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Abstract. Critical kernels constitute a general framework settled in the
context of abstract complexes for the study of parallel thinning in any
dimension. We take advantage of the properties of this framework, to
propose a generic thinning scheme for obtaining “thin” skeletons from
objects made of voxels. From this scheme, we derive algorithms that
produce curvilinear or surface skeletons, based on the notion of 1D or
2D isthmus.

1 Introduction

When dealing with skeletons, one has to face two main problems: topology preser-
vation, and preservation of meaningful geometrical features. Here, we are inter-
ested in the skeletonization of objects that are made of voxels (unit cubes) in a
regular 3D grid, i.e., in a binary 3D image. In this context, topology preservation
is usually obtained through the iteration of thinning steps, provided that each
step does not alter the topological characteristics. In sequential thinning algo-
rithms, each step consists of detecting and choosing a so-called simple voxel, that
may be characterized locally (see [1,2]), and removing it. Such a process usually
involves many arbitrary choices, and the final result may depend, sometimes
heavily, on any of these choices. This is why parallel thinning algorithms are
generally preferred to sequential ones. However, removing a set of simple voxels
at each thinning step, in parallel, may alter topology. The framework of critical
kernels, introduced by one of the authors in [3], provides a condition under which
we have the guarantee that a subset of voxels can be removed without changing
topology. This condition is, to our knowledge, the most general one among the
related works. Furthermore, critical kernels indeed provide a method to design
new parallel thinning algorithms, in which the property of topology preservation
is built-in, and in which any kind of constraint may be imposed (see [4,5]).
Among the different parallel thinning algorithms that have been proposed
in the literature, we can distinguish symmetric from asymmetric algorithms.
Symmetric algorithms (see e.g. [6,7,8]) (also known as fully parallel algorithms)
produce skeletons that are invariant under 90 degrees rotations. They consist of
the iteration of thinning steps that are made of 1) the identification and selection
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of a set of voxels that satisfy certain conditions, independently of orientation or
position in space, and 2) the removal, in parallel, of all selected voxels from
the object. Symmetric algorithms, on the positive side, produce a result that
is uniquely defined: no arbitrary choice is needed. On the negative side, they
generally produce thick skeletons, see Fig. 1.

Fig. 1. Different types of skeletons. (a): Curvilinear skeleton, symmetric. (b): Curvi-
linear skeleton, asymmetric. (c): Surface skeleton, symmetric. (d): Surface skeleton,
asymmetric.

Asymmetric skeletons, on the opposite, are preferred when thinner skeletons
are required. The price to pay is a certain amount of arbitrary choices to be made.
In all existing asymmetric parallel thinning algorithms, each thinning step is
divided into a certain number of substeps. In the so-called directional algorithms
(see e.g. [9,10,11]), each substep is devoted to the detection and the deletion of
voxels belonging to one “side” of the object: all the voxels considered during the
substep have, for example, their south neighbor inside the object and their north
neighbor outside the object. The order in which these directional substeps are
executed is set beforehand, arbitrarily. Subgrid (or subfield) algorithms (see e.g.
[12,13]) form the second category of asymmetric parallel thinning algorithms.
There, each substep is devoted to the detection and the deletion of voxels that
belong to a certain subgrid, for example, all voxels that have even coordinates.
Considered subgrids must form a partition of the grid. Again, the order in which
subgrids are considered is arbitrary.

Subgrid algorithms are not often used in practice because they produce arti-
facts, that is, waving skeleton branches where the original object is smooth or
straight. Directional algorithms are the most popular ones. Most of them are
implemented through sets of masks, one per substep. A set of masks is used to
characterize voxels that must be kept during a given substep, in order to 1) pre-
serve topology, and 2) prevent curves or surfaces to disappear. Thus, topological
conditions and geometrical conditions cannot be easily distinguished, and the
slightest modification of any mask involves the need to make a new proof of the
topological correctness.

