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Abstract. We propose an extension of simple homotopy by consider-
ing homotopic pairs. Intuitively, a homotopic pair is a couple of objects
(X,Y ) such that X is included in Y and (X,Y ) may be transformed to
a trivial couple by simple homotopic deformations that keep X inside Y .
Thus, these objects are linked by a “relative homotopy relation”.

We formalize these notions by means of completions, which are in-
ductive properties expressed in a declarative way. In a previous work,
through the notion of a dyad, we showed that completions were able to
handle couples of objects that are linked by a certain “relative homology
relation”.

The main result of the paper is a theorem that makes clear the link
between homotopic pairs and dyads. Thus, we prove that, in the unified
framework of completions, it is possible to handle notions relative to both
homotopy and homology.

Keywords: Simple homotopy, combinatorial topology, simplicial com-
plexes, completions.

1 Introduction

Simple homotopy, introduced by J. H. C. Whitehead in the early 1930’s, may
be seen as a refinement of the concept of homotopy [1]. Two complexes are
simple homotopy equivalent if one of them may be obtained from the other by
a sequence of elementary collapses and anti-collapses.

Simple homotopy plays a fundamental role in combinatorial topology [1–7].
Also, many notions relative to homotopy in the context of computer imagery
rely on the collapse operation. In particular, this is the case for the notion of
a simple point, which is crucial for all image transformations that preserve the
topology of the objects [8–10], see also [11–13].

In this paper, we propose an extension of simple homotopy by considering
homotopic pairs. Intuitively, a homotopic pair is a couple of objects (X,Y ) such
that X is included in Y and (X,Y ) may be transformed to a trivial couple by
simple homotopic deformations that keep X inside Y . Thus, these objects are
linked by a “relative homotopy relation”.
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We formalize these notions by means of completions, which are inductive
properties expressed in a declarative way [14]. In a previous work, we introduced
the notions of a dendrite and a dyad [15], which were also formalized by means
of completions. A dendrite is an acyclic object, a theorem asserts that an object
is a dendrite if and only if it is acyclic in the sense of homology. Intuitively, a
dyad is a couple of objects (X,Y ), with X ⊆ Y , such that the cycles of X are
“at the right place with respect to the ones of Y ”. A theorem provides a relation
between dendrites and dyads. Thus, these results show that completions are
able to handle couples of objects that are linked by a certain “relative homology
relation”.

The main result of the paper is a theorem that makes clear the link between
homotopic pairs and dyads. In particular, this theorem indicates that a subset
of the completions that describe dyads allows for a complete characterization of
homotopic pairs. Thus, we prove that, in the unified framework of completions,
it is possible to handle notions relative to both homotopy and homology.

The paper is organized as follows. First, we give some basic definitions for
simplicial complexes (Sec. 2). Then, we recall some basic facts relative to the
notion of a completion (Sec. 3). We recall the definitions of the completions that
describe dendrites and dyads, and we introduce our notion of homotopic pairs
(Sec. 4). In the following section, we introduce some tools that are necessary
to prove our results (Sec. 5). We establish the theorem that provides a relation
between homotopic pairs and dyads in Sec. 6. In Sec. 7, we give a result linking
homotopic pairs and the more classical notion of simple homotopy.

The paper is self contained. In particular, almost all proofs are included.

2 Basic Definitions for Simplicial Complexes

Let X be a finite family composed of finite sets. The simplicial closure of X is the
complex X− = {y ⊆ x | x ∈ X}. The family X is a (finite simplicial) complex
if X = X−. We write S for the collection of all finite simplicial complexes. Note
that ∅ ∈ S and {∅} ∈ S, ∅ is the void complex, and {∅} is the empty complex.

Let X ∈ S. An element of X is a simplex of X or a face of X . A facet of X
is a simplex of X that is maximal for inclusion.

A simplicial subcomplex of X ∈ S is any subset Y of X that is a simplicial
complex. If Y is a subcomplex of X , we write Y � X .

Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number of
its elements minus one. The dimension of X , written dim(X), is the largest
dimension of its simplices, the dimension of ∅ being defined to be −1.

A complex A ∈ S is a cell if A = ∅ or if A has precisely one non-empty facet x.
We write C for the collection of all cells. A cell α ∈ C is a vertex if dim(α) = 0.

The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. We say that
X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if X ∩ Y = ∅. Thus,
X and Y are disjoint if and only if X ∩ Y = ∅ or X ∩ Y = {∅}.
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If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simplicial complex
XY such that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and
XY = X if Y = {∅}. The join αX of a vertex α and a complex X ∈ S is a cone.

Important convention. In this paper, if X,Y ∈ S, we implicitly assume that
X and Y have disjoint ground sets whenever we write XY .

