
Elena Barcucci
Andrea Frosini
Simone Rinaldi (Eds.)

 123

LN
CS

 8
66

8

18th IAPR International Conference, DGCI 2014
Siena, Italy, September 10–12, 2014
Proceedings

Discrete Geometry
for Computer Imagery

Lecture Notes in Computer Science 8668
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Elena Barcucci Andrea Frosini
Simone Rinaldi (Eds.)

Discrete Geometry
for Computer Imagery

18th IAPR International Conference, DGCI 2014
Siena, Italy, September 10-12, 2014
Proceedings

13

Volume Editors

Elena Barcucci
Andrea Frosini
Università degli Studi di Firenze
Dipartimento di Matematica e Informatica
Viale Morgagni 65
50134 Firenze, Italy
E-mail:{elena.barcucci, andrea.frosini}@unifi.it

Simone Rinaldi
Università degli Studi di Siena
Dipartimento di Ingegneria dell’Informazione
e Scienze Matematiche
Viao Roma, 56
53100 Siena, Italy
E-mail: rinaldi@unisi.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09954-5 e-ISBN 978-3-319-09955-2
DOI 10.1007/978-3-319-09955-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947226

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume collects the full papers presented at the 18th IAPR International
Conference on Discrete Geometry for Computer Imagery, DGCI 2014, that was
held in Siena, Italy in September 2014, and jointly organized by the researchers
in Discrete Mathematics of the Universities of Siena and Firenze.

As in the previous editions, the conference attracted researchers from different
countries attesting the international relevance of the event. After an accurate
reviewing process that, from this edition, supported the decisions with a final
rebuttal phase, 34 papers were accepted, out of about 60 submissions.

The 22 papers scheduled in a single-track of oral presentations were organized
in topical sections on Models for Discrete Geometry; Discrete and Combinatorial
Topology; Geometric Transforms; Discrete Shape Representation, Recognition
and Analysis; Discrete Tomography; Morphological Analysis; Discrete Modeling
and Visualization; Discrete and Combinatorial Tools for Image Segmentation
and Analysis. The remaining 12 papers on these same topics were grouped into
a single poster session.

As in the previous two editions, the conference included a demonstration
session, in the intent of providing the opportunity to present and share effective
applications, new tools, and libraries related to the mainstream of the image
processing.

Three internationally well-known researchers provided invited lectures: Pro-
fessor Peter Gritzmann, from Technische Universität of München, Germany, Pro-
fessor Lorenzo Robbiano from the University of Genova, Italy, and Professor
Marco Gori, from the Univerity of Siena, Italy.

DGCI 2014 was supported by the International Association of Pattern Recog-
nition (IAPR), and constituted the main event associated with the Technical
Committee on Discrete Geometry IAPR-TC18.

We would like to thank the main sponsoring institutions: the Dipartimento di
Matematica ed Informatica of the University of Firenze, and the Dipartimento
di Ingegneria dell’Informazione e Scienze Matematiche of the University of Siena
who also hosted the conference and provided all the necessary facilities.

We are grateful to the members of the Steering Committee for their valuable
support and the inspiring discussions, with a special mention to David Coeurjolly
who helped us through all the steps of the reviewing process.

Special thanks to the authors of the submitted contributions whose researches
confirmed the high level standard of the conference, to the Program Committee

VI Preface

and all the reviewers for their accurate and proficient work, to the local Orga-
nizing Committee for its tireless support, and to all the participants attending
the conference, who contributed to make this event a success.

September 2014 Elena Barcucci
Andrea Frosini
Simone Rinaldi

Organization

Organizing Committee

Elena Barcucci University of Firenze, Italy (Chair)
Andrea Frosini University of Firenze, Italy (Chair)
Simone Rinaldi University of Siena, Italy (Chair)

Local organizers, University of Siena, Italy

Daniela Battaglino Stefano Brocchi
Veronica Guerrini Andrea Machetti
Rita Nugari Simonetta Palmas
Chiara Pappadopulo Alessandro Rossi
Elena Sbrocca Samanta Socci

Steering Committee

David Coeurjolly (President) CNRS, University of Lyon, France
Eric Andres University of Poitiers, France
Gunilla Borgefors University of Uppsala, Sweden
Srečko Brlek University of Quebec, Canada
Jean-Marc Chassery CNRS, University of Grenoble, France
Isabelle Debled-Rennesson LORIA, University of Nancy, France
Ullrich Köthe University of Heidelberg, Germany
Annick Montanvert University of Grenoble, France
Kálmán Palágyi University of Szeged, Hungary
Gabriella Sanniti di Baja Institute of Cybernetics Eduardo Caianiello,

CNR, Italy
Isabelle Sivignon CNRS, University of Grenoble, France
Maria Jose Jimenez University of Seville, Spain

Program Committee

Joost Batenburg Centrum Wiskunde & Informatica,
The Netherlands

Gilles Bertrand ESIEE Cité Descartes, France
Isabelle Bloch CNRS, France
Sara Brunetti Department of Ingegneria dell’Informazione e

Scienze Matematiche, Italy
Michel Couprie ESIEE Cité Descartes, France
Guillaume Damiand LIRIS - CNRS, France
Laurent Fuchs Département XLIM-SIC UMR - CNRS, France

VIII Organization

Yan Gerard ISIT - CNRS, France
Rocio Gonzalez-Diaz Department of Matemática Aplicada, Spain
Yukiko Kenmochi ESIEE Cité Descartes, France
Bertrandt Kerautret ADAGIO - LORIA, France
Christer Kiselman University of Uppsala, Sweden
Walter Kropatsch Institute of Computer Graphics and

Algorithms, Austria
Jacques-Olivier Lachaud LAMA - University of Savoie, France
Gaëlle Largeteau-Skapin Department XLIM-SIC UMR CNRS, France
Rémy Malgouyres LIMOS - CNRS, France
Nicolas Normand Department of Informatique, Nantes, France
Xavier Provençal LAMA - University of Savoie, France
Robin Strand University of Uppsala, Uppsala, Sweden
Imants Svalbe University of Melbourne, Australia
Edouard Thiel LIF, France
Peter Veelaert University College of Ghent, Belgium

Referees

Andreas Alpers
Eric Andres
Jesus Angulo
Peter Balazs
Joost Batenburg
Etienne Baudrier
Nicolas Bedaride
Alexis Bes
Gunilla Borgefors
Achille Braquelaire
Srecko Brlek
Stefano Brocchi
Luc Brun
Sara Brunetti
David Coeurjolly
Michel Couprie
Jean Cousty
Erik Darpö
Isabelle Debled-

Rennesson
Eric Domenjoud
Leo Dorst
Paolo Dulio
Philippe Even
Massimo Ferri

Fabien Feschet
Gabriele Fici
Ángel R. Francés
Andrea Frosini
Laurent Fuchs
Yan Gerard
Rocio Gonzalez-Diaz
Lajos Hajdu
Marie-Andrée Jacob-Da

Col
Maŕıa José Jiménez
Yukiko Kenmochi
Bertrandt Kerautret
Andrew Kingston
Krister Kiselman
Reinhard Klette
Ullrich Koethe
Tat Kong
Vera Koponen
Walter Kropatsch
Jacques-Olivier Lachaud
Gaelle Largeteau-Skapin
Thomas Lewiner
Rémy Malgouyres
Filip Malmberg

Jean-Luc Mari
Löıc Mazo
Thierry Monteil
Benôıt Naegel
Laurent Najman
Nicolas Normand
Kalman Palagyi
Nicolas Passat
Carla Peri
Christophe Picouleau
Xavier Provençal
Eric Remy
Jean-Pierre Reveilles
Tristan Roussillon
Christoph Schnorr
Imants Svalbe
Nicolas Szafran
Mohamed Tajine
Hugues Talbot
Laure Tougne
Jean-Luc Toutant
Antoine Vacavant
Peter Veelaert
Laurent Vuillon

Table of Contents

Models for Discrete Geometry

Facet Connectedness of Discrete Hyperplanes with Zero Intercept:
the General Case . 1

Eric Domenjoud, Xavier Provençal, and Laurent Vuillon

About the Maximum Cardinality of the Digital Cover of a Curve with
a Given Length . 13

Yan Gérard and Antoine Vacavant

Binary Pictures with Excluded Patterns . 25
Daniela Battaglino, Andrea Frosini, Veronica Guerrini,
Simone Rinaldi, and Samanta Socci

Discrete and Combinatorial Topology

2D Topological Map Isomorphism for Multi-Label Simple
Transformation Definition . 39

Guillaume Damiand, Tristan Roussillon, and Christine Solnon

Isthmus-Based Parallel and Asymmetric 3D Thinning Algorithms 51
Michel Couprie and Gilles Bertrand

Completions and Simple Homotopy . 63
Gilles Bertrand

Geometric Transforms

2D Subquadratic Separable Distance Transformation for Path-Based
Norms . 75

David Coeurjolly

Anti-Aliased Euclidean Distance Transform on 3D Sampling Lattices . . . 88
Elisabeth Linnér and Robin Strand

Efficient Neighbourhood Computing for Discrete Rigid Transformation
Graph Search . 99

Yukiko Kenmochi, Phuc Ngo, Hugues Talbot, and Nicolas Passat

The Minimum Barrier Distance – Stability to Seed Point Position 111
Robin Strand, Filip Malmberg, Punam K. Saha, and Elisabeth Linnér

X Table of Contents

Discrete Shape Representation, Recognition and
Analysis

Efficient Computation of the Outer Hull of a Discrete Path 122
Srecko Brlek, Hugo Tremblay, Jérôme Tremblay, and Romaine Weber

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 134
Louis Cuel, Jacques-Olivier Lachaud, and Boris Thibert

An Arithmetical Characterization of the Convex Hull of Digital
Straight Segments . 150

Tristan Roussillon

Parameter-Free and Multigrid Convergent Digital Curvature
Estimators . 162

Jérémy Levallois, David Coeurjolly, and Jacques-Olivier Lachaud

Freeman Digitization and Tangent Word Based Estimators 176
Thierry Monteil

Determination of Length and Width of a Line-Segment by Using
a Hough Transform . 190

Zezhong Xu, Bok-Suk Shin, and Reinhard Klette

Stable Shape Comparison of Surfaces via Reeb Graphs 202
Barbara Di Fabio and Claudia Landi

About Multigrid Convergence of Some Length Estimators 214
Löıc Mazo and Étienne Baudrier

Discrete Tomography

Non-additive Bounded Sets of Uniqueness in Zn . 226
Sara Brunetti, Paolo Dulio, and Carla Peri

Back-Projection Filtration Inversion of Discrete Projections 238
Imants Svalbe, Andrew Kingston, Nicolas Normand, and
Henri Der Sarkissian

Discrete Tomography Reconstruction Algorithms for Images with
a Blocking Component . 250

Stefano Bilotta and Stefano Brocchi

An Entropic Perturbation Approach to TV-Minimization for
Limited-Data Tomography . 262

Andreea Deniţiu, Stefania Petra, Claudius Schnörr, and
Christoph Schnörr

Fourier Inversion of the Mojette Transform . 275
Andrew Kingston, Heyang Li, Nicolas Normand, and Imants Svalbe

Table of Contents XI

Uniqueness Regions under Sets of Generic Projections in Discrete
Tomography . 285

Paolo Dulio, Andrea Frosini, and Silvia M.C. Pagani

Adaptive Grid Refinement for Discrete Tomography 297
Tristan van Leeuwen and K. Joost Batenburg

Morphological Analysis

Exact Evaluation of Stochastic Watersheds: From Trees to General
Graphs . 309

Filip Malmberg, Bettina Selig, and Cris L. Luengo Hendriks

On Making nD Images Well-Composed by a Self-dual Local
Interpolation . 320

Nicolas Boutry, Thierry Géraud, and Laurent Najman

Discrete Modelling and Visualization

Implicit Digital Surfaces in Arbitrary Dimensions . 332
Jean-Luc Toutant, Eric Andres, Gaelle Largeteau-Skapin, and
Rita Zrour

Algorithms for Fast Digital Straight Segments Union 344
Isabelle Sivignon

Digital Geometry from a Geometric Algebra Perspective 358
Lilian Aveneau, Laurent Fuchs, and Eric Andres

Discrete and Combinatorial Tools for Image
Segmentation and Analysis

Segmentation of 3D Articulated Components by Slice-Based
Vertex-Weighted Reeb Graph . 370

Nilanjana Karmakar, Partha Bhowmick, and Arindam Biswas

Taylor Optimal Kernel for Derivative Etimation . 384
Henri-Alex Esbelin and Remy Malgouyres

On Finding Spherical Geodesic Paths and Circles in Z3 396
Ranita Biswas and Partha Bhowmick

Discrete Curve Evolution on Arbitrary Triangulated 3D Mesh 410
Sergii Poltaretskyi, Jean Chaoui, and Chafiaa Hamitouche-Djabou

Author Index . 423

Facet Connectedness of Discrete Hyperplanes

with Zero Intercept: The General Case

Eric Domenjoud1, Xavier Provençal2, and Laurent Vuillon2

1 CNRS, Loria, UMR CNRS 7503, Nancy, France
Eric.Domenjoud@loria.fr

2 Université de Savoie, LAMA, UMR CNRS 5127, Chambéry, France
{Xavier.Provencal,Laurent.Vuillon}@univ-savoie.fr

Abstract. A digital discrete hyperplane in Zd is defined by a normal
vector v, a shift μ, and a thickness θ. The set of thicknesses θ for which
the hyperplane is connected is a right unbounded interval of R+. Its
lower bound, called the connecting thickness of v with shift μ, may be
computed by means of the fully subtractive algorithm. A careful study of
the behaviour of this algorithm allows us to give exhaustive results about
the connectedness of the hyperplane at the connecting thickness in the
case μ = 0. We show that it is connected if and only if the sequence of
vectors computed by the algorithm reaches in finite time a specific set of
vectors which has been shown to be Lebesgue negligible by Kraaikamp
& Meester.

Keywords: discrete hyperplane, connectedness, connecting thickness,
fully subtractive algorithm.

1 Preliminaries

In order to prevent any ambiguity, we denote by N0 the set of nonnegative inte-
gers (N0 = {0, 1, 2, . . .}), and by N1 the set of positive integers (N1 = {1, 2, . . .}).
We denote by R+ the set of non-negative real numbers. Given d ∈ N1, (e1, . . . , ed)
denotes the canonical basis of Rd. The usual scalar product on Rd is denoted
by 〈 . , . 〉. For any vector v ∈ Rd, ‖v‖1 and ‖v‖∞ denote respectively the

usual 1-norm and ∞-norm of v, which means ‖v‖1 =
∑d

i=1 |vi|, and ‖v‖∞ =
maxi |vi|. Given v ∈

⋃
d�1 R

d, we denote by #v the dimension of the space v

belongs to, that is to say, v ∈ R#v. Given v = (v1, . . . , vd) ∈ Rd we denote by
dimQ(v1, . . . , vd), or simply by dimQ(v) the dimension of v1 Q + · · ·+ vd Q as a
vector space over Q. If dimQ(v1, . . . , vd) = 1 then we denote by gcd(v1, . . . , vd),
or simply by gcd(v), the greatest real number γ such that vi/γ is an integer
for all i. Two distinct points x and y in Zd are facet-neighbours (neighbours for
short) if ‖x−y‖1 = 1 or equivalently if x−y = ±ei for some i ∈ {1, . . . , d}. This
notion of neighbouring refers to the representation of a point in Zd as a voxel,
i.e as a unit cube centred at the point. Two points are facet-neighbours if the
voxels representing them share a facet. A path in Zd is a sequence (x1, . . . ,xn)

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 E. Domenjoud, X. Provençal, and L. Vuillon

such that xi−1 and xi are neighbours for all i ∈ {2, . . . , n}. A subset S of Zd is
connected if it is not empty, and for all pairs of points x and y in S, there exists
a path (x1, . . . ,xn) in S such that x1 = x and xn = y.

Given a vector v ∈ Rd \ {0}, and two real numbers μ and θ, the arithmetic
discrete hyperplane with normal vector v, shift μ, and thickness θ [1,11], denoted
by P(v, μ, θ), is the subset of Zd defined by

P(v, μ, θ) = {x ∈ Zd | 0 � 〈v,x〉 + μ < θ}. (1)

Given a vector v ∈ Rd \ {0} and a shift μ ∈ R, we are interested in the set
of values θ for which P(v, μ, θ) is connected. This set is known to be a right-
unbounded interval of R+ [5]. Its lower bound is called the connecting thickness
of v with shift μ, and is denoted by Ω(v, μ). By definition, P(v, μ, θ) is connected
if θ > Ω(v, μ), and disconnected if θ < Ω(v, μ). The question that we address
in this work is the connectedness of P(v, μ, θ) at the critical thickness Ω(v, μ),
i.e. whether P(v, μ,Ω(v, μ)) is connected or not. In most cases, it is easily shown
that the answer is negative. Only for a specific class of vectors, the answer was
unknown up to now, although some partial results have been established [2,3].
We present here the general case when μ = 0.

The problem of computing the connecting thickness has already been ad-
dressed several times [4,5,6,8,9,10]. This computation may be performed by
means of the fully subtractive algorithm [12]. We recall it briefly in the next
section, and by the way, we give some useful properties.

2 Computation of the Connecting Thickness

Let us start by giving some bounds on Ω(v, μ) which will be useful later.

Theorem 1 ([5]). Let d � 1, v ∈ Rd \ {0}, and μ, θ ∈ R.

– If v has exactly one non zero coordinate vi, then P(v, μ, θ) is connected if
and only if θ > μ mod |vi| = μ mod gcd(v). Therefore, for all μ, we have
Ω(v, μ) = μ mod gcd(v).

– If v has at least two non zero coordinates then let ξ(v) = min{|vi| | vi �= 0}.
• If θ � ‖v‖∞ then P(v, μ, θ) is disconnected for all μ.
• If θ � ‖v‖∞ + ξ(v) then P(v, μ, θ) is connected for all μ.

Therefore, for all μ, we have ‖v‖∞ � Ω(v, μ) � ‖v‖∞ + ξ(v).

The problem of computing the connecting thickness may first be simplified
thanks to the following relation [5] which allows us to get rid of the shift μ in
the computations:

Ω(v, μ) =

{
Ω(v, 0) + (μ mod gcd(v)) if dimQ(v) = 1;

Ω(v, 0) if dimQ(v) � 2.

We are then left to compute Ω(v, 0) that we simply denote by Ω(v). For conve-
nience, we shall usually write Ω(v1, . . . , vd) instead of Ω

(
(v1, . . . , vd)

)
. The prob-

lem may be further simplified thanks to the observation that for any permutation

Connectedness of Discrete Hyperplanes with Zero Intercept 3

σ of {1, . . . , d}, P(v, μ, θ) is connected if and only if P((|vσ(1)|, . . . , |vσ(d)|), μ, θ)
is connected [5]. We may therefore assume that v belongs to (R+)d \ {0}, and
that its coordinates are suitably ordered. In the sequel, we denote by O+

d the
set of vectors v ∈ Rd \ {0} such that 0 � v1 � · · · � vd. Finally, if v ∈ O+

d and
v1 = 0, then P((0, v2, . . . , vd), μ, θ) is connected if and only if P((v2, . . . , vd), μ, θ)
is connected.

The following theorem is the key to the computation of Ω(v). It appears under
various forms and in various contexts in the literature.

Theorem 2 ([5,6,8,9,10]). Let d � 2, v ∈ O+
d , and v′ = (v1, v2 − v1, . . . , vd −

v1). For all μ, θ ∈ R, P(v, μ, θ) is connected if and only if P(v′, μ, θ − v1) is
connected. Therefore, Ω(v, μ) = v1 +Ω(v′, μ).

We define π and σ as:

π :
⋃

d�2R
d →

⋃
d�2 R

d−1

(v1, v2, . . . , vd) 	→ (v2, . . . , vd);

σ :
⋃

d�2R
d →

⋃
d�2 R

d

(v1, v2, . . . , vd) 	→ (v1, v2 − v1, . . . , vd − v1).

Thanks to Th. 2 and to the preceding remarks, given v ∈ O+
d , we may compute

Ω(v) recursively as follows:

Ω(v) =

⎧⎪⎪⎨⎪⎪⎩
0 if #v = 1,

Ω(π(v)) if #v � 2 and v1 = 0,

v1 +Ω
(
sort(σ(v))

)
if #v � 2 and v1 > 0,

where ‘sort’ orders the coordinates of its argument in non decreasing order.
The algorithm deduced from these equations is known as the Ordered Fully

Subtractive algorithm (OFS) [12]. In effect, OFS computes a possibly infinite
sequence of pairs (vn,Ωn)n�1 defined by:

(
v1,Ω1

)
=
(
sort(v), 0

)
and for all n � 1 such that #vn � 2,(

vn+1,Ωn+1
)
=

{(
π(vn),Ωn

)
if vn1 = 0;(

sort(σ(vn)),Ωn + vn1
)

if vn1 > 0.

If #vn = 1 for some n, then OFS actually terminates, and the sequence is finite.
This sequence has the following properties. For all θ, μ ∈ R and all n � 1 such
that

(
vn,Ωn

)
is defined:

• Ωn =
∑n−1

i=1 vi1;
• Ω(v, μ) = Ωn +Ω(vn, μ);
• P(v, μ, θ) is connected if and only if P(vn, μ, θ − Ωn) is connected;
• P(v, μ,Ω(v, μ)) is connected if and only if P(vn, μ,Ω(vn, μ)) is connected.

4 E. Domenjoud, X. Provençal, and L. Vuillon

At each step of the algorithm, either v decreases componentwise, or the num-
ber of coordinates of v decreases, which may happen only finitely many times.
Also, Ωn is increasing and bounded by Ω(v). OFS is therefore convergent in the
sense that vn and Ωn tend towards limits v∞ and Ω∞. However, it terminates
if and only if dimQ(v1, . . . , vd) = 1.

If OFS terminates, which means that at some step n0, we have #vn0 = 1,
then Ω(v) = Ωn0 , and for all μ ∈ R,

Ω(v, μ) = Ωn0 + (μ mod gcd(v)). (2)

If OFS does not terminate, then for all μ ∈ R, we have

Ω(v, μ) = Ω(v) = Ω∞ + ‖v∞‖∞. (3)

Indeed, for all n � 1, we have Ω(v, μ) = Ωn + Ω(vn, μ), and, by Th. 1, we
have ‖vn‖∞ � Ω(vn, μ) � ‖vn‖∞ + ξ(vn). Since limn→∞ ξ(vn) = 0, we get
Ω(v, μ) = limn→∞(Ωn + Ω(vn, μ)) = Ω∞ + ‖v∞‖∞. In this case, there must
exist n0 such that #vn � 2, and vn1 > 0 for all n � n0. Let d∞ = #vn0 . Note
that d∞ � 2. Then for all n � n0, we have ‖vn+1‖1 = ‖vn‖1 − (d∞ − 1) vn1 , so
that

Ω∞ = Ωn0+

∞∑
n=n0

vn1 = Ωn0+

∞∑
n=n0

‖vn‖1 − ‖vn+1‖1
d∞ − 1

= Ωn0+
‖vn0‖1 − ‖v∞‖1

d∞ − 1
.

For all μ ∈ R, we get

Ω(v, μ) = Ω(v) = Ωn0 +
‖vn0‖1 − ‖v∞‖1

d∞ − 1
+ ‖v∞‖∞. (4)

In particular, if vn1 > 0 for all n, then n0 = 1 and d∞ = d, so that

Ω(v) =
‖v‖1 − ‖v∞‖1

d− 1
+ ‖v∞‖∞. (5)

Theorem 3 ([9,10]). Let d � 2 and v ∈ O+
d . If v

n
1 > 0 for all n, then

lim
n→∞

vn = 0 if and only if ‖vn‖∞ � ‖vn‖1/(d− 1) for all n.

According to this theorem, if ‖vn‖∞ � ‖vn‖1/(d∞ − 1) for all n � n0, then
Eq. (4) becomes Ω(v) = Ωn0 + ‖vn0‖1/(d∞− 1). In particular, if n0 = 1, we get

Ω(v) =
‖v‖1
d− 1

. (6)

3 Connectedness at the Connecting Thickness

By definition of Ω(v, μ), P(v, μ, θ) is disconnected for all θ < Ω(v, μ), and con-
nected for all θ > Ω(v, μ). The question we want to answer now is whether
P(v, μ,Ω(v, μ)) is connected. This question has an easy answer when OFS ter-
minates, which means when dimQ(v) = 1.

Connectedness of Discrete Hyperplanes with Zero Intercept 5

Theorem 4. If dimQ(v) = 1 then P(v, μ,Ω(v, μ)) is disconnected for all μ ∈ R.

Proof. When dimQ(v) = 1, gcd(vn) is obviously an invariant of OFS. There-
fore, when the halting condition is reached, we have vn = γ e1 where γ =
gcd(v1, . . . , vd). Then P(v, μ,Ω(v, μ)) is connected if and only if P(vn, μ,Ω(vn, μ))
is connected. But Ω(vn, μ) = μ mod γ, and P(vn, μ,Ω(vn, μ)) = {x ∈ Z | 0 �
γ x+ μ < μ mod γ}. This set is empty, hence disconnected.
�

If OFS does not terminate, then Ω(v, μ) = Ω(v), and after some step n0, no
coordinate of the vector vanishes anymore, meaning that vn1 > 0 for all n � n0.
Then P(v, μ,Ω(v)) is connected if and only if P(vn0 , μ,Ω(vn0)) is connected.
Therefore, we shall now study the case of vectors such that vn1 > 0 for all n.

Theorem 5. If vn1 > 0 for all n, and ‖vn‖∞ � ‖vn‖1/(d− 1) for some n, then
P(v, μ,Ω(v)) is disconnected for all μ ∈ R.

The following lemma will be useful for the proof of this theorem.

Lemma 6. Let d � 3 and v ∈ O+
d . If there exists r ∈ {2, . . . , d − 1} such that

dimQ(v1, . . . , vr) � 2, and vr+1 � Ω(v1, . . . , vr) then Ω(v) = vd.

Proof. If v1 = 0 then we have r � 3 because dimQ(v1, . . . , vr) � 2, and the
conditions of the theorem still hold for (v2, . . . , vd), taking d′ = d − 1 and r′ =
r − 1. We may therefore assume, without loss of generality, that v1 > 0. Then

Ω(v) = v1 +Ω(v1, v2 − v1, . . . , vr − v1, vr+1 − v1, . . . , vd − v1),

and
Ω(v1, . . . , vr) = v1 +Ω(v1, v2 − v1, . . . , vr − v1).

Let v′ = (v1, v2 − v1, . . . , vd − v1) and v′′ = sort(v′). We have v′r > 0 since
otherwise we would have v1 = · · · = vr, hence dimQ(v1, . . . , vr) = 1. We
also have dimQ(v

′
1, . . . , v

′
r) = dimQ(v1, . . . , vr) � 2. Hence, (v′1, . . . , v

′
r) has at

least two non zero coordinates. By hypothesis, we have v′r+1 = vr+1 − v1 �
Ω(v1, v2, . . . , vr)− v1 = Ω(v1, v2 − v1, . . . , vr − v1) = Ω(v′1, v

′
2, . . . , v

′
r), which, by

Th. 1, implies v′r+1 � ‖(v′1, . . . , v′r)‖∞. Hence, (v′′1 , . . . , v
′′
r) = sort(v′1, . . . , v

′
r),

and (v′′r+1, . . . , v
′′
d) = (v′r+1, . . . , v

′
d) = (vr+1 − v1, . . . , vd − v1). Thus, v

′′ still
satisfies the conditions of the theorem. Furthermore, when we apply OFS to v,
for all n, we have ‖vn‖∞ = vn#vn = vd−Ωn. Therefore, Ω(v) = Ω∞+ ‖v∞‖∞ =
Ω∞ + (vd − Ω∞) = vd.
�

Proof of Th. 5 (sketch). For all n � 1 and all r ∈ {2, . . . , d}, we consider Kn
r =

(r − 1) vnr − (vn1 + · · · + vnr). We check that, as long as vn1 > 0, Kn
r is always

increasing, both in r and in n. We define r0 as the smallest index r such that
Kn

r � 0 for some n, and n0 as the smallest index n such that Kn
r0 � 0. Since

Kn
2 = −vn1 < 0, we have r0 � 3.
We prove that dimQ(v

n0
1 , . . . , vn0

r0−1) � 2, and Ω(vn0
1 , . . . , vn0

r0−1) = (vn0
1 + · · ·+

vn0
r0−1)/(r0 − 2) � vn0

r0 . By Lemma. 6, we get Ω(vn0) = vn0

d = ‖vn0‖∞. Then, by
Th. 1, P(vn0 , μ,Ω(vn0)), hence P(v, μ,Ω(v)), is disconnected for all μ ∈ R.
�

6 E. Domenjoud, X. Provençal, and L. Vuillon

We are now left to consider the case where vn1 > 0 and ‖vn‖1 > (d−1) ‖vn‖∞
for all n. That is to say, where vn1 > 0 for all n but v does not satisfy the second
condition of Th. 5. For d � 2, We note Kd the set of such vectors. Kraaikamp &
Meester [9] have shown that Kd is Lebesgue negligible for all d � 3. If v ∈ Kd

then, by Th. 3, v∞ = 0 so that Ω(v) = ‖v‖1/(d − 1). From what precedes,
it is the only case where vn1 > 0 for all n, and P(v, μ,Ω(v)) could possibly be
connected. Some partial results have already been published in the literature.

A first result was obtained in [2] for the case where v = (α, α + α2, 1), and
α is the inverse of the Tribonacci number, which means α3 + α2 + α − 1 = 0.
We have v ∈ K3, and it has been shown that P(v, 0,Ω(v)) is connected, and
P(v,Ω(v),Ω(v)) is disconnected.

For the case d = 3, it has been shown in [3] that P(v, 0,Ω(v)) is connected for
all vectors in K3. The proof relies on techniques from the field of substitutions
on planes, and seems difficult to extend to higher dimensions.

In the sequel, we shall address the general case, and prove that P(v, 0,Ω(v))
is connected for all v ∈ ∪d�2Kd. Note that in the case d = 2, the condition of
Kraaikamp & Meester becomes vn2 < vn1 + vn2 which always holds if vn1 > 0 for
all n, i.e. if dimQ(v1, v2) = 2. In this case, we have Ω(v1, v2) = v1 + v2 = ‖v‖1.
By Th. 1, P(v, μ,Ω(v)) is connected for all μ ∈ R.

4 Main Connectedness Result

In order to establish the main result of this work, we need to study carefully the
behaviour of the fully subtractive algorithm. To do so, we consider an unordered
version of this algorithm, which means that the coordinates of the vector are not
ordered anymore. This works as follows: as long as #v � 2, if some coordinate
is zero, it is erased, otherwise, a minimal coordinate is subtracted from all other
ones. We call this algorithm UFS for Unordered Fully Subtractive.

For all k � 1, we define σk and πk as:

σk :
⋃

d�k R
d →

⋃
d�k R

d

(v1, . . . , vk, . . . , vd) 	→ (v1 − vk, . . . , vk−1 − vk, vk, vk+1 − vk, . . . , vd − vk);

πk :
⋃

d�k R
d →

⋃
d�k R

d−1

(v1, . . . , vk, . . . , vd) 	→ (v1, . . . , vk−1, vk+1, . . . , vd).

UFS computes a possibly infinite sequence of pairs (vn,Ωn)n�1 defined by:

(
v1,Ω1

)
=
(
v, 0
)
, and for all n � 1 such that #vn � 2,(

vn+1,Ωn+1
)
=

{(
πi0(v

n),Ωn
)

if vni0 = 0;(
σi0(v

n),Ωn + vni0
)

if vni0 = mini v
n
i > 0.

Note that UFS is not deterministic since several coordinates of vn could be
minimal. However, OFS and UFS generate the same sequence (Ωn)n�1 and if

Connectedness of Discrete Hyperplanes with Zero Intercept 7

(vn)n�1 and (v′n)n�1 are the sequences of vectors generated respectively by
OFS and UFS, we have vn = sort(v′n) for all n.

From now on, we consider a vector v in (R+)d such that UFS never erases a
coordinate, meaning that mini v

n
i > 0 for all n. We consider the infinite sequence

Δ(v) = (δn)n�1 ∈ {1, ..., d}ω where δn is the index of the minimal coordinate
of vn which is subtracted from all other ones. For all n � 1, we have Δ(v) =
δ1 · · · δn0−1 Δ(vn), vn = σδn−1 . . . σδ1(v), and Ωn = v1δ1 + · · · + vn−1

δn−1
. We set

θn = vnδn so that Ωn =
∑n−1

i=1 θi. Note that, by hypothesis, θn > 0 for all n. We
have

θn = vnδn = 〈vn, eδn〉 = 〈σδn−1 . . . σδ1(v), eδn〉 = 〈v, tσδ1 . . .
tσδn−1(eδn)〉

where tσ denotes the transpose of σ. We set Tn = tσδ1 . . .
tσδn−1(eδn) so that,

for all n, we have 〈v,Tn〉 = θn. The sequence (Tn)n�1 has some nice properties.

Lemma 7 ([7]). If the first occurrence in Δ(v) of some k ∈ {1, . . . , d} is at
position n, meaning that δn = k, and δi �= k for all i < n, then T1+· · ·+Tn = ek.

Lemma 8 ([7]). If m and n are the positions of two consecutive occurrences in
Δ(v) of some k ∈ {1, . . . , d}, meaning that m < n, δm = δn = k and δi �= k for
all i ∈ {m+ 1, . . . , n− 1}, then Tm+1 + · · ·+Tn = Tm.

Lemma 9 ([7]). If i � j < k and δj �= δk then 〈v, (T1 + · · ·+Tk)+Ti〉 � Ω∞.
Therefore, (T1 + · · ·+Tk) +Ti /∈ P(v, 0,Ω(v)).

We recall now the construction of the geometric palindromic closure of Δ(v)
[7]. This construction builds incrementally a connected subset of Zd, which is
easily shown to be included in P(v, 0,Ω(v)). We shall show that it is in fact
exactly P(v, 0,Ω(v)) when v ∈ Kd.

We define a sequence (Pn)n�0 of subsets of Zd by:

P0 = {0}, and Pn = Pn−1 ∪ (Pn−1 +Tn) for n � 1.

Theorem 10 ([7]). P∞ = lim
n→∞

Pn is connected.

The set P∞ is the geometric palindromic closure of Δ(v) in Zd [7]. From the
definition of Pn, we get the following characterisation:

Pn =

{∑
i∈I

Ti | I ⊆ {1, . . . , n}
}

for all n � 0;

P∞ =

{∑
i∈I

Ti | I ⊂ N1, |I| <∞
}
.

The inclusion P∞ ⊆ P(v, 0,Ω(v)) is straightforward. From what precedes, each
x in P∞ may be written as x =

∑
i∈I Ti, for some finite subset I of N1. Then

〈v,x〉 =
∑

i∈I〈v,Ti〉 =
∑

i∈I θi ∈ [0; Ω(v)[. Hence, x belongs to P(v, 0,Ω(v)).
In the sequel, we prove that we have also P(v, 0,Ω(v)) ⊆ P∞, provided that each
k ∈ {1, . . . , d} occurs infinitely many times in Δ(v). The lemma below states
that it is the case if v ∈ Kd.

8 E. Domenjoud, X. Provençal, and L. Vuillon

Lemma 11. If v ∈ Kd then each k ∈ {1, . . . , d} occurs infinitely many times in
Δ(v).

Proof. Assume, by contradiction, that v ∈ Kd, and some k ∈ {1, . . . , d} does
not occur anymore in Δ(v) for n � n0. Since v ∈ Kd ⇐⇒ vn0 ∈ Kd, and
Δ(v) = δ1 · · · δn0−1 Δ(vn0), we may assume, without loss of generality, that
n0 = 1, i.e. that k never occurs in Δ(v). Then for all n > 1, we have vnk =

vn−1
k − θn−1 = vk −

∑n−1
i=1 θi = vk −Ωn. Since v ∈ Kd, we have limn→∞ vn = 0,

so that vk = limn→∞ Ωn = Ω∞ = ‖v‖1/(d − 1). But vk � ‖v‖∞ and, by
assumption, ‖v‖∞ < ‖v‖1/(d− 1). Hence a contradiction.
�

From now on, we assume that v belongs to Kd, so that each k ∈ {1, . . . , d}
occurs infinitely many times in Δ(v). To prove our main theorem, we still need
some additional technical results. The first lemma below is an immediate conse-
quence of the proof of Th. 13 in [7].

Lemma 12 ([7]). For all x,y in P∞, we have x− y ∈ P∞ or y − x ∈ P∞.

Theorem 13. Each x in Zd may be written as ±(α1 T1 + · · · + αm Tm) for
some m � 0 and α1, . . . , αm ∈ N0.

Proof. Let x ∈ Zd. We have x = x1 e1+ · · ·+xd ed. From lemma 7, each ek may
be written as

∑nk

j=1 Tj where nk is the index of the first occurrence of k in Δ(v).

Then x =
∑r

j=1 yj Tj for some r � 0 and y1, . . . , yr ∈ Z. Since Ti’s belong to
P∞, this last sum may always be decomposed as (U1+· · ·+Up)−(V1+· · ·+Vq)
for some p, q � 0 where Ui’s and Vi’s belong to P∞. If p > 0 and q > 0 then
either U1 − V1 = 0, in which case we may simply remove U1 and V1 from
the sum, or by lemma 12, we have either U1 −V1 = U′

1 where U′
1 ∈ P∞ or

U1−V1 = −V′
1 where V′

1 ∈ P∞. Replacing U1−V1 with either U′
1 or −V′

1,
the number of terms in the sum decreases. Repeating this process as long as
p > 0 and q > 0, yields an expression of x as ±(W1 + · · ·+Ws) for some s � 0
and W1, . . . ,Ws ∈ P∞. Now, each Wi may be written as a finite sum of Tj ’s.
Doing so, and collecting the Tj ’s yields the result.
�

Corollary 14. Each x in P(v, 0,Ω(v)) may be written as α1 T1 + · · ·+αm Tm

for some m � 0 and α1, . . . , αm ∈ N0.

Proof. We have x = ε × (α1 T1 + · · · + αm Tm) for some ε = ±1, m � 0,
and α1, . . . , αm ∈ N0. Then 〈v,x〉 = ε × (α1 〈v,T1〉 + · · · + αm 〈v,Tm〉) =
ε × (α1 θ1 + · · · + αm θm). Since x ∈ P(v, 0,Ω(v)) we have 〈v,x〉 � 0, so that
ε = +1 because θi > 0 for all i.
�

Given a nonempty subset X of Z, we denote by X�0ω the set of infinite
sequences of which the terms belong to X , and containing only finitely many
non-zero terms. We define a linear mapping ψ from the Z-module Z�0ω to Zd

by ψ(W) =
∑

i�1 wi Ti. Then P∞ = ψ({0, 1}�0ω) = {ψ(W) | W ∈ {0, 1}�0ω}.
Next lemma is the immediate reformulation of Lemmas 7 and 8 in terms of ψ.

Connectedness of Discrete Hyperplanes with Zero Intercept 9

Lemma 15

– If n is the index of the first occurrence of k in Δ(v), then ψ(1n 0ω) = ek.
– If m and n are the indexes of two consecutive occurrences of k in Δ(v), then

ψ(0m−1 0 1n−m 0ω) = ψ(0m−1 1 0n−m 0ω).

To prove that P(v, 0,Ω(v)) = P∞, it is sufficient to prove that each x in
P(v, 0,Ω(v)) may be written as ψ(W) for some W in {0, 1}�0ω. Thanks to
Cor. 14, we may find W ∈ N�

00
ω such that x = ψ(W). Using Lemma 15, we

shall transform W into W ′ ∈ {0, 1}�0ω such that ψ(W ′) = ψ(W). We define two
transformations on N�

00
ω as follows.

i = m n
Δ = · · · k · · · · · · · · · · · · · k · · ·

Reduction
W = · · · 0 w′

m+1 + 1 · · · w′
n + 1 · · ·

→W ′ = · · · 1 w′
m+1 · · · w′

n · · ·

Expansion
W = · · · u+ 2 wm+1 · · · wn · · ·

→W ′ = · · · u+ 1 wm+1 + 1 · · · wn + 1 · · ·

where m < n, and u,wm+1, . . . , wn, w
′
m+1, . . . , w

′
n � 0, and δi �= k for all i ∈

{m+ 1, . . . , n− 1}.
Since ψ is linear, according to Lemma 15, both these transformations preserve

ψ(W). Given W ∈ N�
00

ω, we apply these two transformations with the following
strategy.

First apply Reduction as much as possible.

Then, as long as wi � 2 for some i:
1. apply Expansion once at the last position m such that wm � 2;
2. apply Reduction as much as possible.

This strategy, if it terminates, obviously yields a sequence in {0, 1}�0ω since
otherwise Expansion would still apply.

Theorem 16. If W ∈ N�
00

ω and ψ(W) ∈ P(v, 0,Ω(v)), then applying Re-
duction and Expansion to W with the strategy above, terminates and yields
W ′ ∈ {0, 1}�0ω such that ψ(W ′) = ψ(W).

Before proving this theorem, let us introduce some more notation. Given a se-
quence W in N�

0, |W | is the length of W . If W ∈ N�
00

ω then |W | is the index of
the last non-zero term in W , or 0 if W = 0ω.

Proof of Th. 16 (sketch). We consider the multiset M of all terms in W which
are greater than 2. Our strategy ensures that M never increases. It decreases
each time an expansion is performed on wm · · ·wn if wm � 3. It also decreases

10 E. Domenjoud, X. Provençal, and L. Vuillon

when a reduction is performed on wm · · ·wn if a position i exists between m+1
and n such that wi � 3. Hence, after finitely many transformation steps, for
each transformation, we have wi � 2 for all i ∈ [m;n], and M does not evolve
anymore. It is therefore sufficient to prove termination when W ∈ {0, 1, 2}�0ω.

We observe that each transformation decreases W in the lexicographic or-
dering induced by 1 < 2 < 0, so that the transformation process never loops.
Although this ordering is not a well-order on infinite sequences, it is on sequences
with bounded length. Each transformation which does not increase |W |, may be
seen as operating on {0, 1, 2}|W |. Therefore, there may be only finitely many
reductions between two expansions, and the transformation process may not
terminate only if it performs infinitely many expansions which increase |W |.

Finally, let ρ2(W) be the number of maximal sub-sequences in W containing
no 0, and containing at least one 2. A careful examination of the transformation
rules shows that ρ2(W) never increases. A case analysis shows that each expan-
sion step which increases |W | is eventually followed by a reduction step which
reduces ρ2(W). The transformation process therefore terminates.
�
From this theorem and Cor. 14, we deduce that each x in P(v, 0,Ω(v)) may be
written as ψ(W) with W ∈ {0, 1}�0ω, and therefore P(v, 0,Ω(v)) ⊆ P∞.

Theorem 17. Let d � 2. For all v in Kd, P(v, 0,Ω(v)) is connected.

As a corollary we get the following result.

Corollary 18. For all v ∈ Kd, we have dimQ(v) = d.

Proof. Assume that dimQ(v) < d. Then there exists p �= 0 in Zd such that
〈v,p〉 = 0. Thus, p ∈ P(v, 0,Ω(v)), hence p = ψ(U) for some U ∈ {0, 1}�0ω.
Since p �= 0, we have U �= 0ω. Then 〈v,p〉 =

∑
i�1 ui 〈v,Ti〉 =

∑
i�1 ui θi > 0.

Hence a contradiction.
�

It should be noted that Kraaikamp & Meester actually proved Th. 3 with
the assumption that dimQ(v) = d. However, they used this hypothesis only to
ensure that vn1 > 0 for all n. As a matter of fact, an earlier version of this
theorem exists [10] with only the assumption that vn1 > 0 for all n. With this
weaker assumption, we get dimQ(v) = d as a corollary.

5 Connectedness of Hyperplanes with Non-zero Shift

We have established that for each d � 2, P(v, 0,Ω(v)) is connected for all v ∈ Kd.
The question which arises naturally is whether P(v, μ,Ω(v)) is still connected
when μ �= 0. We already know that P(v, μ,Ω(v)) is connected for all μ ∈ R

if v ∈ K2. For d � 3, we don’t have a general result. However, it has been
established in [2], for a specific vector in K3, that P(v, μ,Ω(v)) is disconnected if
μ = Ω(v). Theorem 20 below shows that this holds for all v ∈ Kd, for all d � 3.

Lemma 19 ([7]). Let Δ ∈ {1, . . . , d}ω and P∞ be the geometric palindromic
closure of Δ. Then P∞ \ {0} has exactly as many connected components as the
cardinal of {δi | i ∈ N1}.

Connectedness of Discrete Hyperplanes with Zero Intercept 11

If v ∈ Kd then each k ∈ {1, . . . , d} occurs in Δ(v). Thus, P∞ \ {0} has exactly
d connected components, and is therefore disconnected since d � 2.

Theorem 20. If d � 3 and v ∈ Kd then P(v,Ω(v),Ω(v)) is disconnected.

Proof. We have

P(v,Ω(v),Ω(v))

= {x ∈ Zd | 0 � 〈v,x〉 +Ω(v) < Ω(v)}
= {x ∈ Zd | −Ω(v) � 〈v,x〉 < 0}
= −{x ∈ Zd | 0 < 〈v,x〉 � Ω(v)}
= −
((
P(v,Ω(v),Ω(v)) \ {x ∈ Zd | 〈v,x〉 = 0}

)
∪ {x ∈ Zd | 〈v,x〉 = Ω(v)}

)
.

Since v ∈ Kd, we have Ω(v) = (v1+· · ·+vd)/(d−1), and by Cor. 18, dimQ(v) = d.
Hence the only solution in Qd of 〈v,x〉 = 0 is x = 0, and the only solution of
〈v,x〉 = Ω(v) is x1 = · · · = xd = 1

d−1 . Therefore, if d � 3, the equation 〈v,x〉 =
Ω(v) has no solution in Zd. Hence, P(v,Ω(v),Ω(v)) = −P(v, 0,Ω(v)) \ {0},
which, by Lemma 19, is disconnected.
�

6 Summary of Results and Perspectives

Let us now summarise the results of the previous sections about the connected-
ness of P(v, μ,Ω(v, μ)).

Theorem 21. Given d � 2 and v ∈ (R+)d \ {0}, we have the following results.

– If dimQ(v) = 1 then P(v, μ,Ω(v, μ)) is disconnected for all μ ∈ R.
– If dimQ(v) � 2 then let (vn)n�1 be the sequence of vectors computed by the

fully subtractive algorithm applied to v. We have Ω(v, μ) = Ω(v) for all
μ ∈ R, and P(v, 0,Ω(v)) is connected if and only if vn ∈ Kd′ for some n,
and some d′ � d. In this case:
• If d′ = 2 then P(v, μ,Ω(v)) is connected for all μ ∈ R.
• If d′ � 3 then P(v, μ,Ω(v)) is disconnected for some values of μ.
In particular, P(v,Ω(v),Ω(v)) is disconnected.

This theorem provides a complete characterisation of the connectedness of
P(v, 0, θ) at the critical thickness θ = Ω(v, 0). For the case d = 3, Th. 5.1 in [3]
already established the connectedness of P(v, 0,Ω(v, 0)) for all v ∈ K3. However,
the only if part of that theorem is wrong. The authors claim falsely that the
vectors in K3 are the only ones in (R+)3 for which P(v, 0,Ω(v)) is connected.
This is obviously false since P(v, 0,Ω(v)) is connected for all vectors of the form
(0, v2, v3) such that dimQ(v2, v3) = 2.

For v ∈ O+
3 \ K3, if dimQ(v) > 1, we have eventually vn3 � vn1 + vn2 for some

n. The mistake in the proof lies in the argument that this implies Ω(vn) = vn3 =
‖vn‖∞. Then, by Th. 1, P(vn, 0,Ω(vn)) would be disconnected. Actually, we
have Ω(vn) = vn3 only if dimQ(v

n
1 , v

n
2) = 2. When dimQ(v

n
1 , v

n
2) = 1, we have

eventually vm1 = 0 for some m, and then vm+1 = (vm2 , vm3). Since dimQ(v
m+1) =

12 E. Domenjoud, X. Provençal, and L. Vuillon

dimQ(v) > 1, we have vm+1 ∈ K2. Then P(vm+1, 0,Ω(vm+1)) is connected,
and P(v, 0,Ω(v)) as well. In this case, P(v, μ,Ω(v)) is actually connected for all
μ ∈ R. As a matter of fact, we have Ω(vn) = vn3 +gcd(vn1 , v

n
2). Take for instance

v = (1, 1,
√
2+1). This vector does not belong to K3, but after one application of

OFS, we get v2 = (0, 1,
√
2) which reduces to v3 = (1,

√
2). Now P(v3, 0,Ω(v3))

is connected so that P(v, 0,Ω(v)) is connected.

In order to effectively determine whether P(v, 0,Ω(v)) is connected, in ad-
dition to Th. 21, we still need a way to decide whether the fully subtractive
algorithm will eventually reach some Kd. At present, we are not even able to
decide whether a given vector v ∈ Rd belongs to Kd. This lets some open ques-
tions and some research directions. Given v ∈ Rd \ {0} we are interested in the
following questions:

– decide whether OFS will erase some coordinate, i.e. whether vn1 = 0 for some
n;

– if not, decide whether v belongs to Kd;
– if v ∈ Kd, characterise the values of μ for which P(v, μ,Ω(v)) is connected.

References

1. Andrès, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. CVGIP:
Graphical Model and Image Processing 59(5), 302–309 (1997)

2. Berthé, V., Domenjoud, E., Jamet, D., Provençal, X.: Fully subtractive algorithm,
tribonacci numeration and connectedness of discrete planes. RIMS Lecture notes
‘Kokyuroku Bessatu’ (to appear, 2014)

3. Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin
arithmetical discrete planes. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.
(eds.) DGCI 2013. LNCS, vol. 7749, pp. 107–118. Springer, Heidelberg (2013)

4. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput.
Sci. 319(1-3), 203–227 (2004)

5. Domenjoud, E., Jamet, D., Toutant, J.-L.: On the connecting thickness of arith-
metical discrete planes – extended version (in preparation, 2014)

6. Domenjoud, E., Jamet, D., Toutant, J.-L.: On the connecting thickness of arith-
metical discrete planes. In: Brlek, S., Reutenauer, Ch., Provençal, X. (eds.) DGCI
2009. LNCS, vol. 5810, pp. 362–372. Springer, Heidelberg (2009)

7. Domenjoud, E., Vuillon, L.: Geometric Palindromic Closures. Uniform Distribution
Theory 7(2), 109–140 (2012)

8. Jamet, D., Toutant, J.-L.: Minimal arithmetic thickness connecting discrete planes.
Discrete Applied Mathematics 157(3), 500–509 (2009)

9. Kraaikamp, C., Meester, R.W.J.: Ergodic properties of a dynamical system arising
from percolation theory. Ergodic Theory and Dynamical Systems 15(04), 653–661
(1995)

10. Meester, R.W.J.: An algorithm for calculating critical probabilities and percolation
functions in percolation models defined by rotations. Ergodic Theory and Dynam-
ical Systems 9, 495–509 (1989)

11. Réveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique.
Thèse d’état, Université Louis Pasteur (Strasbourg, France) (1991)

12. Schweiger, F.: Multidimensional continued fractions. Oxford Science Publications.
Oxford University Press, Oxford (2000)

About the Maximum Cardinality of the Digital

Cover of a Curve with a Given Length

Yan Gérard and Antoine Vacavant

ISIT, UMR 6284 CNRS / Université d’Auvergne
Clermont-Ferrand, France

{yan.gerard,antoine.vacavant}@udamail.fr

Abstract. We prove that the number of pixels -with pixels as unit lat-
tice squares- of the digitization of a curve Γ of Euclidean length l is less

than 3� l√
2
� + 4 which improves by a ratio of 4

√
2

3
the previous known

bound in 4�l� [3]. This new bound is the exact maximum that can be
reached. Moreover, we prove that for a given number of squares n, the
Minimal Length Covering Curves of n squares are polygonal curves with
integer vertices, an appropriate number of diagonal steps and 0, 1 or 2
vertical or horizontal steps. It allows to express the functions N(l), the
maximum number of squares that can be crossed by a curve of length l,
and L(n), the minimal length necessary to cross n squares. Extensions
of these results are discussed with other distances, in higher dimensions
and with other digitization schemes.

Keywords: length, cover, digitization, curve, complexity, cardinality.

1 Introduction

1.1 Multiresolution and Fixed Resolution Bounds for the Size of
the Digital Representation of a Shape

The questions that we investigate in this paper came to our attention as we were
trying to bound the size of the multiresolution representation, with quadtrees
or octrees, of a real 2D or 3D shape. Such a bound is known in the case of a 2D
shape [3]. This bound on the number of quads of the representation of a shape
is related with the maximal number of squares of size 1

2n that a curve can cross.
It means that the bound in a multiresolution framework comes from a bound,
which is computed at a fixed resolution. The fixed resolution bound used in [3]
is NumberOfPixels(Γ) ≤ 4 �l2(Γ)� where Γ is a rectifiable curve of Euclidean
length l2(Γ) and where pixels are a set of unit squares tiling the plane. This
bound comes simply from the fact that a piece of curve of length 1 can not cross
4 new unit squares. Is this bound tight? Not exactly. And -even if it is not the
purpose of this paper- the reader should keep in mind that a better bound for
this number of pixels (crossed by a curve of given length) implies better bounds
for the size of the representation of a shape in a multiresolution framework (the
construction of the multiresolution bound is described in [3]). As far as we know

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014

14 Y. Gérard and A. Vacavant

and except in previous references, this task to bound the number of squares
crossed by a curve of given length is original. Our goal is to close the problem
by computing the tightest possible bound, namely the exact maximum N(l) of
the number of pixels of the digitization of a curve Γ in function of its euclidean
length l (Fig. 1). The result that we provide is better from a factor 2

√
2 with

respect to the previous known result in 6 �l2(Γ)�.

Fig. 1. The functions N(l) and L(n) giving respectively the maximum number of
squares in the cover of a curve of length l and the minimal length necessary to cover
n squares. Expressions are given in Theorem 1. Some examples of optimal curves (a,
b,.., j) corresponding to the saillant points of the staircase function are drawn on the
right.

1.2 Notations and Problem Statement

We start to work with closed squares [i, i+1]× [j, j +1] as pixels where i and j
are integers. Given any real subset P ⊂ R2, the set S of squares which contains
at least one point of P is usually called the cover of P (see Fig. 2). We denote
it by cover(P). We are interested in the cardinality |cover(Γ)| of the cover of a
rectifiable curve Γ : [0, 1]→ R2 with respect to its Euclidean length l (we recall
that a rectifiable curve has a finite length which is defined as the upper bound
of the lengths of the polygonal lines having ordered vertices on the curve). As
an alternative terminology, we consider the number of squares crossed by the
curve Γ . Other digitization schemes will be considered in the following but the
results that we will provide for them are just consequences of the ones that we
have with closed squares.

About the Maximum Cardinality of the Digital Cover of a Curve 15

Fig. 2. A curve Γ and its cover cover(Γ) namely the set of squares crossed by Γ either
by one of their edges, or by one of their vertices

It follows from definition that the cover of a single point can have 1, 2 or 4
squares, 4 in the case of an integer point (i, j). We can notice that an horizontal
path of integer length l = k with integer vertices crosses 4+2�l� squares while a
diagonal path of length l = k

√
2 crosses exactly 4+3 l√

2
squares (see for instance

Fig. 3) which is more for k ≥ 2. Is it the maximum cardinality of the cover of
a curve with a given length? This question is solved in Theorem 1 but let us
introduce before some notations: We denote by N(l) the maximum number of
squares n that a curve Γ of length l can cross and by L(n) the minimal length l
necessary to cross n squares (existence of the minimum is proved in Lemma 2).
As the function N(l) takes discrete values as input, it is a staircase while L(n)
is the discrete function obtained by inverting the axes (see Fig. 1). Our main
objective is to provide the expressions of N(l) and L(n). This result is obtained
in two steps, a first lemma stating the existence of Minimum Length Covering
Curves of a given set of squares (Sec. 2) and a second lemma about Minimum
Length Covering Curves of a given number of squares (Sec. 3). Then, the main
theorem provides the expressions of N(l) and L(n) as well as the shape of the
optimal curves. We end with some extensions of these results (Sec. 4).

2 Minimum Length Covering Curves of a Set of Squares

Let us consider a finite set of squares S (not necessarily connected). We are
interested in the lengths l of the curves Γ which crosses S namely with inclusion
S ⊂ cover(Γ). The set of the possible lengths l is an interval since if there exists
a curve of length l crossing S, then for any ε ≥ 0, we can build a new curve Γ ′

crossing S with a length L+ ε just by adding a segment of length ε. But is this
interval of the form [L,+∞[or]L,+∞[? In other words, do these curves Γ have
a minimal length or is it a lower bound? Lemma 1 states the existence of curves
of minimal length. We call them Minimal Length Covering Curves -MLCC for
short- of S (see Fig. 4).

Before going further, notice here that we have just the inclusion S ⊂ cover(Γ)
and not equality. It makes a difference with polygonal curves known in the
specific framework of closed digital curves as Minimum Length Polygon [1] [2]
but the principle of length minimality is the same.

16 Y. Gérard and A. Vacavant

Fig. 3. Theorem 1 proves that these curves are optimal in the sense that no shorter
curve has a cover with so much squares (or crosses so much squares)

Lemma 1. Given a finite set of squares S, among all continuous curves Γ that
cross all the squares of S (S ⊂ cover(Γ)), there exists at least one with a mini-
mal length (called Minimal Length Covering Curves of S). MLCC are polygonal
curves with vertices on the edges of the squares of S.

Fig. 4. A finite set of squares S and its Minimal Length Covering Curve Γ . Notice here
that we have just the inclusion S ⊂ cover(Γ) and not equality. We can also notice that
MLCC can have non integral vertices.

Proof. The lemma states two things: first the existence of the Minimal Length
Covering Curves, and secondly a structural property of these curves. Let us start
with the second point: the structure of MLCC.

Assume that a MLCC is not a polygonal curve, then there exists in its cover
a square in which it is not polygonal. The curve goes in this square by a point
x on its boundary and goes oustide of it by another point y. The shortest path
to go from x to y is -of course- the segment [xy]. It means that by replacing the
arc of Γ from x to y by this segment, we reduce its length, which contradicts
the hypothesis of length minimality (see Fig. 5).

It follows that the curve is polygonal. It follows also from previous remark that
it cannot have vertices in the interior of the squares. The vertices are necessarily
on the edges of the squares.

About the Maximum Cardinality of the Digital Cover of a Curve 17

Fig. 5. A curve of minimal length crossing a set of pixel is necessarily polygonal.
Otherwise, shorter curves would exist.

It remains to prove the first point of the lemma: the existence of a Minimum
Length Covering Curve of S, in other words the fact that the lower bound of
the lengths of the curves crossing S is a minimum. We consider a sequence of
curves Γi verifying S ⊂ cover(Γi) with a length Li that converges to the lower
bound of the lengths l of the curves crossing the n squares of S. Our goal is now
to build a MLCC of S, namely a curve Γ of length l covering S.

Fig. 6. A set of (red) squares S, a curve Γ and the corresponding ordering of the
squares (the ambiguity between the indices 1 and 2 is removed with the rule east
before west). The curve is decomposed into 5 pieces Γ

sk
i in the red squares (in the

square of index 1, this piece is reduced to a point) and 4 pieces Γ
link(sk→sk+1)

i from
the square sk to sk+1 (the second piece is also reduced to a point).

Let us introduce properly the order of the squares of S crossed by Γi (see
Fig. 6). We define it as the sequence of the squares in the order where the curve
arrives in them, but some precisions are required: the curve can reach an integer
point or follow an edge with the consequence that in some cases, we may have
some ambiguities for the choice of the next square. We can avoid these small
difficulties just by using in this case a rule such that north before south and
in a second time east before west. It provides a decomposition of the curve

Γi =
⋃

k(Γ
sk
i

⋃
Γ

link(sk→sk+1)
i) where Γ sk

i is a continuous arc of Γi in the square

sk of S and where Γ
link(sk→sk+1)
i is a continuous arc going from the square sk

to the square sk+1 (in the case of neighboring squares in S, these arcs may be
reduced to points). We can also define the point xk of entry of the curve Γi in
its kth square sk and yk its kth point of exit (in the case where the initial point
starts in a square of S as in Fig. 6, we choose it as x0 and the same for the end
point). We can already notice that without loss of generality, the piece of curve

18 Y. Gérard and A. Vacavant

Γ k
i can be replaced by the segment going from xk to yk in the square of index

k while the piece Γ
link(sk→sk+1)
i can be replaced by a segment going from yk to

xk+1. It just decreases the length of the curve with the consequence that the
property of convergence of the lengths of these curves is preserved. Moreover,
we still respect the local topology of the curve.

There is nevertheless a possible unwanted property: the sequence of the squares
sk may be infinite. It is easy to see that the curve cannot cross an infinite number
of different squares, since its length is bounded but the sequence may be infinite
due to repetitions (if there are some kinds of accumulations). In this case, we
are going to replace the curve Γi by a shorter curve Γ ′

i with, this time, a finite
sequence of squares. As it is shorter, the convergence of the length L2(Γ

′
i) is

again preserved. How do we build Γ ′
i? Just by cutting useless loops:

If Γi crosses a square s, it may cross it several other times for indices k, k′,
k′′... to have a path going to another square of S which has not been crossed
before. It means that if the square s is crossed more than n times (we recall that
n is the cardinality of the set S), it makes some loops and some of these loops
are useless because they don’t cross ”new” squares of S (new in the sense that
they were never crossed before). These useless loops going outside from s are
replaced in a new curve Γ ′

i by short segments in s without loosing any square of
S. Then after this cut, Γ ′

i is shorter than Γi and it remains at most n loops for
each square and thus n repetitions. Hence, the sequence of squares of S crossed
by the curve Γ ′

i is finite and bounded by n2.
We know now that for all curves Γi, our sequences of the squares contain at

most n2 squares of S. It follows that the set of the orders of the squares ski of
S crossed by the curves Γi is finite and one of these orders appears an infinite
number of times in the sequences of the orders of the curves Γi. We consider now
the subsequence of curves Γij with this order: they have all exactly the same
sequence of squares sk for 1 ≤ k ≤ n′ (with n′ ≤ n2). We can now focus on the
points of entry xj,k and exit yj,k for the curve Γi in the square sk. Then we have
2n′ sequences of points of index j. As they move in compact sets (they belong to
the boundary of a square) and the product of a finite number (here 2n′ ≤ 2n2)
of compacts is still compact, we can extract from these 2n′ sequences a unique
sequence such that limj→+∞ xj,k = xk and limj→+∞ yj,k = yk. It just remains
to lie the points xk to yk and yk to xk+1 by a segment in order to obtain a new
curve Γ . What can we say about the length of Γ ? The length of Γ or Γij is the
sum of the lengths of all their pieces in the squares sk and between the squares:

L(Γij) =

n′∑
k=0

d(xj,k, yi,k) +

n′−1∑
k=0

d(yj,k, xi+1,k)

L(Γ) =

n′∑
k=0

d(xk, yk) +

n′−1∑
k=0

d(yk, xk).

About the Maximum Cardinality of the Digital Cover of a Curve 19

It follows by continuity of the distance limj→+∞ L(Γij) = L(Γ). It proves that
the length of the curve Γ is the lower bound and thus: we have built a curve Γ
covering S of minimal length.

In many cases, the vertices of the MLCC are not only on the edges but on the
integer points of the grid. Nevertheless, in some particular cases, it can occur
that a vertex of the minimal curve is not an integer point but on one of the edges
(see an example Fig. 6).

Lemma 1 deals with a finite set of squares S. If S has now an infinite cardi-
nality, then all covering curves are of infinite length since the diameter of S is
itself infinite. MLCC are not defined in this case.

At last, we can notice that Lemma 1 holds in higher dimensions, with hyper-
cubes instead of squares, and curves of dimension 1.

3 Minimum Length Covering Curves of n Squares

3.1 About Their Existence

Previous lemma proves the existence of a Minimum Length Covering Curve for
a given finite set of squares S. Let us now relax the condition on S by assuming
that we know only its cardinality. Hence, we provide a number of squares n and
ask about the existence of a minimal length for the curves crossing n squares or
more.

Lemma 2. Given a natural integer n, there exists curves Γ of minimal length
crossing n squares (for any curve P crossing n squares or more, L(P) ≥ L(Γ)).
We call them Minimal Length Covering Curve of n squares.

Proof. Given a number of squares n (just the number), we can consider all
the possible configurations of sets of n squares. We can reduce ourselves to 4-
connected configurations, with the consequence that, up to a translation, there
are only a finite number of such configurations. Thus, due to Lemma 1, the lower
bound of the lengths of curves crossing n squares is in fact a minimum that is
obtained for some polygonal curves with vertices on the edges of the squares.

3.2 MLCC of n Squares and Expressions of L(n) and N(l)

We can at last express the functions N(l) and L(n) and provide the exact struc-
ture of Minimal Length Covering Curves of n squares.

Theorem 1. Minimal Length Covering Curves of n squares are made of 0, 1 or
2 horizontal or vertical steps and an arbitrary number of diagonal steps (Fig. 1).

– If l mod
√
2 < 2mod

√
2, then N(l) = 3� l√

2
� + 4 (optimal curves have � l√

2
�

diagonal steps).

20 Y. Gérard and A. Vacavant

– If 2mod
√
2 ≤ l mod

√
2 < 1 and l > 1, then N(l) = 3� l√

2
� + 5 (optimal

curves have � l√
2
� − 1 diagonal steps and 2 horizontal or vertical steps). If

2 −
√
2 ≤ l < 1, we have still N(l) = 4 (the first step of the staircase is

broken).
– If 1 ≤ l mod

√
2, then N(l) = 3� l√

2
�+ 6 (optimal curves have � l√

2
� diagonal

steps and 1 horizontal or vertical step).

Conversely, function L(n) is:

– L(1) = L(2) = L(3) = L(4) = 0, L(5) = 1.
– If nmod3 = 0 (and n ≥ 6), then L(n) = 1 + (n3 − 2)

√
2.

– If nmod3 = 1 (and n ≥ 6), then L(n) = (�n3 � − 1)
√
2.

– If nmod3 = 2 (and n ≥ 6), then L(n) = 2 + (�n3 � − 2)
√
2.

Proof. The first step is to prove that a MLCC of n squares is necessarily a
polygonal curve with integer vertices. Let Γ be a MLCC of n squares. It is
of course a MLCC of its cover cover(Γ). We assume that Γ has a non integral
vertex, and we are going to build another curve Γ ′ with the same length crossing
at least the same number n of squares. Then Γ ′ optimality will have consequences
on the structure of Γ .

If we consider that the first or the last vertices are not integral, it is easy to see
that it contradicts length minimality (there is only the particular case of a single
horizontal or vertical segment but even in this case, it is clear that such segments
with non integral vertices are not MLCC of n squares). Thus the extremities of
a MLCC are integral points. Now, let us consider a non integral intermediary
vertex v of Γ on the edge e between two squares si and si+1 and obtain a
contradiction. If we consider the quadrants of its edges, only one configuration
among four is compatible with length minimality (Fig. 7).

Fig. 7. If we consider a non integral vertex of Minimum Length Covering Curve, we
can imagine four cases a), b), c) or d) according to the quadrant of the direction of the
next edge towards the initial one. Among these four cases represented here, only one
is possible since the three others contradict the minimality of the length of the curve.

This only possible configuration allows to unfold the curve by a sequence of
symmetries so that the cardinality of the cover of the images of each segment is
preserved at each step (Fig. 8). At the end, as the curve is completly unfolded,

About the Maximum Cardinality of the Digital Cover of a Curve 21

Fig. 8. The fact that only case from Fig. 7-d) can occur in a MLCC allows to unfold
any MLCC with a sequence of symetries that preserve the cardinality of the covers
of each edge. Hence the unfolded curve Γ ′ has the same length than Γ (MLCC of n
squares), crosses at least the same number of squares -it is still a MLCC of n squares-
and due to monotonicity, case from Fig. 7-d) cannot occur anymore.

we obtain a monotonic curve Γ ′ such that its cover has at least the same num-
ber of squares than Γ . As Γ ′ has the same length and crosses at least the same
number of squares, it is still a MLCC of n squares. Its length is minimal and
due to monicity, there can exist no more intermediary vertices such as in Fig. 7.
It follows that all intermediary vertices of Γ ′ are integer points.

Let us now consider a segment of Γ ′ going for instance from (0, 0) to (a, b)
where (a, b) are coprime positive integers. The initial point (0, 0) is in 4 squares.
The last one too. And the segment crosses a−1 vertical edges and b−1 horizontal
edges. As there is no integer point in the inner part of the segment, it makes
5+a+b squares. Now let us assume that 0 < b < a and compare with a horizontal
segment (a, 0). It crosses 4 + 2a squares which is at least equal to the 5 + a+ b
squares of the segment (a, b). And (a, 0) is shorter. It follows that Γ ′ cannot
have a segment (a, b) different from (1, 0), (1, 1), or (0, 1) because otherwise, by
replacing the segment (a, b) by (a, 0), we obtain a shorter path crossing at least
the same number of squares. If we come back to our initial MLCC Γ , it proves
that a MLCC of n squares can contain only segments in horizontal, vertical and
diagonal directions, and whatever the order of these steps, as soon as the cover
has no loop, it does not change the number of squares. It follows that any MLCC
of n squares can be unfolded in a polygonal curve with a horizontal segment (a, 0)
and a diagonal one (b, b). The length is a + b

√
2 and the number of squares is

4 + 2a + 3b. Knowing these structural properties, the MLCC of n squares are
characterized by the minimization problem: minimize a+ b

√
2 under constraints

n ≤ 4 + 2a + 3b with positive integer values a and b. This minimum provides
the value of the function L(n). The other way to consider the question is the
converse one: the maximum of 4+2a+3b subject to constraint a+b

√
2 ≤ l, with

a and b positive integers provides the value of the function N(l) (see Fig. 9).
The critical values are given by integer points (a, b) with left triangle of slopes

− 2
3 and −

√
2
2 which does not contain any other integer point. It follows that only

three values of a are possible: 0, 1 or 2 (if a ≥ 3, then (a′, b′) = (a − 3, b + 2)
verifies also N ≤ 4 + 2a′ + 3b′ with a better score i.e smaller length a′ + b′

√
2 =

22 Y. Gérard and A. Vacavant

Fig. 9. On the left, L(n) is the minimum of a+b
√
2 ≤ l under constraint n ≤ 4+2a+3b

with (a, b) ∈ N2. On the right, N(l) is the maximum of 4 + 2a + 3b under constraint

a + b
√
2 ≤ l. Due to the respective slopes of the extremal lines −

√
2

2
and − 2

3
, the

optimal points have coordinates a equal to 0, 1 or 2 (the red points).

a + b − 3 + 2
√
2). Then the optimal curves are mainly diagonal with 0, 1 or 2

horizontal or vertical steps. Without more details here, it leads to the expressions
of functions L(n) and N(l) expressed in Theorem 1.

4 Extensions of the Results

Let us give an overview of the consequences and extensions of Theorem 1.

4.1 With Other Kinds of Covers

In the case of some other kinds of covers, for instance by considering squares
[i, i + 1[×[j, j + 1[whose union is a partition of the plane R2, Minimal Length
Covering Curves no more exist since the lower bound is not a minimum anymore.
Nevertheless, the difference for the functions N(l) remains small : if the curve
Γ is a MLCC of a set of closed squares S (as previously), then we just have to
add a little loop around each integer point or each edge that it crosses to build
a curve of length L(Γ) + ε which has exactly the same cover (see Fig. 10). It
follows in this case

Theorem 2. With the squares [i, i+ 1[×[j, j + 1[, we have
If l mod

√
2 ≤ 2mod

√
2, then N(l) = 3� l√

2
�+ 4

If 2mod
√
2 < lmod

√
2 ≤ 1, then N(l) = 3� l√

2
�+ 5

If 1 < lmod
√
2, then N(l) = 3� l√

2
�+ 6.

4.2 With Closed Curves

If we restrict ourselves to closed curves, we have clearly Nclosed(l) ≤ N(l) while
Lclosed(n) ≥ L(n). We can also notice that a square in the diagonal direction

About the Maximum Cardinality of the Digital Cover of a Curve 23

Fig. 10. Given a curve Γ with its cover S in the sens of closed squares [i, i+1]×[j, j+1],
for any ε > 0, we can build new curves Γ ′ of length L(Γ ′) ≤ L(Γ) + ε with the same
cover S but now in the sens of semi-open squares [i, i+ 1[×[j, j + 1[

with sides of length k
√
2 and integer vertices is a closed curve of length l = 4k

√
2

which crosses exactly 12k = 3� l√
2
� ≤ 12� l

4
√
2
� squares. It follows

12� l

4
√
2
� ≤ Nclosed(l) ≤ N(l) ≤ 6 + 12� l

4
√
2
�.

It means in particular that the difference between the values of the functions for
closed and general curves remains bounded by a small constant.

4.3 In Dimension d

The results presented here could be generalized in dimension d: the first intuition
is to consider that the MLCC of n hypercubes in Rd will follow paths in the
”hyper”-diagonal direction of the hypercubes. A path of k hyperdiagonal steps
has a length k

√
d for a number of hypercubes equal to 2d + (2d − 1)k. The ratio

is 2d−1√
d
. This should be compared with a path which remains for instance in

the hyperplane xd = 0 and an hyperdiagonal direction in this plane. Such a
path crosses 2(2d−1 + (2d−1− 1)k) hypercubes (the coefficient 2 comes from the
hypercubes centered with xd = + − 1

2) for k steps of length
√
d− 1. The ratio

is 2 2d−1−1√
d−1

. The comparison between these two ratios shows that the second one

is greater than the first one except for d = 2. It follows that some MLCC in
dimension d are in fact MLCC drawn in dimension 2 with all other coordinates
equal to integers. If we notice Nd(l) the maximal number of hypercubes crossed
by a curve of length l in dimension d, then Nd(l) ≥ 2d−2N2(l) which makes

more hypercubes than the 2d + 2d−1√
d
l hypercubes crossed by an hyperdiagonal

path.

4.4 With Other Distances

With L1 norm instead of Euclidean norm for the length of the curve, the expres-
sions of N(l) and L(n) are quite straightforward. We just have to notice that
following the curve, new squares appear each time that a line x = i or y = j is

24 Y. Gérard and A. Vacavant

crossed. The L1 distance necessary to cross two consecutive lines is 1. It follows
N(l) = 4 + 2�l� and L(n) = �n−3

2 � (for n > 2). MLCC of n squares are just
polygonal curves with horizontal and vertical segments.

5 Conclusion

In this article, we have given a precise expression of two functions,N(l) and L(n),
which respectively calculates the maximum number of squares in the cover of a
curve of length l, and the minimal length to cover n squares. These results were
obtained by constructing MLCC, curves of minimal length for a given number
of squares n. We have also extracted some possible extensions of this work, with
other distances, higher dimensions or particular classes of curves.

In our study, we aim at using these results in a multiresolution scheme, based
on quadtrees or octrees. Like in this paper, we have to determine the values
of the functions N(l) and L(n), guided this time by appropriate tree traversal
strategies.

The next future work is to consider surfaces instead of curves in any arbi-
trary dimension d > 2. However, it is no more possible to bound the number
of hypercubes covered by a surface in function of its area since there exists
surfaces of area as small as necessary crossing all the hypercubes of compact
domain. It makes the MACS (Minimum Area Covering Surfaces) problem of n
hypercubes completely different. Several ideas could be followed by considering
specific classes of surfaces or another characteristic of the surface that may be
related again with curves length.

References

1. Montanari, U.: A note on minimal length polygonal approximation to a digitized
contour. Communications of the ACM 13(1), 41–47 (1970)

2. Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized
silhouettes. IEEE Trans. Computers 21(3), 260–268 (1972)

3. Hunter, G., Steiglitz, K.: Operations on images using quad trees. IEEE Trans.
PAMI 1(2), 145–153 (1979)

Binary Pictures with Excluded Patterns

Daniela Battaglino1, Andrea Frosini2, Veronica Guerrini1,
Simone Rinaldi1, and Samanta Socci1

1 Università di Siena, Dipartimento di Matematica e Informatica,
Pian dei Mantellini 44, 53100 Siena

2 Università di Firenze, Dipartimento di Sistemi e Informatica,
viale Morgagni 65, 50134 Firenze

Abstract. The notion of a pattern within a binary picture (polyomino)
has been introduced and studied in [3], and resembles the notion of pat-
tern containment within permutations. The main goal of this paper is
to extend the studies of [3] by adopting a more geometrical approach:
we use the notion of pattern avoidance in order to recognize or describe
families of polyominoes defined by means of geometrical constraints or
combinatorial properties. Moreover, we extend the notion of pattern in
a polyomino, by introducing generalized polyomino patterns, so that to
be able to describe more families of polyominoes known in the literature.

1 Patterns in Binary Pictures and Polyomino Classes

In recent years a considerable interest in the study of the notion of pattern
within a combinatorial structure has grown. This kind of research started with
patterns in permutations [12], while in the last few years it is being carried
on in several directions. One of them is to define and study analogues of the
concept of pattern in permutations in other combinatorial objects such as set
partitions [11,14], words, trees [13]. The works [3,4] fit into this research line,
in particular [4] introduces and studies the notion of pattern in finite binary
pictures (specifically, in polyominoes).

A finite binary picture is an m × n matrix of 0’s and 1’s. Intuitively speaking,
1’s correspond to black pixels (which constitute the image) and the 0’s corre-
spond to white pixels (which form the background). Often, the studied images
should fulfill several additional properties like symmetry, connectivity, or con-
vexity. In particular, an image is connected if the set of black pixels is connected
with respect to the edge-adjacency relation. A connected image is usually called
a polyomino (see Figure 1).

The work [3], from which we borrow most of the basic definitions and no-
tations, uses an algebraic setting to provide a unified framework to describe
and handle some families of binary pictures (in particular polyominoes), by the
avoidance of patterns. Therefore, in order to fruitfully present our paper, we
need to recall some definitions and the main results from [3].

Let M be the class of binary pictures (or matrices). We denote by � the usual
subpicture (or submatrix) order on M, i.e. M ′ � M if M ′ may be obtained from
M by deleting any collection of rows and/or columns.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 25–38, 2014.
c© Springer International Publishing Switzerland 2014

26 D. Battaglino et al.

0 0 0 0 1 0 0

0 0 1 1 1 0 1

1 1 1 1 1 1 1

0 0 1 0 1 1 1

0 0 1 0 0 1 0

0 0 0 0 0 1 1

(a) (b)

Fig. 1. A polyomino and its representation as a binary picture (or matrix)

Notice that, in a binary picture representing a polyomino the first (resp. the
last) row (resp. column) should contain at least a 1. We can consider the re-
striction of the submatrix order � on the set of polyominoes P. This defines the
poset (P,�P) and the pattern order between polyominoes: a polyomino P is a
pattern of a polyomino Q (which we denote P �P Q) when the binary picture
representing P is a submatrix of that representing Q. We point out that the
order �P has already been studied in [8] under the name of subpicture order,
where the authors – among other things – proved that (P,�P) contains infinite
antichains, and it is a graded poset (the rank function being the semi-perimeter
of the bounding box of the polyominoes).

This allows to introduce a natural analogue of permutation classes for poly-
ominoes: a polyomino class is a set of polyominoes C that is downward closed
for �P : for all polyominoes P and Q, if P ∈ C and Q �P P , then Q ∈ C.
Basing on the results obtained in [1], in [3] the authors proved that some of
the most famous families of polyominoes, including: the bargraphs, the convex,
the column-convex, the L-convex, the directed-convex polyominoes, are indeed
polyomino classes. On the other side, there are also well-known families of poly-
ominoes which are not polyomino classes, like: the family of polyominoes having
a square shape, the family of polyominoes having exactly k > 1 columns, or the
directed polyominoes (see Section 4).

Similarly to the case of permutations, for any set B of polyominoes, let us
denote by AvP (B) the set of all polyominoes that do not contain any element
of B as a pattern. Every such set AvP (B) of polyominoes defined by pattern
avoidance is a polyomino class. Conversely, like for permutation classes, every
polyomino class may be characterized in this way [3].

Proposition 1. For every polyomino class C, there is a unique antichain B of
polyominoes such that C = AvP (B). The set B consists of all minimal polyomi-
noes (in the sense of �P) that do not belong to C.

We call B the polyomino-basis (or p-basis for short), to distinguish from other
kinds of bases. We observe that, denoting AvM (M) the set of binary matrices
that do not have any submatrix in M, we have AvP (M) = AvM (M) ∩P .

On the other side, it is quite natural to describe classes of polyominoes by
the avoidance of submatrices, then we introduce the notion of matrix-basis (or

Binary Pictures with Excluded Patterns 27

m-basis) of a polyomino class C, which is every antichain M of matrices such
that C = AvP (M). Differently from the p-basis, the m-basis needs not be unique.

Example 1 (Injections). Let I be the class of injections, i.e. polyominoes having
at most a zero entry for each row and column such as, for instance

101

0111

1110

1011

11

01

11

11

1

1

1

11

11

01

1

The set I is clearly a polyomino class, and its p-basis is given by the minimal
polyominoes which are not injections, i.e. the twelve polyominoes on the top of
Fig. 2. An m-basis of I is clearly given by set

M =

{[
0 0
]
,

[
0
0

]}
.

Moreover, consider the sets:

M1 =

⎧⎨⎩[0 1 0
]
,
[
1 0 0

]
,
[
0 0 1

]
,

⎡⎣01
0

⎤⎦ ,
⎡⎣00
1

⎤⎦ ,
⎡⎣10
0

⎤⎦⎫⎬⎭ , M2 =M1∪

⎧⎨⎩
⎡⎣00
0

⎤⎦⎫⎬⎭ .

We may easily check thatM1 andM2 are antichains (see Fig. 2), and that their
avoidance characterizes injections: I = AvP (M1) = AvP (M2). So, alsoM1 and
M2 are m-bases, although M1 ⊂M2.

We recall [3] that the p-basis and an m-basis of a polyomino class are related
by the following.

Proposition 2. Let C be a polyomino class, and letM be an m-basis of C. Then
the p-basis of C consists of all polyominoes that contain a submatrix in M, and
that are minimal (w.r.t. �P) for this property.

0

10

000

1

1

11 1110

11

1

1

0 0

0

0

0

0

1

0

01 1

1 1

1

10

0

1

10

1

1

1 1

0

0

0

01

1

1

11

0

00

0 1

1

1

1 1

0

0

0

11

1

1

1

1

0

0

0

1

1

0

0

1

1 1

0

1

0

0

0 1

1

0 0 1

11 1

01

Fig. 2. The p-basis and some m-bases of I

28 D. Battaglino et al.

The reader can check the previous property in Fig. 2 for the case of the class
I of injections.

The main goal of this paper is to extend the studies of [3,4] by adopting
a more geometrical approach: we use the notion of pattern avoidance in order
to recognize or describe families of polyominoes defined by means of geomet-
rical constraints or combinatorial properties. In particular, we will develop the
following research topics:

i) robust polyomino classes, i.e. polyomino classes C where there is an m-basis
containing the p-basis. We will show that in this case, the p-basis is the
minimal antichain M for set inclusion, and for �, such that AvM (M) = C.

ii) given a set of patterns M, study the class of polyominoes avoiding the
patterns of M as submatrices, and give a characterization of this class in
terms of the geometrical/combinatorial properties of its elements.

iii) extend the notion of pattern in a polyomino, by introducing generalized
polyomino patterns, so that to be able to describe more families of polyomi-
noes known in the literature. Such a generalization resembles what has been
done for pattern avoiding permutations with the introduction of vincular,
bivincular patterns [5].

For brevity sake, some of the proofs will be omitted. The interested reader can
find all the proofs of the paper in Chapter 3 of [2], and the proof of Proposition 10
in the Appendix.

2 Robust Polyomino Classes

Every polyomino class is equipped with (at least) two basis, the p-basis and the
m-basis. A natural question is to investigate the relation between the p-basis
and the m-basis, and in particular to understand the conditions that render the
p-basis the most compact way to describe a polyomino class.

Definition 1. A class is robust when all m-bases contain the p-basis.

The p-basis of a robust class has remarkable minimality properties.

Proposition 3. Let C be a robust class, and let P be its p-basis. Then, P is the
unique m-basis M which satisfies:

(1.) M is a minimal subset subject to C = AvP (M), i.e. for every strict subset
M′ of M, C �= (M′);

(2.) for every submatrix M ′ of some matrix M ∈ M, we have M ′ = M or
C �= AvP (M′)), with M′ =M\ {M} ∪ {M ′}.

Proof. Condition (1.) follows directly by Proposition 2. Let us assume that Con-
dition (2.) does not hold, i.e. there exists a proper submatrix M ′ of some matrix
M ∈ P such that C = AvP (P ′), with P ′ = P \ {M} ∪ {M ′}. So we have that
P ′ �P P and P ′ is an m-basis of C. Since C is a robust class we have that

Binary Pictures with Excluded Patterns 29

P �P P ′ and then P = P ′, in particular M = M ′. Suppose that there exists
another m-basisM �= P satisfying (1.) and (2.). By Proposition 2, every pattern
ofM is contained in some pattern of P , thus P containsM. Since C is a robust
class, then P ⊆M, so P =M.
�

We point out that Condition (1.) ensures minimality in the sense of inclusion,
while Condition (2.) ensures minimality for �.

Example 2. Let be C = AvP (P, P
′), where P, P ′ are depicted in Figure 3. The

class C is not robust, in fact there is an m-basis M disjoint from the p-basis:

P =

=D 1D =
10

11

10

01

11

01

0

1

0

1

1

1
01

0 11

1

M=

p−basisP’ =

2

Fig. 3. A non robust class

In practice, P and P ′ are precisely the minimal polyominoes which contain
M as a pattern, then by Proposition 2, AvP (P, P

′) = AvP (M).

In this section, we try to establish some criteria to test the robustness of a
class of polyominoes. First, we prove that it is easy to test robustness of a class
whose basis is made of just one element:

Proposition 4. Let M be a pattern. Then, AvP (M) is robust if and only if M
is a polyomino.

Proof. If M is not a polyomino, then its p-basis is clearly different from P , so
AvP (M) is not robust. On the other side, let us assume that M is a polyomino
and that AvP (M) is not robust. Let us assume that an m-basis of Av(M) is
made of a (non polyomino) matrix M ′ such that M ′ �P M . Since M ′ is not
a polyomino then it contains at least two disconnected elements B and C, and
there are at least two possible ways to connect B and C (by rows or by columns).
So, there exists at least another polyomino P �= M such that M ′ �P P , and
P belongs to the p-basis of AvP (M

′). Thus, AvP (M) ⊆ AvP (M
′). The same

technique can be used to prove that an m-basis of Av(M) canont be made of
more than one matrix.
�

30 D. Battaglino et al.

Now, we aim at extending the previous result to a generic set of polyominoes,
i.e. find sufficient and necessary conditions such that, given set of polyominoes
P , the class AvP (P) is robust.

Proposition 5. Let be P1, P2 two polyominoes and let be C = AvP (P1, P2). If
for every element P in P1 ∧ P2 we have that:

(1) P is a polyomino, or

(2) every chain from P to P1 (resp. from P to P2) contains at least a polyomino
P ′ (resp. P ′′), different from P1 (resp. P2), such that P �P P ′ �P P1 (resp.
P �P P ′′ �P P2),

then C is robust.

Proof. Clearly, if P1 ∧ P2 contains only polyominoes, then C is robust. On the
other side, let P ∈ P1 ∧P2, with P a non polyomino pattern; then by (2.) every
chain from P to P1 (resp. from P to P2) contains at least a polyomino P ′ (resp.
P ′′), different from P1 (resp. P2). If C was not robust, P ′ (resp. P ′′) should
belong to the p-basis in place of P1 (resp. P2).
�

Example 3. Let us consider the class C = AvP (P1, P2), where P1 and P2 are
the polyominoes depicted in Figure 4. Here, as shown in the picture, P1 ∧ P2

contains six elements, and four of them are not polyominoes. However, one can
check that, for each item P of these four matrices, there is a polyomino in the
chain from P to P1 (resp. from P to P2). Thus, by Proposition 5, the class C is
robust.

1

1

1

0

1

0

1 0

0 1

1 1

0 1

1 0

1 1
. 1

0

1

10 1

101

0

P =2P =1 1

10 1

1 0

1 1 1

0 1 1 1

0

0 1

1 0

1

0 1

1
1 1 1 0 1P P 2

Fig. 4. A robust class

Binary Pictures with Excluded Patterns 31

However, the statement of Proposition 5 cannot be inverted, as we can see in
the following example.

Example 4 (Parallelogram polyominoes). We recall that a parallelogram poly-
omino is a polyomino whose boundary can be decomposed in two paths, the
upper and the lower paths, which are made of north and east unit steps and
meet only at their starting and final points (see Fig. 5 (c)). We can easily
prove that parallelogram polyominoes can be represented by the avoidance of the
submatrices:

M1 =

[
1 0
1 1

]
, M2 =

[
1 1
0 1

]
.

These two patterns form a p-basis for the class P of parallelogram polyominoes.
Clearly

M1 ∧M2 =

{[
1 1
]
,

[
1
1

]
,
[
0
]}

.

If P was not robust, then M =
[
0
]
should belong to the an m-basis of P ; pre-

cisely, we should have AvP (M) = P . But this is not true, since clearly AvP (M) is
the class of rectangles. Thus, P is robust. Observe that the set {M1,M2, [1 0 1]}
forms an m-basis of the class, but it is not minimal w.r.t. set inclusion.

3 Classes of Polyominoes Defined by Submatrix
Avoidance

As we have mentioned, several families of polyominoes covered in the literature
can be characterized in terms of submatrix avoidance. In particular, if the family
of polyominoes is defined by imposing geometric constraints on its elements, then
these constraints can be naturally represented by the avoidance of some matrix
patterns. For instance, in [4] it was proved that the convexity constraint can be
represented by the avoidance of the two submatrices:

H =
[
1 0 1

]
and V =

⎡⎣10
1

⎤⎦ .

Similarly, in [3] it was proved that the families of directed-convex, column-
convex, stack polyominoes are polyomino classes. In this section, we consider
some polyomino classes which can be represented by the avoidance of subma-
trices, and deal with the problem of giving a combinatorial/geometrical charac-
terization to these classes. Most of these classes have not been considered yet
in the literature, and they show quite simple characterizations and interesting
combinatorial properties.

Polyominoes avoiding rectangles. Let Om,n be set of rectangles – binary pictures
with all the entries equal to 1 – of dimension m × n (see Figure 6 (a)). With
n = m = 2 these objects (also called snake-like polyominoes) have a simple
geometrical characterization.

32 D. Battaglino et al.

0

(c)

(a) (b)

1 1

1

(d)

Fig. 5. (a) a convex polyomino; (b) a directed polyomino; (c) a parallelogram poly-
omino; (d) an L-convex polyomino

(a) (b)

Fig. 6. (a) a snake-like polyomino; (b) a snake

Proposition 6. Every snake-like polyomino can be uniquely decomposed into
three parts: a unimodal staircase polyomino oriented with respect to two axis-
parallel directions d1 and d2 and two (possibly empty) L-shaped polyominoes
placed at the extremities of the staircase. These two L-shaped polyominoes have
to be oriented with respect to d1, d2.

We have studied the classes AvP (Om,n), for other values of m,n, obtaining
similar characterizations which here are omitted for brevity.

Snakes. Let us consider the family of snake-shaped polyominoes (briefly, snakes)
– as that shown in Fig. 6 (b):

Proposition 7. The family of snakes is a polyomino class, which can be de-
scribed by the avoidance of the following polyomino patterns:

Hollow stacks. Let us recall that a stack polyomino is a convex polyomino con-
taining two adjacent corners of its minimal bounding rectangle (see Fig. 7 (a)).
Stack polyominoes clearly form a polyomino class, described by the avoidance
of the patterns:

1

0 1101 0 1

111

Binary Pictures with Excluded Patterns 33

A hollow stack (polyomino) is a polyomino obtained from a stack polyomino
P by removing from P a stack polyomino P ′ which is geometrically contained
in P and whose basis lie on the basis of the minimal bounding rectangle of P .
Figure 7 (b), (c) depict two hollow stacks.

(a) (b) (c)

Fig. 7. (a) a stack polyomino; (b), (c): hollow stacks

Proposition 8. The family H of hollow stack polyominoes forms a polyomino
class with p-basis given by:

Rectangles with rectangular holes. Let R be the class of polyominoes obtained
from a rectangle by removing sets of cells which have themselves a rectangular
shape, and such that there is no more than one connected set of 0’s for each row
and column. The family R can easily be proved to be a polyomino class, and
moreover:

Fig. 8. A rectangle with rectangular holes

Proposition 9. The class R can be described by the avoidance of the patterns:

[
0 1 0

]
,

⎡⎣01
0

⎤⎦ [1 0
0 0

] [
0 1
0 0

] [
0 0
1 0

] [
0 0
0 1

]
.

34 D. Battaglino et al.

4 Generalized Matrix Patterns

As already pointed out, there are several families of polyominoes that are not
polyomino classes. Amongst them, we have mentioned directed polyominoes and
polyominoes without holes. By Proposition 1, these families of polyominoes can-
not be expressed in terms of submatrix avoidance. In order to overcome this
problem, we extend the notion of pattern in a polyomino, by introducing gener-
alized polyomino patterns, so that to be able to describe more families of poly-
ominoes. Our generalization resembles what has been done for pattern avoiding
permutations with the introduction of vincular, bivincular patterns [5].

L-convex polyominoes. A convex polyomino is k-convex if every pair of its cells
can be connected by a monotone path with at most k changes of direction, and
k is called the convexity degree of the polyomino [8] . For k = 1 we have the
L-convex polyominoes, where any two cells can be connected by a path with at
most one change of direction (see Fig. 5 (d)). Recently, L-convex polyominoes
have been considered from several points of view: in [9,10] the authors solve
the main enumeration problems for L-convex polyominoes, while in [7] they
approach them from a language-theoretical perspective. In [3] it was shown that
L-convex polyominoes form a polyomino class, and they can be represented by
the avoidance of the submatrices:

H =
[
1 0 1

]
, V =

⎡⎣10
1

⎤⎦ , S1 =

[
1 0
0 1

]
, S2 =

[
0 1
1 0

]
.

2-convex polyominoes. Differently from L-convex polyominoes, 2-convex poly-
ominoes do not form a polyomino class. As a matter of fact, the 2-convex poly-
omino in Figure 9 (a) contains the 3-convex polyomino (b) as a pattern, so the
class is not downward closed w.r.t. �P . Similarly, the set of k-convex polyomi-
noes is not a polyomino class, for k ≥ 2.

In practice, this means that 2-convex polyominoes cannot be described in
terms of pattern avoidance. In order to be able to represent 2-convex polyominoes
we extend the notion of pattern avoidance, introducing the generalized pattern

0

0

00

1

1

1

1 0

0

1

1

1

11

1

(d)

(c)(b)
(a)

1

1

1

1

1

11

1

0

0

0

0

00

0

1

1

1 10

0

0

0

1 0

0

1

0

1

0

1

10

001

011

11

1

Fig. 9. (a) a 2-convex polyomino P ; (b) a pattern of P that is not a 2-convex polyomino;
(c) a generalized pattern, which is not contained in (a), but is contained in the 3-convex
polyomino (non 2-convex) (d)

Binary Pictures with Excluded Patterns 35

avoidance. Our extension consists in imposing the adjacency of two columns or
rows by introducing special symbols, i.e. vertical/horizontal lines: with A being
a pattern, a vertical line between two columns of A, ci and ci+1 (a horizontal
line between two rows ri and ri+1), will read that ci and ci+1 (respectively ri
and ri+1) must be adjacent. When the vertical (resp. horizontal) line is external,
it means that the adjacent column (resp. row) of the pattern must touch the
minimal bounding rectangle of the polyomino. Moreover, we will use the ∗ symbol
to denote 0 or 1 indifferently.

Proposition 10. The class of 2-convex polyominoes can be can be described by
the avoidance of the set M of generalized patterns:

1

0

11 0 1 *

0

0

0

1

0

1

1

0

*0

*

1

1

1

0

0

*

0*

0

1

1

1

0

0

*

1 * 0 0

* 1 * 0

0 * 1 *

0 0 * 1

0 0 * 1

0 * 1 *

* 1 * 0

1 * 0 0

0

0*

*

0

1

0

1

1

The proof of Proposition 10 is reported in the Appendix. Let us just ob-
serve, referring to Fig. 9, that the pattern (c) is not contained in the 2-convex
polyomino (a), but it is contained in the 3-convex polyomino (d). It is possible
generalize the previous result and give a characterization of the class of k-convex
polyominoes, with k > 2, using generalized patterns.

Directed polyominoes. A polyomino P is directed when every cell of P can be
reached from a distinguished cell (called the source) by a path – internal to
the polyomino – that uses only north and east steps. Figure 5 (b) depicts a
directed polyomino. The reader can simply check that the class of the directed
polyominoes is not a polyomino class by observing that – in the picture – the
four marked cells represent a polyomino which is not directed.

Proposition 11. The class of directed polyominoes can be represented as the
class of polyominoes avoiding the following patterns

*

1

0

0 1

0

This proof is analogous to that of Proposition 10, and also relies on the set
of patterns determined in [3], whose avoidance describes the class of directed-
convex polyominoes. We would like to point out that there are families of poly-
ominoes which cannot be described, even using generalized pattern avoidance.
For instance, the reader can easily check that one of these families is that of
polyominoes having a square shape.

36 D. Battaglino et al.

References

1. Barcucci, E., Frosini, A., Rinaldi, S.: On directed-convex polyominoes in a rectan-
gle. Discrete Math. 298(1-3), 62–78 (2005)

2. Battaglino, D.: Enumeration of polyominoes defined in terms of pattern avoidance
or convexity constraints, PhD thesis (University of Sienna), arXiv:1405.3146v1
(2014)

3. Battaglino, D., Bouvel, M., Frosini, A., Rinaldi, S.: Permutation classes and poly-
omino classes with excluded submatrices. ArXiv 1402.2260 (2014)

4. Battaglino, D., Bouvel, M., Frosini, A., Rinaldi, S., Socci, S., Vuillon, L.: Pattern
avoiding polyominoes. In: Proceedings di Italian Conference Theoretical Computer
Science, Palermo, Settembre 9-11 (2013)

5. Bona, M.: Combinatorics of permutations. Chapman-Hall and CRC Press (2004)
6. Brändén, P., Claesson, A.: Mesh patterns and the expansion of permutation statis-

tics as sums of permutation patterns. Electr. J. of Combin. 18(2) (2011) (The
Zeilberger Festschrift volume)

7. Brocchi, S., Frosini, A., Pinzani, R., Rinaldi, S.: A tiling system for the class of
L-convex polyominoes. Theor. Comput. Sci. 457, 73–81 (2013)

8. Castiglione, G., Restivo, A.: Ordering and Convex Polyominoes. In: Margenstern,
M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 128–139. Springer, Heidelberg (2005)

9. Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Combinatorial
aspects of L-convex polyominoes. European J. Combin. 28, 1724–1741 (2007)

10. Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: Enumeration of L-convex
polyominoes by rows and columns. Theor. Comput. Sci. 347, 336–352 (2005)

11. Klazar, M.: On abab-free and abba-free sets partitions. European J. Combin. 17,
53–68 (1996)

12. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Volume 1: Funda-
mental algorithms; Addison-Wesley Series in Computer Science and Information
Processing. Addison-Wesley Publishing Co., Reading (1975)

13. Rowland, E.: Pattern avoidance in binary trees. J. Combin. Theory Ser. A 117,
741–758 (2010)

14. Sagan, B.E.: Pattern avoidance in set partitions. Ars Combin. 94, 79–96 (2010)

Binary Pictures with Excluded Patterns 37

Appendix

Proof of Proposition 10. We recall that in a 2-convex polyomino, for each two
cells, there is a path connecting them, which uses only two types of steps among
n, s, e, w (north, south, east and west unit steps, respectively) and has at most
two changes of direction. Moreover, for any two cells c1 and c2 of a polyomino,
the minimal number of changes of direction from c1 to c2 can be computed from
just two paths, starting with a vertical and a horizontal step, respectively, in
which every side has maximal length. We will refer to these as the extremal
paths connecting c1 and c2.
(⇒) If P is a 2-convex polyomino then P avoidsM.
Let us assume by contradiction that P is a 2-convex polyomino containing one
of the patterns ofM, clearly not H and V , by convexity. For simplicity sake, we
will consider only the two patterns of M,

Z1 =

⎡⎣0 * 1
* 1 0
1 0 0

⎤⎦ and Z2 =

⎡⎢⎢⎣
0 0 * 1
0 * 1 *
* 1 * 0
1 * 0 0

⎤⎥⎥⎦ ,

since the proof for the other patterns can be obtained by symmetry. If P contains
Z1 (resp. Z2) then it has to contain a submatrix P ′ (resp. P ′′) of the form:

P ′ =

0 ∗ 1
∗ 1 0
.
.
.
1 0 0

P ′′ =

0 . . . 0 ∗ . . . 1
.
0 . . . ∗ 1 . . . ∗
∗ . . . 1 ∗ . . . 0
.
1 . . . ∗ 0 . . . 0

,

where the 0, 1, ∗ are the elements of Z1 (resp. Z2) and the dots can be replaced
by 0, 1 indifferently, clearly in agreement with the convexity and polyomino con-
straints.

Among all the polyominoes which can be obtained from P ′ (resp. P ′′), the

one having the minimal convexity degree is that, called P
′
(resp. P

′′
), having

the maximal number of 1 entries. It is easy to verify that the minimal number of

changes of direction requested to connect the 1 entries in boldface of P
′
(resp.

P
′′
) is three, so P ′ (resp. P

′′
) is a 3-convex polyomino, which contradicts our

assumption.

(⇐) If P avoidsM then P is a 2-convex polyomino.
Again by contradiction let us assume that P avoids M and it is a 3-convex

polyomino, i.e. there exist two cells of P , c1 and c2, such that any path from c1
to c2 requires at least three changes of direction.

Let us take into consideration the two extremal paths from c1 to c2. The only
possible cases are the following (up to rotation):

- the two extremal paths are distinct, Fig. 10 (a);

38 D. Battaglino et al.

- one of the extremal paths does not exist, see Fig. 10 (b);
- the two extremal paths coincide after the first change of direction, see
Fig. 10 (c);

- the two extremal paths coincide after the second change of direction, see
Fig. 10 (d).

(a) (d)(b) (c)

Fig. 10. The possible cases of extremal paths connecting the cells c1 and c2

Here, we will consider only the first case, since the others are abalogous: as
sketched in the picture below, the polyomino P of Fig. 10 (a) has to contain a
submatrix P ′ – given by the boldface entries – of the form:

1 0

0

0

0

0

1

0 0

1

11

1

1

11

It is easy to see that such a submatrix is one of those that we can obtain re-
placing appropriately the symbol ∗ in the pattern Z2. So, P contains Z2 against
the hypothesis. We point out that the pattern Z1, and its rotations, can be ob-
tained from the pattern Z2 (or its rotation) replacing appropriately the ∗ entries,
but we need to consider them in order to include the 3-convex polyominoes with
three rows or columns.
�

2D Topological Map Isomorphism for

Multi-Label Simple Transformation Definition

Guillaume Damiand, Tristan Roussillon, and Christine Solnon

Université de Lyon, CNRS, LIRIS, UMR5205, INSA-Lyon, F-69622 France

Abstract. A 2D topological map allows one to fully describe the topol-
ogy of a labeled image. In this paper we introduce new tools for compar-
ing the topology of two labeled images. First we define 2D topological
map isomorphism. We show that isomorphic topological maps correspond
to homeomorphic embeddings in the plane and we give a polynomial-time
algorithm for deciding of topological map isomorphism. Then we use this
notion to give a generic definition of multi-label simple transformation
as a set of transformations of labels of pixels which does not modify the
topology of the labeled image. We illustrate the interest of multi-label
simple transformation by generating look-up tables of small transforma-
tions preserving the topology.

Keywords: Combinatorial maps, 2D topological maps isomorphism, la-
beled image, simple points, simple sets.

1 Introduction

Image processing often needs to group pixels into clusters having some common
properties (which can be colorimetric, semantic, geometric. . .). One way to de-
scribe these clusters is to use labeled images where a label is associated with
each pixel. Given two labeled images, it is interesting to be able to decide if they
have the same topology. This can be useful for example for object tracking or
image analysis. A related question is to decide whether a labeled image can be
transformed into another one while preserving the topology of the partition. This
second question is interesting to propose a deformable model with a topological
control for example. In this paper, these two problems are addressed.

Many data-structures were proposed to describe the topology of labeled im-
ages. A well-known one is the Region Adjacency Graph (RAG) [12]: the image
is partitioned into regions corresponding to sets of connected pixels; the RAG
associates a node with every region and an edge with every pair of adjacent re-
gions. RAGs are used in different image processings like image segmentation [14]
or object recognition [9]. However a RAG does not fully describe the topology of
a partition in regions: it does not represent multi-adjacency relations nor the or-
der of adjacent regions when turning around a given region. Thus two partitions
having different topologies may be described by isomorphic RAGs.

2D topological maps [3] are more powerful data structures for describing the
topology of subdivided objects as they fully describe the topology of labeled

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 39–50, 2014.
c© Springer International Publishing Switzerland 2014

40 G. Damiand, T. Roussillon, and C. Solnon

images. They combine 2D combinatorial maps (2-maps [10]), describing the
topology of subdivided objects (multi-adjacency relations as well as the order
of adjacent regions when turning around a given region) with enclosure trees,
describing region enclosure relations.

In this paper, we define isomorphism between topological maps and we show
that two labeled images are homeomorphic if their associated topological maps
are isomorphic. We describe a polynomial-time algorithm for checking whether
two topological maps are isomorphic, thus providing an efficient way of deciding
whether two labeled images are homeomorphic. Then we use the isomorphism
definition of topological maps in order to give a simple definition of multi-label
simple transformation (called ML-simple), i.e. a set of modifications of labels of
pixels that preserve the topology of the whole partition. Lastly we use all these
tools in order to generate different look-up tables of ML-simple transformations
allowing to test in amortized constant time if two local configurations are equiv-
alent, and allowing to retrieve in linear time in the size of the output all the
configurations that are equivalent.

In Sect. 2 we introduce all the preliminary notions on labeled images, com-
binatorial maps, isomorphism and homotopic deformation. In Sect. 3 we de-
fine topological map isomorphism and present the algorithm allowing to test
if two topological maps are isomorphic. Section 4 introduces the definition of
ML-simple transformation and shows that it is possible to restrict the test of
topological map isomorphism on bounding boxes around the modified pixels. In
Sect. 5 we present the construction of look-up tables of ML-simple transforma-
tions. We conclude and give some perspectives in Sect. 6.

2 Preliminary Notions

2.1 Labeled Images and Partitions into Regions

A 2D labeled image is a triple (Id, L, l), where Id ⊆ Z2 is a set of pixels (the image
domain), L is a finite set of labels, and l : Z2 → L is a labeling function which
associates a label with every pixel. Two pixels p1 = (x, y) and p2 = (x′, y′) are 4-
adjacent (resp. 8-adjacent) if |x−x′|+|y−y′| = 1 (resp. max(|x−x′|, |y−y′|) = 1).
A k-path (with k = 4 or 8) is a sequence of pixels such that two consecutive pixels
of the sequence are k-adjacent. A set of pixels S is k-connected if for each pair
of pixels (p1, p2) ∈ S2 there is a k-path from p1 to p2 having all its pixels in S.

A region in a labeled image i = (Id, L, l) is a maximal set of 4-connected pixels
having the same label. An additional region is defined, denoted infinite(i), which
is the complement of Id, i.e., infinite(i) = Z2\Id. The set of regions of i, including
infinite(i), is denoted regions(i) and is a partition of Z2.

A region R is enclosed in another region R′ if all 8-paths from one pixel
of R to a pixel of infinite(i) contains at least one pixel of R′. Region R is
directly enclosed in R′ if there is no region R′′ �= R′ such that R is enclosed in
R′′ and R′′ is enclosed in R′. Every region except the infinite one has exactly
one direct enclosing region whereas it may have 0, 1 or more directly enclosed

Topological Map Isomorphism and Multi-Label Simple Transformation 41

regions. Direct enclosure relations may be described by an enclosure tree rooted
in infinite(i) (see Fig. 1 for an example of a partition).

Digital contours of regions are made explicit by using the interpixel topology
[8]. In interpixel topology, the cellular decomposition of the euclidean space
R2 into regular elements is considered. Pixels are 2-dimensional elements (unit
squares), linels are 1-dimensional elements (unit segments) and pointels are 0-
dimensional elements (points). Two linels are connected if they share a pointel
in their boundary. A frontier between two regions R and R′ is a maximal set of
connected linels separating pixels belonging to R and R′.

The boundary of a region R is the set of linels which separate pixels of R
from 4-adjacent pixels not in R. This boundary is partitioned in two sets: the
external boundary contains the linels separating R from non enclosed regions;
internal boundaries contain the linels separating R from its enclosed regions.
Note that every region except the infinite one has a non empty external boundary
whereas it may have an empty internal boundary. The infinite region has an
empty external boundary but its internal boundary is not empty (unless Id = ∅).

2.2 Combinatorial Maps

Combinatorial maps [10] were defined to describe the subdivision of objects
in cells (vertices, edges, faces. . .) plus the incidence and adjacency relations
between these cells. In 2D, a combinatorial map (2-map) can be seen as a graph
where each edge is cut in two darts (also known as half-edges). Darts are oriented
and two relations are defined on the set of darts: β1(d) is the dart following d
when turning around the face which contains d and β2(d) is the dart opposite
to d in the face adjacent to the face which contains d. More formally, a 2-map
is defined by a triple M = (D, β1, β2) such that D is a finite set of darts, β1 is
a permutation on D, and β2 is an involution on D. A 2-map is connected if for
every pair of darts (d, d′) ∈ D2, there exists a sequence of darts (d1, . . . , dn) such
that d1 = d, dn = d′, and ∀1 ≤ i < n, di+1 = β1(di) or di+1 = β2(di).

An example of 2-map is given in Fig. 1(b). This combinatorial map contains 16
darts (drawn by oriented curves). Two darts linked by β1 are drawn consecutively
(e.g. β1(10) = 11). Note that a dart may be linked with itself in case of loops
(e.g. β1(1) = 1). Two darts linked by β2 are drawn in parallel and have reverse
orientations (e.g. β2(1) = 2 or β2(10) = 3). This 2-map is not connected and is
composed of 3 different connected components.

2.3 Topological Maps

A topological map is a combinatorial data-structure which fully describes the
topology of a partition into regions of a labeled image. It is composed of three
parts: a combinatorial map describing the adjacency relations between regions
in an ordered way, an enclosure tree describing the direct enclosure relations
between regions and an interpixel matrix describing the geometry of the different
contours. In this paper, we focus on topology and do not use geometry so that
we do not consider the interpixel matrix.

42 G. Damiand, T. Roussillon, and C. Solnon

R1

R2

R3

R4 R5

R6

infinite

(a)

1

2

7
8
9

5
6

3 4
13

15

14
16

10
12

11

(b)

R2 R4 R6R5R3

R1

infinite

(c)

Fig. 1. Example of topological map. (a) A labeled image i. (b) The minimal combina-
torial map describing i. (c) The region enclosure tree.

Definition 1 (2D topological map). Given a 2D labeled image i = (Id, L, l),
its 2D topological map is defined by TM(i) = (M,T, r, d) where:

– M = (D, β1, β2) is a 2-map such that each face of M corresponds to a
boundary of a region of i, and β2 describes adjacency relationships between
the faces. Furthermore, M is minimal in its number of darts;

– T = (N,E) is an enclosure tree of regions: each node of T corresponds to a
region of i, and has a child for every region which is directly enclosed in it;
the root of T is infinite(i);

– r : D → N associates each dart d ∈ D with the region r(d) ∈ N whose
boundary contains d;

– d : N → D associates each region R ∈ N with a dart d(R) ∈ D which is a
dart of the face corresponding to the external boundary of R, except for the
infinite region which does not have an external boundary so that d(infinite(i))
belongs to its internal boundary.

Given a 2D labeled image, its topological map is unique (up to isomorphism
between 2-maps). Indeed, the 2-map is minimal in number of darts. Thus, each
pair of darts (d, β2(d)) describes a frontier between two regions R and R′ (i.e. a
maximal set of connected linels separating pixels belonging to R and R′).

In a 2D topological map, each region is represented as a node in the enclosure
tree and as face(s) in the 2-map (see example in Fig. 1). Two 4-adjacent regions
share a common frontier represented as pair(s) of darts linked by β2 in the 2-
map. In Fig. 1, darts 8 and 12 represent the frontier between regions R1 and
R5. The relation between two 8-adjacent but not 4-adjacent regions is implicitly
represented by a third region, which is 4-adjacent to both. In Fig. 1, the two
consecutive darts 13 and 14, linked by β1, which represent one internal boundary
of region R1, are respectively linked by β2 to darts 15 and 16, which represent
the external boundary of regions R2 and R3.

2.4 Isomorphisms and Signatures

Two 2-mapsM = (D, β1, β2) andM ′ = (D′, β′
1, β

′
2) are isomorphic if there exists

a bijection f : D → D′ (called map isomorphism function) such that ∀d ∈ D,

Topological Map Isomorphism and Multi-Label Simple Transformation 43

∀i ∈ {1, 2}, f(βi(d)) = β′
i(f(d)) [10]. In [7], map signatures are defined such

that two connected 2-maps are isomorphic iff their signatures are equal. Given
a connected map M = (D, β1, β2) such that |D| = k, the signature of M is a
sequence of 2k integer values σ(M) =< d1, d2, . . . , d2k >, with di ∈ [1; k] for
all i ∈ [1; 2k]. This signature may be used to define the canonical form of M :
canonical (M) = (D′, β′

1, β
′
2) with D′ = {1, . . . , k} and ∀i ∈ D′, β′

1(i) = d2i−1

and β′
2(i) = d2i (see [7] for more details).

Two trees T = (N,E) and T ′ = (N ′, E′) are isomorphic if there exists a
bijection f : N → N ′ (called tree isomorphism function) such that ∀u, v ∈
N, (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′. If the trees are rooted in r and r′, respectively,
then f must map the roots of the trees, i.e., f(r) = r′. If the complexity of graph
isomorphism is still an open question, the complexity of tree isomorphism is
polynomial and [1] describes an algorithm in O(|N |) which associates signatures
with nodes of the trees. The algorithm of [1] may be extended to integrate labels
in signatures: the signature of a leaf is its label; the signature of a node which is
not a leaf is the concatenation of its label with the sorted sequence of its children
signatures concatenated with the corresponding edge labels.

2.5 Transformations Preserving Topology

In digital topology, the topology of a binary image is usually defined from a
pair of adjacency relations (e.g. 4 for one label, 8 for the other) so that a digital
version of the Jordan Curve theorem holds [13]. The drawback of this popular
solution is that we have two adjacency relations for one partition. Its topology
may change if we interchange the two colors, because the chosen adjacency pair is
not an intrinsic feature of the partition, but depends on the object to represent.
There is no good choice if the topology of the object is intricate (e.g. there
are many nested connected components) or if both labels represent regions of
interest. This is especially true for images of more than two labels.

In a binary image, a point is simple if its label can be changed without chang-
ing the connectedness properties of the support of either label [13]. This concept
can be extended to labeled images if we independently consider the support of
each label and its complement. However, to take into account the adjacency re-
lations between regions, it is proposed in [2] to also consider the union of two
labels. A generalization of this idea may be found in [11]. In [6], a new definition
of multi-label simple point is proposed to guarantee that the topology of a parti-
tion is preserved when a pixel is flipped from a region to an adjacent region. The
drawback of these methods is that only elementary transformations are taken
into account. However, two partitions can be homeomorphic even if there does
not exist a sequence of elementary transformations mapping the two partitions.

In this work, we represent a labeled image by a topological map, which is an in-
trinsic feature of its partition into regions. Isomorphism between two topological
maps, which is equivalent to homeomorphism between two partitions, provides
a way of deciding whether a global transformation preserves the topology of the
partition or not.

44 G. Damiand, T. Roussillon, and C. Solnon

R1

R2 R3 R4

infinite

R1

R2 R3 R4

infinite

R1

R2 R3 R4

infinite

R1

R2 R3 R4

infiniteInfinite

R3

R2

R1

R5 R5

Infinite

R1

R3R2

Images

2−maps

Trees

(a) (b) (c) (d) (e) (f)

R3R2 R4R3R2 R4R3R2 R4

R3

R1 R2

R2 R3

R4R1 R1

R2 R3

R1

R2 R3

R4

R1R1

R2

R3 R3

R2

R1

R1

R1 R5

R4R2 R3

R2 R4R3

R1

R1 R5

R2 R3 R4

R1

R5 R5

Fig. 2. Examples of non isomorphic topological maps. (a) and (b) have isomorphic
trees but not isomorphic 2-maps (R2 and R4 are not adjacent in (a) whereas they are
8-adjacent in (b)). (c) and (d) have isomorphic 2-maps but not isomorphic trees. (e) and
(f) have isomorphic trees and 2-maps, but isomorphism functions are not compatible.

3 Topological Map Isomorphism

In [5], 2-map isomorphism is extended to consider plane isomorphism, i.e. isomor-
phism between connected 2-maps drawn on the plane. This preliminary definition
is extended here to 2D topological maps by considering additional information
given by region enclosure trees.

Definition 2 (2D topological map isomorphism). Two 2D topological maps
TM = (M = (D, β1, β2), T = (N,E), r, d) and TM ′ = (M ′ = (D′, β′

1, β
′
2), T

′ =
(N ′, E′), r′, d′) are isomorphic iff: (1) there exists a map isomorphism function
fm : D → D′; (2) there exists a tree isomorphism function ft : N → N ′; (3) two
faces of M and M ′ are matched by fm iff the corresponding regions of T and T ′

are matched by ft, i.e., ∀di ∈ D: ft(r(di)) = r′(fm(di)).

As illustrated in Fig. 2, the three conditions of Def. 2 are necessary to ensure
topological map isomorphism. Moreover, Def. 2 leads to the following result:

Theorem 1. Let i and i′ be two labeled images, and TM(i) and TM(i′) be
their associated 2D topological maps. TM(i) and TM(i′) are isomorphic iff the
partitions into regions of i and i′ are homeomorphic embeddings in the plane.

Two embeddings are homeomorphic in the plane when they describe the same
regions and the same adjacency relations and region enclosure relations.

In [15] the definition of maptree is given. This is a 2D combinatorial map
plus a black and white adjacency tree. This tree has one white node for each
region of the partition and one black node for each connected component of
the combinatorial map (no two adjacent nodes have the same color). The white

Topological Map Isomorphism and Multi-Label Simple Transformation 45

father (resp. sons) of a black node is the region (resp. regions) corresponding to
the external face (resp. internal faces) incident to a same connected component
of the combinatorial map. It is thus easy to see that a maptree is equivalent to
a topological map.

Proposition 1 in [15] proves that a maptree provides a unique representation
(up to homeomorphism of the sphere) of the embedding of a non-connected
combinatorial map. Moreover, if the maptree is rooted, the representation is
unique up to homeomorphism of the plane. Theorem 1 is a direct consequence
of this proposition.

Now, let us describe an algorithm for deciding whether two 2D topologi-
cal maps are isomorphic or not. Let us consider a 2D topological map TM =
(M,T = (N,E), r, d). Each node R ∈ N of the region enclosure tree corresponds
to an image region and is associated with a dart d(R) which belongs to a face
of a connected component of M . Let us note FR the face of M which contains
d(R), and MR the connected component of M which contains d(R). We label
the tree T = (N,E) by defining the labeling function λ as follows:

– every region R ∈ N is labeled with the signature of the connected component
of M which contains d(R), i.e., λ(R) = σ(MR);

– every edge (R,R′) ∈ E is labeled with the smallest dart of the face corre-
sponding to FR in canonical (MR).

The labeling of the region enclosure trees provides a way of deciding whether
two 2D topological maps are isomorphic or not:

Theorem 2. Two 2D topological maps are isomorphic iff their labeled region
enclosure trees are isomorphic.

Indeed, the labels associated with the nodes ensure that two regions mapped
by a tree isomorphism function actually belong to isomorphic connected compo-
nents of the 2-maps; the labels associated with the edges ensure that two regions
mapped by a tree isomorphism function are enclosed in regions which correspond
to a same face in the canonical form of the corresponding connected components
of the 2-maps.

Hence, to decide whether two 2D topological maps are isomorphic we first
compute the labeling functions of the region enclosure trees and then use the
algorithm of [1] to decide whether the two trees are isomorphic. The time com-
plexity of the construction of the labeling function mainly involves computing
the signature and the canonical form of each connected component of the 2-map.
This may be done in O(k · t2) where k is the number of connected components of
the 2-map and t is the maximum number of darts in a connected component (see
Property 10 of [7]). The time complexity for deciding whether two labeled trees
are isomorphic is linear w.r.t. the number of nodes, i.e., the number of regions.

Our contribution here is the definition of 2D topological map isomorphism
(which could be also given for maptrees) and the description of a polynomial
time algorithm for deciding of isomorphism. The second main contribution of this
paper, given in the next section, is the definition of ML-simple transformation.

46 G. Damiand, T. Roussillon, and C. Solnon

2R1R 4R 5R3R 7R 8R 9R6R

2R’1R’ 4R’ 5R’3R’ 7R’ 8R’ 9R’6R’

2R1R 4R 5R3R 7R 8R 9R6R

2R’1R’ 4R’ 5R’3R’ 7R’ 8R’ 9R’6R’

Fig. 3. Two partitions having homeomorphic embeddings in the plane. In the left
image, there is no ML-simple transformation of less than 9 pixels. A possible ML-
simple transformation is the one modifying simultaneously the labels of the 9 pixels of
a same line and giving the right image.

