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Abstract. The Euclidean distance transform (EDT) is used in many
essential operations in image processing, such as basic morphology, level
sets, registration and path finding. The anti-aliased Fuclidean distance
transform (AAEDT), previously presented for two-dimensional images,
uses the gray-level information in, for example, area sampled images to
calculate distances with sub-pixel precision. Here, we extend the studies
of AAEDT to three dimensions, and to the Body-Centered Cubic (BCC)
and Face-Centered Cubic (FCC) lattices, which are, in many respects,
considered the optimal three-dimensional sampling lattices. We compare
different ways of converting gray-level information to distance values,
and find that the lesser directional dependencies of optimal sampling
lattices lead to better approximations of the true Euclidean distance.

1 Introduction

1.1 Supersampling and Coverage

In a binary image, the spatial elements (spels) are classified either as part of
an object or of the background. When imaging a continuous scene, this leads to
jagged edges, and much of the information on the edge location and length is
lost. With inspiration from anti-aliasing in computer graphics, it is shown in [13]
that part of this information is preserved if the image is supersampled, and the
intensity of a spel is proportional to the part of its Voronoi cell that is inside
of an object, as in Figure 1. The intensity ¢(p) of a spel p is then referred to
as its coverage value. The theory is further developed in [12], and it is shown
that some physical properties, such as volume and surface area, can be measured
with higher accuracy in supersampled images. These qualities are important in,
for example, cancer diagnostics [3,7].

In 2D imaging devices, the intensity of a spel is usually computed through
integration over some environment of the spel center [2], and the result is more
or less equivalent to a coverage value. 3D imaging techniques, such as computed
tomography (CT), are often based on combining 2D images from different per-
spectives, and thus we feel comfortable to suggest and apply coverage based
image processing methods in 3D as well.
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Fig. 1. Assignment of intensity proportional to spel coverage

1.2 Euclidean Distance Transforms

The Euclidean distance dg between two points p1 and ps in n-dimensional space
is defined as

dg (pP1,P2) = Z (p1(i) — p2(i))™.

The Euclidean distance transform (EDT) maps every point p to
dEDT(p) = inf (dE(pa pw)) )
Pw €S2

where (2 is some object(s) or a set of seed points. This transform is used in
many essential operations in image processing, such as basic morphology, level
sets, registration and path finding [1]. In 3D, it can be used for, among other
things, visualization, modeling and animation [6].

Anti-Aliased Euclidean Distance Transform. The anti-aliased Euclidean
distance transform (AAEDT) for two-dimensional images is presented in [5]. It
uses coverage information to compute the Euclidean distance from an object
with sub-spel precision. The distance d4agpr is defined as

daappr(p) = min (|de(p,pw)| +df(pu)), 1)
PL €02

where |dg(p, pw)| is the Euclidean distance between the centers of a background
spel p and an edge spel p,, € 0f2, 012 being the edge of a binary and areasampled
object £2, and dy(p.,) is the distance between the edge and the center of the edge
spel. This is illustrated in Figure 2. The addition of the term d¢(p.,) is the source
of the sub-pixel precision, which improves, for example, the accuracy of level sets
and small-scale morphology.

1.3 Three-Dimensional Sampling Lattices

The spels in a digital image represent sample points, which are organized in
a so-called sampling lattice. The most common sampling lattice is the Carte-
sian Cubic (CC) lattice, resulting in square spels in 2D, and cubic spels in 3D.
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Fig. 2. Illustration of the anti-aliased Euclidean distance daarpr between two spels
p and py

Unfortunately, the sampling properties of the CC lattice are strongly direction
dependent [8,14]. Consequently, to guarantee some minimum resolution in all
directions within the image, some directions must be over-sampled, and redun-
dant data must thus be stored and processed. An alternative is to use the Body-
Centered Cubic (BCC) and Face-Centered Cubic (FCC) sampling lattices. Their
direction dependence is much weaker, and, for band-limited signals, a minimum
resolution in all directions can be obtained using ~ 30% fewer sample points
than if a CC lattice were used [4,8,10,14,15].

1.4 Scope of This Paper

In AAEDT, df(p.) is computed from the coverage value c(p,,) of the edge spel,
usually under the assumption that the object surface intersecting the spel is
locally flat, and that ds(p.,) is measured along the surface normal [5]. However,
as the orientation of the surface is unknown, the asymmetry of the Voronoi
cell of the spel makes it difficult to construct a mapping between c¢(p,,) and
d¢(pw). Moreover, for spels not located on the edge, the vector propagation
process may introduce a discrepancy between the direction to the nearest edge
spel and that to the closest point on the surface. We propose that the lesser
direction dependencies of the BCC and FCC sampling lattices, compared to the
CC sampling lattice, lead to improved performance of AAEDT.

2 Method

2.1 Implementation

We use the graph-based AAEDT implementation presented in [9], which can be
adapted to any dimensionality and sampling lattice by changing the definition
of the spel neighborhood. In this way, we ensure fair comparison of the lattices.