We recall now some basic definitions related to the collapse operator intro-
duced by J.H.C. Whitehead ([1], see also [16]).

Let X ∈ S and let x, y be two distinct faces of X . The couple (x, y) is a free
pair for X if y is the only face of X that contains x. If (x, y) is a free pair for X ,
Y = X \{x, y} is an elementary collapse of X and X is an elementary expansion
of Y . We say that X collapses onto Y , or that Y expands onto X , if there exists
a sequence 〈X0, ..., Xk〉 such that X0 = X , Xk = Y , and Xi is an elementary
collapse of Xi−1, i ∈ [1, k]. The complex X is collapsible if X collapses onto
∅. We say that X is (simply) homotopic to Y , or that X and Y are (simply)
homotopic, if there exists a sequence 〈X0, ..., Xk〉 such that X0 = X , Xk = Y ,
and Xi is an elementary collapse or an elementary expansion of Xi−1, i ∈ [1, k].
The complex X is (simply) contractible if X is simply homotopic to ∅.

Let X,Y ∈ S and let x, y ∈ Y \X . The pair (x, y) is free for X ∪Y if and only
if (x, y) is free for Y . Thus, by induction, we have the following proposition.

Proposition 1. Let X,Y ∈ S. The complex Y collapses onto X ∩Y if and only
if X ∪ Y collapses onto X.

3 Completions

We give some basic definitions for completions, a completion may be seen as a
rewriting rule that permits to derive collections of sets. See [14] for more details.

Let S be a given collection and let K be an arbitrary subcollection of S.
Thus, we have K ⊆ S. In the sequel of the paper, the symbol K, with possible
superscripts, will be a dedicated symbol (a kind of variable).
Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that K is finitary,
if F is finite whenever (F,G) ∈ K.
Let 〈K〉 be a property that depends on K. We say that 〈K〉 is a completion (on
S) if 〈K〉 may be expressed as the following property:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉
where K is an arbitrary finitary binary relation on 2S.
If 〈K〉 is a property that depends on K, we say that a given collection X ⊆ S
satisfies 〈K〉 if the property 〈K〉 is true for K = X.

Theorem 1. [14] Let 〈K〉 be a completion on S and let X ⊆ S. There exists,
under the subset ordering, a unique minimal collection that contains X and that
satisfies 〈K〉.

If 〈K〉 is a completion on S and if X ⊆ S, we write 〈X; K〉 for the unique
minimal collection that contains X and that satisfies 〈K〉.
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Let 〈K〉 be a completion expressed as the above property 〈K〉. By a fixed point
property, the collection 〈X; K〉 may be obtained by starting from K = X, and
by iteratively adding to K all the sets G such that (F,G) ∈ K and F ⊆ K (see
[14]). Thus, if C = 〈X; K〉, then 〈X; K〉 may be seen as a dynamic structure that
describes C, the completion 〈K〉 acts as a generator, which, from X, makes it
possible to enumerate all elements in C. We will see now that 〈K〉 may in fact
be composed of several completions.

Let 〈K1〉, 〈K2〉, ..., 〈Kk〉 be completions on S. We write ∧ for the logical “and”.
It may be seen that 〈K〉 = 〈K1〉∧〈K2〉...∧〈Kk〉 is a completion. In the sequel, we
write 〈K1,K2, ...,Kk〉 for 〈K〉. Thus, if X ⊆ S, the notation 〈X; K1,K2, ...,Kk〉
stands for the smallest collection that contains X and that satisfies each of the
properties 〈K1〉, 〈K2〉, ..., 〈Kk〉.

Remark 1. If 〈K〉 and 〈Q〉 are two completions on S, then we have 〈X; K〉 ⊆
〈X; K,Q〉 whenever X ⊆ S. Furthermore, we have 〈X; K〉 = 〈X; K,Q〉 if and
only if the collection 〈X; K〉 satisfies the property 〈Q〉.

4 Completions on Simplicial Complexes

The notion of a dendrite was introduced in [14] as a way for defining a collection
made of acyclic complexes. Let us consider the collection S = S, and let K
denotes an arbitrary collection of simplicial complexes.

We define the two completions 〈D1〉 and 〈D2〉 on S: For any S, T ∈ S,
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉
Let D = 〈C;D1,D2〉. Each element of D is a dendrite.

Remark 2. Let K be the binary relation on 2S such that (F,G) ∈ K iff there exist
S, T ∈ S, with F = {S, T, S∩T } and G = {S∪T }. We see that K is finitary and
that 〈D1〉 may be expressed as the property 〈K〉 given in the preceding section.
Thus 〈D1〉 is indeed a completion, and so is 〈D2〉.