4 ML-simple Transformation

Given a labeled image (Id, L, l), the goal is to modify the label of some pixels
while preserving the topology of the partition. To achieve this goal, we start to
define what is a transformation in a labeled image.

Definition 3 (Transformation). Given a 2D labeled image i = (Id, L, l), a
transformation T is a set of pairs {(p1, v1), . . . , (pn, vn)}, with ∀k ∈ {1, . . . , n},
pk ∈ Id a pixel and vk ∈ L a label. The labeled image obtained by applying
transformation T on i is the labeled image T (i) = (Id, L, l

′) such that ∀k ∈
{1, . . . , n}, l′(pk) = vk and ∀p ∈ Z2 \ {p1, . . . , pn}, l′(p) = l(p).

Now, thanks to the definition of transformation and the definition of topolog-
ical map isomorphism, it is straightforward to define the notion of ML-simple
Transformation (ML stands for multi-label). Intuitively a transformation is ML-
simple if the two topological maps of the initial image and of the transformed
image are isomorphic.

Definition 4 (ML-simple transformation). Let i = (Id, L, l) be a 2D la-
beled image. A transformation T on i is ML-simple if TM(i) is isomorphic to
TM(T (i)).

Theorem 1 says that two isomorphic topological maps represent two homeo-
morphic embeddings in the plane, thus an ML-simple transformation does not
modify the topology of the embedding in the plane. Note that a ML-simple trans-
formation that modifies only one pixel corresponds to the notion of ML-simple
point [6]. Figure 3 shows that transformation of many pixels could be required
in some configurations. In this example, there is no ML-simple transformation
of sets having less than 9 pixels.

The definition of ML-simple transformation gives a straightforward way to
test if a transformation is ML-simple: this may be done by computing the two
topological maps and testing if they are isomorphic. This simple algorithm can
be improved thanks to Theorem 3, which shows that it is enough to compare
subimages surrounding the pixels of the transformation.

Given a transformation T on a labeled image (Id, L, l), let (Id|T , L, l) be
the subimage concerned by the transformation. More precisely, min(Id|T)

Topological Map Isomorphism and Multi-Label Simple Transformation 47

2R
1R 5R

4R3R 2R
1R

3R 4R
5R

Fig. 4. Two partitions having homeomorphic embeddings in the plane. There is no
sequence of flips of ML-simple points allowing to transform the image to the left in the
image to the right. However there is a sequence of ML-simple transformations of four
pixels which transforms the left image into the right one.

= (min{p1.x, . . . , pk.x}−1,min{p1.y, . . . , pk.y}−1) andmax(Id|T) = (max{p1.x,
. . . , pk.x}+1,max{p1.y, . . . , pk.y}+1) are the two extremal pixels of the bound-
ing box lying at distance 1 from the extremal points of T . In other words,
(Id|T , L, l) is the subimage enclosing all the pixels of the transformation by a
border of 1 pixel in thickness.

Theorem 3 shows that it is enough to compare the topological map of the
subimage (Id|T , L, l) before and after the transformation in order to test if a
transformation is ML-simple.

Theorem 3. Let i = (Id, L, l) be a 2D labeled image and T be a transformation
on i. T is ML-simple for i iff T is ML-simple for (Id|T , L, l).

The main argument of the proof uses the fact that the labels of the pixels in
the complement of Id|T are not modified by the transformation, nor the pixels
in the border of Id|T (because the bounding box has been enlarged by a band
of 1 pixel in thickness). Intuitively, this band of pixels around the bounding box
guarantees that the frontiers are preserved between Id|T and its complement.

5 Look-up Tables of ML-simple Transformations

One interest of ML-simple transformations is to allow more deformations pre-
serving the topology than ML-simple points. This is illustrated in the example
given in Fig. 4. Both partitions are two homeomorphic embeddings in the plane,
however there is no sequence of flips of ML-simple points allowing to transform
the image on the left into the image on the right. This becomes possible if we
use ML-simple transformations instead of flips of ML-simple points.

Deforming a labeled image while preserving the topology of the partition in
regions can be done by searching for a ML-simple transformation and applying
it. Given a local configuration of pixels, the question is thus to find all the possi-
ble ML-simple transformations of the current configuration. Indeed Theorem 3
ensures that the ML-simple transformation test can be restricted to the local
window around the modified pixels.

To answer this question in an efficient way, we generated look-up tables of
ML-simple transformations of three sizes (sx, sy): 1×1 (which is thus equivalent

48 G. Damiand, T. Roussillon, and C. Solnon

to the notion of ML-simple point), 2×1 and 1×2 (modification of two 4-adjacent
pixels) and 2× 2 (modification of four pixels forming a square).

To generate these look-up tables, we first generated all the possible labeled
images of size (sx + 2, sy + 2). We associate to each image i a bitset b(i) having
2 × (sx + 2) × (sy + 2) bits. Bit number 2 × (x + y × (sx + 2)) is equal to 1
if pixel (x, y) belongs to the same region as pixel (x − 1, y), and bit number
1 + 2× (x+ y × (sx + 2)) is equal to 1 if pixel (x, y) belongs to the same region
as pixel (x, y − 1). Each bitset describes a labeled image up to relabeling of
labels, which is what we want since configurations do not consider the value of
the labels but only the partition in regions.

The different bitsets are stored in two data-structures. The first one is an
array of lists of bitsets, each element of the array being the list of all the bitsets
having the same values in their boundaries and having isomorphic topological
maps. Each list contains all the possible ML-simple transformations of a given
configuration, i.e. all the local configurations belonging to the same equivalence
class. The second data structure is an associative array (for example a hash-
table) allowing to retrieve, given a bitset, the index of its equivalence class in
the array of lists.

Thanks to these two data-structures, it is easy to test if two local configura-
tions (of a given size) are equivalent by computing their two bitsets (by a linear
scan of the pixels of the two images) and computing their two indices of their
equivalence class. If the two indices are equal, the two configurations are topo-
logically equivalent. Thanks to the hash-table, this can be done in amortized
constant time.

Moreover, given a local configuration, we can directly apply successively all
the possible ML-simple transformations (of a given size) while preserving the
topology of the partition. We first compute the bitset of the local configuration
and get the index of its equivalence class. Thanks to this index, we have a direct
access to the list of all the bitsets belonging to the same equivalence class, i.e.
having the same topology. For each bitset in the list, we can locally modify the
labeled image according to the label of pixels not modified by the transformation
(belonging to the boundary of the image) and we are sure that the modified image
has the same topology as the initial one.

Table 1 shows some information on the generated look-up tables with size 1×1,
2×1 and 2×2. The number of configurations increases quickly as the size of the
ML-transformation increases. The number of equivalence classes is significant
(between 75% and 84% of the total number of configurations). Indeed there are
many non ML-simple configurations. Lastly, we can notice the important time
required to compute the look-up tables (about 2 hours for 2× 2 pixels), however
this generation was done only once as a preprocessing step.

An upper bound on the number of configurations can be computed. For a
transformation of size (sx, sy), there are p = (sx+2)×(sy+2) pixels. If we denote
by k the number of different labels, each pixel can be labeled with an integer
between 1 and k (k ∈ {1, . . . , p}). Thus the number of different configurations
with k labels is p!

(p−k)! and the total number of configurations is
∑p

k=1
p!

(p−k)! ,

Topological Map Isomorphism and Multi-Label Simple Transformation 49

Table 1. Generation of look-up tables of all ML-simple transformations of size 1 × 1,
2×1 and 2×2. nb configs is the total number of configurations, nb classes the number of
equivalence classes, time the time spent to compute the look-up tables and max/classe
the maximal number of elements belonging to the same class.

size nb configs nb classes time max/classe

1× 1 1 002 850 0.04s 3
2× 1 16 239 13 211 5.4s 6
2× 2 756 436 567 728 7042.s 30

that is 986 409 (resp. 1 302 061 344 and 56 874 039 553 216) for size 1 × 1 (resp.
2×1 and 2×2). We can observe a major difference between these results and the
experimental ones because the previous formula gives an upper bound and not
exactly the number of configurations. Indeed, different permutations of labels
can give the same configuration (i.e. the same partition into regions) while they
could be recounted several times in the formula. Note also that it is very difficult
to estimate the number of classes, and to give a better upper bound than the
total number of configurations.

6 Conclusion

In this paper, we defined the isomorphism between 2D topological maps and
showed that two topological maps are isomorphic if and only if the corresponding
images are homeomorphic embeddings in the plane. Thanks to this definition,
we defined the ML-simple transformation as a set of modifications of labels of
pixels that preserve the topology of the partition. Thanks to these notions, we
were able to generate different look-up tables of ML-simple transformations for
different sizes of modified pixels.

Topological map isomorphism could be helpful in work that need to verify
that modifications preserve the topology of the partition. This is for example
the case for rigid transformation, where it is possible to use topological map
isomorphism as a control tool to check the results of the transformation.

The look-up tables will serve in order to propose more deformations in our
framework of deformable partition [4]. We hope that these new deformations will
improve the previous results since with ML-simple points, final results of the
deformation process are sometimes blocked in local configurations that can not
be modified with ML-simple points. Moreover, we want to increase the speed of
the simulation thanks to the access in amortized constant time to the elements of
the table. Note that it is possible to use directly the topological map isomorphism
in order to test if a transformation is ML-simple. This possibility is particularly
interesting in order to use transformations of a large number of pixels.

Our first perspective is the extension of this work to 3D, where topologi-
cal maps and signatures are already defined. The only problem to solve is the
position of fictive edges in 3D topological maps. We must propose a canonical
representation for these edges in order to retrieve the property that two maps
are isomorphic if the corresponding images are homeomorphic embeddings in the

50 G. Damiand, T. Roussillon, and C. Solnon

3D Euclidean space. Our second perspective is the generation of look-up tables
with bigger size. The problem is then the memory storage of these tables while
keeping an efficient access to all the elements.

Acknowledgement. This work has been partially supported by the French Na-
tional Agency (ANR), projects DigitalSnow ANR-11-BS02-009 and Solstice

ANR-13-BS02-01.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Bazin, P.-L., Ellingsen, L.M., Pham, D.L.: Digital homeomorphisms in deformable
registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584,
pp. 211–222. Springer, Heidelberg (2007)

3. Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional im-
age representation: Definition and optimal extraction algorithm. Computer Vision
and Image Understanding 93(2), 111–154 (2004)

4. Damiand, G., Dupas, A., Lachaud, J.-O.: Combining topological maps, multi-label
simple points, and minimum-length polygons for efficient digital partition model.
In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva,
E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 56–69. Springer, Heidelberg (2011)

5. Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.-C., Samuel, E.: Polynomial
algorithms for subisomorphism of nd open combinatorial maps. Computer Vision
and Image Understanding 115(7), 996–1010 (2011)

6. Dupas, A., Damiand, G., Lachaud, J.-O.: Multi-label simple points definition for
3D images digital deformable model. In: Brlek, S., Reutenauer, C., Provençal, X.
(eds.) DGCI 2009. LNCS, vol. 5810, pp. 156–167. Springer, Heidelberg (2009)

7. Gosselin, S., Damiand, G., Solnon, C.: Efficient search of combinatorial maps using
signatures. Theoretical Computer Science 412(15), 1392–1405 (2011)

8. Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected
topologies on finite ordered sets. Topology and its Applications 36, 1–17 (1990)

9. Le Bodic, P., Locteau, H., Adam, S., Héroux, P., Lecourtier, Y., Knippel, A.: Symbol
detection using region adjacency graphs and integer linear programming. In: Proc.
of ICDAR, Barcelona, Spain, pp. 1320–1324. IEEE Computer Society (July 2009)

10. Lienhardt, P.: N-Dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal of Computational Geometry and Applica-
tions 4(3), 275–324 (1994)

11. Mazo, L.: A framework for label images. In: Ferri, M., Frosini, P., Landi, C., Cerri,
A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 1–10. Springer, Heidelberg
(2012)

12. Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26(1), 24–33
(1974)

13. Rosenfeld, A.: Digital Topology. The American Mathematical Monthly 86(8), 621–
630 (1979)

14. Trémeau, A., Colantoni, P.: Regions adjacency graph applied to color image seg-
mentation. IEEE Transactions on Image Processing 9, 735–744 (2000)

15. Worboys, M.: The maptree: A fine-grained formal representation of space. In:
Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS,
vol. 7478, pp. 298–310. Springer, Heidelberg (2012)

Isthmus-Based Parallel and Asymmetric 3D
Thinning Algorithms�

Michel Couprie and Gilles Bertrand

Université Paris-Est, LIGM, Équipe A3SI, ESIEE Paris, France
{michel.couprie,gilles.bertrand}@esiee.fr

Abstract. Critical kernels constitute a general framework settled in the
context of abstract complexes for the study of parallel thinning in any
dimension. We take advantage of the properties of this framework, to
propose a generic thinning scheme for obtaining “thin” skeletons from
objects made of voxels. From this scheme, we derive algorithms that
produce curvilinear or surface skeletons, based on the notion of 1D or
2D isthmus.

1 Introduction

When dealing with skeletons, one has to face two main problems: topology preser-
vation, and preservation of meaningful geometrical features. Here, we are inter-
ested in the skeletonization of objects that are made of voxels (unit cubes) in a
regular 3D grid, i.e., in a binary 3D image. In this context, topology preservation
is usually obtained through the iteration of thinning steps, provided that each
step does not alter the topological characteristics. In sequential thinning algo-
rithms, each step consists of detecting and choosing a so-called simple voxel, that
may be characterized locally (see [1,2]), and removing it. Such a process usually
involves many arbitrary choices, and the final result may depend, sometimes
heavily, on any of these choices. This is why parallel thinning algorithms are
generally preferred to sequential ones. However, removing a set of simple voxels
at each thinning step, in parallel, may alter topology. The framework of critical
kernels, introduced by one of the authors in [3], provides a condition under which
we have the guarantee that a subset of voxels can be removed without changing
topology. This condition is, to our knowledge, the most general one among the
related works. Furthermore, critical kernels indeed provide a method to design
new parallel thinning algorithms, in which the property of topology preservation
is built-in, and in which any kind of constraint may be imposed (see [4,5]).

Among the different parallel thinning algorithms that have been proposed
in the literature, we can distinguish symmetric from asymmetric algorithms.
Symmetric algorithms (see e.g. [6,7,8]) (also known as fully parallel algorithms)
produce skeletons that are invariant under 90 degrees rotations. They consist of
the iteration of thinning steps that are made of 1) the identification and selection
� This work has been partially supported by the “ANR-2010-BLAN-0205 KIDICO”

project.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 51–62, 2014.
c© Springer International Publishing Switzerland 2014

52 M. Couprie and G. Bertrand

of a set of voxels that satisfy certain conditions, independently of orientation or
position in space, and 2) the removal, in parallel, of all selected voxels from
the object. Symmetric algorithms, on the positive side, produce a result that
is uniquely defined: no arbitrary choice is needed. On the negative side, they
generally produce thick skeletons, see Fig. 1.

(a) (b) (c) (d)

Fig. 1. Different types of skeletons. (a): Curvilinear skeleton, symmetric. (b): Curvi-
linear skeleton, asymmetric. (c): Surface skeleton, symmetric. (d): Surface skeleton,
asymmetric.

Asymmetric skeletons, on the opposite, are preferred when thinner skeletons
are required. The price to pay is a certain amount of arbitrary choices to be made.
In all existing asymmetric parallel thinning algorithms, each thinning step is
divided into a certain number of substeps. In the so-called directional algorithms
(see e.g. [9,10,11]), each substep is devoted to the detection and the deletion of
voxels belonging to one “side” of the object: all the voxels considered during the
substep have, for example, their south neighbor inside the object and their north
neighbor outside the object. The order in which these directional substeps are
executed is set beforehand, arbitrarily. Subgrid (or subfield) algorithms (see e.g.
[12,13]) form the second category of asymmetric parallel thinning algorithms.
There, each substep is devoted to the detection and the deletion of voxels that
belong to a certain subgrid, for example, all voxels that have even coordinates.
Considered subgrids must form a partition of the grid. Again, the order in which
subgrids are considered is arbitrary.

Subgrid algorithms are not often used in practice because they produce arti-
facts, that is, waving skeleton branches where the original object is smooth or
straight. Directional algorithms are the most popular ones. Most of them are
implemented through sets of masks, one per substep. A set of masks is used to
characterize voxels that must be kept during a given substep, in order to 1) pre-
serve topology, and 2) prevent curves or surfaces to disappear. Thus, topological
conditions and geometrical conditions cannot be easily distinguished, and the
slightest modification of any mask involves the need to make a new proof of the
topological correctness.

Our approach is radically different. Instead of considering single voxels, we
consider cliques. A clique is a set of mutually adjacent voxels. Then, we identify

Isthmus-Based Parallel and Asymmetric 3D Thinning Algorithms 53

the critical kernel of the object, according to some definitions, which is a union
of cliques. The main theorem of the critical kernels framework [3,5] states that
we can remove in parallel any subset of the object, provided that we keep at least
one voxel of every clique that constitutes the critical kernel, and this guarantees
topology preservation. Here, as we try to obtain thin skeletons, our goal is to
keep, whenever possible, exactly one voxel in every such clique. This leads us to
propose a generic parallel asymmetric thinning scheme, that may be enriched by
adding any sort of geometrical constraint. For example, we define the notions of
1D and 2D isthmuses. A 1D (resp. 2D) isthmus is a voxel that is “locally like
a piece of curve” (resp. surface). From our generic scheme, we easily derive, by
adding the constraint to preserve isthmuses, specific algorithms that produce
curvilinear or surface skeletons.

2 Voxel Complexes

In this section, we give some basic definitions for voxel complexes, see also [14,1].
Let Z be the set of integers. We consider the families of sets F1

0, F1
1, such that

F1
0 = {{a} | a ∈ Z}, F1

1 = {{a, a+ 1} | a ∈ Z}. A subset f of Zn, n ≥ 2, that
is the Cartesian product of exactly d elements of F1

1 and (n− d) elements of F1
0

is called a face or an d-face of Zn, d is the dimension of f . In the illustrations
of this paper except Fig. 6, a 3-face (resp. 2-face, 1-face, 0-face) is depicted by a
cube (resp. square, segment, dot), see e.g. Fig. 4.

A 3-face of Z3 is also called a voxel . A finite set that is composed solely of
voxels is called a (voxel) complex (see Fig. 2). We denote by V3 the collection of
all voxel complexes.

We say that two voxels x, y are adjacent if x ∩ y �= ∅. We write N (x) for the
set of all voxels that are adjacent to a voxel x, N (x) is the neighborhood of x.
Note that, for each voxel x, we have x ∈ N (x). We set N ∗(x) = N (x) \ {x}.

Let d ∈ {0, 1, 2}. We say that two voxels x, y are d-neighbors if x ∩ y is a
d-face. Thus, two distinct voxels x and y are adjacent if and only if they are
d-neighbors for some d ∈ {0, 1, 2}.

Let X ∈ V3. We say that X is connected if, for any x, y ∈ X , there exists a
sequence 〈x0, ..., xk〉 of voxels in X such that x0 = x, xk = y, and xi is adjacent
to xi−1, i = 1, ..., k.

3 Simple Voxels

Intuitively a voxel x of a complex X is called a simple voxel if its removal from
X “does not change the topology of X”. This notion may be formalized with the
help of the following recursive definition introduced in [5], see also [15,16] for
other recursive approaches for simplicity.

Definition 1. Let X ∈ V3.
We say that X is reducible if either:
i) X is composed of a single voxel; or
ii) there exists x ∈ X such that N ∗(x)∩X is reducible and X \ {x} is reducible.

54 M. Couprie and G. Bertrand

b
a

c d e

f
h

g
b f

h

d

(a) (b)

Fig. 2. (a) A complex X which is made of 8 voxels, (b) A complex Y ⊆ X, which is
a thinning of X

Definition 2. Let X ∈ V3. A voxel x ∈ X is simple for X if N ∗(x) ∩ X
is reducible. If x ∈ X is simple for X , we say that X \ {x} is an elementary
thinning of X .

Thus, a complex X ∈ V3 is reducible if and only if it is possible to reduce X
to a single voxel by iteratively removing simple voxels. Observe that a reducible
complex is necessarily non-empty and connected.

In Fig. 2 (a), the voxel a is simple for X (N ∗(a) ∩ X is made of a single
voxel), the voxel d is not simple for X (N ∗(d) ∩X is not connected), the voxel
h is simple for X (N ∗(h) ∩X is made of two voxels that are 2-neighbors and is
reducible).

In [5], it was shown that the above definition of a simple voxel is equivalent to
classical characterizations based on connectivity properties of the voxel’s neigh-
borhood [17,18,19,20,2]. An equivalence was also established with a definition
based on the operation of collapse [21], this operation is a discrete analogue of
a continuous deformation (a homotopy), see also [15,3,2].

The notion of a simple voxel allows one to define thinnings of a complex, see
an illustration Fig. 2 (b).

Let X,Y ∈ V 3. We say that Y is a thinning of X or that X is reducible to
Y , if there exists a sequence 〈X0, ..., Xk〉 such that X0 = X , Xk = Y , and Xi is
an elementary thinning of Xi−1, i = 1, ..., k.

Thus, a complex X is reducible if and only if it is reducible to a single voxel.

4 Critical Kernels

Let X be a complex in V 3. It is well known that, if we remove simultaneously
(in parallel) simple voxels from X , we may “change the topology” of the original
object X . For example, the two voxels f and g are simple for the object X de-
picted Fig. 2 (a). Nevertheless X \{f, g} has two connected components whereas
X is connected.

In this section, we recall a framework for thinning in parallel discrete objects
with the warranty that we do not alter the topology of these objects [3,4,5]. This
method is valid for complexes of arbitrary dimension.

Let d ∈ {0, 1, 2, 3} and let C ∈ V3. We say that C is a d-clique or a clique if
∩{x ∈ C} is a d-face. If C is a d-clique, d is the rank of C.

Isthmus-Based Parallel and Asymmetric 3D Thinning Algorithms 55

If C is made of solely two distinct voxels x and y, we note that C is a d-clique
if and only if x and y are d-neighbors, with d ∈ {0, 1, 2}.

Let X ∈ V3 and let C ⊆ X be a clique. We say that C is essential for X if
we have C = D whenever D is a clique such that:
i) C ⊆ D ⊆ X ; and
ii) ∩{x ∈ C} = ∩{x ∈ D}.

Observe that any complex C that is made of a single voxel is a clique (a
3-clique). Furthermore any voxel of a complex X constitutes a clique that is
essential for X .

In Fig. 2 (a), {f, g} is a 2-clique that is essential for X , {b, d} is a 0-clique
that is not essential for X , {b, c, d} is a 0-clique essential for X , {e, f, g} is a
1-clique essential for X .

Definition 3. Let S ∈ V3. The K-neighborhood of S, written K(S), is the set
made of all voxels that are adjacent to each voxel in S. We set K∗(S) = K(S)\S.

We note that we have K(S) = N (x) whenever S is made of a single voxel x.
We also observe that we have S ⊆ K(S) whenever S is a clique.

Definition 4. Let X ∈ V3 and let C be a clique that is essential for X . We say
that the clique C is regular for X if K∗(C) ∩ X is reducible. We say that C is
critical for X if C is not regular for X .

Thus, if C is a clique that is made of a single voxel x, then C is regular for
X if and only if x is simple for X .

In Fig. 2 (a), the cliques C1 = {b, c, d}, C2 = {f, g}, and C3 = {f, h} are
essential for X . We haveK∗(C1)∩X = ∅, K∗(C2)∩X = {e, h}, and K∗(C3)∩X =
{g}. Thus, C1 and C2 are critical for X , while C3 is regular for X .

The following result is a consequence of a general theorem that holds for
complexes of arbitrary dimensions [3,5], see an illustration Fig. 2 (a) and (b)
where the complexes X and Y satisfy the condition of Th. 5.

Theorem 5. Let X ∈ V3 and let Y ⊆ X.
The complex Y is a thinning of X if any clique that is critical for X contains at
least one voxel of Y .

5 A Generic 3D Parallel and Asymmetric Thinning
Scheme

Our goal is to define a subset Y of a voxel complex X that is guaranteed to
include at least one voxel of each clique that is critical for X . By Th. 5, this
subset Y will be a thinning of X .

Let us consider the complex X depicted Fig. 3 (a). There are precisely three
cliques that are critical for X :
- the 0-clique C1 = {b, c} (we have K∗(C1) ∩X = ∅);
- the 2-clique C2 = {a, b} (we have K∗(C2) ∩X = ∅);
- the 3-clique C3 = {b} (the voxel b is not simple).

56 M. Couprie and G. Bertrand

Suppose that, in order to build a complex Y that fulfills the condition of Th.
5, we select arbitrarily one voxel of each clique that is critical for X . Following
such a strategy, we could select c for C1, a for C2, and b for C3. Thus, we would
have Y = X , no voxel would be removed from X . Now, we observe that the
complex Y ′ = {b} satisfies the condition of Th. 5. This complex is obtained by
considering first the 3-cliques before selecting a voxel in the 2-, 1-, or 0 cliques.

The complex X of Fig. 3 (b) provides another example of such a situation.
There are precisely three cliques that are critical for X :

- the 1-clique C1 = {e, f, g, h} (we have K∗(C1) ∩X = ∅);
- the 1-clique C2 = {e, d, g} (we have K∗(C2) ∩X = ∅);
- the 2-clique C3 = {e, g} (K∗(C3) ∩X is not connected).

If we select arbitrarily one voxel of each critical clique, we could obtain the
complex Y = {f, d, g}. On the other hand, if we consider the 2-cliques before
the 1-cliques, we obtain either Y ′ = {e} or Y ′′ = {g}. In both cases the result is
better in the sense that we remove more voxels from X .

This discussion motivates the introduction of the following 3D asymmetric and
parallel thinning scheme AsymThinningScheme(see also [4,5]). The main features
of this scheme are the following:

- Taking into account the observations made through the two previous examples,
critical cliques are considered according to their decreasing ranks (step 4). Thus,
each iteration is made of four sub-iterations (steps 4-8). Voxels that have been
previously selected are stored in a set Y (step 8). At a given sub-iteration, we
consider voxels only in critical cliques included in X \ Y (step 6).
- Select is a function from V3 to V 3, the set of all voxels. More precisely, Select
associates, to each set S of voxels, a unique voxel x of S. We refer to such a
function as a selection function. This function allows us to select a voxel in a
given critical clique (step 7). A possible choice is to take for Select(S), the first
pixel of S in the lexicographic order of the voxels coordinates.
- In order to compute curvilinear or surface skeletons, we have to keep other
voxels than the ones that are necessary for the preservation of the topology of
the object X . In the scheme, the set K corresponds to a set of features that
we want to be preserved by a thinning algorithm (thus, we have K ⊆ X).
This set K, called constraint set , is updated dynamically at step 10. SkelX is
a function from X on {True, False} that allows us to keep some skeletal voxels
of X , e.g., some voxels belonging to parts of X that are surfaces or curves. For
example, if we want to obtain curvilinear skeletons, a popular solution is to set
SkelX(x) = True whenever x is a so-called end voxel of X : an end voxel is a
voxel that has exactly one neighbor inside X ; see Fig. 7(a) a skeleton obtained in
this way. However, this solution is limited and does not permit to obtain surface
skeletons. Better propositions for such a function will be introduced in section 6.

By construction, at each iteration, the complex Y at step 9 satisfies the condi-
tion of Th. 5. Thus, the result of the scheme is a thinning of the original complex
X . Observe also that, except step 4, each step of the scheme may be computed
in parallel.

Isthmus-Based Parallel and Asymmetric 3D Thinning Algorithms 57

c

b
a

e
g

f
h

d

(a) (b)

Fig. 3. Two complexes

Algorithm 1: AsymThinningScheme(X,SkelX)

Data: X ∈ V3, SkelX is a function from X on {True, False}
Result: X
K := ∅;1
repeat2

Y := K;3
for d ← 3 to 0 do4

Z := ∅;5
foreach d-clique C ⊆ X \ Y that is critical for X do6

Z := Z ∪ {Select(C)};7

Y := Y ∪ Z;8

X := Y ;9
foreach voxel x ∈ X \K such that SkelX(x) = True do K := K ∪ {x};10

until stability ;11

Fig. 4 provides an illustration of the scheme AsymThinningScheme. Let us
consider the complex X depicted in (a). We suppose in this example that we
do not keep any skeletal voxel, i.e., for any x ∈ X , we set SkelX(x) = False.
The traces of the cliques that are critical for X are represented in (b), the trace
of a clique C is the face f = ∩{x ∈ C}. Thus, the set of the cliques that are
critical for X is precisely composed of six 0-cliques, two 1-cliques, three 2-cliques,
and one 3-clique. In (c) the different sub-iterations of the scheme are illustrated
(steps 4-8):
- when d = 3, only one clique is considered, the dark grey voxel is selected
whatever the selection function;
- when d = 2, all the three 2-cliques are considered since none of these cliques
contains the above voxel. Voxels that could be selected by a selection function
are depicted in medium grey;
- when d = 1, only one clique is considered, a voxel that could be selected is
depicted in light grey;
- when d = 0, no clique is considered since each of the 0-cliques contains at least
one voxel that has been previously selected.
After these sub-iterations, we obtain the complex depicted in (d). The figures (e)
and (f) illustrate the second iteration, at the end of this iteration the complex

58 M. Couprie and G. Bertrand

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 4. (a): A complex X made of precisely 12 voxels. (b): The traces of the cliques
that are critical for X. (c): Voxels that have been selected by the algorithm. (d): The
result Y of the first iteration. (e): The traces of the 4 cliques that are critical for Y .
(f): The result of the second iteration. (g) and (h): Two other possible selections at the
first iteration.

Fig. 5. Ultimate asymmetric skeletons obtained by using AsymThinningScheme

Isthmus-Based Parallel and Asymmetric 3D Thinning Algorithms 59

x x x

(a) (b) (c)

Fig. 6. In this figure, a voxel is represented by its central point. (a): A voxel x and the
set N (x)∩X (black points). (b): A set S which is a 1-surface, N ∗(x)∩X is reducible
to S, thus x is a 2-isthmus. for X. (c): A voxel x and the set N (x)∩X (black points).
The voxel x is a 1-isthmus for X.

is reduced to a single voxel. In (g) and (h) two other possible selections at the
first iteration are given.

Of course, the result of the scheme may depend on the choice of the selection
function. This is the price to be paid if we try to obtain thin skeletons. For
example, some arbitrary choices have to be made for reducing a two voxels wide
ribbon to a simple curve.

In the sequel of the paper, we take for Select(S), the first pixel of S in the
lexicographic order of the voxels coordinates.

Fig. 5 shows another illustration, on bigger objects, of AsymThinningScheme.
Here also, for any x ∈ X , we have SkelX(x) = False (no skeletal voxel). The
result is called an ultimate asymmetric skeleton.

6 Isthmus-Based Asymmetric Thinning

In this section, we show how to use our generic scheme AsymThinningScheme in
order to get a procedure that computes either curvilinear or surface skeletons.
This thinning procedure preserves a constraint set K that is made of “isthmuses”.

Intuitively, a voxel x of an object X is said to be a 1-isthmus (resp. a 2-
isthmus) if the neighborhood of x corresponds - up to a thinning - to the one of
a point belonging to a curve (resp. a surface) [5].

We say that X ∈ V3 is a 0-surface if X is precisely made of two voxels x and
y such that x ∩ y = ∅.

We say that X ∈ V3 is a 1-surface (or a simple closed curve) if:
i) X is connected; and ii) For each x ∈ X , N ∗(x) ∩X is a 0-surface.

Definition 6. Let X ∈ V3, let x ∈ X .
We say that x is a 1-isthmus for X if N ∗(x) ∩X is reducible to a 0-surface.
We say that x is a 2-isthmus for X if N ∗(x) ∩X is reducible to a 1-surface.
We say that x is a 2+-isthmus for X if x is a 1-isthmus or a 2-isthmus for X .

60 M. Couprie and G. Bertrand

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Asymmetric skeletons obtained by using AsymThinningScheme. (a): the function
SkelX is based on end voxels. (b,c,d): the function SkelX is based on k-isthmuses, with
k = 1, 2 and 2+ respectively. (e,f): detail of (c,d) respectively.

Isthmus-Based Parallel and Asymmetric 3D Thinning Algorithms 61

Our aim is to thin an object, while preserving a constraint set K that is
made of voxels that are detected as k-isthmuses during the thinning process.
We obtain curvilinear skeletons with k = 1, surface skeletons with k = 2, and
surface/curvilinear skeletons with k = 2+. These three kinds of skeletons may
be obtained by using AsymThinningScheme, with the function SkelX defined as
follows:

SkelX(x) =

{
True if x is a k-isthmus,
False otherwise,

with k ∈ {1, 2, 2+}.
Observe there is the possibility that a voxel belongs to a k-isthmus at a given

step of the algorithm, but not at further steps. This is why previously detected
isthmuses are stored (see line 10 of AsymThinningScheme).

In Fig. 7(b-f), we show a curvilinear skeleton, a surface skeleton and a sur-
face/curvilinear skeleton obtained by our method from the same object.

7 Conclusion

We introduced an original generic scheme for asymmetric parallel topology-
preserving thinning of 3D objects made of voxels, in the framework of critical ker-
nels. We saw that from this scheme, one can easily derive several thinning operators
having specific behaviours, simply by changing the definition of skeletal points. In
particular, we showed that ultimate, curvilinear, surface, and surface/curvilinear
skeletons can be obtained, based on the notion of 1D/2D isthmuses.

A key point, in the implementation of the algorithms proposed in this paper,
is the detection of critical cliques and isthmus voxels. In [5], we showed that it is
possible to detect critical cliques thanks to a set of masks, in linear time. We also
showed that the configurations of 1D and 2D isthmuses may be pre-computed by
a linear-time algorithm and stored in lookup tables. Finally, based on a breadth-
first strategy, the whole method can be implemented to run in O(n) time, where
n is the number of voxels of the input 3D image.

In an extended paper, in preparation, we will show how to deal with the
robustness to noise issue thanks to the notion of isthmus persistence. We will
also compare our method with all existing asymmetric parallel skeletonization
algorithms acting in the 3D cubic grid.

References

1. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comp. Vi-
sion, Graphics and Image Proc. 48, 357–393 (1989)

2. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and
4D discrete spaces. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 31(4), 637–648 (2009)

3. Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences,
Série Math. I(345), 363–367 (2007)

62 M. Couprie and G. Bertrand

4. Bertrand, G., Couprie, M.: Two-dimensional thinning algorithms based on critical
kernels. Journal of Mathematical Imaging and Vision 31(1), 35–56 (2008)

5. Bertrand, G., Couprie, M.: Powerful Parallel and Symmetric 3D Thinning Schemes
Based on Critical Kernels. Journal of Mathematical Imaging and Vision 48(1), 134–
148 (2014)

6. Manzanera, A., Bernard, T., Prêteux, F., Longuet, B.: n-dimensional skeletoniza-
tion: a unified mathematical framework. Journal of Electronic Imaging 11(1), 25–37
(2002)

7. Lohou, C., Bertrand, G.: Two symmetrical thinning algorithms for 3D binary im-
ages. Pattern Recognition 40, 2301–2314 (2007)

8. Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theoretical Computer
Science 406(1-2), 119–135 (2008)

9. Tsao, Y., Fu, K.: A parallel thinning algorithm for 3D pictures. CGIP 17(4), 315–
331 (1981)

10. Palágyi, K., Kuba, A.: A parallel 3D 12-subiteration thinning algorithm. Graphical
Models and Image Processing 61(4), 199–221 (1999)

11. Lohou, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on
p-simple points. Discrete Applied Mathematics 151, 198–228 (2005)

12. Bertrand, G., Aktouf, Z.: A three-dimensional thinning algorithm using subfields.
In: Vision Geometry III, vol. 2356, pp. 113–124. SPIE (1996)

13. Németh, G., Kardos, P., Palágyi, K.: Topology preserving 3D thinning algorithms
using four and eight subfields. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010.
LNCS, vol. 6111, pp. 316–325. Springer, Heidelberg (2010)

14. Kovalevsky, V.: Finite topology as applied to image analysis. Computer Vision,
Graphics and Image Processing 46, 141–161 (1989)

15. Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional bi-
nary images. In: Ahronovitz, E., Fiorio, C. (eds.) DGCI 1997. LNCS, vol. 1347,
pp. 3–18. Springer, Heidelberg (1997)

16. Bertrand, G.: New notions for discrete topology. In: Bertrand, G., Couprie, M.,
Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 218–228. Springer, Heidelberg
(1999)

17. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple
points. Pattern Recognition Letters 15(2), 169–175 (1994)

18. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in
cubic grids. Pattern Recognition Letters 15, 1003–1011 (1994)

19. Saha, P., Chaudhuri, B., Chanda, B., Dutta Majumder, D.: Topology preservation
in 3D digital space. Pattern Recognition 27, 295–300 (1994)

20. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. International Jour-
nal on Pattern Recognition and Artificial Intelligence 9, 813–844 (1995)

21. Whitehead, J.: Simplicial spaces, nuclei and m-groups. Proceedings of the London
Mathematical Society 45(2), 243–327 (1939)

Completions and Simple Homotopy�

Gilles Bertrand

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,
Equipe A3SI, ESIEE Paris

Abstract. We propose an extension of simple homotopy by consider-
ing homotopic pairs. Intuitively, a homotopic pair is a couple of objects
(X,Y) such that X is included in Y and (X,Y) may be transformed to
a trivial couple by simple homotopic deformations that keep X inside Y .
Thus, these objects are linked by a “relative homotopy relation”.

We formalize these notions by means of completions, which are in-
ductive properties expressed in a declarative way. In a previous work,
through the notion of a dyad, we showed that completions were able to
handle couples of objects that are linked by a certain “relative homology
relation”.

The main result of the paper is a theorem that makes clear the link
between homotopic pairs and dyads. Thus, we prove that, in the unified
framework of completions, it is possible to handle notions relative to both
homotopy and homology.

Keywords: Simple homotopy, combinatorial topology, simplicial com-
plexes, completions.

1 Introduction

Simple homotopy, introduced by J. H. C. Whitehead in the early 1930’s, may
be seen as a refinement of the concept of homotopy [1]. Two complexes are
simple homotopy equivalent if one of them may be obtained from the other by
a sequence of elementary collapses and anti-collapses.

Simple homotopy plays a fundamental role in combinatorial topology [1–7].
Also, many notions relative to homotopy in the context of computer imagery
rely on the collapse operation. In particular, this is the case for the notion of
a simple point, which is crucial for all image transformations that preserve the
topology of the objects [8–10], see also [11–13].

In this paper, we propose an extension of simple homotopy by considering
homotopic pairs. Intuitively, a homotopic pair is a couple of objects (X,Y) such
that X is included in Y and (X,Y) may be transformed to a trivial couple by
simple homotopic deformations that keep X inside Y . Thus, these objects are
linked by a “relative homotopy relation”.

� This work has been partially supported by the “ANR-2010-BLAN-0205 KIDICO”
project.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 63–74, 2014.
c© Springer International Publishing Switzerland 2014

64 G. Bertrand

We formalize these notions by means of completions, which are inductive
properties expressed in a declarative way [14]. In a previous work, we introduced
the notions of a dendrite and a dyad [15], which were also formalized by means
of completions. A dendrite is an acyclic object, a theorem asserts that an object
is a dendrite if and only if it is acyclic in the sense of homology. Intuitively, a
dyad is a couple of objects (X,Y), with X ⊆ Y , such that the cycles of X are
“at the right place with respect to the ones of Y ”. A theorem provides a relation
between dendrites and dyads. Thus, these results show that completions are
able to handle couples of objects that are linked by a certain “relative homology
relation”.

The main result of the paper is a theorem that makes clear the link between
homotopic pairs and dyads. In particular, this theorem indicates that a subset
of the completions that describe dyads allows for a complete characterization of
homotopic pairs. Thus, we prove that, in the unified framework of completions,
it is possible to handle notions relative to both homotopy and homology.

The paper is organized as follows. First, we give some basic definitions for
simplicial complexes (Sec. 2). Then, we recall some basic facts relative to the
notion of a completion (Sec. 3). We recall the definitions of the completions that
describe dendrites and dyads, and we introduce our notion of homotopic pairs
(Sec. 4). In the following section, we introduce some tools that are necessary
to prove our results (Sec. 5). We establish the theorem that provides a relation
between homotopic pairs and dyads in Sec. 6. In Sec. 7, we give a result linking
homotopic pairs and the more classical notion of simple homotopy.

The paper is self contained. In particular, almost all proofs are included.

2 Basic Definitions for Simplicial Complexes

Let X be a finite family composed of finite sets. The simplicial closure of X is the
complex X− = {y ⊆ x | x ∈ X}. The family X is a (finite simplicial) complex
if X = X−. We write S for the collection of all finite simplicial complexes. Note
that ∅ ∈ S and {∅} ∈ S, ∅ is the void complex, and {∅} is the empty complex.

Let X ∈ S. An element of X is a simplex of X or a face of X . A facet of X
is a simplex of X that is maximal for inclusion.

A simplicial subcomplex of X ∈ S is any subset Y of X that is a simplicial
complex. If Y is a subcomplex of X , we write Y � X .

Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number of
its elements minus one. The dimension of X , written dim(X), is the largest
dimension of its simplices, the dimension of ∅ being defined to be −1.

A complex A ∈ S is a cell if A = ∅ or if A has precisely one non-empty facet x.
We write C for the collection of all cells. A cell α ∈ C is a vertex if dim(α) = 0.

The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. We say that
X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if X ∩ Y = ∅. Thus,
X and Y are disjoint if and only if X ∩ Y = ∅ or X ∩ Y = {∅}.

Completions and Simple Homotopy 65

If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simplicial complex
XY such that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and
XY = X if Y = {∅}. The join αX of a vertex α and a complex X ∈ S is a cone.

Important convention. In this paper, if X,Y ∈ S, we implicitly assume that
X and Y have disjoint ground sets whenever we write XY .

We recall now some basic definitions related to the collapse operator intro-
duced by J.H.C. Whitehead ([1], see also [16]).

Let X ∈ S and let x, y be two distinct faces of X . The couple (x, y) is a free
pair for X if y is the only face of X that contains x. If (x, y) is a free pair for X ,
Y = X \{x, y} is an elementary collapse of X and X is an elementary expansion
of Y . We say that X collapses onto Y , or that Y expands onto X , if there exists
a sequence 〈X0, ..., Xk〉 such that X0 = X , Xk = Y , and Xi is an elementary
collapse of Xi−1, i ∈ [1, k]. The complex X is collapsible if X collapses onto
∅. We say that X is (simply) homotopic to Y , or that X and Y are (simply)
homotopic, if there exists a sequence 〈X0, ..., Xk〉 such that X0 = X , Xk = Y ,
and Xi is an elementary collapse or an elementary expansion of Xi−1, i ∈ [1, k].
The complex X is (simply) contractible if X is simply homotopic to ∅.

Let X,Y ∈ S and let x, y ∈ Y \X . The pair (x, y) is free for X ∪Y if and only
if (x, y) is free for Y . Thus, by induction, we have the following proposition.

Proposition 1. Let X,Y ∈ S. The complex Y collapses onto X ∩Y if and only
if X ∪ Y collapses onto X.

3 Completions

We give some basic definitions for completions, a completion may be seen as a
rewriting rule that permits to derive collections of sets. See [14] for more details.

Let S be a given collection and let K be an arbitrary subcollection of S.
Thus, we have K ⊆ S. In the sequel of the paper, the symbol K, with possible
superscripts, will be a dedicated symbol (a kind of variable).
Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that K is finitary,
if F is finite whenever (F,G) ∈ K.
Let 〈K〉 be a property that depends on K. We say that 〈K〉 is a completion (on
S) if 〈K〉 may be expressed as the following property:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉
where K is an arbitrary finitary binary relation on 2S.
If 〈K〉 is a property that depends on K, we say that a given collection X ⊆ S
satisfies 〈K〉 if the property 〈K〉 is true for K = X.

Theorem 1. [14] Let 〈K〉 be a completion on S and let X ⊆ S. There exists,
under the subset ordering, a unique minimal collection that contains X and that
satisfies 〈K〉.

If 〈K〉 is a completion on S and if X ⊆ S, we write 〈X; K〉 for the unique
minimal collection that contains X and that satisfies 〈K〉.

66 G. Bertrand

Let 〈K〉 be a completion expressed as the above property 〈K〉. By a fixed point
property, the collection 〈X; K〉 may be obtained by starting from K = X, and
by iteratively adding to K all the sets G such that (F,G) ∈ K and F ⊆ K (see
[14]). Thus, if C = 〈X; K〉, then 〈X; K〉 may be seen as a dynamic structure that
describes C, the completion 〈K〉 acts as a generator, which, from X, makes it
possible to enumerate all elements in C. We will see now that 〈K〉 may in fact
be composed of several completions.

Let 〈K1〉, 〈K2〉, ..., 〈Kk〉 be completions on S. We write ∧ for the logical “and”.
It may be seen that 〈K〉 = 〈K1〉∧〈K2〉...∧〈Kk〉 is a completion. In the sequel, we
write 〈K1,K2, ...,Kk〉 for 〈K〉. Thus, if X ⊆ S, the notation 〈X; K1,K2, ...,Kk〉
stands for the smallest collection that contains X and that satisfies each of the
properties 〈K1〉, 〈K2〉, ..., 〈Kk〉.

Remark 1. If 〈K〉 and 〈Q〉 are two completions on S, then we have 〈X; K〉 ⊆
〈X; K,Q〉 whenever X ⊆ S. Furthermore, we have 〈X; K〉 = 〈X; K,Q〉 if and
only if the collection 〈X; K〉 satisfies the property 〈Q〉.

4 Completions on Simplicial Complexes

The notion of a dendrite was introduced in [14] as a way for defining a collection
made of acyclic complexes. Let us consider the collection S = S, and let K
denotes an arbitrary collection of simplicial complexes.

We define the two completions 〈D1〉 and 〈D2〉 on S: For any S, T ∈ S,
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉
Let D = 〈C;D1,D2〉. Each element of D is a dendrite.

Remark 2. Let K be the binary relation on 2S such that (F,G) ∈ K iff there exist
S, T ∈ S, with F = {S, T, S∩T } and G = {S∪T }. We see that K is finitary and
that 〈D1〉 may be expressed as the property 〈K〉 given in the preceding section.
Thus 〈D1〉 is indeed a completion, and so is 〈D2〉.

The collection T of all trees (i.e., all connected acyclic graphs) provides an
example of a collection of dendrites. It may be checked that T satisfies both 〈D1〉
and 〈D2〉, and that we have T ⊆ D. In fact, we have the general result [14]:

A complex is a dendrite if and only if it is acyclic in the sense of homology.
As a consequence, any contractible complex is a dendrite but there exist some
dendrites that are not contractible. The punctured Poincaré homology sphere
provides an example of this last fact. Note also that each complex in 〈C;D1〉
is contractible [6], but there exist some contractible complexes that are not in
〈C;D1〉. The dunce hat [18] provides an example of this last fact. It follows that
it is not possible, using only the two completions 〈D1〉 and 〈D2〉, to characterize
precisely the collection composed of all contractible complexes.

The aim of this paper is to make clear the link between (simple) homotopy and
completions. By the previous remarks, we will have to consider other completions

Completions and Simple Homotopy 67

Q

S

R

S

T

R

S

(a) (b) (c)

Fig. 1. (a) (Q,S) is not a dyad. (b) (R,S) is a dyad. (c) Suppose (R,S) and (S∩T, T)
are dyads. Then, by 〈Ÿ1〉, (S, S ∪ T) must be a dyad. Furthermore, by 〈T̈〉, (R,S ∪ T)
must also be a dyad.

than the two above ones. To achieve our goal, we will proceed by using some
completions that describe dyads [15].

Intuitively, a dyad is a couple of complexes (X,Y), with X � Y , such that the
cycles of X are “at the right place with respect to the ones of Y ”. For example,
the couple (Q,S) of Fig. 1 (a) is not a dyad, while the couple (R,S) of Fig. 1
(b) is a dyad.

We set S̈ = {(X,Y) | X,Y ∈ S, X � Y } and C̈ = {(A,B) ∈ S̈ | A,B ∈ C}.
In the sequel of the paper, K̈ will denote an arbitrary subcollection of S̈.

We define five completions on S̈ (the symbols T̈, Ü, L̈ stand respectively for
“transitivity”, “upper confluence”, and “lower confluence”):
For any S, T ∈ S,
-> If (S ∩ T, T) ∈ K̈, then (S, S ∪ T) ∈ K̈. 〈Ÿ1〉
-> If (S, S ∪ T) ∈ K̈, then (S ∩ T, T) ∈ K̈. 〈Ÿ2〉
For any (R,S), (S, T), (R, T) ∈ S̈,
-> If (R,S) ∈ K̈ and (S, T) ∈ K̈, then (R, T) ∈ K̈. 〈T̈〉
-> If (R,S) ∈ K̈ and (R, T) ∈ K̈, then (S, T) ∈ K̈. 〈Ü〉
-> If (R, T) ∈ K̈ and (S, T) ∈ K̈, then (R,S) ∈ K̈. 〈L̈〉
We set Ẍ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉. Each element of Ẍ is a dyad 1.

See Fig. 1 (c) for an illustration of the completions 〈Ÿ1〉 and 〈T̈〉. In [15], the
following relation between dyads and dendrites was given.

Theorem 2. Let (X,Y) ∈ S̈ and let α be a vertex such that αX ∩ Y = X. The
couple (X,Y) is a dyad if and only if αX ∪ Y is a dendrite. In particular, a
complex Y ∈ S is a dendrite if and only if (∅, Y) is a dyad.

Intuitively, this result indicates that (X,Y) is a dyad if we cancel out all cycles
of Y (i.e., we obtain an acyclic complex), whenever we cancel out those of X
(by the way of a cone).

In Fig. 1 (b), we see that it is possible to continuously deform R onto S, this
deformation keeping R inside S. It follows the idea to introduce the following
notions in order to make a link between dyads and simple homotopy.

1 In [15], a different but equivalent definition of a dyad was given. See Th. 2 of [15].

68 G. Bertrand

If X,Y ∈ S, we write X
E	−→ Y , whenever Y is an elementary expansion of X .

We define four completions on S̈: For any (R,S), (R, T), (S, T) in S̈,

-> If (R,S) ∈ K̈ and S
E	−→ T , then (R, T) ∈ K̈. 〈Ḧ1〉

-> If (R, T) ∈ K̈ and S
E	−→ T , then (R,S) ∈ K̈. 〈Ḧ2〉

-> If (R, T) ∈ K̈ and R
E	−→ S, then (S, T) ∈ K̈. 〈Ḧ3〉

-> If (S, T) ∈ K̈ and R
E	−→ S, then (R, T) ∈ K̈. 〈Ḧ4〉

We set Ï = {(X,X) | X ∈ S} and Ḧ = 〈̈I; Ḧ1, Ḧ2, Ḧ3, Ḧ4〉. Each element of Ḧ is
a homotopic pair.

Note that we have 〈̈I; Ḧ1〉 = 〈̈I; Ḧ1, Ḧ4〉. Furthermore, (X,Y) ∈ 〈̈I; Ḧ1〉 if and
only if Y collapses onto X .

If (X ′, Y ′) is obtained from (X,Y) by applying one of the completions 〈Ḧ1〉,
〈Ḧ2〉, 〈Ḧ3〉, 〈Ḧ4〉, then X ′ is homotopic to X , and Y ′ is homotopic to Y . Since,
for generating the collection Ḧ, we start from Ï, we have the following.

Proposition 2. If (X,Y) ∈ Ḧ, then X is homotopic to Y .

Observe that, if X is homotopic to Y and if X � Y , then we have not
necessarily (X,Y) ∈ Ḧ. See the couple (Q,S) of Fig. 1 (a).

5 Product

In this section we give some notions that are essential for the proofs of the main
results of this paper. In particular, we introduce the notion of a product of a
simplicial complex by a copy of this complex. Intuitively, this product has the
structure of a Cartesian product of an object by the unit interval.

Let Z,Z ′ ∈ S. We say that Z and Z ′ are isomorphic if there exists a bijection
λ : Z → Z ′ such that, for all x, y ∈ Z, we have λ(x) ⊆ λ(y) if and only if x ⊆ y.
In this case, we also say that Z ′ is a copy of Z, we write λx = λ(x), and we set
λX = {λx | x ∈ X} whenever X � Z. Thus, λZ stands for Z ′. If T � Z, we say
that λZ is a copy of Z with T fixed if λT = T .
In the sequel, we denote by Cop(Z) the collection of all copies of a complex Z,
and we denote by Cop(Z;T) the collection of all copies of Z with T fixed.
Let Z ∈ S and let λZ ∈ Cop(Z). If X � Z and Y � Z, we note that λ(X ∪Y) =
λX ∪ λY , λ(X ∩ Y) = λX ∩ λY . If XY � Z, we also have λ(XY) = λXλY .

Remark 3. Let T, Z ∈ S, with T � Z, and let λZ ∈ Cop(Z). Suppose that
Z collapses onto T . Then, the complex λZ collapses onto λT . Nevertheless, if
T � λZ, then λZ does not necessarily collapses onto T (T may be not "at the
right place" w.r.t λZ). Of course if λZ ∈ Cop(Z;T), then λZ collapses onto T .

Let X ∈ S and let λX ∈ Cop(X) disjoint from X . The product of X by λX
is the simplicial complex X ⊗ λX such that X ⊗ λX = {x ∪ λy | x ∪ y ∈ X}.
Observe that z is a facet of X ⊗ λX if and only if there exists a facet x of X
such that z = x ∪ λx. Note also that we have dim(X ⊗ λX) = 2dim(X) + 1.

Let Z ∈ S and λZ ∈ Cop(Z) disjoint from Z. If X � Z, Y � Z, then:
- (X ∪ Y)⊗ λ(X ∪ Y) = (X ⊗ λX) ∪ (Y ⊗ λY); and

Completions and Simple Homotopy 69

- (X ∩ Y)⊗ λ(X ∩ Y) = (X ⊗ λX) ∩ (Y ⊗ λY).
If XY � Z, we have (XY)⊗ λ(XY) = (X ⊗ λX)(Y ⊗ λY).
If A ∈ C and if A � Z, then A⊗ λA = AλA.

The proofs of the two following propositions will be given in an extended
version of this paper.

Proposition 3. Let (X,Y) ∈ S̈, let λX ∈ Cop(X) disjoint from Y , and let
Z � X. The complex (X ⊗ λX)∪ Y collapses onto (Z ⊗ λZ)∪ Y . In particular,
(X ⊗ λX) ∪ Y collapses onto Y and (X ⊗ λX) collapses onto X.

Proposition 4. Let (X,Y) ∈ S̈ and let λX ∈ Cop(X) disjoint from Y .
Let (λX,Z) ∈ S̈ such that Z is disjoint from Y . If X collapses onto X ′, then
(X ⊗ λX) ∪ Y ∪ Z collapses onto (X ′ ⊗ λX ′) ∪ Y ∪ Z.

Let X,Y ∈ S. We say that Y is independent from X if a simplex x ∈ Y is
necessarily in X whenever x ⊆ X. In other words, Y is independent from X if
any cell that is included in Y but not in X , contains a vertex that is included
in Y but not in X .

Observe that Y is independent from X if and only if X ∪ Y is independent
from X . Also, a product such that X⊗λX is independent from X and from λX .

The proof of the following proposition is easy.

Proposition 5. Let X,Y ∈ S and (X,Z) ∈ S̈. If Z is independent from X, then
there exists λZ ∈ Cop(Z;X) such that λZ ∩ Y = X ∩ Y .

Remark 4. Let X,Y ∈ S such that X and Y are disjoint, and let (X,Z) ∈ S̈.
Then, there exists λZ ∈ Cop(Z;X) such that λZ and Y are disjoint. In other
words, in this particular case, Prop. 5 is satisfied even if the complex Z is not
independent from X .

6 Completions and Homotopic Pairs

In this section, we establish a link between dyads and homotopic pairs (Th. 3).
For that purpose, we give first the following characterization of Ḧ.

If X,Y ∈ S, we write X
∗E	−→ Y , whenever X expands onto Y .

Proposition 6. Let (X,Y) ∈ S̈. We have (X,Y) ∈ Ḧ if and only if there exists
a complex Z independent from Y such that X ∗E	−→ Z and Y

∗E	−→ Z.

Proof. Let (X,Y) ∈ S̈.
i) Suppose X

∗E	−→ Z and Y
∗E	−→ Z. Then, we may derive (X,Z) from (Z,Z) by

repeated applications of 〈Ḧ4〉 and we may derive (X,Y) from (X,Z) by repeated
applications of 〈Ḧ2〉. Thus, (X,Y) ∈ Ḧ.
ii) We proceed by induction on the four completions that describe Ḧ. If Y = X ,
then Y is independent from X , X ∗E	−→ Y , and Y

∗E	−→ Y . Suppose Y �= X and
suppose there exists a complex Z independent from Y such that X

∗E	−→ Z and

70 G. Bertrand

Y
∗E	−→ Z. Thus, we have λX

∗E	−→ λZ and λY
∗E	−→ λZ, whenever λZ ∈ Cop(Z).

1) Let T such that Y E	−→ T . Let λZ ∈ Cop(Z) disjoint from T . We consider
the complex Z ′ = T ∪ (Y ⊗λY)∪λZ, Z ′ is independent from T . By Prop. 1 and
3, we have:
T

∗E	−→ T ∪ (Y ⊗ λY)
∗E	−→ T ∪ (Y ⊗ λY) ∪ λZ, and

X
∗E	−→ (X⊗λX)

∗E	−→ (X⊗λX)∪λZ ∗E	−→ (Y ⊗λY)∪λZ ∗E	−→ T ∪ (Y ⊗λY)∪λZ.
Thus, T ∗E	−→ Z ′ and X

∗E	−→ Z ′.
2) Let T such that T

E	−→ Y and X � T . Let λZ ∈ Cop(Z) disjoint from Y .
Thus, we have λT

∗E	−→ λY . We consider the complex Z ′ = (T ⊗ λT) ∪ λZ, Z ′ is
independent from T . By Prop. 1 and 3, we have:
T

∗E	−→ (T ⊗ λT)
∗E	−→ (T ⊗ λT) ∪ λY

∗E	−→ (T ⊗ λT) ∪ λZ, and
X

∗E	−→ (X ⊗ λX)
∗E	−→ (X ⊗ λX) ∪ λZ

∗E	−→ (T ⊗ λT) ∪ λZ.
Thus, T ∗E	−→ Z ′ and X

∗E	−→ Z ′.
3) Let T such that X

E	−→ T and T � Y . Let λZ ∈ Cop(Z) disjoint from Y .
We consider the complex Z ′ = (Y ⊗ λY) ∪ λZ, Z ′ is independent from Y . By
Prop. 1, 3, 4, we have:
Y

∗E	−→ (Y ⊗ λY)
∗E	−→ (Y ⊗ λY) ∪ λZ, and

T
∗E	−→ T∪(X⊗λX)

∗E	−→ T∪(X⊗λX)∪λZ ∗E	−→ (T⊗λT)∪λZ ∗E	−→ (Y ⊗λY)∪λZ.
Thus, Y ∗E	−→ Z ′ and T

∗E	−→ Z ′.
4) Let T such that T E	−→ X . The complex Z is independent from Y , and we

have Y
∗E	−→ Z and T

∗E	−→ X
∗E	−→ Z. �

As a direct consequence of Prop. 6, we have the following result. Observe that
the expression Ḧ = 〈̈I; Ḧ1, Ḧ2〉 means that a pair (X,Y) may be detected as a
homotopic pair by using only transformations that keep the complex X fixed.

Proposition 7. We have Ḧ = 〈̈I; Ḧ1, Ḧ2〉 = 〈̈I; Ḧ2, Ḧ4〉.

Proof. Let Ḧ′ = 〈̈I; Ḧ1, Ḧ2〉 and Ḧ′′ = 〈̈I; Ḧ2, Ḧ4〉. We have Ḧ′ ⊆ Ḧ and Ḧ′′ ⊆ Ḧ

(see Remark 1). Let (X,Y) ∈ Ḧ. By Prop. 6, there exists Z such that X
∗E	−→ Z

and Y
∗E	−→ Z. We have (X,X) ∈ Ḧ′. Thus, by 〈Ḧ1〉, (X,Z) ∈ Ḧ′ and, by 〈Ḧ2〉,

(X,Y) ∈ Ḧ′. We also have (Z,Z) ∈ Ḧ′′. Thus, by 〈Ḧ4〉, (X,Z) ∈ Ḧ′′ and, by
〈Ḧ2〉, (X,Y) ∈ Ḧ′′. It follows that Ḧ ⊆ Ḧ′ and Ḧ ⊆ Ḧ′′. �

Lemma 1. If X ∈ S and α is a vertex, then (∅, αX) ∈ 〈C̈; Ÿ1, T̈, Ü〉.

Proof. Let Ḧ′ = 〈C̈; Ÿ1, T̈, Ü〉. If Card(X) ≤ 2, then αX is a cell. In this case
the property is true since (∅, αX) ∈ C̈. Let k ≥ 3. Suppose the property is true
whenever Card(X) < k and let X such that Card(X) = k. If X has a single
facet then, again, αX is a cell and (∅, αX) ∈ C̈. If X has more than one facet,
then there exists X ′ and X ′′ such that αX = αX ′ ∪ αX ′′ with Card(X ′) < k,
Card(X ′′) < k, and Card(X ′ ∩X ′′) < k. By the induction hypothesis, we have
(∅, αX ′) ∈ Ḧ′, (∅, αX ′′) ∈ Ḧ′, and (∅, α(X ′ ∩ X ′′)) ∈ Ḧ′. By 〈Ü〉, we have

Completions and Simple Homotopy 71

(α(X ′∩X ′′), αX ′′) = (αX ′∩αX ′′, αX ′′) ∈ Ḧ′. By 〈Ÿ1〉, we obtain (αX ′, αX) ∈
Ḧ′. Now, by 〈T̈〉, we conclude that (∅, αX) ∈ Ḧ′. �

Lemma 2. Let X,Y ∈ S. If X E	−→ Y , then (X,Y) ∈ 〈C̈; Ÿ1, T̈, Ü〉.

Proof. If A is a cell, with A �= ∅, we set ∂A = A \ {x}, where x is the unique
facet of A. Let Ḧ′ = 〈C̈; Ÿ1, T̈, Ü〉. Suppose X

E	−→ Y . If X = ∅, then Y is a
vertex, and (X,Y) ∈ C̈. Otherwise, there exists a vertex α and a cell A ∈ C,
with A �= ∅, such that Y = X∪αA and X∩αA = α∂A (the free pair is (A,αA)).
By Lemma 1, we have (∅, α∂A) ∈ Ḧ′ and (∅, αA) ∈ Ḧ′. Thus, by 〈Ü〉, we have
(α∂A, αA) ∈ Ḧ′. By 〈Ÿ1〉, we obtain (X,Y) ∈ Ḧ′. �

The following theorem shows that four of the five completions that describe
dyads allow for a characterization of the collection made of all homotopic pairs.

Theorem 3. We have Ḧ = 〈C̈; Ÿ1, T̈, Ü, L̈〉.

Proof. Let Ḧ′ = 〈C̈; Ÿ1, T̈, Ü, L̈〉.
i) Setting T = ∅ in the definition of Ÿ1, we see that Ï ⊆ Ḧ′. We have (X,Y) ∈ Ḧ′

whenever X E	−→ Y (Lemma 2 and Remark 1). Now, for any (R,S), (R, T), (S, T)
in S̈:
- If (R, T) ∈ Ḧ′ and S

E	−→ T , then (S, T) ∈ Ḧ′ and, by L̈, we have (R,S) ∈ Ḧ′;
- If (S, T) ∈ Ḧ′ and R

E	−→ S, then (R,S) ∈ Ḧ′ and, by T̈, we have (R, T) ∈ Ḧ′.
By induction, since Ḧ = 〈̈I; Ḧ2, Ḧ4〉 (Prop. 7), it follows that Ḧ ⊆ Ḧ′.

ii) If (X,Y) ∈ C̈, then it may be checked that Y collapses onto X . Thus C̈ ⊆ Ḧ.
- Let S, T ∈ S. Suppose (S ∩ T, T) ∈ Ḧ. Thus, there exists K independent

from T such that S∩T ∗E	−→ K and T
∗E	−→ K (Prop. 6). Then, there exists a copy

λK ∈ Cop(K;T) such that λK ∩ S = S ∩ T (Prop. 5). Since S ∩ T
∗E	−→ λK,

we have S
∗E	−→ S ∪ λK (Prop. 1). We have also λK ∩ (S ∪ T) = T . Thus, since

T
∗E	−→ λK, we have S ∪ T

∗E	−→ S ∪ λK (Prop. 1). Therefore (S, S ∪ T) ∈ Ḧ.
- Let (R,S), (S, T), (R, T) ∈ S̈. Suppose (R,S) ∈ Ḧ and (S, T) ∈ Ḧ. There

exists K such that S ∗E	−→ K, and T
∗E	−→ K (Prop. 6). By 〈Ḧ1〉, we have (R,K) ∈

Ḧ. Thus, by 〈Ḧ2〉, we have (R, T) ∈ Ḧ.
- Let (R,S), (S, T), (R, T) ∈ S̈. Suppose (R,S) ∈ Ḧ and (R, T) ∈ Ḧ. By

Prop. 6, there exists K independent from S such that R
∗E	−→ K, and S

∗E	−→ K.
By Prop. 5, there exists λK ∈ Cop(K;S) such that λK∩T = S. Since S ∗E	−→ λK,
we have T

∗E	−→ T ∪ λK (Prop. 1). By 〈Ḧ1〉, we have (R, T ∪ λK) ∈ Ḧ. Since
R

∗E	−→ λK, by 〈Ḧ3〉, we have (λK, T ∪ λK) ∈ Ḧ and, by 〈Ḧ4〉, (S, T ∪ λK) ∈ Ḧ.
By 〈Ḧ2〉, we get (S, T) ∈ Ḧ.

- Let (R,S), (S, T), (R, T) ∈ S̈. Suppose (R, T) ∈ Ḧ and (S, T) ∈ Ḧ. There
exists K such that S ∗E	−→ K, and T

∗E	−→ K (Prop. 6). By 〈Ḧ1〉, we have (R,K) ∈
Ḧ. Thus, by 〈Ḧ2〉, we have (R,S) ∈ Ḧ.

72 G. Bertrand

Thus, by induction, we have Ḧ′ ⊆ Ḧ. �
By Th. 3, the only difference between the collection Ẍ of dyads and the collec-

tion Ḧ of homotopic pairs is the completion 〈Ÿ2〉. This difference may be illus-
trated by the following classical construction. Let P be the punctured Poincaré
homology sphere. The complex P is not contractible since the fundamental group
of P is not trivial, thus (∅, P) �∈ Ḧ. Let α and β be two distinct vertices and let
S = αP ∪ βP be a suspension of P . Now the fundamental group of S is trivial
and S is contractible. So we have (∅, S) ∈ Ḧ. Since Ḧ ⊆ Ẍ, we get (∅, S) ∈ Ẍ.
But (∅, αP) ∈ Ẍ (Prop. 2 of [15]). Thus, by 〈Ü〉, it follows that (αP, S) ∈ Ẍ.
By 〈Ÿ2〉, we deduce that (αP ∩ βP, βP) ∈ Ẍ. We obtain (P, βP) ∈ Ẍ. Since
(∅, βP) ∈ Ẍ, by 〈L̈〉, we conclude that (∅, P) ∈ Ẍ, i.e., that P is a dendrite
(Th.ň2).

Remark 5. Let us consider the following completion on S̈: For any S, T ∈ S,

-> If S E	−→ T , then (S, T) ∈ K̈. 〈Ë〉
Using Th. 3, we can check that we have Ḧ = 〈̈I; Ë, T̈, Ü, L̈〉.

7 Completions and Simple Homotopy

In the preceding section we have established a link between dyads and homotopic
pairs. Here, we will clarify the relation between homotopic pairs and the more
classical notion of simple homotopy (Th. 4). For that purpose, we introduce the
following relation.

We denote by H∼ the binary relation on S such that, for all X , Y ∈ S, we have
X

H∼ Y if and only if:
i) The complexes X and Y are disjoint; and
ii) There exists K ∈ S such that (X,K) ∈ Ḧ and (Y,K) ∈ Ḧ.

For example, if X ∈ S and if λX ∈ Cop(X) is disjoint from X , then, by Prop.
3, we have X

∗E	−→ X ⊗ λX and λX
∗E	−→ X ⊗ λX . Thus, we have X

H∼ λX .

Proposition 8. Let X,Y ∈ S be disjoint complexes. We have X
H∼ Y if and

only if there exists Z ∈ S such that X ∗E	−→ Z and Y
∗E	−→ Z.

Proof. The “if” part is straightforward. Suppose there exists K ∈ S such that
(X,K) ∈ Ḧ and (Y,K) ∈ Ḧ. By Prop. 6, there exists Z ′ such that X ∗E	−→ Z ′ and
K

∗E	−→ Z ′. By 〈Ḧ1〉, we have (Y, Z ′) ∈ Ḧ. Then, again by Prop. 6, there exists
Z such that Y

∗E	−→ Z and Z ′ ∗E	−→ Z. Thus, we have X
∗E	−→ Z and Y

∗E	−→ Z. �

Lemma 3. Let X,Y ∈ S. If X and Y are simply homotopic, then there exists
λY ∈ Cop(Y) disjoint from X, and there exists K ∈ S such that X ∗E	−→ K and
λY

∗E	−→ K.

Proof. Let X , Y ∈ S.
i) If X = Y , then there exists λY ∈ Cop(Y) disjoint from X . Let K = X ⊗ λY .

Completions and Simple Homotopy 73

By Prop. 3, the complex K satisfies the above condition.
ii) Suppose λY and K satisfy the above condition.

- Let X ′ such that X
E	−→ X ′. Let μK ∈ Cop(K) disjoint from K and X ′.

We have μλY � μK and μλY is a copy of Y disjoint from X ′. We set K ′ =

X ′∪(X⊗μX)∪μK. We haveX ′ ∗E	−→ X ′∪(X⊗μX)
∗E	−→ X ′∪(X⊗μX)∪μK = K ′,

and μλY
∗E	−→ μK

∗E	−→ (X ⊗ μX) ∪ μK
∗E	−→ X ′ ∪ (X ⊗ μX) ∪ μK = K ′.

- Let X ′ such that X ′ E	−→ X . Let μK ∈ Cop(K) disjoint from K. We have
μλY � μK and μλY is a copy of Y disjoint from X ′. We set K ′ = (X ′⊗μX ′)∪
μK. We have X ′ ∗E	−→ (X ′ ⊗ μX ′)

∗E	−→ (X ′ ⊗ μX ′) ∪ μK = K ′, and
μλY

∗E	−→ μK
∗E	−→ (X ′ ⊗ μX ′) ∪ μK = K ′.

The proof is complete by induction on the number of elementary collapses and
expansions that allow us to transform X into Y . �
Theorem 4. Let X,Y ∈ S such that X and Y are disjoint. The complexes X

and Y are simply homotopic if and only if X H∼ Y .

Proof. Let X,Y ∈ S be disjoint complexes.
i) If X H∼ Y , then, by Prop. 8, X and Y are simply homotopic.
ii) Suppose X and Y are simply homotopic. Then, there exists λY ∈ Cop(Y)

disjoint from X , and there exists K ∈ S such that X
∗E	−→ K and λY

∗E	−→ K
(Lemma 3). Furthermore, there exists μK ∈ Cop(K;X) disjoint from Y (see
Remark 4). Thus, X ∗E	−→ μK and μλY

∗E	−→ μK. Let K ′ = μK ∪ (Y ⊗ μλY). We
have X

∗E	−→ μK
∗E	−→ K ′ and Y

∗E	−→ Y ⊗μλY
∗E	−→ K ′. It follows that (X,K ′) ∈ Ḧ

and (Y,K ′) ∈ Ḧ. Therefore X
H∼ Y . �

Since simple homotopy corresponds to a transitive relation, the following is a
corollary of Th. 4.

Corollary 1. Let X,Y, Z ∈ S be three mutually disjoint complexes.
If X H∼ Y and Y

H∼ Z, then X
H∼ Z.

If X ∈ S and if λX ∈ Cop(X), then X and λX are simply homotopic. Thus,
we also have the following immediate consequence of Th. 4 and Prop. 8.

Corollary 2. Let X,Y ∈ S and let λY ∈ Cop(Y) disjoint from X. The com-
plexes X and Y are simply homotopic if and only if there exists K ∈ S such that
X

∗E	−→ K and λY
∗E	−→ K.

Remark 6. In [1], the following result was given (see Th. 4 of [1]):
Let X,Y ∈ S. If X and Y are simply homotopic, then there exists K ∈ S and
there exists a stellar sub-division Ỹ of Y , such that X ∗E	−→ K and Ỹ

∗E	−→ K.
Cor. 2 shows that we can have the same relationship between two homotopic
complexes without involving sub-divisions, which change the structure of a com-
plex. Only the notion of a copy is necessary. Observe that this result has been
made possible thanks to the notion of a product, this construction allows us to
have “more room” to perform homotopic transforms.

74 G. Bertrand

8 Conclusion

We proposed an extension of simple homotopy by considering homotopic pairs.
The notion of a homotopic pair was formalized by means of completions. One of
the main results of the paper (Th. 3) shows that a subset of the five completions
that describe dyads allows for a complete characterization of homotopic pairs.
Since dyads are linked to homology, we have a unified framework where a link
between some notions relative to homotopy and some notions relative to homol-
ogy may be expressed. It should be noted that such a link is not obvious in the
classical framework [19].

In the future, we will further investigate the possibility to use completions for
deriving results related to combinatorial topology.

References

1. Whitehead, J.H.C.: Simplicial spaces, nuclei, and m-groups. Proc. London Math.
Soc. (2) 45, 243–327 (1939)

2. Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.)
Handbook of Combinatorics, pp. 1819–1872. North-Holland, Amsterdam (1995)

3. Hachimori, M.: Nonconstructible simplicial balls and a way of testing constructibil-
ity. Discrete Comp. Geom. 22, 223–230 (1999)

4. Kahn, J., Saks, M., Sturtevant, D.: A topological approach to evasiveness. Combi-
natorica 4, 297–306 (1984)

5. Welker, V.: Constructions preserving evasiveness and collapsibility. Discrete
Math. 207, 243–255 (1999)

6. Jonsson, J.: Simplicial Complexes of Graphs. Springer (2008)
7. Kalai, G.: Enumeration of Q-acyclic simplicial complexes. Israel Journal of Math-

ematics 45(4), 337–351 (1983)
8. Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional

binary images. In: Ahronovitz, E., Fiorio, C. (eds.) DGCI 1997. LNCS, vol. 1347,
pp. 3–18. Springer, Heidelberg (1997)

9. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and
4D discrete spaces. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 31(4), 637–648 (2009)

10. Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences,
Série Math. (345), 363–367 (2007)

11. Rosenfeld, A.: Digital topology. Amer. Math. Monthly, 621–630 (1979)
12. Kovalevsky, V.: Finite topology as applied to image analysis. Comp. Vision Graph-

ics, and Im. Proc. 46, 141–161 (1989)
13. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comp. Vi-

sion, Graphics and Image Proc. 48, 357–393 (1989)
14. Bertrand, G.: Completions and simplicial complexes, HAL-00761162 (2012)
15. Bertrand, G.: New structures based on completions. In: Gonzalez-Diaz, R.,

Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 83–94.
Springer, Heidelberg (2013)

16. Giblin, P.: Graphs, surfaces and homology. Chapman and Hall (1981)
17. Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré

Conjecture. Lectures on Modern Mathematics II, pp. 93–128. Wiley (1964)
18. Zeeman, E.C.: On the dunce hat. Topology 2, 341–358 (1964)
19. Hatcher, A.: Algebraic topology. Cambridge University Press (2001)

2D Subquadratic Separable Distance

Transformation for Path-Based Norms�

David Coeurjolly

CNRS, LIRIS, UMR5205, F-69621, France

Abstract. In many applications, separable algorithms have demon-
strated their efficiency to perform high performance and parallel vol-
umetric computations, such as distance transformation or medial axis
extraction. In the literature, several authors have discussed about con-
ditions on the metric to be considered in a separable approach. In
this article, we present generic separable algorithms to efficiently com-
pute Voronoi maps and distance transformations for a large class of
metrics. Focusing on path based norms (chamfer masks, neighborhood
sequences, ...), we detail a subquadratic algorithm to compute such
volumetric transformation in dimension 2. More precisely, we describe
a O(log2 m ·N2) algorithm for shapes in a N ×N domain with chamfer
norm of size m.

Keywords: Digital Geometry, Distance Transformation, Path-based
Norms.

1 Introduction

Since early works on digital geometry, distance transformation has been play-
ing an important role in many applications [16,15]. Given a finite input shape
X ⊂ Zn, the distance transformation labels each point in X with the distance
to its closest point in Zn \ X . Labeling each point by the closest background
point leads to Voronoi maps. Since such characterization is parametrized by a
distance function, many authors address this distance transformation problem
with trade-offs between algorithmic performances and the accuracy of the digital
distance function with respect to the Euclidean one. Hence, authors have con-
sidered distances based on chamfer masks [15,2,6] or sequences of chamfer masks
[16,11,17,13]; the vector displacement based Euclidean distance [5,14]; Voronoi
diagram based Euclidean distance [3,9] or the square of the Euclidean distance
[7,10]. For the Euclidean metric, separable volumetric computations have demon-
strated to be very efficient: optimal O(n ·Nn) time algorithms for shapes in Nn

domains, optimal multi-thread/GPU implementation. . . (please refer to [4] for
a discussion). For path-based metrics (chamfer mask, -weighted- neighborhood
sequences,. . .), two main techniques exist to compute the distance transforma-
tion. The first one considers a weighted graph formulation of the problem and

� This work has been mainly funded by ANR-11-BS02-009 and ANR-11-IDEX-0007-02
PALSE/2013/21 research grants.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 75–87, 2014.
c© Springer International Publishing Switzerland 2014

76 D. Coeurjolly

Dijkstra-like algorithms on weighted graphs to compute distances. If m denotes
the size of the chamfer mask, computational cost could be in O(m ·Nn) using
a cyclic bucket data structure [19]. Another approach consists in a raster scan
of the domain: first the chamfer mask is decomposed into disjoint sub-masks.
Then the domain grid points are scanned in a given order (consistent with the
sub-mask construction) and a local computation is performed before being prop-
agated [16,2]. Scanning the domain several times (one per sub-mask) leads to
the distance transformation values. Again, we end up with a O(m ·Nn) compu-
tational cost.

Beside specific applications which use the anisotropic nature of the chamfer
mask, rotational dependency is usually ensured increasing the mask size m to-
gether with optimizing weights. In this context and for arbitrarily large N , both
Dijsktra-like and raster scan approaches have a quadratic computational cost
with respect to N and m. In practical situations, m ! N but m still needs to
be in O(Nn) to have accurate asymptotic DT.

Please note that Dijkstra’s graph approach allows us to defined constrained
distance transformation (i.e. geodesic metric), both separable approaches and
raster-scan for path-based metrics are only dedicated to compact convex domains
(usually hyper-rectangular) distance transformation.

Contributions. In this article, we first describe the generic framework for sep-
arable distance transformation and metric conditions to be consistent with this
model. Then, we describe subquadratic and parallel algorithms in dimension 2 to
compute error-free distance transformation and Voronoi map for chamfer norms
and other path-based metrics. Overall computational costs can be summarized
as follows (see 3.2 for predicate definitions):

Metric Closest HiddenBy Sep. Voronoi Map Reference
L2 O(1) O(1) Θ(n ·Nn) [7]
L∞ O(1) O(1) Θ(n ·Nn) [10]
L1 O(1) O(1) Θ(n ·Nn) [10]

Lp (exact pred.) O(log p) O(log p · logN) O(n ·Nn · log p · logN) Lem. 1, [1]
Lp (inexact pred.) O(1) O(logN) O(n ·Nn · logN) Lem. 1, [1]

2D Chamfer norm O(logm) O(log2 m) O(log2 m ·N2) Theorem 1

2D Neig. seq. norm O(log f) O(log2 f) O(log2 f ·N2) Th. 1 and [13]

2 Preliminaries

Definition 1 (Norm and metric induced by a norm). Given a vector space
EV, a norm is a map g from EV to a sub-group F of R such that ∀x,y ∈ EV ,

(non-negative) g(x) ≥ 0 (1)

(identity of indiscernibles) g(x) = 0⇔ x = 0 (2)

(triangular inequality) g(x+ y) ≤ g(x) + g(y) (3)

(homogeneity) ∀λ ∈ R, g(λ · x) = |λ| · g(·x) (4)

2D Subquadratic Separable Distance Transformation for Path-Based Norms 77

d(a, b) :=g(b−a) is the metric induced by the norm g. (E,F, d) is called a metric
space if d : E → F (with E such that for a, b ∈ E, (b − a) ∈ EV).

Note that the above definition can be extended from vector spaces to modules
on a commutative ring (Zn being a module on Z but not a vector space) [18].
Path-based approaches (chamfer masks, -weighted- neighborhood sequences...)
aim at defining digital metrics induced by norms in metric spaces (Zn,Z, d).
Note that (weighted, with wi ≥ 0) Lp metrics

dLp(a, b) =

(
n∑

k=1

wk|ak − bk|p
) 1

p

, (5)

define metric spaces (Zn,R, dLp) which are not digital. However, rounding up
the distance function (Zn,Z, �dLp�) is a digital metric space [8].

Definition 2 (Distance Transformation and Voronoi Map). The distance
transform DTX associated with a digital metric space (Zn,Z, d) is a map X → Z

such that, for a ∈ X DTX(a) = minb∈Zn\X{d(a, b)}. The Voronoi map is the
map X → Zn: ΠX(a) = argminb∈Zn\X{d(a, b)}.

Voronoi mapΠX corresponds to the intersection between the continuous Voronoi
diagram for the metric d of points Zn \X and the lattice Zn. If a digital point
a belongs to a Voronoi diagram d−facet (0 ≤ d < n), a is equidistant to 2 or
more points in Zn \ X but only one is considered in ΠX(a) this choice has no
influence on DTX .

Definition 3 (Chamfer Mask). A weighted vector is a pair (v, w) with v ∈ Zn

and w ∈ N∗. A chamfer mask M is a central-symmetric set of weighted vectors
with no null vectors and containing at least a basis of Zn.

Many authors have proposed algorithmic and/or analytic approaches to con-
struct chamfer masks approximating the Euclidean metric. In the following, we
focus on such chamfer norms which are chamfer metric induced by a norm. To
evaluate distances between two digital points for a given chamfer metric, direct
formulations have been proposed with simple geometrical interpretation:

Definition 4 (Rational ball, minimal H-representation [18,12]). Given
a Chamfer norm M, the rational ball associated with M is the polytope

BR = conv

{
vk

wk
; (vk, wk) ∈ M

}
. (6)

Rational ball BR can also be described as the H-representation of polytope with
minimal parameter [13]: P = {x ∈ Zn;Ax ≤ y } such that ∀k ∈ [1 . . . f], ∃x ∈
P Akx = yk.

1 f is the number of rows in A and the number of facets in BR,
and is thus related to |M|.
1 Ak being the kth row of A.

78 D. Coeurjolly

An important result for distance computation can be formalized as follows:

Proposition 1 (Direct Distance Computation [12]). Given a chamfer
mask M induced by a norm and (A, y) its minimal parameter H-representation,
then for any a ∈ Zn, the chamfer distance of a from the origin is

dM(O, a) = max
1≤k≤f

{Aka
T } . (7)

Among path-based digital metric, (weighted) neighborhood sequences have been
proposed to have better approximation of the Euclidean metric from sequences of
elementary chamfer masks [16,11,17,13]. A key result have been demonstrated in
[13] stating that for such distance functions, a minimal parameter polytope rep-
resentation exists and that distances can be obtained from a expression similar
to (7):

d(O, a) = max
1≤k≤f

{fk(Aka
T)} , (8)

fk being some integer sequence characterizing the neighborhood sequence metric.
In the following and for the sake of simplicity, we describe our algorithms focusing
on chamfer norms but similar results can be obtained for more generic path-based
metric such as neighborhood sequences.

3 Separable Distance Transformation

3.1 Voronoi Map from Separable Approach and Metric Conditions

In [7,3,10,9], several authors have described optimal in time and separable tech-
niques to compute error-free Voronoi maps or distance transformations for L2

and Lp metrics. Separability means that computations are performed dimension
by dimension. In the following, we consider Voronoi Map approach as defined in
[3]: Let us first define an hyper-rectangular image IX : [1..N1]× . . .× [1..Nn]→
{0, 1} such that IX(a) = 1 for a ∈ [1..N1] × . . . × [1..Nn] iff a ∈ X (IX(a) = 0
otherwise). In dimension 2, each row of the input image are processed to create
independent 1D Voronoi maps along the first dimension for the metric. Then, for
each further dimension, the partial Voronoi mapΠX is updated using one dimen-
sional independent processes on image spans along the ith dimension. Algorithm
1 describes the 1D processes to perform on each row, column and higher di-
mensional image span2. In this process, metric information are embedded in the
following predicates (see Fig. 1): Closest(a, b, c), given three points a, b, c ∈ Zn

this predicate returns true if d(a, b) < d(a, c). HiddenBy(a, b, c, S), given three
points a, b, c ∈ Zn such that ai < bi < ci

3 and a 1D image span S, this predicates
returns true if there is no s ∈ S such that

d(b, s) < d(a, s) and d(b, s) < d(c, s) . (9)

2 An image span S along the ith direction is a vector of Ni points with same coordinates
except at their ith one.

3 Subscript ai denotes the ith coordinate of point a ∈ Zn.

2D Subquadratic Separable Distance Transformation for Path-Based Norms 79

Algorithm 1. Voronoi map construction on 1D image span S along the
ith dimension.
Data: Input binary map IX if i = 1 or partial Voronoi map ΠX obtained for

dimensions lower than i, and a 1D span S with points {s1, . . . , sNi}
sorted by their ith coordinate.

Result: Updated partial Voronoi map ΠX along S.
1 if i == 1 ; // Special case for the first dimension

2 then
3 k = 0;
4 foreach point s in S do
5 if IX(s) == 1 then
6 LS [k] = s;
7 k ++;

8 else
9 LS[0] = ΠX(s1);

10 LS[1] = ΠX(s2);
11 k = 2 , l = 3;
12 while l ≤ Ni do

13 w = ΠX(sl);
14 while k ≥ 2 and HiddenBy(LS[k − 1], LS [k], w, S) do
15 k −−;

16 k ++ ; l ++;
17 LS[k] = w;

18 foreach point s in S by increasing ith coordinate do
19 while (k < |LS |) and not(Closest(s, LS [k], LS [k + 1])) do
20 k ++;

21 ΠX [s] = LS [k];

a

b

c

S(a)

a

b

c

S(b)

b

c

a

S(c)

Fig. 1. Geometrical predicates for Voronoi map construction: HiddenBy(a, b, c, S) re-
turns true in (a) and false in (b) (straight segments correspond to Voronoi diagram
edges). (c) illustrates the Closest(a, b, c) predicate for c ∈ S.

In other words, HiddenBy returns true if and only if the Voronoi cells of sites
a and c hide the Voronoi cell of b along S. For L1, L2 and L∞ metrics, Closest

and HiddenBy predicates can be computed in O(1) [3,7,10]. Hence, Algorithm
1 is in O(Ni) for dimension i, leading to an overall computational time for the

80 D. Coeurjolly

Voronoi map and distance transformation problem in Θ(n · Nn) (if we assume
that ∀i ∈ [1 . . . n], Ni = N).

In [7] or [9], authors discussed about conditions on the metric d to ensure
that Algorithm 1 is correct. The key property can be informally describe as
follows: given two points a, b ∈ Zn such that ai < bi and a straight line l along
the ith direction and if we denote by vl(a) (resp. vl(b)) the intersection between
the Voronoi cell of a (resp. b) and l, then vl(a) and vl(b) are simply connected
Euclidean segments and vl(a) appears before vl(b) on l (so called monotonicity
property in [9] and is related to quadrangle inequality in [7]). To sum up these
contributions, we have the following sufficient conditions on the metric:

Proposition 2 (Metric conditions [7]). Let d be a metric induced by a norm
whose unit ball is symmetric with respect to grid axes and if distance
comparison predicate is exact, Algorithm 1 is correct and returns a Voronoi map
ΠX .

When implementing Algorithm 1, the distance comparison predicate is exact if
we can compare two distances, e.g. Closest predicate, without error.

For Lp norms Algorithm 1 provides exact Voronoi map computation. Indeed,
distance comparison predicate can be error-free implemented from integer num-
ber comparisons considering the p power of the distance function

(
dLp

)p
.

Proposition 2 also implies that most chamfer norms and neighborhood se-
quence based norms can also be considered in separable Algorithm 1 (see Fig. 2).
We just need algorithmic tools to efficiently implement both Closest and Hid-

denBy predicates.

Fig. 2. Balls for different metrics satisfying Proposition 2: (from left to right) L1, L1.4,
L2, L4, L43.1, M3−4 and M5−7−11

3.2 A First Generic Adapter

We first detail the overall computational cost of Algorithm 1:

Lemma 1. Let (Zn, F, d) be a metric space induced by a norm with axis sym-
metric unit ball. If C denotes the computational cost of Closest predicate and
H is the computational cost of the HiddenBy predicate, then Algorithm 1 is in
O(n ·Nn · (C +H)).

From [3,10], C = H = O(1) for L1, L2 and L∞ norms. For given norm d, we first
define generic Algorithms 2, 3 and 4: From some evaluations of d, HiddenBy

2D Subquadratic Separable Distance Transformation for Path-Based Norms 81

predicate is obtained by a dichotomic search on the 1D image span S to localize
the abscissa of Voronoi edges of sites {a, b} and {b, c} (see Fig. 3).

Algorithm 2. Generic Closest(a, b, c ∈ Zn).

1 return d(a, b) < d(a, c);

Algorithm 3. Generic VoronoiEdge(a, b, si, sj ∈ Zn), ai < bi.

1 if (j − i = 1) then
2 if i = 1 and Closest(si, b, a) then
3 return −∞;

4 if i = Ni and Closest(si, a, b) then
5 return ∞;

6 return i;

7 mid = i+ (j − i)/2;

8 if Closest(smid, a, b) then
// smid closer to a

9 return VoronoiEdge(a, b, smid, sj)

10 else
// smid closer to b

11 return VoronoiEdge(a, b, si, smid)

Algorithm 4. Generic HiddenBy(a, b, c ∈ Zn;S in the ith direction) ai < bi <

ci.

1 vab = VoronoiEdge(a, b, s1, sNi);

2 vbc = VoronoiEdge(b, c, s1, sNi);
3 return (vab > vbc);

Lemma 2. Let (Zn, F, d) be a metric space induced by a norm with axis sym-
metric unit ball, from Algorithms 2 and 4, we have H = O(C · logN).

Proof. First, the generic VoronoiEdge is dichotomic with O(logN) steps and
each step is in O(C). VoronoiEdge is in O(C · logN). To prove the correctness
of VoronoiEdge (and thus Alg. 1), we use the convexity of the metric and the
quadrangle property: since ai < bi, all grid points closer to a than b in S (if
exist) are lower than all pixels on S closer to b than to a (if exist too). Thanks
to the test in line 8, recursive call maintain this invariant. Note that tests on
lines 2− 5 handle the fact that the edge may not belong to S. �
If we consider a chamfer norm with a rational ball of f facets, Eq. (7) suggests
that C = O(f). Hence, we have the following corollary:

Corollary 1. Let M be a chamfer norm whose rational ball has f facets, sepa-
rable exact Voronoi map ΠX can be obtained in O(n ·Nn · f · logN).

Please remember that naive implementation of chamfer mask distance transfor-
mation using raster scan approach would lead to a O(f ·Nn) computational cost.
In the following sections, we use the convex structure of BR to design a parallel
subquadratic algorithm for chamfer norms.

82 D. Coeurjolly

3.3 Subquadratic Algorithm in Dimension 2

Let us consider a 2D chamfer norm M with m weighted vectors (note that
f := |BR| = m in 2D). We suppose that vectors {vk}k=1...m are sorted counter-
clockwise. We define a wedge as a pair (vk,vk+1) of vectors. To each wedge is
associated a row Ak in the minimal H-representation of A (Ak can also be seen
as a –non-unitary– normal vector to BR facets [12]). Using similar notations,
[18,17] demonstrate that the distance evaluation of point a can be obtained in
two steps: First, we compute the wedge (vk,vk+1) a belongs to. Then,

dM(O, a) = Ak · aT (10)

Lemma 3. Given a chamfer norm M in dimension 2 with m vectors, the dis-
tance computation and thus the Closest predicate are in O(logm).

Proof. Since vectors are sorted counter-clockwise, (vk,vk+1) wedge can be ob-
tained by a dichotomic search with O(logm) steps. At each step, we compute the
local orientation of point a w.r.t. a direction which is in O(1). Once the wedge
has been obtained, Eq. (10) returns the distance value in O(1). �

Please note that in practical implementations, we can use symmetries inM to
only work on restrictions of chamfer mask directions, so called generator in the
literature. To optimize theHiddenBy predicate, we focus on theVoronoiEdge

function. Given two points a and b (ai < bi) and a 1D image span S along the ith

dimension, we have to find the lowest abscissa ei of the point e on S such that
d(a, e) < d(b, e) and d(a, e′) ≥ d(b, e′) for any e′ with e′i > ei. Let us first suppose
that we do not know e but we know the wedge (vk,vk+1) (resp. (vj ,vj+1)) to
which the vector (e − a)T (resp. (e − b)T) belongs to (see Fig. 3−(c)). In this
situation, we know that e is the solution of

Ak · (e− a)T = Aj · (e − b)T . (11)

(since e ∈ S, we have one linear equation with only one unknown ei). As
a consequence, if we know the two wedges the Voronoi edge belongs to, we
have the abscissa in O(1) (see Algorithm 5 and Fig. 3−(c)). To obtain both
wedges, we use a dichotomic search similar to Algorithm 3: Algorithm 6 re-
turns the wedge associated with a containing the Voronoi edge with respect
to b. Applying this algorithm to obtain the wedge associated with b with re-
spect to a defines Algorithm 5. The dichotomic search shrinks the set of vectors

Algorithm 5. 2D chamfer norm VoronoiEdge(a, b, si, sj ∈ Z2).

1 (vk,vk+1) = VoronoiEdgeWedge(a, b,v1,vm, S);

2 (vj ,vj+1) = VoronoiEdgeWedge(b, a,v1,vm, S);

3 Compute the abscissa ei of the point e such that Ak · (e− a)T = Aj · (e− b)T ;
4 return ei;

2D Subquadratic Separable Distance Transformation for Path-Based Norms 83

a

b

S

(a)

a

b

S

vmid

vmid+1

vj

vi

pmid+1

pmid

(b)

a

b

S

e
vk

vk+1

vj

vj+1

(c)

Fig. 3. VoronoiEdgeWedge and VoronoiEdge: (a) initial problem, we want to
compute the intersection between S and the Voronoi edge of a and b (in red). (b) an
internal step of VoronoiEdgeWedge to reduce the set of directions of M at a (here
the next recursive call will be on (vi,vmid)).(c) final step of VoronoiEdge where both
wedges have been obtained and thus e can be computed.

{vi, . . . ,vj} to end up with a wedge (vk,vk+1) such that the intersection point
between the straight line (a + vk) and S is in the Voronoi cell of a and such
that the intersection between (a + vk+1) and S is in the Voronoi cell of b (see
Fig. 3−(c)). Algorithm 6 thus first computes the intersection points associated
with a wedge (vi+(j−i)/2,vi+(j−i)/2+1) (lines 5 − 6); evaluates the distances at
these points (lines 7 − 8) and then decides which set {vi, . . . ,vi+(j−i)/2} or
{vi+(j−i)/2, . . . ,vj} has to be considered for the recursive call (lines 14− 20 and
Fig. 3−(b)).

Theorem 1. LetM be a 2D chamfer norm with axis symmetric unit ball and m
weighted vectors, then we have: (i) Algorithm 5 is in O(log2 m); (ii) Algorithm
1 (with predicates from Algorithm 5 and Lemma 3), computes a Voronoi map
ΠX and thus the distance transformation of X for metric dM in O(log2 m ·N2).

Proof. Let us first consider (i). As described above, Algorithm 6 performs logm
recursive calls and each step is in O(logm). Indeed, pmid and pmid+1 are given
by the intersections between two rational slope straight lines plus a rounding
operations on rational fractions, which are assumed to be O(1). Then, line 8
requires two O(logm) computations by Lemma 3. Hence, Eq. (11) leads to O(1)
computations, O(log2 m) is required for Algorithm 5. (ii) is a direct consequence
of (i) and Lemma 2 with n = 2. �

4 Implementation Details and Experimental Analysis

In this section, we give some implementation details and experimental results
for chamfer norm Voronoi map in dimension 2. First of all, most algorithms
presented here are available in the DGtal library [1]. For Lp metrics, we have
implemented several Closest and HiddenBy predicates: If p = {1, 2}, exact
computations are proposed and all predicates are in O(1) with only integer num-
ber computations [7,9,10]; If p ∈ R, p ≥ 1, we have approximated computations

84 D. Coeurjolly

Algorithm 6. VoronoiEdgeWedge(a, b ∈ Z2;vi, vj in M; S along the ith

direction).

1 if (j − i = 1) then
2 return (vi,vi+1);
3 else
4 mid = i+ (j − i)/2;

5 Let pmid be the intersection point between (a+ vmid) and S;

6 Let pmid+1 be the intersection point between (a+ vmid+1) and S;

// O(1) evaluation of distances w.r.t. a dapmid = Amid · (pmid − e)T ;

7 dapmid+1 = Amid+1 · (pmid+1 − e)T ;

// O(logm) evaluation of distances w.r.t. b dbpmid = dM(b, pmid);

8 dbpmid+1 = dM(b, pmid+1);

9 Let bmid be true if dapmid < dbpmid ; false otherwise;

10 Let bmid+1 be true if dapmid+1 < dbpmid+1 ; false otherwise;

11 if bmid �= bmid+1 ; // we have the Voronoi edge wedge

12 then

13 return (vmid,vmid+1);

14 if bmid = bmid+1 = true ; // Both points are in a’s cell

15 then
16 if ai < bi then

17 return VoronoiEdgeWedge(a, b,vmid,vj , S);
18 else

19 return VoronoiEdgeWedge(a, b,vi,vmid, S);

20 if bmid = bmid+1 = false; // Both points are in b’s cell

21 then
22 if ai < bi then

23 return VoronoiEdgeWedge(a, b,vi,vmid, S);
24 else

25 return VoronoiEdgeWedge(a, b,vmid,vj , S);

on real numbers (double) and we consider the Generic HiddenBy predicate in
O(logN) (Alg. 4). Since predicates are based on floating point computations,
numerical issues may occur. If p ∈ Z, p ≥ 3, we use exact integer number
based computations of distances storing sum of power p quantities (which can
be computed in O(log p) thanks to exponentiation by squaring). The HiddenBy

predicate is also based on Algorithm 4. Beside these predicates for Lp metrics,
DGtal also contains a generic metric adapter: if the user specifies a distance
function (taking two points and returning a value) corresponding to a norm
with axis symmetric unit ball, generic Closest and HiddenBy predicates can
be automatically constructed. Please note that since all algorithms are separable,
the generic framework provided in DGtal allow us to have a free multi-thread
implementation [4].

2D Subquadratic Separable Distance Transformation for Path-Based Norms 85

To implement efficient predicates leading to subquadratic algorithm in di-
mension 2 (Alg. 5 and 6), we store the chamfer norm weighted vectors M in
a random access container sorted counterclockwise to be able to get the mid-
vector vmid in O(1). When implementing Algorithms 5 and 6, few special cases
have to be taken into account. For instance, we have to handle situations where
a, b or c belong to S in Alg. 5 and 6. Furthermore, Eq. (11) has a solution iff
Ak �= Aj . Thanks to the geometrical representation of the dichotomic process
(Fig. 3), such special cases are easy to handle. Fig. 4-(a) illustrates some results
on a small domain.

To evaluate experimentally the computational cost given in Theorem 1, we
use the following setting: given a mask size m, we generate m distinct random

(a)

0 50000 100000 150000 200000 250000 300000 350000
Mask size m

0

20

40

60

80

100

120

140

Ti
m

e
in

se
c

Voronoi Map (single thread)
Voronoi Map (multi-thread)
Raster scan

0.04 log2m

0.4 log2m

(b)

0 10 20 30 40 50 60 70 80 90
Mask size m

0

2

4

6

8

10

12

14

Ti
m

e
in

se
c

Voronoi Map (single thread)
Voronoi Map (multi-thread)
Raster scan

(c)

Fig. 4. (a) Separable Voronoi map and distance transformation for M5−7−11 and L2:
on a 2562 domain with 256 and 2 random seeds, the first row corresponds to M5−7−11

and the second one to L2. (b) and zoom in (c): Experimental evaluation of subquadratic
chamfer norm Voronoi map computation.

86 D. Coeurjolly

vectors (x, y)T with gcd(x, y) = 1 (extracted from Farey series for instance).
For a general mask of size m, we do not optimize the weights to approximate
as best as possible the Euclidean metric. Indeed, weights do not play any role
in the computational analysis, we just use trivial ones that ensure that M is
a norm with axis symmetric unit ball. In Fig.4-(b − c), we have considered a
2D domain 20482 with 2048 random sites. First, we observe that fixing N , the
log2 m term is clearly visible in the computational cost of the Voronoi map
(single thread curve). Bumps in the single thread curve may be due to memory
cache issues. Please note that if we consider classical chamfer norm DT from
raster scan (and sub-masks), the computational cost is in O(m · N2) and thus
has a linear behavior in Fig. 4-(c). Since we have a separable algorithm, we can
trivially implement it in a multi-thread environment. Hence, on a bi-processor
and quad-core (hyper-threading) Intel(R) Xeon(R) cpu (16 threads can run in
parallel), we observe a speed-up by a factor 10 (blue curve in Fig. 4-(b)). Please
note that on this 20482 domain with 2048 sites, Euclidean Voronoi Map (L2) is
obtained in 954.837 milliseconds on a single core and 723.196 msec on 16 cores.

5 Conclusion and Discussion

In the literature, several authors discussed about the fact that a large class of
metrics can be considered in separable approaches for volumetric analysis. In this
article, we have proposed several algorithms to efficiently solve the Voronoi map
and distance transformation: given a user-specified distance function (induced
by a norm with some properties) a first generic separable algorithm can be used.
Focusing on chamfer norms, geometrical interpretation of this generic approach
allows us to design a first subquadratic algorithm in dimension 2 to compute the
Voronoi map. Thanks to separability, parallel implementation of the distance
transformation leads to efficient distance computation.

In higher dimensions, it turns out that most results are still true: distance
function can be evaluated in O(n · logm) and the dichotomic search described in
VoronoiEdgeWedge can also be extended to n-dimensional chamfer norms.

References

1. DGtal: Digital geometry tools and algorithms library, http://dgtal.org
2. Borgefors, G.: Distance transformations in digital images. Computer Vision,

Graphics, and Image Processing 34(3), 344–371 (1986)
3. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time euclidean distance

transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 17(5), 529–533 (1995)

4. Coeurjolly, D.: Volumetric Analysis of Digital Objects Using Distance Transforma-
tion: Performance Issues and Extensions. In: Köthe, U., Montanvert, A., Soille, P.
(eds.) WADGMM 2010. LNCS, vol. 7346, pp. 82–92. Springer, Heidelberg (2012)

5. Danielsson, P.E.: Euclidean distance mapping. Computer Graphics and Image Pro-
cessing 14, 227–248 (1980)

http://dgtal.org

2D Subquadratic Separable Distance Transformation for Path-Based Norms 87

6. Fouard, C., Malandain, G.: 3-D chamfer distances and norms in anisotropic grids.
Image and Vision Computing 23, 143–158 (2005)

7. Hirata, T.: A unified linear-time algorithm for computing distance maps. Informa-
tion Processing Letters 58(3), 129–133 (1996)

8. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Series in Computer Graphics and Geometric Modeling. Morgan Kauf-
mann (2004)

9. Maurer, C., Qi, R., Raghavan, V.: A Linear Time Algorithm for Computing Exact
Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions. IEEE
Trans. Pattern Analysis and Machine Intelligence 25, 265–270 (2003)

10. Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for com-
puting distance transforms in linear time. In: Mathematical Morphology and its
Applications to Image and Signal Processing, pp. 331–340. Kluwer (2000)

11. Mukherjee, J., Das, P.P., Kumar, M.A., Chatterji, B.N.: On approximating eu-
clidean metrics by digital distances in 2D and 3D. Pattern Recognition Letters 21(6-
7), 573–582 (2000)

12. Normand, N., Évenou, P.: Medial axis lookup table and test neighborhood compu-
tation for 3D chamfer norms. Pattern Recognition 42(10), 2288–2296 (2009)

13. Normand, N., Strand, R., Evenou, P.: Digital distances and integer sequences.
In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS,
vol. 7749, pp. 169–179. Springer, Heidelberg (2013)

14. Ragnemalm, I.: Contour processing distance transforms, pp. 204–211. World Sci-
entific (1990)

15. Rosenfeld, A., Pfaltz, J.: Distance functions on digital pictures. Pattern Recogni-
tion 1, 33–61 (1968)

16. Rosenfeld, A., Pfaltz, J.: Sequential operations in digital picture processing. Journal
of the ACM (JACM) 13, 471–494 (1966),
http://portal.acm.org/citation.cfm?id=321357

17. Strand, R.: Distance Functions and Image Processing on Point-Lattices With Focus
on the 3D Face- and Body-centered Cubic Grids. Phd thesis, Uppsala Universitet
(2008)

18. Thiel, E.: Géométrie des distances de chanfrein. Ph.D. thesis, Aix-Marseille 2
(2001)

19. Verwer, B.J.H., Verbeek, P.W., Dekker, S.T.: An efficient uniform cost algorithm
applied to distance transforms. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 11(4), 425–429 (1989)

http://portal.acm.org/citation.cfm?id=321357

Anti-Aliased Euclidean Distance Transform

on 3D Sampling Lattices

Elisabeth Linnér and Robin Strand

Center for Image Analysis, Uppsala University, Sweden
{elisabeth,robin}@cb.uu.se

Abstract. The Euclidean distance transform (EDT) is used in many
essential operations in image processing, such as basic morphology, level
sets, registration and path finding. The anti-aliased Euclidean distance
transform (AAEDT), previously presented for two-dimensional images,
uses the gray-level information in, for example, area sampled images to
calculate distances with sub-pixel precision. Here, we extend the studies
of AAEDT to three dimensions, and to the Body-Centered Cubic (BCC)
and Face-Centered Cubic (FCC) lattices, which are, in many respects,
considered the optimal three-dimensional sampling lattices. We compare
different ways of converting gray-level information to distance values,
and find that the lesser directional dependencies of optimal sampling
lattices lead to better approximations of the true Euclidean distance.

1 Introduction

1.1 Supersampling and Coverage

In a binary image, the spatial elements (spels) are classified either as part of
an object or of the background. When imaging a continuous scene, this leads to
jagged edges, and much of the information on the edge location and length is
lost. With inspiration from anti-aliasing in computer graphics, it is shown in [13]
that part of this information is preserved if the image is supersampled, and the
intensity of a spel is proportional to the part of its Voronoi cell that is inside
of an object, as in Figure 1. The intensity c(p) of a spel p is then referred to
as its coverage value. The theory is further developed in [12], and it is shown
that some physical properties, such as volume and surface area, can be measured
with higher accuracy in supersampled images. These qualities are important in,
for example, cancer diagnostics [3, 7].

In 2D imaging devices, the intensity of a spel is usually computed through
integration over some environment of the spel center [2], and the result is more
or less equivalent to a coverage value. 3D imaging techniques, such as computed
tomography (CT), are often based on combining 2D images from different per-
spectives, and thus we feel comfortable to suggest and apply coverage based
image processing methods in 3D as well.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 88–98, 2014.
c© Springer International Publishing Switzerland 2014

Anti-Aliased Euclidean Distance Transform on 3D Sampling Lattices 89

(a) continuous edge (b) coverage values

Fig. 1. Assignment of intensity proportional to spel coverage

1.2 Euclidean Distance Transforms

The Euclidean distance dE between two points p1 and p2 in n-dimensional space
is defined as

dE (p1,p2) =

√√√√ n∑
i=1

(p1(i)− p2(i))
2
.

The Euclidean distance transform (EDT) maps every point p to

dEDT (p) = inf
pω∈Ω

(dE(p,pω)) ,

where Ω is some object(s) or a set of seed points. This transform is used in
many essential operations in image processing, such as basic morphology, level
sets, registration and path finding [1]. In 3D, it can be used for, among other
things, visualization, modeling and animation [6].

Anti-Aliased Euclidean Distance Transform. The anti-aliased Euclidean
distance transform (AAEDT) for two-dimensional images is presented in [5]. It
uses coverage information to compute the Euclidean distance from an object
with sub-spel precision. The distance dAAEDT is defined as

dAAEDT (p) = min
pω∈∂Ω

(|dE(p,pω)|+ df (pω)) , (1)

where |dE(p,pω)| is the Euclidean distance between the centers of a background
spel p and an edge spel pω ∈ ∂Ω, ∂Ω being the edge of a binary and areasampled
object Ω, and df (pω) is the distance between the edge and the center of the edge
spel. This is illustrated in Figure 2. The addition of the term df (pω) is the source
of the sub-pixel precision, which improves, for example, the accuracy of level sets
and small-scale morphology.

1.3 Three-Dimensional Sampling Lattices

The spels in a digital image represent sample points, which are organized in
a so-called sampling lattice. The most common sampling lattice is the Carte-
sian Cubic (CC) lattice, resulting in square spels in 2D, and cubic spels in 3D.

90 E. Linnér and R. Strand

Fig. 2. Illustration of the anti-aliased Euclidean distance dAAEDT between two spels
p and pω

Unfortunately, the sampling properties of the CC lattice are strongly direction
dependent [8, 14]. Consequently, to guarantee some minimum resolution in all
directions within the image, some directions must be over-sampled, and redun-
dant data must thus be stored and processed. An alternative is to use the Body-
Centered Cubic (BCC) and Face-Centered Cubic (FCC) sampling lattices. Their
direction dependence is much weaker, and, for band-limited signals, a minimum
resolution in all directions can be obtained using ∼ 30% fewer sample points
than if a CC lattice were used [4, 8, 10, 14, 15].

1.4 Scope of This Paper

In AAEDT, df (pω) is computed from the coverage value c(pω) of the edge spel,
usually under the assumption that the object surface intersecting the spel is
locally flat, and that df (pω) is measured along the surface normal [5]. However,
as the orientation of the surface is unknown, the asymmetry of the Voronoi
cell of the spel makes it difficult to construct a mapping between c(pω) and
df (pω). Moreover, for spels not located on the edge, the vector propagation
process may introduce a discrepancy between the direction to the nearest edge
spel and that to the closest point on the surface. We propose that the lesser
direction dependencies of the BCC and FCC sampling lattices, compared to the
CC sampling lattice, lead to improved performance of AAEDT.

2 Method

2.1 Implementation

We use the graph-based AAEDT implementation presented in [9], which can be
adapted to any dimensionality and sampling lattice by changing the definition
of the spel neighborhood. In this way, we ensure fair comparison of the lattices.

2.2 Computation of df(pω)

We want to find an expression on the form df (c) to approximate the value
df (pω) of an edge spel pω from its coverage value c(pω). As a reference for

Anti-Aliased Euclidean Distance Transform on 3D Sampling Lattices 91

different approximation methods, we simulate df (pω) and c(pω) for the Voronoi
cells of the CC, BCC and FCC lattices: We construct a set of planes, the normals
of which are uniformly distributed within the symmetry regions of the Voronoi
cells, intersecting the cell center. Using the Monte-Carlo sampling method [11],
we approximate the portions of the cell that are located above and below the
plane. We repeat the process while moving the plane away from the spel center
in small steps, until the entire Voronoi cell is below the plane. The simulation
output is shown in Figure 3, with plots of three different approximations df (c)
of df (pω) from c(pω), described below.

The implementation in [5] approximates df (pω) within an edge spel using

df (c) = 0.5− c(pω). (2)

This is the exact relationship between df (pω) and c(pω) for for a spel of a CC
lattice being intersected by a plane perpendicular to a lattice vector. Although
df (c) is only computed in the initialization of AAEDT, the computational sim-
plicity of (2) is an attractive property. There is no equally simple formula for
BCC and FCC lattices. However, linear regression on the simulation output in
Figure 3 shows that (2) is actually an even better approximation of the rela-
tionship between df (pω) and c(pω) on these lattices, than on the CC lattice.
Higher order regression on the data in Figure 3 leads to overfitting rather than
improvement of the approximation.

As we do not calculate the orientation of the plane that intersects the spel,
we want df (c) to be orientation independent. As the ideal Voronoi cell of a sam-
ple point, with respect to sampling properties, is a ball, which is completely
orientation independent, we derive df (c) for a ball of unit volume. As our im-
plementation uses 256 gray levels, we tabulate the relationship for 256 coverage
values in the interval [0, 1].

For the third approximation method plotted in Figure 3, we simply use the
mean value of the Monte-Carlo simulation output. Again, we tabulate the rela-
tionship for 256 coverage values in the interval [0, 1]. This is the only approxi-
mation method in this study that is lattice dependent.

3 Experiments

3.1 Choice of Test Images

We study the behavior of AAEDT applied to images of supersampled binary
balls, with 256 gray levels representing degrees of spel coverage, sampled on
CC, BCC and FCC lattices. We use the exterior and interior distance from
the ball surface as examples of convex and concave surfaces, respectively, of
different orientations. By varying the ball radius rs within some range rs ∈
[rmin, rmax], rmin, rmax # rv, where rv is the average radius of a spel, we study
the impact of surface curvature on the accuracy of AAEDT.

We use the distance from balls where rs ≈ rv to indicate the behavior of
AAEDT for undersampled objects.

92 E. Linnér and R. Strand

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

coverage

d f

linear appr.
ball appr.
mean value

(a) CC lattice

0 0.1 0.2 0.3 0.4 0.5
coverage

linear appr.
ball appr.
mean value

(b) BCC lattice

0 0.1 0.2 0.3 0.4 0.5
coverage

linear appr.
ball appr.
mean value

(c) FCC lattice

Fig. 3. Approximative mappings between df (pω), the distance between the intersecting
plane and spel center, and the c(pω), the spel coverage value, plotted on top of the
output of a Monte-Carlo simulation of the relationship. As df (c) behaves as an odd
function centered at c(pω) = 0.5, it is only plotted for c ∈ [0, 0.5].

For every lattice, we use a set of balls where the center points are evenly
distributed within the symmetry region of the Voronoi cell of that lattice, so
that the ball center is unlikely to coincide with a sample point. The sample
density for all lattices is one spel per unit volume.

4 Results

The results are expressed in terms of

ε(p) = dEDT (p)− dAAEDT (p),

and its mean value ε(p)m, where dEDT (p) is the exact Euclidean distance trans-
form, the unsigned relative error

|εr(p)| =
|dEDT (p) − dAAEDT (p)|

dEDT (p)
,

and the mean unsigned relative error |εr(p)|m. The error is evaluated within a
Euclidean distance of 50 units from the ball surface, where the unit distance is
defined in relation to the unit volume of the spels.

4.1 Bias Error

The mean error ε(p)m, computed on the CC, BCC and FCC lattices using linear,
ball-based and mean value-based approximations of df (c), is shown in Figures
4, 5 and 6.

For convex surfaces with rs # rv, and linear approximation of df (c), the dis-
tance is underestimated on all lattices, although much more so on the CC lattice.
The mean error on the CC lattice also exhibits a larger standard deviation than
that on the BCC and FCC lattices. On the CC lattice, both the mean error
and standard deviation are reduced by ball-based approximation of df (c), and

Anti-Aliased Euclidean Distance Transform on 3D Sampling Lattices 93

even further by mean value-based approximation. The error on the BCC lattice
seems to be almost completely unbiased for ball-based approximation relative to
the others, and tends somewhat towards underestimation for mean value-based
approximation. On the FCC lattice, we see a tendency towards underestima-
tion for all approximation methods, but it is the least apparent for ball-based
approximation.

For concave surfaces with rs # rv, the mean error is very close to being un-
biased for small rs, and tends towards underestimation for less curved surfaces.
As the bias increases, the standard deviation grows. As for convex surfaces, the
result on the CC lattice is improved by ball-based and mean value-based approx-
imation of df (c). On the BCC and FCC lattices, it is very difficult to discern
any bias for ball-based approximation, while there is a slight underestimation
using mean value-based approximation.

For rs ≈ rv, all lattices and approximations of df (c) yield equivalent results,
always underestimating the distance.

4.2 Error Range

Figures 7, 8 and 9 show the first (25th percentile), second (median) and third
(75th percentile) quartiles of |εr(p)|.

For convex surfaces with rs # rv, the CC lattice is clearly outperformed
by the BCC and FCC lattices. The range of |εr(p)|, indicated by the 25th and
75th percentiles, is highly concentrated around the median error on BCC and
FCC, while it is notably larger on the CC lattice. However, the performance
of the CC lattice is very much improved when ball-based or mean value-based
approximation of df (c) is used.

For concave surfaces, and for rs ≈ rv, the performance is almost equivalent
on all lattices. However, the growth of the range of |εr(p)|, that occurs for small
rs, starts at an earlier stage on the CC lattice than on BCC and FCC.

In Figures 10, 11 and 12, we see |εr(p)|m as a function of the distance d to
the ball surface.

The approximation of df (c) takes place at d < 1, at which state the difference
between the lattices is small. In the cases of rs # rv, the BCC and FCC lattices
seem to be at a small advantage in making this approximation, compared to the
CC lattice, when ball-based or mean value-based approximation is used.

For all curvatures, lattices and approximations of df (c), |εr(p)|m decreases
rapidly as the distance increases. For rs # rv, this decrease is more rapid on the
BCC and FCC lattices than on the CC lattice.

5 Discussion

5.1 Bias Errors

The AAEDT has two possible sources of bias errors: The approximation of df (c),
and the risk that |dAAEDT (p,pω)| is incorrect due to omitted edge spels, as

94 E. Linnér and R. Strand

0 10 20 30 40 50 60 70
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

radius

m
ea

n
er

ro
r

CC

BCC

FCC

(a) linear df (c)

0 10 20 30 40 50 60 70
radius

CC

BCC

FCC

(b) ball coverage df (c)

0 10 20 30 40 50 60 70
radius

CC

BCC

FCC

(c) mean value df (c)

Fig. 4. Mean error with one standard deviation, convex surface, rs � rv

0 10 20 30 40 50 60 70
−0.04

−0.02

0

0.02

0.04

0.06

radius

m
ea

n
er

ro
r

CC

BCC

FCC

(a) linear df (c)

0 10 20 30 40 50 60 70
radius

CC

BCC

FCC

(b) ball coverage df (c)

0 10 20 30 40 50 60 70
radius

CC

BCC

FCC

(c) mean value df (c)

Fig. 5. Mean error with one standard deviation, concave surface, rs � rv

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

radius

m
ea

n
er

ro
r

CC

BCC

FCC

(a) linear df (c)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
radius

CC

BCC

FCC

(b) ball coverage df (c)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
radius

CC

BCC

FCC

(c) mean value df (c)

Fig. 6. Mean error with one standard deviation, convex surface, rs ≈ rv

described in [9]. The former may cause both over- and underestimation, while
the latter always causes overestimation of the distance.

Underestimation is likely a result from the fact that the distance from an edge
to the center of an edge spel pω depends not only on c(pω), but also on the edge
orientation. This is very prominent on the CC lattice, where the variation is a
factor of

√
2, making it very difficult to make a representative model for mapping

distance to coverage. In Figure 3, we can see that this causes problems for both
linear and mean-value based approximation of df (c), as the large variance close to
c = 0 and c = 1 dulls the slope of the curve, leading to a large difference between

Anti-Aliased Euclidean Distance Transform on 3D Sampling Lattices 95

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

x 10
−3

sphere radius

er
ro

r

CC
BCC
FCC

(a) linear df (c)

0 10 20 30 40 50 60 70
sphere radius

CC
BCC
FCC

(b) ball coverage df (c)

0 10 20 30 40 50 60 70
sphere radius

CC
BCC
FCC

(c) mean value df (c)

Fig. 7. First, second and third quartiles, convex surface, rs � rv

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

sphere radius

er
ro

r

CC
BCC
FCC

(a) linear df (c)

0 10 20 30 40 50 60 70
sphere radius

CC
BCC
FCC

(b) ball coverage df (c)

0 10 20 30 40 50 60 70
sphere radius

CC
BCC
FCC

(c) mean value df (c)

Fig. 8. First, second and third quartiles, concave surface, rs � rv

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

sphere radius

er
ro

r

CC
BCC
FCC

(a) linear df (c)

0.4 0.6 0.8 1 1.2 1.4 1.6
sphere radius

CC
BCC
FCC

(b) ball coverage df (c)

0.4 0.6 0.8 1 1.2 1.4 1.6
sphere radius

CC
BCC
FCC

(c) mean value df (c)

Fig. 9. First, second and third quartiles, convex surface, rs ≈ rv

the largest df (c) that can be assigned to an edge spel, and the smallest dAAEDT

that can be assigned to a background spel. For a ball, we have limcball→0 df (c) =
rv and limcball→1 df (c) = −rv, with a smooth transition from fully covered (or
uncovered) to partly covered. It is possible that this, combined with the low
directional dependencies of the BCC and FCC lattices, results in the low bias
observed for the ball-based approximation of df (c).