Our approach is radically different. Instead of considering single voxels, we
consider cliques. A clique is a set of mutually adjacent voxels. Then, we identify
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the critical kernel of the object, according to some definitions, which is a union
of cliques. The main theorem of the critical kernels framework [3,5] states that
we can remove in parallel any subset of the object, provided that we keep at least
one voxel of every clique that constitutes the critical kernel, and this guarantees
topology preservation. Here, as we try to obtain thin skeletons, our goal is to
keep, whenever possible, exactly one voxel in every such clique. This leads us to
propose a generic parallel asymmetric thinning scheme, that may be enriched by
adding any sort of geometrical constraint. For example, we define the notions of
1D and 2D isthmuses. A 1D (resp. 2D) isthmus is a voxel that is “locally like
a piece of curve” (resp. surface). From our generic scheme, we easily derive, by
adding the constraint to preserve isthmuses, specific algorithms that produce
curvilinear or surface skeletons.

2 Voxel Complexes

In this section, we give some basic definitions for voxel complexes, see also [14,1].

Let Z be the set of integers. We consider the families of sets F}, F}, such that
F§ = {{a} | a € Z}, F{ = {{a,a+ 1} | a € Z}. A subset f of Z", n > 2, that
is the Cartesian product of exactly d elements of F{ and (n — d) elements of F}
is called a face or an d-face of Z™, d is the dimension of f. In the illustrations
of this paper except Fig. 6, a 3-face (resp. 2-face, 1-face, O-face) is depicted by a
cube (resp. square, segment, dot), see e.g. Fig. 4.

A 3-face of Z3 is also called a vozel. A finite set that is composed solely of
voxels is called a (vozel) complex (see Fig. 2). We denote by V3 the collection of
all voxel complexes.

We say that two voxels z,y are adjacent if x Ny # (). We write N (z) for the
set of all voxels that are adjacent to a voxel z, N'(x) is the neighborhood of .
Note that, for each voxel x, we have z € N (z). We set N*(z) = N (x) \ {z}.

Let d € {0,1,2}. We say that two voxels x,y are d-neighbors if x Ny is a
d-face. Thus, two distinct voxels x and y are adjacent if and only if they are
d-neighbors for some d € {0, 1, 2}.

Let X € V3. We say that X is connected if, for any =,y € X, there exists a
sequence (xg, ..., x) of voxels in X such that xo = z, z = y, and z; is adjacent
tox;i_1,t=1,..., k.

3 Simple Voxels

Intuitively a voxel x of a complex X is called a simple voxel if its removal from
X “does not change the topology of X”. This notion may be formalized with the
help of the following recursive definition introduced in [5], see also [15,16] for
other recursive approaches for simplicity.

Definition 1. Let X € V3.

We say that X is reducible if either:

i) X is composed of a single voxel; or

ii) there exists € X such that N*(z) N X is reducible and X \ {z} is reducible.
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Fig. 2. (a) A complex X which is made of 8 voxels, (b) A complex Y C X, which is
a thinning of X

Definition 2. Let X € V3. A voxel x € X is simple for X if N*(z) N X
is reducible. If € X is simple for X, we say that X \ {z} is an elementary
thinning of X.

Thus, a complex X € V3 is reducible if and only if it is possible to reduce X
to a single voxel by iteratively removing simple voxels. Observe that a reducible
complex is necessarily non-empty and connected.

In Fig. 2 (a), the voxel a is simple for X (M*(a) N X is made of a single
voxel), the voxel d is not simple for X (N*(d) N X is not connected), the voxel
h is simple for X (AM*(h) N X is made of two voxels that are 2-neighbors and is
reducible).

In [5], it was shown that the above definition of a simple voxel is equivalent to
classical characterizations based on connectivity properties of the voxel’s neigh-
borhood [17,18,19,20,2]. An equivalence was also established with a definition
based on the operation of collapse [21], this operation is a discrete analogue of
a continuous deformation (a homotopy), see also [15,3,2].

The notion of a simple voxel allows one to define thinnings of a complex, see
an illustration Fig. 2 (b).

Let X,Y € V3. We say that Y is a thinning of X or that X is reducible to
Y, if there exists a sequence (X, ..., X)) such that Xo = X, X3, =Y, and X; is
an elementary thinning of X; 1,7 =1,..., k.

Thus, a complex X is reducible if and only if it is reducible to a single voxel.

