
An Arithmetical Characterization of the Convex
Hull of Digital Straight Segments�

Tristan Roussillon

Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69622, France

tristan.roussillon@liris.cnrs.fr

Abstract. In this paper, we arithmetically describe the convex hull of a
digital straight segment by three recurrence relations. This characteriza-
tion gives new insights into the combinatorial structure of digital straight
segments of arbitrary length and intercept. It also leads to two on-line
algorithms that computes a part of the convex hull of a given digital
straight segment. They both run in constant space and constant time
per vertex. Due to symmetries, they are enough to reconstruct the whole
convex hull. Moreover, these two algorithms provide efficient solutions
to the subsegment problem, which consists in computing the minimal
parameters of a segment of a digital straight line of known parameters.

1 Introduction

The connection between continued fractions and the convex hull of lattice points
lying above and below a straight segment whose endpoints are lattice points was
already observed by Klein in the nineteenth century as mentioned in [7].

Based on this connection, many papers introduce output-sensitive algorithms
to compute the convex hull of analytical point sets, such as the intersection of the
fundamental lattice and an arbitrary half-plane [3,6,9,10], convex quadrics [3] or
convex bodies [9]. In these papers, the authors propose a geometrical extension
of the result of Klein, while in this paper, the connection between arithmetic
and discrete ray casting, which is briefly described by Har-Peled in [9], is used to
propose an arithmetical interpretation of the geometrical algorithm of Charrier
and Buzer [6]. This new point of view leads to a simple arithmetical extension of
the result of Klein to straight segments of arbitrary rational slope and arbitrary
rational intercept.

More precisely, we introduce three recurrence relations, defining three se-
quences of integer pairs, viewed as points or vectors in the fundamental lattice
Z
2. The first two sequences, denoted by {Lk}0...n and {Uk}0...n, both contain

vertices of the convex hull of some lattice points lying on each side of a straight
line (see fig. 1.a). There exists a close link between a separating line and a dig-
ital straight line (DSL). We refer the reader that is not familiar with digital
� This work has been mainly funded by DigitalSnow ANR-11-BS02-009 research

grants.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 150–161, 2014.
c© Springer International Publishing Switzerland 2014

Convex Hull of Digital Straight Segments 151

straightness to [11] and we use below the arithmetical framework introduced
in [8,15]. For each 0 ≤ k ≤ n, Lk − (0, 1) (resp. Lk − (−1, 1)) is a vertex of
the lower convex hull of the associated naive (resp. standard) DSL. Fig. 1.b is
an illustration of the naive case. For the sake of clarity, we focus on the naive
case in the rest of the paper. The last sequence, denoted by {vk}0...n, has also a
simple geometrical interpretation. Indeed, we prove in section 2.3 that for each
0 ≤ k ≤ n, (Lk − Uk) and vk are a pair of unimodular vectors. In other words,
vk is the direction vector of a digital straight segment (DSS) whose first lower
and upper leaning points are respectively Lk − (0, 1) and Uk.

(a) separating line (b) digital line

Fig. 1. Upper and lower convex hulls of lattice points of positive x-coordinate lying on
each side of the straight line {(α, β) ∈ R

2|5α−8β = −4} (Point (0, 0) is on the bottom
left) (a). They are closely related to the upper and lower convex hulls of a naive and
8-connected digital straight segment of slope 5/8, intercept −4 and first point (0, 0) (b).

Our arithmetical characterization goes beyond the scope of convex hull com-
putation, because the convex hull of a DSS provides a substantial part of its
combinatorial structure. Let us define a upper (resp. lower) digital edge as a
DSS whose first and last point are upper (resp. lower) leaning points. The com-
binatorial structure of a digital edge has been studied since the seventies [4] and
is well-known since the early nineties [5,15,18]. However, these works focus on
digital edges or DSLs, which are infinite repetitions of digital edges, because the
intercept of a DSL has no effect on its shape and can be assumed to be null
without any loss of generality.

