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2 Università di Firenze, Dipartimento di Sistemi e Informatica,
viale Morgagni 65, 50134 Firenze

Abstract. The notion of a pattern within a binary picture (polyomino)
has been introduced and studied in [3], and resembles the notion of pat-
tern containment within permutations. The main goal of this paper is
to extend the studies of [3] by adopting a more geometrical approach:
we use the notion of pattern avoidance in order to recognize or describe
families of polyominoes defined by means of geometrical constraints or
combinatorial properties. Moreover, we extend the notion of pattern in
a polyomino, by introducing generalized polyomino patterns, so that to
be able to describe more families of polyominoes known in the literature.

1 Patterns in Binary Pictures and Polyomino Classes

In recent years a considerable interest in the study of the notion of pattern
within a combinatorial structure has grown. This kind of research started with
patterns in permutations [12], while in the last few years it is being carried
on in several directions. One of them is to define and study analogues of the
concept of pattern in permutations in other combinatorial objects such as set
partitions [11,14], words, trees [13]. The works [3,4] fit into this research line,
in particular [4] introduces and studies the notion of pattern in finite binary
pictures (specifically, in polyominoes).

A finite binary picture is an m × n matrix of 0’s and 1’s. Intuitively speaking,
1’s correspond to black pixels (which constitute the image) and the 0’s corre-
spond to white pixels (which form the background). Often, the studied images
should fulfill several additional properties like symmetry, connectivity, or con-
vexity. In particular, an image is connected if the set of black pixels is connected
with respect to the edge-adjacency relation. A connected image is usually called
a polyomino (see Figure 1).

The work [3], from which we borrow most of the basic definitions and no-
tations, uses an algebraic setting to provide a unified framework to describe
and handle some families of binary pictures (in particular polyominoes), by the
avoidance of patterns. Therefore, in order to fruitfully present our paper, we
need to recall some definitions and the main results from [3].

Let M be the class of binary pictures (or matrices). We denote by � the usual
subpicture (or submatrix) order on M, i.e. M ′ � M if M ′ may be obtained from
M by deleting any collection of rows and/or columns.
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Fig. 1. A polyomino and its representation as a binary picture (or matrix)

Notice that, in a binary picture representing a polyomino the first (resp. the
last) row (resp. column) should contain at least a 1. We can consider the re-
striction of the submatrix order � on the set of polyominoes P. This defines the
poset (P,�P ) and the pattern order between polyominoes: a polyomino P is a
pattern of a polyomino Q (which we denote P �P Q) when the binary picture
representing P is a submatrix of that representing Q. We point out that the
order �P has already been studied in [8] under the name of subpicture order,
where the authors – among other things – proved that (P,�P ) contains infinite
antichains, and it is a graded poset (the rank function being the semi-perimeter
of the bounding box of the polyominoes).

This allows to introduce a natural analogue of permutation classes for poly-
ominoes: a polyomino class is a set of polyominoes C that is downward closed
for �P : for all polyominoes P and Q, if P ∈ C and Q �P P , then Q ∈ C.
Basing on the results obtained in [1], in [3] the authors proved that some of
the most famous families of polyominoes, including: the bargraphs, the convex,
the column-convex, the L-convex, the directed-convex polyominoes, are indeed
polyomino classes. On the other side, there are also well-known families of poly-
ominoes which are not polyomino classes, like: the family of polyominoes having
a square shape, the family of polyominoes having exactly k > 1 columns, or the
directed polyominoes (see Section 4).

Similarly to the case of permutations, for any set B of polyominoes, let us
denote by AvP (B) the set of all polyominoes that do not contain any element
of B as a pattern. Every such set AvP (B) of polyominoes defined by pattern
avoidance is a polyomino class. Conversely, like for permutation classes, every
polyomino class may be characterized in this way [3].

Proposition 1. For every polyomino class C, there is a unique antichain B of
polyominoes such that C = AvP (B). The set B consists of all minimal polyomi-
noes (in the sense of �P ) that do not belong to C.

