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Abstract. We propose a robust estimator of geometric quantities such
as normals, curvature directions and sharp features for 3D digital
surfaces. This estimator only depends on the digitisation gridstep and is
defined using a digital version of the Voronoi Covariance Measure, which
exploits the robust geometric information contained in the Voronoi cells.
It has been proved in [1] that the Voronoi Covariance Measure is resilient
to Hausdorff noise. Our main theorem explicits the conditions under
which this estimator is multigrid convergent for digital data. Moreover,
we determine what are the parameters which maximise the convergence
speed of this estimator, when the normal vector is sought. Numerical
experiments show that the digital VCM estimator reliably estimates nor-
mals, curvature directions and sharp features of 3D noisy digital shapes.

1 Introduction

Differential quantities estimation, surface reconstruction and sharp fea-
ture detection are motivated by a large number of applications in com-
puter graphics, geometry processing or digital geometry.

Digital geometry estimators. The commun way to link the estimated
differential quantities to the expect Euclidean one is the multigrid con-
vergence principle: when the shape is digitized on a grid with gridstep h
tending to zero, the estimated quantity should converge to the expected
one. In dimension 2, several multigrid convergent estimators have been
introduced to approach normals [2, 3] and curvatures [3–5]. In 3D, empiri-
cal methods for normal and curvature estimation have been introduced in
[6]. More recently, a convergent curvature estimator based on covariance
matrix was presented in [7].
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Voronoi-based geometry estimation. Classical principal component
analysis methods try to estimate normals by fitting a tangent plane or a
higher-order polynomial (e.g. see [8]). In contrast, Voronoi-based methods
try to fit the normal cones to the underlying shape, either geometrically
[9] or more recently using the covariance of the Voronoi cells [1, 10].
Authors of [1] have improved the method of [10] by changing the domain
of integration and the averaging process. The authors define the Voronoi
Covariance Measure (VCM) of any compact sets, and show that this
notion is stable under Hausdorff perturbation. Moreover, the VCM of a
smooth surface encodes a part of its differential information, such as its
normals and curvatures. With the stability result, one can therefore use
the VCM to estimate differential quantities of a surface from a Hausdorff
approximation such as a point cloud or a digital contour.

Voronoi Covariance measure background. The Voronoi covariance
measure (VCM) has been introduced in [1] for normals and curvature es-
timations. Let K be a compact subset of R3 and dK the distance function
toK, i.e. the map dK(x) := minp∈K ‖p− x‖. A point p where the previous
minimum is reached is called a projection of x on K. Almost every point
admits a single projection on K, thus definining a map pK : R3 → K
almost everywhere. The R-offset of K is the R-sublevel set of dK , i.e.
the set KR := d−1

K (] − ∞, R[). The VCM maps any integrable function
χ : R3 → R

+ to the matrix

VK,R(χ) :=

∫
KR

(x− pK(x))(x − pK(x))tχ(pK(x))dx.

Remark that this definition matches the definition introduced in [1]: when
χ is the indicatrix of a ball, one recovers a notion similar to the convolved
VCM : VK,R(χ) :=

∫
KR∩p−1

K (By(r))
(x−pK(x))(x−pK(x))tdx. The domain

of integration KR ∩ p−1
K (By(r)) is the offset of K intersected with a union

of Voronoi cells (cf. Figure 1). The stability result of [1] implies that

Fig. 1. VCM domain of integration



136 L. Cuel, J.-O. Lachaud, and B. Thibert

information extracted from the covariance matrix such as normals or prin-
cipal directions are stable with respect to Hausdorff perturbation.

Contributions. The contributions of the paper can be sketched as fol-
lows. First, we define the estimator of the VCM in the case of digital data,
for which we prove the multigrid convergence (Sect. 2, Theorem 1). We
then show that the normal direction estimator, defined as the first eigen-
vector of the VCM estimator, is also convergent with a speed in O(h

1
8 )

(Sect. 3, Corollary 1). Furthermore, Theorem 2 specifies how to choose
parameters r and R as functions of h to get the convergence. Finally, we
present an experimental evaluation showing that this convergence speed
is closer to O(h) in practice (Sect. 4). Moreover, experiments indicate
that the VCM estimator can be used to estimate curvature information
and sharp features in the case of digital data perturbated by Hausdorff
noise.