The collection T of all trees (i.e., all connected acyclic graphs) provides an
example of a collection of dendrites. It may be checked that T satisfies both 〈D1〉
and 〈D2〉, and that we have T ⊆ D. In fact, we have the general result [14]:

A complex is a dendrite if and only if it is acyclic in the sense of homology.
As a consequence, any contractible complex is a dendrite but there exist some
dendrites that are not contractible. The punctured Poincaré homology sphere
provides an example of this last fact. Note also that each complex in 〈C;D1〉
is contractible [6], but there exist some contractible complexes that are not in
〈C;D1〉. The dunce hat [18] provides an example of this last fact. It follows that
it is not possible, using only the two completions 〈D1〉 and 〈D2〉, to characterize
precisely the collection composed of all contractible complexes.

The aim of this paper is to make clear the link between (simple) homotopy and
completions. By the previous remarks, we will have to consider other completions
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Fig. 1. (a) (Q,S) is not a dyad. (b) (R,S) is a dyad. (c) Suppose (R,S) and (S∩T, T )
are dyads. Then, by 〈Ÿ1〉, (S, S ∪ T ) must be a dyad. Furthermore, by 〈T̈〉, (R,S ∪ T )
must also be a dyad.

than the two above ones. To achieve our goal, we will proceed by using some
completions that describe dyads [15].

Intuitively, a dyad is a couple of complexes (X,Y ), with X � Y , such that the
cycles of X are “at the right place with respect to the ones of Y ”. For example,
the couple (Q,S) of Fig. 1 (a) is not a dyad, while the couple (R,S) of Fig. 1
(b) is a dyad.

We set S̈ = {(X,Y ) | X,Y ∈ S, X � Y } and C̈ = {(A,B) ∈ S̈ | A,B ∈ C}.
In the sequel of the paper, K̈ will denote an arbitrary subcollection of S̈.

We define five completions on S̈ (the symbols T̈, Ü, L̈ stand respectively for
“transitivity”, “upper confluence”, and “lower confluence”):
For any S, T ∈ S,
-> If (S ∩ T, T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈. 〈Ÿ1〉
-> If (S, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈Ÿ2〉
For any (R,S), (S, T ), (R, T ) ∈ S̈,
-> If (R,S) ∈ K̈ and (S, T ) ∈ K̈, then (R, T ) ∈ K̈. 〈T̈〉
-> If (R,S) ∈ K̈ and (R, T ) ∈ K̈, then (S, T ) ∈ K̈. 〈Ü〉
-> If (R, T ) ∈ K̈ and (S, T ) ∈ K̈, then (R,S) ∈ K̈. 〈L̈〉
We set Ẍ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉. Each element of Ẍ is a dyad 1.

See Fig. 1 (c) for an illustration of the completions 〈Ÿ1〉 and 〈T̈〉. In [15], the
following relation between dyads and dendrites was given.

Theorem 2. Let (X,Y ) ∈ S̈ and let α be a vertex such that αX ∩ Y = X. The
couple (X,Y ) is a dyad if and only if αX ∪ Y is a dendrite. In particular, a
complex Y ∈ S is a dendrite if and only if (∅, Y ) is a dyad.

Intuitively, this result indicates that (X,Y ) is a dyad if we cancel out all cycles
of Y (i.e., we obtain an acyclic complex), whenever we cancel out those of X
(by the way of a cone).

In Fig. 1 (b), we see that it is possible to continuously deform R onto S, this
deformation keeping R inside S. It follows the idea to introduce the following
notions in order to make a link between dyads and simple homotopy.

1 In [15], a different but equivalent definition of a dyad was given. See Th. 2 of [15].
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If X,Y ∈ S, we write X
E�−→ Y , whenever Y is an elementary expansion of X .

We define four completions on S̈: For any (R,S), (R, T ), (S, T ) in S̈,

-> If (R,S) ∈ K̈ and S
E�−→ T , then (R, T ) ∈ K̈. 〈Ḧ1〉

-> If (R, T ) ∈ K̈ and S
E�−→ T , then (R,S) ∈ K̈. 〈Ḧ2〉

-> If (R, T ) ∈ K̈ and R
E�−→ S, then (S, T ) ∈ K̈. 〈Ḧ3〉

-> If (S, T ) ∈ K̈ and R
E�−→ S, then (R, T ) ∈ K̈. 〈Ḧ4〉

We set Ï = {(X,X) | X ∈ S} and Ḧ = 〈̈I; Ḧ1, Ḧ2, Ḧ3, Ḧ4〉. Each element of Ḧ is
a homotopic pair.

Note that we have 〈̈I; Ḧ1〉 = 〈̈I; Ḧ1, Ḧ4〉. Furthermore, (X,Y ) ∈ 〈̈I; Ḧ1〉 if and
only if Y collapses onto X .