4 Critical Kernels

Let X be a complex in V3. It is well known that, if we remove simultaneously
(in parallel) simple voxels from X, we may “change the topology” of the original
object X. For example, the two voxels f and g are simple for the object X de-
picted Fig. 2 (a). Nevertheless X \ {f, g} has two connected components whereas
X is connected.

In this section, we recall a framework for thinning in parallel discrete objects
with the warranty that we do not alter the topology of these objects [3,4,5]. This
method is valid for complexes of arbitrary dimension.

Let d € {0,1,2,3} and let C € V3. We say that C is a d-clique or a clique if
N{z € C} is a d-face. If C' is a d-clique, d is the rank of C.
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If C is made of solely two distinct voxels x and y, we note that C'is a d-clique
if and only if 2 and y are d-neighbors, with d € {0, 1, 2}.

Let X € V3 and let C C X be a clique. We say that C is essential for X if
we have C' = D whenever D is a clique such that:

i) CCDCX;and
ii) n{z € C} =n{z € D}.

Observe that any complex C that is made of a single voxel is a clique (a
3-clique). Furthermore any voxel of a complex X constitutes a clique that is
essential for X.

In Fig. 2 (a), {f, g} is a 2-clique that is essential for X, {b,d} is a 0-clique
that is not essential for X, {b,¢,d} is a O-clique essential for X, {e, f,g} is a
1-clique essential for X.

Definition 3. Let S € V3. The K-neighborhood of S, written K(S), is the set
made of all voxels that are adjacent to each voxel in S. We set K£*(S) = K(5)\S.

We note that we have K(S) = N(z) whenever S is made of a single voxel .
We also observe that we have S C K(S) whenever S is a clique.

Definition 4. Let X € V2 and let C be a clique that is essential for X. We say
that the clique C' is regular for X if K*(C) N X is reducible. We say that C' is
critical for X if C' is not regular for X.

Thus, if C' is a clique that is made of a single voxel x, then C' is regular for
X if and only if z is simple for X.

In Fig. 2 (a), the cliques C; = {b,¢,d}, Co = {f, g}, and C3 = {f, h} are
essential for X. We have K*(C1)NX = 0, K*(C2)NX = {e, h}, and £*(C5)NX =
{g}. Thus, C; and C5 are critical for X, while Cj is regular for X.

The following result is a consequence of a general theorem that holds for
complexes of arbitrary dimensions [3,5], see an illustration Fig. 2 (a) and (b)
where the complexes X and Y satisfy the condition of Th. 5.

Theorem 5. Let X € V32 and let Y C X.
The complex Y is a thinning of X if any clique that is critical for X contains at
least one vozel of Y.

5 A Generic 3D Parallel and Asymmetric Thinning
Scheme

Our goal is to define a subset Y of a voxel complex X that is guaranteed to
include at least one voxel of each clique that is critical for X. By Th. 5, this
subset Y will be a thinning of X.

Let us consider the complex X depicted Fig. 3 (a). There are precisely three
cliques that are critical for X:
- the 0-clique Cy = {b, ¢} (we have K*(C1) N X = 0);
- the 2-clique Cy = {a, b} (we have K*(C2) N X = 0);
- the 3-clique C5 = {b} (the voxel b is not simple).
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Suppose that, in order to build a complex Y that fulfills the condition of Th.
5, we select arbitrarily one voxel of each clique that is critical for X. Following
such a strategy, we could select ¢ for C1, a for Cs, and b for C5. Thus, we would
have Y = X, no voxel would be removed from X. Now, we observe that the
complex Y’ = {b} satisfies the condition of Th. 5. This complex is obtained by
considering first the 3-cliques before selecting a voxel in the 2-, 1-, or 0 cliques.

The complex X of Fig. 3 (b) provides another example of such a situation.
There are precisely three cliques that are critical for X:

- the 1-clique C; = {e, f, g, h} (we have K*(C1) N X = 0);
- the 1-clique Cy = {e,d, g} (we have K*(Cy) N X = 0);
- the 2-clique C3 = {e, g} (K*(C5) N X is not connected).

If we select arbitrarily one voxel of each critical clique, we could obtain the
complex Y = {f,d, g}. On the other hand, if we consider the 2-cliques before
the 1-cliques, we obtain either Y’ = {e} or Y = {g}. In both cases the result is
better in the sense that we remove more voxels from X.

