
Marco Dorigo Mauro Birattari
Simon Garnier Heiko Hamann
Marco Montes de Oca Christine Solnon
Thomas Stützle (Eds.)

 123

LN
CS

 8
66

7

9th International Conference, ANTS 2014
Brussels, Belgium, September 10–12, 2014
Proceedings

Swarm Intelligence

Lecture Notes in Computer Science 8667
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marco Dorigo Mauro Birattari
Simon Garnier Heiko Hamann
Marco Montes de Oca Christine Solnon
Thomas Stützle (Eds.)

Swarm Intelligence
9th International Conference, ANTS 2014
Brussels, Belgium, September 10-12, 2014
Proceedings

13

Volume Editors

Marco Dorigo
Mauro Birattari
Thomas Stützle
IRIDIA, CoDE, Université Libre de Bruxelles, Belgium
E-mail: {mdorigo, mbiro, stuetzle}@ulb.ac.be

Simon Garnier
Rutgers University, New Jersey Institute of Technology, Newark, NJ, USA
E-mail: garnier@njit.edu

Heiko Hamann
University of Paderborn, Department of Computer Science, Paderborn, Germany
E-mail: heiko.hamann@uni-paderborn.de

Marco Montes de Oca
University of Delaware, Department of Mathematical Sciences, Newark, DE, USA
E-mail: mmontes@math.udel.edu

Christine Solnon
LIRIS, INSA de Lyon, Villeurbanne Cedex, France
E-mail: christine.solnon@liris.cnrs.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09951-4 e-ISBN 978-3-319-09952-1
DOI 10.1007/978-3-319-09952-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945573

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contain the papers presented at ANTS 2014, the 9th Inter-
national Conference on Swarm Intelligence, held at IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium, during September 10–12, 2014. The ANTS series
started in 1998 with the First International Workshop on Ant Colony Opti-
mization (ANTS 1998), which attracted more than 50 participants. Since then
ANTS, which is held bi-annually, has gradually become an international forum
for researchers in the wider field of swarm intelligence. In 2004, this development
was acknowledged by the inclusion of the term“swarm intelligence” (next to “ant
colony optimization”) in the conference title. Since 2010, the ANTS conference is
officially devoted to the field of swarm intelligence as a whole, without any bias
toward specific research directions. This is reflected in the title of the conference:
“International Conference on Swarm Intelligence.”

The papers contained in this volume were selected out of 55 submissions. Of
these, 17 were accepted as full-length papers, while nine were accepted as short
papers. This corresponds to an overall acceptance rate of 47%. Also included in
this volume are seven extended abstracts.

All the contributions were presented as posters. The full-length papers were
also presented orally in a plenary session. Extended versions of the best papers
presented at the conference will be published in a special issue of the Swarm
Intelligence journal.

We take this opportunity to thank the large number of people that were
involved in making this conference a success. We express our gratitude to the
authors who contributed their work, to the members of the International Pro-
gram Committee, to the additional reviewers for their qualified and detailed
reviews, and to the staff of IRIDIA for helping with organizational matters.

We hope the reader will find this volume useful both as a reference to current
research in swarm intelligence and as a starting point for future work.

July 2014 Marco Dorigo
Mauro Birattari
Simon Garnier
Heiko Hamann

Marco Montes de Oca
Christine Solnon
Thomas Stützle

Organization

ANTS 2014 was organized by IRIDIA, Université Libre de Bruxelles, Belgium

General Chair

Marco Dorigo Université Libre de Bruxelles, Belgium

Technical Program Chairs

Simon Garnier Rutgers University, USA
Marco A. Montes de Oca University of Delaware, USA
Christine Solnon Institut National des Sciences Appliquées

de Lyon, France

Publication Chair

Heiko Hamann University of Paderborn, Germany

Organization Chairs

Mauro Birattari Université Libre de Bruxelles, Belgium
Thomas Stützle Université Libre de Bruxelles, Belgium

Local Arrangements

Manuele Brambilla Université Libre de Bruxelles, Belgium
Lorenzo Garattoni Université Libre de Bruxelles, Belgium
Andreagiovanni Reina Université Libre de Bruxelles, Belgium

Program Committee

Andy Adamatzky University of the West of England, UK
Daniel Angus University of Queensland, Australia
Jacob Beal BBN Technologies, USA
Tim Blackwell Goldsmiths University of London, UK
Maria José Blesa Aguilera Universitat Politècnica de Catalunya, Spain
Christian Blum University of the Basque Country, Spain
Leticia Cagnina Universidad Nacional de San Luis, Argentina
Alexandre Campo Université Libre de Bruxelles, Belgium
Stephen Y. Chen York University, Canada

VIII Organization

Marco Chiarandini University of Southern Denmark, Denmark
Carlos Coello Coello CINVESTAV-IPN, Mexico
Oscar Cordon European Centre for Soft Computing, Spain
Maurice Clerc Independent Consultant, France
Ana Luisa Custodio Universidade Nova de Lisboa, Portugal
Sanjoy Das Kansas State University, USA
Kusum Deep Indian Institute of Technology Roorkee, India
Jean-Louis Deneubourg Université Libre de Bruxelles, Belgium
Gianni Di Caro IDSIA, USI-SUPSI, Switzerland
Luca Di Gaspero University of Udine, Italy
Karl Doerner Johannes Kepler Universität Linz, Austria
Leandro Dos Santos Coelho Pontifical Catholic University of Parana and

Federal University of Parana, Brazil
Haibin Duan Beihang University, China
Mohammed El-Abd American University of Kuwait, Kuwait
Andries Engelbrecht University of Pretoria, South Africa
Hugo J. Escalante Instituto Nacional de Astrofisica, Optica y

Electronica (INAOE), Mexico
Susana Esquivel Universidad Nacional de San Luis, Argentina
Gianni Fasano Ca’ Foscari University, Italy
Namiz Fatès Loria - Inria, France
Juan L. Fernandez-Martinez Universidad de Oviedo, Spain
Eliseo Ferrante University of Leuven, Belgium
Luca Maria Gambardella IDSIA, USI-SUPSI, Switzerland
Jose M. Garcia-Nieto Universidad de Malaga, Spain
Deborah Gordon Stanford University, USA
Roderich Groß The University of Sheffield, UK
Frédéric Guinand Université du Havre, France
Walter Gutjahr Universität Wien, Austria
Saman Halgamuge University of Melbourne, Australia
Julia Handl University of Manchester, UK
Richard Hartl Universität Wien, Austria
Thomas Jansen Aberystwyth University, UK
Mark Jelasity University of Szeged, Hungary
Yaochu Jin University of Surrey, UK
Joshua Knowles University of Manchester, UK
Xiaodong Li RMIT University, Australia
Manuel López-Ibáñez IRIDIA, Université Libre de Bruxelles, Belgium
Simone Ludwig North Dakota State University, USA
Stephen Majercik Bowdoin College, USA
Vittorio Maniezzo Università di Bologna, Italy
Franco Mascia IRIDIA, Université Libre de Bruxelles, Belgium
Ronaldo Menezes Florida Institute of Technology, USA
Bernd Meyer Monash University, Australia
Martin Middendorf Universität Leipzig, Germany
Nicolas Monmarché Université de Tours, France

Organization IX

Roberto Montemanni IDSIA, USI-SUPSI, Switzerland
Radhika Nagpal Harvard University, USA
Frank Neumann The University of Adelaide, Australia
Ann Nowé Vrije Universiteit Brussel, Belgium
Randal Olson Michigan State University, USA
Ender Özcan University of Nottingham, UK
Kostantinos Parsopoulos University of Ioannina, Greece
Paola Pellegrini French Institute of Science and Technology for

Transport, Development and Networks,
France

Jorge Peña Max Planck Institute for Evolutionary Biology,
Germany

Marc Reimann University of Graz, Austria
Katya Rodŕıguez-Vázquez IIMAS-UNAM, Mexico
Andrea Roli Università di Bologna, Italy
Michael Rubenstein Harvard University, USA
Erol Sahin Middle East Technical University, Turkey
Thomas Schmickl Karl-Franzens-Universität Graz, Austria
Kevin Seppi Brigham Young University, USA
Jurij Silc Jozef Stefan Institute, Ljubljana, Slovenia
Dirk Sudholt The University of Sheffield, UK
Jon Timmis University of York, UK
Colin Torney University of Exeter, UK
Vito Trianni Institute of Cognitive Sciences and

Technologies, CNR, Italy
Elio Tuci Aberystwyth University, UK
Kolbjørn Tunstrøm Princeton Univerisity, USA
Michael N. Vrahatis University of Patras, Greece
Ling Wang Tsinghua University, China
Tom Wenseleers University of Leuven, Belgium
Alan Winfield University of the West of England, UK
Yanjun Yan Western Carolina University, USA

Additional Reviewers

Eduardo Feo Flushing IDSIA, USI-SUPSI, Switzerland
Gianpiero Francesca IRIDIA, Université Libre de Bruxelles, Belgium
Jawad Nagi IDSIA, USI-SUPSI, Switzerland
Andreagiovanni Reina Université Libre de Bruxelles, Belgium
Touraj Soleymani IRIDIA, Université Libre de Bruxelles, Belgium

Table of Contents

A Novel Ant Colony Algorithm for Building Neural Network
Topologies . 1

Khalid Salama and Ashraf M. Abdelbar

An ACO Algorithm to Solve an Extended Cutting Stock Problem for
Scrap Minimization in a Bar Mill . 13

Diego Dı́az, Pablo Valledor, Paula Areces, Jorge Rodil, and
Montserrat Suárez

An Experiment in Automatic Design of Robot Swarms:
AutoMoDe-Vanilla, EvoStick, and Human Experts 25

Gianpiero Francesca, Manuele Brambilla, Arne Brutschy,
Lorenzo Garattoni, Roman Miletitch, Gaëtan Podevijn,
Andreagiovanni Reina, Touraj Soleymani, Mattia Salvaro,
Carlo Pinciroli, Vito Trianni, and Mauro Birattari

Angle Modulated Particle Swarm Variants . 38
Barend J. Leonard and Andries P. Engelbrecht

Ant Colony Optimization on a Budget of 1000 . 50
Leslie Pérez Cáceres, Manuel López-Ibáñez, and Thomas Stützle

Application of Supervisory Control Theory to Swarms of e-puck and
Kilobot Robots . 62

Yuri K. Lopes, André B. Leal, Tony J. Dodd, and Roderich Groß

Can Frogs Find Large Independent Sets in a Decentralized Way? Yes
They Can! . 74

Christian Blum, Maria J. Blesa, and Borja Calvo

Diversity Rate of Change Measurement for Particle Swarm
Optimisers . 86

Phlippie Bosman and Andries P. Engelbrecht

Evolutionary Swarm Robotics: Genetic Diversity, Task-Allocation and
Task-Switching . 98

Elio Tuci

Influencing a Flock via Ad Hoc Teamwork . 110
Katie Genter and Peter Stone

MACOC: A Medoid-Based ACO Clustering Algorithm 122
Héctor D. Menéndez, Fernando E.B. Otero, and David Camacho

Particle Swarm Convergence: Standardized Analysis and Topological
Influence . 134

Christopher W. Cleghorn and Andries P. Engelbrecht

XII Table of Contents

Scheduling a Galvanizing Line by Ant Colony Optimization 146
Silvino Fernandez, Segundo Alvarez, Diego Dı́az,
Miguel Iglesias, and Borja Ena

SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform
for Unknown Environments . 158

Michael Allwright, Navneet Bhalla, Haitham El-faham,
Anthony Antoun, Carlo Pinciroli, and Marco Dorigo

Swarm in a Fly Bottle: Feedback-Based Analysis of Self-organizing
Temporary Lock-ins . 170

Heiko Hamann and Gabriele Valentini

Temporal Task Allocation in Periodic Environments: An Approach
Based on Synchronization . 182

Manuel Castillo-Cagigal, Arne Brutschy, Alvaro Gutiérrez, and
Mauro Birattari

Towards a Cognitive Design Pattern for Collective Decision-Making 194
Andreagiovanni Reina, Marco Dorigo, and Vito Trianni

Short Papers

A Novel Competitive Quantum-Behaviour Evolutionary Multi-Swarm
Optimizer Algorithm Based on CUDA Architecture Applied to
Constrained Engineering Design . 206

Daniel Leal Souza, Otávio Noura Teixeira,
Dionne Cavalcante Monteiro,
Roberto Célio Limão de Oliveira, and
Marco Antônio Florenzano Mollinetti

Cooperative Object Recognition: Behaviours of a Artificially Evolved
Swarm . 214

David King and Philip Breedon

Emergent Diagnoses from a Collective of Radiologists: Algorithmic
versus Social Consensus Strategies . 222

Daniel W. Palmer, David W. Piraino, Nancy A. Obuchowski, and
Jennifer A. Bullen

Foraging Agent Swarm Optimization with Applications in Data
Clustering . 230

Kevin M. Barresi

GPU Implementation of Food-Foraging Problem for Evolutionary
Swarm Robotics Systems . 238

Kazuhiro Ohkura, Toshiyuki Yasuda, Yoshiyuki Matsumura, and
Masaki Kadota

Table of Contents XIII

Nature-Inspired Swarm Robotics Algorithms for Prioritized Foraging . . . 246
Jade Abbott and Andries P. Engelbrecht

Particle Swarm Optimisation with Enhanced Memory Particles 254
Ian Broderick and Enda Howley

Sorting in Swarm Robots Using Communication-Based Cluster Size
Estimation . 262

Hongli Ding and Heiko Hamann

Using Fluid Neural Networks to Create Dynamic Neighborhood
Topologies in Particle Swarm Optimization . 270

Stephen M. Majercik

Extended Abstracts

A Low-Cost Real-Time Tracking Infrastructure for Ground-Based
Robot Swarms . 278

Alan G. Millard, James A. Hilder, Jon Timmis, and
Alan F.T. Winfield

A New Ant Colony Optimization Algorithm: Three Bound Ant
System . 280

Nikola Ivkovic and Marin Golub

An Adaptive Bumble Bees Mating Optimization Algorithm for the
Hierarchical Permutation Flowshop Scheduling Problem 282

Yannis Marinakis and Magdalene Marinaki

Gene Expression in DNA Microarrays: A Classification Problem Using
Artificial Bee Colony (ABC) Algorithm . 284

Beatriz A. Garro, Roberto A. Vazquez, and Katya Rodŕıguez

Morphology Learning via MDL and Ants . 286
Päivi Suomalainen

Parallelizing Solution Construction in ACO for GPUs 288
Noriyuki Fujimoto and Shigeyoshi Tsutsui

Solving Resource-Constraint Project Scheduling Problems Based on
ACO Algorithms . 290

Antonio Gonzalez-Pardo and David Camacho

Author Index . 293

A Novel Ant Colony Algorithm for Building

Neural Network Topologies

Khalid Salama1 and Ashraf M. Abdelbar2

1 School of Computing, University of Kent,
Canterbury, United Kingdom

kms39@kent.ac.uk
2 Dept. of Mathematics & Computer Science, Brandon University,

Manitoba, Canada
abdelbara@brandonu.ca

Abstract. A re-occurring challenge in applying feed-forward neural net-
works to a new dataset is the need to manually tune the neural network
topology. If one’s attention is restricted to fully-connected three-layer
networks, then there is only the need to manually tune the number of
neurons in the single hidden layer. In this paper, we present a novel
Ant Colony Optimization (ACO) algorithm that optimizes neural net-
work topology for a given dataset. Our algorithm is not restricted to
three-layer networks, and can produce topologies that contain multiple
hidden layers, and topologies that do not have full connectivity between
successive layers. Our algorithm uses Backward Error Propagation (BP)
as a subroutine, but it is possible, in general, to use any neural net-
work learning algorithm within our ACO approach instead. We describe
all the elements necessary to tackle our learning problem using ACO,
and experimentally compare the classification performance of the op-
timized topologies produced by our ACO algorithm with the standard
fully-connected three-layer network topology most-commonly used in the
literature.

1 Introduction

Pattern classification is a crucial real-world problem, concerned with predicting
the class of a given pattern based on its input attributes, using a well-constructed
classification model. The classification process consists of two stages. The train-
ing stage utilizes a training set of labeled patterns, that is a set of patterns
along with their correct class labels, that should be sufficiently representative
of the domain of interest. A classification algorithm uses the training set to
construct an internal model of the relationships between the attributes of the
input patterns and their corresponding class labels. Then, during the subsequent
operating stage, the classifier uses its internal model to predict the class of un-
labeled patterns that it was not presented with during the training stage. One
of the most widely-studied and applied methods for pattern classification are
artificial neural networks (ANN), which use an internal model consisting of a

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 K. Salama and A.M. Abdelbar

vector of real-valued weights associated with inter-neuronal connections, as will
be described in Section 2.1.

The most commonly used neural network topology is a three-layer topology,
consisting of an input layer, a single hidden layer, and an output layer, with
full connectivity between layers. The size of the input and output layers are
determined by characteristics of the dataset, while the number of neurons in
the hidden layer is often manually determined by practitioners. In this paper,
we propose a novel algorithm, called ANN-Miner, for automatically learning
the topology of Feed-Forward Neural Networks using Ant Colony Optimization
(ACO). Our algorithm is not restricted to three-layer networks, and can produce
topologies that contain multiple hidden layers, that do not have full connectivity
between successive layers, and that have connections between neurons that are
not in successive layers. Our algorithm uses Backward Error Propagation (BP)
as a subroutine, but it is possible, in general, to use any neural network learning
algorithm within our ACO approach instead.

We begin in Section 2 with a review of ACO and of neural networks. We then
present our ACO approach in Section 3. Experimental methodology and results
are presented in Section 4 and final remarks are offered in Section 5.

2 Background

2.1 Feed-Forward Neural Networks

Feed-forward neural networks (FFNN) are generally acknowledged as being one
of the most widely-applied methods for pattern classification. The most common
FFNN topology is a three-layer topology in which neurons are arranged in an
input layer, a hidden layer, and an output layer. Commonly, there are connections
between every neuron in a layer to all the neurons in the succeeding layer.

Each neuron i is a simple combinatorial circuit which accepts r inputs
o1, . . . , or, and produces a single output oi:

neti =

r∑
i=1

wijoj + θi , oi = f(neti) =
1

1 + e−neti
(1)

where each input oj is the output of a neuron in the previous layer, the weight
wij represents a real-valued weight between neuron j and neuron i, θi represents
a weight associated with neuron i itself called the neuron’s self-bias, and f is an
activation function that is most commonly selected to be the sigmoidally-shaped
logistic function shown in the equation.

A FFNN with n input neurons and m output neurons computes a mapping
Rn �→ Rm. Given a set of training examples T where each training example p
consists of an n-dimensional input vector x and an m-dimensional output vector
y, each input pattern is, in turn, applied to the input layer of the network,
the signal is allowed to propagate through the network, and the output of the
network, denoted y′, is compared to the desired output y to determine the error
of the network for that pattern, denoted Ep. A common error function is the

A Novel Ant Colony Algorithm for Building Neural Network Topologies 3

simple sum of squared error: Ep = 1
2

∑m
i=1(y − y′)2, where the total error over

all patterns is simply E =
∑

p Ep.
If the topology and the weights and self-biases of the network are fixed, then

the error can seen to be a mathematical function of the training set: E = f(T).
On the other hand, if the topology and the training set are held constant, then
the error can be seen as a function of the weights and biases: E = f(w), where
w is a real-valued weight vector that includes all the weights and biases of the
network. Therefore, the problem of training a fixed-topology neural network can
be viewed as a mathematical multi-dimensional function minimization problem.

Perhaps the most popular neural network training algorithm is the gradient
descent based Backward Error Propagation (BP) algorithm which is based on
repeatedly applying the training set to the network (each full pass through the
training set is called an epoch), computing the error E, and then modifying each
element of the weight vector according to:

wi = wi +Δwi , Δwi = −η
∂E

∂wi
(2)

where η is an external parameter called the learning rate.
Before applying a neural network to a particular dataset T ′ for a pattern

classification problem, it is usually necessary to apply some preprocessing to the
dataset T ′ to obtain a new dataset T . Specifically, every c-category categorical
attribute h in T ′ is transformed into c numerical attributes g1, . . . , gc in T , where
gk = 1 if h = k, and gk = 0 if h �= k. If the value of a categorical attribute is
missing, then it is replaced with the most-frequently occurring category label for
that attribute. Any missing numeric attributes are replaced with the value 0.

If the class label b in T ′ has c possible values, then the output patterns in T
will be c-dimensional. If a given pattern has class label u, then the output pattern
vector y will be constructed as follows: ys = (1 − ε) if u = s, and ys = (0 + ε)
if u �= s, where we use ε = 0.1. The purpose for the ε-offset is to avoid the
“saturation regions” of the logistic activation function.

2.2 ACO Related Work

Ant colony optimization is a meta-heuristic for solving combinatorial optimiza-
tion problems, inspired by observations of the behavior of ant colonies in nature.
ACO has been successful in tackling the classification problem of data mining.
A number of ACO-based algorithms have been introduced in the literature with
different classification learning approaches. Ant-Miner [8], proposed by Parpinelli
et al., is the first ant-based classification algorithm, which discovers a list of clas-
sification rules in the form of IF-Conditions-Then-Class. The algorithm has
been followed by several extensions in [5, 6, 8–10].

ACDT [1,2], proposed by Boryczka and Kozak, and Ant-Tree-Miner [7], pro-
posed by Otero et al., are two different ACO-based algorithms for inducing de-
cision trees for classification. Salama and Freitas have recently employed ACO
to learn various types of Bayesian network classifiers, such as Bayesian network

4 K. Salama and A.M. Abdelbar

augmented näıve-Bayes [13], class-based Bayesian multi-nets [14], cluster-based
Bayesian multi-nets [11], and class Markov blankets [12].

As for learning neural networks, the ant-based meta-heuristic was utilized in
two works. Liu et. Al proposed ACO-PB [4], a hybrid of the ant colony and
back-propagation algorithms to optimize the network weights. It adopts ACO to
search the optimal combination of weights in the solution space, and then uses
BP algorithm to obtain the accurate optimal solution quickly. Blum and Socha
applied ACOR, an ant colony optimization algorithm for continuous optimization
[3, 17], to train feed-forward neural networks [15, 16].

Note that, to the best of our knowledge, ACO has not been utilized to learn
the topology of the neural networks prior to the current work.

3 Our Proposed Ant Colony Algorithm

As discussed in Section 2.1, many neural network applications use a simple three-
layer network topology, with full connectivity between layers. We allow our ACO
method to deviate from this by allowing connections to be generated between
hidden neurons and other hidden neurons — under the restriction that the topol-
ogy remain acyclic — as well as direct connections between input neurons and
output neurons. This allows producing networks with a variable number of layers,
as well as arbitrary connections that skip over layers.

3.1 The Construction Graph

The core element of any ACO-based algorithm is the construction graph that
contains the solution components in the search space, with which an ant con-
structs a candidate solution. As for the problem at hand, a candidate solution
is a network topology, and the solution components are the selected connections
between the neurons. More precisely, there are four types of available connec-
tions: 1) connections between input and hidden neurons, 2) connections between
hidden and output neurons, 3) connections between input and output neurons,
and 4) connections between different hidden neurons. Each potential connection
c = i → j, connecting between neurons i and j, has two solution components
in the construction graph: Dtrue

c , representing the decision to include connec-
tion i → j in the current candidate topology being constructed by the ant, and
Dfalse

c , representing the decision not to include the connection. Therefore, the
construction graph can be represented as a two-dimensional 2×|C| array, where
2 refers to the Boolean solution components, and C is the set of the available
connections.

The number of input neurons and output neurons depends of course on the
dataset and the representation that is used for the attributes of the dataset,
while the total number of hidden neurons is an external user-supplied parameter.
Suppose the total number of neurons is N , with Ni input neurons, No output
neurons, and Nh potential hidden neurons. Ni×Nh, Nh×No and Ni×No are the
number of available connections between input and hidden neurons, hidden and

A Novel Ant Colony Algorithm for Building Neural Network Topologies 5

output neurons, and input and output neurons, respectively, in the total available
number of connections |C|. This means that, for instance, an ant can select (or
unselect) a connection between any input neuron and any hidden neuron. The
same applies for the two other connection types.

However, the available connections between the hidden neurons Nh are de-
fined as follows. In order to ensure that the topology is acyclic, we impose the
restriction that i → j is not available if i ≥ j. In other words, each hidden
neuron has a numeric index, and we only allow connections from a given hidden
neuron ni to a higher-numbered neuron nj . It is well-known that any directed
acyclic graph is isomorphic to a graph where the nodes are lexicographically or-
dered and for all arcs (u, v) in the graph u precedes v in the lexicographic order.
Hence, the number of the available connection between the Nh hidden neurons
=(Nh − 1) + (Nh − 2) + ...+ 1+ 0 = Nh(Nh − 1)/2.

The number of input and output neurons, Ni and No, respectively, are deter-
mined by characteristics of the dataset as described in Section 2.1. In the work
described in this paper, we set Nh = Ni +No.

3.2 The ANN-Miner Overall Algorithm

The overall process of ANN-Miner is illustrated in Algorithm 1. In the initial-
ization step of ANN-Miner (line 3), the amount of pheromone assigned to each
solution component Da

c – where a can be true or false – in the construction graph
is initialized with the value 0.5. Hence, for each connection c, the probability of
including i → j (i.e. selecting Dtrue

c) in the topology equals the probability of
not including i → j (i.e. selecting Dfalse

c).
The outline of the algorithm is as follows. In the inner for-loop (lines 6-12),

each anti in the colony creates a candidate solution NNi, i.e. a complete neural
network (line 7). Then the quality of the constructed solution is evaluated (line
8). The best solution NNtbest produced in the colony is selected to update the
pheromone trail according to the quality of its solution Qtbest. After that, the
algorithm compares the iteration-best solution NNtbest with the best-so-far so-
lution NNbsf (the if statement in lines 14-16) to keep track of the best solution
found so far during the algorithm execution.

This set of steps is considered an iteration of the outer repeat − until loop
(lines 4-18) and is repeated until the same solution is generated for a number of
consecutive trials specified by the conv_iterations parameter (indicating con-
vergence) or until max_iterations is reached. The values of conv_iterations,
max_iterations and colony_size are user-specified thresholds. In our exper-
iments (see Section 4), we used 10, 500 and 10 for each of these parameters,
respectively.

The best-so-far neural network undergoes an (optional) post-processing step
to produce the final neural network NNfinal to be returned by the algorithm.
Basically, the algorithm learns the final weights of the connections in the neural
network NNbsf — which is structured with the best topology of connections
found during the search process of the ACO algorithm. In the current imple-
mentation of the ANN-Miner algorithm, we use the standard Backward Error

6 K. Salama and A.M. Abdelbar

Algorithm 1. Pseudo-code of ANN-Miner.

1: Begin
2: NNbsf = φ; t = 1;
3: InitializePheromone();
4: repeat
5: NNtbest = φ; Qtbest = 0;
6: for i = 1 → colony size do
7: NNi = anti.CreateSolution();
8: Qi = EvaluateQuality(NNi);
9: if Qi > Qtbest then
10: NNtbest = NNi; Qtbest = Qi;
11: end if
12: end for
13: UpdatePheromone();
14: if Qtbest > Qbsf then
15: NNbsf = NNtbest; Qbsf = Qtbest;
16: end if
17: t = t+ 1;
18: until t = max iterations or Convergence(conv iterations);
19: NNfinal = PostProcessing(NNbsf);
20: return NNfinal;
21: End

Propagation procedure, described in Section 2.1, to train NNbsf and learn its
final weights. The only difference is that, instead of having BP working on the
conventional three-layer fully-connected network topology, it works on the arbi-
trary topologies constructed by the ACO algorithms.

In our BP post-processing step, we set the learning rate η to 0.01, and we set
the number of epochs to 1000. Using BP for training the final neural network
allows for comparing the quality of the conventional topology with the arbi-
trary topologies constructed by our ACO algorithms, by using the same weight
learning procedure. Solution creation, quality evaluation and pheromone update
procedures are discussed in the following subsections.

3.3 Solution Creation Procedure

The process of creating a new candidate solution (neural network) is described
in Algorithm 2. The procedure starts with an empty (edge-less) neural network
(line 2) to be constructed throughout the procedure. In addition, an empty
array SLN , which represents the ant trail in the construction graph and its se-
lected solution components, is initialized. This data structure is necessary for the
pheromone update procedure, as described later. For each connection c in the
available set of connections C, the ant selects Da

c to decide whether to include
this connection in the candidate networkNN or not (line 4) — by either selecting

A Novel Ant Colony Algorithm for Building Neural Network Topologies 7

Algorithm 2. Pseudo-code of solution creation procedure.

1: Begin CreateSolution()
2: NN ← φ ; SLN ← φ;
3: for c = 1 → |C| do
4: Da

c = SelectDecisionComponent();
5: SLN = SLN ∪ Dc;
6: if Da

c == Dtrue
c then

7: NN = NN ∪ (i→ j)c;
8: end if
9: end for
10: TrainNeuralNetwork(NN);
11: return NN ;
12: End

solution component Dtrue
c or Dfalse

c . The selection of the solution component at
each step is based on the following probabilistic state transition formula

p(Da
c) =

τ (Da
c)

τ (Dtrue
c) + τ

(
Dfalse

c

) , (3)

where p(Da
c) is the probability of selecting decision Da for connection c, and

τ(Da
c) is the current amount of pheromone associated with Da

c . Every selected
solution component Da

c (where a = true or a = false) is added to the data
structure SLN (line 5). However, only if Da

c = Dtrue
c , that is, the ant selected

the decision to include connection c in the topology, the corresponding connection
(i → j)c is appended to the candidate network NN (the if statement in lines
6-8). After the ant visits all the available connections in the construction graph
and performs the include-or-not decision, the network topology of NN is now
complete.

The generated topology of NN may contain some hidden neurons that have
no incoming edges or no outgoing edges. Such a hidden neuron may be considered
“dead” and may be safely removed from the topology. In addition, it is possible
thatNN may contain an input neuron that does not have a complete path to any
output neuron: it may have no outgoing edges, or it may have outgoing edges that
connect only to dead hidden neurons. This is interpreted as the algorithmmaking
the decision that that particular external input is irrelevant to the output of the
network. If this decision is incorrect, then the network NN will likely receive a
poor quality evaluation, and will soon be discarded. On the other hand, if this
decision is correct, then the algorithm will have discovered something important.
It is also possible for NN to contain an output neuron that does not have any
incoming edges, or incoming edges only from dead hidden neurons. This would
result in that output neuron having a constant value without regard for the
network inputs, and would result in the network NN receiving a poor quality
evaluation and being quickly discarded.

We train the neural network NN (line 10) using the Backward Error Prop-
agation procedure (described in Section 2.1), with some optimized parameter

8 K. Salama and A.M. Abdelbar

values (discussed in the following section), as a “quick and dirty” way to obtain
a complete neural network and evaluate its pattern classification quality. We use
BP for training the candidate neural network, not because it is the best weight
optimization method, but because it is a fast procedure that is going to be re-
peated several times during the algorithm execution. In addition, we are only
interested in the relative quality difference between different topologies trained
by the same (even if not very efficient) BP procedure.

3.4 Quality Evaluation and Pheromone Update

A key objective of a pattern classification algorithm is to learn models with
good generalization capabilities, i.e., models that are able to accurately predict
the class labels of new unknown examples. Overfitting occurs when the induced
model reflects good classification performance (fit) on the training (in-sample)
data used in the learning process, yet shows bad predictive performance (gener-
alization) involving new/testing data.

More precisely, in our neural network case, the network topology and its con-
nection weights are the classification model. A bad approach is to use the training
set as the pattern set for learning the model (topology and weights), and then use
the same pattern set to evaluate the classification quality of the model. In this
case, the generalization ability would not be tested during the training phase,
and the quality of the optimized model might be due to a high (undesirable) fit
on the training set, and the same model might exhibit poor predictive power on
the unseen test (out-of-sample) dataset.

Therefore, we split the training set at the beginning of the algorithm into two
mutually exclusive parts: 1) the learning set, which contains 80% of the training
set and is used to learn the neural network topology and weights; and 2) the
validation set, which contains 20% of the training set and is used to evaluate the
quality of the model. The quality Qi of a candidate solution NNi is evaluated
using the predictive accuracy of the model on the validation set. Accuracy is a
simple and yet popular predictive performance measure, computed as:

Accuracy =
|Correct|

|V alidationSet| , (4)

where Correct is the set of correctly classified validation set instances, and
V alidationSet is the current validation set.

After Qi is computed for each candidate solution NNi constructed by all
the ants in the colony at iteration t, the iteration-best solution ant updates
the pheromone amounts on the construction graph. In essence, the pheromone
amounts are increased on all the solution componentsDa

c in the SLNtbest selected
by the iteration-best ant during its trail, where Da

c represents the decision to
include (a = true) or not to include (where a = false) connection c in the
topology. This influences the probability for the subsequent ants to include, or
not to include connection c. The amount of pheromone deposited is based on
Qtbest, the quality of the iteration-best solution NNtbest, as follows:

τ(Da
c) = τ(Da

c) + [τ(Da
c)×Qtbest] ∀Da

c ∈ |SLNtbest| (5)

A Novel Ant Colony Algorithm for Building Neural Network Topologies 9

To simulate pheromone evaporation, normalization is then applied on each
pair of solution components associated with each connection c in the construc-
tion graph. This keeps the total pheromone amount on each pair τ(Dtrue

c) and
τ(Dfalse

c) equal to 1, as follows:

τ(Da
c) = τ(Da

c)/[τ(D
true
c) + τ(Dfalse

c)] ∀c ∈ |C| (6)

3.5 Variations of the Algorithm

We introduce two variations of the ANN-Miner algorithm for learning neural
network topologies, which concern how the connection weights are optimized
throughout the algorithm. As previously mentioned, after each anti constructs
a network topology NNi, the network is trained using the BP procedure.

— Randomly Reinitialized Weights: In the first variation of the algorithm,
ANN-Miner, the weights of the network connections are randomly initialized with
each candidate NNi topology constructed by anti. This means that the algo-
rithm does not make use of the optimized weights of the previously constructed
neural network in the BP procedure for training the current neural network
NNi. Such an approach performs a fair comparison between different candidate
topologies, since they all start weight optimization from the same point: random
initialization of the weights. In this variation, we perform BP with 20 epochs and
0.1 learning rate. Moreover, the BP process in the post-processing step starts
also with randomly initialized set of weights.

— Retaining the Weights-Based “Wisdom”: By contrast, the second vari-
ation makes use of the optimized weights of the neural networks constructed in
previous iterations to train the current neural network. More precisely, in wANN-
Miner, the colony keeps the weight optimization “wisdom”, and accumulates on
it throughout the algorithm’s execution. In fact, NNbsf does not only keep the
topology of the best-so-far neural network, but also keeps its connection weights.
After each ant constructs a candidate topology NNi, the weights of its connec-
tion are initialized with the weights present in NNbsf before the BP weight
optimization procedure executes. Then, if NNi produced better classification
quality than NNbsf , NNi will replace NNbsf , and its connection weights will be
used as initial values for performing BP on subsequent candidate networks.

Note that some connections in NNi may not be present in NNbsf , in which
case their weights will be randomly initialized; there may also be some con-
nections in NNbsf that are not present at all in NNi. Such a diversion in the
topologies maintains the exploration aspect of the weight learning process, in ad-
dition to the exploitation aspect that is realized by building on the best weights
learned in previous iterations. In wANN-Miner, we perform BP, for each candi-
date NNi, with only 10 epochs, and a lower learning rate of 0.05, making use of
the accumulated weight optimization wisdom. Moreover, the BP weight learning
procedure in the post-processing step starts also with the weights of the NNbsf .

— BP as Post-Processing Step: Furthermore, we introduce two other simple
variations of the previous algorithms, in which the first uses the BP weight

10 K. Salama and A.M. Abdelbar

learning post-processing step, and the other returns the NNbsf without any
further weight optimization. The idea behind that is to test the hypothesis that
wANN-Miner may not benefit from the BP post processing step to the same
extent that the first variation, ANN-Miner, may benefit. This is shown in the
results in Section 4.

4 Experimental Methodology and Results

The performance of ANN-Miner was evaluated using 20 benchmark pattern clas-
sification datasets, from the well-known UCI (University of California at Irvine)
repository. We compare the predictive accuracy of four variations of our proposed
ant-based ANN-Miner algorithm (ANN, ANN-BP, wANN, wANN-BP) against
the standard three-layer fully connected topology trained with Backward Error
Propagation – referred to as 3L-BP – as the baseline for our evaluation.

The experiments were carried out using the stratified 10-times 10-fold cross
validation procedure. In essence, a dataset is divided into ten mutually exclusive
partitions (folds), with approximately the same number of patterns and roughly
the same class distribution in each partition. Then, each classification algorithm
is run ten times, where each time a different partition is used as the test set
and the other nine partitions are used as the training set. The results (accuracy
rate on the test set) are then averaged and reported as the accuracy rate of the
classifier. Since we are evaluating stochastic algorithms, we run each ten times
– using a different random seed to initialize the search each time – for each of
the ten iterations of the cross-validation procedure. Table 1 reports the average
of the predictive accuracy (in percentage) values obtained by 10-times 10-fold
cross validation for the 20 datasets, where the highest accuracy for each dataset
is shown in bold face. The last row shows the average rank of each algorithm in
terms of predictive accuracy. The average rank for a given algorithm g is obtained
by first computing the rank of g on each dataset individually. The individual
ranks are then averaged across all datasets to obtain the overall average rank for
algorithm g. Note that the lower the value of the rank, the better the algorithm.

As shown in Table 1, two variations (ANN-Miner-BP and wANN-Miner-BP)
of our proposed ACO-based algorithm had a higher average accuracy rank than
3L-BP, while a third variation (wANN-Miner) had the same rank as 3L-BP. In
details, wANN-Miner-BP, which utilizes the idea of “wisdom”, and performs BP
as a post-processing step on the best-so-far constructed neural network topology,
obtained the best overall average rank with a value of 1.93, and achieved the
highest predictive accuracy in 10 datasets. The ANN-Miner variation, which
randomly initializes the connection weights each time, and performs the BP
post-processing step, obtained second place in the overall average rank with a
value of 2.4, and achieved the highest predictive accuracy in 5 datasets. In third
place, wANN-Miner, which utilizes the “wisdom” idea without the BP post-
processing step, obtained 3.28 as an overall average rank, and achieved the best
predictive accuracy in 3 datasets. The standard Backward Error Propagation
algorithm with the 3 layer topology tied for third place with 3.28 overall average

A Novel Ant Colony Algorithm for Building Neural Network Topologies 11

Table 1. The table on the left shows predictive accuracy (%) results for each dataset,
for each of the five algorithms; the last row shows the average rank of each classifier,
where the lower the rank the better the algorithm. The table on the right shows the
results of applying a Friedman test with the Holm post-hoc test.

Dataset 3L-BP ANN ANN-BP wANN wANN-BP

balance 96.50 63.17 90.50 91.33 94.00
breast-t 32.64 45.27 62.28 57.55 59.37
car 90.29 89.47 93.94 98.19 98.19
credit-a 84.35 83.48 84.35 82.75 83.19
credit-g 74.00 71.90 72.50 71.90 72.60
ecoli 79.53 81.25 84.86 84.86 85.76
glass 46.30 48.87 57.88 48.46 50.84
hayes 60.01 63.02 69.31 75.45 75.59
heart-c 57.46 54.47 56.1 55.43 56.78
heart-h 57.43 62.63 62.66 60.22 63.29
hepatitis 83.79 79.46 80.75 81.92 81.92
ionosph 89.67 92.52 92.81 93.38 93.66
iris 87.28 90.62 94.67 90.67 95.29
pima 75.78 74.86 76.04 75.13 76.17
pop 55.71 39.11 48.04 42.86 44.11
s-heart 81.11 84.45 85.56 81.85 83.70
segment 94.16 88.81 92.77 92.74 93.10
ttt 76.63 50.32 90.94 97.89 98.00
voting 93.89 93.24 94.65 94.90 94.90
wine 94.41 94.93 96.04 93.27 94.38

Avg. rank 3.28 4.13 2.40 3.28 1.93

Hypothesis p Holm

wANN-BP vs ANN-BP 0.342 0.05

wANN-BP vs 3L-BP 0.007 0.025

wANN-BP vs w-ANN 0.007 0.166

wANN-BP vs ANN 1E-5 0.125

ranking, achieving the highest predictive accuracy in 5 datasets. The ANN-Miner
algorithm came in the last place, with 4.13 overall average ranking value.

To determine the level of statistical significance, we applied a non-parametric
Friedman test at the 0.05 threshold with the Holm post-hoc test, comparing
wANN-BP as the control algorithm to each of the other four. These results,
reported in Table 4, show for each comparison the p value and the corresponding
Holm critical value. In each case, the result is statistically significant at the 0.05
significance threshold if the p value is less than the corresponding critical value;
such statistically significant p values are shown in boldface. The results indicate
that wANN-BP is significantly better than wANN, ANN, and 3L-BP, but not
significantly better than ANN-BP.

5 Conclusions and Future Work Directions

Our results indicate that ACO can be an effective technique for constructing
feed-forward neural network topology, and complement the work of Socha and
Blum [15, 16] who found that ACO can be effective in learning neural network
weights. In future work, we would like to integrate the ACOR algorithm [15] to
optimize neural network weights within our framework. We would also like to
explore the use of different quality evaluation functions, as alternatives to the
simple predictive accuracy quality function described in Eq. (4). Furthermore,
we would like to apply our ACO approach to the problem of optimizing fuzzy
membership functions in Adaptive Neuro-Fuzzy Inference Systems (ANFIS).

12 K. Salama and A.M. Abdelbar

References

1. Boryczka, U., Kozak, J.: Ant Colony Decision Trees. In: International Conference
on Computational Collective Intelligence, pp. 4373–4382. Springer, Berlin (2010)

2. Boryczka, U., Kozak, J.: An Adaptive Discretization in the ACDT Algorithm for
Continuous Attributes. In: J ↪edrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI
2011, Part II. LNCS, vol. 6923, pp. 475–484. Springer, Heidelberg (2011)

3. Liao, T., Socha, K., de Oca, M.M., Stuetzle, T., Dorigo, M.: Ant colony optimiza-
tion for mixed-variable optimization problems. IEEE Transactions on Evolutionary
Computation (to appear, 2014)

4. Liu, Y.P., Wu, M.G., Qian, J.X.: Evolving neural networks using the hybrid of
ant colony optimization and bp algorithms. In: Wang, J., Yi, Z., Żurada, J.M.,
Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 714–722. Springer,
Heidelberg (2006)

5. Otero, F., Freitas, A., Johnson, C.: Handling continuous attributes in ant colony
classification algorithms. In: IEEE Symposium on Computational Intelligence in
Data Mining (CIDM 2009), pp. 225–231 (2009)

6. Otero, F., Freitas, A., Johnson, C.: A New Sequential Covering Strategy for
Inducing Classification Rules with Ant Colony Algorithms. IEEE Transactions on
Evolutionary Computation 17(1), 64–74 (2013)

7. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: Inducing Decision Trees with an Ant
Colony Optimization Algorithm. Applied Soft Computing 12(11), 3615–3626 (2012)

8. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony
optimization algorithm. IEEE Transactions on Evolutionary Computation 6(4),
321–332 (2002)

9. Salama, K., Abdelbar, A., Freitas, A.: Multiple Pheromone Types and Other
Extensions to the Ant-Miner Classification Rule Discovery Algorithm. Swarm
Intelligence 5(3-4), 149–182 (2011)

10. Salama, K., Abdelbar, A., Otero, F., Freitas, A.: Utilizing multiple pheromones
in an ant-based algorithm for continuous-attribute classification rule discovery.
Applied Soft Computing 13(1), 667–675 (2013)

11. Salama, K., Freitas, A.: Clustering-based Bayesian Multi-net Classifier
Construction with Ant Colony Optimization. In: IEEE Congress on Evolutionary
Computation (IEEE CEC), pp. 3079–3086 (2013)

12. Salama, K.M., Freitas, A.A.: Extending the ABC-Miner Bayesian Classification
Algorithm. In: Terrazas, G., Otero, F.E.B., Masegosa, A.D. (eds.) NICSO 2013.
SCI, vol. 512, pp. 1–12. Springer, Heidelberg (2014)

13. Salama, K., Freitas, A.: Learning Bayesian Network Classifiers Using Ant Colony
Optimization. Swarm Intelligence 7(2-3), 229–254 (2013)

14. Salama, K., Freitas, A.: Ant Colony Algorithms for Constructing Bayesian Multi-
net Classifiers. Intelligent Data Analysis (accepted, 2014)

15. Socha, K., Blum, C.: Training feed-forward neural networks with ant colony
optimization: An application to pattern classification. In: 5th International
Conference on Hybrid Intelligent Systems (HIS 2005), pp. 233–238 (2005)

16. Socha, K., Blum, C.: An ant colony optimization algorithm for continuous opti-
mization: Application to feed-forward neural network training. Neural Computing
& Applications 16, 235–247 (2007)

17. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European
Journal of Operational Research 185, 1155–1173 (2008)

An ACO Algorithm to Solve an Extended

Cutting Stock Problem for Scrap Minimization
in a Bar Mill

Diego Dı́az, Pablo Valledor, Paula Areces, Jorge Rodil, and Montserrat Suárez

ArcelorMittal Global R&D Asturias
P.O. Box 90 – 33400, Avilés, Asturias, Spain

{diego.diaz,pablo.valledor-pellicer,paula.areces,
jorge.rodil-martinez,montserrat.suarez}@arcelormittal.com

Abstract. We introduce the problem of scrap minimization in a bar
mill with the capability of cutting several bars at once. We show this
problem to be an instance of the cutting stock problem with additional
constraints due to the ordering of the layers and relationships between
orders spanning more than one layer.

We develop an ACO algorithm with a heuristic based on efficient pat-
terns for search space reduction and for tackling the difficulty of building
feasible solutions when the number of blocks is limited. We evaluate the
performance on actual mill programs of different characteristics to show
the usefulness of the algorithm.

1 Introduction

A bar mill transforms a bloom —a short, thick, square-section block of steel—
into bars of specified length, section shape, and section size. The bloom is rolled
in several stages, changing the section and stretching it lengthwise, and finally
cut to length; normally, one mother beam —a bloom after rolling— can be cut
into several bars.

One way to increase productivity in a bar mill is to cut several mother beams
at once. This saves time, but makes the scheduling more complex, since all
the mother beams that are cut together —a layer— must be cut to the same
dimensions.1

The remainder of the mother beams after cutting them into bars is scrapped,
and re-used in the steelshop; however, the scrap should be minimized, to avoid
unnecessary waste. Figure 1 shows the process schematically.

To compound the problem, due to inaccuracies in the process upstream of
the bar mill, the length of the input blooms is not constant, but varies a few
centimeters from one to another. This translates into length variations of a few
meters in the mother beam.

1 The cutting process is slower than rolling. Blooms are rolled into mother beams
sequentially, and the mother beams accumulated until a given number n is reached.
Then this n mother beams are cut together, while the next n accumulate.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014

14 D. Dı́az et al.

Fig. 1. Schematic of the bar mill process

The processes downstream of the bar mill are not relevant for the problem
at hand, except that they impose some additional constraints: the bars are pro-
cessed in groups called bundles, and there are two different processes fed from
the bar mill. Each one must receive the bars one bundle at a time, which trans-
lates into a constraint that no more than two bundles can be open at the bar
mill at any time. Hence if we start cutting bars for one bundle, then all bars
must be for that bundle or at most one other bundle until all bars of the bundle
are ready.

The mills up to now tackled this problem by manually scheduling the line,
relying on expert knowledge from the line operators. The quality of the manual
scheduling is at times very good, but there is an important variance, and the
expert knowledge is difficult, if not impossible, to pass on.

We propose to apply a metaheuristic to automate the line scheduling. In this
paper we introduce an ACO-based algorithm that solves the core problem of
assigning the bars to the blooms, given the bloom processing order and layer
structure as inputs, to match the way the mill works. Future extensions may
widen the scope to include optimization of one or both of these inputs, starting
from just the set of bars to schedule and the available blooms in stock.

We present next the definition of the problem solved, and a review of the
relevant literature; in sections 4 and 5 we put forth our solution to it and the
experiments we carried out to check the results, respectively. We finish by sum-
marizing the conclusions and examining the possible improvements.

2 Problem Statement

The standard formulation for a cutting stock problem is given in equation (1),
where i = 1, . . . , n are the patterns (combinations of cuts); xi is the number of
times that pattern i is used; ci is the cost associated to pattern i; Qj , qj are the

ACO for Scrap Minimization in a Bar Mill 15

upper and lower limit, respectively, of the amount to be produced of the size for
each order j = 1, . . . ,m; and aij is the number of pieces for order j in pattern i.

min
n∑

i=1

cixi

s.t. qj ≤
n∑

i=1

aijxi ≤ Qj , ∀j = 1, . . . ,m

xi ∈ Z
+

(1)

In our problem, the following correspondences hold:

– j = 1, . . . ,m are the bundles, each containing a given number of bars of a
specific length.

– ci is the amount of scrap generated with each pattern for one mother beam.

– Qj , qj are the upper and lower limits for the number of bars in the bundle.

– aij is the number of bars for bundle j in pattern i.

However, we still have additional complications that place our problem apart
from the standard cutting stock problem. These arise from the specific con-
straints of the industrial process, and in one way or another are a matter of
ordering, which is not present in the problem definition for cutting stock:

– We cut the mother beams in layers of varying size. This means that the
pattern used must be the same for all the bars in the layer, and the actual
number of bars of each length obtained depends not only on the pattern
itself, but on the layer size. Instead of the number of times a pattern is used
we need to identify to which specific layers it is applied.

– Not all mother beams have the same length, so the patterns actually applica-
ble to each layer must result in a minimum scrap generation, corresponding
to the length of the shortest mother beam in the layer. The cost function
in equation (1) should be adapted, taking into account the individual beam
lengths. This also means that not all patterns are applicable to all layers.