We call B the polyomino-basis (or p-basis for short), to distinguish from other
kinds of bases. We observe that, denoting AvM (M) the set of binary matrices
that do not have any submatrix in M, we have AvP (M) = AvM (M) ∩P .

On the other side, it is quite natural to describe classes of polyominoes by
the avoidance of submatrices, then we introduce the notion of matrix-basis (or
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m-basis) of a polyomino class C, which is every antichain M of matrices such
that C = AvP (M). Differently from the p-basis, the m-basis needs not be unique.

Example 1 (Injections). Let I be the class of injections, i.e. polyominoes having
at most a zero entry for each row and column such as, for instance
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1

The set I is clearly a polyomino class, and its p-basis is given by the minimal
polyominoes which are not injections, i.e. the twelve polyominoes on the top of
Fig. 2. An m-basis of I is clearly given by set

M =

{[
0 0

]
,

[
0
0

]}
.

Moreover, consider the sets:

M1 =

⎧⎨
⎩
[
0 1 0

]
,
[
1 0 0

]
,
[
0 0 1

]
,

⎡
⎣0
1
0

⎤
⎦ ,

⎡
⎣0
0
1

⎤
⎦ ,

⎡
⎣1
0
0

⎤
⎦
⎫⎬
⎭ , M2 = M1∪

⎧⎨
⎩
⎡
⎣0
0
0

⎤
⎦
⎫⎬
⎭ .

We may easily check that M1 and M2 are antichains (see Fig. 2), and that their
avoidance characterizes injections: I = AvP (M1) = AvP (M2). So, also M1 and
M2 are m-bases, although M1 ⊂ M2.

We recall [3] that the p-basis and an m-basis of a polyomino class are related
by the following.

Proposition 2. Let C be a polyomino class, and let M be an m-basis of C. Then
the p-basis of C consists of all polyominoes that contain a submatrix in M, and
that are minimal (w.r.t. �P ) for this property.
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Fig. 2. The p-basis and some m-bases of I
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The reader can check the previous property in Fig. 2 for the case of the class
I of injections.

The main goal of this paper is to extend the studies of [3,4] by adopting
a more geometrical approach: we use the notion of pattern avoidance in order
to recognize or describe families of polyominoes defined by means of geomet-
rical constraints or combinatorial properties. In particular, we will develop the
following research topics:

i) robust polyomino classes, i.e. polyomino classes C where there is an m-basis
containing the p-basis. We will show that in this case, the p-basis is the
minimal antichain M for set inclusion, and for �, such that AvM (M) = C.

ii) given a set of patterns M, study the class of polyominoes avoiding the
patterns of M as submatrices, and give a characterization of this class in
terms of the geometrical/combinatorial properties of its elements.

iii) extend the notion of pattern in a polyomino, by introducing generalized
polyomino patterns, so that to be able to describe more families of polyomi-
noes known in the literature. Such a generalization resembles what has been
done for pattern avoiding permutations with the introduction of vincular,
bivincular patterns [5].

For brevity sake, some of the proofs will be omitted. The interested reader can
find all the proofs of the paper in Chapter 3 of [2], and the proof of Proposition 10
in the Appendix.

2 Robust Polyomino Classes

Every polyomino class is equipped with (at least) two basis, the p-basis and the
m-basis. A natural question is to investigate the relation between the p-basis
and the m-basis, and in particular to understand the conditions that render the
p-basis the most compact way to describe a polyomino class.

Definition 1. A class is robust when all m-bases contain the p-basis.

The p-basis of a robust class has remarkable minimality properties.

Proposition 3. Let C be a robust class, and let P be its p-basis. Then, P is the
unique m-basis M which satisfies:

(1.) M is a minimal subset subject to C = AvP (M), i.e. for every strict subset
M′ of M, C �= (M′);

(2.) for every submatrix M ′ of some matrix M ∈ M, we have M ′ = M or
C �= AvP (M′)), with M′ = M\ {M} ∪ {M ′}.