2 VCM on Digital Sets

In this section, we define an estimator of the VCM in the case of 3D digital
input. Theorem 1 explicits the conditions under which this estimator is
multigrid convergent for digital data.

2.1 Definition

Let X be a compact domain of R3 whose boundary is a surface of class
C2. We denote ∂X the boundary of X, Xh := Digh(X) = X ∩ (hZ)3

the Gauss digitisation of X, and ∂hX ⊂ R
3 the set of boundary surfels

of Xh. We define a digital approximation of the VCM on a subset of
the point cloud : Zh = ∂hX ∩ h(Z + 1

2)
3. For each point x ∈ h(Z + 1

2)
3

with x = (x1, x2, x3), we can define the voxel of center x by vox(x) =
[x1− 1

2h, x1+
1
2h]× [x2− 1

2h, x2+
1
2h]× [x3− 1

2h, x3+
1
2h]. We then define

the digital VCM estimator as

V̂Zh,R(χ) :=
∑
x∈ΩR

h

h3(x− pZh
(x))(x− pZh

(x))tχ(pZh
(x)),

where ΩR
h = {x ∈ ZR

h ∩ h(Z + 1
2)

3, vox(x) ⊂ ZR
h } is the set of centers of

voxels entirely contained in ZR
h , the R-offset of Zh (see Fig. 2). Remark

that the Hausdorff distance between ∂X and the point cloud Zh used in
the definition is less than h.
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Fig. 2. Digitisation of the offset and its localisation

2.2 Multigrid Convergence of the VCM-Estimator

The main theoretical result of the paper is the following theorem. Roughly
speaking, it quantifies the approximation of the VCM of a smooth surface
by the digital VCM of its Gauss digitisation. We denote by ‖.‖op the
matrix norm induced by the Euclidean metric. Given a function f : Rn →
R, we let ‖f‖∞ = maxx∈Rn |f(x)| and denote Lip(f) = maxx �=y |f(x) −
f(y)|/ ‖x− y‖ its Lipschitz constant.

Theorem 1. Let X be a compact domain of R3 whose boundary ∂X is a
C2 surface with reach ρ > 0. Let R < ρ

2 and χ : R3 → R
+ be an integrable

function whose support is contained in a ball of radius r. Then for any

h > 0 such that h ≤ min
(
R, r2 ,

r2

32ρ

)
, one has

∥∥∥V∂X,R(χ)− V̂Zh,R(χ)
∥∥∥
op

=O
(
Lip(χ)× [(r3R

5
2 + r2R3 + rR

9
2 )h

1
2 ]

+‖χ‖∞× [(r3R
3
2 + r2R2+ rR

7
2 )h

1
2 + r2Rh]

)
.

In the theorem and in the following of the text, the constant involved in
the notation O(.) only depends on the reach of ∂X and on the dimension
(which is three here).

For the proof of Theorem 1, we introduce the VCM of the point cloud
Zh, namely VZh,R(χ). By the triangle inequality, one has

∥
∥
∥V∂X,R(χ)− V̂Zh,R(χ)

∥
∥
∥
op

≤ ‖V∂X,R(χ)− VZh,R(χ)‖op +
∥
∥
∥VZh,R(χ)− V̂Zh,R(χ)

∥
∥
∥
op

.

In Proposition 1, we bound the second term and in Proposition 2, we
bound the first term.
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Estimation of the VCM of a Point Cloud. Here and in the following
of this section, X is a compact domain of R3 whose boundary ∂X is a
C2 surface with reach ρ > 0. We put R < ρ

2 and χ : R3 → R
+ is an

integrable function whose support is contained in a ball By(r) of center y
and radius r.

Proposition 1. For any h ≤ min
(
R, r2 ,

r2

32ρ

)
, one has

∥∥∥VZh,R(χ)− V̂Zh,R(χ)
∥∥∥
op
= O

[
r2R2(Lip(χ)R + ‖χ‖∞) h

1
2 + r2R‖χ‖∞h

]
.