To the best of our knowledge, there are few works that extend such results to
DSSs of arbitrary intercept and length. In [16], Yaacoub and Reveillès provide
an algorithm to retrieve the convex hull of a naive DSS of slope a/b, intercept
μ ∈ [0; b[and length |b|. But the presented algorithm fails to reach the claimed
logarithmic complexity, because it takes as input the set of additive convergents
of the continued fraction expansion of a/b.

152 T. Roussillon

Moreover, it is known for a long time that computing the convex hull of a
DSS is a way of computing its parameters [2]. Several authors have recently
investigated the problem of computing the minimal parameters of a subsegment
of a DSL of known parameters [6,12,14,17]. Minimality is required to have a
unique and compact representation of the segment slope and intercept. Due to
the prior knowledge of one of its bounding digital straight line, all proposed
algorithms outperform classical recognition algorithms [8,13], where each point
must be considered at least once. Our simple arithmetical characterization leads
to two algorithms, called smartCH and reversedSmartCH, which not only
retrieve the vertices of a part of the DSS convex hull, but also compute its
minimal parameters. They both runs in constant space and constant time per
vertex. Their overall time complexity are among the best ones (see tab. 1 for a
comparison).

Table 1. Theoretical comparison of smartCH and reversedSmartCH with convex
hull algorithms (upper block) and subsegment algorithms (lower block). We consider a
naive DSS Σ starting from (0, 0) and of slope a/b = [u1, . . . , un] such that 0 ≤ a < b.
For the sake of clarity, we consider its left subsegment Σ′ of slope a′/b′ = [u′

1, . . . , u
′
n]

and of length l ≤ b such that Σ′ = {(x, y) ∈ Σ|0 ≤ x ≤ l}. Time complexities depend
on a, b, and l. If l � b, bounds depending on l are better. However, if l is close to b,
bounds depending on the difference b− l are better.

Algorithms Time complexity Remarks
smartCH O(log l) on-line: O(1) per vertex
reversedSmartCH O(log(b− l)) on-line: O(1) per vertex,

leaning points must be known
Reveillès et. al. [16] O(

∑n
i ui) l = b, {ui} must be known

Har-Peled [9] O(log2 l) on-line: O(log l) per vertex
Harvey [10] O(log b)

Balza-Gomez et. al. [3] O(log l) post-processing required
Charrier et. al. [6] O(log l) on-line: O(1) per vertex
smartDSS, Lachaud et. al. [12] O(

∑n
i u′

i)

reversedSmartDSS, ibid. O(log(b− l)) {ui} must be known
Sivignon [17] O(log l)

Ouattara et. al. [14] O(log l)

In section 2, we introduce our arithmetical characterization and discuss its
theoretical properties. New algorithms are derived in section 3.

2 A Simple Arithmetical Characterization

Let L(a, b, μ) (or simply L) be a straight line of equation {(α, β) ∈ R
2|aβ− bα =

μ} with a, b, μ ∈ Z, gcd(a, b) = 1. Due to symmetries, let us assume w.l.o.g. that
0 ≤ a < b. In addition, due to invariance by integral translation, let us assume
w.l.o.g. that −b < μ ≤ 0.

Convex Hull of Digital Straight Segments 153

Let Λ be the restriction of the fundamental lattice Z
2 to the lattice points of

positive x-coordinate, i.e. Λ := {(x, y) ∈ Z
2|x ≥ 0}. The straight line L always

divides Λ into a upper domain, Λ+ := {(x, y) ∈ Λ|ax − by ≤ μ}, and a lower
one, Λ− := {(x, y) ∈ Λ|ax− by > μ}.
Definition 1 (Left hull (see fig. 1)). The lower (resp. upper) left hull of Λ+

(resp. Λ−) is the part of the lower (resp. upper) convex hull located between the
vertex of minimal x-coordinate and the vertex the closest to L.

In this section, we provide a simple arithmetical characterization of the upper
and lower left hull of the lower and upper domain.