Proof. Condition (1.) follows directly by Proposition 2. Let us assume that Con-
dition (2.) does not hold, i.e. there exists a proper submatrix M ′ of some matrix
M ∈ P such that C = AvP (P ′), with P ′ = P \ {M} ∪ {M ′}. So we have that
P ′ �P P and P ′ is an m-basis of C. Since C is a robust class we have that



Binary Pictures with Excluded Patterns 29

P �P P ′ and then P = P ′, in particular M = M ′. Suppose that there exists
another m-basis M �= P satisfying (1.) and (2.). By Proposition 2, every pattern
of M is contained in some pattern of P , thus P contains M. Since C is a robust
class, then P ⊆ M, so P = M. �	

We point out that Condition (1.) ensures minimality in the sense of inclusion,
while Condition (2.) ensures minimality for �.

Example 2. Let be C = AvP (P, P
′), where P, P ′ are depicted in Figure 3. The

class C is not robust, in fact there is an m-basis M disjoint from the p-basis:
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Fig. 3. A non robust class

In practice, P and P ′ are precisely the minimal polyominoes which contain
M as a pattern, then by Proposition 2, AvP (P, P

′) = AvP (M).

In this section, we try to establish some criteria to test the robustness of a
class of polyominoes. First, we prove that it is easy to test robustness of a class
whose basis is made of just one element:

Proposition 4. Let M be a pattern. Then, AvP (M) is robust if and only if M
is a polyomino.

Proof. If M is not a polyomino, then its p-basis is clearly different from P , so
AvP (M) is not robust. On the other side, let us assume that M is a polyomino
and that AvP (M) is not robust. Let us assume that an m-basis of Av(M) is
made of a (non polyomino) matrix M ′ such that M ′ �P M . Since M ′ is not
a polyomino then it contains at least two disconnected elements B and C, and
there are at least two possible ways to connect B and C (by rows or by columns).
So, there exists at least another polyomino P �= M such that M ′ �P P , and
P belongs to the p-basis of AvP (M

′). Thus, AvP (M) ⊆ AvP (M
′). The same

technique can be used to prove that an m-basis of Av(M) canont be made of
more than one matrix. �	
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Now, we aim at extending the previous result to a generic set of polyominoes,
i.e. find sufficient and necessary conditions such that, given set of polyominoes
P , the class AvP (P) is robust.

Proposition 5. Let be P1, P2 two polyominoes and let be C = AvP (P1, P2). If
for every element P in P1 ∧ P2 we have that:

(1) P is a polyomino, or

(2) every chain from P to P1 (resp. from P to P2) contains at least a polyomino
P ′ (resp. P ′′), different from P1 (resp. P2), such that P �P P ′ �P P1 (resp.
P �P P ′′ �P P2),

then C is robust.

Proof. Clearly, if P1 ∧ P2 contains only polyominoes, then C is robust. On the
other side, let P ∈ P1 ∧P2, with P a non polyomino pattern; then by (2.) every
chain from P to P1 (resp. from P to P2) contains at least a polyomino P ′ (resp.
P ′′), different from P1 (resp. P2). If C was not robust, P ′ (resp. P ′′) should
belong to the p-basis in place of P1 (resp. P2). �	

Example 3. Let us consider the class C = AvP (P1, P2), where P1 and P2 are
the polyominoes depicted in Figure 4. Here, as shown in the picture, P1 ∧ P2

contains six elements, and four of them are not polyominoes. However, one can
check that, for each item P of these four matrices, there is a polyomino in the
chain from P to P1 (resp. from P to P2). Thus, by Proposition 5, the class C is
robust.
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However, the statement of Proposition 5 cannot be inverted, as we can see in
the following example.

Example 4 (Parallelogram polyominoes). We recall that a parallelogram poly-
omino is a polyomino whose boundary can be decomposed in two paths, the
upper and the lower paths, which are made of north and east unit steps and
meet only at their starting and final points (see Fig. 5 (c)). We can easily
prove that parallelogram polyominoes can be represented by the avoidance of the
submatrices:

M1 =

[
1 0
1 1

]
, M2 =

[
1 1
0 1

]
.