This discussion motivates the introduction of the following 3D asymmetric and
parallel thinning scheme AsymThinningScheme(see also [4,5]). The main features
of this scheme are the following;:

- Taking into account the observations made through the two previous examples,
critical cliques are considered according to their decreasing ranks (step 4). Thus,
each iteration is made of four sub-iterations (steps 4-8). Voxels that have been
previously selected are stored in a set Y (step 8). At a given sub-iteration, we
consider voxels only in critical cliques included in X \ Y (step 6).
- Select is a function from V3 to V3, the set of all voxels. More precisely, Select
associates, to each set S of voxels, a unique voxel z of S. We refer to such a
function as a selection function. This function allows us to select a voxel in a
given critical clique (step 7). A possible choice is to take for Select(S), the first
pixel of S in the lexicographic order of the voxels coordinates.
- In order to compute curvilinear or surface skeletons, we have to keep other
voxels than the ones that are necessary for the preservation of the topology of
the object X. In the scheme, the set K corresponds to a set of features that
we want to be preserved by a thinning algorithm (thus, we have K C X).
This set K, called constraint set, is updated dynamically at step 10. Skelx is
a function from X on {True, False} that allows us to keep some skeletal vozels
of X, e.g., some voxels belonging to parts of X that are surfaces or curves. For
example, if we want to obtain curvilinear skeletons, a popular solution is to set
Skelx(xz) = True whenever z is a so-called end vozel of X: an end voxel is a
voxel that has exactly one neighbor inside X ; see Fig. 7(a) a skeleton obtained in
this way. However, this solution is limited and does not permit to obtain surface
skeletons. Better propositions for such a function will be introduced in section 6.
By construction, at each iteration, the complex Y at step 9 satisfies the condi-
tion of Th. 5. Thus, the result of the scheme is a thinning of the original complex
X. Observe also that, except step 4, each step of the scheme may be computed
in parallel.
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Fig. 3. Two complexes

Algorithm 1: AsymThinningScheme(X, Skelx)

Data: X € V3, Skelx is a function from X on {True, False}
Result: X

1 K := 0

2 repeat

3 Y = K;

4 for d <~ 3 to 0 do

5 Z =

6 foreach d-cligue C C X \'Y that is critical for X do

7 Z = Z U{Select(C)};

8 Y =YUZ

9 X =Y,

10 foreach vozel © € X \ K such that Skelx(z) = True do K := K U{z};

11 until stability ;

Fig. 4 provides an illustration of the scheme AsymThinningScheme. Let us
consider the complex X depicted in (a). We suppose in this example that we
do not keep any skeletal voxel, i.e., for any x € X, we set Skelx(x) = False.
The traces of the cliques that are critical for X are represented in (b), the trace
of a clique C' is the face f = N{ax € C}. Thus, the set of the cliques that are
critical for X is precisely composed of six 0-cliques, two 1-cliques, three 2-cliques,
and one 3-clique. In (c) the different sub-iterations of the scheme are illustrated
(steps 4-8):

- when d = 3, only one clique is considered, the dark grey voxel is selected
whatever the selection function;

- when d = 2, all the three 2-cliques are considered since none of these cliques
contains the above voxel. Voxels that could be selected by a selection function
are depicted in medium grey;

- when d = 1, only one clique is considered, a voxel that could be selected is
depicted in light grey;

- when d = 0, no clique is considered since each of the 0-cliques contains at least
one voxel that has been previously selected.

After these sub-iterations, we obtain the complex depicted in (d). The figures (e)
and (f) illustrate the second iteration, at the end of this iteration the complex
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Fig.4. (a): A complex X made of precisely 12 voxels. (b): The traces of the cliques
that are critical for X. (c): Voxels that have been selected by the algorithm. (d): The
result Y of the first iteration. (e): The traces of the 4 cliques that are critical for Y.
(f): The result of the second iteration. (g) and (h): Two other possible selections at the
first iteration.