2.1 Recurrence Relations

Due to the asymmetric definition of Λ+ (in which there is a large inequality) and
Λ− (in which there is a strict one), we introduce the two following notations:
∀x ∈ R (resp. ∀x ∈ R \ 0), [x] (resp. �x�) returns the integer i ∈ Z farthest to 0
such that |i| ≤ |x| (resp. |i| < |x|), i and x having same sign. We assume in this
paper that these two floor functions run in O(1). Moreover, the restriction of the
strict floor function �·� to R \ 0 does not cause any problem in our framework.

On the other hand, we recall that the remainder with respect to the straight
line of slope a/b is a function r(b,a) : Z2 → Z such that r(b,a)(x, y) := (b, a) ∧
(x, y) = ax−by. This value corresponds to the z-component of the cross-product
(b, a)∧(x, y) and is equal to the signed area of a parallelogram generated by (b, a)
and (x, y). Note that the ∧ operator is linear and antisymmetric.

In the sequel, r(b,a)(·) is simplified into r(·) when the remainder refers to L.
Since a and b are given and constant, the difference r(Q) − μ of a point Q
measures how far Q is from L.

Let us consider the following set of recurrence relations (see fig. 2.1 for a
numerical example):

L0 = (0, 1), U0 = (0, 0), v0 = (1, 0) +
[μ− a

−b

]
(0, 1) (1)

∀k ≥ 1,
r(vk−1)
= 0

if r(vk−1) > 0,

⎧
⎪⎪⎨
⎪⎪⎩

Lk = Lk−1 +
⌊
µ−r(Lk−1)
r(vk−1)

⌋
vk−1

Uk = Uk−1

vk = vk−1 +
[
µ−(r(Uk)+r(vk−1))

(r(Lk)−r(Uk))

]
(Lk − Uk)

if r(vk−1) < 0,

⎧
⎪⎪⎨
⎪⎪⎩

Lk = Lk−1

Uk = Uk−1 +
[
µ−r(Uk−1)
r(vk−1)

]
vk−1

vk = vk−1 +
⌊
µ−(r(Lk)+r(vk−1))

(r(Uk)−r(Lk))

⌋
(Uk − Lk)

(2)

The goal of this section is to prove the following theorem:

Theorem 1. The sequence {Lk}0...n (resp. {Uk}0...n) corresponds to the vertices
of the lower (resp. upper) left hull of Λ+ (resp. Λ−).

154 T. Roussillon

k 0 1 2 3 4

Lk (0, 1) (0, 1) (2, 2) (2, 2) (7, 5)
Uk (0, 0) (1, 1) (1, 1) (4, 3) (4, 3)
vk (1, 1) (2, 1) (3, 2) (5, 3) (8, 5)

L0,1

L2,3

L4

U0

U1,2

U3,4

v0

v1 v2

v3

v4

Fig. 2. We apply (1) and (2) for a = 5, b = 8 and μ = −4. The first two sequences
are respectively depicted with white and black disks, whereas the third sequence is
depicted with arrows.

The proof of theorem 1 will be derived in section 3 from properties proved in
section 2.3. The proof of some of these properties requires the following useful
geometrical interpretation of integer divisions (see also [9]).

2.2 Integer Division and Ray Casting

Let us consider a point Q such that r(Q) ≥ μ and a direction vector v whose
coordinates are relatively prime and such that r(v) < 0.1 Since r(Q) ≥ μ and
r(v) < 0, the ray emanating from Q in direction v intersects L at a point I (see
fig. 3.a). The discrete ray casting procedure consists in computing the lattice
point farthest from Q and lying on the line segment [QI]. Let I be equal to
Q + τv for some τ ∈ R

+. Since I belongs to L by definition, r(I) = μ and the
linearity of the ∧ product gives:

μ = r(I) = r(Q) + τr(v) ⇔ τ =
μ− r(Q)

r(v)
.

Since the components of v are relatively prime and since τ is positive, the greatest
integer t ∈ Z that is less than or equal to τ , i.e. t = [τ], leads to the lattice point
Q+ tv, which is the farthest from Q among those lying on [QI]. In the example
illustrated by fig. 3.a, t = 2. Note that if we consider the half-open line segment
[QI[instead of the closed line segment [QI], i.e. I is not included, we must use
the strict floor function �·� instead of the large floor function [·].