96 E. Linnér and R. Strand

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

distance from edge

m
ea

n
er

ro
r

CC

BCC

FCC

(a) linear df (c)

0 10 20 30 40 50
distance from edge

CC

BCC

FCC

(b) ball coverage df (c)

0 10 20 30 40 50
distance from edge

CC

BCC

FCC

(c) mean value df (c)

Fig. 10. Mean unsigned relative error vs. convex surface, rs � rv

0 10 20 30 40 50

10
−3

10
−2

10
−1

distance from edge

m
ea

n
er

ro
r

CC

BCC

FCC

(a) linear df (c)

0 10 20 30 40 50
distance from edge

CC

BCC

FCC

(b) ball coverage df (c)

0 10 20 30 40 50
distance from edge

CC

BCC

FCC

(c) mean value df (c)

Fig. 11. Mean unsigned relative error vs. concave surface, rs � rv

0 10 20 30 40 50

10
−2

10
−1

10
0

distance from edge

m
ea

n
er

ro
r

CC

BCC

FCC

(a) linear df (c)

0 10 20 30 40 50
distance from edge

CC

BCC

FCC

(b) ball coverage df (c)

0 10 20 30 40 50
distance from edge

CC

BCC

FCC

(c) mean value df (c)

Fig. 12. Mean unsigned relative error vs. convex surface, rs ≈ rv

5.2 Error Range

Figures 10, 11 and 12 show that |εr(p)|m is smaller farther away from the surface.
From this, we draw the conclusion that errors arise mainly from the approxima-
tion of df (c), and not from the vector propagation.

It seems that the effect of improving the approximation of df (c) is the most
noticeable on the CC lattice. This is expected, as the cubic spels are more di-
rectionally dependent than the truncated octahedra and rhombic dodecahedra

Anti-Aliased Euclidean Distance Transform on 3D Sampling Lattices 97

of the BCC and FCC lattices, respectively. Ironically, even the linear approxi-
mation used in [5] and [9] is much less accurate on the CC lattice than on BCC
and FCC. Actually, although considerably improved when using the mean value-
based approximation of df (c), the performance of AAEDT on the CC lattice is
still not as good as that on the BCC and FCC lattices, using only the linear
approximation.

The best performance is achieved by using the ball-based approximation of
df (c) on the BCC and FCC lattices. As explained above, this behavior is likely
to be a consequence of the treatment of edge spels with c ≈ 0 and c ≈ 1.

The increase of the median of |εr(p)| for large rs in Figure 7 does not neces-
sarily mean that AAEDT is less accurate for flat surfaces. As we compute the
error for d ≤ 50 for all rs, the ratio nclose/nfar, where nclose is the number of spels
close to the surface and nfar the number of spels far away, is smaller for small
balls. Hence, the ratio nlarge error/nsmall error is also smaller. As the decrease in
|εr(p)|, visible in Figures 10 and 11, seems to be smooth, this affects both the
mean value and median of |εr(p)|.

The bad performance for rs ≈ rv shows that AAEDT is highly dependent
on the sampling density being proportional to image scale, as df (pω) cannot be
accurately approximated from surfaces that are not locally flat.

5.3 Conclusions and Future Work

In this paper, we show how the performance of AAEDT in 3D can be significantly
improved. We analyze the impact of the approximation of df (c), and we explore
the advantages of sampling lattices with lesser directional dependencies than the
wide-spread CC lattice. Next, we hope to investigate the behavior of AAEDT
in the presence of sharp corners and more complex surface curvature. In [5], it
is suggested that gradient information is used to estimate the orientation of the
surface, which may improve the performance on the BCC and FCC lattices even
further.

Acknowledgements. The authors want to thank M.Sc. Max Morén for en-
abling the production of test images on the BCC and FCC lattices.

References

1. Borgefors, G.: Applications using distance transforms. In: Arcelli, C., Cordella,
L.P., Sanniti di Baja, G. (eds.) Aspects of Visual Form Processing: Proceedings of
the Second International Workshop on Visual Form, pp. 83–108. World Scientific
Publishing (1994)

2. Chen, W., Li, M., Su, X.: Error analysis about ccd sampling in fourier transform
profilometry. Optik - International Journal for Light and Electron Optics 120(13),
652–657 (2009)

3. Clifford Chao, K.S., Ozyigit, G., Blanco, A.I., Thorstad, W.L., O Deasy, J.,
Haughey, B.H., Spector, G.J., Sessions, D.G.: Intensity-modulated radiation ther-
apy for oropharyngeal carcinoma: impact of tumor volume. International Journal
of Radiation Oncology*Biology*Physics 59(1), 43–50 (2004)

98 E. Linnér and R. Strand

4. Entezari, A.: Towards computing on non-cartesian lattices. Tech. rep. (2006)
5. Gustavson, S., Strand, R.: Anti-aliased Euclidean distance transform. Pattern

Recognition Letters 32(2), 252–257 (2011)
6. Jones, M.W., Bærentsen, J.A., Sramek, M.: 3D distance fields: A survey of tech-

niques and applications. IEEE Transactions on Visualization and Computer Graph-
ics 12(4), 581–599 (2006)

7. Lebioda, A., Żyromska, A., Makarewicz, R., Furtak, J.: Tumour surface area as
a prognostic factor in primary and recurrent glioblastoma irradiated with 192ir
implantation. Reports of Practical Oncology & Radiotherapy 13(1), 15–22 (2008)

8. Linnér, E., Strand, R.: Aliasing properties of voxels in three-dimensional sampling
lattices. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS,
vol. 7116, pp. 507–514. Springer, Heidelberg (2012)

9. Linnér, E., Strand, R.: A graph-based implementation of the anti-aliased Euclidean
distance transform. In: International Conference on Pattern Recognition (August
2014)

10. Meng, T., Smith, B., Entezari, A., Kirkpatrick, A.E., Weiskopf, D., Kalantari,
L., Möller, T.: On visual quality of optimal 3D sampling and reconstruction. In:
Proceedings of Graphics Interface (2007)

11. Metropolis, N., Ulam, S.: The monte carlo method. Journal of the American Sta-
tistical Association 44(247), 335–341 (1949)

12. Sladoje, N., Lindblad, J.: High-precision boundary length estimation by utilizing
gray-level information. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 31(2), 357–363 (2009)

13. Sladoje, N., Nyström, I., Saha, P.K.: Measurements of digitized objects with fuzzy
borders in 2D and 3D. Image and Vision Computing 23(2), 123–132 (2005)

14. Strand, R.: Sampling and aliasing properties of three-dimensional point-lattices
(2010), http://www.diva-portal.org/smash/record.jsf?searchId=1&pid=
diva2:392445&rvn=3

15. Theußl, T., Möller, T., Gröller, M.E.: Optimal regular volume sampling. In: Pro-
ceedings of the Conference on Visualization (2001)

http://www.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:392445&rvn=3
http://www.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:392445&rvn=3

Efficient Neighbourhood Computing for Discrete Rigid
Transformation Graph Search�

Yukiko Kenmochi1, Phuc Ngo2, Hugues Talbot1, and Nicolas Passat3

1 Université Paris-Est, LIGM, CNRS, France
2 CEA LIST – DIGITEO Labs, France

3 Université de Reims Champagne-Ardenne, CReSTIC, France

Abstract. Rigid transformations are involved in a wide variety of image pro-
cessing applications, including image registration. In this context, we recently
proposed to deal with the associated optimization problem from a purely discrete
point of view, using the notion of discrete rigid transformation (DRT) graph. In
particular, a local search scheme within the DRT graph to compute a locally opti-
mal solution without any numerical approximation was formerly proposed. In this
article, we extend this study, with the purpose to reduce the algorithmic complex-
ity of the proposed optimization scheme. To this end, we propose a novel algo-
rithmic framework for just-in-time computation of sub-graphs of interest within
the DRT graph. Experimental results illustrate the potential usefulness of our ap-
proach for image registration.

Keywords: image registration, discrete rigid transformation, discrete optimiza-
tion, DRT graph.

1 Introduction

1.1 Discrete Rotations and Discrete Rigid Transformations

In continuous spaces (i.e., Rn), rotations are some of the simplest geometric transfor-
mations. However, in the discrete spaces (i.e., Zn), their analogues, namely discrete
rotations, are more complex. The induced challenges are not simply due to high-
dimensionality: indeed, even in Z2, discrete rotations raise many difficulties, deriving
mainly from their non-necessary bijectivity [1]. In this context, discrete rotations – and
the closely related discrete rigid tansformations – have been widely investigated.

From a combinatorial point of view, discrete rotations have been carefully studied
[2–4], in particular to shed light on remarkable configurations induced by the periodicity
of rotations with respect to the discrete grid. At the frontier between combinatorics and
algorithmics, the problem of 2D pattern matching under discrete rotations has also been
explored [5, 6].

From an algorithmic point of view, efforts have been devoted to effectively com-
pute discrete rotations. In particular, the quasi-shear rotations [7, 8] were introduced to
preserve bijectivity, by decomposing rotations into successive quasi-shears.

� The research leading to these results has received funding from the French Agence Nationale
de la Recherche (Grant Agreement ANR-2010-BLAN-0205).

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 99–110, 2014.
c© Springer International Publishing Switzerland 2014

100 Y. Kenmochi et al.

Finally, from an applicative point of view, discrete rotations have been used for im-
age/signal processing purposes [9, 10]. Other strategies have also been proposed to
pre-process 2D images in order to guarantee the preservation of topological properties
under discrete rigid transformations [11].

Recently, we proposed a new paradigm to deal with discrete rotations, and more gen-
erally rigid transformations. This paradigm relies on a combinatorial structure, called
discrete rigid transformation graph (DRT graph, for short) [12]. This structure describes
the quantification of the parameter space of rigid transformations, in the framework of
hinge angles, pioneered in [13–15].

The DRT graph has already allowed us to contribute to the state of the art on rigid
transformations from a combinatorial point of view, by establishing the complexity of
“free” [12] and “constrained” [16] discrete rigid transformations. From an algorithmic
point of view, it has been used to characterise topological defects in transformed images
[17]. Finally, we recently started to explore the applicative possibilities offered by the
DRT graph. In particular, we have considered its potential usefulness in the context of
image registration [18].

1.2 Registration Issues

In the context of image processing, geometric transformations are often considered for
registration purposes [19]. Registration is indeed a complex, often ill-posed problem,
that consists of defining the transformation that is required to correctly map a source
image onto a target image.

Registration is mandatory in various application fields, from remote sensing [20] to
medical imaging [21]. According to the specificities of these fields, registration can
implicate different types of images (2D, 3D) and transformations, both rigid and non-
rigid. However, the problem remains almost the same in all applications. Given two
images A and B, we aim at finding a transformation T ∗ within a given transformation
space T. This transformation minimizes a given distance d between the image A and the
transformed image T (B) of the image B by T , i.e.

T ∗ = arg min
T∈T

d(A, T (B)) (1)

In recent works [18], we investigated how to use the DRT graph in order to solve this
problem in the case of rigid registration of 2D images. The novelty of this approach,
with respect to the state of the art, was to provide exact transformation fields, so as to
avoid any interpolation process and numerical approximations.

In this context, a preliminary algorithm was proposed for computing a local min-
imum for Eq. (1), thus providing a solution in a neighbourhood of depth k ≥ 1, to
the above registration problem. This algorithm strongly relies on the DRT graph, and
consists of exploring a sub-graph defined around a given vertex, modeling an initial
transformation. Its time complexity was O(mkN2), which is linear with respect to the
image size, but exponential with respect to the neighbourhood depth (with m the size of
the 1-depth neighbourhood).

Efficient Neighbourhood Computing for DRT Graph Search 101

1.3 Contribution

We propose an improved algorithm (Sec. 3), which dramatically reduces the exponential
complexity of that developed in [18]. Indeed, we show that the k-depth neighbourhood
of a DRT graph can be computed with a time complexityO(kN2) (Sec. 4). Experiments
emphasise the methodological interest of the proposed approach (Sec. 5).

2 Introduction to Discrete Rigid Transformation Graphs

2.1 Rigid Transformation Space

In the continuous space R2, a rigid transformation is a bijection T : R2 → R2, defined,
for any x = (x, y) ∈ R2, by

T (x) =

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
+

(
a1

a2

)
(2)

where a1, a2 ∈ R and θ ∈ [0, 2π[(T is sometimes noted Ta1a2θ). In order to apply such
rigid transformations on Z2, a post-processing digitization is required. More precisely, a
digitized rigid transformation T : Z2 → Z2 is defined as T = D ◦T where D : R2 → Z2

is a rounding function. In other words, for any p = (p, q) ∈ Z2, we have

T (p) =

(
p′

q′

)
= D ◦ T (p) =

(
[p cos θ − q sin θ + a1]
[p sin θ + q cos θ + a2]

)
(3)

The use of the rounding function D implies that digitized rigid transformations are
not continuous within the 3D parameter space induced by a1, a2 and θ. The transfor-
mations leading to such discontinuities are called critical transformations. In the space
(a1, a2, θ), the subspace of critical transformations is composed of 2D surfaces Φpqp′

and Ψpqq′ , analytically defined, for any p = (p, q) ∈ Z2 and any vertical (resp. horizon-
tal) pixel boundary x = p′ + 1

2 (resp. y = q′ + 1
2) with p′ ∈ Z (resp. q′ ∈ Z), by

Φpqp′ : p cos θ − q sin θ + a1 = p′ +
1
2

(4)

Ψpqq′ : p sin θ + q cos θ + a2 = q′ +
1
2

(5)

For a given triplet (p, q, p′) (resp. (p, q, q′)),Φpqp′ (resp.Ψpqq′) is called a vertical (resp.
horizontal) tipping surface in the parameter space (a1, a2, θ), and a vertical (resp. hori-
zontal) tipping curve in the 2D plane (a1, θ) (resp. (a2, θ)).

For an image of size N × N, Φpqp′ and Ψpqq′ verify p, q ∈ [[0,N − 1]] and p′, q′ ∈
[[0,N]]. Examples of tipping surfaces and curves are illustrated in Fig. 1.

2.2 Discrete Rigid Transformation Graph

A set of tipping surfaces induces a subdivision of the (a1, a2, θ) space into classes, each
consisting of transformations Ta1a2θ such that (a1, a2, θ) 	→ T = D ◦ Ta1a2θ is con-
stant. These classes – called discrete rigid transformations (DRTs) – indeed form 3D

102 Y. Kenmochi et al.

a1 a2

(a)

a2a1

(b)

Fig. 1. (a) Tipping surfaces in the space (a1, a2, θ), and (b) their tipping curves [16]

a2

a1

(a)

a1

a2

(b)

Fig. 2. (a) Subdivision of the (a1, a2, θ) parameter space into 3D cells by tipping surfaces, and (b)
the associated DRT graph [17]

cells, bounded by tipping surfaces that correspond to discontinuities. By mapping each
cell onto a vertex, and each tipping surface piece onto an edge, in a Voronoi/Delaunay
paradigm, we can model this subdivided parameter space as a graph, called the DRT
graph, as illustrated in Fig. 2.

Definition 1 ([12]). A DRT graph G = (V, E) is defined such that (i) each vertex v ∈ V
models a DRT; and (ii) each labelled edge e = (v,w, f) ∈ E, where f is either Φpqp′ or
Ψpqq′ , connects two vertices v,w ∈ V sharing the tipping surface f as boundary.

For a given image I, each vertex is associated with a unique transformed image,
induced by the DRT corresponding to the vertex. The existence of an edge between two
vertices indicates a “neighbouring” relation between the two associated DRTs. More
precisely the two transformed images differ by at most one over the N2 pixels of I; the
edge label f provides this information. This allows us to use the DRT graph to produce
all the transformed images via successive elementary (i.e., single-pixel) modifications.

2.3 Discrete Rigid Transformation Graph and Image Registration

The registration problem formalised in Eq. (1) consists of finding the transformation
that best maps a source image onto a target image, with respect to a given distance.

Efficient Neighbourhood Computing for DRT Graph Search 103

In the discrete framework, the number of transformations is actually finite. In par-
ticular, in the case of rigid registration, the solution(s) to Eq. (1) can be found within
the DRTs exhaustively modeled by the DRT graph. In other words, by considering a
brute-force search, a solution, i.e., a global optimum, can be determined. However, the
DRT graph G of an image of size N × N, has a high space complexity O(N9) [12] that
induces the same time complexity both for its construction and exhaustive search.

This limits exploration of the whole structure to relatively small images. Neverthe-
less, as already discussed in [18], it is possible to perform a local search on G in order
to determine a local optimum.

2.4 Local Search on a Discrete Rigid Transformation Graph

To find such an optimum, a local search begins at a given transformation, i.e., a chosen
vertex v of G. Then, it moves towards a better solution in its neighbourhood – following
a gradient descent – as long as an improved solution can be found. Beyond the choice
of the initial vertex – often guided by the application context – the most critical issue is
the choice of a “good” search area around this vertex, i.e., a depth of its neighbourhood.
In particular, the trade-off is time efficiency versus exhaustiveness.

The neighbourhood of depth 1, notedN1(v), actually corresponds to the set N(v) of
vertices adjacent to v in G. More generally, neighbourhoods of depth k ≥ 1, also called
k-neighbourhoods, are then recursively obtained as

Nk(v) = Nk−1(v) ∪
⋃

u∈Nk−1(v)

N(u) (6)

whereN0(v) = {v}.
Our initial algorithm [18] was directly mapped on this recursive definition. As a con-

sequence, this approach led to a high time complexityO(mkN2), that is exponential with
respect to the depth k of the neighbourhood with vertex degree m, which is supposed
to be constant in average (Sec. 4.2). In the next section, we propose a more efficient
algorithm, that removes this exponential cost.

3 k-Neighbourhood Construction Algorithm

We now propose an algorithm that efficiently computes the part of a DRT graph that
models the neighbourhood of depth k around a given vertex. To this end, we need to
handle the analytical representation of the cells associated to the DRT graph vertices,
inside the subdivided parameter space of (a1, a2, θ) (Sec. 3.1). Then, we develop a con-
struction strategy that relies on a sweeping plane technique introduced in [12] (Sec. 3.2).
The final algorithm is described and formalized in Sec. 3.3.

3.1 Tipping Surfaces Associated to a Discrete Rigid Transformation

A vertex v of a DRT graph G corresponds to one discrete rigid transformation, that
induces a unique transformed image Iv obtained by applying this transformation on an

104 Y. Kenmochi et al.

initial image I. In other words, for each pixel (pi, qi) of Iv, we know which pixel (p′i , q
′
i)

of I transfers its value to (pi, qi). This correspondence is modeled by the following
inequalities deriving from Eq. (3)

p′i −
1
2
< pi cos θ − qi sin θ + a1 < p′i +

1
2

(7)

q′i −
1
2
< pi sin θ + qi cos θ + a2 < q′i +

1
2

(8)

For an image I of size N × N, each of the N2 pixels generates 4 such inequalities. In
the parameter space of (a1, a2, θ), the obtained 4N2 inequalities then define a 3D cell,
denoted by Rv, which gathers all the parameter triplets associated to the discrete rigid
transformation corresponding to the vertex v.

When interpreting these inequalities in terms of tipping surfaces/curves (see Eqs. (4–
5)), it appears that for each pixel of Iv, Eqs. (7–8) define a region of the parameter space
that is bounded by two offset vertical (resp. horizontal) tipping surfaces/curves Φpiqi p′i
and Φpiqi p′i−1 (resp. Ψpiqiq′i

and Ψpiqiq′i−1). For any i ∈ [[1,N2]], Φpiqi p′i
(resp. Ψpiqiq′i

) is
called an upper tipping surface/curve, while Φpiqi p′i−1 (resp. Ψpiqiq′i−1) is called a lower
tipping surface/curve. The sets composed by these surfaces/curves, for all i ∈ [[1,N2]],
are denoted S+1 (Iv) and S−1 (Iv) (resp. S+2 (Iv) and S−2 (Iv)).

We derive from Eqs. (7–8), that any cell Rv is directionally convex along the a�-axes
[16]. This implies that for any θ value where it is defined, Rv is bounded by at least
one upper (resp. lower) tipping surface, which constitutes the upper (resp. lower) part
of its boundary in each a�-direction. This property can be used for constructing a DRT
graph locally, or for obtaining topological information from a DRT graph such as a
neighbourhood. One may notice that it is sufficient to consider only tipping surfaces of⋃

(S+�(Iv) ∪ S−�(Iv)) in order to obtain the k-neighbourhood of v, if k < N.

3.2 Sweeping Plane Algorithm for DRT Sub-graph Construction

In our new algorithm, the purpose is to build a k-neighbourhood “similarly” to the con-
struction of a 1-neighbourhood in our previous version [18], that is by using a sweeping
plane technique from one value θv within Rv, to both the left-hand and right-hand sides
along the θ-axis in the space (a1, a2, θ).

The differences between this new algorithm and the former are twofold. On the one
hand, the range of the considered θ values is wider. Indeed, the sweep must be carried
out inside Rv but also outside. On the other hand, a larger number of tipping surfaces
are considered around Rv, while only immediate neighbours were previously involved.

To ease the understanding of this algorithm, we first recall the general idea of the
sweeping plane technique.

Given a set S of s1 vertical and s2 horizontal tipping surfaces, we aim to construct
the DRT sub-graph G corresponding to a given range [θstart, θend]. By comparison to
[12], the plane is then swept from θstart to θend, instead of 0 to 2π. From the very def-
inition of tipping surfaces, this plane is subdivided into (s1 + 1) × (s2 + 1) 2D rectan-
gular cells, generated by its intersection with the tipping surfaces of S. More precisely,
we have (s� + 1) divisions in each a�-direction, except at the intersection of tipping

Efficient Neighbourhood Computing for DRT Graph Search 105

(a) (b)

Fig. 3. DRT graph construction by the sweeping plane algorithm, with 2 vertical (blue, cyan) and
2 horizontal (red, magenta) tipping surfaces. (a) 3 × 3 rectangular cells generated by the tipping
surfaces in each sweeping plane. (b) The associated DRT graph in each plane (in green: new
vertices and edges in the second and third planes).

surfaces, where a rectangle disappears while a new appears. By observing these rect-
angle updates during the plane sweeping from θstart to θend, we can construct the DRT
sub-graph, where each rectangle corresponds to a vertex while each tipping surface be-
tween two rectangles corresponds to an edge. In other words, at each intersection of
tipping surfaces, s� new vertices and their associated (3s� + 2) edges are generated, as
illustrated in Fig. 3. (The reader is referred to [12] for more details.)

Our modified algorithm consists of using a topological sweep [22] in order to find
the next closest intersection of tipping surfaces for updating the planar division. We
consider at most |S| − 2 intersections at each update, by considering only the intersec-
tions of consecutive tipping surfaces in their ordered structure in the sweeping plane
along each a�-axis, and find the closest one among them. After each update, the mod-
ifications of such intersections can be performed in constant time. We can also ignore
the intersections that are not in the range between θstart and θend. In particular, since we
have |θend −θstart| � 2π, the number of intersections can be considered a small constant.

Hereafter, we denote this specific procedure by S weep(S, θstart, θend), and we write
G = S weep(S, θstart, θend) for the output DRT sub-graph.

3.3 k-Neighbourhood Construction

Finding the neighbouring vertices and edges of a given vertex v with depth k, is actu-
ally equivalent to constructing the DRT sub-graph containing those vertices and edges
around v. Here, we assume to know a value θv lying into Rv, and we use it as initial
value of the sweeping algorithm. The plane is thus swept twice, in the space (a1, a2, θ),
along the two directions of the θ-axis.

The key-point is how to limit the construction of the DRT sub-graph. For this purpose
we verify, for each generated vertex u, its neighbourhood depth tv(u) with respect to v.
If tv(u) > k for all vertices in the current sweeping plane, the process ends.

106 Y. Kenmochi et al.

Algorithm 1. k-neighbourhood computation (in the left-hand side along the θ-axis)

Input: A DRT v (or its associated image Iv); a positive integer k.
Output: The DRT sub-graph F = (V, E) containing the k-neighbours of v.

1 for � = 1, 2 do
2 Determine the tipping surfaces associated to v: S+�(Iv), S−�(Iv) (Sec. 3.1).
3 In S+�(Iv) (resp. S−�(Iv)), find the (k + 1)-th lowest (resp. uppermost) tipping surface f +�

(resp. f −�), that intersects the initial plane at θv.
4 Find and sort the k + 1 tipping surfaces that are lower (resp. upper) or equal to f +�

(resp. f −�), and put them in an ordered set S�.

5 Initialize V = ∅, E = ∅
6 Initialize θprev = θv
7 repeat
8 for � = 1, 2 do
9 Find the next left intersection θ+� of f +� (resp. θ−� of f −�) with the other surface in

S� for θ < θprev.

10 θnext = min{θ+1 , θ−1 , θ+2 , θ−2 } − ε with ε � 1
11 ΔF = S weep(S1 ∪ S2, θprev, θnext)
12 if ∃u ∈ ΔV, tv(u) ≤ k then
13 F = F ∪ ΔF, θprev = θnext

14 if the next intersecting surface with f +� (or f −�) is in S� then
15 Exchange their order in S�.
16 else
17 Replace f +� (or f −�) in S� with the new intersecting surface.

18 until ∀u ∈ ΔV, tv(u) > k;

When a vertex u is created, its depth tv(u) depends on that of the two vertices w1 and
w2 to which it is adjacent in the a�-direction of the tipping surface intersection. We then
have tv(u) = 1 + min{tv(w1), tv(w2)}. (An iterative backtracking process is also needed
to update the depth of w� and its successive neighbours, whenever tv(w�) > tv(u) + 1.)

In each a�-direction, by considering the (k + 1) closest tipping surfaces around Rv,
we can obtain all the vertices u such that tv(u) ≤ k. In the θ-direction, we need to check
if tv(u) > k for all vertices u in the current sweeping plane; if so, the sweeping ends.

The global process is described in Alg. 1. (Note that the algorithm describes only
the k-neighbourhood construction in the left-hand side along the θ-axis, but the right-
hand side can be constructed similarly.) The first loop (Lines 1–4) initializes the set
of tipping surfaces that are needed to generate the k-neighbours of a given DRT v. We
obtain 2(k + 1) vertical (resp. horizontal) tipping surfaces close to Rv at θ = θv, and sort
and store them in the lists S�. In the second loop (Line 7), we first verify how long we
can keep the same tipping surface sets S� (Lines 9–10), and then build a DRT sub-graph
by using the S weep algorithm for this verified θ interval (Line 11). After verifying if
there still exists a generated vertex whose neighbourhood depth is ≤ k (Line 12), we
update the tipping surface sets S� for the next interval (Lines 14–17).

Obviously, F is not the smallest sub-graph G including the k-neighbours of v. To
obtain G from F, we simply keep vertices whose neighbourhood depth is ≤ k.

Efficient Neighbourhood Computing for DRT Graph Search 107

2.
0

2.
5

3.
0

3.
5

4.
0

Image size

A
ve

ra
ge

 d
eg

re
e

va
lu

es
 o

f v
er

tic
es

1 3 4 5 6 7 8 92

(a)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Degrees of the vertices

N
um

be
r o

f v
er

tic
es

Image size 9x9
Image size 8x8
Image size 7x7
Image size 6x6
Image size 5x5
Image size 4x4
Image size 3x3
Image size 2x2

0 1 2 3 4 5 6 7 8 9

(b)

Fig. 4. (a) Average vertex degree in a 2D DRT graph. (b) Normalised vertex degree distribution
in a 2D DRT graph.

4 Complexity Analysis

4.1 Time Complexity of k-Neighbourhood Construction Algorithm

In order to obtain the initial 2(k + 1) vertical (resp. horizontal) tipping surfaces of S�,
the time complexity is O(N2) for Line 2; O(N2) for Line 3 on the average case if we
use Hoare’s FIND algorithm [23]; and O(N2) and O(k log k) for finding and sorting the
tipping surfaces in Line 4, respectively. Then, we carry out the plane sweep for each
updated S1 ∪S2. For each iteration in the loop, the most costly parts are Lines 9 and 11,
which require O(N2) and O(k2), respectively.

The next question concerns the number of updates for S1 ∪ S2. If m is the degree of
any vertex u of a DRT graph, this update number can be estimated as m(2k + 1), since
the union of Ru for all u in the k-neighbourhood of a given vertex v contains at most
2k + 1 adjacent Ru in the θ-direction. Therefore, the time complexity is O(mkN2) for
this iterative plane sweep loop.

The time complexity of Alg. 1 is thus O(mkN2), which is significantly lower than
that of our previous algorithm [18], namely O(mkN2). We observe, in the next section,
that m can be estimated as a low constant value, leading to a final complexity ofO(kN2).

4.2 Average Degree of DRT Graphs

The DRT graph space complexity for an image of size N ×N is O(N9), both for vertices
and edges [12]. In other words, the number of vertices and that of edges grow at the
same rate. We can then infer that m is actually bounded, independently of N.

By analogy, let us imagine that we divide a 2D plane with straight lines defined
randomly. Three lines will almost never intersect at a same point, and for a number of
lines sufficiently large, the cells of the induced subdivision will be mostly triangles.

Following this analogy, we may infer that the degree of the vertices of the 2D DRT
graphs in the planes (a1, θ) and (a2, θ) is close to 3, in average. However, this analogy
has some limits. Indeed, the considered tipping curves are not straight lines, while their
very regular structure implies that many curves often intersect at a same point.

108 Y. Kenmochi et al.

0
1

2
3

4
5

6

Fig. 5. Degree distribution in a 2D DRT graph, viewed in the dual subdivision of the parameter
space. Each colour represents a given degree, that corresponds here to the number of curves
bounding each cell (3: red, 4: green, 5: blue; 6: yellow).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Input images and results of the iterated local search for image registration. (a) Refer-
ence image, (b) target image, and (c) the initial transformed image of (b) with (a1, a2, θ) =
(0.365,−0.045, 0.1423). (d–h) Local optima obtained from (c) by using k-neighbours for
k = 1, 3, 5, 10, 15 respectively. Note that in (c–h), pixels are coloured if they are different from
those in (a); yellow (resp. red) pixels are white (resp. black) in (c–h) and black (resp. white) in (a).

Nevertheless, we can assimilate a 2D DRT graph (which is the projection of a 3D
DRT graph onto the (a�, θ) plane) to a planar graph whenever N is sufficiently large.
Under such assumption, the Euler formula is valid, i.e., we have v−e+ f = 2, where v, e
and f are the number of (0D) vertices, (1D) edges and induced (2D) cells, respectively.
From the very definition of the DRT graph, we have 4 f ≤ 2e. It then comes that 2e/v ≤
4 − 8/v. As v � 8 in DRT graphs, we have 2e/v < 4, where 2e/v is indeed the average
degree of the 2D DRT graph. It follows that the average degree m of the 3D DRT graph
(obtained by Cartesian product of two 2D DRT graphs) is lower than 2 × 4 = 8. This is
confirmed by the experimental analysis, illustrated in Fig. 4(a).

In practice, the maximal degree of the vertices within a DRT graph also remains
close to this average value. Indeed, the histograms depicted in Fig. 4(b) show that the

Efficient Neighbourhood Computing for DRT Graph Search 109

Fig. 7. Distance evolution during iterations of local search for the inputs in Fig. 6 (a) and (b),
from the initial transformation in Fig. 6 (c), with respect to different depths k

2D DRT vertex degrees converge rapidly to a stable distribution that contains mainly
degrees of value 3 and 4 (with a maximal value experimentally identified at 8). More
qualitatively, Fig. 5 illustrates the distribution of these degrees of a 2D DRT graph.

5 Experiments

Iterated local search was applied to image registration. In this section we validate Alg. 1
in practice, and we observe its local behaviour when varying k. For simplicity, we use
the same experimental settings as in [18], i.e., two input binary images and a signed
distance [24] for Eq. (1). In order to find an initial transformation, we use the first
and second order central moments of a binary shape [25]. Experiments are carried out
with different neighbourhood sizes, k = 1, 3, 5, 10, 15 on binary images of size 53 × 53
from the initial transformation, as illustrated in Fig. 6. We can observe in Fig. 7 that
the locally optimal distance improves when we use a larger neighborhood, which is
coherent in a gradient descent paradigm.

6 Conclusion

We have significantly improved the time complexity of the process of computing a
neighbourhood of given depth within a DRT graph, without requiring the computation
of the whole graph. This time complexity may be reduced in some cases, in particular
if the image is binary by dealing only with the pixels that compose the binary object
border. The proposed applications only validate our approach as a proof of concept.
Nevertheless, an exact – i.e., numerical error-free – strategy is novel in the field of
image registration and may open the way to new image processing paradigms. In future
work we will explore the notion of DRT graph in Z3.

References

1. Nouvel, B., Rémila, É.: Characterization of bijective discretized rotations. In: Klette, R.,
Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer, Heidelberg (2004)

110 Y. Kenmochi et al.

2. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity and quasi-
periodicity properties. Discrete Appl. Math. 147, 325–343 (2005)

3. Berthé, V., Nouvel, B.: Discrete rotations and symbolic dynamics. Theor. Comput. Sci. 380,
276–285 (2007)

4. Nouvel, B.: Self-similar discrete rotation configurations and interlaced Sturmian words. In:
Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp.
250–261. Springer, Heidelberg (2008)

5. Jacob, M.A., Andres, E.: On discrete rotations. In: Proc. DGCI, pp. 161–174 (1995)
6. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with rotations.

Theor. Comput. Sci. 368, 196–204 (2006)
7. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’État,

Université Strasbourg 1 (1991)
8. Andres, E.: The quasi-shear rotation. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI

1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996)
9. Richman, M.S.: Understanding discrete rotations. In: Proc. ICASSP, vol. 3, pp. 2057–2060.

IEEE (1997)
10. Andres, E., Fernandez-Maloigne, C.: Discrete rotation for directional orthogonal wavelet

packets. In: Proc. ICIP, vol. 2, pp. 257–260. IEEE (2001)
11. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of

2D digital images. IEEE T. Image Process. 23, 885–897 (2014)
12. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transforma-

tions in 2D digital images. Comput. Vis. Image Und. 117, 393–408 (2013)
13. Nouvel, B.: Rotations discrètes et automates cellulaires. PhD thesis, École Normale

Supérieure de Lyon (2006)
14. Nouvel, B., Rémila, É.: Incremental and transitive discrete rotations. In: Reulke, R., Eckardt,

U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 199–213.
Springer, Heidelberg (2006)

15. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing upper and lower bounds of rotation
angles from digital images. Pattern Recogn. 42, 1708–1717 (2009)

16. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: On 2D constrained discrete rigid transforma-
tions. Ann. Math. Artif. Intell. (in press), doi:10.1007/s10472-014-9406-x

17. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital
images under rigid transformations. J. Math. Imaging Vis. 49, 418–433 (2014)

18. Ngo, P., Sugimoto, A., Kenmochi, Y., Passat, N., Talbot, H.: Discrete rigid transformation
graph search for 2D image registration. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2013.
LNCS, vol. 8334, pp. 228–239. Springer, Heidelberg (2014)

19. Zitová, B., Flusser, J.: Image registration methods: A survey. Image Vision Comput. 21,
977–1000 (2003)

20. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn.
Elsevier Academic Press (2007)

21. Noblet, V., Heinrich, C., Heitz, F., Armspach, J.P.: Recalage d’images médicales. Tech Ing
(MED910) (2014)

22. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. Journal Comput.
Syst. Sci. 38, 165–194 (1989); Corrig. 42, 249–251 (1991)

23. Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4, 321–322 (1961)
24. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolu-

tion PDEs via geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS,
vol. 3953, pp. 409–422. Springer, Heidelberg (2006)

25. Flusser, J., Zitová, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition.
Wiley (2009)

The Minimum Barrier
Distance – Stability to Seed Point Position

Robin Strand1, Filip Malmberg1, Punam K. Saha2, and Elisabeth Linnér1

1 Centre for Image Analysis, Division of Visual Information and Interaction,
Uppsala University, Sweden

2 Dept. of Electrical and Computer Engineering and Dept. of Radiology, University of Iowa,
Iowa City, IA 52242, United States

Abstract. Distance and path-cost functions have been used for image segmen-
tation at various forms, e.g., region growing or live-wire boundary tracing using
interactive user input. Different approaches are associated with different funda-
mental advantages as well as difficulties. In this paper, we investigate the stability
of segmentation with respect to perturbations in seed point position for a recently
introduced pseudo-distance method referred to as the minimum barrier distance.
Conditions are sought for which segmentation results are invariant with respect
to the position of seed points and a proof of their correctness is presented. A
notion of δ-interface is introduced defining the object-background interface at
various gradations and its relation to stability of segmentation is examined. Fi-
nally, experimental results are presented examining different aspects of stability
of segmentation results to seed point position.

1 Introduction

Distance transforms and functions are widely used in image processing [1–8]. Intensity-
weighted distance transforms take the pixel intensity values into consideration
[6, 9–11]. This way, the homogeneity of intensity values in regions are quantified. This
property makes intensity-weighted distances well-suited for image segmentation, where
the goal is to group pixels in homogenous regions.

Here, image segmentation by intensity-weighted distances is achieved by assigning
to each pixel the distance to, and the label of, the closest labeled seed point. The seed
point can be given by a user or utilizing some domain knowledge. Stability to seed point
position is a very important aspect of these segmentation methods; small perturbations
in the seed point position should ideally not lead to significantly changed segmenta-
tion result. Different aspects on stability to seed point position for intensity-weighted
distances have been examined [1, 12, 13].

Many distance- or cost functions in image segmentation by region growing have a lo-
cality property, which makes it possible to efficiently compute distance (or cost) defined
as optimal paths by propagating values from adjacent points. The locality property is in
one sense a deficiency, since global properties can not easily be included in the prop-
agation. On the other hand, the locality property is essential for efficient computation,
typically by wave-front propagation starting from points with zero cost or distance.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 111–121, 2014.
c© Springer International Publishing Switzerland 2014

112 R. Strand et al.

A well-known and often used method, watershed, can intuitively be described as a
flooding process of a topographic representation of gray scale images, where low inten-
sities correspond to low altitude in the topographic representation. A recently developed
method, the minimum barrier distance, is given by the minimum barrier that has to be
passed to go from one point to another in the topographic representation of image data.
The minimum barrier distance is a pseudo-metric, meaning that the properties identity,
symmetry and triangle inequality, but not positivity, are obeyed [1]. We have showed
that the minimum barrier distance has many properties that make it beneficial for image
segmentation, e.g., stability to seed point position (using simple Dice’s coefficient on
segmentation results), noise, smoothing etc. [1, 13].

However the minimum barrier path cost function is not local in the above sense, and
therefore standard wave-front propagation algorithms are not sufficient for computing
the exact minimum barrier distance map [1, 13]. We have developed efficient algorithms
for computing the minimum barrier distance [13] and approximations thereof [1]. A
vectorial minimum barrier distance that takes multi-band image data, e.g., color or other
multispectral images, as input has also been developed [14].

In this paper, we examine the stability to seed point position for the minimum barrier
distance by introducing conditions under which the distance between points p and q
equals the distance between p and another point q′. Also, we introduce the δ-interface
which essentially is a region of uncertainty of border position in a segmentation result.

2 The Minimum Barrier Distance

We will consider D = {p = (x1, x2, . . . , xn) ∈ Zn : Li ≤ xi ≤ Ui} as the image do-
main. The intensity at a point p is denoted by f(p). A path, π = 〈p0, p1, . . . , pn〉,
is a sequence of points p0, p1, . . . , pn, where each pair of consecutive points are ad-
jacent given some adjacency. The maximum and minimum values along a path π =
〈p0, p1, . . . , pn〉 are

max(π) = max
0≤i≤n

f (pi) and min(π) = min
0≤i≤n

f (pi) ,

respectively. The minimum barrier along a path π is defined as

Φ(π) = max(π) −min(π).

The minimum barrier distance between two points p and q is defined as

Φ(p, q) = min
π∈Π

Φ(π),

where Π is the set of all paths between p and q. A path in Π that attains the minimum
barrier distance is called an MBD-optimal path. The minimax and maximin distances
between points are defined as

Φmax(p, q) = min
π∈Π

max(π) and Φmin(p, q) = max
π∈Π

min(π),

respectively. The concatenation of two paths π and τ is denoted π · τ .
In [1], we gave an approximation of the minimum barrier distance, namelyΦ(p, q) ≈

Φmax(p, q)−Φmin(p, q). We showed that Φmax−Φmin equals Φ in the continuous case
and converges to Φ as the sampling density increases in the discrete case [1].

The Minimum Barrier Distance – Stability to Seed Point Position 113

Distance Transform Algorithms and Segmentation
As previously mentioned, the key to seeded segmentation by intensity weighted dis-
tance transforms is the distance transform, where each pixel is assigned the distance to
(and label of) the closest seed point. We have developed different algorithms that com-
pute approximations of the minimum barrier distance-transform in O(n logn) time,
where n is the number of pixels [1, 13]. In this manuscript, we will use our recently de-
veloped efficient algorithm for computing the exact minimum barrier distance [13]. The
worst case time complexity is O(mn logn) (or O(m(n +m)), depending on the data
structure), where m is the range of the weight function (here the number of intensitites
that can be attained).

3 Stability of the Minimum Barrier Distance with Respect to Seed
Point Position

In this section, we introduce this paper’s theoretical results on conditions for which the
minimum barrier distance between p and q equals the distance between p and q′ and the
δ-interface. The latter will also be used in the experiments in Section 4.

3.1 Invariance under Seed Point Position

In interactive segmentation, there is an uncertainty in the exact positions of seed points
due to, for example, inter- and intra-user variability. Given a point p (for example in
the object) and a user added seed point q (for example in the background). The used
distance function has a high invariance under seed point position if there is a large
set of points that can be used instead of q without altering the distance to the point p.
Following this idea, conditions for which the minimum barrier distance value between
a point p and seed point q equals the minimum barrier distance value between p and
another seed point q′ are given in the following theorem.

Theorem 1. Let q and q′ be points, and let I = [Imin, Imax] be an interval such that any
MBD-optimal paths π between q and q′ are such that max(π) ≤ Imax and min(π) ≥
Imin. Let p be a point such that

• Φmax(q, p) > Imax. (†)
• Φmin(q, p) < Imin. (‡)

Then Φ(q′, p) = Φ(q, p).

Proof. Let π be an MBD-optimal path between p and q′, and let π′ be an MBD-optimal
path between q and q′. Then Φ(π · π′) = max(max(π),max(π′)) − min(min(π),
min(π′)) = max(π′)−min(π′) = Φ(π′), and so Φ(q′, p) ≤ Φ(q, p).

Next, assume (*) that there exists a path π′′ between q′ and p such that Φ(π′′) <
Φ(q, p). Then the following properties hold:

• max(π′′) ≥ Φmax(q, p). (Otherwise max(π ·π′′) < Φmax(q, p), contradicting (†).)
• min(π′′) ≤ Φmin(q, p). (Otherwise min(π · π′′) < Φmin(q, p), contradicting (‡).)

114 R. Strand et al.

From these properties, it follows that Φ(π ·π′′) = Φ(π′′). But π ·π′′ is a path between
q and p and therefore Φ(π′′) �< Φ(q, p), contradicting (*).
�

Note that the strong conditions in Theorem 1 are not often satisfied for real images.
The theorem and conditions are presented here mainly to give a deeper understanding
of the minimum barrier distance.

3.2 The δ-Interface

In region growing segmentation among multiple objects [15], different objects are de-
fined with respect to their seed points where a given point is assigned to an object whose
seeds are closest to that point under a cost- or distance-function. Here, we formulate
a notion of δ-interface that defines the region of uncertainty at the interface between
two or more objects. Ideally, small perturbation in seed point positions will only ef-
fect the segmentation region within the uncertain region and, therefore, segmented core
objects regions will be unaltered under such small perturbation in seed positions. The
δ-interface will be used as a tool to quantify this stability.

The δ-interface is a region with ’thickness’ δ where two regions meet. A δ-interface
with δ = 0 is the set of points located at the exact same distance to two seed points.
Given a value of δ ≥ 0, the δ-interface between points p and q is the set I(p, q, δ) =
{r : |Φ(p, r) − Φ(q, r)| ≤ δ}.

Fig. 1. Illustration of δ-interfaces. Left: example image and points p and q. Middle: I(p, q, δ)
(shown in white), with small δ. Right:I(p, q, δ), with large δ.

The following Theorem gives a correspondence between the delta-interface between
p, q and p, q′.

Theorem 2. I(p, q, δ) ⊂ I(p, q′, δ + Φ(q, q′))

Proof. Let r ∈ I(p, q, δ). We want to show that r ∈ I(p, q′, δ + Φ(q, q′)), i.e. that

|Φ(q′, r) − Φ(p, r)| ≤ δ + Φ(q, q′). (1)

(i) First of all, by the triangular inequality, Φ(q′, r) − Φ(p, r) ≤ Φ(q, r) + Φ(q, q′) −
Φ(p, r) ≤ δ + Φ(q, q′).

The Minimum Barrier Distance – Stability to Seed Point Position 115

(ii) Secondly, by the triangle inequality, |Φ(r, p) − Φ(q, p)| ≤ Φ(q, r) for any given
points p, q, r. Therefore, Φ(q′, r) − Φ(p, r) ≥ Φ(q, r) − Φ(q, q′) − Φ(p, r) ≥ −δ −
Φ(q, q′). By combining (i) and (ii), we get exactly (1).
�

The following Corollary gives a set containing borders between objects defined by seed
points p, q and p, q′, respectively. The smaller the set, the more robust the minimum
barrier distance is to seed point positioning.

Corollary 1. I(p, q, δ), I(p, q′, δ) ⊂ (I(p, q′, δ + Φ(q, q′)) ∩ I(p, q, δ + Φ(q, q′)))

The sets I(p, q′, Φ(q, q′)) and I(p, q, Φ(q, q′)), i.e. when δ = 0, are illustrated in
Figure 2.

Fig. 2. Illustration of Corollary 1 and the experiment in Section 4.1. Left: A gray-level image
with three seed-points, p, q, and q′. Middle: The set I(p, q′, Φ(q, q′)) is shown in gray. The
sets I(p, q, 0) and I(p, q′, 0) are shown in white. Right: The set I(p, q, Φ(q, q′)) is shown in
gray. The sets I(p, q, 0) and I(p, q′, 0) are shown in white. E(p, q, q′, 0) is the intersection of
I(p, q′, Φ(q, q′)) and I(p, q, Φ(q, q′)).

4 Experiments and Results

Seventeen images from the grabcut dataset [16] are used for the experiments, see Fig-
ure 3. The images come with a reference segmentation, which we eroded/dilated to get
object and background regions as shown for an example image in Figure 4. The images,
converted to gray scale by using the mean of the three color band values, are used. The
intensity range of the images is [0, 255].

4.1 Stability to Seed Point Position

Seed points added by a user with low accuracy or precision will differ in spatial distance.
Ideally, a small perturbation in the seed point position gives a small difference in the
segmentation result. In this section, we will evaluate the effect of a small change in
position of the seed point q. This will be done by comparing the δ-interface of p and q
with that of p and q′ (such that q and q′ are at a fixed spatial distance). We will see how

116 R. Strand et al.

Fig. 3. Images from the grabcut database used for the experiments. Bottom: image numbering.

Fig. 4. Image 8 from the grabcut database used for the experiments. Left: original image. Right:
Object region (white) and background region (gray).

The Minimum Barrier Distance – Stability to Seed Point Position 117

the spatial distance between seed points q and q′ affect the δ-interface. The set metric
we will use in the evaluation is

E(p, q, q′, δ) = |I(p, q′, δ + Φ(q, q′)) ∩ I(p, q, δ + Φ(q, q′))|

with δ = 0. The set I(p, q, 0) corresponds exactly to the set of pixels with equal dis-
tance between p and q. In other words, intuitively, this is the border between the regions
that correspond to p and q, respectively in a segmentation. By comparing this set and
the set obtained by I(p, q′, 0), where q′ is a point close to q, the difference between a

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E

K

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iq
r

K

im1

im2

im3

im4

im5

im6

im7

im8

im9

im10

im11

im12

im13

im14

im15

im16

im17

Fig. 5. Cardinality of the set E(p, q, q′, 0), for random points p (in the object), q (in the back-
ground), and q′ (in the background such that ‖q− q′‖ = K) as a function of K. The mean values
(top) and the interquartile range (iqr, the difference of the 75:th and 25:th percentiles, bottom) of
1000 executions for each image and value of K are plotted. The values are normalized with the
size (number of pixels) of the images.

118 R. Strand et al.

segmentation result obtained by seed points p and q compared to p and q′ can be quanti-
fied. The quantification we will use is E(p, q, q′, 0), for random points p (in the object),
q (in the background), and q′ (in the background and such that ‖q − q′‖ approximately
equals a constant K). See the illustration in Figure 2.

Note that the quantification E used in the experiment only measures the difference
between the interface I(p, q, 0) and the interface I(p, q′, 0). Clear distinction by the
distance function between object and background gives a small interface and the lower
E is, the smaller the interface is. See Figure 1 and Figure 2 for illustrations.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

| I
(p

,q
,K

)
|

K

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

iq
r

K

im1

im2

im3

im4

im5

im6

im7

im8

im9

im10

im11

im12

im13

im14

im15

im16

im17

Fig. 6. Cardinality of the set I(p, q,K) as a function of K. For each of the 17 images in Figure 3
I(p, q,K), where q is a random object seed point and p is a random background seed point, is
generated for K = 1 . . . 30. The mean values (top) and the interquartile range (iqr, bottom) of
1000 executions for each image and value of K are plotted. The values are normalized with the
size (number of pixels) of the images.

The Minimum Barrier Distance – Stability to Seed Point Position 119

Since the cardinality of the set {q′ ∈ Z2 : ‖q− q′‖ = K} usually is very small in the
digital space, we can not use points q and q′ at exactly a Euclidean distance K . Instead,
points q′ are derived as follows: a random angle θ ∈ [0, 2π[is extracted and the point
q′ = q + (�K cos θ�, �K sin θ�) is used. Here, �·� is the rounding off function which
gives the nearest integer.

A plot showing the mean overlap region from 1000 iterations per value of K for the
17 images in Figure 3 is shown in Figure 5.

4.2 Uncertainty of Border Position

The idea behind this experiment is to see how the cardinality of the δ-interface increases
with increasing values of δ. By iteratively and randomly selecting an object seed point
p and a background seed point q and computing the cardinality of the set I(p, q,K)
for increasing values of K , quantitative measures on the region where the uncertainty
of the border position is high can be obtained. A plot on the mean cardinality of the
uncertainty region from 1000 iterations per value of K for the 17 images in Figure 3 is
shown in Figure 6.

5 Conclusions and Future Work

In Theorem 1, we gave conditions that guarantee that the minimum barrier distance
between p and q equals the distance between p and a third point r. The conditions are
correct by the proof. However, the practical implications of Theorem 1 are limited since
the conditions are not often satisfied in real world images. Therefore, no evaluation of
Theorem 1 is presented here.

In the first experiment, we evaluated how small perturbations in the seed point po-
sition changed the segmentation result by a measure on the difference between object
region border when p and q are used as seed points, compared to when p and q′, such
that ‖q − q′‖ ≈ K , are used. From the plots in Figure 5, we can see that there is a big
difference between the images with lowest error (image 10, 17, 6, 8, 15, 5 in Figure 3)
and the images with highest error (image 3, 11, 14, 4, 7, 9). The low-error images all
have a distinct border between object and background, whereas this border is not as dis-
tinct in the images with high error. Also, images with an apparent texture all give high
error. This is expected since only barriers based on intensity are taken into account in
the minimum barrier distance given here. The vectorial minimum barrier distance, pre-
sented in [14], with appropriate point-wise texture features is expected to handle these
situations better.

Statistical dispersions were computed by the interquartile range (the difference of
the 75:th and 25:th percentiles) for the experiments, see Figure 5 and Figure 6. For
experiment 1, the general trend was that the higher mean value, the higher interquartile
distance. The interquartile distance values were roughly in the same range as the mean
values. For experiment 2, the dispersion measures were lower, suggesting that these
results are more reliable.

In the second experiment, the region with pixels such that the distances to the two
seed points p and q are similar (K) is quantified. In most cases, a linear relationship

120 R. Strand et al.

between K and the cardinality of the δ-interface was observed. This relationship seems
to not hold for image 15, probably due to the weak gradient in the border between object
and background. Judging from the images with the lowest error (image 10, 17, 8, 4, 6,
2) and the images with highest error at K = 30 (image 15, 11, 14, 7, 3, 5), we conclude
that this error measure seems to be less sensitive to texture.

In our future work, we plan to combine the minimum barrier distance with a spatial
distance term to avoid problems with object ’leakage’ due to the fact that after passing
a large ’barrier’, distance values are constant. Experiment 1 in this paper evaluates how
small perturbations in the seed point positions change the segmentation result. As a re-
sult of the insightful reviews of this paper, we plan to define an uncertainty model from
a probability displacement distribution and then to compute statistics while sampling
q′ in this distribution. This approach will more realistically model the distribution of
seed points added by a large number of users. We also plan to do extensive evaluation
of stability of several intensity-weighted distance functions, and methods that can be
expressed as intensity-weighted distance- or cost-functions such as [17], with respect
to seed point position, blur, inhomogeneity, noise, etc.

References

1. Strand, R., Ciesielski, K.C., Malmberg, F., Saha, P.K.: The minimum barrier distance. Com-
puter Vision and Image Understanding 117(4), 429–437 (2013), special issue on Discrete
Geometry for Computer Imagery

2. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognition 1,
33–61 (1968)

3. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics,
and Image Processing 27, 321–345 (1984)

4. Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision and
Image Understanding 64(3), 368–376 (1996)

5. Danielsson, P.-E.: Euclidean distance mapping. Computer Graphics and Image Process-
ing 14, 227–248 (1980)

6. Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and
applications. Computer Vision and Image Understanding 86, 171–190 (2002)

7. Strand, R.: Distance functions and image processing on point-lattices: with focus on the
3D face- and body-centered cubic grids, Ph.D. thesis, Uppsala University, Sweden (2008),
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9312

8. Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids.
Theoretical Computer Science 412(15), 1350–1363 (2011)

9. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press
(1999)

10. Fouard, C., Gedda, M.: An objective comparison between gray weighted distance transforms
and weighted distance transforms on curved spaces. In: Kuba, A., Nyúl, L.G., Palágyi, K.
(eds.) DGCI 2006. LNCS, vol. 4245, pp. 259–270. Springer, Heidelberg (2006)

11. Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 19–29
(2004)

12. Audigier, R., Lotufo, R.A.: Seed-relative robustness of watershed and fuzzy connectedness
approaches. In: Brazilian Symposium on Computer Graphics and Image Processing. IEEE
(2007)

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9312

The Minimum Barrier Distance – Stability to Seed Point Position 121

13. Ciesielski, K.C., Strand, R., Malmberg, F., Saha, P.K.: Efficient algorithm for finding the
exact minimum barrier distance. Computer Vision and Image Understanding 123, 53–64
(2014)

14. Kårsnäs, A., Strand, R., Saha, P.K.: The vectorial minimum barrier distance. In: 2012 21st
International Conference on Pattern Recognition (ICPR), pp. 792–795 (2012)

15. Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative relative fuzzy connectedness
for multiple objects with multiple seeds. Computer Vision and Image Understanding 107(3),
160–182 (2007)

16. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive Foreground Extraction using
Iterated Graph Cuts. ACM Transactions on Graphics, SIGGRAPH 2004 (2004)

17. Bertrand, G.: On topological watersheds. Journal of Mathematical Image and Vision 22(2-3),
217–230 (2005)

Efficient Computation of the Outer Hull

of a Discrete Path�

Srecko Brlek, Hugo Tremblay, Jérôme Tremblay, and Romaine Weber

Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal,

CP 8888 Succ. Centre-ville, Montréal (QC) Canada H3C 3P8
{brlek.srecko,jerome.tremblay}@uqam.ca, hugo.tremblay@lacim.ca,

weberomaine@gmail.com

Abstract. We present here a linear time and space algorithm for com-
puting the outer hull of any discrete path encoded by its Freeman chain
code. The basic data structure uses an enriched version of the data struc-
ture introduced by Brlek, Koskas and Provençal: using quadtrees for
representing points in the discrete plane Z×Z with neighborhood links,
deciding path intersection is achievable in linear time and space. By com-
bining the well-known wall follower algorithm for traversing mazes, we
obtain the desired result with two passes resulting in a global linear time
and space algorithm. As a byproduct, the convex hull is obtained as well.

Keywords: Freeman code, lattice paths, radix tree, discrete sets, outer
hull, convex hull.

1 Introduction

The ever-growing use of digital screens in industrial, military and civil applica-
tions gave rise to a new branch of study of discrete objects: digital geometry,
where objects are sets of pixels. In particular, their various geometric properties
play an essential role, for allowing the design of efficient algorithms for recogniz-
ing patterns and extracting features: these are mandatory steps for an accurate
interpretation of acquired images.

Convex objects play a prominent role in several branches of mathematics,
namely functional analysis, optimization, probability and mathematical physics
(see [1] for a detailed account of convex geometry and applications). In Euclidean
geometry, given a finite set of points, the problem of finding the smallest convex
set containing all of them led to the introduction of the geometric notion of
convex hull. On the practical side, the computation of the convex hull proved to
be one of the most fundamental algorithm in computational geometry as it has
many applications ranging from operational research [2] to design automation [3].
It is also widely used in computer graphics, and particularly in image processing
[4]. For example, the Delaunay triangulation of a d-dimensional set of points

� With the support of NSERC (Canada).

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 122–133, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Computation of the Outer Hull of a Discrete Path 123

in Euclidean space is equivalent to finding the convex hull of a set of d + 1-
dimensional points [5]. It is well known that for the Euclidean case, algorithms
for computing the convex hull of a set S ⊂ R2 run in O(n logn) time where
n = |S| (see [6,7]). One can also show that such algorithms are optimal up to a
linear constant (see [8,9,10] for the general case).

Nevertheless, by confining the problem to computing the convex hull of simple
polygons, linear asymptotic bounds are achieved (see [11,12]). The digital version
of this problem is a little more involved. For instance, one can compute the
convex hull of a set of pixels S by first computing the Euclidean convex hull
of S and then digitalizing the result [13]. This automatically yields O(n log n)
asymptotical bounds in the worst case. In the discrete case, the situation is
surprisingly easier with the help of combinatorics on words, a field which recently
led to the development of efficient tools to study digital geometry (see [17,18]).
For instance, linear asymptotic bounds are obtained when considering discrete
paths encoded by elementary steps. Indeed, Brlek et al. designed a linear time
algorithm for computing the discrete convex hull of non self-intersecting closed
paths in the square grid [14]. It is based on an optimal linear time and space
algorithm for factorizing a word in Lyndon words designed by Duval [15]. The
situation is more complicated for intersecting paths.

Here, we describe a linear algorithm for computing the outer hull of any dis-
crete path using the data structure described in [16] where the authors designed
a linear time and space algorithm for detecting path intersection. It rests on the
encoding of points in the discrete plane Z × Z by quadrees deduced from the
radix order representation of binary coordinate points. Then, each path is dy-
namically encoded by adding a pointer for each step of the discrete path encoded
on the four letter alphabet {0,1,2,3}. Starting from that, the wall follower algo-
rithm used for maze solutions allows to take at each intersection the rightmost
available step. The resulting two-passes algorithm is linear in space and time.
As a byproduct, the convex hull of any discrete path is computed in linear time.

2 Preliminaries

Given a finite alphabet Σ, a word w is a function w : [1, 2, . . . , n] −→ Σ denoted
by its sequence of letters w = w1w2 · · ·wn, and |w| = n is its length. For a ∈ Σ,
|w|a is the number of letters a in w. The set of all words of length k is denoted
by Σk. Consequently, Σ∗ =

⋃∞
i=0 Σ

i is the set of all finite words on Σ where
Σ0 = {ε}, the set consisting of the empty word. Σ∗ together with the operation
of concatenation form a monoid called the free monoid on Σ.

There is a bijection between the set of pixels and Z2 obtained by mapping
(a, b) ∈ Z2 to the unitary square whose bottom left vertex coordinate is (a, b).
Therefore, we may consider pixels as elements of Z2. By definition, a discrete set
S is a set of pixels, i.e. S ⊂ Z2. Also, S is called 4-connected if each pair of pixels
share a common edge and 8-connected if each pair of pixels share a common edge
or vertex. Since any discrete set is a disjoint collection of 8-connected sets, we
consider from now on that discrete sets are 4 or 8-connected.

124 S. Brlek et al.

A convenient way of representing discrete sets without hole is to use a word
describing its contour. In 1961, Herbert Freeman proposed an encoding of dis-
crete objects by specifying their contour using the four elementary steps (→
, ↑,←, ↓) ((0, 1, 2, 3) [19]. This encoding provides a convenient representa-
tion of discrete paths in Z2. By definition, a discrete path P is a sequence of
points P = {p1, p2, . . . , pn} where pi and pi+1 are neighbors for 1 ≤ i < n.
Intuitively, two points u and v are neighbors if and only if u = v ± e where
e ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}.

It is clear from these definitions that any discrete path P is represented by
a word w ∈ F∗ where F = {0, 1, 2, 3} is the Freeman alphabet. It is worth
mentioning that in the case of a closed discrete path, w is unique up to a circular
permutation of its letters. For example, any circular permutation of the word
w = 001100322223 represents the discrete path shown in Figure 1(a). One says
that a word w ∈ F∗ is closed if and only if |w|0 = |w|2 and |w|1 = |w|3. Further,
w is called simple if it codes a non self-intersecting discrete path. For instance,
w = 001100322223 is non-simple and closed.

0 0

1

1

0 0

3

2222

3

(a)

0
1

0

3 0 3

3000
1

(b)

Fig. 1. (a) A discrete path coded by the word w = 001100322223; (b) and its first
difference word Δ(w) = 01030330001

It is sometimes useful to consider encoding of paths with turns instead of ele-
mentary steps. Such encoding is obtained from the contour word w = w1 · · ·wn

by setting

Δ(w) = (w2 − w1)(w3 − w2) · · · (wn − wn−1)

where subtraction is computed modulo 4. Δ(w) is called the first differences
word of w. Letters of Δ(w) ∈ F∗ are interpreted via the bijection (0, 1, 2, 3) (
(forward, left turn, u-turn, right turn). For example, one can verify in Figure 1(b)
that Δ(w) = 01030330001 and that it codes the turns of w.

Now, every path w is contained in a smallest rectangle, or bounding box such
that we can define the point W as in Figure 2(a). W is easily obtained in linear
time by keeping track of the extremum coordinates while reading the word. It
is worth mentioning that in the case of a closed simple path u, this coordinate

Efficient Computation of the Outer Hull of a Discrete Path 125

corresponds to the point W of the standard decomposition of u obtained by
considering the following four extremal points of the bounding box: W (lowest
on the left side), N (leftmost on the top side), E (highest on the right side) and
S (rightmost on the bottom side) (see Figure 2(b)).

W

(a)

W

S

E

N

(b)

Fig. 2. (a) Smallest rectangle containing a discrete path and the point W ; (b) Standard
decomposition of a self-avoiding closed path

We close this section by recalling some notions about topological graph theory
(see [20] for a thorough exposition of the subject). Let P be a discrete path (i.e.
a sequence of integer points) coded by the word w. The image of P as a subset
of R2 is noted GP while the graph of its image embed in the plane R2 is noted
G(P). Such embeddings in the plane are completely determined by associating
a cyclic order on the edges around each vertex in the following way: Begin by
fixing an orientation at each point (e.g. counterclockwise). Then, for each vertex
v in GP , define the cyclic permutation on incident edges of v. This defines a
rotation scheme on GP . One can then show that such a scheme is equivalent to
an oriented embedding of GP on a surface. For example, Figure 3 illustrates the
path P coded by w = 001233, its graph GP and its associated counterclockwise
embedding G(P) in R2.

0 0

1

2

3

3

(a)

A

B
C

D
E

F

(b)

A : E
B : C E
C : B D
D : C E
E : A F D B
F : E

(c)

Fig. 3. (a) The graph GP associated to the path coded by w = 001233; (b) The
counterclockwise embedding G(P) in R2; (c) And its associated rotation scheme

126 S. Brlek et al.

3 Outer and Convex Hull

We recall from topology that given a set S, the boundary ∂S is the set of
points in the closure of S, not belonging to the interior of S. Now, let S be a
8-connected discrete set. The outer hull of S, denoted Hull(S) is the boundary
of the intersection of all discrete sets without hole containing S, i.e. the non
self-intersecting path following the exterior contour of S. Definition 1 extends
the notion of outer hull to any discrete path.

Definition 1. Let P be any discrete path. Then, the outer hull of P , denoted
by Hull(P) is the outer face of the embedded graph G(P).

The difference between Definition 1 and the preceding one lies in the use of the
embedding of P in the plane instead of a discrete set to describe the outer hull.
This choice is not arbitrary as it allows the treatment of discrete line segments
(i.e. Euclidean sets of area 0). For example, Figure 4 illustrates the outer hull
of the path coded by w = 021. Remark that using Definition 1, the boundary
of discrete line segments are coded by closed words, e.g. the outer hull of the
horizontal line segment coded by 0 is coded by 02 (see Figure 4). This ensures
that Definition 1 is a convenient generalization of the outer hull to discrete paths.
Indeed, if P codes the boundary of a discrete set S, then P is simple and closed
by definition. This gives P = Hull(P) and since Hull(S) is the boundary ∂(S)
of S by definition, we have

Hull(S) = ∂(S) = P = Hull(P).

0

2

1

(a)

2

3

(b)

W 0

2

1
3

(c)

Fig. 4. (a) The path w = 021, (b) its first diference word Δ(w) = 23 and (c) its outer
hull Hull(w) = 0213

Since there is a bijection between discrete paths in Z2 and words on F , we
identify P with its coding word w and we write Hull(w) instead of Hull(P).

Finally, we recall some basic notions concerning digital convexity, for which a
detailed exposure appears in [14,18]. Let S be an 8-connected discrete set. S is
digitally convex if it is the Gauss digitalization of a convex subset R of R2, i.e.
S = Conv(R)∩Z2. The convex hull of S, denoted Conv(S) is the intersection of
all convex sets containing S. In the case of a closed simple path w, Conv(w) is

Efficient Computation of the Outer Hull of a Discrete Path 127

given by the Spitzer factorization of w (see [21,14]). Given w = w1w2 · · ·wn ∈
{0, 1}∗, one can compute the NW part of this factorization as follows: Start with
the list (b1, b2, . . . , bn) = (w1, w2, . . . , wn). If the slope ρ(bi) = |bi|1/|bi|0 of bi is
strictly smaller than that of bi+1 for some i, then

(b1, b2, . . . , bk) = (b1, . . . , bi−1, bibi+1, bi+2, . . . , bk).

By repeating this process until it is no longer possible to concatenate any words,
one obtains the Spitzer factorization of w. The NE, SE and SW parts of the
factorization are obtained by rotations.

4 Algorithm

Let w ∈ F∗ be a discrete path and Gw its graph representation. Remark that
the application g : w 	→ Gw is not bijective since it is not injective (for example,
u = 0 and v = 02 admits the same graph). Now, recall from Section 2 that the
embedding G(w) of Gw in R2 gives rise to a rotation scheme (provided we fix
an orientation). We use this embedding to compute the outer hull of w (i.e. the
outer face of G(w)): Fix an orientation O of the surface R2 and let ei = (u, v) be
an arc from vertex u to v in G(w) such that ei is an edge of the outer face of the
embedding G(w) and such that e follows the fixed orientation O. Next, compute
ei+1 = (v, σv(u)) where σv is the cyclic permutation associated to v in G(w).
By letting O be the counterclockwise orientation, one can iterate this process to
obtain the outer face of G(w). For example, using the rotation scheme defined
for w = 001233 in Figure 3(c) and starting with the arc (A,E), one computes
the sequence of arcs

(A,E), (E,F), (F,E), (E,D), (D,C), (C,B), (B,E), (E,A)

which corresponds to the outer hull of w (see Figure 5).

A

B
C

D
E

F

(a)

0

3 1

0

1

2

3

2

(b)

u

σ3
v(u)

σ2
v(u)

v

σv(u)

(c)

Fig. 5. (a) The sequence of arcs obtained by using the rotation scheme of Figure 3(c);
(b) The outer hull of w = 001233; (c) The sequence (u, v), (v, σv(u)) corresponds to a
right turn in the graph of a path, provided the orientation is counterclockwise

128 S. Brlek et al.

The correctness of this method follows from the so-called “right-hand rule” or
“wall follower algorithm” for traversing mazes. Indeed, given an arc (u, v), taking
the adjacent arc (v, σv(u)) amounts to “turning right” at vertex v (see Figure
5(c)). The underlying principle of our algorithm is thus to walk along the path,
starting at an origin point on the outer hull and turning systematically right
at each intersection and returning to the origin point. The preceding discussion
guarantees that the resulting walk is then precisely the outer hull of w.

To efficiently implement this procedure, several problems must be addressed.
First, as stated before, the walk needs to start on a coordinate of the outer
hull, otherwise the resulting path may not describe the correct object. This can
be solved by choosing the point W associated with the contour word w as the
starting point.

Secondly, whenever a path returns to W (the simplest of which is the path
coded by w = 021, see Figure 4), before continuing on, one must make sure that
the algorithm does not stop until every such sub-path has been explored. An
easy solution for managing that situation is to keep a list of all neighbors of W
that are in the path P associated with w. This list has at most two elements
since no vertex in P is located below or left of W .

Finally, one needs to recognize intersections and decide of the rightmost turn.
We solve this problem by using a quadtree structure keeping information on
neighborhood relations. This so-called radix quadtree structure was first intro-
duced by Brlek, Koskas and Provençal in [16] for detecting path intersections.
Given a discrete path w starting at (x, y) ∈ N2 and staying in the first quadrant,
the quadtree structure associated to w (see [18] and [16] for the generalization to
all four quadrants) is described as follows. G = (N,R, T) is a quadtree where:

N is the set of vertices associated to points in the plane;
R is a set of edges representing the fatherhood relation: r ∈ R is an edge from

(x, y) to (x′, y′) ⇐⇒ (x′, y′) is a child of (x, y), that is if (x′, y′) = (2x +
α, 2y + β) where (α, β) ∈ {0, 1}2;

T is a set of edges representing the neighborhood relation: t ∈ T is an edge from
(x, y) to (x′, y′) ⇐⇒ (x′, y′) is a neighbor of (x, y), that is if (x′, y′) =
(x, y) + e where e ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} (see Example 2).

One should note that the quadtree structure is described in [16] with unidirec-
tional edges while in this paper all edges are considered bidirectional. Further, by
following the procedure described in [16] to build the quadtree, one adds neigh-
borhood links between non-visited nodes during the recursion process. This is
easily fixed by adding a boolean label to each neighborhood edge indicating if
that specific edge is part of the discrete path or if it has been added by a recur-
sive call. This ensures that the points u and v are neighbors if and only if there
is a non-labeled neighborhood edge between these two vertices in the quadtree
structure.

It is worth mentioning that this structure is computed in linear time and
space. Moreover, it can be generalized to any discrete path as opposed to paths
staying in the first quadrant.

Efficient Computation of the Outer Hull of a Discrete Path 129

Example 2. Let w = 001100322223 be the word coding the discrete path in
Figure 1 translated to the origin. The quadtree structure associated to w is rep-
resented in Figure 6. Parenthood and neighborhood relations are respectively rep-
resented by black and red edges. Visited nodes are marked by red squares.

(0,0)

(0,1)

(0,2) (0,3) (1,2) (1,3)

(1,0)

(2,0)

(4,0) (4,1)

(2,1)

(4,2)

(3,0) (3,1)

(1,1)

(2,2) (2,3) (3,2) (3,3)

Fig. 6. Quadtree corresponding to the word w = 001100322223. Neighborhood edges
added by recursive calls are omitted.

This gives rise to the following Algorithm 1 to compute the outer hull of a
discrete path w, which proceeds as follows.

Algorithm 1. Outer hull

Require: A word w ∈ F∗ coding a discrete path
Ensure: A simple word w′ ∈ F∗ describing Hull(w)
1: Construct the quadtree G associated to w rooted in W
2: Let W be the leftmost lowest coordinate on the bounding box of w
3: Let N be the set of all visited neighbors of W
4: c ← W+ (1, 0) if it is in N or W+ (0, 1) otherwise
5: w′ = Step(c− W)
6: while c �= W or N �= ∅ do
7: turn = 2 mod 4
8: for each neighbor v of c do
9: if [Step(v− c)− Lst(w′)] + 1 mod 4 ≤ [turn] + 1 mod 4 then
10: turn ← Step(v− c)− Lst(w′)
11: next ← v

12: end if
13: end for
14: w′ = w′ · Step(next− c)
15: remove c from N

16: c ← next

17: end while
18: return w′

130 S. Brlek et al.

It is assumed that the pointW , that is the leftmost lower point of the bounding
box is known. First, the quadtree G associated to w is built starting from W .
Then, the graph G is traversed from its root W , following the path represented
by w. At every intersection c, we need to:

(a) extract the letter α associated to the vector −→cv for each neighbor v of c;
(b) determine the turn associated to each v, that is Δ(wc · α);
(c) choose the rightmost one, that is the closest to 3.

This procedure ends when returning to the point W .

Theorem 3 (Correctness of Algorithm 1). For any word w ∈ F∗, Algo-
rithm 1 returns Hull(w).

Proof. Let Hull(w) be of length k ∈ N+. We use the following loop invariant:

At the start of the ith iteration of the while loop in Line 6, w′ is a
prefix of length i of the contour word associated to Hull(w).

The invariant holds the first time Line 6 is executed, since at that time, w′

is the first step of the outer hull of w computed at Line 5. Now, assume the
invariant holds before the ith iteration of the loop. Then, Lines 8 to 13 find the
rightmost turn at the current coordinate c. Then in Line 14, w′ is concatenated
with the step of this turn. By the right-hand rule for solving simply connected
maze, considering rightmost turns yields coordinates on the outer hull of w.
Consequently, at the end of the iteration, w′ is a prefix of the contour word
associated to Hull(w) of length i + 1. Finally, at the end of the loop, w′ is a
prefix of the contour word associated to Hull(w) of length k, that is w′ = Hull(w).
Note that since any neighbor of W is on Hull(w), Line 15 clearly removes every
element from N yielding, at termination, an empty set.
�

We end this section by showing that Algorithm 1 is linear in time and space.
First, the quadtree structure is constructed in linear time (see [16]). Also, as
stated before, the point W is easily computed in linear time. Consequently,
computations in Line 1 are performed in linear time. Next, Line 2, 4 and 5 each
take constant time. Moreover, the set N is constructed in linear time by accessing
neighborhood informations of the root in the quadtree structure, so Line 3 takes
linear time. Now, since any coordinate has at most four neighbors, the for loop
in Line 8 is executed at most four time per iteration of the while loop. Line 15
takes constant time. This is due to the fact that N contains at most two elements.
Since instructions in Line 7, 9, 10, 11, 14 and 16 all are computed in constant
time, at most k(4c1 + c2) computations occur during the execution of the while
loop where k ∈ N+ is the length of Hull(w) and c1, c2 ∈ R some constants, thus
making Algorithm 1 linear in time. Finally, the quadtree structure needs space
linear in the length of the path, so that our algorithm is also linear in space.

Efficient Computation of the Outer Hull of a Discrete Path 131

Example 4. Consider the word w = 001100322223 of Example 2. Then, Algo-
rithm 1 yields w′ = 001001223223 (see Figure 7). One can easily verify that w′

is a simple path describing the outer hull of w, so Hull(w) = w′.

0 0

1

0 0

1

22

3

22

3

(a) w′ = 001001223223

0
1

3 0
1

1
0

1

30
1

(b) Δ(w′) = 01301101301

Fig. 7. Outer hull of w = 001100322223

Our algorithm was implemented using the C++ programming language and
tested with numerous examples (see Figure 8). The source code is available at
http://bitbucket.org/htremblay/outer_hull.

 10

 100

 1000

 10000

 100000 1e+06 1e+07

Ex
ec

ut
io

n
tim

e
(m

s)

Length of the path

Fig. 8. Running time of Algorithm 1 for random discrete paths of length 105 to 107,
with each point representing the mean running time of 100 random discrete paths of
same length

Finally, we show how Algorithm 1 can be used to compute in linear time
and space the convex hull of any discrete path. It relies on the following rather
obvious result:

http://bitbucket.org/htremblay/outer_hull

132 S. Brlek et al.

Proposition 5. Let w ∈ F∗ be a boundary word coding a discrete path. Then,

Conv(w) = Conv(Hull(w)).

Proof. If w is simple, then Hull(w) = w so the claim holds. Now, suppose w is
non-simple. Then by definition, Hull(w) is the boundary of w. Since, Conv(w)
is the intersection of all convex sets containing w, it must also contain Hull(w)
and thus Conv(w) = Conv(Hull(w)).
�

Recall that Hull(w) is non self-intersecting for any path w. Proposition 5 then
yields a very simple procedure for computing the convex hull of a discrete path
using Brlek et al. simple path convex hull algorithm (see [14]):

1. Start by computing Hull(w) = w′;
2. Compute Conv(w′).

It is clear that the preceding procedure computes the convex hull of a discrete
path in linear time and space. Indeed, we showed in Section 4 that the first step
is computed in linear time and space. Furthermore, it is shown in [14] that the
second step is computed in a similar fashion.

5 Concluding Remarks

We presented an algorithm for computing the outer hull of a discrete path. This
led to a procedure for computing the convex hull of any discrete set. Our algo-
rithm is a significant improvement over the convex hull algorithm presented in
[14] in the sense that computations can be made on any discrete path as opposed
to non self-intersecting ones. Moreover, we proved that such computations can
be made in linear time and space.

Instead of computing the outer hull of a discrete path P as described in
this paper, one could want to compute the largest simply connected isothetic
polygon such that all integers points on its boundary are visited by P . Although
some modifications to our algorithm are necessary in order to perform such
computations, the time complexity would not change.

In addition, this research begs to be generalized to three dimensional discrete
spaces, that is geometry in Euclidean space R3 studying sets of unit cubes. Also,
applications of our algorithm is not limited to convex hull problems. We plan on
using it to study various path intersections problems such as primality, union,
intersection and difference of discrete sets.

Acknowledgement. Martin Lavoie helped in implementing Algorithm 1.
Thanks Martin. We are also grateful to the reviewers for the accurate comments
which substantially improved the theoretical background of our work.

Efficient Computation of the Outer Hull of a Discrete Path 133

References

1. Gruber, P.M.: Convex and discrete geometry. Springer (2007)
2. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3(3), 411–430 (1990)

3. Kim, Y.S.: Recognition of form features using convex decomposition. Computer-
Aided Design 24(9), 461–476 (1992)

4. Kim, M.A., Lee, E.J., Cho, H.G., Park, K.J.: A visualization technique for DNA
walk plot using k-convex hull. In: Proceedings of the Fifth International Conference
in Central Europe in Computer Graphics and Visualization, Plzeň, Czech Republic,
Západočeská univerzita, pp. 212–221 (1997)

5. Okabe, A., Boots, B., Sugihara, K.: Spacial tesselations: Concepts and applications
of Voronoi diagrams. Wiley (1992)

6. Graham, R.A.: An efficient algorithm for determining the convex hull of a finite
planar set. Information Processing Letters 1(4), 132–133 (1972)

7. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry 16, 361–368 (1996)

8. Yao, A.C.C.: A lower bound to finding the convex hulls. PhD thesis, Stanford
University (April 1979)

9. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete &
Computational Geometry 10, 377–409 (1993)

10. Goodman, J.E., O’Rourke, J.: Handbook of discrete and computational geometry,
2nd edn. CRC Press (2004)

11. McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple
polygon. Information Processing Letters 9(5), 201–206 (1979)

12. Melkman, A.: On-line construction of the convex hull of a simple polyline. Infor-
mation Processing Letters 25, 11–12 (1987)

13. Chaudhuri, B.B., Rosenfeld, A.: On the computation of the digital convex hull and
circular hull of a digital region. Pattern Recognition 31(12), 2007–2016 (1998)

14. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel =
digitally convex. Pattern Recognition 42, 2239–2246 (2009)

15. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–
381 (1983)

16. Brlek, S., Koskas, M., Provençal, X.: A linear time and space algorithm for detect-
ing path intersection. Theoretical Computer Science 412, 4841–4850 (2011)

17. Blondin Massé, A.: À l’intersection de la combinatoire des mots et de la géométrie
discrète: Palindromes, symétries et pavages. PhD thesis, Université du Québec à
Montréal (February 2012)

18. Provençal, X.: Combinatoire des mots, géométrie discrète et pavages. PhD thesis,
Université du Québec à Montréal (September 2008)

19. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transac-
tions on Electronic Computers EC-10(2), 260–268 (1961)

20. Gross, J.L., Tucker, T.W.: Topological graph theory. Wiley (1987)
21. Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans-

actions of the American Mathematical Society 82, 323–339 (1956)

Voronoi-Based Geometry Estimator
for 3D Digital Surfaces�

Louis Cuel1,2, Jacques-Olivier Lachaud1, and Boris Thibert2

1 Université de Savoie, Laboratoire LAMA,
Le bourget du lac, France

2 Université de Grenoble, Laboratoire Jean Kuntzmann,
Grenoble, France

Abstract. We propose a robust estimator of geometric quantities such
as normals, curvature directions and sharp features for 3D digital
surfaces. This estimator only depends on the digitisation gridstep and is
defined using a digital version of the Voronoi Covariance Measure, which
exploits the robust geometric information contained in the Voronoi cells.
It has been proved in [1] that the Voronoi Covariance Measure is resilient
to Hausdorff noise. Our main theorem explicits the conditions under
which this estimator is multigrid convergent for digital data. Moreover,
we determine what are the parameters which maximise the convergence
speed of this estimator, when the normal vector is sought. Numerical
experiments show that the digital VCM estimator reliably estimates nor-
mals, curvature directions and sharp features of 3D noisy digital shapes.

1 Introduction

Differential quantities estimation, surface reconstruction and sharp fea-
ture detection are motivated by a large number of applications in com-
puter graphics, geometry processing or digital geometry.

Digital geometry estimators. The commun way to link the estimated
differential quantities to the expect Euclidean one is the multigrid con-
vergence principle: when the shape is digitized on a grid with gridstep h
tending to zero, the estimated quantity should converge to the expected
one. In dimension 2, several multigrid convergent estimators have been
introduced to approach normals [2, 3] and curvatures [3–5]. In 3D, empiri-
cal methods for normal and curvature estimation have been introduced in
[6]. More recently, a convergent curvature estimator based on covariance
matrix was presented in [7].

� This research has been supported in part by the ANR grants DigitalSnow ANR-11-
BS02-009, KIDICO ANR-2010-BLAN-0205 and TopData ANR-13-BS01-0008.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 134–149, 2014.
c© Springer International Publishing Switzerland 2014

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 135

Voronoi-based geometry estimation. Classical principal component
analysis methods try to estimate normals by fitting a tangent plane or a
higher-order polynomial (e.g. see [8]). In contrast, Voronoi-based methods
try to fit the normal cones to the underlying shape, either geometrically
[9] or more recently using the covariance of the Voronoi cells [1, 10].
Authors of [1] have improved the method of [10] by changing the domain
of integration and the averaging process. The authors define the Voronoi
Covariance Measure (VCM) of any compact sets, and show that this
notion is stable under Hausdorff perturbation. Moreover, the VCM of a
smooth surface encodes a part of its differential information, such as its
normals and curvatures. With the stability result, one can therefore use
the VCM to estimate differential quantities of a surface from a Hausdorff
approximation such as a point cloud or a digital contour.

Voronoi Covariance measure background. The Voronoi covariance
measure (VCM) has been introduced in [1] for normals and curvature es-
timations. Let K be a compact subset of R3 and dK the distance function
toK, i.e. the map dK(x) := minp∈K ‖p− x‖. A point p where the previous
minimum is reached is called a projection of x on K. Almost every point
admits a single projection on K, thus definining a map pK : R3 → K
almost everywhere. The R-offset of K is the R-sublevel set of dK , i.e.
the set KR := d−1

K (] − ∞, R[). The VCM maps any integrable function
χ : R3 → R+ to the matrix

VK,R(χ) :=

∫
KR

(x− pK(x))(x − pK(x))tχ(pK(x))dx.

Remark that this definition matches the definition introduced in [1]: when
χ is the indicatrix of a ball, one recovers a notion similar to the convolved
VCM : VK,R(χ) :=

∫
KR∩p−1

K (By(r))
(x−pK(x))(x−pK(x))tdx. The domain

of integration KR ∩ p−1
K (By(r)) is the offset of K intersected with a union

of Voronoi cells (cf. Figure 1). The stability result of [1] implies that

Fig. 1. VCM domain of integration

136 L. Cuel, J.-O. Lachaud, and B. Thibert

information extracted from the covariance matrix such as normals or prin-
cipal directions are stable with respect to Hausdorff perturbation.

Contributions. The contributions of the paper can be sketched as fol-
lows. First, we define the estimator of the VCM in the case of digital data,
for which we prove the multigrid convergence (Sect. 2, Theorem 1). We
then show that the normal direction estimator, defined as the first eigen-
vector of the VCM estimator, is also convergent with a speed in O(h

1
8)

(Sect. 3, Corollary 1). Furthermore, Theorem 2 specifies how to choose
parameters r and R as functions of h to get the convergence. Finally, we
present an experimental evaluation showing that this convergence speed
is closer to O(h) in practice (Sect. 4). Moreover, experiments indicate
that the VCM estimator can be used to estimate curvature information
and sharp features in the case of digital data perturbated by Hausdorff
noise.

2 VCM on Digital Sets

In this section, we define an estimator of the VCM in the case of 3D digital
input. Theorem 1 explicits the conditions under which this estimator is
multigrid convergent for digital data.

2.1 Definition

Let X be a compact domain of R3 whose boundary is a surface of class
C2. We denote ∂X the boundary of X, Xh := Digh(X) = X ∩ (hZ)3

the Gauss digitisation of X, and ∂hX ⊂ R3 the set of boundary surfels
of Xh. We define a digital approximation of the VCM on a subset of
the point cloud : Zh = ∂hX ∩ h(Z + 1

2)
3. For each point x ∈ h(Z + 1

2)
3

with x = (x1, x2, x3), we can define the voxel of center x by vox(x) =
[x1− 1

2h, x1+
1
2h]× [x2− 1

2h, x2+
1
2h]× [x3− 1

2h, x3+
1
2h]. We then define

the digital VCM estimator as

V̂Zh,R(χ) :=
∑
x∈ΩR

h

h3(x− pZh
(x))(x− pZh

(x))tχ(pZh
(x)),

where ΩR
h = {x ∈ ZR

h ∩ h(Z + 1
2)

3, vox(x) ⊂ ZR
h } is the set of centers of

voxels entirely contained in ZR
h , the R-offset of Zh (see Fig. 2). Remark

that the Hausdorff distance between ∂X and the point cloud Zh used in
the definition is less than h.

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 137

Fig. 2. Digitisation of the offset and its localisation

2.2 Multigrid Convergence of the VCM-Estimator

The main theoretical result of the paper is the following theorem. Roughly
speaking, it quantifies the approximation of the VCM of a smooth surface
by the digital VCM of its Gauss digitisation. We denote by ‖.‖op the
matrix norm induced by the Euclidean metric. Given a function f : Rn →
R, we let ‖f‖∞ = maxx∈Rn |f(x)| and denote Lip(f) = maxx �=y |f(x) −
f(y)|/ ‖x− y‖ its Lipschitz constant.

Theorem 1. Let X be a compact domain of R3 whose boundary ∂X is a
C2 surface with reach ρ > 0. Let R < ρ

2 and χ : R3 → R+ be an integrable
function whose support is contained in a ball of radius r. Then for any

h > 0 such that h ≤ min
(
R, r2 ,

r2

32ρ

)
, one has

∥∥∥V∂X,R(χ)− V̂Zh,R(χ)
∥∥∥
op

=O
(
Lip(χ)× [(r3R

5
2 + r2R3 + rR

9
2)h

1
2]

+‖χ‖∞× [(r3R
3
2 + r2R2+ rR

7
2)h

1
2 + r2Rh]

)
.

In the theorem and in the following of the text, the constant involved in
the notation O(.) only depends on the reach of ∂X and on the dimension
(which is three here).

For the proof of Theorem 1, we introduce the VCM of the point cloud
Zh, namely VZh,R(χ). By the triangle inequality, one has

∥∥∥V∂X,R(χ)− V̂Zh,R(χ)
∥∥∥
op

≤ ‖V∂X,R(χ)− VZh,R(χ)‖op +
∥∥∥VZh,R(χ)− V̂Zh,R(χ)

∥∥∥
op

.

In Proposition 1, we bound the second term and in Proposition 2, we
bound the first term.

138 L. Cuel, J.-O. Lachaud, and B. Thibert

Estimation of the VCM of a Point Cloud. Here and in the following
of this section, X is a compact domain of R3 whose boundary ∂X is a
C2 surface with reach ρ > 0. We put R < ρ

2 and χ : R3 → R+ is an
integrable function whose support is contained in a ball By(r) of center y
and radius r.

Proposition 1. For any h ≤ min
(
R, r2 ,

r2

32ρ

)
, one has∥∥∥VZh,R(χ)− V̂Zh,R(χ)

∥∥∥
op
= O
[
r2R2(Lip(χ)R + ‖χ‖∞) h

1
2 + r2R‖χ‖∞h

]
.

Proof. Step 1: The aim of the first step is to prove that

VZh,R(χ) =

∫
vox(ΩR

h)
(x−pZh

(x))(x−pZh
(x))tχ(pZh

(x))dx+R2‖χ‖∞O(hr2).

Since vox(ΩR
h) ⊂ ZR

h , one has

VZh,R(χ) =
∫
vox(ΩR

h)(x− pZh
(x))(x − pZh

(x))tχ(pZh
(x))dx

+
∫
ZR
h \vox(ΩR

h)(x− pZh
(x))(x − pZh

(x))tχ(pZh
(x))dx

By using the facts that ‖x− pZh
(x)‖ ≤ R, χ is bounded by ‖χ‖∞, and

the support of χ is contained in the ball By(r) (see Figure 2), the second
term of the previous equation is bounded by

R2 × ‖χ‖∞ ×H3
([

ZR
h \vox(ΩR

h)
]
∩ p−1

Zh
(By(r))

)
.

Now, we claim that ZR
h ∩ p−1

Zh
(By(r)) ⊂ p−1

∂X(By(2r)). Indeed, let x ∈
ZR
h ∩ p−1

Zh
(By(r)). The fact that the Hausdorff distance between Zh and

∂X is less than h implies that x ∈ ∂XR+h. Now, since h ≤ R, Lemma 3
implies that ‖p∂X(x)− pZh

(x)‖ ≤
√
8hρ+ h, which leads to

‖p∂X(x)− y‖ ≤ ‖p∂X(x)− pZh
(x)‖+ ‖pZh

(x)− y‖ ≤
√

8hρ+ h+ r ≤ 2r.

Now, we show that ZR
h \vox(ΩR

h) ⊂ ∂XR+h\∂XR−(
√
3+1)h. Indeed, as said

just before, one has ZR
h ⊂ ∂XR+h. Furthermore, if x ∈ ∂XR−(

√
3+1)h, then

the fact that the Hausdorff distance between Zh and ∂X is less than h

implies that x ∈ ZR−√
3h

h . Let c ∈ h(Z + 1
2)

3 be the center of a voxel

containing x. The fact that diam(vox(c)) =
√
3h implies that vox(c) ⊂

ZR
h , and thus x ∈ ZR

h . We then get ZR
h \vox(ΩR

h) ⊂ ∂XR+h\∂XR−(
√
3+1)h.

We finally deduce that[
ZR
h \vox(ΩR

h)
]
∩ p−1

Z (By(r)) ⊂
[
∂XR+3h\∂XR−3h

]
∩ p−1

∂X(By(2r)), (1)

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 139

whose volume is bounded by O(hr2) by Proposition 3, which allows us to
conclude.
Step 2: We then have to bound the remaining term

Δ =

∫
vox(ΩR

h)
(x− pZh

(x))(x − pZh
(x))tχ(pZh

(x))dx− V̂Zh,R(χ).

By decomposing Δ over all the voxels of vox(ΩR
h), one has

Δ =
∑
c∈ΩR

h

∫
vox(c)

[
(x− pZh

(x))(x − pZh
(x))tχ(pZh

(x))

−(c− pZh
(c))(c − pZh

(c))tχ(pZh
(c))
]
dx

As in Step 1, we can localise the calculation around the support of χ and
we introduce the set of centers D = ΩR

h ∩p
−1
∂X(By(2r)). Using the relation

χ(pZh
(c)) = χ(pZh

(c)) + χ(pZh
(x)) − χ(pZh

(x)), one gets Δ = Δ1 +Δ2,
where

Δ1 =
∑
c∈D

∫
vox(c)

(x− pZh(x))(x− pZh(x))
t[χ(pZh(x))− χ(pZh(c))]dx

Δ2 =
∑
c∈D

∫
vox(c)

[(x− pZh(x))(x− pZh(x))
t − (c− pZh(c))(c− pZh(c))

t]χ(pZh(c))

We are now going to bound Δ1 and Δ2. One has

‖Δ1‖op ≤
∑
c∈D

∫
vox(c)

‖x− pZh(x)‖
∥∥x− pZh(x)

t
∥∥ ‖χ(pZh(x))− χ(pZh(c))‖dx.

For all c ∈ D and x ∈ vox(c), we have ‖x− c‖ ≤
√
3
2 h. Furthermore, by

definition of ΩR
h , we have that x and c belong to ZR

h ⊂ ∂XR+h. Then,

since h ≤ R ≤ ρ
2 , Proposition 4 implies ‖pZh

(x)− pZh
(c)‖ = O(h

1
2)

and then ‖χ(pZh
(x))− χ(pZh

(c))‖ = Lip(χ)O(h
1
2). Using the fact that

‖x− pZh
(x)‖ ≤ R, one has

‖Δ1‖op = Vol(vox(D))×R2 × Lip(χ)×O(h
1
2).

Since vox(D) ⊂ ZR
h ∩ p−1

∂X(By(2r)) ⊂ ∂XR+h ∩ p−1
∂X(By(2r)) and h ≤ R,

Proposition 3 implies that Vol(vox(D)) = O(r2R). Finally ‖Δ1‖op =

Lip(χ)×O(r2R3h
1
2).

Similarly, let us bound ‖Δ2‖op. We put u = (x− c), v = c− pZh
(c) and

w = pZh
(c)− pZh

(x). We can write x− pZh
(x) = u+ v + w, and we get

Δ2 =
∑
c∈D

[∫
vox(c)

[(u+ v + w)(u+ v + w)t − vvt]χ(pZh
(c))

]
.

140 L. Cuel, J.-O. Lachaud, and B. Thibert

From ‖u‖ ≤ h, ‖v‖ ≤ R and ‖w‖ = O(h
1
2), we bound the integrand by

O(‖χ‖∞(R h
1
2 + h)). From Vol(vox(D)) = O(r2R), one has ‖Δ2‖op =

O(‖χ‖∞ (R2r2h
1
2 + r2Rh)).

Stability of the VCM. It is known that the VCM is stable. More
precisely, Theorem 5.1 of [1] states that ‖V∂X,R(χr)− VZh,R(χr)‖op =

O(h
1
2). However, the constant involved in O(h

1
2) depends on the whole

surface ∂X. We provide here a more precise constant involving only local
estimations, r and R. The proof is very similar to the one of [1], except
that we localise the calculation of the integral. It is given in Appendix.

Proposition 2. For any h ≤ R such that
√
8hρ+ h ≤ r, one has

‖V∂X,R(χr)− VZh,R(χr)‖op
= O

(
Lip(χ)× [(r3R

5
2 + r2R

7
2 + rR

9
2)h

1
2] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2)h

1
2]
)
.

End of proof of Theorem 1. Let h ≤ min
(
R, r2 ,

r2

32ρ

)
. The assumption

h ≤ r2

32ρ implies that
√
8hρ+h ≤ r. Thus we can apply Proposition 1 and

Proposition 2.

3 Multigrid Convergence of the Normal Estimator

Let X be a compact domain of R3 whose boundary ∂X is a surface of
class C2. We now want to estimate the normal, denoted by n(p0), of ∂X
at a point p0 from its Gauss digitisation. We define the normal estimator
by applying the digital VCM on a Lipschitz function that approaches the
indicatrix of the ball Bp0(r).

Definition 1. The normal estimator n̂r,R(p0) is the unit eigenvector as-

sociated to the largest eigenvalue of V̂Zh,R(χr), where χr is a Lipschitz

function that is: equal to 1 on Bp0(r), equal to 1− (‖x− p0‖ − r)/r
3
2 on

Bp0(r + r
3
2) \ Bp0(r), and equal to 0 elsewhere.

Remark that the normal estimator is defined only up to the sign. The
following theorem gives an error estimation between ±n̂r,R(p0) and n(p0).

Theorem 2. Let X be a compact domain of R3 whose boundary ∂X is
a C2 surface with reach ρ > 0. Let R < ρ

2 . Then for any h > 0 such that

h ≤ min
(
R, r2 ,

r2

32ρ

)
, the angle between the lines spanned by n̂r,R(p0) and

n(p0) satisfies

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 141

〈n̂r,R(p0), n(p0)〉 = O
(
(rR− 3

2 +R−1+r−
1
2R− 1

2 +r−
3
2 +r−

5
2 R

3
2)h

1
2 +R−2h+r

1
2 +R2

)
.

The following corollary is a direct consequence.

Corollary 1. Let X be a compact domain of R3 whose boundary ∂X is
a C2 surface with reach ρ > 0. Let a, b ∈ R+, r = ah

1
4 and R = bh

1
4 .

Then for any h > 0 small enough, one has

〈n̂r,R(p0), n(p0)〉 = O
(
h

1
8

)
.

Proof of Theorem 2. We introduce the normalized VCM N̂r,R(p0) =
3

2πr2R3 V̂Zh,R(χr). From Davis-Kahan sin(θ) Theorem [11], up to the sign
of ±n̂r,R(p0), one has

‖n̂r,R(p0)− n(p0)‖ ≤ 2
∥∥∥N̂r,R(p0)− n(p0)n(p0)

t
∥∥∥
op

.

It is therefore sufficient to bound the right hand side. The triangle in-
equality gives∥∥∥N̂r,R(p0)− n(p0)n(p0)

t
∥∥∥
op
≤ 3

2πR3r2

∥∥∥V̂Zh,R(χr)− V∂X,R(χr)
∥∥∥
op

+
3

2πR3r2

∥∥∥V∂X,R(χr)− V∂X,R(1Bp0 (r)
)
∥∥∥
op

+

∥∥∥∥ 3

2πR3r2
V∂X,R(1Bp0 (r)

)− n(p0)n(p0)
t

∥∥∥∥
op

.

The proof of the theorem relies on Theorem 1, that controls the first term,
and on the two following lemmas.

Lemma 1. Under the assumption of Theorem 2, we have

3

2πr2R3

∥∥∥V∂X,R(χr)− V∂X,R(1Bp0 (r)
)
∥∥∥
op

= O(r
1
2).

Proof. Since χr = 1Bp0 (r)
on the ball Bp0(r), by using similar arguments

as previously, one has∥∥∥V∂X,R(χr)− V∂X,R(1Bp0(r)
)
∥∥∥
op

≤ Vol
(
∂XR ∩

[
p−1
∂X(By(r + r

3
2))

∖
p−1
∂X(By(r))

])
×R2.

Proposition 3 implies that the volume Vol
(
∂XR ∩

[
p−1
∂X(By(r + r

3
2))

∖
p−1
∂X(By(r))

])

is less than 4R × Area
(
By(r + r

3
2)
∖
By(r)

)
. The fact that this area is

bounded by O(r
5
2) allows to conclude.

142 L. Cuel, J.-O. Lachaud, and B. Thibert

Lemma 2. Under the assumption of Theorem 2, we have∥∥∥∥ 3

2πR3r2
V∂X,R(1Bp0 (r)

)− n(p0)n(p0)
t

∥∥∥∥
op

= O(r +R2)

Proof. We have the following relation (see Theorem 1 of [12])

V∂X,R(1Bp0 (r)
) =

2

3
R3
[
1 +O(R2)

] ∫
p∈Bp0 (r)∩S

n(p)n(p)t dp. (2)

By the mean value theorem applied to the normal to ∂X, one has

‖n(p)− n(p0)‖ ≤ sup
q∈S

‖Dn(q)‖op lp,p0 ,

where lp,p0 is the length of a geodesic joining p and p0. Since the chord
(pp0) belongs to the offset ∂XR, where R < ρ, we have lp,p0 = O(‖p −
p0‖) (see [13] for example). Therefore ‖n(p) − n(p0)‖ = O(r) and thus
n(p)n(p)t − n(p0)n(p0)

t = O(r). Consequently
∫
p∈Bp0(r)∩S

n(p)n(p)t dp = Area(Bp0(r) ∩ S)n(p0)n(p0)
t +Area(Bp0(r) ∩ S) O(r).

Combining with Eq. (2), we have

3

2R3Area(Bp0(r) ∩ S)
V∂X,R(1Bp0 (r)

)=
[
1 +O(R2)

]
×
(
n(p0)n(p0)

t +O(r)
)
.

We conclude by using the fact that Area(Bp0(r)∩S) is equivalent to πr2.

4 Experiments

We evaluate experimentally the multigrid convergence, the accuracy and
robustness to Hausdorff noise of our normal estimator, and also its ability
to detect features.

The first series of experiments analyzes the convergence of the normal
estimation by VCM toward the true normal of the shape boundary ∂X.
The shape “torus” is a torus of great radius 6 and small radius 2, and
the shape “ellipsoid” is an ellipsoid of half-axes

√
90,

√
45 and

√
45. We

measure the absolute angle error with ε(p) = 180
π cos−1(n̂(p) · n(p)) for

every pointel p ∈ Zh of the digitized shape with several normalized norms:

l1(ε)
def
=

1

Card(Zh)

∑
p∈Zh

ε(p), l∞(ε)
def
= sup

p∈Zh

ε(p). (3)

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 143

 0.1

 1

 10

 100

 0.01 0.1 1

torus, ball kernel

l1 angle error, alpha=0.25
loo angle error, alpha=0.25
l1 angle error, alpha=0.33
loo angle error, alpha=0.33
l1 angle error, alpha=0.5
loo angle error, alpha=0.5
O(h) angle error

 0.1

 1

 10

 100

 0.01 0.1 1

torus, hat kernel

l1 angle error, alpha=0.25
loo angle error, alpha=0.25
l1 angle error, alpha=0.33
loo angle error, alpha=0.33
l1 angle error, alpha=0.5
loo angle error, alpha=0.5
O(h) angle error

Fig. 3. Multigrid convergence of angle error of normal estimator (in degree). Abscissa
is the gridstep h. Tests are run on torus shape for three kernel radii (R = r = 3hα

for α ∈ { 1
4
, 1
3
, 1
2
}), two norms (l1, l∞): (left) kernel ball function χ0

r, (right) kernel hat
function χ1

r.

In experiments we tried several kernel functions χr and we display results
for two of them: the “ball” kernel χ0

p0,r(x) = 1 if ‖x−p0‖ ≤ r, 0 otherwise;
the “hat” kernel χ1

p0,r(x) = 1 − ‖x − p0‖/r if ‖x − p0‖ ≤ r, 0 otherwise.
Figure 3 displays the norms of the estimation angle error in degrees,
for finer and finer digitization steps. Corollary 1 predicts the multigrid
convergence of the estimator when r = ah

1
4 and R = bh

1
4 at a rate

in O(h
1
8). We observe the convergence of the estimator for parameters

R = r = 3h
1
4 , R = r = 3h

1
3 , R = r = 3h

1
2 , at an almost linear rate O(h),

for all norms. More experiments show that the most accurate results are
obtained for α ∈ [13 ,

1
2] if R = r = ahα. Note that the kernel function

has not a great impact on normal estimates, as long as it has a measure
comparable to the ball kernel.

We perturbate the shape “torus” with a Kanungo noise model of pa-
rameter p = 0.25 (the number pd is the probability that a voxel at digital
distance d from the boundary ∂X is flipped inside/out). This is not ex-
actly a Hausdorff perturbation but most perturbations lie in a band of
size 2h/(1− p). Figure 4 shows that the normal is still convergent for all

norms. Again convergence speed is experimentally closer to O(h
2
3), much

better than the proved O(h
1
8).

We then assess the visual quality of the estimators on several shapes, by
rendering the digital surfels according to their estimated normals. First of
all, Figure 5 displays normal estimation results on a noisy “torus” shape
perturbated with a strong Kanungo noise of parameter p = 0.5. Then,
Figure 6 displays the visual improvement of using normals computed by
the VCM estimator. In particular, comparing Fig.6b and Fig.6c shows
that convolving Voronoi cell geometry is much more precise than con-
volving only surfel geometry. Furthermore, we have tested our estimator
on many classical digital geometry shapes (see Figure 7).

144 L. Cuel, J.-O. Lachaud, and B. Thibert

 0.1

 1

 10

 100

 0.01 0.1 1

torus, noise 0.25, ball kernel

l1 angle error, alpha=0.25
loo angle error, alpha=0.25
l1 angle error, alpha=0.33
loo angle error, alpha=0.33
l1 angle error, alpha=0.5
loo angle error, alpha=0.5
O(h) angle error

 0.1

 1

 10

 100

 0.01 0.1 1

torus, noise 0.25, hat kernel

l1 angle error, alpha=0.25
loo angle error, alpha=0.25
l1 angle error, alpha=0.33
loo angle error, alpha=0.33
l1 angle error, alpha=0.5
loo angle error, alpha=0.5
O(h) angle error

 0.1

 1

 10

 100

 0.01 0.1 1

ellipsoid, noise 0.25, ball kernel

l1 angle error, alpha=0.25
loo angle error, alpha=0.25
l1 angle error, alpha=0.33
loo angle error, alpha=0.33
l1 angle error, alpha=0.5
loo angle error, alpha=0.5
O(h) angle error

 0.1

 1

 10

 100

 0.01 0.1 1

ellipsoid, noise 0.25, hat kernel

l1 angle error, alpha=0.25
loo angle error, alpha=0.25
l1 angle error, alpha=0.33
loo angle error, alpha=0.33
l1 angle error, alpha=0.5
loo angle error, alpha=0.5
O(h) angle error

Fig. 4. Multigrid convergence of angle error of normal estimator (in degree) on a noisy
shape. Abscissa is the gridstep h. Tests are run on “torus” shape (upper row) and on
“ellipsoid” shape (lower row), perturbated by a Kanungo noise of parameter 0.25, for
three kernel radii (R = r = 3hα for α ∈ { 1

4
, 1
3
, 1
2
}), two norms (l1, l∞): (left) kernel

ball function χ0
r, (right) kernel hat function χ1

r.

Our VCM estimator is a matrix and carries also curvature information
along other eigendirections. Mérigot et al. [1] proposed to detect sharp
features by using the three eigenvalues l1, l2, l3 of the VCM as follows:
if l1 ≥ l2 ≥ l3, compute l2/(l1 + l2 + l3) and mark the point as sharp
if this value exceeds a threshold T . Figure 8 shows such sharp features
detection on the “bunny” dataset at many different scales, with T = 0.1
for all datasets (it corresponds to an angle of ≈ 25◦). This shows that the
VCM information is geometrically stable and essentially scale-invariant.
To conclude, we list below some information on computation times. This
estimator has been implemented using the DGtal library [14], and will
soon be freely available in it.

Image size #surfels (R, r) χr-VCM comput. Orienting normals

“Al” 1503 48017 (30, 3) 0.73 s 0.88 s
“rcruiser” 2503 66543 (30, 3) 1.26 s 0.99 s
“bunny” 5163 933886 (30, 5) 30.1 s 15.9 s

“Dig. Snow” 5123 3035307 (30, 5) 82.1 s 53.6 s

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 145

Fig. 5. Visual result of the normal estimation on the “torus” shape perturbated
with a strong Kanungo noise (p = 0.5) for gridsteps from left to right h =
0.5, 0.25, 0.125, 0.0626

(a) (b) (c) (d)

Fig. 6. Visual aspect of normal estimation on “bunny66” for r = 3: (a) trivial normals,
(b) normals by χ1

r convolution of trivial normals with flat shading, (c) χ1
r-VCM normals

with flat shading, (d) χ1
r-VCM normals with Gouraud shading

Fig. 7. Visual aspect of normal estimation on classical digital data structures: “Al”
1503, “Republic cruiser” 2503, “Digital snow” 5123

146 L. Cuel, J.-O. Lachaud, and B. Thibert

Fig. 8. Sharp feature detection on “bunny” dataset at increasing resolutions (R = 30,
T = 0.1): color is metallic blue when value is in [0, 2

3
T], then goes through cyan and

yellow in] 2
3
T, T [, till red in [T,+∞[

5 Conclusion

We have presented new stable geometry estimators for digital data, one
approaching the Voronoi Covariance Measure and the other approaching
the normal vector field. We have shown under which conditions they are
multigrid convergent and provided formulas to determine their parame-
ters R and r as a function of the gridstep h. Experiments have confirmed
both the accuracy and the stability of our estimators. In future works,
we plan to compare numerically our estimator with other discrete normal
estimators (e.g. integral invariants [7], jets [15]) and also to perform a
finer multigrid analysis to get a better theoretical bound on the error.

References

1. Mérigot, Q., Ovsjanikov, M., Guibas, L.: Voronoi-based curvature and feature es-
timation from point clouds. IEEE Transactions on Visualization and Computer
Graphics 17(6), 743–756 (2011)

2. de Vieilleville, F., Lachaud, J.O.: Comparison and improvement of tangent esti-
mators on digital curves. Pattern Recognition (2008)

3. Provot, L., Gérard, Y.: Estimation of the derivatives of a digital function with
a convergent bounded error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret,
B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg
(2011)

4. Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours
by approximate global optimization. Pattern Recognition (2009)

5. Roussillon, T., Lachaud, J.-O.: Accurate curvature estimation along digital con-
tours with maximal digital circular arcs. In: Aggarwal, J.K., Barneva, R.P.,
Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS,
vol. 6636, pp. 43–55. Springer, Heidelberg (2011)

6. Fourey, S., Malgouyres, R.: Normals and curvature estimation for digital surfaces
based on convolutions. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F.
(eds.) DGCI 2008. LNCS, vol. 4992, pp. 287–298. Springer, Heidelberg (2008)

7. Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Integral based curvature estimators in
digital geometry. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI
2013. LNCS, vol. 7749, pp. 215–227. Springer, Heidelberg (2013)

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 147

8. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting
of osculating jets. Computer Aided Geometric Design 22(2), 121–146 (2005)

9. Amenta, N., Bern, M.: Surface reconstruction by voronoi filtering. Discrete & Com-
putational Geometry 22(4), 481–504 (1999)

10. Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational
reconstruction of unoriented point sets. In: Symposium on Geometry Processing
(2007)

11. Davis, C.: The rotation of eigenvectors by a perturbation. Journal of Mathematical
Analysis and Applications (1963)

12. Mérigot, Q.: Détection de structure géométrique dans les nuages de points. PhD
thesis, Université Nice Sophia Antipolis (December 2009)

13. Morvan, J.M., Thibert, B.: Approximation of the normal vector field and the area
of a smooth surface. Discrete & Computational Geometry 32(3), 383–400 (2004)

14. DGtal: Digital geometry tools and algorithms library, http://libdgtal.org
15. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting

of osculating jets. Computer Aided Geometric Design 22(2), 121–146 (2005)
16. Weyl, H.: On the volume of tubes. American Journal of Mathematics, 461–472

(1939)
17. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93(3), 418–491 (1959)
18. Cuel, L., Lachaud, J.-O., Thibert, B.: Voronoi-based geometry estimator for 3D

digital surfaces. Technical report hal-00990169 (May 2014)

Appendix

We give here all the sketchs of the proofs to be self-content. Proposition
3 is classical and follows from the well-known tube formula for smooth
surfaces [16]. Proposition 4 states that the projection map pK onto a
set K that is close to a smooth surface S behaves like the projection
map pS . It relies on classical properties of the projection map onto a set
with positive reach. The proof of Proposition 2 is similar to the proof of
Theorem 5.1 of [1], except that the calculations are done locally.

5.1 Hausdorff Measure of Offsets

Proposition 3. Let S ⊂ R3 be a surface of class C2 with reach ρ > 0.
Let R > 0 and ε > 0 be such that R + ε < ρ

2 . Then for any ball B of
radius r, one has:

a) Vol
(
SR ∩ p−1

S (B ∩ S)
)
= O(Rr2).

b) Vol
(
(SR+ε\SR−ε) ∩ p−1

S (B ∩ S)
)
= O(εr2).

c) Area
(
∂[SR ∩ p−1

S (B ∩ S)]
)
= O(Rr + r2),

where the notation O involves a constant that only depends on the reach ρ.

http://libdgtal.org

148 L. Cuel, J.-O. Lachaud, and B. Thibert

Proof. The proof is based on the tube formula for surfaces of class C2

[16, 17]. One has

Vol(SR ∩ p−1
S (B ∩ S)) =

∫
B∩S

∫ R

−R
(1− tλ1(x))(1 − tλ2(x))dtdx,

where λ1(x) and λ2(x) are the principal curvatures of S at the point x.
Now, since |λ1(x)| and |λ2(x)| are smaller than 1

ρ , one has

Vol(SR ∩ p−1
S (B ∩ S)) ≤

∫
B∩S

dx×
∫ R

−R

(
1 +

t

ρ

)2

dt ≤ Area(B ∩ S)× 2R

(
1 +

R2

3ρ2

)
.

Point a) follow from the fact that Area(B ∩S) = O(r2). We use the same
kind of argument for Points b) and c).

5.2 Stability of the Projection on a Compact Set

Proposition 4. Let S be a surface of R3 of class C2 whose reach is
greater than ρ > 0. Let K be a compact set such that dH(S,K) = ε < 2ρ,
and R < ρ a positive number. If x and x′ are points of SR such that
d(x, x′) ≤ η, then :

∥∥pK(x)− pK(x′)
∥∥ ≤ 2

√
8ερ+ 2ε+

1

1− R
ρ

η

The proof of the proposition relies on Lemma 3 whose proof is given in
[18].

Lemma 3. Let S be a surface of R3 with a reach ρ > 0. Let K be a
compact set such that dH(S,K) = ε with ε ≤ 2ρ. Let R be a number such
that R < ρ. For every x ∈ SR, one has

pK(x) ∈ B(pS(x),
√

8ερ+ ε)

Proof (of Proposition 4). By the triangle inequality, we have
∥∥pK(x)− pK(x′)

∥∥ ≤ ‖pK(x)− pS(x)‖+
∥∥pS(x)− pS(x

′)
∥∥+

∥∥pS(x′)− pK(x′)
∥∥ .

It is well-known that the projection map pS is 1
1−R

ρ

-Lipschitz in SR (The-

orem 4.8 of [17]). We then have ‖pS(x)− pS(x
′)‖ ≤ 1

1−R
ρ

η. The two other

terms are bounded with Lemma 3.

Voronoi-Based Geometry Estimator for 3D Digital Surfaces 149

5.3 Proof of Proposition 2

Similarly, as for equation (1) and using the hypothesis h ≤ ρ
2 and

√
8hρ+

h ≤ r, we have p−1
Zh

(supp(χ)) ⊂ p−1
∂X(By(2r)). We then introduce the com-

mon set E = ∂XR−h ∩ p−1
∂X(By(2r)), on which we are going to integrate.

We have :

V∂X,R(χr) =

∫
∂XR∩p−1

∂X(By(2r))
(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x))

=

∫
E
(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x)) + Err1,

where the error Err1 satisfies

‖Err1‖op ≤ R2 × ‖χ‖∞ ×Vol(∂XR ∩ p−1
∂X(By(2r)) \E).

Furthermore, one has ∂XR ∩ p−1
∂X(By(2r)) \ E =

[
∂XR\∂XR−h

] ∩ p−1
∂X(By(2r)),

whose volume is bounded by Proposition 3 by O(r2h). Then

‖Err1‖op = ‖χ‖∞ ×O(R2r2h).

Similarly, one has

V∂X,R(χr) =

∫
E
(x− pZh

(x))(x− pZh
(x))tχ(pZh

(x)) + Err2,

where the error Err2 satisfies ‖Err2‖op = (R+h)2×‖χ‖∞×O(r2h). We
now have to compare the two integrals on the common set E

Δ =

∫
E

[
(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x))− (x− pZh(x))(x− pZh(x))

tχ(pZh(x))
]
.

Following now the proof of Theorem 5.1 of [1], one has

‖Δ‖op ≤ (R2Lip(χ)+2R‖χ‖∞)× [Vol(E)+(diam(E)+R+
√
Rh)×Area(∂E)]×

√
Rh.

Proposition 3 gives that Vol(E) is bounded by O(r2R) and Area(∂E) is
bounded by O(rR+ r2). We then have

‖Δ‖op = O
(
Lip(χ)× [(r3R

5
2 + r2R

7
2 + rR

9
2)h

1
2] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2)h

1
2]
)
.

Adding the bounds of ‖Err1‖op, ‖Err2‖op and ‖Δ‖op, we find the same
bound :

‖V∂X,R(χr)− VZh,R(χr)‖op
= O

(
Lip(χ)× [(r3R

5
2 + r2R

7
2 + rR

9
2)h

1
2] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2)h

1
2]
)
.

An Arithmetical Characterization of the Convex
Hull of Digital Straight Segments�

Tristan Roussillon

Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69622, France

tristan.roussillon@liris.cnrs.fr

Abstract. In this paper, we arithmetically describe the convex hull of a
digital straight segment by three recurrence relations. This characteriza-
tion gives new insights into the combinatorial structure of digital straight
segments of arbitrary length and intercept. It also leads to two on-line
algorithms that computes a part of the convex hull of a given digital
straight segment. They both run in constant space and constant time
per vertex. Due to symmetries, they are enough to reconstruct the whole
convex hull. Moreover, these two algorithms provide efficient solutions
to the subsegment problem, which consists in computing the minimal
parameters of a segment of a digital straight line of known parameters.

1 Introduction

The connection between continued fractions and the convex hull of lattice points
lying above and below a straight segment whose endpoints are lattice points was
already observed by Klein in the nineteenth century as mentioned in [7].

Based on this connection, many papers introduce output-sensitive algorithms
to compute the convex hull of analytical point sets, such as the intersection of the
fundamental lattice and an arbitrary half-plane [3,6,9,10], convex quadrics [3] or
convex bodies [9]. In these papers, the authors propose a geometrical extension
of the result of Klein, while in this paper, the connection between arithmetic
and discrete ray casting, which is briefly described by Har-Peled in [9], is used to
propose an arithmetical interpretation of the geometrical algorithm of Charrier
and Buzer [6]. This new point of view leads to a simple arithmetical extension of
the result of Klein to straight segments of arbitrary rational slope and arbitrary
rational intercept.

More precisely, we introduce three recurrence relations, defining three se-
quences of integer pairs, viewed as points or vectors in the fundamental lattice
Z2. The first two sequences, denoted by {Lk}0...n and {Uk}0...n, both contain
vertices of the convex hull of some lattice points lying on each side of a straight
line (see fig. 1.a). There exists a close link between a separating line and a dig-
ital straight line (DSL). We refer the reader that is not familiar with digital
� This work has been mainly funded by DigitalSnow ANR-11-BS02-009 research

grants.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 150–161, 2014.
c© Springer International Publishing Switzerland 2014

Convex Hull of Digital Straight Segments 151

straightness to [11] and we use below the arithmetical framework introduced
in [8,15]. For each 0 ≤ k ≤ n, Lk − (0, 1) (resp. Lk − (−1, 1)) is a vertex of
the lower convex hull of the associated naive (resp. standard) DSL. Fig. 1.b is
an illustration of the naive case. For the sake of clarity, we focus on the naive
case in the rest of the paper. The last sequence, denoted by {vk}0...n, has also a
simple geometrical interpretation. Indeed, we prove in section 2.3 that for each
0 ≤ k ≤ n, (Lk − Uk) and vk are a pair of unimodular vectors. In other words,
vk is the direction vector of a digital straight segment (DSS) whose first lower
and upper leaning points are respectively Lk − (0, 1) and Uk.

(a) separating line (b) digital line

Fig. 1. Upper and lower convex hulls of lattice points of positive x-coordinate lying on
each side of the straight line {(α, β) ∈ R2|5α−8β = −4} (Point (0, 0) is on the bottom
left) (a). They are closely related to the upper and lower convex hulls of a naive and
8-connected digital straight segment of slope 5/8, intercept −4 and first point (0, 0) (b).

Our arithmetical characterization goes beyond the scope of convex hull com-
putation, because the convex hull of a DSS provides a substantial part of its
combinatorial structure. Let us define a upper (resp. lower) digital edge as a
DSS whose first and last point are upper (resp. lower) leaning points. The com-
binatorial structure of a digital edge has been studied since the seventies [4] and
is well-known since the early nineties [5,15,18]. However, these works focus on
digital edges or DSLs, which are infinite repetitions of digital edges, because the
intercept of a DSL has no effect on its shape and can be assumed to be null
without any loss of generality.

To the best of our knowledge, there are few works that extend such results to
DSSs of arbitrary intercept and length. In [16], Yaacoub and Reveillès provide
an algorithm to retrieve the convex hull of a naive DSS of slope a/b, intercept
μ ∈ [0; b[and length |b|. But the presented algorithm fails to reach the claimed
logarithmic complexity, because it takes as input the set of additive convergents
of the continued fraction expansion of a/b.