– The constraint that at most two open bundles can coexist is difficult, if
not impossible, to express in this formulation. Furthermore, it can result
in patterns that are not fully used (some of the bars do not belong to a
bundle and are therefore considered scrap), and the qj ≤

∑n
i=1 aijxi ≤ Qj

constraint is no longer accurate; it should be updated together with the
constraint definition.

This differs considerably from the theoretical problem, and since most of the
solution methods proposed rely on these properties, we could not find one that
could manage all the extensions and, at the same time, allowing for an efficient
solution that could run within the stringent time limit for actual operation in
the line.

16 D. Dı́az et al.

We overcome this difficulty by re-stating the problem as one of assignment of
bars to layers:

minS(Δ), Δ = {δbl}; δbl =
{
1 if bar b is assigned to layer l

0 otherwise,
(2)

where, ∀b we have
∑n

l=1 δbl = 1. S(Δ) is the scrap generated by assignment Δ.
Since the constraints described above are most easily checked and enforced

by proceeding sequentially in the order of processing of the layers, we decided
for and ACO approach, taking advantage of the constructive nature of ACO’s
solution generation mechanism.

When building an assignment, we start at the first layer and select the next
bar to assign to it; we repeat this, taking as candidates only feasible bars; when
no more bars can be fitted in the layer, we move on to the next layer and repeat
the process until all bars are assigned. If we fill up all the layers before all the
bars are assigned, the solution is infeasible.

For the calculations of the scrap generated and the remaining capacity of the
layer we group all bars of the same length together, and generate the needed
number of cuts of each length; if the number of elements is not an exact multiple
of the number of mother beams in the layer, the remainder is considered scrap,
as is the unassigned length of each beam, as shown in figure 2.

Fig. 2. A layer with 6 bars of length L1 and 4 bars of length L2. Scrap is marked with
a slanted pattern.

The solution construction procedure may look more like generating a sequence
than an assignment, but we opted for the latter as the representation to avoid
the many equivalent solutions arising from different ordering of the same bars
assigned to a layer. Also, the bundle constraints provide a very good guide in
this situation, since only bars from the currently open bundles are candidates
for assignment in the layer.

Although we discarded the patterns from the problem formulation due to their
number being huge, we retained the idea of patterns to guide the construction
phase, as we will explain in section 4.

We must note that even with this approach the need to check all the con-
straints when defining candidates for each step in the solution construction
makes it rather computationally costly, and the number of solutions that can
be built is very small due to the time limitation.

Once again, we found ourselves far from the typical methods in the litera-
ture, which typically build tens or hundreds of thousands of solutions in every
execution. This is utterly impossible for us, with the limitations we face.

ACO for Scrap Minimization in a Bar Mill 17

3 Literature Review

According to the typology defined by Wäscher to characterize cutting and pack-
ing problems [15], the topic analyzed in this paper belongs to the category of
One-Dimensional cutting stock problem (1D CSP), and more concretely to the
MSSCSP (Multiple Stock Size Cutting Stock Problem), where the objective is
to reduce to the minimum the total surface required by the cutting plan con-
sidering objects of different sizes and knowing the demand for a specific set of
items to be allocated onto the objects.

Multiple techniques have been proposed to solve this type of problem, from
exact methods to meta-heuristics going through heuristics based on efficient cut-
ting patterns. Dyckhoff [2] presents two different types of solution approaches.
On the one hand, approaches based on cutting patterns (pattern oriented) and,
on the other hand, approaches based on profiles and bars (object or item ori-
ented). In the latter case, there is an immediate assignment between bars and
profiles; this is an approach used in residual cutting stock problems (RSCP),
where the set of profiles is heterogeneous.

Exact methods proposed in the literature are highly dependent on the math-
ematical formulation of the problem. Within this group, Kantorovich [7] pro-
posed a first mathematical formulation of the 1D CSP problem as an integer
linear problem based on binary variables to assign bars with the material avail-
able in stock. Also Scheithauer [12] proposed a branch & bound technique to
solve exactly the 1D CSP problem. The main disadvantages of the integer lin-
ear approaches are the high increase of size when considering more bars in the
input and the consideration of equivalent solutions in the search space. These
two disadvantages make integer linear approaches impractical for our real world
problem.

Other exact methods are based on cutting patterns instead of formulating
the problem as an assignment approach. These methods, such as Gilmore and
Gomory [4], consider as cutting patterns the feasible combinations of bars for
each profile in stock and are focused on decomposing the problem and applying
the Dantzig-Wolfe method to calculate the solution (column generation method).
Abbas [1], as an example of a real application, proposed an improved linear
programming model, applied to the steel industry, with the objective of trim
loss reduction (TLR). Although these approaches do not have the problem of
symmetric search space, they have the inconvenient of the potentially huge size
of the cutting patterns set.

Due to the NP-hardness of the 1D CSP problem and with the objective of
reducing the search space size and computing time of the problem, many authors
have proposed constructive heuristics to get a trade-off solution between qual-
ity and time. Haessler [5] proposed a greedy heuristic, called SHP (Sequential
Heuristic Procedure), to schedule cutting patterns, with small material losses
and high frequency, until the demand is satisfied. Vasko [13] developed a hi-
erarchical algorithm to generate cutting patterns running a search algorithm
repeatedly times based on a branch & bound technique and applied to the steel
industry.

18 D. Dı́az et al.

Nowadays the presence of meta-heuristic techniques applied to the cutting
stock problem has increased importantly. In this group, Wagner [14] developed
a genetic algorithm to solve the 1D CSP, Jahromi [6] compared tabu search
and simulated annealing meta-heuristics, Nozarian [10] designed an imperialist
competitive method focused on trim-loss concentration, Lu [8] developed an in-
tegrated method based on a genetic algorithm and a corner arrangement method
to solve CSP in the TFT-LCD industry and Pradenas [11] proposed a solution
that integrates a genetic algorithm and an integer programming problem solved
by CPLEX.

Ant Colony Optimization (ACO) techniques are also applied to the 1D CSP
problem. Recently, Eshghi and Javanshir [3] proposed an ACO algorithm where
each ant selects probabilistically an item to be cut (a specific length) and the
desired cutting pattern to perform that cut by another probabilistic rule. This
ACO algorithm has the particularity that the number of ants in each iteration
is variable depending on the different cut types remaining to be done.

In other applications of ACO, Qiang [9] developed an ACO applied to the
MSSCSP problem, including a mutation operator to avoid the phenomenon of
precocity and stagnation emerging, and Yang [16] proposed an ACO algorithm
applied to 1D CSP with improvement strategies on part encoding, solution path,
state transition probability and pheromone updating rules.

However, we can only generate and evaluate a small number of solutions due to
the added complexity and the time limitation. Therefore, most of the techniques
proposed in the literature do not fit: all of them rely on evaluating a large number
of solutions, either explicitly or by generating several instances under different
conditions, competing colonies, or similar approaches. For this reason, we needed
to devise our own version of the algorithm.

4 Solution Using ACO with Efficient Patterns

The problem size is on average to schedule 40 bundles, resulting in search space
sizes of the order of 1048 combinations. Since the model will be used online in a
Bar Mill, we have a relatively tight budget of 5 minutes of computing time for
each execution, so we made an extra effort to reduce the search space.

An additional problem is that achieving feasible solutions resulted to be the
most difficult part of the problem, with negligible differences in cost from one
feasible solution to another. This is something we only found out as we managed
to achieve solutions, so we could not take it into account during the initial
algorithm design phase.

Infeasibility arises when, in the construction phase, an ant finds itself inca-
pable of fitting all bundles into the available space, the given set of layers of
beams. We call solutions of this type partial solutions.

Therefore, in this section we have focused on two key ideas so that the ACO
algorithm is capable of providing good results in terms of quality and perfor-
mance: efficient patterns and partial solution management.

ACO for Scrap Minimization in a Bar Mill 19

Fig. 3. Example of a candidate solution for 11 bundles across three layers; scrap is
marked with a slanted pattern. Bars are identified by bundle.

4.1 Efficient Patterns

Initially, at the beginning of the algorithm, we calculate all patterns (combina-
tions of cut lengths for a mother beam) that can be applied to the longest mother
beam. The length of the patterns is bounded below by the beam length minus
the shortest bar; in other words, we keep adding cuts until it is not possible to
continue. Also, the lengths of the cuts are grouped and ordered, to avoid creating
equivalent patterns.

As each layer contains beams of different lengths, the shortest one can be
used to discard all patterns that would not fit the layer. Likewise, we focus at
this stage on patterns that guarantee a low amount of scrap. Since the scrap
generated will be the difference between the pattern length and the lengths of
the beams, we filter patterns that are shorter than a given threshold, expressed
as a percentage of the longest beam.

Additionally, the assignment of bundles also matters in scrap generation, since
a cut might not be filled (e.g. see bundle B8 in figure 3).

We use the information provided by the patterns to guide the solution con-
struction phase of the ants. When assigning a bar to a layer, we determine the
feasible efficient patterns by filtering out from the list of patterns:

1. patterns longer than the shortest beam of the layer
2. patterns incompatible with the bars already assigned to the layer
3. patterns with lengths not present in the remaining unassigned bars
4. patterns below the threshold length

Since only bars of a length consistent with the efficient patterns are candidates,
the search space is reduced. The average scrap generation from the patterns is
an estimation of the expected scrap generation if the bar is assigned to the layer,
which we use as a heuristic for the ants.

The actual implementation of this scheme involves keeping track of the filtered
results for each layer–length combination, updated after each assignment. Also,
all bars in a bundle are assigned at once, complicating a little the logic described
above, but dramatically decreasing the search space size.

4.2 Partial Solution Management

Because of the difficulty of finding feasible solutions, partial solution manage-
ment (PSM) becomes mandatory. Although several strategies exist to deal with

20 D. Dı́az et al.

combinations of feasible and infeasible solutions in ACOs, such as multiple
pheromone matrices, we could find none that matched our particular situation:
feasible solutions are few compared to infeasible ones, and scattered.

After trying several approaches, two tweaks to the algorithm outlined above
proved to be helpful in finding good solutions:

Unification of Cost Function and Pheromone Tables. Partial and com-
plete solutions deposit pheromone in the same pheromone table; this allows
to take advantage of the knowledge that is being obtained by partial solu-
tions to promote finding complete solutions. For this to make sense, we have
defined a cost function compatible for partial and complete solutions which
nudges partial solutions towards feasibility. We add to the scrap generation
the length of the bars not assigned, multiplied by a penalty factor. This
drives partial solutions towards feasibility, while not affecting the results for
feasible solutions.

Assignment of as Many Bundles as Possible. We found out through anal-
ysis of runs of the available data sets that the main cause for infeasibility
was running out of efficient patterns in the filtering phase. To allow construc-
tion of feasible, if less efficient, solutions we changed the last filtering step
to relax the scrap threshold if the list of patterns was empty; in this case,
the threshold was lowered enough to obtain a minimum number of patterns,
and infeasibility only occurs when no pattern matches at all. This provides
a trade-off between search space size (too big if all patterns are considered
from the beginning) and infeasibility issues. We also included the number
of remaining feasible patterns after assignment in the construction heuristic,
to promote assignments that have a greater chance of leading to feasible
solutions; this term has to be balanced with scrap generation.

An appropriate management of partial solutions yielded an important reduc-
tion of the time required to get good results, increasing the likelihood of finding
a solution within the time limit.

4.3 Algorithmic Details

We build the pheromone matrix as a 2-dimensional table where each cell b, l
corresponds to the assignment of bar b to layer l.

At each step, we evaluate the probability of selecting a bar b� to add to the
current layer l as p(b�, l):

p(b�, l) =
[τb�,l]

α[ηb�,l]
β∑

b∈Cl
[τb,l]α[ηb,l]β

, ηb,l =
1

1 + (Np
l −Np

l,b)
(3)

where τb,l is the pheromone associated to the cell b, l and Cl is the set of feasible
bundles for layer l, derived as explained above; ηb,l is the heuristic associated
to the assignment of bar b to layer l; Np

l is the number of feasible patterns for
layer l before the assignment, and Np

l,b is the number of feasible patters after

ACO for Scrap Minimization in a Bar Mill 21

assigning bar b. We offset the denominator by one to avoid problems when the
difference is zero.

We calculate the cost of a solution Δ as C(Δ) = S(Δ)+kU(Δ), where S(Δ) is
the scrap generated in the solution and U(Δ) is the unassigned material; both are
measured in length.2 k is a factor to discourage infeasible solutions (U(Δ) > 0);
we calculate it in each instance so that k times the length of the shortest bar is
larger than the typical scrap generation.

We otherwise follow typical ACO algorithms with local pheromone update as
the inverse of the cost. We use 10 ants per iteration, of which only the best 3
deposit pheromone. We take α = β = 1 and ρ = 0.2.

5 Experimental Results

We ran our tests on a virtual machine emulating a quad-core Intel Xeon pro-
cessor at 2.9GHz with 16GB of RAM running 64-bit Windows 7 EE, which is
representative of the kind of system where the solution will run online.

We restricted the computation time to 5 minutes, the time that will be avail-
able during operation. This results in some 200–400 cost function evaluations,
depending on the instance.

We used 22 data sets, representative of the operating conditions of the line for
different products. The number of bundles in each data set is quite evenly dis-
tributed between 5 and 50, with a couple of cases over 90. The results presented
here come from running the algorithm ten times on each of the data sets.

The first approach, before adding efficient patterns and partial solution man-
agement, was basically unable to reach a feasible solution within the time limit.

Figure 4 shows the improvements we obtained. We focus on the time needed
to reach the first feasible solution, since the scrap reduction after that is not
significant.

The data sets can have quite different behavior, and the results are not com-
parable in either time or number of iterations. This happens because different
products result in different complexities, arising from the number of bars and
bundles, the number of different lengths and so on. We normalized the results
to be able to draw conclusions.

For each run of each data set we recorded the number of iterations needed to
reach a feasible solution, with and without partial solution management.3 We
made 0% always the first iteration, and 100% the latest recorded one for that
data set; this means that both versions of the same data set (with and without
partial solution management) share the normalization factor.

Infeasible solutions are arbitrarily represented as 110% to avoid distorting the
graph.

2 This is equivalent to weight by means of a constant factor of section area times
density.

3 Since we included efficient patterns first and partial solution management afterwards,
we have no results corresponding to using partial solution management without
efficient patterns.

22 D. Dı́az et al.

Fig. 4. Comparison of time needed to reach a feasible solution with and without partial
solution management

The x axis in figure 4 lists the data sets as the data set identifier, of the form
CXRGXXY for the runs with partial solution management, and CXRGXXN for
the runs without. Runs without either always fail to find a solution.

The box plot follows the following convention: the line in the middle is the
median, the boxes are the second and third quartiles, and the whiskers extend
to the minimum and maximum.

We removed several instances from the graph to make it more readable:

– For 40.9% of the data sets (9 out of 22), we always found a feasible solution
in the first iteration with PSM, but was always infeasible without.

– For 9.1% of the data sets (2 out of 22), we cannot find a feasible solution
within the time limit. Both data sets correspond to a especially problematic
product.

For the remaining 11 data sets, shown in the figure, we see clear improvements:
out of 5 data sets for which no feasible solution is found without PSM, with it
we consistently find a solution for 4, and for the other one (C2RG10) in 7 out
of 10 runs. For 4 data sets we go from a variable time to reach a solution to
consistently finding it in the first iteration.

The improvement for efficient patterns is that 6 out of 22 (27.3%) data sets
become feasible with it, compared to without.

6 Conclusions and Future Work

The extensions to the general cutting stock problem posed by the specific con-
straints of the BarMill had a bigger impact than we expected at first. They distort
the feasibility region in a way that renders traditional approaches useless.

ACO for Scrap Minimization in a Bar Mill 23

This feasibility issue, together with the limitation in running time, were the
main challenges of this problem; without them the solution would have been
quite straightforward. Instead, we had to prune the search space, removing in-
efficient patterns without compromising feasibility, even without the ability to
look forward.

We now have a system capable of matching or improving best-of-class line
operators in the design of the cutting plan. This will allow homogenization of
line operation, and we expect it to be easily portable to similar Bar Mills.

The system was recently checked for several hours a day for a week on real-
time production data and comparing to operator performance, validating its
results overall.

The good results of the combination of efficient patterns and partial solu-
tion management means that, even within the time limit allotted to the model,
we can now try to improve the quality of feasible solutions. We are starting to
work at designing a more complete cost function that goes beyond scrap gen-
eration, where there is little potential. Our initial aim is to improve robustness
of the solution, considering that the latest beams in the cutting plan have more
uncertainty in their lengths.4

Finally, we will study the portability to similar lines.
One point we would like to remark is that existing solutions to our knowledge

rely on assumptions that do not usually hold in industrial environments. We
found it impossible to adapt a method because they relied on properties of the
theoretical problem that are not present in reality and/or they typically run for
an unaffordable —in this case— number of iterations.

The main points of our case that are not considered in more academic exercises
are:

– Variability of the processes, which is unavoidable in real life; we cannot
assume a standard beam length or layer size

– Additional constraints; typically an industrial process is limited in certain
aspects and can also be influenced by other processes in the supply chain.
We can see this for instance in the ordering constraints, which cannot be
fitted to the standard problem definition.

– Complex constraint or cost evaluation and running time limitations. Both
together tend to result in the possibility of evaluating a number of solutions
one or more orders of magnitude smaller than typical in the literature.

We suggest that this type of limitations has been overlooked, and that it could
be an interesting field to develop.

4 This is because the blooms are actually measured when they enter the process, and
only part of the blooms involved have done so by the time the scheduling has to be
done. For the rest, an estimation is available based on bloom production parameters.

24 D. Dı́az et al.

References

1. Afshar, A.: An improved linear programming model for one-dimensional cutting
stock problem. In: First International Conference on Construction in Develop-
ing Countries (ICCIDC-I). Advancing and Integrating Construction Education,
Research & Practice, August 4-5 (2008)

2. Dyckhoff, H.: A typology of cutting and packing problems. European Journal of
Operations Research 44(2), 145–159 (1990)

3. Eshghi, K., Javanshir, H.: A revised version of ant colony optimization for
one-dimensional cutting stock problem. International Journal of Industrial
Engineering 15(4), 341–348 (2008)

4. Gilmore, P., Gomoroy, R.: A linear programming approach to the cutting stock
problem. Operations Research 11, 863–888 (1963)

5. Haessler, R.W.: Controlling cutting pattern changes in one dimensional trim
problems. Operations Resarch 23(3), 483–493 (1975)

6. Jahromi, M.H., Tavakkoli-Moghaddam, R., Makui, A., Shamsi, A.: Solving an one-
dimensional cutting stock problem by simulated annealing and tabu search. Journal
of Industrial Engineering International 8 (2012)

7. Kantorovic, L.: Mathematical methods of organizing and planning production
(1939). Managment Science 6, 366–422 (1960)

8. Lu, H.C., Huang, Y.H., Tseng, K.A.: An integrated algorithm for cutting stock
problems in the thin-film transistor liquid crystal display industry. Computers &
Industrial Engineering 64, 1084–1092 (2013)

9. Lu, Q., Wang, Z., Chen, M.: An ant colony optimization algorithm for the
one-dimensional cutting stock problem with multiple stock lengths. Natural
Computation, ICNC 2008 7, 475–479 (2008)

10. Nozarian, S., Jahan, M.V., Jalali, M.: An imperialist competitive algorithm for 1-d
cutting stock problem. International Journal of Information Science 3(2), 25–36
(2013)

11. Pradenas, L., Garces, J., Parada, V., Ferland, J.: Genotype-phenotype heuristic
approaches for a cutting stock problem with circular patterns. Engineering Appli-
cations of Artificial Intelligence 26, 2349–2355 (2013)

12. Scheithauer, G., Terno, J.: A branch & bound algorithm for solving one-dimensional
cutting stock problems exactly. Applicationes Mathematicae 23(2), 151–167 (1995)

13. Vasko, F., Newhart, D., Stott, J., Kenneth, L.: A hierarchical approach for one-
dimensional cutting stock problems in the steel industry that maximizes yield and
minimizes overgrading. European Journal of Operations Research 114(1), 72–82
(1999)

14. Wagner, B.: A genetic algorithm solution for one-dimensional bundled stock
cutting. European Journal of Operations Research 117(2), 368–381 (1999)

15. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and
packing problems. European Journal of Operational Research 117(2), 368–381
(2007)

16. Yang, B., Li, C., Huang, L.: Solving one-dimensional cutting-stock problem based
on ant colony optimization. Natural Computation, ICNC 2009, 1188–1191 (2009)

An Experiment in Automatic Design

of Robot Swarms

AutoMoDe-Vanilla, EvoStick, and Human Experts

Gianpiero Francesca1, Manuele Brambilla1, Arne Brutschy1,
Lorenzo Garattoni1, Roman Miletitch1, Gaëtan Podevijn1,

Andreagiovanni Reina1, Touraj Soleymani1, Mattia Salvaro1,2,
Carlo Pinciroli1, Vito Trianni3, and Mauro Birattari1

1 IRIDIA, Université Libre de Bruxelles, Belgium
{gianpiero.francesca,mbiro}@ulb.ac.be

2 Università di Bologna, Italy
3 ISTC-CNR, Rome, Italy

Abstract. We present an experiment in automatic design of robot
swarms. For the first time in the swarm robotics literature, we perform an
objective comparison of multiple design methods: we compare swarms de-
signed by two automatic methods—AutoMoDe-Vanilla and EvoStick—
with swarms manually designed by human experts. AutoMoDe-Vanilla
and EvoStick have been previously published and tested on two tasks. To
evaluate their generality, in this paper we test them without any modifi-
cation on five new tasks. Besides confirming that AutoMoDe-Vanilla is
effective, our results provide new insight into the design of robot swarms.
In particular, our results indicate that, at least under the adopted exper-
imental protocol, not only does automatic design suffer from the reality
gap, but also manual design. The results also show that both manual and
automatic methods benefit from bias injection. In this work, bias injec-
tion consists in restricting the design search space to the combinations
of pre-existing modules. The results indicate that bias injection helps to
overcome the reality gap, yielding better performing robot swarms.

1 Introduction

Automatic design is an appealing way to produce robot control software. So far,
evolutionary robotics [1] has been the approach of choice for the automatic design
of robot swarms [2,3]. In evolutionary robotics, robots are controlled by a neural
network, whose parameters are obtained via artificial evolution in simulation.
The main issue of this approach is its difficulty to overcome the reality gap [4],
that is, the unavoidable difference between simulation and reality.

Recently, Francesca et al. [5] proposed a novel approach: AutoMoDe, au-
tomatic modular design. AutoMoDe synthesizes control software in the form
of a probabilistic finite state machine by selecting, assembling, and fine tun-
ing pre-existing parametric modules. The rationale behind AutoMoDe lies in
the machine learning concept of bias–variance tradeoff [6]: Francesca et al. [5]

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 25–37, 2014.
c© Springer International Publishing Switzerland 2014

26 G. Francesca et al.

conjectured that the difficulty experienced by evolutionary robotics in overcom-
ing the reality gap bears a resemblance to the generalization problem faced by
function approximators in supervised learning. They argued that such difficulty
derives from an excessive representational power of the control architecture that
is typically adopted in evolutionary robotics to be able to fine-tune the dynam-
ics of the robot–environment interaction. Thus, Francesca et al. [5] proposed
a solution that is reminiscent of the bias injection advocated in the machine
learning literature [7] to reduce the representational power of approximators
and increase their generalization ability. By synthesizing control software on the
basis of pre-existing modules, AutoMoDe reduces the design space. This corre-
sponds to injecting bias, thus decreasing the variance of the design process. As
a result, AutoMoDe is expected to overcome the reality gap successfully.

Francesca et al. [5] defined, implemented, and tested AutoMoDe-Vanilla
(hereafter simply Vanilla) and EvoStick, two specific versions for the e-puck
platform [8] of AutoMoDe and evolutionary robotics, respectively. Results ob-
tained on two tasks, aggregation and foraging, indicate that AutoMoDe is a
viable and promising approach: Vanilla produced better robot control software
than EvoStick, and appeared to better overcome the reality gap [5].

In this paper, we use exactly the same implementations of Vanilla and
EvoStick that have been previously published in [5], and we test them on five
new tasks. In our analysis, we include also swarms designed manually by human
experts and swarms synthesized manually starting from the same modules used
by Vanilla. We perform all tests with a swarm of 20 e-puck robots.

In this paper, we give an original contribution to the swarm robotics litera-
ture because we perform the first objective assessment of an automatic method
for the design of robot swarms. This is indeed the first work in which an auto-
matic design method previously published and tested on some tasks is tested on
new tasks strictly without any modification. The new tasks were proposed by
researchers that had not been involved in the development of Vanilla and that,
at the moment of proposing the tasks, had only a vague idea of its functioning.
In particular, they knew that Vanilla assembles pre-existing modules, but they
did not have any knowledge of the modules made available to the method. As
a consequence, we can claim that the tasks have not been selected to favor or
disfavor Vanilla, or any of the other design methods under analysis. This work
is also the first one in the domain of swarm robotics in which automatic design
and manual design are compared under controlled conditions.

The results presented in this paper confirm that AutoMoDe is a viable ap-
proach to the automatic design of robot swarms. They highlight the strengths
of Vanilla and also a weakness, for which we suggest a possible solution.
More generally, these results provide a new insight into the design of robot
swarms. They show that, at least under our experimental protocol, manual design
suffers from the reality gap to an extent comparable to that of automatic de-
sign. To the best of our knowledge, this has never been discussed in the literature
and has never been observed in a controlled empirical study. Finally, contrary to

An Experiment in Automatic Design of Robot Swarms 27

Table 1. Reference model

Sensor/Actuator Variables

proximity prox i ∈ [0, 1], with i ∈ {1, 2, . . . , 8}
light lighti ∈ [0, 1], with i ∈ {1, 2, . . . , 8}
ground gnd i ∈ {black, gray,white}, with i ∈ {1, 2, 3}
range and bearing n ∈ N and rm,∠bm, with m ∈ {1, 2, . . . , n}
wheels vl, vr ∈ [−v̄, v̄], with v̄ = 0.16m/s

Period of the control cycle: 100ms

our original expectations, the results presented in the paper show that human
experts produce better swarms when they are constrained to use predefined
modules rather then when their creativity is unconstrained.

2 Design Methods Considered

We consider four design methods: Vanilla, EvoStick, U-Human, and C-Human.
These methods are intended to design control software for a swarm of e-puck
robots [8] with Gumstix Overo Linux board, ground sensor, and range-and-
bearing sensor—see [5] for a detailed description of the platform. To be more
precise, the design methods are allowed to use a subset of the capabilities of
this platform. Such subset of capabilities is formally described by the reference
model reported in Table 1. The control software designed by the four methods
can access sensors and actuators through suitable variables: prox i ∈ [0, 1] are
the readings of the eight proximity sensors; light i ∈ [0, 1] are the readings of
the eight light sensors; gnd i ∈ {black, gray,white} are the readings of the three
ground sensors; n is the number of neighboring robots perceived via the range-
and-bearing sensor; rm and ∠bm are respectively the range and bearing of the
m-th neighbor; finally, vl, vr ∈ [−v̄, v̄], with v̄ = 0.16m/s represent the speed of
the wheels. All these variables are updated with a period of 100ms.

Two of the design methods under analysis are automatic methods: Vanilla
and EvoStick. The other two are manual methods: U-Human and C-Human.
Vanilla and EvoStick have been introduced by Francesca et al. [5] and are an
implementation of AutoMoDe and evolutionary robotics, respectively. Concern-
ing U-Human and C-Human, their main difference is that in U-Human the designer
is unconstrained, that is, he is free to develop the control software in any way he
prefers, whereas in C-Human the designer is constrained to develop a finite state
machine using the same parametric modules available to Vanilla.

In the rest of this section, we introduce the four design methods featured in
the experiment. For a thorough description of Vanilla and EvoStick, we refer
the reader to the original publication [5].

Vanilla generates control software in the form of a finite state machine start-
ing from a set of twelve pre-existing parametric modules: states are selected
from a set of six low-level behaviors and transitions are defined on the ba-
sis of six parametric conditions. The low-level behaviors are: exploration, stop,

28 G. Francesca et al.

phototaxis, anti-phototaxis, attraction, and repulsion. With the exception of
stop, these behaviors include an obstacle avoidance mechanism. The conditions
are: black-floor, gray-floor, white-floor, neighbor-count, inverted-neighbor-count,
fixed-probability. All these modules are based on the reference model given in
Table 1. For a detailed description of the modules and their parameters, see [5].
Vanilla is constrained to create finite state machines composed of at most four
states, each with at most four outgoing transitions. As an optimization algo-
rithm, Vanilla adopts F-Race [9,10]. Specifically, it uses the implementation
provided by the irace package [11] for R [12]. F-Race can be essentially de-
scribed as a sample & select algorithm. As already pointed out by Francesca et
al. [5], F-Race has been adopted in Vanilla due to its simplicity: the authors
wished to keep the focus on the control architecture rather than on the opti-
mization process. Within the optimization process, control software candidates
are evaluated using the ARGoS multi-robot simulator [13].

EvoStick generates control software in the form of a feed-forward neural net-
work without hidden nodes. Inputs and outputs of the network are defined on
the basis of the variables given in the reference model of Table 1. To optimize
the parameters of the neural network, EvoStick adopts a standard evolution-
ary algorithm. Within the optimization process, candidate parameter sets are
evaluated using ARGoS.

U-Human is a manual method in which the human designer is left free to
design control software as he deems appropriate. Within the control software,
sensors and actuators are accessed via an API that implements the reference
model given in Table 1. Within the design process, the designer tests his control
software using ARGoS.

C-Human is a manual method in which the human designer is constrained to
use Vanilla’s control architecture and modules. The designer does not directly
write the control software: rather, he employs a software tool that allows him
to specify a finite state machine, visualize it, and test it using ARGoS. In other
words, the human designer takes the role of Vanilla’s optimization algorithm.
As in Vanilla, the human is constrained to create finite state machines com-
prised of at most four states, each with at most four outgoing transitions.

3 Experimental Protocol

In the protocol we adopt, five researchers, hereinafter referred to as experts, play
a central role. The experts are active in swarm robotics, have about two years of
experience in the domain, and are familiar with ARGoS. These experts have not
been involved in the development of Vanilla and EvoStick and, at the moment
of participating in the experiment, they had only a vague idea of Vanilla: they
knew that Vanilla operates on pre-existing parametric modules, but they were
unaware of what modules are available.

The role of each expert is threefold: i) define a task; ii) solve a task acting as
U-Human; and iii) solve a task acting as C-Human. Table 2 summarizes the role

An Experiment in Automatic Design of Robot Swarms 29

Table 2. Role of the experts, anonymously indicated here by the labels E1 to E5

task defined by U-Human C-Human

SCA shelter with constrained access E1 E5 E4
LCN largest covering network E2 E1 E5
CFA coverage with forbidden areas E3 E2 E1
SPC surface and perimeter coverage E4 E3 E2
AAC aggregation with ambient cues E5 E4 E3

played by each expert. The criteria and the restrictions that the experts had to
follow in the definition of the tasks are presented in Sect. 4. When solving a task
either as U-Human or C-Human, each expert worked for four consecutive hours.
The involvement of each expert spanned two days: on day one, the expert acted
as U-Human on the first task assigned to him; on day two, he acted as C-Human
on the second task. In both cases, the expert came to know the definition of the
task he had to solve only at the beginning of the four hours. During these four
hours, the expert could test the control software in simulation using ARGoS,
but was not allowed to test it in reality on the e-pucks.

Regarding the automatic design methods, Vanilla and EvoStick have been
allowed a design budget of 200,000 simulations for each task. The design process
has been conducted on a high performance computing cluster comprised of 400
opteron6272 cores. Vanilla and EvoStick produced the control software for
each task in about 2 hours and 20 minutes.

To summarize, all methods under analysis i) produce control software for the
same robotic platform formally described by the reference model given in Table 1;
ii) complete the design process within 4 hours; and iii) use the same simulator
to assess candidate control software during the design process. The protocol of
the experiment does not allow any modification of the control software on the
basis of its performance in reality on the e-pucks.

We used ARGoS to cross-compile the control software for the e-puck. We then
uploaded it to the robots without any modification. We evaluated the control
software generated by the four methods for each of the five tasks via 10 runs on
the robots. We computed the performance of the robot swarm in an automatic
way using a tracking system [14] that acquires images via a ceiling-mounted
camera and records the position and orientation of all robots every 100ms. To
assess the impact of the reality gap on the four design methods, we performed
also a set of 10 runs per task in simulation.

For each task, we report a notched box-and-whisker plot that summarizes
the results: wide boxes represent data gathered with robots, narrow boxes data
obtained in simulation. If notches of two boxes do not overlap, the observed
difference is significant. We report also the results of a Friedman test [15] that
aggregates the data gathered with the robots over the five tasks.

30 G. Francesca et al.

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

hi
gh

er
, t

he
 b

et
te

r

Fig. 1. SCA – arena and 20 e-pucks (left); results of the analysis (right). Robots should
aggregate in the white shelter.

4 Tasks and Results

Each of the tasks has been independently defined by one of the experts. Each
expert has been provided with the reference model of Table 1 and has been
asked to conceive a task that he would be able to solve with a swarm of 20
robots characterized by the given reference model. The expert has also been
provided with a list of constraints that the task definition must satisfy: The
arena is a dodecagonal area of 4.91m2 surrounded by walls. The floor of the
arena is gray. The arena can contain up to 3 colored regions in which the floor
can be either black or white. These regions can be either circular, with diameter
of up to 0.6m, or rectangular, with sides up to 0.6m. The setup might include
a single light source positioned outside the arena, at 0.75m from the ground. It
might include also up to 5 cuboidal obstacles of size 0.05m× 0.05m×L, where
0.05m ≤ L ≤ 0.80m. The swarm comprises 20 e-puck robots in the configuration
described in Sect. 2. The duration of each run is T = 120 s. At the beginning
of the run, the robots are randomly distributed in the arena. The task must be
formally described by an objective function, which must be either maximized or
minimized. The objective function must be defined on the basis of the position
of the robots, evaluated with a period of 100ms.

In the rest of this section, we describe the five tasks and we report the results
obtained by the four design methods. For a more detailed description of the tasks
and of their objective functions, see the online supplementary material [16].

SCA – Shelter with Constrained Access

In SCA, the goal of the swarm is to maximize the number of robots on an
aggregation area. The aggregation area has a rectangular shape, is characterized
by a white ground, and is surrounded by walls on three sides. The environment
presents also a light source and two black regions that are positioned in front
and aside the aggregation area, respectively—see Fig. 1.

An Experiment in Automatic Design of Robot Swarms 31

0.
5

1.
0

1.
5

2.
0

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

hi
gh

er
, t

he
 b

et
te

r

Fig. 2. LCN – arena and 20 e-pucks (left); results of the analysis (right). Robots should
cover the largest possible area while maintaining connection with one another.

Formally, the problem is defined as the maximization of FSCA =
∑T

t=1 Na(t),
where Na(t) is the number of robots in the aggregation area at time t, and T is
the duration of the run.

Results. C-Human and Vanilla perform better than the other methods. In par-
ticular, Vanilla is significantly better that EvoStick—this is indicated by the
fact that, in Fig. 1, the notches of the respective boxes do not overlap. An inter-
esting result is the inability of EvoStick to overcome the reality gap. The same
observation can be made also for U-Human, even though to a far minor extent.
In contrast, C-Human and Vanilla overcome the reality gap satisfactorily.

LCN – Largest Covering Network

In LCN, the robots must maintain connection with each other, while trying
to cover the largest possible area—see Fig. 2 for a picture of the experimental
setting. We assume that i) two robots are connected when their distance is less
than 0.25m, and ii) each robot covers a circular area of radius 0.35m.

Formally, the problem is defined as the maximization of FLCN = AC(T) where
C(T) is the largest group of connected robots at the end T of the run and AC(T)

is the surface of the union of the areas covered by the robots in C(T).
Results. C-Human and EvoStick achieve better performance compared to

the other methods, with Vanilla performing slightly better than U-Human. The
methods performing worse are those that encounter more difficulties in overcom-
ing the reality gap: U-Human and Vanilla.

CFA – Coverage with Forbidden Areas

In CFA, the goal of the swarm is to cover the entire arena except a few forbidden
areas characterized by a black ground—see Fig. 3.

32 G. Francesca et al.

0.
20

0.
22

0.
24

0.
26

0.
28

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

lo
w

er
, t

he
 b

et
te

r

Fig. 3. CFA – arena and 20 e-pucks (left); results of the analysis (right). Robot should
cover the arena except the forbidden black areas.

2
4

6
8

10
12

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

lo
w

er
, t

he
 b

et
te

rx xxx

Fig. 4. SPC – arena and 20 e-pucks (left); results of the analysis (right). Robot should
cover the surface of the white square and the perimeter of the black circle.

Formally, the problem is defined as the minimization of FCFA = E[d(T)],
where E[d(T)] is the expected distance, at time T , between a generic point of
the arena and the closest robot that is not in a forbidden area. Distances are
measured in meters.

Results. All methods perform more or less similarly. The results are all within a
range of few centimeters, that is, less that half of the e-puck’s diameter. Concern-
ing the reality gap, for all methods we observe differences between simulation
and reality, but these differences are small in absolute terms. Also in this case,
they are within a range of few centimeters.

An Experiment in Automatic Design of Robot Swarms 33

0
50

00
10

00
0

15
00

0
20

00
0

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

hi
gh

er
, t

he
 b

et
te

r

Fig. 5. AAC – arena and 20 e-pucks (left); results of the analysis (right). Robot should
aggregate in the black region.

SPC – Surface and Perimeter Coverage

In SPC, the goal of the swarm is to cover the surface of a white square region
and the perimeter of a black circular region—see Fig. 4.

Formally, the problem is defined as the minimization of FSPC = caE[da(T)]+
cpE[dp(T)], where E[da(T)] is the expected distance, at time T , between a
generic point of the white region and the closest robot positioned on the white
region itself; E[dp(T)] is the expected distance, at time T , between a generic
point of the perimeter of the black region and the closest robot positioned on
the perimeter itself; and ca and cp are normalization factors [16]. Failing to place
at least a robot on the surface of the white region and/or on the perimeter of the
black region is a major failure. In this case, E[da(T)] and E[dp(T)] are undefined
and we thus assign an arbitrarily large value to FSPC .

Results. The most notable element is that EvoStick is not able to overcome the
reality gap and achieves significantly worse results than the other methods. The
four Xs marked in the plot indicate four runs that resulted in a major failure.
Vanilla, U-Human, and C-Human perform comparably well.

AAC – Aggregation with Ambient Cues

In AAC, the goal of the swarm is to maximize the number of robots on an
aggregation area represented by a black region. Besides the black region, the
environment comprises a white region and a light source that is placed south of
the black region—see Fig. 5.

Formally, the problem is defined as the maximization of FAAC =
∑T

t=1 Nb(t),
where Nb(t) is the number of robots on the black region at time t.

Results. Vanilla performs slightly better than U-Human and C-Human, and sig-
nificantly better than EvoStick. Concerning the manual methods, C-Human per-
forms slightly better than U-Human. The greatest difference among the methods

34 G. Francesca et al.

rank

C-Human

U-Human

EvoStick

Vanilla

15 20 25

the lower, the better

Fig. 6. Friedman test on aggregate data from the five tasks

lies in their ability to overcome the reality gap. In particular, EvoStick is the
method that has the most severe difficulty in overcoming the reality gap, fol-
lowed by U-Human. Vanilla and C-Human still present problems, but to a minor
extent compared to the other methods.

5 Analysis and Discussion

To aggregate the results presented in Sect. 4, we perform a Friedman test [15],
using the task as a blocking factor and considering 10 replicates per task. The
outcome of the test is represented in Fig. 6. The plot represents the expected
rank obtained by a design method in the robot experiments, together with a
confidence interval. If the confidence intervals of two methods do not overlap, the
difference between the expected rank of the two is statistically significant. The
test indicates that C-Human perform significantly better than Vanilla, which, in
turn, perform significantly better than EvoStick and U-Human.

These results confirm those obtained by Francesca et al. [5]: Vanilla produced
swarms with significantly better performance than those produced by EvoStick.
However, the results also highlight that Vanilla has a limitation: as already
noted in Francesca et al. [5], F-Race, the optimization algorithm adopted in
Vanilla, is not particularly powerful and is unable to fully exploit the potential
of the available parametric modules—see the results of C-Human, which is based
on the same modules. The results clearly suggest that Vanilla can be improved
by adopting a more powerful optimization algorithm.

The analysis of the swarms produced by human experts are particularly in-
teresting and informative on their own. First of all, our results show that, when
it is not possible to modify the developed control software on the basis of its
performance in reality, manual design suffers from the reality gap, as automatic
design does. In other words, it is difficult for human experts to foresee whether
the developed control software will work in reality as expected or not.

Moreover, we observed that, under the protocol we adopted, human experts
produce better swarms when they are constrained to use predefined modules.
This result was unexpected and appears counter-intuitive. We expected that the
understanding and intuition of human experts would have produced excellent
results in case their creativity had been left unconstrained. We expected that
the restriction to use predefined modules would have prevented human experts

An Experiment in Automatic Design of Robot Swarms 35

from fully expressing their potential. Our results proved us wrong: although
the control software produced by U-Human scored well in simulation, it failed
to be effective in reality. Our results clearly indicate that the restriction to use
predefined modules enables C-Human to successfully overcome the reality gap.

Concerning the comparison between manual and automatic design, Vanilla
produced swarms that are significantly better than those produced by U-Human,
but worse that those produced by C-Human. This is a promising result. It proves
that the core idea of AutoMoDe is valid: by constraining the design space to
the control software that can be obtained assembling predefined modules, one
effectively increases the ability to overcome the reality gap. This insight is valid
for both automatic and manual design.

As the set of modules used by C-Human are the same used by Vanilla, the per-
formance advantage of C-Human over Vanilla is to be fully ascribed to the limita-
tions of Vanilla’s optimization algorithm, as already discussed above. The results
obtained by C-Human and by Vanilla show that the set of modules is generally ap-
propriate for tackling swarm robotics tasks with the robotic platform considered:
they enabled the synthesis of control software that performed satisfactorily across
all the five tasks.

6 Conclusions

In this paper, we presented an experiment in automatic design of robot swarms.
This experiment introduces a number of novelties with respect to the litera-
ture. In particular, the two automatic methods under analysis—Vanilla and
EvoStick—had been previously published [5] and have been used here strictly
without any modification. In swarm robotics, this is the first time that i) an
automatic design method is tested on as many as five tasks, without adapting it
to each of them; ii) the tasks considered are different from the one for which the
method has been originally proposed; and iii) the tasks are devised by researchers
that had not been involved in the development of the method. Moreover, this is
the first time that a comparison between automatic and manual design methods
is performed under controlled conditions.

The results of the experiment are encouraging. First of all, they confirm previ-
ous results obtained on other tasks [5]: Vanilla performs better that EvoStick.
Second, they show that, under the protocol we adopted, human experts produce
better swarms when they are constrained to use pre-existing modules: C-Human
outperforms U-Human. Together, the superiority of Vanilla over EvoStick and of
C-Human over U-Human corroborate the core hypothesis behind AutoMoDe: by in-
troducing a bias in the design process—that is, by restricting the design space—
one obtains better robot swarms. Moreover, Vanilla outperformed U-Human, the
unconstrained manual design: this is the first clear empirical evidence that the
automatic design of robot swarms is a viable reality. On the other hand, we do
not consider it a failure that C-Human scored better than Vanilla. As C-Human
uses the same modules defined in Vanilla, differences are to be ascribed to
the limitations of Vanilla’s optimization algorithm. The results indicate that

36 G. Francesca et al.

Vanilla’s module set is appropriate to solve swarm robotics tasks with the plat-
form considered in our study.

Our short-term future work will focus on the development of an improved
version of Vanilla that, taking into account the indications emerged from our
results, will adopt a more powerful optimization algorithm. In the medium term,
we will develop an instance of AutoMoDe for a more complex reference model.

Acknowledgments. We thank Maria Zampetti and Maxime Bussios for their
help with the robots, and Marco Chiarandini for his implementation of the Fried-
man test. This research has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Programme—ERC grant
agreement n. 246939. It received funding also from the European Science Foun-
dation via the H2SWARM project. Vito Trianni acknowledges support from the
Italian CNR. Arne Brutschy and Mauro Birattari acknowledge support from the
Belgian F.R.S.-FNRS.

References

1. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-organizing Machines. MIT Press, Cambridge (2000)

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)

3. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

4. Trianni, V., Nolfi, S.: Engineering the evolution of self-organizing behaviors in
swarm robotics: A case study. Artificial Life 17(3), 183–202 (2011)

5. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence 8(2), 89–112 (2014)

6. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Computation 4(1), 1–58 (1992)

7. Dietterich, T., Kong, E.B.: Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms. Technical report, Department of Computer
Science, Oregon State University (1995)

8. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
9th Conf. on Autonomous Robot Systems and Competitions, Portugal, Instituto
Politécnico de Castelo Branco, pp. 59–65 (2009)

9. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2002), pp. 11–18. Morgan Kaufmann, San Francisco (2002)

10. Birattari, M.: Tuning Metaheuristics. Springer, Berlin (2009)

11. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

12. R Development Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing (2008)

An Experiment in Automatic Design of Robot Swarms 37

13. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella,
L.M., Dorigo, M.: ARGoS: A modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence 6(4), 271–295 (2012)

14. Stranieri, A., Turgut, A., Francesca, G., Reina, A., Dorigo, M., Birattari, M.:
IRIDIA’s arena tracking system. Technical Report TR/IRIDIA/2013-013, IRIDIA,
Université Libre de Bruxelles, Belgium (2013)

15. Conover, W.J.: Practical Nonparametric Statistics. Wiley, New York (1999)
16. Francesca, G., et al.: An experiment in automatic design of robot swarms. Supple-

mentary Material (2014), http://iridia.ulb.ac.be/supp/IridiaSupp2014-004

http://iridia.ulb.ac.be/supp/IridiaSupp2014-004

Angle Modulated Particle Swarm Variants

Barend J. Leonard and Andries P. Engelbrecht

Department of Computer Science,
University of Pretoria, South Africa
{bleonard,engel}@cs.up.ac.za

Abstract. This paper proposes variants of the angle modulated particle
swarm optimization (AMPSO) algorithm. A number of limitations of
the original AMPSO algorithm are identified and the proposed variants
aim to remove these limitations. The new variants are then compared
to AMPSO on a number of binary problems in various dimensions. It
is shown that the performance of the variants is superior to AMPSO
in many problem cases. This indicates that the identified limitations
may have a significant effect on performance, but that the effects can
be overcome by removing those limitations. It is also observed that the
ability of the variants to initialize a wider range of potential solutions
can be helpful during the search process.

1 Introduction

Angle modulated particle swarm optimization (AMPSO) [12],[13] is an optimiza-
tion technique that applies particle swarmoptimization (PSO) [8] to binary-valued
optimization problems 1. AMPSO makes use of a four-dimensional trigonometric
function to generate high-dimensional bit strings. This function is referred to as
the generating function. The purpose of PSO in AMPSO is to optimize the coeffi-
cients of the trigonometric function, such that the resulting bit string is the optimal
solution to some binary problem. AMPSO is a generally preferred alternative to
Kennedy and Eberhart’s discrete binary PSO [9],[13] and has successfully been ap-
plied to real-world problems, including power outage prevention [10] and supply
chain management [16].

A number of limitations in the original AMPSO model, as presented by Pam-
para et al. [13], potentially inhibit the ability of AMPSO to produce optimal bit
strings. The limitations in the generating function include:

– the omittance of a scalable amplitude parameter,
– a pre-defined distance between samples of the bit generating function, and
– a pre-determined starting position when sampling.

In addition to the above limitations, this paper shows how a small initialization
domain for PSO also inhibits the search capabilities of AMPSO.

The purpose of this study is to investigate whether some of the limitations
that were imposed on AMPSO can effectively be removed or alleviated. This is

1 For the remainder of this paper, referred to as binary problems.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 38–49, 2014.
c© Springer International Publishing Switzerland 2014

Angle Modulated Particle Swarm Variants 39

done by introducing three variants of AMPSO that target the limitations listed
above. The resulting AMPSO variants are compared to AMPSO to determine
whether they perform better on a number of known binary problems.

The remainder of this paper is structured as follows: Section 2 gives an
overview of the PSO algorithm. Section 3 explains the AMPSO algorithm, de-
scribes the effects of the coefficients of the generating function, and discusses the
limitations of AMPSO. Three new AMPSO variants are introduced in section
4. Section 5 discusses the benchmark functions used for this study. Section 6
describes the experimental setup, while the results are presented and discussed
in section 7. The paper is concluded in section 8.

2 Particle Swarm Optimization

Particle swarm optimization [8] is a stochastic, population-based optimization
technique. The algorithmmaintains a population of solutions, known as particles.
Each particle has a position xi and a velocity vi, and also keeps track of a
personal best position yi that it has found during the search process. The best
personal best position is referred to as the global best position, ŷ.

At each time step t+ 1, the velocity of each particle is updated as follows:

vi(t+ 1) = ωvi(t) + c1r1(t)[yi(t)− xi(t)] + c2r2(t)[ŷ(t)− xi(t)], (1)

where ω is the inertia weight [14], c1 and c2 are acceleration constants, and
r1j(t) and r2j(t) are random values, sampled from U(0, 1) in each dimension
j = 1, . . . , nx. Then, the position of every particle is updated using

xi(t+ 1) = xi(t) + vi(t+ 1). (2)

The resulting behaviour is that particles stochastically return to regions of
the search space where good solutions have previously been found.