Proof. Step 1: The aim of the first step is to prove that

VZh,R(χ) =

∫
vox(ΩR

h )
(x−pZh

(x))(x−pZh
(x))tχ(pZh

(x))dx+R2‖χ‖∞O(hr2).

Since vox(ΩR
h ) ⊂ ZR

h , one has

VZh,R(χ) =
∫
vox(ΩR

h )(x− pZh
(x))(x − pZh

(x))tχ(pZh
(x))dx

+
∫
ZR
h \vox(ΩR

h )(x− pZh
(x))(x − pZh

(x))tχ(pZh
(x))dx

By using the facts that ‖x− pZh
(x)‖ ≤ R, χ is bounded by ‖χ‖∞, and

the support of χ is contained in the ball By(r) (see Figure 2), the second
term of the previous equation is bounded by

R2 × ‖χ‖∞ ×H3
([

ZR
h \vox(ΩR

h )
] ∩ p−1

Zh
(By(r))

)
.

Now, we claim that ZR
h ∩ p−1

Zh
(By(r)) ⊂ p−1

∂X(By(2r)). Indeed, let x ∈
ZR
h ∩ p−1

Zh
(By(r)). The fact that the Hausdorff distance between Zh and

∂X is less than h implies that x ∈ ∂XR+h. Now, since h ≤ R, Lemma 3
implies that ‖p∂X(x)− pZh

(x)‖ ≤ √
8hρ+ h, which leads to

‖p∂X(x)− y‖ ≤ ‖p∂X(x)− pZh
(x)‖+ ‖pZh

(x)− y‖ ≤
√

8hρ+ h+ r ≤ 2r.

Now, we show that ZR
h \vox(ΩR

h ) ⊂ ∂XR+h\∂XR−(
√
3+1)h. Indeed, as said

just before, one has ZR
h ⊂ ∂XR+h. Furthermore, if x ∈ ∂XR−(

√
3+1)h, then

the fact that the Hausdorff distance between Zh and ∂X is less than h

implies that x ∈ ZR−√
3h

h . Let c ∈ h(Z + 1
2 )

3 be the center of a voxel

containing x. The fact that diam(vox(c)) =
√
3h implies that vox(c) ⊂

ZR
h , and thus x ∈ ZR

h . We then get ZR
h \vox(ΩR

h ) ⊂ ∂XR+h\∂XR−(
√
3+1)h.

We finally deduce that

[
ZR
h \vox(ΩR

h )
] ∩ p−1

Z (By(r)) ⊂
[
∂XR+3h\∂XR−3h

] ∩ p−1
∂X(By(2r)), (1)
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whose volume is bounded by O(hr2) by Proposition 3, which allows us to
conclude.
Step 2: We then have to bound the remaining term

Δ =

∫
vox(ΩR

h )
(x− pZh

(x))(x − pZh
(x))tχ(pZh

(x))dx− V̂Zh,R(χ).

By decomposing Δ over all the voxels of vox(ΩR
h ), one has

Δ =
∑
c∈ΩR

h

∫
vox(c)

[
(x− pZh

(x))(x − pZh
(x))tχ(pZh

(x))

−(c− pZh
(c))(c − pZh

(c))tχ(pZh
(c))

]
dx

As in Step 1, we can localise the calculation around the support of χ and
we introduce the set of centers D = ΩR

h ∩p−1
∂X(By(2r)). Using the relation

χ(pZh
(c)) = χ(pZh

(c)) + χ(pZh
(x)) − χ(pZh

(x)), one gets Δ = Δ1 +Δ2,
where

Δ1 =
∑

c∈D

∫

vox(c)

(x− pZh(x))(x− pZh(x))
t[χ(pZh(x))− χ(pZh(c))]dx

Δ2 =
∑

c∈D

∫

vox(c)

[(x− pZh(x))(x− pZh(x))
t − (c− pZh(c))(c− pZh(c))

t]χ(pZh(c))

We are now going to bound Δ1 and Δ2. One has

‖Δ1‖op ≤
∑

c∈D

∫

vox(c)

‖x− pZh(x)‖
∥
∥x− pZh(x)

t
∥
∥ ‖χ(pZh(x))− χ(pZh(c))‖dx.