Fig. 5. Ultimate asymmetric skeletons obtained by using AsymThinningScheme



Isthmus-Based Parallel and Asymmetric 3D Thinning Algorithms 59

(a) (b) (c)

Fig. 6. In this figure, a voxel is represented by its central point. (a): A voxel z and the
set M (z) N X (black points). (b): A set S which is a 1-surface, N (z) N X is reducible
to S, thus z is a 2-isthmus. for X. (c): A voxel z and the set A/(z) N X (black points).
The voxel z is a 1-isthmus for X.

is reduced to a single voxel. In (g) and (h) two other possible selections at the
first iteration are given.

Of course, the result of the scheme may depend on the choice of the selection
function. This is the price to be paid if we try to obtain thin skeletons. For
example, some arbitrary choices have to be made for reducing a two voxels wide
ribbon to a simple curve.

In the sequel of the paper, we take for Select(S), the first pixel of S in the
lexicographic order of the voxels coordinates.

Fig. 5 shows another illustration, on bigger objects, of AsymThinningScheme.
Here also, for any « € X, we have Skelx(z) = False (no skeletal voxel). The
result is called an ultimate asymmetric skeleton.

6 Isthmus-Based Asymmetric Thinning

In this section, we show how to use our generic scheme AsymThinningScheme in
order to get a procedure that computes either curvilinear or surface skeletons.
This thinning procedure preserves a constraint set K that is made of “isthmuses”.

Intuitively, a voxel  of an object X is said to be a 1-isthmus (resp. a 2-
isthmus) if the neighborhood of x corresponds - up to a thinning - to the one of
a point belonging to a curve (resp. a surface) [5].

We say that X € V3 is a 0-surface if X is precisely made of two voxels = and
y such that z Ny = 0.

We say that X € V3 is a 1-surface (or a simple closed curve) if:
i) X is connected; and ii) For each z € X, N*(z) N X is a O-surface.

Definition 6. Let X € V3, let z € X.

We say that x is a 1-isthmus for X if N*(z) N X is reducible to a O-surface.
We say that x is a 2-isthmus for X if N*(z) N X is reducible to a 1-surface.
We say that z is a 2% -isthmus for X if x is a 1-isthmus or a 2-isthmus for X.
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Fig. 7. Asymmetric skeletons obtained by using AsymThinningScheme. (a): the function
Skelx is based on end voxels. (b,c,d): the function Skelx is based on k-isthmuses, with
k=1,2 and 27 respectively. (e,f): detail of (c,d) respectively.
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Our aim is to thin an object, while preserving a constraint set K that is
made of voxels that are detected as k-isthmuses during the thinning process.
We obtain curvilinear skeletons with k£ = 1, surface skeletons with &k = 2, and
surface/curvilinear skeletons with k& = 2%. These three kinds of skeletons may
be obtained by using AsymThinningScheme, with the function Skelx defined as
follows:

True if z is a k-isthmus,
False otherwise,

Skelx (z) = {

with k € {1,2,2+}.

Observe there is the possibility that a voxel belongs to a k-isthmus at a given
step of the algorithm, but not at further steps. This is why previously detected
isthmuses are stored (see line 10 of AsymThinningScheme).

In Fig. 7(b-f), we show a curvilinear skeleton, a surface skeleton and a sur-
face/curvilinear skeleton obtained by our method from the same object.

7 Conclusion

We introduced an original generic scheme for asymmetric parallel topology-
preserving thinning of 3D objects made of voxels, in the framework of critical ker-
nels. We saw that from this scheme, one can easily derive several thinning operators
having specific behaviours, simply by changing the definition of skeletal points. In
particular, we showed that ultimate, curvilinear, surface, and surface/curvilinear
skeletons can be obtained, based on the notion of 1D /2D isthmuses.

A key point, in the implementation of the algorithms proposed in this paper,
is the detection of critical cliques and isthmus voxels. In [5], we showed that it is
possible to detect critical cliques thanks to a set of masks, in linear time. We also
showed that the configurations of 1D and 2D isthmuses may be pre-computed by
a linear-time algorithm and stored in lookup tables. Finally, based on a breadth-
first strategy, the whole method can be implemented to run in O(n) time, where
n is the number of voxels of the input 3D image.

In an extended paper, in preparation, we will show how to deal with the
robustness to noise issue thanks to the notion of isthmus persistence. We will
also compare our method with all existing asymmetric parallel skeletonization
algorithms acting in the 3D cubic grid.
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