Moreover, note that we can reverse a ray casting under some conditions. We
will use this property to propose a dual characterization that leads to a reversed
algorithm in section 3. Let us recall that the position of a point with respect to
a direction vector s is a function ps : Z2 → Z such that ps(x, y) := (x, y) ∧ s.
In the sequel, we assume that s = (0, 1) because we focus on the naive case and
ps(x, y), which is merely denoted by p(x, y), returns x.

1 Note that points and vectors are both viewed as integer pairs (x, y) ∈ Z
2.

Convex Hull of Digital Straight Segments 155

Q

v

L
I

(a)

Q

v

L

Q+ 2v

(b)

Fig. 3. In (a), the ray emanating from Q in direction v intersects L = {(α, β) ∈ R
2|3α−

8β = −2} at I , because Q = (1, 0) and v = (2, 1) are such that r(Q) = 3 ≥ μ = −2
and r(v) = −2 < 0. The lattice point lying on the ray segment [QI] and farthest from
Q is Q+ 2v = (5, 2). Indeed, [μ−r(Q)

r(v)
] = [5

2
] = 2. In (b), the point Q may be retrieved

from Q + 2v and v by a reversed discrete ray casting procedure, because p(Q) = 1 is
strictly less than p(v) = 2.

It is easy to see that

p(Q) < p(v) ⇒
[p(Q+ tv)

p(v)

]
= t. (3)

Fig. 3.b shows the reversed version of the ray casting depicted in fig. 3.a.

2.3 A Unimodular Basis

We now prove several properties of (1) and (2). Let n be the index such that
r(vn) = 0. For the sake of clarity, we postpone the demonstration of the existence
of such index to the end of the subsection. We first show that for each 0 ≤ k ≤ n,
points Lk and Uk lie on each side of L, i.e.

∀0 ≤ k ≤ n, r(Lk) < μ and r(Uk) ≥ μ. (4)

It is easy to see that (4) is true for k = 0 by (1) and that for all 0 ≤ k ≤ n,
the constructions of Lk from Lk−1 (when r(vk−1) > 0) and Uk from Uk−1 (when
r(vk−1) < 0) are such that r(Lk) < μ and r(Uk) ≥ μ.

Moreover, for each 0 ≤ k ≤ n, we show that there is a strong link between
Lk, Uk and vk:

Lemma 1. ∀0 ≤ k ≤ n, vk is the unique negative and valid Bezout vector2 of
(Lk − Uk), i.e.

∀0 ≤ k ≤ n, r(Lk) < μ− r(vk) ≤ r(Uk), (5)

∀0 ≤ k ≤ n, vk ∧ (Lk − Uk) = −1. (6)
2 The notion of valid Bezout vector is introduced in [6].

156 T. Roussillon

To prove lemma 1, we prove successively (5) and (6).

Proof (of (5)). Base case: Let us consider the ray emanating from (1, 0) in direc-
tion L0 = (0, 1). The lattice point farthest from (1, 0) lying on the ray and below
L is v0 by (1). We have thus r(v0) ≥ μ and as a corollary, r(v0) + r(L0) < μ,
because the lattice point following v0 in direction L0 is above L. Putting the two
inequalities together we have r(L0) < μ− r(v0) ≤ r(U0).

Induction step: Let us assume that for some k between 1 and n, r(Lk−1) <
μ − r(vk−1) ≤ r(Uk−1). We focus on the case where r(vk−1) > 0, because the
other case is symmetric. In that case, due to the induction hypothesis, r(Uk) =
r(Uk−1) ≥ μ− r(vk−1). Let us consider now the ray emanating from Uk + vk−1

in direction Lk − Uk. It intersects L because (i) r(Uk + vk−1) ≥ μ and (ii)
r(Lk−Uk) < 0 by (4). The lattice point farthest from Uk+vk−1 lying on the ray
and below L is Uk+vk by (2). We have thus r(Uk)+r(vk) ≥ μ and as a corollary,
r(Uk) + r(vk) + r(Lk − Uk) < μ, which is equivalent to r(Lk) + r(vk) < μ. As a
consequence, we have r(Lk) < μ− r(vk) ≤ r(Uk), which concludes the proof.
�

To show (6), we use induction and the properties of the ∧ operator (linearity
and anticommutativity).