For all c ∈ D and x ∈ vox(c), we have ‖x− c‖ ≤
√
3
2 h. Furthermore, by

definition of ΩR
h , we have that x and c belong to ZR

h ⊂ ∂XR+h. Then,

since h ≤ R ≤ ρ
2 , Proposition 4 implies ‖pZh

(x)− pZh
(c)‖ = O(h

1
2 )

and then ‖χ(pZh
(x))− χ(pZh

(c))‖ = Lip(χ)O(h
1
2 ). Using the fact that

‖x− pZh
(x)‖ ≤ R, one has

‖Δ1‖op = Vol(vox(D))×R2 × Lip(χ)×O(h
1
2 ).

Since vox(D) ⊂ ZR
h ∩ p−1

∂X(By(2r)) ⊂ ∂XR+h ∩ p−1
∂X(By(2r)) and h ≤ R,

Proposition 3 implies that Vol(vox(D)) = O(r2R). Finally ‖Δ1‖op =

Lip(χ)×O(r2R3h
1
2 ).

Similarly, let us bound ‖Δ2‖op. We put u = (x− c), v = c− pZh
(c) and

w = pZh
(c)− pZh

(x). We can write x− pZh
(x) = u+ v + w, and we get

Δ2 =
∑
c∈D

[∫
vox(c)

[(u+ v + w)(u+ v + w)t − vvt]χ(pZh
(c))

]
.
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From ‖u‖ ≤ h, ‖v‖ ≤ R and ‖w‖ = O(h
1
2 ), we bound the integrand by

O(‖χ‖∞(R h
1
2 + h)). From Vol(vox(D)) = O(r2R), one has ‖Δ2‖op =

O(‖χ‖∞ (R2r2h
1
2 + r2Rh)).

Stability of the VCM. It is known that the VCM is stable. More
precisely, Theorem 5.1 of [1] states that ‖V∂X,R(χr)− VZh,R(χr)‖op =

O(h
1
2 ). However, the constant involved in O(h

1
2 ) depends on the whole

surface ∂X. We provide here a more precise constant involving only local
estimations, r and R. The proof is very similar to the one of [1], except
that we localise the calculation of the integral. It is given in Appendix.

Proposition 2. For any h ≤ R such that
√
8hρ+ h ≤ r, one has

‖V∂X,R(χr)− VZh,R(χr)‖op
= O

(

Lip(χ)× [(r3R
5
2 + r2R

7
2 + rR

9
2 )h

1
2 ] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2 )h

1
2 ]
)

.

End of proof of Theorem 1. Let h ≤ min
(
R, r2 ,

r2

32ρ

)
. The assumption

h ≤ r2

32ρ implies that
√
8hρ+h ≤ r. Thus we can apply Proposition 1 and

Proposition 2.

3 Multigrid Convergence of the Normal Estimator

Let X be a compact domain of R3 whose boundary ∂X is a surface of
class C2. We now want to estimate the normal, denoted by n(p0), of ∂X
at a point p0 from its Gauss digitisation. We define the normal estimator
by applying the digital VCM on a Lipschitz function that approaches the
indicatrix of the ball Bp0(r).

Definition 1. The normal estimator n̂r,R(p0) is the unit eigenvector as-

sociated to the largest eigenvalue of V̂Zh,R(χr), where χr is a Lipschitz

function that is: equal to 1 on Bp0(r), equal to 1− (‖x− p0‖ − r)/r
3
2 on

Bp0(r + r
3
2 ) \ Bp0(r), and equal to 0 elsewhere.

Remark that the normal estimator is defined only up to the sign. The
following theorem gives an error estimation between ±n̂r,R(p0) and n(p0).