3 Angle Modulated Particle Swarm Optimization

Angle modulated PSO makes use of a particle swarm optimizer to find the op-
timal coefficients of the following trigonometric bit generating function:

g(x) = sin(2π(x− a)× b × cos(2π(x− a)× c)) + d (3)

The four coefficients, a, b, c and d control the shape of the function. Binary
solutions are then generated by sampling the generating function at regular
intervals x = (0, 1, 2, . . . , nb), where nb is the length of the required binary
solution. The recorded value g(x) at each location is mapped to a binary bit as
follows:

if g(x) > 0 → 1,

if g(x) ≤ 0 → 0.
(4)

An example 5-dimensional solution is constructed in Figure 1.

40 B.J. Leonard and A.P. Engelbrecht

Fig. 1. Bit generating function with a = 0, b = 0.5, c = 0.8, and d = 0

3.1 AMPSO Coefficients

During the PSO initialization phase, the particles in the swarm are initialized
uniformly in the domain (−1, 1)4, so that the initial values of all four coefficients
are between −1 and 1 [12].

The coefficients of the generating function influence the shape of the function
in various ways:

– a controls the horizontal shift of the entire function,
– b influences the frequency of the sin wave, but also controls the amplitude

of the cos wave.
– c affects the frequency of the cos wave, and
– d controls the vertical shift of the entire function.

3.2 AMPSO Limitations

The first limitation imposed on the generating function is the omittance of a
variable amplitude of the sin wave. The generating function in AMPSO is a
combined sin and cos wave. While the amplitude of the cos wave is controlled
by the b coefficient, there is no variable amplitude coefficient that affects the
sin wave. The result is that, without a sufficiently large vertical shift (at least
d > 1 or d < −1), the generating function will always have regions that pro-
duce 1-bits, and other regions that produce 0-bits. This limitation, combined
with a small initialization range for PSO, introduces some difficulty in finding
binary solutions that consist of a majority of either 1’s or 0’s. Although this
problem is somewhat addressed by the roaming behaviour of particles in PSO
(i.e. the tendency of particles to exit the search domain) [4], the introduction of
an amplitude parameter may enable AMPSO to find optimal solutions faster.

The second and third limitations, as mentioned in section 1, can be thought of
as a single shortcoming on the generating function: sampling from a pre-defined
domain at regular intervals. The effect of this is that, if the correct bit string is
generated by g in some domain, the algorithm must rely on the horizontal shift
parameter a to bring the solution into the sampling domain. In addition, the

Angle Modulated Particle Swarm Variants 41

two frequency parameters b and c must ensure that the frequency of g correctly
matches the distance between samples. Therefore, the three coefficients a, b, and
c are interdependent. Allowing the algorithm to manipulate the sampling range
and sampling interval, independent of the coefficients of g, could potentially
enable it to find the solution faster.

4 AMPSO Variations

Three new AMPSO variants are proposed in this section to remove the restric-
tions that were discussed in section 3.2.

4.1 Amplitude AMPSO

The first variant is called the amplitude angle modulated PSO (A-AMPSO). A-
AMPSO augments the generating function with an additional variable e, which
controls the amplitude of the sin wave. The generating function is then given by

g(x) = e× sin(2π(x− a)× b× cos(2π(x− a)× c)) + d, (5)

and the position of a particle i becomes a 5-dimensional vector:

xi = (a, b, c, d, e) (6)

The advantage of this approach is that a small amplitude, combined with
relatively large vertical shifts (supplied by d), can easily push parts (or all) of the
generating function above or below the x-axis. Therefore, it is easier to produce
solutions with a majority of 1’s or 0’s. The A-AMPSO generating function is
illustrated in Figure 2.

Fig. 2. Bit generating function with a = 0, b = 0.9, c = 0.5

42 B.J. Leonard and A.P. Engelbrecht

4.2 Increased-Domain AMPSO

The second variant is called the increased-domain AMPSO (ID-AMPSO). ID-
AMPSO simply increases the initialization domain of PSO to (−1.5, 1.5)4. Recall
from section 3.1 that the original AMPSO had an initialization range of (−1, 1)4.

The main advantage of ID-AMPSO is that a greater variation of solutions
are possible during initialization, without any increase in complexity. As an
example, consider the bit-string “111111”. This string of 1-bits is impossible to
create during initialization in the standard AMPSO, because all the coefficients
are limited to values between 0 and 1, and there is no amplitude parameter. Since
the amplitude of the original generating function is 1, the only way to produce
a bit string of 1’s is to have a value d > 1, which is outside the initialization
range. Increasing the initialization range solves this problem.

The ability to consistently initialize bit strings containing only 1-bits is valu-
able when considering many benchmark problems. The usefulness of this feature
in practice must still be investigated.

4.3 Min-Max AMPSO

The final proposed variant is called the min-max AMPSO (MM-AMPSO). This
variant augments the position vectors of particles with two additional dimen-
sions. The additional dimensions control the sampling range of the generating
function. The position of a particle i is thus a 6-dimensional vector:

xi = (a, b, c, d, α1, α2), (7)

where α1 and α2 are the bounds of the sampling range.
Let αl = min{α1, α2}, and αu = max{α1, α2}. The generating function is

then sampled at every δth position in the range [αl, αu), where

δ =
αu − αl

nb
, (8)

ensuring regular sampling intervals within the specified domain. Values are sam-
pled from the standard generating function, given in equation (3).

MM-AMPSO has the advantage that a wider variety of solutions can poten-
tially be generated for given values of a, b, c, and d, because α1 and α2 are able to
effectively zoom into parts of the generating function. If αu−αl is small enough,
it is even possible to create bit strings containing only 1’s or only 0’s, without
the need for an amplitude parameter, as illustrated in Figure 3.

5 Benchmark Problems

Five combinatorial benchmark problems were used in this study. Each problem
is discussed below.

Angle Modulated Particle Swarm Variants 43

5.1 N-Queens

For the N-Queens problem, the objective is to place n queens on an n× n chess
board in such a way that no queen is able to capture any other queen, based on
the rules of chess. Various solutions to the problem can be found in [3], [11], and
[15]. The N-Queens problem is a minimization problem.

For the purpose of this study, the problem was investigated for board sizes of
8, 9, 10, 11, 12, 20, and 25. These board sizes led to solution representations of
64, 81, 100, 121, 144, 400, and 625 bits, respectively.

5.2 Knight’s Coverage

The knight’s coverage problem [5] is also a chess-board problem and is defined
as follows: for any n × n chess board, use the minimum number of knights to
cover the maximum number of squares on the chess board. A square on the chess
board is covered only if a knight is occupying the square, or a knight may move
to the square in a single move from its current location. The allowed movements
of knights are defined by the rules of chess. This problem is a minimization
problem.

For this study, the problem was optimized for chess board sizes of 8, 9, 10,
11, 12, 15, and 20. The resulting solution representations had 64, 81, 100, 121,
144, 225, and 400 dimensions, respectively.

5.3 Knight’s Tour

The knight’s tour problem [7] is the third chess board problem that was used in
this study. Given an n×n chess board, the aim is to find a sequence of moves for
a single knight, such that every square on the board is visited exactly once. The
knight may start on any square, but its movement is restricted by the normal
rules of chess. The Knight’s Tour is a maximization problem.

From any position on the chess board, a knight has a maximum of eight valid
moves. Each move can therefore be encoded as a 3-bit binary value. The complete
solution to this problem is then a bit string with 3n bits.

Fig. 3. The exact same generating function as the AMPSO function in Figure 2, except
the sampling range is [0.7, 1.4), ensuring that all samples produce 1-bits

44 B.J. Leonard and A.P. Engelbrecht

This problem was investigated for the following board sizes: 4, 5, 6, 7, 8, 10,
and 12. The respective solution representations were 12, 75, 108, 147, 192, 300,
and 432 bits in length.

5.4 Deceptive Problems

Finaly, the following two deceptive problems were used in this study: order-3
deceptive, and order-5 deceptive. The concept of deception was introduced by
Goldberg [6] and aims to deliberately mislead the evolutionary process, mod-
elled in genetic algorithms. Deceptive problems are designed in such a way that
a deceptive attractor leads the search away from the global optimum. For ex-
ample, for an order-3 deceptive problem f , the bits in a candidate solution are
grouped into nb

3 three-bit groups. Assuming that f is a maximization problem,
with a global maximum at (1, 1, 1, . . .) and a global minimum at (0, 0, 0, . . .),
the relationships in Table 1 must hold for every group of three bits in a candi-
date solution. Both the order-3 and order-5 deceptive problems are defined as
maximization problems.

For this study, the order-3 and order-5 deceptive problems were optimized in
the following dimensions: 15, 30, 45, 60, and 75.

6 Experiments

For this study, the three AMPSO variants proposed in section 4 were compared to
the original AMPSO on the five benchmark functions described in section 5. The
optimal PSO parameter settings for each problem were obtained using iterated
F-race [1], [2]. Note that AMPSO was compared to a number of additional
algorithms in [12].

Each algorithm executed for 1000 iterations, and average results over 30 runs
are reported in section 7. Finally, pair-wise Mann-Whitney U tests were per-
formed to determine significant wins and losses for all algorithms across all
problems at a 95% confidence interval.

7 Results and Discussion

Figures 4 to 7 show the fitness profiles of the different algorithms for the lowest
and highest dimensions of the various benchmark problems.

Table 1. Order-3 Deceptive Relationships

f(. . . 0∗∗ . . .) > f(. . . 1∗∗ . . .) f(. . . 00∗ . . .) > f(. . . 11∗ . . .), f(. . . 01∗ . . .), f(. . . 10∗ . . .)
f(. . . ∗0∗ . . .) > f(. . . ∗1∗ . . .) f(. . . 0∗0 . . .) > f(. . . 1∗1 . . .), f(. . . 0∗1 . . .), f(. . . 1∗0 . . .)
f(. . . ∗∗0 . . .) > f(. . . ∗∗1 . . .) f(. . . ∗00 . . .) > f(. . . ∗11 . . .), f(. . . ∗01 . . .), f(. . . ∗10 . . .)

Angle Modulated Particle Swarm Variants 45

It is observed from Figure 4 that AMPSO, ID-AMPSO and A-AMPSO per-
formed comparably in 64 dimensions, with AMPSO reaching a lower average
fitness at times. MM-AMPSO lagged notably behind. This indicates that the
two additional dimensions added to the position vector in MM-AMPSO im-
posed additional complexity that the algorithm was not able to overcome for
this particular problem. In 652 dimensions, AMPSO has the steepest initial gra-
dient, but again ID-AMPSO and A-AMPSO eventually reach fitness values close
to that of AMPSO.

Figure 5 shows that all algorithms performed comparably in 64 dimensions
on the Knight’s Coverage problem, with MM-AMPSO obtaining a slightly lower
fitness value on average. In 400 dimensions, MM-AMPSO had a lower initial
gradient compared to the other algorithms. However, MM-AMPSO overtook all
the competitors in the last 100 iterations. The results for the Knight’s Coverage
problem are in contrast with what was observed for the N-Queens problem. This
indicates that the capability to adjust the sampling domain of the generating
function during the search process can be beneficial in some problem cases.

For the Knight’s Tour problem, Figure 6 shows that AMPSO obtained the
highest average fitness in 48 dimensions. All algorithms stagnated at inferior
solutions on this problem, with MM-AMPSO having the worst average fitness.
In 432 dimensions, MM-AMPSO still had the worst average fitness, but ID-
AMPSO obtained the best average fitness after 1000 iterations. Again this result
indicates that there are problem cases for which AMPSO suffers some loss in
performance due to the limitations of the generating function. In the case of the
Knight’s Tour problem, the additional complexity of the ID-AMPSO variant is
only beneficial in high dimensions, and only towards the end of the 1000-iteration
search period.

Figure 7 shows the fitness profiles for the order-5 deceptive problems. Fitness
graphs for the order-3 deceptive problems are omitted, but are similar to those
in Figure 7. It is immediately obvious that all three proposed variants obtained
much better average results than AMPSO in the initial phases of the search
process. In fact, the variants consistently found the optimal solutions to these
problems during initialization. The reason for this is that the solution to all the
deceptive problems is a bit string consisting only of 1-bits. Recall from section 4
that all three the variants are able to create such solutions during initialization.
Figure 7 also indicates that dimensionality affects only ID-AMPSO’s ability to
consistently initialize 1-bit solutions, and the effect only persists through the first
few iterations. AMPSO is noticeably affected by an increase in dimensionality
in the order-5 deceptive problem. However, due to particles leaving the search
space, AMPSO is also able to find the optimal solutions to all the deceptive
problems within the first 10 to 70 iterations, regardless of dimensionality.

Tables 2 to 4 report the statistical wins and losses for all algorithms on the
N-Queens-, Knight’s Coverage-, and Knight’s Tour problems after 1000 iter-
ations. The statistical results for the deceptive problems are not reported in
tables, because, as discussed above, all the algorithms solved all the deceptive
problems, implying no statistical difference in performance after 1000 iterations.

46 B.J. Leonard and A.P. Engelbrecht

(a) N-Queens 64 (b) N-Queens 625

Fig. 4. Fitness profiles of all algorithms on N-Queens problems

(a) Knight’s Coverage 64 (b) Knight’s Coverage 400

Fig. 5. Fitness profiles of all algorithms on Knight’s coverage problems

(a) Knight’s Tour 48 (b) Knight’s Tour 432

Fig. 6. Fitness profiles of all algorithms on Knight’s Tour problems

Each table row indicates the wins and losses for all four algorithms on a
specific problem. Because a pair-wise comparison was performed, an algorithm
can have at most three wins or three losses. In addition, a win for one algo-
rithm necessarily implies a loss for some other algorithm. In the cases where one

Angle Modulated Particle Swarm Variants 47

(a) Order-5 Deceptive 30 (b) Order-5 Deceptive 90

Fig. 7. Fitness profiles of all algorithms on Order-5 Deceptive problems

Table 2. Statistical Wins and Losses for N-Queens Problems

Problem
AMPSO A-AMPSO ID-AMPSO MM-AMPSO

wins losses wins losses wins losses wins losses

N-Queens 64 3 0 1 1 1 1 0 3
N-Queens 81 1 0 1 1 2 0 0 3
N-Queens 100 2 0 1 1 1 0 0 3
N-Queens 121 1 0 1 0 1 0 0 3
N-Queens 144 1 1 2 0 1 0 0 3
N-Queens 400 2 0 1 0 1 1 0 3
N-Queens 625 2 0 1 2 2 0 0 3

algorithm obtained more wins that all the other algorithms, the number of wins
for the winning algorithm is printed in bold.

Table 2 shows that AMPSO, A-AMPSO, and ID-AMPSO all obtained statis-
tically superior fitness values to the other three algorithms on some of the N-
Queens problems. AMPSO obtained the most wins overall, while MM-AMPSO
lost in all cases. The results corroborate the observations made in Figure 4.

Table 3 shows that AMPSO, A-AMPSO, and ID-AMPSO all performed well
on the Knight’s Coverage problem. However, A-AMPSO was superior in most
low-dimensional problems, while MM-AMPSO showed very good performance
in high dimensions. This confirms that the gain in performance, due to a little
complexity to the AMPSO algorithm, can be significant.

Finally, Table 4 shows that AMPSO is superior when considering low-dimen-
sional Knight’s Tour problems, while A-AMPSO and ID-AMPSO perform com-
parably to AMPSO in 108 to 192 dimensions. However, MM-AMPSO is superior
to all other algorithms in high dimensions. This demonstrates how an increase in
dimensionality of the Knight’s Tour problem affect the performance of the var-
ious algorithms. Furthermore, Table 4 illustrates that the enhancements made
to the AMPSO algorithm by MM-AMPSO, while having a negative effect on

48 B.J. Leonard and A.P. Engelbrecht

Table 3. Statistical Wins and Losses for Knight’s Coverage Problems

Problem
AMPSO A-AMPSO ID-AMPSO MM-AMPSO

wins losses wins losses wins losses wins losses

Knight’s Coverage 64 1 0 1 0 1 0 0 3
Knight’s Coverage 81 0 1 3 0 0 1 0 1
Knight’s Coverage 100 1 1 3 0 1 1 0 3
Knight’s Coverage 121 0 1 3 0 1 1 0 2
Knight’s Coverage 144 1 1 2 0 1 0 0 3
Knight’s Coverage 225 1 1 0 3 1 1 3 0
Knight’s Coverage 400 1 0 0 3 1 0 1 0

Table 4. Statistical Wins and Losses for Knight’s Tour Problems

Problem
AMPSO A-AMPSO ID-AMPSO MM-AMPSO

wins losses wins losses wins losses wins losses

Knight’s Tour 48 2 0 1 0 1 1 0 3
Knight’s Tour 75 3 0 1 1 1 1 0 3
Knight’s Tour 108 1 0 1 0 1 0 0 3
Knight’s Tour 147 1 0 1 0 1 0 0 3
Knight’s Tour 192 1 0 2 0 1 1 0 3
Knight’s Tour 300 0 1 0 1 0 1 3 0
Knight’s Tour 432 0 1 0 1 0 1 3 0

performance in low dimensions, allow the algorithm to overcome the increased
complexity of the problem in higher dimensions.

8 Conclusion

This paper investigated the angle modulated particle swarm optimization
(AMPSO) algorithm. A number of limitations due to the algorithm’s bit-generat-
ing function were discussed. Three variants of the algorithm were proposed to
remove these limitations. The three variants that were proposed are: amplitude
AMPSO (A-AMPSO), increased-domain AMPSO (ID-AMPSO), and min-max
AMPSO (MM-AMPSO). The AMPSO algorithm was then compared to the three
variants on a number of binary benchmark problems in various dimensions.

It was observed that, in some problem cases, the limitations imposed on
AMPSO affect the performance of the algorithm. Furthermore, it was observed
that the additional complexity in the proposed variants was not favourable in low
dimensions, but allowed the algorithms to obtain statistically equal or superior
performance to AMPSO in higher dimensions.

In addition, it was shown that all three variants allowed for a greater variety
of initial solutions to be generated. This ability allowed the variants to solve
deceptive problems during initialization, while AMPSO required between 10 to
70 iterations to find optimal solutions.

Angle Modulated Particle Swarm Variants 49

In future work the problems will be studied in more detail to determine the
specific characteristics that affect the performance of the algorithms. The gen-
erating function will also be closely studied with respect to an increase in the
dimensionality of the binary solution. If shortcomings can be identified, alter-
native generating functions will be proposed. Furthermore, additional deceptive
problems will be derived with optima that are unlikely to be generated during
initialization. In this way the algorithms’ ability to solve deceptive problems
can be tested more thoroughly. Finally, a scalability study, comparing the three
variants proposed in this paper to binary PSO [9], will be performed.

References

1. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the f-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa
Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HCI/ICCV 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

2. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Genetic and Evolutionary Computation Conference,
pp. 11–18 (2002)

3. Dirakkhunakon, S., Suansook, Y.: Simulated annealing with iterative improvement.
In: International Conference on Signal Processing Systems, pp. 302–306 (2009)

4. Engelbrecht, A.: Particle swarm optimization: Velocity initialization. In: IEEE
Congress on Evolutionary Computation, pp. 1–8 (2012)

5. Fisher, D.: On the nxn knight cover problem. Ars Combinatoria 69, 255–274 (2003)
6. Goldberg, D.: Simple genetic algorithms and the minimal, deceptive problem. In:

Genetic Algorithms and Simulated Annealing, p. 88 (1987)
7. Gordon, V., Slocum, T.: The knight’s tour - evolutionary vs. depth-first search. In:

IEEE Congress on Evolutionary Computation, vol. 2, pp. 1435–1440 (2004)
8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the

IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
9. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm al-

gorithm. In: IEEE International Conference on Systems, Man, and Cybernetics.
Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

10. Liu, L., Liu, W., Cartes, D., Chung, I.: Slow coherency and angle modulated par-
ticle swarm optimization based islanding of large-scale power systems. Advanced
Engineering Informatics 23(1), 45–56 (2009)

11. Martinjak, I., Golub, M.: Comparison of heuristic algorithms for the n-queen
problem. In: 29th International Conference on Information Technology Interfaces,
pp. 759–764 (2007)

12. Pampara, G.: Angle Modulated Population Based Algorithms to solve Binary
Problems. Master’s thesis, University of Pretoria (2013)

13. Pampara, G., Franken, N., Engelbrecht, A.: Combining particle swarm optimi-
sation with angle modulation to solve binary problems. In: IEEE Congress on
Evolutionary Computation, vol. 1, pp. 89–96 (2005)

14. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE (2002)

15. Turky, A., Ahmad, A.: Using genetic algorithm for solving n-queens problem. In:
International Symposium in Information Technology, vol. 2, pp. 745–747 (2010)

16. Wang, S., Watada, J., Pedrycz, W.: Value-at-risk-based two-stage fuzzy facility
location problems. IEEE Transactions on Industrial Informatics, 465–482 (2009)

Ant Colony Optimization on a Budget of 1000

Leslie Pérez Cáceres, Manuel López-Ibáñez, and Thomas Stützle

IRIDIA, CoDE, Université libre de Bruxelles, Belgium
{leslie.perez.caceres,manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. Ant Colony Optimization (ACO) was originally developed as
an algorithmic technique for tackling NP-hard combinatorial optimiza-
tion problems. Most of the research on ACO has focused on algorithmic
variants that obtain high-quality solutions when computation time al-
lows the evaluation of a very large number of candidate solutions, often
in the order of millions. However, in situations where the evaluation of
solutions is very costly in computational terms, only a relatively small
number of solutions can be evaluated within a reasonable time. This sit-
uation may arise, for example, when evaluation requires simulation. In
such a situation, the current knowledge on the best ACO strategies and
the range of the best settings for various ACO parameters may not be
applicable anymore. In this paper, we start an investigation of how dif-
ferent ACO algorithms behave if they have available only a very limited
number of solution evaluations, say, 1000. We show that, after tuning the
parameter settings for this type of scenario, still the original Ant System
performs relatively poor compared to other ACO strategies. However,
the best parameter settings for such a small evaluation budget are very
different from the standard recommendations available in the literature.

1 Introduction

The first Ant Colony Optimization (ACO) algorithms were introduced more than
two decades ago [5]. After the publication of the main journal article describing
Ant System (AS) [7], a large number of other ACO algorithms were introduced
with the goal of improving over AS’s performance and of showing that ACO
algorithms could reach highly competitive results for various well-known combi-
natorial optimization problems. These improved algorithms include Ant Colony
System (ACS) [6], Max-Min Ant System (MMAS) [21], rank-based Ant System
(RAS) [4] and various others [8]. The main test problems at that time included
the Traveling Salesman Problem (TSP) [4,6,7,21] and the Quadratic Assignment
Problem (QAP) [7, 21], among few others.

When it comes to computational effort, typically a sufficiently large number
of solutions constructed or significantly long computation times have been con-
sidered. For example, in the 1996 “First International Contest on Evolutionary
Optimisation” [3], the competing algorithms could evaluate up to 10 000 ·n can-
didate solutions, where n is the problem dimension, that is, the number of cities
in the TSP. Similarly, in most papers large enough computation times have been
given to allow a large number of solutions to be generated or expensive local

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 50–61, 2014.
c© Springer International Publishing Switzerland 2014

Ant Colony Optimization on a Budget of 1000 51

search methods to be used [9]. In particular, local search usually requires the
evaluation of a large number of solutions.

On the other hand, there are situations where an algorithm can generate and
evaluate only very few solutions before having to return the best solution found.
This is the case when there are very tight real-time constraints even when it is
quick to evaluate individual solutions or when the evaluation of solutions itself is
very costly and in reasonable computation times only a small number of solutions
can be evaluated. Common examples for the latter can be found in the field of
simulation-optimization [1,14,23,24]. Moreover, in such a situation the usage of
incremental updates to explore neighboring candidate solutions, one of the key
factors that make local search algorithms fast [10], is often not applicable. In
such situations, an ACO algorithm may only be able to evaluate a few thousand
(or even fewer) solutions.

When facing a situation where very few solutions can be evaluated, a first
question is how to transfer the knowledge available in the ACO literature, since
most experiments on ACO algorithms typically consider many more solution
evaluations. Hence, we consider it a valid question to pose which algorithmic
ACO variants may be the most promising in such situations and also which
values their parameters should take. In this paper, we explore these questions,
acknowledging that similar questions have been posed on single ACO algorithms
but usually at still much higher computation budgets than we consider here [18].
We do so by comparing the performance of some of the main ACO algorithms,
including AS, elitist AS (EAS), RAS, MMAS, and ACS using their default pa-
rameter values recommended in the literature [8] and using their parameters
tuned by irace [13], an automatic algorithm configuration tool. As benchmark
problems, we use the TSP and the QAP, but with the additional limitation that
at most 1 000 candidate solutions can be evaluated per run. Our experimental
results show that the ACO algorithms that were proposed as improvements over
AS still are clearly preferable, even in such a scenario. However, for some of the
ACO algorithms this is only the case after re-tuning their parameter settings.
In fact, some of the tuned parameter settings differ very strongly from what has
been recommended in the literature and, in some cases such as for ACS, from
what intuition would dictate as a good setting.

The article is structured as follows. In Sec. 2 we give details on the algorithms
we used, the parameter ranges considered and the benchmark problems we used
for our tests. Sec. 3 gives the experimental results and we conclude in Sec. 4.

2 Experimental Setting

2.1 Problems

In this article, we consider a scenario where evaluating a solution is costly enough
that only a few candidate solutions can be evaluated per run. To allow for a
significant number of experiments and to allow for parameter tuning, we evaluate
the ACO algorithms on two standard test problems (the TSP and the QAP), but
we restrict the number of solution evaluations to 1000. Both the TSP and the

52 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

QAP are well-known NP-hard combinatorial optimization problems, often used
as benchmarks for heuristic algorithms and in the early literature on ACO [8].
For both problems, we generate a set of benchmark instances to be used in the
evaluation of the ACO algorithms.

For the TSP, we generate random uniform Euclidean instances, where points
are randomly distributed in a square of dimension 10000×10000.We generate 100
instances for each value of 50, 60, 70, 80, 90, and 100 cities. Half of these instances
of each size are used as training instances for the ACO algorithm tuning, while
the other half are used as test set for the comparison of the algorithms. For
the QAP, we use the instances proposed in [19]. These QAP instances have a
structure analogous to the instances that arise in practical applications of the
QAP. The instance set comprises 100 instances of each size 60, 80, and 100.

2.2 ACO Algorithms

In our experiments, we use five of the best-known ACO algorithms, namely AS
[7], EAS [7], RAS [4], MMAS [21] and ACS [6]. A detailed description of the above
algorithms can be found in [8]; here we recall just the main algorithmic rules in
the solution construction and the pheromone update so that the parameters we
later tune are defined.

ACO algorithms iteratively construct solutions to a problem by using heuris-
tic information and pheromone trails. Most ACO algorithms make use of the
random-proportional rule that was introduced with AS: At a decision point i,
the next element j is chosen with a probability pij that is proportional to ταij ·η

β
ij ,

where τij is the pheromone related to a choice of solution component (i, j), ηij
is the associated heuristic information and α and β are two parameters that
weigh the influence of the pheromone with respect to the heuristic information.
ACS used a more deterministic construction, where with a probability q0, the
next element j is chosen deterministically as the one that maximizes ταij · ηβij
(ties being broken randomly). AS-based algorithms may also use this latter rule,
that is, make a deterministic choice with probability q0 and we consider this
possibility also in this paper. Once all m ants have constructed a solution, where
m is a parameter corresponding to the colony size, the pheromones are up-
dated by evaporating a factor ρ of each pheromone trail, where ρ is a parameter
(0 ≤ ρ < 1), and depositing an amount of pheromone that is inversely propor-
tional to the solution cost. The various ACO algorithms differ in which ants
deposit pheromones and how much they deposit. For example, in AS each ant
deposits an amount of pheromone equal to the inverse of the solution cost; in
EAS the best solution since the start of the algorithm, the best-so-far solution,
deposits additionally a large amount of pheromone; in RAS only some of the
best solutions generated in each iteration and the best-so-far solution deposit
pheromone; in MMAS only one ant deposits pheromone, which may be either
the iteration-best or the best-so-far ant; finally, in ACS typically only the best
solution since the start of the algorithm deposits pheromone. As a result, espe-
cially the more recent extensions such as RAS, MMAS, and ACS tend to exploit

Ant Colony Optimization on a Budget of 1000 53

better the best solutions found during the search, but possibly only after longer
computation times [8].

For this paper, we have used the implementation of the ACO algorithms given
by the ACOTSP software [20]. We do not use candidate sets or local search to
avoid biases due to a priori exploitation of specific problem features. For the
QAP, we have adapted the ACOTSP software in a straightforward way so that
we could use the same implementation. The main difference between the ACO
algorithms for the TSP and the QAP is that for the latter we have not derived
heuristic information. In the TSP case the avoidance of heuristic information
can simply be simulated by setting β = 0. We also extended ACOTSP such that
parameter settings may vary during a single run as described in [15].

2.3 Automatic Configuration

We compare the ACO algorithms using default parameter settings, which were
normally derived considering other application scenarios, such as rather large
numbers of solution evaluations, and the ACO algorithms after tuning. As tuning
tool we use the irace software [13] that implements Iterated F-race and other
racing methods for automatic parameter tuning [2]. The details of the various
configuration scenarios are described below and the scenario files are available as
supplementary material (http://iridia.ulb.ac.be/supp/IridiaSupp2014-006/).

ACOTSP, ACOQAP: These configuration scenarios execute the algorithms
using fixed parameter values and they consider a fixed maximum budget for the
run of each algorithm of 1 000 evaluations. These scenarios require the configu-
ration of five (QAP) or six (TSP) parameters common to all ACO algorithms,
plus one specific parameter in the case of configuring EAS (elitistants: the weight
given to the best-so-far solution) or RAS (rasrank: the maximum rank considered
corresponding to the maximum number of ants (m) that deposit pheromone).
The parameters and their ranges are given in Table 1. The tuning goal is to
minimize the solution cost reached after 1 000 solution evaluations.

ACOTSP-V, ACOQAP-V: These scenarios allow the parameters to vary
during the algorithm execution by tuning pre-scheduled parameter variations
identical to those described in Table 2 of [15]; the other parameters use fixed
settings in a range as indicated in Table 1. The pre-scheduled parameter variation
is possible for the four parameters; m, β (only in the case of TSP), q0 and ρ.
The rationale for using this alternative tuning scenario is to examine whether
parameter variations may improve performance. The configuration goal remains
the same as in the ACOTSP and ACOQAP scenarios.

ACOTSP-VA, ACOQAP-VA: These scenarios consider the algorithms with
the possibility of pre-scheduled parameter variations as in the previous scenario.
However, they consider a different configuration goal: The optimization of the
anytime behavior as measured by the normalized hypervolume of the space that
is dominated by the pairs of points that describe the development of the best-so-
far solution quality over the number of solution evaluations [15]. In this case, the

http://iridia.ulb.ac.be/supp/IridiaSupp2014-006/

54 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

Table 1. Range of parameters used in the tuning for fixed parameter settings

Common parameters for all scenarios RAS and EAS TSP scenario

m α ρ q0 rasrank elitistants β

[5, 100] [0, 10] [0.01, 1] [0, 1] [1, 100] [1, 175] [0, 10]

configuration goal is to minimize the normalized hypervolume. The goal of this
tuning setting is to obtain a parameter configuration that is good independent
of the specific maximum number of solution evaluation that is given. To still
optimize the algorithm behavior for short runs, the maximum execution budget
of each run of an ACO algorithms was limited to 5 000 solution evaluations.

In all scenarios, the total configuration budget for each tuning run was 10 000
runs of the algorithm and, as said above, half of the available benchmark in-
stances are used as training set for the tuning.

3 Experimental Results

In this section, we examine the ACO algorithms using different parameter set-
tings. First, we compare the results of the five ACO algorithms when using their
default settings in the ACOTSP software. Next, we consider parameter settings
that have been tuned following scenarios ACOTSP and ACOQAP. Finally, we
consider tuning parameter variation strategies and the anytime behavior of the
ACO algorithms, that is, scenarios ACOTSP-V / VA and ACOQAP-V / VA. In
the following, each time statistical significance tests are mentioned they refer to
Wilcoxon rank-sum tests at the 0.05 significance level with Bonferroni’s correc-
tion for multiple tests. The experimental results reported here are based on one
run on each of the test instances (300 instances for the TSP and 150 instances
for the QAP).

3.1 Default Parameter Settings

As a first step, we compare the five ACO algorithms using default parameter
settings. For the presentation of the results, we use AS as a baseline, that is,
we compute the relative quality deviation obtained by each ACO algorithm with
respect to AS on each instance. More concretely, for each test instance i and each
ACO algorithm a, we compute the percentage deviation of the result obtained
by a on instance i from the result of AS on the same instance i. Figure 1 gives
the boxplots of the resulting deviations. A value larger then zero indicates worse
performance than AS, while a value lower than zero indicates better performance.

Maybe surprisingly, when using the default settings and limiting the number
of evaluations to 1000, some of the ACO algorithms perform much worse than
AS. This is particularly striking for MMAS, which generates tours that are about
70% worse than those of AS. Also RAS performs much worse than AS on the

Ant Colony Optimization on a Budget of 1000 55

Fig. 1. Boxplots of the percentage deviation of the solution quality obtained by five
ACO algorithms from the solution generated by AS, which is taken as reference. The
results are given across all test instances.

TSP. The poor performance of these algorithms for short runs is due to the fact
the MMAS and RAS parameters were set to allow for a very high final solution
quality after a large number of candidate solutions have been generated [8]; for
example, both MMAS and RAS use a relatively small evaporation, which does
not allow them to bias the search fast enough to focus on the best solutions found.
Another reason is the different default setting of the parameter β, which for AS
is set to 5 whereas for MMAS and RAS is set to 2. EAS and ACS both show
better performance than AS. All differences are statistically significant at the
0.05 significance level. For the QAP, the situation is different from the one of the
TSP. None of the other ACO algorithms performs worse than AS. Considering
statistical significance, EAS, RAS and ACS perform statistically significantly
better than AS, whereas there is no statistically significant difference between
MMAS and AS. This difference to the TSP results can be explained by the fact
that the ACO algorithms for the QAP do not make use of heuristic information.
In fact, if one eliminates heuristic information for the TSP by setting β = 0,
the performance relative to AS follows the same trends as for the QAP (more
details are given in the supplementary material).

3.2 Tuned Settings

In a next step, we tuned the parameter settings for both ACOTSP and ACO-
QAP scenarios as defined in Section 2.3. After tuning, all algorithms significantly
improve the solution quality reached within the limit of 1 000 candidate solu-
tions. Figure 2 shows the relative deviation of each tuned ACO algorithm over
its default version. As before, negative values indicate improved quality. The
algorithms that most improve their performance are MMAS and RAS, while
AS on the QAP is the only ACO algorithm that does not strongly improve its
quality after tuning.

Figure 3 compares the performance of the ACO algorithms using AS as a
reference in the same way as in the previous section, that is, the relative deviation
of the quality obtained by the tuned version of each ACO algorithm with respect

56 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

Fig. 2. Boxplots of the observed percentage improvement of each ACO algorithm with
tuned parameter settings over the solutions reached with default parameter settings.
The reference cost of each tuned ACO algorithm is its respective default parameter
setting. For example, the boxplot of MMAS indicates the improvement observed of
MMAS with tuned parameter settings over its default parameter settings. The results
are given across all test instances.

Fig. 3. Boxplots of the percentage deviation of the solution quality obtained by five
ACO algorithms from the solution generated by AS, which is taken as reference. The
results are given across all test instances.

to the tuned version of AS. This comparison shows that, for both the TSP
and QAP, the four ACO algorithms (EAS, RAS, MMAS, and ACS) improve
significantly over the performance of AS. (All the differences between AS and the
other ACO algorithms are statistically significant.) The overall best performance
on the TSP and on the QAP is obtained by MMAS and RAS, respectively.

A main reason for the strong improvements of most ACO algorithms over their
default parameter settings is that these settings were designed for scenarios where
ample computation time is available, that is, where a large number of candidate
solutions may be constructed. To examine the differences between the default
and the tuned parameter settings, we performed for each ACO algorithm 20 runs
of irace and we analyzed the distribution of the parameter configurations that
were obtained. These distributions are given in Figure 4 using boxplots; the red
line for each algorithm indicates the default parameter settings.

While the parameter settings selected by irace varied from run to run, we can
observe some clear trends. The algorithm for which the tuned parameter settings

Ant Colony Optimization on a Budget of 1000 57

Fig. 4. Distribution of the parameter values found in 20 runs of irace. The dotted red
lines indicate the default parameter setting for each algorithm. For the number of ants,
the default parameter setting is the instance size; since in our test instances the size
varies, we assumed an “average” instance size of 80 to indicate the default setting.

58 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

differ the least from the default ones is AS. For the other algorithms, major dif-
ferences arise. RAS and especially MMAS use much smaller number of ants (m)
than in their default version, which allows them to perform more iterations than
in the default settings. In the ACOTSP scenario, also the heuristic information
gets a much higher emphasis by using a median value for β of around seven
instead of the default setting of two. The most noteworthy is probably the much
higher evaporation rate ρ in RAS and MMAS than the default evaporation rate
for both the ACOTSP and the ACOQAP scenarios. A very high pheromone
evaporation has the effect that the search can quickly forget previously obtained
worse solutions and focus quickly around the best recent ones. All these differ-
ences can be explained by the need of exploiting much more aggressively the
search history (and heuristic information if available and helpful) due to the
very small number of solutions to be generated biasing in this way the search
around the best solutions found so far.

The setting of q0 larger than zero for all ACO algorithms supports this in-
terpretation, although in the case of ACS the tuned value for q0 is somewhat
surprising: a rather low value of q0 together with a rather high value for α is pro-
posed by the tuning, thus providing here another means for the exploitation of
the search history. If we compare the settings of the ACOTSP and the ACOQAP
scenarios, we can observe similar overall trends. However, there are differences
in the best parameter settings for specific algorithms. For example, differences
in good parameter settings in the two scenarios are evidenced by the fact that
the boxplots of the distribution of the tuned parameter settings for the same
ACO algorithm in the ACOTSP and ACOQAP scenarios often do not overlap.

3.3 Parameter Variation and Anytime Parameter Tuning

Instead of using fixed parameter settings, another option may be to adapt the
parameter settings while running the algorithm. Earlier studies have indicated
that pre-scheduled parameter variations [16, 22] may be more promising than
self-adaptive schemes for deriving improved ACO parameter settings [17]. In
particular, pre-scheduled parameter variation was shown to be particularly suc-
cessful to improve the anytime behavior of MMAS [15]. In this section, we vary
the parameters q0, β, ρ, and m within a single run using the same variation
schemes as proposed in [15]: We consider for all parameters as possible changes
either their gradual variation iteration-by-iteration or a single switch of the pa-
rameter setting from some value to another one at a particular iteration.

For tuning, we consider the two possibilities that are offered by the scenarios
ACOTSP-V / VA and ACOQAP-V / VA, which were described in Section 2.3.
In a nutshell, the results do not show a strong difference when tuning for the
final quality or for the anytime behavior, when the algorithms are evaluated
according to the quality reached at 1 000 evaluations (Fig. 5).

On the other hand, the possibility of tuning the anytime behavior has a pos-
itive impact on the behavior of at least some of the algorithms if we look at the
solution quality reached for different values of the evaluation budget. The plots
of the solution quality development (as measured by the percentage deviation of

Ant Colony Optimization on a Budget of 1000 59

Fig. 5. Performance the ACO algorithm tuned for optimizing their anytime behavior
versus the fixed parameter settings tuned for best performance at 1 000 evaluations.
The results are given for an evaluation of the algorithms on the test set after 1 000
evaluated candidate solutions.

Fig. 6. Plots of the development of the solution quality over the number of solution
evaluations for the TSP (left) and the QAP (right). The solution quality is measured
as the percentage improvement over the solutions generated by AS across the test
instances. The algorithms shown (MMAS and RAS) where tuned either for a fixed
evaluation budget (fixed) and for optimizing their anytime behavior (anyt).

the algorithms from the AS solutions) over the number of evaluations (Fig. 6)
show that, while MMAS’ curve is almost identical independently of how the
tuning was done, the curves for RAS show a clear stagnation effect of the RAS
tuned for a fixed evaluation budget when compared to the version of RAS tuned
for anytime behavior. Since it may be unknown a priori how many evaluations
can be done in practice, we would recommend tuning for anytime behavior.

4 Final Remarks and Future Work

In this paper, we have analyzed the performance of five ACO algorithms for very
low budgets on the evaluation of candidate solutions. Our computational results
showed that EAS, RAS, MMAS, and ACS improve in performance over AS even
in such circumstances. However, to make these algorithms reach high perfor-
mance in short runs, very different parameter settings from the usual default
ones have to be used.

60 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

There are a number of directions in which this work can be extended. Even
though by the analysis of the tuned parameter settings we obtained new insights
into the best parameter values for very short runs, the current tuning setting is
maybe not the most realistic one. In fact, in an expensive function evaluation
setting, the tuning would be rather time-consuming and it may be unrealistic
to afford a time-intensive fine-tuning for each different problem being tackled.
A next step would be to obtain more general settings. For example, we may
tune the ACO algorithms across many different combinatorial problems and in
this way derive robust parameter settings. Another question concerns whether
to use specific known ACO algorithms or rather consider a framework of ACO
algorithms from which known and new ACO algorithms may be instantiated.
Such a framework may lead ultimately to a higher performing ACO algorithm
than those we know nowadays–and this also holds for the here considered settings
of very few solution evaluations. Finally, another possibility is to use surrogate
modeling approaches to model fitness landscapes [11, 12]. While such surrogate
modeling approaches have widely been applied to black-box continuous function
optimization problems, their usage is more rare for combinatorial optimization
problems. Hence, the exploration of such models and their integration into ACO
algorithms may be a promising next step.

Acknowledgments. This work received support from the COMEX project
within the Interuniversity Attraction Poles Programme of the Belgian Science
Policy Office and from the European Research Council under ERC grant agree-
ment n. 246939. Manuel López-Ibáñez and Thomas Stützle acknowledge support
from the Belgian F.R.S.-FNRS, of which they are a postdoctoral researcher and
a senior research associate, respectively. Leslie Pérez Cáceres acknowledges sup-
port of CONICYT Becas Chile.

References
1. April, J., Glover, F., Kelly, J., Laguna, M.: Practical introduction to simulation

optimization. In: Proceedings of the 2003 Winter Simulation Conference, vol. 1,
pp. 71–78 (December 2003)

2. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa
Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

3. Bersini, H., Dorigo, M., Langerman, S., Seront, G., Gambardella, L.M.: Results of
the first international contest on evolutionary optimisation. In: Bäck, T., Fukuda,
T., Michalewicz, Z. (eds.) Proceedings of ICEC 1996, pp. 611–615. IEEE Press,
Piscataway (1996)

4. Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the Ant
System: A computational study. Central European Journal for Operations Re-
search and Economics 7(1), 25–38 (1999)

5. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis,
Dipartimento di Elettronica, Politecnico di Milano, Italy (1992) (in Italian)

6. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

Ant Colony Optimization on a Budget of 1000 61

7. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part
B 26(1), 29–41 (1996)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
9. Gambardella, L.M., Montemanni, R., Weyland, D.: Coupling ant colony systems

with strong local searches. European Journal of Operational Research 220(3), 831–
843 (2012)

10. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco (2005)

11. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)

12. Knowles, J.D., Corne, D., Reynolds, A.P.: Noisy multiobjective optimization on
a budget of 250 evaluations. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X.,
Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 36–50. Springer,
Heidelberg (2009)

13. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Tech. Rep.
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011),
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

14. López-Ibáñez, M., Prasad, T.D., Paechter, B.: Ant colony optimisation for the op-
timal control of pumps in water distribution networks. Journal of Water Resources
Planning and Management, ASCE 134(4), 337–346 (2008)

15. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour
of optimisation algorithms. European Journal of Operational Research 235(3),
569–582 (2014)

16. Maur, M., López-Ibáñez, M., Stützle, T.: Pre-scheduled and adaptive parameter
variation inMAX–MIN Ant System. In: Ishibuchi, H., et al. (eds.) Proceedings
of CEC 2010, pp. 3823–3830. IEEE Press, Piscataway (2010)

17. Pellegrini, P., Birattari, M., Stützle, T.: A critical analysis of parameter adaptation
in ant colony optimization. Swarm Intelligence 6(1), 23–48 (2012)

18. Pellegrini, P., Favaretto, D., Moretti, E.: OnMAX –MIN ant system’s parameters.
In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T.
(eds.) ANTS 2006. LNCS, vol. 4150, pp. 203–214. Springer, Heidelberg (2006)

19. Pellegrini, P., Mascia, F., Stützle, T., Birattari, M.: On the sensitivity of reactive
tabu search to its meta-parameters. Soft Computing (in press)

20. Stützle, T.: ACOTSP: A software package of various ant colony optimiza-
tion algorithms applied to the symmetric traveling salesman problem (2002),
http://www.aco-metaheuristic.org/aco-code/

21. Stützle, T., Hoos, H.H.:MAX–MIN Ant System. Future Generation Computer
Systems 16(8), 889–914 (2000)

22. Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., Montes de Oca, M.A.,
Birattari, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 191–215.
Springer, Berlin (2012)

23. Teixeira, C., Covas, J., Stützle, T., Gaspar-Cunha, A.: Multi-objective ant colony
optimization for solving the twin-screw extrusion configuration problem. Engineer-
ing Optimization 44(3), 351–371 (2012)

24. Zeng, Q., Yang, Z.: Integrating simulation and optimization to schedule load-
ing operations in container terminals. Computers & Operations Research 36(6),
1935–1944 (2009)

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://www.aco-metaheuristic.org/aco-code/

Application of Supervisory Control Theory

to Swarms of e-puck and Kilobot Robots

Yuri K. Lopes1, André B. Leal2, Tony J. Dodd1, and Roderich Groß1

1 Natural Robotics Lab, The University of Sheffield, Sheffield, UK
{y.kaszubowski,t.j.dodd,r.gross}@sheffield.ac.uk
2 Santa Catarina State University, Joinville-SC, Brazil

andre.leal@udesc.br

Abstract. At present, most of the source code controlling swarm robotic
systems is developed in an ad-hoc manner. This can make it difficult
to maintain these systems and to guarantee that they will accomplish
the desired behaviour. Formal approaches can help to solve these issues.
However, they do not usually guarantee that the final source code will
match the modelled specification. To address this problem, our research
explores the application of formal approaches to both synthesise high-
level controllers and automatically generate control software for a swarm
of robots. The formal approach used in this paper is supervisory control
theory. The approach is successfully validated in two experiments using
up to 42 Kilobot robots and up to 26 e-puck robots.

1 Introduction

Swarm robotics (SR) studies systems composed of numerous robots that interact
and cooperate to achieve certain goals. SR emphasises decentralization of control,
limited communication among robots, use of local information, emergence of
global behaviour and robustness. Such properties may prove useful in many
real-world applications [1].

At present, most of the source code controlling swarm robotic systems is de-
veloped in an ad-hoc manner, without relying on software engineering methods.
This can lead to software that is difficult to maintain. It is also difficult to guar-
antee that the software will accomplish the desired behaviour.

Formal approaches help to solve or minimise these issues as they require a
systematic formalization of the solution. The methods to prove the properties
of the system are much more developed to be applied over models expressed
by formal approaches than over pure source code. There is a collection of soft-
ware tools that implement such methods to analyse, validate and even prove
properties of systems expressed by formal approaches. Also, the models serve as
documentation of the system.

However, even when a project uses formal approaches, it is not guaranteed
that the final source code will accomplish its goals. In the context of manufac-
turing systems, studies have illustrated how control code can be automatically
generated using formal approaches [6,12,8,5]. The adaptation of these studies to

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 62–73, 2014.
c© Springer International Publishing Switzerland 2014

SCT Applied to Swarm Robotics 63

the SR field could provide a new approach to engineering SR systems and help
their transition to real-world applications.

1.1 Formal Approaches in Swarm Robotics

Works have investigated the use of formal approaches in SR. In [9], a group of
probabilistic Finite State Machines is used to describe the structure of a swarm of
robots at a microscopic level. This work focuses on modelling and analysis rather
than control specification and synthesis. The formal specification, synthesis and
verification of swarm robotic systems is an active area of research [3,2].

One of the formal approaches applied to synthesise control logic is Supervisory
Control Theory (SCT) [14,13]. SCT is largely applied in manufacturing systems.
In this scenario the decomposition of the model and specifications into several
“small” subsystems is applied to solve complex problems.

In [4], the dynamics of a robot team is modelled with Discrete Event Systems
(DES) using SCT and aiming at the design of a reconfigurable swarm system,
which can handle the situation of robots switching off. However, the focus is on
recovery control, the implementation of the control is not considered.

In [16], the authors use Deterministic Finite Automata (DFA) based on SCT
to address the task allocation problem in a team of mobile robots, which work to-
gether as an automated patrolling/inspection system. In [17], Fuzzy-logic-based
utility functions are used to quantify the ability of such robots to perform a
task. All these works do not use the full Ramadge and Wonham (RW) frame-
work [14,13]; instead, they are only partially based on it. As a consequence, much
of the software tools and theory development cannot be applied to them.

While some works address the application of formal approaches in SR, there
is a lack of work addressing automatic code generation. Moreover, there is a lack
of case studies even in the field of manufacturing coordination, which is a major
field of application of SCT.

1.2 Contributions

This paper presents the application of SCT to the domain of swarm robotics.
It shows how to design and synthesise controllers for the individual robots in a
swarm, and how to automatically generate the control software from the formal
specification. Two case studies are presented and the same synthesised controller
is applied on two target platforms, the Kilobot [15] and the e-puck [10] miniature
mobile robotic systems.

The main contributions of this work are (1) to adapt the implementation
model of the SCT to the SR field; (2) to apply the SCT using the full RW-
framework to SR, from the modelling to the software implementation; (3) to
develop a software tool that automatically generates the control software for
SR; and (4) to present two case studies applying this software tool and the
proposed implementation model.