Proof (of (6)). Base case: v0 = (1, 0) − c(0, 1) for some constant c ∈ Z and
(L0 − U0) = (0, 1) by (1). Therefore v0 ∧ (L0 − U0) = (1, 0) ∧ (0, 1) = −1.

Induction step: let us assume that for some k between 1 and n, vk−1∧(Lk−1−
Uk−1) = −1. By (2), vk = vk−1 − c(Lk − Uk) and (Lk −Uk) = (Lk−1 − Uk−1)−
c′vk−1 for some constants c, c′ ∈ Z. We conclude that vk ∧ (Lk − Uk) = vk−1 ∧
(Lk−1 − Uk−1), which is equal to −1 due to the induction hypothesis.
�

Note that (6) implies that ∀0 ≤ k ≤ n, vk and (Lk − Uk) are irreducible, i.e.
their coordinates are relatively prime. Indeed, v0 and (L0 − U0) are irreducible
and for all k ≥ 1, the greatest common divisor of their coordinates divides
vk ∧ (Lk − Uk), which is equal to −1.

Geometrically, (6) implies that at each step 0 ≤ k ≤ n, vk and (Lk − Uk) are
a pair of unimodular vectors, while (4) and (5) guarantee that in such a basis
the line segment [LkUk] is always intersected by L, whereas the line segment of
endpoints Lk (resp. Uk) and Lk + vk (resp. Uk + vk) is never intersected by L.

We now end the subsection with the following lemma:

Lemma 2. There exists a step n ≥ 1 such that:

r(Ln − Un) = −1, r(vn) = 0. (7)

Un = μ and Ln = μ− 1. (8)

To prove lemma 2, it is enough to notice that r(Lk − Uk) is always strictly
negative by (4) and that ∀0 ≤ k ≤ n, r(Lk−1 − Uk−1) < r(Lk − Uk) by (2).
These inequalities and (6) guarantee that r(Ln − Un) = −1 and r(vn) = 0 at
some step n ≥ 1. Note that vn = (b, a), because vn is irreducible. Then, by (4),
the only possible values of r(Ln) and r(Un) must be respectively μ− 1 and μ.

Convex Hull of Digital Straight Segments 157

3 Convex Hull Algorithms

The proof of theorem 1 is now straightforward:

– Ray casting is equivalent to integer division on remainders (section 2.2),
– (1) is equivalent to the initialization of Charrier and Buzer’s algorithm [6].
– By lemma 1, (1) and (2) maintain the same invariant as Charrier and Buzer’s

algorithm [6], i.e. ∀0 ≤ k ≤ n, vk is the negative and valid bezout vector of
(Lk − Uk).

– Lemma 2 guarantees that the whole lower and upper left hulls are computed.

As a consequence, (1) and (2) provide a simple way to compute the left hull of
the lower and upper domains. In the following sections, we show how to translate
(1) and (2) first into a forward algorithm and then into a backward algorithm,
based on (3).

3.1 A Forward Approach

We first propose a forward algorithm that computes Lk, Uk and vk with increas-
ing k, starting from L0, U0 and v0. This algorithm is called smartCH, because
it is on-line and runs in O(1) per vertex and is thus optimal (see algorithm 1).

