, Linda 66
Mirolo, Claudio 138
Monga, Mattia 161
Morpurgo, Anna 161

Neugebauer, Jonas 100

Ohrndorf, Laura 100
Opel, Simone 54

Poranen, Timo 66

Rolandsson, Lennart 66
Romeike, Ralf 29

Schaper, Niclas 100
Schubert, Sigrid 100
Stoffers, Ana-Maria 150
Stupuriene, Gabriele 66
Syslo, Maciej M. 124

Torelli, Mauro 161

Vańıček, Jǐŕı 17

Williams, Lawrence 8

Zecca, Luisa 161

	Preface
	Organization
	Table of Contents
	Keynotes
	Informatics and General Education
	1 Some Historical Notes
	2 Situation Today
	3 General Education
	4 Informatics as Basic Subject
	5 Conclusions
	References

	The Many Facets of Scratch
	1 Introduction
	2 Introducing Computing
	3 Personal Stories and Concrete Programming
	Interdisciplinary and Advanced Activities
	Concluding Remarks
	References

	Computer Science Education
	Bebras Informatics Contest: Criteria for Good Tasks Revised
	1 Bebras Contest and School Curricula
	2 Criteria for a Good Task
	3 What Should the Contest Be Testing?
	4 What Areas Should the Tasks Stem Out From?
	5 Digital Literacy in Tasks
	6 Interactivity of Tasks
	7 Assignment and Motivation in Tasks
	8 Quality of Wrong Choices
	9 Conclusion
	References

	Big Data – Challengesfor Computer Science Education
	1 Introduction
	2 Managing Big Data
	Atomicity, Consistency, Isolation, Durability)
	Basically Available, Soft-
	Eventually

	3 Databases and Data Management in Computer Science Education
	4 Challenges for Computer Science Education
	4.1 Discussing the Relevance of Database Concepts
	4.2 Involving Big Data Examples into Teaching
	4.3 Teaching Data Analysis for Understanding Data Mining
	4.4 Changes in the Relevance of Data Modeling
	4.5 Sharpening the View on Data Privacy

	5 Discussion
	References

	Analysis of Computer Science Educationin Venezuela Using the Darmstadt Model
	1 Introduction
	2 Theoretical Framework: The Darmstadt Model
	3 Qualitative Methodology
	4 Analysis of Computer Science Education in Venezuela
	4.1 Policies
	4.2 Media
	4.3 Sociocultural Related Factors in Venezuela
	4.4 Educational System
	4.5 Curriculum Issues
	4.6 Teacher Qualification
	4.7 Teaching Methods
	4.8 Intentions

	5 General Results of the Categories Investigated
	6 Conclusion
	References
	A Appendix

	“Computer Science in Context”and “Learning Fields” in Vocational ComputerScience Education – Two Unlike Siblings?
	1 Introduction
	2 General and Vocational Computer Science Education
	3 A Criteria-Orientated Comparison of CSiC and LFCS
	3.1 Learning Fields in Vocational Computer Science Education
	3.2 Computer Science in Context (CSiC)
	3.3 Synopsis of Approaches

	4 General Model for Contextualised Computer Science Education
	4.1 Requirements
	4.2 Application of Proposed Model

	5 Conclusion and Outlook
	References

	Reasoning on Children’s Cognitive Skillsin an Informatics Contest: Findings andDiscoveries from Finland, Lithuania, and Sweden
	1 Introduction
	2 Informatics Education in Finland, Sweden and Lithuania
	3 Bebras – An International Informatics Contest
	4 Study Settings
	4.1 Data Collection
	4.2 Methodology

	5 Results
	5.1 Overall Performance in the Benjamin Age Group
	5.2 Analysis of Selected Tasks Based on Cognitive Domains
	5.3 Closer Analysis of 12 Tasks in Common

	6 Discussion and Future Work
	Acknowledgements.

	References

	A High-Availability Bebras Competition System
	1 Motivation
	1.1 The Bebras Competition
	1.2 Existing Systems
	1.3 The Design Requirements of a New System

	2 A Distributed Competition System
	2.1 System Overview and Design
	2.2 Front-End
	2.3 Business Logic Layer
	2.4 Database Back-End

	3 Evaluation
	3.1 System Configuration
	3.2 Functionalities
	3.3 System Performance

	4 Future Work
	References

	Competence Measurement for Informatics
	Competence Orientation in Vocational Schools – The Case of Industrial Information Technology in Austria
	1 Introduction
	2 Competence Orientation at Vocational Schools for IT
	2.1 Teaching Competencies
	2.2 Competence Model
	2.3 Descriptors

	3 Case Study at HTL Krems
	3.1 HTL (Technical High Schools)
	3.2 Requirements
	3.3 Didactical Concept

	4 Evaluation and Discussion
	4.1 Evaluation
	4.2 Discussion

	References

	Measuring Student Competences in German Upper Secondary Computer Science Education
	1 Motivation
	2 Development of a Competence Measurement Instrument
	3 Applying the Measurement Instrument
	4 Analyzing the Test Data
	4.1 Multidimensional Item Response Theory
	4.2 Evaluating the Competence Dimensionality
	4.3 Item Fit and Reliability
	Model wMNSQ
	Discrimination
	4.4 Difficulty Parameters and Latent Abilities

	5 Discussion
	5.1 Analyzing the Resu ults
	5.2 Implications for e the Measurement Instrument
	5.3 Student Competences

	6 Conclusions and Further Work
	References

	Emerging Technologies and Tools for Informatics
	Pupils in the Virtual World and Education
	1 Introduction
	2 The Development of Digital Competences and Web 2.0
	2.1 Survey Results

	3 Educational Goals and Digital Taxonomy
	4 Conclusion
	References

	Introducing Students to Recursion: A Multi-facet and Multi-tool Approach
	1 Introduction
	2 Computer Science Unplugged
	3 Visualization of Recursion
	4 Developing Recursive Thinking
	4.1 Fibonacci Numbers
	4.2 Printing a Number

	5 Complexity of Recursive Calculations
	5.1 A Recursive Version of Horner’s Rule
	5.2 Fast Exponentiation
	5.3 Fast Computing of Fibonacci Numbers
	5.4 Divide and Conquer Methods

	6 Conclusions
	References

	Teacher Education in Informatics
	A Present-Day “Glass Bead Game”:A Framework for the Education of ProspectiveInformatics Teachers Inspired by a Reflectionon the Nature of the Discipline
	1 Introduction
	2 Three Disciplinary Perspectives
	2.1 Mathematical Perspective
	2.2 Scientific Perspective
	2.3 Technological Perspective

	3 An Example
	3.1 Working Like a Mathematician
	3.2 Working Like a Scientist
	3.3 Working Like an Engineer

	4 Conclusions
	References

	Teacher Profilesfor Planning Informatics Lessons
	1 The Role of Teachers’ Subjective Theories
	2 TheResearchQuestion
	3 The Sample
	4 The Process of Building the Profiles
	5 Profiles of Informatics Teachers
	5.1 The Self-Confident Expert
	5.2 The Student-Oriented Manager
	5.3 The Creative Pragmatist
	5.4 The Inquisitive Collector
	5.5 The Prudent Newcomer

	6 Conclusions and Future Work
	References

	Curriculum Issues
	Extracurricular Activities for Improving thePerception of Informatics in Secondary Schools
	1 Introduction
	2 Methodological Approach
	3 Description of Workshops
	3.1 Human Pixels
	3.2 Mazes
	3.3 Greedy Money

	4 Conclusions
	References

	Author Index