Theorem 2. Let X be a compact domain of R3 whose boundary ∂X is
a C2 surface with reach ρ > 0. Let R < ρ

2 . Then for any h > 0 such that

h ≤ min
(
R, r2 ,

r2

32ρ

)
, the angle between the lines spanned by n̂r,R(p0) and

n(p0) satisfies
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〈n̂r,R(p0), n(p0)〉 = O
(

(rR− 3
2 +R−1+r−

1
2R− 1

2 +r−
3
2 +r−

5
2 R

3
2 )h

1
2 +R−2h+r

1
2 +R2

)

.

The following corollary is a direct consequence.

Corollary 1. Let X be a compact domain of R3 whose boundary ∂X is
a C2 surface with reach ρ > 0. Let a, b ∈ R

+, r = ah
1
4 and R = bh

1
4 .

Then for any h > 0 small enough, one has

〈n̂r,R(p0), n(p0)〉 = O
(
h

1
8

)
.

Proof of Theorem 2. We introduce the normalized VCM N̂r,R(p0) =
3

2πr2R3 V̂Zh,R(χr). From Davis-Kahan sin(θ) Theorem [11], up to the sign
of ±n̂r,R(p0), one has

‖n̂r,R(p0)− n(p0)‖ ≤ 2
∥∥∥N̂r,R(p0)− n(p0)n(p0)

t
∥∥∥
op

.

It is therefore sufficient to bound the right hand side. The triangle in-
equality gives
∥∥∥N̂r,R(p0)− n(p0)n(p0)

t
∥∥∥
op

≤ 3

2πR3r2

∥∥∥V̂Zh,R(χr)− V∂X,R(χr)
∥∥∥
op

+
3

2πR3r2

∥∥∥V∂X,R(χr)− V∂X,R(1Bp0 (r)
)
∥∥∥
op

+

∥∥∥∥ 3

2πR3r2
V∂X,R(1Bp0 (r)

)− n(p0)n(p0)
t

∥∥∥∥
op

.

The proof of the theorem relies on Theorem 1, that controls the first term,
and on the two following lemmas.

Lemma 1. Under the assumption of Theorem 2, we have

3

2πr2R3

∥∥∥V∂X,R(χr)− V∂X,R(1Bp0 (r)
)
∥∥∥
op

= O(r
1
2 ).

Proof. Since χr = 1Bp0 (r)
on the ball Bp0(r), by using similar arguments

as previously, one has
∥
∥
∥V∂X,R(χr)− V∂X,R(1Bp0(r)

)
∥
∥
∥
op

≤ Vol
(

∂XR ∩
[

p−1
∂X(By(r + r

3
2 ))

∖
p−1
∂X(By(r))

])

×R2.

Proposition 3 implies that the volume Vol
(
∂XR ∩

[
p−1
∂X(By(r + r

3
2 ))

∖
p−1
∂X(By(r))

])

is less than 4R × Area
(
By(r + r

3
2 )
∖By(r)

)
. The fact that this area is

bounded by O(r
5
2 ) allows to conclude.
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Lemma 2. Under the assumption of Theorem 2, we have
∥∥∥∥ 3

2πR3r2
V∂X,R(1Bp0 (r)

)− n(p0)n(p0)
t

∥∥∥∥
op

= O(r +R2)

Proof. We have the following relation (see Theorem 1 of [12])

V∂X,R(1Bp0 (r)
) =

2

3
R3

[
1 +O(R2)

] ∫
p∈Bp0 (r)∩S

n(p)n(p)t dp. (2)

By the mean value theorem applied to the normal to ∂X, one has

‖n(p)− n(p0)‖ ≤ sup
q∈S

‖Dn(q)‖op lp,p0 ,

where lp,p0 is the length of a geodesic joining p and p0. Since the chord
(pp0) belongs to the offset ∂XR, where R < ρ, we have lp,p0 = O(‖p −
p0‖) (see [13] for example). Therefore ‖n(p) − n(p0)‖ = O(r) and thus
n(p)n(p)t − n(p0)n(p0)

t = O(r). Consequently
∫

p∈Bp0(r)∩S

n(p)n(p)t dp = Area(Bp0(r) ∩ S)n(p0)n(p0)
t +Area(Bp0(r) ∩ S) O(r).