152 T. Roussillon

Moreover, it is known for a long time that computing the convex hull of a
DSS is a way of computing its parameters [2]. Several authors have recently
investigated the problem of computing the minimal parameters of a subsegment
of a DSL of known parameters [6,12,14,17]. Minimality is required to have a
unique and compact representation of the segment slope and intercept. Due to
the prior knowledge of one of its bounding digital straight line, all proposed
algorithms outperform classical recognition algorithms [8,13], where each point
must be considered at least once. Our simple arithmetical characterization leads
to two algorithms, called smartCH and reversedSmartCH, which not only
retrieve the vertices of a part of the DSS convex hull, but also compute its
minimal parameters. They both runs in constant space and constant time per
vertex. Their overall time complexity are among the best ones (see tab. 1 for a
comparison).

Table 1. Theoretical comparison of smartCH and reversedSmartCH with convex
hull algorithms (upper block) and subsegment algorithms (lower block). We consider a
naive DSS Σ starting from (0, 0) and of slope a/b = [u1, . . . , un] such that 0 ≤ a < b.
For the sake of clarity, we consider its left subsegment Σ′ of slope a′/b′ = [u′

1, . . . , u
′
n]

and of length l ≤ b such that Σ′ = {(x, y) ∈ Σ|0 ≤ x ≤ l}. Time complexities depend
on a, b, and l. If l � b, bounds depending on l are better. However, if l is close to b,
bounds depending on the difference b− l are better.

Algorithms Time complexity Remarks
smartCH O(log l) on-line: O(1) per vertex
reversedSmartCH O(log(b− l)) on-line: O(1) per vertex,

leaning points must be known
Reveillès et. al. [16] O(

∑n
i ui) l = b, {ui} must be known

Har-Peled [9] O(log2 l) on-line: O(log l) per vertex
Harvey [10] O(log b)

Balza-Gomez et. al. [3] O(log l) post-processing required
Charrier et. al. [6] O(log l) on-line: O(1) per vertex
smartDSS, Lachaud et. al. [12] O(

∑n
i u′

i)

reversedSmartDSS, ibid. O(log(b− l)) {ui} must be known
Sivignon [17] O(log l)

Ouattara et. al. [14] O(log l)

In section 2, we introduce our arithmetical characterization and discuss its
theoretical properties. New algorithms are derived in section 3.

2 A Simple Arithmetical Characterization

Let L(a, b, μ) (or simply L) be a straight line of equation {(α, β) ∈ R2|aβ− bα =
μ} with a, b, μ ∈ Z, gcd(a, b) = 1. Due to symmetries, let us assume w.l.o.g. that
0 ≤ a < b. In addition, due to invariance by integral translation, let us assume
w.l.o.g. that −b < μ ≤ 0.

Convex Hull of Digital Straight Segments 153

Let Λ be the restriction of the fundamental lattice Z2 to the lattice points of
positive x-coordinate, i.e. Λ := {(x, y) ∈ Z2|x ≥ 0}. The straight line L always
divides Λ into a upper domain, Λ+ := {(x, y) ∈ Λ|ax − by ≤ μ}, and a lower
one, Λ− := {(x, y) ∈ Λ|ax− by > μ}.

Definition 1 (Left hull (see fig. 1)). The lower (resp. upper) left hull of Λ+

(resp. Λ−) is the part of the lower (resp. upper) convex hull located between the
vertex of minimal x-coordinate and the vertex the closest to L.

In this section, we provide a simple arithmetical characterization of the upper
and lower left hull of the lower and upper domain.

2.1 Recurrence Relations

Due to the asymmetric definition of Λ+ (in which there is a large inequality) and
Λ− (in which there is a strict one), we introduce the two following notations:
∀x ∈ R (resp. ∀x ∈ R \ 0), [x] (resp. �x�) returns the integer i ∈ Z farthest to 0
such that |i| ≤ |x| (resp. |i| < |x|), i and x having same sign. We assume in this
paper that these two floor functions run in O(1). Moreover, the restriction of the
strict floor function �·� to R \ 0 does not cause any problem in our framework.

On the other hand, we recall that the remainder with respect to the straight
line of slope a/b is a function r(b,a) : Z2 → Z such that r(b,a)(x, y) := (b, a) ∧
(x, y) = ax−by. This value corresponds to the z-component of the cross-product
(b, a)∧(x, y) and is equal to the signed area of a parallelogram generated by (b, a)
and (x, y). Note that the ∧ operator is linear and antisymmetric.

In the sequel, r(b,a)(·) is simplified into r(·) when the remainder refers to L.
Since a and b are given and constant, the difference r(Q) − μ of a point Q
measures how far Q is from L.

Let us consider the following set of recurrence relations (see fig. 2.1 for a
numerical example):

L0 = (0, 1), U0 = (0, 0), v0 = (1, 0) +
[μ− a

−b

]
(0, 1) (1)

∀k ≥ 1,
r(vk−1) �= 0

if r(vk−1) > 0,

⎧⎪⎪⎨⎪⎪⎩
Lk = Lk−1 +

⌊
μ−r(Lk−1)
r(vk−1)

⌋
vk−1

Uk = Uk−1

vk = vk−1 +
[
μ−(r(Uk)+r(vk−1))

(r(Lk)−r(Uk))

]
(Lk − Uk)

if r(vk−1) < 0,

⎧⎪⎪⎨⎪⎪⎩
Lk = Lk−1

Uk = Uk−1 +
[
μ−r(Uk−1)
r(vk−1)

]
vk−1

vk = vk−1 +
⌊
μ−(r(Lk)+r(vk−1))

(r(Uk)−r(Lk))

⌋
(Uk − Lk)

(2)

The goal of this section is to prove the following theorem:

Theorem 1. The sequence {Lk}0...n (resp. {Uk}0...n) corresponds to the vertices
of the lower (resp. upper) left hull of Λ+ (resp. Λ−).

154 T. Roussillon

k 0 1 2 3 4

Lk (0, 1) (0, 1) (2, 2) (2, 2) (7, 5)
Uk (0, 0) (1, 1) (1, 1) (4, 3) (4, 3)
vk (1, 1) (2, 1) (3, 2) (5, 3) (8, 5)

L0,1

L2,3

L4

U0

U1,2

U3,4

v0

v1 v2

v3

v4

Fig. 2. We apply (1) and (2) for a = 5, b = 8 and μ = −4. The first two sequences
are respectively depicted with white and black disks, whereas the third sequence is
depicted with arrows.

The proof of theorem 1 will be derived in section 3 from properties proved in
section 2.3. The proof of some of these properties requires the following useful
geometrical interpretation of integer divisions (see also [9]).

2.2 Integer Division and Ray Casting

Let us consider a point Q such that r(Q) ≥ μ and a direction vector v whose
coordinates are relatively prime and such that r(v) < 0.1 Since r(Q) ≥ μ and
r(v) < 0, the ray emanating from Q in direction v intersects L at a point I (see
fig. 3.a). The discrete ray casting procedure consists in computing the lattice
point farthest from Q and lying on the line segment [QI]. Let I be equal to
Q + τv for some τ ∈ R+. Since I belongs to L by definition, r(I) = μ and the
linearity of the ∧ product gives:

μ = r(I) = r(Q) + τr(v) ⇔ τ =
μ− r(Q)

r(v)
.

Since the components of v are relatively prime and since τ is positive, the greatest
integer t ∈ Z that is less than or equal to τ , i.e. t = [τ], leads to the lattice point
Q+ tv, which is the farthest from Q among those lying on [QI]. In the example
illustrated by fig. 3.a, t = 2. Note that if we consider the half-open line segment
[QI[instead of the closed line segment [QI], i.e. I is not included, we must use
the strict floor function �·� instead of the large floor function [·].

Moreover, note that we can reverse a ray casting under some conditions. We
will use this property to propose a dual characterization that leads to a reversed
algorithm in section 3. Let us recall that the position of a point with respect to
a direction vector s is a function ps : Z2 → Z such that ps(x, y) := (x, y) ∧ s.
In the sequel, we assume that s = (0, 1) because we focus on the naive case and
ps(x, y), which is merely denoted by p(x, y), returns x.

1 Note that points and vectors are both viewed as integer pairs (x, y) ∈ Z2.

Convex Hull of Digital Straight Segments 155

Q

v

L
I

(a)

Q

v

L

Q+ 2v

(b)

Fig. 3. In (a), the ray emanating from Q in direction v intersects L = {(α, β) ∈ R2|3α−
8β = −2} at I , because Q = (1, 0) and v = (2, 1) are such that r(Q) = 3 ≥ μ = −2
and r(v) = −2 < 0. The lattice point lying on the ray segment [QI] and farthest from
Q is Q+ 2v = (5, 2). Indeed, [μ−r(Q)

r(v)
] = [5

2
] = 2. In (b), the point Q may be retrieved

from Q + 2v and v by a reversed discrete ray casting procedure, because p(Q) = 1 is
strictly less than p(v) = 2.

It is easy to see that

p(Q) < p(v)⇒
[p(Q+ tv)

p(v)

]
= t. (3)

Fig. 3.b shows the reversed version of the ray casting depicted in fig. 3.a.

2.3 A Unimodular Basis

We now prove several properties of (1) and (2). Let n be the index such that
r(vn) = 0. For the sake of clarity, we postpone the demonstration of the existence
of such index to the end of the subsection. We first show that for each 0 ≤ k ≤ n,
points Lk and Uk lie on each side of L, i.e.

∀0 ≤ k ≤ n, r(Lk) < μ and r(Uk) ≥ μ. (4)

It is easy to see that (4) is true for k = 0 by (1) and that for all 0 ≤ k ≤ n,
the constructions of Lk from Lk−1 (when r(vk−1) > 0) and Uk from Uk−1 (when
r(vk−1) < 0) are such that r(Lk) < μ and r(Uk) ≥ μ.

Moreover, for each 0 ≤ k ≤ n, we show that there is a strong link between
Lk, Uk and vk:

Lemma 1. ∀0 ≤ k ≤ n, vk is the unique negative and valid Bezout vector2 of
(Lk − Uk), i.e.

∀0 ≤ k ≤ n, r(Lk) < μ− r(vk) ≤ r(Uk), (5)

∀0 ≤ k ≤ n, vk ∧ (Lk − Uk) = −1. (6)
2 The notion of valid Bezout vector is introduced in [6].

156 T. Roussillon

To prove lemma 1, we prove successively (5) and (6).

Proof (of (5)). Base case: Let us consider the ray emanating from (1, 0) in direc-
tion L0 = (0, 1). The lattice point farthest from (1, 0) lying on the ray and below
L is v0 by (1). We have thus r(v0) ≥ μ and as a corollary, r(v0) + r(L0) < μ,
because the lattice point following v0 in direction L0 is above L. Putting the two
inequalities together we have r(L0) < μ− r(v0) ≤ r(U0).

Induction step: Let us assume that for some k between 1 and n, r(Lk−1) <
μ − r(vk−1) ≤ r(Uk−1). We focus on the case where r(vk−1) > 0, because the
other case is symmetric. In that case, due to the induction hypothesis, r(Uk) =
r(Uk−1) ≥ μ− r(vk−1). Let us consider now the ray emanating from Uk + vk−1

in direction Lk − Uk. It intersects L because (i) r(Uk + vk−1) ≥ μ and (ii)
r(Lk−Uk) < 0 by (4). The lattice point farthest from Uk+vk−1 lying on the ray
and below L is Uk+vk by (2). We have thus r(Uk)+r(vk) ≥ μ and as a corollary,
r(Uk) + r(vk) + r(Lk − Uk) < μ, which is equivalent to r(Lk) + r(vk) < μ. As a
consequence, we have r(Lk) < μ− r(vk) ≤ r(Uk), which concludes the proof.
�

To show (6), we use induction and the properties of the ∧ operator (linearity
and anticommutativity).

Proof (of (6)). Base case: v0 = (1, 0) − c(0, 1) for some constant c ∈ Z and
(L0 − U0) = (0, 1) by (1). Therefore v0 ∧ (L0 − U0) = (1, 0) ∧ (0, 1) = −1.

Induction step: let us assume that for some k between 1 and n, vk−1∧(Lk−1−
Uk−1) = −1. By (2), vk = vk−1 − c(Lk − Uk) and (Lk −Uk) = (Lk−1 − Uk−1)−
c′vk−1 for some constants c, c′ ∈ Z. We conclude that vk ∧ (Lk − Uk) = vk−1 ∧
(Lk−1 − Uk−1), which is equal to −1 due to the induction hypothesis.
�

Note that (6) implies that ∀0 ≤ k ≤ n, vk and (Lk − Uk) are irreducible, i.e.
their coordinates are relatively prime. Indeed, v0 and (L0 − U0) are irreducible
and for all k ≥ 1, the greatest common divisor of their coordinates divides
vk ∧ (Lk − Uk), which is equal to −1.

Geometrically, (6) implies that at each step 0 ≤ k ≤ n, vk and (Lk − Uk) are
a pair of unimodular vectors, while (4) and (5) guarantee that in such a basis
the line segment [LkUk] is always intersected by L, whereas the line segment of
endpoints Lk (resp. Uk) and Lk + vk (resp. Uk + vk) is never intersected by L.

We now end the subsection with the following lemma:

Lemma 2. There exists a step n ≥ 1 such that:

r(Ln − Un) = −1, r(vn) = 0. (7)

Un = μ and Ln = μ− 1. (8)

To prove lemma 2, it is enough to notice that r(Lk − Uk) is always strictly
negative by (4) and that ∀0 ≤ k ≤ n, r(Lk−1 − Uk−1) < r(Lk − Uk) by (2).
These inequalities and (6) guarantee that r(Ln − Un) = −1 and r(vn) = 0 at
some step n ≥ 1. Note that vn = (b, a), because vn is irreducible. Then, by (4),
the only possible values of r(Ln) and r(Un) must be respectively μ− 1 and μ.

Convex Hull of Digital Straight Segments 157

3 Convex Hull Algorithms

The proof of theorem 1 is now straightforward:

– Ray casting is equivalent to integer division on remainders (section 2.2),
– (1) is equivalent to the initialization of Charrier and Buzer’s algorithm [6].
– By lemma 1, (1) and (2) maintain the same invariant as Charrier and Buzer’s

algorithm [6], i.e. ∀0 ≤ k ≤ n, vk is the negative and valid bezout vector of
(Lk − Uk).

– Lemma 2 guarantees that the whole lower and upper left hulls are computed.

As a consequence, (1) and (2) provide a simple way to compute the left hull of
the lower and upper domains. In the following sections, we show how to translate
(1) and (2) first into a forward algorithm and then into a backward algorithm,
based on (3).

3.1 A Forward Approach

We first propose a forward algorithm that computes Lk, Uk and vk with increas-
ing k, starting from L0, U0 and v0. This algorithm is called smartCH, because
it is on-line and runs in O(1) per vertex and is thus optimal (see algorithm 1).

It is a rather straightforward translation of (1) and (2). There is a difference
though: we add an extra constraint, which modifies the stopping criterion. Al-
gorithm smartCH takes as input not only the slope a/b and the intercept μ
of a DSL, but also the length l of the subsegment Σ′ starting from (0, 0). If
b is minimal for Σ′ or, which is equivalent, if l # b, the algorithm iteratively
computes Lk, Uk, and vk from Lk−1, Uk−1 and vk−1 until r(vk) = 0. Otherwise,
the algorithm stops as soon as it detects that a new lower or upper leaning point
would lie outside Σ′ (lines 3 and 7 of algorithm 2). In this case, we correct the
last ray casting in order to get the last leaning point (lines 14 and 17) or the
last direction vector of Σ′ (lines 9 to 11 and 18 to 19 of algorithm 2). The com-
ponents of the last direction vector gives the rational slope whose denominator
is bounded by l and that best approximates a/b. This final step is computed in
O(1) instead of the O(log(l)) steps required to compute the critical supporting
lines of the lower and upper convex hulls as proposed in [6].

3.2 A Backward Approach

If all partial quotients are known, by using (1) and (2), it is obviously possible
to compute Uk, Lk, and vk with decreasing k from a given step n ≥ 1. In this
section, we show that these partial quotients can be computed from the positions
of Un, Ln and vn.

As seen in section 2.2, ray casting can be reversed under some conditions.
These conditions are actually fulfilled in our framework:

158 T. Roussillon

Algorithm 1. smartCH(a, b, μ, l)
Input: a, b, μ, l
Output: V , LHull and UHull, lower and upper left hull
// initialisation
stop := FALSE ;1
U := (0,0) ; add U to UHull ;2
L := (0,1) ; add L to LHull ;3

V := (1,0) +
[
μ−a
−b

]
(0,1) ;4

// main loop
while r(vk) �= 0 and not stop do5

if r(vk) > 0 then6
stop := nextVertex(a, b, μ, l, L, U, V, LHull, [.], �.�) ;7

if r(vk) < 0 then8
stop := nextVertex(a, b, μ, l, U, L, V, UHull, �.�, [.]) ;9

Algorithm 2. nextVertex(a, b, μ, l, X, Y, V, XHull, floor1, floor2)
Input: a, b, μ, l, X, Y, V, XHull, floor1, floor2
Output: X, V, XHull
q := floor1

(
μ−r(X)
r(V)

)
; // first ray casting1

X := X + q V ;2
if (p(X) ≤ l) then3

add X to XHull ;4

q := floor2
(

μ−(r(Y)+r(V))
(r(X)−r(Y))

)
; // second ray casting5

V := V + q (X - Y) ;6
if (p(Y) + p(V) ≤ l) then return TRUE ;7
else8

V := V - q (X - Y) ;9

q :=
[
l−(p(Y)+p(V))

p(X)−p(Y)

]
;10

if q > 0 then V := V + q (X - Y) ;11
return FALSE ;12

else13
X := X - q V ;14

q :=
[
l−p(X)
p(V)

]
;15

if q > 0 then16
X := X + q V ; add X to XHull ;17

q :=
[
l−(p(Y)+p(V))

p(X)−p(Y)

]
;18

if q > 0 then V := V + q (X - Y) ;19
return FALSE ;20

Convex Hull of Digital Straight Segments 159

Theorem 2. For each 0 ≤ k ≤ n, the positions of Lk, Uk, vk are ordered as
follows:

∀0 ≤ k < n,

{
p(vk) < p(Lk+1), if r(vk) > 0
p(vk) < p(Uk+1), if r(vk) < 0.

(9)

∀0 ≤ k ≤ n, p(Lk) < p(vk) and p(Uk) < p(vk). (10)

Inequalities (9) are obvious and provide the necessary and sufficient condition
to reverse the second ray casting (lines 5-6 of algorithm 2). Indeed, (3) requires
that

p(Y) + p(V) < p(X − Y)⇔ p(V) < p(X)

and according to the notation used in algorithm 2, X = Lk+1 if V = vk has a
positive remainder, but X = Uk+1 otherwise.

Inequalities (10) provide the necessary and sufficient condition to reverse the
first ray casting (lines 1-2 of algorithm 2). Indeed, (3) requires that p(X) < p(V)
and according to the notation used in algorithm 2, X = Lk if V = vk has a
positive remainder, but X = Uk otherwise.

To complete the proof of theorem 2, we prove (10) by induction.

Proof (of (10)). Base case: Since p(v0) = 1 while p(L0) = p(U0) = 0, (10) is
obviously true for k = 0.

Induction step: Let us assume that p(Lk−1) < p(vk−1) and that p(Uk−1) <
p(vk−1) for some k between 1 and n. Let us assume that r(vk−1) > 0, the other
case being symmetric. By (2), it is easy to see that p(vk) ≥ p(vk−1)+p(Lk−Uk).
Since Uk = Uk−1 and p(vk−1) − p(Uk−1) > 0 due to the induction hypothesis,
we have p(vk) > p(Lk). Since p(Lk) > p(Uk), we obviously have also p(vk) >
p(vk−1) > p(Uk−1) = p(Uk).
�

Theorem 2 and (3) lead to a new set of recurrence relations, which is dual to
(1) and (2):

∀k ≤ n,
p(Uk) �= p(Lk)

if p(Lk) < p(Uk),

⎧⎪⎪⎨⎪⎪⎩
Lk−1 = Lk +

[
p(Lk)

p(vk−1)

]
vk−1

Uk−1 = Uk

vk−1 = vk +
⌊

p(vk)−p(Uk)
p(Uk)−p(Lk)

⌋
(Lk − Uk)

if p(Lk) > p(Uk),

⎧⎪⎪⎨⎪⎪⎩
Lk−1 = Lk

Uk−1 = Uk +
[

p(Uk)
p(vk−1)

]
vk−1

vk−1 = vk +
⌊

p(vk)−p(Lk)
p(Uk)−p(Lk)

⌋
(Uk − Lk)

(11)
This set of recurrence relations has properties similar to (2) and straight-

forwardly leads to a backward algorithm, called reversedSmartCH, which is
on-line and runs in O(1) per vertex. As done with smartCH, we can add a length
constraint to stop the algorithm sooner and solve the subsegment problem. We
do not provide more details due to lack of space. However, we compare below
our implementation of smartCH and reversedSmartCH to the algorithms
whose implementation is available in DGtal [1].

160 T. Roussillon

3.3 Experiments

We generate random DSSs, starting from (0, 0), whose slope a/b has a continued
fraction expansion of constant depth n equal to 15.3 For each DSS, we consider
one of its left subsegment starting from (0, 0). Its length l is determined by the
denominator of the k-th convergent of the bounding DSS slope, so that the sub-
segment slope of minimal denominator has a continued fraction expansion of
depth n′ equal to k. In fig. 4, we plot the running times (in seconds) of 100.000
calls of several algorithms against parameter k, which is ranging from 1 to 14. As
expected in tab. 1, we observe that the running time of the forward methods (a)
is linear in n′ (and thus logarithmic in l), whereas the running time of the back-
ward methods (b) is linear in n−n′ (and thus logarithmic in b− l). Our generic
implementation of smartCH outperforms [6], smartDSS [12] and is comparable
to [17]. Moreover, our implementation of reversedSmartCH outperforms re-
versedSmartDSS [12], which is much more space consuming because continued
fraction expansions of all DSS slopes are stored in a shared data structure that
grows at each call.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14

tim
e

fo
r

10
^5

 c
al

ls
 (

se
c)

depth of the subsegment slope

Forward computation of minimal parameters

smartCH
smartDSS

Sivignon2013
CharrierBuzer2009

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14

tim
e

fo
r

10
^5

 c
al

ls
 (

se
c)

depth of the subsegment slope

Backward computation of minimal parameters

reversedSmartCH
reversedSmartDSS

(b)

Fig. 4. We plot the running times of the algorithms whose implementation is available
in DGtal [1], i.e. [6,12,17], against parameter k, which is equal to the depth of the
subsegment slope

4 Conclusion

In this paper, we propose a simple arithmetical characterization of the convex
hull of DSSs, which gives new insights into the combinatorial structure of DSSs
of arbitrary intercept and length. This characterization and its dual, lead to
two on-line algorithms that computes the left hull of a given DSS. The first
one, called smartCH, returns vertices of decreasing remainders, but increasing
positions, while the second one, called reversedSmartCH, returns vertices of
3 Note that the depth is set to 15 and all partial quotients are randomly chosen in
{1, . . . , 4} so that numerators and denominators are not greater than 231 − 1.

Convex Hull of Digital Straight Segments 161

increasing remainders, but decreasing positions. They both run in constant space
and constant time per vertex. They also provide a logarithmic-time and efficient
solution to the subsegment problem.

References

1. DGtal: Digital geometry tools and algorithms library, http://libdgtal.org
2. Anderson, T.A., Kim, C.E.: Representation of digital line segments and their preim-

ages. Computer Vision, Graphics, and Image Processing 30(3), 279–288 (1985)
3. Balza-Gomez, H., Moreau, J.-M., Michelucci, D.: Convex hull of grid points below

a line or a convex curve. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI
1999. LNCS, vol. 1568, pp. 361–374. Springer, Heidelberg (1999)

4. Brons, R.: Linguistic Methods for the Description of a Straight Line on a Grid.
Computer Graphics and Image Processing 3(1), 48–62 (1974)

5. Bruckstein, A.M.: Self-Similarity Properties of Digitized Straight Lines. Contem-
porary Mathematics 119, 1–20 (1991)

6. Charrier, E., Buzer, L.: Approximating a real number by a rational number
with a limited denominator: A geometric approach. Discrete Applied Mathemat-
ics 157(16), 3473–3484 (2009)

7. Davenport, H.: The Higher Arithmetic: Introduction to the Theory of Numbers.
Oxford University Press, Oxford (1983)

8. Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital
curves. International Journal of Pattern Recognition and Artificial Intelligence 9(4),
635–662 (1995)

9. Har-Peled, S.: An output sensitive algorithm for discrete convex hulls. Computa-
tional Geometry 10(2), 125–138 (1998)

10. Harvey, W.: Computing Two-Dimensional Integer Hulls. SIAM Journal on Com-
puting 28(6), 2285–2299 (1999)

11. Klette, R., Rosenfeld, A.: Digital straitghness – a review. Discrete Applied Math-
ematics 139(1-3), 197–230 (2004)

12. Lachaud, J.O., Said, M.: Two efficient algorithms for computing the characteristics
of a subsegment of a digital straight line. Discrete Applied Mathematics 161(15),
2293–2315 (2013)

13. Lindenbaum, M., Bruckstein, A.: On recursive, o(n) partitioning of a digitized
curve into digital straight segments. IEEE Transactions on Pattern Analysis and
Machine Intelligence 15(9), 949–953 (1993)

14. Ouattara, J.S.D., Andres, E., Largeteau-Skapin, G., Zrour, R., Tapsob, T.M.Y.:
Remainder Approach for the Computation of Digital Straight Line Subsegment
Characteristics. Submitted to Discrete Applied Mathematics (2014),
doi:10.1016/j.dam.2014.06.006

15. Reveillès, J.P.: Géométrie Discrète, calculs en nombres entiers et algorithmique.
Thèse d’etat, Université Louis Pasteur (1991)

16. Reveillès, J.P., Yaacoub, G.: A sublinear 3D convex hull algorithm for lattices. In:
DGCI 1995, pp. 219–230 (1995)

17. Sivignon, I.: Walking in the Farey Fan to Compute the Characteristics of a Discrete
Straight Line Subsegment. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.
(eds.) DGCI 2013. LNCS, vol. 7749, pp. 23–34. Springer, Heidelberg (2013)

18. Voss, K.: Coding of digital straight lines by continued fractions. Computers and
Artificial Intelligence 10(1), 75–80 (1991)

http://libdgtal.org

Parameter-Free and Multigrid Convergent

Digital Curvature Estimators�

Jérémy Levallois1,2, David Coeurjolly1, and Jacques-Olivier Lachaud2

1 Université de Lyon, CNRS,
INSA-Lyon, LIRIS, UMR5205, F-69621, France

2 Université de Savoie, CNRS,
LAMA, UMR5127, F-73776, France

Abstract. In many geometry processing applications, the estimation
of differential geometric quantities such as curvature or normal vector
field is an essential step. Focusing on multigrid convergent estimators,
most of them require a user specified parameter to define the scale at
which the analysis is performed (size of a convolution kernel, size of local
patches for polynomial fitting, etc). In a previous work, we have proposed
a new class of estimators on digital shape boundaries based on Integral
Invariants. In this paper, we propose new variants of these estimators
which are parameter-free and ensure multigrid convergence in 2D. As
far as we know, these are the first parameter-free multigrid convergent
curvature estimators.

Keywords: Curvature estimation, multigrid convergence, integral in-
variants, digital straight segments, parameter-free estimators.

1 Introduction

Estimating differential quantities like curvatures on discrete data is a tricky task
and generally relies on some user supervision to specify some computation win-
dow. Indeed, the user has to balance between a small window which preserves
most likely sharp features and a big window which offer a better accuracy in
flatter smooth zones. Even worse, there may not exist a window size that is
appropriate to the whole data. For digital data, another fundamental issue is
related to the multigrid convergence property of geometric estimators: this prop-
erty holds whenever the geometric estimation on a digitized shape is more and
more accurate as the digitization step gets finer and finer. It is clear that a
user supervision cannot be considered when multigrid convergence is involved.
The question is then: can we design parameter-free curvature(s) estimator on
digital data ? Furthermore, can this estimator be adaptive to the local data
characteristics ?

For 2D digital curves, tangent estimation from maximal digital straight seg-
ments answers these two questions in a nice way. Indeed, it requires no parameter

� This work has been mainly funded by DigitalSnow ANR-11-BS02-009 and
KIDICO ANR-2010-BLAN-0205 research grants.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 162–175, 2014.
c© Springer International Publishing Switzerland 2014

Parameter-Free and Multigrid Convergent Digital Curvature Estimators 163

and is proven to be multigrid convergent [7,13]. For curvature estimation, the dig-
itization grid step h is required to get the scale of the shape but is not compulsory
to get relative estimations. Two accurate curvature estimators are parameter-
free and adaptive: one based on maximal digital circular arcs (MDCA) [12], one
based on squared curvature minimization [5]. However, their convergence is not
proven. To get convergence, authors generally define the computation window
as a function of h. Binomial or Gaussian convolution estimators [8,4] use some

1/hα window size, digital integral invariants [2] use some h
1
3 radius size. The

polynomial fitting of [11] also requires a thickness parameter. For 3D digital sur-
faces, the only multigrid convergent estimator of the curvature tensor that we
are aware of is the digital integral invariant (II for short) of [2,3]; it relies on a

h
1
3 radius size.
This paper proposes a theoretically sound method to get rid of user specified

parameters. The idea is to use length properties of maximal segments as functions
of h in order to determine automatically a correct computation window. We
show how this approach can set automatically the digital radius size required for
the multigrid convergence of the II curvature estimator, without any knowledge
of the grid step h. By this way, we obtain the first parameter-free multigrid
convergent curvature estimator for 2D contours. This approach is also extensible
to 3D by a careful use of axis-aligned slices in the shape. Although we have hints
of multigrid convergence, still some work is required to prove it fully.

2 Preliminaries

We denote by Z any subset of Z2 (or Z3, depending on the context). In dimension
2, Bd(Z) denotes the topological boundary of Z, seen as a cellular cartesian
complex. It is thus composed of 0− and 1−cells (resp. pointels and linels). By
convention, we decide to map pointels coordinates to Z2.

Definition 1 (Standard Line and Digital Straight Segment). The set
of points (x, y) ∈ Z2 satisfying μ ≤ ax − by < μ + |a| + |b|, with a, b and μ
integer numbers, is called the standard digital line with slope a/b and shift μ.
Any connected subset of pixels of a standard digital line is a digital straight
segment (DSS for short).

Definition 2 (Maximal Segment and Maximal Segment Pencil [7]). A
sequence of pointels {pi, . . . , pj} ⊂ Bd(Z) is a maximal segment iff {pi, . . . , pj}
is a DSS which cannot be extended neither to its front nor to its back while still
being a DSS. At a given pointel p ∈ Bd(Z), the pencil of maximal segment at p
is the set of maximal segments on Bd(Z) containing p.

In the multigrid convergence framework, digital objects Z are given by the dig-
itization of a continuous object for a given scale factor h. More formally, given
a family of Euclidean shapes X, we denote by Dh(X) the Gauss digitization of
X ∈ X in a d−dimensional grid of grid step h, i.e.

Dh(X)
def
=

(
1

h
·X
)
∩ Zd (1)

164 J. Levallois, D. Coeurjolly, and J.-O. Lachaud

×x

BR(x)

X

(a)

x̂
x

h

πX
h (x̂)

∂X
∂hX

(b)

Fig. 1. Integral invariant computation (left) and notations (right) in dimension 2

Similarly to [3] we denote ∂hX the h−boundary of X , i.e. a d − 1-dimensional
subset of Rd corresponding to the geometrical embedding of the boundary of the
Gauss digitization of X at grid step h. In our multigrid convergence framework,
quantities are estimated on ∂hX and then compared to associated expected
values on ∂X (see Fig. 1). Note that a discrete/combinatorial view of ∂hX is
given by Bd(Z) with Z = Dh(X). In many situations, maximal segments and
maximal segment pencils play a very important role in multigrid digital contour
geometry processing [6,13]. For the purpose of this paper, let us focus on the
asymptotic properties of lengths of maximal segment:

Lemma 1 (Asymptotic Laws of Maximal Segments [6,13]). Let X be
some convex shape of R2, with at least C3-boundary and bounded curvature. The
discrete length of maximal segments in Bd(Z) for Z = Dh(X) follows:

– the shortest is lower bounded by Ω(h− 1
3);

– the longest is upper bounded by O(h− 1
2);

– their average length, denoted LD(Z), is such that:

Θ(h− 1
3) ≤ LD(Z) ≤ Θ(h− 1

3 log

(
1

h

)
) . (2)

In [2,3], we have proposed convergent curvature estimators based on Integral
Invariants [10,9]. For short, the idea is to move a geometrical kernel (ball with
radius R) at each surface point and to compute integrals on the intersection be-
tween the ball and the digital shape. In dimension 2, the estimator κ̂R(Z, x̂, h) is
defined as a function of the number of grid points in (h ·Z)∩BR(x̂), BR(x̂) being
the ball with radius R centered at x̂. In dimension 3, mean curvature estimation
can be obtained from the number of points in (h ·Z)∩BR(x̂). Instead of simply
estimating the measure (volume) of X ∩BR(x) by discrete summation, we esti-
mate in 3D the covariance matrix of (h ·Z)∩BR(x̂). Its eigenvalues/eigenvectors
give us quantitative and directional information from which we can design esti-
mators κ̂1

R(Z, x̂, h) and κ̂2
R(Z, x̂, h) of principal curvatures κ

1 and κ2 for x ∈ ∂X .
Their multigrid convergence properties are summed up below.

Theorem 1 (Uniform multigrid convergence of κ̂R, κ̂
1
R, and κ̂2

R [2,3]).
Let X be some convex shape in R2 or R3, with at least C3-boundary and bounded

Parameter-Free and Multigrid Convergent Digital Curvature Estimators 165

curvature. Then, there exist positive constants h0, k and K, for any h ≤ h0,
setting R = kh

1
3 , we have: ∀x ∈ ∂X, ∀x̂ ∈ ∂hX, ‖x̂− x‖∞ ≤ h,

|κ̂R(Dh(X), x̂, h)− κ(X, x)| ≤ Kh
1
3 (3)

and more specifically for X in R3, ∀i ∈ {1, 2}:

|κ̂i
R(Dh(X), x̂, h)− κi(X, x)| ≤ Kh

1
3 (4)

A key point in Theorem 1 is that the radius R of the ball has to be in Θ(h
1
3) to

get the convergence result. In the following, we use geometrical characteristics
of Bd(Z) (its maximal segment length distribution) to automatically select the
appropriate local or global radius R while keeping the multigrid convergence
property.

3 Multigrid Convergence of 2D Parameter-Free
Curvature

Let us first define our new curvature estimator on digital objects Z ⊂ Z2:

Definition 3. Given Z ⊂ Z2, the parameter-free digital curvature estimator κ̂∗

at a pointel p ∈ Bd(Z) is defined as:

κ̂∗(Z, p)
def
=

3π

2ρ(Z)
− 3A(Z, p)

ρ(Z)
3 (5)

where ρ(Z) = L2
D(Z) and A(Z, p) = Card(Bρ(Z)(p) ∩ Z).

To rephrase the definition, we first compute the average discrete length of all
maximal segments of Bd(Z). Then the symbol ρ is the square of this length. The
estimation κ̂∗(Z, p) is a function of the number of digital points in Z intersected
with the ball of radius ρ centered at p. In the following, we fill the gap between the
parameter-free estimator κ̂∗ and 2D II curvature estimator as described in [2,3].

First of all, the multigrid convergence framework implies we have a scale factor
h between maximal segment lengths on Bd(Z) and distances in the Euclidean
space on which ∂hX is defined. Hence, for Z = Dh(X), inserting ρ(Z) = L2

D(Z)
into Lemma 1 implies

Θ(h
1
3) ≤ hρ(Z) ≤ Θ(h

1
3 log2(

1

h
)) . (6)

In [2,3], we have define a 2D II digital curvature estimator κ̂R that depends
on a ball radius R. Its multigrid convergence is guaranteed whenever the radius
is in Θ(h

1
3). The quantity ρ(Z) relies only on the digital contour geometry of Z.

Except for the log2(·) term, hρ(Z) is thus an excellent candidate for parameter

R, since it follows approximately Θ(h
1
3), to design a parameter free curvature

estimator.

166 J. Levallois, D. Coeurjolly, and J.-O. Lachaud

Theorem 2 (Uniform convergence of curvature estimator κ̂∗). Let X be
some convex shape of R2, with at least C3-boundary and bounded curvature. Let
Z = Dh(X). Then, there exist a positive constant h0, for any 0 < h ≤ h0, we
have, ∀x ∈ ∂X and ∀p ∈ Bd(Z)

‖hp− x‖∞ ≤ h⇒
∣∣∣∣ 1hκ̂∗(Z, p)− κ(X, x)

∣∣∣∣ ≤ O(h
1
3 log2(

1

h
)) . (7)

Note that p ∈ Bd(Z) implies hp ∈ ∂hX . The parameter-free curvature is rescaled
by h in order to compare comparable shapes.

Proof. First, we expand 1
h κ̂

∗(Z, p) as

1

h
κ̂∗(Z, p) =

3π

2hρ(Z)
− 3A(Z, p)

hρ(Z)
3 =

3π

2hρ(Z)
−

3 Card(Bρ(Z)(p) ∩ Dh(X))

hρ(Z)
3

=
3π

2hρ(Z)
−

3 Card(B(hρ(Z))/h(
1
h · (hp)) ∩ Dh(X), h)

hρ(Z)
3

= κ̂R(Dh(X), x̂, h) (with R
def
= hρ(Z) and x̂

def
= hp and [2]) .

It suffices now to bound |κ̂R(Dh(X), x̂, h) − κ(X, x)| according to the asymp-

totic behavior of R
def
= hρ(Z). According to Eq.(6), R is contained between two

bounds:
If R = Θ(h

1
3), we are in the hypothesis of Theorem 2, so the error term is in

O(h
1
3).

If R = Θ(h
1
3 log2(1h)), we expand the error term in Theorem 2 using Eq. (18)

of [2] (with α′ = 1 and β = 1 in general case):

|κ̂R(Dh(X), x̂, h)− κ(X, x)|

≤ O(hρ(Z)) +O

(
h

(hρ(Z))2

)
+O

(
h

(hρ(Z))2

)
(1 +O((hρ(Z))2) +O(h))

(8)

≤ O(h
1
3 log2(

1

h
)) +O

(
h

1
3

log4(1h)

)
+O(h) +O

(
h

4
3

log4(1h)

)
(9)

O(h
1
3 log2(1h)) is the dominant error term in the latter expression. Gathering the

two cases and recalling that 1
h κ̂

∗(Z, p) = κ̂R(Dh(X), x̂, h), we conclude that the

error in Eq.(7) is exactly O(h
1
3 log2(1h)). �

The previous curvature estimator is thus convergent. It requires the scale
parameter h only to determine the unity used for measuring curvatures. But all
curvatures are correct relatively. A possible drawback of the previous estimator
is that the ball radius is not adaptive to shape features (for instance sharp
features). Instead of using the same ball radius for the whole shape, we can use
the maximal segment pencil at each pointel to detect a local size for the radius.
We will denote by ρ(Z, p) the square of average length of the maximal segment
pencil at pointel p.

Parameter-Free and Multigrid Convergent Digital Curvature Estimators 167

Definition 4. Given Z ⊂ Z2, the local parameter-free curvature estimator κ̂∗
l

at a pointel p ∈ Bd(Z) is given by:

κ̂∗
l (Z, p)

def
=

3π

2ρ(Z, p)
− 3A′(Z, p)

ρ(Z, p)
3 (10)

where A′(Z, p) = Card(Bρ(Z,p)(p) ∩ Z).

In this local version, some maximal segments may have a too long length which
prevents us to have multigrid convergence proof. Indeed, if, in the maximal
segment pencil, lengths are in the global range of Eq. (2), good multigrid behavior
of this local estimator can be expected. Issues arise for maximal segments with
longest length in O(h− 1

2) in Lemma 1. In this pathological case, no convergence
can be expected. In Sect. 5, we experimentally show very good convergence
properties on this estimator.

4 3D Parameter-Free Curvature Tensor Estimators

In this section, we present parameter-free curvature tensor estimators in 3D. To
sum up, we use the lengths of maximal segments in object slices to automatically
set the integral invariant radius parameter. Let us first start with a proposition
on smooth manifolds. Let X be any object in R3 with C2-smooth boundary
∂X whose absolute principal curvatures are bounded by some constant K. The
normal to ∂X at x is denoted by n(x). The principal curvatures at x are denoted
by κ1(x) and κ2(x).

Proposition 1. For any x ∈ ∂X, let πe(x) be the plane containing x and or-
thogonal to vector e ∈ {x,y, z}. Let ∂Xe(x) be the set that is the intersection
X ∩πe(x). Then at least two of the sets ∂Xx(x), ∂Xy(x) and ∂Xz(x) are locally
curves whose curvatures are bounded by

√
2K in absolute value.

The proof is available in Appendix A.1. The radius ρ′(Z) of integral invariant
computation will be defined as the square of some average of lengths of maximal
segments for a digital object Z in Z3, a more formal definition will be given just
after. We may define now our parameter-free curvature estimators in 3D:

Definition 5. Given Z ⊂ Z3, the parameter-free mean curvature estimator Ĥ∗

at a pointel p ∈ Bd(Z) is defined as:

Ĥ∗(Z, p)
def
=

8

3ρ′(Z)
−

4Vρ′(Z)(Z, p)

πρ′(Z)4
, (11)

where Vρ′(Z)(Z, p) = Card(Bρ′(Z)(p) ∩ Z).

As discussed in [9,3], directional curvature information and thus curvature
tensor can be estimated from the eigenvalues of the covariance matrix1 of
Card(Bρ′(Z)(p) ∩ Z).

1 The covariance matrix of Y ⊂ R3 is defined by J(Y)
def
=

∫
Y
(p−Y)(p−Y)Tdp where

Ȳ is the centroid of Y .

168 J. Levallois, D. Coeurjolly, and J.-O. Lachaud

Definition 6. Let Z be a digital shape in Z3, we define the parameter-free prin-
cipal curvature estimators κ̂1∗ and κ̂2∗ of Z at point p ∈ Bd(Z) as

κ̂1∗(Z, p) =
6(λ̂2 − 3λ̂1)

πρ′(Z)
6 +

8

5ρ′(Z)
, κ̂2∗(Z, p) =

6(λ̂1 − 3λ̂2)

πρ′(Z)
6 +

8

5ρ′(Z)
, (12)

where λ̂1 and λ̂2 are the two greatest eigenvalues of the covariance matrix of
Bρ′(Z)(p) ∩ Z.

Let us now precise what is the ρ′(Z) parameter. We provide one global definition
ρ′(Z) and one local definition ρ′(Z, p) for p ∈ Bd(Z):

Definition 7. Given a digital object Z, each surfel p ∈ Bd(Z) is orthogonal
to two slices πe1(p) and πe2(p). For each slice πei(p) ∩ Z, the pencil of maximal
segments covering p determines a set of integers li(p), formed by the lengths of
these maximal segments. Finally, we number by M(p) the slice containing the
longest maximal segment (i.e. the slice i whose set li(p) contains the biggest
integer). Then, we define

– ρ′(Z) is the square of the average of maximal segment lengths for all slices
πei(p) ∩ Z of Z;

– ρ′(Z, p) is the square of the average value of lM(p)(p).

As in 2D, some pathological cases may appear leading to the fact that hρ′(Z, p) ∈
Θ(1). In which case, nothing could be expected in terms of multigrid convergence.
Again, experimental analysis shows that this bad behavior is not observed. Un-
like the 2D case, we do not have a complete knowledge about the multigrid
behavior of hρ′(Z). Let use first express it as a conjecture.

Conjecture 1. Let X be some convex shape of R3, with C3-boundary and

bounded curvature. Let Z
def
= Dh(X), then there exists a positive constant h0,

∀0 < h ≤ h0, Θ(h
1
3) ≤ hρ′(Z) ≤ Θ(h

1
3 log2(

1

h
)) . (13)

The rationale behind this conjecture can be sketched as follows. Slicing the
objects in all directions, from Proposition 1, we know that at least two third of
the slices define convex curves with bounded local curvature information. Since
two slices go through one surfel, at least one slice per surfel provides a convex
curve with bounded curvature. We thus expect that the lengths of more than
half of the maximal segments follow Eq.(13) bounds. Hence, computing the mean
of all these lengths provides a stable and consistent quantity which would also
follow Eq. (13). In Sect 5, we provide a complete experimental evaluation which
supports this conjecture. Assuming Conjecture 1, we can prove the two following
observations:

Observation 1 (Uniform convergence of Ĥ∗.). Let X be some convex shape

of R3, with at least C3-boundary and bounded curvature. Let Z
def
= Dh(X), then

Parameter-Free and Multigrid Convergent Digital Curvature Estimators 169

there exists a positive constant h0, for any 0 < h ≤ h0, we have ∀x ∈ ∂X and
∀p ∈ Bd(Z),

‖hp− x‖∞ ≤ h⇒
∣∣∣∣1hĤ∗(Z, p)−H(X, x)

∣∣∣∣ ≤ O(h
1
3 log2(

1

h
)). (14)

Assuming Conjecture 1, the proof is similar to the proof of Theorem 2.

Observation 2 (Uniform convergence of κ̂1∗ and κ̂2∗). Let X be some
convex shape of R3, with at least C3-boundary and bounded curvature. For i ∈
{1, 2}, recall that κi(X, x) is the i-th principal curvature of ∂X at boundary point

x. Let Z
def
= Dh(X), then, there exists a positive constant h0, for any 0 < h ≤ h0,

we have ∀x ∈ ∂X and ∀p ∈ Bd(Z),

‖hp− x‖∞ ≤ h⇒
∣∣∣∣ 1hκ̂i∗(Z, p)− κi(X, x)

∣∣∣∣ ≤ O(h
1
3 log2(

1

h
)). (15)

Proof is available in Appendix A.2.

5 Experimental Evaluation

We present an experimental evaluation of our parameter-free curvature estima-
tors described before, in 2D and 3D (mean and principal curvatures). All these
estimators are implemented in the open-source C++ library DGtal [1]. DGtal
provides us a way to construct parametric and implicit 2D and 3D shapes for
a given grid step h. Furthermore, DGtal holds a collection of estimators and
several tools to facilitate the comparison between estimators. In dimension 2, we
compare our estimators with a parameter-free curvature estimator called Most-
centered Digital Circular Arc curvature estimator (MDCA) [12], which gives
good results but whose multigrid convergence — although observed — is un-
fortunately not proven. In dimension 3, there is no parameter-free estimator
which provides some multigrid convergence. Therefore, considering an implicit
or parametric shape on which the exact curvature is known, we present two dif-
ferent global curvature error measurement for a shape at a given grid step h: the
l∞ norm measures the average of the absolute error between estimated and true
curvature (it corresponds to the uniform convergence in previous theorems), and
the l2 norm is the square root of the average of squared errors (it better reflects
an average behavior of the estimator).

As described in Sect. 3, we build our estimators by moving a geometrical
kernel (an Euclidean ball in dD) of radius hρ in 2D and hρ′ in 3D, and centering
it on each surface elements (surfels). The volume or the covariance matrix of the
intersection of the kernel and the digital object is then estimated by simple pixel
or voxel enumeration. Since the radius of the kernel is hρ or hρ′, we first need
to estimate them.

In Fig. 2, we study hρ′. We see that experimentally it follows the expected
asymptotic behavior of Conjecture 1, i.e. they are bounded between Θ(h

1
3) and

Θ(h
1
3 log2(1h)). Hence, they define a consistent kernel radius for curvature esti-

mators. In Fig. 3 we present asymptotic error measurements for the proposed

170 J. Levallois, D. Coeurjolly, and J.-O. Lachaud

10−3 10−2 10−1 100

h

10−1

100

101

le
ng

th

hρ′(Z)

O(h1/3)

O(h1/3log2(1/h))

Fig. 2. Clustering of squared length statistics usingK−means mapped to “flower” con-
tour points (left). Comparison of asymptotic behavior (in log-space) of hρ′(Z) (center)
and mapping of length of hρ′(Z, p) on an ellipsoid (right).

parameter-free curvature estimators κ̂∗ and κ̂∗
l . These graphs also display error

measurements for MDCA [12] and our former non parameter-free version of this
estimator κ̂R (setting R = kh1/3 for some constant k) [2]. We observe that all

estimators are convergent with convergence speed at least in O(h
1
3) except for

the local parameter-free estimator on the multigrid ellipse.

10−4 10−3 10−2 10−1 100

h

10−3

10−2

10−1

100

101

l ∞
er

ro
r

k̂∗

k̂∗l

k̂R

MDCA

O(h1/3)

10−4 10−3 10−2 10−1 100

h

10−2

10−1

100

101

l ∞
er

ro
r

k̂∗

k̂∗l

k̂R

MDCA

O(h1/3)

Fig. 3. Comparison in log-space of l∞ curvature error on multigrid ellipses (left) and
flowers (right)

In Fig. 4, we present an experimental evaluation of local estimator κ̂∗
l which

adapts the kernel size for each point of the digital contour. The main argument
for this estimator is to offer an adaptive estimation, for instance to better handle
sharp features. As depicted in Fig. 4 for a “flower” shape, we first observe that
the local estimator κ̂∗

l has a similar behavior to the global estimator κ̂∗ for
the l∞ norm. We also note that, thanks to the adaptive nature of κ̂∗

l , the l2
error is lower for κ̂∗

l than κ̂∗. For high resolution objects (i.e. small h), κ̂∗
l is very

time consuming (we need to create a new kernel at each point and we cannot use
differential masks as described in [2]). To speed up its computation, we introduce
K−means variants: we distribute the lengths of maximal segments into K bins
by K-means clustering, in order to have a limited number of kernels. Hence

Parameter-Free and Multigrid Convergent Digital Curvature Estimators 171

10−4 10−3 10−2 10−1 100

h

10−4

10−3

10−2

10−1

l 2
er

ro
r

k̂∗

k̂∗l

k̂∗K=5

k̂∗K=10

k̂∗K=50

k̂R

MDCA

O(h1/3)

(a)

10−4 10−3 10−2 10−1 100

h

10−4

10−3

10−2

10−1

l 2
er

ro
r

k̂∗

k̂∗l

k̂∗K=5

k̂∗K=10

k̂∗K=50

k̂R

MDCA

O(h1/3)

(b)

10−4 10−3 10−2 10−1 100

h

10−3

10−2

10−1

100

101

102

103

104

105

tim
e

(in
s.

)

k̂∗

k̂∗l

k̂∗k=5

k̂∗k=10

k̂∗k=50

(c)

Fig. 4. Comparison in log-space of l2 curvature error on multigrid ellipses (a) and
multigrid flowers (b) with the local κ̂∗

l estimator and with different number of pre-
computed kernels. (c) Computational efficiency of local estimators.

Fig. 5. Curvature scale-space analysis of a flower: x−axis is the curvilinear abscissa,
y−axis is the kernel radius, curvature values are mapped between the blue (lowest
curvature) and the yellow color (highest curvature). In black are drawn the radius
ρ(Z) for global estimator κ̂∗ (first row), radii ρ(Z, p) for local estimator κ̂∗

l (second
row), and radii ρ(Z, p) after K−mean clustering for local estimator κ̂∗

K=5. (last row)

172 J. Levallois, D. Coeurjolly, and J.-O. Lachaud

10−2 10−1 100

h

10−3

10−2

10−1

100

l ∞
er

ro
r

Ĥ∗

Ĥ∗
l

Ĥ∗
K=5

Ĥ∗
K=10

Ĥ∗
K=50

O(h1/3)

10−2 10−1 100

h

10−4

10−3

10−2

10−1

l 2
er

ro
r

Ĥ∗

Ĥ∗
l

Ĥ∗
K=5

Ĥ∗
K=10

Ĥ∗
K=50

O(h1/3)

10−2 10−1 100

h

10−3

10−2

10−1

100

l ∞
er

ro
r

k̂1∗

k̂1∗l

k̂1∗K=5

k̂1∗K=10

k̂1∗K=50

O(h1/3)

10−2 10−1 100

h

10−5

10−4

10−3

10−2

10−1

l 2
er

ro
r

k̂1∗

k̂1∗l

k̂1∗K=5

k̂1∗K=10

k̂1∗K=50

O(h1/3)

10−2 10−1 100

h

10−1

100

l ∞
er

ro
r

k̂2∗

k̂2∗l

k̂2∗K=5

k̂2∗K=10

k̂2∗K=50

O(h1/3)

10−2 10−1 100

h

10−4

10−3

10−2

10−1

l 2
er

ro
r

k̂2∗

k̂2∗l

k̂2∗K=5

k̂2∗K=10

k̂2∗K=50

O(h1/3)

Fig. 6. Comparison in log-space of l∞ (first column) and l2 (second column) mean cur-
vature (top), principal curvatures (middle and bottom) errors on a multigrid ellipsoid

mask precomputations are possible. Fig. 2 shows the distribution of K-radii in
2D and 3D. In Fig. 4, we tested curvature estimators based on this clustering
with K ∈ {5, 10, 20}. We first observe very good multigrid accuracy, even for a
small K, w.r.t. κ̂∗

l and κ̂∗. In addition, the timing graphs of Fig. 4−(c) highlight
the interest of considering K−means clustering to get an efficient and accurate
local estimator. To better understand the local and global length properties of
maximal segments, we display on Fig 5 a scale-space view of curvature estimation
on the classical “flower” shape and the ball radii respectively used by κ̂∗, κ̂∗

l

and κ̂∗
K=5.

Parameter-Free and Multigrid Convergent Digital Curvature Estimators 173

Fig. 7. (Left) Mean curvature mapped on “bunny” at different resolution using Ĥ∗
l

(yellow color is the highest curvature, blue the lowest). (Right) First principal direction
on “bunny” using k̂∗

l estimator.

Fig. 6 presents 3D result on parameter-free curvature tensor estimators Ĥ∗

and κ̂i∗. We also observe the expected O(h
1
3) convergence speed. Similarly to

2D, local estimators (with or without K-means clustering) on Fig. 6 (second
column) show good multigrid convergence.

6 Conclusion

In this article, we have proposed variants of integral invariant estimator to ob-
tain parameter-free curvature estimators in 2D and 3D. In dimension 2, we have
demonstrated that the parameter-free curvature estimator is also multigrid con-
vergent. As far as we know, this is the first parameter-free curvature estimator
with this multigrid property. In dimension 3, we have defined several parameter-
free curvature tensor estimators with very good multigrid convergence behaviors.
However, convergence proofs rely on an interesting open conjecture on the length
distribution of maximal segment in object slices.

References

1. DGtal: Digital geometry tools and algorithms library, http://dgtal.org
2. Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Integral based curvature estimators in

digital geometry. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI
2013. LNCS, vol. 7749, pp. 215–227. Springer, Heidelberg (2013)

3. Coeurjolly, D., Lachaud, J.O., Levallois, J.: Multigrid Convergent Principal Curva-
ture Estimators in Digital Geometry. Computer Vision and Image Understanding
(June 2014), http://liris.cnrs.fr/publis/?id=6625

4. Esbelin, H.A., Malgouyres, R., Cartade, C.: Convergence of binomial-based
derivative estimation for 2 noisy discretized curves. Theoretical Computer Sci-
ence 412(36), 4805–4813 (2011)

5. Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by
approximate global optimization. Pattern Recognition 42(10), 2265–2278 (2009)

6. Lachaud, J.O.: Espaces non-euclidiens et analyse d’image: modèles déformables
riemanniens et discrets, topologie et géométrie discrète. Habilitation à diriger des
recherches, Université Bordeaux 1, Talence, France (2006)

http://dgtal.org
http://liris.cnrs.fr/publis/?id=6625

174 J. Levallois, D. Coeurjolly, and J.-O. Lachaud

7. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tan-
gent estimation on digital contours. Image and Vision Computing 25(10), 1572–
1587 (2007)

8. Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives es-
timation from noisy discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L.,
Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg
(2008)

9. Pottmann, H., Wallner, J., Huang, Q., Yang, Y.: Integral invariants for robust
geometry processing. Computer Aided Geometric Design 26(1), 37–60 (2009)

10. Pottmann, H., Wallner, J., Yang, Y., Lai, Y., Hu, S.: Principal curvatures from the
integral invariant viewpoint. Computer Aided Geometric Design 24(8-9), 428–442
(2007)

11. Provot, L., Gérard, Y.: Estimation of the derivatives of a digital function with
a convergent bounded error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret,
B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg
(2011)

12. Roussillon, T., Lachaud, J.-O.: Accurate curvature estimation along digital con-
tours with maximal digital circular arcs. In: Aggarwal, J.K., Barneva, R.P.,
Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS,
vol. 6636, pp. 43–55. Springer, Heidelberg (2011)

13. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments
and convergence of discrete geometric estimators. Journal of Mathematical Image
and Vision 27(2), 471–502 (2007)

A Proofs

A.1 Proof of Proposition 1

Proof. Since no ambiguity may arise, we remove (x) from all notations. Please
also consider Fig. 8 for illustrations. First of all, if one of the πx, πy and πz is
the tangent plane at x, then the two other planes are normal planes to ∂X at x
(they contains the normal n). In this case, Euler’s theorem tells that any curve
defined by the intersection of a normal plane and the surface ∂X has a curvature

πy
πy

∂X

x
x

γκ2

γκ1

γ

γ

χ

πn×t

n
t(0)

t(0)

u

x
y

z

Fig. 8. Notations for Proposition 1

Parameter-Free and Multigrid Convergent Digital Curvature Estimators 175

κ equals to κ1 cos
2 θ + κ2 sin

2 θ for some angle θ. It is then immediate that |κ|
lies in-between [min(|κ1|, |κ2|),max(|κ1|, |κ2|)], and is therefore bounded by K
on these two planes.

Otherwise, for each e ∈ {x,y, z}, the set ∂Xe is locally a 3D curve that
crosses x on the surface ∂X . First remark that there is at most one e ∈ {x,y, z}
such that n · e ≥

√
2
2 . Indeed, let n = ax+ by+ cz and for instance n ·x ≥

√
2
2 ,

then b2 + c2 = 1− a2 = 1− (n ·x)2 < 1
2 . Hence both b = n · y and c = n · z are

smaller than
√
2
2 . We only consider a vector e ∈ {x,y, z} such that n · e ≤

√
2
2 .

Let χ be the curve defined by the intersection of ∂X and the plane πn×t

containing n and the tangent t at x of ∂Xe. From Meusnier’s theorem, we have
the following relationship between the curvature of κχ of χ and the curvature
κ of ∂Xe at x: κχ = κ · cosα, α being the angle between planes πe and πn×t.

Since cosα = n · e and
√
2
2 ≤ cosα ≤ 1, we finally have:

|κχ| ≤ |κ| ≤
√
2|κχ|. (16)

Again, since |κχ| lies in-between [min(|κ1|, |κ2|),max(|κ1|, |κ2|)], it is bounded
by K and we have the final result.

A.2 Proof of Uniform Multigrid Convergence of κ̂1∗ and κ̂2∗

Proof. As in 2D, we need to check the convergence of both error bounds of ρ′.
Assuming that Conjecture 1 is true, we have: If hρ′(Z) = Θ(h

1
3), we are in the

hypothesis of Theorem 1, the error term is in O(h
1
3). If hρ′(Z) = Θ(h

1
3 log2(1h)),

we can decompose the error term using Equation (28) of [3] (setting μi = 1 in
Eq.(28)):

| 1
h
κ̂1∗(Z)− κ1(X, x)| = |κ̂1

R(Dh(X), x̂, h)− κ1(X, x)|

≤ O(R) +O(
h

R2
) (17)

≤ O(h
1
3 log2(

1

h
)) +O(

h
1
3

log4(1h)
) (18)

The upper bound error term is O(h
1
3 log2(1h)). Proof for κ̂2∗ follows simi-

larly. Finally, Θ(h
1
3) ≤ hρ′ ≤ Θ(h

1
3 log2(1h)) implies | 1h κ̂i∗(Z) − κi(X, x)| ≤

O(h
1
3 log2(1h)). �

Freeman Digitization and Tangent Word

Based Estimators

Thierry Monteil

CNRS – Université Montpellier 2, France
http://www.lirmm.fr/~monteil

Abstract. This paper deals with the digitization of smooth or regular
curves (beyond algebraic, analytic or locally convex ones). The first part
explains why the Freeman square box quantization is not well-defined for
such curves, and discuss possible workarounds to deal with them. In the
second part, we prove that first-order differential estimators (tangent,
normal, length) based on tangent words are multi-grid convergent, for
any (C1) regular curve, without assuming any form of convexity.

Keywords: Freeman digitization, symbolic coding, cutting sequence,
smooth curve, tangent word, tangent estimation, multigrid convergence.

1 Freeman Square Box Quantization ...

In his survey paper [5], Freeman defines the square box quantization of tracings
as follows: given a continuous curve γ : [0, 1] → R2 and a (square) grid G, we
associate the (ordered) sequence of pixels that are intersected by γ.

There is a slight ambiguity when the curve crosses the grid since an edge
belongs to two pixels and a vertex belongs to four pixels. Freeman solves this
ambiguity by breaking the rotational symmetry and defines half-open pixels in a
way that the pixels form a partition of the plane R2. The pixel (m,n) is defined
as the set {(x, y) ∈ R2 | (m − 1/2)h < x ≤ (m + 1/2)h and (n − 1/2)h < y ≤
(n+1/2)h} (here, h denotes the mesh of the grid, m and n are integers, Freeman
does not consider any non-integer shift and places (0, 0) at the center of some
pixel). A vertex now belongs to its lower left pixel, a horizontal edge belongs to
its bottom pixel and a vertical edge belongs to its left pixel (see Figure 1).

Fig. 1. Two ambiguous discretizations of curves, solved by redefining pixel shape

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 176–189, 2014.
c© Springer International Publishing Switzerland 2014

http://www.lirmm.fr/~monteil

Freeman Digitization and Tangent Word Based Estimators 177

Then, noticing that two consecutive pixels in the sequence are “essentially” 1-
connected (they share an edge, unless the curves goes to the bottom left vertex
of a pixel), Freeman codes the sequence of pixels by a word on the alphabet
{0, 1, 2, 3}, depending on whether a pixel is located right, above, left, or below
the previous one. We denote by F (γ,G) the Freeman chain code of the square
box quantization of the curve γ through the grid G (see Figure 2).

h

G

γ

Fig. 2. F (γ,G) = 00000101010101001000

The hypothesis about the regularity of the curve is very weak (the curve is
only assumed to be continuous), and allows a lot of pathological constructions
such as plane filling Peano curves that will prevent Freeman quantization to be
well defined.

There is a huge literature about the estimation of differential operators ap-
plied to a smooth curve through the knowledge of its Freeman discretizations at
arbitrary small scales. Most of the proven methods require, in addition to some
level of regularity (γ should be C2 or C3), the curve to be strictly convex. The
aim of this paper, in the sequel of [11], is to understand Freeman discretization
of smooth or regular curves, beyond convex of analytic ones.

Let I be the unit interval [0, 1]. A curve γ : I → R2 is said to be regular if it
is C1 and if ||γ′(t)|| > 0 for any t ∈ I. It is said to be smooth if it is moreover of
class C∞.

2 ... Is Not Well Defined for Smooth Curves

Another problem appears here, which is not addressed in Freeman’s survey:
the ”sequence” of pixels may not be well defined. Let us construct a typical

example of bad behaviour. The map s =

⎛⎝R→ R

x 	→ 0 if x ≤ 0

x 	→ e−1/x2

otherwise

⎞⎠ is smooth

178 T. Monteil

and positive on positive numbers. Hence, the bell map defined by b(x) = s(x −
1/3)s(2/3−x) is smooth and positive on (1/3, 2/3). Now let us define recursively
a sequence of maps bn by b0 = b and

bn+1 =

⎛⎜⎜⎝
R→ R

x 	→ bn(3x) if 0 < x < 1/3
x 	→ bn(3(x− 2/3)) if 2/3 < x < 1
x 	→ 0 otherwise

⎞⎟⎟⎠
Let (an) be a sequence of positive numbers such that, for any n and any k ≤ n,

||anb(k)n ||∞ ≤ 2−n. Since the metric space C∞(I,R) endowed with the distance

defined by d(f, g) =
∑

n≥0 2
−min(1,supt∈I |f(n)(t)−g(n)(t)|) is complete, the map

φ =
∑

n≥0 anbn is well defined and smooth. Its zeroes are located on the Cantor
set (see Figure 3).

Fig. 3. The curve defined as the graph of φ

The Freeman digitization of the smooth curve defined by γ(t) = (t, φ(t)) is not
well defined with respect to the unit grid (or any grid containing the horizontal
axis): since the Cantor set has uncountably many connected components, we
created an uncountable sequence of pixels ! But this construction is sensitive to
the choice that Freeman did along the edges. For example, replacing γ = (x, y)
by (x,−y) leads to a single pixel, and it can be opposed that such intersections
with the horizontal edge are irrelevant and could be considered as trivial.

To deal with such an objection, let us assume that vertices and edges do
not belong to any pixel, that is, a pixel is selected only when the curve pass
through its interior. Unfortunately, this is not sufficient to solve our problem: it
is possible to construct an oscillating smooth curve that intersects the interior
of the pixels infinitely many times. For this purpose, let us define the smooth
map ψ =

∑
n≥0(−1)nanbn (see Figure 4).

The Freeman digitization of the smooth curve defined by η(t) = (t, ψ(t)) is not
well defined with respect to the unit grid (or any grid containing the horizontal

Freeman Digitization and Tangent Word Based Estimators 179

Fig. 4. The curve defined as the graph of ψ

axis): η passes through the interior of different pixels infinitely many times, and
no two of them are consecutive (letting the chain coding from the sequence of
pixels hard to define)!

Hence, we have a serious problem with the coding of smooth curves that
cannot be fixed with a convention on choosing how to code a curve that crosses
the vertex of the grid or turns around along an edge. Let us discuss some possible
workarounds, leading to different research directions.

3 Some Workarounds

3.1 Restrict

A first possibility to deal with such situations is to forbid them. For example, in
[6], the authors impose that the curve “passes only once between two neighboring
nodes of the grid”. Such a condition impacts both the curve and the grid.

Another possibility is to restrict to a class of curves that can not present such
oscillations. This is the case for analytic curves. A curve γ = (x, y) : [0, 1]→ R2

is said to be analytic if on a neighbourhood of any time t0 ∈ [0, 1], its coordinates
x(t) and y(t) can be written as

∑
n≥0 an(t− t0)

n. If such an analytic curve meets
an (say) horizontal edge infinitely many times, then x(t) takes the same value
for infinitely many t ∈ [0, 1]: such an accumulation forces x(t) to be constant
and the curve is a horizontal straight line.

A similar representation of curves by words was introduced by dynamicists
and are called cutting sequences. They have been introduced by Hadamard [7],
and are used in the symbolic coding of geodesics in hyperbolic or (piecewise)
euclidean spaces. It should be noticed that the problems we encountered are
avoided for a similar reason: geodesics are locally straight (while their long-range
behaviour may be intricate).

180 T. Monteil

3.2 Extend

Conversely, we can face the problem and extend Freeman chain code to gener-
alized sequences indexed by linear orders (instead of sequences on finite linear
orders (words)).

Let us describe the possible orders appearing in a generalized Freeman chain
code. Such orders are countable. Indeed, since we count intersections with inte-
riors of pixels and since the curve is assumed to be continuous, the set of times t
that γ spends in a pixel has non-empty interior. Since the real line is separable,
there are only countably many non-trivial pixel intersections in the sequence.
There are no other obstructions on the order type of the generalized sequence
of pixels.

Theorem 1. Any countable linear order can be obtained from the Freeman
square box quantization of a smooth curve.

Proof. The complement of the Cantor set in I (around which we built the map
ψ) is a disjoint union of open intervals. This countable set (which we denote by
I) inherits from the linear order of I (given two distinct intervals A = (a, b) and
B = (c, d) in I, either a < b < c < d or c < d < a < b). Since it is dense (for any
A < B in I, there exists a C ∈ I such that A < C < B), and has no maximum
nor minimum, it is (order) isomorphic to the chain Q of rationals. The chain of
rationals has the following universal property [2]: any countable linear order is
isomorphic to a subset of the chain of the rationals.

Given a countable linear order L, we can see it as a subset of I. Unfortunately,
it is not sufficient to keep only the bells that are defined on the elements of L.
Indeed, some consecutive elements may appear in L, and the related bells may
not have opposite signs (see Figure 5).

Fig. 5. Two consecutive bells in the same direction select only one pixel

So, we have to ensure local sign alternation for consecutive elements of L. Let
∼ be the binary relation defined on L by A ∼ B if, and only if, the set {X ∈ L |
A ≤ X ≤ B or B ≤ X ≤ A} is finite. This defines an equivalence relation whose
classes are either (order) isomorphic to a finite linear order {0, . . . , n−1}, to the

Freeman Digitization and Tangent Word Based Estimators 181

chain N of non-negative integers, to the chain Z\N of negative integers, or to the
chain Z of integers, depending on the existence of a minimum or a maximum.
Two consecutive elements of L belong to the same class.

For each class C ⊆ L, we can define an oscillating smooth map χC : I → R

whose graph has a Freeman sequence that is order isomorphic to C. Let us
do it for the most complex case where C is isomorphic to Z. The sequence bn =
(1+n/(1+|n|))/2 is an increasing sequence from Z to I. If (an)n∈Z is a sufficiently
fast decreasing sequence of positive real numbers, the map defined by χC(x) =∑

n∈Z(−1)nans(x− bn)s(bn+1 − x) is convenient (see Figure 6).

Fig. 6. An oscillating smooth map whose Freeman sequence is order-isomorphic to Z

Now, since equivalent classes form intervals in L, the quotient J = L/ ∼
inherits a countable linear order from the one of L. We can see it as a subset
of I. For each element C of J , which is identified with an open interval (a, b)
of I, we can define the smooth map λC by λC(x) = χC((x − a)/(b − a)), which
vanishes out of (a, b), and whose Freeman coding is isomorphic to C.

Again, we can sum the family of maps (λC)C∈J in a way that it converges in
C∞(I,R). We constructed a smooth map I → R whose graph is a curve whose
Freeman sequence is order isomorphic to L.
�

3.3 Blur

The mesh of the grid somehow corresponds to the scale of precision of the opti-
cal device. But the constructions above play with the sharpness of the interpixel
edges, as if the optical device is infinitely precise there. A possible workaround
is to consider that the optical device does not have an infinite precision between
consecutive cells. This corresponds to thicken the width of both edges and ver-
tices between pixels in the mathematical model (see Figure 7). Hence, a regular

182 T. Monteil

curve can not oscillate between two plain pixels anymore. The blurred edge be-
longs to both pixels nondeterministically: if a regular curve oscillates between a
pixel and a blurred edge, the device may detect it or not, as if the edge belongs
to this plain pixel. If the curve passes from a plain pixel to another plain pixel,
or if the curve threads its way through blurred edges, the device must detect it.
Among all possible outputs, one is a finite word.

Fig. 7. Thicken the interpixel vertices and edges (but keep the long-range information)

Multigrid convergence (corresponding to using better and better optical de-
vices) will therefore have to deal with two parameters (corresponding to the
sources of imprecision) : the mesh of the grid and the width of the blurred in-
terpixel zone. Their ratio may not be constant along the increase of precision,
and depending on the speed in which the width becomes small compared to the
mesh of the grid, some smoothed fractal details (as defined before) may appear
or not.

3.4 Look Almost Everywhere

The set of grids of given mesh h > 0, which are translate to each other, can be
identified with the torus R2/hZ2 of area h2 (corresponding to possible shifts of
the grid). It therefore inherits a natural finite Lebesgue measure.

The aim of this workaround is to prove that bad phenomena are very rare
with respect to this measure.

Theorem 2. Let γ be a regular curve and h be a positive mesh. For almost every
grid G of mesh h, γ does not cross any vertex of G and intersects the edges of
G transversally. For such generic grids G, the Freeman chain code F (γ,G) is a
well defined finite word.

Proof. Since the image of a regular curve has Lebesgue measure zero in R2, and
since the set of grid vertices is countable, we have that for almost every grid G
with mesh h, the curve γ does not hit a vertex of G.

Freeman Digitization and Tangent Word Based Estimators 183

Sard’s lemma asserts that given a Ck map f : A ⊆ Rm → Rn (for k ≥
max(1,m − n + 1)), the image of critical points f({t ∈ A | rank(Difft(f)) <
n}) has (Lebesgue) measure zero in Rn. Let us apply this lemma to the first
coordinate x : I → R of γ. The set {X ∈ R | (∃t ∈ I)(X = x(t) and x′(t) = 0)}
has Lebesgue measure zero. By countable union, the set {κ ∈ [0, h] | (∃k ∈
Z)(∃t ∈ I)(x(t) = k + κ and x′(t) = 0)} also has measure zero. The same holds
for the second coordinate y, hence the set {(κ, λ) ∈ [0, h]2 | ((∃k ∈ Z)(∃t ∈
I)(x(t) = k + κ and x′(t) = 0)) or (∃t ∈ I)(y(t) = l + λ and y′(t) = 0)) has
measure zero. This set corresponds to the set of grids that are not transversally
intersected by γ.

Now, let G be a generic grid. At each time t when γ intersects G, the inter-
section is transverse: there is an open interval O containing t such that for any
t′ �= t in O, γ(t′) /∈ G. Moreover, γ(O ∩ [0, t)) and γ(O ∩ (t, 1]) are included in
two distinct adjacent connected components of R2 \G (pixel interiors). Since the
set γ−1(G) is a closed subset of the compact interval I and is made of isolated
points, it is finite. Hence, there is a finite set of times ≤ 0 < t0 < · · · < tn ≤ 1
such that for each i, γ(ti) is on the grid and γ((ti−1, ti)) and γ((ti, ti+1)) are
included in two distinct edge-adjacent pixel interiors.
�

That said, note that the set of grids that are not transversally intersected
by γ may not be countable (an antiderivative f of φ admits uncountably many
singular values, hence the curve defined by γ(t) = (t, f(t)) intersects uncountably
many horizontal lines non-transversally).

With this workaround, by looking modulo almost everywhere, the arbitrary
choices made by Freeman in the boundaries of the pixels become irrelevant.
Hence, we get a more symmetric and intrinsic discretization scheme that does
not have to specify non-canonical choices (since those happen only on a set of
zero measure).

This workaround has another big advantage: the action of SL(2,Z) on R2 that
appears in the continued fractions algorithm is central in the study of discrete
straight segments (and tangent words), and inherent to the lattice structure of
the grid. It sends lines with rational slopes to the vertical and horizontal axes.
So, applying such a map to a well-coded curve that oscillates around a rational
slope may lead to an ill-coded one. By looking almost everywhere, we avoid such
a situation since the set of rational slopes is countable.

This workaround was the one we used in [11] to define tangent words and we
will stick to that framework for the remaining of the paper.

4 First-Order Differential Operators via Tangent Words

Given a regular curve, the limit object we get while zooming into a point is a
straight line. Freeman chain codes of straight segments are known to be exactly
the balanced words. Hence, it seems natural to decompose a discretized curve
into maximal balanced words in order to approach the tangents of the real curve,
a strategy which has been widely studied. But this is not what the multigrid
discretization scheme does: it discretizes a curve, at various scales. Tangent words

184 T. Monteil

Smooth curve Straight line
zoom in

Discretized curves

discretizations

. . . balanced word

discretization

Tangent word
zoom in

�=

Fig. 8. Not even a noncommutative diagram

are the finite words that appear in the coding of a smooth or regular curve at
arbitrary small scale.

More formally, a finite word u is said to be tangent if there exists a regular
curve γ : [0, 1] → R2 and a sequence of grids (Gn) whose meshes converge to
zero, such that u is a factor of the Freeman chain code F (γ,Gn) of the curve γ
through the grid Gn for any integer n.

Theorem 3. Let γ : [0, 1] → R2 be a regular curve. For any sequence (Gn) of
grids whose meshes converge to zero, the minimal length of a maximal tangent
word in F (γ,Gn) goes to ∞ with n.

Proof. Assume by contradiction that there exists a sequence of grids (Gn) whose
mesh converges to zero such that there exists an integer L such that, for any
N , there exists n ≥ N and a maximal tangent word w(n) in W (n) = F (γ,Gn)
whose length is less than L. Up to taking a subsequence (there are finitely many
words of length ≤ L), we can assume that there exists a finite word w that is a
maximal tangent word of W (n), for any n: w = W (n)in...jn for some indices in,
jn and neither W (n)in−1...jn nor w = W (n)in...jn+1 is tangent (when defined).
Since γ is regular, it is not trivial, hence it has positive length. In particular,
the length |W (n)| of W (n) goes to infinity with n. Hence, for n large enough,
in > 0 or jn < |W (n)| − 1. Up to symmetry and up to taking a subsequence,
we can assume that jn < |W (n)| − 1 for all n. Now, the letter W (n)jn+1 takes
at most four values: one of them, which we call a appears infinitely often: wa is
therefore a tangent word, that extends w in W (n) for infinitely many n, which
contradicts the maximality of w.
�

The simplicity of this result (a pigeonhole argument) should not be surprising:
the definition of tangents words contains its adaptation to the behaviour of
regular curves. What is lucky is that tangent words have a simple combinatorial
characterization and can be recognized in linear time [11], so they are ready to
serve as drop-in replacement where balanced words are not optimal.

Now, this feature allows us to easily ensure multigrid convergence of first-
order differential operators by replacing decomposition of the curve into maximal

Freeman Digitization and Tangent Word Based Estimators 185

balanced words by a decomposition into maximal tangent words. Due to a lack
of space, the proofs of the following results are postponed in the appendix.

4.1 Length Estimation

Given a regular curve γ, and a sequence of grids (Gn) whose meshes hn go
to zero, we can estimate its length as follows: for each n, greedily decompose
F (γ,Gn) into maximal (to the left) tangent words F (γ,Gn) = wn

0 . . . wn
kn−1,

and compute the length of the associated polygonal line:

ln = hn

kn−1∑
i=0

√
(|wn

i |0 − |wn
i |2)2 + (|wn

i |1 − |wn
i |3)2

The sequence ln converges to the length of γ when n goes to ∞.

4.2 Tangent Estimation

Let us first recall the definition of the directions of a tangent word u (see the
definition of slope in [8]). If u is a tangent word, there exists a regular curve
γ : I → R2 and a sequence (Gn) of grids whose meshes go to 0 and such that
for all n, u is a factor of F (γ,Gn). In particular, for any integer n, there exist
two sequences (t1n) and (t2n) in I such that u is the Freeman code of γ|]t1n,t2n[with
respect to the grid Gn. Up to taking a subsequence (the segment I is compact),
we can assume that (t1n) and (t2n) both converge to some t ∈ I: we say that the
direction of γ′(t) is a direction of u. The set of directions of u corresponds to
all possible choices on the curve γ, the sequence of grids (Gn) and sequences of
times (t1n) and (t2n). The set of directions of a tangent words can be computed
from the continued fraction algorithm introduced to recognize it. The set of
directions of a balanced word is a non-trivial interval, while the set of directions
of a non-balanced tangent words is a singleton.

Now, we can obtain a tangent (or normal) estimator as follows: given a pixel
of a discretization of a regular curve γ, we can choose any maximal tangent word
that contains this pixel and take any of its directions as an estimation.

As for length estimation, this leads to uniformly multigrid convergent esti-
mators. Convex combinations of estimations (corresponding to λ-MST [10]) also
work. While existing convergence results for balanced word based estimators
require the curve to be C3 and piecewise strictly convex, the use of maximal
tangent words in place of balanced words only require the curve to be C1 (with
the same algorithms).

4.3 Maximal Symmetric Tangent Words

Feschet and Tougne [4] defined a tangent estimator based on maximal symmetric
balanced words around a given pixel (symmetric in the sense that the position of
the pixel is in the middle of the word). Since, even under very strong hypotheses,

186 T. Monteil

the length of such words does not converges to∞ around some pixels, [9] proved
that it is not a multigrid convergent tangent estimator.

But, the same argument as in Theorem 3 works for maximal symmetric tan-
gent words: any word w can be extended simultaneously in both directions as
awb for (a, b) ∈ {0, 1, 2, 3}2 in at most 16 ways. Since 16 is a finite number, the
same pigeonhole argument applies. Hence, apart from the ends of the word (a
case which can be dealt with by considering closed curves and circular words,
or by simply looking away from the ends), the length of the smallest maximal
tangent word which is symmetric around any letter converges to ∞ when the
mesh of the grid goes to zero, letting the estimator to be uniformly convergent.

5 Why Does Convexity Matter for Maximal Segment
Based Estimators?

A more detailed description of the tangent convex words was provided in [8]. In
particular, we should notice that any tangent convex word is the concatenation
of two balanced words, which should not impact the estimations so much. In
particular, while the smallest length of maximal balanced words is not the same
as for maximal tangent words, their average lengths are similar.

However, this is not the case for general tangent words, whose minimal fac-
torization into balanced words can have arbitrary many factors, and even linear
with respect to the length of the tangent word (think of the tangent words
(0011)n).

This difference between (piecewise) convex curves and more general smooth
curves is highlighted by this counting argument [12]: the set of tangent convex
words of length n has size Θ(n3), which is the same as for balanced words,
whereas the set of smooth tangent words of length n has exponential size.

Those facts tend to indicate that small oscillations are the main reason for
maximal segment-based estimators not to work for general smooth curves.

Fig. 9. Smallest maximal balanced (red) and tangent (blue) word in the coding of
circles (abscissa=inverse of the mesh, ordinate = length of the word (in a loglog scale))

Freeman Digitization and Tangent Word Based Estimators 187

6 Conclusion

We tried to explain that the problems arising in the digitization of regular curves
are related to soften fractal oscillations. We saw that the use of tangent words in
place of balanced words has the effect of smoothing those irregularities, especially
around points whose curvature vanishes. They are very natural objects, since
their definition is adapted to the framework of regular (or smooth) curves, and
qualitative convergence properties come for free. Actually, quantitative results
on the speed of convergence can also be proven: if γ : [0, 1]→ R2 is any regular
C2 curve and (Gn) is a sequence of grids whose meshes hn converge to zero,

the minimal length of a maximal tangent word in F (γ,Gn) belongs to Ω(h
− 1

3
n),

a result which requires much weaker hypotheses than in [1] and [3].

References

1. Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Pro-
ceedings of the Seventh Annual Symposium on Computational Geometry, SCG
1991, pp. 162–165. ACM, New York (1991)

2. Cantor, G.: Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische
Annalen 46(4), 481–512 (1895)

3. de Vieilleville, F., Lachaud, J.-O., Feschet, F.: Convex digital polygons, maximal
digital straight segments and convergence of discrete geometric estimators. J. Math.
Imaging Vision 27(2), 139–156 (2007)

4. Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete
curve: Application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L.
(eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)

5. Freeman, H.: Computer processing of line-drawing images. Computing Surveys 6,
57–97 (1974)

6. Groen, F.C.A., Verbeek, P.W.: Freeman-code probabilities of object boundary
quantized contours. Computer Graphics and Image Processing 7(3), 391–402 (1978)

7. Hadamard, J.: Les surfaces à courbures opposées et leurs lignes géodésiques. J.
Math. Pures et Appl. 4, 27–73 (1898)

8. Hoarau, A., Monteil, T.: Persistent patterns in integer discrete circles. In: Gonzalez-
Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp.
35–46. Springer, Heidelberg (2013)

9. Lachaud, J.-O.: On the convergence of some local geometric estimators on digitized
curves. Research Report, 1347-05 (2005)

10. Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tan-
gent estimation on digital contours. Image Vision Comput. 25(10), 1572–1587
(2007)

11. Monteil, T.: Another definition for digital tangents. In: Debled-Rennesson, I.,
Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp.
95–103. Springer, Heidelberg (2011)

12. Monteil, T.: The complexity of tangent words. In: WORDS. Electronic Proceedings
in Theoretical Computer Science, vol. 63, pp. 152–157 (2011)

188 T. Monteil

7 Appendix: Postponed Proofs

7.1 Length Estimation (Section 4.1)

If w is a finite word over the alphabet {0, 1, 2, 3}, let us denote
||w|| =

√
(|w|0 − |w|2)2 + (|w|1 − |w|3)2.

Since the curve γ is of class C1, it is rectifiable and its length can be approxi-
mated as follows: if ({0 = tn0 ≤ tn1 ≤ · · · ≤ tnkn−1 ≤ tnkn

= 1})n∈N is a sequence of
subdivisions of the unit interval such that limn→∞ max0≤i≤kn−1 |tni+1 − tni | = 0,
then the length of γ is given by

l(γ) = lim
n→∞

kn−1∑
i=0

||γ(tni+1)− γ(tni)||

Given a grid Gn and a decomposition of F (γ,Gn) into maximal tangent words
wn

0 . . . wn
kn−1, each word wn

i corresponds to a sequence sni = (pi,n0 , . . . , pi,n|wn
i |
) of

|wn
i |+ 1 pixels of Gn, where the last pixel of sni is the first pixel of sni+1.
The value

ln = hn

kn−1∑
i=0

||wn
i ||

corresponds to the length of the polygonal line (xn
0 , . . . , x

n
kn
), where xn

i is the

center of the pixel pni := pi−1,n
|wn

i−1|
= pi,n0 .

We can pick, for any i, a time tni ∈ I where γ(tni) pass through the pixel pni .
Since for any i, ||xn

i − γ(tni)|| ≤ hn, we have∣∣∣∣∣
kn−1∑
i=0

||γ(tni+1)− γ(tni)|| − hn

kn−1∑
i=0

||wn
i ||
∣∣∣∣∣ ≤ 2hnkn

Theorem 3 asserts that the minimum length of the wn
i (for 0 < i < kn − 1)

goes to infinity, hence 2hnkn goes to zero (the error we made in the extremities
of the segments become negligible with respect to their length).

We are almost done, except that max0≤i≤kn−1 |tni+1− tni | does not necessarily
converge to zero when n goes to infinity (some wn

i can be very long compared
to 1/hn). To achieve this, let us decompose the long maximal tangent words
into smaller ones (F (γ,Gn) = w̄n

0 . . . w̄n
k̄n−1

) in a way that their minimal length

(except on the boundaries) still goes to infinity, but such that the maximal value
of hn|w̄n

i | goes to zero. Hence, constructing the t̄ni accordingly, we now have

l(γ) = lim
n→∞

k̄n−1∑
i=0

||γ(t̄ni+1)− γ(t̄ni)|| = lim
n→∞

hn

k̄n−1∑
i=0

||w̄n
i ||

Now, tangent words enjoy some balance property (they stay close to a seg-
ment): if w is a tangent word that is written as a concatenation of words

w = w0 . . . wl−1, then
∣∣∣||w|| −∑l−1

i=0 ||wi||
∣∣∣ ≤ 4l. This concludes the proof since

it implies limn→∞

∣∣∣hn

∑k̄n−1
i=0 ||w̄n

i || − hn

∑kn−1
i=0 ||wn

i ||
∣∣∣ = 0.
�

Freeman Digitization and Tangent Word Based Estimators 189

7.2 Tangent Estimation (Section 4.2)

The structure of this proof is similar as above. Let t be a point in I and (Gn)
be a sequence of grids whose meshes go to zero. For any n, let un be a maximal
tangent factor of F (γ,Gn) containing γ(t), in the sense that there exists an
interval Iun ⊆ I containing t such that F (γ�Iun

, Gn) = un.
The first (resp. last) letter of un corresponds to an edge en (resp. e′n) of Gn.

The set D(un) of directions of un is included in the set of directions of vectors
b−a for (a, b) ∈ en×e′n, which we denote by D̄(un). Since γ crosses e and e′, the
mean value theorem implies there exists a point tn in Iun such that the direction
of γ′(tn) belongs to D̄(un).

Theorem 3 asserts that the length of un goes to infinity, hence the distance
between en and e′n goes to infinity and the diameter of D̄(un) converges to zero
(to be precise, we should deal separately with the special case along the axes
where γ oscillates around a set of parallel edges).

Now, as in the previous proof, if the length of un grows too fast, it is possible
that tn does not converge to the point t. Again, we can shorten un to a word
u′
n that still contains t, whose length still goes to infinity, but whose length is

negligible with respect to the inverse of the mesh of Gn. This leads to an interval
Iu′

n
, a point t′n in Iu′

n
and two sets of slopes D(u′

n) and D̄(u′
n) as before, with

the additional property that t′n converges to t. Even if D̄(u′
n) is not necessarily

included in D̄(un), the word u′
n is also tangent and D(u′

n) is included in D(un)
(which is included in D̄(un)). Since the diameter of D̄(un) goes to zero, and con-
tains γ′(t′n) which converges to γ′(t), any choice of direction in D̄(un) converges
to γ′(t).
�

Determination of Length and Width

of a Line-Segment by Using a Hough Transform

Zezhong Xu1,2, Bok-Suk Shin1, and Reinhard Klette1

1 Department of Computer Science, The University of Auckland,
Auckland, New Zealand

2 College of Computer Information Engineering, Changzhou Institute of Technology,
Changzhou, Jiangsu, China

zezhongx@gmail.com, {b.shin,r.klette}@auckland.ac.nz

Abstract. The standard Hough transform does not provide length and
width of a line-segment detected in an image; it just detects the nor-
mal parameters of the line. We present a novel method for determining
also length and width of a line segment by using the Hough transform.
Our method uses statistical analysis of voting cells around a peak in
the Hough space. In image space, the voting cells and voting values are
analysed. The functional relationship between voting variance and voting
angle is deduced. We approximate this relationship by a quadratic poly-
nomial curve. In Hough space, the statistical variances of columns around
a peak are computed and used to fit a quadratic polynomial function.
The length and width of a line segment are determined simultaneously by
resolving the equations generated by comparing the corresponding coef-
ficients of two functions. We tested and verified the proposed method on
simulated and real-world images. Obtained experimental results demon-
strate the accuracy of our novel method for determining length and width
of detected line segments.

Keywords: Hough transform, length, width, curve fitting.

1 Introduction

Line segments are important when analyzing geometric shapes in images for
machine vision applications; see, for example, [16]. In particular this problem
also involves a need to extract parameters of line segments in images, such as
width and length.

A class of methods for line detection applies least-square fitting; see, for exam-
ple, [15,17,19,22]. These methods are in general sensitive to outliers; they require
that feature points are clustered.

The Hough transform (HT) [1,8,11,23,24] defines an alternative class of meth-
ods. The basic HT does not provide length or width of a detected line segment;
it only provides the two normal parameters d and α of a line; see Eq. (1) below
for those two parameters. This paper contributes to the HT subject.

In principle, the HT is able to detect the length of a line segment. After having
the direction of a set of approximately collinear pixels detected, we can project

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 190–201, 2014.
c© Springer International Publishing Switzerland 2014

Length and Width of a Line-Segment 191

the estimated collinear image features on the x- or y-axis in image space; see,
for example, [5,18,25]; the length of the line-segment is then determined as the
Euclidean distance between the estimated two endpoints.

There are also HT methods which use the butterfly distribution in the Hough
space, as identified in [10]. These butterfly-techniques have origins in methods
proposed earlier. Akhtar [2] calculates the length of a detected line segment
based on the spreading of voting cells in a column around the peak. Ioannou [12]
estimates the line-segment length by analyzing the total vote values of cells in
the peak column. In [3,4,13,14], the endpoints are detected by resolving simulta-
neously equations obtained by the first and the last non-zero-value voting cells
in any two columns around the peak; the length is then again calculated as the
Euclidean distance between the estimated two endpoints.

These methods detect the length besides the standard HT output of nor-
mal parameters of a detected line segment. But, they do not contribute to the
calculation of the width of the line segment.

Du et al. [6,7] consider the complete parameter description of a line segment,
defined by direction, length, width, and position. Here, length is obtained by
measuring the vertical width of a butterfly wing. The width of a line segment is
computed by comparing the actual voting value and theoretical voting values in
a specific column. Reliable length and width are obtained using a Mean Square
Error (MSE) estimation by considering multiple columns. This method is af-
fected by image noise. The detection accuracy relies on a very fine quantization
of the Hough space.

This paper proposes an HT method for obtaining the length and width of
a detected line segment. The voting variance is analyzed in image space, and
a 2nd order functional relationship is deduced. In Hough space, the statistical
variances of columns around a peak are computed and used to fit a quadratic
polynomial function. Length and width of a line segment are determined by
resolving the equations generated by comparing the corresponding coefficients
of two functions.

The rest of the paper is organized as follows. Section 2 analysis the voting
variance in image space. Section 3 introduces the voting distribution in Hough
space, and calculates the length and width of a line segment. Section 4 provides
experimental results. Section 5 concludes.

2 Voting Analysis in Image Space

Following [8], the standard Hough transform applies the following equation

d = x · cosα + y · sinα (1)

for representing a straight line by normal parameters α and d. This representa-
tion was introduced in [20] when defining a transformation in continuous space,
today known as the Radon transform; this transform is a generalization of the
Hough transform.

192 Z. Xu, B.-S. Shin, and R. Klette

All pixels on the line-segment in an image vote for all possible cells (αi, dj)
in Hough space. For a pixel, given a voting angle αi ∈ [0, π), the corresponding
dj-value is computed. The cell (αi, dj) is voted for by increasing the voting value
at this cell by 1. Let Hij be the voting value of cell (αi, dj) in Hough space.

For a voting angle αi, the number of voting cells and voting values of each
cell are analyzed first; then we deduce a functional relationship between voting
variance and voting angle.

The actual normal parameters of a line segment are denoted by (α0, d0). Let
L and T denote the length and the width of the line segment. For abbreviation,
let S and C be short for the values of sine and cosine of |αi − α0|, respectively:

S = sin |αi − α0| and C = cos |αi − α0| (2)

2.1 Voting Cells and Voting Values

Regarding a voting angle αi, the number of voting cells is proportional to the
number of parallel bars intersected by the considered line-segment. The voting
value Hij , corresponding to the voting angle αi and the distance dj , is propor-
tional to the length of the bar intersected by the line-segment.

For detecting line segments with different length and width, we consider two
cases for estimating the number of voting cells and voting values.

Fig. 1. The number of voting cells and voting values for |αi − α0| < arctan(T/L) .
Actual parameters are normal parameters d0 and α0, and width T and length L. For
the remaining parameters in the figure see the text for explanations.

Length and Width of a Line-Segment 193

For a voting angle αi, if |αi−α0| < arctan(T/L) then there are T ·C +L ·S
parallel bars crossing the considered line-segment in total. This is illustrated in
Fig. 1. At the middle of the parallel bars, the number of voting cells equals

T · C − L · S (3)

and the voting values are identical. On both outer sides of parallel bars, there
are L ·S voting cells for each side; and the voting values decrease to 0 gradually.

For a voting angle αi, if |αi−α0| > arctan(T/L) then there are L ·S+T ·C
parallel bars crossing the considered line-segment in total. This is illustrated in
Fig. 2. At the middle of the parallel bars, the number of voting cells equals

L · S − T · C (4)

and the voting values are identical. On both outer sides of the parallel bars, there
are T ·C voting cells on each side; and the voting values decrease to 0 gradually.

Fig. 2. The number of voting cells and voting values for |αi − α0| > arctan(T/L) .
See the text for explanations.

2.2 Voting Variances

In both cases for a voting angle αi, we consider the voting cells along the axis
d to be a random variable. The voting values of corresponding cells define a

194 Z. Xu, B.-S. Shin, and R. Klette

probabilistic density function. The voting variance σ2
i , which corresponds to

voting angle αi, is calculated based on the corresponding probabilistic density
function.

For both discussed cases, the voting variance σ2
i is calculated as follows:

σ2
i =

L2 sin2 |αi − α0|+ T 2 cos2 |αi − α0|
12

=
(L2 − T 2) sin2 |αi − α0|+ T 2

12
(5)

We only consider those voting cells around the peak in Hough space. It means
that |αi − α0| is small, and that we can approximate sin |αi − α0| by |αi − α0|.
Thus we have the following:

σ2
i ≈

(L2 − T 2)(αi − α0)
2 + T 2

12

=
(L2 − T 2)(α2

i + α2
0 − 2αiα0) + T 2

12

=
(L2 − T 2)α2

i − 2α0(L
2 − T 2)αi + (L2 − T 2)α2

0 + T 2

12
(6)

This shows that the functional relationship between voting variance σ2 and vot-
ing angle α can be approximated by a 2nd order curve (called f for later reference)
as expressed in Eq. (6).

Fig. 3. Voting distribution in an αi column for one “thick” line segment. Blue gradient
cells illustrate that the voting values decrease gradually on both sides.

Length and Width of a Line-Segment 195

3 Statistical Distribution in Hough Space

For a line segment in an image, all collinear pixels vote for all possible cells in the
Hough space. Due to various uncertainties, the voting in a column is considered
as being a random variable. The voting value at each cell defines a probabilistic
distribution. We compute the statistical variances in columns near the peak and
use them to fit a quadratic polynomial curve, called g for later reference.

After voting, a peak is detected and represented by (αp, dp). This is just a
coarse estimate for the actual normal parameters (α0, d0).

In that αi-column which is close to the peak αp, the middle cells have approx-
imately identical voting values. Those voting values are larger than the voting
values at outer cells. See Fig. 3 for an illustration.

3.1 Statistical Variances

For each column αi in a peak region, the statistical mean mi and statistical
variance σ2

i are computed as follows:

mi =
∑
j∈W

[Hij · dj]/
∑
j∈W

Hij

σ2
i =
∑
j∈W

[Hij · (dj −mi)
2]/
∑
j∈W

Hij (7)

where W defines the peak region in the Hough space.

3.2 Quadratic Polynomial Curve Fitting

Based on a voting analysis as discussed above, the functional relationship be-
tween statistical variance σ2 and angle α can be approximated by a quadratic
polynomial curve.

We fit a quadratic polynomial curve g to pairs (σ2
i , αi), all calculated in the

peak region. Formally, this is denoted by

g : σ2 = g(α)

� e2α
2 + e1α+ e0 (8)

3.3 Length and Width of Line-Segment

We compute length and width of a detected line segment based on the coefficients
of the fitted function.

Following Eqs. (6) and (8), we obtain the following equational system:

(L2 − T 2)/12 = e2 (9)

−2α0(L
2 − T 2)/12 = e1 (10)

((L2 − T 2)α2
0 + T 2)/12 = e0 (11)

196 Z. Xu, B.-S. Shin, and R. Klette

By solving simultaneously those equations, the length L and width T of the line
segment are as follows:

L =
√
12

√
e2 + e0 −

e21
4e2

(12)

T =
√
12

√
e0 −

e21
4e2

(13)

This defines our novel closed-form solution.

4 Experimental Results

We tested and verified the proposed method for determining the length and
width of a detected line segment. We used a set of simulated image data as well
as real-world images.

Used simulated binary images are of size 200 × 200. Each image contains a
representation of one digitized line-segment as well as background image noise.
A background pixel is called noisy if it is black due to the generated background
noise. For the digitised line segments we have all their parameters available,
including length and width, defining the ground truth. The direction, position,
length, and width of a synthesised line segment are generated randomly in our
test data.

Figure 4 illustrates an example for line segment detection. The length and
width are accurately calculated when applying the proposed method.

Fig. 4. Illustration of an example of our simulated binary images for determining the
length and width for a line-segment with the proposed method. The blue box is drawn
according to calculated length and width of the detected line-segment.

Length and Width of a Line-Segment 197

Fig. 5. Detection errors in the common case. Top: Length. Bottom: Width.

Fig. 6. Detection errors in the coarse-quantization case. Top: Length. Bottom: Width.

Fig. 7. Detection errors in the heavy-noise case. Top: Length. Bottom: Width.

198 Z. Xu, B.-S. Shin, and R. Klette

Our method focuses on the accuracy of length and width calculation for a
single detected line segment. For the accuracy of length and width determination,
three cases have been considered in terms of different quantization steps and
noise scales.

In the common case there are no noisy pixels, and the quantization of the
Hough space equals (Δα,Δd) = (1◦, 1p) (the unit for d is the pixel distance). For
the coarse-quantization case, we set parameter quantization equal to (Δα,Δd) =
(4◦, 4p). For the heavy-noise case, 1,000 noisy pixels are randomly generated in
each of the 200× 200 images used.

We generated 500 synthetic images randomly for each of the three cases and
tested the proposed method. For each of the three cases, 500 resulting detection
errors for length and width are documented by Figs. 5, 6, and 7.

In the common case, the calculated values for length and width are accurate.
The mean errors of length and width are equal to 0.4853 and 0.0781, respectively.
When the Hough space is quantized at (Δα,Δd) = (4◦, 4p), the mean errors
of length and width are equal to 0.5796 and 1.1478, respectively. The length
detection is accurate, while the width detection is sensitive to the quantization
interval Δd. By adding 1,000 noisy pixels, the mean errors of length and width
are equal to 3.0772 and 0.2613, respectively. The calculated width values are still
accurate but length calculation is now effected by the given image noise.

For testing on recorded images, we use image sequences published in Set 5
of EISATS [9]. Images are of size 640× 480. Those image sequences have been
recorded for studying algorithms for vision-based driver assistance, in particular
for algorithms detecting and tracking lane borders. (A review about visual lane
analysis is given in [21]).

Fig. 8. Detection results for lane markers in real-world images. Left: Original images.
Right: Detected lane markers.

Lane-detection results for one image of this data set is shown in Fig. 8. Only
pixels in the lower half of the images are processed by supposing that lane
borders are constrained to this image region. We are able to detect both frontiers
(i.e. left and right border lines) of one lane marker as individual line segments

Length and Width of a Line-Segment 199

Fig. 9. Detection results for a building facade and road images. Left: Original images.
Right: Detected result.

when using the accurate line detector reported in [23]. However, lane-border
detection usually does not require such a fine and accurate line detection; it is
more appropriate to detect one lane marker as a line segment of some width.
This also supports the typically following step of lane-border tracking that only
such line segments are accepted which do have a width within a given interval
estimated for lane markers.

We also test the proposed method on building facade images and road images;
see Fig. 9 for two examples, also showing detected lines. For the building facade
image, all linear features with different length and width are detected. Two wide
roads are detected in the shown aerial road view.

Line-segment features in images have varying lengths and widths. The pro-
posed method calculates the length and width of these linear features using a
Hough transform.

5 Conclusions

This paper proposes a novel method for line-segment length and width calcu-
lation using a Hough transform. We analyse the voting variance. We derive a
functional relationship between the voting variance and the voting angle. This re-
lation is approximated by a 2nd-order function f . Due to quantization errors and
image noise, we consider voting in an α-column as being a random variable, and

200 Z. Xu, B.-S. Shin, and R. Klette

voting values define a probabilistic distribution. We compute the corresponding
statistical variances and use them to fit a quadratic polynomial curve g.

We obtain three equations by comparing the coefficients of functions f and g.
We calculate the length and width of a line segment by solving simultaneously
these three equations. Various simulated and real-world images have been used
for testing the proposed method, and also for illustrating new opportunities
which are not yet available with previously specified line detection algorithms.

Experimental results verify the accuracy and feasibility of the proposed solu-
tion for line-segment length and width detection.

Acknowledgments. The first author thanks Jiangsu Overseas Research &
Training Program for University Prominent Young & Middle-aged Teachers and
Presidents for granting a scholarship to visit and undertake research at The
University of Auckland.

References

1. Aggarwal, N., Karl, W.: Line detection in images through regularized Hough trans-
form. IEEE Trans. Image Processing 15, 582–591 (2006)

2. Akhtar, M.W., Atiquzzaman, M.: Determination of line length using Hough trans-
form. Electronics Letters 28, 94–96 (1992)

3. Atiquzzaman, M., Akhtar, M.W.: Complete line segment description using the
Hough transform. Image and Vision Computing 12, 267–273 (1994)

4. Atiquzzaman, M., Akhtar, M.W.: A robust Hough transform technique for com-
plete line segment description. Real-Time Imaging 1, 419–426 (1995)

5. Costa, L.F., Ben-Tzvi, B., Sandler, M.: Performance improvements to the Hough
transform. In: UK IT 1990 Conference, pp. 98–103 (1990)

6. Du, S., Tu, C., van Wyk, B.J., Chen, Z.: Collinear segment detection using HT
neighborhoods. IEEE Trans. Image Processing 20, 3912–3920 (2011)

7. Du, S., Tu, C., van Wyk, B.J., Ochola, E.O., Chen, Z.: Measuring straight line
segments using HT butterflies. PLoS ONE 7(3), e33790 (2012)

8. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves
in pictures. Comm. ACM 15, 11–15 (1972)

9. EISATS: .enpeda.. image sequence analysis test site (2013),
http://www.mi.auckland.ac.nz/EISATS

10. Furukawa, Y., Shinagawa, Y.: Accurate and robust line segment extraction by
analyzing distribution around peaks in Hough space. Computer Vision Image Un-
derstanding 92, 1–25 (2003)

11. Hough, P.V.C.: Methods and means for recognizing complex patterns. U.S. Patent
3.069.654 (1962)

12. Ioannou, D.: Using the Hough transform for determining the length of a digital
straight line segment. Electronics Letters 31, 782–784 (1995)

13. Kamat, V., Ganesan, S.: A robust Hough transform technique for description of
multiple line segments in an image. In: Int. Conf. Image Processing, pp. 216–220
(1998)

14. Kamat, V., Ganesan, S.: Complete description of multiple line segments using the
Hough transform. Image Vision Computing 16, 597–613 (1998)

http://www.mi.auckland.ac.nz/EISATS

Length and Width of a Line-Segment 201

15. Kiryati, N., Bruckstein, A.M.: What’s in a Set of Points? IEEE Trans. Pattern
Analysis Machine Intelligence 14, 496–500 (1992)

16. Klette, R.: Concise Computer Vision. Springer, London (2014)
17. Netanyahu, N.S., Weiss, I.: Analytic line fitting in the presence of uniform random

noise. Pattern Recognition 34, 703–710 (2001)
18. Nguyen, T.T., Pham, X.D., Jeon, J.: An improvement of the standard Hough

transform to detect line segments. In: IEEE Int. Conf. Industrial Technology, pp.
1–6 (2008)

19. Qjidaa, H., Radouane, L.: Robust line fitting in a noisy image by the method of
moments. IEEE Trans. Pattern Analysis Machine Intelligence 21, 1216–1223 (1999)

20. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs
gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie Wissenschaften, Math.-
Phys. Kl. 69, 262–267 (1917)

21. Shin, B.-S., Xu, Z., Klette, R.: Visual lane analysis and higher-order tasks: A
concise review. Machine Vision Applications (to appear, 2014)

22. Weiss, I.: Line fitting in a noisy image. IEEE Trans. Pattern Analysis Machine
Intelligence 11, 325–329 (1989)

23. Xu, Z., Shin, B.-S.: Line segment detection with Hough transform based on min-
imum entropy. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013. LNCS,
vol. 8333, pp. 254–264. Springer, Heidelberg (2014)

24. Xu, Z., Shin, B.-S.: A statistical method for peak localization in Hough space
by analysing butterflies. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013.
LNCS, vol. 8333, pp. 111–123. Springer, Heidelberg (2014)

25. Yamato, J., Ishii, I., Makino, H.: Highly accurate segment detection using Hough
transformation. Systems and Computers in Japan 21, 68–77 (1990)

Stable Shape Comparison of Surfaces

via Reeb Graphs

Barbara Di Fabio1,3 and Claudia Landi2,3

1 Dipartimento di Matematica, Università di Bologna, Italy
barbara.difabio@unibo.it

2 DISMI, Università di Modena e Reggio Emilia, Italy
claudia.landi@unimore.it

3 ARCES, Università di Bologna, Italy

Abstract. Reeb graphs are combinatorial signatures that capture shape
properties from the perspective of a chosen function. One of the most
important questions is whether Reeb graphs are robust against function
perturbations that may occur because of noise and approximation errors
in the data acquisition process. In this work we tackle the problem of
stability by providing an editing distance between Reeb graphs of ori-
entable surfaces in terms of the cost necessary to transform one graph
into another by edit operations. Our main result is that the editing dis-
tance between two Reeb graphs is upper bounded by the extent of the
difference of the associated functions, measured by the maximum norm.
This yields the stability property under function perturbations.

Keywords: Shape similarity, editing distance, Morse function.

1 Introduction

In shape comparison, a widely used scheme is to measure the dissimilarity be-
tween signatures associated with each shape rather than match shapes directly
[14,12,18].

Reeb graphs are signatures describing shapes from topological and geometrical
perspectives. In this framework, shapes are modeled as spaces X endowed with
scalar functions f . The role of f is to explore geometrical properties of the space
X . The Reeb graph of f : X → R is obtained by shrinking each connected
component of a level set of f to a single point [15].

Reeb graphs have been used as an effective tool for shape analysis and de-
scription tasks since [17,16]. The Reeb graph has a number of characteristics that
make it useful as a search key for 3D objects. First, a Reeb graph always consists
of a one-dimensional graph structure and does not have any higher dimension
components such as the degenerate surface that can occur in a medial axis. Sec-
ond, by defining the function appropriately, it is possible to construct a Reeb
graph that is invariant to translation and rotation, or even more complicated
isometries of the shape.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 202–213, 2014.
c© Springer International Publishing Switzerland 2014

Stable Shape Comparison of Surfaces via Reeb Graphs 203

One of the most important questions is whether Reeb graphs are robust
against perturbations that may occur because of noise and approximation er-
rors in the data acquisition process. Heuristics have been developed so that the
Reeb graph turns out to be resistant to connectivity changes caused by simpli-
fication, subdivision and remesh, and robust against noise and certain changes
due to deformation [10,4].

In this paper we tackle the robustness problem for Reeb graphs from a the-
oretical point of view. The main idea is to generalize to the case of surfaces
the techniques developed in [6] to prove the stability of Reeb graphs of curves
against function perturbations. Indeed the case of surfaces appears as the most
interesting area of applications of the Reeb graph as a shape descriptor.

To this end, we introduce a combinatorial dissimilarity measure, called an
editing distance, between Reeb graphs of surfaces in terms of the cost necessary
to transform one graph into another by edit operations. Thus our editing distance
between Reeb graphs belongs to the family of Graph Edit Distances [9], widely
used in pattern analysis. As shown in [9], some of these Graph Edit Distances
are metrics, some other are only pseudo-metrics. Our editing distance turns out
to have all the properties of a pseudo-metric. The main result we provide is that
the editing distance between two Reeb graphs is never greater than the extent
of the difference of the associated functions, measured by the maximum norm,
yielding the stability property under function perturbations.

In the literature, some other comparison methodologies have been proposed
to compare Reeb graphs and estimate the similarity of the shapes described by
Reeb graph.

In [10] the authors propose a Multiresolutional Reeb Graph (MRG) based on
geodesic distance. Similarity between 3D shapes is calculated using a coarse-to-
fine strategy while preserving the topological consistency of the graph structures
to provide a fast and efficient estimation of similarity and correspondence be-
tween shapes.

In [4] the authors discuss a method for measuring the similarity and recog-
nizing sub-part correspondences of 3D shapes, based on the synergy of a struc-
tural descriptor, like the Extended Reeb Graph, with a geometric descriptor, like
spherical harmonics.

Although the matching frameworks proposed in [10] and [4] are characterized
by several computational advantages, the methods provided for Reeb graphs
comparison have not been proved to be stable with respect to noise in the data,
differently from the method proposed here.

Only recently the problem of Reeb graph stability has been investigated from
the theoretical point of view.

In [6] an editing distance between Reeb graphs of curves endowed with Morse
functions is introduced and shown to yield stability. Importantly, despite the
combinatorial nature of this distance, it coincides with the natural pseudo-
distance between shapes [8], thus showing the maximal discriminative power
for this sort of distances.

204 B. Di Fabio and C. Landi

The work in [2] about a stable distance for merge trees is also pertinent to the
stability problem for Reeb graphs: merge trees are known to determine contour
trees, that are Reeb graphs for simple domains.

Recently a functional distortion distance between Reeb graphs has been pro-
posed in the preprint [1], with proven stable and discriminative properties. The
functional distortion distance is intrinsically continuous, whereas the editing dis-
tance we propose is combinatorial.

In conclusion, the novelty of this paper is the announcement of a new com-
binatorial method to compare Reeb graphs in a stable way when shapes can be
modeled as surfaces. An outline of the proof of this stability result is also given
here, while full details and technicalities can be found in the technical report [7].

Outline. Section 2 reviews Reeb graphs. Section 3 introduces the admissible
editing deformations to transform Reeb graphs into each other. In Section 4 the
editing distance is defined. Section 5 illustrates the stability of Reeb graphs with
respect to the editing distance. Section 6 concludes the paper.

2 Preliminaries on Reeb Graphs

An overview of the properties of Reeb graphs from the mathematical foundations
to its history in the Computer Graphics context can be found in [3].

Since the main focus of this paper is on theoretical aspects, and computational
issues being postponed to a future research, the appropriate setting for studying
Reeb graphs is the following one.
M is a smooth (i.e. differentiable of class at least C2) closed (i.e. compact

and without boundary) orientable surface, and f : M → R is a simple Morse
function on M, i.e., a smooth function such that its Hessian matrix at each
critical point is non-singular and, for every two distinct critical points p and q
of f , the associated critical level sets f−1(f(p)) and f−1(f(q)) are disjoint.

Definition 1. For every p, q ∈ M, set p ∼ q whenever p, q belong to the same
connected component of f−1(f(p)). The quotient space M/ ∼ is a finite and
connected simplicial complex of dimension 1 known as the Reeb graph associated
with f .

Hence, the Reeb graph of a simple Morse function f :M→ R is a graph whose
vertices are the connected components of the critical levels of f that contain a
critical point.

The Reeb graph associated with f will be denoted by Γf , its vertex set by
V (Γf), and its edge set by E(Γf). Moreover, if v1, v2 ∈ V (Γf) are adjacent
vertices, i.e., connected by an edge, we will write e(v1, v2) ∈ E(Γf).

The critical points of f correspond bijectively to the vertices of Γf . In partic-
ular, the assumption thatM is orientable ensures that the vertices of Γf can be
either of degree 1 (when corresponding to minima or maxima of f), or of degree
3 (when corresponding to saddles of f). Moreover, if M has genus g, Γf has
exactly g linearly independent cycles.

Stable Shape Comparison of Surfaces via Reeb Graphs 205

In what follows, we label each vertex of Γf by the value taken by f at the
corresponding critical point. We denote such a labeled graph by (Γf , �f), where
�f : V (Γf) → R is the restriction of f :M→ R to the set of its critical points.
In a labeled Reeb graph, each vertex v of degree 3 has at least two of its adjacent
vertices, say w,w′, such that �f(w) < �f (v) < �f(w

′). An example is displayed
in Figure 1.

M (Γf , �f)

a1
a2

a3
a4

a5

a6
a7

a8
a9

a10
f

a1
a2

a3
a4

a5

a6
a7
a8
a9

a10

Fig. 1. Left: the height function f : M → R; center: the surface M of genus g = 2;
right: the associated labeled Reeb graph (Γf , �f)

Following [13], it can be seen that, given a graph on an even number of vertices,
all of which are of degree 1 or 3, appropriately labeled, there is a simple Morse
function whose labeled Reeb graph is the given one. This result requires the
following definition.

Definition 2. We shall say that two labeled Reeb graphs (Γf , �f), (Γg , �g) are
isomorphic, and we write (Γf , �f) ∼= (Γg, �g), if there exists a graph isomorphism
Φ : V (Γf) → V (Γg) such that, for every v ∈ V (Γf), f(v) = g(Φ(v)) (i.e. Φ
preserves edges and vertices labels).

Proposition 1 (Realization theorem). Let (G, �) be a labeled graph, where
G is a graph with m linearly independent cycles, on an even number of vertices,
all of which are of degree 1 or 3, and � : V (G) → R is an injective function
such that, for any vertex v of degree 3, at least two among its adjacent vertices,
say w,w′, are such that �(w) < �(v) < �(w′). Then an orientable closed surface
M of genus g = m, and a simple Morse function f : M → R exist such that
(Γf , �f) ∼= (G, �).

One may wonder if such surface and function are also unique, up to labeled
graph isomorphism. Following [7], we answer to this question by considering
two equivalence relations on the space of functions, and studying how they are
mirrored by Reeb graphs isomorphisms.

Definition 3. Let D(M) be the set of self-diffeomorphisms of M. Two simple
Morse functions f, g : M → R are called right-equivalent if there exists ξ ∈

206 B. Di Fabio and C. Landi

D(M) such that f = g ◦ ξ. Moreover, f, g are called right-left equivalent if there
exist ξ ∈ D(M) and an orientation preserving self-diffeomorphism η of R such
that f = η ◦ g ◦ ξ.

Proposition 2 (Uniqueness theorem). If f, g are simple Morse functions on
a closed surface, then

1. f and g are right-left equivalent if and only if their Reeb graphs Γf and Γg

are isomorphic by an isomorphism that preserves the vertex order;
2. f and g are right-equivalent if and only if their labeled Reeb graphs (Γf , �f)

and (Γg, �g) are isomorphic.

3 Editing Deformations

In this section we present the moves that allow to edit Reeb graphs into each
other. Basically, these moves amount to finite ordered sequences of elementary
deformations.

Elementary deformations allow us to transform a Reeb graph into another
with either a different number of vertices (birth (B) and death (D)), or with the
same number of vertices endowed with different labels (relabeling (R) and moves
by Kudryavtseva (K1), (K2), (K3) [11]). We underline that the definition of the
deformations of type (B), (D) and (R) is essentially different from the definition
of analogous deformations in the case of Reeb graphs of curves as given in [6],
even if the associated cost will be the same (see Section 4). This is because the
degree of the involved vertices is 2 for Reeb graphs of closed curves, 1 and 3 for
Reeb graphs of surfaces.

Definition 4. With the convention of denoting the open interval with endpoints
a, b by]a, b[, the elementary deformations (B), (D), (R), (Ki), i = 1, 2, 3, can be
defined as follows.

(B) For a fixed edge e(v1, v2) ∈ E(Γf), with �f(v1) < �f (v2), T is an elementary
deformation of (Γf , �f) of type (B) if T (Γf , �f) is a labeled Reeb graph
(Γg, �g) such that

• V (Γg) = V (Γf) ∪ {u1, u2};
• E(Γg) = (E(Γf)− {e(v1, v2)}) ∪ {e(v1, u1), e(u1, u2), e(u2, v2)};
• �f (v1) < �g(ui) < �g(uj) < �f (v2), with �−1

g (]�g(ui), �g(uj)[) = ∅, i, j ∈
{1, 2}, i �= j, and �g |V (Γf)

= �f .

(D) For fixed edges e(v1, u1), e(u1, u2), e(u1, v2) ∈ E(Γf), u2 being of degree 1,
such that �f (v1) < �f(ui) < �f (uj) < �f (v2), with �−1

f (]�f (ui), �f (uj)[) =
∅, i, j ∈ {1, 2}, i �= j, T is an elementary deformation of (Γf , �f) of type
(D) if T (Γf , �f) is a labeled Reeb graph (Γg, �g) such that

• V (Γg) = V (Γf)− {u1, u2};
• E(Γg) = (E(Γf)− {e(v1, u1), e(u1, u2), e(u2, v2)}) ∪ {e(v1, v2)};
• �g = �f |V (Γf)−{u1,u2}.

Stable Shape Comparison of Surfaces via Reeb Graphs 207

(R) T is an elementary deformation of (Γf , �f) of type (R) if T (Γf , �f) is a
labeled Reeb graph (Γg, �g) such that
• Γg = Γf ;
• �g : V (G) → R induces the same vertex-order as �f except for at most
two non-adjacent vertices, say u1, u2, for which, if �f(u1) < �f(u2)
and �−1

f (]�f (u1), �f (u2)[) = ∅, then �g(u1) > �g(u2), and �−1
g (]�g(u2),

�g(u1)[) = ∅.
(K1) For fixed edges e(v1, u1), e(u1, u2), e(u1, v4), e(u2, v2), e(u2, v3) ∈ E(Γf),

with two among v2, v3, v4 possibly coincident, and either �f(v1) < �f (u1) <
�f (u2) < �f (v2), �f (v3), �f(v4), with �−1

f (]�f (u1), �f (u2)[) = ∅, or �f (v2),

�f (v3), �f (v4) < �f(u2) < �f(u1) < �f(v1), with �−1
f (]�f (u2), �f (u1)[) = ∅,

T is an elementary deformation of (Γf , �f) of type (K1) if T (Γf , �f) is a
labeled Reeb graph (Γg, �g) such that:
• V (Γg) = V (Γf);
• E(Γg) = (E(Γf)− {e(v1, u1), e(u2, v2)}) ∪ {e(v1, u2), e(u1, v2)};
• �g|V (Γg)−{u1,u2} = �f , and either �f (v1) < �g(u2) < �g(u1) < �f (v2),

�f (v3), �f (v4), with �−1
g (]�g(u2), �g(u1)[) = ∅, or �f(v2), �f(v3), �f (v4) <

�g(u1) < �g(u2) < �f(v1), with �−1
g (]�g(u1), �g(u2)[) = ∅.

(K2) For fixed edges e(v1, u1), e(u1, u2), e(v2, u1), e(u2, v3), e(u2, v4) ∈ E(Γf),
with u1, u2 of degree 3, v2, v3 possibly coincident with v1, v4, respectively,
and �f (v1), �f(v2) < �f(u1) < �f (u2) < �f (v3), �f (v4), with �−1

f (]�f (u1),
�f (u2)[) = ∅, T is an elementary deformation of (Γf , �f) of type (K2) if
T (Γf , �f) is a labeled Reeb graph (Γg, �g) such that:
• V (Γg) = V (Γf);
• E(Γg) = (E(Γf)− e(v1, u1), e(u2, v3)}) ∪ {e(u1, v3), e(v1, u2)};
• �g|V (Γg)−{u1,u2} = �f and �f(v1), �f (v2) < �g(u2) < �g(u1) < �f (v3),

�f (v4), with �−1
g (]�g(u2), �g(u1)[) = ∅.