If (X ′, Y ′) is obtained from (X,Y ) by applying one of the completions 〈Ḧ1〉,
〈Ḧ2〉, 〈Ḧ3〉, 〈Ḧ4〉, then X ′ is homotopic to X , and Y ′ is homotopic to Y . Since,
for generating the collection Ḧ, we start from Ï, we have the following.

Proposition 2. If (X,Y ) ∈ Ḧ, then X is homotopic to Y .

Observe that, if X is homotopic to Y and if X � Y , then we have not
necessarily (X,Y ) ∈ Ḧ. See the couple (Q,S) of Fig. 1 (a).

5 Product

In this section we give some notions that are essential for the proofs of the main
results of this paper. In particular, we introduce the notion of a product of a
simplicial complex by a copy of this complex. Intuitively, this product has the
structure of a Cartesian product of an object by the unit interval.

Let Z,Z ′ ∈ S. We say that Z and Z ′ are isomorphic if there exists a bijection
λ : Z → Z ′ such that, for all x, y ∈ Z, we have λ(x) ⊆ λ(y) if and only if x ⊆ y.
In this case, we also say that Z ′ is a copy of Z, we write λx = λ(x), and we set
λX = {λx | x ∈ X} whenever X � Z. Thus, λZ stands for Z ′. If T � Z, we say
that λZ is a copy of Z with T fixed if λT = T .
In the sequel, we denote by Cop(Z) the collection of all copies of a complex Z,
and we denote by Cop(Z;T ) the collection of all copies of Z with T fixed.
Let Z ∈ S and let λZ ∈ Cop(Z). If X � Z and Y � Z, we note that λ(X ∪Y ) =
λX ∪ λY , λ(X ∩ Y ) = λX ∩ λY . If XY � Z, we also have λ(XY ) = λXλY .

Remark 3. Let T, Z ∈ S, with T � Z, and let λZ ∈ Cop(Z). Suppose that
Z collapses onto T . Then, the complex λZ collapses onto λT . Nevertheless, if
T � λZ, then λZ does not necessarily collapses onto T (T may be not "at the
right place" w.r.t λZ). Of course if λZ ∈ Cop(Z;T ), then λZ collapses onto T .

Let X ∈ S and let λX ∈ Cop(X) disjoint from X . The product of X by λX
is the simplicial complex X ⊗ λX such that X ⊗ λX = {x ∪ λy | x ∪ y ∈ X}.
Observe that z is a facet of X ⊗ λX if and only if there exists a facet x of X
such that z = x ∪ λx. Note also that we have dim(X ⊗ λX) = 2dim(X) + 1.

Let Z ∈ S and λZ ∈ Cop(Z) disjoint from Z. If X � Z, Y � Z, then:
- (X ∪ Y )⊗ λ(X ∪ Y ) = (X ⊗ λX) ∪ (Y ⊗ λY ); and
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- (X ∩ Y )⊗ λ(X ∩ Y ) = (X ⊗ λX) ∩ (Y ⊗ λY ).
If XY � Z, we have (XY )⊗ λ(XY ) = (X ⊗ λX)(Y ⊗ λY ).
If A ∈ C and if A � Z, then A⊗ λA = AλA.

The proofs of the two following propositions will be given in an extended
version of this paper.

Proposition 3. Let (X,Y ) ∈ S̈, let λX ∈ Cop(X) disjoint from Y , and let
Z � X. The complex (X ⊗ λX)∪ Y collapses onto (Z ⊗ λZ)∪ Y . In particular,
(X ⊗ λX) ∪ Y collapses onto Y and (X ⊗ λX) collapses onto X.

Proposition 4. Let (X,Y ) ∈ S̈ and let λX ∈ Cop(X) disjoint from Y .
Let (λX,Z) ∈ S̈ such that Z is disjoint from Y . If X collapses onto X ′, then
(X ⊗ λX) ∪ Y ∪ Z collapses onto (X ′ ⊗ λX ′) ∪ Y ∪ Z.

Let X,Y ∈ S. We say that Y is independent from X if a simplex x ∈ Y is
necessarily in X whenever x ⊆ X. In other words, Y is independent from X if
any cell that is included in Y but not in X , contains a vertex that is included
in Y but not in X .

Observe that Y is independent from X if and only if X ∪ Y is independent
from X . Also, a product such that X⊗λX is independent from X and from λX .

The proof of the following proposition is easy.

Proposition 5. Let X,Y ∈ S and (X,Z) ∈ S̈. If Z is independent from X, then
there exists λZ ∈ Cop(Z;X) such that λZ ∩ Y = X ∩ Y .

Remark 4. Let X,Y ∈ S such that X and Y are disjoint, and let (X,Z) ∈ S̈.
Then, there exists λZ ∈ Cop(Z;X) such that λZ and Y are disjoint. In other
words, in this particular case, Prop. 5 is satisfied even if the complex Z is not
independent from X .