64 Y.K. Lopes et al.

2 Supervisory Control Theory

In this section, SCT is overviewed. A language is defined as a set of words over
an alphabet Σ, where the alphabet is a set of symbols. The events of a DES are
associated with those symbols, and the words formed by those symbols represent
sequences of operations. The control objective is to guarantee that at any time
only valid words or prefixes of valid words occur. We are interested in a particular
class of languages, namely the regular one.

A generator is a formal representation for a regular language used within the
SCT framework. It is a quintuple G = (Q,Σ, δ, q0, Qm), where Q is the finite set
of states; Σ is the finite set of symbols related to system events; δ : Q×Σ → Q
is the partial transition function; q0 is the initial state, where q0 ∈ Q; and, Qm

is the set of final, marked as accepting states, where Qm ⊆ Q.
The symbols that represent events are of two types: controllable events (Σc)

and uncontrollable events (Σu), where Σ = Σc∪Σu and Σc∩Σu = ∅. The tradi-
tional control operates by receiving stimulus signals from the controlled system
and then issuing command signals. Thus, uncontrollable events are stimulus sig-
nals (e.g. from a sensor) and controllable events are command signals.

The SCT uses generators to represent free behaviour models and control spec-
ifications. The free behaviour models abstract each subsystem of each robot to
be controlled and represent all of the physical possibilities of the system. We use
Gi to represent the i-th free behaviour model. The specifications represent the
desired behaviours of individual robots. We use Ej to represent the j-th speci-
fication model. The generators are synthesised to create supervisors that realise
the control logic.

The goal of SCT is to obtain a language, realised by a supervisor, that rep-
resents valid sequences of events (in particular, they are minimally restrictive
[14] and non-blocking [18]) respecting the control specifications. The supervisor
exerts the control over the robot by disabling controllable events.

3 Modelling Swarm Robotic Behaviours with Supervisory
Control Theory

In order to explain the SCT modelling processes, we introduce two didactic case
studies, one using two robots to illustrate the robot platforms and the second
using a proper swarm. In both case studies all robots use the same control logic
and synthesised controller.

3.1 Orbit Case Study

The orbit strategy [15] is the first case study and it consists of two robots:
the static robot and the orbiting robot. The static robot sends an infra-red (IR)
message at a regular interval and the orbiting robot uses this message to estimate
the distance and then orbit counterclockwise (CCW) around the static robot.
When the orbiting robot is inside the boundary interval (which is the initial

SCT Applied to Swarm Robotics 65

q1

press

q1 q2

send
/

follow
/

q1

moveCW,
moveCCW,
moveFW

/

q1

upbound,
bound,

lowbound

(a) G1 (b) G2 (c) G3 (d) G4

Fig. 1. Free behaviour models for the orbit strategy. Plain arcs represent uncontrollable
events. Arcs with a stroke represent controllable events. Each behaviour model, Gi, has
its own set of states Qi = {q1, ..., qn}.

condition), it moves forward. When the distance of both robots is bigger than
a threshold (the upper boundary), the orbiting robot turns CCW around the
internal wheel/leg axis and approaches the static robot. When the distance of
both robots is smaller than a threshold (the lower boundary), the orbiting robot
turns clockwise (CW) around the external wheel/leg axis and moves away from
the static robot.

Figure 1 shows the free behaviour models for this experiment. The generator
G1 (Figure 1(a)) represents a device to configure the type of the robot (static or
orbiting) where the uncontrollable event press occurs when the user activates the
configuration device. This device can be implemented as an IR signal received
from a remote control. The generator G2 (Figure 1(b)) represents the configu-
ration of the robot: orbiting (in state q1) or static (in state q2). The controllable
events send and follow start or interrupt the broadcast of the message respec-
tively; the send event also stops the robot. This model contains the restriction
of both events occuring alternatively.

The generatorG3 (Figure 1(c)) represents the motion capabilities of the robot.
The controllable events moveFW , moveCW and moveCCW respectively rep-
resent the start of the forward movement, the CW turn and the CCW turn.
The robot executes that movement indefinitely. The generator G4 (Figure 1(d))
represents the boundary sensor; the uncontrollable events upbound, bound and
lowbound are triggered when the orbiting robot is respectively too far, inside the
boundary, or too near. As the distance estimation by IR message is not precise,
the robot can receive the uncontrollable events in any order and at any time.
Those events are continuously triggered after a sampling cycle of 200ms.

Figure 2 shows the specifications of the orbit strategy. Figure 2(a) shows the
specification of the user interaction to configure the robot type. Figure 2(b)
shows the specification that enables the movement only for the orbiting robot.
Figure 2(c) implements the main rule of the strategy, as previously described.
States q1, q2 and q3 (in E3) specify the motion of the orbiting robot when it is
respectively too far, inside the boundary or too near. As the initial state is q2,
it is considered that the robot starts inside the boundary.

66 Y.K. Lopes et al.

q1 q2

press

press

send, follow
/

q1 q2

send
/

moveCW,
moveCCW,
moveFW

/

follow
/

q1 q2

q3

bound

lowbound

moveCCW
/

upbound

upbound

lowbound

moveFW
/

bound

boundupbound

moveCW— lowbound

(a) E1 (b) E2 (c) E3

Fig. 2. Specification for the orbit strategy. Each specification, Ej , has its own set of
states Qj = {q1, ..., qm}.

3.2 Segregation Case Study

The second case study addresses a segregation strategy. Each robot is configured
as a leader or as a follower at the beginning of the trial. There are three types of
leaders, which we refer to as the red, the green and the blue. These leaders are
initially spread in the arena. They broadcast by IR a message, at fixed intervals
of time, containing their type/colour. The follower robots that are in the signal
field of only one type of leader start to belong to that leader. If a robot receives
the signal from two or more different types of leaders, this robot starts to move
at random until it finds a position where it receives signals from only one type
of leader or no signal.

Figure 3 shows the free behaviour models for this experiment. The free be-
haviour G1 (Figure 3(a)) represents a device to configure the type of the robot
as in the previous experiment. The free behaviour G2 (Figure 3(b)) represents
the message transmission when a robot is a leader and no transmission when it
is a follower. Initially, each robot is a follower robot (state q1 in G2). The con-
trollable events sendR, sendG and sendB start the broadcast of the messages
red, green and blue, respectively. The controllable event sendNothing stops the
broadcast.

The free behaviour model G3 (Figure 3(c)) defines the motion behaviour.
The controllable events moveFW , moveCW and moveCCW start the forward
movement, the clockwise turn and counterclockwise turn of the robot for a ran-
dom period, respectively. An uncontrollable event moveEnded is generated at
the end of this period. The controllable event move Stop forces the end of the
movement. Initially, the robots do not move.

The free behaviour models G4, G5 and G6 (Figure 3(d)) represent the re-
ceiving of a message from the leaders red, green and blue respectively. The
uncontrollable event getX, X ∈ {R,G,B} occurs if the robot starts to receive a

SCT Applied to Swarm Robotics 67

q1

press

q1 q2

q3q4

sendR
/

sendG/

sendB
/

sendNothing/

q1 q2

moveCW,
moveCCW, moveFW

/

moveEnded

moveStop
/

∀ X ∈ {R,G,B}:

q1 q2

getX

getNotX

(a) G1 (b) G2 (c) G3 (d) G4, ..., G6

Fig. 3. Free behaviour models for the segregation strategy. Final states Qm are indi-
cated by double lines.

message from the corresponding type of leader; getNotX, X ∈ {R,G,B} occurs
when the robot stops receiving messages from the corresponding type of leader.
A sampling cycle of 200ms is used to check if the robot is receiving the message.

Figure 4 illustrates the specifications to implement the robot type configura-
tion and the segregation strategy. Figure 4(a) shows the specification E1, which
relates the user input with the change of robot type. Each time the user gives
an input signal (the press event) the event to change the robot type is enabled.
The combination with the model G2 (Figure 3(b)) will guarantee the sequential
order of types: follower, red leader, green leader and blue leader. This allows the
user to set a robot as one of the three types of leaders or as a follower robot.
Figure 4(b) shows the specification E2 that enables the movement only for the
followers and message broadcasts only for the leaders.

Figure 4(c) represents the main rule of the strategy, the specification E3.
When in state q1 (not receiving any signal) or state q2 (receiving signals from
only one type of leader) the robot is forbidden to move and only the stop event
(moveStop) is enabled. In state q3 (receiving signals from two types of leaders)
or state q4 (receiving signals from three types of leaders) the move events are
enabled and the stop event (moveStop) is disabled. The specification E3 can be
seen as a counter, in state q1 there is no signal being received, in state q2 there
are signals for one type of leader, in state q3 there are signals for two types of
leaders, and in state q4 there are signals for all three types of leaders.

The follower robot alternates its movement between the three different modes
(forward, CW turn and CCW turn) when receiving signals from more than one
type of leader. Each time when the event moveEnded occurs, it changes to state
q1 in G3 where the events moveFW , moveCW and moveCCW are all enabled.
As the choice for controllable events is at random, the robot will move randomly.

4 Supervisor Synthesis

The initial approach to synthesise a supervisor is the monolithic approach, where
for all free behaviour and specification models only one supervisor S is obtained.

68 Y.K. Lopes et al.

q1 q2

press

press

sendNothing, sendR,
sendG, sendB

/

q1 q2

sendR, sendG,
sendB

/

moveCW,
moveCCW,
moveFW

/
sendNothing

/

sendR,
sendG,
sendB

/

q1 q2

q3q4

getR, getG,
getB

moveStop

/

getR,
getG,
getB

getNotR,
getNotG,
getNotB

moveStop

/

getR, getG, getB

getNotR,
getNotG,
getNotB

moveCW,
moveCCW,
moveFW

/
getNotR,
getNotG,
getNotB

moveCW,
moveCCW,
moveFW

/

(a) E1 (b) E2 (c) E3

Fig. 4. Specification for the segregation strategy

The parallel composition (represented by ||) of two generators Ga and Gb is
defined as follows:

Ga||Gb = (Qa ×Qb, Σa ∪Σb, δa||b, (q0a , q0b), Qma ×Qmb), (1)

where

δa||b((qa, qb), e) =

⎧⎪⎪⎨
⎪⎪⎩

(δa(qa, e), δb(qb, e)) if δa(qa, e)! ∧ δb(qb, e)!
(δa(qa, e), qb) if δa(qa, e)! only
(qa, δb(qb, e)) if δb(qb, e)! only

undefined otherwise,

(2)

and δ(a)! means that function δ is defined for a.
A generator is accessible if all its states are reachable from the initial state q0.

A generator is coaccessible if all its states can reach at least one final state. The
Trim(G) operation removes all the non-accessible and non-coaccessible states
from G. Let us consider the previous orbit case study with (n = 4) free be-
haviour models and (m = 3) specification models. The first step is the parallel
composition for all free behaviour models and specifications. That is,

G = G1|| · · · ||G4, (3)

E = E1||E2||E3. (4)

To obtain a supervisor, S, which controls the free behaviour G, it is necessary
to calculate the target language K, which is defined as the following parallel
composition,

K = G||E. (5)

SCT Applied to Swarm Robotics 69

As a result of the parallel composition, each state qKx in K is mapped on a
state qGy in G. This mapping is not necessarily injective. One says that qKx is a

composed state (qGy , .). An event e is enabled in a state q if δ(q, e)!. If an event

e is enabled in qGy but not enabled in qKx = (qGy , .), it means that the event is
physically possible to occur, but the control specification denied it to occur. In
this case qKx is called a bad state and if it is reached, the undesired event e
cannot be disabled by the supervisor. Thus, qKx and any uncontrollable path to
qKx must be removed.

To obtain a supervisor S where its supremal controllable sublanguage is
Lm(S/G), the iterative removal of bad states and the Trim operation is per-
formed by the SupC operator as shown in Equation 6. This operator removes all
bad states and each state that leads to the bad state through an uncontrollable
path, that is, each state qa : ∃s ∈ Σ+

u : δ(qa, s) = qbad. Finally, K is modified by
the Trim component and the iterative process restarts until it does not modify
K anymore.

Lm(S/G) = SupC(G,K). (6)

The obtained supervisor, S, represents the control logic according to the de-
signed model and can be used to implement the physical controller. However,
the number of states and transitions grows exponentially by the parallel compo-
sition, which in some cases may not be feasible. To solve this problem, another
approach, called modular supervisors, has been proposed by [18] and it was
extended to local modular supervisors by [11].

4.1 Local Modular Supervisors

In this approach one supervisor is created for each control specification and
only the free behaviour models that are affected by the control specification are
composed in the calculus of each modular supervisor. Thus, each specification
has its own local free behaviour model Gloc

j . The Gloc
j is the parallel composition

of each free behaviour Gi which has at least one event in common with Ej . The
local free behaviours for the orbit case are:

Gloc
1 = G1||G2, G

loc
2 = G2||G3, G

loc
3 = G3||G4. (7)

For the segregation case, the local free behaviours are:

Gloc
1 = G1||G2, G

loc
2 = G2||G3, G

loc
3 = G3||...||G6. (8)

The supervisor for both cases are obtained as,

∀x ∈ {1, 2, 3} : Kx = Gloc
x ||Ex, (9)

Sx : Lm(Sx/G
loc
x) = SupC(Gloc

x ,Kx). (10)

In all supervisors for both cases all target languages Kx are already control-
lable, that is, Kx = Sx. This characteristic implies that the case studies are

70 Y.K. Lopes et al.

relatively simple. However, the focus of this work is to introduce the application
of SCT to swarm robotics. The case studies were chosen to help illustrate the
theory.

Applying the local modular approach requires that there is no conflict between
supervisors (which could result in deadlocks). To test this, the monolithic system
is built and compared with the composition of the local modular supervisors. In
the case studies considered here there are no conflicts. If conflicts are present,
they can be resolved by replacing the individual supervisors in conflict with a
composite supervisor for all the conflicting specifications.

5 Implementation of Supervisory Control in SR

Our implementation is based on the SCT architecture proposed by [12]. How-
ever, we use the complete local modular supervisors instead of the reduced ones
with the product system applied by [12]. The difference between these are small
and are not detailed here. Those supervisors that are assigned to disable the
controllable events are stored in the generated data structure proposed by [8].

The core of the controller is the automata player, which accesses the generated
data to control the flow of the controller logic and it is in charge of evolving the
generators. To do so, it stores the current state of each generator. An arbitrary
number of supervisors can run in parallel in the same control structure managed
by the automata player. Besides the generated data, the automata player evolves
according to the occurrence of events defined by the operational procedures.

The operational procedures are a low-level interface between the supervi-
sors and the real system that works by generating the control system output
and reading the input [12]. As the architecture was designed to be applied
mainly in manufacturing coordination the operational procedures are mostly
applied to translate the events to the high or low signal in the output pins from
Programmable Control Logic devices or to translate its pin signals to events.
However, as shown in the following, the operational procedures layer is able to
perform more complex tasks.

We associate each event to user defined callback functions to perform the
operational procedures as proposed by [8]. We extend the generation tool called
Nadzoru [8] to support the e-puck and Kilobot platforms and change the method
to insert the operational procedure code. Instead of including the code inside
the Nadzoru, now the Nadzoru allows the developer to specify external callback
functions. Also, the control of the main loop function is delegated to the user,
which must call an update function every cycle. This allows more flexibility to
the developer.

The user code implements the operational procedures. The developer registers
in the initialisation of the code a callback function for each event; this function
is called every time that the event happens. Furthermore, the developer must
register one callback function for each uncontrollable event to check whether
the event occurs. All our implementations, models and the Nadzoru tool can be
found in [7].

SCT Applied to Swarm Robotics 71

(a) 0s (b) 10s (c) 20s (d) 30s

(e) 0s (f) 10s (g) 20s (h) 30s

Fig. 5. Sequence of (superimposed) snapshots taken from one of the trials where two
Kilobots (a-d) and two e-pucks (e-h) perform the orbit task

6 Experiment

This section presents two experiments that validate our application of SCT to
swarm robotics. In both experiments the local modular approach is used. Two
types of platforms are considered, and for both the same formal approach, free
behaviours and specification models are used. This is one advantage of the ap-
proach. However, it requires that all devices must have the capability to perform
the desired task. Thus, the task is modelled once for all devices and the device
differences are abstracted and compensated in the operational procedures layer
(user code).

Both experiments take place in a 1.20m × 0.90m two-dimensional arena. The
configuration of the orbit experiment consists of two robots. The static robot is
placed in the centre of the arena and the orbiting robot is placed inside (or near
to) a configured boundary. Ten trials are performed for each type of robot. Each
trial is limited to 300s. The experiment evaluates the match of the modelled
specifications with the synthesised control logic. We observed that the robots
behaved according to the specifications. Figure 5 shows snapshots taken from
the experimental trials with the Kilobots and e-pucks.

The configuration of the segregation experiment consists of a group of 39
follower robots in the Kilobot experiment and 20 follower robots in the e-puck
experiment. These robots are distributed on a grid. Three leader robots are
placed inside the grid in the Kilobot case; in the e-puck case configurations with
three pairs of leaders are applied. Ten trials are performed. Each trial runs for
300s or until the robots are segregated, whichever occurs first. The robots are
considered to be segregated if they all receive a signal of only one leader or no
signal at all (for details, see Figure 6). The experiment evaluates the match of
the modelled specifications with the synthesised control logic. We observed that
in all trials the robots behaved according to the specifications. Figure 6 shows
snapshots taken from two trials.

72 Y.K. Lopes et al.

(a) (b) (c) (d)

Fig. 6. Snapshots from a segregation trial with Kilobots: (a) initial grid formation with
three leaders, marked with tags; (b) result after segregation occurred. Trial with e-
pucks: (c) initial grid formation with three pairs of leaders marked with tags; (d) result
after segregation occurred, tags were added after the experiments for visualisation
(based on the robots states as indicated by their Light-Emitting Diodes (LEDs)).

Video recordings from the experiments and additional resources (models, the
Nadzoru tool, the source code used) can be found in [7].

7 Conclusions

This paper presented the application of Supervisory Control Theory (SCT) to
swarm robotics and validated it through two case studies. First, the basic con-
cepts were presented in a swarm robotics context. Second, an implementation
for SCT, based on the architecture proposed by [12], was applied to swarm
robotics. Third, the Nadzoru tool was extended to support code generation for
two swarm robotics platforms, Kilobot and e-puck. Finally, the synthesised con-
trol logic was validated in experiments with these two platforms using the same
formally synthesised control logic.

The use of formal approaches brings several advantages for the design of
swarm robotic systems. Given a description of a system’s capabilities and a
set of specifications for the desirable behaviour of the individual robots, the
control logic can be obtained. Moreover, the control software can be generated
automatically. The control logic models can even be used for code generation
in different types of platforms. In this paper, we illustrated this by two case
studies with Kilobot and e-puck robot swarms. The only code that had to be
manually written are the operational procedures, which is only a small fraction
of the amount of code generated when the whole logic was implemented in an
ad-hoc manner (see additional materials in [7]). Moreover, the use of operational
procedures resulted in a more intuitive code that links events with framework
functions.

In the future we will investigate how to prove properties of swarm robotic
systems modelled by SCT. Also, we will consider more complex case studies.

Acknowledgements. Y.K. Lopes acknowledges support by CAPES - Brazil
(grant number: 0462/12-8).

SCT Applied to Swarm Robotics 73

References

1. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)

2. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design
for swarm robotics. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, vol. 1, pp. 139–146 (2012)

3. Dixon, C., Winfield, A., Fisher, M.: Towards temporal verification of emergent
behaviours in swarm robotic systems. In: Groß, R., Alboul, L., Melhuish, C.,
Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856,
pp. 336–347. Springer, Heidelberg (2011)

4. Gordon-Spears, D., Kiriakidis, K.: Reconfigurable robot teams: modeling and
supervisory control. IEEE Transactions on Control Systems Technology 12(5),
763–769 (2004)

5. Leal, A.B., Cruz, D.L.L., Hounsell, M.S.: PLC-based implementation of local
modular supervisory control for manufacturing systems. In: Aziz, F.A. (ed.)
Manufacturing System, pp. 159–182. InTech (2012)

6. Liu, J., Darabi, H.: Ladder logic implementation of Ramdge-Wonham supervisory
controller. In: Proc. of the WODES, pp. 383–392 (2002)

7. Lopes, Y.K., Leal, A.B., Dodd, T.J., Groß, R.: Online supplementary material
(2014), http://naturalrobotics.group.shef.ac.uk/supp/2014-001/

8. Lopes, Y.K., Leal, A.B., Rosso, R.S.U., Harbs, E.: Local modular supervisory im-
plementation in micro-controller. In: Proc. of the 9th International Conference of
Modeling, Optimization and Simulation (MOSIM 2012), vol. 9 (2012)

9. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems:
A case study in collaborative distributed manipulation. Int. Journal of Robotics
Research 23(4-5), 415–436 (2004)

10. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions, vol. 1, pp. 59–65 (2009)

11. Queiroz, M.H., Cury, J.E.R.: Modular control of composed system. In: Proceedings
of the American Control Conference, Chicago, pp. 4051–4055 (2000)

12. Queiroz, M.H., Cury, J.E.R.: Synthesis and implementation of local modular super-
visory control for a manufacturing cell. In: Proceedings of International Workshop
on Discrete Event Systems (WODES), pp. 103–110 (2002)

13. Ramadge, P.J., Wonham, W.: The control of discrete event systems. Proceedings
of the IEEE 77(1), 81–98 (1989)

14. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
process. SIAM J. Control and Optimization 25(1), 206–230 (1987)

15. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system
for collective behaviors. In: Proccedings of ICRA 2012, pp. 3293–3298. IEEE (2012)

16. Tsalatsanis, A., Yalcin, A., Valavanis, K.: Optimized task allocation in coopera-
tive robot teams. In: Proc. of the 17th Mediterranean Conference on Control and
Automation (MED 2009), pp. 270–275 (2009)

17. Tsalatsanis, A., Yalcin, A., Valavanis, K.P.: Dynamic task allocation in cooperative
robot teams. Robotica 30(5), 721–730 (2012)

18. Wonham, W., Ramadge, P.J.: Modular supervisory control of discrete event system.
Mathematics of Control, Signals and Systems 1(1), 13–30 (1988)

http://naturalrobotics.group.shef.ac.uk/supp/2014-001/

Can Frogs Find Large Independent Sets

in a Decentralized Way? Yes They Can!

Christian Blum1,2, Maria J. Blesa3, and Borja Calvo1

1 Department of Computer Science and Artificial Intelligence,
University of the Basque Country UPV/EHU, San Sebastian, Spain

{christian.blum,borja.calvo}@ehu.es
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

3 ALBCOM Research Group, Universitat Politécnica de Catalunya, Barcelona, Spain
mjblesa@lsi.upc.edu

Abstract. The problem of identifying a maximal independent (node)
set in a given graph is a fundamental problem in distributed comput-
ing. It has numerous applications, for example, in wireless networks in
the context of facility location and backbone formation. In this paper
we study the ability of a bio-inspired, distributed algorithm, initially
proposed for graph coloring, to generate large independent sets. The in-
spiration of the considered algorithm stems from the self-synchronization
capability of Japanese tree frogs. The experimental results confirm, in-
deed, that the algorithm has a strong tendency towards the generation
of colorings in which the set of nodes assigned to the most-used color
is rather large. Experimental results are compared to the ones of recent
algorithms from the literature. Concerning solution quality, the results
show that the frog-inspired algorithm has advantages especially for the
application to rather sparse graphs. Concerning the computation round
count, the algorithm has the advantage of converging within a reasonable
number of iterations, regardless of the size and density of the considered
graph.

1 Introduction

Given an undirected graph G = (V,E), an independent set is a subset of the
nodes of G such that no two nodes of this set are connected by an edge e from
E. Furthermore, a maximal independent set VMIS ⊆ V is an independent set such
that no other independent set V̂ ⊆ V exists with VMIS ⊆ V̂ . In other words, it
is—per definition—not possible to add an additional node to a maximal inde-
pendent set without destroying its independent set property. Finally, a maximum
independent set is a maximal independent set of maximal size. Both the max-
imum independent set problem and the maximal independent set problem are
fundamental in computer science and related fields (see, for example, [4]). From
the perspective of centralized algorithms, it is well known that the maximum
independent set problem is NP -hard [6], while the maximal independent set
problem is in P . In fact, the literature offers various, rather simple, greedy algo-
rithms for the generation of maximal independent sets (see, for example, [7]).

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 74–85, 2014.
c© Springer International Publishing Switzerland 2014

Can Frogs Find Maximal Independent Sets in a Decentralized Way? 75

In this work we consider the maximal independent set problem in a distributed
setting (henceforth labelled MIS). This problem has applications, for example, in
the context of facility location and backbone formation in wireless networks [5].
In particular, we focus on the study of a recently proposed (distributed) algo-
rithm for graph coloring, named FrogSim (see [8,9,1]). The experimental results
show that FrogSim, which is an algorithm inspired by the self-desynchronization
of the calls of male Japanese tree frogs, has the tendency to generate color
assignments in which the nodes associated to the most-used color correspond
to large independent sets. The results obtained by FrogSim are compared to
one of the most-recently proposed distributed algorithms for the MIS prob-
lem, which was initially published in the prestigious journal Science [2]. More
specifically, the results are compared to an optimized version of this algorithm
from [11,10].

The reminder of this article is organized as follows. In Section 2, a short
description of the studied algorithm is provided. The experimental evaluation is
documented in Section 3. Finally, conclusions and an outlook to future work can
be found in Section 4.

2 The FrogSim Algorithm

Even though a description of the FrogSim algorithm can be found, for example,
in [9], in the following we provide a—rather short—description in order for the
paper to be self-contained. The following algorithm description is thought for
working in a static wireless ad hoc network with n nodes equipped with radio
antennas. Depending on the type of antennas and their communication range,
a communication graph is implicitly defined in which each edge indicates a pair
of nodes for which node-to-node communication is possible.

2.1 Algorithm Preliminaries

A first, preliminary, step requires an a priori organization of the wireless ad hoc
network in form of a rooted tree. For the purpose of producing such a tree with
a low height, the distributed method described in [3] may be used. The result
is an induced tree that includes all the nodes of the network and has minimum
diameter. In comparison to the rest of the nodes, the root node (or master node)
of the tree will have some additional tasks to fulfill. It runs, for example, a
protocol to calculate the height of the tree. Moreover, the master node initiates
the start of the FrogSim algorithm by means of a broadcast message. This
message may additionally be used for communicating the height of the tree to
the rest of the nodes as well. The induced tree is used during the execution of
the FrogSim algorithm for communicating the node-color assignments to the
master node and for calculating the state of convergence which will be used to
stop the algorithm.

76 C. Blum, M.J. Blesa, and B. Calvo

Algorithm 1. Program of each node i ∈ V

1: θi := calculateNewThetaValue()
2: ci := minimumColorNotUsed()
3: sendColoringMessage()
4: clearMessageQueue()

2.2 Main Algorithm

The main FrogSim algorithm works as follows. At each communication round
(or iteration) each node executes the steps that are shown in Algorithm 1.
The precise moment at which a node i ∈ V starts executing this program
depends on the value of variable θi ∈ [0, 1), which is stored internally. More
precisely, assuming that the current communication round starts at time t, node
i executes its program at time t+ θi. Apart from θi, each node i also maintains
a color, denoted by ci ∈ N

+. Note that, for simplicity and without loss of gen-
erality, natural numbers greater than zero are used to uniquely identify colors.
The execution of the program from Algorithm 1 includes the sending of exactly
one message. In order to receive these messages from neighboring nodes, each
node i maintains a message queue Qi. In the following we provide a technical
description of the functions of Algorithm 1.

When executing its program, a node i first adapts the value of θi in function
calculateNewThetaValue(). This is done on the basis of the messages from the
message queue Qi. Only one message from each possible sender node is consid-
ered. In the case that Qi contains two or more messages from the same sender
node, the newest one prevails and the others are discarded. A message m ∈ Qi

has the following format:

m =< thetam, colorm > , (1)

where thetam ∈ [0.1) contains the θ-value of the emitter and colorm is the color
currently used by the emitter. Next, based on the messages in Qi, function
calculateNewThetaValue() calculates a new value for θi:

θi := θi − α
∑

m∈Qi

sin(2π · (thetam − θi))

2π
, (2)

where α ∈ [0, 1] is a parameter used to control the convergence of the system.
In general, the lower the value of α the smaller the change applied to θi.

Then, node i decides for a (possibly) new color in function minimumCol-
orNotUsed(). Formally, this function computes the following value:

ci := min{c ∈ N
+ | ∀m ∈ Qi: colorm �= c} (3)

In words, node i chooses the color with the lowest identifier while discarding
those colors that appear in messages m ∈ Qi. Before finalizing its program,

Can Frogs Find Maximal Independent Sets in a Decentralized Way? 77

node i must communicate its new color to its neighbors. This is done by means
of function sendColoringMessage(). This function sends the following message m:

m =< thetam := θi, colorm := ci > (4)

To conclude the description of node i’s program, the message queue Qi is cleared
by removing all messages (see function clearMessageQueue()).

2.3 Identifying the Best Coloring and Detecting Convergence

The way in which the algorithm identifies a new best coloring and detects con-
vergence is based on the use of the induced tree structure which was generated
at the start of the algorithm. In the following we provide a short description
of the mechanism. For a complete technical description we refer the interested
reader to [8,9].

Henceforth, let h refer to the height—that is, the maximal distance between
a leaf and the master node—of the induced tree. Note that h corresponds to the
maximum number of communication rounds necessary for the master node to
pass information to the rest of the nodes, and vice versa. In the following we
assume that the master node knows about the size—in terms of the number of
nodes—of the network. At each communication round, each node i is required to
communicate the following information to its parent node in the induced tree:
(1) a real number corresponding to the sum of the distances between the old
theta values and the new ones concerning all nodes included in the subtree of
which it acts as root, (2) the index of the largest color used by itself and all nodes
included in the subtree of which it acts as root, and (3) an integer indicating the
corresponding communication round number. In fact, these values do not need
to be sent in extra messages. Instead they may be added to the coloring messages
of Algorithm 1. Even though these messages will be received by all neighboring
nodes, only the parent nodes in the induced tree will care about this information.
Therefore, no additional messages are required by this mechanism.

Note that, in the first communication round, only the leaves of the tree will
report the information described above to their parents. This is because the
leaves are the only nodes without children. In the second communication round,
the parents of the leaves will be able to report the aggregated data to their
respective parents. Given the height h of the tree, it takes h communication
rounds until all the information regarding a specific communication round has
reached the master node. This means that the sensor nodes must store the
differences between their old and new theta values, and the information about
color use, during h communication rounds. Once the master node has received
all the necessary information concerning a specific communication round, it is
able to derive the following information. First, it knows the maximum index
of any color used at the corresponding communication round. This information
can be used to determine if a new best coloring has been found. Second, by
dividing the sum of all theta-differences by the size of the network it obtains the
average change of the theta-values in the corresponding communication round.

78 C. Blum, M.J. Blesa, and B. Calvo

In case this average change is below a certain threshold value (we used 0.001),
the master node broadcasts a stopping message to all nodes, which terminates
the algorithm.

3 Experimental Evaluation

FrogSim was implemented in C++ without the use of any external libraries. Ex-
periments were performed by means of discrete event simulation. As mentioned
before, in this work we study the ability of the algorithm to generate colorings
in which the number of nodes assigned to the most-used color is rather large. In
other words, we study if large independent sets may be extracted from the col-
orings produced by the algorithm.1 For this purpose we decided to test the algo-
rithm on random geometric graphs, which are commonly used to model wireless
ad hoc networks. For comparison we used the optimized version (from [10,11])
of a very recent algorithm published in Science [2].

3.1 Generation of the Benchmark Set

Random geometric graphs are arguably the most popular model of wireless ad
hoc networks. Therefore, we decided to study the algorithm in the context of this
graph type. In order to generate a random geometric graph, one must first choose
the number of nodes (n). These nodes are then assigned to random positions in
the unit square. Finally, a fixed radius 0 < r < 1 is used in order to determine
the neighbors of each node. In particular, each pair of nodes that are within
Euclidean distance of at most r are connected by an edge.

We considered random geometric graphs of sizes n ∈ {100, 500, 1000, 5000}. In
order to find a reasonable range for the r-values for each n, the following exper-
iments were performed. For each combination of r ∈ {0.01, 0.02, 0.03, . . . , 0.3}
and n we generated 100 random geometric graphs and recorded the probabil-
ity of these graphs to be connected. The results are graphically presented in
Figure 1(a). Based on these results we determined the smallest r-values to be
considered for the four graph sizes to be r = 0.14 (in case n = 100), r = 0.067 (in
case n = 500), r = 0.049 (in case n = 1000) and r = 0.024 (in case n = 5000).
With these values of r, the generated random geometric graphs have a proba-
bility of approx. 5% to be connected. Moreover, the resulting graphs are rather
sparse.

In order to find suitable upper ranges for the r-values, we examined the (rela-
tive) average degrees of the generated graphs. Hereby, the term (relative) average
degree refers to the average degree of a node expressed in terms of the fraction
of all nodes to which the respective degree corresponds. For example, assume
that n = 100 and that a node is, on average, connected to 10 neighbors. In this

1 Note that, given a coloring solution, the nodes that are assigned to the same color
form an independent set. Henceforth, given a coloring solution, we regard the size
of the node set that is assigned to the most-used color as the MIS-value of the
corresponding coloring.

Can Frogs Find Maximal Independent Sets in a Decentralized Way? 79

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Radius

P
ro

ba
bi

lit
y

of
 th

e
gr

ap
h

be
in

g
co

nn
ec

te
d

Graphsize
n=100
n=500
n=1000
n=5000

(a) Probabilities for a graph being connected

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3
Radius

(R
el

at
iv

e)
 a

ve
ra

ge
 v

er
te

x
de

gr
ee

Graphsize
n=100
n=500
n=1000
n=5000

(b) (Relative) average degree of the nodes

Fig. 1. Test results used for generating the test instances

case the relative average degree is 0.1. In particular, we decided that the densest
graphs to be considered in this study should have a (relative) average degree of
0.05. The graphic of Figure 1(b) shows that such graphs can be generated with
r = 0.169 (in case n = 100) and r = 0.134 (in case n ∈ {500, 1000, 5000}).

For each value of n, numerical tests are performed for 20 values of r equidis-
tantly distributed between the corresponding lower and the upper range.

3.2 Results

The numerical results are shown in Table 1 (graphs with n ∈ {100, 500}) and
Table 2 (graphs with n ∈ {1000, 5000}). Each table row provides—for a certain
combination of n and r, as indicated in the first two table columns—average
results for 100 random geometric graphs. The column with heading Greedy
provides the results for the most well-known (centralized) greedy algorithm for
the MIS problem. This algorithm works as follows: at each iteration, first, it
identifies the node with minimal degree and adds it to the maximal independent
set under construction. Afterwards, this node—together with all its neighboring
nodes—is removed from the input graph. This procedure stops once the input

80 C. Blum, M.J. Blesa, and B. Calvo

Table 1. Results for random geometric graphs with 100 and 500 nodes

#nodes (n) radius (r) Greedy FruitFly FrogSim
avg. rounds avg. rounds convergence

100

0.14 30.22 27.97 27.86 29.16 244.24 711.35
0.1415 29.90 27.38 28.92 28.42 203.45 687.60
0.143 29.47 27.19 27.10 27.96 205.23 691.00

0.1445 28.99 26.76 29.04 27.58 161.85 678.48
0.146 28.63 26.17 31.96 26.96 168.29 674.39

0.1475 28.22 25.86 28.96 26.86 212.75 708.41
0.149 28.06 25.74 34.30 26.46 179.64 708.32

0.1505 27.52 25.44 30.48 26.42 221.74 707.78
0.152 27.27 24.94 31.86 25.89 159.11 700.75

0.1535 26.89 24.90 32.34 25.81 202.76 693.56
0.155 26.69 24.59 32.86 25.51 180.87 708.80

0.1565 26.41 24.29 33.02 25.19 155.20 699.52
0.158 25.93 23.68 36.54 24.58 169.57 725.95

0.1595 25.51 23.72 36.52 24.41 216.11 742.00
0.161 25.24 23.20 36.68 24.09 159.63 706.00

0.1625 24.99 22.85 35.58 23.76 167.35 699.47
0.164 24.79 22.56 36.14 23.67 172.80 713.10

0.1655 24.63 22.70 37.96 23.57 207.55 736.86
0.167 24.28 22.21 42.18 23.22 187.38 739.65
0.169 23.80 21.93 38.72 22.77 166.64 708.97

500

0.067 130.20 120.19 52.00 122.52 341.22 726.23
0.0705 121.42 111.54 62.24 114.19 375.81 740.82
0.074 113.10 103.57 64.42 106.78 351.93 739.05

0.0775 105.80 97.99 78.44 100.53 345.00 753.65
0.081 98.79 91.56 90.98 93.94 312.48 764.53

0.0845 92.72 86.28 98.70 88.47 305.55 776.57
0.088 87.38 81.56 126.48 83.22 328.97 778.19

0.0915 82.40 76.73 151.40 78.46 267.00 771.31
0.095 77.46 72.31 191.62 73.68 265.35 767.13

0.0985 73.06 68.73 219.38 69.96 280.98 788.11
0.102 69.51 65.37 309.80 66.49 264.84 762.38

0.1055 65.70 62.38 374.94 62.90 266.77 771.17
0.109 62.41 59.28 430.32 59.81 236.35 756.69

0.1125 59.30 56.72 534.84 56.98 259.36 746.62
0.116 56.47 54.28 626.82 54.39 227.10 770.09

0.1195 53.69 52.18 777.42 51.91 205.91 757.79
0.123 51.31 49.65 1043.28 49.74 222.74 784.69

0.1265 49.04 47.43 1294.66 47.37 193.61 760.04

0.13 46.8 46.07 1663.82 45.64 206.74 752.46
0.134 44.71 44.32 2148.60 43.49 199.54 724.70

graph is empty. The results of this algorithm are simply given in order to in-
dicate the quality of our algorithm in comparison to a centralized technique.
The next two columns of the result tables provide the results of the most recent
distributed algorithm for the MIS problem [2], which was inspired by the way
in which neural precursors are selected during the development of the nervous
system of the fruit fly Drosophila. We implemented an optimized version of this
algorithm—published in [10,11]—which is henceforth referred to as FruitFly.
The results of FruitFly are given in two columns. The first one, with heading
avg., provides the average result over 100 random geometric graphs. The second
column, with heading rounds, indicates the average number of communication

Can Frogs Find Maximal Independent Sets in a Decentralized Way? 81

Table 2. Results for random geometric graphs with 1000 and 5000 nodes

#nodes (n) radius (r) Greedy FruitFly FrogSim
avg. rounds avg. rounds convergence

1000

0.049 244.88 225.39 66.66 229.76 416.14 734.08
0.0534 215.26 199.07 80.78 203.48 442.16 750.92
0.0578 190.96 176.50 115.30 180.26 414.50 758.72
0.0622 170.02 158.01 160.02 161.35 366.59 768.56
0.0666 152.35 142.98 236.02 144.82 325.74 775.16
0.071 137.45 130.18 315.16 130.68 322.37 767.18

0.0754 124.53 118.74 480.64 118.82 272.97 770.88
0.0798 113.26 109.25 721.16 108.32 274.80 767.69
0.0842 103.82 100.91 1114.90 99.55 248.03 754.76

0.0886 95.35 93.68 1865.20 91.75 268.64 743.73
0.093 87.82 87.19 2562.90 84.93 279.20 755.75

0.0974 81.13 81.63 4631.68 78.48 252.60 747.29

0.1018 75.42 76.72 7014.74 73.16 212.85 750.31

0.1062 70.55 71.77 11754.56 68.23 216.22 712.49

0.1106 65.61 67.91 22063.76 64.14 205.49 740.14

0.115 61.70 63.94 34864.16 60.33 245.18 715.50

0.1194 57.84 60.60 53523.54 56.55 215.69 684.79

0.1238 54.67 57.24 96351.26 53.52 178.10 699.82
0.1282 51.53 54.60 165323.04 50.16 165.77 700.42

0.134 47.83 50.84 321192.92 46.95 160.96 678.45

5000

0.024 1040.74 962.55 129.46 976.72 561.54 761.83
0.0297 736.45 694.10 370.78 694.91 498.26 776.10
0.0354 543.55 528.05 1211.48 515.79 431.58 771.42

0.0411 419.17 420.54 4542.54 401.35 380.55 766.95

0.0468 331.90 345.53 23172.80 323.11 409.65 752.35

0.0525 269.66 289.20 131172.26 265.49 415.70 740.25

0.0582 224.68 245.77 749947.06 222.63 353.63 722.16

0.0639 190.44 75.27 1000000.00 189.05 321.00 718.15
0.0696 163.88 0.00 1000000.00 163.21 344.87 737.77
0.0753 141.95 0.00 1000000.00 142.00 311.10 731.58
0.081 124.59 0.00 1000000.00 125.26 331.54 729.67

0.0867 110.54 0.00 1000000.00 111.30 300.39 703.93
0.0924 98.90 0.00 1000000.00 99.68 278.69 690.82
0.0981 89.16 0.00 1000000.00 89.76 262.51 688.26
0.1038 80.80 0.00 1000000.00 81.28 218.35 676.89
0.1095 73.94 0.00 1000000.00 74.30 267.05 689.92
0.1152 67.84 0.00 1000000.00 67.75 191.87 660.59
0.1209 62.20 0.00 1000000.00 62.50 182.83 640.03
0.1266 57.66 0.00 1000000.00 57.81 201.70 606.51
0.134 52.34 0.00 1000000.00 52.33 140.24 590.34

rounds that were performed in order for the algorithm to finish. Finally, the last
three table columns contain the results of FrogSim. As in the case of Fruit-
Fly, the first column provides the average result for the respective 100 random
geometric graphs. The second column, with heading rounds, provides the aver-
age number of communication rounds that were performed in order to achieve
the results reported in the column with label avg.. The last column, with head-
ing convergence, indicates the average number of communication rounds that
were performed in order for the algorithm to converge. Finally, note that the
best result of each table row is marked with a grey background.

82 C. Blum, M.J. Blesa, and B. Calvo

0

10

20

30

3 6 9
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

(a) n = 100, radius 0.14

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0 12.5
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

(b) n = 100, radius 0.169

0

40

80

120

0.0 2.5 5.0 7.5 10.0 12.5
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

(c) n = 500, radius 0.067

0

10

20

30

40

0 10 20
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

(d) n = 500, radius 0.134

Fig. 2. The graphics show the distribution of the use of the different colors both at
the start of the algorithm (see First round dist.) and after convergence (see Last round
dist.) for graphs of sizes 100 and 500, and different values of r

Can Frogs Find Maximal Independent Sets in a Decentralized Way? 83

0

50

100

150

200

0 5 10 15
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

(a) n = 1000, radius 0.049

0

10

20

30

40

0 10 20 30 40
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

(b) n = 1000, radius 0.134

0

250

500

750

1000

0 5 10 15
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

(c) n = 5000, radius 0.024

0

20

40

0 50 100 150
Color index

A
ve

ra
ge

 n
um

be
r

of
 ti

m
es

 u
se

d

First round dist.
Last round dist.

(d) n = 5000, radius 0.134

Fig. 3. The graphics show the distribution of the use of the different colors both at
the start of the algorithm (see First round dist.) and after convergence (see Last round
dist.) for graphs of sizes 1000 and 5000, and different values of r

84 C. Blum, M.J. Blesa, and B. Calvo

Based on the results that are displayed in Tables 1 and 2, the following obser-
vations can be made. First, concerning graphs of sizes n ∈ {100, 500}, FrogSim
outperforms FruitFly consistently, with the exception of rather dense graphs
of size 500—that is, graphs generated with a radius r tending towards the upper
range—where FruitFly seems to provide slightly better results. However, when
consulting the number of communication rounds needed by FruitFly it becomes
clear that with growing graph size and density, the communication round require-
ments grow significantly. In fact, we underlined all cases in whichFruitFly needs
more than 1000 communication rounds for providing a result. Moreover, all runs of
FruitFlywere performedwith amaximumof onemillion communication rounds.
In contrast to FruitFly, the communication round requirements of FrogSim do
not seem to depend on the graph size. In any case, the communication round re-
quirements of FrogSim even seem to decrease with growing graph density. This
is certainly a desirably property of a distributed algorithm.

The results for graph sizes n ∈ {1000, 5000} amplify the observations out-
lined above. In fact, FrogSim still seems to work better than FruitFly for
what concerns the sparsest graphs. However, starting from r = 0.0798 (in the
case of n = 1000) and r = 0.0354 (in the case of n = 5000) FruitFly starts to
produce better results than FrogSim. However, the number of communication
rounds necessary for beating FrogSim quickly becomes unpractical. For exam-
ple, when n = 5000, FruitFly is not able to provide results within one million
communication rounds for the whole range of r ∈ [0.0639, 0.134].

Finally, we aim at studying the thrive of FrogSim towards colorings in which
the most-used color corresponds to rather large independent sets. For this pur-
pose we examined the results of FrogSim for what concerns the lowest and
the highest setting of the radius r for all four graph sizes. In particular, for
each of these cases we display the color distribution (averaged over 100 random
geometric graphs) after the first communication round in contrast to the color
distribution after convergence. This information is shown in Figures 2 and 3. On
the x-axis of these graphics we can find the indices of the used colors. The bars
(including the standard deviation) indicate for each color index the number of
nodes that have assigned the respective color. For example, the graphic in Fig-
ure 2(c) shows that—in the case n = 500, r = 0.067—the color with the lowest
index is used by around 112 nodes (on average) after the first communication
round. In contrast, the same color is used by around 125 nodes (on average)
after the last communication round. This clearly indicates the thrive of the algo-
rithm towards the creation of colorings in which the most-used color corresponds
to large independent sets. Moreover, the eight graphics indicate that this is a
general trend, independent of graph size and density.

4 Conclusions and Future Work

In this work we studied a bio-inspired, distributed algorithm—initially intro-
duced for graph coloring—for its ability to generate graph coloring solutions in
which the independent set of nodes assigned to the most-used color is large. The

Can Frogs Find Maximal Independent Sets in a Decentralized Way? 85

results, in terms of the size of the independent set that is generated, were com-
pared to the most recent algorithm published in the related literature for the
maximal independent set problem. They show that the algorithm performs es-
pecially well in the context of sparse graphs. An important additional advantage
is to be found in the low number of required communication rounds. The algo-
rithm always converges within a reasonable number of communication rounds,
independent of graph size and density.

Future work will focus on the study of the performance of the algorithm
on different types of graphs. Moreover, we will study ways for improving the
algorithms’ performance for dense graphs.

Acknowledgments. This work was supported by projects TIN2012-37930,
TIN2010-14931 and TIN2007-66523 of the Spanish Government, and project
2009-SGR1137 of the Generalitat de Catalunya. In addition, support is acknowl-
edged from IKERBASQUE (Basque Foundation for Science) and the Basque
Saiotek and Research Groups 2013-2018 (IT-609-13) programs.

References

1. Online scientific news site ScienceDaily: Frog calls inspire a new algorithm for
wireless networks (July 2012),
http://www.sciencedaily.com/releases/2012/07/120717100123.htm

2. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biologi-
cal solution to a fundamental distributed computing problem. Science 331, 183–185
(2011)

3. Bui, M., Butelle, F., Lavault, C.: A distributed algorithm for constructing a mini-
mum diameter spanning tree. Journal of Parallel and Distributed Computing 64(5),
571–577 (2004)

4. Erciyes, K.: Distributed Graph Algorithms for Computer Networks. Springer, Lon-
don (2013)

5. Erciyes, K., Dagdeviren, O., Cokuslu, D., Yilmaz, O., Gumus, H.: Modeling and
Simulation of Mobile Ad hoc Networks, pp. 134–168. CRC Press (2010)

6. Garey, M.R., Johnson, D.S.: Computers and intractability; a guide to the theory
of NP-completeness. W. H. Freeman (1979)

7. Halldórsson, M.M., Radhakrishnan, J.: Greedy is Good: Appriximating Indepen-
dent Sets in Sparse and Bounded-Degree Graphs. Algorithmica 18, 145–163 (1997)

8. Hernández, H., Blum, C.: Distributed graph coloring: An approach based on the
calling behavior of japanese tree frogs. Swarm Intelligence 6(2), 117–150 (2012)

9. Hernández, H., Blum, C.: FrogSim: distributed graph coloring in wireless ad hoc
networks — an algorithm inspired by the calling behavior of Japanese tree frogs.
Telecommunication Systems (2013)

10. Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed algo-
rithm for maximal independent set selection. Tech. rep., ArXiv repository (2012),
http://arxiv.org/abs/1211.0235

11. Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed al-
gorithm for maximal independent set selection. In: Fatourou, P., Taubenfeld, G.
(eds.) Proceedings of PODC 2013 – ACM Symposium on Principles of Distributed
Computing, pp. 147–156. ACM Press (2013)

http://www.sciencedaily.com/releases/2012/07/120717100123.htm
http://arxiv.org/abs/1211.0235

Diversity Rate of Change Measurement

for Particle Swarm Optimisers

Phlippie Bosman and Andries P. Engelbrecht

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{pbosman,engel}@cs.up.ac.za

Abstract. The diversity of a particle swarm can reflect the swarm’s
explorative/exploitative behaviour at a given time step. This paper pro-
poses a diversity rate of change measure to quantify the rate at which
particle swarms decrease their diversity over time. The proposed measure
is based on a two-piecewise linear approximation of diversity measure-
ments sampled at regular time steps. The proposed measure is the slope
of the first of the two lines. It is shown that, when comparing the mea-
sure among different algorithms, the measure reflects the differences in
the behaviour of algorithms in terms of their exploration-exploitation
trade-off. The measure can potentially be used to characterise and clas-
sify different algorithms based on algorithm behaviour.