(K3) For fixed edges e(v1, u2), e(u1, u2), e(v2, u1), e(u1, v3), e(u2, v4) ∈ E(Γf),
with u1, u2 of degree 3, v2, v3 possibly coincident with v1, v4, respectively,
and �f (v1), �f (v2) < �f (u2) < �f (u1) < �f (v3), �f (v4), with �−1

f (]�f (u2),
�f (u1)[) = ∅, T is an elementary deformation of (Γf , �f) of type (K3) if
T (Γf , �f) is a labeled Reeb graph (Γg, �g) such that:
• V (Γg) = V (Γf);
• E(Γg) = (E(Γf)− e(v1, u2), e(u1, v3)}) ∪ {e(v1, u1), e(u2, v3)};
• �g|V (Γg)−{u1,u2} = �f and �f(v1), �f (v2) < �g(u1) < �g(u2) < �f (v3),

�f (v4), with �−1
g (]�g(u1), �g(u2)[) = ∅.

All the elementary deformations above defined are schematically displayed in
Table 1.

We observe that, differently from the case of curves [6], it is not sufficient to
consider only deformations of type (B), (D) and (R). The necessity to add those
of type (Ki), i = 1, 2, 3, can be in fact deduced by observing the changes a Reeb
graph undergoes when it is dynamically associated with Morse functions that at
a some instant fail to be simple (Table 1). Only in some particular cases, such
as when some of the vertices vj are of degree 1, operations (Ki), i = 1, 2, 3, can
be obtained by composition of operations (B), (D) and (R).

208 B. Di Fabio and C. Landi

Table 1. Elementary deformations of a labeled Reeb graph

�f (v1)�f (v1)

�g(u1)

�g(u2)
�f (v2)�f (v2)

(B)

(D)

�f (v1)

�g(u1)
�g(u2)

�f (v2)

�f (u1)
�f (u2)

�f (v3)
�g(v3)

�g(v4)
�f (v4)

�g(v1)
�g(v2)

�f (v5)
�g(v5)

�g(v6)
�f (v6)

(R)

�f (v1) �f (v1)

�g(u1)
�g(u2)

�f (u1)

�f (u2)

�f (v4) �f (v4)�f (v5) �f (v5)�f (v6) �f (v6)

(K1)

�f (v1) �f (v1)

�g(u1)
�g(u2)

�f (v2) �f (v2)

�f (u1)

�f (u2)

�f (v3) �f (v3)
�f (v4) �f (v4)

(K2)

(K3)

Stable Shape Comparison of Surfaces via Reeb Graphs 209

Since each type of elementary deformation transforms a labeled Reeb graph
into another one, we can apply elementary deformations iteratively to transform
labeled Reeb graphs into each other.

Definition 5. We shall call deformation of (Γf , �f) any finite ordered sequence
T = (T1, T2, . . . , Tr) of elementary deformations such that T1 is an elemen-
tary deformation of (Γf , �f), T2 is an elementary deformation of T1(Γf , �f), ...,
Tr is an elementary deformation of Tr−1Tr−2 · · ·T1(Γf , �f). We shall denote by
T (Γf , �f) the result of the deformation T applied to (Γf , �f). Moreover, we shall
call identical deformation any deformation such that T (Γf , �f) ∼= (Γf , �f).

Proposition 3. Let (Γf , �f) and (Γg, �g) be two labeled Reeb graphs associated
with simple Morse functions f, g :M→ R. Then the set of all the deformations
T such that T (Γf , �f) ∼= (Γg, �g) is non-empty.

In other words, any two Reeb graphs of simple Morse functions on a given
surface can be transformed into each other by a finite sequence of elementary
deformations. This result is a consequence of the fact that, through a finite
sequence of elementary deformations of type (B), (D),(R), (Ki), i = 1, 2, 3,
every Reeb graph can be transformed into one having only one maximum, one
minimum, and all the cycles, if any, of length 2 [7].

4 Editing Distance

Given two labeled Reeb graphs (Γf , �f) and (Γg, �g) associated with simple Morse
functions f, g :M→ R, we denote by T ((Γf , �f), (Γg , �g)) the set of all possible
deformations between (Γf , �f) and (Γg, �g). Let us associate a cost with each
editing deformation in T ((Γf , �f), (Γg, �g)).

Definition 6. Let T be an elementary deformation such that T (Γf , �f)∼=(Γg, �g).

– If T is of type (B) inserting the vertices u1, u2 ∈ V (Γg), then we define the
associated cost as

c(T) =
|�g(u1)− �g(u2)|

2
.

– If T is of type (D) deleting the vertices u1, u2 ∈ V (Γf), then we define the
associated cost as

c(T) =
|�f(u1)− �f (u2)|

2
.

– If T is of type (R) relabeling the vertices v ∈ V (Γf) = V (Γg), then we define
the associated cost as

c(T) = max
v∈V (Γf)

|�f (v)− �g(v)|.

– If T is of type (Ki), with i = 1, 2, 3, relabeling the vertices u1, u2 ∈ V (Γf),
then we define the associated cost as

c(T) = max{|�f(u1)− �g(u1)|, |�f (u2)− �g(u2)|}.

210 B. Di Fabio and C. Landi

Moreover, if T = (T1, . . . , Tr) is a deformation such that Tr · · ·T1(Γf , �f) ∼=
(Γg, �g), we define the associated cost as c(T) =

r∑
i=1

c(Ti).

Now we can define the editing distance between labeled Reeb graphs as the
infimum cost we have to bear to transform one graph into the other [7, Thm.
3.3].

Theorem 1. For every two labeled Reeb graphs (Γf , �f) and (Γg, �g), we set

d((Γf , �f), (Γg , �g)) = inf
T∈T ((Γf ,�f),(Γg ,�g))

c(T).

Then d is a pseudo-metric on isomorphism classes of labeled Reeb graphs.

We recall that a pseudo-metric is non-negative, symmetric, and has the tri-
angle inequality, but may be unable to distinguish different objects.

We do not exclude that our editing distance may have also the coincidence
axiom as in the case of curves. If so, it would turn to be a metric. The main
difficulty is that the linearization technique used in the case of curves does not
work in the case of surfaces. We are currently investigating different techniques.

5 Stability Result

Let F(M,R) be the set of smooth real valued functions on M, endowed with
the C∞ topology, and let us stratify such a space, as done by Cerf in [5]. Let us
denote by F0 the submanifold of F(M,R) of co-dimension 0 that contains all the
simple Morse functions f :M→ R. Then, let F1 = F1

α∪F1
β be the submanifold

of F(M,R) of co-dimension 1, where: F1
α represents the set of functions whose

critical levels contain exactly one critical point, and the critical points are all
non-degenerate, except exactly one; F1

β the set of Morse functions whose critical
levels contain at most one critical point, except for one level containing exactly
two critical points.

The main result, proven in [7], is the following one.

Theorem 2 (Stability Theorem). For every f, g ∈ F0,

d((Γf , �f), (Γg, �g)) ≤ ‖f − g‖C0 ,

where ‖f − g‖C0 = max
p∈M

|f(p)− g(p)|.

The proof relies on two intermediate results. The first one states that, con-
sidering a linear path connecting two functions f, g ∈ F0 and not traversing
strata of co-dimension greater than 0, the editing distance between the Reeb
graphs associated with its end-points is upper bounded by the distance of f and
g computed in the C0-norm. In this case the graph (Γg, �g) can be obtained
transforming (Γf , �f) with a sequence of elementary deformations of type (R).

Stable Shape Comparison of Surfaces via Reeb Graphs 211

– Let f, g ∈ F0 and let us consider the path h : [0, 1] → F(M,R) de-
fined by h(λ) = (1 − λ)f + λg. If h(λ) ∈ F0 for every λ ∈ [0, 1], then
d((Γf , �f), (Γg , �g)) ≤ ‖f − g‖C0 .

The second result states that, if two functions f, g ∈ F0 can be connected by
a linear path having only one point which belong to a stratum F1 and do not
traverse strata of co-dimension greater than 1, the cost to transform (Γf , �f)
into (Γg, �g) is again upper bounded by ‖f − g‖C0 . In particular, crossing a
stratum F1

α (F1
β , resp.), means that the Reeb graph is undergoing an elementary

deformation of type (B) or (D) ((R) or (Ki), i = 1, 2, 3, resp.).

– Let f, g ∈ F0 and let us consider the path h : [0, 1] → F(M,R) defined by
h(λ) = (1−λ)f +λg. If h(λ) ∈ F0 for every λ ∈ [0, 1] \ {λ}, with 0 < λ < 1,
and h transversely intersects F1 at λ, then d((Γf , �f), (Γg, �g)) ≤ ‖f − g‖C0 .

As an example illustrating the stability property of the editing distance, con-
sider f, g : M → R as in Figure 2. Let f(qi) − f(pi) = a, i = 1, 2, 3. It holds
that d((Γf , �f), (Γg , �g)) ≤ a

2 , showing that the editing distance is bounded by
the norm of the difference between the functions. Indeed, for every 0 < ε < a

2 ,
we can apply to (Γf , �f) a deformation of type (R), that relabels the vertices
pi, qi, i = 1, 2, 3, in such a way that �f(pi) is increased by a

2 − ε, and �f (qi) is
decreased by a

2 − ε, composed with three deformations of type (D) that delete
pi with qi, i = 1, 2, 3. Thus, since the total cost is equal to a

2 − ε + 3ε, by the
arbitrariness of ε, it holds that d((Γf , �f), (Γg, �g)) ≤ a

2 .

q1

p1

q2

p2

q3

p3

q q′

p p′

c1 + a

c1

c2 + a

c2

c3 + a

c3

c

d

c

d
(Γf , �f) (Γg, �g)f g

Fig. 2. For these two simple Morse functions f, g it is easy to see that
d((Γf , �f), (Γg, �g)) is bounded from above by the norm of f − g

6 Discussion

Building on arguments similar to those given in [6] for curves, we have presented
a combinatorial dissimilarity measure for Reeb graphs of surfaces. For a complete
analogy with the case of curves, we still need to prove that the editing distance is

212 B. Di Fabio and C. Landi

not only a pseudo-metric but actually a metric. Also, it would be useful to prove
that, as for curves, it discriminates shapes as well as the natural pseudo-distance.

From the computational viewpoint, it would be very interesting to find an
analogue of the editing distance for the case when the considered surfaces are
discrete models, e.g. triangular meshes, and the functions accordingly discrete.

References

1. Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. No.
arXiv:1307.2839v1 (2013)

2. Beketayev, K., Yeliussizov, D., Morozov, D., Weber, G.H., Hamann, B.: Measuring
the distance between merge trees. In: Topological Methods in Data Analysis and
Visualization V (TopoInVis 2013) (2013)

3. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape anal-
ysis and applications. Theoretical Computer Science 392, 5–22 (2008)

4. Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence
by structural descriptors of 3D shapes. Computer-Aided Design 38(9), 1002–1019
(2006)

5. Cerf, J.: La stratification naturelle des espaces de fonctions différentiables réelles et
le théorème de la pseudo-isotopie. Inst. Hautes Études Sci. Publ. Math. 39, 5–173
(1970)

6. Di Fabio, B., Landi, C.: Reeb graphs of curves are stable under function perturba-
tions. Mathematical Methods in the Applied Sciences 35(12), 1456–1471 (2012)

7. Di Fabio, B., Landi, C.: Reeb graphs of surfaces are stable under func-
tion perturbations. Tech. Rep. 3956, Università di Bologna (February 2014),
http://amsacta.cib.unibo.it/3956/

8. Donatini, P., Frosini, P.: Natural pseudodistances between closed manifolds. Forum
Mathematicum 16(5), 695–715 (2004)

9. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

10. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully
automatic similarity estimation of 3D shapes. In: ACM Computer Graphics (Proc.
SIGGRAPH 2001), pp. 203–212. ACM Press, Los Angeles (2001)

11. Kudryavtseva, E.A.: Reduction of Morse functions on surfaces to canonical form
by smooth deformation. Regul. Chaotic Dyn. 4(3), 53–60 (1999)

12. Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust his-
togram comparison. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29, 840–853 (2007)

13. Masumoto, Y., Saeki, O.: A smooth function on a manifold with given reeb graph.
Kyushu J. Math. 65(1), 75–84 (2011)

14. Ohbuchi, R., Takei, T.: Shape-similarity comparison of 3D models using alpha
shapes. In: 11th Pacific Conference on Computer Graphics and Applications, pp.
293–302 (2003)

15. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complétement intégrable
ou d’une fonction numérique. Comptes Rendus de L’Académie ses Sciences 222,
847–849 (1946)

http://amsacta.cib.unibo.it/3956/

Stable Shape Comparison of Surfaces via Reeb Graphs 213

16. Shinagawa, Y., Kunii, T.L.: Constructing a Reeb Graph automatically from cross
sections. IEEE Computer Graphics and Applications 11(6), 44–51 (1991)

17. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on morse theory.
IEEE Computer Graphics and Applications 11(5), 66–78 (1991)

18. Wu, H.Y., Zha, H., Luo, T., Wang, X.L., Ma, S.: Global and local isometry-
invariant descriptor for 3D shape comparison and partial matching. In: 2010 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 438–445
(2010)

About Multigrid Convergence of Some Length
Estimators�

Loïc Mazo and Étienne Baudrier

ICube, University of Strasbourg, CNRS,
300 Bd Sébastien Brant - CS 10413 - 67412 ILLKIRCH, France

Abstract. An interesting property for curve length digital estimators is
the convergence toward the continuous length and the associate conver-
gence speed when the digitization step h tends to 0. On the one hand, it
has been proved that the local estimators do not verify this convergence.
On the other hand, DSS and MLP based estimators have been proved
to converge but only under some convexity and smoothness or polyg-
onal assumptions. In this frame, a new estimator class, the so called
semi-local estimators, has been introduced by Daurat et al. in [4]. For
this class, the pattern size depends on the resolution but not on the digi-
tized function. The semi-local estimator convergence has been proved for
functions of class C2 with an optimal convergence speed that is a O(h

1
2)

without convexity assumption (here, optimal means with the best esti-
mation parameter setting). A semi-local estimator subclass, that we call
sparse estimators, is exhibited here. The sparse estimators are proved
to have the same convergence speed as the semi-local estimators under
the weaker assumptions. Besides, if the continuous function that is dig-
itized is concave, the sparse estimators are proved to have an optimal
convergence speed in h. Furthermore, assuming a sequence of functions
Gh : hZ → hZ discretizing a given Euclidean function as h tends to 0,
sparse length estimation computational complexity in the optimal setting
is a O(h− 1

2).

1 Introduction

The ability to perform the measurement of geometric features on digital repre-
sentations of continuous objects is an important goal in a world becoming more
and more digital. We focus in this paper on one classical digital problem: the
length estimation. The problem is to estimate the length of a continuous curve
S knowing a digitization of S. As information is lost during the digitization step,
there is no reliable estimation without a priori knowledge and it is difficult to
evaluate the estimator performances. In order to refine the evaluation of the es-
timators, a property, so called convergence property is desirable: the estimation
convergence toward the true length of the curve S when the grid step h tends
to 0. This property can be viewed as a robustness to digitization grid change.
� This work was supported by the Agence Nationale de la Recherche through contract

ANR-2010-BLAN-0205-01.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 214–225, 2014.
c© Springer International Publishing Switzerland 2014

About Multigrid Convergence of Some Length Estimators 215

The local estimators based on a fixed pattern size do not satisfy the convergence
property [13]. The adaptive estimators based on the Maximal Digital Straight
Segment (MDSS) or the Minimum Length Polygon (MLP) satisfy the conver-
gence property under assumptions of convexity, 4-connectivity for closed simple
curves (also called Jordan curves) [3]. The semi-local estimators, introduced by
Daurat et al [4] for function graphs, verifies the convergence property under
smoothness assumption but without convexity hypothesis. We present here a
subclass of the semi-local estimators, the sparse estimators that only need infor-
mation on a small part of the function values and keep the convergence property.

The paper is organized as follows. In Section 2, some necessary notations
and conventions are recalled, then existing estimators and their convergence
properties are detailed. In Section 3, the sparse estimators are defined, their
convergence properties are given in the general case and then in the concave
cases (we make a distinction between the concavity of the continuous function
and the concavity of the piecewise affine function related to the discretization).
Due to the lack of place, no formal proofs can be provided in the present article.
Nevertheless a series of lemmas outlines them and an experiment exemplifies the
lemmas. The reader that want to dive more deeper in the proofs can find them
in [15]. Section 4 concludes the article and gives directions for future works. In
Appendix A two counterexamples about the concavity are exhibited. Appendix B
presents a minimal error on the sparse estimation of the length of a segment of
parabola.

2 Background

2.1 Digitization Model

In this work, we have restricted ourselves to the digitizations of function graphs.
So, let us consider a continuous function g : [a, b] → R (a < b), its graph
C(g) = {(x, g(x)) | x ∈ [a, b]} and a positive real number r, the resolution. We
assume to have an orthogonal grid in the Euclidean space R2 whose set of grid
points is hZ2 where h = 1/r is the grid spacing. We use the following notations:
�x�h is the greatest multiple of h less than or equal to x, {x}h = x − �x�h.
Finally, for any function f defined on an interval, L(f) denotes the length of
C(f), the graph of f (L(f) ∈ [0,+∞]).

The common methods to model the digitization of the graph C(g) at the
resolution r are closely related to each others. In this paper, we assume an object
boundary quantization (OBQ). This method associates to the graph C(g) the h-
digitization set DO(g, h) = {(kh, �g(kh)�h) | k ∈ Z}. The set DO(g, h) contains
the uppermost grid points which lie in the hypograph of g, hence it can be
understood as a part of the boundary of a solid object. Provided the slope of
g is limited by 1 in modulus, DO(g, h) is an 8-connected digital curve. Observe
that if g is a function of class C1 such that the set {x ∈ [a, b] | |g′(x)| = 1} is
finite, then by symmetries on the graph C(g), it is possible to come down to the
case where |g′| ≤ 1. So, we assume that g is a Lipschitz function which Lipschitz
constant 1. Hence, the set DO(g, h) is 8-connected for any h and the curve C(g)

216 L. Mazo and É. Baudrier

is rectifiable (L(g) < +∞). Moreover, the h-digitization set DO(g, h) can be
described by its first point and its Freeman code [9], F(g, h), with the alphabet
{0, 1, 7}. For any word ω ∈ {0, 1, 7}k (k ∈ N), we set ‖ω‖ =

√
k2 + j2 where j is

the number of letters 1 minus the number of letters 7 in the word ω.

2.2 Local Estimators

Local length estimators (see [10] for a short review) are based on parallel com-
putations of the length of fixed size segments of a digital curve. For instance,
an 8-connected curve can be split into 1-step segments. For each segment, the
computation return 1 whenever the segment is parallel to the axes (Freeman’s
code is even) and

√
2 when the segment is diagonal (Freeman’s code is odd).

Then all the results are added to give the curve length estimation.
This kind of local computation is the oldest way to estimate the length of

a curve and has been widely used in image analysis. Nevertheless, it has not
the convergence property. In [13], the authors introduce a general definition of
local length estimation with sliding segments and prove that such computations
cannot give a convergent estimator for straight lines whose slope is small (less
than the inverse of the size of the sliding segment). In [17], a similar definition of
local length estimation is given with disjoint segments. Again, it is shown that
the estimator failed to converge for straight lines (with irrational slopes). This
behavior is experimentally confirmed in [3] on a test set of five closed curves.
Moreover, the non-convergence is established in [5,18] for almost all parabolas.

2.3 Adaptive Estimators: MDSS and MLP

Adaptive length estimators gather estimators relying on a segmentation of the
discrete curve that depends on each point of the curve: a move on a point can
change the whole segmentation. Unlike local estimators, it is possible to prove
the convergence property of adaptive length estimators under some assumptions.
Adaptive length estimators include two families of length estimators, namely
the Maximal Digital Straight Segment (MDSS) based length estimators and the
Minimal Length Polygon (MLP) based length estimators.

Definition and properties of MDSS can be found in [12,7,3]. Efficient algo-
rithms have been developed for segmenting curves or function graphs into MDSS
and to compute their characteristics in a linear time [12,8,7]. The decomposition
in MDSS is not unique and depends on the start-point of the segmentation and
on the curve travel direction. The convergence property of MDSS estimators has
been proved for convex polygons whose MDSS polygonal approximation1 is also
convex [11, Th. 13 and the proof]: given a convex polygon C and a grid spacing
h (below some threshold), the error between the estimated length Lest(C, h) and
the true length of the polygon L(C) is such that
1 Though the digitization of a convex set is digitally convex, it does not mean that

a polygonal curve related to a convex polygonal curve via a MDSS segmentation
process is also convex.

About Multigrid Convergence of Some Length Estimators 217

|L(S)− Lest(S, h)| ≤ (2 +
√
2)πh. (1)

Empirical MDSS multigrid convergence has also been tested in [3,6] on smooth
nonconvex planar curves. The obtained convergence speed is a O(h) as in the
convex polygonal case. Nevertheless it has not been proved under these assump-
tions. Another way to obtain an estimation of the length of a curve using MDSS
is to take the slopes of the MDSSs to estimate the tangent directions and then to
compute the length by numerical integration [2,3,14]. The estimation is unique
and has been proved to be multigrid convergent for smooth curves (of class C2

with bounded curvature in [2], of class C3 with strictly positive curvature in [14]).
The convergence speed is a O(h 1

3) [14] and thus, worse than (1).
Let C be a simple closed curve lying in-between two polygonal curves γ1 and

γ2. Then there is a unique polygon, the MLP, whose length is minimal between
γ1 and γ2. The length of the MLP can be used to estimate the length of the curve
C. At least two MLP based length estimators have been described and proved to
be multigrid convergent for convex, smooth or polygonal, simple closed curves,
the SB-MLP proposed by Sloboda et al. [16] and the AS-MLP, introduced by
Asano et al. [1]. For both of them, and for a given grid spacing h, the error
between the estimated length Lest(C, h) and the true length of the curve L(C) is
a O(h):

|L(C)− Lest(C, h)| ≤ Ah

where A = 8 for SB-MLP and A ≈ 5.844 for AS-MLP.
On the one hand, as estimators described in this section are adaptive, the

convergence theorems are difficult to establish and rely on strong hypotheses.
On the other hand, the study of the MDSS in [6] shows that the MDSS size
tends to 0 and their discrete length tends toward infinity as the grid step tends
to 0. Thereby, one could ask whether combining a local estimation with an
increasing window size as the resolution grows would give a convergent estimator
under more general assumptions and/or with simpler proofs of convergence. The
following sections explore this question.

2.4 Semi-local Length Estimators

The notion of semi-local estimator appears in [4]. At a given resolution, a semi-
local estimator resembles a local estimator: it can be implemented via a parallel
computation, each processor handling a fixed size segment of the curve. Never-
theless, in the framework of semi-local estimation, the processors must be aware
of the resolution from which the size of the segments depends.

More formally, let g : [a, b] → R be a 1-Lipschitz function2. Hence, at any
resolution, the Freeman’s code describing the discretization of g belongs to the
set P =

⋃
n∈N{0, 1, 7}n.

2 In [4], the hypothesis on g is not clear. On the one hand, the code F(g, h) is supposed
to have {0, 1} as alphabet. On the other hand, [4, Prop 1] does not retain any
hypothesis on g but its class of differentiability. Indeed, in the proof, the derivative
of g needs not be positive nor limited by 1.

218 L. Mazo and É. Baudrier

A semi-local estimator is a pair (H, p) where

– H :]0,∞[→ N∗ gives the relative size of the segments given a grid spacing h
and

– p : P → [0,∞[gives the estimated feature (here, the length) associated to a
(finite) Freeman’s code.

At a given grid spacing h, the Freeman’s code describing the digitization of the
curve C(g) is segmented in Nh codes ωi of length H(h) and a rest ω∗ ∈ {0, 1, 7}j,
j < H(h). Then, the length of the curve C(g) is estimated by

LSL(g, h) = h

Nh−1∑
i=0

p(ωi).

In [4], the authors give a proof of convergence for functions of class C2.

Theorem 1 ([4, Prop. 1]). Let (H, p) be a semi-local estimator such that:

1. limh→0 hH(h) = 0,
2. limh→0 H(h) = +∞,
3. max

{
p(ω)− ‖ω‖ | ω ∈ {0, 1, 7}k

}
= o(k) as k → +∞.

Then, for any function g ∈ C2([a, b]), the estimation LSL(g, h) converges toward
the length of the curve C(g). Furthermore, if the term o(k) in the third hypothesis
is a constant and H(h) = Θ(h− 1

2), then L(g)− LSL(g, h) = O(h 1
2).

H(h) stands for the size of a Freeman’s code ω while hH(h) is the real length
of the computation step. In the above theorem, the first hypothesis states that
the real length hH(h) tends to 0. If instead of diminishing the grid spacing, we
keep it constant while doing a magnification of the curve with a factor 1/h, the
second hypothesis states that the size H(h) of a code tends to infinity. Finally,
and informally speaking, the last hypothesis states that the function p applied
to a code ω must return a value close to the diameter3 of the subset of DO(g, h)
associated to ω.

3 Sparse Estimators

In this section, we introduce a new notion, derived from semi-local estimators.
Yet, on the contrary to semi-local estimators, we discard the information given
by the codes ωi but their extremities. It is as if we had two resolutions, one for
the space (the abscissas), one for the calculus (the ordinates).

We have noted earlier that the hypotheses about semi-local estimators in [4]
are ambiguous. May be for the same reasons than Daurat et al., we are tempted
to do so. Indeed, in all of our proofs, we do not need the "1" in the 1-Lipschitz
hypothesis. But from a practical point of view, k-Lipschitz function for k > 1

3 The maximal Euclidean distance between two points of the subset.

About Multigrid Convergence of Some Length Estimators 219

may give non 8-connected digitization and it does not make a lot of sense to
measure the length of a set of disconnected points (though we could define a
discrete curve as the curve, in the usual mathematical sense, of a function from
Z to Z). Hence, in the following definition, as in the statement of our theorems,
we assume a 1-Lipschitz function while we intentionally forget the "1" in the
statements of the lemmas.

3.1 Definition

Definition 1. Let H :]0,+∞[→ N∗ such that limh→0 H(h) = +∞ and
limh→0 hH(h) = 0. We say that H is sparsity function. Let g : [a, b] → R be a
1-Lipschitz function. The H-sparse estimator of the length of the curve C(g) is
defined by

LSp(g, h) = h

Nh∑
i=0

‖ωi‖

where ωi ∈ {0, 1, 7}H(h) for i �= Nh, ωNh
∈ {0, 1, 7}j with j ∈ (0, H(h)] and the

concatenation of the words ωi equals F(g, h).
An Illustration is given Figure 1.

Fig. 1. Sparse estimation at two resolutions

3.2 Convergence

In this section, we establish that the sparse length estimators are convergent for
1-Lipschitz functions. Moreover, Theorem 2 gives a bound on the error at grid
spacing h for functions of class C2.

Let m = hH(h) and A, B be resp. the minimum and the maximum of the inte-
ger interval {k ∈ N | kh ∈ [a, b]}. The proof of Theorem 2 relies on two lemmas.
The first one evaluates the difference between the length of the curve C(g) and
the length of the curve of the piecewise affine function gm defined on [Ah,Bh]
by gm(Ah + km) = g(Ah + km) (k ∈ N) and gm(Bh) = g(Bh). The second
lemma evaluates the difference between L(gm) and the length of the piecewise
affine function ghm defined on [Ah,Bh] by ghm(Ah + km) = �gm(Ah+ km)�h =
�g(Ah+ km)�h (k ∈ N) and ghm(Bh) = �g(Bh)�h. Figure 2 shows the three
functions g, gm, ghm on an interval [Ah+ km,Ah+ (k + 1)m].

220 L. Mazo and É. Baudrier

Fig. 2. The two parts of the estimation error: the curve g (in green, solid) to its chord
gm (in magenta, dotted-dashed) then the curve chord to the chord ghm (in blue, dashed)
of the digitized curve DO(g, h) (black points)

Lemma 1. Let g be a Lipschitz function.

– For any sparsity function H, we have

lim
h→0

L(gm) = L(g).

– If furthermore g is of class C2, we have for any h

|L(gm)− L(g)| ≤ m
b− a

2
‖ϕ′‖∞ + 2h‖ϕ‖∞ (2)

where the function ϕ is defined on R by ϕ(t) =
√
1 + g′(t)2.

Lemma 1 can be seen as an adaptation of a classical result on the approxima-
tion of a curve by its chords, the difficulty comes from the 1-Lipschitz hypothesis
and the fixed sparsity step H(h).

Lemma 2. Let f1 and f2 be two piecewise affine functions defined on [c, d] ⊂ R

with a common subdivision having p steps. Suppose that f1 ≤ f2 and ‖f1 −
f2‖∞ ≤ e for some e ∈ R. Then

|L(f1)− L(f2)| ≤ p e.

Theorem 2 relies on Lemma 1 and Lemma 2 which is applied to the piecewise
affine functions gm and ghm, taking e = h.

Theorem 2. Let H be a sparsity function and g : [a, b] → R a 1-Lipschitz
function. Then, the estimator LSp converge toward the length of the curve C(g).
Furthermore, if g is of class C2, we have

L(g)− LSp(g, h) = O(hH(h)) +O
(

1

H(h)

)
. (3)

About Multigrid Convergence of Some Length Estimators 221

Formula 3 shows two opposite trends for the determination of the sparsity step
H(h): O(hH(h)) – the discretization error – corresponds to the curve sampling
error and tends to reduce the step H(h) while O

(
1

H(h)

)
– the quantization error

– corresponds to the error due to the quantization of the sample points and tends
to extend the step. The optimal convergence speed in h

1
2 is then obtained taking

H(h) = Θ(h− 1
2). Thus, only one in about h− 1

2 value is needed to make a sparse
estimation (which justifies the adjective sparse). Then, the complexity in the
optimal case is a O(r 1

2).

3.3 Concave Functions

In this section, we assume besides that the function g is differentiable and con-
cave on [a, b]. Under these hypotheses, we can improve the bound on the con-
vergence speed of the estimated length toward the true length of the curve C(g).
The functions gm and ghm are those defined in Section 3.2. Lemmas 3 and 4
are improvements of Lemmas 1 and 2 for concave curves. Figure 3 shows some
experiments that illustrate the convergence rate obtained with Theorem 3.

Lemma 3. If g is of class C2 and g′′ ≤ 0 on [a, b], then

|L(g)− L(gm)| ≤ (b − a)‖g′′‖2∞
8

m2 + 2h‖ϕ‖∞ (4)

where the function ϕ is defined on R by ϕ(t) =
√
1 + g′(t)2.

The right part of Inequality (4) contains two terms as in Inequality (2) but
only the first term has been improved with m becoming m2. The second term
standing for the error on the edges remains the same.

Lemma 4. ∣∣L(gm)− L(ghm)
∣∣ ≤ (b − a)

1

H(h)2
+ h‖g′‖∞.

From Lemma 4 and Lemma 3, we derive the following bound on the speed of
convergence when the function g is concave.

Theorem 3. Let H be a sparsity function and g : [a, b] → R a concave 1-
Lipschitz function of class C2. Then, we have

L(g)− LSp(g, h) = O(h2H(h)2) +O
(

1

H(h)2

)
.

Concavity allows squarring each term (compared to Theorem 2), which does
not change the optimal size for H(h) but improves the optimal convergence speed
up to h.

222 L. Mazo and É. Baudrier

(a) |L(g)− L(gm)| (b)
∣∣L(gm)− L(ghm)

∣∣
Fig. 3. Experimental convergence rates. We have computed the length of the curve
y = ln(x), x ∈ [1, 2], using the sparse estimators defined by H(h) =

⌊
h−α

⌋
where

α ∈ { 1
4
, 1
3
, 1
2
, 2
3
}, for the resolutions defined by r =

⌊
1.51+3n

⌋
, n ∈ [0, 13]. (a) Dis-

cretization error (the errors on the left and the right bounds of the interval have been
withdrew). We observe the convergence in O(h2H(h)2) which appears in Theorem 3.
(b) Quantization error. For α ∈ { 1

4
, 1
3
, 1
2
}, we observe the convergence is a O(1/H(h)2),

which appears in Theorem 3. For α = 2
3
, the condition (iii) of Prop. 1 is satisfied and

thus the piecewise affine function ghm is concave. Hence, we can observe that the con-
vergence is a O(h) as deduced from Lemma 5.

3.4 Strong Concavity

When the function g is concave, the piecewise affine function gm is clearly also
concave. Nevertheless, the second piecewise function ghm is not necessary concave
even on the sub-domain Jh = [Ah,Ah+N0m] where N0 is the greatest integer
such that Jh ⊆ [a, b]. Indeed, we exhibit in Appendix A a function g that is
concave and for which the function ghm is nonconcave for any h below some
threshold. This section gives some sufficient conditions for ghm to be also concave
and studies the consequences on the convergence speed of such an assumption.

Proposition 1. Let H be a sparsity function and g : [a, b] → R a concave
function of class C2. If one of the following condition holds, then there exists
h0 > 0 such that, for any h < h0, the piecewise affine function ghm is concave
on Jh.

(i) H(h) = h− 1
2 and max(g′′) < −1.

(ii) H(h) = h− 1
2 and g(x) = ax2 + bx+ c where a ≤ − 1

2 .
(iii) hH(h)2 → +∞ as h→ 0 and max(g′′) < 0.

The following lemma is an improvement of Lemma 4 for two concave piecewise
affine functions.

Lemma 5. Let f1 and f2 be two concave piecewise affine functions with the
same monotonicity defined on [c, d] ⊂ R such that f1 ≤ f2 and ‖f1 − f2‖∞ ≤ e
for some e ∈ R. Then

About Multigrid Convergence of Some Length Estimators 223

|L(f1)− L(f2)| ≤ B e.

where B is a constant related to the slope of f1 and f2 at c.

Corollary 1. Let H be a sparsity function and g : [a, b]→ R a concave function
of class C2. If, for some h0 > 0, the function ghm is concave on Jh for any h < h0,
then we have

L(g)− LSp(g, h) = O(h2H(h)2) +O(h).

From Corollary 1, it follows that, to speed up the convergence, we shall take
the smallest sparsity step H(h) provided the hypothesis about the concavity is
satisfied. According to Proposition 1, this should lead us to choose the function H
such that H dominates h− 1

2 as h→ 0. For instance, we can take H(h) = h− 1
2−ε

where ε > 0 and ε ≈ 0. Then, the convergence speed is h1−2ε. Note that h is
a minimal error bound that cannot be improved in the general case since for
the function g defined by g(x) = (1948)

2 − x2, x ∈ [1
16 ,

19
48], we have shown that

L(g)− LSp(g, h) ≥ 0.06h (see Appendix B).

4 Conclusion

In this article, we have studied some convergence properties of a class of semi-
local length estimators in the concave and the general cases. These estimators
need few information about the curve: the proportion of points of the curve used
for the computation tends to 0 as the resolution tends toward infinity. That is
why we propose to call them sparse estimators. In a future work, we plan to
extend our estimators to the nD Euclidean space to compute k-volumes, k < n.
We have also to study how the material presented in this article behave with Jor-
dan curves obtained as boundary of solid objects through various discretization
schemes. Furthermore, the definition of the sparse estimators relies on Jordan’s
definition for curve length. It would be interesting to keep the main idea from
these estimators while relying on the more general definition of Minkowski (as
in [2]). This could be more realistic in the framework of multigrid convergence,
since physic objects cannot be considered as smooth (nor convex, etc.) at any
resolution. Another extension of this work is to check whether the proofs of con-
vergence obtained for sparse estimators can help to obtain new proofs for the
convergence of adaptative length estimators as the MDSS. This could lead to
the definition of a larger class of geometric feature estimators including sparse
estimators and MDSS. Eventually, there is a need to find how to estimate the
resolution of a given curve.

A Strong Concavity: Counterexamples

In this appendix, we show that a piecewise affine function can be concave and its
digitization, beyond some resolution, never concave (that is, the piecewise affine
function ghm defined in Sec. 3.2 is not concave for grid spacing h below some
threshold). The first counterexample uses a local estimator and the second one

224 L. Mazo and É. Baudrier

uses a sparse estimator. Both counterexamples rely on the following theorem
proved in [18] (in fact, an extended version of the theorem is needed for the
second counterexample). This theorem asserts that, given a function x 	→ ax2 +
bx+ c, the distribution in [0, h] of the values of the expression {a(kh)2+ b(kh)+
c}h, k ∈ N, which are the errors resulting from the quantization, tends toward
the equidistribution.

Theorem 4 ([18, Lemma 2 and Prop. 3]). Let a, b ∈ R, a < b. Let g :
[a, b]→ R be a polynomial function of degre 2 with derivative in [0, 1]. Then, for
all [u, v] ⊆ [0, 1],

lim
h→0

card{x ∈ hN ∩ [a, b] | {g(x)}h ∈ [hu, hv]}
card(hN ∩ [a, b])

= v − u.

For the first counterexample, we digitize the parabola associated to the func-
tion g(x) = 2x − x2, x ∈ [0, 1] and we split this parabola into segments of size
5h. Thanks to Theorem 4, we prove that, for each grid spacing h below some
threshold, we can choose an integer p for which the fractional part {ghm(ph)}h is
such that the finite difference ghm((p+ 5)h)− ghm(ph) is less than or equal to the
grid spacing h while the finite difference ghm((p+10)h)− ghm((p+5)h) is greater
than or equal to twice the grid spacing h. Thus, the function ghm is not concave
on [0, 1].

For the second counterexample, we discretize the parabola y = g(x) = 1
50 (2x−

x2), x ∈ [0, 1] and we use segments of size H(h) =
⌊
h− 1

2

⌋
. Again, we have shown

that there exists h0 > 0 such that for any h, 0 < h < h0, there exists an integer
p for which the slope of ghm on [ph, ph + H(h)h] is greater than its slope on
[ph+H(h)h, ph+ 2H(h)h].

B Inferior Bound for the Method Error in the Concave
Case

We give an inferior bound on the difference between the true length L(g) of the
parabola y = g(x) = (1948)

2−x2 for x ∈ [1
16 ,

19
48] and the length LSp(g, h), obtained

with the sparse estimator defined by the sparsity function H(h) =
⌊
h− 1

2

⌋
. Let gm

and ghm be the piecewise affine functions defined in Section 3.2. Then the lengths
of their curves satisfy L(ghm)+0.06h ≤ L(gm) ≤ L(g) for any h = (12(8p+ 1))−2

where p ∈ N. Moreover, the bounds of the interval [1
16 ,

19
48] are multiples of h.

Hence, there is no error due to the bounds. Eventually, for any p ∈ N and
h = (12(8p+ 1))−2, we get L(g)− LSp(g, h) ≥ 0.06h.

References

1. Asano, T., Kawamura, Y., Klette, R., Obokata, K.: Minimum-length polygons in
approximation sausages. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.)
IWVF 2001. LNCS, vol. 2059, pp. 103–112. Springer, Heidelberg (2001)

About Multigrid Convergence of Some Length Estimators 225

2. Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des
courbes et des surfaces. Ph.D. thesis, Université Lyon 2 (2002)

3. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital
curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–257 (2004)

4. Daurat, A., Tajine, M., Zouaoui, M.: Les estimateurs semi-locaux de périmètre.
Tech. rep., LSIIT CNRS, UMR 7005, Université de Strasbourg (2011),
http://hal.inria.fr/hal-00576881

5. Daurat, A., Tajine, M., Zouaoui, M.: Patterns in discretized parabolas and length
estimation. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS,
vol. 5810, pp. 373–384. Springer, Heidelberg (2009)

6. De Vieilleville, F., Lachaud, J.O., Feschet, F.: Convex digital polygons, maximal
digital straight segments and convergence of discrete geometric estimators. Journal
of Mathematical Imaging and Vision 27(2), 139–156 (2007)

7. Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of dig-
ital curves. International Journal of Pattern Recognition and Artificial Intelli-
gence 09(04), 635–662 (1995)

8. Dorst, L., Smeulders, A.W.: Discrete straight line segments: parameters, primitives
and properties. In: Vision Geometry: Proceedings of an AMS Special Session Held
October 20-21, 1989,[at Hoboken, New Jersey], vol. 119, pp. 45–62 (1991)

9. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transac-
tions on Electronic Computers EC-10(2), 260–268 (1961)

10. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann (2004)
11. Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis.

Journal of Mathematical Imaging and Vision 13(3), 173–191 (2000)
12. Kovalevsky, V.: New definition and fast recognition of digital straight segments and

arcs. In: Proceedings of the 10th International Conference on Pattern Recognition,
vol. ii, pp. 31–34 (1990)

13. Kulkarni, S.R., Mitter, S.K., Richardson, T.J., Tsitsiklis, J.N.: Local versus non-
local computation of length of digitized curves. IEEE Trans. Pattern Anal. Mach.
Intell. 16(7), 711–718 (1994)

14. Lachaud, J.O.: Espaces non-euclidiens et analyse d’ image: modèles déformables
riemanniens et discrets, topologie et géométrie discrète. Habilitation á diriger des
recherches, Université de Bordeaux 1 (Décembre 2006)

15. Mazo, L., Baudrier, E.: About multigrid convergence of some length estimators
(extended version). Tech. rep., ICube, University of Strasbourg, CNRS (2014),
http://hal.inria.fr/hal-00990694

16. Sloboda, F., Zatko, B., Stoer, J.: On approximation of planar one-dimensional
continua. In: Advances in Digital and Computational Geometry, pp. 113–160 (1998)

17. Tajine, M., Daurat, A.: On local definitions of length of digital curves. In: Nyström,
I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 114–
123. Springer, Heidelberg (2003)

18. Tajine, M., Daurat, A.: Patterns for multigrid equidistributed functions: Appli-
cation to general parabolas and length estimation. Theoretical Computer Sci-
ence 412(36), 4824–4840 (2011)

http://hal.inria.fr/hal-00576881
http://hal.inria.fr/hal-00990694

Non-additive Bounded Sets of Uniqueness in Zn

Sara Brunetti1, Paolo Dulio2,�, and Carla Peri3

1 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Via Roma, 56, 53100 Siena, Italy

sara.brunetti@unisi.it
2 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano,

Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
paolo.dulio@polimi.it

3 Università Cattolica S. C.,
Via Emilia Parmense, 84, 29122 Piacenza, Italy

carla.peri@unicatt.it

Abstract. A main problem in discrete tomography consists in look-
ing for theoretical models which ensure uniqueness of reconstruction. To
this, lattice sets of points, contained in a multidimensional grid A =
[m1] × [m2] × · · · × [mn] (where for p ∈ N, [p] = {0, 1, ..., p − 1}), are
investigated by means of X-rays in a given set S of lattice directions.
Without introducing any noise effect, one aims in finding the minimal
cardinality of S which guarantees solution to the uniqueness problem.

In a previous work the matter has been completely settled in dimen-
sion two, and later extended to higher dimension. It turns out that d+1
represents the minimal number of directions one needs in Zn (n ≥ d ≥ 3),
under the requirement that such directions span a d-dimensional sub-
space of Zn. Also, those sets of d + 1 directions have been explicitly
characterized.

However, in view of applications, it might be quite difficult to decide
whether the uniqueness problem has a solution, when X-rays are taken
in a set of more than two lattice directions. In order to get computa-
tional simpler approaches, some prior knowledge is usually required on
the object to be reconstructed. A powerful information is provided by
additivity, since additive sets are reconstructible in polynomial time by
using linear programming.

In this paper we compute the proportion of non-additive sets of unique-
ness with respect to additive sets in a given grid A ⊂ Zn, in the important
case when d coordinate directions are employed.

Keywords: Additive set, bad configuration, discrete tomography, non-
additive set, uniqueness problem, X-ray.

1 Introduction

One of the main problems of discrete tomography is to determine finite subsets
of the integer lattice Zn by means of their X-rays taken in a finite number of

� Corresponding author.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 226–237, 2014.
c© Springer International Publishing Switzerland 2014

Non-additive Bounded Sets of Uniqueness in Zn 227

lattice directions. Given a lattice direction u, the X-ray of a finite lattice set E
in the direction u counts the number of points in E on each line parallel to u.
The points in E can model the atoms in a crystal, and new techniques in high
resolution transmission electron microscopy allow the X-rays of a crystal to be
measured so that the main goal of discrete tomography is to use these X-rays to
deduce the local atomic structure from the collected counting data, with a view
to applications in the material sciences. The high energies required to produce
the discrete X-rays of a crystal mean that only a small number of X-rays can
be taken before the crystal is damaged. Therefore, discrete tomography focuses
on the reconstruction of binary images from a small number of X-rays.

In general, it is hopeless to obtain uniqueness results unless the class of lattice
sets is restricted. In fact, for any fixed set S of more than two lattice directions,
to decide whether a lattice set is uniquely determined by its X-rays along S is
NP-complete [9]. Thus, one has to use a priori information, such as convexity or
connectedness, about the sets that have to be reconstructed (see for instance [8],
where convex lattice sets are considered). An important class, which provides
a computational simpler approach to the uniqueness and reconstruction prob-
lems, is that of additive sets introduced by P.C. Fishburn and L.A. Shepp in [7]
(see the next section for all terminology). Additive sets with respect to a finite
set of lattice directions are uniquely determined by their X-rays in the given
directions, and they are also reconstructible in polynomial time by use of linear
programming. The notions of additivity and uniqueness are equivalent when two
directions are employed, whereas, for three or more directions, additivity is more
demanding than uniqueness, as there are non-additive sets which are unique [6].
More recently, additivity have been reviewed and settled by a more general treat-
ment in [10]. Thanks to this new approach, the authors showed that there are
non-additive lattice sets in Z3 which are uniquely determined by their X-rays
in the three standard coordinate directions by exhibiting a counter-example (see
[10, Remark 2 and Figure 2]). This answers in the negative a question raised
by Kuba at a conference on discrete tomography in Dagsthul (1997), that every
subset E of Z3 might be uniquely determined by its X-rays in the three standard
unit directions of Z3 if and only if E is additive.

In previous works we restricted our attention to bounded sets, i.e. lattice sets
contained in a given grid A = [m1] × [m2] × · · · × [mn]. In particular, in [2] we
addressed the problem in dimension two and we proved that for a given set S of
four lattice directions, there exists a rectangular grid A such that all the subsets
of A are uniquely determined by their X-rays in the directions in S. In [4] we
extended the previous uniqueness results to higher dimensions, by showing that
d+ 1 represents the minimal number of directions one needs in Zn (n ≥ d ≥ 3),
under the requirement that such directions span a d-dimensional subspace of Zn.
Also, those sets of d+ 1 directions have been explicitly characterized.

We also recall that Fishburn et al. [7] noticed that an explicit construction
of non-additive sets of uniqueness has proved rather difficult even though it
might be true that non-additive uniqueness is the rule rather than exception.
In particular they suggest that for some set of X-ray directions of cardinality

228 S. Brunetti, P. Dulio, and C. Peri

larger than two, the proportion of lattice sets E of uniqueness that are not also
additive approaches 1 as E gets large. They leave it as an open question in the
discussion section. In [3] we presented a procedure for constructing non-additive
sets in Z2 and we showed that when S contains the coordinate directions this
proportion does not depend on the size of the lattice sets into consideration.

In the present paper we focus on non-additive sets in Zn and estimate the
proportion of non-additive sets of uniqueness with respect to additive sets in
a given grid A, when the set S contains d coordinate directions (see Theorem
1). It turns out that such proportion tends to zero as A gets large so that the
probability to have an additive set is high. From the viewpoint of the applica-
tions, this suggest the use of linear programming for good quality solutions as
the reconstruction problem for additive sets is polynomial.

2 Definitions and Preliminaries

The standard orthonormal basis for Zn will be {e1, . . . , en}, and the coordinates
with respect to this orthonormal basis x1, . . . , xn. A vector u = (a1, . . . , an) ∈
Zn, where a1 ≥ 0, is said to be a lattice direction, if gcd(a1, ..., an) = 1. We
refer to a finite subset E of Zn as a lattice set, and we denote its cardinality
by |E|. For a finite set S = {u1, u2, ..., um} of directions in Zn, the dimension
of S, denoted by dimS, is the dimension of the vector space generated by the
vectors u1, u2, ..., um. Moreover, for each I ⊆ S, we denote u(I) =

∑
u∈I u, with

u(∅) = 0 ∈ Zn. Any two lattice sets E and F are tomographically equivalent if
they have the sameX-rays along the directions in S. Conversely, a lattice set E is
said to be S-unique if there is no lattice set F different from but tomographically
equivalent to E.

An S-weakly bad configuration is a pair of lattice sets (Z,W) each consisting of
k lattice points not necessarily distinct (counted with multiplicity), z1, ..., zk ∈ Z
and w1, ..., wk ∈ W such that for each direction u ∈ S, and for each zr ∈ Z, the
line through zr in direction u contains a point wr ∈W . If all the points in each set
Z,W are distinct (multiplicity 1), then (Z,W) is called an S-bad configuration. If
for some k ≥ 2 an S-(weakly) bad configuration (Z,W) exists such that Z ⊆ E,
W ⊆ Zn\E, we then say that a lattice set E has an S-(weakly) bad configuration.
This notion plays a crucial role in investigating uniqueness problems, since a
lattice set E is S-unique if and only if E has no S-bad configurations [7].

For p ∈ N, denote {0, 1, ..., p − 1} by [p]. Let A = [m1] × [m2] × · · · × [mn]
be a fixed lattice grid in Zn. We shall restrict our considerations to lattice sets
contained in a given lattice grid A, referred to as bounded sets. We say that a
set S is a valid set of directions for A, if for all i ∈ {1, . . . , n}, the sum hi of
the absolute values of the i-th coordinates of the directions in S satisfies the
condition hi < mi. Notice that this definition excludes trivial cases when S
contains a direction with so large (or so small) slope, with respect to A, such
that each line with this slope meets A in no more than a single point. If each
subset E ⊂ A is S-unique in A, we then say that S is a set of uniqueness for A.
For our purpose, we define additivity in terms of solutions of linear programs.

Non-additive Bounded Sets of Uniqueness in Zn 229

The reconstruction problem can be formulated as an integer linear program
(ILP). Since the NP-hardness of the reconstruction problem for more than two
directions reflects in the integrality constraint, relaxation of ILP are considered
(see, for instance [1], [11],[14],[15]). In this setting, a lattice set is S-additive if
it is the unique solution of the relaxed linear program (LP). Moreover, a set is
S-additive if and only if it has no S-weakly bad configurations. Additivity is also
fundamental for treating uniqueness problems, due to the following facts (see [5,
Theorem 2]):

1. Every S-additive set is S-unique.
2. There exist S-unique sets which are not S-additive.

A set which is not S-additive will be simply said non-additive, when confusion
is not possible.

In [2] we characterized all the minimal sets S of planar directions which are
sets of uniqueness for A, and in [4] we studied the problem in higher dimension.
In particular, we stated the following necessary condition on minimal sets S of
lattice directions to be sets of uniqueness for A.

Proposition A ([4, Proposition 8]). Let S ⊂ Zn be a set of distinct lattice
directions such that |S| = d+ 1 and dimS = d ≥ 3 (n ≥ d ≥ 3). Suppose that S
is a valid set of uniqueness for a finite grid A = [m1]× [m2]× · · · × [mn] ⊂ Zn.
Then S is of the form

S = {u1, ..., ud, w = u(I)− u(J)}, (1)

where the vectors u1, ..., ud are linearly independent, and I, J are disjoint subsets
of {u1, ..., ud} such that |I| ≡ |{w} ∪ J | (mod 2).

Examples of sets S of the form (1) which are contained in Z3 and Z4 are
presented in Subsections 3.1 and 3.2, respectively.

Among the sets S of the form (1) we then specified which ones are sets of
uniqueness for A, by employing an algebraic approach introduced by Hajdu and
Tijdeman in [12]. To illustrate the result we need some further definitions (see
also [4]).

For a vector u = (a1, . . . , an) ∈ Zn, we simply write xu in place of the mono-
mial xa1

1 xa2
2 . . . xan

n . Consider now any lattice vector u ∈ Zn, where u �= 0. Let
u− ∈ Zn be the vector whose entries equal the corresponding entries of u if neg-
ative, and are 0 otherwise. Analogously, let u+ ∈ Zn be the vector whose entries
equal the corresponding entries of u if positive, and are 0 otherwise.

For any finite set S of lattice directions in Zn, we define the polynomial

FS(x1, . . . , xn) =
∏
u∈S

(
xu+ − x−u−

)
. (2)

For example, for S = {e1, e2, e3, e1 + e2 − e3} ⊂ Z3 we get

FS(x1, x2, x3) = (x1 − 1)(x2 − 1)(x3 − 1)(x1x2 − x3) = −x1x2x2
3 + x2x2

3 + x1x2
3 − x2

3+

+x2
1x

2
2x3 − x1x2

2x3 − x2
1x2x3 + 2x1x2x3 − x2x3 − x1x3 + x3 − x2

1x
2
2 + x1x2

2 + x2
1x2 − x1x2.

230 S. Brunetti, P. Dulio, and C. Peri

Given a function f : A → Z, its generating function is the polynomial defined
by

Gf (x1, . . . , xn) =
∑

(a1,...,an)∈A
f(a1, . . . , an)x

a1
1 . . . xan

n .

Conversely, we say that the function f is generated by a polynomial P (x1, . . . , xn)
if P (x1, . . . , xn) = Gf (x1, . . . , xn). Notice that the function f generated by the
polynomial FS(x1, . . . , xn) vanishes outside A if and only if the set S is valid for
A.

Furthermore, to a monomial kxa1
1 xa2

2 . . . xan
n we associate the lattice point z =

(a1, . . . , an) ∈ Zn, together with its weight k. We say that a point (a1, . . . , an) ∈
A is a multiple positive point for f (or Gf) if f(a1, . . . , an) > 1. Analogously,
(a1, . . . , an) ∈ A is said to be a multiple negative point for f if f(a1, . . . , an) <
−1. Such points are simply referred to as multiple points when the signs are not
relevant. For a polynomial P (x1, . . . , xn) we denote by P+ (resp. P−) the set of
lattice points corresponding to the monomials of P (x1, . . . , xn) having positive
(resp. negative) sign, referred to as positive (resp. negative) lattice points. We
also write P = P+ ∪ P−.

The line sum of a function f : A → Z along the line x = x0 + tu, passing
through the point x0 ∈ Zn and with direction u, is the sum

∑
x=x0+tu,x∈A f(x).

Further, we denote ||f || = maxx∈A{|f(x)|}. We can easily check that the function
f generated by FS(x1, . . . , xn) has zero line sums along the lines taken in the
directions belonging to S.

Hajdu and Tijdeman proved that if g : A → Z has zero line sums along the
lines taken in the directions of S, then FS(x1, . . . , xn) divides Gg(x1, . . . , xn)
over Z (see [12, Lemma 3.1] and [13]). We recall that two functions f, g : A ⊂
Zn → {0, 1} are tomographically equivalent with respect to a given finite set S
of lattice directions if they have equal line sums along the lines corresponding to
the directions in S. Note that two non trivial functions f, g : A → {0, 1} which
are tomographically equivalent can be interpreted as characteristic functions of
two lattice sets which are tomographically equivalent. Further, the difference h =
f − g of f and g has zero line sums. Hence there is a one-to-one correspondence
between S-bad configurations contained inA and non-trivial functions h : A → Z

having zero line sums along the lines corresponding to the directions in S and
||h|| ≤ 1.

Let us consider a set S = {u1, ..., ud, w = u(I)−u(J)}, where I, J are disjoint
subsets of {u1, ..., ud}. We define

D = {±v : v = u(X)− u(I) �= 0, X ⊆ I ∪ J ∪ {w}}. (3)

In [4] we proved the following result.

Theorem B ([4, Theorem 12]). Let S ⊂ Zn be a set of distinct lattice direc-
tions such that S = {ur = (ar1, . . . , arn) : r = 1, . . . , d+ 1} (n ≥ d ≥ 3), where
u1, ..., ud are linearly independent, ud+1 = u(I)−u(J), and I, J are disjoint sub-
sets of {u1, ..., ud} such that |I| ≡ |{w}∪J |(mod2). Suppose S is valid for the grid

Non-additive Bounded Sets of Uniqueness in Zn 231

A = [m1]× [m2]×· · ·× [mn]. Denote

d+1∑
r=1

|ari| = hi, for each i ∈ {1, . . . , n}. Sup-

pose that g : A → Z has zero line sums along the lines in the directions in S, and
||g|| ≤ 1. Then g is identically zero if and only if for each v = (v1, . . . , vn) ∈ D,
there exists s ∈ {1, . . . , n} such that |vs| ≥ ms − hs.

From the geometrical point of view, a set S of lattice directions is a set
of uniqueness for a grid A if and only if S and A are chosen according to
assumptions in Theorem B, and the resulting set D is such that its members
satisfy the conditions of the theorem.

3 Non-additive Bounded Set of Uniqueness

In this section we study non-additive sets of uniqueness contained in a given grid
A, in the important case when S contains the coordinate directions. In [3] we
showed that when S ⊂ Z2 contains the coordinate directions the proportion of
lattice sets E of uniqueness that are not also additive does not depend on the
size of the lattice sets into consideration and is given by

2

2|FS| − 2
,

where |FS | denotes the cardinality of the set of points corresponding to the
polynomial FS(x1, x2).

In the present paper we aim to extend this estimate to higher dimension.
Before presenting the general result, we wish to consider two preliminary cases,
concerning Z3 and Z4 respectively, which motivate the general result presented
below.

3.1 Non-additive Sets in Z3

Let us consider the case n = d = 3. Let S = {e1, e2, e3, w = u(I)− u(J)} ⊂ Z3,
where I, J are disjoint subsets of {e1, e2, e3} such that |I| ≡ |{w} ∪ J | (mod 2).
Since w is a direction distinct from e1, e2, e3, we have e1 ∈ I and, up to exchang-
ing the role of e2 and e3, we have the following choices for w.

1. w = e1 + e2 + e3 = (1, 1, 1), where I = {e1, e2, e3}, J = ∅.
2. w = e1 + e2 − e3 = (1, 1,−1), where I = {e1, e2, }, J = {e3}.
3. w = e1 − e2 − e3 = (1,−1,−1), where I = {e1}, J = {e2, e3}.

In order to apply Theorem B, we now evaluate the set D defined by (3), in all
these cases.

1. If I = {e1, e2, e3}, J = ∅, then by choosing X = {w, ei}, for i = 1, 2, 3, we
get v = ei ∈ D.

2. If I = {e1, e2, }, J = {e3}, then for X = {e1, e2, e3} we get v = e3 ∈ D. For
X = {e1} we get v = −e2 ∈ D, and for X = {e2} we get v = −e1 ∈ D.

232 S. Brunetti, P. Dulio, and C. Peri

3. If I = {e1}, J = {e2, e3}, then for X = {e1, ei} we get v = ei ∈ D, where
i = 2, 3. For X = {w, e1, e2, e3} we get v = e1 ∈ D.

Since in all the previous cases we have hi = 2, for i = 1, 2, 3, then the set S is a
set of uniqueness for the grid A = [m1]× [m2]× [m3] if and only if mi−hi ≤ 1 for
each i = 1, 2, 3, that is mi = 3. This implies that A contains a unique S-weakly
bad configuration given by FS . The non-additive sets of uniqueness in FS are
precisely F−

S and F+
S . All the other subsets of FS , are additive. Therefore, the

proportion of bounded non-additive sets of uniqueness w.r.t. those additive is
given by

2 · 2|A\FS|

2|A| − 2 · 2|A\FS | =
2

2|FS | − 2
. (4)

3.2 Non-additive Sets in Z4

Let us now consider the case n = 4. We first note that the condition |I| ≡
|{w}∪ J | (mod 2) in Theorem B implies that |I ∪ J | must be odd. Therefore, we
have |I ∪ J | = 3 and we can distinguish the following cases:

1. n = 4 > d = |I ∪ J | = 3;
2. n = 4 = d > |I ∪ J | = 3.

1. Suppose n = 4 > d = |I ∪ J | = 3. Up to permutations of the standard
orthonormal vectors, we can assume S = {e1, e2, e3, w = u(I)− u(J)} ⊂ Z4,
where I, J are disjoint subsets of {e1, e2, e3} such that I ∪ J = {e1, e2, e3},
and |I| ≡ |{w} ∪ J | (mod 2). By identifying Z3 with the subspace H =
{(z1, z2, z3, 0) : z1, z2, z3 ∈ Z} in Z4, we can repeat the same considerations
as in the previous subsection. Therefore, we have S,D ⊂ H and the set
S is a set of uniqueness for the grid A = [m1] × [m2] × [m3] × [m4] if
mi = 3 for i = 1, 2, 3, and m4 ≥ 1. We shall simply write m = m4. In
this case the grid A can be arbitrary large in one direction and we shall
compute the proportion of bounded non-additive sets of uniqueness w.r.t.
those additive in A as a function of m. For the sake of simplicity, we assume
w = e1 + e2 + e3 = (1, 1, 1, 0), since all the other cases are analogous. We
have

FS(x1, x2, x3) = (x1 − 1)(x2 − 1)(x3 − 1)(x1x2x3 − 1),

and all the S-weakly bad configurations contained in A correspond to poly-
nomials of the form FS(x1, x2, x3)P (x4), where P (x4) is a polynomial in x4

with degree less than or equal to m− 1. Thus P (x4) = am−1x
m−1
4 + · · ·+a0,

where the coefficients am−1, · · ·, a0 are not all zero.
Let us consider two polynomials

Q1(x1, x2, x3, x4) = FS(x1, x2, x3)P1(x4) = FS(x1, x2, x3)
(
am−1x

m−1
4 + · · ·+ a0

)
,

Q2(x1, x2, x3, x4) = FS(x1, x2, x3)P2(x4) = FS(x1, x2, x3)
(
bm−1x

m−1
4 + · · ·+ b0

)
.

Non-additive Bounded Sets of Uniqueness in Zn 233

The corresponding sets of points Q1, Q2 are equal if and only if ai = 0
implies bi = 0, for all i = 0, · · ·,m − 1. Thus the number of S-weakly bad
configurations contained in A equals the number of polynomials P (x4) =
am−1x

m−1
4 + · · ·+ a0 whose coefficients belong to the set {0, 1}, except the

null polynomial.
Let us denote by F the set of all points in A which belong to some S-weakly
bad configuration. Notice that each S-weakly bad configuration contains two
non-additive sets consisting of the set of positive (resp. negative) points. By
multiplying the corresponding polynomial by −1, these two non-additive sets
exchange each other. Therefore, the number of non-additive sets which are
contained in F equals the number of polynomials P (x4) = am−1x

m−1
4 +···+a0

whose coefficients belong to the set {−1, 0, 1}, except the null polynomial.
Thus we have 3m − 1 non-additive sets in F . Any other non-additive set
in A is obtained by adding some points of A \ F to a non-additive set in
F . Therefore, the number of non-additive sets contained in A is given by
2|A\F| (3m − 1).
The proportion of bounded non-additive sets of uniqueness in A with respect
to those additive is given by

2|A\F| (3m − 1)

2|A| − 2|A\F| (3m − 1)
=

3m − 1

2|FS|m − 3m + 1
. (5)

For m = 1 we get
2

2|FS| − 2
,

as in (4). Moreover, as A gets large, we get

lim
m→∞

3m − 1

2|FS|m − 3m + 1
= 0,

so that the set of non-additive sets is negligible.
2. Let us now suppose n = 4 = d > |I ∪ J | = 3. Up to permutations of

the standard orthonormal vectors, we can assume S = {e1, e2, e3, e4, w =
u(I) − u(J)} ⊂ Z4, where I, J are disjoint subsets of {e1, e2, e3} such that
I ∪ J = {e1, e2, e3}, and |I| ≡ |{w} ∪ J | (mod 2). By identifying Z3 with the
subspace H = {(z1, z2, z3, 0) : z1, z2, z3 ∈ Z} in Z4, we can repeat the same
considerations as in the previous subsection. In particular, we have hi = 2,
for i = 1, 2, 3, h4 = 1, and the set S is a set of uniqueness for the grid
A = [m1]× [m2]× [m3]× [m4] if and only if mi = 3 for each i = 1, 2, 3, and
m4 = m ≥ 2. Again we assume w = e1 + e2 + e3 = (1, 1, 1, 0), so that we
have

FS(x1, x2, x3, x4) = (x1−1)(x2−1)(x3−1)(x1x2x3−1)(x4−1) = FT (x1, x2, x3)(x4−1),

where T = {e1, e2, e3, w}. All the S-weakly bad configurations contained
in A correspond to polynomials of the form FS(x1, x2, x3, x4)P (x4), where
P (x4) is a polynomial in x4 with degree less than or equal to m − 2. Thus

234 S. Brunetti, P. Dulio, and C. Peri

P (x4) = am−2x
m−2
4 + · · · + a0, where the coefficients am−2, · · ·, a0 are not

all zero. Denote by F the set of all points in A which belong to some S-
weakly bad configuration. Then, by the same arguments as in the previous
case we have that F contains 3m−1 − 1 non-additive sets. Thus, we obtain
the following estimate for the proportion of bounded non-additive sets of
uniqueness in A with respect to those additive.

2|A\F| (3m−1 − 1
)

2|A| − 2|A\F| (3m−1 − 1)
=

3m−1 − 1

2|F| − (3m−1 − 1)
=

3m−1 − 1

2|FT |m − 3m−1 + 1
, (6)

as |F| = m|FT |.
For m = 2 we get

2

2|FS| − 2
,

as |FS | = 2|FT |.
Again, as A gets large, we get

lim
m→∞

3m−1 − 1

215m − 3m−1 + 1
= 0,

so that the set of non-additive sets is negligible.

3.3 Non-additive Sets in Zn

We now consider the general case. In the following, for p, q ∈ N with 1 ≤ p < q,
we denote (p, q] = {z ∈ N : p < z ≤ q}. Further, to unify different cases, when
p = q we still adopt the notation (p, q] with the convention that

∏
j∈(p,q] zj = 1,

for every zj ∈ Z.

Theorem 1. Let S = {e1, . . . , ed, w = u(I) − u(J)} be a set of d + 1 distinct
directions in Zn, where n ≥ d ≥ 3, I ∪ J = {e1, . . . , ek} (3 ≤ k ≤ d), and
|I| �≡ |J | (mod 2). Let A = [m1] × [m2] × · · · × [mn] ⊂ Zn, where mi = 3 for
i = 1, . . . , k, mi ≥ 2 for i = k + 1, . . . , d, and mi ≥ 1 for i = d+ 1, . . . , n. Then
the set S is a set of uniqueness for A and the proportion of non-additive sets of
uniqueness in A with respect to those additive is given by

3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1

2(2
k+1−1)

∏
i∈(k,n] mi −

(
3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1
) . (7)

Proof. By Theorem B, in order to prove that S is a set of uniqueness for A, we
have to show that for each v = (v1, . . . , vn) ∈ D there exists i ∈ {1, . . . , n} such
that |vi| ≥ mi − hi.

We have w =
∑k

i=1 δiei, where δi = 1 if ei ∈ I, and δi = −1 if ei ∈ J , so that
hi = 2 for i = 1, . . . , k, hi = 1 for i = k+1, . . . , d, and hi = 0 for i = d+1, . . . , n.
If v = (v1, . . . , vn) ∈ D, then vj = 0 for k + 1 ≤ j ≤ n, and vi �= 0 for some
io ∈ {1, . . . , k}, so that |vio | ≥ mio − hio = 1. This proves that S is a set of
uniqueness for A.

Non-additive Bounded Sets of Uniqueness in Zn 235

We have

FS(x1, . . . , xd) =
(
xw+ − x−w−

) d∏
i=1

(xi − 1).

Let us denote FT (x1, . . . , xk) = (xw+ − x−w−)
∏k

i=1(xi − 1). Then

FS(x1, . . . , xd) = FT (x1, . . . , xk)
∏

i∈(k,d]

(xi − 1).

All the S-weakly bad configurations contained in A correspond to polynomials of
the form FS(x1, . . . , xd)P (xk+1, . . . , xn), where the degree degiP (xk+1, . . . , xn)
of P (xk+1, . . . , xn) with respect to xi, where i = k + 1, . . . , n, satisfies the con-
ditions

degiP (xk+1, . . . , xn) < mi − 1 for i = k + 1, . . . , d,
degiP (xk+1, . . . , xn) < mi for i = d+ 1, . . . , n.

(8)

Thus we have

P (xk+1, . . . , xn) =
∑

ark+1,...,rnx
rk+1

k+1 . . . xrn
n , (9)

where rk+1 ∈ [mk+1 − 1], . . . , rd ∈ [md − 1], rd+1 ∈ [md+1], . . . , rn ∈ [mn]. Each
S-weakly bad configuration contained in A corresponds to a polynomial of the
form

P (xk+1, . . . , xn)FT (x1, . . . , xk)
∏

i∈(k,d]

(xi − 1),

where P (xk+1, . . . , xn) is given by (9).
Let us denote by F the set of points in A which belong to some S-weakly
bad configuration. Notice that each S-weakly bad configuration contains two
non-additive sets consisting of the set of positive (resp. negative) points. By
multiplying the corresponding polynomial by −1, these two non-additive sets
exchange each other. Therefore, the number of non-additive sets which are con-
tained in F equals the number of polynomials P (xk+1, . . . , xn) given by (9),
whose coefficients belong to the set {−1, 0, 1}, except the null polynomial. Such
a number is given by

3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1.

Any other non-additive set in A is obtained by adding some points of A \ F to
a non-additive set in F . Thus, the proportion of non-additive sets of uniqueness
in A with respect to those additive results

2|A\F|
(
3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1
)

2|A| − 2|A\F|
(
3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1
)

=
3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1

2|F| −
(
3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1
) . (10)

236 S. Brunetti, P. Dulio, and C. Peri

Since |F| = |FT |
∏

i∈(k,n] mi and |FT | = 2k+1 − 1, we get

3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1

2(2
k+1−1)

∏
i∈(k,n] mi −

(
3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1
) ,

as required.
�
When n = d = k = 3, as in Subsection 3.1, we have∏
i∈(k,d]

(mi − 1) =
∏

j∈(d,n]

mj =
∏

i∈(k,n]

mi = 1, 2k+1 − 1 = 24 − 1 = |FS |,

so that formula (7) gives (4).
When 4 = n = d > k = 3, as in Subsection 3.2 case 2, we have

∏
i∈(k,d]

(mi−1) = m4−1 = m−1,
∏

j∈(d,n]

mj =1,
∏

i∈(k,n]

mi = m4 = m, |FT | = 2k+1−1 = 15,

so that formula (7) gives (6).
Moreover, if 3 ≤ k < n, then for (mk+1, . . . ,mn)→ (∞, . . . ,∞) we have

3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1

2(2
k+1−1)

∏
i∈(k,n] mi −

(
3
∏

i∈(k,d](mi−1)
∏

j∈(d,n] mj − 1
) → 0.

4 Conclusions

We have determined explicitly the proportion of bounded non-additive sets of
uniqueness with respect to those additive. The resulting ratio has been computed
as a function of the dimensions of the confining grid. This allows us to prove
that, in the limit case when the grid gets large, the above proportion tends
to zero, meaning that the probability that a random selected set is additive
increases. Further improvements could be explored by considering more general
sets S of directions. In this case the tomographic grid, obtained as intersections
of lines parallel to the X-ray directions corresponding to nonzero X-ray, is not
necessarily contained in the confining rectangular grid A, and the computation
of the proportion of bounded non-additive sets of uniqueness with respect to
those additive, seems to be a more challenging problem to be investigated.

References

1. Aharoni, R., Herman, G.T., Kuba, A.: Binary vectors partially determined by
linear equation systems. Discr. Math. 171, 1–16 (1997)

2. Brunetti, S., Dulio, P., Peri, C.: Discrete Tomography determination of bounded
lattice sets from four X-rays. Discrete Applied Mathematics 161(15), 2281–2292
(2013), doi:10.1016/j.dam.2012.09.010

Non-additive Bounded Sets of Uniqueness in Zn 237

3. Brunetti, S., Dulio, P., Peri, C.: On the Non-additive Sets of Uniqueness in a Finite
Grid. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS,
vol. 7749, pp. 288–299. Springer, Heidelberg (2013)

4. Brunetti, S., Dulio, P., Peri, C.: Discrete Tomography determination of bounded
sets in Zn. Discrete Applied Mathematics, doi:10.1016/j.dam.2014.01.016

5. Fishburn, P.C., Lagarias, J.C., Reeds, J.A., Shepp, L.A.: Sets uniquely deter-
mined by projections on axes II. Discrete case. Discrete Math. 91, 149–159 (1991),
doi:10.1016/0012-365X(91)90106-C

6. Fishburn, P.C., Schwander, P., Shepp, L., Vanderbei, R.: The discrete Radon
transform and its approximate inversion via linear programming. Discrete Applied
Math. 75, 39–61 (1997), doi:10.1016/S0166-218X(96)00083-2

7. Fishburn, P.C., Shepp, L.A.: Sets of uniqueness and additivity in integer lattices.
In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations, Algorithms
and Application, pp. 35–58. Birkhäuser, Boston (1999)

8. Gardner, R.J., Gritzmann, P.: Discrete tomography: Determination of finite sets
by X-rays. Trans. Amer. Math. Soc. 349, 2271–2295 (1997), doi:10.1090/S0002-
9947-97-01741-8

9. Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity
of reconstructing lattice sets from their X-rays. Discrete Math. 202, 45–71 (1999),
doi:10.1016/S0012-365X(98)00347-1

10. Gritzmann, P., Langfeld, B., Wiegelmann, M.: Uniquness in Discrete Tomogra-
phy: three remarks and a corollary. SIAM J. Discrete Math. 25, 1589–1599 (2011),
doi:10.1137/100803262

11. Gritzmann, P., Prangenberg, D., de Vries, S., Wiegelmann, M.: Success and failure
of certain reconstruction and uniqueness algorithms in discrete tomography. In-
tern. J. of Imaging System and Techn. 9, 101–109 (1998), doi:10.1002/(SICI)1098-
1098(1998)9:2/3<101::AID-IMA6>3.0.CO;2-F

12. Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew.
Math. 534, 119–128 (2001), doi:10.1515/crll.2001.037

13. Hajdu, L., Tijdeman, R.: Algebraic Discrete Tomography. In: Herman, G.T., Kuba,
A. (eds.) Advances in Discrete Tomography and Its Applications, pp. 55–81.
Birkhäuser, Boston (2007), doi:10.1007/978-0-8176-4543-4 4

14. Weber, S., Schnoerr, C., Hornegger, J.: A linear programming relaxation for binary
tomography with smoothness priors. Electr. Notes Discr. Math. 12, 243–254 (2003)

15. Weber, S., Schüle, T., Hornegger, J., Schnörr, C.: Binary tomography by iterating
linear programs from noisy projections. In: Klette, R., Žunić, J. (eds.) IWCIA 2004.
LNCS, vol. 3322, pp. 38–51. Springer, Heidelberg (2004)

Back-Projection Filtration Inversion

of Discrete Projections

Imants Svalbe1, Andrew Kingston2, Nicolas Normand3,
and Henri Der Sarkissian3,4

1 School of Physics, Monash University, Melbourne, Australia
imants.svalbe@monash.edu

2 Research School of Physical Sciences, Australian National University,
Canberra, Australia

andrew.kingston@anu.edu.au
3 LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597,

Nantes, France
{nicolas.normand,henri.dersarkissian}@univ-nantes.fr

4 Keosys, Saint-Herblain, France

Abstract. We present a new, robust discrete back-projection filtration
algorithm to reconstruct digital images from close-to-minimal sets of ar-
bitrarily oriented discrete projected views. The discrete projections are
in the Mojette format, with either Dirac or Haar pixel sampling. The
strong aliasing in the raw image reconstructed by direct back-projection
is corrected via a de-convolution using the Fourier transform of the dis-
crete point-spread function (PSF) that was used for the forward projec-
tion. The de-convolution is regularised by applying an image-sized digital
weighting function to the raw PSF. These weights are obtained from the
set of back-projected points that partially tile the image area to be re-
constructed. This algorithm produces high quality reconstructions at and
even below the Katz sufficiency limit, which defines a minimal criterion
for projection sets that permit a unique discrete reconstruction for noise-
free data. As the number of input discrete projected views increases, the
PSF more fully tiles the discrete region to be reconstructed, the de-
convolution and its weighting mask become progressively less important.
This algorithm then merges asymptotically with the perfect reconstruc-
tion method found by Servières et al in 2004. However the Servières
approach, for which the PSF must exactly tile the full area of the recon-
structed image, requires O(N2) uniformly distributed projection angles
to reconstruct N ×N data. The independence of each (back-) projected
view makes our algorithm robust to random, symmetrically distributed
noise. We present, as results, images reconstructed from sets of O(N)
projected view angles that are either uniformly distributed, randomly
selected, or clustered about orthogonal axes.

Keywords: Discrete tomography, image reconstruction from discrete
projections, inverse problems.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 238–249, 2014.
© Springer International Publishing Switzerland 2014

Back-Projection Filtration Inversion of Discrete Projections 239

1 Introduction

A Mojette projection of a 2D digital image I is comprised of the sums of image
pixel intensities that are located along parallel lines, oriented at some set of an-
gles defined by pairs of co-prime integers, (pi, qi) [3]. A set of Mojette projections
can be used to reconstruct, either approximately or exactly, an image of the orig-
inal data. A discrete point-spread function (PSF) is defined by back-projection
of a single point by a set of projected views, (pi, qi). The PSF links the original
image data to the Dirac Mojette back-projected image, Mpq, through:

Mpq = I ∗ PSFpq (1)

where ∗ denotes spatial convolution.
The Mojette Transform (MT) [3], is one of several inherently discrete im-

age projection techniques, like the (closely related) Finite Radon Transform
(FRT) [9], where each image projection is defined explicitly by the discrete image
data. We prefer to approach image reconstruction by first defining the discrete
image that we want to display and then deciding what sets of projected views
are sufficient to reconstruct that image.

Our aim is to do tomography this way, i.e. to transform real, noisy projection
data into a form that is discretely Mojette-like as possible, and then use the
Mojette inverse to reconstruct the image.

Inversion from Mojette projection sets may also shine some theoretical light
on the Katz Criterion [6] used in discrete tomography. Katz showed that any
N × N image can be reconstructed exactly from a set of discrete projections

(pi, qi) provided max (
∑
|pi|,
∑
|qi|) ≥ N . Here we set K = max(

∑
|pi|,

∑
|qi|)

N , so
that K = 1 for a projection set at the Katz limit, whilst a set with K < 1 is
below the Katz limit and cannot reconstruct an exact image. Katz specifies the
spatial resolution and view angle requirements that permit exact digital inver-
sion, but says nothing about approximate reconstructions, the effect of noise,
the equivalence (or not) of different sets of angles, nor about the constraints
imposed by the dynamic range of quantised image values.

There are other algorithms to invert Mojette projections, but these methods
have severe limitations. The corner-based algorithm of Normand, and related
geometric techniques [10], work only for noise-free projection sets that satisfy or
exceed the Katz condition. Alternatively Mojette data can be mapped to the pe-
riodic form of the FRT, for which inversion by back-projection is exact, or else by
applying the central slice theorem using Fourier [9] or number-theoretic trans-
forms [1,2]. Direct inversion of the projection matrix is possible, but requires
inverting very large matrices that are often ill-posed. Other methods, such as
conjugate gradient [11] or partially ordered sets, require an iterative or statis-
tical approach [4] that negate the advantages of using a direct reconstruction
algorithm.

The intensity at each forward-projected Mojette bin is back-projected across
the image reconstruction space, along the same discrete lines along which that

240 I. Svalbe et al.

(a) (b) (c)

Fig. 1. Left to right: back-projected reconstruction of a single point using (a) 4, (b) 12
and (c) 60 discretely projected Dirac Mojette views. Image data confined to the area
inside the red circle in (c) can be reconstructed exactly because the translated PSFs
(green circles) intersect back-projected pixels that all have zero intensity.

data was projected (but with the mean projected sum, not the individual pixel
values that make up each sum). The back-projection method is “blind” to other
values in the projection data, it does not try to uncouple projection bins and pixel
values. A back-projection algorithm is then tolerant of noise on the projections;
it uses the same method for whatever data lies in each projection bin.

2 Image Reconstruction and the Discrete PSF

Fig. 1a shows four back-projected rays (at angles (±1, 2), (±2, 1)) for a single
point located at the centre of an image. Back-projecting intensity values of 1.0
at the peak and −1/(4 − 1) elsewhere, results in a normalised intensity of 1.0
at their intersection point, zero along the projected rays and −0.333 elsewhere.
Back-projecting 12 symmetric projections ((1, 2), (1, 3) and (2, 3) in Fig. 1b) with
intensity 1.0 or −1/(12− 1) gives 1.0 at the intersection point, zero along each
of the 12 projected rays, and −0.0909 elsewhere. Fig. 1c shows the normalised
Mojette back-projection for 60 projected views (the symmetric set of shortest
vectors (p, q) = (0, 1) to (±3, 7)), yielding a centre value of 1.0 (white), the
central circular region has value zero (grey), other pixels have value −1/59.

Note how the zero pixels increasingly tile the region that surrounds the in-
tersection point. All translations of this PSF inside the red circle in Fig. 1c
can be reconstructed exactly (as a single 1 on a background of 0). A PSF can
only be translated as far as the green circles in that figure, before the negative
background value (here the black pixels) will cause reconstruction errors. For a
59 × 59 image, 3208 Mojette projections ((0, 1) to (31, 49)) are needed to uni-
formly tile a disc of radius R = 58 (since 312 + 492 = 3362 and 582 = 3364).
Hence direct, unfiltered, back-projection of discrete Mojette data works exactly,

but it requires approximately
(
6
π

)2
2N(2N − 1) views to reconstruct an N ×N

image [13]. This result confirmed earlier work done by Servières [12]. The shape

Back-Projection Filtration Inversion of Discrete Projections 241

of the image region of interest (ROI) also matters, as it determines how many,
and which, array pixels need to be exactly tiled by the discrete PSF.

If you have only M ! N2 views, you can try to interpolate the missing
N2−M views that you don’t know, using the M views that you do know [13,12].
For example, we can synthesize the projected view for (13, 14) from the known
projection for (1, 1). Interpolation of digital profiles is tough work, especially for
Dirac rather than the smoother Haar or higher-order spline projections.

If the image array is assumed to be periodic, the continuation of each projected
ray (other than for (1, 0) and (0, 1)) will pass across the ROI several times,
increasing the number of pixels that are filled by back-projection.

For the FRT [9], where the array size is prime, p × p, and for composite
N × N arrays [7,8], periodic back-projection can fully tile the ROI, the PSF is
then “perfect”, making exact inversion possible with O(N) projections from an
N × N image. A reconstruction method, for uniformly-distributed angle sets,
that merges elements of the discrete Mojette, Fourier and compressed sensing
techniques appeared recently [5].

2.1 Reconstruction of Images Using a Finite, Discrete PSF

Consider a finite PSF, such as our previous example composed of 60 views, which
reconstructs, perfectly, any image inside the red circle of Fig. 2a. If we try to
use this PSF to reconstruct a larger circular ROI (e.g. 60 × 60, the blue circle
in Fig. 2a), we need to correct for each of the discrete un-corrected negative
contributions that fall outside the flat zone of the blue PSF, i.e. all of the black
points that lie inside the green circle shown in Fig. 2a.

A discrete, back-projected image, Mpq, reconstructed from a set of view an-
gles, (p, q), is exactly equivalent to convolution of the discrete PSF with the
original image, I. This follows from the definition of discrete back-projection for
Dirac Mojette data [3]. This is easy to demonstrate; Fig. 3 shows an original im-
age, I, and the direct back-projected image,Mpq, for the set of 60 (p, q) angles
shown in Fig. 2. The back-projected image is identical to the convolution of the
original image data by the PSF shown in Fig. 2 (the differences on subtraction
are O(10−15) and result from finite float computational precision). Then,

Mpq ∗ PSF−1
pq = I (2)

I = F−1

{
F {Mpq}
F {PSFpq}

}
(3)

where F{·} denotes the 2D finite Fourier transform (FFT) of the zero-padded
image data. Equation (3) is the basis for the de-convolution process presented in
this work. Recovery of I from the direct, back-projected imageM, is contingent
on the FFT of the PSF being well-conditioned or regularised. To ensure these
conditions, a weighted version of the raw PSF, denoted as PSF+ in equation (6),
is then used in (3).

242 I. Svalbe et al.

(a) (b)

Fig. 2. Left: (a) Normalised, back-projected PSF reconstructed from 60 discrete pro-
jections at angles (p, q) using the shortest vector lengths (white = 1, grey = 0, black
< 0). Images confined inside the red circle (with a diameter of about 23 pixels) can be
reconstructed exactly by direct back-projection. Reconstruction of images lying inside
the blue circle, with diameter 60 pixels, using the same 60 projected views, requires
correction for all of the missing (black) back-projected points the lie inside the green
circle with diameter 120 pixels. Right: (b) a 3D view of the PSF in (a).

(a) (b) (c) (d)

Fig. 3. (a): Original image I, circular ROI diameter 60 pixels. (b): Raw back-projected
reconstruction from 60 discrete Mojette views of the original data. Image (b) is exactly
the same as the result obtained by convolving image (a) with the discrete PSF shown
in Fig. 2b. (c): Reconstructed image from the 416 Mojette shortest (p, q) views (65×65
pixels, K = 57 � 1), PSNR = 46.62, MSE = 1.30. This is about 10% of the number of
views required for exact, unfiltered Mojette back-projection. (d): reconstruction errors
for this image are structural and arise from inversion of the PSF; they are not evidently
strongly image-related.

2.2 Image Reconstruction Examples with K � 1

We verify this approach by applying (3) to reconstruct images from discrete
projection sets comprised of many views, but far fewer than the O(N2) views
required for exact N×N reconstruction. Fig. 3c shows an example image, recon-
structed from 416 Mojette projections, that were obtained from a circular ROI
in 65× 65 discrete image data (a cropped portion of the “cameraman” image).

Back-Projection Filtration Inversion of Discrete Projections 243

Adding normally distributed noise to each of the 416 projections only slightly
reduced the reconstructed image PSNR (from 46.62 to 43.8 ± 0.2), confirming
the robustness of the back-projection approach. The reconstructed images for
K # 1 are of high quality, but our aim here is to reduce the number of discrete
projections required, so that K (1, or preferably, K < 1. Using fewer projection
directions makes the outer zones of the PSF increasingly sparse and the flat
zone of zeros smaller, so that the PSF inverse becomes less well-conditioned and
requires some regularisation.

3 Regularisation of the PSF

Our approach to recover images for projection sets where K (1, is to weight
the image of the PSF, in the form as shown in Fig. 2, so that the outer regions of
the PSF are made smoother and closer to zero, whilst preserving the central flat
zone. These weights should be smooth and close to unity for O(N2) projected
views, where no or little correction of the back-projected image is required.
For increasingly sparse views, the weights should be closer to zero around the
periphery of the PSF, and remain strongly discretised along those directions
where more correction is needed.

For sets of projected views that exceed the Katz Criterion (K ≥ 1), we con-
struct a weight function, that we call Wpn, that reflects the correlation between
the spatial distribution of points across the region of support in the PSF that are
correctly back-projected and the distribution of points where the back-projected
data is absent.

We generate first an image (p) of the PSF that contains the correctly back-
projected points over the region of image support. These points are set to one,
all other points are set to zero. We generate a second image (n) of the PSF that
contains the (complementary) set of uncorrected back-projected points over the
region of image support. These points are set to one, all other points are set
to zero. We then cross-correlate these distributions, across the full extent of the
back-projected space, as

Wpn = (p n) ∗ (D D) (4)

where denotes the cross-correlation product and D has the uniform value of
1 over the image region of support and is otherwise zero. Pixels of Wpn that
fall within the central flat zone of the PSF (the area of perfect reconstruction)
should not be down-weighted, so the weight for these pixels is set to 1. The
function Wpn is then normalised to have maximum value 1, as shown in Fig. 4a.

For sets of projected views that fall below the Katz Criterion (K ≤ 1), the
back-projected area becomes increasingly sparse outside the small flat central
zone of exact reconstruction and the region of support, D, plays an increasingly
smaller contribution. For these cases, the weight function, that we call Tpn, is
constructed as a direct correlation of the spatial distributions of the correctly
back-projected points in the PSF vs the non-back-projected points;

Tpn = p n (5)

244 I. Svalbe et al.

0

50

100

150

0

50

100

150
0

0.2

0.4

0.6

0.8

1

(a)

0

50

100

150

0

50

100

150
0

0.2

0.4

0.6

0.8

1

(b)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

0

0.5

1

(c)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

0

0.5

1

(d)

Fig. 4. Top row: (a-b) Left: (a) Weight function Wpn for the PSF for the set of 52
angles ((1, 0) to (±2, 7)), 63× 63 image, circular region of support. Right: (b) Weight
function Tpn for the same PSF as in (a).
Bottom row: (c-d) Left: (c) The PSF weighted by Wpn for K > 1. Right: (d) the PSF
weighted by Tpn for K < 1. The central spike of the PSF has been suppressed here to
enhance the display of the small values at the periphery.

The weights for those pixels that lie within the central flat zone of the PSF
are set to 1, with the net result normalised, as shown in Fig. 4b. Weights Wpn

and Tpn multiply, point to point, the raw PSF image values,

PSF+ =

{
PSF,Wpn, if K > 1

PSF, Tpn, if K < 1
(6)

where , denotes the element-wise multiplication of 2D vectors.

4 Reconstruction Results for De-convolution of
Back-Projected Images Using the Weighted PSF

We applied the weightings Wpn and Tpn to the PSF (as shown in Fig. 4c,d) and
recorded the PSNR for images that were reconstructed, using equations (3) and
(6), for varying numbers of projected views. Here all angle sets are comprised
of the shortest (p, q) vectors. The results are given in Table 1 for image sizes of
63× 63 and 127× 127, respectively. At the Katz point, K = 1, the PSNR values
for reconstruction from projections after adding normally distributed noise have

Back-Projection Filtration Inversion of Discrete Projections 245

Table 1. PSNR values for two images of sizes of 63× 63 and 127× 127, reconstructed
using a weighted PSF, as a function of the number of projected views (shortest (p, q)
vector angle sets)

Image size K (Katz’ value) Projections count Weight Wpn Weight Tpn

0.59 20 18.89 18.67
0.81 24 19.98 19.93
1 28 21.63 21.63

63× 63 1.22 32 22.92 22.73
2.52 52 27.61 26.76
3.67 64 30.08 28.54
6.46 96 34.34 31.06
9.89 128 35.74 31.62

0.5 28 17.77 17.78
0.61 32 18.90 18.75
0.73 36 19.30 19.38
0.84 40 20.30 20.09

127× 127 0.98 44 21.35 20.92
1.11 48 22.54 21.66
3.2 96 29.70 26.95
4.91 128 32.74 28.55
9.11 192 35.01 29.44

also been included. Those results provide further confirmation of the robustness
of our direct inversion method.

We observed that weight Wpn performs better for K > 1, whilst the recon-
struction results for weight Tpn become slightly better than for weight Wpn for
K < 1, especially in larger images. For example, a 509× 509 portion of the Lena
image, reconstructed using the 96 shortest angles, where K = 0.8, yields a PSNR
of 19.80 for Tpn and 18.41 for Wpn.

The only other tool used to regularise the inverse of the PSF is to apply
a threshold test to the Fourier coefficient values before taking their inverse. If
the Fourier coefficient of the (weighted) PSF at (u, v) was less than a selected
fixed value, that coefficient was set to the mean of all above-threshold 3 × 3
neighbouring coefficients. The choice of this threshold value turned out to be
relatively insensitive; optimising its value made relatively small differences to
the final PSNR values. When reconstructing any images, we keep track of the
number of times the threshold is reached, to indicate if the threshold needs to
be modified. For example, at K = 0.59, for 20 angles, PSNR = 18.89 improves
to 19.45 after scanning across a range of threshold values to optimise the PSNR.

The size of the zero-padded region can be adjusted to be made (symmetrically)
slightly smaller or larger. This can change the reconstructed PSNR (again, only
slightly), as it may affect the degree of aliasing by the discretisation of the finite
Fourier transform at specific frequencies.

246 I. Svalbe et al.

(a) (b)

Fig. 5. Reconstruction of an image from a clustered set of 52 projection angles
(±1, i), (±i, 1); 0 ≤ i ≤ 13}, for which K = 3.29. Left: (a) the raw clustered view
PSF (125× 125). Right: (b) the reconstructed image (63× 63, using weight Tpn), with
PSNR = 23.33. After adding normally distributed noise, PSNR = 23.1± 0.1.

5 Reconstruction Using Different Distributions of
Projected View Angles

5.1 Clustered Projection Angles

We reconstructed images from sets of projected views that are clustered around
0° or around 90°. We do this by selecting discrete angles (p, q) corresponding to
(±1, i) and (±i, 1), for integers 0 ≤ i ≤ n. To maintain four-fold angle symmetry,
we usually increment the number of angles in steps of 4. The strongly non-
uniform distribution of angles makes the shape of the PSF less uniform and
thus more difficult to correct. Here the discrete weight Tpn (PSNR = 23.33)
performs better than weight Wpn (PSNR = 20.08), even for K > 1. An example
reconstructed image is shown in Fig. 5.

5.2 Randomly Distributed Projection Angles

We generated a random set of M projection angles selected from a range of
(p, q) vectors that was three times larger than for the shortest angle set for M
projections. As p and q can now be much larger than for the shortest set, the
number of bins in these projections, as given by nbin = (|p|+ |q|)(N − 1) + 1, is
also larger.

Whilst randomising the projection angles generally decreases the reconstructed
image quality because the PSF is less uniform, the use of large p and q values
generally improves the discrete reconstructions. The large |p|+ |q| discrete pro-
jections are less heavily summed, because there are more projection bins, but the
projected ray passing into each bin intersects fewer pixels. Forcing the inclusion
of the projections (1, 0), (0, 1) and (±1, 1) as part of the “random” set improves
the results, as those projections carry significant information about the image.

Back-Projection Filtration Inversion of Discrete Projections 247

(a) (b) (c)

Fig. 6. (a-b): PSF (125×125) for two random sets of 52 projection angles. (a): Including
(1, 0), (0, 1) and (±1, 1). (b): Excluding (1, 0), (0, 1) and (±1, 1). (c): Corresponding
63 × 63 reconstructed images using filter Wpn. Top image, PSNR = 31.31, bottom
image, PSNR = 26.33. After adding normally distributed noise PSNR = 27 ± 1 and
24.5± 1 respectively.

(a) (b)

Fig. 7. (a): Raw discrete PSF (129× 129) for the 440 shortest (p, q) angles. The high-
lighted portion of the rows and columns 60 pixels away from the PSF centre are heavily
tiled by back-projection. In contrast, pixels along the rows and columns a prime dis-
tance from the centre (e.g. 59 and 61) are sparsely tiled. (b): Differences in the discrete
PSF for the projection sets comprised of the 440 and 416 shortest angles emphasize
the bias towards better reconstruction along the horizontal and vertical directions.

The PSF weight Wpn performs slightly better here (mean PSNR = 28.5±1.5)
than does weight Tpn (mean PSNR = 25.5 ± 1.5), as the view angles are, on
average, more uniform and K > 1. Here K = 4.5± 0.3, see Fig. 6.

5.3 Discrete Image Reconstruction Errors

Our reconstruction errors occur predominantly along the image rows, columns
and diagonals (as in Fig. 3). Partly this effect may be due to the method we

248 I. Svalbe et al.

used to weight and invert the PSF, but another contribution comes from the
non-random distribution of (p, q) points as they get back-projected.The number
of back-projected points and their inclusion in the PSF depends on the set of
(p, q) view angles, but also on the size of the image ROI to be reconstructed.

Fig. 7a shows a PSF back-projected from the 440 discrete shortest (p, q) an-
gles (as a 129 × 129 pixel image). Entries in the PSF that arise from projec-
tion (p, q) are back-projected as points located (np, nq) pixels from the centre
of the PSF. Many back-projected points will lie on columns or rows that are
60 pixels distant from the centre, as n can be any of the many factors of 60;
n = {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}.

However the PSF has few (almost zero) back-projected points along columns
or rows located 59 and 61 pixels from the centre, as these numbers are prime.
A 61× 61 portion from the image in Fig. 3c reconstructs (using an unweighted
PSF at 440 shortest views) with a PSNR of 41.76, whereas a 59× 59 portion of
the same data reconstructs with PSNR = 47.68, using identical views. Including
or excluding row and column 60 from the reconstructed ROI makes a large
difference to the PSF that, in turn, affects the reconstructed PSNR.

Strong, local changes at the edges of the PSF may also explain why we obtain
reconstructions for 65×65 images using 416 angles (PSNR = 46.62, last (p, q) =
(12, 17)) that are, uncharacteristically, slightly better than those for a much
larger angle set of 440 views (PSNR = 46.41, last (p, q) = (4, 21)). For 63 × 63
images we obtain PSNR = 45.52 for 416 views, PSNR = 46.69 at 440 views,
because part of the outer circle of back-projected points shown in Fig. 7b (arising
from the (4, 21) view), are now excluded.

6 Summary, Conclusions and Future Work

We presented, in this work, an approach to reconstructions that uses a weighted
version of the raw back-projected discrete PSF to recover, by direct de-
convolution, the original digital image from its direct back-projected reconstruc-
tion. As this is a linear system, the same approach could equally be achieved by
filtering the Mojette data in 1D before back-projection, as was originally sug-
gested by Andrew Kingston. Correction of 3D back-projected images, via the
inverse of the 3D PSF, is a natural extension of this 2D approach.

This filtered back-projection approach also tolerates the presence of significant
levels of noise in the projected data. Computation of these filtered back-projected
images is fast to compute, especially if the Fourier transform of the discrete PSF
and the associated weight functions (Tpn or Wpn) are known.

The relatively high accuracy of our reconstructions and the rapidity with
which they can be obtained would provide high quality initial-image estimates
that may enhance the convergence rate for slower, statistical iterative recon-
struction methods.

The use of an exact, algebraic approach to pre-filter each projection also
seems possible. Nicolas Normand has shown that direct inversion is possible
for projection data cast as a Vandermonde matrix and has also shown that

Back-Projection Filtration Inversion of Discrete Projections 249

Moore-Penrose pseudo-inverse techniques may be used to invert projection ma-
trices (unpublished work). These new techniques complement the existing “row-
solving” techniques [1,2] or methods based on the central–slice theorem [9] that
map between Mojette (or FRT) data and image space.

An enhanced ability to invert arbitrary sets of Mojette data will permit de-
tailed studies to be undertaken to understand how the grey-level quantisation of
a digital image affects image reconstruction, as seen via the Katz criterion. Our
method has already been applied to reconstruct binary and ternary image data
from sparse sets of discrete projections (unpublished work).

Acknowledgments. The IVC group hosted a visit by Imants Svalbe to work in
their laboratory from November to December, 2013. Polytech Nantes provided
financial support to him as a Visiting Invited Professor for that period.

References

1. Chandra, S., Svalbe, I.D.: Exact image representation via a number-theoretic
Radon transform. IET Computer Vision (accepted November 2013)

2. Chandra, S., Svalbe, I.D., Guédon, J., Kingston, A.M., Normand, N.: Recovering
missing slices of the discrete Fourier transform using ghosts. IEEE Trans. Image
Process. 21(10), 4431–4441 (2012)

3. Guédon, J., Normand, N.: Direct Mojette Transform. In: Guédon, J. (ed.) The
Mojette Transform: Theory and Applications, pp. 37–60. ISTE-WILEY (2009)

4. Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and its Appli-
cations. Birkhäuser, Boston (2007)

5. Hou, W., Zhang, C.: Parallel-Beam CT reconstruction based on Mojette transform
and compressed sensing. Int. J. of Computer and Electrical Eng. 5(1), 83–87 (2013)

6. Katz, M.B.: Questions of uniqueness and resolution in reconstruction from projec-
tions. Springer, Berlin (1978)

7. Kingston, A.M., Svalbe, I.D.: Generalised finite Radon transform for N×N images.
Image and Vision Computing 25(10), 1620–1630 (2007)

8. Lun, D., Hsung, T., Shen, T.: Orthogonal discrete periodic Radon transforms, Parts
I & II. Signal Processing 83(5), 941–971 (2003)

9. Matúš, F., Flusser, J.: Image representation via a finite Radon transform. IEEE
Trans. Pattern Anal. Mach. Intell. 15(10), 996–1006 (1993)

10. Normand, N., Kingston, A., Évenou, P.: A Geometry Driven Reconstruction Al-
gorithm for the Mojette Transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.)
DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006)

11. Servières, M., Idier, J., Normand, N., Guédon, J.: Conjugate gradient Mojette
reconstruction. In: SPIE Medical Imaging, pp. 2067–2074. SPIE (2005)

12. Servières, M., Normand, N., Guédon, J.: Interpolation method for the Mojette
transform. In: SPIE Medical Imaging, SPIE, San Diego, CA (2006)

13. Svalbe, I.D., Kingston, A.M., Guédon, J., Normand, N., Chandra, S.: Direct In-
version of Mojette Projections. In: Int. Conf. on Image Processing, Melbourne,
Australia, pp. 1036–1040 (2013)

Discrete Tomography Reconstruction

Algorithms for Images with a Blocking
Component

Stefano Bilotta and Stefano Brocchi

Dipartimento di Matematica e Informatica ‘U. Dini’, Università di Firenze,
Viale Morgagni, 65 - 50134 Firenze, Italy

{stefano.bilotta,stefano.brocchi}@unifi.it

Abstract. We study a problem involving the reconstruction of an image
from its horizontal and vertical projections in the case where some parts
of these projections are unavailable. The desired goal is to model appli-
cations where part of the x-rays used for the analysis of an object are
blocked by particularly dense components that do not allow the rays to
pass through the material. This is a common issue in many tomographic
scans, and while there are several heuristics to handle quite efficiently
the problem in applications, the underlying theory has not been exten-
sively developed. In this paper, we study the properties of consistency
and uniqueness of this problem, and we propose an efficient reconstruc-
tion algorithm. We also show how this task can be reduced to a network
flow problem, similarly to the standard reconstruction algorithm, allow-
ing the determination of a solution even in the case where some pixels
of the output image must have some prescribed values.

1 Introduction

Discrete tomography is the discipline that studies the reconstruction of discrete
sets from the partial information deriving from their projections. Its main mo-
tivation arises from applications that tackle the problem of obtaining informa-
tion about an object by examining the data obtained from the x-rays projected
through the material, as in medical scans. Differently from computerized tomog-
raphy, in discrete tomography we suppose that the pixels forming the original
image may have a limited set of discrete values, often only 0 or 1. This assump-
tion is reasonable in many cases where the object has a uniform density, and
allows the definition of efficient algorithms even upon availability of a limited
number of x-rays, as in [6].

In applications, often heuristic algorithms allow an efficient reconstruction,
but on the other hand determining exact algorithms for discrete tomography
reconstruction is often a hard task, as the involved problems in many cases
are highly undetermined or computationally intractable [12]. To tackle these
problems and to include some other information that may model effectively
properties of the image to be rebuilt, often discrete tomography problems include

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 250–261, 2014.
c© Springer International Publishing Switzerland 2014

Discrete Tomography Reconstruction Algorithms for Images 251

some prior knowledge that gives birth to many variations of the reconstruction
problem. Some examples that have been studied in literature include connectivity
and convexity [4,2], cell coloring [10,3] or skeletal properties [14,15]. Often, with
appropriate assumptions, the arising problems result to be connected to other
fields of study as timetabling [18], image compression [1], network flow [5], graph
theory [7] and combinatorics [13]. An excellent survey that can be examined for
some classical results is [16].

In this paper, we model a situation where, due to causes such as a very dense
block of material, some x-rays are blocked and do not provide measurements
for these zones of the object. This is a common problem in many tomograph-
ical applications that may cause artifacts in the rebuilt images, that in some
cases may reduce the quality of the reconstruction up to the point of making
the resulting image unusable, for example for diagnostic purposes in the case
of a medical scan. Many heuristics exists to reduce such artifacts, based on al-
gebraic approaches [20], statistical analysis [8], linear interpolation [17], partial
differential equations [9], and image impainting [11]. The described approaches
are often sufficient in applications, however to the best of our knowledge there
is no theoretical study that determines the basic properties of consistency and
uniqueness of these problems. In this paper, we answer these questions and we
propose an efficient reconstruction algorithm that uses the horizontal and ver-
tical projections. Differently from the cited works, this article does not have an
immediate practical application, but is aimed to develop the theory underlying
these problems. Here we consider as input of the problem projections in only two
directions; this assumption is quite typical in discrete tomography, as the recon-
struction problem of binary matrices from three of more projections is know to
be NP-complete [12].

The paper is organized as follows. In Section 2 we give some preliminaries and
describe the adopted notation. In Section 3 we describe some basic properties of
the problem, and how they relate to the classical reconstruction problems with-
out the blocking component. In Section 4 we describe an efficient reconstruction
algorithm for the problem. In Section 5 we show how the reconstruction is con-
nected with a flow problem; this result is a natural extension of the well known
reduction of the standard problem, and allows us to solve the reconstruction
even in the cases where some zones of the resulting image must be fixed to some
prescribed values. Finally, in Section 6 we discuss and draw some conclusions
with an insight on future developments.

2 Notation and Preliminaries

In this section we give a formal description of the studied problem. Classically, a
solution of a reconstruction problem is represented by a binary matrix containing
the values 0 and 1; we refer to the entries of the matrix as cells. In this paper, we
suppose that for some zones of an image the horizontal and vertical projections
that would account for some zones are unavailable, as if in a tomographical scan
the area corresponding to these pixels blocked the x-rays. We refer to this set

252 S. Bilotta and S. Brocchi

of cells as a blocking component ; the image that we aim to rebuild hence also
contains a special symbol * in correspondence to the cells in this component.

Without loss of generality, the blocking component can be positioned in the
last columns and rows of the matrix, as we could relate to this situation any
other configuration by a rearrangement of the columns and of the rows. We
also suppose that the blocking component has a rectangular shape, as any other
shape would introduce some cells that do not contribute to neither the horizontal
nor the vertical projections, and that are not relevant to the formulation of the
problem. The problem is hence defined as follows:

Input: two integers kh and kv representing the size of the blocking component,
and two vectors of projections H = (h1, . . . , hn−kv), V = (v1, . . . , vm−kh).

Output: an n×m matrix A = (ai,j), such that:
- ∀ 1 ≤ i ≤ n− kv,

∑m
j=1 ai,j = hi;

- ∀ 1 ≤ j ≤ m− kh,
∑n

i=1 ai,j = vj ;
- ∀ ai,j : i > n− kv, j > m− kh then ai,j = ∗.

An interesting feature of our problem is that, due to the missing projections,
the sum of the horizontal and vertical projections may differ, but even in this
case, there may be a solution fitting the constraints. We define this difference
as D =

∑
j vj −

∑
i hi, and without loss of generality we consider D ≥ 0. In

Figure 1, we depicted an example of the problem with horizontal and vertical
projections, and with a blocking component covering two rows and two columns.
The vectors H and V represent the input of the problem, while the content of
the cells of the matrix represents one of the possible solutions.

0

*

*

*

*

1 1 0 1 0 0

1 1 0 1 1 1 1

0 1 1 0 1 0 0

0 0 0 1 0

1 1 0 1 0

1 0 1 1 0 1 0

1 0 0 1 0 0 1

H =

V =

3

4

3

6

3

4 4 3 5 3

Fig. 1. An instance of the considered problem and a possible solution

3 Properties

From classical results in literature, we dispose of a theorem which guarantees
the existence of a solution of the standard reconstruction problem. In this case,
we want to rebuild a binary matrix with horizontal and vertical projections equal

Discrete Tomography Reconstruction Algorithms for Images 253

to H and V . Without loss of generality, hereafter we consider the vectors H and
V to be ordered, so h1 ≥ h2 ≥ h3 . . . and v1 ≥ v2 ≥ v3 . . .

Definition 1. For two vectors A,B of length n, then A ≤d B if for every j we
have

∑j
i=1 ai ≤

∑j
i=1 bi.

Theorem 1. (Ryser [19]) The reconstruction problem with projections H,V has
a solution if and only if H ≤d V ∗, where V ∗ = (v∗1 , v

∗
2 , . . . , v

∗
n) is defined as

v∗i = |{vj : vj ≥ i}|. The problem admits a unique solution if and only if H = V ∗.

In this section we formally define the reconstruction problem involving block-
ing components. For a simpler notation, we define a partition of the cells of a
matrix A in three different submatrices C,X and Y in order to be able to identify
immediately the relative position of each cell with a blocking component. These
three matrices are dependent from A, however we omit this dependency in the
notation. The cells in C are those who give contribution to both the horizontal
and vertical projections, while those in X and Y are only counted in one of the
two. We have:

– C = (ci,j) of size (n − kv) × (m − kh) with ci,j = ai,j for i ≤ n − kv and
j ≤ m− kh;

– X = (xi,j) of size (n− kv)× kh with xi,j = ai,m−kh+j for 1 ≤ j ≤ kh;
– Y = (yi,j) of size kv × (m− kh) with yi,j = an−kv+i,j for 1 ≤ i ≤ kv.

We define the operators H(M) and V (M) that extract the horizontal and
vertical projections of a generic matrix M . We use the following operators to
count the number of ones in each zone; we define NC(A) as

∑
ci,j , and similarly

we refer to NX(A) and NY (A); also N(A) =
∑

ai,j �=∗ ai,j . When the argument

of these operators is unambiguous, we omit the argument (A) of the function,
referring simply, for example, to NC or NX . Finally, NH =

∑
i hi and NV =∑

j vj .
One of the additional difficulties of our problem is that the number of cells in

H may be different from the ones in V , since some cells contribute only one of the
horizontal or vertical projections. In order to define a reconstruction algorithm,
one of the first steps is to determine correct values for NX and NY . As some
first trivial conditions, it must stand NC +NX +NY = N , and NY ≥ D. The
maximal number of cells MX (symmetrically, MY) in the group X (resp. Y) for
any solution of the problem is given by the following property.

Property 1. For any matrix A having V as vertical projections, we have NY ≤
MY , where MY is defined by MY =

∑
j min(vj , k

v).

Proof. To prove this simple property, it is sufficient to observe that NY > MY

would imply that on some column the number of cells equal to 1 would exceed
the height kv of the matrix Y or a vertical projection, bringing to a contradiction.

�

254 S. Bilotta and S. Brocchi

Note that while the N operators have as argument a matrix, the M operators
are in dependence from the input of the problem. From this property and the
trivial condition NY = NX +D we obtain the following corollary.

Property 2. For any matrix A solution of a reconstruction problem with blocking
component, we have NY ≤ min(MY ,MX +D).

3.1 Switching Components and Unique Solutions

We recall that the cells inside the blocking component of a matrix A, i.e. the
elements ai,j such that i > n − kv and j > m − kh, are represented with the
special symbol ∗. We now define some switching operations that, starting from a
solution of a problem, enable us to build other matrices satisfying the problem
constraints. These operations are similar to the standard switches found in liter-
ature, but the presence of a blocking component leads to other types of switches
involving the symbol ∗. The possible switches are shown in Figure 2 (left); it is
easy to verify that all these operations do not alter the horizontal and vertical
projections of a matrix.

1 0

10

0 1

01

1 *

*0

0 *

*1

1 0

*0

1 0

**

0 1

**

0 1

*1

1 1

1

1

1 0

00

0

0

*

Fig. 2. (Left) Possible switches in our instances. The one in the upper left is the
classical switching operation in the standard reconstruction problem, while the other
three are introduced by the existence of a blocking component in the problem. (Right)
The only possible structure of a matrix with no switching components, assuming rows
and columns are ordered by projections.

Considering these four types of switch, we can state a uniqueness result. In
that aim, we first show the structure of a matrix A that does not contain any
of the switching components. We recall that since w.l.g. h1 ≥ h2 ≥ . . . and
v1 ≥ v2 ≥ . . ., then we have:

Theorem 2. Let A be a solution of a blocking component reconstruction prob-
lem. The matrix A does not contain any switching components if and only if
its partitions C, X and Y satisfy the conditions below, for the generic values
i ∈ [1, n] and j, j′ ∈ [1,m].

1. ∀i, j, j′ then xi,j = xi,j′ ;
2. ∀i, i′, j then yi,j = yi′,j;

Discrete Tomography Reconstruction Algorithms for Images 255

3. ∀xi,j = yi′,j′ then ci,j′ = xi,j = yi′,j′ ;
4. H(C) = V ∗(C).

Proof. Observe that to avoid switching components involving two equal sym-
bols * every row of X and every column of Y must contain only one of the
values (points 1 and 2). To prohibit switches with one *, we impose Condition
3, while rule 4 must be adopted in order to prevent the standard switching
operation.
�

In Figure 2 (right) we depicted a graphical representation of a matrix A
without any switching components. An example of a unique solution on a specific
problem instance can be seen in Figure 3.

In the standard reconstruction problem, the absence of switching components
is sufficient to prove that a matrix is the unique solution. In this problem, how-
ever, we may speculate about this fact, as two different solutions may exist,
but that there is no series of switching operations that transform one of them
into the other. The following theorem is necessary to show how this conjecture
turns out to be false, and furthermore its proof exhibits a procedure allowing
the determination of the unique solution if it exists.

Theorem 3. If a matrix with no switching components exists for a blocking
component reconstruction problem, then the given matrix is the only solution of
the problem.

Proof. Consider as input of the problem the dimension of the blocking compo-
nent described by kv and kh and the vectors of projections H = (h1, . . . , hn−kv),
V = (v1, . . . , vm−kh). We shall determine, if possible, a value s ∈ [0, v1−kv] such
that for the kv elements in V ∗ from v∗s+1 to v∗s+kv , we have v∗s+1 = . . . = v∗s+kv =

r for some value r, and such that H = (v∗1 + kh, . . . , v∗s + kh, v∗s+kv+1, . . . , v
∗
v1).

The solution for the blocking component reconstruction problem is given by a
matrix A whose submatrices are defined uniquely by the following:

– H(C) = V ∗(C) = (v∗1 , . . . , v
∗
s , v

∗
s+kv+1, . . . , v

∗
v1);

– H(X) = (x1, . . . , xs) where xi = kh, 1 ≤ i ≤ s;
– V (Y) = (y1, . . . , yr) where yj = kv, 1 ≤ j ≤ r.

Clearly, H(C)+H(X) = H and V (C)+V (Y) = V ; note that knowing H(X)
and V (Y) the matrices X and Y are trivially determined. By Theorem 2 each
solution with the previous structure does not admit any switching components.
Supposing that such solution exists, then we show that it is unique by proving
that there is only one possible value for s ∈ [0, v1 − kv]. Let us compute the
number of ones in the matrices C and X :

v1∑
i=1

v∗i −
s+kv∑
i=s

v∗i + skh =

n−kv∑
i=1

hi.

Since V ∗ is decreasing, then
∑s+kv

i=s v∗i is decreasing in s, and further skh grows
with s. From these properties, the left side of the equation is strictly increasing
with s, so this variable can have only one value to satisfy the equation.
�

256 S. Bilotta and S. Brocchi

In Figure 3 we depicted a graphical representation of the unique solution for
the blocking component reconstruction problem having as input kv = 3, kh = 2,
H = (10, 8, 7, 7, 6, 6, 5, 2, 2, 1, 1) and V = (14, 12, 10, 6, 4, 2, 1, 1).

4 The Reconstruction Algorithm

In this section we describe the reconstruction algorithm for a problem with a
blocking component. The core of the procedure is defined by Algorithm 1 that
determines the vector V (Y) given a fixed number NY =

∑
i vi(Y). We remark

that the array V (Y) contains the vertical projections of Y . Our goal is to define
V (Y) such that the vector V − V (Y) is the minimum that we can obtain with
respect to the dominance ordering; this property guarantees that if V − V (Y)
and H−H(X) are not consistent with a solution for the standard reconstruction
problem for matrix C, then any other configuration of X and Y cannot yield a
solution. Without loss of generality, we impose that the elements of both V and
V −V (Y) are ordered. The idea of the procedure consists in determining a value
p such that for every element vi ≥ p we may set vi(Y) ∈ {kv, vi − p, vi − p+ 1},
and for every element vi < p then vi(Y) = 0. To compute p, the procedure uses
a vector T , containing the maximum number of cells that could be contained in
V (Y) for every possible choice of p. Doing so, placing kv elements in the first
columns of V (Y) and 0 in the last ones, we maximize the vector V − V (Y) in
the dominance ordering. In Figure 4 is shown an example of the execution of
Algorithm 1, where kv = 3 and NY = 23.

It may be possible to compute the vectors T and Z with a closed formula,
but this algorithmic formulation simplifies the following proof.

Theorem 4. Consider a vector V and two fixed integers NY and kv, and call
V − V (Y) the output of Algorithm 1 with input V,NY , kv. For any ordered

Horizontal projections
= h , h , ...

k equal values

Horizontal projections
= h + k, h + k, ...h h

1 2

v

n n-1

V

k

k

v

h

Fig. 3. Computing the only solution without switching components. To the left, we
have the graphical representation of V , while to the right we can see the unique solution
of the problem.

Discrete Tomography Reconstruction Algorithms for Images 257

Algorithm 1. Determination of V (C)

1. Input: a vector V , two integers NY , kv

2. Z = [0, . . . , 0], T = [0, . . . , 0], p = 0
3. for i = 1 to m− kh do
4. for j = vi downto max(vi − kv + 1, 1) do
5. zj = zj + 1
6. end for
7. end for
8. tv1 = zv1
9. for i = v1 − 1 downto 1 do

10. ti = ti+1 + zi
11. end for
12. p = max

i
(ti ≥ NY)

13. for i = 1 to m− kh do
14. vi(y) = vi −max(vi − kv, p)
15. end for
16. r = NY −∑

i vi(Y)
17. b = max

i
(vi ≥ p)

18. for i = b downto b− r + 1 do
19. vi(Y) = vi(Y) + 1
20. end for
21. return V − V (Y)

vector V ′(Y) such that
∑

i v
′
i(Y) =

∑
i vi(Y) and ∀i, v′i(Y) ≤ min(kv, vi), we

have V − V (Y) ≤d V − V ′(Y).

Proof. (Sketch) Call K = V − V (Y) and L = V − V ′(Y), and suppose by
contradiction that it does not stand that K ≤d L, hence that for some index
i,
∑i

w=1 kw >
∑i

w=1 lw. Since
∑

w kw =
∑

w lw this implies that for some j >
i, kj < lj . Consider the value p computed in the procedure, and name a =
maxw(vw > p + kw) and b = minw(vw < p) (b is the same value as the one
computed in Algorithm 1). For w ≤ a then V (Y) = kv, hence i > a. For w ≥ b,
then V (Y) = 0, and i < j < b. By construction of the algorithm, it follows
that [ka+1, . . . , kb−1] = [p, . . . , p, p− 1, . . . , p− 1], hence no indexes i and j can

be found in this interval that satisfy the conditions
∑i

w=1 kw >
∑i

w=1 lw and
kj < lj , and also maintain the vector K ordered, hence this brings us to our
contradiction.
�

At this point we are ready to define formally our reconstruction procedure;
since we have proved that given a fixed NY , Algorithm 1 executes an optimal
choice for the cells in V (Y) (resp. H(X)). Thanks to this property, to solve the
problem it would suffice to find an appropriate value for NY (resp. NY − D).
Unfortunately, we have not found yet a compact formula to determine this value.
For this reason, the following procedure, described by Algorithm 2, iterates on
all possible values until one yielding a solution is found.

258 S. Bilotta and S. Brocchi

1

3

4

5

3

4

4

5

4

1

4

8

13

16

20

24

29

33

N = 23, p = 3

Z T

y

V(Y) = 3 3 3 3 3 3 1 2 1 1 0 0

V= 9 8 8 7 6 6 4 4 3 3 2 1

Fig. 4. The optimal choice for vector V (Y); in grey, the maximum number of cells that
could be placed in each column given kv = 3. In this example, p = 3, hence every grey
cell at height > 3 contributes to V (Y), while every cell of height < 3 doesn’t.

Algorithm 2. Reconstruction algorithm

1. Input: two vectors H and V , two integers kh and kv

2. for c = D to min(My,Mx +D) do
3. Determine V (Y) and H(X) containing c and c−D cells using Algorithm 1
4. if (V − V (Y))∗ ≤d H −H(X) then
5. Rebuild C with Ryser’s algorithm, fill X and Y according to H(X) and V (Y),

exit for
6. end if
7. end for
8. If a solution has not been yet determined, return NO SOLUTION

5 A Network Flow Approach to Reconstruction

In this section, we show how the blocking component reconstruction problem
may be solved by means of a reduction to a network flow problem. It is well
known that the standard reconstruction problem can be solved by a network
flow approach; the procedure consists in considering a source for every hi with
capacity equal to the projection, a sink for every vj again with the appropriate
capacity, and a node for every cell (i, j) connected to the related source and sink
with arcs of capacity 1.

Beyond showing an interesting connection with an important research field,
this reduction also enables us to define a simple algorithm to solve the problem
in the case where we have some forbidden positions, i.e. cells that can not have
a value of 1. This can be useful in a variety of cases in applications, for example
if we already know the configuration of some areas of the image and we want to
include this information in the solution; note that positions where a cell must
have value 1 can be included in the formulation of the problem with forbidden

Discrete Tomography Reconstruction Algorithms for Images 259

positions, by simply subtracting 1 from the related projections and setting the
cell to a forbidden position. Using the network flow equivalence, we can solve
the problem by simply removing the nodes deriving from forbidden positions.
Hence by giving a similar reduction in our problem, we also trivially solve the
blocking component reconstruction problem with forbidden positions.