These two patterns form a p-basis for the class P of parallelogram polyominoes.
Clearly

M1 ∧M2 =

{[
1 1

]
,

[
1
1

]
,
[
0
]}

.

If P was not robust, then M =
[
0
]
should belong to the an m-basis of P ; pre-

cisely, we should have AvP (M) = P . But this is not true, since clearly AvP (M) is
the class of rectangles. Thus, P is robust. Observe that the set {M1,M2, [ 1 0 1 ]}
forms an m-basis of the class, but it is not minimal w.r.t. set inclusion.

3 Classes of Polyominoes Defined by Submatrix
Avoidance

As we have mentioned, several families of polyominoes covered in the literature
can be characterized in terms of submatrix avoidance. In particular, if the family
of polyominoes is defined by imposing geometric constraints on its elements, then
these constraints can be naturally represented by the avoidance of some matrix
patterns. For instance, in [4] it was proved that the convexity constraint can be
represented by the avoidance of the two submatrices:

H =
[
1 0 1

]
and V =

⎡
⎣1
0
1

⎤
⎦ .

Similarly, in [3] it was proved that the families of directed-convex, column-
convex, stack polyominoes are polyomino classes. In this section, we consider
some polyomino classes which can be represented by the avoidance of subma-
trices, and deal with the problem of giving a combinatorial/geometrical charac-
terization to these classes. Most of these classes have not been considered yet
in the literature, and they show quite simple characterizations and interesting
combinatorial properties.

Polyominoes avoiding rectangles. Let Om,n be set of rectangles – binary pictures
with all the entries equal to 1 – of dimension m × n (see Figure 6 (a)). With
n = m = 2 these objects (also called snake-like polyominoes) have a simple
geometrical characterization.
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Fig. 5. (a) a convex polyomino; (b) a directed polyomino; (c) a parallelogram poly-
omino; (d) an L-convex polyomino

(a) (b)

Fig. 6. (a) a snake-like polyomino; (b) a snake

Proposition 6. Every snake-like polyomino can be uniquely decomposed into
three parts: a unimodal staircase polyomino oriented with respect to two axis-
parallel directions d1 and d2 and two (possibly empty) L-shaped polyominoes
placed at the extremities of the staircase. These two L-shaped polyominoes have
to be oriented with respect to d1, d2.

We have studied the classes AvP (Om,n), for other values of m,n, obtaining
similar characterizations which here are omitted for brevity.

Snakes. Let us consider the family of snake-shaped polyominoes (briefly, snakes)
– as that shown in Fig. 6 (b):

Proposition 7. The family of snakes is a polyomino class, which can be de-
scribed by the avoidance of the following polyomino patterns:

Hollow stacks. Let us recall that a stack polyomino is a convex polyomino con-
taining two adjacent corners of its minimal bounding rectangle (see Fig. 7 (a)).
Stack polyominoes clearly form a polyomino class, described by the avoidance
of the patterns:

1

0 1101 0 1

111
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A hollow stack (polyomino) is a polyomino obtained from a stack polyomino
P by removing from P a stack polyomino P ′ which is geometrically contained
in P and whose basis lie on the basis of the minimal bounding rectangle of P .
Figure 7 (b), (c) depict two hollow stacks.