2.2 Computation of d¢(p.)

We want to find an expression on the form df(c) to approximate the value
d¢(pw) of an edge spel p,, from its coverage value c(p.). As a reference for
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different approximation methods, we simulate d;(p.,) and ¢(p.,) for the Voronoi
cells of the CC, BCC and FCC lattices: We construct a set of planes, the normals
of which are uniformly distributed within the symmetry regions of the Voronoi
cells, intersecting the cell center. Using the Monte-Carlo sampling method [11],
we approximate the portions of the cell that are located above and below the
plane. We repeat the process while moving the plane away from the spel center
in small steps, until the entire Voronoi cell is below the plane. The simulation
output is shown in Figure 3, with plots of three different approximations dy(c)
of dy(pw) from ¢(p.,), described below.
The implementation in [5] approximates ds(p.,) within an edge spel using

dr(e) = 0.5 — c(p.). (2)

This is the exact relationship between dy(p,,) and c(p.,) for for a spel of a CC
lattice being intersected by a plane perpendicular to a lattice vector. Although
dy(c) is only computed in the initialization of AAEDT, the computational sim-
plicity of (2) is an attractive property. There is no equally simple formula for
BCC and FCC lattices. However, linear regression on the simulation output in
Figure 3 shows that (2) is actually an even better approximation of the rela-
tionship between df(p.) and c(p.,) on these lattices, than on the CC lattice.
Higher order regression on the data in Figure 3 leads to overfitting rather than
improvement of the approximation.

As we do not calculate the orientation of the plane that intersects the spel,
we want dy(c) to be orientation independent. As the ideal Voronoi cell of a sam-
ple point, with respect to sampling properties, is a ball, which is completely
orientation independent, we derive dy(c) for a ball of unit volume. As our im-
plementation uses 256 gray levels, we tabulate the relationship for 256 coverage
values in the interval [0, 1].

For the third approximation method plotted in Figure 3, we simply use the
mean value of the Monte-Carlo simulation output. Again, we tabulate the rela-
tionship for 256 coverage values in the interval [0, 1]. This is the only approxi-
mation method in this study that is lattice dependent.

3 Experiments

3.1 Choice of Test Images

We study the behavior of AAEDT applied to images of supersampled binary
balls, with 256 gray levels representing degrees of spel coverage, sampled on
CC, BCC and FCC lattices. We use the exterior and interior distance from
the ball surface as examples of convex and concave surfaces, respectively, of
different orientations. By varying the ball radius rs; within some range rs €
[Fmin, Pmaz), Pmins Tmaz > Tv, Where 7, is the average radius of a spel, we study
the impact of surface curvature on the accuracy of AAEDT.

We use the distance from balls where r;, ~ 7, to indicate the behavior of
AAEDT for undersampled objects.
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Fig. 3. Approximative mappings between ds(p. ), the distance between the intersecting
plane and spel center, and the ¢(pw), the spel coverage value, plotted on top of the
output of a Monte-Carlo simulation of the relationship. As ds(c) behaves as an odd
function centered at c¢(pw) = 0.5, it is only plotted for ¢ € [0, 0.5].

For every lattice, we use a set of balls where the center points are evenly
distributed within the symmetry region of the Voronoi cell of that lattice, so
that the ball center is unlikely to coincide with a sample point. The sample
density for all lattices is one spel per unit volume.

4 Results

The results are expressed in terms of

€(p) = depr(pP) — daaepr(P),

and its mean value €(p),, where dgpr(p) is the exact Euclidean distance trans-
form, the unsigned relative error

_|ldepr(p) — daaepr(P)|
ler(P)] = depr(P)

9

and the mean unsigned relative error |e,(p)|.. The error is evaluated within a
Euclidean distance of 50 units from the ball surface, where the unit distance is
defined in relation to the unit volume of the spels.

4.1 Bias Error

The mean error €(p),,, computed on the CC, BCC and FCC lattices using linear,
ball-based and mean value-based approximations of d¢(c), is shown in Figures
4, 5 and 6.

For convex surfaces with 5 > r,, and linear approximation of ds(c), the dis-
tance is underestimated on all lattices, although much more so on the CC lattice.
The mean error on the CC lattice also exhibits a larger standard deviation than
that on the BCC and FCC lattices. On the CC lattice, both the mean error
and standard deviation are reduced by ball-based approximation of dy(c), and



Anti-Aliased Euclidean Distance Transform on 3D Sampling Lattices 93

even further by mean value-based approximation. The error on the BCC lattice
seems to be almost completely unbiased for ball-based approximation relative to
the others, and tends somewhat towards underestimation for mean value-based
approximation. On the FCC lattice, we see a tendency towards underestima-
tion for all approximation methods, but it is the least apparent for ball-based
approximation.

For concave surfaces with rs > r,, the mean error is very close to being un-
biased for small 74, and tends towards underestimation for less curved surfaces.
As the bias increases, the standard deviation grows. As for convex surfaces, the
result on the CC lattice is improved by ball-based and mean value-based approx-
imation of df(c). On the BCC and FCC lattices, it is very difficult to discern
any bias for ball-based approximation, while there is a slight underestimation
using mean value-based approximation.

For ry = r,, all lattices and approximations of dy(c) yield equivalent results,
always underestimating the distance.