It is a rather straightforward translation of (1) and (2). There is a difference
though: we add an extra constraint, which modifies the stopping criterion. Al-
gorithm smartCH takes as input not only the slope a/b and the intercept μ
of a DSL, but also the length l of the subsegment Σ′ starting from (0, 0). If
b is minimal for Σ′ or, which is equivalent, if l � b, the algorithm iteratively
computes Lk, Uk, and vk from Lk−1, Uk−1 and vk−1 until r(vk) = 0. Otherwise,
the algorithm stops as soon as it detects that a new lower or upper leaning point
would lie outside Σ′ (lines 3 and 7 of algorithm 2). In this case, we correct the
last ray casting in order to get the last leaning point (lines 14 and 17) or the
last direction vector of Σ′ (lines 9 to 11 and 18 to 19 of algorithm 2). The com-
ponents of the last direction vector gives the rational slope whose denominator
is bounded by l and that best approximates a/b. This final step is computed in
O(1) instead of the O(log(l)) steps required to compute the critical supporting
lines of the lower and upper convex hulls as proposed in [6].

3.2 A Backward Approach

If all partial quotients are known, by using (1) and (2), it is obviously possible
to compute Uk, Lk, and vk with decreasing k from a given step n ≥ 1. In this
section, we show that these partial quotients can be computed from the positions
of Un, Ln and vn.

As seen in section 2.2, ray casting can be reversed under some conditions.
These conditions are actually fulfilled in our framework:

158 T. Roussillon

Algorithm 1. smartCH(a, b, μ, l)
Input: a, b, μ, l
Output: V , LHull and UHull, lower and upper left hull
// initialisation
stop := FALSE ;1
U := (0,0) ; add U to UHull ;2
L := (0,1) ; add L to LHull ;3

V := (1,0) +
[
μ−a
−b

]
(0,1) ;4

// main loop
while r(vk) �= 0 and not stop do5

if r(vk) > 0 then6
stop := nextVertex(a, b, μ, l, L, U, V, LHull, [.], �.�) ;7

if r(vk) < 0 then8
stop := nextVertex(a, b, μ, l, U, L, V, UHull, �.�, [.]) ;9

Algorithm 2. nextVertex(a, b, μ, l, X, Y, V, XHull, floor1, floor2)
Input: a, b, μ, l, X, Y, V, XHull, floor1, floor2
Output: X, V, XHull
q := floor1

(
μ−r(X)
r(V)

)
; // first ray casting1

X := X + q V ;2
if (p(X) ≤ l) then3

add X to XHull ;4

q := floor2
(

μ−(r(Y)+r(V))
(r(X)−r(Y))

)
; // second ray casting5

V := V + q (X - Y) ;6
if (p(Y) + p(V) ≤ l) then return TRUE ;7
else8

V := V - q (X - Y) ;9

q :=
[
l−(p(Y)+p(V))

p(X)−p(Y)

]
;10

if q > 0 then V := V + q (X - Y) ;11
return FALSE ;12

else13
X := X - q V ;14

q :=
[
l−p(X)
p(V)

]
;15

if q > 0 then16
X := X + q V ; add X to XHull ;17

q :=
[
l−(p(Y)+p(V))

p(X)−p(Y)

]
;18

if q > 0 then V := V + q (X - Y) ;19
return FALSE ;20

Convex Hull of Digital Straight Segments 159

Theorem 2. For each 0 ≤ k ≤ n, the positions of Lk, Uk, vk are ordered as
follows:

∀0 ≤ k < n,

{
p(vk) < p(Lk+1), if r(vk) > 0
p(vk) < p(Uk+1), if r(vk) < 0.

(9)

∀0 ≤ k ≤ n, p(Lk) < p(vk) and p(Uk) < p(vk). (10)

Inequalities (9) are obvious and provide the necessary and sufficient condition
to reverse the second ray casting (lines 5-6 of algorithm 2). Indeed, (3) requires
that

p(Y) + p(V) < p(X − Y) ⇔ p(V) < p(X)

and according to the notation used in algorithm 2, X = Lk+1 if V = vk has a
positive remainder, but X = Uk+1 otherwise.

Inequalities (10) provide the necessary and sufficient condition to reverse the
first ray casting (lines 1-2 of algorithm 2). Indeed, (3) requires that p(X) < p(V)
and according to the notation used in algorithm 2, X = Lk if V = vk has a
positive remainder, but X = Uk otherwise.

To complete the proof of theorem 2, we prove (10) by induction.