(a) (b) (c)

Fig. 7. (a) a stack polyomino; (b), (c): hollow stacks

Proposition 8. The family H of hollow stack polyominoes forms a polyomino
class with p-basis given by:

Rectangles with rectangular holes. Let R be the class of polyominoes obtained
from a rectangle by removing sets of cells which have themselves a rectangular
shape, and such that there is no more than one connected set of 0’s for each row
and column. The family R can easily be proved to be a polyomino class, and
moreover:

Fig. 8. A rectangle with rectangular holes

Proposition 9. The class R can be described by the avoidance of the patterns:

[
0 1 0

]
,

⎡
⎣0
1
0

⎤
⎦ [

1 0
0 0

] [
0 1
0 0

] [
0 0
1 0

] [
0 0
0 1

]
.
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4 Generalized Matrix Patterns

As already pointed out, there are several families of polyominoes that are not
polyomino classes. Amongst them, we have mentioned directed polyominoes and
polyominoes without holes. By Proposition 1, these families of polyominoes can-
not be expressed in terms of submatrix avoidance. In order to overcome this
problem, we extend the notion of pattern in a polyomino, by introducing gener-
alized polyomino patterns, so that to be able to describe more families of poly-
ominoes. Our generalization resembles what has been done for pattern avoiding
permutations with the introduction of vincular, bivincular patterns [5].

L-convex polyominoes. A convex polyomino is k-convex if every pair of its cells
can be connected by a monotone path with at most k changes of direction, and
k is called the convexity degree of the polyomino [8] . For k = 1 we have the
L-convex polyominoes, where any two cells can be connected by a path with at
most one change of direction (see Fig. 5 (d)). Recently, L-convex polyominoes
have been considered from several points of view: in [9,10] the authors solve
the main enumeration problems for L-convex polyominoes, while in [7] they
approach them from a language-theoretical perspective. In [3] it was shown that
L-convex polyominoes form a polyomino class, and they can be represented by
the avoidance of the submatrices:

H =
[
1 0 1

]
, V =

⎡
⎣1
0
1

⎤
⎦ , S1 =

[
1 0
0 1

]
, S2 =

[
0 1
1 0

]
.

2-convex polyominoes. Differently from L-convex polyominoes, 2-convex poly-
ominoes do not form a polyomino class. As a matter of fact, the 2-convex poly-
omino in Figure 9 (a) contains the 3-convex polyomino (b) as a pattern, so the
class is not downward closed w.r.t. �P . Similarly, the set of k-convex polyomi-
noes is not a polyomino class, for k ≥ 2.

In practice, this means that 2-convex polyominoes cannot be described in
terms of pattern avoidance. In order to be able to represent 2-convex polyominoes
we extend the notion of pattern avoidance, introducing the generalized pattern
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Fig. 9. (a) a 2-convex polyomino P ; (b) a pattern of P that is not a 2-convex polyomino;
(c) a generalized pattern, which is not contained in (a), but is contained in the 3-convex
polyomino (non 2-convex) (d)
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avoidance. Our extension consists in imposing the adjacency of two columns or
rows by introducing special symbols, i.e. vertical/horizontal lines: with A being
a pattern, a vertical line between two columns of A, ci and ci+1 (a horizontal
line between two rows ri and ri+1), will read that ci and ci+1 (respectively ri
and ri+1) must be adjacent. When the vertical (resp. horizontal) line is external,
it means that the adjacent column (resp. row) of the pattern must touch the
minimal bounding rectangle of the polyomino. Moreover, we will use the ∗ symbol
to denote 0 or 1 indifferently.

Proposition 10. The class of 2-convex polyominoes can be can be described by
the avoidance of the set M of generalized patterns:
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The proof of Proposition 10 is reported in the Appendix. Let us just ob-
serve, referring to Fig. 9, that the pattern (c) is not contained in the 2-convex
polyomino (a), but it is contained in the 3-convex polyomino (d). It is possible
generalize the previous result and give a characterization of the class of k-convex
polyominoes, with k > 2, using generalized patterns.

Directed polyominoes. A polyomino P is directed when every cell of P can be
reached from a distinguished cell (called the source) by a path – internal to
the polyomino – that uses only north and east steps. Figure 5 (b) depicts a
directed polyomino. The reader can simply check that the class of the directed
polyominoes is not a polyomino class by observing that – in the picture – the
four marked cells represent a polyomino which is not directed.