6 Completions and Homotopic Pairs

In this section, we establish a link between dyads and homotopic pairs (Th. 3).
For that purpose, we give first the following characterization of Ḧ.

If X,Y ∈ S, we write X
∗E�−→ Y , whenever X expands onto Y .

Proposition 6. Let (X,Y ) ∈ S̈. We have (X,Y ) ∈ Ḧ if and only if there exists
a complex Z independent from Y such that X ∗E�−→ Z and Y

∗E�−→ Z.

Proof. Let (X,Y ) ∈ S̈.
i) Suppose X

∗E�−→ Z and Y
∗E�−→ Z. Then, we may derive (X,Z) from (Z,Z) by

repeated applications of 〈Ḧ4〉 and we may derive (X,Y ) from (X,Z) by repeated
applications of 〈Ḧ2〉. Thus, (X,Y ) ∈ Ḧ.
ii) We proceed by induction on the four completions that describe Ḧ. If Y = X ,
then Y is independent from X , X ∗E�−→ Y , and Y

∗E�−→ Y . Suppose Y �= X and
suppose there exists a complex Z independent from Y such that X

∗E�−→ Z and



70 G. Bertrand

Y
∗E�−→ Z. Thus, we have λX

∗E�−→ λZ and λY
∗E�−→ λZ, whenever λZ ∈ Cop(Z).

1) Let T such that Y E�−→ T . Let λZ ∈ Cop(Z) disjoint from T . We consider
the complex Z ′ = T ∪ (Y ⊗λY )∪λZ, Z ′ is independent from T . By Prop. 1 and
3, we have:
T

∗E�−→ T ∪ (Y ⊗ λY )
∗E�−→ T ∪ (Y ⊗ λY ) ∪ λZ, and

X
∗E�−→ (X⊗λX)

∗E�−→ (X⊗λX)∪λZ
∗E�−→ (Y ⊗λY )∪λZ

∗E�−→ T ∪ (Y ⊗λY )∪λZ.
Thus, T ∗E�−→ Z ′ and X

∗E�−→ Z ′.
2) Let T such that T

E�−→ Y and X � T . Let λZ ∈ Cop(Z) disjoint from Y .
Thus, we have λT

∗E�−→ λY . We consider the complex Z ′ = (T ⊗ λT ) ∪ λZ, Z ′ is
independent from T . By Prop. 1 and 3, we have:
T

∗E�−→ (T ⊗ λT )
∗E�−→ (T ⊗ λT ) ∪ λY

∗E�−→ (T ⊗ λT ) ∪ λZ, and
X

∗E�−→ (X ⊗ λX)
∗E�−→ (X ⊗ λX) ∪ λZ

∗E�−→ (T ⊗ λT ) ∪ λZ.
Thus, T ∗E�−→ Z ′ and X

∗E�−→ Z ′.
3) Let T such that X

E�−→ T and T � Y . Let λZ ∈ Cop(Z) disjoint from Y .
We consider the complex Z ′ = (Y ⊗ λY ) ∪ λZ, Z ′ is independent from Y . By
Prop. 1, 3, 4, we have:
Y

∗E�−→ (Y ⊗ λY )
∗E�−→ (Y ⊗ λY ) ∪ λZ, and

T
∗E�−→ T∪(X⊗λX)

∗E�−→ T∪(X⊗λX)∪λZ ∗E�−→ (T⊗λT )∪λZ ∗E�−→ (Y ⊗λY )∪λZ.
Thus, Y ∗E�−→ Z ′ and T

∗E�−→ Z ′.
4) Let T such that T E�−→ X . The complex Z is independent from Y , and we

have Y
∗E�−→ Z and T

∗E�−→ X
∗E�−→ Z. �

As a direct consequence of Prop. 6, we have the following result. Observe that
the expression Ḧ = 〈̈I; Ḧ1, Ḧ2〉 means that a pair (X,Y ) may be detected as a
homotopic pair by using only transformations that keep the complex X fixed.