The idea of the construction is to compensate the difference in the projections
D with an artificial source. Since at least D cells of Y must be equal to 1 in
order to obtain a solution, we connect the source with capacity D to all of the
cells in Y ; further, since for every cell xi,j = 1, there must be an additional cell
in Y , we also connect the cells in X to every cell in Y .

Formally, the flow problem is composed by the following elements. To simplify
the notation, we refer to a node with the name of the related cell; every pair of
connected nodes has an edge of capacity 1 linking them. We call the following
problem the associate flow problem of the original reconstruction one:

– |H | sources of capacity h1, . . . , hn−kv ;
– 1 source of capacity D;
– |V | sinks of capacity v1, . . . , vm−kh ;
– |C| nodes, where ci,j is connected with source hi and sink vj ;
– |Y | nodes, where yi,j is connected to the source D, to the sink vj and with

every node in X ;
– |X | nodes, where xi,j is connected to each source hi and with every node

in Y .

The problem configuration is depicted in Figure 5, where the cells are repre-
sented by groups, and an edge labelled r represents a series of edges connecting
all nodes related by a column or row (as ci,j with hi) while unlabelled edges
represent connections between all possible pairs of the two groups.

Theorem 5. A reconstruction problem P admits a solution if and only if the
associate flow problem F has a solution.

Proof. (Sketch) From a solution of the flow problem, we can build a matrix that
is solution of P by simply setting to 1 every cell in F where the flow enters and

H

V

C X

Y

H D

C Y

V

Xr

r

rr

Fig. 5. Reducing an instance of the reconstruction problem to a flow problem

260 S. Bilotta and S. Brocchi

exits. It is easy to verify that the projections match the input vectors H and V ,
as in F every sink and source receives (emits) a quantity of flow equivalent to
the contribution of the cell to the related projection.

Conversely, starting from a solution of P , we can build a solution of F in a
similar fashion, but while the edges connecting the groups H,C or C, V or H,X
are uniquely determined, we may have many ways to connect the cells in X,Y
and D,Y . Any choice yields a correct solution, as long as the number of cells to
select in the Y group is equal to D plus the number of nodes to select in the X
group, and this property follows immediately from the definition of D.
�

6 Conclusions

We have studied how the standard reconstruction problem in discrete tomogra-
phy can be extended to the case where some vertical and horizontal projections
are unavailable, as if a component of the scanned object blocked the x-rays used
to study the material. We defined a criteria to determine when a problem has
a unique solution, and we furnished two polynomial reconstruction algorithms.
One allows us to reduce the problem to the standard reconstruction, allowing
the usage of the efficient algorithms known in literature; the other transforms
the problem in a flow problem, allowing us to solve it even when we want some
prescribed values in the output image.

Since the existence of a blocking component is a recurring problem in some
applications, in future works it will be interesting to consider also other assump-
tions on the image that has to be rebuilt, describing realistic environments. For
example, it would be interesting to study how a reconstruction algorithm could
work if the image must represent a convex polyomino as in [4], or more gen-
erally if we have of some skeletal information as in [15]. Introducing the right
assumptions, this line of research could indeed obtain results that could be ap-
plied in tomographic applications dealing with reconstruction artifacts caused
by blocking components.

References

1. Barcucci, E., Brlek, S., Brocchi, S.: PCIF: an algorithm for lossless true color
image compression. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS,
vol. 5852, pp. 224–237. Springer, Heidelberg (2009)

2. Barcucci, E., Brocchi, S.: Solving multicolor discrete tomography problems by using
prior knowledge. Fundamenta Informaticae 125, 313–328 (2013)

3. Barcucci, E., Brocchi, S., Frosini, A.: Solving the two color problem - An heuristic
algorithm. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N.,
Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 298–310. Springer,
Heidelberg (2011)

4. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex
polyominoes from horizontal and vertical projections. Theoretical Computer Sci-
ence 155, 321–347 (1996)

Discrete Tomography Reconstruction Algorithms for Images 261

5. Batenburg, K.J.: A network flow algorithm for reconstructing binary images from
discrete X-rays. Journal of Mathematical Imaging and Vision 27(2), 175–191 (2013)

6. Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for dis-
crete tomography. IEEE Transactions on Image Processing 20(9), 2542–2553 (2011)

7. Costa, M.-C., de Werra, D., Picouleau, C., Schindl, D.: A solvable case of image
reconstruction in discrete tomography. Discrete Applied Mathematics 148(3), 240–
245 (2005)

8. De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.: Reduction of metal
streak artifacts in x-ray computed tomography using a transmission maximum a
posteriori algorithm. In: Nuclear Science Symposium, pp. 850–854 (1999)

9. Duan, X., Zhang, L., Xiao, Y., Cheng, J., Chen, Z., Xing, Y.: Metal artifact re-
duction in CT images by sinogram TV inpainting. In: Nuclear Science Symposium
Conference, pp. 4175–4177 (2008)

10. Durr, C., Guinez, F., Matamala, M.: Reconstructing 3-Colored Grids from Hori-
zontal and Vertical Projections is NP-Hard, A Solution to the 2-Atom Problem in
Discrete Tomography. SIAM J. Discrete Math. 26(1), 330–352 (2012)

11. Faggiano, E., Lorenzi, T., Quarteroni, A.: Metal Artifact Reduction in Computed
Tomography Images by Variational Inpainting Methods, MOX-report No. 16/2013
(2013)

12. Gardner, R.J., Gritzmann, P., Pranenberg, D.: On the computational complexity
of reconstructing lattice sets from their X-rays. Discrete Mathematics 202(1-3),
45–71 (1999)

13. Guinez, F.: A formulation of the wide partition conjecture using the atom problem
in discrete tomography. Discrete Applied Mathematics (2013) (in press)

14. Hantos, N., Balazs, P.: A uniqueness result for reconstructing hv-convex polyomi-
noes from horizontal and vertical projections and morphological skeleton. In: 8th
International Symposium on Image and Signal Processing and Analysis (ISPA).
IEEE (2013)

15. Hantos, N., Balazs, P.: The Reconstruction of Polyominoes from Horizontal and
Vertical Projections and Morphological Skeleton is NP-complete. Fundamenta In-
formaticae 125(3), 343–359 (2013)

16. Herman, G., Kuba, A.: Advances in discrete tomography and its applications.
Birkhauser, Boston (2007)

17. Kalender, W.A., Hebel, R., Ebersberger, J.: Reduction of CT artifacts caused by
metallic implants. Radiology 164(2), 576–577 (1987)

18. Picouleau, C., Brunetti, S., Frosini, A.: Reconstructing a binary matrix under
timetabling constraints. Electronic Notes in Discrete Mathematics 20, 99–112
(2005)

19. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canadian
Journal of Mathematics 9, 371–377 (1957)

20. Wang, G., Snyder, D.L., O’Sullivan, J., Vannier, M.: Iterative deblurring for ct
metal artifact reduction. IEEE Transactions on Medical Imaging 15(5), 657–664
(1996)

An Entropic Perturbation Approach to

TV-Minimization for Limited-Data Tomography

Andreea Deniţiu1,2, Stefania Petra1, Claudius Schnörr2,
and Christoph Schnörr1

1 Image and Pattern Analysis Group, University of Heidelberg, Germany
{denitiu,petra,schnoerr}@math.uni-heidelberg.de

2 Hochschule München, Fakultät für Informatik und Mathematik,
München, Germany

denitiu@hm.edu, schnoerr@cs.hm.edu

Abstract. The reconstruction problem of discrete tomography is stud-
ied using novel techniques from compressive sensing. Recent theoretical
results of the authors enable to predict the number of measurements re-
quired for the unique reconstruction of a class of cosparse dense 2D and
3D signals in severely undersampled scenarios by convex programming.
These results extend established �1-related theory based on sparsity of the
signal itself to novel scenarios not covered so far, including tomographic
projections of 3D solid bodies composed of few different materials. As a
consequence, the large-scale optimization task based on total-variation
minimization subject to tomographic projection constraints is consider-
ably more complex than basic �1-programming for sparse regularization.
We propose an entropic perturbation of the objective that enables to apply
efficient methodologies from unconstrained optimization to the perturbed
dual program. Numerical results validate the theory for large-scale recov-
ery problems of integer-valued functions that exceed the capacity of the
commercial MOSEK software.

Keywords: discrete tomography, compressed sensing, underdetermined
systems of linear equations, cosparsity, phase transitions, total variation,
entropic perturbation, convex duality, convex programming.

1 Introduction

This paper addresses the problem of reconstructing compound solid bodies u
from few tomographic projections: Au = b. Theoretical guarantees of recon-
struction performance relate to current research in the field of compressive sens-
ing, concerned with real sensor matrices A that do not satisfy commonly made
assumptions like the restricted isometry property.

By adopting the cosparse signal model [1] that conforms to our tomographic
scenario, the authors [2] recently established the existence of “phase transitions”
that relate the required limited(!) number of measurements to the cosparsity level
of u in order to guarantee unique recovery. This result was extensively validated

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 262–274, 2014.
c© Springer International Publishing Switzerland 2014

An Entropic Perturbation Approach to TV-Minimization 263

numerically using the commercial MOSEK software, to avoid that numerical
optimization issues affect the validation.

For our 3D problems, a dedicated numerical optimization algorithm is neces-
sary, however, because MOSEK cannot handle medium and large problem sizes.
We present in this paper such an approach by utilizing the fact that adequate per-
turbations of the optimization problem may lead to a simpler dual problem [3,4].
We work out a corresponding approach to our specific reconstruction problem

min
u

TV(u) subject to Au = b , (1)

that minimizes the total variation TV(u) subject to the projection constraints.

Organization. Section 2 briefly reports the above-mentioned phase transitions,
followed by presenting a reformulation in Section 3 together with uniqueness re-
sults. A suitable perturbation is worked out in Section 4 that favorably compares
to MOSEK for relevant problem sizes (Section 5).

Basic Notation. For n ∈ N, we denote [n] = {1, 2, . . . , n}. The complement of
a subset J ⊂ [n] is denoted by Jc = [n] \ J . For some matrix A and a vector
z, AJ denotes the submatrix of rows indexed by J , and zJ the corresponding
subvector. Ai will denote the ith row of A. N (A) and R(A) denote the nullspace
and the range of A, respectively. Vectors are column vectors and indexed by
superscripts. Sometimes, we will write e.g. (u, v) instead of the more correct
(u, v). A denotes the transposed of A. � = (1, 1, . . . , 1) denotes the one-
vector whose dimension will always be clear from the context. The dimension of
a vector z is dim(z). 〈x, z〉 denotes the standard scalar product in Rn and we
write x ⊥ z if 〈x, z〉 = 0. The number of nonzeros of a vector x is denoted by

‖x‖0. The indicator function of a set C is denoted by δC(x) :=

{
0, if x ∈ C

+∞, if x /∈ C .

σC(x) := supy∈C〈y, x〉 denotes the support function of a nonempty set C. ∂f(x)
is the subdifferential of f at x and intC and rintC denote the interior and the
relative interior of a set C. By f∗ we denote the conjugate function of f . We
refer to [5] for related properties.

In what follows, we will work with an anisotropic discretization of the TV
operator in (1) given by

TV(u) := ‖Bu‖1, B :=

⎛
⎝∂1 ⊗ I ⊗ I
I ⊗ ∂2 ⊗ I
I ⊗ I ⊗ ∂3

⎞
⎠ ∈ R

p×n , (2)

where ⊗ denotes the Kronecker product and ∂i, i = 1, 2, 3, are derivative ma-
trices forming the forward first-order differences of u wrt. the considered co-
ordinates. Implicitly, it is understood that u on the r.h.s. of (2) is a vector
representing all voxel values in appropriate order.

2 Weak Phase Transitions for TV-Based Reconstruction

We summarize in this section an essential result from [2] concerning the unique
recovery from tomographic projection by solving problem (1), depending on the

264 A. Deniţiu et al.

cosparsity level � of u (Definition 1) and the number m of measurements (pro-
jections) of u. This result motivates the mathematical programming approach
discussed in Section 3 and the corresponding numerical optimization approach
presented in Section 4.

Definition 1 (cosparsity, cosupport). The cosparsity of u ∈ Rn with respect
to B ∈ Rp×n is

� := p− ‖Bu‖0 , (3)

and the cosupport of u with respect to B is

Λ := {r ∈ [p] : (Bu)r = 0}, |Λ| = � . (4)

Thus, BΛu = 0. In view of the specific operator B given by (2), � measures the
homogeneity of the volume function u. A large value of � can be expected for u
corresponding to solid bodies composed of few homogeneous components.

Proposition 1 ([2, Cor. 4.6]). For given A ∈ Rm×n and B ∈ Rp×n, suppose
the rows of (A

B) are linearly independent. Then a �-cosparse solution u to the
measurement equations Au = b will be unique if the number of measurements
satisfies

m ≥ 2n− (� +
√
2�+ 1− 1) (in 2D) , (5a)

m ≥ 2n− 2

3

(
� +

3
√
3�2 + 2

3

√
�

3
− 2
)

(in 3D) . (5b)

The above lower bounds on the number of measurements m required to re-
cover a �-cosparse vector u, imply that recovery can be carried out by solving
minu ‖Bu‖0 subject to Au = b. Replacing this objective by the convex relax-
ation (2) yields an excellent agreement of empirical results with the prediction
(5), as shown in [2], although the independency assumption made in Prop. (1)
does not strictly hold for the sensor matrices A and the operator B (2) used in
practice.

This motivates to focus on efficient and sparse numerical optimization tech-
niques that scale up to large problem sizes.

3 TV-Recovery by Linear Programming

We consider the discretized TV-term (2), an additional nonnegative constraint
on image u and express Bu = z. Thus, (1) becomes

min
u,z
‖z‖1 s.t. Bu = z, Au = b, u ≥ 0 . (6)

An Entropic Perturbation Approach to TV-Minimization 265

3.1 Primal Linear Program and Its Dual

By splitting the variable z in its positive v1 := max{0, z} and negative part
v2 := −min{0, z} we convert problem (6) into a linear program in normal form.
With

M :=

(
B −I I
A 0 0

)
, q :=

(
0
b

)
, (7)

and the polyhedral set

P := {x ∈ Rn+2p : Mx = q, x ≥ 0}, x := (u, v1, v2) , (8)

problem (6) becomes the linear program (P)

(P) min
x∈P

〈c, x〉 = min
(u,v1,v2)∈P

〈�, v1 + v2〉, c = (0,�,�) . (9)

We further assume that P �= ∅, i.e. a feasible solution always exists. Due to
c ≥ 0, the linear objective in (P) is bounded on P . Thus (P) always has a solu-
tion under the feasibility assumption. In view of basic linear programing theory,
compare [5, 11.43], the dual program also has a solution. The dual program (D)
reads

(D) min
y
−〈q, y〉, My ≤ c .

With

y =

(
y0
yb

)
, M =

⎛⎝B A

−I 0
I 0

⎞⎠ , My =

⎛⎝By0 +Ayb
−y0
y0

⎞⎠ , (10)

this reads

min
y0,yb

−〈b, yb〉 s.t. By0 +Ayb ≤ 0, −1 ≤ y0 ≤ 1 . (11)

Moreover, both primal and dual solutions (x, y) will satisfy the following op-
timality conditions

0 ≤ c−My ⊥ x ≥ 0 , (12)

Mx = q . (13)

3.2 Uniqueness of Primal LP

A classical argument for replacing ‖ ·‖0 by ‖ ·‖1 and solving for (6) is uniqueness
of the minimal �1 (thus LP) solution. Let x = (u, v) = (u, v1, v2) be �-cosparse
and solve (9). We assume throughout

ui > 0, i ∈ [n] . (14)

Based on x, we define the corresponding support set

J := {i ∈ [dim(x)] : xi �= 0} = supp(x), J := Jc = [dim(x)] \ J . (15)

266 A. Deniţiu et al.

Denoting k := p− �, the cardinality of the index sets J and J is

|J | = 2�+ k = p+ �, |J | = n+ 2p− |J | = n+ k , (16)

compare [2, Lem. 5.2]. This shows that x ∈ Rn+2p is a (n+ k)-sparse vector.

Theorem 1 ([6, Thm. 2(iii)]). Let x be a solution of the linear program (9).
The following statements are equivalent:

(i) x is unique.
(ii) There exists no x satisfying

Mx = 0, xJ ≥ 0, 〈c, x〉 ≤ 0, x �= 0 . (17)

Theorem (1) can be turned into a nullspace condition w.r.t. the sensor matrix
A, for the unique solvability of problems (9) and (6).

Proposition 2 ([2, Cor. 5.3]). Let x = (u, v1, v2) be a solution of the linear
program (9) with component u that has cosupport Λ with respect to B. Then x,
resp. u, are unique if and only if

∀x =

(
u
v

)
, v =

(
v1

v2

)
s.t. u ∈ N (A) \ {0} and Bu = v1 − v2 (18)

the condition
‖(Bu)Λ‖1 >

〈
(Bu)Λc , sign(Bu)Λc

〉
(19)

holds. Furthermore, any unknown �-cosparse vector u∗, with Au∗ = b, can be
uniquely recovered as solution u = u∗ to (6) if and only if, for all vectors u
conforming to (18), the condition

‖(Bu)Λ‖1 > sup
Λ⊂[p] : |Λ|=�

sup
u∈N (BΛ)

〈
(Bu)Λc , sign(Bu)Λc

〉
(20)

holds.

Remark 1. Conditions (19) and (20) clearly indicate the direct influence of
cosparsity on the recovery performance: if � = |Λ| increases, then these con-
ditions will more likely hold. On the other hand, these results are mainly the-
oretical since numerically checking (20) is infeasible. However, we will assume
that uniqueness of (6) is given, provided that the cosparsity � of the unique so-
lution u satisfies the conditions in (5a) and (5b). This assumption is motivated
by the comprehensive experimental assessment of recovery properties reported
in [2].

Remark 2. We note that, besides the condition for uniqueness from Thm. (1),
a LP solution is unique if there is a unique feasible point. For high cosparsity
levels �, this seems to be often the case.

Let x be a (possibly unique) primal solution of (P) and y a dual solution. In
view of (15) and (12) we have

(c−My)i = 0, ∀i ∈ J . (21)

We note that non-degeneracy of the primal-dual pair (x, y) implies uniqueness
of the dual variable y.

An Entropic Perturbation Approach to TV-Minimization 267

4 Recovery by Perturbed Linear Programming

Preliminaries: Fenchel Duality Scheme. We will use the following result.

Theorem 2 ([5]). Let f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} and A ∈
Rm×n. Consider the two problems

inf
x∈Rn

ϕ(x), ϕ(x) = 〈c, x〉+ f(x) + g(b−Ax), (22a)

sup
y∈Rm

ψ(y), ψ(y) = 〈b, y〉 − g∗(y)− f∗(Ay − c) . (22b)

where the functions f and g are proper, lower-semicontinuous (lsc) and convex.
Suppose that

b ∈ int(Adom f + dom g), (23a)

c ∈ int(A dom g∗ − dom f∗) . (23b)

Then the optimal solutions x, y are determined by

0 ∈ c+ ∂f(x)−A∂g(b−Ax), 0 ∈ b− ∂g∗(y)−A∂f∗(Ay − c) (24a)

and connected through

y ∈ ∂g(b−Ax), x ∈ ∂f∗(Ay − c), (25a)

Ay − c ∈ ∂f(x), b −Ax ∈ ∂g∗(y) . (25b)

Furthermore, the duality gap vanishes: ϕ(x) = ψ(y) .

Entropic Perturbation and Exponential Penalty. In various approaches
to solving large-scale linear programs, one regularizes the problem by adding to
the linear cost function a separable nonlinear function multiplied by a small pos-
itive parameter. Popular choices of this nonlinear function include the quadratic
function, the logarithm function, and the 〈x, log(x)〉-entropy function. Our main
motivation in following this trend is that by adding a strictly convex and sep-
arable perturbation function, the dual problem will become unconstrained and
differentiable. Consider

(Pε) min〈c, x〉+ ε〈x, log x− �〉 s.t. Mx = q, x ≥ 0 . (26)

The perturbation approach by the entropy function was studied by Fang et
al. [4,7] and, from a dual exponential penalty view, by Cominetti et al. [8].

The Unconstrained Dual. We write (Pε) (26) in the form (22a)

minϕ(x), ϕ(x) := 〈c, x〉 + ε〈x, log x− �〉+ δRn
+
(x)︸ ︷︷ ︸

:=f(x)

+δ0(q −Mx) . (27)

268 A. Deniţiu et al.

With g := δ0, we get g∗ ≡ 0, since δ∗C ≡ σC and thus

g∗(y) = δ∗0(y) = σ0(y) = sup
z=0
〈y, z〉 = 0, ∀y ∈ Rn

holds. On the other hand, we have f∗(y) = ε〈�, e y
ε 〉. Now (22b) gives immedi-

ately the dual problem

supψ(y), ψ(y) := 〈q, y〉 − ε〈�, e
M�y−c

ε 〉 . (28)

We note that ψ is unconstrained and twice differentiable with

∇ψ(y) = q −Me
M�y−c

ε and (29a)

∇2ψ(y) = −1

ε
M diag e

M�y−c
ε M . (29b)

Moreover, −∇2ψ / 0 for all y, with e
M�y−c

ε ∈ R(M) = N (M)⊥, in view of
(29b). Note that if ψ has a solution, then it is unique and the strictly feasible
set must be nonempty, see (29a), thus rintP = {x : Mx = q, x > 0} �= ∅ ⇔
q ∈ M(Rn

++). Further, we can rewrite (28) in a more detailed form in view
of (10)

(Dε) min
y0,yb

−〈b, yb〉+ε〈�n, e
B�y0+A�yb

ε 〉+ε〈�p, e
−y0−�p

ε 〉+ε〈�p, e
y0−�p

ε 〉 . (30)

Connecting Primal and Dual Variables. With dom g = 0, dom g∗ = Rn,
dom f∗ = Rn and dom f = Rn

+, the assumptions (23) become q ∈ intM(Rn
+) =

M(intRn
+) = M(Rn

++), compare [5, Prop. 2.44], and c ∈ intRn = Rn. Thus,
under the assumption of a strictly feasible set, we have no duality gap. Moreover
both problems (27) and (28) have a solution.

Theorem 3. Denote by xε and yε a solution of (Pε) and (Dε) respectively. Then
the following statements are equivalent:

(a) q ∈M(Rn
++), thus the strictly feasible set is nonempty.

(b) The duality gap is zero ψ(yε) = ϕ(xε) .
(c) Solutions xε and yε of (Pε) and (Dε) exist and are connected through

xε = e
M�yε−c

ε . (31)

Proof. (a)⇒ (b): holds due to Thm. 2. On the other hand, (b) implies solvability
of ψ and thus (a), as noted after Eq. (29b). (a)⇒ (c): The assumptions of Thm. 2
hold. Now ∂f∗(y) = {∇f∗(y)} = {e y

ε } and the r.h.s. of (25a) gives (c). Now, (c)
implies Mxε = q and thus (a).

The following result shows that for ε → 0 and under the nonempty strictly
feasible set assumption, xε given by (31) approaches the least-entropy solution of
(P), if yε is a solution of (Dε). The proof follows along the lines of [9, Prop. 1].

An Entropic Perturbation Approach to TV-Minimization 269

Theorem 4. Denote the solution set of (9) by S. Assume S �= ∅ and rintP �= ∅.
Then, for any sequence of positive scalars (εk) tending to zero and any sequence
of vectors (xεk), converging to some x∗ , we have x∗ ∈ argminx∈S〈x, log x− �〉.
If S is a singleton, denoted by x, then xεk → x.

Partial Perturbation. In the case of a unique and sparse feasible point x the
assumption q ∈M(Rn

++) does not hold. With J = supp(x) the primal reads

min〈c, x〉+ ε〈xJ , log xJ − �J〉 s.t. Mx = q, xJc = 0, x ≥ 0,

and the dual becomes

max
y
〈q, y〉 − ε〈�, e

(M�)Jy−cJ
ε 〉 .

However, the solution support J is unknown. Using (21), one can show that an
approximative solution yε of (Dε), i.e. ‖∇ψ(yε)‖ ≤ τε, with τε > 0 small, can be
used to construct xε according to (31), such that xε → x .

Exponential Penalty Method. We discussed above how problem (Pε) tends
to (P) as ε → 0. Likewise, (Dε) tends to (D). This was shown by Cominetti et
al. [8, Prop. 3.1]. The authors noticed that the problem (Dε) is a exponential
penalty formulation of (D), compare (10) and (30).

They also investigated the asymptotic behavior of the trajectory yε and its
relation with the solution set of (D). They proved the trajectory yε is approxi-
matively a straight line directed towards the center of the optimal face of (D),
namely yε = y∗ + εd∗ + η(ε), where y∗ is a particular solution of (D). Moreover,

the error η(ε) goes to zero exponentially fast, i.e. at the speed of e
−μ
ε for some

μ > 0. See the proof of [8, Prop. 3.2].

5 Numerical Experiments

In this section, we illustrate the performance of our perturbation approach com-
pared to the LP solver MOSEK, in noisy and non-noisy environments, for 2D and
3D cases. Besides the proposed entropic approach, we implemented a quadratic
perturbation approach for comparison purposes. We solved the perturbed dual
formulations by a conventional unconstrained optimization approach, the Lim-
ited Memory BFGS algorithm [10], which scales to large problem sizes. In all
experiments, the perturbation parameters were kept fixed to ε = 1/50 and α = 1,
see Fig. 3 for a justification. In the following 1

2α denotes the perturbation pa-
rameter of a quadratic term applied to (6). We allowed a maximum number of
1500 iterations and stopped when the norm of the gradient of the perturbed dual
function satisfies ‖∇ψ(yk)‖ ≤ 10−4.

The first performance test was done on 2D d× d images of randomly located
ellipsoids with random radii along the coordinate axes. See Fig. 1 (bottom row)

270 A. Deniţiu et al.

d

l/d
2

80 100 120 140 160 180
1.86

1.88

1.9

1.92

1.94

1.96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

l/d
2

80 100 120 140 160 180
1.84

1.86

1.88

1.9

1.92

1.94

1.96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

l/d
2

80 100 120 140 160 180
1.84

1.86

1.88

1.9

1.92

1.94

1.96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

l/d
2

80 100 120 140 160 180
1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

l/d
2

80 100 120 140 160 180
1.84

1.86

1.88

1.9

1.92

1.94

1.96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

l/d
2

80 100 120 140 160 180
1.84

1.86

1.88

1.9

1.92

1.94

1.96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Phase transitions for the 2D case, d = 80 : 10 : 180, 4 cameras (top plots)
and 6 cameras (bottom plots), computed for the noiseless case with MOSEK (plots on
left), our approach (plots in the middle) and our approach for the noisy case (plots on
the right). The black solid line corresponds to the theoretical curve (5a). The last row
displays some of the random d×d images used in the experiments in order of decreasing
cosparsity �. MOSEK performs better on smaller images and worse on larger ones.

Fig. 2. Comparison between the quadratic perturbation approach (left two columns)
and entropic perturbation approach (right two columns) for two relative cosparsity
levels. Two 80×80 images, are projected along 6 directions. For both ρ = �/d2 = 1.7786
(top row) and ρ = �/d2 = 1.8586 (bottom row) reconstruction should in theory be
exact. Result (left column) and rounded result (second left column) of the quadratic
perturbation approach for α = 1. Results for the entropic perturbation approach (right
two columns) with ε = 1/50. Here the rounded result exactly equals the original image
(right column). Hence, the approximate solution by the entropic approach is closer to
the original solution.

An Entropic Perturbation Approach to TV-Minimization 271

−1.5 −1 −0.5 0 0.5 1

x 10
−5

0

1000

2000

3000

4000

5000

6000

−1 −0.5 0 0.5 1

x 10
−5

0

1000

2000

3000

4000

5000

6000

Fig. 3. Experimental finite perturbation property of the entropic approach. Here ε =
1/50 is a reasonable value in 2D since the reconstruction error varies insignificantly
(left). The histograms of (u − u∗) for ε = 1/50 (middle) and ε = 1/120 (right) are
highly similar.

2.74 2.76 2.78 2.8 2.82 2.84 2.86 2.88 2.9 2.92 2.94

0

0.2

0.4

0.6

0.8

1

l/d3

R
ec

ov
er

y
%

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95

0

0.2

0.4

0.6

0.8

1

l/d3

R
ec

ov
er

y
%

Fig. 4. Phase transitions for the 3D case, 3 cameras (top left) and 4 cameras (top
right) and random example of perfectly reconstructed images d = 31 (bottom). The
average performance of MOSEK (dotted line) for the noiseless case, and the entropic
approach in the noiseless (dashed line) and noisy (dash-dot line) case for ε = 1/50 as
a variation of relative cosparsity. The black solid line corresponds to the theoretical
curve (5b). Measurements were corrupted by Poisson noise of SNR = 50db.

272 A. Deniţiu et al.

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

50

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

0

10

20

30

40

50

 0

0.2

0.4

0.6

0.8

1

1.2

Fig. 5. Slices through the 3D volume (d = 51) of an original Shepp-Logan image (left)
and the reconstructed image from 7 noisy projecting directions via the entropic per-
turbation approach, satisfying ‖u− u∗‖∞ < 0.5 (right). This shows that the approach
is also stable for low noise levels as opposed to MOSEK. Measurements were corrupted
by Poisson noise of SNR = 50db.

80 90 100 110 120 130 140 150 160 170 180
10

−1

10
0

10
1

10
2

10
3

Our approach
Mosek

Fig. 6. Comparison between computation times of the proposed approach and
MOSEK. We average results for 90 2D test images and vary d = 80 : 10 : 180.

for two sample images. The relative cosparsity is denoted by ρ := �
n . Parameters

p and n vary for two- and three-dimensional images as

n =

{
d2 in 2D

d3 in 3D
, p =

{
2d(d− 1) in 2D

3d2(d− 1) in 3D
. (32)

Our parametrization relates to the design of the projection matrices A ∈ Rm×n,
see [2] for details.

The phase transitions in Fig. 1 display the empirical probability of exact
recovery over the space of parameters that characterize the problem. Here we
performed 90 tests for each (ρ, d) parameter combination.

We analyzed the influence of the image cosparsity, also for 3D images, see
Fig. 4. In 3D, for each problem instance defined by a (ρ, d)-point, we generated
60 random images. In both 2D and 3D, we declared a random test as successful

An Entropic Perturbation Approach to TV-Minimization 273

if ‖u − u∗‖∞ < 0.5, which leads to perfect reconstruction after rounding. Both
Fig. 1 and Fig. 4 display a phase transition and exhibit regions where exact
image reconstruction has probability equal or close to one and closely match
the solid green line in the plots, which stands for the theoretical curve (5a). In
the noisy case, projection data was corrupted by Poisson noise of SNR = 50db.
The perturbation parameter has been set as in the noiseless case, i.e. ε = 1/50
and α = 1. MOSEK however was unable to solve the given problem, stating
that either the primal or the dual might be infeasible. Thus our perturbation
approach is also stable to low noise levels as opposed to MOSEK. Moreover the
proposed algorithm scales much better with the problem size and is significantly
more efficient for large problem sizes that are relevant to applications. In partic-
ular, problem sizes can be handled where MOSEK stalls, see Fig. 6. Finally, we
underline that the entropic perturbation approach performs significantly better
than quadratic perturbation as shown in Fig. 2.

6 Conclusion

We presented a mathematical programming approach based on perturbation that
copes with large tomographic reconstruction problems of the form (1). While the
perturbation enables to apply efficient sparse numerics, it does not compromise
reconstruction accuracy. This is a significant step in view of the big data volumes
of industrial scenarios.

Our further work will examine the relation between the geometry induced by
perturbations on the u-space and the geometry of Newton-like minimizing paths,
and the potential for parallel implementations.

Acknowledgement. SP gratefully acknowledges financial support from the
Ministry of Science, Research and Arts, Baden-Württemberg, within the Mar-
garete von Wrangell postdoctoral lecture qualification program. AD and the
remaining authors appreciate financial support of this project by the Bavarian
State Ministry of Education, Science and Arts.

References

1. Nam, S., Davies, M., Elad, M., Gribonval, R.: The Cosparse Analysis Model and
Algorithms. Applied and Computational Harmonic Analysis 34(1), 30–56 (2013)

2. Deniţiu, A., Petra, S., Schnörr, C., Schnörr, C.: Phase Transitions and Cosparse
Tomographic Recovery of Compound Solid Bodies from Few Projections. ArXiv
e-prints (November 2013)

3. Ferris, M.C., Mangasarian, O.L.: Finite perturbation of convex programs. Appl.
Math. Optim. 23, 263–273 (1991)

4. Fang, S.C., Tsao, H.S.J.: Linear programming with entropic perturbation. Math.
Meth. of OR 37(2), 171–186 (1993)

5. Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer (2009)
6. Mangasarian, O.L.: Uniqueness of Solution in Linear Programming. Linear Algebra

and its Applications 25, 151–162 (1979)

274 A. Deniţiu et al.

7. Fang, S.C., Tsao, H.S.J.: On the entropic perturbation and exponential penalty
methods for linear programming. J. Optim. Theory Appl. 89, 461–466 (1996)

8. Cominetti, R., San Martin, J.: Asymptotic analysis of the exponential penalty
trajectory in linear programming. Math. Progr. 67, 169–187 (1994)

9. Tseng, P.: Convergence and Error Bound for Perturbation of Linear Programs.
Computational Optimization and Applications 13(1-3), 221–230 (1999)

10. Bonnans, J.F., Gilbert, Lemaréchal, C., Sagastizábal, C.: Numerical Optimization
– Theoretical and Practical Aspects. Springer, Berlin (2006)

Fourier Inversion of the Mojette Transform

Andrew Kingston1, Heyang Li1, Nicolas Normand2, and Imants Svalbe3

1 Dept. Applied Maths, RSPE, The Australian National University,
Canberra ACT 2600, Australia
andrew.kingston@anu.edu.au

2 IRCCyN, École Polytechnique de l’Université de Nantes,
La Chantrerie, Nantes 44306, France

3 School of Physics, Monash University, Clayton VIC 3800, Australia

Abstract. The Mojette transform is a form of discrete Radon transform
that maps a 2D image (P×Q pixels) to a set of I 1D projections. Several
fast inversion methods exist that require O(PQI) operations but those
methods are ill-conditioned. Several robust (or well-conditioned) inver-
sion methods exist, but they are slow, requiring O(P 2Q2I) operations.
Ideally we require an inversion scheme that is both fast and robust to
deal with noisy projections. Noisy projection data can arise from data
that is corrupted in storage or by errors in data transmission, quantisa-
tion errors in image compression, or through noisy acquisition of physical
projections, such as in X-ray computed tomography. This paper presents
a robust reconstruction method, performed in the Fourier domain, that
requires O(P 2Q logP) operations.

Keywords: Radon transform, Mojette transform, Fourier inversion,
tomography.

1 Introduction

The Mojette transform is a discrete form of the Radon transform that maps a
2D image (P ×Q pixels) to a set of I 1D projections. It was first developed by
Guedon et al in 1996 [5] in the context of psychovisual image coding. Due to
its distribution, redundancy, and invertibility properies, it has since found appli-
cations in distributed data storage on disks and networks, network packet data
transmission, tomographic reconstruction, image watermarking, image compres-
sion, and image encryption. A summary of the early development of the Mojette
transform was the subject of an invited paper to DGCI in 2005 [6] and a book
on the Mojette transform was published in 2009 [4].

The Radon transform has many inversion algorithms based on the form of
the input data and the a priori information available. Similarly, the Mojette
transform has many inverse algorithms. There are fast methods that use local
back-projection (LBP) [10] and geometrically driven LBP (GLBP) [11]. These
recover the original data in O(PQI) operations, however, they are ill-conditioned
being essentially forms of Gaussian elimination; any errors in the determination
of a variable value are propagated and compounded throughout the remaining

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 275–284, 2014.
c© Springer International Publishing Switzerland 2014

276 A. Kingston et al.

variables. There are also well-conditioned, or robust, methods that have been
explored in the context of tomographic reconstruction. These include a conjugate
gradient back-projection (CGBP) [12] that requires O(P 2Q2I) operations, and
an exact back-projection (EBP) method that requires an inordinate number of
projections (I ≈ 12PQ/π2 projections) and therefore O(P 2Q2) operations.

To date there has been no Mojette inversion approach that is fast, exact
given noise-free projections, and well-conditioned given noisy projections. This
paper presents an inversion algorithm based on the classic Fourier inversion
(FI) technique for the Radon transform. It solves rows of Fourier space using a
conjugate gradient algorithm that minimises the L2 norm of the error (arising
from noise). Assuming I is O(P), Mojette FI is slower than LBP and GLBP
requiring O(P 2Q logP) operations but more robust and is faster than CGBP
and EBP but less robust.

The remainder of the paper is outlined as follows: Section 2 defines the Mojette
transform and the requirements for a unique reconstruction (in the noise-free
case). The Fourier properties of the Mojette projection data are outlined in
Section 3. The Fourier inversion based on these properties is developed in Section
4. Some results are presented in Section 5 followed by some concluding remarks
in Section 6.

2 The Mojette Transform

The Mojette transform of a 2D function, f(k, l), is comprised of a set of I pro-
jections. Each projection has an associated projection direction vector, (pi, qi),
and is comprised of a set of parallel discrete sums over f along lines defined by
this vector, i.e., b = kqi − lpi. The value of the Mojette transform in each bin,
b, of a projection is then defined as follows:

projpi,qi(b) =

P/2∑
k=−P/2

Q/2∑
l=−Q/2

f(k, l)δ(b− kqi + lpi), (1)

where δ(x) = 1 if x = 0 and is 0 otherwise. Note that pi ∈ Z, and qi ∈ N such
that gcd(pi, qi) = 1. The distance between adjacent parallel lines (or sampling
rate) of a projection varies with the direction vector, (pi, qi), as 1/

√
p2i + q2i . The

number of bins per projection also varies with (pi, qi), as follows:

Bi = |pi|Q+ qiP (2)

The set of I projections is arbitrary both in cardinality and direction vectors.
Therefore, a criterion is required to determine when a sufficient number of pro-
jections have been acquired in order to ensure a unique solution for a P × Q
dataset. Katz determined the following criterion [7]:

I−1∑
i=0

|pi| ≥ P or

I−1∑
i=0

qi ≥ Q. (3)

Mojette Fourier Inversion 277

For the remainder of this paper we will assume that
∑
|pi| ≥ P . Below Katz

criterion there is no unique solution, therfore the condition number is infinite;
when Katz criterion is just satisfied, i.e.,

∑
|pi| = P , the condition number is

very large so any noise is amplified and propagated into the reconstruction; as
additional projections are added, the condition number decreases rapidly at first
but then with diminishing returns.

3 Fourier Properties of Mojette Projections

Before developing a Fourier inversion technique it is beneficial to establish how
Mojette projection data maps into discrete Fourier space. First we define the 1D
discrete Fourier transform (DFT) of g(k) as follows:

F1{g} = ĝ(u) =

P/2∑
k=−P/2

g(k) exp(−i2πku/P), (4)

and define the 2D DFT of g(k, l) as follows:

F2{g} = ĝ(u, v) =

P/2∑
k=−P/2

Q/2∑
l=−Q/2

g(k, l) exp(−i2πku/P) exp(−i2πlv/Q). (5)

A discrete form of the Fourier slice theorem for classical Radon projections
was first presented in [3] using the Z-transform. It was first applied to the nD
Mojette transform by Verbert and Guédon in [13] also using the Z-transform.
Here we demonstrate it for the 2D Mojette transform using the DFT.

Theorem 1. The 1D DFT of a Mojette projection of f maps to a discrete line
(or “slice”) through the origin of the 2D DFT of f as follows:

F1{projpi,qi}(w) = f̂(qiPBi
w, −piQ

Bi
w) (6)

Proof.

F1{projpi,qi} =
Bi/2∑

b=−Bi/2

P/2∑
k=−P/2

Q/2∑
l=−Q/2

f(k, l)δ(b− kqi + lpi) exp(−i2πbw/Bi)

=
P/2∑

k=−P/2

Q/2∑
l=−Q/2

f(k, l) exp(−i2π(kqi − lpi)w/Bi)

=
P/2∑

k=−P/2

Q/2∑
l=−Q/2

f(k, l) exp(−i2π k
P (qiPw)/Bi)

exp(−i2π l
Q (−piQw)/Bi)

= f̂(qiPBi
w, −piQ

Bi
w)

�

Figure 1 provides a depiction of the theorem. The sampling rate of the DFT of
projection data in frequency space is

√
q2i P

2 + p2iQ
2/B. An important property

of the slices that arises is the following:

278 A. Kingston et al.

Fig. 1. A depiction of Theorem 1 for proj−1,1 and proj3,1 on a 4× 4 image

Lemma 2. Given the slice in Fourier space formed from a projection with di-
rection vector (pi, qi), any horizontal line, v = const, intersects the slice exactly
|pi| times and any vertical line, u = const, intersects the slice exactly qi times.

Proof. We have w ∈ ZBi and from Theorem 1 the sampling step between each
successive point in frequency space is (qiPBi

, −piQ
Bi

). Therefore, the total sam-

pling displacement in frequencey space is (qiPBi
, −piQ

Bi
)Bi = (qiP,−piQ) ≡ (0, 0)

mod (P,Q). There is no overlap in the sampling since pi and qi are coprime,
hence implying the theorem.
�

4 Mojette Fourier Inversion

The frequency data from the I slices gives us a nonuniform sampling of dis-
crete Fourier space. Before continuing, we shall introduce the nonuniform Fourier
transform (NFT). We define the 1D FT of irregularly sampled data to J frequen-
cies as:

ĝ(wj) =

N/2∑
k=−N/2

g(k) exp(−i2πkwj) (7)

for wj ∈ [−0.5, 0.5) and j ∈ ZJ The NFT can be performed in O(N logN)
operations, see [8]. Iterative inversion of the NFT can be achieved through the
conjugate gradient method which converges within N iterations. Therefore, the
inverse NFT (INFT) can be obtained in O(N2 logN) operations. In practice this
can be much faster if the right pre-conditioner is used, see [9].

Robust Mojette Fourier inversion can of course be achieved by taking the
frequency data from the I slices and performing a 2D INFT. However, this will
be performed in O(P 2Q2 logPQ) operations. This has been done for projec-
tions with 5% noise for comparison with the proposed method in sect. 5. In
what follows we describe a method to achieve a less robust inversion in only
O(P 2Q logQ) operations by a deliberate sampling of the slice data to lie on
horizontal lines enabling the 1D INFT to be applied to each line followed by an
inverse fast Fourier transform (IFFT) applied to the columns.

Mojette Fourier Inversion 279

4.1 Exact Resampling of Projection Slices

The slice data can be exactly resampled to lie on common horizontal lines in
2D discrete Fourier space, similar to [3,13] and Theorem 1, but using a specific
Chirp z-transform of projections. First let us define the 1D Chirp z-transform
as follows:

Z1{g} = g̃(w) =

N/2∑
k=−N/2

g(k)zwk, w ∈ ZM . (8)

Here z ∈ C and typically |z| = 1. As was done by Bailey and Swarztrauber in
[1] we define z = exp(−i2πα) for w ∈ Z and α ∈ R to give:

Z1
α{g} = ĝα(w) =

N/2−1∑
k=−N/2

g(k) exp(−i2πkwα) = ĝ(Nαw). (9)

So α = 1/N gives the frequency data of the 1D DFT. This can be done in
O(N logN) if α is rational, (see [2,1]). Here we use α = 1/(|pi|Q) so that the

frequency sampling rate is 1.0 in the v-direction of f̂(u, v) as follows:

Corollary 3.

Z1
1

|pi|Q
{projpi,qi}(w) = f̂(qiP

|pi|Qw,−sgn(pi)w) (10)

Proof.

Z1
1

|pi|Q
{projpi,qi}(w) =

Bi/2∑
b=−Bi/2

P/2−1∑
k=−P/2

Q/2−1∑
l=−Q/2

f(k, l)δ(b− kpi + lpi)

exp(−i2πbw/|pi|Q)

=
P/2−1∑
k=−P/2

Q/2−1∑
l=−Q/2

f(k, l) exp(−i2π(kqi − lpi)w/|pi|Q)

=
P/2−1∑
k=−P/2

Q/2−1∑
l=−Q/2

f(k, l) exp(−i2π k
P (qiPw)/|pi|Q)

exp(−i2π l
Q − sgn(pi)w)

= f̂(qiP
|pi|Qw,−sgn(pi)w)

�

From Lemma 2 there are |pi| intersections with any horizontal line, thus each

slice samples |pi|Q frequencies in f̂ . This causes all frequency data from the slices
to lie on lines v = c for c ∈ ZQ and all projection slice data combined samples∑
|pi|Q ≥ PQ frequencies provided each sample point is unique. The problem is

that at v = 0 all lines intersect giving redundant data, hence insufficient unique
data for exact inversion. This can be overcome by offsetting the sampling in
the v-direction by a fraction φ ∈ (0, 1). An offset of frequency data by φ can
of course be done as a phase shift on the projections prior to applying the 1D
Chirp z-transform. An example of the resulting data is depicted in Fig. 2.

280 A. Kingston et al.

(a) (b) (c)

Fig. 2. A depiction of the chirp z-transforms of (a) proj−1,1 and (b) proj3,1 on a 4× 4
image with φ = 0.5. α is selected to give data on v ∈ {−1.5,−0.5, 0.5, 1.5} frequencies.
(c) Results from (a) and (b) overlayed in the Fourier domain; note there are

∑
I |pi|

samples in each row and Q rows of samples. According to Katz criterion (3) this is a
reconstructible sample set.

Ideally we would set φ = 0.5 for our slice frequency data points to be as far
from the origin as possible. However slices may intersect at points other than
the origin. We need to check if the frequency data points sampled by the slices
intersect at v = c + φ for c ∈ ZQ. We must identify some sufficient conditions
to ensure no overlapping data points in Fourier space. Using the result from
Corollary 3, the coordinate in fourier space for the projection with a direction
vector (pi, qi) on a P ×Q image with phaseshift of φ is:

(c+ φ)(qiP/piQ, 1) mod (P,Q), for c ∈ [0, qiP − 1]. (11)

In order for two Fourier data points to meet, they must come from two different
projections. Let these two projections have direction vectors (p1, q1) and (p2, q2)
with c = c1 and c2 respectively. Placing this into (11) gives the following:

(c1 + φ) (q1P/p1Q, 1) = (c2 + φ) (q2P/p2Q, 1) mod (P,Q), (12)

for c1 ∈ Zp1Q and c2 ∈ Zp2Q. This equation implies c1 = c2mod (Q) and
(c1 + φ) (q1P/p1Q) = (c2 + φ) (q2P/p2Q) mod (P). Therefore we have

(c1 + φ)

(
q1
p1Q

)
− (c2 + φ)

(
q2
p2Q

)
is an integer. (13)

This becomes:

x/p1p2Q+ φ
q1p2 − q2p1

p1p2Q
for x ∈ Z. (14)

We can now present a lemma that guarantees no point of intersection:

Proposition 4. Setting φ = k
2·k+1 with k = maxi,j |piqj | would have no point

of intersection between two different projection set in Fourier space.

Proof. Setting φ = k
2·k+1 with k ≥ maxi,j |piqj | forces q1p2 − q2p1 = 0 as oth-

erwise (13) is false. Since the gcd(pi, qi) = gcd(pj , qj) = 1, we have pi = pj
and qi = qj implies there is no point of intersection in Fourier space. With
this shift, we can also guarantee a minimum seperation in Fourier space of
mini,j

P
Qpipj(2k+1) with i �= j.
�

Placing the offset, resampled, slice frequency data from each projection into
2D Fourier space now gives us data as depicted in Fig. 2c.

Mojette Fourier Inversion 281

Fig. 3. A depiction of the process to reconstruct a 4 × 4 image from the chirp z-
transforms of proj−1,1 and proj3,1

4.2 Reconstruction Process

This section outlines the Fourier inversion process, as depicted in Fig. 3, to
recover f from the offset, resampled, slice frequency data, e.g., Fig. 2c. First we
propose the following theorem:

Theorem 5. For a set of Mojette projections that satisfies Katz Criterion (3),
there is sufficient slice data to be inverted in Fourier space after the chirp Z-
transform with α = 1/(|pi|Q) and no intersecting data points.

Proof. Here we are assuming Katz Criterion is satisfied by
∑
|pi| ≥ P . By

Lemma 2 and Corollary 3 the Chirp z-transform of all projections gives Q rows
of data points with

∑
|pi| ≥ P elements in each row. Since none of these points

intersect, each row is invertible using the 1D INFT. There are Q data points in
each column that are invertible using the 1D IDFT.
�

Proposition 4 guarantees no intersecting data points in Fourier space with par-
ticular choice of phase shift, φ. Therefore we can satisfy the requirement of no
intersecting data points in Theorem 5.

The entire reconstruction process, given I Mojette projections, can be sum-
marised in the following 6 steps:

1. Calculate φ = k
2·k+1 with k = maxi,j |piqj |;

2. Apply the phase shift, φ, to all projection data;
3. Fast chirp z-transform each projection with α = 1/(|pi|Q);
4. Remap frequency data to 2D Fourier domain;
5. Invert nonuniform frequency data in rows. Q rows × maximum P iterations

of INFT.
6. Inverse Fast Fourier transform of P columns (with a phase shift of −φ);

5 Results

In this section we demonstrate the performance of the proposed algorithm with
various noise conditions and various number and distribution of projection di-
rection vectors. We investigate 0%, 1% and 5% Gaussian noise added to the
projection data, i.e., noise following a normal distribution with a standard devi-
ation equal to η% of the average value. We also investigate three types of angle

282 A. Kingston et al.

distributions, F 180
N , F 90

N , MN . Here, FN denotes the direction vectors formed
by the Farey series, e.g., F3 = 0/1, 1/3, 1/2, 2/3, 1/1 corresponds to direction
vectors (1, 0), (3, 1), (2, 1), (3, 2), (1, 1). The 90 and 180 signify 90 degree or 180
degree symmetries, e.g., for direction vector (a, b), 90 includes (−a, b) while
180 also includes (b, a) and (−b, a). MN denotes the set of direction vectors
(1, 0), (1, 1), (−1, 1), (2, 1), (−2, 1), . . . , (N, 1), (−N, 1). All simulations are for a
256× 256 image of Lena shown in Fig. 4a.

(a) (b) 5% noise

Fig. 4. (a) original image used for simulations. (b) Reconstruction using full 2D-MFI
for Mojette data with angle set F 180

8 and 5% Gaussian noise added. RMSE 17.1.

Firstly, using the F 180
8 angle set we investigated the effect of 0%, 1%, and 5%

noise added to the projections. The results are presented in Fig. 5a. It can be
seen that the proposed method can deal with a moderate amount of noise. It is
not as robust as CGM (see Fig. 4b); the RMSE data shows that noise is amplified
in the reconstruction. Even the noise-free input data has a non-zero RMSE. This
seems to be due to round-off errors, paricularly a problem for the INFT of rows
v = φ and v = φ − 1 of Fourier space. Smaller arrays with P,Q ≤ 32 do not
suffer from this.

Secondly, by adding a fixed level of 1% noise to the projection data, we es-
tablish the effect of the number of projections, and more specifically the value
of
∑

i pi as it increases above Katz limit (3). Figure 5b gives the reconstructions
using F 180

7 , F 180
8 , and F 180

9 with
∑

i pi = 275, 371, and 533 respectively. As
expected, the results improve as

∑
i pi increases and the condition number of

the system decreases.
Lastly, by again adding 1% noise to the projection data, we explore the effect

of angle distribution. We use three angle sets that each have a similar
∑

i pi, F
90
9a ,

F 180
7 , and M16 with

∑
i pi = 283, 275, and 273 respectively. (Note 9a indicates

we are using F 90
8 and adding only direction vectors (±9, 1) and (±9, 2) from F9).

With
∑

i pi very close to Katz limit (3) this is very unstable (as described in
sect. 2). Results are presented in Fig. 5c and show that reconstruction with a
more symmetric angle set with greater redundancy performs better than limited
angle datasets.

Mojette Fourier Inversion 283

(a-i) 0% noise (a-ii) 1% noise (a-iii) 5% noise

(b-i) F 180
7 (b-ii) F 180

8 (b-iii) F 180
9

(c-i) F 90
9a (c-ii) F 180

7 (c-iii) M16

Fig. 5. (a) Reconstruction using MFI for Mojette data with angle set F 180
8 . Amount of

Gaussian noise added as indicated. RMSE (i) 6.0 (ii) 16.2 (iii) 26.7. (b) Reconstruction
using MFI for Mojette data with 1% Gaussian noise added using angle set as indicated.
RMSE (i) 19.5 (ii) 16.2 (iii) 13.1. (c) Reconstruction using MFI for Mojette data with
1% Gaussian noise added using angle set as indicated. RMSE (i) 28.3 (ii) 19.5 (iii) 29.1.

6 Conclusion

We have presented a reconstruction technique for Mojette projection data that
is based on the Fourier inversion technique for the classical Radon transform.
We use exact frequency data resampling to make the slice data lie on a set of
parallel lines in Fourier space. This enables inversion to be broken into a set
of 1D INFT and a set of 1D IFFT and speeds up the process. Given the Mo-
jette transform data of a P ×Q image with I projections, our Fourier inversion
algorithm requires O(P 2Q logP) operations. This technique is a compromise
between fast, O(PQI), but ill-conditioned local back-projection algorithms and
slow, O(P 2Q2I) but well-conditioned techniques. Results show that this method
can tolerate a moderate amount of noise and that redundant and symmetrical
projection data is preferable for increased performance. Future work includes

284 A. Kingston et al.

determining a stopping criterion for the INFT and investigating regularisation
or weighting techniques to make MFI more robust.

Acknowledgements. AK acknowledges l’Univ. de Nantes for funding a one
month visit to IVC-IRCCyN where much of this work was undertaken.

References

1. Bailey, D., Swarztrauber, P.: The fractional fourier transform and applications.
SIAM Review 33, 389–404 (1991)

2. Bluestein, L.: A linear filtering approach to the computation of the discrete fourier
transform. Northeast Electronics Research and Engineering Meeting Record 10
(1968)

3. Dudgeon, D., Mersereau, R.: Multidimensional Digital Signal Processing. Prentice-
Hall (1983)

4. Guédon, J.: The Mojette Transform: theory and applications. ISTE-Wiley (2009)
5. Guédon, J., Barba, D., Burger, N.: Psychovisual image coding via an exact discrete

Radon transform. In: Wu, L.T. (ed.) Proceedings of Visual Communication and
Image Processing 1995, pp. 562–572 (May 1995)

6. Guédon, J., Normand, N.: The Mojette transform: the first ten years. In: Andrès,
É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 79–91.
Springer, Heidelberg (2005)

7. Katz, M.: Questions of uniqueness and resolution in reconstruction from projec-
tions. Springer (1977)

8. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3 - a software library for various
nonequispaced fast Fourier transforms. ACM Trans. Math. Software 36, 1–30 (Ar-
ticle 19) (2009)

9. Kunis, S., Potts, D.: Stability results for scattered data interpolation by trigono-
metric polynomials. SIAM J. Sci. Comput. 29, 1403–1419 (2007)

10. Normand, N., Guédon, J., Philippe, O., Barba, D.: Controlled redundancy for
image coding and high-speed transmission. In: Ansari, R., Smith, M. (eds.) Pro-
ceedings of SPIE Visual Communications and Image Processing 1996, vol. 2727,
pp. 1070–1081. SPIE (February 1996)

11. Normand, N., Kingston, A., Évenou, P.: A geometry driven reconstruction algo-
rithm for the Mojette transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI
2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006)

12. Servières, M., Idier, J., Normand, N., Guédon, J.: Conjugate gradient Mojette
reconstruction. In: Fitzpatrick, J., Reinhardt, J. (eds.) Proceedings of SPIEMedical
Imaging 2005: Image Processing, vol. 5747, pp. 2067–2074 (April 2005)

13. Verbert, P., Guédon, J.: N-dimensional Mojette transfrom. Application to multiple
description. IEEE Discrete Signal Processing 2, 1211–1214 (2002)

Uniqueness Regions under Sets

of Generic Projections in Discrete Tomography

Paolo Dulio1, Andrea Frosini2, and Silvia M.C. Pagani1,�

1 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano,
Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
{paolo.dulio,silviamaria.pagani}@polimi.it

2 Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze,
viale Morgagni 67/A, 50134 Firenze, Italy

andrea.frosini@unifi.it

Abstract. In Discrete Tomography, objects are reconstructed by means
of their projections along certain directions. It is known that, for any
given lattice grid, special sets of four valid projections exist that ensure
uniqueness of reconstruction in the whole grid. However, in real appli-
cations, some physical or mechanical constraints could prevent the use
of such theoretical uniqueness results, and one must employ projections
fitting some further constraints. It turns out that global uniqueness can-
not be guaranteed, even if, in some special areas included in the grid,
uniqueness might be still preserved.

In this paper we address such a question of local uniqueness. In partic-
ular, we wish to focus on the problem of characterizing, in a sufficiently
large lattice rectangular grid, the sub-region which is uniquely deter-
mined under a set S of generic projections. It turns out that the regions
of local uniqueness consist of some curious twisting of rectangular areas.
This deserves a special interest even from the pure combinatorial point
of view, and can be explained by means of numerical relations among
the entries of the employed directions.

Keywords: Discrete Tomography, lattice grid, projection, uniqueness
region.

1 Introduction

Image reconstruction is one of the main topics in Discrete Tomography, i.e., the
discipline that studies how to infer geometric properties of a discrete unknown
object, regarded as a finite set of points in the 2D or 3D lattice, from quan-
titative data about the number of its primary constituents along a set of fixed
discrete lines, say projections. The considered image is subject to a discretiza-
tion operation and therefore is seen as a matrix, whose entries, say pixels, are
integer numbers and correspond to the different colors, or grey levels, of the

� Corresponding author.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 285–296, 2014.
c© Springer International Publishing Switzerland 2014

286 P. Dulio, A. Frosini, and S.M.C. Pagani

original image. The dimensions of the image are those of the minimal bounding
rectangle, i.e., the sizes of the obtained matrix.

So, the vector of projections along a discrete direction u sums the values of
the pixels that lie on each line parallel to u.

Motivated by practical applications, one of the most challenging problems
in Discrete Tomography is the faithful reconstruction of unknown images from
projections along a set S of fixed lattice directions, say Reconstruction Problem
(for an overview of the topic see [9]). In general, this problem is not quickly
solvable (here quickly means in polynomial time with respect to the dimensions of
the grid) even for three directions [7]. However, this result, as many similar ones
in the field, relies on the possibility of choosing unknown images of arbitrarily
large dimensions. On the other hand, for suitably selected sets of directions, each
pixel can be uniquely determined if we confine the problem in special bounded
lattice grids (see for instance [4]).

Another challenging aspect of the reconstruction process is that the images
consistent with a given set of projections are, usually, a huge class (see for in-
stance [1, 12]), whose members can share few (possibly no) points, so the faithful
reconstruction of an unknown image is, in general, a hopeless task. This state-
ment becomes clear if one considers the n × n images having homogeneous 1
projections, i.e., projections with constant entries 1, along the two coordinate
directions; an easy check shows that their number is n!, i.e., as many as the
number of permutations of n, and some of them have no common elements. To
gain uniqueness, different strategies have been considered, usually relying on
additional geometrical or combinatorial information about the unknown image.

Using a different perspective, in [4] it has been shown how far an accurate
choice of four directions of projections can push the dimensions of the unknown
image preserving the uniqueness of the reconstruction process.

In this paper, starting from the results in [4], we move towards the solution
of the question of how much one can enlarge the size of the unknown image
preserving both uniqueness and polynomial time reconstruction from a given
set of projections. In particular, here we consider the related problem of char-
acterizing, in a sufficiently large image, the shape and dimensions of the area
uniquely determined by the projections along two given directions: we will show
that such a shape varies according to the slopes of the two directions. This result
also allows to infer a polynomial strategy to detect the elements inside the area.
It is worth noting that this paper belongs to a more general and theoretical per-
spective, since the uniqueness region is determined regardless of the features of
the image; in particular, it is not forced to be binary or with few grey levels. Our
approach can be considered as a counterpart of the mathematical morphology
tools described, for instance, in [5, 11, 13]; however, our aim is to investigate the
problem without using the Mojette transform. A full comparison between the
two methods seems to be an interesting issue, and could be treated in a separate
paper.

The paper is organized as follows. In Section 2, we provide the basic no-
tions and definitions of discrete tomography, together with the theoretical results

Uniqueness Regions under Sets of Generic Projections 287

about uniqueness on a grid. Section 3 concerns the uniqueness problem restricted
to two directions of projections: the shape of the sub-picture uniquely determined
by the projections is characterized according to the mutual relation of the slopes
of the directions. Section 4 gives some perspectives for future work and concludes
the paper.

2 Definition and Known Results

A digital image E naturally represents a finite set of points in the 2D lattice. To
each point an integer number, which corresponds to a color or a grey level of the
original image, is attached. Each set will be considered up to translation. The
size of the image E is that of its minimal bounding rectangle (or lattice grid)
A = [m]× [n], where, for p ∈ N, [p] = {0, 1, ..., p− 1}. We can define a function
f : A −→ Z, which maps each pixel of A onto its corresponding value.

Let u = (a, b) be a discrete direction, i.e., a couple of integers such that
gcd{a, b} = 1, with the further assumption that if a = 0, then b = 1 and
viceversa. We say that a set S = {(ak, bk)}dk=1 of d lattice directions is valid for
a finite grid A = [m]× [n], if

d∑
k=1

|ak| < m,
d∑

k=1

|bk| < n.

We recall the standard notion of projection of a finite set of points E along
the direction u as the vector Pu = (p1, . . . , pk), with k ≥ 1, such that

pt =
∑

(i,j)∈A,aj=bi+t

f(i, j),

being aj = bi+ t the t-th lattice line intersecting the grid. Since we assume that
E is finite, then k is. An example is shown in Figure 1, where the black pixels
of the binary image correspond to the value 1, and white pixels to the value 0.
The projection of the set of black pixels is considered in the direction u = (1, 1);
there Pu = (0, 0, 0, 0, 0, 0, 4, 5, 4, 4, 5, 7, 5, 3, 2, 3, 3, 2, 1, 0, 0, 0).

As a matter of fact, two sets E and F may have the same projections along a
set S of fixed directions, say they are (tomographically) equivalent. On the other
hand, if E does not share its projections with any other different set, then it is
said to be S-unique.

In general the class of images having the same projections along a set S of
directions is really huge. Consider for instance, as already observed, the [n]× [n]
images having projections with all entries equal to 1 along the two axes directions
(1, 0) and (0, 1): there are n! possible outputs.

So, the problem of the faithful reconstruction of an unknown (finite) set of
points, that is of primary relevance in the field of Discrete Tomography, is not
well posed, and it can not be considered without some prior knowledge about
the object itself.

288 P. Dulio, A. Frosini, and S.M.C. Pagani

(a) (b)

Fig. 1. (a) A binary image. (b) Projection of the set of black pixels in the direction
u = (1, 1).

Studying the characterization of the projections (directions and entries) that
guarantee the uniqueness of the reconstruction process, a theory about the con-
figurations of points that prevent such a property was developed.

In a first seminal study, H. J. Ryser [12] focused on the axes directions, and
called these configurations interchanges. Later, himself and other authors refined
the notion till reaching that of switching component or bad configuration. It
represents a simple switching along a generic set of discrete directions S, i.e.,
a rearrangement of some elements of a set that preserves the projections along
S (see [9] for a survey). An algebraic treatment of switching components was
also developed in [8]. In [6] it was shown that a set E is S-unique if and only if
it contains no bad configuration along the directions of S. On the other hand,
since [10], we know that there are sets of points that are non-unique with respect
to any given set S of directions. Because of this result, we wish to focus on the
related problem of characterizing, in a sufficiently large lattice rectangular grid,
the sub-region formed by pixels which are uniquely determined under a set S of
generic projections. As a first step, the case |S| = 2 is considered.

3 Characterization of the Uniqueness Regions by Two
Directions

From the previous considerations it follows that S-uniqueness in a lattice grid
A = [m]× [n] is guaranteed whenever no switching component exists in A with
respect to the set S of projections. The following result, which slightly restates
[3, Theorem 6], proves that this can be achieved by means of suitable choices of
four lattice directions.

Theorem 1. Let S = {u1, u2, u3, u4 = u1 + u2 ± u3} be a valid set of four
directions for the grid A = [m] × [n], where u1, u2, u3 are chosen arbitrarily,
while u4 is obtained as a combination of the other three. Let moreover

4∑
r=1

|ar| = h and

4∑
r=1

|br| = k,

Uniqueness Regions under Sets of Generic Projections 289

being (ar, br) = ur where r = 1, ..., 4. Let D = ±S ∪ Ŝ, where ±S = {±u :

u ∈ S}, and Ŝ =
{
± (ui − u4) : ui ∈ {u1, u2, u4 − u1 − u2}

}
. Moreover, let

A = {(a, b) ∈ D : |a| > |b|}, and B = {(a, b) ∈ D : |b| > |a|}. Then, A contains
no switching component with respect to S if and only if

min
|a|

A ≥ min{m− h, n− k}, min
|b|

B ≥ min{m− h, n− k}, (1)

and

m− h < n− k ⇒ ∀(a, b) ∈ B (|a| ≥ m− h or |b| ≥ n− k) ,

n− k < m− h⇒ ∀(a, b) ∈ A (|a| ≥ m− h or |b| ≥ n− k) ,

where, if one of the sets A,B is empty, the corresponding condition in (1) drops.

For examples, see [3, Example 8] and [4, Example 1].
However, in real applications, some physical or mechanical constraints could

prevent the use of these suitable sets of four lattice directions. For instance, due
to the employed tomographic procedure, only projections confined in a limited
angle could be considered, or these should be selected trying to minimize the
local uncertainty. There is a wide literature concerning this problem, see for
instance [2, 14–16]. It turns out that global uniqueness in the whole assigned
grid, in general, cannot be guaranteed. Nevertheless, in some special regions
included in the grid, uniqueness might be still preserved.

Definition 1. Let S be a set of valid directions for a grid A. The region of
uniqueness (ROU) of A is the set of pixels of A which are uniquely determined
by the projections along the elements of S.

Therefore, it is worth trying to characterize the shape of the ROU, determined,
inside a given rectangular grid A = [m] × [n], by any set of projections. As a
first step towards this challenging problem we wish to investigate the shape of
the ROU determined by a pair of valid directions.

Let us denote by (a, b) and (c, d) the employed lattice directions, where we set
a, c < 0 and b, d > 0. Basing on these choices, we are led to construct the ROU
by filling the grid A = [m]× [n] from its bottom-left corner, and by symmetry,
from its upper-right corner. Due to symmetry, it suffices to argue only on one of
these two regions, say the bottom-left one. Also, we can always assume −a > b.

Remark 1. Note that our approach is w.l.o.g., since, for different choices of the
signs of a, b, c, d, the arguments are quite similar, just the ROU fills different
corners of A.

We denote by P = (p1, p2, ..., ps−1, ps) a SE to NW zig-zag path, with alter-
nating horizontal and vertical steps of lengths p1, p2, ..., ps−1, ps, being the first
one (of length p1) a vertical step, and the last one (of length ps) a horizontal
step (see Figure 2).

Also, we denote by R(x, y) a rectangle having horizontal and vertical sides of
lengths x and y respectively.

290 P. Dulio, A. Frosini, and S.M.C. Pagani

Fig. 2. The lattice region delimited by the zig-zag path P = (1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2)

The following result shows that, in the case when the directions (a, b), (c, d)
satisfy |a| > |c| and b < d, then the ROU is simply an L-shaped area.

Theorem 2. Let (a, b), (c, d) be two lattice directions such that a, c < 0, b, d > 0,
−c < −a < −2c and 2b < d. Then, the associated ROU is delimited by the zig-zag
path P = (b, a, d, c).

Proof. Consider a rectangle R(−c, d) whose bottom-left corner is placed in the
bottom-left corner of the grid. Then, all lattice points contained in R(−c, d)
are uniquely determined along the direction (c, d). Consider now a rectangle
R(−a+ c, b) whose bottom-left corner is adjacent to the bottom-right corner of
R(−c, d). Any point belonging to R(−a + c, b) is switched along (a, b) outside
R(−c, d) from its left vertical side, so that it is uniquely determined in the grid.
Let R(−c, b) be such that its bottom-left corner is adjacent to the bottom-right
corn er of R(−a+c, b). Its switching by (a, b) is completely included in R(−c, d),
and any further switching moves it outside the grid. Now, the rectangle R(−c, b)
placed above R(−c, d), can be uniquely determined by means of direction (c, d),
since it is mapped inside the previously determined uniqueness region.
�

Corollary 1. Let (a, b), (c, d) be two lattice directions such that a, c < 0, b, d >
0, |a| > |c| and b < d. Then, the associated ROU is delimited by the zig-zag path
P = (b, a, d, c).

Proof. We can argue as in Theorem 2 by means of iterated switching. The only
difference relies on the fact that in the remaining cases −a ≥ −2c and 2b < d, or
−c < −a < −2c and 2b ≥ d, or −a ≥ −2c and 2b ≥ d, more iterations are needed
to get the L-shaped region delimited by the zig-zag path P = (b, a, d, c).
�

Example 1. If we assume (a, b) = (−13, 3), (c, d) = (−7, 11), the corresponding
ROU is depicted in Figure 3.

The case when |a| > |c| and b ≥ d seems to be much more intriguing. In
fact, several different shapes appear, depending on the different interplay of the
numerical relations among the entries a, b, c, d. The following theorem points out
the case when the ROU consists of a big rectangle having two small rectangles
adjacent to its right and upper side, respectively.

Uniqueness Regions under Sets of Generic Projections 291

Fig. 3. The ROU associated to the pair (−13, 3), (−7, 11), delimited by the zig-zag
path P = (3, 13, 11, 7)

Theorem 3. Let (a, b), (c, d) be two lattice directions such that |a| > |c| and b >
d. Let λ, μ be the quotients of the divisions between −a,−c and b, d, respectively.
If λ �= μ, then the associated ROU is the region delimited by the zig-zag path
P = (d, c, b − d,−a+ c, d, c).

Proof. Assume for instance λ < μ. The rectangle R0 = R(−a, b) is the bottom-
left zone of the ROU by means of the direction (a, b). Consider its bottom-right
adjacent rectangle R1 = R(−c, d). Since λ < μ, we can translate R1 along (c, d)
for λ times, still remaining inside R0; a further switching along (c, d) moves
(a part of) the translated rectangle outside the grid, on the left of R0, before
reaching its upper side. This implies that the whole R1 is added to the ROU.
Now, by using the direction (a, b), R1 is mapped to a same sized rectangle
adjacent to the upper-left corner of R0, which is added to the ROU. This ends
the construction of the ROU, which consequently is delimited by the zig-zag
path P = (d, c, b− d, a− c, d, c).

For the case λ > μ, repeat the argument by starting from the R(−c, d) rect-
angle above R0 and moving SE along (c, d).
�

Example 2. If we assume (a, b) = (−20, 17), (c, d) = (−11, 5), we have 20 =
11× 1+ 9 and 17 = 5× 3+ 2, so that λ = 1 �= 3 = μ. Therefore the assumptions
of Theorem 3 are fulfilled, and the corresponding ROU is depicted in Figure 4.

When |a| > |c|, b > d and λ = μ, differently from Theorem 3, also the
remainders of the divisions have to be taken into account. Here the situation
becomes much more intricate. As a first contribution to clarify the matter, we
present a result where the shape of the ROU consists of a rectangular erosion
of the previously obtained configurations.

Theorem 4. Let (a, b), (c, d) be two lattice directions such that |a| > |c| and
b > d. Assume −a = λ(−c)+r and b = μd+S, where 0 < r < −c and 0 < s < d.
If λ = μ, r > −c/2 and s < d/2, then the associated ROU is the region delimited
by the zig-zag path P = (d− s,−c− r, s, r, b− d,−a+ c, d− s,−c− r, s, r).

292 P. Dulio, A. Frosini, and S.M.C. Pagani

Fig. 4. The ROU associated to the pair (−20, 17), (−11, 5), delimited by the zig-zag
path P = (5, 11, 12, 9, 5, 11)

Proof. The rectangle R0 = R(−a, b) is the bottom-left zone of the ROU by
means of the direction (a, b). Since λ = μ, we cannot repeat the same argument
as in Theorem 3. Consider then the right adjacent rectangle of R0 given by
R1 = R(−c−r, s). Since λ = μ, by switching R1 for μ times along (c, d), we reach
the upper side of R0 still remaining inside R0, and a further switching moves
the rectangle outside the grid. Therefore R1 is added to the ROU. A similar
argument applies to the rectangle R2 = R(r, d−s) placed adjacent to the upper-
left corner of R0, so the ROU increases of R2. Then we apply alternatively the
switching (a, b) and (c, d) on the resulting new parts of the ROU. Since r > −c/2
and s < d/2, we add pixels to the ROU as follows.

– Starting from R2, this rectangle is mapped along (a, b) to the region R3

containing R1 in its bottom-left corner, and R3 \R1 is added to ROU. Note
that R3 \ R1 can be decomposed as the sum of three rectangles, namely
R3 \R1 = R(2r + c, s) ∪R(−c− r, d− 2s) ∪R(2r + c, d− 2s).

– The sub-rectangle R(2r + c, s) of R3 \ R1 is mapped along (c, d), outside
R(−a, b), to a congruent rectangle placed upper-left aboveR2, which is added
to the ROU. Analogously, the sub-rectangle R(−c − r, d − 2s) of R3 \ R1

is mapped along (c, d), outside R(−a, b), to a congruent rectangle placed
bottom-right adjacent to R2, which is added to the ROU. Note that the
sub-rectangle R(2r + c, d − 2s) does not contribute to the ROU since it is
mapped twice in the complement of the ROU contained in the grid.

– We repeat the previous construction on the new parts of the ROU so ob-
taining further new parts of the same size R(2r+ c, s) and R(−c− r, d− 2s).

– This can be applied until the ROU becomes the region delimited by the
zig-zag path P = (d− s,−c− r, s, r, b− d,−a+ c, d− s,−c− r, s, r).

�

Example 3. Let us consider the pair of directions (a, b) = (−13, 7) and (c, d) =
(−8, 5). Since 13 = 8× 1 + 5, and 7 = 5× 1 + 2, we have λ = μ = 1, r = 5 and
s = 2, so that all the assumptions of Theorem 4 are fulfilled. The construction

Uniqueness Regions under Sets of Generic Projections 293

sketched in the proof can be followed in Figure 5. Note that the ROU is obtained
by means of alternating switchings along the directions (a, b) and (c, d). For a
better reading, we preserved the colors of a region when it is translated along
(a, b), while the color has been changed under the translations along (c, d).

Fig. 5. The ROU associated to the pair (−13, 7), (−8, 5), delimited by the zig-zag path
P = (3, 3, 2, 5, 2, 5, 3, 3, 2, 5)

Note that the zig-zag path provided by Theorem 4 can also be written as
follows:

P = (max{s, d− s},min{−c− r, r},min{s, d− s},max{r,−c− r}, b− d, (2)

−a+ c,max{s, d− s},min{−c− r, r},min{s, d− s},max{r,−c− r}).

This implies that reversing both the inequalities involving r, s leads to a similar
result.

Theorem 5. Let (a, b), (c, d) be two lattice directions such that |a| > |c| and
b > d. Assume −a = λ(−c)+r and b = μd+s, where 0 < r < −c and 0 < s < d.
If λ = μ, r < −c/2 and s > d/2, then the associated ROU is the region delimited
by the zig-zag path P = (s, r, d− s,−c− r, b− d,−a+ c, s, r, d− s,−c− r).

Proof. Replace s with d− s, and r with −c− r in the proof of Theorem 4.
�

Example 4. Let us consider the pair of directions (a, b) = (−13, 7) and (c, d) =
(−11, 4). Since 13 = 11 × 1 + 2, and 7 = 4 × 1 + 3, we have λ = μ = 1, r = 2
and s = 3, so that r < −c/2, s > d/2 and all the assumptions of Theorem 5 are
fulfilled. In Figure 6 the corresponding ROU is represented.

The assumptions r > −c/2 and s < d/2 in Theorem 4, or r < −c/2 and
s > d/2 in Theorem 5, are essential in order that the ROU is delimited by the
zig-zag path as in (2). Differently, the shape of the ROU changes. Below we
provide examples in a few cases.

294 P. Dulio, A. Frosini, and S.M.C. Pagani

Fig. 6. The ROU associated to the pair (−13, 7), (−11, 4), delimited by the zig-zag
path P = (3, 2, 1, 9, 3, 2, 3, 2, 1, 9)

Example 5. Let us consider the pair of directions (a, b) = (−13, 7) and (c, d) =
(−9, 5). Being 13 = 9×1+4, and 7 = 5×1+2, we have r = 4, s = 2, so that the
assumption r > −c/2 of Theorem 4 is not fulfilled. In Figure 7 the corresponding
ROU is represented. Note that it is delimited by a zig-zag path different from
P = (d− s,−c− r, s, r, b− d,−a+ c, d− s,−c− r, s, r) = (3, 5, 2, 4, 2, 4, 3, 5, 2, 4).

Fig. 7. The ROU associated to the pair (−13, 7), (−9, 5), delimited by the zig-zag path
P = (1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 2, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3)

Example 6. Let us consider the pair of directions (a, b) = (−13, 7) and (c, d) =
(−7, 4). Being 13 = 7×1+6, and 7 = 4×1+3, we have r = 6, s = 3, so that the
assumption s < d/2 of Theorem 4 is not fulfilled. In Figure 8 the corresponding
ROU is represented.

Fig. 8. The ROU associated to the pair (−13, 7), (−7, 4), delimited by the zig-zag path
P = (1, 1, 1, 1, 1, 1, 1, 4, 3, 6, 1, 1, 1, 1, 1, 1, 1, 4)

Uniqueness Regions under Sets of Generic Projections 295

The shape of the ROU varies when changing the considered directions; how-
ever, there is a common feature. We define a region of a grid to be horizontally
convex (respectively, vertically convex) if the intersection of each row (respec-
tively, column) of the grid with the region is a connected set. The proof of the
following result can be easily obtained by induction, after noticing that the base
step concerns the ROU determined by a single direction, i.e., a rectangle.

Theorem 6. The ROU is horizontally and vertically convex.

4 Conclusions and New Directions of Research

We addressed the problem of reconstructing the shape of the region of unique-
ness (ROU) determined in a preassigned lattice rectangular grid A = [m]× [n]
by a generic choice of two valid directions. We characterized the ROU in vari-
ous cases, showing that it consists of some curious displacement of rectangular
areas, delimited by a SE-NW zig-zag path, whose edges have lengths depend-
ing on numerical relations among the entries of the employed directions. Several
improvements could be considered. First of all, the case when (a, b) and (c, d)
are selected so that |a| > |c| and b > d must be investigated when r and s do
not satisfy the inequalities as in Theorem 4 and Theorem 5. This will provide
a complete characterization of the ROU in the case of two directions. Also, a
unifying picture of all the treated cases would be desirable. We feel that such
a general approach should exist, probably based on some intertwining between
switching operations and integer division.

A further step is the extension of such a characterization when data come
from more than two directions. Experiments carried out with three projections
show that the path delimiting the ROU presents a much more fragmented profile.
Just as an example, Figure 9 shows what happens with the choice of projections
(−13, 7), (−9, 5) and (−8, 3).

Fig. 9. The ROU associated to the triple (−13, 7), (−9, 5), (−8, 3)

Finally, in view of real applications, an explicit reconstruction algorithm of the
ROU can be investigated, and exploited to get the reconstruction of a lattice set
inside a grid of uniqueness along four directions. We have successfully developed
some preliminary programs, running for special sets of four random directions,
and we are confident to be able to unify them in a general strategy.

296 P. Dulio, A. Frosini, and S.M.C. Pagani

References

1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from horizontal and vertical projections. Theoret. Comput. Sci. 155(2),
321–347 (1996) ISSN 0304-3975

2. Batenburg, K.J., Palenstijn, W.J., Balázs, P., Sijbers, J.: Dynamic Angle Selection
in Binary Tomography. Comput. Vis. Image Underst. 117(4), 306–318 (2013) ISSN
1077-3142

3. Brunetti, S., Dulio, P., Peri, C.: Discrete Tomography determination of bounded
lattice sets from four X-rays. Discrete Applied Mathematics 161(15), 2281–2292
(2013)

4. Brunetti, S., Dulio, P., Peri, C.: On the Non-additive Sets of Uniqueness in a Finite
Grid. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS,
vol. 7749, pp. 288–299. Springer, Heidelberg (2013)

5. Chandra, S., Svalbe, I.D., Guédon, J.-P.: An Exact, Non-iterative Mojette Inversion
Technique Utilising Ghosts. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont,
F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 401–412. Springer, Heidelberg (2008)

6. Fishburn, P.C., Shepp, L.A.: Sets of uniqueness and additivity in integer lattices.
In: Discrete Tomography. Appl. Numer. Harmon. Anal., pp. 35–58. Birkhäuser,
Boston (1999)

7. Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity
of reconstructing lattice sets from their X-rays. Discrete Math. 202(1-3), 45–71
(1999) ISSN 0012-365X

8. Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine
Angew. Math. 534, 119–128 (2001) ISSN 0075-4102

9. Kuba, A., Herman, G.T.: Discrete tomography: a historical overview. In: Discrete
Tomography. Appl. Numer. Harmon. Anal., pp. 3–34. Birkhäuser, Boston (1999)

10. Lorentz, G.G.: A problem of plane measure. Amer. J. Math. 71, 417–426 (1949)
ISSN 0002-9327

11. Normand, N., Kingston, A., Évenou, P.: A Geometry Driven Reconstruction Al-
gorithm for the Mojette Transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.)
DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006)

12. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J.
Math. 9, 371–377 (1957) ISSN 0008-414X

13. Servieres, M., Normand, N., Guédon, J.-P.V., Bizais, Y.: The Mojette transform:
Discrete angles for tomography. Electronic Notes in Discrete Mathematics 20, 587–
606 (2005)

14. Varga, L., Balázs, P., Nagy, A.: Direction-dependency of Binary Tomographic Re-
construction Algorithms. Graph. Models 73(6), 365–375 (2011) ISSN 1524-0703

15. Varga, L., Balázs, P., Nagy, A.: Projection Selection Dependency in Binary To-
mography. Acta Cybern. 20(1), 167–187 (2011) ISSN 0324-721X

16. Varga, L., Nyúl, L.G., Nagy, A., Balázs, P.: Local Uncertainty in Binary To-
mographic Reconstruction. In: Proceedings of the IASTED International Confer-
ence on Signal Processing, Pattern Recognition and Applications, IASTED. ACTA
Press, Calgary (2013) ISBN 978-0-88986-954-7

Adaptive Grid Refinement

for Discrete Tomography

Tristan van Leeuwen1 and K. Joost Batenburg1,2,3

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 Vision-Lab., University of Antwerp, Antwerp, Belgium

3 Dept. of Mathematics, University of Leiden, Leiden, The Netherlands
{Tristan.van.Leeuwen,kbatenbu}@cwi.nl

Abstract. Discrete tomography has proven itself as a powerful approach
to image reconstruction from limited data. In recent years, algebraic re-
construction methods have been applied successfully to a range of experi-
mental data sets. However, the computational cost of such reconstruction
techniques currently prevents routine application to large data-sets. In
this paper we investigate the use of adaptive refinement on QuadTree
grids to reduce the number of pixels (or voxels) needed to represent an
image. Such locally refined grids match well with the domain of discrete
tomography as they are optimally suited for representing images contain-
ing large homogeneous regions. Reducing the number of pixels ultimately
promises a reduction in both the computation time of discrete algebraic
reconstruction techniques as well as reduced memory requirements. At
the same time, a reduction of the number of unknowns can reduce the
influence of noise on the reconstruction. The resulting refined grid can
be used directly for further post-processing (such as segmentation, fea-
ture extraction or metrology). The proposed approach can also be used
in a non-adaptive manner for region-of-interest tomography. We present
a computational approach for automatic determination of the locations
where the grid must be defined. We demonstrate how algebraic discrete
tomography algorithms can be constructed based on the QuadTree data
structure, resulting in reconstruction methods that are fast, accurate and
memory efficient.

Keywords: Tomography, adaptive refinement, QuadTree grids, alge-
braic reconstruction techniques.

1 Introduction

We consider a linear tomography problem

p = Wx+ n, (1)

where W ∈ RM×N is the projection matrix, x ∈ RN is the image, p ∈ RM are
the projections and n is additive noise. The goal is to retrieve x from the noisy
projections p, which is typically done by solving a least-squares problem:

min
x
||Wx− p||22. (2)

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 297–308, 2014.
c© Springer International Publishing Switzerland 2014

298 T. van Leeuwen and K.J. Batenburg

The system of equations is often underdetermined (i.e., M < N) due to the
limited number of measurements (small M) and the demand for high-resolution
images (large N). The resulting non-uniqueness can be partially mitigated by
adding prior knowledge, either in the form of a regularization penalty or by
employing a tailored reconstruction algorithm that enforces the prior.

In discrete tomography, the prior is particularly strong – the object consists of
only a few different materials – and the reconstruction problem can be formulated
as a discrete optimization problem [1,2]. Solving such problems exactly is not
feasible for large-scale problems due to their combinatorial nature and often not
desirable due to noise. Many heuristic reconstruction have been developed over
the years, which fall into two basic classes: methods that aim directly at solving
the discrete optimization problem [3,4] and methods that solve (a series) of con-
tinuous optimization problems [5,6]. Even state-of-the-art iterative algorithms
such as DART [6,7] are computationally very expensive as they are based on
iterative reconstruction algorithms. Not only the costs of forward and backward
projection and the memory usage scale linearly with N , the number of iterations
required is also expected to scale linearly with N . To reduce the computational
costs and the required number of iterations of iterative reconstruction methods,
many authors have considered multi-scale or multi-grid methods for general, con-
tinuous tomography problems. [8] proposes a multi-level strategy that coarsens
the projection images by averaging or subsampling the detector pixels. The use
of classical multi-grid algorithms is discussed by [9,10,11]. Algorithms of a more
heuristic nature are discussed by [12], who propose coarsening in both the image
and data space, and [13], who develop a two-level approach. The closest in spirit
to the current work is [14] who present an adaptive refinement strategy using
QuadTree grids but use a much simpler refinement criterion.

Multi-scale reconstruction approaches aimed specifically at binary tomogra-
phy have also been proposed. In [3] the authors use a simulated annealing ap-
proach in conjunction with uniform refinement. The use of QT grids in a similar
context is explored by [4], who proposes refinement of the edges of the object.

In this paper, we investigate the use of QuadTree (QT) grids for iterative im-
age reconstruction in discrete tomography. If the original object consists of large
homogeneous regions, each consisting of a single material, QuadTree grids can
strongly reduce the number of pixels needed to represent the image. The use of
QT grids serves a double purpose in the case of discrete tomography; it can help
to regularize the problem and to reduce the computational cost. For the interior
of the object, coarse grid pixels can be used, thereby implicitly enforcing the dis-
crete tomography constraint of constant gray levels for these interior regions. As
a consequence, even when algorithms for continuous tomography (i.e. allowing
all Gray values) are applied to the QT representation, the resulting reconstruc-
tions will contain large homogeneous regions and therefore this choice of image
representation allows standard iterative methods from continuous tomography
to be applied to DT problems successfully.

Adaptive Grid Refinement for Discrete Tomography 299

To illustrate the main ideas we consider the following toy example. A binary
phantom and its corresponding (optimal) QT grid are shown in figure 1 (a-b). In
this case the phantom consists of 1282 = 16384 pixels, while the QT grid allows
us to represent the same image with only 25 pixels. To illustrate the potential
benefits, we assume for the moment that we know the optimal QT grid and use it
for reconstruction. We consider three scenarios: i) A benchmark reconstruction
with 32 angles between 0 and 180 degrees and no noise; ii) a reconstruction with
32 angles and 20% Gaussian noise and finally, iii) a reconstruction with only 5
angles and no noise. The results are shown in figure 2. These examples clearly
illustrate the potential benefits of reducing the number of unknowns; the results
are more stable with respect to noise and it allows us to recover from severely
limited data using a conventional algebraic reconstruction algorithm. Moreover,
since the computational cost of the forward projection and the required mem-
ory is proportional to the number of pixels, using QT grids may also lead to
significant computational savings.

Of course, we do not know the optimal QT grid a-priori in practice. There-
fore, we propose adaptive refinement strategy that allows us to construct a QT
grid as part of the iterative reconstruction. By starting from a coarse grid and
refining only in areas of high variability, we never introduce more unknowns than
needed and are able to construct an efficient representation of the reconstruction
directly from the projection data. We apply the proposed method on 3 (binary)
phantoms.

The outline of the paper is as follows. First, we discuss multi-level recon-
struction and adaptive refinement in section 3. Numerical experiments where
we apply the standard SIRT algorithm for continuous tomography to discrete
image reconstruction on a QT grid are presented in section 4. Finally, we present
conclusions and discuss possible future extensions as well as open questions in
section 6.

(a) (b)

Fig. 1. (a) Spiral phantom and (b) corresponding QuadTree grid

2 Algorithm

We represent the image as a piece-wise constant function on a QuadTree grid.
An example of a QT grid is shown in figure 3. A QT grid is represented by a
collection of triples (i, j, s) which store the location of the upper-left corner of
each cell as well as its size, both w.r.t. an underlying fine grid. An image on this

300 T. van Leeuwen and K.J. Batenburg

32 angles, no noise – 32 angles, 20% Gaussian noise – 5 angles, no noise

Fig. 2. Reconstructions of the phantom depicted in figure 1 (a) for different scenarios.
The top row shows reconstructions on a fine grid with 16384 pixels while the bottom
row the results for the reconstructions on the QuadTree grid with 25 pixels (cf. figure
1 (b)).

grid is represented with a single number for each cell. Although it is in principle
possible to work with the image directly in this representation, is often more
convenient to work with images that are represented on a uniform fine grid. For
this purpose, we introduce the mapping matrix V that maps from a given QT
grid to the underlying fine grid. For the QT grid depicted in figure 3 this matrix
is given by

V T =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · 1 1 · · · · · · · · · ·
· · 1 1 · · 1 1 · · · · · · · ·
· · · · · · · · 2 · · · · · · ·
· · · · · · · · · 2 · · · · · ·
· · · · · · · · · · 1 1 · · 1 1
· · · · · · · · · · · · 2 · · ·
· · · · · · · · · · · · · 2 · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Here, the underlying fine grid has 4 × 4 pixels and dictates the finest level of
the QT grid. The columns of V represent the cells of the QT grid and couple
the corresponding cells in the fine grid. Note that these matrices are normalized
such that for any given image x on the fine grid V Tx is the best approximation
in the euclidean norm of this image on the QT grid.

For a given QT grid, we can pose the reconstruction problem as

min
x
||WV x− p||22,

where x represents the image on the QT grid defined by V . The resulting recon-
struction problem can be solved with any conventional reconstruction algorithm,

Adaptive Grid Refinement for Discrete Tomography 301

such as SIRT or ART. If the QT grid has fewer cells than measurements, this re-
construction problem is overdetermined and much better posed than the original
reconstruction problem.

Fig. 3. Example of a QT grid

2.1 Adaptive Refinement

To construct a QT representation of a given image with as few cells as possible
we propose the following refinement procedure, starting from an initial coarse
grid:

1. refine all cells on the finest level;
2. compute the error between the current reconstruction and the reconstruction

on the refined grid;
3. for each refined cell, keep the refinement if the local error is bigger than some

threshold, coarsen otherwise;

This approach is different from traditional adaptive refinement strategies which
typically refine after the fact based on local image gradients [14]. A problem
with such approaches is that the image gradient needs to be estimated on the
current (coarse) grid, making it difficult to detect features that are not properly
resolved on this grid. Our procedure circumvents this problem by refining before
measuring the error and reverting back to the coarse grid if the difference is
small.

A more detailed description this procedure is shown in Algorithm 1. Here,
refine(Vk) refines all cells on the finest level by splitting them into 4. refine(V, I)
refines only the cells in the index set I. By refining only the cells on the finest
level, we avoid having to refine the same cells over and over again. The algorithm
automatically terminates when we have reached the finest level corresponding
to the underlying fine grid. So, for an underlying fine grid with N = n2 pixels,
we have a total of K = log2(n) levels.

We compute the difference between the reconstructions on the coarse and
refined grids Vc and Vf as

Δxf = xf − V T
f Vcxc.

302 T. van Leeuwen and K.J. Batenburg

Algorithm 1. Adaptive refinement algorithm

Require:
x - input image
V0 - basis for initial subspace
δ - tolerance for refinement

Ensure:
xK - final representation on QT grid
VK - corresponding matrix

x0 = V T
0 x{initial reconstruction}

for k = 0 to K − 1 do
Ṽ = refine(Vk, Ik) {refinement proposal}
x̃ = Ṽ Tx {map onto refined grid}
ẽ = error(x̃− Ṽ TVkxk) {compute error}
Ĩ = {i | ẽi > δ}
Vk+1 = refine(Vk, Ĩ) {update}
xk+1 = V T

k+1Ṽ x̃
end for

We then define a quantity ec = error(Δxf) on the coarse grid that contains the
accumulated contributions for each grid cell such that

eTc 1 = ‖Δxf‖22. (4)

All cells i on the coarse grid for which ec,i > δ are subsequently refined. Thus,
when the algorithm terminates (i.e., when ec,i ≤ δ ∀i) we have ‖Δxf‖22 ≤ δNc

where Nc is the number of cells in the coarse grid.
An example of a series of adaptively refined grids for the Shepp-Logan phan-

tom is shown in figure 4. On the finest level, we perfectly reconstruct the original
image with only 1948 cells (compared to 16384 for the original image).

2.2 Reconstruction

We can adapt the above described refinement algorithm for reconstruction by
replacing the mapping of the true image onto the refined QT grids in Algorithm
1 by a mapping of the projection data onto the refined QT grid. This can be
achieved by

x̃ =
(
WṼ
)†

p,

where † denotes the pseudo-inverse. In practice, we never compute the pseudo
inverse explicitly, but instead perform a tomographic reconstruction on the re-
fined grid using the previous iterate xk as initial guess. The resulting algorithm
is stated in Algorithm 2. Here, x1 = reconstruction(W,p,x0, L, ε) performs up to
L iterations of an iterative reconstruction technique starting from initial guess
x0 with stopping criterion ‖Wx1 − p‖2 ≤ ε‖p‖2.

Adaptive Grid Refinement for Discrete Tomography 303

N = 1 N = 4 N = 16 N = 64

N = 196 N = 496 N = 1072 N = 1963

Fig. 4. Example of adaptive refinement

Algorithm 2. Adaptive multi-scale reconstruction algorithm

Require:
W - projection operator
p - projection data
V0 - basis for initial subspace
L - iteration count for iterative reconstruction
ε - tolerance for iterative reconstruction
δ - tolerance for refinement

Ensure:
xK - final reconstruction

x0 = reconstruction(WV0,p, 0, L, ε){initial reconstruction}
for k = 0 to K − 1 do

Ṽ = refine(Vk, Ik) {refinement proposal}
x̃ = reconstruction(WṼ ,p, Ṽ TVkxk, L, ε) {new reconstruction}
ẽ = error(x̃− Ṽ TVkxk) {compute error}
Ĩ = {i | ẽi > δ}
Vk+1 = refine(Vk, Ĩ) {update}
xk+1 = V T

k+1Ṽ x̃
end for

3 Numerical Results

We conduct numerical experiments on three phantoms. For the phantoms, the
projection data is generated on a 256 × 256 grid with 128 detectors and 64
projections. The reconstruction is done on an underlying fine grid of 128× 128
in order to avoid the inverse crime. We use the ASTRA toolbox to compute the
forward and backward projections [15]. For the adaptive method the mapping
matrices as discussed above are used to map to and from the QT grids to the

304 T. van Leeuwen and K.J. Batenburg

(a)
n = 16384 n = 2203

(b) (c) (d)

Fig. 5. (a) Ground truth and corresponding projection data, (b) SIRT reconstruction,
(c) multi-scale reconstruction and (d) corresponding QT grid overlaying the ground
truth

Adaptive Grid Refinement for Discrete Tomography 305

(a)
n = 16384 n = 2605

(b) (c) (d)

Fig. 6. (a) Ground truth and corresponding projection data, (b) SIRT reconstruction,
(c) multi-scale reconstruction and (d) corresponding QT grid overlaying the ground
truth

306 T. van Leeuwen and K.J. Batenburg

(a)
n = 16384 n = 1954

(b) (c) (d)

Fig. 7. (a) Ground truth and corresponding projection data, (b) SIRT reconstruction,
(c) multi-scale reconstruction and (d) corresponding QT grid overlaying the ground
truth

underlying fine grid. As reconstruction algorithm, we use SIRT with L = 200
and ε = 10−3. For the refinement we use a tolerance of δ = 0.2. For comparison
we also show the result obtained when applying SIRT directly on the finest grid.

The results on the phantoms are shown in figures 5, 6 and 7. These results
show that the proposed refinement successfully detects areas of high variability
and is able to capture most of the fine detail in the phantoms while using large
cells in homogeneous areas. The resulting reconstructions are (almost) binary,
showing the regularizing properties of the QT grid.

4 Conclusions and Discussion

We have presented an adaptive refinement strategy for tomographic reconstruc-
tion on QuadTree grids. The algorithm starts from a coarse grid and adaptively
refines those cells where the reconstruction error is above some threshold. If we
combine the QT grid approach with the standard SIRT algorithm for continu-
ous tomography, and apply it to discrete images, the resulting grid represents
the reconstructed image with only a fraction of the number of pixels otherwise

Adaptive Grid Refinement for Discrete Tomography 307

required. We expect this approach to be useful in a wide range of applications
where high resolution is required and where the images are characterized by
large homogeneous regions, which is typically the case in discrete tomography.
We also envision that QuadTree grids will be useful for region-of-interest tomog-
raphy. In this case, the QT grids can be reconstructed a-priori based on a simple
FBP reconstruction to identify regions of interest.

To optimally benefit from the reduction of the number of pixels when using
QuadTree grids, the projection operator will have to compute the projections
directly based on the QuadTree representation of the image, without mapping to
an underlying fine grid first (as we did in this paper). Since the cost of forward
projection is proportional to the number of pixels, this would directly reduce the
computations by an order of magnitude. For reconstruction, we expect that hav-
ing less unknowns will lead to less iterations, promising another reduction of the
computational cost. An extension of the proposed algorithm to 3D reconstruc-
tion using OcTree grids is straightforward. Future research is aimed at including
regularization to explicitly enforce desirable properties (such as discreteness) on
the reconstruction and application to continuous tomography. For the latter, we
expect that moving away from the piece-wise constant representation (e.g., by
using linear basis functions on the QT grid) will be beneficial.

Acknowledgements. This work was supported by the Netherlands Organisa-
tion for Scientific Research (NWO), programme 639.072.005. Networking sup-
port was provided by the EXTREMA COST Action MP1207.

References

1. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms, and
Applications. Birkhäuser (1999)

2. Herman, G.T., Kuba, A.: Advances in discrete tomography and its applications.
Birkhäuser (2007)

3. Ruskó, L., Kuba, A.: Multi-resolution method for binary tomography. Electronic
Notes in Discrete Mathematics 20, 299–311 (2005)

4. Gerard, Y.: Elementary algorithms for multiresolution geometric tomography with
strip model of projections. In: 2013 8th International Symposium on Image and
Signal Processing and Analysis (ISPA), pp. 600–605. University of Trieste and
University of Zagreb (2013)

5. Schule, T., Schnorr, C., Weber, S., Hornegger, J.: Discrete tomography by
convex–concave regularization and D.C. programming. Discrete Applied Mathe-
matics 151(1-3), 229–243 (2005)

6. Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for dis-
crete tomography. IEEE Transactions on Image Processing 20(9), 2542–2553 (2011)

7. Batenburg, K., Sijbers, J.: Dart: A Fast Heuristic Algebraic Reconstruction Al-
gorithm for Discrete Tomography. In: IEEE International Conference on Image
Processing, pp. IV-133–IV-136. IEEE (2007)

8. Herman, G.T., Levkowitz, H., Tuy, H.: Multilevel Image Reconstruction. In: Rosen-
feld, A. (ed.) Multiresolution Image Processing and Analysis. Springer Series in
Information Sciences, vol. 12, pp. 121–135. Springer, Heidelberg (1984)

308 T. van Leeuwen and K.J. Batenburg

9. Henson, V.E., Limber, M.A., McCormick, S.F., Robinson, B.T.: Multilevel Image
Reconstruction with Natural Pixels. SIAM Journal on Scientific Computing 17(1),
193–216 (1996)

10. Kostler, H., Popa, C., Ummer, M., Rude, U.: Towards an algebraic multigrid
method for tomographic image reconstruction-improving convergence of ART. In:
European Conference on Computational Fluid Dynamics, pp. 1–12 (2006)

11. Cools, S., Ghysels, P., van Aarle, W., Vanroose, W.: A multilevel preconditioned
Krylov method for algebraic tomographic reconstruction. arXiv, 26 (2013)

12. Bouman, C., Webb, K.: Multigrid tomographic inversion with variable resolution
data and image spaces. IEEE Transactions on Image Processing 15(9), 2805–2819
(2006)

13. De Witte, Y., Vlassenbroeck, J., Van Hoorebeke, L.: A multiresolution approach to
iterative reconstruction algorithms in X-ray computed tomography. IEEE Trans-
actions on Image Processing: A Publication of the IEEE Signal Processing Soci-
ety 19(9), 2419–2427 (2010)

14. Schumacher, H., Heldmann, S., Haber, E., Fischer, B.: Iterative Reconstruction of
SPECT Images Using Adaptive Multi-level Refinement. In: Tolxdorff, T., Braun,
J., Deserno, T.M., Horsch, A., Handels, H., Meinzer, H.P. (eds.) Bildverarbeitung
für die Medizin 2008, pp. 318–322. Springer, Heidelberg (2008)

15. Palenstijn, W.J., Batenburg, K.J., Sijbers, J.: Performance improvements for iter-
ative electron tomography reconstruction using graphics processing units (GPUs).
Journal of Structural Biology 176(2), 250–253 (2011)

Exact Evaluation of Stochastic Watersheds:

From Trees to General Graphs

Filip Malmberg, Bettina Selig, and Cris L. Luengo Hendriks

Centre for Image Analysis,
Uppsala University and Swedish University of Agricultural Sciences, Sweden

{filip,bettina,cris}@cb.uu.se

Abstract. The stochastic watershed is a method for identifying salient
contours in an image, with applications to image segmentation. The
method computes a probability density function (PDF), assigning to each
piece of contour in the image the probability to appear as a segmenta-
tion boundary in seeded watershed segmentation with randomly selected
seedpoints. Contours that appear with high probability are assumed to
be more important. This paper concerns an efficient method for com-
puting the stochastic watershed PDF exactly, without performing any
actual seeded watershed computations. A method for exact evaluation
of stochastic watersheds was proposed by Meyer and Stawiaski (2010).
Their method does not operate directly on the image, but on a compact
tree representation where each edge in the tree corresponds to a water-
shed partition of the image elements. The output of the exact evaluation
algorithm is thus a PDF defined over the edges of the tree. While the
compact tree representation is useful in its own right, it is in many cases
desirable to convert the results from this abstract representation back to
the image, e.g, for further processing. Here, we present an efficient linear
time algorithm for performing this conversion.

Keywords: Stochastic watershed, Watershed cut, Minimum spanning
tree.

1 Introduction

The stochastic watershed, proposed by Angulo and Jeulin [1], is a method for
identifying salient contours in an image, with applications to image segmenta-
tion. This method is based on the seeded watershed [14], which partitions the
image into regions according to a set of seedpoints, so that every region contains
precisely one seed and the boundaries between regions are optimally aligned
with strong gradients in the image [6]. The stochastic watershed estimates the
strength of edges in the image by repeatedly performing seeded watershed seg-
mentation with randomly selected seedpoints. Each repetition will find a differ-
ent subset of edges, but more important edges will be found more frequently.
The output of the method is a probability density function (PDF), assigning
to each piece of contour in the image the probability to appear as a segmen-
tation boundary in seeded watershed segmentation with N randomly selected
seedpoints.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 309–319, 2014.
c© Springer International Publishing Switzerland 2014

310 F. Malmberg, B. Selig, and C.L. Luengo Hendriks

Here, we study watersheds on edge weighted graphs. In this context, a digital
image is commonly represented by its pixel adjacency graph, i.e., a graph where
each image element corresponds to a vertex in the graph, and adjacent image
elements are connected by graph edges. Consequently, the seedpoints used for
watershed segmentation consist of a set of vertices in the graph, and the wa-
tershed itself is defined as a watershed cut [6,7]. Informally, a cut is a set of
edges that, if removed from the graph, separates it into two or more connected
components. The stochastic watershed PDF is then defined as a mapping over
the edges of the graph, i.e., every edge is considered to be a “piece of contour”.

In the original paper by Angulo and Jeulin [1], the PDF was estimated by
Monte Carlo simulation, i.e., repeatedly selecting N random seedpoints and per-
forming seeded watershed segmentation. The drawback of this approach is that
a large number of watershed segmentations must be performed to obtain a good
estimate of the PDF. Meyer and Stawiaski [15] showed that the PDF can be cal-
culated exactly, without performing any Monte Carlo simulations. Their work
was later extended by Malmberg and Luengo [13], who proposed an efficient
(pseudo-linear) algorithm for computing the exact PDF.

The exact evaluation method does not operate directly on the pixel adjacency
graph G, but on a minimum spanning tree of G. The minimum spanning tree
provides a compact representation of all watershed cuts on G in the sense that,
under certain conditions, there is a one-to-one correspondence between the wa-
tershed cuts on G and the watershed cuts on its minimum spanning tree. The
output of the exact evaluation algorithm is thus a map from the edges of the
minimum spanning tree to [0, 1] such that the value of the map for a given edge
equals the probability of that edge being included in the watershed cut on the
tree for a set of randomly selected seedpoints.

The compact tree representation is useful in its own right. For example, it
is straightforward to obtain a segmentation directly from the tree by removing
a set of edges with high probability values, and performing connected compo-
nent labeling on the resulting forest. In general, the tree representation can be
treated as any other segmentation hierarchy for morphological segmentation [8].
Nevertheless, there are cases where it might be useful to extend the stochastic
watershed PDF to all edges in the graph. Malmberg and Luengo [13] suggested
that such an extension could be performed using the saliency map approach of
Najman and Schmitt [17,9]. As will be shown, however, this does not lead to the
correct PDF for stochastic watersheds. Here, we propose an efficient algorithm
for performing the correct extension. We show that for sparse graphs, common
in image analysis applications, the time complexity of the proposed algorithm is
O(|V |), where |V | is the number of vertices in the graph.

Exact Stochastic Watersheds 311

2 Preliminaries

2.1 Edge Weighted Graphs

We will formulate our results in the framework of edge weighted graphs. In this
context, a digital image is represented by its pixel adjacency graph, where each
image element corresponds to a vertex in the graph, and adjacent image elements
are connected by graph edges. In this section, we introduce some basic definitions
to handle edge weighted graphs.

We define a graph as a triple G = (V,E, λ) where

– V is a finite set.
– E is a set of unordered pairs of distinct elements in V , i.e., E ⊆ {{v, w} ⊆ V
|v �= w}.

– λ is a map λ : E → R.

The elements of V are called vertices of G, and the elements of E are called edges
of G. When necessary, V , E, and λ will be denoted V (G), E(G), and λ(G) to
explicitly indicate which graph they belong to. An edge spanning two vertices v
and w is denoted ev,w. If ev,w is an edge in E, the vertices v and w are adjacent.
The neighborhood of a vertex v it the set of all vertices adjacent to v, and is
denoted by N (v).

For any edge e ∈ E, λ(e) is the weight or altitude of e. Throughout the paper,
we will assume that the value of λ(e) represents the dissimilarity between the
vertices spanned by e. Thus, we assume that the salient contours are located
on the highest edges of the graph. In the context of image processing, we may
define the edge weights as, e.g.,

λ(ev,w) = |I(v) − I(w)| , (1)

where I(v) and I(w) are the intensities of the image elements corresponding to
the vertices v and w, respectively.

The seeded watershed method, and hence also the method presented here,
depends on an increasing order of the edge weights in a graph, but not on their
exact value [6,7]. To ensure the uniqueness of the seeded watershed segmenta-
tion, we will only consider graphs where each edge has a unique weight, thereby
ensuring a unique increasing order. Graphs that do not fulfill this property can
be easily be converted to the correct format as follows:

1. Fix an increasing ordering of the graph edges, i.e., find a map O : E → Z

such that ei �= ej ⇒ O(ei) �= O(ej) and O(ei) < O(ej) ⇒ λ(ei) ≤ λ(ej) for
all ei, ej ∈ E.

2. For all e ∈ E, set λ(e)← O(e).

312 F. Malmberg, B. Selig, and C.L. Luengo Hendriks

Let G be a graph. A path in G is an ordered sequence of vertices π = 〈vi〉ki=1 =
〈v1, v2, . . . , vk〉 such that evi,vi+1 ∈ E for all i ∈ [1, k−1]. We denote the origin v1
and the destination vk of π by org(π) and dst(π), respectively. The set of vertices
{v1, v2, . . . , vk} along π is denoted V (π), and the set of edges {evi,vi+1 | i ∈
[1, k− 1]} along π is denoted E(π). A path that has no repeated vertices is said
to be simple. Two vertices v and w are linked in G if there exists a path π in
G such that org(π) = v and dst(π) = w. The notation v ∼ w

G
will here be used

to indicate that v and w are linked on G. If all pairs of vertices in G are linked,
then G is connected, otherwise it is disconnected.

Let G and H be two graphs. If V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is
a subgraph of G. If H is a connected subgraph of G and v �∼ w

G

for all vertices

v ∈ H and w /∈ H , then H is a connected component of G.
Let G be a graph and let π be a path in G. If dst(π) = org(π), then π is a

cycle. A cycle is simple if it has no repeated vertices other than the endpoints.
If G has no simple cycles, then G is a forest. A connected forest is called a tree.

Let G be a graph, and let T be a subgraph of G such that T is a tree and
V (G) = V (T). Then T is a spanning tree for G. The weight of a tree is the sum
of all edge weights in the tree. A minimum spanning tree of G is a spanning tree
with weight less than or equal to the weight of every other spanning tree of G.

2.2 Exact Stochastic Watersheds

In this section, we briefly review the method of Meyer and Stawiaski [15] for
exact evaluation of stochastic watersheds.

Let G be a graph. In the method of Meyer and Stawiaski, the hierarchy
of watershed segmentations is represented by a flooding tree, T , which in our
context is equivalent to a minimum spanning tree T of the graph G. Since T has
no simple cycles, every set of edges S ⊆ E(T) forms a cut on T . Moreover, every
set of edges S ⊆ E(T) corresponds to a cut S′ in G, given by

S′ = {ev,w ∈ E(G) | v �∼ w
(V (T),E(T)\S)

} . (2)

We say that S′ is the cut on G induced by S. If S is a watershed cut on T
with respect to some set of seedpoints, then the cut induced by S is a watershed
cut on G with respect to the same seedpoints [6,7]. In fact, there is a one-to-
one correspondence between the set of all watershed cuts on T and the set of
all watershed cuts on G. Meyer and Stawiaski [15] used this correspondence to
compactly represent the stochastic watershed PDF as a mapping P : E(T) →
[0, 1], where P (e) is the probability of e being included in the watershed cut
on T for N randomly selected seedpoints. This mapping can be computed in
O(|E|α(|V |)) time using the algorithm proposed by Malmberg and Luengo [13],
where α is the extremely slow-growing inverse of the Ackermann function [5].

Exact Stochastic Watersheds 313

3 Method

Let G be a graph, and let T be a minimum spanning tree for G. For all e ∈ E(T),
let P (e) be the probability of e being included in the watershed cut on T for
N randomly selected seedpoints. We will now show how the mapping P defined
over the edges of T can be used to compute a mapping P ′ : E(G) → [0, 1] such
that P ′(e) is equal to the probability of e being included in the watershed cut
on G for N randomly selected seedpoints.

Malmberg and Luengo [13] suggested that the mapping P could be extended
to all edges in E(G) using the saliency map approach of Najman and Schmitt [17]
For every edge ev,w ∈ E(G), there is a unique path, denoted πv,w, on T connect-
ing the vertices spanned by the edge. According to the saliency map approach,
the mapping P ′ would be defined as

P ′(ev,w) = max
e∈E(πv,w)

(P (e)) . (3)

By this definition, however, P ′(e) does not equal the probability of e being
included in the watershed cut on G for N randomly selected seedpoints, as
shown below.

Theorem 1. Let S be a cut on T , and let S′ be the cut on G induced by S. For
every edge ev,w ∈ E(G), it holds that ev,w ∈ S′ if and only if S ∩ E(πv,w) �= ∅.

Proof. If E(πv,w)∩S = ∅, then πv,w is a path between v and w on (V,E(T)\S),
i.e., v ∼ w

((V,E(T)\S))
, and so ev,w /∈ S′. Conversely, if E(πv,w)∩ S �= ∅, then v �∼ w

((V,E(T)\S))

,

and so ev,w ∈ S′.

The probability of P ′(ev,w) of ev,w being included in the watershed cut on
G is therefore equal to the probability that the watershed cut on T contains at
least one edge along the path πv,w connecting v and w on T . This probability is
given by

P ′(ev,w) = 1−
∏

e∈E(πv,w)

(1− P (e)) . (4)

The derivation of Equation 4 is straightforward. Since the probability of an
edge along πv,w being part of the watershed cut on T is independent of that for
other edges along πv,w, the probability that no edge in E(πv,w) belongs to the
watershed cut can be computed by multiplication of the individual probabilities.
Note that for all edges ev,w ∈ E(T), Equation 4 reduces to P ′(ev,w) = P (ev,w)
as expected.

Based on the above results, we can formulate a naive approach for calculating
P ′(ev,w) as follows:

314 F. Malmberg, B. Selig, and C.L. Luengo Hendriks

Algorithm 1. Calculate Φ(v, r) for all vertices v in a tree with root r

Input: A tree T = (V,E), rooted at a vertex r. A map P : E → [0, 1]
Auxiliary: Two sets of vertices C, D
Output: A map F : V → R, such that F (v) = Φ(v, r) for all v ∈ V .

1 Set C → r, D → ∅, and F (r) ← 1 ;
2 while C �= ∅ do
3 Select any vertex v ∈ C;
4 Set C ← C \ {v} and D ← D ∪ {v};
5 foreach w ∈ N (v) \D do
6 Set F (w) ← F (v) · (1− P (ev,w) ;
7 Set C ← C ∪ {w}

1. Find the unique path πv,w connecting v and w on T using, e.g., breadth-first
search.

2. Use Equation 4 to calculate P ′(ev,w).

Performing these calculations for all edges in a graph, however, is prohibitively
slow. We will now present an efficient algorithm for computing P ′(e) for all
e ∈ E(G). First, we define the function Φ(a, b) as

Φ(a, b) =
∏

e∈E(πa,b)

(1− P (e)) , (5)

Next, we designate an arbitrary vertex r ∈ V to be the root of T . The choice of
r does not affect the output of the algorithm. For a pair of vertices v, v′ ∈ V ,
we say that v is an ancestor of v′ if v lies along the path from v′ to r on T .
The lowest common ancestor LCA(v, w) of two vertices v and w is the vertex
located farthest from the root that is an ancestor of both v and w. With these
definitions in place, we can rewrite Φ(v, w) as

Φ(v, w) =
Φ(v, r)Φ(w, r)

Φ(LCA(v, w), r)2
. (6)

For a fixed root r, the value of Φ(v, r) for all vertices v ∈ V can be computed
using Algorithm 1. Computationally, this algorithm is equivalent to breadth-first
search, and so has the same O(|V |+ |E(T)|) = O(|V |) time complexity.

Once the value of Φ(v, r) has been calculated for all v ∈ V , Algorithm 2 can
be used to calculate the desired probability P ′(e) for all e ∈ E(G). Algorithm 2
iterates over all edges of G, and computes the LCA of the vertices spanned by
the edge. The time complexity of Algorithm 2 is therefore O(|E| ·X), where X
is the cost of finding the LCA between a pair of vertices. As shown by Harel
and Tarjan [12], the LCA of a pair of vertices can be found in O(1) time, after
performing an O(|V |) preprocessing step. An algorithm satisfying these bounds,
while also being suitable for practical implementation, was proposed by Bender
and Farach-Colton [3].

Exact Stochastic Watersheds 315

Algorithm 2. Calculate P ′(e) for all edges e in a graph

Input: An edge-weighted graph G = (V,E, λ). A minimum spanning tree T of
G, rooted at a vertex r. A map F : V → R, such that F (v) = Φ(v, r) for
all v ∈ V .

Output: A map Π : E → [0, 1] such that Π(e) = P ′(e) for all e ∈ E.
1 foreach ev,w ∈ E do
2 Find c = LCA(v, w);

3 Set Π(ev,w) ← 1− F (v)F (w)

F (c)2
;

In total, the time complexity of the proposed method for calculating P ′ given
P is therefore O(|V | + |E(G)|). For the sparse graphs typically encountered in
image processing it holds that O(|E(G)|) = O(|V |), and for such graphs the
total time complexity of the proposed method is therefore O(|V |).

4 Visualizing the Probability Density Function

In the common case where G is a pixel adjacency graph, i.e., the vertices of G
correspond to image elements, it may be of interest to visualize the stochastic
watershed PDF on the vertices of the graph. To this end, we introduce the notion
of a boundary operator. A boundary operator δ is a mapping δ : V → P(V), such
that δ(v) ⊆ N (v) for all v ∈ V . Given a cut S on G and a boundary operator
δ, we say that a vertex v is a boundary vertex for S and δ if any of the vertices
in δ(v) are separated from v by the cut S. The probability P ′′(v) of v being a
boundary vertex is then given by

P ′′(v) = 1−
∏

w∈δ(v)

(1− P ′(ev,w)) . (7)

The derivation of Equation 7 is analogous to the derivation of Equation 4.

5 Experiments

As shown in Section 3, the asymptotic time required for computing the stochastic
watershed PDF on the edges of the MST of a graph is the same as that required
for computing the PDF on all edges of the graph. In this section, we investigate
how much the the computation increases in practice when the PDF is computed
for all edges, rather than on the edges of the MST only.

We calculate stochastic watershed PDFs on a set of two-dimensional images
of varying sizes, generated by scaling up an original low resolution image using
bi-cubic interpolation. Pixel adjacency graphs were constructed from the images
using a standard 4-connected adjacency relation with edge weights defined ac-
cording to Equation 1. For every pixel x in an image, the boundary operator

316 F. Malmberg, B. Selig, and C.L. Luengo Hendriks

0

5

10

15

20

10242 14482 17742 20482

Image size (pixels)

C
om

pu
ta

tio
n

tim
e

(s
)

Fig. 1. Computation time for calculating the exact stochastic watershed PDF on pixel
adjacency graphs for 2D images of varying sizes. The bottom curve shows the com-
putation time for calculating the exact stochastic watershed PDF on the MST of the
pixel adjacency graph using the method proposed by Malmberg and Luengo [13]. The
top curve shows the total computation time for calculating the stochastic watershed
PDF for all edges in the pixel adjacency graph, using the proposed method to extend
the PDF from the edges of the MST to all edges in the graph.

δ(x) was defined as δ(x) = {x+(1, 0),x+(0, 1)}. For all pixel adjacency graphs,
the exact stochastic watershed was first calculated on the MST of the pixel
adjacency graph using the method of Malmberg and Luengo [13], and the PDF
was then extended to all edges in the graph using the proposed method. For
all experiments, N = 20 random seedpoints were used. Figure 1 shows the total
computation time for both these steps, as well as the computation time for
the first step only. As the figure shows, the overhead for extending the PDF
to all edges is small – the average increase in computation time is about 25%.
Figure 2 shows the stochastic watershed PDF computed on the original low
resolution 2D image. For reference, the same PDF approximated by Monte Carlo
simulation with 1000 repetitions is also shown. At each repetition, we calculate
the watershed cut corresponding to a random set of seedpoints and identify the
boundary pixels using the boundary operator defined above. The final PDF is
obtained by counting the number of times each pixel appears as a boundary
pixel, and dividing this number by the total number of repetitions.

Exact Stochastic Watersheds 317

Fig. 2. The stochastic watershed PDF computed on a 2D image. The contrast of the
images has been adjusted for display purposes. (Top) Original image. (Bottom left)
PDF obtained by the proposed exact method. (Bottom right) Reference PDF obtained
by Monte Carlo simulation with 1000 repetitions.

318 F. Malmberg, B. Selig, and C.L. Luengo Hendriks

6 Conclusions

The stochastic watershed method has found some applications, such as seg-
mentation of multi-spectral satellite images [18,2], characterization of the grain
structure of nuclear fuel pellets [4], study of angiogenesis [19], segmentation of
granular materials in 3D microtomography [10,11], and detection of the optic
disc in fundus images [16]. However, the computational cost of the Monte-Carlo
simulation that estimates the PDF is a barrier to more wide-spread use. In this
view, the prospect of efficiently computing the exact stochastic watershed PDF,
without resorting to Monte Carlo simulation, is appealing. An important step in
this direction was taken by Malmberg and Luengo [13], who proposed a pseudo-
linear algorithm for computing the exact stochastic watershed PDF for all edges
of a tree.