1 Introduction

Particle swarm optimisation (PSO) is a stochastic optimisation algorithm that
maintains a swarm of particles, where each particle represents a candidate solu-
tion. An important characteristic that describes the search behaviour of a PSO
algorithm (and other population-based algorithms) is diversity. The diversity of
a swarm is the degree of dispersion of the swarm’s particles [15].

Diversity is related to the notions of exploration and exploitation: the more
diverse a swarm is, the more its particles are dispersed over the search space,
and the more the swarm is exploring. Measuring diversity, then, can give an
indication of an algorithm’s search behaviour at a certain time step. Considering
diversity measures over time can give an indication of the rate at which a swarm
converges, or alternatively, the rate at which a swarm moves from an explorative
to an exploitative behaviour, which has an impact on the performance of the
algorithm.

A single, measurable value that reflects an algorithm’s behaviour with regards
to the rate at which diversity decreases over time can potentially be used to
classify algorithms in different behavioural classes based on the rate at which the
algorithms move from exploration to exploitation. Such a measure of diversity
rate-of-change can potentially be used to predict performance for the different
behavioural algorithm classes. This paper proposes a measure that can be used to
differentiate different algorithms in terms of their behaviour with regards to the
rate at which diversity decreases. To the knowledge of the authors, this is the first
such measure. The proposed diversity rate-of-change (DRoC) measure is based

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 86–97, 2014.
c© Springer International Publishing Switzerland 2014

Diversity Rate of Change Measurement for Particle Swarm Optimisers 87

on a two-piecewise linear approximation of the instantaneous diversity measures,
computed at regular time steps: the slope of the first line of the piecewise linear
approximation is used as the DRoC measure. A lower negative value for the
slope indicates that an algorithm’s diversity decreases faster, that the algorithm
spends less time exploring, and that its particles converge to a smaller region
faster.

The DRoC values for a number of PSO algorithms are computed in this
paper for a large set of benchmark functions. These values are then used in the
empirical section to see if the DRoC values can be used to characterise the rate
at which search behaviour changes from exploration to exploitation, and to see
if groups of algorithms can be found that exhibit the same behaviour.

The rest of the paper is organised as follows: Section 2 provides background
on PSO, the algorithms used, diversity measures, and linear approximations.
Section 3 lists expectations with reference to the rate at which diversity should
decrease for the different algorithms. Section 4 presents the proposed measure.
Section 5 summarises the experimental procedure. Section 6 provides and dis-
cusses the results.

2 Background

This section provides background information on the main concepts used.

2.1 Particle Swarm Optimisers

The basic PSO algorithm, introduced by Kennedy and Eberhart in 1995 [5,10],
is a population-based search algorithm inspired from the behaviour of birds in
flocks. A PSO algorithm maintains a swarm of particles, where each particle
represents a candidate solution to an optimisation problem.

The original (gbest) PSO [10] updates the position of each particle xi by
adding a velocity, or step size, vi to the particle’s previous position as follows:

xi(t+ 1) = xi(t) + vi(t+ 1). (1)

The velocity update for each particle consists of three components: the mo-
mentum component, which is a fraction of the particle’s velocity at the previous
time step; the cognitive component, which pulls the particle to a so-called per-
sonal best; and a social component, which pulls the particle towards a global
best. The velocity update is as follows:

vi(t+ 1) = ωvi(t) + c1r1(t)[ȳi(t)− xi(t)] + c2r2(t)[ŷ(t)− xi(t)] , (2)

where ω is the inertia weight, c1 and c2 are constants, and r1 and r2 are vectors
of random numbers sampled from the uniform distribution U(0, 1).

The cognitive component is a weighted difference between yi(t), the personal
best position visited by particle i up to time step t, and its current position.
The effect of the component in the update equation is that the particle is drawn
towards its personal best position. Similarly, the social component draws the
particle in the direction of ŷ(t), the global best position found by the swarm.

88 P. Bosman and A.P. Engelbrecht

2.2 Particle Swarm Optimiser Variations

Many variations of the basic PSO exist. Variations that are used in this study
are described in this section.

Some variation arises from introducing a notion of neighbourhoods. The orig-
inal PSO velocity update (Equation 2) can be changed to

vi(t+ 1) = ωvi(t) + c1r1(t)[ȳi(t)− xi(t)] + c2r2(t)[ŷi(t)− xi(t)] , (3)

where ŷi(t) is particle i’s local best position, which is the best position found in
that particle’s neighbourhood. A neighbourhood is a topology which connects
each particle to some other particles; different topologies result in different varia-
tions of the PSO. Neighbourhoods have an inhibiting effect on information flow,
since particles can, at each iteration of the algorithm, only gain information
about local best positions that is already available to their direct neighbours.

The basic gbest PSO uses a star topology where each particle is connected to
every other particle. Information flow is not inhibited, and information flow is
instant.

The local best (lbest) PSO is a common variation of the gbest PSO that uses
a ring topology instead of a star topology [5,19], such that each particle is only
connected to two other particles: its index-wise predecessor and successor. The
longest path between two particles is half the size of the swarm, so at most ns/2
iterations might be required for information to pass from one particle to another.
Information flow is therefore quite slow.

The Von Neumann topology [11] is an intermediate topology where particles
are usually logically arranged on a 2-D grid. Information flow in Von Neumann
PSO is slower than in gbest PSO but faster than in lbest PSO.

The basic PSO has a potential problem: if xi = yi = ŷi for a particle, that
particle’s update depends only on its previous velocity. This can cause the algo-
rithm to stagnate on the swarm’s global best position, even if that position is not
a local optimum [6]. The guaranteed convergence PSO (GCPSO) [1] overcomes
this problem by using an altered position and velocity update equation for the
global best particle, which forces that particle to search for a better position in
a confined region around the global best position.

The GCPSO can be used with neighbourhood topologies such as star, ring
and Von Neumann. Neighbourhoods have a similar effect in the GCPSO [16] as
they do in the standard PSO.

Particles converge to a weighted average between their personal and local best
positions [2], referred to in this paper as the theoretical attractor point. Kennedy
[9] has proposed that the entire velocity update equation be replaced by a random
number sampled from a Gaussian distribution around the theoretical attractor
point, with a deviation the magnitude of the distance between the personal and
global best. The resultant algorithm is called the barebones PSO (BBPSO).
Kennedy also proposed [9] an alternative barebones PSO (aBBPSO), where the
particle sampled from the above Gaussian distribution is recombined with the
particle’s personal best position.

Diversity Rate of Change Measurement for Particle Swarm Optimisers 89

The social PSO (SPSO) is a variation of the gbest PSO where the velocity
update does not contain a cognitive component. The particles are only guided by
the global best position and their own previous velocity. The particles converge
towards the global best position, rather than a weighted average between that
and their personal best positions, leading to very fast convergence.

2.3 Swarm Diversity

The diversity of a swarm is the degree of dispersion of its particles. Many existing
diversity measures were investigated by Olorunda and Engelbrecht [15]. Note
that these measures are instantaneous and thus only measure a swarm’s diversity
at a single time step. The two measures found in [15] to be the most accurate are
the average distance around the swarm centre, and the average distance around
all particles in the swarm. The average distance around the swarm centre was
used in this study, given by

D =
1

ns

ns∑
i=1

√√√√ nx∑
k=1

(xik − xk)
2
, (4)

where ns is the swarm size, nx is the number of dimensions of the problem, xik

is the k-th dimension of the i-th particle position, and x̄k is the average of the
k-th dimension over all particles.

2.4 Two-Piecewise Linear Approximation

A two-piecewise linear approximation of a function,

y(x) ≈ f(x) for i0 ≤ x ≤ i2 , (5)

is a mapping of two line segments, taking the form

y(x) =

{
a1 + b1x for i0 ≤ x ≤ i1
a2 + b2x for i1 < x ≤ i2

(6)

where aj and bj are the y intersection and the gradient of the j-th line segment,
respectively. The mapping is a minimisation problem aimed at finding optimal
values for a1, a2, b1, b2, and i1. The goal of the mapping is to minimise the least
squares error (LSE) between the function and the linear approximation, given
by

LSE =

i2∑
x=i0

(f(x)− y(x))
2
. (7)

3 Algorithm Behaviour

Engelbrecht [7] found that different algorithms exhibit different diversity profiles,
with reference to the rate at which diversity is decreased. Preliminary expecta-
tions about the rate at which different algorithms reduce diversity, and how this

90 P. Bosman and A.P. Engelbrecht

behaviour differs among different algorithms, can be made based on observations
published in PSO literature and based on the definitions of position and velocity
updates. This section discusses these expectations.

Because neighbourhoods directly influence information flow, it is expected
that more connected neighbourhoods will converge more quickly [11,12], and so
that their diversity will decrease more quickly. Therefore, when comparing any
PSO algorithm that uses a star topology with the same algorithm using a ring or
Von Neumann topology, it is expected that the rate of decrease in diversity for
the PSO that uses the star topology will be faster than for the other algorithms.
It is also expected that algorithms that use a Von Neumann topology will reduce
diversity faster than algorithms that use a ring topology.

When comparing the SPSO with any of the other algorithms discussed in
Section 2.2, it is expected that the SPSO will reduce diversity at a much faster
rate due to the lack of the cognitive component, which is the component that
facilitates exploration [7].

Due to the local search around the neighbourhood best that the GCPSO
does, it is expected that the GCPSO reduces diversity at a somewhat faster rate
than a basic PSO with a corresponding neighbourhood topology, but not at a
significantly different rate.

When comparing the BBPSO with the aBBPSO, it is expected that the
aBBPSO reduces diversity at a slower rate due to the random combination of
the personal best position in the position update. This is expected to strengthen
the cognitive-guided behaviour of particles, and weaken their social behaviour,
delaying the swarm’s convergence towards the theoretical attractor point.

4 Diversity Rate-of-Change Measure

Analysis of diversity measurements taken at regular time steps revealed a com-
mon pattern in the diversity profiles of the PSO algorithms studied in this paper,
as illustrated in Figure 1: The initial diversity value is very high, due to particles
being randomly initialised over the search space. The diversity shows a trend of
rapid decrease for a number of iterations, referred to as phase one in this paper.
This decrease is due to particles converging on a promising region of the search
space. After the first phase, the diversity still generally decreases, though at a
slower rate than in phase one, representing exploitation of the promising region
in order to locate a good solution. This is referred to as the second phase. The
pattern reflects a common behaviour in many PSO algorithms: that exploration
is initially high, but then gives way to exploitation. (Of the PSO algorithms
included in this study, all find a single solution in a static environment, and
none have processes implemented through which the diversity of their swarms
are managed.)

A two-piecewise linear approximation of diversity measurements produces one
line with a slope that is relatively larger than the second line. An example of
such a two-piecewise linear approximation is shown in Figure 2. The slope of the
first line, representing phase one, quantifies the rate at which diversity decreases,

Diversity Rate of Change Measurement for Particle Swarm Optimisers 91

Iterations

D
iv

er
si

ty

1 1000 2000

0.
00

26
.7

7

gbest PSO
lbest PSO

Fig. 1. Average diversity measurements over time for the gbest (solid line) and lbest
(dashed line) PSO on Levy’s function

i.e. the rate at which the swarm moves from an explorative to exploitative be-
haviour. The DRoC measure proposed in this paper is therefore simply the slope
of this first line.

Iterations

D
iv

er
si

ty

1 1000 2000

0
27

Fig. 2. Average diversity measurements over time for the gbest PSO over Levy’s func-
tion (solid line) with two-piecewise linear approximation (dashed line)

Because the DRoC measure relies on diversity measurements over the entire
run of a simulation, the proposed DRoC measure must be calculated after a
simulation has completed.

5 Experimental Procedure

This section describes the experimental procedure followed to evaluate the DRoC
measure.

92 P. Bosman and A.P. Engelbrecht

Different PSO algorithms were run on a selection of benchmark functions
using CILib,1 an open-source framework for testing computational intelligence
algorithms. The algorithms used, and the corresponding control parameters, are
listed in Table 1. The benchmark functions are summarised in table 2. Each
algorithm was used with 25 particles. For each function, each algorithm was run
30 times from different random initial conditions, for 2000 iterations. Diversity
measures were sampled at every 10 iterations.

Table 1. Algorithms and control parameters used in this study

Algorithm name Control parameters

Lbest PSO* Ring neighbourhood topology

Gbest PSO* Star neighbourhood topology

Von Neumann PSO (V.N. PSO)* Von Neumann neighbourhood topology

Lbest GCPSO* Ring neighbourhood topology

Gbest GCPSO* Star neighbourhood topology

Von Neumann GCPSO
(V.N. GCPSO)*

Von Neumann neighbourhood topology

BBPSO* Star neighbourhood topology

aBBPSO* Star neighbourhood topology
Probability of combination = 0.5

SPSO Star neighbourhood topology
ω = 0.729844, c1 = 0, c2 = 1.49618

* ω = 0.729844, c1 = 1.49618, c2 = 1.49618

For each benchmark function, a pair-wise Mann-Whitney U test with a 95%
level of significance was performed on each pair of algorithms in order to de-
termine if significant differences occur in the left slope among the different al-
gorithms. The results were summarised to indicate whether the left slope for
the first algorithm of the pair is significantly smaller (-1) or larger (1) than the
left slope for the second algorithm, or whether no significant difference exists
between the left slopes of the two algorithms (0). It is hypothesised that, where
algorithms are intuitively expected to behave differently in terms of the rate of
decrease in diversity, this difference will be reflected by the results of the U tests.

6 Results

The results from all pair-wise U tests are summarised in Table 6. The summarised
Mann-Whitney U test result is shown for each algorithm pair (columns) and each
function (rows). The final 3 rows respectively provide the number of each result
for each algorithm pair.

As expected, the gbest PSO’s measures indicate that it usually converged at
a faster rate than the lbest PSO. Similarly, the GCPSO with a star topology

1 Availabe at http://www.cilib.net

Diversity Rate of Change Measurement for Particle Swarm Optimisers 93

Table 2. Benchmark functions used in this study

Function name Domain Dimensions

Ackley [21] xiε[−32, 32] 25

Alpine [18] xiε[−10, 10] 25

Eggholder[13] xiε[−512, 512] 25

Elliptic [20] xiε[−100, 100] 25

Goldstein-Price [21] xiε[−2, 2] 2

Griewank [21] xiε[−600, 600] 25

Levy [13] xiε[−10, 10] 25

Michalewicz [3] xiε[0, π] 25

Quadric [21] xiε[−100, 100] 25

Quartic [21] xiε[−1.28, 1.28] 25

Rastrigin [21] xiε[−5.12, 5.12] 25

Rosenbrock [21] xiε[−2.048, 2.048] 25

Salomon [17] xiε[−100, 100] 25

Schwefel 1.2 xiε[−100, 100] 25

Schwefel 2.22 [21] xiε[−10, 10] 25

Schwefel 2.26 [21] xiε[−500, 500] 25

Six-hump camel-back [21] xiε[−5, 5] 2

Spherical [4] xiε[−100, 100] 25

Step [21] xiε[−20, 20] 25

Zakharov [8] xiε[−5, 10] 25

usually converged faster than the GCPSO with a ring topology. In both the
standard PSO and the GCPSO, the Von Neumann variations often produced no
significant difference from the gbest variations, but the Von Neumann variations
usually converged faster than the lbest variations.

When comparing the standard PSO algorithms with the GCPSO algorithms
using the same neighbourhood topologies, no difference was found for most of
the functions, as expected. For the few differences found, the GCPSO algorithms
decreased diversity at a slower rate than the corresponding standard PSO al-
gorithms, contrary to expectations. This may be an indication that the fitness
landscape plays a role in the DRoC; this possibility is also observed by Engel-
brecht in [7].

The SPSO usually decreased its diversity at a faster rate than any other
algorithm, as expected.

Comparison of the BBPSO with the aBBPSO supports the expectation that
the variation to BBPSO should converge more slowly, though there was often
no significant difference between the two.

Both the gbest PSO and the gbest GCPSO were usually not significantly
different when compared to the BBPSO. For most of the significant differences
found in both comparisons, the BBPSO decreased its diversity faster. However,
comparison of the gbest PSO and the gbest GCPSO to the aBBPSO produced
varying results: there was usually a significant difference, but the aBBPSO was

94 P. Bosman and A.P. Engelbrecht

Table 3. Summarised results of pair-wise Mann-Whitney U tests for each pair of
algorithms, for each benchmark function

G
b
es
t
P
S
O
,
L
b
es
t
P
S
O

G
b
es
t
P
S
O
,
V
.N

.
P
S
O

G
b
es
t
P
S
O
,
S
P
S
O

G
b
es
t
P
S
O
,
G
b
es
t
G
C
P
S
O

G
b
es
t
P
S
O
,
L
b
es
t
G
C
P
S
O

G
b
es
t
P
S
O
,
V
.N

.
G
C
P
S
O

G
b
es
t
P
S
O
,
B
B
P
S
O

G
b
es
t
P
S
O
,
a
B
B
P
S
O

L
b
es
t
P
S
O
,
V
.N

.
P
S
O

L
b
es
t
P
S
O
,
S
P
S
O

L
b
es
t
P
S
O
,
G
b
es
t
G
C
P
S
O

L
b
es
t
P
S
O
,
L
b
es
t
G
C
P
S
O

L
b
es
t
P
S
O
,
V
.N

.
G
C
P
S
O

L
b
es
t
P
S
O
,
B
B
P
S
O

L
b
es
t
P
S
O
,
a
B
B
P
S
O

V
.N

.
P
S
O
,
S
P
S
O

V
.N

.
P
S
O
,
G
b
es
t
G
C
P
S
O

V
.N

.
P
S
O
,
L
b
es
t
G
C
P
S
O

Ackley -1 0 1 0 -1 0 0 1 1 1 1 0 1 1 1 1 0 -1

Alpine -1 -1 1 0 -1 -1 0 -1 0 1 1 0 1 1 0 1 1 0

Elliptic 1 1 1 0 0 1 1 1 1 1 -1 -1 1 1 1 1 -1 -1

Eggholder -1 -1 1 0 -1 -1 0 -1 1 1 1 0 1 1 0 1 1 -1

Goldstein-
Price

1 1 1 0 1 1 1 0 0 0 -1 0 0 0 -1 0 -1 -1

Griewank -1 0 1 0 -1 0 0 1 1 1 1 0 1 1 1 1 0 -1

Levy 1 0 1 0 1 0 1 1 0 1 -1 0 0 1 1 1 -1 0

Michalewicz -1 -1 1 -1 -1 -1 0 -1 1 1 1 0 1 1 1 1 1 -1

Quadric -1 -1 1 0 -1 -1 0 -1 1 1 1 0 1 1 0 1 1 -1

Quartic -1 0 1 0 -1 0 0 1 1 1 0 0 0 1 1 1 -1 -1

Rastrigin -1 -1 1 0 -1 -1 0 -1 0 1 1 0 0 1 -1 1 1 0

Rosenbrock -1 0 1 -1 -1 -1 0 0 1 1 1 0 1 1 1 1 -1 -1

Salomon -1 0 1 0 -1 0 0 0 1 1 0 0 1 0 0 1 0 -1

Schwefel 1.2 -1 -1 1 0 -1 -1 0 -1 1 1 1 0 1 1 0 1 1 -1

Schwefel
2.22

-1 -1 0 -1 -1 -1 1 1 1 1 1 0 1 1 1 1 0 -1

Schwefel
2.26

-1 -1 1 0 -1 -1 0 -1 1 1 1 0 1 1 1 1 1 -1

Sixhump 0 0 1 0 0 -1 0 1 0 1 0 -1 -1 0 1 1 0 0

Spherical -1 0 1 0 -1 0 0 1 1 1 1 0 1 1 1 1 0 -1

Step -1 0 1 1 -1 0 1 1 1 1 1 0 1 1 1 1 1 -1

Zakharov -1 0 1 0 -1 0 -1 -1 1 1 1 0 1 0 -1 1 0 -1

Total -1’s 16 8 0 3 16 10 1 8 0 0 3 2 1 0 3 0 5 16

Total 0’s 1 10 1 16 2 8 14 3 5 1 3 18 4 4 5 1 7 4

Total 1’s 3 2 19 1 2 2 5 9 15 19 14 0 15 16 12 19 8 0

found to decrease its diversity faster than the gbest PSO and the gbest GCPSO
as often as the aBBPSO did so at a slower rate than the gbest PSO and gbest
GCPSO. This indicates that the rate at which the aBBPSO decreases its diver-
sity can vary widely, possibly depending on the fitness landscape.

Diversity Rate of Change Measurement for Particle Swarm Optimisers 95

V
.N

.
P
S
O
,
V
.N

.
G
C
P
S
O

V
.N

.
P
S
O
,
B
B
P
S
O

V
.N

.
P
S
O
,
a
B
B
P
S
O

S
P
S
O
,
G
b
es
t
G
C
P
S
O

S
P
S
O
,
L
b
es
t
G
C
P
S
O

S
P
S
O
,
V
.N

.
G
C
P
S
O

S
P
S
O
,
B
B
P
S
O

S
P
S
O
,
a
B
B
P
S
O

G
b
es
t
G
C
P
S
O
,
L
b
es
t
G
C
P
S
O

G
b
es
t
G
C
P
S
O
,
V
.N

.
G
C
P
S
O

G
b
es
t
G
C
P
S
O
,
B
B
P
S
O

G
b
es
t
G
C
P
S
O
,
a
B
B
P
S
O

L
b
es
t
G
C
P
S
O
,
V
.N

.
G
C
P
S
O

L
b
es
t
G
C
P
S
O
,
B
B
P
S
O

L
b
es
t
G
C
P
S
O
,
a
B
B
P
S
O

V
.N

.
G
C
P
S
O
,
B
B
P
S
O

V
.N

.
G
C
P
S
O
,
a
B
B
P
S
O

B
B
P
S
O
,
a
B
B
P
S
O

Ackley 0 1 1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 0

Alpine 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1 -1 -1

Elliptic 0 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 0

Eggholder 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1 -1 -1

Goldstein-
Price

-1 0 -1 -1 0 -1 0 -1 1 1 1 0 0 0 -1 0 -1 -1

Griewank 0 1 1 0 -1 -1 0 0 -1 0 0 0 1 1 1 0 1 0

Levy 0 1 1 -1 -1 -1 0 -1 1 1 1 1 0 1 1 1 1 0

Michalewicz 0 1 0 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 0 -1

Quadric 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1 -1 -1

Quartic -1 0 1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1

Rastrigin 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 0 1 -1 1 -1 -1

Rosenbrock 0 0 0 -1 -1 -1 -1 -1 -1 0 1 0 1 1 1 1 0 -1

Salomon 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 1 0 0 0 -1 0

Schwefel 1.2 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1 -1 -1

Schwefel
2.22

0 1 1 -1 -1 -1 0 1 -1 0 1 1 1 1 1 1 1 0

Schwefel
2.26

0 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 0 -1

Sixhump 0 0 1 -1 -1 -1 0 0 0 0 0 1 0 1 1 1 1 0

Spherical 0 0 1 -1 -1 -1 0 0 -1 0 0 1 1 1 1 0 1 0

Step 0 1 1 0 -1 -1 0 0 -1 -1 0 0 1 1 1 1 1 0

Zakharov 0 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 1 0 -1 -1 -1 -1

Total -1’s 2 1 8 18 19 20 13 15 15 8 2 8 0 0 3 1 8 10

Total 0’s 18 6 3 2 1 0 7 4 2 9 11 5 4 3 5 4 3 9

Total 1’s 0 13 9 0 0 0 0 1 3 3 7 7 16 17 12 15 9 1

7 Conclusions

This paper proposed a measure to quantify the rate at which swarms, for differ-
ent particle swarm optimisation (PSO) algorithms, decrease their diversity. The
diversity rate-of-change (DRoC) measure is obtained by fitting two-piecewise
linear approximations to diversity measurements taken at regular time steps.
The proposed DRoC measure is the slope of the left of those two lines.

96 P. Bosman and A.P. Engelbrecht

The DRoC measure was computed for different PSO algorithms for which
there are intuitive expectations about the differences in behaviour in terms of
decrease in diversity between the algorithms. The DRoC measure was shown
to reflect those expected differences. Firstly, where one algorithm was expected
to decrease its diversity faster than a second algorithm, the DRoC measure for
the first algorithm was usually a statistically significantly lower negative value
than for the second algorithm. Secondly, where no significant difference was
expected between the rate at which two algorithms decreased their diversity, no
statistically significant difference was usually found between the DRoC measures
for the algorithms.

For each comparison, the results for some benchmark functions contradicted
expectations. Furthermore, when comparing the alternative barebones PSO to
the gbest PSO and the gbest GCPSO, the results varied widely for different
benchmark functions. This could indicate that the fitness landscape has an in-
fluence on how algorithms decrease their diversity.

Future work will investigate the possible influence that the fitness landscape
may have on the behaviour of swarms in terms of decreasing diversity.

Alternative measures can possibly be obtained form the two-piecewise linear
approximations that were used to obtain the proposed DRoC measure. For ex-
ample, using the angle between the slopes of the first and the second lines of the
approximation might provide valuable information. Future work will investigate
such alternative measures.

The DRoC measure for a simulation must be calculated after the simulation
has completed. Methods will be investigated that allow the measure to be calcu-
lated in real time. Such methods can be used in algorithms where the diversity
of a population is managed in real time, such as attractive-repuslive PSO [14].

References

1. Van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm
optimizer. In: Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, pp. 96–101 (2002)

2. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization
particle trajectories. Information Sciences 176(8), 937–971 (2006)

3. Chen, M.R., Li, X., Zhang, X., Lu, Y.Z.: A novel particle swarm optimizer hy-
bridized with extremal optimization. Applied Soft Computing 10(2), 367–373
(2010)

4. De Jong, K.A.: Analysis of the behavior of a class of genetic adaptive systems.
Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA (1975)

5. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, New York, NY, vol. 1, pp. 39–43 (1995)

6. Engelbrecht, A.P.: Computational intelligence: an introduction. John Wiley & Sons
(2007)

7. Engelbrecht, A.P.: Scalability of a heterogeneous particle swarm optimizer. In:
Proceedings of the 2011 IEEE Symposium on Swarm Intelligence, pp. 1–8. IEEE
(2011)

Diversity Rate of Change Measurement for Particle Swarm Optimisers 97

8. Fan, S.K.S., Chang, J.M.: Dynamic multi-swarm particle swarm optimizer using
parallel PC cluster systems for global optimization of large-scale multimodal func-
tions. Engineering Optimization 42(5), 431–451 (2010)

9. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, pp. 80–87. IEEE (2003)

10. Kennedy, J., Eberhart, R., et al.: Particle swarm optimization. In: Proceedings
of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4,
pp. 1942–1948 (1995)

11. Kennedy, J., Mendes, R.: Population structure and particle swarm performance.
In: Proceedings of the 2002 IEEE World Congress on Computational Intelligence,
vol. 2, pp. 1671–1676. IEEE Computer Society (2002)

12. Kennedy, J.F., Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann
(2001)

13. Mishra, S.: Some new test functions for global optimization and performance of re-
pulsive particle swarm method. Tech. rep., University Library of Munich, Germany
(2006)

14. Monson, C.K., Seppi, K.D.: Adaptive diversity in PSO. In: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, pp. 59–66. ACM
(2006)

15. Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle
swarms using swarm diversity. In: Proceedings of the 2008 IEEE Congress on Evo-
lutionary Computation (IEEE World Congress on Computational Intelligence), pp.
1128–1134. IEEE (2008)

16. Peer, E.S., Van den Bergh, F., Engelbrecht, A.P.: Using neighbourhoods with the
guaranteed convergence PSO. In: Proceedings of the 2003 IEEE Swarm Intelligence
Symposium, pp. 235–242. IEEE (2003)

17. Price, K., Storn, R.M., Lampinen, J.A.: Appendix A.1: Unconstrained uni-modal
test functions. In: Differential Evolution: a Practical Approach to Global Opti-
mization. Natural Computing Series, pp. 514–533. Springer, Berlin (2006)

18. Rahnamayan, S., Tizhoosh, H.R., Salama, M.: A novel population initialization
method for accelerating evolutionary algorithms. Computers & Mathematics with
Applications 53(10), 1605–1614 (2007)

19. Suganthan, P.N.: Particle swarm optimiser with neighbourhood operator. In: Pro-
ceedings of the 1999 Congress on Evolutionary Computation, vol. 3. IEEE (1999)

20. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang,
Z.: Benchmark functions for the CEC 2008 special session and competition on large
scale global optimization. Tech. rep. (2007)

21. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transac-
tions on Evolutionary Computation 3(2), 82–102 (1999)

Evolutionary Swarm Robotics:

Genetic Diversity, Task-Allocation
and Task-Switching

Elio Tuci

Computer Science Department, Aberystwyth University, Aberystwyth, UK
elt7@aber.ac.uk

Abstract. The goal of this study is to investigate the role of genetic
diversity for engineering more resilient evolutionary swarm robotic sys-
tems. The resilience of the swarm is evaluated with respect to the capa-
bility of the system to re-distribute agents to tasks in response to changes
in operating conditions. We compare the performances of two evolution-
ary approaches: the clonal approach in which the teams are genetically
homogeneous, and the aclonal approach in which the teams are genet-
ically heterogeneous. We show that the aclonal approach outperforms
the clonal approach for the design of robot teams engaged in two task-
allocation scenarios, and that heterogeneous teams tend to rely on less
plastic strategies. The significance of this study for evolutionary swarm
robotics is discussed and directions for future work are indicated.

1 Introduction

This study draws inspiration from evidence in the study of social insects to
generate alternative design principles for swarm of robots [4]. In particular, we
target the processes of task-allocation and task-switching.

Recent studies have shown that division of labour in social insects can be
guided by emergent circumstances concerning the life of the colony that are inde-
pendent of the worker age and morphology [8,13]. For example, in [7] the author
shows that in a species of harvester ants, foragers can be recruited from work-
ers originally performing other tasks (e.g., nest-patrolling or nest-maintenance)
when the quantity of food close to the nest is experimentally manipulated. What
mechanisms do insects use to generate this plasticity in division of labour? There
are evidence that division of labour in social insects is based on a combination
of positive and negative feedback mechanisms and on the variability among the
workers to respond to task stimuli [3,5]. Workers with a low response thresh-
old for a task tend to prefer or specialise to that task. Workers with a high
response threshold for a task are likely not to perform that task in normal con-
ditions. However, they can be progressively attracted to that task in response
to changes in colony conditions that determine an increase level of the stimu-
lus associated to the task. The increase in the number of agents performing a
task decreases the stimulus associated to the task. Consequently, those workers
with a higher response threshold are likely to abandon the task, reducing the

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 98–109, 2014.
c© Springer International Publishing Switzerland 2014

Evolutionary Swarm Robotics 99

number of agents performing it. Entomologists have found out that the colony
variability in response thresholds to task stimuli is genetically determined, and
that colonies with higher genetic variability tend to be more efficient in division
of labour [12].

In this paper, we look at dynamic task-allocation (i.e., the autonomous al-
location or roles/tasks to robots) from the perspective of evolutionary swarm
robotics, where the robot behavioural mechanisms are automatically generated
by using evolutionary computation techniques to synthesise artificial neural net-
work controllers [17]. Our long term objective is to identify the elements that fa-
cilitate the evolution of neural mechanisms that underpin behavioural responses
similar to those observed in insects societies. In other words, we aim to design
teams of robots in which at least some of the agents are potentially capable of
carrying out multiples tasks, and in which each of these generalist agents engage
on a task based on current circumstances. The great majority of the research
work on task-allocation in evolutionary swarm robotics refers to scenarios in
which each robot is required to specialise on a single role/task for the entire
duration of the evaluation [16,18]. In this type of scenario, the designers have
generally opted for solutions in which the differentiation of behavioural compe-
tencies is obtained using genetically identical (i.e., homogeneous) robots, which
manage to autonomously specialise on different functions by exploiting some
form of neural plasticity [1]. The genetic homogeneity of the team facilitates
the design process by offering alternative solutions to problems and costs that
generally emerge with the use of heterogeneous teams.

The originality of this work is based, on the one hand, on a scenario in
which, contrary to previous work, some of the team members need to switch
task during evaluation. This behaviour is referred to as task-switching. Thus,
task-specialisation (i.e., the tendency to carry out a single task for the entire du-
ration of the evaluation phase) is not a valuable option for all the team members.
On the other hand, we question the effectiveness of the homogeneity condition
in view of the significance of the genetic variability for the plasticity in division
of labour in social insects. In particular, we compare two different approaches for
the design of individual mechanisms required by a team of robots to re-distribute
agents to tasks in response to changes in operating conditions. In the clonal ap-
proach, teams are formed using a single genotype from the evolving population
of genotypes. Thus, the teams are homogeneous because all the team members
have a controller derived from the same genotype. In the aclonal approach, teams
are formed by using multiple genotypes from the evolving population of geno-
types. Thus, teams are heterogeneous because each team member has a controller
derived from a different genotype. In both approaches, the genes code for the
parameters of dynamic neural networks.

We are aware that it is not possible to propose “general recipes” from a
single case study. Nevertheless, the results of our study indicate that the aclonal
approach outperforms the clonal approach for the design of teams engaged in
scenarios requiring dynamic task-allocation and task-switching behaviour. This
suggests that in similar swarm robotic scenarios it may be worth to pay the

100 E. Tuci

(a) (b) (c)

Fig. 1. (a) Experimental scenario (snapshot taken in Env. A, during Phase 1) showing
the nest (dark grey circle) with the light on top, the light indicating the foraging site
(black circle), and the five robots (white cylinders in the nest). (b) E-puck body-plan.
The black circles refer to the position of the infra-red (IR), the black rectangle refers
to the position of the floor sensor (FS). The dotted lines indicate the robot’s view with
the the three camera’s sectors. (c) Robots starting positions within the nest.

costs associated to the evolution of heterogeneous teams to get better results.
However, our study also indicates that the aclonal approach tends to converge on
solutions in which the majority of the members of successful teams are genetically
specialised for a task, and a minority (one or two members) display a limited
behavioural plasticity. This can be a limit to the robustness of the solutions.
These results will be discussed in details in Section 6.

2 The Simulation Environment

In the foraging scenario studied in this paper, the environment is a boundless
arena with a nest and a foraging site. The nest is a circular area indicated by a
green light, in which the colour of the floor is in shades of grey. The foraging site
is also a circular area indicated by a red light. With the exclusion of the nest, the
colour of the arena floor is white. The radius of both the nest and the foraging
site is randomly defined at the beginning of each trial in the interval [20cm,
30cm]. Both lights, the green one located in the nest and the red one located
in the foraging site, are positioned 6cm above the floor and, when turned on,
they are visible from everywhere within the arena. In each trial, the green light
is placed at the centre of the nest. The red light is placed at a distance from the
centre of the nest that varies from 100cm to 110cm (see Fig. 1a).

The robots kinematics are simulated using a modified version of the “minimal
simulation” technique described in [9]. Our simulation models a e-puck robot, a
3.5cm radius cylindrical robot. It is provided with eight infra-red sensors (IRi

with i = {0, .., 7}), which give the robot a noisy and non-linear indication of the
proximity of an obstacle (in this task, an obstacle can only be another robot);
a linear camera to see the lights; and a floor sensor (FS) positioned facing
downward on the underside of the robot (see Fig. 1b). The IR sensor values are
extrapolated from look-up tables provided with the Evorobot� simulator [11].
The FS sensor can be conceived of as an IR sensor capable of detecting the

Evolutionary Swarm Robotics 101

intensity of grey of the floor. It returns 0 if the robot is on white floor, 0.5 if it is on
light grey floor, and 1 if it is on dark grey floor. The robots camera has a receptive
field of 30◦, divided in three equal sectors, each of which has three binary sensors
(CB

i for blue, CG
i for green, and CR

i for red, with i = {1, 2, 3} indicating the
sector). Each sensor returns a value which is 0 if no light is detected, 1 when
a light is detected. The camera can detect coloured objects up to a distance of
150cm. The robot has left and right motors which can be independently driven
forward or reverse, allowing it to turn fully in any direction. The robot maximum
speed is 8cm/s.

3 The Task and the Fitness Function

Teams comprising five simulated e-puck robots are evaluated in the context of
a dynamic role allocation and role switching behaviour. By taking inspiration
from the behaviour of social insects, the roles are nest patrolling and foraging
(hereafter, we refer to them as role P, and role F, respectively). Roughly speak-
ing, role P requires a robot to remain within the nest. Role F requires a robot
to leave the nest for the foraging site, to spend a certain amount of time at
the foraging site, and then to come back to the nest. A team is required to
execute both roles simultaneously. Therefore, the robots have to go through a
role-allocation phase in which they autonomously decide who is doing what, and
then execute their respective roles. Moreover, the robots are required to be able
to switch from one role to the other (i.e., role switching behaviour) due to the
fact that they experience two different types of environment, Env. A and Env. B.
In Env. A, role F is more important than role P. This means that in Env. A, a
team maximises the fitness if the majority of robots (i.e., more than two robots)
visits the foraging site and the minority (i.e., less than three robots) remains in
the nest. In Env. B, role P is more important than role F. This means that a
team maximises the fitness if the majority of robots (i.e., more than two robots)
remains in the nest and the minority (i.e., less than three robots) visits the
foraging site. Since a team, throughout its life-span, experiences both types of
environment, not all the robots can specialise on a single role. At least one robot
has to be able to play both roles and eventually to switch from one role to the
other based on the current environmental condition and the roles allocated to the
other team mates. How can a robot distinguish between Env. A and Env. B? The
two types of environment can be distinguished by the intensity of grey colouring
the floor in the nest site. In Env. A, the nest is coloured in dark grey. In Env. B,
the nest is coloured in bright grey.

During evolution, each team undergoes a set of E = 4 evaluation sequences
(hereafter, e-sequence). An e-sequence is made of V = 3 trials. There are two
different types of e-sequence: in ABA-sequence the robots experience Env. A in
trial 1, Env. B in trial 2, and Env. A in trial 3; in BAB-sequence the robots
experience Env. B in trial 1, Env. A in trial 2, and Env. B in trial 3. Each group
experiences twice each type of e-sequence. At the beginning of trial 1 of each
e-sequence, the robots controllers are reset, and each robot is randomly placed

102 E. Tuci

within an area corresponding to a sector of the nest. The nest is divided in 6
sectors as illustrated in Fig. 1c. Each robot is randomly placed in one sector
randomly oriented in a way that the light can be within an angular distance of
±36◦ from its facing direction (see Fig. 1c).

Each trial differs from the others in the initialisation of the random number
generator, which influences the robots initial position and orientation, all the
randomly defined features of the environment, and the noise added to motors
and sensors (see [9] for further details on sensors and motor noise). Within a trial,
the team life-span is T=900 simulation cycles (with 1 simulation cycle lasting
0.1s). Robots are frozen (i.e., don’t move and do not contribute to the team
fitness) if they exceed the arena limits (i.e., a circle of 120cm radius, centred in
the middle point between the nest and the foraging site). Trials are terminated
earlier if all the robots are frozen, or the team exceeds the maximum number of
collisions (i.e., 10). In trials following the first one of each e-sequence (trial 2,and
3), the robots are repositioned only if the previous trial has been terminated
earlier, or with one or more robot frozen.

Each trial is divided into three phases. During Phase 1, which lasts 12s, the
green light is on and the red light is off. The robots are required to stay within
the nest. During Phase 2, which can last from a minimum of 47,5s to a maximum
of 52.5s, the red light is on and the green light is off. During Phase 2, a team
is required to behave according to the rules of the task. That is, in Env. A, the
majority of robots (i.e., more than two robots) has to visit the foraging site and
the minority (i.e., less than three robots) has to remain for the entire length of
this phase in the nest. In Env. B, the majority of robots has to remain for the
entire length of Phase 2 in the nest and the minority has to visit the foraging
site. A robot is considered having visited the foraging site if, during Phase 2, it
spends more then 100 consecutive time steps at less than 45cm from the light
indicating the foraging site. During Phase 3, which starts at the end of Phase 2
and terminates at the end of the trial, the green light is on again and the red
light is off. The robots that were foraging during Phase 2 are required to return
in the nest to rejoin their team mates.

We study two slightly different scenarios. In Scenario I, the robots can not
see each other through the camera. Thus, any robot-robot interaction including
those that result in the allocation of roles to robots are based on the activations
of the infra-red sensors. In Scenario II, the robots can see each other through
the camera. Thus, in this scenario there is a wider sensory space in which robot-
robot interaction can be generated. This can facilitate the dynamic allocation of
roles to agents. However, due to occlusion—only the closest coloured object is
perceived in each camera sector—the lights indicating the nest and the foraging
site may not be visible all the time by all robots. The robot are coloured in dark
yellow. When a robot is perceived through the camera, the red and the green
camera sensors return a value of 0.5 and the blue sensor returns a value of 0.

The fitness of a genotype is its average team evaluation score after it has been
assessed for four e-sequences (i.e., for a total of 12 trials). In each trial (v) of

Evolutionary Swarm Robotics 103

yi = gIi; i = 1, ., 11; (3)

τiẏi = −yi +
15∑
j=1

ωjiσ(yj + βj); i = 12, ., 15; (4)

yi =

15∑
j=12

ωjiσ(yj + βj); i = 16, ., 19; (5)

σ(x) = (1 + e−x)−1

(a) (b)

Fig. 2. (a) The neural network. (b) The equations used to update the values of sensory,
internal, and motor neurons of the robot controller.

each e-sequence (e), the team is rewarded by an evaluation function Fev which
is computed in the following:

Fev =
[(∑R

r=1 S
ph1
r

R× T ph1
×
∑R

r=1 S
ph3
r

R× T ph3

)
+Qph2

]
× PEN ; with Fev ∈ [0, 7]; (1)

Qph2 =

{
5 if robots correctly allocated in Phase 2;

2× N
R if robots incorrectly allocated in Phase 2;

(2)

with R = 5 indicating the number of robots in a swarm; Sph1
r is the number

of simulation cycles robot r spends within the nest during Phase 1; Sph3
r is the

number of simulation cycles robot r spends within the nest during Phase 3; N is
the number of robots that, during Phase 2, play role F if the trial is in Env. A,
or robots that play role P if the trial is in Env. B; T ph1 and T ph3 indicate
the duration of Phase 1 and Phase 3, respectively. The team collision penalty
PEN is inversely proportional to the number of collisions, with PEN = 1 with
no collisions, and PEN = 0.4 with 10 collisions in a trial. The average team
evaluation score is F = 1

E
1
V

∑E
e=1

∑V
v=1 Fev , with E = 4 and V = 3.

4 Controller and the Evolutionary Algorithm

The robot controller is composed of a continuous time recurrent neural network
(CTRNN) of 11 sensor neurons, 4 inter-neurons, and 4 motor neurons [2]. The
structure of the network is shown in Fig. 2a. The states of the motor neurons
are used to control the speed of the left and right wheels as explained later.
The values of sensory, internal, and motor neurons are updated using equations
3, 4, and 5. In these equations, using terms derived from an analogy with real
neurons, yi represents the cell potential, τi the decay constant, g is a gain factor,

104 E. Tuci

Ii with i = 1, ., 11 is the activation of the ith sensor neuron (see Fig. 2a for
the correspondence between robot’s sensors and sensor neuron), ωji the strength
of the synaptic connection from neuron j to neuron i, βj the bias term, σ(yj+βj)
the firing rate (hereafter, fi). All sensory neurons share the same bias (βI), and
the same holds for all motor neurons (βO). τi and βi with i = 12, ., 15, βI , βO,
all the network connection weights ωij , and g are genetically specified networks’
parameters. At each time step, the output of the left motor is ML = f16 − f17,
and the right motor is MR = f18 − f19, with ML,MR ∈ [−1, 1]. Cell potentials
are set to 0 when the network is initialised or reset, and equation 4 is integrated
using the forward Euler method with an integration time step ΔT = 0.1.

An evolutionary algorithm using linear ranking is employed to set the param-
eters of the networks [6]. We consider populations composed of M = 100 teams,
each composed of N = 5 individuals. The genotypes coding for the parameters
of the robots’ controllers are vectors comprising 87 real values (76 connections,
4 decay constants, 6 bias terms, and a gain factor) chosen uniformly random
from the range [0,1]. In the clonal approach teams are genetically homoge-
neous. Each of the M teams at generation 0 is formed by generating one random
genotype and cloning it N − 1 times to obtain N identical genotypes. Gener-
ations following the first one are produced by a combination of selection with
elitism, recombination, and mutation. For each new generation, the highest scor-
ing genotype (“the elite”) from the previous generation is retained unchanged,
and used to form a new team. Each of the other M − 1 new teams are generated
by fitness-proportional selection from the 80 best genotypes of the old popula-
tion. Each new genotype has a 0.3 probability of being created by combining the
genetic material of two individual of the old population. During recombination,
one crossover point is selected. Mutation entails that a random Gaussian offset
is applied to each real-valued vector component encoded in the genotype, with
a probability of 0.04. The mean of the Gaussian is 0, and its standard deviation
is 0.1. During evolution, all vector component values are constrained to remain
within the range [0,1]. In the aclonal approach teams are genetically heteroge-
neous. At generation 0 each of the M teams is formed by generating N random
genotypes. For each new generation following the first one, the genotypes of the
best team (“the elite”) are retained unchanged and copied to the new popula-
tion. Each of the genotypes of the other teams is formed by first selecting two old
teams using roulette wheel selection. Then, two genotypes, each randomly se-
lected among the members of the selected team are recombined with probability
0.3 to reproduce one new genotype. The resulting new genotype is mutated. Mu-
tation and recombination are applied in the same way as for the clonal approach.
This process is repeated to form M − 1 new teams of N genotype each.

5 Results

The aim of this study is to design control systems for swarms of robots that
are located in an environment where they have to carry out two simultaneous
tasks. One tasks is about moving away from the nest location towards another

Evolutionary Swarm Robotics 105

point indicated by a red light. This task is called role F. The other task re-
quires the robot to remain within the nest location indicated by a green light.
This task is called role P. The task-allocation process is entirely left to the
swarm that dynamically allocates roles to robots through physical interactions.
Moreover, at least one robot of the swarm is required to change role within
consecutive trials to allow the swarm to cope with the environmental variability
which dictates that in Env. A role F requires more resources than role P, whereas
in Env. B role P requires more resources than role F (see Section 3 for details).
The experimental design is made of two evolutionary conditions: the clonal ap-
proach which evaluates homogeneous teams, and the aclonal approach which
evaluates heterogeneous teams. Moreover, we have two experimental scenarios:
Scenario I in which the robots can only interact using infra-red sensors, and Sce-
nario II in which the robots can perceive each other through the camera and the
infra-red sensors. Thus, we have 4 experimental conditions: 1) clonal approach-
Scenario I; 2) clonal approach-Scenario II; 3) aclonal approach-Scenario I; 4)
aclonal approach-Scenario II. 10 evolutionary runs, each using a different ran-
dom initialisation were carried out for 2500 generations for each of the 4 possible
experimental conditions. The effectiveness of the evolved solutions is quantita-
tively evaluated—using the metric F illustrated in Section 3—through a series of
post-evaluation tests. These tests have been applied to the fittest team of each
generation for the last 1000 generations of each evolutionary run. The post-
evaluation test consists of 40 ABA-sequence, and 40 BAB-sequence per team
(for a total of 240 trials, with V = 3 trials times E = 80 e-sequences). For each
evolutionary run, the team with the highest average re-evaluation fitness score F
is considered to be an adequate measure of the success of the run. The graphs in
Fig. 3 shows the distributions of the highest average re-evaluation scores achieved
by each best team of each run of the clonal approach (see Fig. 3, white bars)
and aclonal approach (see Fig. 3, black bars) in Scenario I (see Fig. 3a) and
Scenario II (see Fig. 3b). Values represent percentage of the optimal evaluation
score F on 240 trials. In both task scenarios, all the 10 runs of the aclonal ap-
proach generated very successful best teams with a fitness higher than 85% of
the optimum. In Scenario I, 6 best teams, and in Scenario II, 8 best teams have
a fitness higher than 95% of the optimum score (see Fig. 3a, and 3b, black bars).
The best teams generated with the clonal approach show less convincing perfor-
mances in both task scenarios, with 3 best teams scoring more than 85% of the
fitness optimum, in Scenario I, and 6 best teams in Scenario II. In Scenario II
the gap between aclonal approach and clonal approach measured in term of

Table 1. Table showing median, mean and standard deviation of the scores of the best
evolved teams for each run of each of the four experimental conditions

Scenario I

median mean s.d.

clonal approach 5.57 5.07 1.22
aclonal approach 6.71 6.60 0.32

Scenario II

median mean s.d.

clonal approach 6.67 5.93 1.38
aclonal approach 6.89 6.81 0.2

106 E. Tuci

(a) (b)

Fig. 3. Histogram showing the distributions of the highest average re-evaluation scores
achieved by each best team of each run of the clonal approach (white bars) and aclonal
approach (black bars) in (a) Scenario I and (b) Scenario II. Values represent percentage
of the optimal evaluation score F on 240 trials.

performances of the best teams is less pronounced (see Fig.3b). However, for
both task scenarios, the aclonal approach out-performs the clonal approach. Ta-
ble 5 shows a comparisons of mean, standard deviation, and median scores of
both approaches in both task scenarios. Each measure shows the aclonal ap-
proach out-performing the clonal approach, and the difference between the two
set of results is statistically significant (Mann-Whitney U test, p < 0.01 for Sce-
nario I, and p < 0.05 for Scenario II). From a statistical point of view, there
is enough evidence to prefer one approach over the other for the evolution of
multi-robot teams engaged in these dynamic role-allocation and role-switching
scenarios. In the next section, we will show the results of further analysis aimed
to unveil the behavioural strategies used by the best teams of each evolutionary
approach to solve the task in each scenario.