Combining with Eq. (2), we have

3

2R3Area(Bp0(r) ∩ S)
V∂X,R(1Bp0 (r)

)=
[
1 +O(R2)

]×(
n(p0)n(p0)

t +O(r)
)
.

We conclude by using the fact that Area(Bp0(r)∩S) is equivalent to πr2.

4 Experiments

We evaluate experimentally the multigrid convergence, the accuracy and
robustness to Hausdorff noise of our normal estimator, and also its ability
to detect features.

The first series of experiments analyzes the convergence of the normal
estimation by VCM toward the true normal of the shape boundary ∂X.
The shape “torus” is a torus of great radius 6 and small radius 2, and
the shape “ellipsoid” is an ellipsoid of half-axes

√
90,

√
45 and

√
45. We

measure the absolute angle error with ε(p) = 180
π cos−1(n̂(p) · n(p)) for

every pointel p ∈ Zh of the digitized shape with several normalized norms:

l1(ε)
def
=

1

Card(Zh)

∑
p∈Zh

ε(p), l∞(ε)
def
= sup

p∈Zh

ε(p). (3)
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Fig. 3. Multigrid convergence of angle error of normal estimator (in degree). Abscissa
is the gridstep h. Tests are run on torus shape for three kernel radii (R = r = 3hα

for α ∈ { 1
4
, 1
3
, 1
2
}), two norms (l1, l∞): (left) kernel ball function χ0

r, (right) kernel hat
function χ1

r.

In experiments we tried several kernel functions χr and we display results
for two of them: the “ball” kernel χ0

p0,r(x) = 1 if ‖x−p0‖ ≤ r, 0 otherwise;
the “hat” kernel χ1

p0,r(x) = 1 − ‖x − p0‖/r if ‖x − p0‖ ≤ r, 0 otherwise.
Figure 3 displays the norms of the estimation angle error in degrees,
for finer and finer digitization steps. Corollary 1 predicts the multigrid
convergence of the estimator when r = ah

1
4 and R = bh

1
4 at a rate

in O(h
1
8 ). We observe the convergence of the estimator for parameters

R = r = 3h
1
4 , R = r = 3h

1
3 , R = r = 3h

1
2 , at an almost linear rate O(h),

for all norms. More experiments show that the most accurate results are
obtained for α ∈ [13 ,

1
2 ] if R = r = ahα. Note that the kernel function

has not a great impact on normal estimates, as long as it has a measure
comparable to the ball kernel.

We perturbate the shape “torus” with a Kanungo noise model of pa-
rameter p = 0.25 (the number pd is the probability that a voxel at digital
distance d from the boundary ∂X is flipped inside/out). This is not ex-
actly a Hausdorff perturbation but most perturbations lie in a band of
size 2h/(1− p). Figure 4 shows that the normal is still convergent for all

norms. Again convergence speed is experimentally closer to O(h
2
3 ), much

better than the proved O(h
1
8 ).

We then assess the visual quality of the estimators on several shapes, by
rendering the digital surfels according to their estimated normals. First of
all, Figure 5 displays normal estimation results on a noisy “torus” shape
perturbated with a strong Kanungo noise of parameter p = 0.5. Then,
Figure 6 displays the visual improvement of using normals computed by
the VCM estimator. In particular, comparing Fig.6b and Fig.6c shows
that convolving Voronoi cell geometry is much more precise than con-
volving only surfel geometry. Furthermore, we have tested our estimator
on many classical digital geometry shapes (see Figure 7).
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Fig. 4. Multigrid convergence of angle error of normal estimator (in degree) on a noisy
shape. Abscissa is the gridstep h. Tests are run on “torus” shape (upper row) and on
“ellipsoid” shape (lower row), perturbated by a Kanungo noise of parameter 0.25, for
three kernel radii (R = r = 3hα for α ∈ { 1

4
, 1
3
, 1
2
}), two norms (l1, l∞): (left) kernel

ball function χ0
r, (right) kernel hat function χ1

r.