4.2 Error Range

Figures 7, 8 and 9 show the first (25! percentile), second (median) and third
(75" percentile) quartiles of |e,(p)].

For convex surfaces with ry > r,, the CC lattice is clearly outperformed
by the BCC and FCC lattices. The range of |e.(p)|, indicated by the 25" and
75" percentiles, is highly concentrated around the median error on BCC and
FCC, while it is notably larger on the CC lattice. However, the performance
of the CC lattice is very much improved when ball-based or mean value-based
approximation of d(c) is used.

For concave surfaces, and for r;, =~ r,, the performance is almost equivalent
on all lattices. However, the growth of the range of |e,.(p)|, that occurs for small
rs, starts at an earlier stage on the CC lattice than on BCC and FCC.

In Figures 10, 11 and 12, we see |e.(p)|m as a function of the distance d to
the ball surface.

The approximation of dy(c) takes place at d < 1, at which state the difference
between the lattices is small. In the cases of ry > r,, the BCC and FCC lattices
seem to be at a small advantage in making this approximation, compared to the
CC lattice, when ball-based or mean value-based approximation is used.

For all curvatures, lattices and approximations of ds(c), |e-(p)|m decreases
rapidly as the distance increases. For r5 > r,,, this decrease is more rapid on the
BCC and FCC lattices than on the CC lattice.

5 Discussion

5.1 Bias Errors

The AAEDT has two possible sources of bias errors: The approximation of dy(c),
and the risk that |daappr (P, Pw)| is incorrect due to omitted edge spels, as
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Fig. 4. Mean error with one standard deviation, convex surface, rs > 7,
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Fig. 6. Mean error with one standard deviation, convex surface, rs = 7,

described in [9]. The former may cause both over- and underestimation, while
the latter always causes overestimation of the distance.

Underestimation is likely a result from the fact that the distance from an edge
to the center of an edge spel p,, depends not only on ¢(p,,), but also on the edge
orientation. This is very prominent on the CC lattice, where the variation is a
factor of v/2, making it very difficult to make a representative model for mapping
distance to coverage. In Figure 3, we can see that this causes problems for both
linear and mean-value based approximation of ds(c), as the large variance close to
¢ =0 and ¢ = 1 dulls the slope of the curve, leading to a large difference between
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Fig. 9. First, second and third quartiles, convex surface, rs = r,

the largest dy(c) that can be assigned to an edge spel, and the smallest daagpr
that can be assigned to a background spel. For a ball, we have lim,,_,, o df(c) =
ry and lime, ,, 1 df(c) = —r,, with a smooth transition from fully covered (or
uncovered) to partly covered. It is possible that this, combined with the low
directional dependencies of the BCC and FCC lattices, results in the low bias
observed for the ball-based approximation of d¢(c).
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Fig. 12. Mean unsigned relative error vs. convex surface, rs = 7,

5.2 Error Range

Figures 10, 11 and 12 show that |e,(p)|n, is smaller farther away from the surface.
From this, we draw the conclusion that errors arise mainly from the approxima-
tion of df(c), and not from the vector propagation.

It seems that the effect of improving the approximation of dy(c) is the most
noticeable on the CC lattice. This is expected, as the cubic spels are more di-
rectionally dependent than the truncated octahedra and rhombic dodecahedra
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of the BCC and FCC lattices, respectively. Ironically, even the linear approxi-
mation used in [5] and [9] is much less accurate on the CC lattice than on BCC
and FCC. Actually, although considerably improved when using the mean value-
based approximation of d¢(c), the performance of AAEDT on the CC lattice is
still not as good as that on the BCC and FCC lattices, using only the linear
approximation.

The best performance is achieved by using the ball-based approximation of
dy(c) on the BCC and FCC lattices. As explained above, this behavior is likely
to be a consequence of the treatment of edge spels with ¢ =~ 0 and ¢ = 1.

The increase of the median of |e,(p)| for large rs in Figure 7 does not neces-
sarily mean that AAEDT is less accurate for flat surfaces. As we compute the
error for d < 50 for all 5, the ratio nciose/Mtar, Where nciose is the number of spels
close to the surface and ng,, the number of spels far away, is smaller for small
balls. Hence, the ratio niarge error/Msmall error 18 also smaller. As the decrease in
le-(p)], visible in Figures 10 and 11, seems to be smooth, this affects both the
mean value and median of |e,.(p)|.

The bad performance for r; = r, shows that AAEDT is highly dependent
on the sampling density being proportional to image scale, as dy(p.,) cannot be
accurately approximated from surfaces that are not locally flat.

5.3 Conclusions and Future Work

In this paper, we show how the performance of AAEDT in 3D can be significantly
improved. We analyze the impact of the approximation of d¢(c), and we explore
the advantages of sampling lattices with lesser directional dependencies than the
wide-spread CC lattice. Next, we hope to investigate the behavior of AAEDT
in the presence of sharp corners and more complex surface curvature. In [5], it
is suggested that gradient information is used to estimate the orientation of the
surface, which may improve the performance on the BCC and FCC lattices even
further.
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