5.1 Behavioural Strategies

In this section, we describe the behavioural strategies of best evolved teams.
In particular, we are interested in the capability of the best evolved teams to
redistribute agents to task in response to changes in operating conditions. What
kind of strategies do the best teams use to keep the majority of the robots
engaged on role F in Env. A, and on role P in Env. B? To answer this question
we have measured for each best team of the aclonal approach the frequency with
which each robot of the team plays each role in Env. A and in Env. B. It turned
out that, for both scenarios, all the best evolved teams of the aclonal approach
with an average evaluation score higher than 85% of the fitness optimum employ
very similar strategies. The graphs in Fig. 4 illustrate for each scenario the results
of the behavioural analysis for the very best team generated aclonally (see Fig. 4a
for Scenario I, and Fig. 4b for Scenario II, with black bars referring to role F,
and white bars to role P). These graphs show that the majority of the robots of
this team shows almost no behavioural plasticity. For example, in Fig. 4a robot
1 and 4 play role F 100% of the re-evaluation time in Env. A and in Env. B

Evolutionary Swarm Robotics 107

(a) (b)

(c) (d)

Fig. 4. The graph at the top show the frequency with which each robot of two best
aclonal groups plays each role in Env. A (A) and Env. B (B). (a) refers to Scenario I,
and (b) refers to Scenario II. In (a) and (b) black bars refers to role F, white bars
refer to role P. The graphs at the bottom show the frequency of role-change events for
each robot of two best evolved clonal groups for (c) Scenario I, and (b) Scenario II. In
(c) and (d) black bars refer to role-change events in ABA-sequence; white bars refer to
role-change events in BAB-sequence.

(see Fig. 4a, black bars), while robot 3 and 5 play role P 100% of the re-evaluation
time in both environments (see Fig. 4a, white bars). Only robot 2 is capable of
playing both roles, but not in both environment. Robot 2 always play role F in
Env. A, and role P in Env. B. Similar results are shown in Fig. 4b, which refers to
the performances of the very best team of the aclonal approach in Scenario II.
Robot 1 and 3 play role F 100% of the re-evaluation time in Env. A and in
Env. B (see Fig. 4b, black bars), while robot 2 and 5 play role P 100% of the re-
evaluation time in both environments (see Fig. 4b, white bars). Robot 4 always
play role F in Env. A, and role P in Env. B.

We also looked at the number of identical genes and at the genetic distance
between all the possible combination of two robots for the most successful team
generated aclonally in Scenario I, and the most successful team generated aclon-
ally in Scenario II (data not shown). We noticed that some of the robots that
play same role share more genes (more than 50% of the genetic material is iden-
tical) and they have smaller genetic distance. However, there are also a case in
which robots that play same role are not more genetically related than those play
different roles (e.g., robot 3 and 5 in teams evolved for Scenario I). The results
of this analysis show that the best teams generated with the aclonal approach

108 E. Tuci

tend to be formed by a majority of robots that are genetically specialised for
one or the other role of the task, with a minority (one or two team members)
that can play both roles but not in any environmental conditions. These robots
with limited plasticity are those that switch role and make possible the team
redistribution of resources according to the rules of the task.

For the best clonal teams, there is no need to measure the behavioural plas-
ticity of the individuals. Given that the teams are homogeneous, and given that
they perform quite well both in Scenario I, and in Scenario II, we can conclude
that the controllers of these very best teams possess the mechanisms requited to
play both roles and to switch roles in response to the operating conditions. The
graphs in Fig. 4c and 4d show the frequency of role-change events for each robot
of two best evolved clonal teams for Scenario I, and Scenario II, respectively. A
role-change events refers to the event in which a robot play a different role in
different trials associated to the same environment within a single e-sequence.
As shown in these graphs, all the robots of both teams retain a certain plasticity
for the entire duration of the e-sequences. This plasticity varies from 10% to 50%
of role-change events, for both Env. A (see Fig. 4c and 4d, black bars) and for
Env. B (see Fig. 4c and 4d, white bars).

6 Conclusions

In swarm robotics, plasticity in task-allocation has been successfully obtained by
calling upon the principle of individual variability in responding to environmental
signals (e.g., [10,14]). In this paper, we looked at task-allocation from the evolu-
tionary swarm robotics perspective. We studied the performances of teams gen-
erated with two different evolutionary design approaches. Results indicate that
the aclonal approach (i.e., heterogeneous teams) outperforms the clonal approach
(i.e., homogeneous teams) in designing controllers for robot teams engaged in
scenarios requiring dynamic task-allocation and task-switching behaviour. The
clear advantage of the aclonal approach over the clonal approach has to be con-
sidered in view of evidence showing that the genetic variability is mainly used to
generate teams of genetically specialised agents (i.e., agents that can only play a
single role), which benefit from the “partial” plasticity of few individuals that can
play all the roles of the task but not in all operating conditions. Data not shown
indicated that in our scenarios teams generated aclonally are extremely scalable.
Incrementing the cardinality of a team by adding those members with partial
plasticity (e.g., robot n. 2 in Fig. 4a) has almost no disruptive effects on the
performance of the team. However, failure of single team members can be highly
disruptive because none of members is capable of playing all the roles in all the
operating conditions. Clonal teams do not handle scalability as easily as aclonal
teams, but they are capable of successfully facing individual failure by redis-
tributing the agents to tasks. In conclusion, we believe that the aclonal approach
approach can be a valuable tool to design neural mechanisms that underpin be-
havioural responses similar to those observed in insects societies. Genetic diver-
sity can facilitate the evolutionary design process of teams that adaptively act in

Evolutionary Swarm Robotics 109

scenarios requiring task-allocation and task-switching behaviour. A similar claim
has been made in [15]. However, the emergence of generalist individuals has to
be encouraged through the introduction of selective pressures which favour the
teams with highly plastic individuals over alternative solutions. Future research
work should concentrate on the evolutionary conditions that facilitate the emer-
gence of generalist solutions in the aclonal approach.

References

1. Ampatzis, C., Tuci, E., Trianni, V., Christensen, A., Dorigo, M.: Evolving self-
assembly in autonomous homogeneous robots. Artificial Life 15(4), 465–484 (2009)

2. Beer, R.D., Gallagher, J.C.: Evolving dynamic neural networks for adaptive be-
havior. Adaptive Behavior 1(1), 91–122 (1992)

3. Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Quantitative study of the fixed
threshold model for the regulation of division of labour in insects societies. Pro. R.
Soc. B 263(1376), 1565–1569 (1996)

4. Dorigo, M., Şahin, E.: Guest editorial. Special issue: Swarm robotics. Aut.
Rob. 17(2-3), 111–113 (2004)

5. Duarte, A., Weissing, F., Penn, I., Keller, L.: An evolutionary perspective on self-
organised division of labour in social insects. Annu. Rev. Ecol. Evol. Syst. 42,
91–110 (2011)

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

7. Gordon, D.: Dynamics of task-switching in harvester ants. Animal Behaviour 38,
194–204 (1989)

8. Gordon, D.: The organisation of work in social insects. Nature 380, 121–124 (1996)
9. Jakobi, N.: Evolutionary robotics and the radical envelope of noise hypothesis.

Adaptive Behavior 6, 325–368 (1997)
10. Labella, T., Dorigo, M., Deneubourg, J.L.: Division of labour in a group of robots

inspired by ants’ foraging behavior. ACM Trans. Aut. Adap. Sys. 1(1), 4–25 (2006)
11. Nolfi, S., Gigliotta, O.: Evorobot�. In: Nolfi, S., Mirolli, M. (eds.) Evolution of Com-

munication and Language in Embodied Agents, pp. 327–332. Springer, Heidelberg
(2010)

12. Oldroyd, B., Fewell, J.: Genetic diversity promotes homeostasis in insect colonies.
Trends Ecol. E 22(8), 408–413 (2007)

13. Page, R.: The evolution of insects societies. Endeavour 21(7), 114–120 (1997)
14. Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., Birattari, M.: Task par-

titioning in swarms of robots: An adaptive method for strategy selection. Swarm
Intelligence 5(3-4), 283–304 (2011)

15. Quinn, M.: A comparison of approaches to the evolution of homogeneous multi-
robot teams. In: Proc. Int. Conf. Evolutionary Computation (CEC), vol. 1,
pp. 128–135 (2001)

16. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homo-
geneous system of physical robots: Structured cooperation with minimal sensors.
Phil. Trans. R. Soc. A 361, 2321–2344 (2003)

17. Trianni, V., Nolfi, S.: Engineering the evolution of self-organizing behaviors in
swarm robotics: A case study. Artificial Life 17(3), 183–202 (2011)

18. Tuci, E., Ampatzis, C., Vicentini, F., Dorigo, M.: Evolving homogeneous neuro-
controllers for a group of heterogeneous robots. Artificial Life 14(2) (2008)

Influencing a Flock via Ad Hoc Teamwork

Katie Genter and Peter Stone

The University of Texas at Austin, Austin, TX, USA
{katie,pstone}@cs.utexas.edu

Abstract. Flocking is an emergent behavior in which each individual
agent follows a simple behavior rule that leads to a group behavior that
appears cohesive and coordinated. In our work, we consider how to in-
fluence a flock using a set of ad hoc agents. Ad hoc agents are added to
the flock and are able to influence the flock to adopt a desired behavior
by acting as part of the flock. Specifically, we first examine how the ad
hoc agents can behave to quickly orient a flock towards a target head-
ing when given knowledge of, but no direct control over, the behavior of
the flock. Then we consider how the ad hoc agents can behave to herd
the flock through turns quickly but with minimal agents being separated
from the flock as a result of these turns. We introduce an algorithm
which the ad hoc agents can use to influence the flock. We also present
detailed experimental results for our algorithm, concluding that in this
setting, short-term lookahead planning improves significantly upon base-
line methods and can be used to herd a flock through turns quickly while
maintaining the composition of the flock.

1 Introduction

Consider a flock of migrating birds that is flying directly towards a dangerous
area, such as an airport or a wind farm. It will be best for both the flock and the
humans in the area if the path of the migratory birds is altered slightly such that
the flock will avoid the dangerous area and reach their destination only slightly
later than originally expected. However, there is no way to directly control the
birds’ flight. Rather, we must alter the environment so as to induce the flock to
alter their path as desired.

The above scenario is a motivating example for our work on influencing a
flock using ad hoc teamwork. We assume that each bird in the flock dynamically
adjusts its heading based on that of its immediate neighbors. We assume further
that we control one or more ad hoc agents — perhaps in the form of robotic birds
or ultralight aircraft1 — that are perceived by the rest of the flock as one of their
own. It is through these ad hoc agents that we alter the birds’ environment so
as to induce them to alter their path. We are interested in how best to do so.

Flocking is an emergent behavior found in different species in nature including
flocks of birds, schools of fish, and swarms of insects. In each of these cases, the
animals follow a simple local behavior rule that results in a group behavior that

1 www.operationmigration.org

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 110–121, 2014.
c© Springer International Publishing Switzerland 2014

www.operationmigration.org

Influencing a Flock via Ad Hoc Teamwork 111

appears well organized and stable. Research on flocking behavior has appeared in
various disciplines such as physics [15], graphics [11], biology [3], and distributed
control theory [7,8,13] but the research has focused mainly on characterizing the
emergent behavior.

In this work, we are given a team of flocking agents following a known, well-
defined rule characterizing their flocking behavior, and we wish to examine how
the ad hoc agents should behave. Specifically, this paper addresses two questions:
How should ad hoc agents behave so as to (1) orient the rest of the flock towards
a target heading as quickly as possible and (2) herd the rest of the flock through
turns quickly but without compromising the composition of the flock?

The remainder of this paper is organized as follows. Section 2 situates our
research in the literature. Section 3 introduces our problem and necessary termi-
nology. The main contribution of this paper is the 1-step lookahead algorithm for
influencing a flock to travel in a particular direction; this algorithm is presented
in Section 4. We present the results of running experiments using this algorithm
in the MASON simulator [10] in Section 5 and then Section 6 concludes.

2 Related Work

Reynolds introduced the original flocking model that we use in this work [11]. His
work focused on creating a computer model of flocking that looked and behaved
like a real flock of birds. Reynolds’ model consists of three simple steering be-
haviors that determine how each agent maneuvers based on the behavior of the
agents around it (henceforth called neighbors): Separation steers the agent such
that it avoids crowding its neighbors, Alignment steers the agent towards the
average heading of its neighbors, and Cohesion steers the agent towards the av-
erage position of its neighbors. Vicsek et al. considered just the Alignment aspect
of Reynolds’ model in physics work that studied the emergence of self-ordered
motion in flocking [15]. Some related research has also considered how different
information provided to the flocking agents affects their behavior. Turgut et al.
considered how noise in heading measurements, the number of neighbors, and
the range of communication affect the self-organization of flocking robots [14].
However, none of these lines of research considered how to influence the flock to
adopt a particular behavior by introducing additional agents into the flock.

Jadbabaie et al. considered the impact of adding a controllable agent to a flock
[8]. They used the Alignment aspect of Reynolds’ model and showed that a flock
with a controllable agent will always converge to the controllable agent’s heading.
Su et al. also presented work that is concerned with using a controllable agent to
make the flock converge [13]. [2] used the same model as [14] and extended it to
include informed agents that guide the flock by their preference for a particular
direction. Our work is different from these three lines of research in that while
they influence the flock to converge to a target heading eventually, we influence
the flock to converge quickly.

Couzin et al. considered how grouping animals make informed unanimous de-
cision [3]. They showed that only a very small proportion of informed agents

112 K. Genter and P. Stone

is required, and that the larger the group the smaller the proportion of in-
formed individuals needed to orient the group. Cucker and Huepe proposed two
Laplacian-based models for a consensus term that balances the trade-off between
an informed individuals preference to go in a particular direction and the desire
for social interaction [4]. Ferrante et al. utilized communication for coordinating
movement of a flock towards a common goal [5]. Specifically, informed robots
communicated the goal direction while uniformed robots communicated the av-
erage of messages received from their neighbors. Yu et al. proposed an implicit
leadership algorithm that allows all agents to follow a single rule and reach a
common group decision without any complex coordination methods [16]. How-
ever, none of these lines of research consider how to control some agents from
the perspective of knowing and planning for how the other agents will react.
Instead, each agent behaves in a fixed way that is pre-decided or based on its
type.

Han et al. studied how one agent can quickly influence the direction in which
an entire flock of agents is moving [7]. In their work each agent follows a simple
control rule based on its neighbors, but they only consider one ad hoc agent
with unlimited, non-constant velocity. This allows their ad hoc agent to move to
any position in the environment within one time step, whereas in our work we
assume the agents have bounded velocity.

In our previous work, we considered the problem of leading a flock of agents
to a desired orientation using ad hoc agents [6]. In that work we set bounds
on the extent to which both stationary and non-stationary ad hoc agents could
influence an otherwise stationary team to orient to a desired orientation. The
work presented in this paper is substantially different in that we consider a
completely non-stationary flock and we present a more advanced algorithm for
the ad hoc agents.

Overall, to the best of our knowledge, the work presented in this paper is the
first that uses knowledge of how other agents will react to design controllable
agents with bounded velocities to influence a flock in motion to converge quickly
to a desired heading.

3 Background and Problem Definition

In this section we introduce the concept of ad hoc teamwork and define our
problem.

3.1 Ad Hoc Teamwork

Ad hoc teamwork is a relatively new multiagent systems research area [1,9,12]
that examines how an agent ought to act when placed on a team with other
agents such that there was no prior opportunity to coordinate behaviors. As
agents and robots are used with increasing frequency in various cooperative do-
mains, designing agents capable of reasoning about ad hoc teamwork is becom-
ing increasingly important. Ad hoc agents can cooperate within a team without

Influencing a Flock via Ad Hoc Teamwork 113

using explicit communication or previously coordinating behaviors among team-
mates. One aspect of ad hoc teamwork involves leading teammates. Consider a
case in which we want to influence a given team of agents to alter their actions
in order to maximize the team utility. One way of doing so is by adding one or
more agents to the team in order to lead them to perform the desired actions.

3.2 Problem Definition

=++ ≈

Fig. 1. Calculation of an agent’s
new velocity vector. The black
dot without an arrow repre-
sents the agent in question, the
dots with arrows represent the
agent’s neighbors and their ve-
locity vectors, and the dotted
circle represents the boundary
of the agent’s neighborhood.

In this work we use a simplified version of
Reynolds’ Boid algorithm for flocking [11].
Specifically, similarly to other studies such as
[8,15], we only consider the Alignment aspect
of Reynolds’ model. We assume that each agent
calculates its orientation for the next time step
to be the average heading of its neighbors.
Throughout this paper, an agent’s neighbors are
the agents located within some set radius of the
agent. An agent is not considered to be a neigh-
bor of itself, so an agent’s current heading is not
considered when calculating its orientation for
the next time step. In order to calculate its ori-
entation for the next time step, each agent com-
putes the vector sum of the velocity vectors of
each of its neighbors and adopts a scaled version
of the resulting vector as its new orientation.
Figure 1 shows an example of how an agent’s
new velocity vector is calculated. At each time
step, each agent moves one step in the direction
of its current vector and then calculates its new
heading based on those of its neighbors, keeping a constant speed.

Over time, agents behaving as described above will naturally gather into one
or more groups, and these groups will each travel in some direction. However,
in this work we add a small number of ad hoc agents to the flock. These ad hoc
agents attempt to influence the flock to travel in a pre-defined direction — we
refer to this direction as θ∗. This paper addresses two questions: how to orient
the flock to a target heading and how to herd a flock through turns. Hence,
throughout this paper we consider two specific cases. In the Orient case, the
ad hoc agents attempt to influence the flock to travel towards θ∗. In the Herd
case, the ad hoc agents attempt to influence the flock to travel as a cohesive unit
through multiple turns — this can be thought of as influencing the flock towards
a frequently changing θ∗.

Note that the challenge of designing ad hoc agent behaviors in a dynamic
flocking system is difficult because the action space is continuous. Hence, in our
work we make the simplifying assumption of only considering a limited number
(numAngles) of discrete angle choices for each ad hoc agent.

114 K. Genter and P. Stone

3.3 Simulation Environment

We situate our research on flocking using ad hoc teamwork within the MASON
simulator [10]. Pictures of the Flockers domain are shown in Figure 2. Each agent
points and moves in the direction of its current velocity vector.

(a) (b) (c) (d)

Fig. 2. Images of (a) the start of an Orient trial, (b) the end of an Orient trial, (c)
the start of a Herd trial, and (d) the end of a Herd trial (the black line shows the
approximate path that the flock travelled to reach their current location). The grey
agents are ad hoc agents while the black agents are other members of the flock.

Videos showing the simulator in action in both cases are available on our web
page2. Our experimental setup is described in more detail in Section 5.2.

4 1-Step Lookahead Behavior

As specified in Section 3, the variable under our control is the heading of each
ad hoc agent at every time step of the simulation.

In this section we present Algorithm 1, a 1-step lookahead algorithm for de-
termining the individual behavior of each ad hoc agent. This behavior considers
all of the influences on neighbors of the ad hoc agent, such that the ad hoc
agent can determine the best orientation to adopt based on this information.
The 1-step lookahead behavior is a greedy, myopic approach for determining the
best individual behavior for each ad hoc agent, where ‘best’ is defined as the
behavior that will exert the most influence on the next time step.

Note that if we only considered the current orientations of the neighbors (in-
stead of the influences on these neighbors) when determining the next orientation
for the ad hoc agent to adopt, we would only be estimating the state of each
neighbor and hence the resulting orientation adopted by the ad hoc agent would
not be ‘best’.

The variables used throughout Algorithm 1 are defined in Table 1. Two func-
tions are used in Algorithm 1: neighbor.vel returns the velocity vector of neigh-
bor while neighbor.neighbors returns a set containing the neighbors of neighbor.

2 http://ants14-flocking.blogspot.com/

http://ants14-flocking.blogspot.com/

Influencing a Flock via Ad Hoc Teamwork 115

Note that Algorithm 1 is called on each ad hoc agent at each time step, and that
the neighbors of the ad hoc agent at that time step are provided as a parame-
ter to the algorithm. The output from the algorithm is the orientation that, if
adopted by this ad hoc agent, is predicted to influence its neighbors to face closer
to θ∗ than any of the other numAngles discrete ad hoc orientations considered.

Algorithm 1. bestOrient = 1StepLookahead(neighOfAH)

1: bestOrient ← (0, 0)
2: bestDiff ← ∞
3: for each ad hoc agent orientation vector ahOrient do
4: nOrients ← ∅
5: for n ∈ neighOfAH do
6: nOrient ← (0, 0)
7: for n’ ∈ n.neighbors do
8: if n’ is an ad hoc agent then
9: nOrient ← nOrient + ahOrient
10: else
11: nOrient ← nOrient + n’.vel
12: nOrient ← nOrient

|n.neighbors|
13: nOrients ← {nOrient} ∪ nOrients
14: diff ← average difference between the vectors of nOrients and θ∗

15: if diff < bestDiff then
16: bestDiff ← diff
17: bestOrient ← ahOrient
18: return bestOrient

Table 1. Variables used in Algorithm 1

Variable Definition
bestDiff the smallest difference found so

far between the average orienta-
tion vectors of neighOfAH and
θ∗

bestOrient the vector representing the ori-
entation adopted by the ad hoc
agent to obtain bestDiff

neighOfAH the neighbors of the ad hoc agent
nOrient the predicted next step orienta-

tion vector of neighbor n of the
ad hoc agent if the ad hoc agent
adopts ahOrient

nOrients a set of the predicted next step
orientation vectors of all of the
neighbors of the ad hoc agent, as-
suming the ad hoc agent adopts
ahOrient

Conceptually, Algorithm 1 is con-
cerned with how the neighbors of the ad
hoc agent are influenced if the ad hoc
agent adopts a particular orientation at
this time step. Figure 3 presents a pic-
torial explanation of the calculation of
nOrient (lines 6-12 in Algorithm 1). In
the figure, nOrient, the predicted next
step orientation vector of neighbor n of
the ad hoc agent, is calculated to be the
average of n’s neighbors (both marked
n’) as shown below the diagram. In the
example shown, n is the only neighbor
of the ad hoc agent, so nOrients would
only contain this one nOrient. However,
numAngles ad hoc agent orientations
would be considered by Algorithm 1, re-
sulting in numAngles different nOrient vectors competing to be bestOrient.

Now let us walk through the algorithm in more detail. Algorithm 1 considers
each of the numAngles discrete ad hoc agent orientation vectors. For each orien-
tation vector, we consider how each of the neighbors of the ad hoc agent will be
influenced if the ad hoc agent adopts that orientation vector (lines 3-13). Hence,
we consider all of the neighbors of each neighbor of the ad hoc agent (lines 7-11)

116 K. Genter and P. Stone

— if the neighbor of the neighbor of the ad hoc agent is an ad hoc agent, we
assume that it has the same orientation as the ad hoc agent (even though, in
fact, each ad hoc agent orients itself based on a different set of neighbors, line
9), whereas if it is not an ad hoc agent, we calculate its orientation vector based
on its current velocity (line 11). Using this information, we calculate how each
neighbor of the ad hoc agent will be influenced by averaging the orientation
vectors of the each neighbor’s neighbors (lines 12-13). We then pick the ad hoc
agent orientation vector that results in the least difference between θ∗ and the
neighbors’ current orientation vectors (lines 14-18).

�������� ��
��
��
��

����
��

����

nn’ n’

,) = nOrient = average(

Fig. 3. Diagram illustrating how nOrient is calculated in
Algorithm 1. Each agent is shown as a dot with an arrow
pointing towards its heading. The ad hoc agent is the
agent with the larger dot. The dotted circles represent
the neighborhood of the agent at the center of the circle.

If we assume that there
are numAgents of agents
in the flock, we can calcu-
late the worst-case com-
plexity of Algorithm 1
as follows. Line 3 exe-
cutes numAngles times,
line 5 executes at most
numAgents times, and
line 7 executes at most
numAgents. Hence, the
complexity for Algorithm
1 is O(numAngles ∗
numAgents2).

Results regarding how
Algorithm 1 performs in
both the Orient case and
the Herd case can be
found in Section 5.

5 Experiments

In this section we describe our experiments testing the ad hoc agent behavior
presented in Section 4 against a baseline method. We describe experiments for
both the Orient case and the Herd case.

5.1 Baseline Ad Hoc Agent Behavior

In this subsection we describe the Face Desired Orientation heuristic behavior,
which serves as our baseline for comparison. When following this behavior, the
ad hoc agents always orient towards θ∗. Note that under this behavior the ad
hoc agents do not consider their neighbors or anything about their environment
when determining how to behave.

This behavior is modeled after work by Jadbabaie et al. [8]. They show that a
flock with a controllable agent will eventually converge to the controllable agent’s
heading. The Face Desired Orientation ad hoc agent behavior is essentially the

Influencing a Flock via Ad Hoc Teamwork 117

behavior described in their work, except that in our experiments we include
multiple controllable agents facing θ∗.

5.2 Experimental Setup

We utilize the MASON simulator [10] for our experiments in this paper. The
MASON simulator was introduced in Section 3.3, but in this section we present
the details of the environment that are important for completely understanding
and replicating our experimental setup.

The baseline experimental settings for variables are given in Table 2 for both
the Orient case and the Herd case. We chose for 10% of the flock to be ad hoc
agents as a trade-off between providing enough ad hoc agents to influence the
flock and keeping the ad hoc agents few enough to require intelligent behavior
in order to influence the flock effectively.

Table 2. Experimental settings for
variables in the Orient and Herd
cases. Italicized values were default
settings for the simulator.

Variable Orient
Default

Herd
Default

toroidal domain yes no
domain height 150 300
domain width 150 300
units moved by each
agent per time step

0.7 0.2

number of agents in
flock (numAgents)

200 200

% of flock that are
ad hoc agents

10% 10%

neighborhood for each
agent (diameter)

20 20

For the Orient case, the domain is
toroidal. This means that agents that move
off one edge of our domain reappear on the
opposite edge moving in the same direc-
tion. However, for the Herd case we re-
moved the toroidal nature of the domain
so as to make the domain more realistic.
Hence, if agents move off one edge of our
domain in the Herd case, they will not
reappear.

For the Orient case, agents are initially
randomly placed with random initial head-
ings throughout the domain. For the Herd
case, agents are initially randomly placed
within a square in the top left of the do-
main, where this square occupies 4% of the
domain. Agents are assigned random head-
ings that are within 90 degrees of the initial θ∗ for the Herd case.

We only consider numAngles discrete angle choices for each ad hoc agent. In
all of our experiments, numAngles is 50, meaning that the unit circle is equally
divided into 50 segments beginning at 0 radians and each of these orientations
is considered as a possible orientation for each ad hoc agent. numAngles=50
was chosen after some experimentation using the Orient case in which numAn-
gles=20 resulted in a higher average number of steps for the flock to converge to
θ∗ and numAngles=100 did not require significantly fewer steps for convergence.

In our experiments, we conclude that the flock has converged to θ∗ when every
agent (that is not an ad hoc agent) is facing within 0.1 radians of θ∗. Other
stopping criteria, such as when 90% of the agents are facing within 0.1 radians
of θ∗, could have also been used. We tested this alternate stopping criteria in
the Orient case, but found that using it did not qualitatively alter the results.

In all of our Orient experiments, we run 50 trials for each experimental
setting. In ourHerd experiments we run 100 trials for each experimental setting.

118 K. Genter and P. Stone

In the Orient case we use the same 50 random seeds for each set of experiments
for the purpose of variance reduction, where in the Herd case we use the same
100 random seeds. The random seeds are used to determine the exact placement
and orientation of all of the agents at the start of a simulation run.

5.3 Orient Experimental Results

Figure 4 shows the number of time steps needed for the flock to converge to
θ∗ for the baseline algorithm and the 1-step lookahead algorithm presented in
Algorithm 1 using the experimental setup described in Section 5.2 as well as a
few variants on this baseline setup. In order to further investigate the dynamics
of this domain, in one variant we alter the percentage of the flock that are ad
hoc agents while in the other variant we alter the number of agents in the flock.
Note that although multiple metrics will be used to judge performance in the
Herd case, only time to convergence is used in this case since in a toroidal world
agents can not become permanently separated from the flock unless they are also
travelling towards θ∗.

Fig. 4. Results from experiments using the experimental
setup described in Section 5.2 as well as four variants on
this experimental set-up. The results shown in the figure are
averaged over 50 trials and the error bars represent the 95%
confidence interval.

The results shown
in Figure 4 clearly
show that the 1-Step
Lookahead Behavior
performs significantly
better than the base-
line method in all of
our experiments ex-
cept when the flock
size was decreased
from 200 agents to
100 agents. In this
experiment, although
our algorithm did per-
form better than the
baseline, we believe it
did not significantly
improve over the baseline because the agents were too sparse in the environ-
ment to have a strong effect on each other.

Altering the percentage of ad hoc agents in the flock clearly alters the amount
of agents we can control, which affects the amount of influence we can exert over
the flock. Hence, as can be seen in Figure 4, flocks with higher percentages of ad
hoc agents will, on average, converge to θ∗ in fewer time steps than flocks with
lower percentages of ad hoc agents.

5.4 Herd Experimental Results

In our Herd experiments, we started all of the agents in a square occupying 4%
of the domain in the upper left corner (see Figure 2.c for a picture representing

Influencing a Flock via Ad Hoc Teamwork 119

a sample starting configuration). Then the ad hoc agents influenced the flock
to travel downward for 300 time steps, then rightward for 300 time steps, then
downward for 300 time steps, then leftward for 300 time steps, and finally down-
ward — this path represented the path a flock might need to take to avoid an
obstacle in its path.

Start

DANGER

Fig. 5. The approximate
path along which the flock
is influenced to travel. The
dashed line shows the path if
turns were instantaneous and
the two arcs show the path
when 100 or 200 time steps
are used to turn. The flock
starts in the square.

Different numbers of time steps were used by
the ad hoc agents to influence the flock to turn
in these four turns. The ad hoc agents were al-
ways influencing the flock to orient towards θ∗, so
during the turns the value of θ∗ was interpolated
linearly between the values of θ∗ on the surround-
ing straightaways according to the number of time
steps allowed for the turn. Hence, θ∗ changed more
rapidly when fewer time steps were allowed.

Figure 5 depicts the approximate path along
which the flock is influenced to travel, including
a depiction of how turns of different lengths affect
this path. We maintain approximately the same
time to complete all four turns by shortening the
straightaway times depending on the amount of
time allocated to turning. Flocks that are influ-
enced by the ad hoc agents to turn quicker will
inherently have the opportunity to finish their last
turn quicker (as can be seen in Figure 5). Hence,
steps-optimal represents the minimal number of
time steps that could be spent by an agent to com-
plete the four required straightaways and turns.

In the Herd experiments, we consider three metrics when determining how
much controllability the ad hoc agents exerted on the flock: (1) the average total
number of time steps required for the flock to converge to facing downward at the
end of the path (steps-converge), (2) the difference between steps-converge and
steps-optimal (diff), and (3) the average number of agents that become separated
from the flock and do not return to the flock before the flock converges to facing
downward at the end of the path (lost). We also report the number of trials in
which at least one agent was separated from the flock and did not return before
the flock converged to facing downward at the end of the path, as this makes
lost easier to interpret.

Table 3 shows results of both the baseline algorithm and the 1-step lookahead
algorithm using the experimental setup described above for the Herd case. As
can be seen in the table, usage of the 1-step lookahead algorithm results in
significantly better steps-converge and diff than the baseline algorithm for each
of the turn times tested in the experiment. On average, flocks that are influenced
to turn quicker are more likely to have a greater average diff. Additionally, note
that given this experimental setup, the ad hoc agents would do best to use

120 K. Genter and P. Stone

Table 3. Results when using the experimental setup described for the Herd case. The
numbers in parentheses show the 95% confidence interval.

Steps-
Converge

Steps-
Optimal

Diff Lost Times
Lost

10 Steps to Turn - Baseline 1243.0 (4.6) 1205 38.0 17.0 1
30 Steps to Turn - Baseline 1242.3 (2.6) 1215 27.3 17.0 1
50 Steps to Turn - Baseline 1245.8 (2.2) 1225 20.8 0 0
100 Steps to Turn - Baseline 1261.0 (1.6) 1250 11.0 17.0 1
200 Steps to Turn - Baseline 1301.9 (1.0) 1300 1.9 17.0 1
10 Steps to Turn - 1-Step Lookahead 1237.0 (5.4) 1205 32.0 13.5 2
30 Steps to Turn - 1-Step Lookahead 1236.5 (4.6) 1215 21.5 17.0 1
50 Steps to Turn - 1-Step Lookahead 1238.6 (3.0) 1225 13.6 17.0 1
100 Steps to Turn - 1-Step Lookahead 1254.5 (1.3) 1250 4.5 0 0
200 Steps to Turn - 1-Step Lookahead 1300.6 (0.6) 1300 0.6 17.0 1

around 30 time steps to influence the flock through each turn, as steps-converge
is least when 30 time steps are used for each turn.

Experiments were run in which the percentage of ad hoc agents in the flock
was altered to 5% of the flock and 20% of the flock. Results were comparable
to those presented in Table 3, but did differ in two significant ways. Specifically,
when 20% of the flock consisted of ad hoc agents, no agents were lost during
our experiments and turns lasting 10 steps had the least steps-converge but were
still able to maintain the consistency of the flock. When only 5% of the flock
consisted of ad hoc agents, more ad hoc agents were lost on quicker turns and
turns lasting about 50 steps were best in terms of steps-converge.

6 Conclusion

In this work, we set out to determine how ad hoc agents should behave in order
to orient a flock towards a target heading as quickly as possible and to herd
a flock around turns quickly but while still maintaining the flock. Our work is
situated in a limited ad hoc teamwork domain, so although we have knowledge
of the behavior of the flock, we are only able to influence them indirectly via
the behavior of the ad hoc agents within the flock. This paper introduces an
algorithm that the ad hoc agents can use to influence the flock — a greedy
lookahead behavior. We ran extensive experiments using this algorithm in a
simulated flocking domain, where we observed that in such a setting, a greedy
lookahead behavior is an effective behavior for the ad hoc agents to adopt.

There are plenty of avenues for extensions to this work. We could consider
other types of algorithms for the ad hoc agents, such as deeper lookahead searches
or algorithms in which the ad hoc agents coordinate their behaviors. Addition-
ally, as this work focused on a limited version of Reynolds’ flocking model in
which agents calculate their next heading to be the average heading of their
neighbors, a promising direction for future work is to extend the algorithms pre-
sented in this work to Reynolds’ complete flocking model in which agents also
consider separation and cohesion when calculating the next heading.

Influencing a Flock via Ad Hoc Teamwork 121

Acknowledgements. This work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. LARG research is supported in part by
NSF (CNS-1330072, CNS-1305287), ONR (21C184-01), and AFOSR (FA8750-
14-1-0070).

References

1. Bowling, M., McCracken, P.: Coordination and adaptation in impromptu teams.
In: AAAI, pp. 53–58 (2005)

2. Celikkanat, H., Sahin, E.: Steering self-organized robot flocks through externally
guided individuals. Neural Computing & Applications 19(6), 849–865 (2010)

3. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

4. Cucker, F., Huepe, C.: Flocking with informed agents. MathematicS in Action 1(1),
1–25 (2008)

5. Ferrante, E., Turgut, A.E., Mathews, N., Birattari, M., Dorigo, M.: Flocking in
stationary and non-stationary environments: A novel communication strategy for
heading alignment. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN XI. LNCS, vol. 6239, pp. 331–340. Springer, Heidelberg (2010)

6. Genter, K., Agmon, N., Stone, P.: Ad hoc teamwork for leading a flock. In: AAMAS
(May 2013)

7. Han, J., Li, M., Guo, L.: Soft control on collective behavior of a group of au-
tonomous agents by a shill agent. Systems Science and Complexity 19, 54–62 (2006)

8. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Con-
trol 48(6), 988–1001 (2003)

9. Jones, E., Browning, B., Dias, M.B., Argall, B., Veloso, M.M., Stentz, A.T.: Dy-
namically formed heterogeneous robot teams performing tightly-coordinated tasks.
In: ICRA, pp. 570–575 (2006)

10. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multi-
agent simulation environment. Simulation: Transactions of the Society for Modeling
and Simulation International 81(7), 517–527 (2005)

11. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIG-
GRAPH 21, 25–34 (1987)

12. Stone, P., Kaminka, G.A., Kraus, S., Rosenschein, J.S.: Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In: AAAI (2010)

13. Su, H., Wang, X., Lin, Z.: Flocking of multi-agents with a virtual leader. IEEE
Transactions on Automatic Control 54(2), 293–307 (2009)

14. Turgut, A., Celikkanat, H., Gokce, F., Sahin, E.: Self-organized flocking in mobile
robot swarms. Swarm Intelligence 2(2-4), 97–120 (2008)

15. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Sochet, O.: Novel type of phase
transition in a system of self-driven particles. Physical Review Letters 75(6) (1995)

16. Yu, C.H., Werfel, J., Nagpal, R.: Collective decision-making in multi-agent systems
by implicit leadership. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck,
M., Sen, S. (eds.) AAMAS, pp. 1189–1196 (2010)

MACOC: A Medoid-Based ACO Clustering

Algorithm

Héctor D. Menéndez1, Fernando E.B. Otero2, and David Camacho1

1 Departamento de Ingenieŕıa Informática, Universidad Autónoma de Madrid,
Madrid, Spain

{hector.menendez,david.camacho}@uam.es
2 School of Computing, University of Kent, Chatham Maritime, United Kingdom

F.E.B.Otero@kent.ac.uk

Abstract. The application of ACO-based algorithms in data mining
is growing over the last few years and several supervised and unsuper-
vised learning algorithms have been developed using this bio-inspired ap-
proach. Most recent works concerning unsupervised learning have been
focused on clustering, showing great potential of ACO-based techniques.
This work presents an ACO-based clustering algorithm inspired by the
ACO Clustering (ACOC) algorithm. The proposed approach restructures
ACOC from a centroid-based technique to a medoid-based technique,
where the properties of the search space are not necessarily known. In-
stead, it only relies on the information about the distances amongst
data. The new algorithm, called MACOC, has been compared against
well-known algorithms (K-means and Partition Around Medoids) and
with ACOC. The experiments measure the accuracy of the algorithm for
both synthetic datasets and real-world datasets extracted from the UCI
Machine Learning Repository.

1 Introduction

Ant Colony Optimization (ACO) algorithms have been widely used in several
research fields. One of the most successful application field of ACO algorithms
is data mining [14,17,3,4,18]. Data mining techniques are based on knowledge
extraction or pattern identification inside an information source (dataset). They
usually are focused on supervised or unsupervised learning techniques. Super-
vised techniques use the information of a class (target) attribute in order to
identify predictive patterns in the data, while unsupervised techniques identify
patterns that can group similar data points into categories. The advantage of
applying ACO algorithm in these problems is that ACO algorithms perform a
global search in the solution space, which in turn has the potential to find more
accurate solutions, and they are less likely to get trap in a local minima.

The work presented in this paper is focused on the application of ACO in
the unsupervised learning task of clustering, where the goal is to group (cluster)
similar data points in the same group and, at the same time, maximise the
difference between different clusters. It has been inspired by a previous algorithm,

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 122–133, 2014.
c© Springer International Publishing Switzerland 2014

MACOC: A Medoid-Based ACO Clustering Algorithm 123

called ACO-based Clustering algorithm (ACOC), proposed by Kao and Cheng
[10]. ACOC is a centroid-based clustering algorithm, which tries to optimize the
centroid (central point) position of each cluster. Following this idea, we focused
the proposed algorithm on addressing the centroid-based approaches problems:
they need to know the properties of the search space in order to determine the
central point, and they are sensitive to noise effects. Inspired by other clustering
algorithms [15,16], we reformulated the original ACOC algorithm in a different
way to create a medoid-based algorithm. Medoid-based clustering algorithms
are usually more robust to noise effects, and do not need the properties of the
search space to find a solution—they usually have the distance amongst the data
instances, which can be obtained as a Gram matrix of a kernel or a distance
measure, and they try to choose those data instances to define the best clusters.
These selected instances are called medoids.

In order to check the performance of the proposed algorithm, we have com-
pared it against the original ACOC algorithm using synthetic and real-world
datasets and also included the well-known clustering algorithms PAM (Partition
Around Medoids) [11] and K-means [13] in the comparisons.

The rest of the paper is structured as follows: Section 2 introduces the related
work, Section 3 presents the new algorithm, Section 4 shows the experiments on
synthetic and real-world datasets, and, finally, last section explains the conclu-
sions and the future work.

2 Related Work

Ant Colony Optimization (ACO) has become a promising field for data min-
ing problems. ACO algorithms combine the ants foraging behaviour to generate
patterns that describe the data according to a supervised or unsupervised learn-
ing criteria—depending on the type of algorithm, classification or clustering,
respectively.

On the one hand, classification [12] approaches are based on the class in-
formation of the data. These classes form part of the data instances and are
considered by the algorithm in order to generate a general predictive model that
describe (classify) the data. Different classification models have been designed
in machine learning. The most common models are based on [12]: decision trees
(C4.5), classification rules (RIPPER), artificial neural networks, random deci-
sion forest, support vector machines, näıve Bayes, k-nearest neighbours, amongst
others. From the ACO point of view, there are several adaptations of these
algorithms—e.g., Parpinelli et al. [19] present an ACO to create classification
rules; Otero et al. introduce an ACO algorithm for decision tree induction [17];
Blum and Socha introduce a neural network ACO model [3] and Borrotti and
Poli focused their work on the näıve Bayes model [4].

There are also approaches that combine ACO with classical classification algo-
rithms in order to improve their results. Some of these techniques, for example,
optimize the parameter selection for the classifier (e.g., for SVMs [22]), other
are focused on the feature selection process for the data preprocessing phase [6].

124 H.D. Menéndez, F.E.B. Otero, and D. Camacho

On the other hand, clustering [12] is based on a blind search within the data.
Clustering techniques try to join similar data points into groups (clusters) ac-
cording to a cost or objective function, which is usually minimized or maximized,
making this clusters different from each other at the same time. There is a large
number of clustering approaches, similar to classification, depending of the goal
the algorithm should achieve. These techniques are usually divided in three types
of clustering [8]: partitional (each instances belongs to a single cluster), overlap-
ping (each instance belongs to one or more clusters) and hierarchical (partitional
solutions are nested to generate a tree of clusters). Depending on the clustering
algorithm, there are several models focus on the solutions. These models are also
divided in parametric [13] or non-parametric model [20], where the former has
an statistical estimator that is adapted to the data while the latter separates the
data using different topologies or techniques.

The most classical algorithms are K-means [13] and EM [5]. Both K-means
and EM are parametrical partitional clustering algorithms, which usually try to
optimize an estimator parameters. From a similar perspective, medoid-based al-
gorithms try to find the solution within the data [11]. Medoid-based algorithms,
as was mentioned before, do not need the features of the search space in order to
find a solution—they can deal with the information extracted from the data dis-
tances. This special property makes medoid-based algorithms a good choice for
problems where the search space is not well defined, such as time series clustering.
There are also bio-inspired algorithms that deal with the clustering problem, sev-
eral of them focused on genetic algorithms. Hruschka et al. [8] presents a survey of
clustering algorithms from different genetic approaches. From other bio-inspired
perspectives, ACO algorithms have also produced promising results. Kao and
Cheng [10] introduced a centroid-based ACO clustering algorithm; França et al.
[7] introduce a bi-clustering algorithm; and Ashok and Messinger focused their
work on graph-based clustering [1]; several other approaches are discussed in [9].

3 Medoid-Based ACO Clustering Algorithm (MACOC)

This section presents the Medoid-based ACO Clustering Algorithm (MACOC).
The MACOC algorithm is similar to Partition Around Medoids (PAM) algo-
rithm, where the goal of the algorithm is to choose the best M medoids (data
instances) based only on distance information. This kind of algorithms usually
use a dissimilarity/similarity matrix that measures the distances between the
data points. The medoid-based approach is a generalization of the centroid-
based approach, but in the medoid case, the properties of the search space are
not required—only the distances between the data points.

As an ACO algorithm, MACOC algorithm is based on ACOC algorithm [10].
They have a similar search graph, where the ants try to define the optimal
cluster assignment for each of the instances (data points). This graph is based
on instances and clusters (Fig. 1). It has an associated NxM matrix, where N
is the number of instances and M is the number of clusters (medoids). While
in the case of ACOC the construction graph is full-connected, MACOC uses a

MACOC: A Medoid-Based ACO Clustering Algorithm 125

Medoid 1

Medoid 2

Medoid 3

Int. 1 Int. 2 Int. 3 Int. 4 Int. 5

Fig. 1. Representation of the ant travelling around the search graph. Ant visit each
instance in order to assign them to a medoid based on the heuristic information and
pheromone levels.

graph divided in levels, where each instance defines a level (Fig. 1). The nodes
are visited following the sequence of instance, therefore the graph is not full-
connected, reducing significantly the memory usage and the complexity of the
solution space. It should be noted that this does not incorporate any bias in the
search, since the order of the instances is not relevant.

The algorithm is based on several ants looking for the best path in the con-
struction graph. Each ant (k) has the following features:

– set of chosen medoids Mk (which are randomly selected).
– weight matrix W k (based on the distance between the instances and the

ant’s medoids). This is similar to ACOC W k matrix.

The ant has two possible search strategies, exploration and exploitation, similar
to the ACOC algorithm. MACOC chooses the strategy for the cluster assignation
j according to the ACOC equation:

j =

{
argmaxu∈Ni{[τ(i, j)][η(i, j)]β} , if q ≤ q0
S , otherwise

, (1)

where Ni is the set of nodes associated to instance i (see Fig. 1), j is the chosen
cluster, τ(i, j) is the pheromone value between i and j, q0 is the user-defined
exploitation probability, q is a random number for strategy selection, η(i, j) is the
heuristic information between i and j, and S is the ACO-based search strategy.
The heuristic information between an instance i and a candidate medoid j is
defined by the formula:

η(i, j) =
1

d(i, j)
, (2)

126 H.D. Menéndez, F.E.B. Otero, and D. Camacho

and the ACO-based exploration strategy S—in the same way than ACOC, is
defined by:

S = P (i, j) =
[τ(i, j)] · [η(i, j)]β∑m
l=1[τ(i, l)] · [η(i, l)]β

. (3)

One of the main differences between ACOC and MACOC is that MACOC
keeps more information about the ants movements in the pheromone matrix. In
the case of ACOC, the pheromone matrix is a relationship between the instance
and the centroid-label (i.e., the index of the cluster), which is not the centroid
itself. In the case of MACOC, the pheromone matrix is a relationship between
the instance and the medoid (another data instance), which means that if/when
the medoid-label changes as a result of the random selection process, the previous
pheromone value is still available. In other words, in the ACOC algorithm, if the
centroid value that was previously used as the centroid c1 is used as the centroid
c2, the previous pheromone values are lost, since they are associated with the
label (position) c1; in the MACOC algorithm, if the medoid instance that was
previously used as medoid m1 is used as the medoid m2, the previous pheromone
values are still used, since the pheromone is associated with the data instance
and not with the medoid label.

The MACOC algorithm is structured in the same way than ACOC and can
be described as follows:

1. Initialize the pheromone matrix (τ0), which is global for all ants
2. Initialize ants: choose n random medoids forMk (n is the number of clusters)

and set the matrixW k to 0. For each ant, until all instances have been visited:
(a) Select the next data object i
(b) Select a cluster j: i) Choose a strategy; ii) Calculate neighbouring nodes

probability and iii) Visit the node
(c) Update W k

3. Choose the best solution:
(a) Calculate the objective function for each ant:

Jk =

n∑
i=1

m∑
j=1

wk
ij · d(xi,m

k
j) , (4)

where wk
ij ∈ W k and d is a distance function

(b) Rank the ants solutions
(c) Choose the best ant (iteration-best solution)
(d) Compare it with the best-so-far solution and update this value with the

maximum between them
4. Update the pheromone trails (global updating rule): only the r best ants are

able to add pheromones:

τij(t+ 1) = (1− ρ)τij(t) +

r∑
h=1

wh
ij ·Δτhij , (5)

where ρ is the pheromone evaporation rate, (0 < ρ < 1), wh
ij ∈ Wh, t the

iteration number, r is the number of elitism ants and Δτhij = 1/Jk is the
quality of the solution created by ant h

MACOC: A Medoid-Based ACO Clustering Algorithm 127

5. Check termination condition:

(a) If the number of iterations is greater than the total iterations: re-centrali-
se the instances assigning each data point to its closest medoid and finish

(b) Otherwise, go to step 2

4 Experiments

This section presents the experiments which have been carried out to measure
the quality of the proposed MACOC algorithm. The comparisons have been
carried out against K-means, PAM and ACOC algorithms.

4.1 Datasets Description

For the synthetic experiments we have created the following datasets:

– Synthetic Data 1 : This dataset is formed by 9 two-dimensional gaussian
models and in this case, there are 3 gaussians which are closer than the rest.

– Synthetic Data 2 : This second dataset is also formed by 9 two-dimensional
gaussian models, however, in this case, there are noisy data in the back-
ground.

For the real-world experiments, we have chosen four datasets extracted from
UCI Machine Learning Repository [2], which are commonly used as benchmark
for classification and clustering:

– Iris : Contains 50 instances distributed over 3 classes, with 4 attributes each.
– Wine: Contains 178 instances distributed over 3 classes, with 13 attributes

each.
– Vertebral Column (Ver. Col.): Contains 310 instances distributed over 3

classes, with 6 attributes each.
– Breast Tissue (Bre. Tis.): Contains 106 instances distributes over 6 classes,

with 10 attributes each.

4.2 Experimental Setup and Evaluation Methods

We selected three algorithms to measure the MACOC quality, namely K-means,
PAM and ACOC.

K-means [13] is an iterative algorithm based on centroids, which are randomly
selected at the beginning. The goal of the algorithm is to find the best centroid
positions. It is executed in two steps: in the first step, it assigns the data to the
closest centroid (cluster); and in the second, it calculates the new position of the
centroid as a centroid of the data which has been assigned to it.

PAM [11] is similar to K-means, but it used medoids instead of centroids. PAM
can works with a dissimilarity/similarity matrix, which is used to calculate the
cost of each medoid belonging to a cluster.