Our VCM estimator is a matrix and carries also curvature information
along other eigendirections. Mérigot et al. [1] proposed to detect sharp
features by using the three eigenvalues l1, l2, l3 of the VCM as follows:
if l1 ≥ l2 ≥ l3, compute l2/(l1 + l2 + l3) and mark the point as sharp
if this value exceeds a threshold T . Figure 8 shows such sharp features
detection on the “bunny” dataset at many different scales, with T = 0.1
for all datasets (it corresponds to an angle of ≈ 25◦). This shows that the
VCM information is geometrically stable and essentially scale-invariant.
To conclude, we list below some information on computation times. This
estimator has been implemented using the DGtal library [14], and will
soon be freely available in it.

Image size #surfels (R, r) χr-VCM comput. Orienting normals

“Al” 1503 48017 (30, 3) 0.73 s 0.88 s
“rcruiser” 2503 66543 (30, 3) 1.26 s 0.99 s
“bunny” 5163 933886 (30, 5) 30.1 s 15.9 s

“Dig. Snow” 5123 3035307 (30, 5) 82.1 s 53.6 s
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Fig. 5. Visual result of the normal estimation on the “torus” shape perturbated
with a strong Kanungo noise (p = 0.5) for gridsteps from left to right h =
0.5, 0.25, 0.125, 0.0626

(a) (b) (c) (d)

Fig. 6. Visual aspect of normal estimation on “bunny66” for r = 3: (a) trivial normals,
(b) normals by χ1

r convolution of trivial normals with flat shading, (c) χ1
r-VCM normals

with flat shading, (d) χ1
r-VCM normals with Gouraud shading

Fig. 7. Visual aspect of normal estimation on classical digital data structures: “Al”
1503, “Republic cruiser” 2503, “Digital snow” 5123
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Fig. 8. Sharp feature detection on “bunny” dataset at increasing resolutions (R = 30,
T = 0.1): color is metallic blue when value is in [0, 2

3
T ], then goes through cyan and

yellow in ] 2
3
T, T [, till red in [T,+∞[

5 Conclusion

We have presented new stable geometry estimators for digital data, one
approaching the Voronoi Covariance Measure and the other approaching
the normal vector field. We have shown under which conditions they are
multigrid convergent and provided formulas to determine their parame-
ters R and r as a function of the gridstep h. Experiments have confirmed
both the accuracy and the stability of our estimators. In future works,
we plan to compare numerically our estimator with other discrete normal
estimators (e.g. integral invariants [7], jets [15]) and also to perform a
finer multigrid analysis to get a better theoretical bound on the error.
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Appendix

We give here all the sketchs of the proofs to be self-content. Proposition
3 is classical and follows from the well-known tube formula for smooth
surfaces [16]. Proposition 4 states that the projection map pK onto a
set K that is close to a smooth surface S behaves like the projection
map pS . It relies on classical properties of the projection map onto a set
with positive reach. The proof of Proposition 2 is similar to the proof of
Theorem 5.1 of [1], except that the calculations are done locally.

5.1 Hausdorff Measure of Offsets

Proposition 3. Let S ⊂ R
3 be a surface of class C2 with reach ρ > 0.

Let R > 0 and ε > 0 be such that R + ε < ρ
2 . Then for any ball B of

radius r, one has:

a) Vol
(
SR ∩ p−1

S (B ∩ S)
)
= O(Rr2).

b) Vol
(
(SR+ε\SR−ε) ∩ p−1

S (B ∩ S)
)
= O(εr2).

c) Area
(
∂[SR ∩ p−1

S (B ∩ S)]
)
= O(Rr + r2),

where the notation O involves a constant that only depends on the reach ρ.

http://libdgtal.org


148 L. Cuel, J.-O. Lachaud, and B. Thibert

Proof. The proof is based on the tube formula for surfaces of class C2

[16, 17]. One has

Vol(SR ∩ p−1
S (B ∩ S)) =

∫
B∩S

∫ R

−R
(1− tλ1(x))(1 − tλ2(x))dtdx,

where λ1(x) and λ2(x) are the principal curvatures of S at the point x.
Now, since |λ1(x)| and |λ2(x)| are smaller than 1

ρ , one has

Vol(SR ∩ p−1
S (B ∩ S)) ≤

∫

B∩S

dx×
∫ R

−R

(

1 +
t

ρ

)2

dt ≤ Area(B ∩ S)× 2R

(

1 +
R2

3ρ2

)

.