Here, we have extended the work of Malmberg and Luengo by presenting
a method for calculating the exact stochastic watershed PDF for all edges in
a graph, given that the PDF is known for all edges included in the minimum
spanning tree of the graph. Additionally we have presented a method that, via
the concept of a boundary operator, transfers the PDF from the edges to the
vertices of a graph. This allows exact stochastic watersheds to be computed on
the pixels of an image, rather than on the abstract tree representation used
in previous exact evaluation methods [15,13]. We believe this makes the exact
evaluation approach more attractive for use in practical applications. For sparse
graphs, typical in image processing applications, the proposed method termi-
nates in O(|V |) time, which is asymptotically smaller than the O(|E|α(|V |))
time required for calculating the PDF over the edges of the minimum spanning
tree of the graph. Our experiments demonstrate that in practice, the computa-
tional cost of extending the PDF to all edges in a graph is small compared to
the cost of computing the PDF on the edges of the MST of the graph.

In the original paper by Angulo and Jeulin [1], the PDF obtained by Monte-
Carlo simulation was convolved with a Gaussian function to obtain a smooth
estimate of the true PDF. An interesting direction for future research is to in-
corporate this kind of relaxation in the proposed method by allowing larger
boundary operators, i.e. not constraining the boundary operator to be a sub-
set of the neighborhood of a vertex, and assigning appropriate weights to the
elements of the boundary operator.

References

1. Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: Intern. Symp. on
Mathematical Morphology, vol. 8, pp. 265–276 (2007)

2. Angulo, J., Velasco-Forero, S.: Semi-supervised hyperspectral image segmentation
using regionalized stochastic watershed. In: Proceedings of SPIE Symposium on
Defense, Security, and Sensing: Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XVI. Proceedings of SPIE, vol. 7695, p.
76951F. SPIE, Bellingham (2010)

Exact Stochastic Watersheds 319

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

4. Cativa Tolosa, S., Blacher, S., Denis, A., Marajofsky, A., Pirard, J.P., Gommes,
C.J.: Two methods of random seed generation to avoid over-segmentation with
stochastic watershed: application to nuclear fuel micrographs. Journal of Mi-
croscopy 236(1), 79–86 (2009)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT Press (2001)

6. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Minimum
spanning forests and the drop of water principle. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31(8), 1362–1374 (2009)

7. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Thinnings,
shortest path forests, and topological watersheds. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(5), 925–939 (2010)

8. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological
hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand,
R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013)

9. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning
forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K.
(eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)

10. Faessel, M., Jeulin, D.: Segmentation of 3D microtomographic images of granu-
lar materials with the stochastic watershed. Journal of Microscopy 239(1), 17–31
(2010)

11. Gillibert, L., Jeulin, D.: Stochastic multiscale segmentation constrained by image
content. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS,
vol. 6671, pp. 132–142. Springer, Heidelberg (2011)

12. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

13. Malmberg, F., Hendriks, C.L.L.: An efficient algorithm for exact evaluation of
stochastic watersheds. Pattern Recognition Letters (2014)

14. Meyer, F., Beucher, S.: Morphological segmentation. Journal of Visual Communi-
cation and Image Representation 1(1), 21–46 (1990)

15. Meyer, F., Stawiaski, J.: A stochastic evaluation of the contour strength. In: Goe-
sele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS,
vol. 6376, pp. 513–522. Springer, Heidelberg (2010)

16. Morales, S., Naranjo, V., Angulo, J., Alcaniz, M.: Automatic detection of optic
disc based on PCA and mathematical morphology. IEEE Transactions on Medical
Imaging 32(4), 786–796 (2013)

17. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchi-
cal segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 18(12), 1163–1173 (1996)

18. Noyel, G., Angulo, J., Jeulin, D.: Classification-driven stochastic watershed: appli-
cation to multispectral segmentation. In: IS&T’s Fourth European Conference on
Color in Graphics Imaging, and Vision (CGIV 2008), pp. 471–476 (2008)

19. Noyel, G., Angulo, J., Jeulin, D.: Regionalized random germs by a classification
for probabilistic watershed application: Angiogenesis imaging segmentation. In:
Fitt, A.D., Norbury, J., Ockendon, H., Wilson, E. (eds.) Progress in Industrial
Mathematics at ECMI 2008. Mathematics in Industry, pp. 211–216. Springer (2010)

On Making nD Images Well-Composed

by a Self-dual Local Interpolation

Nicolas Boutry1,2, Thierry Géraud1, and Laurent Najman2

1 EPITA Research and Development Laboratory (LRDE), France
2 Université Paris-Est, LIGM, Équipe A3SI, ESIEE, France
firstname.lastname@lrde.epita.fr, l.najman@esiee.fr

Abstract. Natural and synthetic discrete images are generally not well-
composed, leading to many topological issues: connectivities in binary
images are not equivalent, the Jordan Separation theorem is not true
anymore, and so on. Conversely, making images well-composed solves
those problems and then gives access to many powerful tools already
known in mathematical morphology as the Tree of Shapes which is of our
principal interest. In this paper, we present two main results: a character-
ization of 3D well-composed gray-valued images; and a counter-example
showing that no local self-dual interpolation satisfying a classical set of
properties makes well-composed images with one subdivision in 3D, as
soon as we choose the mean operator to interpolate in 1D. Then, we
briefly discuss various constraints that could be interesting to change to
make the problem solvable in nD.

Keywords: Digital topology, gray-level images, well-composed sets,
well-composed images.

1 Introduction

Natural and synthetic images are usually not well-composed. This fact raises
many topological issues. As an example, the Jordan Separation theorem, stating
that a simple closed curve in R2 separates the space in only two components is
not true anymore for binary 2D discrete images [5]. To solve this problem, we
have to juggle with two complementary connectivities: 4 for the background and
8 for the foreground, or the inverse. 2D well-composed binary images have the
fundamental property that 4- and 8-connectivities are equivalent. Hence, such
topological issues vanish. In the same manner, well-composed nD images, with
n > 2, have 2n- and (3n− 1)-connectivities equivalent [11]. Other advantages of
well-composed images are for example the preservation of topological properties
by a rigid transform [10], simplification of thinning algorithms [8] and simplifi-
cation of graph structures resulting from skeleton algorithms [5]. Also, and it is
our most important goal, one can compute the Tree of Shapes [9,2] of a well-
composed image with a quasi-linear algorithm [3]. An introduction to the Tree
of Shapes in the continuous case can be found in [1].

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 320–331, 2014.
c© Springer International Publishing Switzerland 2014

On Making nD Images Well-Composed by a Self-dual Local Interpolation 321

Section 2 recalls the definitions of 2D and 3D well-composed sets and gray-
valued images, and introduces a characterization of 3D gray-valued well-com-
posed images. Because we do not want to deteriorate the initial signal, we use
an interpolation that produces a well-composed image. Furthermore, in order to
treat in the same manner bright components on dark background and dark com-
ponents over bright background, this interpolation process will be self-dual. We
present in Section 3 a general scheme that recursively defines local interpolations
satisfying a classical set of properties with one subdivision. We show that such
interpolations, with the added property of being self-dual, fail in 3D (and then
further) to make well-composed images. We conclude in Section 4 with some
perspectives that could work in nD even if n > 2 (in local and non-local ways).

2 A Characterization of 3D Well-Composed Gray-Valued
Images

2.1 2D WC Sets and Gray-Valued Images

Let us begin by the definitions of a block of Zn. We will then be able to recall
the definition and the characterization of 2D well-composed sets and images.

A block in nD associated to z ∈ Zn is the set Sz defined such that Sz ={
z′ ∈ Zn

∣∣||z − z′||∞ ≤ 1 and ∀i ∈ [1, n], z′i ≥ zi
}
(where zi represents the ith

coordinate of z). Moreover, we call blocks of D ⊆ Zn any element of the set{
Sz

∣∣∃z ∈ D, Sz ⊆ D
}
.

Definition 1 (2D WC Sets [5]). A set X is weakly well-composed if any
8-component of X is a 4-component. X is well-composed if both X and its com-
plement Xc = Z2 \X are weakly well-composed.

Proposition 1 (Local Connectivity and No Critical Configurations [5]).
A set X ⊆ Z2 is well-composed iff it is locally 4-connected. Also, a set X is well-

composed if none of the critical configurations

(
1 0
0 1

)
or

(
0 1
1 0

)
appears in X.

Definition 2 (Cuts in nD). For any λ ∈ R and any gray-valued map u : D ⊆
Zn 	→ R, we denote by [u > λ] and [u < λ] the sets [u > λ] =

{
M ∈ D

∣∣u(M) > λ
}

and [u < λ] =
{
M ∈ D

∣∣u(M) < λ
}
. We call them respectively upper strict cuts

and lower strict cuts [3].

We remark that an image u : D ⊆ Z2 	→ R with a finite domain D can only
be well-composed if D is itself well-composed (since [u < max(u) + 1] = D).

Definition 3 (Gray-valued WC 2D Maps [5]). A gray-level map u : Z2 	→ R

is well-composed iff for every λ ∈ R, the strict cuts [u > λ] and [u < λ] result
in well-composed sets.

We recall that the interval value of the couple (x, y) ∈ R2 is defined as
intvl(x, y) = [min(x, y),max(x, y)].

322 N. Boutry, T. Géraud, and L. Najman

Proposition 2 (Characterization of 2D WC maps [5]). A gray-level map

u : Z2 	→ R is well-composed iff for every 2D block S such that u
∣∣
S
=

(
a b
c d

)
,

the interval values satisfy intvl(a, d) ∩ intvl(b, c) �= ∅.

2.2 3D WC Sets and Gray-Valued Maps

As we will see, for n = 3, the equivalence between local connectivity and well-
composedness is no longer true. This led Latecki [4] to introduce the continuous
analog.

Fig. 1. Illustration of the bdCA of
a set containing a critical configu-
rations of type 1 (left), and of type
2 (right)

Fig. 2. A set locally 6-connected
but not well-composed

Definition 4 (CA and bdCA [4]). The continuous analog CA(z) of a point
z ∈ Z3 is the closed unit cube centered at this point with faces parallel to the
coordinate planes, and the continuous analog of a set X ⊆ Z3 is defined as
CA(X) =

⋃{
CA(x)

∣∣x ∈ X
}
. The (face) boundary of the continuous analog

CA(X) of a set X ⊆ Z3 is noted bdCA(X) and is defined as the union of
the set of closed faces each of which is the common face of a cube in CA(X) and
a cube not in CA(X).

Definition 5 (Well-composedness in 3D [4]). A 3D set X ⊆ Z3 is well-
composed iff bdCA(X) is a 2D manifold, i.e., a topological space which is locally
Euclidian.

Proposition 3 (No Critical Configurations [4]). A set X ⊆ Z3 is well-
composed iff the following critical configurations of cubes of type 1 or of type 2
(modulo reflections and rotations) do not occur in CA(X) or in CA(Xc) (see
Figure 1).

We remark that if a set X ⊆ Z3 is well-composed, then X is locally 6-
connected. The converse is false (see Figure 2).

Definition 6 (WC Gray-valued Maps). We say that a 3D real-valued map
u : D ⊆ Z3 	→ R is well-composed if its strict cuts [u > λ] and [u < λ], ∀λ ∈ R,
are well-composed.

On Making nD Images Well-Composed by a Self-dual Local Interpolation 323

Fig. 3. The restriction
u
∣∣
S
of u to a 3D block S

Fig. 4. The ten characteristical relations of well-
composedness of a gray-valued image u restricted
to a 3D block S

To characterize 3D gray-level well-composed images, we first give two lemmas
concerning the detection of the critical configurations of respectively type 1 and
type 2.

Lemma 1. The strict cuts [u > λ] and [u < λ], λ ∈ R, of a gray-valued image
u defined on a block S, such as depicted in Figure 3, do not contain any critical
configurations of type 1 iff the six following properties hold:
intvl(a, d)

⋂
intvl(b, c) �= ∅ (P1), intvl(e, h)

⋂
intvl(g, f) �= ∅ (P2)

intvl(a, f)
⋂
intvl(b, e) �= ∅ (P3), intvl(c, h)

⋂
intvl(g, d) �= ∅ (P4)

intvl(a, g)
⋂
intvl(e, c) �= ∅ (P5), intvl(b, h)

⋂
intvl(f, d) �= ∅ (P6)

Proof : Let us assume that one of these properties (Pi), i ∈ [1, 6], is false. Let
us say it is the case of (P1). Then two cases are possible: either max(a, d) <
min(b, c), and that means that there exists λ = (max(a, d) + min(b, c))/2 such
that [u < λ] contains the critical configuration {a, d} (of type 1), or min(a, d) >
max(b, c), and there exists λ = (min(a, d)+max(b, c))/2 such that one more time
[u > λ] contains the critical configuration {a, d}. The reasoning is the same for
all the other properties. Conversely, let us assume that there exists λ ∈ R such
that either [u > λ] or [u < λ] contains a critical configuration of type 1. That
means immediately that one of the 6 properties Pi, i ∈ [1, 6], corresponding to
each of the six faces of the block S, is false (see Figure 4 for the faces and the
corners concerned by the properties).
�

Recall that the span of a set of values E ⊆ R is span(E) = [inf(E), sup(E)].

Lemma 2. The strict cuts [u > λ] and [u < λ], λ ∈ R, of a gray-valued image
u defined on a block S such as depicted in Figure 3, do not contain any critical
configuration of type 2 iff the four following properties are true:
intvl(a, h)

⋂
span{b, c, d, e, f, g} �= ∅ (P7)

intvl(b, g)
⋂
span{a, c, d, e, f, h} �= ∅ (P8)

intvl(c, f)
⋂
span{a, b, d, e, g, h} �= ∅ (P9)

intvl(d, e)
⋂
span{a, b, c, f, g, h} �= ∅ (P10)

Proof : Let us assume that one of these properties (Pi), i ∈ [7, 10], is false. Let
us say it is the case of (P7). Then two cases are possible:

324 N. Boutry, T. Géraud, and L. Najman

- either max(a, h) < min(b, c, d, e, f, g). Then there exists λ = (max(a, h) +
min(b, c, d, e, f, g))/2 such that [u < λ] contains the critical configuration {a, h}
(of type 2),
- or min(a, h) > max(b, c, d, e, f, g). Then there exists λ = (max(b, c, d, e, f, g) +
min(a, h))/2 such that (again) [u > λ] contains the critical configuration {a, h}.
The reasoning is the same for all the other properties.
Conversely, let us assume that there exists λ ∈ R such that either [u > λ] or
[u < λ] contains a critical configuration of type 2. That means immediately that
one of the 4 properties Pi, i ∈ [7, 10], corresponding to each of the four diagonals
of the block S, is false (see Figure 4).
�

We are now ready to state the main theorem of this section, characterizing
the well-composedness on a 3D gray-valued image.

Theorem 1 (Characterization of well-composedness in 3D). Let us sup-
pose that D is a hyperrectangle in Z3. A gray-valued 3D image u : D 	→ R

is well-composed on D iff on any block S ⊆ D, u
∣∣
S

satisfies the properties
(Pi), i ∈ [1, 10].

3 Local Interpolations

Using interpolations with one subdivision does not deteriorate the initial signal.
The size of the original image is multiplied by a factor of 2n, where n is the
dimension of the space of the image. Figure 5 illustrates this subdivision process.

a b

c

i i+1

j

j+1
d

a b

d

i i+1

j

j+1
c

ab

cd

ac abcd bd

Fig. 5. Illustration of the subdivision process on
a block S

(i+½,j+½)

(i,j) (i+1,j) (i,j+1) (i+1,j+1)

(i+½,j) (i+1,j+½)(i,j+½) (i+½,j+1)

Fig. 6. s(S) ⊆ (
Z

2

)n
as a poset

3.1 Subdivision of a Domain and
(
Z

2

)n
as a Poset

The subdivision of a block allows us to provide an order to the elements. Using
this order, the subdivided space is a poset.

Let z be a point in Zn, and Sz its associated block. We define the subdi-
vision of Sz as s(Sz) = {z′ ∈

(
Z
2

)n ∣∣||z − z′||∞ ≤ 1 and ∀i ∈ [1, n], z′i ≥ zi}.

On Making nD Images Well-Composed by a Self-dual Local Interpolation 325

The subdivision of a domain D ⊆ Zn is the union of the subdivisions of the
blocks contained in D, i.e., s(D) =

⋃
S⊆D s(S).

Definition 7 (Order of a point of
(
Z
2

)n
). Assume ei is a fixed basis of Zn.

We note 1
2 (z) = {i ∈ [1, n]

∣∣zi ∈ Z
2 \ Z}. The sets �k, for k ∈ [0, n], are defined

such that �k = {z ∈
(
Z
2

)n ∣∣ ∣∣1
2 (z)
∣∣ = k} (where

∣∣E∣∣ denotes the cardinal of the

set E), and represent a partition of
(
Z
2

)n
. We call order of a point z the value

k such that z ∈ �k and we note it �(z).

Definition 8 (Parents in
(
Z
2

)n
). Let z be a point of

(
Z
2

)n
. The set of the

parents of z ∈
(
Z
2

)n
, noted �(z), is defined by �(z) = ∪i∈ 1

2 (z)
{z − ei

2 , z + ei
2 }.

The parents of z ∈
(
Z
2

)n
of order 0 are �0(z) = {z} and of order k > 0 are

defined recursively by �k(z) = ∪p∈�(z)�
k−1(p).

Definition 9 (G(z) and �(z)). Let z be a point of
(
Z
2

)n
. The ancestors of

z ∈
(
Z
2

)n
are �(z) = ��(z)(z). We set G(z) = ∪k∈[0,�(z)]�

k(z).

Notice that �(z) ⊆ Zn and that any point z ∈ �k, k ∈ [1, n], has its parents
in �k−1. Hence {�k}k∈[0,n] is a (hierarchical) partition of

(
Z
2

)n
, and (

(
Z
2

)n
,�)

is a poset (see Figure 6).

Definition 10 (Opposites). Let z be a point of
(
Z
2

)n
. The (set of) opposites

of z ∈
(
Z
2

)n
is the family of pairs of points opp(z) = ∪i∈ 1

2 (z)

{
{z − ei

2 , z +
ei
2 }
}
.

3.2 Interpolations with One Subdivision

Let us recall that the convex hull convhull(Z) of a set of m points
Z = {z1, . . . , zm} ⊆ Zn is:

convhull(Z) =

{
m∑
i=1

αiz
i
∣∣ m∑

i=1

αi = 1 and ∀i ∈ [1,m], αi ≥ 0

}
Definition 11 (Subdivision of edges, faces, and cubes). Let
E = {z1, z2} be an edge in Zn. The subdivision of E is s(E) = {z ∈(
Z
2

)n ∣∣z ∈ convhull(E)}. The subdivision of a face F = {z1, z2, z3, z4} is

s(F) = {z ∈
(
Z
2

)n ∣∣z ∈ convhull(F)}. The subdivision of a cube C = {z1, . . . , z8}
is s(C) = {z ∈

(
Z
2

)n ∣∣z ∈ convhull(C)}.

3.3 A Set of Properties That an Interpolation Has to Satisfy

An interpolation of a map u : D ⊆ Zn 	→ R to a map I(u) : s(D) ⊆
(
Z
2

)n 	→ R

is a transformation such that I(u)
∣∣
S
= u
∣∣
S
for any block S ⊆ D.

Let u : D ⊆ Z3 	→ R be any 3D gray-valued image. We say that an inter-
polation I : u 	→ I(u) is self-dual iff I(−u) = −I(u). A self-dual interpolation

326 N. Boutry, T. Géraud, and L. Najman

does not overemphasize bright components at the expense of the dark ones, or
conversely.

An interpolation I : u 	→ I(u) in 3D is said ordered if the new values are
inserted firstly at the centers of the subdivided edges, secondly at the centers of
the subdivided faces, and finally at the centers of the subdivided cubes.

An ordered interpolation is said in between iff it puts the values at a point z
in between the values of its parents �(z).

Finally, we say that an interpolation is well-composed iff the image I(u)
resulting from the interpolation of u is well-composed for any given image u.

We are interested in interpolations I with the following properties.

(P)⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I is invariant by translations, π

2 ’s rotations and axial symmetries
I is ordered
I is in-between
I is self-dual
I is well-composed

3.4 The Scheme of Local Interpolations Verifying P
A local interpolation I is an interpolation such as for any block S ⊆ D, I(u)
on s(S) is computed only from its nearest neighbours belonging to �0 (we see
an image as a graph). For convenience, we will write u′ instead of I(u) for local
interpolations in the sequel.

9 11 15

7 1 13

3 5 3

9 10 11 13 15

8 8 6 12 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

9 10 11 13 15

8 7 6 10 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

9 9 11 11 15

7 1 1 1 13

7 1 1 1 13

3 1 1 1 3

3 3 5 3 3

9 11 11 15 15

9 11 11 15 15

7 7 1 13 13

7 7 5 13 13

3 5 5 5 3

Fig. 7. From left to right: an image, and its interpolations with the median, the
mean/median, the min and the max

Lemma 3 (Local interpolation scheme). Any local interpolation I on
(
Z
2

)n
verifying P can be characterized by a set of functions {fk}k∈[1,n] such that:

∀ z ∈
(
Z

2

)n

, u′(z) =

{
u(z) if z ∈ �0

fk(u
∣∣
�(z)

) if z ∈ �k, k ∈ [1, n]

We denote such an interpolation If1,...,fn .

Proof : The interpolation process on the subdivided edges depends only on the
values of u at the vertices of the original edges due to the locality of the method.
Furthermore it has to be invariant by axial symmetries and rotations. Hence,
there is a unique function f1 characterizing the interpolation on the subdivided
edges. The reasoning is the same on the faces and the cubes respectively for f2
and f3.
�

On Making nD Images Well-Composed by a Self-dual Local Interpolation 327

Notice that it is an implication and not an equivalence: an interpolation ver-
ifying this scheme does not verify all the properties in P .

3.5 I0, IWC, and Isol for Local Interpolations

Let us introduce some useful sets to express recursively the local interpolations
satisfying the properties P .

Definition 12 (I0 and definition of a local in-between interpolation).
Let u : D 	→ R be a gray-valued map, let z be a point of s(D) \�0, and let I be
a given local interpolation. We define the set I0(u, z) associated to I by:

I0(u, z)
(def)
=

⋂
{z−,z+}∈opp(z)

intvl(u′(z−), u′(z+))

Then, an ordered local interpolation I is said in-between iff u′(z) ∈ I0(u, z) for
any image u : D 	→ R and z ∈ s(D) \�0.

Definition 13 (IWC and Isol). Let u : D 	→ R be a gray-valued image, z be
a point of s(D) \ �0, and I be a given local interpolation. We define the set
IWC(u, z) associated to I such as for any z ∈ �1, IWC(u, z) = R and for any
z ∈ �k with k ≥ 2:

IWC(u, z) = { v ∈ R | u′(z) = v ⇒ u′∣∣
G(z) is well-composed }

Last, let us denote Isol(u, z) = I0(u, z) ∩ IWC(u, z).

The following scheme is necessary to satisfy P (but not sufficient).

Theorem 2. Any local interpolation I satisfying P is such that:

∀z ∈
(
Z
2

)n
, u′(z) =

{
u(z) if z ∈ �0

fk(u
∣∣
�(z)

) ∈ Isol(u, z) if z ∈ �k, k ∈ [1, n]

Notice that such a local interpolation I is ordered, in-between, well-composed,
but not necessarily self-dual.

3.6 Determining f1 for Self-dual Local Interpolations

Let us begin with the study of f1, i.e., the function setting the values at the
centers of the subdivided edges. This function has to be self-dual, symmetrical,
and in-between. We choose one of the most common function satisfying these
constraints: the mean operator f1 : R2 	→ R : (v1, v2) 	→ f1(v1, v2) = (v1+ v2)/2.

328 N. Boutry, T. Géraud, and L. Najman

Fig. 8. The 3 possible
configurations in 2D
(modulo reflections and
rotations)

a b

dc

(a+b)/2

(c+d)/2

(a+c)/2 m (b+d)/2

Fig. 9. u′∣∣
G(z)

for z ∈ �2 for any self-dual

local interpolation after the application of
f1 (with m any value ∈ R)

3.7 Equations of f2 for Self-dual Local Interpolations

Concerning f2, i.e., the function which sets the values of u′ at the centers of the
subdivided faces, let us compute I0(u, z) and IWC(u, z) for any given z ∈ �2 to
deduce Isol(u, z). Their values depend on the configurations of u

∣∣
�(z)

.

Let us assume that u
∣∣
�(z)

=

(
a b
c d

)
. Then a total of 4! = 24 increasing

orders are possible for these 4 values. Modulo reflections and axial symmetries,
we obtain a total of 3 possible configurations: the α-configurations correspond
to the relation a ≤ d < b ≤ c, the U -configurations to a ≤ b ≤ d ≤ c, and the
Z-configurations to a ≤ b ≤ c ≤ d (see Figure 8).

Lemma 4. Let z be a point in �2. Modulo reflections and symmetries, an
α-configuration implies that u

∣∣
�(z)

is not well-composed, whereas a U - or Z-

configuration implies that u
∣∣
�(z)

is well-composed.

Fig. 10. The Hasse diagrams for the α- and the U -configurations (left) and for the
Z-configuration (right)

Let us begin with the computation of I0(u, z) for z ∈ �2. From the val-
ues already set in u′ on �(z) ⊆ �1 by f1 during the recursive process (see
Figure 9), we can compute I0(u, z) using the Hasse diagram1 for each configu-
ration (see Figure 10). We obtain finally that I0(u, z) = intvl(a+c

2 , b+d
2) for the

1 Recall that a Hasse diagram is used to represent finite partially ordered sets with
the biggest elements at the top.

On Making nD Images Well-Composed by a Self-dual Local Interpolation 329

three configurations, with one important property: the median value of u
∣∣
�(z)

always belongs to I0(u, z).
Let us follow with the computation of IWC(u, z), where u

′∣∣
G(z) (see Figure 9)

satisfies four conditions:

intvl(a,m) ∩ intvl((a+ b)/2, (a+ c)/2) �= ∅, (1)

intvl((a+ b)/2, (b+ d)/2) ∩ intvl(m, b) �= ∅, (2)

intvl((a+ c)/2, (c+ d)/2) ∩ intvl(m, c) �= ∅, (3)

intvl(m, d) ∩ intvl((c+ d)/2, (b+ d)/2) �= ∅. (4)

In the case of the α-configuration, (2)⇒ m ≤ b+d
2 and (4)⇒ m ≥ b+d

2 . That

implies thatm = b+d
2 , which also satisfies (1) and (3). Consequently, IWC(u, z) =

{med{u
∣∣
�(z)

}}, and because IWC(u, z) ⊆ I0(u, z), Isol(u, z) = {med{u
∣∣
�(z)

} in

the not well-composed case.
In the cases of the U - and the Z-configurations, we obtain that IWC(u, z) =

[a+b
2 , c+d

2] ⊇ I0(u, z), so we conclude that Isol(u, z) = I0(u, z).

Theorem 3. Given an image u : D 	→ R, any local interpolation If1,f2,f3 satis-
fying P is such that ∀ z ∈ s(D) ∩�2:

f2(u
∣∣
�(z)

) = med{u
∣∣
�(z)

} if u
∣∣
�(z)

is not W.C.,

f2(u
∣∣
�(z)

) ∈ I0(u, z) otherwise.

Let z be a point in s(D)∩�2. Amongst the applications f2 satisfying P , there
exists (at least) the median method (see Figure 7), consisting in setting the value
of u′(z) at med{u

∣∣
�(z)

} (in this case f2 is an operator and not only a function),

the mean/median method of Latecki [6] consisting in setting the value u′(z) at
mean{u

∣∣
�(z)

} in the well-composed case and to med{u
∣∣
�(z)

} otherwise, and also

the min/max method, consisting in setting the value u′(z) at 1
2 (min{u

∣∣
�(z)

} +
max{u

∣∣
�(z)

}) in the well-composed case and to med{u
∣∣
�(z)

} otherwise.

3.8 Equations of f3 for Local Self-dual Interpolations

Theorem 4. No local interpolation satisfies P for n ≥ 3 with one subdivision
as soon as we chose the mean operator to interpolate in 1D.

Proof : Let z be the center of a subdivided cube. We have u′∣∣
�(z)

as in the Fig-

ure 11 (on the left). We apply the first interpolating function f1, i.e., we set the
values of u′ at the centers of the subdivided edges at the mean of the values on
the vertices. Then we apply the second interpolating function f2, which fixes the
values of u′ at the centers of the subdivided faces at the median of the values of u′

at the four corresponding corners (because u is well-composed on none of the faces
of the cube). Finally, referring to the properties that a function u′ has to satisfy to
be well-composed (see theorem 1), f3 must also satisfy the constraints c ≥ 3 and
c ≤ 1 (both are constraints of type 2) that are incompatible. So, no local interpo-
lation of this sort can satisfy the set of constraints P as soon as n ≥ 3.
�

330 N. Boutry, T. Géraud, and L. Najman

Fig. 11. A counter-example proving that a local interpolation satisfying P with one
subdivision can not ensure well-composedness (the values of u′ on �0 are in green, the
ones on �1 are in blue, the ones on �2 are in red, and the ones on �3 are in purple)

4 Conclusion

In this paper, we have presented a characterization of well-composedness for 3D
gray-valued images. We proved that no local interpolation satisfying P with one
subdivision is able to make 3D well-composed images as soon as we choose the
mean operator as interpolation in 1D.

Although our formalism is developped in the continuous domain (the interpo-
lations take their values in R), it is in fact a discrete setting. Indeed, the image
u′ can easily be computed in Z as soon as the space image of u is also Z. We
just have to multiply the values of the original image u by a factor k ∈ Z where
k depends on the interpolation we use (e.g., k = 2 for the median method and
k = 4 for the mean/median method in 2D). Another way to deal with images
having values in Z/k is to use a generic image processing library [7].

Future research should tackle the two following directions. The first direction
is to use an alternative to f1 such as (a, b) 	→ med(a, b, c) (where c is the center of
the space of the image u). The second direction is to use a non-local approach,
e.g., a front propagation algorithm. In that case, we do not have to use any
systematic operator f1 anymore, nor to use an ordered interpolation. First results
in this second direction are promising.

References

1. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps.
Lecture Notes in Mathematics, vol. 1984. Springer (2009)

2. Géraud, T.: Self-duality and discrete topology: Links between the morphologi-
cal tree of shapes and well-composed gray-level images. Journée du Groupe de
Travail de Géométrie Discrète (June 2013), http://jgeodis2013.sciencesconf.
org/conference/jgeodis2013/program/JGTGeoDis2013Geraud.pdf

3. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to com-
pute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand,
R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013)

http://jgeodis2013.sciencesconf.org/conference/jgeodis2013/program/JGTGeoDis2013Geraud.pdf
http://jgeodis2013.sciencesconf.org/conference/jgeodis2013/program/JGTGeoDis2013Geraud.pdf

On Making nD Images Well-Composed by a Self-dual Local Interpolation 331

4. Latecki, L.J.: 3D well-composed pictures. Graphical Models and Image Process-
ing 59(3), 164–172 (1997)

5. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Computer Vision
and Image Understanding 61(1), 70–83 (1995)

6. Latecki, L.J.: Well-composed sets. In: Advances in Imaging and Electron Physics,
vol. 112, pp. 95–163. Academic Press (2000)

7. Levillain, R., Géraud, T., Najman, L.: Writing reusable digital topology algorithms
in a generic image processing framework. In: Köthe, U., Montanvert, A., Soille, P.
(eds.) WADGMM 2010. LNCS, vol. 7346, pp. 140–153. Springer, Heidelberg (2012)

8. Marchadier, J., Arquès, D., Michelin, S.: Thinning grayscale well-composed images.
Pattern Recognition Letters 25, 581–590 (2004)

9. Najman, L., Géraud, T.: Discrete set-valued continuity and interpolation. In: Hen-
driks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp.
37–48. Springer, Heidelberg (2013)

10. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid trans-
formation of 2D digital images. IEEE Transactions on Image Processing 23(2),
885–897 (2014)

11. Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17(1), 146–160
(1970)

Implicit Digital Surfaces

in Arbitrary Dimensions

Jean-Luc Toutant1, Eric Andres2, Gaelle Largeteau-Skapin2, and Rita Zrour2

1 Clermont Université, Université d’Auvergne, ISIT, UMR CNRS 6284, BP 10448,
F-63000 Clermont-Ferrand, France

j-luc.toutant@udamail.fr
2 Université de Poitiers, Laboratoire XLIM, SIC, UMR CNRS 7252, BP 30179,

F-86962 Futuroscope Chasseneuil, France
{eric.andres,gaelle.largeteau.skapin,rita.zrour}@univ-poitiers.fr

Abstract. In this paper we introduce a notion of digital implicit
surface in arbitrary dimensions. The digital implicit surface is the
result of a morphology inspired digitization of an implicit surface
{x ∈ Rn : f(x) = 0} which is the boundary of a given closed subset of Rn,
{x ∈ Rn : f(x) ≤ 0}. Under some constraints, the digital implicit surface
has some interesting properties, such as k-tunnel freeness. Furthermore,
for a large class of the digital implicit surfaces, there exists a very simple
analytical characterization.

Keywords: Implicit Curve, Implicit Surface, Digital Object, Flake Dig-
itization.

1 Introduction

In computer graphics, implicit surfaces {x ∈ Rn : f(x) = 0} play a fundamental
role because of their powerful expressiveness for modeling and their ability to
describe general closed manifolds [1, 2]. It is a very convenient way to define
surfaces or more generally isosurfaces. The question regarding implicit surfaces
in the discrete space is a long standing problem that has been studied mainly
because it allows the visualization of often (topologically) complicated surfaces
[3, 4]. Different rasterization algorithms for implicit curves and surfaces have
been proposed [4–9]. Many of the rasterization methods dealing with implicit
curves and surfaces are associated with some subdivision scheme in order to
deal with all the singularities and topological inconsistencies that may appear at
a given scale. None of the methods however, to the authors best knowledge, have
defined a digital implicit surface in arbitrary dimension in a simple mathematical
way.

In this paper we address the problem of defining a digital implicit equivalent
to an implicit surface in arbitrary dimensions. The rasterization process itself is
not addressed although a naive method, consisting in testing all the voxels in a
given box, is trivial to implement with our proposed analytical characterization.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 332–343, 2014.
c© Springer International Publishing Switzerland 2014

Implicit Digital Surfaces in Arbitrary Dimensions 333

In the paper we investigate the topological properties of the so defined digi-
tal implicit surface and show that we may achieve properties such as k-tunnel
freeness. Our analytical characterization is however not completely general. We
show under which conditions, the analytical characterization is not accurate.
This happens mainly when the curvature is large and/or when the surface cir-
cumvolution details are small compared to the size of a voxel. Precise criteria on
the r-regularity of the surface are provided. One of the forthcoming works will
consist in subdividing the grid at such places in order to increase the precision
and remove the topological errors in the digitization.

The digitization method is a morphology inspired digitization scheme with
structuring elements called adjacency flakes. They have been introduced in [10]
in order to analytically characterize minimal (with respect to set inclusion) and
k-separating digital hyperspheres. Using adjacency flakes as structuring elements
in the digitization scheme provides the offset region defining the digital object
with quite simple analytical characterization, while preserving important topo-
logical properties. This allows us to analytically characterize k-tunnel free im-
plicit digital surfaces.

In section 2, we will present the digitization models and present a somewhat
simplified flake family than the one proposed in [10]. In section 3, we will discuss
the conditions under which topological properties are preserved by the digitiza-
tion process as we propose it. In section 4, we show that, under these conditions,
the digital implicit surface can be, correctly and simply, analytically character-
ized. We conclude this paper, in section 5, with a short discussion and some
perspectives.

Now, let us end this introduction with some recalls and notations.

1.1 Recalls and Notations

Let {e1, . . . , en} be the canonical basis of the n-dimensional Euclidean vector
space. We denote by xi the i-th coordinate of a point, or a vector, x, that is its
coordinate associated to ei. A digital object is a set of integer points. A digital
inequality is an inequality with coefficients in R from which we retain only the
integer coordinate solutions. A digital analytical object is a digital object defined
by a finite set of digital inequalities.

To each integer point v, a region is associated denoted by V(v) and called a
voxel. It corresponds to the Voronöı cell of v in the Voronöı partition of the Eu-
clidean space Rn, with Zn as seeds. Geometrically, a voxel is the unit hypercube
(ball of radius 1/2 based on the �∞-norm) centered on v.

For all k ∈ {0, . . . , n−1}, two integer points v and w are said to be k-adjacent
or k-neighbors, if for all i ∈ {1, . . . , n}, |vi−wi| ≤ 1 and

∑n
j=1 |vj −wj | ≤ n− k.

In the 2-dimensional plane, the 0- and 1-neighborhood notations correspond re-
spectively to the classical 8- and 4-neighborhood notations. In the 3-dimensional
space, the 0-, 1- and 2-neighborhood notations correspond respectively to the
classical 26-, 18- and 6-neighborhood notations.

334 J.-L. Toutant et al.

A k-path is a sequence of integer points such that every two consecutive points
in the sequence are k-adjacent. A digital object E is k-connected if there exists
a k-path in E between any two points of E. A maximum k-connected subset of
E is called a k-connected component. Let us suppose that the complement of a
digital object E, Zn \E, admits exactly two k-connected components C1 and C2,
or, in other words, that there exists no k-path joining integer points of C1 and
C2. Then, E is said to be k-separating in Zn.

Let ⊕ be the dilation, known as Minkowski addition, such that A ⊕ B =
∪b∈B{a + b : a ∈ A}. Let 2 be the erosion, such that A 2 B = ∩b∈B{a − b :
a ∈ A}.

The Gauss digitization, denoted by G(E), and the Supercover digitization,
denoted by S(E), of a set E ⊆ Rn are defined as follows:

G(E) = {v ∈ Zn : v ∈ E} ,
S(E) = {v ∈ Zn : V(v) ∩ E �= ∅} .

The Gauss digitization is the set of integer points lying in the initial set whereas
the Supercover is the set of integer points for which the associated voxel shares
at least one point with the initial set.

2 Digitization Model

Let us consider a closed subset E in Rn (n ≥ 2). we denote ∂E the boundary of
E . Right now it does not really matter but the aim of course is to suppose that
the boundary can be implicitly described by {x ∈ Rn : f(x) = 0} and the closed
set E by {x ∈ Rn : f(x) ≤ 0}.

In the sequel of the paper, such a boundary is called a surface S = ∂E . It
induces a partition of Rn in three subsets, the interior of E , Eo = E \ ∂E , the
complement (or exterior) of E , Ec = Rn \ E and of course ∂E itself.

2.1 The Closed Centered Digitization Model

The Gauss digitization of a surface S has not, in general, enough integer points to
ensure good topological properties such as separation of the space. The discrete
points belonging to a continuous straight line, for instance, have no reason to
form a connected discrete object: {(x1, x2) ∈ Zn : ax1 + bx2 + c = 0}. In order
to obtain a digital surface, one first dilates S with a structuring element to define
a region O(S), located around S and called offset region. The digitization of S is
then the Gauss digitization of the offset region, i.e. the set of integer coordinate
points lying in O(S).

Used in conjonction with a closed connected structuring element A symmetric
about the origin, we call this digitization scheme the closed centered model and
denote it by DA(S):

DA(S) = G(OA(S)) = G (S ⊕ A) .

Implicit Digital Surfaces in Arbitrary Dimensions 335

An equivalent definition of OA(S), useful in the sequel of the paper, is:

OA(S) = (E ⊕ A) \ (E � A) .

Alternative models have been introduced to overcome some limitations of
the closed centered model [10] (open or semi-open models, exterior or interior
Gaussian models, etc.). For the sake of clarity, we here only focus on the closed
centered model. Many of the properties described in this paper are also verified
for those other models.

2.2 Structuring Elements

The structuring elements we will consider are called adjacency flakes and can be
described as the union of a finite number of straight segments centered on the
origin.

Definition 1 (Adjacency flakes). Let n be the dimension of the space and
0 ≤ k < n. The minimal k-adjacency flake, Fk(ρ) with radius ρ ∈ R+ is defined
by:

Fk(ρ) =

{
λu : λ ∈ [0, ρ],u ∈ {−1, 0, 1}n,

n∑
i=1

|ui| = (n− k)

}
.

Fig. 1 shows the different adjacency flakes in 2- and 3-dimensional spaces.
An important property is that two integer points v and w are k-adjacent if

(v ⊕ Fk(1/2)) ∩ (w ⊕ Fk(1/2)) �= ∅.

(a) F1(ρ), (b) F0(ρ),

(c) F2(ρ), (d) F1(ρ), (e) F0(ρ).

Fig. 1. Adjacency flakes F1(ρ), F0(ρ) in the 2-dimensional space and F2(ρ), F1(ρ),
F0(ρ) in the 3-dimensional space

336 J.-L. Toutant et al.

Definition 2. The Fk-digitization of a surface S is the closed centered digitiza-
tion with structuring element Fk(

1
2) of S. We denote it by Dk(S) and its offset

region by Ok(S).

In the sequel of the paper, we only consider the Fk-digitizations of surfaces.

2.3 Digital Implicit Surface

Now, lets us introduce the definition of digital implicit surface in arbitrary dimen-
sions. We suppose that we deal with an implicit surface S = {x ∈ Rn : f(x) = 0}
which is the boundary of a closed set E such that, for all x ∈ Eo, we have f(x) > 0
and for all x ∈ Ec, we have f(x) < 0.

Definition 3. A Fk-digital implicit surface is the Fk-digitization of an implicit
surface S.

It is easy to see that that the F0-digital implicit hyperplane corresponds to
the supercover of a hyperplane [11] and that the F0-digital implicit hyperspheres
are particular cases of the digital hypersperes described in [10]. See Figure 4 for
some examples of digital implicit surfaces.

In the next section we are going to examine the topological properties of
such surface digitization and in Section 4, we are going to propose an analytical
characterization for a large class of digital implicit surfaces.

3 Preserving Topology

The purpose of this section is to give conditions on S to ensure that the dig-
itization preserves some of its topological properties. Ideally, we look for an
equivalence between the surface and its digitization, for something close to an
homeomorphism. Such a task is out of the scope of the present paper and we
restrict our goal to the preservation of the connected components between the
complement of the surface and the complement of its digitization. By preserva-
tion, we mean that there is a one-to-one correspondence between the connected
components of both sets such that each connected component of the second is a
proper subset of a unique connected component of the first.

In the sequel, Dk(S)c denotes the complement of Dk(S) in Zn.
First, we study the k-tunnel freeness of the Fk-digital implicit surfaces to

ensure that connected components of the complement are not merged by the
digitization process. Then, we focus on conditions to guarantee that none of
them disappear or split.

3.1 Tunnel-Free Digitization

The notion of k-separating set is too restrictive when dealing with surface digi-
tization. In our case, the underlying object E can be composed of more than one

Implicit Digital Surfaces in Arbitrary Dimensions 337

connected component and thus the digital analog of its boundary may separate
the digital space in more than only two k-connected components. The notion of
tunnel-free digitization allows to overcome this limitation [12].

Definition 4 (Tunnel-free digitization [12]). A digitization D(S) of a sur-
face S is said to be k-tunnel-free if for all v, w ∈ D(S)c such that v and w are
k-adjacent, the straight segment [vw] does not cross S. If such a couple of voxel
exists, it is called a k-tunnel of D(S).

To prove that our digitizations satisfy this property, we first need to introduce
the notion of regular set.

Definition 5 (Regular set [13]). Let E ⊆ Rn be a closed set such that for all
x ∈ ∂E it is possible to find two osculating open balls [13] of radius r, one lying
entirely in Eo and the other lying entirely in Ec. Then E is a r-regular set.

Proposition 1. Let n be the dimension of the space. The Fk-digital implicit
surface, Dk(S), is a k-tunnel-free digitization of S = ∂E if E is a r-regular set
with r >

√
n− k/4.

Proof. Let us consider two integer points v, w k-adjacent and such that the
straight segment [vw] intersects S in a point s. if s = v, then directly v ∈
Dk(S). The same occurs for w if s = w. In other cases, any open ball of radius
r >

√
n− k/4 through s (i.e. the center of the ball is at a distance r of s)

contains at least one point of the union of k-adjacency flakes centered at v
and w. Moreover, by definition of E as a r-regular set with r >

√
n− k/4 (an

osculating open ball of radius r entirely in Eo and another one entirely in Ec for
each boundary point), it exists a path in (v ⊕ Fk(1/2)) ∪ (w ⊕ Fk(1/2)) with
one end-point in Ec and the other one in Eo. This path necessarily intersects
S = ∂E in at least one point s′. By symmetry of the adjacency flake, either v or
w belongs to s′ ⊕ Fk(1/2) and thus belongs to Dk(S).

It does not exist a couple of k-adjacent integer points (v,w) outside Dk(S)
such that the straight segment [vw] intersects S.
�

This result means that, under non very restrictive conditions, whatever the
supporting surface S, a k-connected component of the digital complement of
the Fk-digital implicit surface Dk(S) only contains points belonging to a unique
connected component of Sc : two connected components of the complement
of the initial surface cannot be merged by the digitization. Nevertheless, some
connected components of Sc may have no representative in Dk(S)c: they can be
deleted by the digitization. Or, on the contrary, some may have representatives in
several k-connected components of Dk(S)c: they can be split by the digitization.

The following part discusses conditions to obtain a one to one correspondence
between the connected components of Sc and the k-connected components of
Dk(S)c, i.e. no collapses and no splits occur.

338 J.-L. Toutant et al.

3.2 Preserving Connected Components by Digitization

We work in two steps. We first introduce a condition to ensure that the connected
components of Sc are preserved by the dilation. Then, we study the condition
ensuring that the Gauss digitization also preserves them.

An immediate result concerns the first step:

Proposition 2. The connected components are preserved between the comple-
ment of S = ∂E and the complement of Ok(S), if E is a r-regular set with
r >

√
n− k/2.

Proof. By definition of E as regular set, any connected component C of Sc

contains at least a closed Euclidean ball of radius r and center c. Since,
Fk(1/2) ⊂ B(

√
n− k/2), c is not in Ok(S), and C \ Ok(S) is not empty. C

is itself a connected r-regular set with r >
√
n− k/2. The set resulting of its

erosion by Fk(1/2) is connected.
�

The next step is to ensure that the Gauss digitization of each connected
components of Ok(S)c is not empty.

First, Lemma 1 gives a sufficient condition on a connected set to ensure that
it contains at least one digital point, i.e. it does not collapse. Then, Lemma 2
and Proposition 3 state that the Gauss digitization of such a set is always a
(n− 1)-connected set, i.e. it is not split.

Lemma 1. Let r > r′ >
√
n/2. Let A be a connected r-regular set. Let A′ be the

open interior of the erosion of A by a closed Euclidean ball of radius r′. Then,
one has ∅ ⊂ S(A′) ⊂ A.

Proof. A is a r-regular set, so it contains at least one ball of radius r. The center
of this ball lies necessarily in A′ since r′ < r. It ensures that A′ is not reduced
to the empty set. Since the supercover of a non empty set is not empty, S(A′)
contains at least one integer point, or, in other words, ∅ ⊂ S(A′).

Let us now suppose that x ∈ A′ and y ∈ Rn \ A. One has d(x,y) >
√
n/2.

x ∈ V(y) would imply that d(x,y) ≤
√
n/2. Thus x belongs necessarily only to

voxels with center in A and one has S(A′) ⊂ A.
�

Lemma 2. Let A and A′ be defined as in Lemma 1. Then, S(A′) is (n − 1)-
connected.

Proof. A is a connected r-regular set. Thus A′ is an open, connected set [13].
The supercover of a connected set is a (n− 1)-connected set [14].
�

Proposition 3. Let A and A′ be defined as in Lemma 1. Then, the Gauss
digitization of A, G(A), is a (n− 1)-connected set.

Proof. Let v be any integer point inA. Let B(r) be the open ball of radius r based
on the Euclidean norm. Then there exists a point c such that B(r)⊕{c} ⊆ A and
v ∈ B(r)⊕{c}. c lies in A′ and belongs to V(w) (possibly v = w). Consider the
supercover of the segment [vc]. Every integer point in it is in the ball B(r)⊕{c}.
So there exists a (n−1)-connected path linking v and w, thus (n−1)-connecting
v to S(A′).
�

Implicit Digital Surfaces in Arbitrary Dimensions 339

By combining results of Proposition 1, Proposition 2 and Proposition 3, we
state the main theorem of this section:

Theorem 1. if E is a r-regular set with r > (
√
n− k +

√
n)/2, then the con-

nected components are preserved between Sc and Dk(S)c, according to the k-
adjacency relationship.

4 Analytical Characterization of a Digital Implicit
Surface

Let us denote the set of end-points of the segments composing the adjacency
flake Fk(ρ) by Vk (ρ) = {x : x ∈ {−ρ, 0, ρ}n,

∑n
i=1 |xi| = ρ(n− k)} . The follow-

ing technical lemma shows that, under the condition of Theorem 1, we only need
to consider the end-points of the flake line segments to characterize the offset
zone.

Lemma 3. Let S be a surface satisfying the condition of Theorem 1. Let also
x ∈ Ok(S). Then, there exists y, y′ ∈ (x ⊕ Vk(1/2)) such that y ∈ E and
y′ ∈ cl(Ec), where cl(Ec) is the closure of Ec.

Proof. By definition of Ok(S), (x⊕ Fk(1/2)) ∩ S �= ∅. Due to the condition of
Theorem 1, the number of intersections between a segment of x ⊕ Fk(1/2) and
S is lower or equal to 2. Let us consider a segment of x ⊕ Fk(1/2) intersecting
S. Either one of its end-points is in E and the other in cl(Ec), or both are in Eo
or in Ec. In the first case, the result is immediate. In the second case, there is
necessarily another segment of x⊕ Fk(1/2) which satisfies the first case.
�

Figure 2 illustrates the lemma. It shows, on the left, a case where considering
only the end-points of the flake is equivalent to considering the whole flake and,
on the right, a case where it is not equivalent. This leads immediately to the
following theorem which allows a very simple analytical characterization for a
large class of implicit digital surfaces:

Theorem 2. Let S = {x ∈ Rn : f(x) = 0} be an implicit surface (boundary of
a closed set E such that, for all x ∈ Eo, we have f(x) > 0 and for all x ∈ Ec, we
have f(x) < 0) satisfying the condition of Theorem 1 (E is a r-regular set with
r > (

√
n− k+

√
n)/2). Then, the Fk-digital implicit surface Dk(S) is analytically

characterized as follows:

Dk(S) =
{
v ∈ Zn :

min {f(x) : x ∈ (v ⊕ Vk(1/2))} ≤ 0
and max {f(x) : x ∈ (v ⊕ Vk(1/2))} ≥ 0

}
.

Proof. According to Lemma 3, for any v ∈ Dk(S), it exists x, x′ ∈ (v⊕Vk(1/2))
such that x ∈ E and x′ ∈ cl(Ec). Since for all x ∈ Eo, we have f(x) > 0 and for
all x ∈ Ec, we have f(x) < 0, the analytic formulation is immediate.
�

A Fk-digital implicit surface is thus entirely defined by the knowledge of the
function f and of the value k.

340 J.-L. Toutant et al.

f(x) = 0 f(x) > 0

f(x) < 0

p F1

f(p+(0,1/2)) > 0

f(p+(1/2,0)) < 0 f(p+(-1/2,0)) < 0

f(p+(0,-1/2)) < 0

(a) A case where the digitization with
only the end-points of the flake is
equivalent to the digitization with the
whole flake,

f(x) = 0

f(x) > 0

f(x) < 0

p

F1

f(p+(0,1/2)) > 0

f(p+(1/2,0)) > 0

f(p+(-1/2,0)) > 0

f(p+(0,-1/2)) > 0

(b) A case where the two digitizations
lead to different results.

Fig. 2. Illustration of the limits of the analytical characterization

5 Discussion, Conclusion and Perspectives

In the present paper, we have introduced a simple analytical definition of digital
implicit surfaces. They are built as the digitizations of an implicit surface S =
{x ∈ Rn : f(x) = 0} satisfying some specific conditions. Namely, S should be
the boundary of a closed set E = {x ∈ Rn : f(x) ≤ 0} which is r-regular with
r > (

√
n− k +

√
n)/2.

In addition to the analytical characterization, these conditions ensures the k-
tunnel freeness of the digital implicit surfaces. They also preserve the connected
components between the complement of the implicit surface and the complement

Fig. 3. In yellow, on the left, the offset region obtained by only considering Vk(1/2) as
structuring element, on the right, the real offset region of the two dimensional implicit
conic 201x2 − 398xy + 201y2 − 200x+ 200y + 20 = 0

Implicit Digital Surfaces in Arbitrary Dimensions 341

of its digitization with regard to the k-adjacency relationship. These conditions
are of course sufficient but not necessary.

Figure 3 presents an extreme case where the analytical characterization fails
to correctly represent the F0-digital implicit surface. On the left of the figure,
we see that the offset region that we obtain with the analytical characterization
is composed by three distinct connected components and contains, in this case,
no integer points. According to the analytical characterization, the digitization
of the ellipse is an empty set. The Condition of Theorem 1, and more specif-
ically the condition of Proposition 1 (to ensure a tunnel-free digitization), is
not met. On the right of the figure, we have the correct result corresponding to
the F0-digital implicit ellipse. This is the limit of the analytical characterization
proposed in this paper : if the condition of Theorem 1 (or a quite less restrictive,
but very similar one) is not met, the proposed analytical characterization is just
an approximation of the digital implicit surface, since not only the end-points of
the flake line segments contribute to the boundary of the offset zone. It is nec-
essary to compute the intersection between said line segments and the implicit
surface. This can be accomplished in several ways. It can be done with help of
the derivatives or by direct intersection computation ; however exact computa-
tions can only be done for a limited class of surfaces and the result will not be
as simple as the one proposed in this paper. Another obvious limitation of the
method is that it is limited to (n − 1)-dimensional surfaces in dimension n. It
does not work for 3D curves for instance; but intersecting a surface with a flake
line segment or intersecting a curve with the faces of an adjacency norm ball is
a problem of somewhat similar nature and gives a good, although not simple,
way of proposing three-dimensional curves of specific connectivity. We plan to
propose such descriptions in a forthcoming paper.

Another problem occurs even in the corrected version of Figure 3: the interior
of the ellipse disappeared during the digitization process. The condition of The-
orem 1, and more specifically the condition of Proposition 2, is not met. This
is inherently a problem of grid size. One way around the problem is to locally
refine the grid size. This is not new and is actually the way the digitization of
implicit curves and surfaces have been done most of the time [1, 2, 4–9]. Our
aim is to explore such subdivision methods for surfaces in dimension n.

342 J.-L. Toutant et al.

-10

-5

0

5

10

-10

-5

0

5

10

-10

-5

0

-10

-5

0

5

10

-10

-5

0

5

10

-10

-5

0

-10

-5

0

5

10

-10

-5

0

5

10

-10

-5

0

-10

-5

0

5

10

-10

-5
0

5
10

-10

-5

0

5

10

-10

-5

0

5

10

-10
-5

0
5

10

-10

-5

0

5

10

-10

-5

0

5

10

-10

-5
0

5
10

-10

-5

0

5

10

Fig. 4. Examples of digital implicit surface: F0-, F1- and F2-digital implicit spheres of
radius 9 (cut in order to see the tunnels) and digital implicit quadric 9x2−4y2−36z−
180 = 0

Implicit Digital Surfaces in Arbitrary Dimensions 343

References

1. Bloomenthal, J., Wyvill, B. (eds.): An Introduction to Implicit Surfaces. Morgan
Kaufmann Publishers Inc., San Francisco (1997)

2. Velho, L., Gomes, J., de Figueiredo, L.H. (eds.): Implicit Objects in Computer
Graphics. Springer (2002)

3. Stolte, N.: Arbitrary 3D resolution discrete ray tracing of implicit surfaces. In:
Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp.
414–426. Springer, Heidelberg (2005)

4. Emeliyanenko, P., Berberich, E., Sagraloff, M.: Visualizing arcs of implicit algebraic
curves, exactly and fast. In: Bebis, G., et al. (eds.) ISVC 2009, Part I. LNCS,
vol. 5875, pp. 608–619. Springer, Heidelberg (2009)

5. Stolte, N., Caubet, R.: Comparison between Different Rasterization Methods for
Implicit Surfaces. In: Visualization and Modeling, ch. 10. Academic Press (1997)

6. Stolte, N., Kaufman, A.: Novel techniques for robust voxelization and visualization
of implicit surfaces. Graphical Models 63(6), 387–412 (2001)

7. Sigg, C.: Representation and Rendering of Implicit Surface. Phd thesis, diss. eth
no. 16664, ETH Zurich, Switzerland (2006)

8. Taubin, G.: An accurate algorithm for rasterizing algebraic curves. In: Proceedings
of the 2nd ACM Solid Modeling and Applications, pp. 221–230 (1993)

9. Taubin, G.: Rasterizing algebraic curves and surfaces. IEEE Computer Graphics
and Applications 14(2), 14–23 (1994)

10. Toutant, J.-L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:
From morphological models to analytical characterizations and topological prop-
erties. Discrete Applied Mathematics 161(16-17), 2662–2677 (2013)

11. Andres, E.: The supercover of an m-flat is a discrete analytical object. Theoretical
Computer Science 406(1-2), 8–14 (2008)

12. Cohen-Or, D., Kaufman, A.E.: Fundamentals of surface voxelization. CVGIP:
Graphical Model and Image Processing 57(6), 453–461 (1995)

13. Stelldinger, P., Köthe, U.: Towards a general sampling theory for shape preserva-
tion. Image and Vision Computing 23(2), 237–248 (2005)

14. Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimen-
sions. Pattern Recognition Letters 23(6), 623–636 (2002)

Algorithms for Fast Digital Straight

Segments Union

Isabelle Sivignon�

Gipsa-lab, CNRS, UMR 5216, F-38420, France
isabelle.sivignon@gipsa-lab.grenoble-inp.fr

Abstract. Given two Digital Straight Segments (DSS for short) of
known minimal characteristics, we investigate the union of these DSSs:
is it still a DSS ? If yes, what are its minimal characteristics ? We show
that the problem is actually easy and can be solved in, at worst, logarith-
mic time using a state-of-the-art algorithm. We moreover propose a new
algorithm of logarithmic worst-case complexity based on arithmetical
properties. But when the two DSSs are connected, the time complex-
ity of this algorithm is lowered to O(1) and experiments show that it
outperforms the state-of-the art one in any case.

Keywords: Digital geometry, Union, Digital straight segment.

1 Introduction

Digital Straight Lines (DSL) and Digital Straight Segments (DSS) have been
used for many years in many pattern recognition applications involving digital
curves. Whether it be for polygonal approximation or to design efficient and
precise geometric estimators, a basic task is the so-called DSS recognition prob-
lem: given a set of pixels, decide whether this set is a DSS and compute its
characteristics. Many linear-in-time algorithms have been proposed to solve this
problem through the years. Furthermore, Constructive Solid Geometry-like op-
erations have been considered for these objects: the intersection of two DSL has
been studied in [15,16,8,5], algorithms for the fast computation of subsegments
were described in [9,17]. Surprisingly enough, the union of DSSs has not yet been
studied. The problem was raised in [2] in the context of parallel recognition of
DSSs along digital contours. The recognition step was followed by a merging
step where the problem of DSSs union appeared. In this work, we show how to
solve this problem, both using state-of-the-art algorithm, and proposing a new
and faster algorithm.

� This work was partially founded by the French Agence Nationale de la Recherche
(Grant agreement ANR-11-BS02-009).

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 344–357, 2014.
c© Springer International Publishing Switzerland 2014

Algorithms for Fast Digital Straight Segments Union 345

2 General Considerations

2.1 Preliminary Definitions

A Digital Straight Line (DSL for short) of integer characteristics (a, b, μ) is the
infinite set of digital points (x, y) ∈ Z2 such that 0 ≤ ax− by+μ < max(|a|, |b|)
[4]. These DSL are 8-connected and often called naive. The fraction a

b is the
slope of the DSL, and μ

b is the shift at the origin. In the following, without loss of
generality, we assume that 0 ≤ a ≤ b. The remainder of a DSL of characteristics
(a, b, μ) for a given digital point (x, y) is the value ax − by + μ. The upper
(resp. lower) leaning line of a DSL is the straight line ax − by + μ = 0 (resp.
ax − by + μ = b − 1). Upper (resp. lower) leaning points are the digital points
of the DSL lying on the upper (resp. lower) leaning lines. A Digital Straight
Segment (DSS) is a finite 8-connected part of a DSL.

If we consider the digitisation process related to this DSL definition, the points
of the DSL L of parameters (a, b, μ) are simply the grid points (x, y) lying below
or on the straight line l : ax− by+ μ = 0 (Object Boundary Quantization), and
such that the points (x, y + 1) lie above l. Otherwise said, line l separates the
points X of the DSL from the points X+(0, 1) [14], and is called separating line.
More generally, for an arbitrary set of digital points X , the separating lines are
the lines that separate the points X from the points X + (0, 1). In other words,
the separating lines separate the upper convex hull of X from the lower convex
hull of X + (0, 1). Computing the set of separating lines of two polygons is a
very classical problem of computational geometry. It is well known that specific
lines called critical support lines can be defined: there are the separating lines
passing through a point of each polygon boundary. Critical support points are
the points of the polygons belonging to critical support lines [12].

All the separating lines of a DSL have the same slope, but this is not true for
arbitrary sets of digital points. The minimal characteristics of a set of digital
points X are the characteristics of the separating line of minimal b and minimal
μ. The set of separating lines of a DSS is well known, and the critical support
points are exactly defined by the DSS leaning points: they define the minimal
characteristics of the DSS.

The set of separating lines of a set of points X can also conveniently be
defined in a dual space, also called parameter space. In this space a straight
line l : αx − y + β = 0 is represented by the 2D point (α, β). Given a set of
digital points X , a line l : αx − y + β = 0 is a separating line if and only if for
all (x, y) ∈ X, 0 ≤ αx − y + β < 1. This definition is strictly equivalent to the
one given previously. The preimage of X is the representation of its separating
lines in the dual space and is defined as P(X) = {(α, β), 0 ≤ α ≤ 1, 0 ≤ β ≤
1| ∀(x, y) ∈ X, 0 ≤ αx− y+ β < 1}. The set of separating lines of a set of pixels
is an open set in the digital space, but it is a convex polygon in the dual space.
In this work, this dual space will not be used explicitly in the algorithms, but
we will see that this representation is convenient in some proofs. Moreover, the
arrangement of all the constraints for any pixel (x, y) with y ≤ x ≤ n is called
Farey Fan [10] of order n: each cell of this arrangement is the preimage of a DSS

346 I. Sivignon

of length n. Figure 1 is an illustration of the separating lines of a DSS, both in
the digital space and in the dual space: they separate the points X of the DSS in
black, from the points X + (0, 1) in white. Note that the edges of the preimage
of a DSS are exactly supported by the dual representation of its leaning points,
or equivalently its critical support points.

Lf

LlUf

Ul

l↑

l↓
lU
lL

(a)

A = l↓∗

B = lU∗

C = l↑∗

D = lL∗

β

α

(b)

Fig. 1. (a) DSS of minimal characteristics (1, 3, 1) with its leaning points Uf , Ul, Lf , Ll.
(b) Each vertex of the preimage maps to a straight line in the digital space. The vertex
B(1

3
, 1
3
) maps to the upper leaning line, the characteristics of which are the minimal

characteristics of the DSS.

2.2 Setting the Problem and Useful Properties

Consider now the following problem :

Problem 1. Given two DSSs S1 = [P1Q1] and S2 = [P2Q2] of known minimal
characteristics, decide if there exists a DSL containing both S1 and S2. If yes,
compute the minimal characteristics of S1 ∪ S2.

If S1 and S2 do not belong to the same octant, then it is easy to conclude
that there is no DSL containing both S1 and S2. Thus, in the following S1 and
S2 belong to the first octant, i.e. we have S1(a1, b1, μ1) and S2(a2, b2, μ2) with
0 ≤ a1 ≤ b1 and 0 ≤ a2 ≤ b2. We denote by ri(x, y) = aix − biy + μi, i ∈ {1, 2}
the remainder function of each DSS.

In what follows, we moreover suppose that the leaning points of S1 and S2 are
known as input data. This is not a strong requirement since the most efficient
recognition algorithms actually compute this data on the fly.

By convention, we also suppose that the abscissa of Q2 is greater than the
abscissa of Q1. Note that we make no assumption on the connectivity of S1

and S2: the abscissa of P2 can be lower than, equal to or greater than the
abscissa of Q1. If the abscissa of P2 is lower than the abscissa of P1, then the
problem is trivial since S1 is either a subsegment of S2 or the union is impossible.

Algorithms for Fast Digital Straight Segments Union 347

Consequently, we also assume that the abscissa of P2 is greater than the abscissa
of P1.

The first part of Problem 1 consists in deciding if there exists a separating
line for the set S1 ∪ S2: we will say that the union is possible in this case. If so,
then among all the separating lines, the final goal is to find the one with minimal
characteristics.

Property 1. The preimage of S1 ∪ S2 is equal to the intersection between the
preimages of S1 and S2.

Proof. The proof is straightforward since the lines that are separating for S1∪S2

are the ones that are separating for S1 and S2.

Corollary 1. The critical support points of the set of separating lines of S1∪S2

are either upper leaning points or lower leaning points translated by (0, 1) of S1

and S2. Thus, to compute the set of separating lines of S1 ∪ S2, it is enough
to update the set of separating lines of S1 with the leaning points of S2 (or
conversely).

Proof. The critical support points are, in the dual space, lines supporting the
edges of the preimage. From Property 1, the lines supportting the edges of P(S1∪
S2) are lines supporting the edges of P(S1) or P(S2). However, since S1 and S2

are DSSs, the edges of their preimages are supported by the dual representation
of either upper leaning points or lower leaning points translated by (0, 1).

3 Fast Union of DSSs: An Arithmetical Algorithm

3.1 Fast Computation of the Set of Separating Lines

A first straightforward solution to compute the set of separating lines of S1 ∪
S2 is to use the state-of-the-art algorithm of O’Rourke [11], re-interpreted in
the digital space by Roussillon [14]. Whether it be in the dual space or in the
digital space, these algorithms update the critical support points iteratively for
each point added. Since at most four points have to be considered in our case,
the algorithm is already quite efficient compared to the classical arithmetical
recognition algorithm for instance. However, we propose an algorithm that is
both faster and simpler to implement, in the spirit of the arithmetical recognition
algorithm.

The idea is the following: if we know that the slopes of the separating lines of
S1 ∪ S2 are greater/lower than the slopes (given by the minimal characteristics)
of S1 and S2 respectively, then we can conclude that some leaning points of S1

or S2 cannot be critical support points for S1 ∪ S2.

Property 2. Let S1 be a DSS of minimal characteristics (a1, b1, μ1). Let L1f , L1l,
U1f , U1l be its first and last, lower and upper leaning points. If all the separating
lines of S1 ∪ S2 have a slope greater (res. lower) than a1

b1
, then U1l (resp. U1f)

and L1f (resp. L1l) are not critical support points for S1 ∪ S2.

348 I. Sivignon

Proof. If all the separating lines of S1 ∪ S2 have a slope lower than a1

b1
, then,

in the dual space and from Property 1, P(S1 ∪ S2) is a subpart of the triangle
defined by the vertices ABD (see Figure 1(b)). In particular, the edges [BC]
and [DC] of P(S1) supported by U∗

1f and L∗
1l respectively cannot be edges of

P(S1 ∪ S2). Therefore, the leaning points U1f and L1l are not critical support
points for S1 ∪S2. The proof is the same if we suppose that the separating lines
all have a slope greater than a1

b1
.

Note that if S1 has three leaning points only, let’s say for instance only one
lower leaning point L1, then setting L1l and L1f to L1 (L1 is “duplicated”),
the property is also valid. A similar result holds when the leaning points of
S2 are considered. However, guessing the slope of the union can be tricky, and
taking into account only the DSS slopes is not enough. For example, it is easy to
exhibit cases where the slope of S2 is greater than the slope of S1, and the slope
of S1 ∪ S2 is nevertheless lower than both the slope of S1 and the slope of S2

(see Figure 2(a)). We establish hereafter some properties linking the remainder
of the leaning points of S2 and the slope of the separating lines for S1 ∪ S2 if
they exist.

S1(2, 5, 0) S2(1, 2,−3)
︸ ︷︷ ︸︸ ︷︷ ︸

︷ ︸︸ ︷S(3, 8, 1)

(a)

α

β

a1
b1

μ1
b1

Preimage of S1

Constraints related
to P ∈ S2 with
r1(P) ≥ b1

A

B C

D

(b)

Fig. 2. (a) The slope of S1 is equal to 2
5
and lower than the slope of S2, which is equal

to 1
2
. However, the slope of S1∪S2 is equal to 3

8
and smaller than both. (b) Illustration

of Property 4.

Let’s start with a very simple consideration.

Property 3. If for all the leaning points P of S2 (resp. S1), we have 0 ≤ r1(P) <
b1 (resp. 0 ≤ r2(P) < b2), then there exists a DSL containing S1 ∪ S2 and its
minimal characteristics are the one of S1 (resp. S2).

Proof. In the dual space, the points B and D of the preimage of S1 satisfy all
the constraints related to the points P defined as above, which ends the proof.

With the following property, we investigate the other cases.

Algorithms for Fast Digital Straight Segments Union 349

Property 4. Let P be a leaning point of S2.

– if r1(P) ≥ b1, the slope of all the separating lines for S1∪S2, if any, is lower
than the slope of S1

– if r1(P) < 0, the slope of all the separating lines for S1∪S2, if any, is greater
than the slope of S1

Let P be a leaning point of S1.

– if r2(P) ≥ b2, the slope of all the separating lines for S1 ∪ S2, if any, is
greater than the slope of S2

– if r2(P) < 0, the slope of all the separating lines for S1 ∪S2, if any, is lower
than the slope of S2

Proof. We prove the first item, for a leaning point of S2 with a remainder greater
than or equal to b1. Proving the other cases is similar. Consider a point P ∈ S2

such that r1(P) ≥ b1. Let us consider the stripe defined by the constraints
related to this point in the dual space. It is very simple to see that the point
(a1

b1
, μ1

b1
) is above this stripe (see Figure 2(b)). Since P does not belong to S1,

and with the assumptions made in Section 2.2 on the relative position of S1 and
S2, its abscissa is greater than the abscissas of all the leaning points of S1. This
means that the intersection, if not empty, between the stripe and P(S1) lies in
the subspace α < a1

b1
.

Table 1 summarises the computation of the four possible critical support
points combining Properties 2 and 4. Figure 6 in Appendix illustrates the first
line of this table.

Table 1. Possible critical support points according to remainder values

remainder
value

< 0 ≥ b

P ∈ S2 r1(P) (Uf , Lf) = (U1f , L1l) (Uf , Lf) = (U1l, L1f)

P ∈ S1 r2(P) (Ul, Ll) = (U2l, L2f) (Ul, Ll) = (U2f , L2l)

At this point, we have identified four points denoted by Uf , Ul, Lf and Ll,
that may be critical support points for S1 ∪ S2. However, they may not be all
critical support points. Since the preimage of S1 ∪S2 is a convex polygon, it has
at least three edges and thus, at least three out of the four possible points are
indeed critical support points. Property 5 gives a way to decide whether the four
points are critical support points or not.

Property 5. Uf and Ul (resp. Lf and Ll) are both critical support points if and
only if Lf and Ll (resp. Uf and Ul) belong to the DSL of directional vector
Ul −Uf (resp. Ll −Lf) and upper (resp. lower) leaning points Uf and Ul (resp.
Lf and Ll).

350 I. Sivignon

Proof. Uf and Ul are both critical support points is equivalent to say that the
straight line (UfUl) is separating for S1 ∪ S2. This is also equivalent to the fact
that Lf and Ll belong to the DSL as defined in the property statement.

If the four points are not all critical support points, the three critical support
points are identified using Property 6.

Property 6. Let Uf , Ul, Lf and Ll be the four possible critical support points
for S1 ∪ S2. If they are not all critical support points, then:

– if Uf and Ul are both critical support points then:
• if the slope of (UfUl) is lower than the slope of (LfLl), Lf is the third
critical support point ;

• otherwise, Ll is the third critical support point ;
– if Lf and Ll are both critical support points then:

• if the slope of (LfLl) is greater than the slope of (UfUl), Uf is the third
critical support point ;

• otherwise, Ul is the third critical support point ;

Proof. We write the proof for the case where Uf and Ul are both critical support
points. The other case is similar.

Consider the dual representation of the points Uf and Ul, denoted by U∗
f and

U∗
l . By hypothesis, these two lines support edges of P(S1∪S2). Consider now the

dual representation of the points Lf +(0, 1) and Ll+(0, 1), denoted by L∗
f+ and

L∗
l+. The third edge of P(S1∪S2) is a segment of either L∗

f+ or L∗
l+. We suppose

now that the slope of (UfUl) is lower than the slope of (LfLl) and illustrate the
rest of the proof with Figure 3. Then, the abscissa of point D = L∗

f+ ∩ L∗
l+ is

greater than the abscissa of point B = U∗
f ∩U∗

l (it lies in the light-gray half-space
on Figure 3). It is now easy to see that if D is above the line U∗

f , then both L∗
f+

and L∗
l+ support edges of P(S1∪S2), which is not possible by hypothesis. Then,

D is below the line U∗
f , which implies that the third edge of the preimage is a

segment of L∗
f+, and equivalently Lf is the third critical support point.

3.2 Pulling Out the Minimal Characteristics

In the previous section, we showed how to efficiently compute the three or four
critical support points of S1∪S2. These points also define the preimage of S1∪S2.
Until now, the results were valid whether the two DSSs were connected or not. In
order to compute the minimal characteristics, we have to consider several cases.

Input DSSs Are Connected. We consider here the case where the first point
of S2 is either a point of S1 or 8-connected to the last point of S1. In this case,
if there exists a DSL containing S1 ∪ S2, then S1 ∪ S2 is a DSS of length n, the
difference of abscissa between the first point of S1 and the last point of S2. As
a consequence, P(S1 ∪ S2) is a cell of the Farey Fan of order n, with very well-
known properties. In particular, the critical support points computed in Section
3.1 are exactly the leaning points of the DSS.

Algorithms for Fast Digital Straight Segments Union 351

U∗f

U∗l

L∗l+

L∗f+

B

D

(a)

U∗f

U∗l

L∗l+

L∗f+

B

D

(b)

Fig. 3. Illustration of the proof of Property 6

S1 Last Point and S2 First Point Have the Same Ordinate. We show
that this case is actually as easy as the previous one.

Property 7. If the last point of S1 and the first point of S2 have the same ordi-
nate, then P(S1 ∪S2) is a unique cell of the Farey Fan of order n, the difference
of abscissa between the last point of S2 and the first point of S1.

Proof. In a DSS, the edges of the preimage are defined by the leaning points only.
Actually, the preimage of a DSS is equal to the preimage of its leaning points,
all the other points make no contribution. If the last point of S1 and the first
point of S2 have the same ordinate, then all the missing points between these
two points also have this same ordinate. Consequently, they cannot be neither
lower nor upper leaning points for any DSL containing S1∪S2. This proves that
P(S1 ∪ S2) is the same as the preimage of the set of pixels composed of S1, S2

and all the missing points between the two. Then, P(S1 ∪ S2) is the preimage
of a DSS of length n, the difference of abscissa between the last point of S2 and
the first point of S1, which is similar to the previous case.

Disconnected DSSs. This case is trickier since P(S1∪S2) may not be a unique
cell but can be a union of adjacent cells of a Farey Fan (see Figure 4 for an exam-
ple). The characteristics given by the critical points may not be the minimal ones.
However, from the critical support points we can easily infer the range of slopes of
the separating lines. If we denote slow and sup the minimum and maximum slopes
of the separating lines, the slope of the line of minimal characteristics is given by
the fraction of smallest denominator between slow and sup. It is finally easy to de-
cide which one of either Uf or Ul is an upper leaning point of the line of minimal
characteristics (see Algorithm 1 for more details).

3.3 General Algorithm

All the properties presented above are put together to design the fast union
algorithm described in Algorithm 1. The algorithm returns the minimal charac-
teristics of S1 ∪ S2 if the union is possible. The result is given as a directional

352 I. Sivignon

1
6
1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1
1

0
1

5
6

1
8
1
7

2
7

3
8

3
7

4
7

5
8

5
7

6
7
7
8

(a)

S1

S2︸ ︷︷ ︸
︸ ︷︷ ︸

(b)

S1

S2︸ ︷︷ ︸
︸ ︷︷ ︸

(c)

S1

S2︸ ︷︷ ︸
︸ ︷︷ ︸

(d)

S1

S2︸ ︷︷ ︸
︸ ︷︷ ︸

(e)

Fig. 4. When S1 and S2 are not connected, like the ones depicted in (b), P(S1 ∪ S2)
may be the union of several cells: in (a), P(S1) is depicted in light gray, and the
two constraints related to the leaning points of S2 are depicted in red and blue. The
intersection is bordered by a dotted black line: it is composed of three cells, each one
being the preimage of a DSS containing S1 ∪ S2, depicted in (c), (d), and (e).

vector (b, a) and an upper leaning point. The algorithm can be decomposed into
three main parts. Between line 1 and 2, the four possible critical support points
are computed. The function initCriticalSupportPoint is the implementation
of Table 1 and is detailed in Algorithm 2 presented in Appendix. The string
parameter given in input is there to discriminate between the two lines of Table
1. At the same time, easy cases where S1 ∪ S2 has the same minimal character-
istics as S1 or S2 are treated: in such cases, the variable inDSL is set to true by
initCriticalSupportPoint and we can conclude directly. Then, between lines 3
and 4, the exact critical support points are computed. The function isSolution?
implements Property 5 and is detailed in Algorithm 3 in Appendix: here, the
string parameter tells if the upper leaning points are tested w.r.t the lower lean-
ing points or conversely. The function thirdPoint implements Property 6: if the
variable solU is true, then the first item of the property is concerned, otherwise
solL is true, and the second item is concerned. The last part, between lines 5
and 7 returns the minimal characteristics of S1 ∪ S2. On line 6, if S1 and S2

are connected or if the last point of S1 and the first point of S2 have the same
ordinate, the result is straightforward from the critical support points. Other-
wise, as explained in Section 3.2 the line of minimal characteristics is computed
among all the separating lines. Function minimalSlope is then called. It can be
implemented in several way, using for instance the decomposition into continued
fractions, or, like in [16]-Algorithm 3 (see also [7,6]) using the Stern-Brocot tree.

3.4 Complexity Analysis

Lemma 1. The complexity of Algorithm 1 is O(1) when S1 and S2 are connected
or when the last point of S1 and the first point of S2 have the same ordinate. Its

Algorithms for Fast Digital Straight Segments Union 353

Algorithm 1. FastArithmeticalDSSUnion(DSS S1, DSS S2)

Uf , Ul, Lf , Ll critical support points of S1 ∪ S2;
boolean inDSL ← false; boolean solU, solL;
connected ← true if S1 and S2 are connected or the last point of S1 and the first
point of S2 have the same ordinate, false otherwise;

1 (Ul, Ll, inDSL) ← initCriticalSupportPoints(S1 , S2, “after”)
if inDSL = true then return DSS(a1,b1,U1f)
else

(Uf , Lf , inDSL) ← initCriticalSupportPoints(S2 , S1, “before”)
if inDSL = true then2 return DSS(a2,b2,U2l)
else

// Four possible critical support points are known

3 (solL,aL, bL) ← isSolution? (Lf ,Ll,Uf ,Ul,”lower”)
(solU,aU , bU) ← isSolution? (Uf ,Ul,Lf ,Ll,”upper”)
if solU = false and solL = false then

return DSS(0,0,Point(0,0)) // Union of S1 and S2 is not possible

else
if solU = false or solL = false then

// Three points only are critical

if solU = true then (a, b) ← (aU , bU) else (a, b) ← (aL, bL)
(Uf ,Ul,Lf ,Ll) = thirdPoint (Uf ,Ul,Lf ,Ll,solU,solL)

4 else (a, b) ← (aU , bU) // The four points are critical

// At this point, the exact critical support points are known

5 if connected = true then
return DSS(a,b,Uf)

else
6 (a, b) ← minimalSlope (Uf ,Ul,Lf ,Ll)

if Ul = Uf then U ← Uf

else
if slope((Uf Ul)) > a

b
then U ← Uf else U ← Ul

7 return DSS(a,b,U)

complexity is O(log(n)) otherwise, where n is the difference of abscissa between
the last point of S2 and the first point of S1.

Proof. If we assume a computing model where the standard arithmetic opera-
tions are done in constant time, then all the operations from line 1 to line 5
are also done in constant time. Whichever the algorithm chosen, the function
minimalSlope on line 6 always requires, in a more or less direct way, the com-
putation of the continued fractions of two fractions p

q with p ≤ q ≤ n, and n is
the difference of abscissa between the last point of S2 and the first point of S1.
This is done in O(log(n)) time (see [6] for instance).

354 I. Sivignon

4 Experimental Results

Algorithm 1 was implemented in C++ using the open-source library DGtal [1].
We refer to it as the FastArithmetical algorithm in the following. We com-
pare our algorithm with two other ones. The first one is the well-known arith-
metical recognition algorithm [4], implemented in DGtal (called Arithmetical

algorithm in what follows). As stated at the beginning of Section 3.1, the al-
gorithm of O’Rourke [11] can be used to compute the set of separating lines.
It was implemented in DGtal by T. Roussillon as the StabbingLine algorithm.
The Arithmetical algorithm works only when the two DSSs are connected and
is used as follows : the minimal characteristics are initialised with the ones of
S1, and updated as the points of S2 are added one by one. Concerning the
StabbingLine algorithm, the preimage is initialised with the one of S1 and up-
dated as the leaning points of S2 are added (Corollary 1). The result is the set
of critical support points of S1 ∪ S2.

The experimental setup is the following:

– a DSL of characteristics (a, b, μ) is picked up at random ;
– the abscissas x1 and x2 of the first and last points of S1 are randomly

selected ;
– the abscissa x3 of the first point of S2 is either equal to x2+1 in the connected

case, or randomly selected and greater than x2 in the disconnected one ;
– the abscissa of the last point is set at a fixed distance from x3 ;

Two parameters govern this setup : maxb is the maximal value of b ; valX is the
length of S2. b is randomly picked in the interval [1, maxb], a is drawn in the
interval [1, b] and such that a and b are relatively prime, and μ in the interval
[0, 2maxb]. The value of x1 is drawn in the interval [0, maxb]. The length of S1

(i.e. x2 − x1) is randomly selected in the interval [valX, 2valX], so that S1 is
always longer than S2. In our test, maxb is set to 1000 and valX varies from 10
to 2maxb. For each value of valX, 2000 pairs of values (a, b) are drawn. For each
of them, 5 different values of μ are picked up, and then 10 different values of x1

are tested, for a total of 105 tests.
When the two DSSs are connected, the first test we perform consists in verify-

ing that the three algorithms actually compute the same minimal characteristics.
Then, the performances in terms of computation time are compared. Figure 4
shows the results (logarithmic scale for both axis): the x-axis represents the value
of valX, the y-axis is the mean CPU computation time for a pair of DSSs, and
for each algorithm.

First we can observe that the experimental behaviour of FastArithmetical
algorithm confirms the constant-time complexity. Unsurprisingly, the Arithme-

tical algorithm has a linear-time complexity. Concerning the StabbingLine

algorithm, its performances are slightly worse than the FastArithmetical algo-
rithm, and a slight increase of the mean computation time is observed for larger
DSS lengths: this is due to the fact that a post-treatment has to be done on the
result returned by this algorithm in order to compute the minimal characteris-
tics. This post-treatment involves a gcd computation, which explains the plot.

Algorithms for Fast Digital Straight Segments Union 355

10-4

10-3

10-2

10-1

 10 100 1000

C
P

U
 r

un
tim

e
(m

s)

length of the smallest DSS

FastArithmetical
Arithmetical

StabbingLine
FastArithmetical - Disconnected case

Fig. 5. Experimental results

However, the main information is that the FastArithmetical algorithm gets
faster than the classical Arithmetical one when the length of the smallest DSS
is greater than 20. In comparison, the StabbingLine algorithm becomes faster
for lengths greater than 200 only. This means that what could appear as a small
gain on a constant term in comparison to the StabbingLine algorithm makes
the FastArithmetical relevant in practice compared to the Arithmetical al-
gorithm. Last, the FastArithmetical remains faster than the StabbingLine

algorithm even when the two DSSs are not connected. The slight decrease of the
mean computation time for long DSSs is related to the fact that the longer the
DSSs, the more easy cases appear.

5 Conclusion

In this work, we have shown that the union of two DSSs can be very efficiently
computed since it is enough to “update” the minimal characteristics of the first
segment with the leaning points of the second one. To do so, we have demon-
strated that a state-of-the-art algorithm - the stabbing line algorithm - can be
used to compute the union in logarithmic time. Moreover, we have exhibited
a number of simple arithmetical properties to design an even faster algorithm.
This algorithm runs in O(log(n)) worst-time complexity, and O(1) for easy cases
and the experiments have shown that the implementation concretises this com-
plexity.

Now, an interesting question remains: what if the union is not possible ? Can
we measure the “distance” between the two DSSs ? A solution would be to
consider “thicker” DSSs and to compute the thickness necessary for the union
to be possible. This problem seems actually to be very close the the blurred DSS
recognition algorithms [3,13], and this trail seems worthy to be followed.

356 I. Sivignon

References

1. DGtal: Digital Geometry Tools and Algorithms Library, http://libdgtal.org
2. Damiand, G., Coeurjolly, D.: A generic and parallel algorithm for 2D digital curve

polygonal approximation. Journal of Real-Time Image Processing (JRTIP) 6(3),
145–157 (2011)

3. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments de-
composition of noisy shapes in linear time. Computers & Graphics 30(1), 30–36
(2006)

4. Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital
curves. Inter. Jour. of Pattern Recog. and Art. Intell. 9(6), 635–662 (1995)

5. Debled-Rennesson, I., Reveillès, J.P.: A new approach to digital planes. In: SPIE
- Vision Geometry III (1994)

6. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addisson-
Wesley (1994)

7. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestor.
SIAM Journal on Computing 13(2), 338–355 (1984)

8. Jacob, M.A.: Applications quasi-affines. Ph.D. thesis, Université Louis Pasteur,
Strasbourg, France (1993)

9. Lachaud, J.O., Said, M.: Two efficient algorithms for computing the characteristics
of a subsegment of a digital straight line. Discrete Applied Mathematics 161(15),
2293–2315 (2013)

10. McIlroy, M.D.: A note on discrete representation of lines. AT&T Technical Jour-
nal 64(2), 481–490 (1985)

11. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges.
Commun. ACM 24(9), 574–578 (1981)

12. O’Rourke, J.: Computational Geometry in C. Cambridge University Press (1998)
13. Roussillon, T., Tougne, L., Sivignon, I.: Computation of binary objects sides num-

ber using discrete geometry, application to automatic pebbles shape analysis. In:
Int. Conf. on Image Analysis and Processing, pp. 763–768 (2007)

14. Roussillon, T.: Algorithmes d’extraction de modèles géométriques discrets pour la
représentation robuste des formes. Ph.D. thesis, Université Lumière Lyon 2 (2009)

15. Said, M., Lachaud, J.O., Feschet, F.: Multiscale analysis of digital segments by
intersection of 2D digital lines. In: ICPR 2010, pp. 4097–4100 (2010)

16. Sivignon, I., Dupont, F., Chassery, J.M.: Digital intersections: minimal carrier,
connectiviy and periodicity properties. Graphical Models 66(4), 226–244 (2004)

17. Sivignon, I.: Walking in the farey fan to compute the characteristics of a discrete
straight line subsegment. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.)
DGCI 2013. LNCS, vol. 7749, pp. 23–34. Springer, Heidelberg (2013)

http://libdgtal.org

Algorithms for Fast Digital Straight Segments Union 357

Appendix

Ul

Uf Ll

Lf

S1(1, 2, 0) S2

U(8, 2)

r1(U) = 4 ≥ b1 and S1 ∪ S2 = DSS(1, 6, 4)

S1(1, 3, 0)
U(7, 3)

S2

r1(U) = −2 < 0 and S1 ∪ S2 = DSS(3, 7, 0)

Ul
Uf

Lf = Ll

Fig. 6. Illustration of the first line of Table 1: the leaning points of S1 marked with a
cross cannot be critical support points if the point U of S2 is added

Algorithm 2. InitCriticalSupportPoints(DSS S, DSS S′, string

position)

Uf , Ul, Lf , Ll the leaning points of S, r remainder function of S
inDSL a boolean; inDSL ← true
foreach leaning point P of S′ and if inDSL = true do

if r(P) < 0 then
if position = “after” then U ← Uf , L ← Ll else U ← Ul, U ← Uf

inDSL ← false
else

if r(P) ≥ b then
if position = “after” then U ← Ul, L ← Lf else U ← Uf , L ← Ll

inDSL ← false
else

if r(P) = 0 then U ← P
if r(P) = b− 1 then L ← P

end
return (U,L,inDSL)

Algorithm 3. isSolution?(Pf,Pl,Qf,Ql, string type)

// compute the characteristics defined by the points Pf and Pl

a ← Pl.y − Pf .y, b ← Pl.x− Pf .x
if type = “lower” then μ ← b− 1− aPf .x+ bPf .y
else μ ← −aPf .x+ bPf .y
// check the position of Qf and Ql w.r.t these characteristics

Let r(Q) = aQ.x− bQ.y + μ
if 0 ≤ r(Qf) < b and 0 ≤ r(Ql) < b then return (true,a, b, μ)
else

return (false,a, b, μ)

Digital Geometry from a Geometric Algebra
Perspective

Lilian Aveneau, Laurent Fuchs, and Eric Andres

Laboratoire XLIM-SIC UMR CNRS 7252, Université de Poitiers,
Bld Marie et Pierre Curie, BP 30179, 86962, Futuroscope Chasseneuil Cedex, France

{lilian.aveneau,laurent.fuchs,eric.andres}@univ-poitiers.fr

Abstract. To model Euclidean spaces in computerized geometric calcu-
lations, the Geometric Algebra framework is becoming popular in com-
puter vision, image analysis, etc. Focusing on the Conformal Geometric
Algebra, the claim of the paper is that this framework is useful in digital
geometry too. To illustrate this, this paper shows how the Conformal Ge-
ometric Algebra allow to simplify the description of digital objects, such
as k-dimensional circles in any n-dimensional discrete space. Moreover,
the notion of duality is an inherent part of the Geometric Algebra. This
is particularly useful since many algorithms are based on this notion in
digital geometry. We illustrate this important aspect with the definition
of k-dimensional spheres.

Keywords: Digital Geometry, Geometric Algebra, Conformal Model,
Digital Object.

1 Introduction

The purpose of this paper is to introduce the computational and mathematical
framework of Geometric Algebra (GA) in digital geometry. GA form a power-
ful mathematical language for expressing and representing geometric objects,
transformations or even for working in dual spaces [10,17,6]. GA are becoming
popular in various computer imagery sub-fields such as computer vision or image
analysis, and even more largely in fields like physics and engineering [15,5,7]. The
reason for such a popularity is that the mathematical framework of GA is well
adapted for handling geometric data of any dimension in a very intuitive way.

GA represent a natural extension of complex numbers and quaternions in
arbitrary dimension. Each instance of GA is an associative algebra (known as
Clifford algebra) of a real vector space equipped with a given quadratic form.
In this paper, we consider the Conformal Geometric Algebra (CGA), defined
over the Minkowski space Rn+1,1. It offers a very natural representation for
circles and spheres (points, lines and planes are simply particular cases of the
former) and extension of these geometric primitives in any dimension. CGA also
provides a way to represent transformations such as translations, reflections or
rotations.

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 358–369, 2014.
c© Springer International Publishing Switzerland 2014

Digital Geometry from a Geometric Algebra Perspective 359

In Section 2, we present the conformal geometric algebra and some general
results on geometric algebra. This is intended as an introduction to CGA for the
readers that are not familiar with GA. In Section 3, we apply CGA to define
discrete primitives in any dimension. First, based on a previous work [4], discrete
hyperspheres and hyperplanes are presented as they often play a special role in
algorithms and definitions. The more general case of discrete k-sphere (discrete
spheres of dimension k in a n-dimensional space) is also introduced. Discrete
lines, planes and more generally discrete k-flats are particular cases of discrete
k-spheres. Finally, Section 4 proposes a conclusion and some perspectives: One
of the hopes in the future, is that generation and recognition algorithms of circles
and lines can be somewhat unified in such a general framework.

2 An Overview of Geometric Algebra

The basic idea of GA is to use vector subspaces which can be geometrically in-
terpreted as Euclidean geometric primitives, and manipulated with some trans-
formations. Thus, in any dimension, geometric primitives (lines, circles, planes,
spheres) and their transformations are represented by vector subspaces.

In this paper we use the conformal model of GA, usually denoted as Conformal
Geometric Algebra. The following presentation is mainly based on the book of
L. Dorst et al. [6] which provides an accessible and deep description of GA. For
a shorter introduction, the reader can consult [12].

2.1 Building the Conformal Geometric Algebra

The Vector Space Structure. The starting point to build the CGA is a
Euclidean space Rn of dimension n with an orthonormal basis {e1, e2, . . . , en}.
This Euclidean space is naturally equipped with a scalar product such that
e2i = 1 for i ∈ {1, 2, . . . , n}.

This Euclidean space is extended with two extra basis vectors e+ and e−
such that e+

2 = 1 and e2− = −1, and such that {e1, e2, . . . , en, e+, e−} is an
orthogonal basis. This gives the conformal space Rn+1,1. Due to its particular
scalar product, this space has a particular metric, which is a key point to obtain
an interpretation of its vector subspaces as geometric primitives and geometric
transformations.

In the rest of this paper, for simplicity, we use the basis {no, e1, e2, . . . , en, n∞}
where no = 1

2 (e+ + e−) and n∞ = e− − e+.

Introducing the Outer Product. Starting from this conformal space, the
CGA is built using the Grassmann or exterior or outer product, denoted by
“∧”. Among others properties, the outer product is anticommutative, meaning
that for two vector a and b, we have a ∧ b = −b ∧ a and a ∧ a = 0. This
product generates new elements from the vectors of Rn+1,1. For example, the
outer product a ∧ b of two independent vectors a and b is a new element, called
a 2-vector, which lies in a new vector space. The outer product a∧ b∧ c of three

360 L. Aveneau, L. Fuchs, and E. Andres

independent vectors a, b and c generates again a vector in a new vector space,
and so on until the (n+ 2)-vector space.

Considering the linear combinations of such elements1, we obtain the algebra
of vector subspaces of Rn+1,1. This algebra

∧(
Rn+1,1

)
is a graded algebra:

∧(
Rn+1,1

)
=
∧0 (

Rn+1,1
)
⊕
∧1 (

Rn+1,1
)
⊕ · · · ⊕

∧n+2 (
Rn+1,1

)
where

∧k (
Rn+1,1

)
is the vector space of k-vectors. The dimension of each of

such subspaces is
(
n+2
k

)
, and then the dimension of the algebra is 2n+2. The

space
∧0 (

Rn+1,1
)

is of dimension 1 and corresponds to the space of the scalars.
The space

∧n+2 (
Rn+1,1

)
is the space of pseudo-scalars; it is also a space of

dimension 1 spanned by the pseudo-scalar In+1,1 = no∧In∧n∞ where In = e1∧
· · · ∧ en is called the Euclidean pseudo-scalar. Hence, by duality,

∧n+2 (
Rn+1,1

)
is isomorphic to the scalar space. This principle is extended to each k-vector
space, which is by duality isomorphic to the (n+ 2− k)-vector space.

Elements of the k-vector space
∧k (

Rn+1,1
)

are called multivectors. For a
multivector A, the part in

∧k (
Rn+1,1

)
is denoted by 〈A〉k and is called the part

of grade k of A.
Elements that can be written as a product a1 ∧ a2 ∧ · · · ∧ ak of 1-vectors

are called k-blades2 and are of special interest because they can be interpreted
as geometric primitives. These elements represent the vector subspaces of the
conformal space Rn+1,1, since the outer product of k independent vectors spans
a k-dimensional vector subspace. Hence, for a particular vector subspace A of
dimension k, generated by a k-blade A = a1 ∧ · · · ∧ ak, we can determine a
k-blade I such that A = λI. The real coefficient λ is the (relative) weight of A
to the chosen k-blade I. The attitude of A is the equivalence class λA for any
λ ∈ R and the (relative) orientation of A is the sign of λ. These three quantities
are well known for a vector line; for any vector line defined by a vector a we can
define a (unit) vector i such that a = λi. In that case the attitude corresponds
to the direction of the line.

Introducing the Geometric Product. The geometric product is first defined
for two vectors a and b, ab = a ·b+a∧b where “ ·” is the scalar product of Rn+1,1.
The geometric product has no symbol to denote it. This product is then linearly
extended to any algebra element using the following properties for all scalars α
and multivectors A,B and C:

1A = A1 = A, A(B + C) = AB +AC, (B + C)A = BA+ CA,
(AB)C = A(BC), (αA)B = A(αB) = α(AB).

1 Recall that an algebra is a vector subspace equipped with a product. Hence, addi-
tion of vector subspaces and scalar multiplication of vector subspaces are available
operations.

2 In some textbooks, they are also called decomposable k-vectors.

Digital Geometry from a Geometric Algebra Perspective 361

This product is the fundamental product of the Geometric Algebra, the other
products can be defined from it. The definitions of the previous outer product
and the left contraction used below from the geometric product are:
outer product : Ak ∧Bl = 〈AkBl〉k+l left contraction : Ak�Bl = 〈AkBl〉l−k

where the indexes denote the grade of the multivectors A and B.
The most important notion introduced by the geometric product is the possi-

bility to compute an inverse of a k-blade that has nonzero norm. For example, the
inverse of In+1,1 is given by I−1

n+1,1 = no∧I−1
n ∧n∞ where I−1

n = (−1)n(n−1)/2In.
This lets us define the dual of a multivector A as A∗ = AI−1

n+1,1, or equivalently
A∗ = A�I−1

n+1,1. If Ak is a k-blade then A∗
k is an (n+2−k)-blade which represents

the orthogonal complement3 of the k-blade Ak.

Euclidean Point Representation in CGA. Any Euclidean point p of Rn is
represented by a vector p of the conformal space Rn+1,1 by:

p = F (p) = no + p+
1

2
p2n∞.

This vector p is normalized as the coefficient of no is 1. Else, it can be normalized
using p

−n∞·p . In a general setting, the coefficient of no is the weight of the vector
p and, using no · n∞ = −1, is equal to −n∞ · p.

The dot product of two vectors p and q representing two Euclidean points p
and q is directly linked to their Euclidean distance d2(p,q):

p · q = −1

2
(p− q)2. (1)

Hence, for a vector p ∈ Rn+1,1 representing a Euclidean point p, it follows
p · p = 0 and −n∞ · p �= 0; so, Euclidean points are represented by null vectors
(i.e. vectors that square to zero). Moreover, the normalization condition and
the equality n∞ · n∞ = 0 tell us that n∞ is a point and can be geometrically
interpreted as the point at infinity. The vector no is also a null vector, so it
represents a point and can be geometrically interpreted as the point at the origin
in the chosen representation4 of Euclidean points in the conformal space.

2.2 Representing Geometric Elements

Hyperspheres and Hyperplanes. The equation (1) immediately gives us the
equation of a hypersphere with the Euclidean point c as center and radius ρ. For
a Euclidean point x of the hypersphere we have:

x · c = −1

2
ρ2

3 This orthogonality notion refers to the particular metric we have defined on Rn+1,1.
4 Actually any other finite point p can be chosen as point at origin. Since the normal-

ization condition imposes −n∞ · p = 1, it has the same relation with n∞ as no.

362 L. Aveneau, L. Fuchs, and E. Andres

where x and c are the vectors representing the points c and x. This last equation
is equivalent to:

x · (c− 1

2
ρ2n∞) = 0 (2)

by using the normalizing condition −n∞ · x = 1. The vector σ = c − 1
2ρ

2n∞
represents the hypersphere with center c and radius ρ.

As the defining equation of a hypersphere is x ·σ = 0, we say that the vector σ
dually represents the hypersphere. From this, a direct representation of a hyper-
sphere can be deduced (see [6]). In brief, in dual representation a hypersphere is
represented by a vector which is a 1-dimension vector subspace. Then, taking the
dual in Rn+1,1 of this vector in leads to a vector subspace Σ of dimension n+1.
This vector subspace is spanned by n + 1 vectors that can be chosen as repre-
senting vectors of n+1 Euclidean points. So we can write Σ = p1∧p2∧· · ·∧pn+1

and Σ∗ = σ. This means that a Euclidean hypersphere in Rn is defined by n+1
Euclidean points.

Considering equation (2) for a Euclidean point x not on the hypersphere
represented by σ gives

x · σ = x · (c− 1

2
ρ2n∞) = −1

2
((x− c)2 − ρ2) (3)

then x·σ > 0 if the point x is inside the hypersphere and x·σ < 0 if the point x is
outside the hypersphere. This gives us a way to determine the relative positions
of a point and a hypersphere in any dimension.

In these settings a hyperplane Π is a hypersphere with a point at infinity,
hence Π = p1 ∧ · · · ∧ pn ∧ n∞. A Euclidean hyperplane is thus defined with n
Euclidean points. It is dually represented by the vector Π∗ = π = n + δn∞
where n is the normal to the hyperplane and δ the distance to the origin along
n. Hence for a point x of the hyperplane represented by π we have

x · π = x · n− δ = 0

which is the usual (i.e. in linear algebra setting) equation for an hyperplane of
normal vector n and distance δ to the origin along n. Thus, for a point x not
on the hyperplane, we can determine the relative positions of x and π using the
sign of x · π.

Flats. Flats (k-flats) are offsets of k-dimensional subspaces of Rn (i.e. lines,
planes, etc). In the CGA framework they are represented by algebra elements of
the direct form: p ∧Ak ∧ n∞, where Ak is a Euclidean blade (i.e. a blade with
no vector no or n∞ as factor) and the vector p represents the Euclidean point p
the flat is passing through. Dualizing this expression leads to the dual form of a
k-flat: −p�(A�

k n∞), where A�
k = AkI

−1
n is the Euclidean dual of Ak.

Rounds. Rounds are geometric algebra elements representing k-spheres. They
can be defined using the outer product of k+2 independent vectors representing
Euclidean points: Σ = p1 ∧ · · · ∧ pk+2.

Digital Geometry from a Geometric Algebra Perspective 363

Hence a circle (i.e a 1-sphere) is defined by three points and a 2-sphere is
defined by four points. The minimum number of points to obtain a round is 2,
this corresponds to a 0-sphere which is a point pair. This is easily explained if we
use an alternate definition of a k-sphere as the intersection of a hypersphere with
a (k + 1)-flat. So the intersection of a hypersphere with a line gives a 0-sphere
which is the two points of intersection.

In the CGA framework the intersection of an hypersphere Σ∗ = σ and a flat
Π∗ = π in dual form is easily computed by:

σ ∧ π = Σ∗ ∧Π∗

using the formula5 (Σ ∩Π)∗ = Σ∗ ∧Π∗ (see [6]). This leads to the dual form of
a round with center c and radius ρ:

Σ∗ = σ = (c− 1

2
ρ2n∞) ∧ (−c�((−1)(n−k)A�

k n∞))

where the change of sign is to maintain coherent orientation. Dualizing this
expression leads to another direct form of a round:

Σ = (c+
1

2
ρ2n∞) ∧ (−c�((−1)kAk n∞))

with center c and radius ρ.

Imaginary Hyperspheres and Imaginary Rounds. In this last expression
the algebra element (c + 1

2ρ
2n∞) has a particular meaning. For a Euclidean

point x, considering the equation x.(c + 1
2ρ

2n∞) = 0 leads to (x − c)2 = −ρ2.
This means that the squared distance of all Euclidean points satisfying x.(c +
1
2ρ

2n∞) = 0 must be negative. By analogy we say that the vector (c+ 1
2ρ

2n∞)
represents an imaginary hypersphere.

If such an imaginary hypersphere is used in the definition of the dual form
of a round given above, we obtain the dual form of an imaginary round. As
only squared distances enter in algebra computations, complex numbers are not
needed.

Those elements occur naturally as results of intersections when a real solution
does not exist (see figure 1).

3 Discrete Geometric Primitives

Basic discrete primitives such as discrete straight lines, discrete hyperplanes
and discrete hyperspheres [2,1,14] have been defined as all the discrete points

5 This formula corresponding to the dual of an intersection, called the plunge, is valid
because the union of Σ and Π is the whole space. Otherwise, the same formula can
be used but the dual must be taken wrt. the union of Σ and Π (more details can be
found in [6] chap. 14).

364 L. Aveneau, L. Fuchs, and E. Andres

(a) Intersection: imaginary case. (b) Intersection: real case.

Fig. 1. The intersection of hypersphere Sp,ρ (the sphere) and a 1-sphere S1 (the circle).
(1a) When there is no intersection the expression S∗

p,ρ�S1 is an imaginary round (dashed
point pair) and the expression S∗

p,ρ ∧ S∗
1 is a real round (red circle). (1b) When there

is an intersection, real (blue points) and imaginary (dashed circle) are interchanged.

verifying a set of inequalities in the classical linear algebra framework. There is
however no direct way to define discrete rounds or flats in such a way. A more
recent approach proposed a morphological based digitization scheme [16] defined
as the intersection of the discrete space and the Minkowski sum of a structuring
element and the object points. For a structuring element corresponding to a ball
for a given distance, it is equivalent to considering all the discrete points that
are at the ball radius distance of the Euclidean primitive.

For instance in nD space, considering the ballB2

(
c, 1

2

)
=
{
x ∈ Rn|d2(x, c) ≤ 1

2

}
as structuring element, then the discretisationD(F) of a Euclidean object F is de-
fined by:

D(F) =

(
B2

(
x ∈ F,

1

2

)
⊕ F

)
∩ Zn

where ⊕ is the Minkowski sum operator. This can also be interpreted as

D(F) =

{
X ∈ Zn | d2(X,F) ≤ 1

2

}
.

The problem is to test efficiently the inequality d2(X,F) ≤ 1/2. For instance,
let us consider a round R of dimension k defined by

R =
{
v ∈ Rn

∣∣∣|c− v|2 = ρ2
}
∩
{
v ∈ Rn

∣∣∣v =
∑

λiui

}
where {ui} are k linearly independent vectors. There is no simple immediate
expression for the distance d2(x,R) between a point x and the k-dimensional
round R in dimension n.

In the following subsections, we are going to examine how discrete hyper-
spheres, hyperplanes, k-spheres and k-flats can be described within the CGA
framework (see also [4]). The interest of those expressions is that they can di-
rectly be computed.

Digital Geometry from a Geometric Algebra Perspective 365

3.1 Discrete Hyperspheres and Discrete Hyperplanes in CGA

Using the Euclidean distance, a discrete hypersphere centered at the point c
with radius ρ is defined as:{

p ∈ Zn| (ρ− d)
2 ≤ |c− p|2 < (ρ+ d)

2
}

where the width d is a positive real number smaller than ρ. This is the set of
discrete points close to the Euclidean hypersphere.

Hence, a point lies in the discrete hypersphere if it is inside the Euclidean
hypersphere of radius ρ+ d, and outside the hypersphere of radius ρ− d.

In the CGA framework these two hyperspheres are defined in dual form as:

σc,ρ+d = c− 1
2 (ρ+ d)2 n∞ and σc,ρ−d = c− 1

2 (ρ− d)2 n∞.

Now, using equation (3) and a discrete point p ∈ Zn, distances to the hyper-
spheres σc,ρ+d and σc,ρ−d are checked with the following expressions:

p · σc,ρ+d =
1

2

(
(ρ+ d)

2 − (p− c)
2
)

(4)

p · σc,ρ−d =
1

2

(
(ρ− d)2 − (p− c)2

)
(5)

expression (4) must be positive and expression (5) must be negative.
Hence, in any dimension, a discrete hypersphere centered at c with radius ρ

is defined as:
{p ∈ Zn | p · σc,ρ−d < 0 and p · σc,ρ+d ≥ 0} .

The figure 2 shows an example of a discrete hypersphere drawn with this
definition.

Using the same development, a discrete hyperplane can be defined as the set
of discrete points close to the Euclidean hyperplane πn,δ = n+δn∞ and we must
find the discrete points enclosed between two hyperplanes. To do this, we define
two hyperplanes πn,δ−d = n+(δ−d)n∞ and πn,δ+d = n+(δ+d)n∞ translated for

(a) (b) (c)

Fig. 2. Example of a discrete hypersphere. (2a) Drawn with the “centers” of the voxels.
(2b) Drawn with voxels. (2c) Partial view.

366 L. Aveneau, L. Fuchs, and E. Andres

a width d along the normal of the first one. Hence, in any dimension, a discrete
hyperplane with normal n at distance δ to the origin along n is defined as:

{p ∈ Zn | p · πn,δ−d < 0 and p · πn,δ+d ≥ 0}
which is basically the same definition as for the discrete hypersphere.

To conclude this section, in the CGA framework discrete hyperspheres and
discrete hyperplanes are the same objects, and their definition works in any
dimension. It simply consists in checking the signs of two vector dot product
expressions.

3.2 Discrete Rounds and Discrete Flats in CGA

In this section we define discrete rounds (i.e. discrete k-spheres) using the struc-
turing element approach. In our case, we use a hypersphere as structuring el-
ement. So, we have to check if a given point p lies into the discrete round by
verifying that the hypersphere centered on p intersects the k-sphere.

Two cases must be distinguished depending on the form of the given round to
digitize. If it is in direct form, we use an expression involving the left contraction
product. Otherwise, if the round is in dual form, an expression with the outer
product is used. In both cases, it is easier to consider the hypersphere in its dual
form. This situation is usual in the CGA framework as duality is fully integrated.
Once we have the expressions, either mode (direct or dual) is easy to work with,
it just depends on the way the data have been given.

Rounds in Direct From. Let Sk be a k-sphere and Sp,ρ a hypersphere with
center p and radius ρ. Let Σk be a round in direct form representing Sk. The
intersection of Sk and Sp,ρ is given by the formula S∗

p,ρ�Σk where S∗
p,ρ is the

algebra element representing Sp,ρ in dual form (see [6]).
Hence, as S∗

p,ρ is a blade of grade 1 and Σk is a blade of grade k, the intersec-
tion must be a blade of grade k− 1. This is coherent with the usual result when
intersecting a k-sphere with a hypersphere we obtain a (k − 1)-sphere.

Moreover, if no intersection exists, the obtained (k−1)-sphere is an imaginary
round (see figure 1).

For a round Σk in direct form, its squared radius is given by the formula

ρ2 = (−1)k Σ2
k

(n∞�Σk)2
.

So, to test if a discrete point p ∈ Zn is in a discrete round we only have to
test the sign of the expression

(−1)k−1

(
(p− 1

2
ρ2n∞)�Σk

)2

.

This gives us the definition of a discrete round in direct form{
p ∈ Zn | (−1)k−1

(
(p− 1

2
ρ2n∞)�Σk

)2

≥ 0

}
.

Digital Geometry from a Geometric Algebra Perspective 367

Rounds in Dual Form. Let Sk be a k-sphere and Sp,ρ an hypersphere with
center p and radius ρ. Let σk be a round in dual form representing Sk. The dual
of the intersection of σk and Sp,ρ is given by the formula (Sk∩Sp,ρ)

∗ = S∗
p,ρ∧σk

where S∗
p,ρ is the algebra element representing Sp,ρ in dual form (see [6]).

As before, S∗
p,ρ is a blade of grade 1 and σk is a blade of grade n+2− k thus

the dual of the intersection is a blade of grade n+3− k so its dual is a blade of
grade (k − 1). Expression S∗

p,ρ ∧ σk corresponds to a (k − 1)-sphere represented
by a round in dual form.

The squared radius of a round σk in dual form is given by the formula

ρ2 = (−1)n+1−k σ2
k

(n∞�σk)2
.

So, to test if a discrete point p ∈ Zn is in a discrete round we only have to
test the sign of the expression

(−1)n−k

(
(p− 1

2
ρ2n∞) ∧ σk

)2

.

This gives us the definition of a discrete round in dual form{
p ∈ Zn | (−1)n−k

(
(p− 1

2
ρ2n∞) ∧ σk

)2

≥ 0

}

(a) (b) (c)

Fig. 3. Examples of discrete k-spheres. (3a) Using a hypersphere as structuring el-
ement. The points are the “centers” of the voxels defining a discrete circle. (3b) A
discrete circle. (3c) A discrete line generated in the same way as the discrete circle.

To conclude this section about discrete rounds, we have seen that discrete
rounds can be defined from rounds either in direct form or dual form. The
structure of the definitions is the same, the only difference is in the involved
product.

Moreover, as k-flats can be seen as particular rounds passing through infinity,
from those definitions, discrete circles, lines and so on can easily be defined in
any dimension.

368 L. Aveneau, L. Fuchs, and E. Andres

4 Conclusion and Future Works

In this paper, definitions of discrete hyperspheres, hyperplanes and rounds (i.e.
circles, lines, spheres, flats in any dimension) have been proposed in the Confor-
mal Geometric Algebra formalism. These definitions are valid in any dimension.
The expressions are simple and can be directly used in computations contrary to
equivalent definitions in a classical framework. They also propose a unified ap-
proach for such discrete objects as k-flats are a special case of k-spheres. One of
the hopes, beyond the definitions in dimension n, is that generation and recogni-
tion algorithms of k-spheres and flats can be somewhat unified in a more general
framework.

However, efficient implementation of the Conformal Geometric Algebra is not
an easy task [6,11,13,9] and future work is needed to have a specialized imple-
mentation for discrete geometry. For this article, we have used GAviewer [8] and
the Mathematica package [3].

First experimentation has been conducted about discrete rotations. In Con-
formal Geometric Algebra, plane rotations are defined in a simple way as:

R = ba = b · a+ b ∧ a = cos(φ/2)− sin(φ/2)I

where a and b are two purely Euclidean vectors (i.e. without no and n∞) φ is
the rotation angle (i.e. φ/2 is the angle from a to b) and I is the unit bivector
for the plane a ∧ b (i.e. I is such that a ∧ b = βI with β > 0). Then RpR−1

is the rotation of a point represented by the vector p and R−1 = cos(φ/2) +
sin(φ/2)I.

If one wants to define a plane rotation using only integer numbers, we use the
expression

R = α− βI

where α and β are integer numbers. This corresponds to the use of two vectors
a′ and b′ with angle φ/2 but with integer coordinates. In that case a coefficient
appears in the expression of R−1 because R is not of norm 1. Thus

R−1 =
1

α2 + β2
(α + βI)

Now, if the vector p represents a point p with integer coordinates, its rotation
is computed by (α2 + β2)RpR−1. In dimension 2 this means that we have to
consider the rotation as a function from Z2 to Z2 and define a grid (α2 + β2)
times smaller for the image space. Such phenomenon provides a good explanation
of why a discrete rotation is not a one-to-one application. Further investigations
need to be conducted taking into account not only rotations but also translations
in order to be able to handle rigid transforms for example.

Digital Geometry from a Geometric Algebra Perspective 369

References

1. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical
Models and Image Processing 59(5), 302–309 (1997)

2. Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Transactions
on Visualization and Computer Graphics 3(1), 75–86 (1997)

3. Aragon-Camarasa, G., Aragon-Gonzalez, G., Aragon, J.L., Rodriguez-Andrade,
M.A.: Clifford Algebra with Mathematica. ArXiv e-prints (October 2008)

4. Aveneau, L., Andres, E., Mora, F.: Expressing discrete geometry using the confor-
mal model. Presented at AGACSE 2012, La Rochelle, France (2012),
http://hal.archives-ouvertes.fr/hal-00865103

5. Bayro-Corrochano, E., Scheuermann, G. (eds.): Geometric Algebra Computing in
Engineering and Computer Science. Springer (2010)

6. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An
Object Oriented Approach to Geometry. Morgan Kauffmann Publishers (2007)

7. Dorst, L., Lasenby, J. (eds.): Guide to Geometric Algebra in Practice (Proceedings
of AGACSE 2010). Springer (2011)

8. Fontijne, D., Dorst, L., Bouma, T., Mann, S.: GAviewer, interactive visualization
software for geometric algebra (2010), Downloadable at
http://www.geometricalgebra.net/downloads.html

9. Fuchs, L., Théry, L.: Implementing geometric algebra products with binary
trees. Advances in Applied Clifford Algebra (published online first, 2014),
http://dx.doi.org/10.1007/s00006-014-0447-3

10. Hestenes, D.: New Foundations for Classical Mechanics. D. Reidel Publ. Co., Dor-
drecht (1986)

11. Hildenbrand, D.: Foundations of Geometric Algebra Computing. Geometry and
Computing, vol. 8. Springer (2013)

12. McDonald, A.: A survey of geometric algebra and geometric calculus (2013),
http://faculty.luther.edu/~macdonal/index.html#GA&GC (last checked Febru-
ary 2014)

13. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer (2009)
14. Reveillès, J.-P.: Géométrie Discrète, calculs en nombres entiers et algorithmique.

Thèse d’état, Université Louis Pasteur, Strasbourg, France (1991)
15. Sommer, G.: Geometric computing with Clifford algebras: theoretical foundations

and applications in computer vision and robotics. Springer (2001)
16. Tajine, M., Ronse, C.: Hausdorff discretizations of algebraic sets and diophantine

sets. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS,
vol. 1953, pp. 99–110. Springer, Heidelberg (2000)

17. Wareham, R., Cameron, J., Lasenby, J.: Applications of conformal geometric al-
gebra in computer vision and graphics. In: Li, H., J. Olver, P., Sommer, G. (eds.)
IWMM-GIAE 2004. LNCS, vol. 3519, pp. 329–349. Springer, Heidelberg (2005)

http://hal.archives-ouvertes.fr/hal-00865103
http://www.geometricalgebra.net/downloads.html
http://dx.doi.org/10.1007/s00006-014-0447-3
http://faculty.luther.edu/~macdonal/index.html#GA&GC

Segmentation of 3D Articulated Components

by Slice-Based Vertex-Weighted Reeb Graph

Nilanjana Karmakar1, Partha Bhowmick2, and Arindam Biswas1

1 Department of Information Technology,
Indian Institute of Engineering Science and Technology, Shibpur, India

{nilanjana.nk,barindam}@gmail.com
2 Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India

bhowmick@gmail.com

Abstract. A fast and efficient algorithm for segmentation of the artic-
ulated components of 3D objects is proposed. The algorithm is marked
by several novel features, such as DCEL-based fast orthogonal slicing,
weighted Reeb graph with slice areas as vertex weights, and graph cut
by exponential averaging. Each of the three sets of orthogonal slices ob-
tained from the object is represented by a vertex-weighted Reeb graph
of low complexity, as the slicing is done with an appropriate grid reso-
lution. Each linear subgraph in a Reeb graph is traversed from its leaf
node up to an articulation node or up to a node whose weight exceeds
a dynamically-set threshold, based on exponential averaging of the pre-
decessor weights in the concerned subgraph. The nodes visited in each
linear subgraph are marked by a unique component number, thereby
helping the inverse mapping for marking the articulated regions during
final segmentation. Theoretical analysis shows that the algorithm runs
faster for objects with smaller surface area and for larger grid resolu-
tions. The algorithm is stable, invariant to rotation, and leads to natural
segmentation, as evidenced by experimentation with a varied dataset.

Keywords: 3D segmentation, DCEL, orthogonal slicing, orthogonal poly-
hedron, Reeb graph.

1 Introduction

Segmentation of 3D triangulated meshes has an authoritative impact on shape-
analytic applications. Hence, 3D segmentation has been attempted over and
again in a wide range of ways. For example, segmentation by multi-dimensional
scaling and feature points is proposed in [13]. The techniques in [6,10] are based
on shape diameter function, skeletons, and randomized cuts. Diffusion distance
metric and a variety of medial structures are used in [9]. The works in [13,10]
provide segmentation along the natural seams of an object, whereas the work in
[6] concentrates on object volume, object posture, and topology. The notion of
topological maps and region adjacency graphs has been proposed in [7]. Other

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 370–383, 2014.
c© Springer International Publishing Switzerland 2014

Segmentation of 3D Articulated Components 371

Table 1. Some of the existing algorithms versus the proposed algorithm

Algorithm Features

Nurre, 1997 [15] Input: 3D point cloud, organized into slices for segmen-
tation, works only on the object human body

Ju et al., 2000 [11] Input: 3D point cloud, curvature analysis of profiles,
works only on the object human body

Y. Xiao et al., 2003 [17] Input: 3D point cloud, Reeb graph, works only on the
object human body

Katz et al., 2005 [13] Hierarchical, pose-invariant, feature-based, core extrac-
tion by spherical mirroring, natural seam segmentation

Golovinskiy-Funkhouser,
2008 [10]

Hierarchical, pose-invariant, randomized cuts, partition
function, natural seam segmentation

Shapira et al., 2008 [6] Hierarchical, pose-invariant, skeleton extraction by shape
diameter function, focuses on invariance of object volume

Goes et al., 2008 [9] Hierarchical, pose-invariant, diffusion distance metric,
medial structure

Proposed algorithm Orthogonal slicing, rotation-invariant, based on Reeb
graph analysis, speedy execution, natural segmentation.

related techniques can be seen in [2,5,8,19]. Table 1 provides a brief comparison
of the existing algorithms.

Irrespective of the adopted technique, there always lies a chance of over-
segmentation [4,14], which, at times, affects the accuracy of segmentation, and
sometimes may also assist in deriving important information about the object
[18]. With an objective of obtaining natural segmentation, which is free of skele-
tonization, and hence fast, robust, and rotationally invariant, we propose here a
novel algorithm, which is based on the idea of orthogonal slicing [12], followed
by Reeb graph analysis of the slice sets. The only parameter of orthogonal slic-
ing is the grid resolution, g, which is shown to have insignificant impact on the
output quality. The proposed segmentation algorithm may be useful for analysis
of geometric structures and peripheral topology of objects, which, in turn, may
be quite effective for shape matching, collision detection, texture mapping, etc.