128 H.D. Menéndez, F.E.B. Otero, and D. Camacho

ACOC [10] is the algorithm which our algorithm is inspired. It work with
centroids and ants. The main different, apart of the algorithm centroid nature,
is that ACOC uses a pheromone matrix from the data instances to the centroid-
labels, while our algorithm use a pheromone matrix between all the data to
remember the previous medoid assignation. The parameters of ACOC and MA-
COC algorithms have been set in a similar way to the original work [10]: the
number on ants is 10, the number of elitism is 1, the exploration probability
is 0.0001, the initial pheromone values follow an uniform distribution [0.7, 0.8],
β = 2.0, ρ = 0.1, and the maximum number of iterations is 1000. The only dif-
ference is that the MACOC initial pheromone values have been set as 1

n (where
n is the number of clusters).

All the experiments have been carried out 50 times—except for K-means,
which was carried out 100 times since this algorithm tends to converge to local
minima—using the Euclidean distance as the metric, defined by:

d(xi, xj) = ||xi − xj || =
√∑

q

(xq
i − xq

j)
2 , (6)

where xi, xj represent two data instances and q represents each attribute of the
data instance. Additionally, all algorithms need the number of cluster as an
initial parameter.

The evaluation of the experiments has been focused on two different ideas:
the synthetic dataset has been evaluated according to the cluster discrimination
and the performance of the algorithm to discriminate the original clusters in the
noisy case; the real-world datasets have been evaluated using the accuracy.

4.3 Synthetic Experiments

The first synthetic dataset is generally easy for all the algorithms (Fig. 2 and 1).
The discrimination of the clusters is clearer in this case, resulting in a clear
separation of the clusters. The only algorithm that has several problems in iden-
tifying the clusters is K-means (see Fig. 2 and Table 1)—probably a result of
an early convergence to local minimal solution. PAM provides a good solution
of the cluster discrimination and also provides a stable solution (its standard
deviation is 0). It means that the algorithm is able to find the medoids with no
problems. In the case of ACOC, the solution discriminates the cluster kernels,
however, the boundaries are not well-defined (see Fig. 2). MACOC obtains good
results for both cluster identification and boundary definition, and also accuracy
results (see Table 1).

The second dataset introduces noise and the noise significantly modifies the
behaviour of the algorithms (Fig. 3 and Table 1). K-means is not able to identify
the cluster kernels and it joins several clusters together, generating a cluster
with noisy data. ACOC is also able to find the kernels and discriminate them,
however, the boundaries are not well-defined and several instances overlap with
other clusters. Finally, PAM and MACOC achieve similar results. In the case
of PAM, there are some boundary problems in the central clusters while in the

MACOC: A Medoid-Based ACO Clustering Algorithm 129

−4 −2 0 2 4

−
2

−
1

0
1

2
K−MEANS: Cluster Discrimination

Component 1

C
om

po
ne

nt
 2 1

2

3

4

5

6
78

9

−4 −2 0 2 4

−
2

−
1

0
1

2

PAM: Cluster Discrimination

Component 1

C
om

po
ne

nt
 2

1

2

3

4

5

6

7

8

9

−4 −2 0 2 4

−
2

−
1

0
1

2

ACOC: Cluster Discrimination

Component 1

C
om

po
ne

nt
 2

1

2
3

4

5

6

7

8

9

−4 −2 0 2 4

−
2

−
1

0
1

2

MACOC: Cluster Discrimination

Component 1

C
om

po
ne

nt
 2

1

2

3

4

5

6

7

8

9

Fig. 2. Results for the synthetic 9 gaussian distribution

case of MACOC the boundaries are clearer, except for one instance (see Fig. 3,
at the right of the MACOC image).

These results suggest the following conclusions regarding the comparison with
ACOC: while ACOC has boundary problems, which are increased when there is
noisy information, MACOC obtains good results for cluster boundary definition
and it is more robust to the presence of noise.

4.4 Real-World Experiments

Table 2 shows the results of the algorithms applied to real-world datasets ex-
tracted from UCI Machine Learning repository [2].

In the Iris case, K-means and PAM obtains similar results according to the
median. K-means obtains the worst minimum accuracy results (58%) and it is
the less robust algorithm (its standard deviation is 0.1313). PAM is the most
robust algorithm in this case (0 standard deviation), while ACOC and MACOC
obtain similar robustness results. The highest minimum value is achieved by both
ACOC and PAM. The highest maximum, mean and median values are achieved
by MACOC (95.33%, 90.67% and 90.65%, respectively). While MACOC shows
better results than ACOC, these results can not be considered different because
the null hypothesis can not be refused according to Wilcoxon Test [21].

The application of the algorithms on Wine dataset has shown that K-means
also obtains the worst results according to the accuracy and robustness. PAM
obtains the highest minimum value and it is again the most robust algorithm.

130 H.D. Menéndez, F.E.B. Otero, and D. Camacho

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4
6

K−MEANS: Cluster Discrimination

Component 1

C
om

po
ne

nt
 2

1

2

3

4

5

6

7

8

9

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4
6

PAM: Cluster Discrimination

Component 1

C
om

po
ne

nt
 2

1

2

3

4

5
6

7

8

9

−6 −4 −2 0 2 4

−
4

−
2

0
2

4
6

ACOC: Cluster Discrimination

Component 1

C
om

po
ne

nt
 2

1

2

3
4

5

6

7
8

9

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4
6

MACOC: Cluster Discrimination

Component 1

C
om

po
ne

nt
 2

1

2

3

4
5

6

7

8

12

Fig. 3. Results for synthetic 9 gaussian distribution

According to the maximum, mean and median values, MACOC achieves the
best results (72.47%, 71.47% and 71.91%, respectively). In this case the null
hypothesis is refused with a good significance level, therefore, MACOC results
are statistically significantly better than ACOC.

Vertebral column (Ver. Col.) dataset shows different results than the rest
of the datasets. In this case, the best algorithm is K-means, which achieves the
maximum value for all the metrics. MACOC is the second algorithm according to
median, mean and max (52.58%, 53.26% and 65.48%). Again, the Wilcoxon test
shows that the null hypothesis can be refused with a high significance level (3e-
05), therefore, MACOC results are statistically significantly better than ACOC.

Finally, Breast Tissue dataset shows that MACOC achieves the best results
according to mean, median and max (35.55%, 34.91% and 40.57%). In this case,
ACOC and PAM achieves similar results, specially according to the median
(33.96 %). The null hypothesis can be refused with a significance level of 0.05
(in this case, Wilcoxon test is 0.023), therefore, MACOC results are statistically
significantly better than ACOC.

These results show that MACOC improves the performance over ACOC, given
that that the solutions obtained by MACOC and ACOC are usually statistically
different according to Wilcoxon test in favour of MACOC. Overall, this results
are promising regarding the use of medoids instead of centroid, since this is the

MACOC: A Medoid-Based ACO Clustering Algorithm 131

Table 1. Results of the application of the algorithms to the synthetic datasets. The
p-values for the Wilcoxon test applied to ACOC and MACOC results are: Synthetic 1
(2.394e-13) and Synthetic 2 (7.734e-10)—statistical significant improvements are indi-
cated by a � symbol.

MACOC Min Max Median Mean SD

Synthetic 1 99.11% 100.0% 99.78% 99.75% � ± 0.0028
Synthetic 2 96.73% 100.0% 98.18% 98.75% � ± 0.0121

ACOC Min Max Median Mean SD

Synthetic 1 92.67% 100.0% 98.89% 98.57% ± 0.0128
Synthetic 2 82.91% 92.27% 95.27% 94.40% ± 0.0314

K-means Min Max Median Mean SD

Synthetic 1 56.67% 99.78% 83.42% 79.47% ± 0.1152
Synthetic 2 65.72% 98.00% 76.73% 79.92% ± 0.0792

PAM Min Max Median Mean SD

Synthetic 1 99.78% 99.78% 99.78% 99.78% ± 0.0000
Synthetic 2 98.00% 98.00% 98.00% 98.00% ± 0.0000

main difference between MACOC and ACOC. In a similar way that median is
more stable than mean, medoids are usually more stable to outliers in the data
than centroids. Future studies will be focused on how the algorithm responds to
worse conditions, such as large data, more outliers and extremely noisy data.

5 Conclusions and Future Work

This work presented a new ACO-based clustering algorithm, called MACOC,
which is focused on a medoid-based approach. MACOC is an adaptation from
a previously proposed centroid-based ACOC algorithm to a medoid-based ap-
proach. From the ACO perspective, the new algorithm has also improved the
use of the pheromone, extending the pheromone matrix to keep the information
from different candidate medoid instances across iterations.

The application of the algorithm to synthetic and real-world datasets has
shown that MACOC is more robust to noisy information and it defines better
cluster boundaries than ACOC. It also showed that MACOC has good general
results compared with well-known clustering algorithms.

The future work will be focused on improving the results of MACOC by
incorporating a medoid recalculation process. It would be interesting to explore
the addition of the medoid selection to the construction graph, allowing ants to
share information of the best performing medoid instances.

132 H.D. Menéndez, F.E.B. Otero, and D. Camacho

Table 2. Results of the application of the algorithms to the different datasets extracted
from the UCI database. The p-values for the Wilcoxon test applied to ACOC and
MACOC solutions are: Iris (0.4439), Wine (4.117e-07), Ver. Col. (3e-05), Bre. Tis.
(0.02349)—statistical significant improvements are indicated by a � symbol.

MACOC Min Max Median Mean SD

Iris 87.33% 95.33% 90.65% 90.67% ± 0.0187
Wine 69.10% 72.47% 71.91% 71.47% � ± 0.0075
Ver. Col. 46.13% 65.48% 52.58% 53.26% � ± 0.0488
Bre. Tis. 28.30% 40.57% 34.91% 35.55% � ± 0.0328

ACOC Min Max Median Mean SD

Iris 89.33% 93.33% 90.00% 90.13% ± 0.0080
Wine 70.22% 71.35% 70.79% 70.78% ± 0.0026
Ver. Col. 47.74% 54.19% 49.35% 49.43% ± 0.0095
Bre. Tis. 31.13% 40.57% 33.96% 34.47% ± 0.0229

K-means Min Max Median Mean SD

Iris 58.00% 89.33% 89.33% 82.46% ± 0.1313
Wine 56.74% 69.33% 70.22% 67.26% ± 0.0632
Ver. Col. 56.13% 65.48% 56.13% 57.81% ± 0.0339
Bre. Tis. 33.02% 33.96% 33.21% 33.04% ± 0.0025

PAM Min Max Median Mean SD

Iris 89.33% 89.33% 89.33% 89.33% ± 0.0000
Wine 70.79% 70.79% 70.79% 70.79% ± 0.0000
Ver. Col. 48.71% 48.71% 48.71% 48.71% ± 0.0000
Bre. Tis. 33.96% 33.96% 33.96% 33.96% ± 0.0000

Acknowledgments. This work has been partly supported by: Spanish Ministry
of Science and Education under project TIN2010-19872 and Savier – an Airbus
Defense & Space project (FUAM-076914 and FUAM-076915).

References

1. Ashok, L., Messinger, D.W.: A spectral image clustering algorithm based on ant
colony optimization 8390, 83901P–83901P-10 (2012),
http://dx.doi.org/10.1117/12.919082

2. Bache, K., Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

3. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony op-
timization: An application to pattern classification. In: Proceedings of HIS 2005,
pp. 233–238. IEEE Computer Society, Washington, DC (2005),
http://dx.doi.org/10.1109/ICHIS.2005.104

http://dx.doi.org/10.1117/12.919082
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/ICHIS.2005.104

MACOC: A Medoid-Based ACO Clustering Algorithm 133

4. Borrotti, M., Poli, I.: Näıve bayes ant colony optimization for experimental design.
In: Kruse, R., Berthold, M., Moewes, C., Gil, M.A., Grzegorzewski, P., Hryniewicz,
O. (eds.) Synergies of Soft Computing and Statistics. AISC, vol. 190, pp. 489–497.
Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-33042-1_52

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1), 1–38 (1977),
http://web.mit.edu/6.435/www/Dempster77.pdf

6. Ding, S.: Feature selection based f-score and aco algorithm in support vector ma-
chine. In: Second International Symposium on Knowledge Acquisition and Model-
ing, KAM 2009, vol. 1, pp. 19–23 (2009)

7. de França, F.O., Coelho, G.P., Von Zuben, F.J.: bicACO: An Ant Colony Inspired
Biclustering Algorithm. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle,
T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 401–402. Springer,
Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-87527-7_45

8. Hruschka, E., Campello, R., Freitas, A., de Carvalho, A.: A survey of evolutionary
algorithms for clustering. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 39(2), 133–155 (2009)

9. Jafar, O.M., Sivakumar, R.: Ant-based clustering algorithms: A brief survey. In-
ternational Journal of Computer Theory and Engineering 2, 787–796 (2010)

10. Kao, Y., Cheng, K.: An aco-based clustering algorithm. In: Dorigo, M., Gam-
bardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006.
LNCS, vol. 4150, pp. 340–347. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11839088_31

11. Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids. Reports of the
Faculty of Mathematics and Informatics (1987),
http://books.google.co.uk/books?id=HK-4GwAACAAJ

12. Larose, D.T.: Discovering Knowledge in Data. John Wiley & Sons (2005)
13. Macqueen, J.B.: Some methods of classification and analysis of multivariate ob-

servations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, pp. 281–297 (1967)

14. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data
mining. Machine Learning 82(1), 1–42 (2011)

15. Menéndez, H.D., Barrero, D.F., Camacho, D.: A genetic graph-based approach for
partitional clustering. Int. J. Neural Syst. 24(3) (2014)

16. Orgaz, G.B., Menéndez, H.D., Camacho, D.: Adaptive k-means algorithm for over-
lapped graph clustering. Int. J. Neural Syst. 22(5) (2012)

17. Otero, F., Freitas, A., Johnson, C.: Inducing decision trees with an ant colony
optimization algorithm. Applied Soft Computing 12(11), 3615–3626 (2012)

18. Otero, F., Freitas, A., Johnson, C.: A New Sequential Covering Strategy for In-
ducing Classification Rules With Ant Colony Algorithms. IEEE Transactions on
Evolutionary Computation 17(1), 64–76 (2013)

19. Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimization
algorithm. IEEE Trans. on Evolutionary Computation 6(4), 321–332 (2002)

20. Schaeffer, S.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
21. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1(6), 80–83

(1945)
22. Zhang, X., Chen, X., He, Z.: An aco-based algorithm for parameter optimiza-

tion of support vector machines. Expert Syst. Appl. 37(9), 6618–6628 (2010),
http://dx.doi.org/10.1016/j.eswa.2010.03.067

http://dx.doi.org/10.1007/978-3-642-33042-1_52
http://web.mit.edu/6.435/www/Dempster77.pdf
http://dx.doi.org/10.1007/978-3-540-87527-7_45
http://dx.doi.org/10.1007/11839088_31
http://books.google.co.uk/books?id=HK-4GwAACAAJ
http://dx.doi.org/10.1016/j.eswa.2010.03.067

Particle Swarm Convergence: Standardized

Analysis and Topological Influence

Christopher W. Cleghorn and Andries P. Engelbrecht

Department of Computer Science
University of Pretoria

{ccleghorn,engel}@cs.up.ac.za

Abstract. This paper has two primary aims. Firstly, to empirically ver-
ify the use of a specially designed objective function for particle swarm
optimization (PSO) convergence analysis. Secondly, to investigate the
impact of PSO’s social topology on the parameter region needed to en-
sure convergent particle behavior. At present there exists a large number
of theoretical PSO studies, however, all stochastic PSO models contain
the stagnation assumption, which implicitly removes the social topology
from the model, making this empirical study necessary. It was found
that using a specially designed objective function for convergence anal-
ysis is both a simple and valid method for convergence analysis. It was
also found that the derived region needed to ensure convergent particle
behavior remains valid regardless of the selected social topology.

1 Introduction

Particle swarm optimization (PSO) is a stochastic population-based search algo-
rithm that has been effectively utilized to solve numerous real world optimization
problems [1]. Despite PSO’s widespread use, there still exists a number of im-
portant aspects of PSO’s behavior that are not completely understood. PSO has
also undergone numerous theoretical investigations [2–12]. There is, however,
one very evident omission in all of these studies, namely, the impact that the
social topology has on a stochastic PSO’s ability to converge.

As with most theoretical studies, a number of simplifying assumptions are
needed in order to be able to reasonably derive a result. The last remaining
assumption that is still present in all theoretical work on the stochastic PSO is
the stagnation assumption. The stagnation assumption assumes that the per-
sonal and neighborhood best positions remain fixed for each particle. Under the
stagnation assumption the notion of a social topology does not exist, as the
neighborhood best positions are static. As a result, choosing PSO parameters
under arbitrary topologies is non trivial, as the exact impact on convergence is
unknown.

This paper has two primary aims. Firstly, to empirically verify the use of
a specially designed objective function for convergence analysis. Secondly, to
investigate the impact of the PSO’s social topology on the parameter region
needed to ensure convergent particle behavior.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 134–145, 2014.
c© Springer International Publishing Switzerland 2014

Particle Swarm Convergence 135

A brief description of the PSO algorithm is given in section 2. A discussion
of the derived parameter regions for particle convergence is given in section 3.
The experimental set up and results are given in sections 4 and 5 respectively.
Section 6 presents a summary of the findings of this paper, as well as a discussion
of topics for future research.

2 Particle Swarm Optimization

Particle swarm optimization (PSO) was originally developed by Kennedy and
Eberhart [13] to simulate the complex movement of birds in a flock. The standard
variant of PSO this paper focuses on includes the inertia coefficient proposed by
Shi and Eberhart [14].

The PSO algorithm is defined as follows: Let f : Rk → R be the objective
function that the PSO aims to find an optimum for (if it exists). For the sake
of simplicity, a minimization problem is assumed from this point onwards. Let
Ω (t) be a set of N particles in R

k at a discrete time step t. Then Ω (t) is said to
be the particle swarm at time t. The position xi of particle i, is updated using

xi (t+ 1) = xi (t) + vi (t+ 1) , (1)

where the velocity update, vi (t+ 1), is defined as

vi (t+ 1) = wvi (t) + c1r1(t)(yi(t)− xi (t))

+c2r2(t)(ŷi(t)− xi (t)), (2)

where r1(t), r2(t) ∼ U (0, 1)
k
for all t. The position yi(t) represents the “best”

position that particle i has visited, where “best” means the location where the
particle has obtained the lowest objective function evaluation. The position ŷi(t)
represents the “best” position that the particles in the neighborhood of the i-th
particle have visited. The coefficients c1, c2, and w are the cognitive, social, and
inertia weights respectively.

The driving feature of the PSO is social interaction, specifically the way in
which knowledge about the search space is shared amongst the particles in the
swarm. In general, the social topology of a swarm can be viewed as a graph, where
nodes represent particles, and the edges are the allowable direct communication
routes. The social topology chosen has a direct impact on the behaviour of the
swarm as a whole [15–17]. Some of the most frequently used social topologies
are discussed below:

• Star: The star topology is one where all the particles in the swarm are inter-
connected as illustrated in figure 1a. The original implementation of the PSO
algorithm utilized the star topology [13]. A PSO utilizing the star topology
is commonly referred to as the Gbest PSO.

• Ring: The ring topology is one where each particle is in a neighborhood
with only two other particles, with the resulting structure forming a ring as
illustrated in figure 1b. The ring topology can be generalized to a network
structure where larger neighborhoods are used. The resulting algorithm is
referred to as the Lbest PSO.

136 C.W. Cleghorn and A.P. Engelbrecht

• von Neumann: The von Neumann topology is one where the particles are
arranged in a grid-like structure. The 2-D variant is illustrated in figure 1c,
and the 3-D variant is illustrated in figure 1d.

(a) Star topology (b) Ring topology (c) 2-D von Neu-
mann topology

(d) 3-D von Neu-
mann topology

Fig. 1. Common social topologies

The PSO algorithm is summarized in algorithm 1.

3 Theoretical Particle Swarm Optimization Background

This section briefly presents each theoretically derived region that is sufficient
for particle convergence, along with the corresponding assumptions utilized in
the region’s derivation.

The primary assumptions that occur in the theoretical PSO research are as
follows:

Deterministic Assumption: It is assumed that θ1 = θ1(t) = c1r1(t), and
θ2 = θ2(t) = c2r2(t), for all t.

Stagnation Assumption: It is assumed that yi(t) = yi, and ŷi(t) = ŷi, for
all t.

Weak Chaotic Assumption: It is assumed that both yi (t) and ŷi (t) will
occupy an arbitrarily large finite number of unique positions (distinct positions),

ψi and ψ̂i, respectively.
Under the deterministic and weak chaotic assumption Cleghorn and Engel-

brecht [8], derived the following region for particle convergence:

c1 + c2 < 2 (1 + w) , c1 > 0, c2 > 0, −1 < w < 1. (3)

which generalized the work of Van den Bergh and Engelbrecht [6, 18], and that
of Trelea [7]. Equation (3) is illustrated in figure 2, as the triangle AFB.

Kadirkamanathan et al [9], only under the stagnation assumption, derived the
following region for particle convergence:{

c1 + c2 < 2 (1 + w) w ∈ (−1, 0]

c1 + c2 < 2(1−w)2

1+w w ∈ (0, 1) .
(4)

Particle Swarm Convergence 137

Algorithm 1. PSO algorithm

Create and initialize a k-dimensional swarm, Ω (0), of N particles uniformly within
a predefined hypercube.
Let f be the objective function.
Let yi represent the personal best position of particle i, initialized to xi(0).
Let ŷi represent the neighborhood best position of particle i, initialized to xi(0).
Initialize vi(0) to 0.
repeat

for all particles i = 1, · · · , N do
if f(xi) < f(yi) then

yi = xi

end if
for all particles î with particle i in their neighborhood do

if f(yi) < f(ŷî) then
ŷ î = yi

end if
end for

end for
for all particles i = 1, · · · , N do

update the velocity of particle i using equation (2)
update the position of particle i using equation (1)

end for
until stopping condition is met

Gazi [10] expanded the derived region of equation (4), also under the stagna-
tion assumption only, resulting in the following region:{

c1 + c2 < 24(1+w)
7 w ∈ (−1, 0]

c1 + c2 < 24(1−w)2

7(1+w) w ∈ (0, 1) .
(5)

The regions corresponding to equations (4) and (5) are illustrated in figure 2 as
triangle like regions ADB and AEB respectively. Unfortunately, both equations
(4) and (5) are very conservative regions, as they were derived utilizing the
Lyapunov condition [19].

Lastly, Poli [11] under the stagnation assumption only, but without the use
of the Lyapunov condition, derived the following region:

c1 + c2 <
24
(
1− w2

)
7− 5w

. (6)

The region defined by equation (6) is illustrated in figure 2 as the curved line
segment AB.

With all of the available convergence regions, the choice of which region to use
in practice, is difficult, as each region’s derivation relies on at least one simplifying
assumption. As a result a study was done by Cleghorn and Engelbrecht [20],
which showed with the support of empirical evidence that the region of equation
(6) derived by Poli matched almost perfectly with the convergence behavior of

138 C.W. Cleghorn and A.P. Engelbrecht

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

w

c1+c2

B

A

D E

F

G

Fig. 2. Theoretically derived regions sufficient for particle convergence

a non simplified Gbest PSO, making the region defined by equation (6) the best
choice in practice when utilizing the star topology.

4 Experimental Setup

The experiment conducted in this paper has two primary aims: Firstly, to justify
the use of a specifically designed objective function for the convergent parameter
region analysis; Secondly, to verify that the theoretically derived region of Poli
[11] remains valid under multiple social topologies.

There is an inherent difficulty in empirically analyzing the convergence be-
havior of PSO particles, specifically with regards to understanding the influence
of the underlying objective function’s landscape on the PSO algorithm. It is pro-
posed that the following objective function can be used as the reference function
for convergent region analysis:

CF (x) ∈ U (−1000, 1000) . (7)

The objective function in equation (7) is constructed on initialization, and re-
mains static from that point onwards. What the objective function in equation
(7) provides is an environment that is rife with discontinuities (actually, it is dis-
continuous almost everywhere), resulting in a search space the PSO algorithm
will battle to become fully stagnate in.

The measure of convergence used in this paper is:

Δ (t+ 1) =
1

k

i=k∑
i=1

‖xi (t+ 1)− xi (t) ‖2. (8)

Particle Swarm Convergence 139

The experiment utilizes the following static parameters: Population size of 64,
5000 iterations, and a 50-dimensional search space. A population size of 64 is
utilized to allow for all the social topologies tested to be complete structures.
Particle positions are initialized within (−100, 100)k and velocities are initialized
to 0.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 4.3] , (9)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The ex-
periment is performed for each of the following neighborhood topologies: Star,
ring, 2-D and 3-D von Neumann. The experiment is conducted using CF and 11
base objective functions from the CEC 2014 problem set [21]. The functions are
as follows: Ackley, High Conditioned Elliptic, Bent Cigar, Discus, Rosenbrock,
Griewank, Rastrigin, HappyCat, HGBat, Katsuura, and Expanded Griewank
plus Rosenbrock. The region of equation (9) contains exactly 504 points that
satisfy equation (6). A total of 989 sample points are used per objective function
and topology pair, resulting in 47472 sample points per run. The results reported
in Section 5 are the averages over 35 independent runs for each sample point.

In order to allow for a sensible comparison of convergence properties the
convergence measure value is bounded as follows:

Δmax =
1

10

√
Dimension (DomainUpperBound−DomainLowerBound)2,

(10)
which is one tenth the maximum distance of two points in the initialized search
space. For this paper, Δmax = 1414.214.

5 Experimental Results and Discussion

In this section a table per topology is presented containing the following mea-
surements per objective function:

• Measurement A: The number of PSO parameter configurations that re-
sulted in a final convergence measure value less than or equal to the final
convergence measure if the CF objective function was used.

• Measurement B: The number of PSO parameter configurations that resulted
in a final convergence measure value greater than the final convergence mea-
sure if the CF objective function was used.

• Measurement C: The number of PSO parameter configurations that resulted
in a final convergence measure greater than or equal to Δmax.

• Measurement D: The number of PSO parameter configurations that re-
sulted in a final convergence measure less than Δmax.

• Measurement E: The number of PSO parameter configurations that satisfied
equation (6) and resulted in a final convergence measure less than Δmax.

• Measurement F: The number of PSO parameter configurations that satisfied
equation (6) and did not result in a final convergence measure less than
Δmax.

140 C.W. Cleghorn and A.P. Engelbrecht

• Measurement G: The average convergence measure value across all param-
eter configurations, with all elements bounded at Δmax.

Measurements A and B provide a concise way of seeing per objective function
how much better or worse the CF objective function performs as a reference con-
vergence analysis function. An ideal convergence analysis function, is one that
in general will yield the highest resulting convergence measure for all possible
parameter configurations. The higher the resulting convergence measure value is,
the harder it was for the PSO to have converged under a given objective function.
Measurements C and D give a clear picture of how effectively the underlying ob-
jective function highlights possible divergent particle behavior. Given the tested
region of equation (9), there are a total of 504 parameter configurations that
satisfy equation (6), leaving 485 parameter configurations that should produce
divergent behavior. Ideally an objective function utilized for convergence analy-
sis should result in a value for measurement C as close to 485 as possible, and
a value for measurement D as close to 504 as possible. Measurements E and F
are an extension of measurements C and D, in that an objective function should
have at most 504 parameter configurations that both satisfy equation (6) and
have a convergence measure value not exceeding Δmax. An objective function
with a measurement E value smaller than 504 is more conservative in assigning
the label of a convergent particle. A slightly conservative assignment is a positive
feature of an objective function being used for convergence analysis, as falsely
classifying a parameter configuration as convergent is far from ideal. Measure-
ment G provides an overall view of how difficult the used objective function has
made it for the PSO algorithm to converge.

A snapshot of all parameter configurations’ resulting convergence measure
values are presented for four cases:

• Case A: For each parameter configuration the maximum convergence measure
value across all 11 objective functions and topologies is reported.

• Case B: For each parameter configuration the maximum convergence measure
value across all topologies using only the CF objective function.

In order to deduce the convergence region from the empirical data of all 11 base
functions and all topologies, the largest recorded convergence measure value
of each parameter configuration is reported in case A. Case B is presented to
illustrate the similarity between the mapped out convergence region of the PSO
algorithm using the CF objective function to the mapped out convergence region
of the PSO algorithm in case A, which is constructed using the complete pool
of gathered data of the 11 objective functions.

• Case C: For each parameter configuration the maximum convergence measure
value across all 11 objective functions of the topology that had the greatest
Euclidean distance from the optimal region of case A.

Case C is presented to illustrate the maximum deviation between the convergent
parameter region under multiple topologies. If the convergent parameter regions
between cases A and C are identical, then the topological choice has no influence
of the convergent parameter regions.

Particle Swarm Convergence 141

• Case D:For each parameter configuration the maximum convergence measure
value across all topologies using only an objective function which has the
most similar resulting measurements to case B.

Case D is presented to illustrate that the mapped out convergence region of cases
A to D are not identical to the convergence regions of any arbitrary objective
function. In particular, cases A to D should result in a subset of the region
produced by an arbitrary objective function.

Measurements A and B in table 1 show that the Gbest PSO applied to the CF
objective function resulted in a higher convergence measure evaluation than 9 of
the 11 other objective functions for nearly all parameter configurations. For the
two remaining objective functions, Katsuura is the only objection function close
to the CF objective function in terms of measurement A. However, Katsuura
has an average convergence measure of 49.672 less than CF has, making CF the
better objective function for convergence analysis. The CF objective function
also obtained the largest number of parameters configurations that resulted in
a convergence measure breach of Δmax, and the highest average convergence
measure evaluations. These measurements indicate the effectiveness of CF as an
objective function for convergence analysis. The CF objective function under the
star topology provides an environment that is much harder for PSO particles to
converge in than using any of the other objective functions.

Table 1. Convergence properties per objective function under the Star topology

����������Function
Measurement

A B C D E F G

CF – – 467 522 504 0 683.437
Ackley 879 110 464 525 502 2 676.293
High Conditioned Elliptic 989 0 400 589 504 0 573.601
Bent Cigar 989 0 412 577 504 0 598.593
Discus 989 0 409 580 504 0 592.545
Rosenbrock 988 1 424 565 504 0 622.009
Griewank 989 0 412 577 504 0 596.772
Rastrigin 989 0 411 578 504 0 596.909
HappyCat 989 0 411 578 504 0 595.375
HGBat 989 0 412 577 504 0 595.366
Katsuura 507 482 416 573 504 0 623.765
Expanded Griewank plus Rosenbrock 989 0 416 573 504 0 603.981

Measurements A and B in table 2 show that the Lbest PSO applied to the CF
objective function resulted in a higher convergence measure evaluation than 9
of the 11 other objective functions for nearly all parameter configurations. Once
again, Katsuura provided the second best results with reference to measurement
A, while CF provided the best results for all other measurements. Though in-
ferior, Ackley resulted in values for C, D and G very close to that obtained by
the CF objective function. However, CF provided far better results in terms of
measurement A, making CF the best choice as an objective function for conver-
gence analysis. The difference in the effect that the ring and star topologies had
on convergence is very small, as illustrated by the small changes in the average
convergence measure values between tables 1 and 2.

142 C.W. Cleghorn and A.P. Engelbrecht

Table 2. Convergence properties per objective function under the Ring topology

����������Function
Measurement

A B C D E F G

CF – – 473 516 503 1 690.797
Ackley 912 77 469 520 504 0 682.57
High Conditioned Elliptic 989 0 400 589 504 0 574.659
Bent Cigar 989 0 415 574 504 0 602.194
Discus 989 0 414 575 504 0 597.668
Rosenbrock 989 0 417 572 504 0 613.094
Griewank 989 0 412 577 504 0 603.304
Rastrigin 989 0 412 577 504 0 601.111
HappyCat 989 0 415 574 504 0 603.536
HGBat 989 0 414 575 504 0 601.403
Katsuura 509 480 413 576 504 0 623.71
Expanded Griewank plus Rosenbrock 989 0 416 573 504 0 609.277

Measurements A through G in tables 3 and 4 show for both the 2-D and 3-D
von Neumann topologies that the results remain almost identical to that of the
ring and star topologies. This provides evidence that the topology has a negligi-
ble impact on the effectiveness on CF as an objective function for convergence
analysis. The similarity between tables 1 to 4 under all measurements indicates
how minimally the topology influences the parameter region needed for particle
convergence.

Table 3. Convergence properties per objective function under the 2-D von Neumann
topology

����������Function
Measurement

A B C D E F G

CF – – 480 509 500 4 704.946
Ackley 915 74 475 514 501 3 692.301
High Conditioned Elliptic 989 0 402 587 504 0 577.036
Bent Cigar 989 0 413 576 504 0 600.998
Discus 989 0 414 575 504 0 598.234
Rosenbrock 988 1 415 574 504 0 616.365
Griewank 989 0 414 575 504 0 600.839
Rastrigin 989 0 412 577 504 0 597.999
HappyCat 989 0 414 575 504 0 600.869
HGBat 989 0 413 576 504 0 599.576
Katsuura 525 464 415 574 504 0 622.108
Expanded Griewank plus Rosenbrock 988 1 416 573 504 0 608.545

For case A, the convergent region as illustrated in figure 3a matches the de-
rived region of equation (6) almost perfectly, as does the region seen in figure
3b for case B. While there exists a slight difference between figures 3a and 3b
in terms of convergence measure values, the overall convergent region is nearly
identical between the two. With this similarity observed between figures 3a and
3b in mind, it is clear that just using the CF function for convergence analysis is
sufficient. The similarity between figures 3a and 3b is not observed for the other
objective functions. For example, the Katsuura function, when used with PSO,

Particle Swarm Convergence 143

Table 4. Convergence properties per objective function under the 3-D von Neumann
topology

����������Function
Measurement

A B C D E F G

CF – – 479 510 500 4 704.173
Ackley 925 64 473 516 503 1 691.705
High Conditioned Elliptic 989 0 401 588 504 0 576.575
Bent Cigar 989 0 415 574 504 0 601.344
Discus 989 0 416 573 504 0 600.027
Rosenbrock 989 0 416 573 504 0 615.662
Griewank 989 0 417 572 504 0 602.236
Rastrigin 989 0 413 576 504 0 601.2
HappyCat 988 1 415 574 504 0 603.712
HGBat 988 1 415 574 504 0 600.504
Katsuura 532 457 417 572 504 0 624.483
Expanded Griewank plus Rosenbrock 988 1 418 571 504 0 610.503

Δ

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
c1+c2

-1

-0.5

 0

 0.5

 1

w

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

(a) Case A: Optimal region

Δ

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
c1+c2

-1

-0.5

 0

 0.5

 1
w

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

(b) Case B: CF region

Δ

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
c1+c2

-1

-0.5

 0

 0.5

 1

w

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

(c) Case C: Katsuura region

Δ

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
c1+c2

-1

-0.5

 0

 0.5

 1

w

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

(d) Case D: Ring toplogy region

Fig. 3. Convergence snapshots

144 C.W. Cleghorn and A.P. Engelbrecht

resulted in properties similar to the PSO using CF in tables 1 through 4. How-
ever, Katsuura has a substantially different convergent region to both figures 3a
and 3b, as illustrated in figure 3c.

For Case D, the ring topology had the greatest Euclidean distance from the
optimal region of case A. The convergent region is illustrated in figure 3d. Despite
the ring topology having the greatest Euclidean distance from the optimal region
of case A, figure 3d appears identical to the region of figure 3a, as the difference in
convergence measure values are very small. The close similarity between figures
3a and 3d is a clear indication that the topology used within the PSO algorithm
has no meaningful impact on the convergent region of a PSO.

6 Conclusion

This study had two primary aims: The first was to show that the CF function,
defined in equation (7), is an effective objective function to utilize for convergent
region analysis. The second objective was to perform an experiment to show that
the social topology used by the PSO algorithm has no meaningful effect on the
convergent region. It was found that the CF function was able to capture the
convergent behavior of the PSO, as the found convergent regions matched both
the theoretically derived region of Poli [11] and the “optimal” region. Where
the “optimal” region was constructed using the maximum convergence measure
value across all topologies and objective functions used (excluding CF). It was
also found that the social topology used by PSO had no meaningful impact on
the convergent region.

Potential future work will include utilizing the empirical techniques of this
paper to obtain the convergence regions for other PSO variants.

References

1. Poli, R.: Analysis of the publications on the applications of particle swarm opti-
misation. Journal of Artificial Evolution and Applications 2008, 1–10 (2008)

2. Ozcan, E., Mohan, C.: Analysis of a simple particle swarm optimization system.
Intelligent Engineering Systems through Artificial Neural Networks 8, 253–258
(1998)

3. Ozcan, E., Mohan, C.: Particle swarm optimization: Surfing the waves. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, vol. 3. IEEE Press,
Piscataway (1999)

4. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6(1), 58–73 (2002)

5. Zheng, Y., Ma, L., Zhang, L., Qian, J.: On the convergence analysis and parameter
selection in particle swarm optimization. In: Proceedings of the International Con-
ference on Machine Learning and Cybernetics, Xi’an, China, vol. 3, pp. 1802–1907
(2003)

6. Van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle
trajectories. Information Sciences 176(8), 937–971 (2006)

Particle Swarm Convergence 145

7. Trelea, I.: The particle swarm optimization algorithm: Convergence analysis and
parameter selection. Information Processing Letters 85(6), 317–325 (2003)

8. Cleghorn, C., Engelbrecht, A.: A generalized theoretical deterministic particle
swarm model. Swarm Intelligence Journal, 1–25 (2014)

9. Kadirkamanathan, V., Selvarajah, K., Fleming, P.: Stability analysis of the par-
ticle dynamics in particle swarm optimizer. IEEE Transactions on Evolutionary
Computation 10(3), 245–255 (2006)

10. Gazi, V.: Stochastic stability analysis of the particle dynamics in the PSO algo-
rithm. In: Proceedings of the IEEE International Symposium on Intelligent Con-
trol, pp. 708–713. IEEE Press, Dubrovnik (2012)

11. Poli, R.: Mean and variance of the sampling distribution of particle swarm opti-
mizers during stagnation. IEEE Transactions on Evolutionary Computation 13(4),
712–721 (2009)

12. Campana, E., Fasano, G., Pinto, A.: Dynamic analysis for the selection of pa-
rameters and initial population, in particle swarm optimization. Journal of Global
Optimization 48, 347–397 (2010)

13. Kennedy, J., Eberhart, R.: Particle swarm optimization, pp. 1942–1948. IEEE
Press, Piscataway (1995)

14. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE Press, Piscataway
(1998)

15. Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary
Computation, vol. 3, pp. 1931–1938. IEEE Press, Piscataway (1999)

16. Kennedy, J., Mendes, R.: Population structure and particle performance. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, pp. 1671–1676. IEEE
Press, Piscataway (2002)

17. Engelbrecht, A.: Particle swarm optimization: Global best or local best. In: 1st
BRICS Countries Congress on Computational Intelligence. IEEE Press, Piscataway
(2013)

18. Van den Bergh, F.: An analysis of particle swarm optimizers. PhD thesis, Depart-
ment of Computer Science, University of Pretoria, Pretoria, South Africa (2002)

19. Kisacanin, B., Agarwal, G.: Linear Control Systems: With Solved Problems and
Matlab Examples. Springer, New York (2001)

20. Cleghorn, C., Engelbrecht, A.: Particle swarm convergence: An empirical investi-
gation. In: Proceedings of the Congress on Evolutionary Computation, pp. 1–7.
IEEE Press, Piscataway (accepted at, 2014)

21. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the
cec 2014 special session and competition on single objective real-parameter numeri-
cal optimization. Technical Report 201311, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou China and Nanyang Technological University,
Singapore (2013)

Scheduling a Galvanizing Line by Ant Colony

Optimization

Silvino Fernandez, Segundo Alvarez, Diego Dı́az, Miguel Iglesias,
and Borja Ena

ArcelorMittal Global R&D Asturias
P.O. Box 90 – 33400, Avilés, Asturias, Spain

{silvino.fernandez,segundo.alvarez-garcia,diego.diaz,
miguel.iglesias,borja.ena}@arcelormittal.com

Abstract. In this paper, we describe the successful use of ACO to sched-
ule a real galvanizing line in a steel making company, and the challenge
of putting the algorithm to use in an industrial environment. The se-
quencing involves several calculations in parallel to figure out the best
sequence considering the evolution of each important parameter: width,
thickness, thermal cycle, weldability, etc.

For solving this combinatorial (NP-hard) problem, new necessity arose
to develop an intelligent algorithm able to optimize the scheduling, avoid-
ing traditional manual calculations. Hence, ACO is proposed to translate
the scheduling rules and current criteria into a set of technical constraints
and cost functions to assure a good solution in a short calculation time.

1 Introduction

The production of steel is a very complex process, with several functions involved
in its transformation from coal and iron ore: iron making (conversion of iron
ore into liquid iron), steelmaking (conversion of liquid iron into liquid steel),
casting (solidification of liquid steel into semi-products: billets of slabs) and
finally rolling, aimed to transform the intermediate products into the format
accepted by the client (normally coils of steel , bars, heavy plates, wire rod, etc.)
to continue the transformation into cars, bridges, beverage cans, or whatever our
clients want to produce.

One of the most important products manufactured in our facilities is galva-
nized steel. The main use of this steel is as a raw material in other industries,
and especially in the automotive industry for building car bodies. The process of
galvanizing consists in covering the steel with a zinc layer to protect it against
corrosion.

The facility in charge of galvanizing steel is the galvanizing line. This facility
receives steel coils as an input, and there they are uncoiled, immersed in a bath
of molten zinc at a temperature of around 460◦ Centigrade and finally rolled
into a coil again. Every day dozens of steel coils are processed in each of our
galvanizing lines, and their sequencing is critical to avoid incidents in the facility
and to reduce the cost of the process.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 146–157, 2014.
c© Springer International Publishing Switzerland 2014

Scheduling a Galvanizing Line by Ant Colony Optimization 147

Fig. 1. Steel coils in one of our yards

Depending on this sorting, it is possible to lose lots of meters of strip due to a
lack of quality, or even worse, to have a breakage that would halt the facility for
several hours or even one day. Every time the strip breaks in the furnace where
they are heated before the zinc bath, the line must be stopped until the furnace
cools down, in order to remove the steel strip of the furnace: then the furnace
must be heated up again before resuming production.

An additional hard constraint coming from the intended use of the model is
that execution time is very limited, since it must be able to provide a schedule
within a few minutes in order to be useful at the line. This time limit, together
with the complexity of the cost function —as we will see later—, results in a
much tighter limit on the number of evaluations than usual in these systems
aimed to solve combinatorial problems.

2 Related Work

Swarm Intelligence (SI) [8] is a term introduced by Gerardo Beni and Jini Wang
in 1989, in the context of robotics [1]. SI is a methodology inspired by the social
behavior of agents collaborating in a decentralized and self-organized system
with a common aim. Most intelligent animals live, obey rules and reap benefits
of a society of kin. Societies vary in size and complexity, but have a key common
property: they provide and maintain a shared culture [8].

A main characteristic of SI systems is that each individual itself does not have
enough problem solving ability, but the collaboration and experience exchange
among a colony of individuals makes it possible to achieve their objectives. SI
systems share some similarities with evolutionary techniques such as Genetic
Algorithms (GA), and one of their more important applications is the resolution
of combinatorial problems [4].

SI systems are considered probabilistic algorithms, and their main charac-
teristic is that they explore the search space trying to obtain the best possible
solution in short time.

Normally they use heuristics to select the following candidate to be analyzed.
The main features of swarm intelligence algorithms are [2] are: Flexibility (the
colony can respond to internal perturbations and external challenges), Robust-
ness (tasks are completed even if some individuals fail), Decentralization (there

148 S. Fernandez et al.

is no central control in the colony) and Self-Organization (paths to solutions are
emergent rather than predefined).

There are many examples of algorithms developed in the framework of SI,
some examples are Ant Colony Optimization, Particle Swarm Optimization [9],
Charged System Search [6] , or Bees Algorithms [10].

ACO is among the best known and widest spread SI techniques. It was de-
fined by Dorigo, Di Caro and Gambardella in 1999 [3]. Previously, the first ACO
system was developed by Dorigo in his PhD thesis called Ant System in 1992
[7]. Since then, several use cases have been developed where ACO has demon-
strated its effectiveness solving problems mainly in the field of logistics and job
scheduling.

3 Context of the Problem

In steel production, an important task is the galvanization of steel. In this pro-
cess, steel is coated with a zinc layer, which has the objective to protect the
steel against air and moisture. In fact, the zinc layer is considered to be the
most effective and low-cost means to achieve this goal. Galvanization is applied
to steel coils, which are a finished steel product which has been wound or coiled
after rolling slabs. Slabs are semi-finished steel products, obtained by processing
through a continuous caster and cut into various lengths. The slab has a rectan-
gular cross section and is used as a starting material in the production process
of flat products, i.e. hot rolled coils or plates.

The process of galvanizing is continuous, that is, there is no separation be-
tween the coils and the line never stops. The head of the next coil is welded to the
tail of the coil in process. Thus, for the line, the input is an infinite strip which
has points where there is a change in some of its characteristics: dimensions
(width, thickness), steel grade, section, thickness of the zinc layer, etc.

After the welding area, the strip advances towards the accumulator, a kind of
buffer that makes it possible to change the speed of the line depending on the
needs of the furnace without running out of material. The furnace is the next
stage; here the strip has to reach a target temperature depending on its chemical
composition (steel grade), and for this line speed and furnace temperature have
to be adjusted according to the thickness and width of the coil. Thicker and
wider coils require lower speed or higher furnace temperature to reach the same
target temperature. Due to the inertia of the system, changing these parameters
takes some time, during which part of the coil may not be processed properly,
depending on how different the coils and their targets are.

After the furnace, the strip is entered into the zinc pot, and later by passing
through an ‘air knives’ system, the zinc layer is spread evenly and to the thickness
specified by the client; this is critical in order to avoid coil rejections.

All this process is dramatically affected by the sequencing. A big difference in
the width between two consecutive coils could generate a breakage of the strip
in the welding phase or the furnace, and consequently it could stop the line for
several days.

Scheduling a Galvanizing Line by Ant Colony Optimization 149

3.1 Origin of the Problem: The Importance of the Sequencing

Sequencing is critical in production lines in the steel industry (as it is in the
industry in general). If we have a list of n items to process, the possibilities to
arrange these items are huge (n!). Depending on the sorting, the sequence could
have different impact in the process, and it can cause quality issues in the final
product, lower productivity, higher energy consumption or even an incident in
the facility.

Due to the technical limitations of the lines and the critical efficiency necessary
to offer nowadays for each productive plant, the necessity of having a scheduling
model able to solve the limitations of current scheduling algorithms has arisen.
The objective is to maximize productivity, making the facility more competitive.

Traditionally, commercial tools based on constraint programming have been
used for these proposes. These tools are focused on finding a solution with some
properties, mainly fulfilling some relations among variables and respecting a set
of constraints. Their main problem is their limitation for using complex cost
functions, we will solve these issues with an innovative option (at least in this
industrial environment): Ants.

3.2 Proposed Solution: ACO

ACO and Swarm Intelligence offer an innovative approach to solve some of the
problems of traditional scheduling tools. The idea is to quantify and then min-
imize the costs of sequencing. In this calculation, intermediate steps, such as
as material losses or line stops, are taken into account and finally translated
into meters of strip lost. These calculations are in some cases computationally
intensive, resulting in long evaluation times for each generated solution.

One important feature of this approach is the flexibility, because if the sched-
ule is finally modified when they are produced (e.g. because the foreman thinks
that another sequence is better), it is possible to ask why, and then add new
cost function modules for including the reason of this deviation between reality
and calculation (or maybe, fine-tune some of the current ones). Consequently, it
is very easy to fine tune and to maintain the model with the pass of time.

It is important to remark that the line is continuously in evolution, so the
definition of a model able to schedule them should follow the same philosophy,
and ACO matches this requirement perfectly.

4 How to Apply ACO to a Scheduling Problem in the
Steel Industry

One of the best known uses of ACO is solving hard combinatorial optimiza-
tion problems; typically the most famous example is the TSP (Travel Salesman
Problem). Several works have been developed [5] to assay the effectiveness of its
application to this problem. In TSP, the objective is to generate the shortest
tour of a number of cities, given the distance matrix relating each pair of cities.

150 S. Fernandez et al.

Our sequencing problem fits quite nicely this specification, substituting cities for
steel coils and distances for costs. Unfortunately, we cannot disclose the details
about how these cost are calculated due to confidentiality issues.

Since some of the orderings are not possible, some of the costs will be infinite
(or, viewing the problem as a graph, the corresponding arcs do not exist). This is
one of the two main differences with TSP. One main goal is the reduction of these
infeasibilities, because every time there is one in a sequence, it is necessary to
include a transition coil (a coil with no client) to solve the issue. This transition
coil has a high cost (if we compare with a normal production cost) in terms of
productivity (we produce something we do not need instead our orderbook) and
in terms of cost (yield), because maybe the coil will be sold as second quality or
even as scrap (cheaper).

The other difference is the impact of whole-sequence costs on the final cost.
Some of the aspects that impact the cost function cannot be calculated from the
individual transitions, but rather need the whole sequence in order to be defined.

For instance, if we evaluate the cost of width evolution, a change from 950mm
to 1,000mm has different implications if the evolution is previously increasing or
decreasing. In this case the cost is proportional to the number of sign changes
in the first order differences of the sequence.

Thus, we have two types of costs:

Transition Costs. These costs are equivalent to the distances used in the reg-
ular TSP; they are costs that arise from the transition between two coils in
the sequence. The loss of material due to quality issues caused by the time
it takes to adjust the furnace is a typical example. These costs can be used
as heuristics for the construction phase.