Proposition 7. We have Ḧ = 〈̈I; Ḧ1, Ḧ2〉 = 〈̈I; Ḧ2, Ḧ4〉.
Proof. Let Ḧ′ = 〈̈I; Ḧ1, Ḧ2〉 and Ḧ

′′ = 〈̈I; Ḧ2, Ḧ4〉. We have Ḧ′ ⊆ Ḧ and Ḧ
′′ ⊆ Ḧ

(see Remark 1). Let (X,Y ) ∈ Ḧ. By Prop. 6, there exists Z such that X
∗E�−→ Z

and Y
∗E�−→ Z. We have (X,X) ∈ Ḧ

′. Thus, by 〈Ḧ1〉, (X,Z) ∈ Ḧ
′ and, by 〈Ḧ2〉,

(X,Y ) ∈ Ḧ
′. We also have (Z,Z) ∈ Ḧ

′′. Thus, by 〈Ḧ4〉, (X,Z) ∈ Ḧ
′′ and, by

〈Ḧ2〉, (X,Y ) ∈ Ḧ
′′. It follows that Ḧ ⊆ Ḧ

′ and Ḧ ⊆ Ḧ
′′. �

Lemma 1. If X ∈ S and α is a vertex, then (∅, αX) ∈ 〈C̈; Ÿ1, T̈, Ü〉.
Proof. Let Ḧ

′ = 〈C̈; Ÿ1, T̈, Ü〉. If Card(X) ≤ 2, then αX is a cell. In this case
the property is true since (∅, αX) ∈ C̈. Let k ≥ 3. Suppose the property is true
whenever Card(X) < k and let X such that Card(X) = k. If X has a single
facet then, again, αX is a cell and (∅, αX) ∈ C̈. If X has more than one facet,
then there exists X ′ and X ′′ such that αX = αX ′ ∪ αX ′′ with Card(X ′) < k,
Card(X ′′) < k, and Card(X ′ ∩X ′′) < k. By the induction hypothesis, we have
(∅, αX ′) ∈ Ḧ

′, (∅, αX ′′) ∈ Ḧ
′, and (∅, α(X ′ ∩ X ′′)) ∈ Ḧ

′. By 〈Ü〉, we have
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(α(X ′∩X ′′), αX ′′) = (αX ′∩αX ′′, αX ′′) ∈ Ḧ
′. By 〈Ÿ1〉, we obtain (αX ′, αX) ∈

Ḧ
′. Now, by 〈T̈〉, we conclude that (∅, αX) ∈ Ḧ

′. �

Lemma 2. Let X,Y ∈ S. If X E�−→ Y , then (X,Y ) ∈ 〈C̈; Ÿ1, T̈, Ü〉.

Proof. If A is a cell, with A �= ∅, we set ∂A = A \ {x}, where x is the unique
facet of A. Let Ḧ

′ = 〈C̈; Ÿ1, T̈, Ü〉. Suppose X
E�−→ Y . If X = ∅, then Y is a

vertex, and (X,Y ) ∈ C̈. Otherwise, there exists a vertex α and a cell A ∈ C,
with A �= ∅, such that Y = X∪αA and X∩αA = α∂A (the free pair is (A,αA)).
By Lemma 1, we have (∅, α∂A) ∈ Ḧ

′ and (∅, αA) ∈ Ḧ
′. Thus, by 〈Ü〉, we have

(α∂A, αA) ∈ Ḧ
′. By 〈Ÿ1〉, we obtain (X,Y ) ∈ Ḧ

′. �

The following theorem shows that four of the five completions that describe
dyads allow for a characterization of the collection made of all homotopic pairs.

Theorem 3. We have Ḧ = 〈C̈; Ÿ1, T̈, Ü, L̈〉.

Proof. Let Ḧ
′ = 〈C̈; Ÿ1, T̈, Ü, L̈〉.

i) Setting T = ∅ in the definition of Ÿ1, we see that Ï ⊆ Ḧ
′. We have (X,Y ) ∈ Ḧ

′

whenever X E�−→ Y (Lemma 2 and Remark 1). Now, for any (R,S), (R, T ), (S, T )
in S̈:
- If (R, T ) ∈ Ḧ

′ and S
E�−→ T , then (S, T ) ∈ Ḧ

′ and, by L̈, we have (R,S) ∈ Ḧ
′;

- If (S, T ) ∈ Ḧ
′ and R

E�−→ S, then (R,S) ∈ Ḧ
′ and, by T̈, we have (R, T ) ∈ Ḧ

′.
By induction, since Ḧ = 〈̈I; Ḧ2, Ḧ4〉 (Prop. 7), it follows that Ḧ ⊆ Ḧ

′.

ii) If (X,Y ) ∈ C̈, then it may be checked that Y collapses onto X . Thus C̈ ⊆ Ḧ.
- Let S, T ∈ S. Suppose (S ∩ T, T ) ∈ Ḧ. Thus, there exists K independent

from T such that S∩T
∗E�−→ K and T

∗E�−→ K (Prop. 6). Then, there exists a copy
λK ∈ Cop(K;T ) such that λK ∩ S = S ∩ T (Prop. 5). Since S ∩ T

∗E�−→ λK,
we have S

∗E�−→ S ∪ λK (Prop. 1). We have also λK ∩ (S ∪ T ) = T . Thus, since
T

∗E�−→ λK, we have S ∪ T
∗E�−→ S ∪ λK (Prop. 1). Therefore (S, S ∪ T ) ∈ Ḧ.