Graph-theoretic analysis of 3D objects leads to a stable and dependable per-
formance for 3D shape analysis. Reeb graph, in particular, provides a natural
representation that is suitable for object surface representation due to its one-
dimensional graph structure and invariance to both global and local transforma-
tions [16,1,3]. Given an unorganized cloud of 3D points, identification of human
body parts has been attempted in several works. In [15], the data set is organized
into a stack of slices so that a specific set of data points belong to a specific part
of the object according to its topology. This approach is further improved by
curvature analysis [11]. A further modification using Reeb graph is proposed in
[17]. However, there is a difference between the work in [17] and the one proposed
by us. In [17], a 3D point cloud is used as input, which has the disadvantage of
high space complexity; our algorithm, on the contrary, works with triangulated
mesh as input. Secondly, the algorithm in [17] is effective only for objects like

372 N. Karmakar, P. Bhowmick, and A. Biswas

human body, whereas our algorithm is applicable to a wide range of objects
including human body.

2 Preprocessing and Orthogonal Slicing

In our work, a discrete 3D object A is considered as a triangulated mesh in which
the triangles truly capture the peripheral topology of the object, i.e., on each
edge of the triangulated surface, exactly two triangles are incident. As a prepro-
cessing step, a 3D grid G of size (resolution) g is imposed on A, and three sets of
orthogonal slices (henceforth mentioned as slices or slice polygons) are obtained
by slicing the object along the three coordinate planes. These three slice sets are
computed using a combinatorial technique similar to the one proposed in [12].
Each set of slices is processed to identify the subset of slices belonging to each
articulated portion and central region of the object. By articulated portion, we
mean the meaningful components of the object [1,9,3]. Finally, for each artic-
ulated portion, the three subsets of slices are combined to identify the object
segment.

The grid G is represented as a set of unit grid cubes (UGCs), each of size g. If a
triangle Tabc(va, vb, vc) intersects or lies inside a UGC Uk, then Uk is considered
as object-occupied. Uk is intersected by Tabc if at least one UGC-face fk ∈ Uk

is intersected by Tabc. The projections of fk and Tabc are considered along yz-,
zx-, and xy-planes to find the intersection based on the nature of projection of
fk (line segment or square) and that of Tabc (line segment or triangle).

Once the object-occupied UGCs are identified, the set of orthogonal slices
parallel to each of the yz-, zx-, and xy-planes are determined. The condition
of object occupancy, as stated in [12], has been modified for this. In [12], a
UGC-face is considered as object-occupied if one or both of its adjacent UGCs
contains object voxels. But in the current work, a UGC-face is considered as
object-occupied if exactly one of its adjacent UGCs is intersected by a triangle.
The slice polygons are stored in an adjacency list containing n lists, one for each
slicing plane, n being the number of slicing planes. Each list contains a sequence
of vertices for all the slice polygons on that slicing plane. Apart from this, each
slice polygon is stored in two lexicographically sorted lists, Lxy and Lyx (or Lyz

and Lzy, or Lzx and Lxz), sorted according to x- and y-(or y- and z-, or z- and
x-)coordinates, respectively.

3 Reeb Graph Construction

W.l.o.g., consider the set of slice polygons Sy formed by a set of slicing planes
Π = {Π1, Π2, ..., Πn}, parallel to the zx-plane. Note that one or more slice
polygons may lie on each slicing plane Πi. If two slice polygons P ′ and P ′′ lie on
two consecutive planes, Πi and Πi+1, so that they have a non-empty intersection
when one is projected on the other, then P ′ and P ′′ are called consecutive slices.
If P ′ lies on Πi such that exactly one consecutive slice polygon exists either on
Πi+1 or on Πi−1, then P ′ is said to be a leaf slice.

Segmentation of 3D Articulated Components 373

3

5

6

7

NLA

320 512

320

512

2560

1920

384

128384

1 2

4

8 9

NLA

NLA

NLA

(a) Sy (b) Ry

3 4

6 7

8

9

10

11

12

15

13 14

16 17

1
2

4
5
6

3

320

224
576
512

320

544 288

2560

3168

3184

336
392

288

400
288

352

384

192

128

320 512

320

512

2560

128 640

256

3776

3200

1920

320
384 384

320

384

512 256

128

1 2

5

18 19

(c) Gy (d) Sy segmented

Fig. 1. Segmentation of slices in Sy. In Ry and Gy , node weights are shown. Gy is
segmented with difference in area threshold—shown beside each edge—computed at
every slice as exponential average of the previous slice areas.

The set Sy is represented by a (weighted) slice graph Gy. Each node of Gy

corresponds to a slice polygon of Sy; two nodes have an edge if their corre-
sponding slices are consecutive. The area of a slice is assigned as the weight of
its corresponding node. This graph results to weighted Reeb graph. As a Reeb
graph provides a topological signature of an object, we use it for identification
of object articulations based on the peripheral topology captured through three
orthogonal sets of slices. A Reeb graph, Ry, corresponding to Sy, is shown in
Fig. 1(b). It consists of only leaf nodes and non-linear articulation nodes (NLA,
of degree ≥ 2). Observe that a critical point of the object, at which the surface
topology changes, corresponds to an NLA. The slice graph Gy, on the contrary,
contains linear substructures in addition to leaf nodes and NLAs, as illustrated
in Fig. 1(c).

374 N. Karmakar, P. Bhowmick, and A. Biswas

Πi−1

Πi

Πi−2

va

vb

vc

Tabc

Πi−1

Πi

Πi−2

va

vb

vc

Tabc

Πi−1

Πi

Πi−2

va

vb vc

Tabc

Fig. 2. Different positions of triangles on the object surface w.r.t. slicing planes

During the construction of Gy from Sy, a list of leaf nodes, Ly, is maintained.
A leaf node ν0 is enqueued in a queue Q and BFS starts from ν0 in Gy . While
dequeuing ν0, the difference of its weight with a dynamically-set threshold τ
is checked. If the difference lies within λ times the weight of the last-dequeued
node, where λ varies between 0 and 1, then ν0 is marked by a component id, and
all the unvisited neighboring nodes of ν0 are enqueued in Q. Otherwise, ν0 is
considered as a leaf node and appended to Ly. The nodes visited by a single BFS
traversal are marked by a unique component id. Next, BFS traversal is started
from another leaf node, and the process is continued until all the leaf nodes are
visited. The BFS forest finally results to identification of all components.

The threshold τ is decided by exponential averaging with the weights of the
previous nodes having the same component id. As the traversal starts from a leaf
node ν0, the area of ν0 is used to initialize the threshold value τ0. Based on the
area of νi, at each subsequent node νi+1, its area is compared with τi+1, which
is computed as τi+1 = ρwi+(1−ρ)τi, where, τi denotes the exponential average
of the weights of the last i nodes, and wi denotes the weight of νi. The value
of ρ can range between 0 and 1; however, we conventionally take it as 1

2 . The
node νi+1 belongs to the same component as νi if | wi+1− τi+1 |< λ.wi, where λ
ranges between 0 and 1. The use of exponential averaging for dynamically setting
the threshold value ensures natural articulation for widely varying component
dimensions. Figure 1 shows a demonstration. The threshold values are computed
in the direction the algorithm proceeds; the leaf slices are considered in the order
1, 2, 5, 18, 19, and finally node 8 for the central region.

4 Segmentation by Weighted Reeb Graph

The set of triangles is represented by a doubly connected edge list (DCEL) [12].
For each vertex of a triangle, the neighboring vertices are obtained in constant
time, using DCEL. Depending on the positions of its three vertices, a triangle
Tabc may be intercepted by or may lie on Πi−1 (Fig. 2). Hence, a vertex va lies on
Πi or between Πi and Πi+1. Since the set of slices parallel to a coordinate plane
are stored as lexicographically sorted lists Lxy and Lyx (Sec. 2), the coordinate
values for the vertex va are looked up in Lxy and Lyx to find the slice polygon

Segmentation of 3D Articulated Components 375

Algorithm 3DSegment(A,G)

01. for each coordinate plane t
02. Gt ← graph representing St

03. Lt ← leaf nodes
04. Graph-Segment(Gt, Lt)
05. Vt ← triangle vertices

with component ids
06.Vertex-Segment(Vt)

Procedure
Graph-Segment(Gt, Lt)

01. count ← 1
02. for each leaf node ν ∈ Lt

03. if visited[ν] = 0
04. Enqueue(Q,ν)
05. ν1 ← ν
06. while Q is not empty
07. ν ← Dequeue(Q)
08. if | w[ν]− τw |< λ.w[ν1]
09. compid[ν] ← count
10. for each neighbor ν′ of ν
11. if visited[ν] = 0
12. Enqueue(Q, ν′)
13. visited[ν] ← 1
14. ν1 ← ν
15. else
16. Lt ← Lt ∪ {ν′}
17. count ← count + 1

Procedure Vertex-Segment(V)

01. count ← 1
02. for each vertex v ∈ V
03. if visited[v] = 0
04. segid[v] ← −1
05. for each neighbor u of v
06. if visited[u] = 1
07. if(Compare(u, v))
08. segid[v] ← segid[u]
09. if segid[v] = −1
10. segid[v] ← count
11. count ← count + 1
12. visited[v] ← 1

Procedure Compare(u, v)

01. if (((cvx = cux) ∧ (cvy = cuy) ∧ (cvz = cuz))
∨ (((cvx = cux) ∧ (cvy = cuy) ∧ (cvz �= cuz))
∧ ((cvx �= −1) ∨ (cvy �= −1)))
∨ (((cvx = cux) ∧ (cvy �= cuy) ∧ (cvz �= cuz))
∧ ((cvx �= −1) ∧ (cvy = cvz = −1))))

02. return 1
03. else if (((cvx �= cux) ∧ (cvy �= cuy) ∧ (cvz �= cuz))

∨ (((cvx = cux) ∧ (cvy = cuy) ∧ (cvz �= cuz))
∧ (cvx = cvy = −1))
∨ (((cvx = cux) ∧ (cvy �= cuy) ∧ (cvz �= cuz))
∧ ((cvx = −1) ∧ (!(cvy = cvz = −1)))))

04. return 0
05. return −1

Fig. 3. The algorithm for segmentation and its related procedures

S to which va belongs. Consequently, va is assigned the same component id as
S. This process is repeated for the vertices of all the triangles, and thus, each
such vertex obtains a 3-tuple of component ids corresponding to Sx, Sy, Sz.

Let v be a vertex belonging to triangle Tabc. 3-tuples of component ids are
assigned to v and all its adjacent vertices in the process outlined above. In order
to assign segment id to v, its 3-tuple of component ids, namely (cvx, c

v
y, c

v
z), is

compared with those of all its neighboring vertices, using DCEL. Then, based
on certain combinatorial rules (R1–R4), segment ids are assigned. A segment
id signifies the combined id obtained from the 3-tuple of component ids. The
procedure Compare in Fig. 3 enumerates the combinatorial possibilities. Note
that, when the algorithm 3DSegment terminates, we have as many segments
as the number of distinct segment ids. It accepts the 3D discrete object A in the
form of a triangulated mesh as input and uses the following procedures:

376 N. Karmakar, P. Bhowmick, and A. Biswas

Graph-Segment segments the Reeb graph, thereby identifying the slices that
belong to each articulated portion or central region along each coordinate plane.

Vertex-Segment combines the slices belonging to different components along
the three coordinate planes, in order to find the final segments of the object.

Procedure Compare uses the rules for comparing the component ids of two
vertices to decide whether they belong to the same segment or not.

Let (cvx, c
v
y, c

v
z) and (cux, c

u
y , c

u
z) denote the 3-tuples of component ids for vertices

v and u, and their final segment ids be su and sv, respectively.

R1 If cvx = cux, c
v
y = cuy , and cvz = cuz , then su is assigned to sv.

R2A If cvx = cux, c
v
y = cuy , and cvz �= cuz where ∃ c ∈ {cvx, cvy} such that c �= −1,

then su is assigned to sv.
R2B If cvx = cux, c

v
y = cuy , and cvz �= cuz where ∀ c ∈ {cvx, cvy} such that c = −1,

then a new value is assigned to sv.
R3A If cvx = cux, c

v
y �= cuy , and cvz �= cuz such that cvx �= −1 and cvy = cvz = −1,

then su is assigned to sv.
R3B If cvx = cux, c

v
y �= cuy , and cvz �= cuz such that cvx = −1 and not both of cvy

and cvz are equal to -1, then a new value is assigned to sv.
R4 If cvx �= cux, c

v
y �= cuy , and cvz �= cuz , then a new value is assigned to sv.

Note that cvx, c
v
y, and cvz may be used interchangeably in the rules R2A, R2B,

R3A, and R3B, where their comparisons with cux, c
u
y , and cuz are considered.

Vertices belonging to same (or different) components along all the three coordi-
nate planes, belong to the same (or different) segments (R1 and R4). Along each
coordinate plane, the central region (indicated by −1) is adjacent to all other
components but neither of the components are adjacent to each other. Hence,
the rules R2 and R3 are primarily based on whether v or u lie in the central
region along any coordinate plane.

4.1 Time Complexity

Let n be the number of UGCs intersected by the surface of the object A, α be
the surface area of A, β its volume, and g be the grid resolution. Then, number
of UGC-faces on the object surface is nf = O(n). If A has a sufficiently large
area-to-volume ratio, then n UGCs would cover its volume, i.e, β < ng3. For a
sufficiently small area-to-volume ratio, α > ng2. So, in general, β/g3 < n < α/g2,
or, nf = O(α/g2).

The number of slices in Sz is |Sz | = O(nf). Construction of Rz requires
identification of consecutive slices from the sorted lists Lxy and Lyx. Each slice
polygon P is traversed exactly once, which needs O(log |Sz|) = O(log nf) time
for searching its first vertex in Lxy and Lyx. Traversal time of P is linear in its
perimeter, as DCEL is used. So, Reeb graph construction time is O(nf log nf),
since total traversal time is upper-bounded by O(nf).

The procedure Graph-Segment is called thrice, hence requiring O(nf) time.
The procedure Vertex-Segment executes on the UGCs covering the object
surface, hence requiring O(n) time, as Procedure Compare executes in constant
time. So, the total time complexity is O(nf lognf) = O(α/g2 log(α/g2)).

Segmentation of 3D Articulated Components 377

Fig. 4. Results on Dog (g = 2). From top-left to bottom-right: Slices parallel to yz-,
zx-, xy-planes (with segments marked), and final segmentation

Fig. 5. Results on Airplane (g = 2)

5 Results and Conclusion

The proposed algorithm has been implemented in C in Linux Fedora Release 7,
Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB. As found from experimental
results (Figs. 4–8), the algorithm can successfully separate out the limb-like
articulated portions of the objects from its central region up to a high degree
of accuracy. It may be noticed from these results that the final segmentation
is a correctly-synthesized output from the three sets of orthogonal slices. The

378 N. Karmakar, P. Bhowmick, and A. Biswas

Fig. 6. Results on Octopus (g = 2)

dynamically set thresholding for graph cut adds to the robustness in the behavior
of the algorithm.

For a given object, the algorithm gives almost equally accurate results for
different grid sizes within a reasonable range, and even when the object is tilted
at an arbitrary angle (Fig. 8), which demonstrates its stability. An articulated
part of a 3D object may have an arbitrary orientation w.r.t. the coordinate
system, and hence such a part is identified by correlating its three sets of slices
taken along the three coordinate planes. In particular, when the concerned part
goes on arbitrarily changing in orientation, no less than three sets of slices can
fully capture its shape. This is confirmed by the segmentation results presented
in Figs. 4 to 6, and particularly through the results in Figs. 7 and 8. Some
more results and statistical data related to our experimentation are given in
Appendix. The standard deviation of the segment areas for ‘Chair’ rotated from
10◦ through 90◦ demonstrates the robustness of the algorithm w.r.t. rotation.
The accuracy of segmentation with varying threshold values is also shown there
for ‘Dog’ and ‘Airplane’.

The CPU time of segmentation increases with increase in the surface area of
the object and also with the total number of slices along the three coordinate
planes; and with grid size increase, the CPU time falls more than quadratically,

Segmentation of 3D Articulated Components 379

Fig. 7. Results on Chair (top two rows: g = 2, bottom two rows: g = 4)

380 N. Karmakar, P. Bhowmick, and A. Biswas

Table 2. Statistical results and CPU times for segmentation of some digital objects

Object
Object size # Slices CPU time (in secs.)

Vertices # Faces yz-plane zx-plane xy-plane Slicing Segmentation Total

g = 2

Dog 14862 301435 30 105 82 0.036 0.126 0.162
Octopus 16253 346467 95 98 156 0.062 0.405 0.467
Human 7093 170547 75 93 18 0.020 0.100 0.120
Chair 12787 228913 59 135 46 0.045 0.132 0.177

g = 4

Dog 14862 301435 16 53 39 0.007 0.026 0.033
Octopus 16253 346467 48 46 70 0.011 0.055 0.066
Human 7093 170547 37 45 8 0.005 0.019 0.024
Chair 12787 228913 29 66 22 0.008 0.024 0.032

g = 6

Dog 14862 301435 10 34 26 0.004 0.014 0.018
Octopus 16253 346467 28 27 45 0.005 0.018 0.023
Human 7093 170547 25 30 5 0.003 0.011 0.014
Chair 12787 228913 21 44 15 0.004 0.010 0.014

Fig. 8. Results on Chair, tilted (g = 4), coloring as in Fig. 4

as evident from Table 2. This conforms to our theoretical analysis on time com-
plexity (Sec. 4.1). For instance, the surface areas for ‘Human’, ‘Dog’, and ‘Chair’
are 193, 337, and 390 units. The area ratios are, therefore, Human:Dog = 0.6,
Human:Chair = 0.5, Chair:Dog = 1.18; the corresponding CPU time ratios for
g = 2 are 0.75, 0.67, 1.09.

Segmentation of 3D Articulated Components 381

Acknowledgement. A part of this research is funded by CSIR, Govt. of India.

References

1. Agathos, A., et al.: 3D articulated object retrieval using a graph-based represen-
tation. Vis. Comput. 26(10), 1301–1319 (2010)

2. Attene, M., et al.: Mesh segmentation—A comparative study. In: Proc. SMI 2006,
pp. 7–18 (2006)

3. Berretti, S., et al.: 3D Mesh Decomposition using Reeb Graphs. Image Vision
Comput. 27(10), 1540–1554 (2009)

4. Chazelle, B., et al.: Strategies for Polyhedral Surface Decomposition: An Experi-
mental Study. Comput. Geom. Theory Appl. 7, 327–342 (1997)

5. Chen, X., et al.: A Benchmark for 3D Mesh Segmentation. ACM Trans. Graph.
28(3), 73:1–73:12 (2009)

6. Cohen-Or, D., et al.: Consistent Mesh Partitioning and Skeletonization using the
Shape Diameter Function. The Visual Computer 24, 249–259 (2008)

7. Dupas, A., Damiand, G.: First Results for 3D Image Segmentation with Topological
Map. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008.
LNCS, vol. 4992, pp. 507–518. Springer, Heidelberg (2008)

8. Dupas, A., Damiand, G., Lachaud, J.-O.: Multi-Label Simple Points Definition for
3D Images Digital Deformable Model. In: Brlek, S., Reutenauer, C., Provençal, X.
(eds.) DGCI 2009. LNCS, vol. 5810, pp. 156–167. Springer, Heidelberg (2009)

9. de Goes, F., et al.: A Hierarchical Segmentation of Articulated Bodies. In: Proc.
SGP 2008, pp. 1349–1356 (2008)

10. Golovinskiy, A., et al.: Randomized cuts for 3D mesh analysis. ACM Transactions
on Graphics (Proc. SIGGRAPH ASIA) 27(145) (2008)

11. Ju, X., et al.: Automatic Segmentation of 3D Human Body Scans. In: Proc. Int.
Conf. Comp. Graphics & Img., pp. 239–244 (2000)

12. Karmakar, N., Biswas, A., Bhowmick, P.: Fast slicing of orthogonal covers us-
ing DCEL. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012.
LNCS, vol. 7655, pp. 16–30. Springer, Heidelberg (2012)

13. Katz, S., et al.: Mesh segmentation using feature point and core extraction. The
Visual Computer 21, 649–658 (2005)

14. Mangan, A., et al.: Partitioning 3D surface meshes using watershed segmentation.
IEEE TVCG 5, 308–321 (1999)

15. Nurre, J.H.: Locating Landmarks on Human Body Scan Data. In: Proc. 3DIM, pp.
289–295 (1997)

16. Werghi, N.: A robust approach for constructing a graph representation of articu-
lated and tubular-like objects from 3D scattered data. PRL 27(6), 643–651 (2006)

17. Xiao, Y., et al.: A Discrete Reeb Graph approach for the Segmentation of Human
Body Scans. In: Proc. 3DIM, pp. 378–385 (2003)

18. Zhang, X., et al.: Salient Object Detection through Over-Segmentation. In: Proc.
ICME 2012, pp. 1033–1038 (2012)

19. Zhu, N., et al.: Graph-Based Optimization with Tubularity Markov Tree for 3D
Vessel Segmentation. In: Proc. CVPR 2013, pp. 2219–2226 (2013)

382 N. Karmakar, P. Bhowmick, and A. Biswas

Appendix

Segments 1 2 3 4 5 6

Mean surface area 17271 17826 15498 15982 53751 62436

Standard deviation 449 397 285 292 1043 2749

Fig. 9. Segmentation results on Chair rotated from 10◦, 20◦, ..., 90◦ demonstrating
rotational invariance. Segments are colored in their order of detection. Segment 1: Left
fore leg, 2: Right fore leg, 3: Left hind leg, 4: Right hind leg, 5: Back rest, and 6: Seat.

Fig. 10. Segmentation results on Airplane (g = 2) for threshold varying with ρ = 0.4,
0.5, 0.6, 0.7 (from top-left to bottom-right)

Segmentation of 3D Articulated Components 383

Fig. 11. Segmented articulated portions and central region of Bird, Dolphin, Teddy,
Dinosaur, Ant, and Human, at g = 2

Fig. 12. Segmentation results on Dog (g = 2) for threshold varying with ρ = 0.3, 0.4,
0.5, 0.6 (from top-left to bottom-right)

Taylor Optimal Kernel for Derivative Etimation

Henri-Alex Esbelin and Remy Malgouyres

Clermont Universités, CNRS UMR 6158, LIMOS, Clermont-Ferrand, France
alex.esbelin@univ-bpclermont.fr, remy.malgouyres@udamail.fr

Abstract. In many geometry processing applications, the estimation of
differential geometric quantities such as curvature or normal vector field
is an essential step. In this paper, we investigate new estimators for the
first and second order derivatives of a real continuous function f based
on convolution of the values of noisy digitalizations of f . More precisely,
we provide both proofs of multigrid convergence of the estimators (with

a maximal error O
(
h1− k

2n

)
in the unnoisy case, where k = 1 for first

order and k = 2 for second order derivatives and n is a parameter to be
choosed ad libitum). Then, we use this derivative estimators to provide
estimators for normal vectors and curvatures of a planar curve, and give
some experimental evidence of the practical usefullness of all these esti-
mators. Notice that these estimators have a better complexity than the
ones of the same type previously introduced (cf. [4] and [8]).

Keywords: derivative estimation, curvature estimation, discrete deriva-
tion, convolution.

1 Introduction

In the framework of shape analysis, a common problem is to estimate derivatives
of functions, or normals and curvatures of curves and surfaces, when only some
(possibly noisy) sampling of the function or curve is available. This problem has
been investigated through finite difference methods, scale-space methods, and
discrete geometry, etc. ... For detailed informations about the state of the art,
the reader is refered to [1], [5] and [7].

This paper focuses on estimating the derivatives on the boundary of digital
planar shapes. Suppose that the digital data is distributed around the true sam-
ple of the Euclidean shape according to some noise. The curvature estimation is
provided to be as close as possible to the curvature of the underlying Euclidean
shape before digitization. More precisely, provided some formal models of the
noise, the quality of the estimation should be improved as the digitization step
gets finer and finer. This property is called the multigrid convergence(see [3], [2],
[6] and [10]).

Our objective is to design estimators of successive derivatives for digital data
which are provably multigrid convergent, accurate in practice, computable in an
exact manner, robust to perturbations.

The first section provides definitions for first and second order discrete deriva-
tives of digital curves. These discrete derivatives are proved to provide multigrid

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 384–395, 2014.
c© Springer International Publishing Switzerland 2014

Taylor Optimal Kernel for Derivative Etimation 385

convergent estimators for the corresponding continuous derivatives, even in a
noisy case.

The second section explains how to use these discrete differential notions to
estimate continuous normal field and curvature.

The third section gives some experimental evidence to the multigrid conver-
gence of all these estimators.

2 Discrete Derivatives for Discrete Functions

Throughout this paper, we call discrete function a function from ZZ to ZZ or
ZZ2. . Let f : IR 	→ IR be a continous function. We say that the discrete function
Γ : ZZ 	→ ZZ is a discretization of f on the interval [a; b] for the discretization
step h > 0 with error εh if, for any integer i such that a ≤ ih ≤ b, we have
hΓ (i) = f(ih) + εh(i). We consider here the uniform noise case: 0 ≤ ‖εh‖∞ ≤
Khα with 0 < α ≤ 1 and K a positive constant. Note that the rounded case and
the floor case are particular cases of uniform noise with α = 1.

2.1 First 0rder Derivatives

Definition 1. Let m be a positive integer. The Taylor-optimal mask of size m
for discrete first order derivation (TOm mask for short) is the finite sequence of
rational numbers am defined by am,0 = 0 and for −m ≤ i < 0 or 0 < i ≤ m by

am,i =
(−1)i

i

(
m
i

)(
m+i
i

) = (−1)i
i

(
2n
n+i

)(
2m
m

) . (1)

Definition 2. Let Γ : ZZ 	→ ZZ be a discrete function. Let p ∈ N∗ and i0 ∈ ZZ.
The m-Taylor-optimal first order discrete derivative of Γ at point i0 with step p
is

(Δm,pΓ) (i0) =
1

p

i=m∑
i=−m

am,iΓ (i0 − ip) . (2)

In order to show that the discrete derivative of a discretized function provides
an estimate for the continuous derivative of the real function, we would like to
evaluate the difference between (Δm,pΓ) (i0) and f ′(i0h).

Lemma 1.

i=m∑
i=−m

iam,i = −1 and for k = 0 or 2 ≤ k ≤ 2m,
∑i=m

i=−m ikam,i = 0.

Proof. Let us first notice that the lemma is trivial for the even values of k because
of the equality am,−i = −am,i.

Let us now consider the odd case. Let f be a polynomial and define the
classical finite difference operator δ+ by δ+ (f) (x) = f (x+ 1)− f (x). Iterating
this operator leads to the well known equality:

δ2m+ (f) (x) =

2m∑
i=0

(
2m

i

)
(−1)2m−i

f (x+ i) . (3)

386 H.-A. Esbelin and R. Malgouyres

Notice that applying the operator δ+ to a polynomial of degree d leads to a
polynomial of degree d − 1. Applying equality 3 to the polynomials defined by
(x− n)

k−1
for 1 ≤ k ≤ 2m, we get

0 =

2m∑
i=0

(
2m

i

)
(−1)2m−i

(i+ x−m)
k−1

. (4)

Let now x = 0 in equality 4, then for all 1 ≤ k ≤ 2m we have

0 =

2m∑
i=0

(
2m

i

)
(−1)2m−i (i−m)k−1 = (−1)m

m∑
i=−m

(
2m

m+ i

)
(−1)i ik−1.

Hence, for all odd k such that 1 ≤ k ≤ 2m, we have

i=m∑
i=−m

ikam,i =
1(
2m
m

)
⎛⎝ i=m∑

i=−m,i�=0

ik−1(−1)i
(

2m

m+ i

)⎞⎠ =

{
0 if k > 1
−1 if k = 1

.

Theorem 1. Let k ∈ N with k ≥ 2 and let f be Ck on IR and let k0 =
Min{k, 2m+ 1}. Let p = �h−1+ α

k0 �. Then

|(Δm,pΓ) (i0)− f ′(i0h)| = O
(
h
α− α

k0

)
. (5)

Proof. The difference between the discrete derivative of Γ and the continuous
derivative of f may be obviously seen as the sum of EM(f, Γ,m, p, i0) called
method’s error and ED(f, Γ,m, p, i0) called discretization’s error respectively
defined as

EM(f, Γ,m, p, i0) =

(
1

ph

i=m∑
i=−m

am,if ((i0 − ip)h)

)
− f ′(i0h)

and

ED(f, Γ,m, p, i0) =
1

ph

i=m∑
i=−m

am,iε(i0 − ip).

We intend to bound both errors. The choice of p will appear to equalize the
speeds of growth of both bounds. From Taylor formula and lemma 1, we first

majorize the method’s error. Let us denote

i=m∑
i=−m

am,if ((i0 − ip)h)) by S. We

have S =
∑i=m

i=−m am,i

(∑j=k0−1
j=0

f(j)(i0h)
j! (−iph)j + f(k0)(xi,j)

k0!
(−iph)k0

)
for some

xi,j between i0h and (i0 − ip)h. Hence

S =

j=k0−1∑
j=0

f (j)(i0h)

j!
(−ph)j

(
i=m∑
i=−m

am,ii
j

)
+
(−ph)k0

k0!

(
i=m∑
i=−m

am,ii
k0f (k0)(xi,j)

)

Taylor Optimal Kernel for Derivative Etimation 387

and from lemma 1, we have S = f ′(i0h) +
(−ph)k

k!

(∑i=m
i=−m am,ii

k0f (k0)(xi,j)
)
,

which leads to the following majoration:

|EM(f, Γ, a, p, i0)| ≤
‖f (k0)‖∞

k0!

(
i=m∑
i=−m

|ik0am,i|
)
hk0−1pk0−1

|EM(f, Γ, a, p, i0)| ≤
‖f (k0)‖∞

k0!

(
i=m∑
i=−m

|ik0am,i|
)
hα− α

k0

Now we staightforwardly majorize the discretization’s error: |ED(f, Γ,m, p, i0)|
≤ ‖ε‖∞

ph

∑i=m
i=−m |ai| ≤ K

(∑i=m
i=−m |ai|

)
hα− α

k0
1

1−h
1− α

k0

and the proof is complete.

In practice, 4 ≤ m ≤ 10. It is easy to check that, for such mask sizes,

we have 2 <

i=m∑
i=−m

|am,i| < 2.93 and for all 0 ≤ k ≤ 2m + 1, we have 5
2 <

1
k!

∑i=m
i=−m ik|am,i| ≤ 5. Hence, for such mask sizes, we have for h great enough

|(Δm,pΓ) (i0)− f ′(i0h)| ≤ (5‖f (k0)‖∞ + 3K)h
α− α

k0

2.2 Second Order Derivatives

Definition 3. Let m be a positive integer. The Taylor-optimal mask of size m
for discrete second order derivation (TO2

m mask for short) is the finite sequence
of rational numbers bm defined for i �= 0 by

bm,i =
(−1)i+1

i2

(
m
i

)(
m+i
m

) = (−1)i+1

i2

(
2m
m+i

)(
2m
m

) (6)

bm,0 is such that

i=m∑
i=−m

bm,i = 0

Definition 4. Let Γ : ZZ 	→ ZZ be a discrete function. Let p ∈ IN∗ and i0 ∈ ZZ.
The m-Taylor-optimal second order discrete derivative of Γ at point i0 with step
p is (

Δ2
m,pΓ

)
(i0) =

2

p2h

i=m∑
i=−m

bm,iΓ (i0 − ip) (7)

Lemma 2.

i=m∑
i=−m

i2bm,i = 1 and for 0 ≤ k ≤ 1 or 3 ≤ k ≤ 2m, we have

i=m∑
i=−m

ikbm,i = 0.

Proof. This lemma comes easily from lemma 1.

388 H.-A. Esbelin and R. Malgouyres

Theorem 2. Let k ∈ N with k ≥ 3 and let f be Ck on IR and let k0 =
Min{k, 2m+ 1}. Let p = �h−1+ α

k0 �. Then∣∣(Δ2
m,pΓ

)
(i0)− f”(i0h)

∣∣ = O
(
hα− 2α

k0

)
(8)

Proof. The proof is analoguous to the one for theorem 1.

3 Normal Vectors and Curvature Estimation

In order to provide estimators for the normal vectors and the curvatures of a
parametrized curve g = (g1, g2) : (a, b) 	→ IR × IR, we shall use the classical
definitions and properties: for each real t0 such that a < t0 < b, the normal
vector is Ng(t0) = (g′2(t0),−g′1(t0)) and the curvature may be computed using

Ng(t0) =
g′
1(t0)g

′′
2 (t0)−g′

2(t0)g
′′
1 (t0)

(g′2
1 (t0)+g′2

2 (t0))3/2
.

3.1 Normal Vectors Estimation

Definition 5. Let Γ = (γ1, γ2) : ZZ 	→ ZZ2 be a discrete function. Let p ∈ N∗

and i0 ∈ ZZ. The m-Taylor-optimal discrete normal vector of Γ at point i0 with
step p is

(Nm,pΓ) (i0) = ((Δm,pγ2) (i0),− (Δm,pγ1) (i0)) (9)

We assume now that a planar simple closed C1parameterized curve C (i.e.,
the parameterization is periodic and injective on a period) is given together with
a family of parameterized discrete curves (Σh)h∈H with Σh contained in a tube
with radius H(h) around C. We estimate the continous normal vector at a point
of C by a discrete normal vector at a not too far point of Σh. The following
theorem gives a bound to the error of this estimation, and in particular shows
that this error uniformly converges to 0 with h.

Theorem 3. Let g = (g1, g2) be a Ck parameterization of a simple closed curve
C with k ≥ 2. Let Ng = (g′2,−g′1) be a normal vector field of g. Suppose that

for all i we have ‖g(ih) − hΣh(i)‖∞ ≤ Khα. Let p = �h−1+ α
k0 � and k0 =

Min{k, 2m+ 1}. Then

‖(Nm,pΓ) (i0)−Ng‖ = O
(
hα− α

k0

)
(10)

Proof. The proof is straightforward from theorem 1.

3.2 Curvature Estimation

Definition 6. Let Γ = (γ1, γ2) : ZZ 	→ ZZ2 be a discrete function. Let p ∈ N∗

and i0 ∈ ZZ. The m-Taylor-optimal discrete curvature of Γ at point i0 with step
p is

(Cm,pΓ) (i0) =
(Δm,pγ2) (i0)

(
Δ

(2)
m,pγ1

)
(i0)− (Δm,pγ1) (i0)

(
Δ

(2)
m,pγ1

)
(i0)(

((Δm,pγ1) (i0))
2
+ ((Δm,pγ2) (i0))

2
) 3

2

(11)

Taylor Optimal Kernel for Derivative Etimation 389

Under the same assumption than in the previous subsection, we estimate the
continous curvature at a point of C by a discrete curvature at a not too far point
of Σh.

4 Experimental Evaluation

In this section, we present an experimental evaluation of our various differen-
tial estimators. We need to compare the estimated differential quantities values
with expected Euclidean ones on graphs of functions or on parametric curves on
which such information is known. The considered shapes are simple continous
shapes such as the sine function graph, discs or ellipses. These continuous ob-
jects have been digitized, with an eventually additional uniform noise. In the 2D
shapes cases, we have got a 8-connexe parametrization of the eventually noisy
boundary (without ouliers). Then we compare the values of the discrete differen-
tial quantity with the corresponding continuous one computed for close points.
Considering the empirical multigrid convergence, we always compute the worst
case error for a familly of points on the curves for various resolution steps. In
the noisy cases, we consider five random curves and compute the average of the
worst case errors for these five curves.

4.1 First Order Derivation

First Order Derivative of the Sine function. Figure 1 shows the estimated
values of the first order discrete derivatives of noisy digitizations of the sine
function graph on the interval [2; 2.25]. The discretization step is h = 1

1000 . We
use the estimator Δ7,200. The noise is uniform on a set of values {−n, ...,+n},
with n = 0, 1, 2, 5.

-0.4

-0.5

-0.6 2 2.25

no noise
noise +/- 1 pixel
noise +/- 2 pixels
noise +/- 5 pixels

Fig. 1. Estimations of the first order derivatives of the sine function using Δ7,200 for
digitizations with h = 1

1000
as a discretization step and with various levels of noise

390 H.-A. Esbelin and R. Malgouyres

Empirical Multigrid Convergence. Here we compute estimations for the
first order derivative of the sine function for various resolution step, using Δ7,hn

for various values of n. For each resolution step, the computation is achieve for
one hundred points with abcissae (xh,k = 2 + k

h)0≤k<100. Then we evaluate the
maximal errors for these points:

Max {|(Δ7,hnΓ) (xh,k)− cos(xh,k)| ; 0 ≤ k < 100}
The graph of the function defined by 2h0.9 which is less than the best theo-

retical bounding function (8h0.9, see theorem 1) is drawn on the figure 2.

p=hn

n=-0.75
n=-0.80
n=-0.85
n=-0.90

h=1/3500 h=1/500
0

0.002

0.01

Fig. 2. Maximal error for approximations of the first order derivatives of the sine
function using Δ7,hn at one hundred points for various n

4.2 Second Order Derivation

Second Order Derivative of the Sine Function. Figure 3 shows the com-
puted values of the second order discrete derivatives of rounded digitalizations of
the sine function using Δ2

7,h−0.9 for the same values of h than the one considered

in [9].

Empirical Multigrid Convergence. Figure 4 shows the estimations of the
second order derivative of the sine function for various resolutions, using Δ7,hn

for various n. For each resolution step, the computation is achieve for two hun-
dred points with abcissae (xh,k = 2+ k

h)0≤k<200. Then we evaluate the maximal
absolute errors for these points:

Max
{∣∣(Δ2

7,hnΓ
)
(xh,k) + sin(xh,k)

∣∣ ; 0 ≤ k < 200
}

4.3 Curvatures

Here we compare the proposed 2D curvature estimators with the continuous one.

Taylor Optimal Kernel for Derivative Etimation 391

sine second order derivative

+1

-1

0

p=h-0.9 h=1/20
 h=1/10

 h=1/100

Fig. 3. Estimations of the second order derivative of the sine function using Δ7,h−0.9

at different resolutions

p=hn
n=-0.75
n=-0.8
n=-0.85
n=-0.9

2.h-0.8

h-0.6

0

0.02

0.04

h=1/3500 h=1/500

Fig. 4. Maximal error for approximations of the second order derivatives of the sine
function using Δ2

7,hn for various n at two hundred points

Curvature of a Noisy Circle. Figure 5 shows the computed values of the
discrete curvature of noisy digitizations of a circle of radius 1

2 . These values have
been computed for forty points around the discrete curve. The considered digiti-
zation step is h = 1

1000 . We have introduced various uniform noises. Each graph
presents results for different values of the computation steps p. The parametrized
discrete curves have been obtained by drawing a noisy disc and an ellipse, then
extracting the boundary (hence eliminating the outliers).

Empirical Multigrid Convergence Here we compute the curvature of digi-
tizations of a circle of radius 1 and of an ellipse of equation 4x2+ y2 = 1 for var-
ious digitization steps, using the C7,p mask for various computations steps. The

392 H.-A. Esbelin and R. Malgouyres

1.5

2

2.5 h=1/1000

p=800
p=700
p=500
p=300

(a) curvature of an unoisy circle of radius 1
2

1.5

2

2.5 h=1/1000

p=800
p=700

p=300
p=500

(b) curvature of a noisy circle of radius 1
2
, with noise ±1 pixel

1.5

2

2.5 h=1/1000 p=800
p=700

p=500
p=300

(c) curvature of a noisy circle of radius 1
2
, with noise ±2 pixel

1. 525hhh

=. / hh
=. 0hh
=. phh
=. 8hh

57p

3

37p

(d) curvature of a noisy circle of radius 1
2
, with noise ±4 pixel

Fig. 5. Estimations of the curvature of a circle of radius 1
2
for digitization step h = 1

1000

and various steps p and noises

Taylor Optimal Kernel for Derivative Etimation 393

(a) curvature of an unoisy circle

(b) curvature of an unoisy ellipse

(c) curvature of a noisy circle

Fig. 6. Maximal relative error for curvature approximation of (a) the unnoisy circle of
radius 1, (b) the unnoisy ellipse of equation 4x2 + y2 = 1 (c) a noisy circle of radius 1,
using the C7,p estimators for various computation steps p

394 H.-A. Esbelin and R. Malgouyres

computation is achieved for twenty points (ph,k)0≤k<20 around the discrete
curves in the same quadrant. Then we evaluate the maximal error for these
points:

Max

{∣∣∣∣ (C7,pΓ) (ph,k)− c(p̄h,k)

c(p̄h,k)

∣∣∣∣ ; 0 ≤ k < 20

}
(see Figure 6). Here c(p̄h,k) is the curvature of the continuous shape at a point
p̄h,k close to the point ph,k (namely the point of the continuous shape having
the same abcissa).

5 Conclusion

We have presented a new way for estimating differential quantities using convo-
lution. The main idea is to use sparse nodes. Using this technic allows a better
complexity than the other known convolution-based methods. The use of ratio-
nal numbers as coefficients of the convolution mask is not very heavy, because
they all have a common constant denominator. Moreover, this method provides
a theoretical multigrid convergence and simulations show a good estimation in
practice. However, we have to compare carefully our method with the alternative
ones in a further work. A bottleneck of the Taylor optimal kernels is that the
step of discretization needs to be known to determine the value of the parameter
p. This is generally not the case. We thank the anonymous referees for valuable
remarks.

References

[1] Coeurjolly, D., Miguet, S., Tougne, L.: Discrete Curvature Based on Osculating
Circle Estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF
2001. LNCS, vol. 2059, pp. 303–312. Springer, Heidelberg (2001)

[2] Coeurjolly, D., Lachaud, J.-O., Roussillon, T.: Multigrid Convergence of Discrete
Geometric Estimators. In: Brimkov, V., Barneva, R. (eds.) Digital Geometry Al-
gorithms, Theoretical Foundations and Applications of Computational Imaging.
LNCVB, vol. 2, pp. 395–424. Springer (2012)

[3] Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Integral Based Curvature Estimators
in Digital Geometry. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.)
DGCI 2013. LNCS, vol. 7749, pp. 215–227. Springer, Heidelberg (2013)

[4] Esbelin, H.-A., Malgouyres, R., Cartade, C.: Convergence of Binomial-Based
Derivative Estimation for 2 Noisy Discretized curves. Theoretical Computer Sci-
ence 412, 4805–4813 (2011)

[5] Kerautret, B., Lachaud, J.-O., Naegel, B.: Comparison of Discrete Curvature Es-
timators and Application to Corner Detection. In: Bebis, G., et al. (eds.) ISVC
2008, Part I. LNCS, vol. 5358, pp. 710–719. Springer, Heidelberg (2008)

[6] Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Pic-
ture Analysis. Series in Computer Graphics and Geometric Modeling. Morgan
Kaufmann (2004)

[7] Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Analysis and Comparative Eval-
uation of Discrete Tangent Estimators. In: Andrès, É., Damiand, G., Lienhardt,
P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 240–251. Springer, Heidelberg (2005)

Taylor Optimal Kernel for Derivative Etimation 395

[8] Malgouyres, R., Brunet, F., Fourey, S.: Binomial Convolutions and Derivatives
Estimation from Noisy Discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L.,
Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg
(2008)

[9] Provot, L., Gérard, Y.: Estimation of the Derivatives of a Digital Function with a
Convergent Bounded Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret,
B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg
(2011)

[10] Roussillon, T., Lachaud, J.-O.: Accurate Curvature Estimation along Digital Con-
tours with Maximal Digital Circular Arcs. In: Aggarwal, J.K., Barneva, R.P.,
Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS,
vol. 6636, pp. 43–55. Springer, Heidelberg (2011)

On Finding Spherical Geodesic Paths

and Circles in Z3

Ranita Biswas and Partha Bhowmick

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, India

{biswas.ranita,bhowmick}@gmail.com

Abstract. A discrete spherical geodesic path between two voxels s and
t lying on a discrete sphere is a/the 1-connected shortest path from s to
t, comprising voxels of the discrete sphere intersected by the real plane
passing through s, t, and the center of the sphere. We show that the
set of sphere voxels intersected by the aforesaid real plane always con-
tains a 1-connected cycle passing through s and t, and each voxel in
this set lies within an isothetic distance of 3

2
from the concerned plane.

Hence, to compute the path, the algorithm starts from s, and iteratively
computes each voxel p of the path from the predecessor of p. A novel
number-theoretic property and the 48-symmetry of discrete sphere are
used for searching the 1-connected voxels comprising the path. The al-
gorithm is output-sensitive, having its time and space complexities both
linear in the length of the path. It can be extended for constructing 1-
connected discrete 3D circles of arbitrary orientations, specified by a few
appropriate input parameters. Experimental results and related analysis
demonstrate its efficiency and versatility.

Keywords: Discrete sphere, geodesic path, geometry of numbers, dis-
crete 3D circles.

1 Introduction

The shortest path between two points on a curved surface is called geodesic.
There exist several works related to geodesics on a 3D triangulated surface,
e.g., the fast marching technique [8]. This technique and Polthier’s straightest
geodesics theory [13] are used in [11] for finding approximate geodesics on tri-
angulated surfaces. For exact geodesics, a cubic-time line-of-sight algorithm is
proposed in [1].

The first algorithm to solve the discrete geodesic problem as the shortest
path (SP) between a source and a destination point on an arbitrarily polyhedral
surface is referred in the literature as MMP [12]. The discrete surface points are
first preprocessed and stored in a suitable data structure in O(n2 logn) time, and
then the actual SP is reported by continuous Dijkstra’s algorithm in O(k+log n)
time, where n = #edges on the surface and k = #faces crossed by SP. Improving
MMP to O(n2) time complexity is done in CH algorithm [4] using a set of

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 396–409, 2014.
c© Springer International Publishing Switzerland 2014

Discrete Spherical Geodesic Paths and Circles 397

windows on the polyhedron edges for encoding the shortest paths. However, it
is shown in [14] that MMP, in practice, runs faster than CH. Later, it has been
shown in [16] that CH can be made to run faster than MMP, using priority
queue and filtering out the useless windows. Recently, a parallel version of CH
is proposed in [19]. Further developments with graph-theoretic and numerical
methodologies may be seen in [17, 18].

Problems related to geodesic paths and their characterization in the digital
space have gained significant attention in recent time. In [5], a new geodesic
metric and the A∗ algorithm are used to find the shortest path between a source
and a destination voxel. In [3], rubberband algorithm is proposed for computation
of minimum-length polygonal curves in cube-curves in 3D space. The idea can
be extended to solve various Euclidean shortest path (ESP) problems inside of a
simple cube arc, inside of a simple polygon, on the surface of a convex polytope,
or inside of a simply-connected polyhedron [10].

In R3, a spherical geodesic path is defined between two points p ∈ R3 and
q ∈ R3 lying on a real sphere SR

r of radius r. The path always lies along the
intersection circle of SR

r and the 3D plane passing through p, q, and the center of
SR
r . We make an analogous definition for discrete spherical geodesic path πZ

r (s, t)
from a point (voxel) s ∈ Z3 to another point t ∈ Z3 lying on the discrete
sphere, SZ

r , of radius r. W.l.o.g., we fix the center of SZ
r at o(0, 0, 0), and consider

r as a positive integer. Then, πZ
r (s, t) is defined as a/the 1-connected shortest

path from s to t, comprising only those voxels of SZ
r which lie sufficiently close

to the real plane ΠR
r (s, t) passing through s, t, and o.

We first show that there always exists a 1-connected cycle in the set IZr (s, t)
comprising the voxels of SZ

r intersected by ΠR
r (s, t). The set IZr (s, t) admits

the characterization that all its voxels lie within an isothetic distance of 3
2 from

ΠR
r (s, t). Subsequently, π

Z
r (s, t) becomes a subset of IZr (s, t), and is efficiently ob-

tained by a prioritized Breadth-First-Search algorithm on the underlying graph
corresponding to IZr (s, t). For computation of IZr (s, t), S

Z
r is defined as the irre-

ducible 2-separable set of voxels (3D integer points) that are uniquely identified
by certain number-theoretic properties. The algorithm computes the set IZr (s, t)
using these properties, without considering the entire set SZ

r . Figure 1 shows a
result of our algorithm, where the search space of BFS, its 18 neighborhood on
SZ
r , and the final geodesic path πZ

r (s, t) are shown in different colors.
The rest of the paper is organized as follows. Section 2 explains certain el-

ementary number-theoretic properties of a digital sphere, used for computing
IZr (s, t). Section 3 contains characterization of discrete spherical geodesic path
and circle. The algorithm to compute the geodesic path from a point s to a point
t lying on SZ

r is presented in Section 4. Section 5 contains some test results, and
Section 6 the concluding notes.

2 Digital Sphere

We first introduce definitions and properties of digital sphere related to this
work. These are subsequently used to design the algorithms for finding geodesic

398 R. Biswas and P. Bhowmick

Fig. 1. A geodesic path reported by the proposed algorithm for r = 17. (a)Red:
s(−6,−1, 16) and t(2, 14, 10); blue: IZr (s, t); yellow: 18-neighborhood of the breadth-
first search space. (b)The geodesic path πZ

r (s, t) shown in red.

paths and 3D circles in Z3. The first point to observe is that, opposed to a real
sphere, a digital sphere has only nine planes of symmetry. Three of these are
the planes containing the great circles parallel to three coordinate planes; and
for each of these three planes, there exist two more planes aligned at +450 and
−450 to it. These nine planes of symmetry give rise to eight coordinate octants,
called c-octants. Each c-octant contains 6 Möbius triangles [7], thus dividing the
sphere into 48 quadraginta octants or q-octants.

2.1 Representation

The c-octants and the q-octants are uniquely represented by 3-tuples (see Ap-
pendix), which are carefully prepared for efficient implementation of our algo-
rithm. Each c-octant Ci is represented by a 3-tuple of signs of coordinate axes,

namely Ci :=
(
c
(1)
i , c

(2)
i , c

(3)
i

)
. For example, C1 = (+,+,+), C2 = (−,+,+),

and so forth. The 3-tuple for each q-octant, on the contrary, represents the

three signed coordinate axes. In particular, in the 3-tuple Qi :=
(
q
(1)
i , q

(2)
i , q

(3)
i

)
representing Qi, each element q

(·)
i has two variables, namely ω and σ. The vari-

able ω contains a literal (name of the coordinate axis) from {x, y, z}, and the
variable σ contains the sign of the corresponding coordinate. With this repre-
sentation, we have Q1 = (+x,+y,+z), Q2 = (+y,+x,+z), Q3 = (+y,+z,+x),
. . . , Q24 = (−x,+z,−y), . . . , Q48 = (−x,−z,−y). That is, for Q24 as an in-

stance, we have ω[q
(1)
48] = x, σ[q

(1)
48] = ‘−’, ω[q(2)48] = z, etc. Our representation

ensures the following.

1. Ca = {Qb : b = 6(a− 1) + c, c = 1, 2, . . . , 6}.
2. Two q-octants Qi and Qj lie in the same c-octant if and only if �i/6� = �j/6�

(with C�i/6� as their common c-octant).
Equivalently, Qi and Qj lie in the same c-octant if and only if σ[qi] = σ[qj]
∀(qi, qj) ∈ {(q′i, q′j) :

(
(q′i, q

′
j) ∈ Qi ×Qj

)
∧
(
ω[q′i] = ω[q′j]

)
}.

Discrete Spherical Geodesic Paths and Circles 399

3. Let w = 0 be one of the three coordinate planes, with w ∈ {x, y, z}. Then
two c-octants Ci and Cj lie in two different half-spaces defined by w = 0 if
and only if the elements in Ci and Cj corresponding to w are different.

Example 1. C1(+,+,+) and C2(−,+,+) have their 1st element different, which implies

they are in two different half-spaces defined by the coordinate plane x = 0; however,

their 2nd and 3rd elements being both ‘+’, either of them lies in the half-space y � 0

and in the half-space z � 0.

2.2 Metrics

We define x-distance and y-distance between two (real or integer) points, p(i, j)
and p′(i′, j′), as dx(p, p

′) = |i − i′| and dy(p, p
′) = |j − j′|, respectively. In R3

or in Z3, we have also z-distance, given by dz(p, p
′) = |k − k′|, for p(i, j, k) and

p′(i′, j′, k′). Using these inter-point distances, we define the respective x-, y-, and
z-distances between a point p(i, j, k) and a surface S as follows. Let dx(p, S) be
the x-distance between a point p(i, j, k) and a surface S. If there exists a point
p′(x′, y′, z′) in S such that (y′, z′) = (j, k), then dx(p, S) = dx(p, p

′); otherwise,
dx(p, S) =∞. The other two distances, i.e., dy(p, S) and dz(p, S), are defined in
a similar way; note that the metric dz(p, S) is not defined in 2D. These metrics
are used to define the isothetic distance as follows.

Definition 1. Between two points p1(i1, j1) and p2(i2, j2), the isothetic distance
is taken as the Minkowski norm [9], d∞(p1, p2) = max{dx(p1, p2), dy(p1, p2)};
between a point p(i, j) and a curve C, it is d⊥(p, C) = min{dx(p, C), dy(p, C)},
where dx(p, C) and dy(p, C) are defined similar to dx(p, S) and dy(p, S) respec-
tively; between a 3D point p(i, j, k) and a surface S, it is d⊥(p, S) = min{dx(p, S),
dy(p, S), dz(p, S)}.

2.3 Topology

A voxel is an integer point in 3D space, and equivalently, a 3-cell [9]. Two voxels
are said to be 0-adjacent if they share a vertex (0-cell), 1-adjacent if they share
an edge (1-cell), and 2-adjacent if they share a face (2-cell). Thus, two distinct
voxels, p1(i1, j1, k1) and p2(i2, j2, k2) are 1-adjacent if and only if |i1 − i2| +
|j1 − j2| + |k1 − k2| � 2 and max{|i1 − i2|, |j1 − j2|, |k1 − k2|} = 1; 2-adjacent
if and only if |i1 − i2| + |j1 − j2| + |k1 − k2| = 1; and 0-adjacent if and only if
|i1 − i2| = |j1 − j2| = |k1 − k2| = 1. Clearly, 0-adjacent (1-adjacent) voxels are
not considered as adjacent while considering 1-neighborhood (2-neighborhood)
connectivity. Note that the 0-, 1-, and 2-neighborhood notations, as adopted in
this paper and also in [15], correspond respectively to the classical 26-, 18-, and
6-neighborhood notations used in [6].

Based on above definitions, a digital sphere is said to be 2-separating if it does
not contain any 2-tunnel, that is, its interior and exterior are not connected by
a 2-connected path [6]. A 2-separating digital sphere is irreducible if and only if
it does not contain any simple voxel, that is, removal of any voxel violates its

400 R. Biswas and P. Bhowmick

topological property of 2-separableness [6]. We use SR
r to denote the real sphere

of radius r and centered at o, use SZ1
r to denote the part of SZ

r lying in Q1, and
use p ∈ SZ

r when a voxel p belongs to (voxel set) SZ
r . Our work is based on the

following definition of digital sphere.

Definition 2. A digital sphere SZ
r is an irreducible 2-separating subset of the

voxel set having isothetic distance less than 1
2 from SR

r .

Note that in [15], the only strict k-separating or irreducible digital sphere re-
sults from outer Gaussian digitization, but its voxels are not limited by a maxi-
mum isothetic distance of 1

2 from SR
r . The closed centered 2-separating digitized

sphere is another proposition in [15], which is not necessarily irreducible.

2.4 Characterization

The characterization of SZ
r is required to decide in constant time whether a

particular voxel (i, j, k) belongs to SZ
r . We start with the following lemmas.

Lemma 1. d⊥
(
p, SR

r

)
=
∣∣∣k −√r2 − (i2 + j2)

∣∣∣ ∀ p(i, j, k) ∈ SZ1
r .

Proof. Let p(i, j, k) ∈ SZ1
r , and (x, j, k), (i, y, k), and (i, j, z) be the respective

points on SR
r taken along the lines parallel to x-, y-, and z-axes, and passing

through p. Observe that the points (x, j, k) and (i, y, k) may be nonexistent, but
the point (i, j, z) always exists. If all three exist, then

x2 + j2 + k2 = i2 + y2 + k2 = i2 + j2 + z2 = r2, or, k2 − z2 = j2 − y2 = i2 − x2

or, (k + z)(k − z) = (j + y)(j − y) = (i+ x)(i − x). (1)

In Q1, i � j � k and x � y � z, or, i+ x � j + y � k + z; so, from Eq. 1,

|k − z| � |j − y| � |i− x|. (2)

If one or both (x, j, k) and (i, y, k) do not exist, then also |k − z| remains the

minimum. Hence, from Eq. 2, d⊥
(
p, SR

r

)
= |k − z| =

∣∣∣k −√r2 − (i2 + j2)
∣∣∣.
�

Lemma 2. d⊥(p, S
R
r) <

1
2 ∀ p ∈ SZ

r .

Proof. If possible, let, w.l.o.g., p(i, j, k) ∈ SZ1
r , such that

∣∣∣k −√r2 − (i2 + j2)
∣∣∣ =

1
2 , or, w.l.o.g., k −

√
r2 − (i2 + j2) = − 1

2 , which implies SR
r has p′(i, j, k + 1

2) as
the point of intersection in Q1 with the 3D straight line (x = i, y = j). Since

(i, j, k+ 1
2) lies on SR

r , we have i
2+ j2+

(
k + 1

2

)2
= r2, which is a contradiction,

since r, i, j, k are all integers.
�

Lemma 2 helps in characterizing a voxel p ∈ SZ
r , as stated next.

Theorem 1. p(i, j, k) ∈ SZ
r if and only if p is not simple and i2 + j2 + k2 ∈[

r2 −max{|i|, |j|, |k|}, r2 +max{|i|, |j|, |k|} − 1
]
.

Discrete Spherical Geodesic Paths and Circles 401

Proof. Let, w.l.o.g., p ∈ Q1. So, max{|i|, |j|, |k|} = k. Hence, by Lemma 1 and
Lemma 2, p ∈ SZ1

r if and only if p is not simple and

−1

2
< k −

√
r2 − (i2 + j2) <

1

2
(3)

⇔ k2 − k +
1

4
< r2 − (i2 + j2) < k2 + k +

1

4
. (4)

Since k2 − k, r2 − (i2 + j2), k2 + k are integers, Eq. 4 is true if and only if

k2 − k < r2 − (i2 + j2) � k2 + k

⇔ r2 − k � i2 + j2 + k2 < r2 + k, (5)

and hence the proof for 1st q-octant. For other q-octants, the proof is similar.
�

Now, to obtain the necessary and sufficient condition of deciding whether a
voxel is simple, we need the following theorem.

Theorem 2. A voxel p(i, j, k) with d⊥(p, S
R
r) <

1
2 is simple if and only if i2 +

j2+k2 = r2+max{|i|, |j|, |k|}− 1 and mid{|i|, |j|, |k|} = max{|i|, |j|, |k|}, where
mid{·} denotes the median element.

Proof. As in the proof of Theorem 1, let, w.l.o.g., p ∈ Q1; so, mid{|i|, |j|, |k|} = j
and max{|i|, |j|, |k|} = k. Let also, d⊥(p, S

R1
r) < 1

2 , which implies p satisfies Eq. 5
by Lemma 1 and Lemma 2.

Now, we prove that p(i, j, k) lies on SZ1
r and cannot be a simple voxel if j < k.

For this, first observe that (i, j, k − 1) and (i, j, k + 1) lie in Q1, as j � k − 1.
Next, observe that for any (i′, j′) ∈ Z2, there can be at most one integer value
of k′ so that (i′, j′, k′) satisfies Eq. 3. This implies that (i, j, k − 1) lies in the
interior and (i, j, k + 1) in the exterior of SZ

r . Hence, discarding p would violate
the 2-separableness of SZ

r .
Now, the conditions i2+j2+k2 = r2+max{|i|, |j|, |k|}−1 and mid{|i|, |j|, |k|} =

max{|i|, |j|, |k|} imply (i2 + k2 + k2) = (r2 + k − 1), which is true if and only if

(i2 + (k − 1)2 + k2) = (r2 − k)

⇔ (i, k − 1, k) ∈ SZ
r by Theorem 1, and (i, k, k − 1) ∈ SZ

r

⇔ (i, k, k) is simple.

For p lying in some other octant, the proof follows a similar way.
�

Using Theorem 1 and Theorem 2, we get a mathematically refined definition of
digital sphere, as stated in the following theorem.

Theorem 3. The voxel set of the digital sphere SZ
r is given by⎧⎨⎩

(i, j, k) ∈ Z3 : r2 −max{|i|, |j|, |k|} � i2 + j2 + k2 < r2 +max{|i|, |j|, |k|}

∧
((

i2 + j2 + k2 �= r2 +max{|i|, |j|, |k|} − 1
)

∨ (mid{|i|, |j|, |k|} �= max{|i|, |j|, |k|})

) ⎫⎬⎭ .

402 R. Biswas and P. Bhowmick

3 Discrete Spherical Geodesic Path and Circle

Theorem 3 is used to decide in constant time whether a voxel p(i, j, k) belongs
to SZ

r . For generating the discrete spherical geodesic path πZ
r (s, t) from a voxel

s ∈ SZ
r to a voxel t ∈ SZ

r , we consider the real plane Π
R
r (s, t) that passes through

s, t, and the center of SZ
r . Considering voxels as 3-cells, let IZr (s, t) be the set of

voxels of SZ
r intersected by ΠR

r (s, t). We have the following lemma for IZr (s, t).

Lemma 3. d⊥(p,Π
R
r (s, t)) � 3

2 ∀ p ∈ IZr (s, t).

Proof. Let δe := de(p,Π
R
r (s, t)) be the real (Euclidean) distance of the point p

from ΠR
r (s, t). If Π

R
r (s, t) intersects the voxel p, then δe �

√
3
2 .

Now, let δx = dx(p,Π
R
r (s, t)), δy = dy(p,Π

R
r (s, t)), δz = dz(p,Π

R
r (s, t)). Ob-

serve that δx = δe
cos θx

, δy = δe
cos θy

, δz = δe
cos θz

, where, cos2 θx+cos2 θy+cos2 θz = 1.

Here, cos θx is the angle between the x-axis-parallel line through p and the perpen-
dicular on ΠR

r (s, t) dropped from p, etc. So, the supremum of d⊥(p,Π
R
r (s, t)) :=

min{δx, δy, δz} corresponds to the infimum of the largest element
in Cθ := {cos θx, cos θy, cos θz}, and hence to the infimum of the largest element

in C
(2)
θ := {cos2 θx, cos2 θy, cos2 θz}, subject to cos2 θx + cos2 θy + cos2 θz = 1.

Clearly, the largest element in C
(2)
θ is at least 1

3 , or, the largest element in Cθ is
at least 1√

3
, whence d⊥(p,Π

R
r (s, t)) � δe/

1√
3
= 3

2 .
�

Theorem 4. For any two voxels s ∈ SZ
r and t ∈ SZ

r , there always exist two 1-
connected paths, πZ

r (s, t)
′ ⊂ IZr (s, t) and πZ

r (t, s)
′′ ⊂ IZr (s, t), such that πZ

r (s, t)
′ ∪

πZ
r (t, s)

′′ forms a 1-connected simple cycle in IZr (s, t).

Proof. Given a continuous surface A, there is a unique supercover of A, defined as
the set of all voxels intersecting A [6]. Hence, if ΠZ

r (s, t) denotes the supercover
of ΠR

r (s, t), then all the voxels—conceived as 3-cells—that are intersected by
ΠR

r (s, t), comprise the set ΠZ
r (s, t). As shown in [2], the supercover of a plane is

2-separable.
We define SZ

r− and SZ
r+ as the respective interior and exterior of SZ

r . So, by
Definition 2, the sets SZ

r− and SZ
r+ are disconnected in 2-neighborhood. Also, let

ΠZ
r−(s, t) = ΠZ

r (s, t)∩SZ
r− and ΠZ

r+(s, t) = ΠZ
r (s, t)∩SZ

r+ . Note that Π
Z
r−(s, t) is

a non-empty set and always contains o for r � 1, since ΠR
r (s, t) passes through

o. This yields
ΠZ

r (s, t) = ΠZ
r−(s, t) ∪ IZr (s, t) ∪ΠZ

r+(s, t) (6)

where, ΠZ
r−(s, t), I

Z
r (s, t), and ΠZ

r+(s, t) are pairwise disjoint.
Now, as SZ

r− and SZ
r+ are not 2-connected, their respective subsets ΠZ

r−(s, t)
and ΠZ

r+(s, t) are also not 2-connected. So, by Eq. 6, the set IZr (s, t) forms a
2-separating set between ΠZ

r−(s, t) and ΠZ
r+(s, t), or, equivalently, I

Z
r (s, t) is a

1-connected set that also 2-separates SZ
r . Therefore, there always exists a 1-

connected simple path πZ
r (s, t)

′ ∈ IZr (s, t) from s to t, and another 1-connected
simple path πZ

r (t, s)
′′ ∈ IZr (s, t) from t to s, where πZ

r (s, t)
′ ∩ πZ

r (t, s)
′′ = {s, t}.

Hence, there always exists a 1-connected simple cycle (πZ
r (s, t)

′ ∪ πZ
r (t, s)

′′) in
IZr (s, t) containing any two voxels s ∈ SZ

r and t ∈ SZ
r .
�

Discrete Spherical Geodesic Paths and Circles 403

From Theorem 4, it is clear that for two given voxels s ∈ SZ
r and t ∈ SZ

r , we
get at least two 1-connected paths, πZ

r (s, t)
′ and πZ

r (s, t)
′′, in IZr (s, t), having no

voxels in common, excepting s and t. The discrete 3D (integer) circle passing
through two given voxels s and t is, therefore, given by CZ

r (s, t) = πZ
r (s, t)

′ ∪
πZ
r (t, s)

′′. Note that specifying only s ∈ SZ
r and t ∈ SZ

r would suffice to get
πZ
r (s, t), and hence CZ

r (s, t), since a unique value of r would satisfy Theorem 1
for each of s and t.

4 Algorithm DSGP

We define inter-octant distance d
(8)
i,j corresponding to Ci and Cj . With s ∈ Ci

and t ∈ Cj , it is given by the count of q-octants crossed by πZ
r (s, t) before

entering Cj . Mathematically,

d
(8)
i,j = 1 +

3∑
u=1

2u−1
(
c
(u)
i ⊕ c

(u)
j

)
(7)

where, c
(u)
i ⊕ c

(u)
j = 1 if c

(u)
i �= c

(u)
j , and 0 otherwise. If i = j, then d

(8)
i,j = 0;

otherwise, the value of d
(8)
i,j lies in the interval [1, 7]. The maximum value d

(8)
i,j =

7 is obtained when Ci and Cj are diametrically opposite, i.e., c
(u)
i �= c

(u)
j for

u = 1, 2, 3. The pair (s, t) becomes antipodal if their c-octants are diametrically
opposite and s, o, t are collinear. Then ΠR

r (s, t) has no fixed orientation, and so
a third point q on SZ

r needs to be specified, which would lie in πZ
r (s, t).

Similarly, we define the intra-octant distance d
(6)
i,j between two q-octants, Qi

and Qj, when they lie in same c-octant. It provides the count of q-octants con-
taining the geodesic path from any point s ∈ Qi to any point t ∈ Qj. According
to our representation, it is given by one plus the minimum number of swaps
among the elements in Qi, so that, after swaps, the transformed 3-tuple is iden-
tical with Qj . Two elements are swapped in Qi or in any of its intermediate
configurations only if the elements are consecutive in Qi or in that configuration

(i.e., 3-tuple). Using d
(8)
i,j and d

(6)
i,j , we compute the q-octant distance d

(48)
i,j be-

tween s and t. It gives the count of q-octants containing the geodesic path from
s to t, irrespective of their positions on the sphere. Its measure turns out to be

d
(48)
i,j = d

(8)
i,j + d

(6)
i,j − 1. (8)

Combining the above, we simplify the rule of determining the sequence of q-
octants containing πZ

r (s, t) as follows. Let Qi and Qj be the q-octants containing
s and t, respectively. Then the sequence of q-octants through which πZ

r (s, t)
passes, is given by a/the minimum-length sequence of transformations applied
on Qi to attain the configuration Qj. Following are the rules of transformation.

T1. Change the sign of the first element q
(1)
i in Qi (or its intermediate configu-

ration) only if σ[q
(1)
i] �= σ[q

(1)
j]. This signifies transition from one half-space

(or, c-octant) to another half-space.

404 R. Biswas and P. Bhowmick

T2. Swap two elements in Qi (or its intermediate configuration) only if they
are consecutive. This signifies transition from one q-octant to its adjacent
q-octant.

From the sequence of q-octants obtained by the required transformations,
we determine the q-octant Qi′ immediately next to the q-octant Qi of s. We
use the 3-tuples corresponding to Qi and Qi′ for computing the direction vector

ds := (d
(1)
s , d

(2)
s , d

(3)
s) ∈ {+1,−1,±1}3. It is required to find the candidate voxels

that are 1-adjacent to s (A1(s)), belong to IZr (s, t), and is directed towards the
shorter between the two possible geodesics from s to t (Theorem 4). The elements

d
(1)
s , d

(2)
s , d

(3)
s correspond to the moves along x-, y-, z-axes, respectively. The

notation +1 signifies that there can be a unit move or no move (from s) along
the positive axis of the corresponding coordinate; similarly, −1 signifies a unit
move or no move along the negative axis, and ±1 signifies no move or a unit
move along positive or negative axis. In case of more than one minimum-length
sequence of q-octants from Qi to Qj , we consider the q-octant nearest to Qi

and common to these sequences, for computing ds. The rationale is that only
one of these sequences would be intersected by ΠR

r (s, t), and hence the q-octant
common to these sequences is used. The following examples clarify the idea.

Example 2. See Fig. 2. Given s(10,−2, 6) ∈ Q15 and t(−3, 10, 6) ∈ Q12, their respec-

tive 3-tuples are Q15 := (−y,+z,+x) and Q12 := (−x,+z,+y). The minimum-length

sequence of transformations corresponding to πZ
r (s, t) is:

(−y,+z,+x)
T1−→ (+y,+z,+x)

T2−→ (+y,+x,+z)
T2−→ (+x,+y,+z)

T2−→ (+x,+z,+y)
T1−→ (−x,+z,+y), or, Q15

T1−→ Q3
T2−→ Q2

T2−→ Q1
T2−→ Q6

T1−→ Q12.

Notice that there is another minimum-length sequence: (−y,+z,+x)
T1−→ (+y,+z,+x)

T2−→ (+z,+y,+x)
T2−→ (+z,+x,+y)

T2−→ (+x,+z,+y)
T2−→ (−x,+z,+y), which implies

Q15
T1−→ Q3

T2−→ Q4
T2−→ Q5

T2−→ Q6
T2−→ Q12.

Either of these implies that the q-octant next to Q15 through which πZ
r (s, t) passes, is

Q3. Since Q15 = (−y,+z,+x) and Q3 = (+y,+z,+x), the y-coordinate of each voxel

p ∈ A1(s)∩IZr (s, t), cannot ever decrease. On the contrary, the x- and the z-coordinates

of p have no such restriction. Hence, the direction vector ds is chosen as (±1,+1,±1).

Example 3. Let s ∈ Q1 and t ∈ Q4. So, Q1 = (+x,+y,+z) and Q4 = (+z,+y,+x). We

have two minimum-length sequence of transformations: (i)Q1
T2−→ Q2

T2−→ Q3
T2−→ Q4;

(ii)Q1
T2−→ Q6

T2−→ Q5
T2−→ Q4.

Contrary to Example 2, here the q-octants following Q1 in two cases are different: Q2

for (i) and Q6 for (ii). So, we look ahead until there is a matching q-octant, i.e., Q4 in

this case. We compute ds as the relative shifts in positions of the coordinate values in

Q4. In Q1, the 1st element is +x, which is shifted to 3rd position in Q4. So, the 1st

element in ds becomes +1, and by similar reasoning with the 2nd and the 3rd elements,

we get ds = (+1,±1,−1).

Analysis. See Algorithm 1 and its demonstration in Fig. 2. The adjacency list
L of the underlying undirected graph G(V,E) is prepared based on 1-adjacency
of the voxels in IZr (s, t). The vertices adjacent to each u ∈ V are inserted in the

Discrete Spherical Geodesic Paths and Circles 405

Q1

Q2
Q3

Q4

Q5Q6

Fig. 2. A demonstration of the proposed algorithm for r = 12. (a) s(10,−2, 6) ∈ Q15,
t(−3, 10, 6) ∈ Q12. (b)Yellow: S

Z
r ∩ A1(s). (c)Blue: S

Z
r ∩ A1(s) ∩ IZr (s, t), Yellow: {p ∈

A1(q) : q is Blue}. (d-h)Blue: Progress of Procedure MakeAdjList for IZr (s, t). (i) Red:
πZ

r (s, t) ⊂ IZr (s, t).

adjacency chain L[u] of u in non-increasing order of their isothetic distances from
ΠR

r (s, t), (MakeAdjList, Line 9). This is needed to maintain locally minimum
isothetic distance from ΠR

r (s, t) while running Prioritized-BFS (Algorithm 1,
Line 3). In Line 8 of MakeAdjList, Theorem 1 is used to determine the voxels
that are 1-adjacent with the current voxel and belong to SZ

r , in constant time.
Thus, MakeAdjList and Prioritized-BFS consumes O(n) time each, where n is
the number of voxels comprising πZ

r (s, t). The direction vector ds is computed
from the sequence(s) in no more than O(n) time complexity. Hence, the total
time complexity of Algorithm DSGP is linear in the length of πZ

r (s, t).

5 Results

The proposed algorithm is implemented in C in Ubuntu 12.04 32-bit, Kernel
Linux 3.2.0-31-generic-pae,GNOME 3.4.2, Intel R© Core

TM

i5-2400 CPU 3.10GHz.

406 R. Biswas and P. Bhowmick

Algorithm 1: DSGP (Discrete Spherical Geodesic Path).

Input: voxel s ∈ SZ
r , voxel t ∈ SZ

r , such that (s, t) is not an antipodal pair
Output: πZ

r (s, t) as a voxel sequence
1 ds ← FindDirection(s, t)
2 L ← MakeAdjList(s, t,ds)

3 πZ
r (s, t) ← Prioritized-BFS(s, t, L)

Procedure FindDirection(voxel s, voxel t)

Output: Direction vector ds

1 Qi ← FindQoct(s), Qj ← FindQoct(t)
2 Si,j ← minimum-length q-octant sequence from Qi to Qj

3 if Si,j is unique then
4 Qi′ ← 2nd element (q-octant) in Si,j

5 else
6 Qi′ ← common element in the sequences {Si,j} nearest to Qi

7 Compute ds from positions of the corresponding elements in Qi and Qi′

8 return ds

Procedure MakeAdjList(voxel s, voxel t, ds)

Output: Adjacency list L of IZr (s, t)
1 visited[s] ← True

2 Q ← {q :
(
q ∈ SZ

r

) ∧ (
q ∈ ΠZ

r (s, t)
) ∧ ((s, q) conforms ds)}

3 for each q ∈ Q do
4 visited[q] ← False

5 while Q �= ∅ do
6 voxel p ← Dequeue(Q), visited[p] ← True

7 for each voxel q in 1-neighborhood of p do
8 if

(
q ∈ SZ

r

) ∧ (
q ∈ ΠZ

r (s, t)
)
then

9 insert q in L[p] in non-increasing order of d⊥(q,ΠR
r (s, t))

10 if visited[q] = False then
11 Enqueue(Q, q)

12 return L

As the algorithm is of linear time complexity and readily implementable with
primitive operations in the integer space, it computes the spherical geodesic
paths and 3D circles in Z3 quite fast and efficiently. To demonstrate this, a sum-
mary of some experimental results is given in Appendix. For radius r ranging
from 10 to 1000, different source and destination points are chosen, and their
geodesic paths are computed. For each path πZ

r (s, t), its length |πZ
r (s, t)|, mea-

sured in terms of number of voxels comprising the path, is shown, along with the

corresponding q-octant distance, d
(48)
i,j . The CPU time, measured in milliseconds,

reflects the linear-time behavior of the algorithm, as explained in Section 4.
The figure in Appendix shows a set of discrete spherical geodesics and their

corresponding circles produced by the algorithm. Note that a discrete geodesic

Discrete Spherical Geodesic Paths and Circles 407

circle can be obtained by taking the union of the path πZ
r (s, t) with its comple-

mentary path, i.e., πZ
r (t, s), taken in the same order of cyclic movement. Clearly,

such a circle would always include s and t. However, the inclusion of t is not en-
sured if we ignore t during Prioritized-BFS and moves forward until the traversal
returns to s, although the resultant geodesic circle would comprise voxels lying
within an isothetic distance of 3

2 from ΠR
r (s, t).

6 Conclusion

We have shown how number-theoretic characterization helps in developing effi-
cient algorithms related to discrete geodesics on a spherical surface. The prob-
lems of finding iso-contours and of geodesic distance query, defined and at-
tempted in 3D real space [17, 18], are also pertinent in 3D digital space. The
technique introduced in this paper may be extended to solve such problems with
efficiency and theoretical guarantee.

References

[1] Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Exact geodesics and short-
est paths on polyhedral surfaces. IEEE TPAMI 31, 1006–1016 (2009)

[2] Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—A review. Discrete
Appl. Math. 155, 468–495 (2007)

[3] Bülow, T., Klette, R.: Digital curves in 3D space and a linear-time length estima-
tion algorithm. IEEE TPAMI 24, 962–970 (2002)

[4] Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Proc. SoCG, pp. 360–369
(1990)

[5] Coeurjolly, D., Miguet, S., Tougne, L.: 2D and 3D visibility in discrete geometry:
An application to discrete geodesic paths. PRL 25, 561–570 (2004)

[6] Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. GMIP 57, 453–
461 (1995)

[7] Coxeter, H.S.M.: Regular Polytopes. Dover Pub. (1973)
[8] Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl.

Acad. Sci. USA, 8431–8435 (1998)
[9] Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Pic-

ture Analysis. Morgan Kaufmann, San Francisco (2004)
[10] Li, F., Klette, R.: Analysis of the rubberband algorithm. Image Vision Comput. 25,

1588–1598 (2007)
[11] Mart́ınez, D., Velho, L., Carvalho, P.C.: Computing geodesics on triangular

meshes. Computers & Graphics 29, 667–675 (2005)
[12] Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic prob-

lem. SIAM J. Comput. 16, 647–668 (1987)
[13] Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: ACM

SIGGRAPH 2006 Courses, pp. 30–38 (2006)
[14] Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact

and approximate geodesics on meshes. ACM TOG 24, 553–560 (2005)
[15] Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:

From morphological models to analytical characterizations and topological prop-
erties. Discrete Appl. Math. 161, 2662–2677 (2013)

[16] Xin, S.Q., Wang, G.J.: Improving Chen and Han’s algorithm on the discrete
geodesic problem. ACM TOG 28, Art. 104 (2009)

408 R. Biswas and P. Bhowmick

[17] Xin, S.Q., Ying, X., He, Y.: Constant-time all-pairs geodesic distance query on
triangle meshes. In: Proc. I3D 2012, pp. 31–38 (2012)

[18] Ying, X., Wang, X., He, Y.: Saddle vertex graph (SVG): A novel solution to the
discrete geodesic problem. ACM TOG 32, Art. 170 (2013)

[19] Ying, X., Xin, S.Q., He, Y.: Parallel Chen-Han (PCH) algorithm for discrete
geodesics. ACM TOG 33, Art. 9 (2014)

Appendix

Table. C-octants and Q-octants
C-oct Q-octants Notation

C1 Q1, . . . ,Q6 +++

C2 Q7, . . . ,Q12 −++

C3 Q13, . . . ,Q18 +−+

C4 Q19, . . . ,Q24 −−+

C5 Q25, . . . ,Q30 ++−
C6 Q31, . . . ,Q36 −+−
C7 Q37, . . . ,Q42 +−−
C8 Q43, . . . ,Q48 −−−

Q-oct Notation

Q1 (+x,+y,+z)

Q7 (−x,+y,+z)

Q13 (+x,−y,+z)

Q19 (−x,−y,+z)

Q25 (+x,+y,−z)

Q31 (−x,+y,−z)

Q37 (+x,−y,−z)

Q43 (−x,−y,−z)

Q-oct Notation

Q2 (+y,+x,+z)

Q8 (+y,−x,+z)

Q14 (−y,+x,+z)

Q20 (−y,−x,+z)

Q26 (+y,+x,−z)

Q32 (+y,−x,−z)

Q38 (−y,+x,−z)

Q44 (−y,−x,−z)

Q-oct Notation

Q3 (+y,+z,+x)

Q9 (+y,+z,−x)

Q15 (−y,+z,+x)

Q21 (−y,+z,−x)

Q27 (+y,−z,+x)

Q33 (+y,−z,−x)

Q39 (−y,−z,+x)

Q45 (−y,−z,−x)

Q-oct Notation

Q4 (+z,+y,+x)

Q10 (+z,+y,−x)

Q16 (+z,−y,+x)

Q22 (+z,−y,−x)

Q28 (−z,+y,+x)

Q34 (−z,+y,−x)

Q40 (−z,−y,+x)

Q46 (−z,−y,−x)

Q-oct Notation

Q5 (+z,+x,+y)

Q11 (+z,−x,+y)

Q17 (+z,+x,−y)

Q23 (+z,−x,−y)

Q29 (−z,+x,+y)

Q35 (−z,−x,+y)

Q41 (−z,+x,−y)

Q47 (−z,−x,−y)

Q-oct Notation

Q6 (+x,+z,+y)

Q12 (−x,+z,+y)

Q18 (+x,+z,−y)

Q24 (−x,+z,−y)

Q30 (+x,−z,+y)

Q36 (−x,−z,+y)

Q42 (+x,−z,−y)

Q48 (−x,−z,−y)

Discrete Spherical Geodesic Paths and Circles 409

Table. Summary of results

r s and its q-octant t and its q-octant |πZ
r (s, t)| d(48)i,j Time (μs)

10 (0, 3, 10) Q1 (4, 6, 7) Q1 7 0 53
10 (4,−4, 8) Q13 (2,−9, 4) Q18 8 1 61
10 (7, 1, 7) Q2 (−3, 7,−6) Q36 21 6 81
20 (1, 5, 19) Q1 (11, 12, 12) Q1 16 0 111
20 (−4, 10, 17) Q7 (−20, 3, 2) Q10 24 3 145
20 (−7, 3,−18) Q32 (4,−10, 17) Q13 52 8 330
50 (0,−12, 49) Q13 (8,−18, 46) Q13 11 0 84
50 (30, 1, 40) Q2 (46, 18, 8) Q4 40 2 261
50 (35,−35,−4) Q41 (−12,−13, 47) Q19 81 4 445

100 (24, 61,−76) Q25 (57, 58,−58) Q25 34 0 167
100 (−39,−48,−79) Q43 (−88,−17,−45) Q45 66 2 315
100 (−11, 78, 61) Q12 (98,−17, 7) Q16 170 6 1000
200 (116, 115, 115) Q3 (176, 62, 73) Q3 93 0 392
200 (33, 33, 194) Q1 (199, 14, 11) Q4 242 3 1292
200 (46, 161, 110) Q6 (−87,−2, 180) Q20 230 4 1677
500 (−13, 406, 291) Q12 (−250, 340, 268) Q12 239 0 1178
500 (50,−494, 58) Q18 (171,−226, 412) Q13 439 1 2925
500 (−31, 433, 248) Q12 (117,−171,−455) Q37 1142 8 33347
1000 (25,−929, 368) Q18 (539,−637, 551) Q18 628 0 5159
1000 (384, 917,−104) Q29 (110, 504,−857) Q25 892 2 7771
1000 (932, 300,−204) Q28 (−637, 705, 311) Q11 1889 5 61852

Figure. Discrete spherical geodesics and their corresponding circles for r = 30. The
sequence of red voxels is πZ

r (s, t) with s(8, 25, 14) ∈ Q6 and t(29, 3, 6) ∈ Q3, which,
when combined with πZ

r (t, s), shown in yellow, yields the discrete 3D geodesic circle
passing through s, t, and centered at o. Shown in blue are 16 longitude circles produced
by extending the geodesics from source points taken from the discrete great circle on
zx-plane to destination point t(0, 30, 0) for each.

Discrete Curve Evolution on Arbitrary

Triangulated 3D Mesh

Sergii Poltaretskyi1,2,3, Jean Chaoui1,2,3, and Chafiaa Hamitouche-Djabou1,3

1 Télécom-Bretagne, 655 Avenue du Technopole, 29200 Plouzané, France
sergii.poltaretskyi@telecom-bretagne.eu

2 IMASCAP, 65 Place Copernic, 29280 Plouzané, France
3 Laboratoire de Traitement de l’Information Médicale, INSERM UMR 1101,

29609 Brest, France

Abstract. Discrete Curve Evolution (DCE) algorithm is used to elimi-
nate objects’ contour distortions while at the same time preserve the per-
ceptual appearance at a level sufficient for object recognition. This method
is widely used for shape similarity measure, skeleton pruning and salient
point detection of binary objects on a regular 2D grid. Our paper aims at
describing a new DCE algorithm for an arbitrary triangulated 3D mesh.
The difficulty lies in the calculation of a vertex cost function for an ob-
ject contour, as on a 3D surface the notion of Euclidean distance cannot
be used. It is also very difficult to compute a geodesic angle between lines
connecting vertices. We introduce a new cost function for border vertex
which is only based on geodesic distances. We apply the proposed algo-
rithm on vertex sets to compute an approximation of original contours,
extract salient points and prune skeletons. The experimental results jus-
tify the robustness of our method with respect to noise distortions.

Keywords: discrete curve evolution, landmark points, vertices sets, tri-
angulated mesh, skeleton pruning.

1 Introduction

Image Processing is one of the most rapidly evolving areas of information tech-
nology today, with growing applications in all areas of business, defense, health,
space, etc. It also forms a core area of research within the computer science and
engineering disciplines with more than 30 percent of the scientific publication
volume in the world. It forms the basis for all kinds of future visual automation.

Very often image processing deals with object recognition, analysis and match-
ing. A wide range of techniques that are described in the current literature op-
erate with objects represented on regular grids, such as 2D pixel or 3D voxel
images. In contrast, very few work is dedicated to object analysis on a non-
regular grids; for example a 3D mesh represented with triangles, where each
vertex could have an arbitrary number of connections.

The purpose of this study is to propose an efficient method to determine
characteristic landmarks of binary sets of vertices lying on an arbitrary triangu-
lated surface (blue points on Fig.1(a)). A very interesting method is described

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 410–421, 2014.
c© Springer International Publishing Switzerland 2014

Discrete Curve Evolution on Arbitrary Triangulated 3D Mesh 411

by Latecki et al. [5,6,7] where authors proposed iteratively evolve a boundary
of a 2D object by deleting one point at each iteration. A point that is deleted
at a current step is the one with the lowest cost function. The cost function is
designed so that it reflects a contribution of a boundary vertex to the global
object shape and it is computed for all boundary vertices. As a result we obtain
a subset of vertices that best represents the shape of a given contour and can be
called landmarks. Authors named their algorithm as Discrete Curve Evolution
(DCE) as at every step it evolves a discrete curve to represent only the most
significant parts.

The cost function for DCE is very simple and involves computing only Eu-
clidean distances and angles. The proposed method is fast, easy to implement
and demonstrates impressive results. All these facts inspire us to apply this
technique to a shape defined on a triangulated surface. Unfortunately, on an
arbitrary triangulated mesh the notion of Euclidean distances and angles do not
exist which makes impossible to compute the cost function, and hence use the
DCE. Tothe best of our knowledge, there is no publication in the literature con-
cerning the DCE for vertices sets on polygonal mesh. In this paper we introduce
a new cost function that can be easily computed on a triangulated surface and
yields better results on regular 2D grids compared with the classical DCE.

One very important application of the DCE is skeleton pruning. It is well
described in the literature for a regular 2D grid [3], but there is no publication
regarding sets of vertices on triangulated surfaces. This paper describes how the
DCE can be used on polygonal meshes for skeleton pruning. First we propose to
address a problem of skeleton extraction for sets of vertices as it is not a trivial
task. Only few methods in the literature have been dedicated to this problem
on triangulated surfaces. Rossl et al. [2] have presented method in which some
mathematical morphology operators have been developed and applied to a set of
vertices on triangulated meshes. The proposed method is very efficient and simple
to implement, however it has several drawbacks leading to disconnected skeleton.
A recent work described in [1] improves the previously proposed method of
skeleton extraction. Authors claim that in [2], vertex classification is not sufficient
as there are still unmarked vertices that are not considered in the skeletonization.
To overcome the problem, a new class of vertices is proposed and new rules for
topological thinning process are introduced. The proposed method has been
tested on relatively homogeneous and on irregular meshes. Obtained skeletons
reflect correctly the topology and geometry of input vertices’ sets that proofs
robustness of the approach.

An important factor of skeleton computing algorithm is its sensitivity to ob-
ject’s boundary deformation, as a minor noise or variation of boundary often
generates redundant branches. To demonstrate it, we apply a method described
in [1] to a vertices set. We show the obtained results on Fig.1(b) where lot of
unnecessary branches were produced, that in turns could hamper further pro-
cessing. Second major contribution of this paper is an application of our DCE
algorithm for skeleton pruning on arbitrary triangulated surfaces.

412 S. Poltaretskyi, J. Chaoui, and C. Hamitouche-Djabou

Skeleton pruning is a well-known problem in 2D binary image processing.
These are many different techniques proposed in the current literature; we will
not list all of them as it is not the scope of current paper, an interested reader
can find a good overview in [3]. We are looking for a method that yields excellent
results and can be implemented for a set of vertices on a triangulated surface. We
found two algorithms [3,10] that helped us to develop a solution for our problem.
The first method is called Skeleton Pruning by contour partition [3]. The main
idea consists in partitioning an object contour into segments and remove skeleton
vertices whose generating points all lie on the same contour segment. According
to Blum’s definition of the skeleton [4], every skeleton point is linked to boundary
points that are tangential to its maximal circle, so called generating points. The
most important question is how to partition a boundary contour into segments
as it plays a key role on resulting skeleton. Authors proposed to use the DCE
and demonstrate excellent results. The second method [10] also uses the DCE
algorithm, but for a difference purpose. Here, authors detect landmark points
that actually represent skeleton ending points. Then these points are propagated
inside an object with a condition that always maintains equal distance to objects’
boundaries.

In this work we propose a solution for skeleton pruning that is also based on
the DCE; but in our case we use a specific DCE algorithm that can also work
on a triangulated surface.

Therefore, for the sake of understanding in Section 2 we briefly describe the
DCE algorithm for contours on a regular 2D grid. Section 3 describes a new
DCE algorithm that can be used on arbitrary triangulated surfaces. In Section
4 we show an application of the newly created DCE method to skeleton pruning
on a polygonal mesh and we demonstrate obtained results.

(a) Landmarks example (b) An example of a skeleton extracted
from a set of vertices on a 3D mesh

Fig. 1. Examples of landmarks and skeleton for a set of vertices on a triangulated mesh

2 Discrete Curve Evolution

Discrete Curve Evolution (DCE) algorithm introduced in [5,6,7], was developed
to neglect the distortions of objects’ contours in digital images while at the
same time preserve the perceptual appearance at a sufficient level for object

Discrete Curve Evolution on Arbitrary Triangulated 3D Mesh 413

recognition. An obvious solution is to eliminate these distortions by contour
approximation (or curve evolution). The basic idea of the method is very simple.
At every evolution step, a contour point with the smallest relevance measure is
removed, and two of its neighbor points become connected and form a contour’s
line segment. The relevance measure K is given by:

K(s1, s2) =
β(s1, s2) l(s1) l(s2)

l(s1) + l(s2)
(1)

where β is the turn angle at the common vertex of two contour’s segments s1
and s2 and l(.) is the length function, normalized with respect to the total length
of a polygonal curve. The main property of this measure is that higher the value
of K(s1, s2), the larger the contribution of the curve of arc s1∪ s2 to the shape
[5,6].

To demonstrate the DCE and to be able to compare it with an algorithm
proposed in this paper we created a 2D shape on a triangulated grid shown on
Fig.2(a). To be able to use the relevance measure defined as (1), our triangu-
lated grid is located on a plane so that Euclidean distances and angles can be
easily computed. Figure 2 shows 3 stages of boundary evolution where an input
image clearly has noisy borders. At first, this method allows us to smooth ob-
ject’s borders by removing noisy vertices (compare Fig.2(a) with Fig.2(b) and
Fig.2(c)).

If we continue to evolve the curve, we will linearize digital arcs that are rel-
evant to the curve shape, which will result in a successive simplification of the
curve shape. Since in every evolution step, the number of digital line segments in
the curve decomposition decreases by one, the evolution converges to a convex
polygon, which defines the highest level in the shape hierarchy.

Figure2(d) shows an iteration stage where we left with 6 vertices that represent
boundary contour. We can notice that the algorithm removed a top vertex that
is an important point for the shape and normally should be presented for further
image processing tasks such as object recognition.

3 DCE on an Arbitrary Triangulated Surface

To apply DCE algorithm to a contour formed by vertices on a triangulated
surface we propose to use the same idea as for contours on a regular 2D grid.
The main difference between these two cases is that on a 3D surface the notions
of Euclidean distances as well as Euclidean angles do not exist. We need to find
a new relevance measure that can be easily computed on a 3D surface.

If we simply try to translate a relevance measure from a regular 2D grid onto
a triangulated domain we need to find equivalent measurements. A Euclidean
distance could be easily replaced with a geodesic distance and can be efficiently
computed with the help of Fast Marching Method (FMM) [8]. Another parameter
that needs to be translated is the Euclidean angle. Compare to distances, a
computation of geodesic angles is not a trivial problem. To overcome this issue

414 S. Poltaretskyi, J. Chaoui, and C. Hamitouche-Djabou

(a) Input image (b) Stage 1

(c) Stage 2 (d) Stage 3

Fig. 2. Three stages of Discrete Curve Evolution with the relevance measure proposed
in [6]

we propose a new measure that uses only geodesic distances to compute a cost
function for each vertex.

To obtain our formula we analyze four cases shown on Fig.3. Figures 3(a),
3(b), 3(c) have spikes formed by two segments with exactly the same length but
different distances between non-connected vertices that form these spikes. We
observe that a spike on Fig.3(a) is not relevant compared to overall boundary
while spikes on Fig.3(b) and Fig.3(c) are important. Figures 3(c) and 3(d) con-
tain spikes with the same distances between non-connected vertices but different
segments’ lengths that form these spikes; where we can observe that a pick on
Fig.3(d) more important than on a Fig.3(c). We conclude that a vertex cost is
directly proportional to a sum of length of two segments that are connected to
the studying vertex and is inversely proportional to a distance between non-
connected vertices of these segments. We define a formula for a cost function as
the next:

K =
a+ b√

c
(2)

where a, b, and c are shown on Fig.4(a).
It is important to note that to find a distance c between non-connected vertices

of a spike we search for the shortest path between these points only inside an
object that is defined by the studied contour, Fig.4(a). When a vertex is found
in a concave region a distance c will be equal to the sum of segments that form
a cavity, Fig.4(b):

c = a+ b (3)

Discrete Curve Evolution on Arbitrary Triangulated 3D Mesh 415

A very important point is why we use a square root of c in (2) instead of just c.
As we can see, the last condition implies that we are no longer able to distinguish
between “concave” vertices. Let us imagine two different concave regions:

a) a = 10 cm, b = 20 cm and c = 30 cm
b) a = 1 cm, b = 0.5 cm and c = 1.5 cm

A cost function without the square root will give a cost value 1 for both cases,
while the case “a” is more important as it represents bigger segment. A cost
function with the square root will give a cost value 4.48 for the case “a” and
1.22 for the case “b”. Here we can easily decide to remove a vertex from the case
“b”.

We now have a relative measure that can be used on an arbitrary triangulated
surface as it is very easy to compute geodesic distances between points.

(a) A spike with
edge sizes equal
to 1 distance unit
and a big angle

(b) A spike with
edge sizes equal
to 1 distance unit
and a medium an-
gle

(c) A spike with
edge sizes equal
to 1 distance unit
and a sharp angle

(d) A spike with
edge sizes equal to
2 distance units
and a sharp angle

Fig. 3. The influence of a vertex connecting two segments on the shape of the curve
depends on segment lengths that form a spike and the distance between the non-
connected vertices of these segments

(a) Spike (b) Cavity

Fig. 4. Two types of contour topology

416 S. Poltaretskyi, J. Chaoui, and C. Hamitouche-Djabou

3.1 Application of DCE on a Planar Triangulated Surface

To validate our cost function we first intend to apply it to a contour shown on
Fig.2(a). This contour is defined around an object that is drawn on a triangulated
surface where all triangles, that define this surface, lie on the same plane. This
fact allows us to apply a relevance measure defined in [5] and a measure developed
in this paper to the same boundary. Figure5 shows result obtained with the
current method. For a good visual comparison we demonstrate several contour
evolution stages that contain exactly the same number of boundary vertices.

With the first stage both contours contain 30 vertices. Comparing our results
Fig.5(b) with previous algorithm Fig.2(b) we can clearly state that our method
generates a contour that is a lot smoother and approximates the input shape in
a better way.

With the second stage we generate contours with 20 vertices, Fig.5(c) and
Fig.2(c). Both methods create a good approximation of the input shape but we
still can say that our approach generates a slightly smoother boundary.

With the third stage we produce contours with 6 vertices, Fig.5(d) and Fig.2(d).
Our approach converged to a convex polygon that approximates in a good way the
input contour. Previous approach lost an important part of the input boundary
and did not achieve a convex shape, Fig.2(d).

We can state that method introduced in this paper outperform previously
proposed algorithm on a 2D grid.

(a) Input Image (b) Stage 1

(c) Stage 2 (d) Stage 3

Fig. 5. Three stages of the proposed Discrete Curve Evolution algorithm

Discrete Curve Evolution on Arbitrary Triangulated 3D Mesh 417

3.2 Application of DCE on an Arbitrary Triangulated Surface

After comparing our results with the previous method, we apply our algorithm
on objects defined on arbitrary triangulated surfaces. Figure 6 shows 4 iterations
of a contour evolution. As we can see all points that are removed from the contour
are less significant compared to points that approximate a boundary at a current
iteration.

(a) Input image (b) Stage 1

(c) Stage 2 (d) Stage 3

Fig. 6. Three stages of the proposed Discrete Curve Evolution algorithm on an arbi-
trary triangulated surface

Figures 7, 8 show four binary sets of vertices that lie on different meshes. With
green points we highlight landmarks detected with the help of our algorithm.
Obtained results demonstrate high robustness and efficiency of the proposed
method.

4 Application to Skeleton Pruning

The skeleton is important for object representation and recognition in various
areas such as image retrieval, computer graphics, character recognition, image

418 S. Poltaretskyi, J. Chaoui, and C. Hamitouche-Djabou

(a) Example 1 (b) Example 2

Fig. 7. Landmarks points detected with the help of proposed method

(a) Example 3 (b) Example 4

Fig. 8. Landmarks points detected with the help of proposed method

Discrete Curve Evolution on Arbitrary Triangulated 3D Mesh 419

processing and biomedical image analysis [4]. Skeleton-based representations are
the abstraction of objects that contains shape features and topological struc-
tures. Great work have been done by lot of researchers to recognize the generic
shape by matching skeleton structures, where the most significant problem is the
skeleton’s sensitivity to an object’s boundary deformation. Little noise or vari-
ation of the boundary often generates redundant skeleton branches that may
seriously disturb the topology of the skeleton’s graph [3]. Lot of efforts have
been made to develop methods for skeleton pruning; a good overview could be
found in [3]. All these methods focused on skeleton extraction and pruning for a
well defined topological grid. To the best of our knowledge, no method exists for
skeleton pruning on a polygonal mesh. This section describes a new algorithm
to prune a skeleton on an unstructured triangulated grid.

We are inspired by two different publications [3] and [10]. In [3] authors pro-
pose to use the DCE algorithm for skeleton pruning. The main idea is to remove
all skeleton points whose generating points lie on the same contour segment.
Another method is proposed in [10] where authors suggest to find salient points
of an object contour with the help of DCE. These points represent the stable
endpoints of the skeleton. Authors use these points to propagate the skeleton
inside the object by selecting each time a point from the object that has equal
distances to the contour parts.

We suggest to use the DCE algorithm to extract salient points of an ob-
ject’s boundary. We then connect these points to the closest points on the com-
puted skeleton. The last step is the actual pruning where we remove all skeleton
branches that are not connected to salient points.

Here we present few results of the proposed pruning on triangulated surface.
First, we apply a method described in [1] to extract a skeleton from a set of
vertices on polygonal mesh and we demonstrate results on Fig.9(a) where we
observe many unnecessary branches caused by noisy boundary. Our next step is
to find shape landmarks (or salient points) with the help of the proposed DCE
algorithm and to connect these points to the closest skeleton point. Then, we
remove all branches that do not start with the found landmarks. Figure 9(a)
shows the obtained results, where we highlight detected landmarks in green. We
can state that the obtained skeleton is 100 percent clean and represents complete
topology and geometry of the input shape.

Now, we demonstrate few more results for different shapes on an arbitrary
triangulated mesh. Figure 9(a) shows a worm shape with the calculated skeleton
and landmarks. Extracted skeleton contains redundant branches that need to be
removed. After applying our algorithm we obtain results shown on Fig.9(b).

Figure 9 contains a starfish form which is more complicated than a worm
shape. We can see that our method correctly identified shape landmarks and the
pruned skeleton reflects the topology of an input shape.

420 S. Poltaretskyi, J. Chaoui, and C. Hamitouche-Djabou

(a) Extracted skeleton (b) Pruned skeletom with proposed
method

Fig. 9. Skeleton pruning technique for a set of vertices on a triangulated surface pro-
posed in this paper

(a) Extracted skeleton with salient
points

(b) Pruned skeletom

Fig. 10. Skeleton pruning technique for a shape of a worm on a 3D surface

(a) Extracted skeleton with salient
points

(b) Pruned skeletom

Fig. 11. Skeleton pruning technique for a shape of a starfish on a 3D surface

Discrete Curve Evolution on Arbitrary Triangulated 3D Mesh 421

5 Conclusion

In this paper we developed a new algorithm to detect characteristic landmarks
of any shape defined as a set of vertices on an arbitrary triangulated surface
or a set of pixels on a regular grid. The proposed method iteratively removes
boundary vertices with smallest contribution to the global object shape so that
at the end we keep only points that maximally represent a shape contour. We
apply the proposed algorithm for several objects represented on triangulated
surfaces. The obtained results justify the good reliability of our approach.

We also showed a useful application of the proposed algorithm for skeleton
pruning. The demonstrated results clearly show efficiency of this approach. Ex-
tracted skeletons represent correctly objects’ geometry and topology.

References

1. Kudelski, D., Viseur, S., Mari, J.-L.: Skeleton extraction of vertex sets lying on
arbitrary triangulated 3D meshes. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano,
B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 203–214. Springer, Heidelberg (2013)

2. Rossl, C., Kobbelt, L., Seidel, H.P.: Extraction of feature lines on triangulated
surfaces using morphological operators. In: AAAI Spring Symposium on Smart
Graphics, vol. 00-04, pp. 71-75 (March 2000)

3. Bai, X., Latecki, L.J., Liu, W.-Y.: Skeleton Pruning by Contour Partitioning with
Discrete Curve Evolution. IEEE Transactions on Pattern Analysis and Machine
Intelligence 29(3), 449–462 (2007)

4. Blum, H.: Biological Shape and Visual Science (Part I). J. Theoretical Biology 38,
205–287 (1973)

5. Latecki, L.J., Lakämper, R.: Convexity Rule for Shape Decomposition Based
on Discrete Contour Evolution. Computer Vision and Image Understanding
(CVIU) 73, 441–454 (1999)

6. Latecki, L.J., Lakämper, R.: Polygon evolution by vertex deletion. In: Nielsen,
M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS,
vol. 1682, pp. 398–409. Springer, Heidelberg (1999)

7. Latecki, L.J., Lakamper, R.: Shape similarity measure based on correspon-
dence of visual parts. IEEE Trans. Pattern Analysis and Machine Intelligence
(PAMI) 22(10), 1185–1190 (2000)

8. Kimmel, R., Sethian, J.A.: Computing Geodesic Paths on Manifolds. Proceedings
of the National Academy of Sciences of the United States of America 95(15), 8431–
8435 (1998)

9. Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechan-
ics, Computer Vision and Materials Sciences. Cambridge University Press (1996)

10. Yang, X., Bai, X., Yang, X., Zeng, L.: An Efficient Quick Algorithm for Computing
Stable Skeletons. In: Congress on Image and Signal Processing (2009)

Author Index

Andres, Eric 332, 358
Aveneau, Lilian 358

Batenburg, K. Joost 297
Battaglino, Daniela 25
Baudrier, Étienne 214
Bertrand, Gilles 51, 63
Bhowmick, Partha 370, 396
Bilotta, Stefano 250
Biswas, Arindam 370
Biswas, Ranita 396
Boutry, Nicolas 320
Brlek, Srecko 122
Brocchi, Stefano 250
Brunetti, Sara 226

Chaoui, Jean 410
Coeurjolly, David 75, 162
Couprie, Michel 51
Cuel, Louis 134

Damiand, Guillaume 39
Deniţiu, Andreea 262
Der Sarkissian, Henri 238
Di Fabio, Barbara 202
Domenjoud, Eric 1
Dulio, Paolo 226, 285

Esbelin, Henri-Alex 384

Frosini, Andrea 25, 285
Fuchs, Laurent 358

Gérard, Yan 13
Géraud, Thierry 320
Guerrini, Veronica 25

Hamitouche-Djabou, Chafiaa 410

Karmakar, Nilanjana 370
Kenmochi, Yukiko 99
Kingston, Andrew 238, 275
Klette, Reinhard 190

Lachaud, Jacques-Olivier 134, 162
Landi, Claudia 202
Largeteau-Skapin, Gaelle 332
Levallois, Jérémy 162

Li, Heyang 275
Linnér, Elisabeth 88, 111
Luengo Hendriks, Cris L. 309

Malgouyres, Remy 384
Malmberg, Filip 111, 309
Mazo, Löıc 214
Monteil, Thierry 176

Najman, Laurent 320
Ngo, Phuc 99
Normand, Nicolas 238, 275

Pagani, Silvia M.C. 285
Passat, Nicolas 99
Peri, Carla 226
Petra, Stefania 262
Poltaretskyi, Sergii 410
Provençal, Xavier 1

Rinaldi, Simone 25
Roussillon, Tristan 39, 150

Saha, Punam K. 111
Schnörr, Christoph 262
Schnörr, Claudius 262
Selig, Bettina 309
Shin, Bok-Suk 190
Sivignon, Isabelle 344
Socci, Samanta 25
Solnon, Christine 39
Strand, Robin 88, 111
Svalbe, Imants 238, 275

Talbot, Hugues 99
Thibert, Boris 134
Toutant, Jean-Luc 332
Tremblay, Hugo 122
Tremblay, Jérôme 122

Vacavant, Antoine 13
van Leeuwen, Tristan 297
Vuillon, Laurent 1

Weber, Romaine 122

Xu, Zezhong 190

Zrour, Rita 332

	Preface
	Organization
	Table of Contents
	Models for Discrete Geometry
	Facet Connectedness of Discrete Hyperplaneswith Zero Intercept: The General Case
	1 Preliminaries
	2 Computation of the Connecting Thickness
	3 Connectedness at the Connecting Thickness
	4 Main Connectedness Result
	5 Connectedness of Hyperplanes with Non-zero Shift
	6 Summary of Results and Perspectives
	References

	About the Maximum Cardinality of the DigitalCover of a Curve with a Given Length
	1 Introduction
	1.1 Multiresolution and Fixed Resolution Bounds for the Size of the Digital Representation of a Shape
	1.2 Notations and Problem Statement

	2 Minimum Length Covering Curves of a Set of Squares
	3 Minimum Length Covering Curves of nSquares
	3.1 About Their Existence
	3.2 MLCC of n Squares and Expressions of L(n) and N(l)

	4 Extensions of the Results
	4.1 With Other Kinds of Covers
	4.2 With Closed Curves
	4.3 In Dimension d
	4.4 With Other Distances

	5 Conclusion
	References

	Binary Pictures with Excluded Patterns
	1 Patterns in Binary Pictures and Polyomino Classes
	2 Robust Polyomino Classes
	3 Classes of Polyominoes Defined by Submatrix Avoidance
	4 Generalized Matrix Patterns
	References
	Appendix

	Discrete and Combinatorial Topology
	2D Topological Map Isomorphism forMulti-Label Simple Transformation Definition
	1 Introduction
	2 Preliminary Notions
	2.1 Labeled Images and Partitions into Regions
	2.2 Combinatorial Maps
	2.3 Topological Maps
	2.4 Isomorphisms and Signatures
	2.5 Transformations Preserving Topology

	3 Topological Map Isomorphism
	4 ML-simple Transformation
	5 Look-up Tables of ML-simple Transformations
	6 Conclusion
	References

	Isthmus-Based Parallel and Asymmetric 3D Thinning Algorithms
	1 Introduction
	2 Voxel Complexes
	3 Simple Voxels
	4 Critical Kernels
	5 A Generic 3D Parallel and Asymmetric Thinning Scheme
	6 Isthmus-Based Asymmetric Thinning
	7 Conclusion
	References

	Completions and Simple Homotopy
	1 Introduction
	2 Basic Definitions for Simplicial Complexes
	3 Completions
	4 Completions on Simplicial Complexes
	5 Product
	6 Completions and Homotopic Pairs
	7 Completions and Simple Homotopy
	8 Conclusion
	References

	Geometric Transforms
	2D Subquadratic Separable DistanceTransformation for Path-Based Norms
	1 Introduction
	2 Preliminaries
	3 Separable Distance Transformation
	3.1 Voronoi Map from Separable Approach and Metric Conditions
	3.2 A First Generic Adapter
	3.3 Subquadratic Algorithm in Dimension 2

	4 Implementation Details and Experimental Analysis
	5 Conclusion and Discussion
	References

	Anti-Aliased Euclidean Distance Transformon 3D Sampling Lattices
	1 Introduction
	1.1 Supersampling and Coverage
	1.2 Euclidean Distance Transforms
	1.3 Three-Dimensional Sampling Lattices
	1.4 Scope of This Paper

	2 Method
	2.1 Implementation
	2.2 Computation of df(pω)

	3 Experiments
	3.1 Choice of Test Images

	4 Results
	4.1 Bias Error
	4.2 Error Range

	5 Discussion
	5.1 Bias Errors
	5.2 Error Range
	5.3 Conclusions and Future Work

	References

	Efficient Neighbourhood Computing for Discrete Rigid Transformation Graph Search
	1 Introduction
	1.1 Discrete Rotations and Discrete Rigid Transformations
	1.2 Registration Issues
	1.3 Contribution

	2 Introduction to Discrete Rigid Transformation Graphs
	2.1 Rigid Transformation Space
	2.2 Discrete Rigid Transformation Graph
	2.3 Discrete Rigid Transformation Graph and Image Registration
	2.4 Local Search on a Discrete Rigid Transformation Graph

	3k- Neighbourhood Construction Algorithm
	3.1 Tipping Surfaces Associated to a Discrete Rigid Transformation
	3.2 Sweeping Plane Algorithm for DRT Sub-graph Construction
	3.3k- Neighbourhood Construction

	4 Complexity Analysis
	4.1 Time Complexity of k-Neighbourhood Construction Algorithm
	4.2 Average Degree of DRT Graphs

	5 Experiments
	6 Conclusion
	References

	The Minimum Barrier Distance – Stability to Seed Point Position
	1 Introduction
	2 The Minimum Barrier Distance
	3 Stability of the Minimum Barrier Distance with Respect to Seed Point Position
	3.1 Invariance under Seed Point Position
	3.2 The δ-Interface

	4 Experiments and Results
	4.1 Stability to Seed Point Position
	4.2 Uncertainty of Border Position

	5 Conclusions and Future Work
	References

	Discrete Shape Representation, Recognition and Analysis
	Efficient Computation of the Outer Hullof a Discrete Path
	1 Introduction
	2 Preliminaries
	3 Outer and Convex Hull
	4 Algorithm
	5 Concluding Remarks
	References

	Voronoi-Based Geometry Estimatorfor 3D Digital Surfaces
	1 Introduction
	2 VCM on Digital Sets
	2.1 Definition
	2.2 Multigrid Convergence of the VCM-Estimator

	3 Multigrid Convergence of the Normal Estimator
	4 Experiments
	5 Conclusion
	References
	Appendix

	An Arithmetical Characterization of the Convex Hull of Digital Straight Segments
	1 Introduction
	2 A Simple Arithmetical Characterization
	2.1 Recurrence Relations
	2.2 Integer Division and Ray Casting
	2.3 A Unimodular Basis

	3 Convex Hull Algorithms
	3.1 A Forward Approach
	3.2 A Backward Approach
	3.3 Experiments

	4 Conclusion
	References

	Parameter-Free and Multigrid ConvergentDigital Curvature Estimators
	1 Introduction
	2 Preliminaries
	3 Multigrid Convergence of 2D Parameter-Free Curvature
	4 3D Parameter-Free Curvature Tensor Estimators
	5 Experimental Evaluation
	6 Conclusion
	References
	A Proofs

	Freeman Digitization and Tangent WordBased Estimators
	1 Freeman Square Box Quantization ...
	2 ... Is Not Well Defined for Smooth Curves
	3 Some Workarounds
	3.1 Restrict
	3.2 Extend
	3.3 Blur
	3.4 Look Almost Everywhere

	4 First-Order Differential Operators via Tangent Words
	4.1 Length Estimation
	4.2 Tangent Estimation
	4.3 Maximal Symmetric Tangent Words

	5 Why Does Convexity Matter for Maximal Segment Based Estimators?
	6 Conclusion
	References
	7 Appendix: Postponed Proofs

	Determination of Length and Widthof a Line-Segment by Using a Hough Transform
	1 Introduction
	2 Voting Analysis in Image Space
	2.1 Voting Cells and Voting Values
	2.2 Voting Variances

	3 Statistical Distribution in Hough Space
	3.1 Statistical Variances
	3.2 Quadratic Polynomial Curve Fitting
	3.3 Length and Width of Line-Segment

	4 Experimental Results
	5 Conclusions
	References

	Stable Shape Comparison of Surfacesvia Reeb Graphs
	1 Introduction
	2 Preliminaries on Reeb Graphs
	3 Editing Deformations
	4 Editing Distance
	5 Stability Result
	6 Discussion
	References

	About Multigrid Convergence of Some Length Estimators
	1 Introduction
	2 Background
	2.1 Digitization Model
	2.2 Local Estimators
	2.3 Adaptive Estimators: MDSS and MLP
	2.4 Semi-local Length Estimators

	3 Sparse Estimators
	3.1 Definition
	3.2 Convergence
	3.3 Concave Functions
	3.4 Strong Concavity

	4 Conclusion
	References

	Discrete Tomography
	Non-additive Bounded Sets of Uniqueness in Zn
	1 Introduction
	2 Definitions and Preliminaries
	3 Non-additive Bounded Set of Uniqueness
	3.1 Non-additive Sets in Z3
	3.2 Non-additive Sets in 4
	3.3 Non-additive Sets in Zn

	4 Conclusions
	References

	Back-Projection Filtration Inversionof Discrete Projections
	1 Introduction
	2 Image Reconstruction and the Discrete PSF
	2.1 Reconstruction of Images Using a Finite, Discrete PSF
	2.2 Image Reconstruction Examples with K>>1

	3 Regularisation of the PSF
	4 Reconstruction Results for De-convolution of Back-Projected Images Using the Weighted PSF
	5 Reconstruction Using Different Distributions of Projected View Angles
	5.1 Clustered Projection Angles
	5.2 Randomly Distributed Projection Angles
	5.3 Discrete Image Reconstruction Errors

	6 Summary, Conclusions and Future Work
	References

	Discrete Tomography ReconstructionAlgorithms for Images with a BlockingComponent
	1 Introduction
	2 Notation and Preliminaries
	3 Properties
	3.1 Switching Components and Unique Solutions

	4 The Reconstruction Algorithm
	5 A Network Flow Approach to Reconstruction
	6 Conclusions
	References

	An Entropic Perturbation Approach toTV-Minimization for Limited-Data Tomography
	1 Introduction
	2 Weak Phase Transitions for TV-Based Reconstruction
	3 TV-Recovery by Linear Programming
	3.1 Primal Linear Program and Its Dual
	3.2 Uniqueness of Primal LP

	4 Recovery by Perturbed Linear Programming
	5 NumericalExperiments
	6 Conclusion
	References

	Fourier Inversion of the Mojette Transform
	1 Introduction
	2 The Mojette Transform
	3 Fourier Properties of Mojette Projections
	4 Mojette Fourier Inversion
	4.1 Exact Resampling of Projection Slices
	4.2 Reconstruction Process

	5 Results
	6 Conclusion
	References

	Uniqueness Regions under Setsof Generic Projections in Discrete Tomography
	1 Introduction
	2 Definition and Known Results
	3 Characterization of the Uniqueness Regions by Two Directions
	4 Conclusions and New Directions of Research
	References

	Adaptive Grid Refinementfor Discrete Tomography
	1 Introduction
	2 Algorithm
	2.1 Adaptive Refinement
	2.2 Reconstruction

	3 Numerical Results
	4 Conclusions and Discussion
	References

	Morphological Analysis
	Exact Evaluation of Stochastic Watersheds:From Trees to General Graphs
	1 Introduction
	2 Preliminaries
	2.1 Edge Weighted Graphs
	2.2 Exact Stochastic Watersheds

	3 Method
	4 Visualizing the Probability Density Function
	5 Experiments
	6 Conclusions
	References

	On Making nD Images Well-Composedby a Self-dual Local Interpolation
	1 Introduction
	2 A Characterization of 3D Well-Composed Gray-Valued Images
	2.1 2D WC Sets and Gray-Valued Images
	2.2 3D WC Sets and Gray-Valued Maps

	3 Local Interpolations
	3.1 Subdivision of a Domain and� Z2�nas a Poset
	3.2 Interpolations with One Subdivision
	3.3 A Set of Properties That an Interpolation Has to Satisfy
	3.4 The Scheme of Local Interpolations Verifying P
	3.5 I0, IWC, and Isol for Local Interpolations
	3.6 Determining f1 for Self-dual Local Interpolations
	3.7 Equations of f2 for Self-dual Local Interpolations
	3.8 Equations of f3 for Local Self-dual Interpolations

	4 Conclusion
	References

	Discrete Modelling and Visualization
	Implicit Digital Surfacesin Arbitrary Dimensions
	1 Introduction
	1.1 Recalls and Notations

	2 Digitization Model
	2.1 The Closed Centered Digitization Model
	2.2 Structuring Elements
	2.3 Digital Implicit Surface

	3 Preserving Topology
	3.1 Tunnel-Free Digitization
	3.2 Preserving Connected Components by Digitization

	4 Analytical Characterization of a Digital Implicit Surface
	5 Discussion, Conclusion and Perspectives
	References

	Algorithms for Fast Digital StraightSegments Union
	1 Introduction
	2 General Considerations
	2.1 Preliminary Definitions
	2.2 Setting the Problem and Useful Properties

	3 Fast Union of DSSs: An Arithmetical Algorithm
	3.1 Fast Computation of the Set of Separating Lines
	3.2 Pulling Out the Minimal Characteristics
	3.3 General Algorithm
	3.4 Complexity Analysis

	4 Experimental Results
	5 Conclusion
	References
	Appendix

	Digital Geometry from a Geometric Algebra Perspective
	1 Introduction
	2 An Overview of Geometric Algebra
	2.1 Building the Conformal Geometric Algebra
	2.2 Representing Geometric Elements

	3 Discrete Geometric Primitives
	3.1 Discrete Hyperspheres and Discrete Hyperplanes in CGA
	3.2 Discrete Rounds and Discrete Flats in CGA

	4 Conclusion and Future Works
	References

	Discrete and Combinatorial Tools for Image Segmentation and Analysis
	Segmentation of 3D Articulated Componentsby Slice-Based Vertex-Weighted Reeb Graph
	1 Introduction
	2 Preprocessing and Orthogonal Slicing
	3 Reeb Graph Construction
	4 Segmentation by Weighted Reeb Graph
	4.1 Time Complexity

	5 Results and Conclusion
	References
	Appendix

	Taylor Optimal Kernel for Derivative Etimation
	1 Introduction
	2 Discrete Derivatives for Discrete Functions
	2.1 First 0rder Derivatives
	2.2 Second Order Derivatives

	3 Normal Vectors and Curvature Estimation
	3.1 Normal Vectors Estimation
	3.2 Curvature Estimation

	4 Experimental Evaluation
	4.1 First Order Derivation
	4.2 Second Order Derivation
	4.3 Curvatures

	5 Conclusion
	References

	On Finding Spherical Geodesic Pathsand Circles in Z3
	1 Introduction
	2 Digital Sphere
	2.1 Representation
	2.2 Metrics
	2.3 Topology
	2.4 Characterization

	3 Discrete Spherical Geodesic Path and Circle
	4 Algorithm DSGP
	5 Results
	6 Conclusion
	References
	Appendix

	Discrete Curve Evolution on ArbitraryTriangulated 3D Mesh
	1 Introduction
	2 Discrete Curve Evolution
	3 DCE on an Arbitrary Triangulated Surface
	3.1 Application of DCE on a Planar Triangulated Surface
	3.2 Application of DCE on an Arbitrary Triangulated Surface

	4 Application to Skeleton Pruning
	5 Conclusion
	References

	Author Index