Point a) follow from the fact that Area(B ∩S) = O(r2). We use the same
kind of argument for Points b) and c).

5.2 Stability of the Projection on a Compact Set

Proposition 4. Let S be a surface of R
3 of class C2 whose reach is

greater than ρ > 0. Let K be a compact set such that dH(S,K) = ε < 2ρ,
and R < ρ a positive number. If x and x′ are points of SR such that
d(x, x′) ≤ η, then :

∥∥pK(x)− pK(x′)
∥∥ ≤ 2

√
8ερ+ 2ε+

1

1− R
ρ

η

The proof of the proposition relies on Lemma 3 whose proof is given in
[18].

Lemma 3. Let S be a surface of R
3 with a reach ρ > 0. Let K be a

compact set such that dH(S,K) = ε with ε ≤ 2ρ. Let R be a number such
that R < ρ. For every x ∈ SR, one has

pK(x) ∈ B(pS(x),
√

8ερ+ ε)

Proof (of Proposition 4). By the triangle inequality, we have
∥
∥pK(x)− pK(x′)

∥
∥ ≤ ‖pK(x)− pS(x)‖+

∥
∥pS(x)− pS(x

′)
∥
∥+

∥
∥pS(x

′)− pK(x′)
∥
∥ .

It is well-known that the projection map pS is 1
1−R

ρ

-Lipschitz in SR (The-

orem 4.8 of [17]). We then have ‖pS(x)− pS(x
′)‖ ≤ 1

1−R
ρ

η. The two other

terms are bounded with Lemma 3.
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5.3 Proof of Proposition 2

Similarly, as for equation (1) and using the hypothesis h ≤ ρ
2 and

√
8hρ+

h ≤ r, we have p−1
Zh

(supp(χ)) ⊂ p−1
∂X(By(2r)). We then introduce the com-

mon set E = ∂XR−h ∩ p−1
∂X(By(2r)), on which we are going to integrate.

We have :

V∂X,R(χr) =

∫
∂XR∩p−1

∂X(By(2r))
(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x))

=

∫
E
(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x)) + Err1,

where the error Err1 satisfies

‖Err1‖op ≤ R2 × ‖χ‖∞ ×Vol(∂XR ∩ p−1
∂X(By(2r)) \E).

Furthermore, one has ∂XR ∩ p−1
∂X(By(2r)) \ E =

[

∂XR\∂XR−h
] ∩ p−1

∂X(By(2r)),

whose volume is bounded by Proposition 3 by O(r2h). Then

‖Err1‖op = ‖χ‖∞ ×O(R2r2h).

Similarly, one has

V∂X,R(χr) =

∫
E
(x− pZh

(x))(x− pZh
(x))tχ(pZh

(x)) + Err2,

where the error Err2 satisfies ‖Err2‖op = (R+h)2×‖χ‖∞×O(r2h). We
now have to compare the two integrals on the common set E

Δ =

∫

E

[
(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x))− (x− pZh(x))(x− pZh(x))

tχ(pZh(x))
]
.

Following now the proof of Theorem 5.1 of [1], one has

‖Δ‖op ≤ (R2Lip(χ)+2R‖χ‖∞)× [Vol(E)+(diam(E)+R+
√
Rh)×Area(∂E)]×

√
Rh.

Proposition 3 gives that Vol(E) is bounded by O(r2R) and Area(∂E) is
bounded by O(rR+ r2). We then have

‖Δ‖op = O
(
Lip(χ)× [(r3R

5
2 + r2R

7
2 + rR

9
2 )h

1
2 ] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2 )h

1
2 ]
)
.

Adding the bounds of ‖Err1‖op, ‖Err2‖op and ‖Δ‖op, we find the same
bound :

‖V∂X,R(χr)− VZh,R(χr)‖op
= O

(

Lip(χ)× [(r3R
5
2 + r2R

7
2 + rR

9
2 )h

1
2 ] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2 )h

1
2 ]
)

.
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