- Let (R,S), (S, T ), (R, T ) ∈ S̈. Suppose (R,S) ∈ Ḧ and (S, T ) ∈ Ḧ. There
exists K such that S ∗E�−→ K, and T

∗E�−→ K (Prop. 6). By 〈Ḧ1〉, we have (R,K) ∈
Ḧ. Thus, by 〈Ḧ2〉, we have (R, T ) ∈ Ḧ.

- Let (R,S), (S, T ), (R, T ) ∈ S̈. Suppose (R,S) ∈ Ḧ and (R, T ) ∈ Ḧ. By
Prop. 6, there exists K independent from S such that R

∗E�−→ K, and S
∗E�−→ K.

By Prop. 5, there exists λK ∈ Cop(K;S) such that λK∩T = S. Since S ∗E�−→ λK,
we have T

∗E�−→ T ∪ λK (Prop. 1). By 〈Ḧ1〉, we have (R, T ∪ λK) ∈ Ḧ. Since
R

∗E�−→ λK, by 〈Ḧ3〉, we have (λK, T ∪ λK) ∈ Ḧ and, by 〈Ḧ4〉, (S, T ∪ λK) ∈ Ḧ.
By 〈Ḧ2〉, we get (S, T ) ∈ Ḧ.

- Let (R,S), (S, T ), (R, T ) ∈ S̈. Suppose (R, T ) ∈ Ḧ and (S, T ) ∈ Ḧ. There
exists K such that S ∗E�−→ K, and T

∗E�−→ K (Prop. 6). By 〈Ḧ1〉, we have (R,K) ∈
Ḧ. Thus, by 〈Ḧ2〉, we have (R,S) ∈ Ḧ.
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Thus, by induction, we have Ḧ
′ ⊆ Ḧ. �

By Th. 3, the only difference between the collection Ẍ of dyads and the collec-
tion Ḧ of homotopic pairs is the completion 〈Ÿ2〉. This difference may be illus-
trated by the following classical construction. Let P be the punctured Poincaré
homology sphere. The complex P is not contractible since the fundamental group
of P is not trivial, thus (∅, P ) �∈ Ḧ. Let α and β be two distinct vertices and let
S = αP ∪ βP be a suspension of P . Now the fundamental group of S is trivial
and S is contractible. So we have (∅, S) ∈ Ḧ. Since Ḧ ⊆ Ẍ, we get (∅, S) ∈ Ẍ.
But (∅, αP ) ∈ Ẍ (Prop. 2 of [15]). Thus, by 〈Ü〉, it follows that (αP, S) ∈ Ẍ.
By 〈Ÿ2〉, we deduce that (αP ∩ βP, βP ) ∈ Ẍ. We obtain (P, βP ) ∈ Ẍ. Since
(∅, βP ) ∈ Ẍ, by 〈L̈〉, we conclude that (∅, P ) ∈ Ẍ, i.e., that P is a dendrite
(Th.ň2).

Remark 5. Let us consider the following completion on S̈: For any S, T ∈ S,

-> If S E�−→ T , then (S, T ) ∈ K̈. 〈Ë〉
Using Th. 3, we can check that we have Ḧ = 〈̈I; Ë, T̈, Ü, L̈〉.

7 Completions and Simple Homotopy

In the preceding section we have established a link between dyads and homotopic
pairs. Here, we will clarify the relation between homotopic pairs and the more
classical notion of simple homotopy (Th. 4). For that purpose, we introduce the
following relation.

We denote by H∼ the binary relation on S such that, for all X , Y ∈ S, we have
X

H∼ Y if and only if:
i) The complexes X and Y are disjoint; and
ii) There exists K ∈ S such that (X,K) ∈ Ḧ and (Y,K) ∈ Ḧ.

For example, if X ∈ S and if λX ∈ Cop(X) is disjoint from X , then, by Prop.
3, we have X

∗E�−→ X ⊗ λX and λX
∗E�−→ X ⊗ λX . Thus, we have X

H∼ λX .

Proposition 8. Let X,Y ∈ S be disjoint complexes. We have X
H∼ Y if and

only if there exists Z ∈ S such that X ∗E�−→ Z and Y
∗E�−→ Z.

Proof. The “if” part is straightforward. Suppose there exists K ∈ S such that
(X,K) ∈ Ḧ and (Y,K) ∈ Ḧ. By Prop. 6, there exists Z ′ such that X ∗E�−→ Z ′ and
K

∗E�−→ Z ′. By 〈Ḧ1〉, we have (Y, Z ′) ∈ Ḧ. Then, again by Prop. 6, there exists
Z such that Y

∗E�−→ Z and Z ′ ∗E�−→ Z. Thus, we have X
∗E�−→ Z and Y

∗E�−→ Z. �

Lemma 3. Let X,Y ∈ S. If X and Y are simply homotopic, then there exists
λY ∈ Cop(Y ) disjoint from X, and there exists K ∈ S such that X ∗E�−→ K and
λY

∗E�−→ K.