Proposition 11. The class of directed polyominoes can be represented as the
class of polyominoes avoiding the following patterns

*

1

0

0 1

0

This proof is analogous to that of Proposition 10, and also relies on the set
of patterns determined in [3], whose avoidance describes the class of directed-
convex polyominoes. We would like to point out that there are families of poly-
ominoes which cannot be described, even using generalized pattern avoidance.
For instance, the reader can easily check that one of these families is that of
polyominoes having a square shape.
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Appendix

Proof of Proposition 10. We recall that in a 2-convex polyomino, for each two
cells, there is a path connecting them, which uses only two types of steps among
n, s, e, w (north, south, east and west unit steps, respectively) and has at most
two changes of direction. Moreover, for any two cells c1 and c2 of a polyomino,
the minimal number of changes of direction from c1 to c2 can be computed from
just two paths, starting with a vertical and a horizontal step, respectively, in
which every side has maximal length. We will refer to these as the extremal
paths connecting c1 and c2.
(⇒) If P is a 2-convex polyomino then P avoids M.
Let us assume by contradiction that P is a 2-convex polyomino containing one
of the patterns of M, clearly not H and V , by convexity. For simplicity sake, we
will consider only the two patterns of M,

Z1 =

⎡
⎣0 * 1
* 1 0
1 0 0

⎤
⎦ and Z2 =

⎡
⎢⎢⎣
0 0 * 1
0 * 1 *
* 1 * 0
1 * 0 0

⎤
⎥⎥⎦ ,

since the proof for the other patterns can be obtained by symmetry. If P contains
Z1 (resp. Z2) then it has to contain a submatrix P ′ (resp. P ′′) of the form:

P ′ =

0 ∗ . . . . 1
∗ 1 . . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
1 0 . . . . 0

P ′′ =

0 . . . 0 ∗ . . . 1
. . . . . . . . . .
0 . . . ∗ 1 . . . ∗
∗ . . . 1 ∗ . . . 0
. . . . . . . . . .
1 . . . ∗ 0 . . . 0

,

where the 0, 1, ∗ are the elements of Z1 (resp. Z2) and the dots can be replaced
by 0, 1 indifferently, clearly in agreement with the convexity and polyomino con-
straints.

Among all the polyominoes which can be obtained from P ′ (resp. P ′′), the
one having the minimal convexity degree is that, called P

′
(resp. P

′′
), having

the maximal number of 1 entries. It is easy to verify that the minimal number of

changes of direction requested to connect the 1 entries in boldface of P
′
(resp.

P
′′
) is three, so P ′ (resp. P

′′
) is a 3-convex polyomino, which contradicts our

assumption.

(⇐) If P avoids M then P is a 2-convex polyomino.
Again by contradiction let us assume that P avoids M and it is a 3-convex

polyomino, i.e. there exist two cells of P , c1 and c2, such that any path from c1
to c2 requires at least three changes of direction.

Let us take into consideration the two extremal paths from c1 to c2. The only
possible cases are the following (up to rotation):

- the two extremal paths are distinct, Fig. 10 (a);
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- one of the extremal paths does not exist, see Fig. 10 (b);
- the two extremal paths coincide after the first change of direction, see
Fig. 10 (c);

- the two extremal paths coincide after the second change of direction, see
Fig. 10 (d).

(a) (d)(b) (c)

Fig. 10. The possible cases of extremal paths connecting the cells c1 and c2

Here, we will consider only the first case, since the others are abalogous: as
sketched in the picture below, the polyomino P of Fig. 10 (a) has to contain a
submatrix P ′ – given by the boldface entries – of the form:

1 0

0

0

0

0

1

0 0

1

11

1

1

11

It is easy to see that such a submatrix is one of those that we can obtain re-
placing appropriately the symbol ∗ in the pattern Z2. So, P contains Z2 against
the hypothesis. We point out that the pattern Z1, and its rotations, can be ob-
tained from the pattern Z2 (or its rotation) replacing appropriately the ∗ entries,
but we need to consider them in order to include the 3-convex polyominoes with
three rows or columns. �	
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