Proof (of (10)). Base case: Since p(v0) = 1 while p(L0) = p(U0) = 0, (10) is
obviously true for k = 0.

Induction step: Let us assume that p(Lk−1) < p(vk−1) and that p(Uk−1) <
p(vk−1) for some k between 1 and n. Let us assume that r(vk−1) > 0, the other
case being symmetric. By (2), it is easy to see that p(vk) ≥ p(vk−1)+p(Lk−Uk).
Since Uk = Uk−1 and p(vk−1) − p(Uk−1) > 0 due to the induction hypothesis,
we have p(vk) > p(Lk). Since p(Lk) > p(Uk), we obviously have also p(vk) >
p(vk−1) > p(Uk−1) = p(Uk).
�

Theorem 2 and (3) lead to a new set of recurrence relations, which is dual to
(1) and (2):

∀k ≤ n,
p(Uk)
= p(Lk)

if p(Lk) < p(Uk),

⎧⎪⎪⎨
⎪⎪⎩

Lk−1 = Lk +
[

p(Lk)
p(vk−1)

]
vk−1

Uk−1 = Uk

vk−1 = vk +
⌊

p(vk)−p(Uk)
p(Uk)−p(Lk)

⌋
(Lk − Uk)

if p(Lk) > p(Uk),

⎧
⎪⎪⎨
⎪⎪⎩

Lk−1 = Lk

Uk−1 = Uk +
[

p(Uk)
p(vk−1)

]
vk−1

vk−1 = vk +
⌊

p(vk)−p(Lk)
p(Uk)−p(Lk)

⌋
(Uk − Lk)

(11)
This set of recurrence relations has properties similar to (2) and straight-

forwardly leads to a backward algorithm, called reversedSmartCH, which is
on-line and runs in O(1) per vertex. As done with smartCH, we can add a length
constraint to stop the algorithm sooner and solve the subsegment problem. We
do not provide more details due to lack of space. However, we compare below
our implementation of smartCH and reversedSmartCH to the algorithms
whose implementation is available in DGtal [1].

160 T. Roussillon

3.3 Experiments

We generate random DSSs, starting from (0, 0), whose slope a/b has a continued
fraction expansion of constant depth n equal to 15.3 For each DSS, we consider
one of its left subsegment starting from (0, 0). Its length l is determined by the
denominator of the k-th convergent of the bounding DSS slope, so that the sub-
segment slope of minimal denominator has a continued fraction expansion of
depth n′ equal to k. In fig. 4, we plot the running times (in seconds) of 100.000
calls of several algorithms against parameter k, which is ranging from 1 to 14. As
expected in tab. 1, we observe that the running time of the forward methods (a)
is linear in n′ (and thus logarithmic in l), whereas the running time of the back-
ward methods (b) is linear in n−n′ (and thus logarithmic in b− l). Our generic
implementation of smartCH outperforms [6], smartDSS [12] and is comparable
to [17]. Moreover, our implementation of reversedSmartCH outperforms re-
versedSmartDSS [12], which is much more space consuming because continued
fraction expansions of all DSS slopes are stored in a shared data structure that
grows at each call.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14

tim
e

fo
r

10
^5

 c
al

ls
 (

se
c)

depth of the subsegment slope

Forward computation of minimal parameters

smartCH
smartDSS

Sivignon2013
CharrierBuzer2009

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14

tim
e

fo
r

10
^5

 c
al

ls
 (

se
c)

depth of the subsegment slope

Backward computation of minimal parameters

reversedSmartCH
reversedSmartDSS

(b)

Fig. 4. We plot the running times of the algorithms whose implementation is available
in DGtal [1], i.e. [6,12,17], against parameter k, which is equal to the depth of the
subsegment slope

4 Conclusion

In this paper, we propose a simple arithmetical characterization of the convex
hull of DSSs, which gives new insights into the combinatorial structure of DSSs
of arbitrary intercept and length. This characterization and its dual, lead to
two on-line algorithms that computes the left hull of a given DSS. The first
one, called smartCH, returns vertices of decreasing remainders, but increasing
positions, while the second one, called reversedSmartCH, returns vertices of
3 Note that the depth is set to 15 and all partial quotients are randomly chosen in
{1, . . . , 4} so that numerators and denominators are not greater than 231 − 1.