Proof. Let X , Y ∈ S.
i) If X = Y , then there exists λY ∈ Cop(Y ) disjoint from X . Let K = X ⊗ λY .
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By Prop. 3, the complex K satisfies the above condition.
ii) Suppose λY and K satisfy the above condition.

- Let X ′ such that X
E�−→ X ′. Let μK ∈ Cop(K) disjoint from K and X ′.

We have μλY � μK and μλY is a copy of Y disjoint from X ′. We set K ′ =
X ′∪(X⊗μX)∪μK. We haveX ′ ∗E�−→ X ′∪(X⊗μX)

∗E�−→ X ′∪(X⊗μX)∪μK = K ′,
and μλY

∗E�−→ μK
∗E�−→ (X ⊗ μX) ∪ μK

∗E�−→ X ′ ∪ (X ⊗ μX) ∪ μK = K ′.
- Let X ′ such that X ′ E�−→ X . Let μK ∈ Cop(K) disjoint from K. We have

μλY � μK and μλY is a copy of Y disjoint from X ′. We set K ′ = (X ′⊗μX ′)∪
μK. We have X ′ ∗E�−→ (X ′ ⊗ μX ′) ∗E�−→ (X ′ ⊗ μX ′) ∪ μK = K ′, and
μλY

∗E�−→ μK
∗E�−→ (X ′ ⊗ μX ′) ∪ μK = K ′.

The proof is complete by induction on the number of elementary collapses and
expansions that allow us to transform X into Y . �
Theorem 4. Let X,Y ∈ S such that X and Y are disjoint. The complexes X

and Y are simply homotopic if and only if X H∼ Y .

Proof. Let X,Y ∈ S be disjoint complexes.
i) If X H∼ Y , then, by Prop. 8, X and Y are simply homotopic.
ii) Suppose X and Y are simply homotopic. Then, there exists λY ∈ Cop(Y )

disjoint from X , and there exists K ∈ S such that X
∗E�−→ K and λY

∗E�−→ K
(Lemma 3). Furthermore, there exists μK ∈ Cop(K;X) disjoint from Y (see
Remark 4). Thus, X ∗E�−→ μK and μλY

∗E�−→ μK. Let K ′ = μK ∪ (Y ⊗ μλY ). We
have X

∗E�−→ μK
∗E�−→ K ′ and Y

∗E�−→ Y ⊗μλY
∗E�−→ K ′. It follows that (X,K ′) ∈ Ḧ

and (Y,K ′) ∈ Ḧ. Therefore X
H∼ Y . �

Since simple homotopy corresponds to a transitive relation, the following is a
corollary of Th. 4.

Corollary 1. Let X,Y, Z ∈ S be three mutually disjoint complexes.
If X H∼ Y and Y

H∼ Z, then X
H∼ Z.

If X ∈ S and if λX ∈ Cop(X), then X and λX are simply homotopic. Thus,
we also have the following immediate consequence of Th. 4 and Prop. 8.

Corollary 2. Let X,Y ∈ S and let λY ∈ Cop(Y ) disjoint from X. The com-
plexes X and Y are simply homotopic if and only if there exists K ∈ S such that
X

∗E�−→ K and λY
∗E�−→ K.

Remark 6. In [1], the following result was given (see Th. 4 of [1]):
Let X,Y ∈ S. If X and Y are simply homotopic, then there exists K ∈ S and
there exists a stellar sub-division ˜Y of Y , such that X ∗E�−→ K and ˜Y

∗E�−→ K.
Cor. 2 shows that we can have the same relationship between two homotopic
complexes without involving sub-divisions, which change the structure of a com-
plex. Only the notion of a copy is necessary. Observe that this result has been
made possible thanks to the notion of a product, this construction allows us to
have “more room” to perform homotopic transforms.
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8 Conclusion

We proposed an extension of simple homotopy by considering homotopic pairs.
The notion of a homotopic pair was formalized by means of completions. One of
the main results of the paper (Th. 3) shows that a subset of the five completions
that describe dyads allows for a complete characterization of homotopic pairs.
Since dyads are linked to homology, we have a unified framework where a link
between some notions relative to homotopy and some notions relative to homol-
ogy may be expressed. It should be noted that such a link is not obvious in the
classical framework [19].

In the future, we will further investigate the possibility to use completions for
deriving results related to combinatorial topology.
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