Convex Hull of Digital Straight Segments 161

increasing remainders, but decreasing positions. They both run in constant space
and constant time per vertex. They also provide a logarithmic-time and efficient
solution to the subsegment problem.

References

1. DGtal: Digital geometry tools and algorithms library, http://libdgtal.org
2. Anderson, T.A., Kim, C.E.: Representation of digital line segments and their preim-

ages. Computer Vision, Graphics, and Image Processing 30(3), 279–288 (1985)
3. Balza-Gomez, H., Moreau, J.-M., Michelucci, D.: Convex hull of grid points below

a line or a convex curve. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI
1999. LNCS, vol. 1568, pp. 361–374. Springer, Heidelberg (1999)

4. Brons, R.: Linguistic Methods for the Description of a Straight Line on a Grid.
Computer Graphics and Image Processing 3(1), 48–62 (1974)

5. Bruckstein, A.M.: Self-Similarity Properties of Digitized Straight Lines. Contem-
porary Mathematics 119, 1–20 (1991)

6. Charrier, E., Buzer, L.: Approximating a real number by a rational number
with a limited denominator: A geometric approach. Discrete Applied Mathemat-
ics 157(16), 3473–3484 (2009)

7. Davenport, H.: The Higher Arithmetic: Introduction to the Theory of Numbers.
Oxford University Press, Oxford (1983)

8. Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital
curves. International Journal of Pattern Recognition and Artificial Intelligence 9(4),
635–662 (1995)

9. Har-Peled, S.: An output sensitive algorithm for discrete convex hulls. Computa-
tional Geometry 10(2), 125–138 (1998)

10. Harvey, W.: Computing Two-Dimensional Integer Hulls. SIAM Journal on Com-
puting 28(6), 2285–2299 (1999)

11. Klette, R., Rosenfeld, A.: Digital straitghness – a review. Discrete Applied Math-
ematics 139(1-3), 197–230 (2004)

12. Lachaud, J.O., Said, M.: Two efficient algorithms for computing the characteristics
of a subsegment of a digital straight line. Discrete Applied Mathematics 161(15),
2293–2315 (2013)

13. Lindenbaum, M., Bruckstein, A.: On recursive, o(n) partitioning of a digitized
curve into digital straight segments. IEEE Transactions on Pattern Analysis and
Machine Intelligence 15(9), 949–953 (1993)

14. Ouattara, J.S.D., Andres, E., Largeteau-Skapin, G., Zrour, R., Tapsob, T.M.Y.:
Remainder Approach for the Computation of Digital Straight Line Subsegment
Characteristics. Submitted to Discrete Applied Mathematics (2014),
doi:10.1016/j.dam.2014.06.006

15. Reveillès, J.P.: Géométrie Discrète, calculs en nombres entiers et algorithmique.
Thèse d’etat, Université Louis Pasteur (1991)

16. Reveillès, J.P., Yaacoub, G.: A sublinear 3D convex hull algorithm for lattices. In:
DGCI 1995, pp. 219–230 (1995)

17. Sivignon, I.: Walking in the Farey Fan to Compute the Characteristics of a Discrete
Straight Line Subsegment. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.
(eds.) DGCI 2013. LNCS, vol. 7749, pp. 23–34. Springer, Heidelberg (2013)

18. Voss, K.: Coding of digital straight lines by continued fractions. Computers and
Artificial Intelligence 10(1), 75–80 (1991)

http://libdgtal.org

	An Arithmetical Characterization of the Convex Hull of Digital Straight Segments
	1 Introduction
	2 A Simple Arithmetical Characterization
	2.1 Recurrence Relations
	2.2 Integer Division and Ray Casting
	2.3 A Unimodular Basis

	3 Convex Hull Algorithms
	3.1 A Forward Approach
	3.2 A Backward Approach
	3.3 Experiments

	4 Conclusion
	References