Sequence Costs. These costs are not calculated as the cost of transitions, but
as a function of the whole sequence (or a sub-sequence). The only way of
calculating this kind of costs is the evaluation of the sequence once it is
complete at the end of the path. Therefore, they can only be used to drive
the solution indirectly through their impact on pheromone.

For over a year, the technical experts of the lines defined the losses associated
to the transitions, analyzing all the parameters and characteristics of the coils
that have any kind of impact on the resulting meters of strip lost of a sequence.
These cost functions depend on the parameters of the coils and their differences
in the transitions. The losses are mainly generated by width changes between
consecutive coils, thickness changes, thermal losses, etc.

The general idea is to try and minimize the transitions for each parameter
relevant to sequencing, looking for a smoother evolution and therefore a more
stable production.

Our cost function is thus of the form:

C(S) = GlobalCosts(S) +

n−1∑
i=1

TransitionCost(ci, ci+1) (1)

Scheduling a Galvanizing Line by Ant Colony Optimization 151

Where:

S: Sequence of n coils (c1, . . . , cn)
TransitionCost(ci, ci+1): They are the costs of the transition.
GlobalCosts(S): They are the costs of the sequence S.

Initially, before any pheromone has been laid out, we use the transition costs
as a heuristic for solution construction. Before launching the algorithm, the
transition cost for each combination of nodes σ(n1, n2) is calculated; this cost
can be classified as: infinite1 (if the transition does not respect some of the
constraints of the line), zero (no material lost in the transition) or finite (there
are losses associated to the transition, but it respects all the constraints of the
line).

Given the existence of zero and infinite costs we cannot apply directly the
usual selection criterion of selecting the next node with probability inversely
proportional to the arc cost. Instead, we do a two-step selection, choosing first
among the three categories (we give a higher probability to zero transitions, then
to finite and finally to the infinite ones); in the second step, if zero or infinite
cost arcs have been selected, all of them are equiprobable, and for finite cost arcs
we apply the usual approach.

We accept infeasible transitions because not doing so would require each ant
to build a Hamiltonian path. This is a hard problem in itself, and in our problem
there is often no such path. A second option would be to accept them only if no
feasible transition is left; this leads to much worse sequences, because it tends
to leave out the least connected nodes, accumulating large numbers of infeasible
transitions at the end of the sequence. We then take infinite cost transitions,
with a low probability, at any time to allow the model to discover infeasible
transitions that save more of them later.

These unfeasible solutions are “solved” by the operators of the line by means
of inserting transition coils between two coils that are not compatible from the
production point of view. This transition coil is especially expensive, and this
is the reason why it is considered as an infinite cost, and the priority of the
algorithm will be always to minimize first these infeasible transitions and only
then minimizing the total cost. The way of taking into account these infinite
costs in the raking process is to translate them into a huge cost, in a different
scale to the normal cost of a transition due to production losses, and add it
multiplied by the numer of infeasibilities to the total cost of the sequence.

The function to deposit the pheromone in the path is the standard one, shown
in (2), where τij is amount of pheromone between nodes i and j, BestCost the
cost of the best solution found up to the moment of the update and ρ the
evaporation factor:

τkij ←
{
(1− ρ)τkij +

BestCost
CostAntk

if arc ij ∈ Antk

(1− ρ)τkij otherwise
(2)

1 We translate it into a huge penalty added to the cost of the transition in the objective
function formula.

152 S. Fernandez et al.

We set the evaporation parameter to 0.1 to permit some adaptation to new
good solutions. With the advance of the iterations, the heuristic based on tran-
sition cost loses weight in favor of the pheromone. For this we again follow the
standard practice to combine the heuristic and pheromone information:

pkij =
[τij]

α[ηij]
β∑

l∈Nk
i
[τil]α[ηil]β

, ∀j ∈ N k
i (3)

Where:

pkij: Probability of selecting node j after selecting i for the ant k.
τij : Amount of pheromone between nodes i and j.
ηij : Heuristic value previously known, (1

Cij).
Cij : Meters of strip lost in transition between nodes i and j
α: Parameter to control the influence of the pheromone.
β: Parameter to control the influence of heuristic based on losses.
N k

i : Set of accessible nodes for an ant k, when being in a node i, that have not
been already selected.

The combination of the parameters α and β controls the influence of the
pheromone and transition costs over the decision of choosing a path. In our
case, we fixed the parameters α = 1 and β = 2, with of objective of having a
good balance between the heuristic and experience (pheromone).

We use elitism, allowing only the top 10% ants in each iteration to deposit
pheromone in the matrix.

Due to the constrained time for computation and the necessity of obtaining a
proposal for the scheduling in just a few minutes, we did not consider to include
local search in the current version of our ACO. Few solutions can be explored
in the given time and, due to the global costs, each solution needs to be re-
evaluated, so we could not afford the computational cost of local search in this
situation.

5 Results

The optimal solution to the problem would be the sequence that calling the
cost function obtains the cheapest possible value respecting all the technical
constraints at the same time. The idea is intuitive, but exhaustive enumeration
is the only way to ensure global optimality. Normally in this kind of problems,
especially in an industrial setting, the approach is to obtain a “good enough”
solution. A good solution must fulfill some characteristics, and the first is that
the solution must be feasible; additionally (and not less obvious) the cost of the
solution must be very low (compared with other feasible solutions); and last, but
not least, the solution must be calculated in a reasonable period of time.

The first characteristic is unquestionable. With the others, a trade-off must be
found. A solution a bit more expensive than the optimum is better than the best
if we need 1,000 years to calculate it [11]. For us, it is very important to transmit

Scheduling a Galvanizing Line by Ant Colony Optimization 153

this idea to the final users, in order to avoid confusions. If the user expects to
obtain the very best solution, and two consecutive calculations yield different
solutions, it would be confusing; and yet, this does not mean the calculation was
wrong.

The best benchmark available to us was to use the actual sequences produced
in the line. If our algorithm can take the same set of coils an improve the number
of infeasible transitions —hence number of transition coils— and cost within the
limited time allotted for online execution, we have something valuable.

The experimental setup has been the following: we have taken as reference one
entire month of production. This month has not been selected randomly, but the
technical team proposed one period of time with high production volume and a
typical product mix to produce, so that the results would be representative of
the expected normal function of the model.

The month is translated into 29 days of production, for each experiment (day)
there are aroung 60 coils (as average) and we have fixed the first and the last coil
of the list to assure that the scheduling for the day matches with the scheduling
of the following one. We have run ACO 25 times for each day with 200 iterations
and 80 ants. We are aware that this setup is very limited from an academic
point of view, but the calculation with these parameters takes about 12 minutes,
approximately the maximum admitted in real life by the user to calculate a
solution. Using better computers, it is possible to reduce this computation time,
but another constraint of the reality is that the model runs normally in the
laptop or desktop computers at the plant, which are usually not the latest in
technology. We have kept the time limit for the tests to replicate the quality that
the solutions will have in operation. Obviously, we have done more tests in our
high-performance clusters used for scientific computations in our R&D center,
but we prefer to present the results and conclusions useful for real life.

As commented, for evaluating the results it is very important to clearly un-
derstand the concept of constraint and cost function used in this problem. Every
time a constraint is not respected in a transition between two coils, it is assumed
that we need to insert a transition coil in the middle to make the sequence feasi-
ble. This transition coil is material produced with no client assigned, so it implies
a cost of stock and, depending on several circumstances, either the cost of down-
grading or scrapping2 the whole coil3. We assume then, an infinite cost for every
violated constraint and hence, it has total priority over the cost. For the same
number of violated constraints, the algorithm minimizes the production cost.

In the tests, we evaluate in a separate way the number of violated constraints
that are reduced with the algorithm (input vs. output) and in a second analysis
the savings in costs. Figure 2 shows the number of violated constraints reduced

2 If possible, the coil will be sold at a discount, because of the lower quality; if no
client is found, it will be shredded for scrap to be recycled in the steelshop. In either
case, the benefit from the material is much less than the sale of a full-price product.

3 A typical coil is about 2.5Km long; compare with the effect of a transition cost which
is normally limited to just a few, maybe tens of meters.

154 S. Fernandez et al.

Fig. 2. Number of violated constraints reduced by ACO per day, compared to actual
production

per day (difference between the original production sequence and the output of
the model).

The results in terms of reduction of violated constraints are very heteroge-
neous when considered inter-instance4, but this is a reflection of the different
product mix for different days, which results in different levels of complexity.
The intra-instance 5 standard deviation is 0 in 80% of the experiments (every
one obtained a solution with the minimum possible number of violated con-
straints), so the model seems to be very stable to calculate the sequence with
the minimum violated constraints. In the other 20%, there is no experiment with
a standard deviation of more than 1 constraint over the average. There are only
two cases where the model does not improve the number of violated constraints,
while the rest show important reductions of violated constraints, sometimes up
to 6 or 7 constraints reduced.

Figure 3 shows, for each experiment, the average and standard deviation of the
percentage of cost savings, referred to the cost of the sequence that was actually
produced. Negative values mean that the cost is higher than the original; this
occurs, but the number of violated constraints was reduced in those cases (see
figure 4), so the overall result still improves the actual sequence.

In terms of production costs, savings are very important. The average of
the savings is 52% for the experiments, this would confirm that the model is
able to reduce the scheduling cost by a half approximately. As for the standard
deviation, it is 25% from a global point of view over the experiments, but it is
again a consequence of the different product mixes. The intra-instance deviations
are much smaller, as we can see in figure 3.

Finally, figure 4 shows the costs versus the number of constraints reduced in
the scheduling of the coils. To make the figure more readable we show here only
the average values.

4 Results of ACO for different production days (different instance).
5 Runs of the ACO algorithm on a sigle day (same instance).

Scheduling a Galvanizing Line by Ant Colony Optimization 155

Fig. 3. Average of the % of cost saved for each experiment and their standard deviation

Fig. 4. Number of violated constraints reduced vs cost savings

On the other hand, there are only two cases when the scheduling costs are in-
creased in order to reduce the number of scheduling constraints. As commented,
these are especial cases, where the total cost of the sequence is in fact reduced,
and hence these negative results are taken as zero for the analysis.

After a first validation by experts, the sequences were validated in tests in the
line using the expert knowledge of the foremen. One of the aims of the sequencer
is to avoid having breakdowns in the line as well as losses of material, and in this
sense both goals have been achieved. The sequences generated by the model do

156 S. Fernandez et al.

not cause any problem during its processing and it means an important savings
in terms of losses of material and reliability of the facility.

6 Conclusions

After months of work, we can conclude that we can adapt the ACO algorithm
for line scheduling, despite the unusual challenges that arise from a real life
application, as opposed to the more studied academic testbeds.

We have found that, with adequate settings, we can reach good results despite
the limitation in the number of solution evaluations. However, we have not been
able to identify any literature addressing this particular situation, which is quite
normal when dealing with industrial problems; cost functions are much more
complex to calculate than a static cost matrix, and there are stringent limitations
on running time to get a solution.

We offer a neutral way of calculating complex schedules that improves the
traditional manual calculation did in the past. There is hardly any risk. The
algorithm takes the input sequence that the expert would have used in the line
without any interference, and after some minutes of calculation, the solution
is offered to the experts, who can accept, refuse or even compete against the
model: the interface offers the possibility of manual re-arrangement of the output
sequence. Thus, they can convince themselves about the quality of the solution
and the difficulty of improving it.

This technique is completely generic. The separation between the algorithm
and the cost functions makes it fully adaptable to another context. The algo-
rithm takes care of arranging a list of items, trying to find a minimum cost,
where the context is completely transparent. To adapt the model to a different
environment, only the cost functions need to be changed according to the new
domain.

Everywhere sequencing has any importance, and its impact can be measured,
there is an opportunity of improving the process with a scheduler using these
techniques. The results that we have obtained confirm the confidence in the
algorithm as well its possibilities in industrial operations.

The results are hardly debatable. Experts have validated them and from a
mathematical point of view, they offer an improvement in the sequencing around
50% in average; and even if there is an important inter-instance variability, we
have yet to find a specific case where the original sequence is not improved. The
model consistently results in an increase in yield and cost-efficiency of the line.

References

1. Beni, G., Wang, J.: Swarm intelligence in cellular robotics systems. In: NATO
Advanced Workshop on Robots and Biological Systems (1989)

2. Bonabeau, E.: Swarm intelligence. In: O’Really Emerging Technology Conference
(2003)

3. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimiza-
tion. Artificial Life pp. 137–172 (1999)

Scheduling a Galvanizing Line by Ant Colony Optimization 157

4. Fernandez Alzueta, S., Diaz, D., Manso Nuño, T., Suarez Rodriguez, M.: Opti-
mization techniques to improve the management of a distribution fleet in the steel
industry. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (2010)

5. Gómez, O., Barán, B.: Ant colony optimization and swarm intelligence. In: Pro-
ceedings of the 2004 4th International Workshop, ANTS 2004 (2004)

6. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: Charged system
search. Acta Mechanica, 267–289 (2010)

7. Marco, D.: Optimization, learning and natural algorithms. Ph.D.Thesis (1992)
8. Mataric, M.: Dedigning emergent behaviors: From local interactions to collective

intelligence. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 526–531 (2000)

9. Parsopoulos, K., Vrahatis, M.: Recent approaches to global optimization problems
through particle swarm optimization. Natural Computing, 2–3 (2002)

10. Pham, D.T., Koc, E, Lee, J.Y., Phrueksanant, J.: Using the bees algorithm to
schedule jobs for a machine. In: Eighth International Conference on Laser Metrol-
ogy, CMM and Machine Tool Performance pp. 430–439 (2007)

11. Weise, T.: Global optimization algorithms – theory and application (March 2014),
http://www.it-weise.de

http://www.it-weise.de

SRoCS: Leveraging Stigmergy on a Multi-robot

Construction Platform for Unknown
Environments

Michael Allwright1, Navneet Bhalla2, Haitham El-faham1, Anthony Antoun3,
Carlo Pinciroli3, and Marco Dorigo1,3

1 Department of Computer Science, University of Paderborn, Paderborn, Germany
michael.allwright@upb.de, helfaham@mail.upb.de

2 Sibley School of Mechanical and Aerospace Engineering, Cornell University,
Ithaca, New York, USA

navneet.bhalla@cornell.edu
3 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

{aantoun,cpinciro,mdorigo}@ulb.ac.be

Abstract. Current implementations of decentralized multi-robot con-
struction systems are limited to construction of rudimentary structures
such as walls and clusters, or rely on the use of blueprints for regula-
tion. Building processes that make use of blueprints are unattractive in
unknown environments as they can not compensate for heterogeneities,
such as irregular terrain. In nature, social insects coordinate the con-
struction of their nests using stigmergy, a mechanism of indirect coordi-
nation that is robust and adaptive. In this paper, we propose the design
of a multi-robot construction platform called the Swarm Robotics Con-
struction System (SRoCS). The SRoCS platform is designed to leverage
stigmergy in order to coordinate multi-robot construction in unknown
environments.

1 Introduction

It is possible that a multi-robot construction system will be a practical solution
in the future for building basic infrastructure, such as shelter, rail, and power
distribution networks on extraterrestrial planets or moons, prior to the arrival
of humans [12]. Due to the distances involved, real-time control of the robots
or communication supporting the surveying of the remote environment prior
to construction are typically not viable options. For this reason, a system that
is robust and capable of performing construction in a variety of environments
without specific programming is desirable.

Stigmergy is a form of indirect coordination that enables the self-organization
observed in social insects such as ants, bees, termites, and wasps. Grassé [8]
originally introduced the concept of stigmergy in the context of termite nest
construction, where previous work by the termites became a stimulus to perform
further work. Although this form of coordination that makes use of stigmergy
has been shown to be less efficient than hierarchical coordination, it benefits

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 158–169, 2014.
c© Springer International Publishing Switzerland 2014

SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform 159

from not having a single point of failure, is capable of operating in a variety of
environments without specific programming, and requires simpler hardware [7].

A number of multi-robot systems that use exclusively stigmergy to coordi-
nate the building process have been presented in the literature; however, they
are only capable of constructing rudimentary structures such as clusters and
walls [1, 10, 17, 23–25, 29]. While there are construction systems that make use
of stigmergy and are capable of building more complex structures, these systems
supplement the use of stigmergy with a blueprint or external infrastructure for
positioning and communication [21, 30, 31, 33]. These approaches are not at-
tractive in unknown environments, as the use of a blueprint is a form of specific
programming that is unable to compensate for variations in the environment,
such as irregular terrain. Furthermore, the use of external infrastructure for po-
sitioning and communication is not suitable for rapid deployment in unknown
environments.

In order to demonstrate the potential of stigmergy for construction in un-
known environments, we propose the design of a multi-robot construction plat-
form called the Swarm Robotics Construction System (SRoCS). The SRoCS
platform makes use of stigmergy to coordinate a flexible building process that
is capable of adapting to the environment, without relying on external infras-
tructure for positioning and communication. This is achieved by encoding the
construction process as simple rules that use previously completed work, as well
as heterogeneities and templates in the environment, to guide the construction
process. This approach is inspired by Theraulaz et al. [26, 27] who simulated the
construction of wasp nests in a 3D lattice.

Following an overview of the background literature in Section 2, we present in
Section 3 the design of our multi-robot construction platform, SRoCS. Experi-
ments using SRoCS are described in Section 4 and the conclusions of this work
are then provided in Section 5.

2 Background

In this section, we present some examples where stigmergy is used to coordinate
the construction of termite and social wasp nests in nature. Following these
examples, we provide an overview of the work done in multi-robot construction
in simulation and using real hardware, focusing on the use of stigmergy where
present.

2.1 Construction in Nature

Bruinsma [6] used stigmergy to explain the formation of various structural el-
ements in termite nests. For example, Bruinsma described three uses of phero-
mones by termites that regulate the construction of the royal chamber. First,
pheromones are used to form a trail that causes workers to be recruited towards
the construction site. Second, a pheromone emitted by the queen termite is used
to create a template for the chamber. Third, worker termites add pheromone to

160 M. Allwright et al.

the soil pellets during construction. This pheromone attracts workers to place
more soil pellets nearby those that have been recently placed.

Karsai et al. [11] demonstrated that social wasps coordinate the construction
of brood combs by sensing the local environment using their antennae. Wasps use
local information, such as the number of walls in a partially completed comb, to
select from various actions such as lengthening a comb or starting a new comb.

2.2 Simulation

Deneubourg et al. [7] presented the first work using stigmergy in simulation using
ant-like robots to implement decentralized clustering and sorting algorithms in
a 2D lattice. In this system, the robots move around randomly, picking up and
putting down objects with probabilities that are a function of the density of
similar objects nearby. These actions are coordinated through stigmergy as the
previous placement of objects indirectly coordinates further actions taken by
other robots. Melhuish et al. [18] showed that this approach was scalable by
demonstrating the sorting of up to 20 types of objects in a simulation based on
hardware experiments with Holland et al. [10].

Based on a mathematical model developed to explain the emergence of
structures observed in termite nests [5], Ladley and Bullock [13, 14] created
an agent-based 3D simulation for the formation of chambers and walls, adding
in physical and logistical constraints. This work was extended by Linardou [15]
who demonstrated the impact of using realistic pheromone dispersion rules. This
work showed that stigmergic coordination through interactions of the agents with
pheromone gradients and previously completed work was capable of regulating
the construction of various termite nest-like structures.

Theraulaz et al. [26, 27] demonstrated the construction of several wasp nest-
like structures using algorithms that caused an agent to deposit a brick in a 3D
lattice when a condition based on the local configuration was satisfied. These
conditions would be in terms of patterns of existing bricks perceived by an agent.
This coordination is an example of stigmergy as the patterns of existing bricks
are the result of previous actions by other agents. In further work by Bonabeau
et al. [4] genetic algorithms were used to search for sets of rules that lead to the
construction of structured patterns.

2.3 Multi-robot Construction

Implementations of multi-robot systems have been used to demonstrate con-
struction tasks. In this section, we discuss implementations of decentralized
multi-robot construction systems with respect to how and if they use stigmergy
in the construction algorithm. Implementations of centralized multi-robot con-
struction systems often depend on external infrastructure for positioning and
communication [2, 16, 32–34], which makes them unsuitable for rapid deploy-
ment in unknown environments.

Implementations of decentralized multi-robot construction systems are orga-
nized with respect to the type of stigmergy used. Stigmergy is classified as being

SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform 161

quantitative or qualitative [3]. Quantitative stigmergy is where the likelihood of
a response to a stimulus is proportional to the intensity of that stimulus. An
example of this type of stigmergy was shown in the work of Bruinsma [6], where
the termites would respond to the concentration of pheromones and soil pellets
in their immediate environment. Qualitative stigmergy is where the probability
of performing a given action is a function of a perceived environmental con-
figuration. For instance in the nest of social wasps, an individual could decide
whether or not to add a wall to the brood comb depending on the number of
walls already built [11].

Construction Based on Quantitative Stigmergy. Beckers et al. [1] were the
first to demonstrate the use of stigmergy in a multi-robot system for distributed
clustering. They maintained that the use of stigmergy has a significant advantage
over coordination using direct communication, as direct communication would
have required the abstraction of the information regarding the type of task, as
well as its spatial and temporal locality. Holland and Melhuish [10] extended the
work in [1] to the task of clustering and sorting two kinds of Frisbees. In related
work, Song et al. [24] used iRobot Creates to cluster square shaped objects using
two developed behaviors, twisting and digging which exploited the geometry of
the square tiles to be clustered.

Stewart and Russell [25] constructed a loose wall along a template using a
team of robots. The template was formed by a leader robot moving a lamp in a
straight line once the current point in the wall had enough material. Soleymani
et al. [23] also demonstrated the construction of a wall along a template using
soft materials. Napp et al. [19] reasoned that soft materials have advantages over
rigid materials, as they conform to the shape of the surface on which they are
placed.

Construction Based on Qualitative Stigmergy. Wawerla et al. [29] pro-
vided the first application of qualitative stigmergy, demonstrating the construc-
tion of a wall from two alternating types of velcro blocks. The wall was built
along a laser generated template and the robots would exchange information
about the next type of block to be placed.

The TERMES multi-robot construction system by Werfel et al. [21, 31], repre-
sents the current state of the art in decentralized multi-robot construction. This
system is capable of building staircase-like structures using tiles that the robot
can climb on. The system uses an offline compiler to flatten a user-specified cellu-
lar 3D structure onto a directed graph whose nodes constitute a height map. The
edges of this directed graph specify how the robots can move across the struc-
ture. The robots execute an algorithm that selects a subset of these directed
edges to traverse the structure. This directed graph is a blueprint containing
all the required information to build the structure. In order to avoid deadlock
conditions during construction, fixed stigmergic rules are used to regulate the
construction order.

162 M. Allwright et al.

2.4 Summary

Decentralized multi-robot construction systems have been shown to be capable of
building rudimentary structures like clusters and walls. While more sophisticated
structures have been demonstrated using the TERMES system, this system is
limited to performing construction in known environments where a blueprint of
the structure to be built, is provided by an architect who has prior knowledge
of the environment.

In order to enable decentralized construction in unknown environments, we
present the design of a multi-robot construction platform called SRoCS. SRoCS
aims at leveraging stigmergy to coordinate a flexible building process in a variety
of environments.

3 Overview of the Proposed Platform

The design of the SRoCS platform consists of mobile robots and stigmergic
building blocks whose prototypes are shown in Fig. 1. The robots are equipped
with a specialized manipulator, which has been optimized for assembling the
blocks. While disassembly of blocks would support experiments involving the
use of temporary scaffolding-like structures, it is not supported in the initial
prototype of the SRoCS platform. In addition, the use of a multi-robot simulator
is discussed as an alternative to running experiments using real hardware.

(a) (b)

Fig. 1. Prototypes of (a) the stigmergic building block and (b) the mobile robot

SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform 163

3.1 The Stigmergic Building Blocks

In order to leverage stigmergy in SRoCS, we propose the design of stigmergic
building blocks. These blocks aim at emulating the use of pheromones by termites
in construction. The blocks contain four multi-color LEDs on each face. The
colors of these LEDs can be sensed by the cameras on the robots and updated
using the NFC (Near Field Communication) interface between the manipulator
and the block.

A prototype of this block is shown in Fig. 1a. We have chosen the geometry to
be cubic as it allows the block to be placed into the structure without the need
for rotation. Eight spherical magnets in the corners allow the blocks to self-align
with each other and allow the blocks to be picked up by a robot. In order to
simplify the computer vision required by the robots to see the blocks, localizable
2D barcodes called AprilTags [20] are added to the faces of the block.

Inside the block, a main circuit board hosts a micro-controller, an accelerom-
eter and a Zigbee radio for collecting experimental data and debugging. De-
pending on the software running on the blocks, additional functionality such as
block-to-block communication is also possible.

3.2 The Mobile Robots

The BeBot [9] is selected as the mobile robot in the SRoCS platform due to
its small size, modularity, and availability. In the SRoCS platform, the robots
move around the environment randomly searching for building blocks that can be
used for construction. Proximity sensors around the base of the robots allow for
obstacle avoidance with other robots and the structure being built. The camera
on the robot allows for the detection of the AprilTag barcodes on the block. The
detection of these barcodes allows the robot to localize itself with respect to the
building blocks in the environment or to the structure being built.

To pick up and place the building blocks into a structure, the robot is equipped
with a specialized manipulator that is shown in Fig. 1b. The manipulator design
bears similarities with a fork-lift, with the exception that the block is picked
up from the top and held in place using electro-permanent magnets. To detach
the block from the manipulator the electro-permanent magnets are activated
causing the magnetic field that held the block in place to drop to near zero. We
have optimized the manipulator for creating structures of a height of up to three
blocks; this provides a good trade-off between flexibility and stability.

The robots are able to communicate indirectly with each other by positioning
the building blocks and updating the colors of the LEDs on the blocks. These
colors can be assigned various meanings depending on the algorithm in use. For
instance, a particular color can be used to indicate a seed block or a block that
has already been placed into the structure.

3.3 Simulation Tool

Running experiments with real hardware is time consuming and can be expensive
when experimenting with large numbers of robots. It is therefore desirable to

164 M. Allwright et al.

use a simulation tool to evaluate the performance of the construction algorithm,
before running experiments using the real hardware.

The ARGoS simulator [22] is used as the simulator for this construction plat-
form as it achieves both flexibility and efficiency. Flexibility is necessary as our
system requires the simulation of technologies, such as magnetism, that are not
commonly found in robot simulation packages. Efficiency is also important as
SRoCS is a multi-robot construction platform, and it is desirable that it be
possible to run simulations with tens or hundreds of robots.

To simulate the hardware described above, several extensions have been de-
veloped for ARGoS. These extensions include a magnetism plugin based on [28]
and a new 3D physics plugin based on the open-source physics engine Bullet.
These extensions have been shown to simulate the self-alignment behavior of the
blocks, as well as the attachment/detachment dynamics of the manipulator.

A prototyping plugin was also developed for the ARGoS simulator that al-
lows for a quick evaluation of designs. This plugin also enables the sensors and
actuators required to implement the manipulator, the computer vision, and the
communication between the blocks and the robots.

4 Swarm Construction Examples

SRoCS is designed to leverage stigmergy to coordinate construction. Examples
are provided to demonstrate the different ways in which stigmergy can be used
to coordinate various construction tasks. Figs. 2-4 are visualizations from the
ARGoS simulator and are based on the described hardware. These visualizations
aim to give examples of the types of experiments that the SRoCS platform has
been designed to run.

4.1 Substructure Formation

Blueprints of overall structures to be built are avoided as they are not adaptive
to heterogeneities in the environment, such as irregular terrain. It is however
useful to encode some substructures as sets of simple rules that use previously
completed work to precisely regulate part of the construction.

In the example shown in Fig. 2, the robots are coordinated through the posi-
tions of the stigmergic building blocks and the colors of the LEDs on the faces of
the blocks, in order to regulate the following construction steps. This approach
to leveraging stigmergy is inspired by the work of Theraulaz et al. [26, 27] and
is an example of using qualitative stigmergy in the SRoCS platform.

4.2 Construction Using Templates

As discussed in Section 2.1, the formation of the termite royal chamber is in
part regulated by the dispersion of a pheromone by the queen. This pheromone
stimulates the worker termites to build around her. A similar mechanism can be
employed in SRoCS as shown in Fig. 3. In this scenario one or more seed blocks

SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform 165

Fig. 2. Construction of a pyramid

are placed in the environment with the LEDs set to a designated color. These
seed blocks can form a template in the environment that in conjunction with
previously completed work, facilitates the construction of chambers or passage-
like structures through stigmergy.

Depending on the implementation, this approach can lead to a stochastic
building process. Stochasticity in the building process can be exploited to in-
crease the adaptivity of the system to the environment. It is also possible that
stochasticity is fundamental in some cases, such as when the system is required
to dynamically explore multiple solutions and adapt the structure being built to
the heterogeneities found in the environment.

4.3 Construction Exploiting Environmental Heterogeneities

When designing a system that must be able to build in an unknown environment,
heterogeneities need to be taken into account. For example, geographical features
in the terrain, such as the presence of a river, must be compensated for in the
building process. An example of this is shown in Fig. 4, where the robots are
using the previously placed blocks as well as the variations in the simulated
terrain to regulate the construction of a wall. This indirect coordination that
uses the previously placed blocks as well as variations in the terrain to regulate
the construction process is an example of how the SRoCS platform can leverage
stigmergy in unknown environments.

166 M. Allwright et al.

Fig. 3. Building a chamber-like structure using a template

Fig. 4. Building a barrier along a heterogeneity in the environment

SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform 167

5 Conclusions

Current implementations of decentralized multi-robot construction systems are
limited to the construction of rudimentary structures such as walls and clusters,
or rely on the use of a blueprint or external infrastructure for positioning and
communication. In unknown environments, the use of blueprints is unattractive
as it cannot adapt to the heterogeneities in the environment, such as irregular
terrain. Furthermore, the reliance on external infrastructure is also unattractive,
as it is unsuitable for rapid deployment in unknown environments.

In this paper, we have proposed the design of a multi-robot construction plat-
form called SRoCS. In contrast to other multi-robot construction systems, the
aim of SRoCS is to provide a flexible building process that is adaptive to het-
erogeneities and variations in the environment. The coordination of the building
process in SRoCS is facilitated through stigmergy, and based on the observations
and models of the construction of social wasp and termite nests as described by
Karsai et al. [11] and Bruinsma [6] respectively.

Acknowledgements. The research leading to the results presented in this pa-
per has received funding from the European Research Council under the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant
agreement no. 246939. Marco Dorigo acknowledges support from the Belgian
F.R.S.-FNRS of which he is a research director. Navneet Bhalla has been par-
tially supported by a Postdoctoral Fellowship provided by the Natural Sciences
and Engineering Research Council of Canada.We would like to thank Eric Klemp
and Michael Brand of the Direct Manufacturing Research Center (DMRC) of the
University of Paderborn for their ongoing support and advice on manufacturing
the prototypes for the stigmergic building blocks and the manipulator. Further-
more, we would also like to thank Prof. Christoph Scheytt and Dr. Uwe von der
Ahe from the System and Circuit Technology research group at the Paderborn
of University for their support with the BeBot platform.

References

1. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks:
Stigmergy and collective robotics. In: Artificial life IV: Proceedings of the Fourth
International Workshop on the Synthesis and Simulation of Living Systems, pp.
181–189. MIT Press, Cambridge (1994)

2. Bolger, A., Faulkner, M., Stein, D., White, L., Rus, D.: Experiments in decentral-
ized robot construction with tool delivery and assembly robots. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2010),
pp. 5085–5092. IEEE Press, Piscataway (2010)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

4. Bonabeau, E., Guérin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Three-dimensional
architectures grown by simple ’stigmergic’ agents. BioSystems 56(1), 13–32 (2000)

168 M. Allwright et al.

5. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Franks, N.R., Rafelsberger, O.,
Joly, J., Blanco, S.: A model for the emergence of pillars, walls and royal chambers
in termite nests. Philosophical Transactions of the Royal Society of London B:
Biological Sciences 353(1375), 1561–1576 (1998)

6. Bruinsma, O.H.: An Analysis of Building Behaviour of the Termite Macroter-
mes Subhyalinus (Rambur). Ph.D. thesis, Landbouwhoge School, Wageningen, The
Netherlands (1979)

7. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien,
L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Meyer,
J.A., Wilson, S. (eds.) Proceedings of the First International Conference on Sim-
ulation of Adaptive Behavior on From Animals to Animats, pp. 356–363. MIT
Press, Cambridge (1991)

8. Grassé, P.P.: La reconstruction du nid et les coordinations inter-individuelles chez
Bellicositermes Natalensis et Cubitermes sp. La théorie de la stigmergie: Essai
d’interpretation du comportement de termites constructeurs. Insectes Sociaux 6(1),
41–80 (1959)

9. Herbrechtsmeier, S., Witkowski, U., Rückert, U.: Bebot: A modular mobile minia-
ture robot platform supporting hardware reconfiguration and multi-standard com-
munication. In: Kim, J.-H., et al. (eds.) Progress in Robotics. CCIS, vol. 44, pp.
346–356. Springer, Heidelberg (2009)

10. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective
robotics. Artificial Life 5(2), 173–202 (1999)

11. Karsai, I., Pénzes, Z.: Comb building in social wasps: Self-organization and stig-
mergic script. Journal of Theoretical Biology 161(4), 505–525 (1993)

12. Khoshnevis, B.: Automated construction by contour crafting – related robotics and
information technologies. Automation in Construction 13(1), 5–19 (2004)

13. Ladley, D., Bullock, S.: Logistic constraints on 3D termite construction. In: Dorigo,
M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.)
ANTS 2004. LNCS, vol. 3172, pp. 178–189. Springer, Heidelberg (2004)

14. Ladley, D., Bullock, S.: The role of logistic constraints in termite construction of
chambers and tunnels. Journal of Theoretical Biology 234(4), 551–564 (2005)

15. Linardou, O.: Towards Homeostatic Architecture: Simulation of the Generative
Process of a Termite Mound Construction. Master’s thesis, University College Lon-
don, London, United Kingdom (2008)

16. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Au-
tonomous Robots 33(3), 323–336 (2012)

17. Martinoli, A., Mondada, F.: Probabilistic modelling of a bio-inspired collective
experiment with real robots. In: Distributed Autonomous Robotic Systems, vol. 3,
pp. 289–298. Springer, Heidelberg (1998)

18. Melhuish, C., Wilson, M., Sendova-Franks, A.: Patch sorting: Multi-object cluster-
ing using minimalist robots. In: Kelemen, J., Sośık, P. (eds.) ECAL 2001. LNCS
(LNAI), vol. 2159, pp. 543–552. Springer, Heidelberg (2001)

19. Napp, N., Rappoli, O.R., Wu, J.M., Nagpal, R.: Materials and mechanisms for
amorphous robotic construction. In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2012), pp. 4879–4885. IEEE Press, Piscat-
away (2012)

20. Olson, E.: AprilTag: A robust and flexible visual fiducial system. In: 2011 IEEE
International Conference on Robotics and Automation (ICRA 2011), pp. 3400–
3407. IEEE Computer Society Press, Los Alamitos (2011)

SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform 169

21. Petersen, K., Nagpal, R., Werfel, J.: TERMES: An autonomous robotic system for
three-dimensional collective construction. In: Durrant-Whyte, H.F., et al. (eds.)
Robotics: Science and Systems VII, pp. 257–264. MIT Press, Cambridge (2011)

22. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M.,
Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence 6(4), 271–295 (2012)

23. Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M.: Autonomous
construction with compliant building material. In: Intelligent Autonomous Systems
(IAS 2014). AISC. Springer, Berlin (in press, 2014)

24. Song, Y., Kim, J.H., Shell, D.A.: Self-organized clustering of square objects
by multiple robots. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461,
pp. 308–315. Springer, Heidelberg (2012)

25. Stewart, R.L., Russell, R.A.: A distributed feedback mechanism to regulate wall
construction by a robotic swarm. Adaptive Behavior 14(1), 21–51 (2006)

26. Theraulaz, G., Bonabeau, E.: Coordination in distributed building. Sci-
ence 269(5224), 686–688 (1995)

27. Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architec-
tures in social insects with lattice swarms. Journal of Theoretical Biology 177(4),
381–400 (1995)

28. Thomaszewski, B., Gumann, A., Pabst, S., Straßer, W.: Magnets in motion. ACM
Transactions on Graphics 27(5) 162, 162:1–162:9 (2008)

29. Wawerla, J., Sukhatme, G.S., Matarić, M.J.: Collective construction with multiple
robots. In: 2002 IEEE/RSJ International Conference on Intelligent Robots and
System (IROS 2002), vol. 3, pp. 2696–2701. IEEE Press, Piscataway (2002)

30. Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile
robots with enhanced building blocks. In: 2006 IEEE International Conference on
Robotics and Automation (ICRA 2006), pp. 2787–2794. IEEE Computer Society
Press, Los Alamitos (2006)

31. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-
inspired robot construction team. Science 343(6172), 754–758 (2014)

32. Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., Kohler,
M.: Aerial robotic construction towards a new field of architectural research. In-
ternational Journal of Architectural Computing 10(3), 439–460 (2012)

33. Wismer, S., Hitz, G., Bonani, M., Gribovskiy, A., Magnenat, S.: Autonomous con-
struction of a roofed structure: Synthesizing planning and stigmergy on a mobile
robot. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2012), pp. 5436–5437. IEEE Press, Piscataway (2012)

34. Worcester, J., Rogoff, J., Hsieh, M.A.: Constrained task partitioning for distributed
assembly. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2011), pp. 4790–4796. IEEE Press, Piscataway (2011)

Swarm in a Fly Bottle: Feedback-Based Analysis

of Self-organizing Temporary Lock-ins

Heiko Hamann1 and Gabriele Valentini2

1 Department of Computer Science, University of Paderborn, Paderborn, Germany
2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
heiko.hamann@uni-paderborn.de, gvalenti@ulb.ac.be

Abstract. Self-organizing systems that show processes of pattern for-
mation rely on positive feedback. Especially in swarm systems, positive
feedback builds up in a transient phase until maximal positive feedback
is reached and the system converges. We investigate alignment in locusts
as an example of swarm systems showing time-variant positive feedback.
We identify an influencing bias in the spatial distribution of agents com-
pared to a well-mixed distribution and two features, percentage of aligned
swarm members and neighborhood size, that allow to model the time
variance of feedbacks. We report an urn model that is capable of qual-
itatively representing all these relevant features. The increase of neigh-
borhood sizes over time enables the swarm to lock in a highly aligned
state but also allows for infrequent switching between lock-in states.

1 Introduction

Many systems showing pattern formation, such as animal coloration [1], em-
bryogenesis [2], and grazing systems [3], are examples of self-organizing systems.
In addition to multiple interactions of sub-components, general features of self-
organizing systems are the interplay between positive feedback (also amplifica-
tion or activation) and random fluctuations as well as that between positive and
negative feedback (also inhibition) [4]. Typically the system is initialized to an
unordered state (not showing any patterns). Fluctuations generate deviations
which are amplified by positive feedback until a spatiotemporal pattern forms.
Negative feedback might prevent the system from reaching extreme states (e.g.,
100% ordered, extinction). Following this stochastic process, a random dynami-
cal attractor forms and characterizes the dynamics of the system [5].

Swarm systems are an example of self-organizing systems. A frequent setting
in the case of swarms is that several stable ordered states exist (multistability)
that are symmetrical to each other—a typical situation in a collective decision-
making system. A swarm is a distributed agent system where each agent au-
tonomously decides on its actions. With the global knowledge of an external
observer, we can classify at least a subset of these actions as positive or nega-
tive feedback events that drive the system, respectively, towards or away from
a too ordered state [6–8]. By counting these events we are able to calculate

the ratio of positive feedback events f+ = F+

F++F− , for the number of positive

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 170–181, 2014.
c© Springer International Publishing Switzerland 2014

Swarm in a Fly Bottle 171

feedback events 0 ≤ F+ ≤ N for swarm size N (F− accordingly). If f+ > 0.5
we say positive feedback is predominant. For several swarm systems, such as
density classification, aggregation controlled by BEECLUST, and alignment in
locust swarms, negative feedback is initially predominant while positive feedback
builds up only over time and independently of the order of the current system
state [6–8]. Consequently, there exists a second feature and/or a mechanism
besides the order of the system that controls the increase of positive feedback
intensity. This feature is very likely a spatial feature which can be determined
by the method of elimination due to the simplicity of the investigated systems
(agents have only 2 properties: direction of motion and position).

Our main objective is to determine the above mentioned second feature and
to define an appropriate model that covers the interplay between positive and
negative feedback as well as the increase of positive feedback over time. We
continue the work reported in earlier publications [6, 8] by focusing on questions
raised therein. All of the following experiments are based on a swarm model
inspired by swarm alignment of locusts. These swarms switch between different
aligned states even after having reached high degrees of alignment. Such a special
property is also subject to the following investigations.

1.1 Locust Scenario

The desert locust, Schistocerca gregaria, shows collective motion in the growth
stage of a wingless nymph often called ‘marching bands’ [9]. The collective mo-
tion is expressed in the directional alignment of a majority of locusts, it is
density-dependent, and individuals seem to change their direction as a response
to neighbors [9]. In experiments, the complexity of the collective motion is re-
duced to a pseudo-1-d setting by using a ring-shaped arena. Microscopic [10] and
macroscopic models [11, 6–8] of this behavior have been reported. Here we use the
microscopic model of self-propelled particles by Czirók et al. [10] as our reference
model (henceforth ‘Czirók model’). The system is defined in 1-d space. A parti-
cle i has coordinate xi ∈ [0, C) and discrete, dimensionless velocity ui ∈ [−1, 1].
We refer to particles with velocity ui < 0 as ‘left-goers’ (respectively, ‘right-goers’
for ui > 0). The dynamics of a particle is defined by xi(t+ 1) = xi(t) + v0ui(t)
where v0 is the nominal particle velocity and ui(t + 1) = G(〈u(t)〉i) + ξi con-
siders its interaction with neighbors (subject to noise ξi uniformly distributed
over [−η/2, η/2]). The local average velocity 〈u(t)〉i for the ith particle is calcu-
lated over all neighbors located in the interval [xi −Δr, xi +Δr] for perception
range Δr (see Table 1 for the parameter settings). G describes both propulsion
and friction forces

G(u) =

{
(u + 1)/2, for u > 0

(u − 1)/2, for u < 0
. (1)

The initial condition is a random uniform distribution for both the particles’
coordinates xi ∈ [0, C) and their velocities ui ∈ [−1, 1]. In the locust system, the
spatial distribution of particles is biased and undergoes a nontrivial evolution.
Fig. 2a gives a simplified picture of the spatial correlations generated by the

172 H. Hamann and G. Valentini

Czirók model in the form of the pair correlation function. For a given left-goer
ratio, we measure the density of left-goers as a function of the distance from a left-
goer at times t1 = 30 and t2 = 90. We consider swarms with N = 41 particles and
system states with 25 left-goers and 16 right-goers only. The shown results are
averaged over many independent runs. The two horizontal dashed lines give the
expected distribution under the assumption of a uniform distribution of particles.
Early in the simulation, at t1 = 30, a left-goer has an increased density for nearby
left-goers (within distances of about 2.6) in comparison to an assumed uniform
distribution. Accordingly, right-goers have a decreased density for nearby right-
goers due to symmetry. Later in the simulation, at t2 = 90, left-goers have an
increased density of nearby left-goers for even longer distances of up to about 6.0
and as a consequence a decreased density for the remaining arena (accordingly for
right-goers). These spatial correlations in the particle distributions are discussed
next and in Sec. 4 we also interpret the temporal evolution of these correlations.

2 Models

We give a model to investigate the influence of biased spatial distributions as
indicated above by the pair correlation function. A Markov chain model for two
system variables is introduced to model the above mentioned second feature of
the system, for which we choose the neighborhood size. We present an urn model
that is able to represent the relevant spatial features and a mathematical model
of the underlying feedback processes.

2.1 Well-Mixed and Biased Spatial Distributions

We model the collective decision-making process using Markov chains. A simple
model for collective decision with only one state variable was reported before [6,
8]. In the locust scenario, we count left-goers L (without loss of generality) and
get a set of N + 1 states: {0, 1, . . . , N}. As simplifying assumptions, we ignore
that the system might stay within the current state (i.e., no self-loops) and
that we might have changes in the left-goer number of more than one particle
within a small time interval. Without loss of generality, we focus exclusively on
transitions that are increasing the number of left-goers P (L → L+1) due to the
symmetry P (L → L + 1) = 1− P (L → L − 1) for L ∈ {1, 2, . . . , N − 1}. These
transition probabilities are measured using the Czirók model (see Fig. 1a).

An abstract model that only counts left-goers is not representing space, and
therefore, implicitly assumes for the agents a well-mixed distribution in the space
independent of their internal state (e.g., heading, opinion). However, swarm sys-
tems typically rely on spatial features and show non-homogeneous distributions
of agents [12]. In the locust scenario, the first priority for the swarm is to achieve
alignment which is generally independent of agents’ positions. However, locusts
seem to depend heavily on spatial features such as the number of neighbors [7].
In the following, we briefly investigate the difference between well-mixed systems
and systems whose agents’ spatial distributions are biased by agents’ headings.

Swarm in a Fly Bottle 173

 0

 0.5

 1

 0 10.5 21

L

P
(L

→
L
+

1
)

(a) Czirók model, transition probabilities

 0

 0.5

 1

 0 10.5 21

L

ε

(b) Czirók model, left-goer edge ratio

 0

 0.5

 1

 0 10.5 21

L

P
(L

→
L
+

1
)

N/C = 0.3

N/C = 1

(c) well-mixed model, transition probabili-
ties for different agent densities

 0

 0.5

 1

 0 10.5 21

L

ε

(d) well-mixed model, left-goer edge ratio

 0

 0.5

 1

 0 10.5 21

L

P
(L

→
L
+

1
)

N/C = 0.3

N/C = 1

(e) bias model, transition probabilities

 0

 0.5

 1

 0 10.5 21

L

ε

N
/C

=
0.3

N
/C

=
1

(f) bias model, left-goer edge ratio

Fig. 1. Transition probabilities P (L→ L+1) and left-goer edge ratio ε using the Czirók
model and two methods of initially positioning agents following a random uniform
distribution or a special biased distribution(N = 21)

For the following experiment, we initially place the agents by sampling from a
uniform distribution and calculate the updates in agent directions ui according
to the Czirók model. We simulate only one time step, and consequently, agents’
positions are not correlated due to earlier dynamics. Fig. 1c shows the result-
ing transition probabilities for two agent densities (N/C ∈ {0.3, 1.0}) based on
2× 105 samples each. Agents’ density influences the transition probabilities con-
siderably. In addition, we note qualitative differences in the shapes of the curves
compared to Fig. 1a.

Next, we define a measure capable to represent an important spatial feature.
The spatial distribution of agents induces a graph. The existence of an edge is

174 H. Hamann and G. Valentini

simply determined by checking whether two agents are mutually within their
perception range Δr. The set of agents with whom an agent shares an edge
defines also its neighborhood and the size of this set is its neighborhood size.
To define our measure we count ‘left-goer edges’ which are edges that contain
at least one left-goer. The set of left-goer edges EL is defined by EL = {e|e =
(e1, e2) with e1 and/or e2 is left-goer}. The definition of the set of right-goer
edges Er is symmetrical. Our measure is the left-goer-edge ratio ε which is
calculated based on the set sizes: ε = |EL|/(|EL|+|ER|). The edge ratio ε ∈ [0, 1]
can be interpreted as an indicator of how the neighborhood sizes (i.e., node
degrees) are distributed between left-goers and right-goers. If the neighborhood
size averaged over all left-goers equals that averaged over all right-goers, then
we have edge ratio ε = 0.5. If the average neighborhood size of left-goers is
bigger than that of right-goers, then we have edge ratio ε > 0.5. If right-goer
neighborhoods are bigger, then ε < 0.5. We measure the edge ratio as a function
of time for the Czirók model by averaging over 2×105 samples. Fig. 1b shows the
presence of bigger neighborhood sizes for left-goers in case of a global majority of
left-goers (L > N/2, for swarm size N) and of smaller neighborhood sizes when
left-goers are outnumbered (L < N/2). For the well-mixed simulation we do the
same measurements as shown in Fig. 1d. For both densities the edge ratio scales
linearly ε(L) = L/N as expected due to the unbiased well-mixed distribution of
agent positions. Hence, when well-mixed distributions are assumed, this spatial
features of the Czirók model are ignored.

Next, we consider how the well-mixed simulation can be modified to introduce
a spatial bias that results in a non-linear edge ratio ε(L). A simple constructive
approach to influence the edge ratio is to position the agents of the current
majority in clusters of two. To create clusters of two, we position two agents from
the majority group at the exact same position. Agents are initially positioned
according to this procedure and their directions ui are updated for one time step.
Averaging over many samples gives the resulting transition probabilities and
edge ratio which are shown in Fig. 1e and f for two densities (N/C ∈ {0.3, 1.0}).
The biased positioning of agents influences both the edge ratio and transition
probabilities. The increased density from 0.3 to 1.0 almost only introduces a
downscaling of the edge-bias by a factor of about 0.45.

2.2 Markov Chain Model for Two System Variables

We extend the Markov chain model reported before [6, 8] by considering as
second state variable the average neighborhood size N ∈ {1, . . . , N} over all
agents (with perception range Δr). Fig. 2b shows an example of the resulting
chain for swarm size N = 3. We get (N + 1)N states for swarm size N . For
simplicity, we ignore again that the system might stay within the current state,
that a concurrent change of both features might occur, and we also ignore that we
might have changes in the left-goer number or neighborhood size of more than
one within a small time interval. For any given state (L,N), we measure the
probability of observing a transition that increases/decreases the number of left-
goers, P (L → L ± 1|(L,N)), and the probability of observing a transition that

Swarm in a Fly Bottle 175

increases/decreases the neighborhood size, P (N → N ± 1|(L,N)). In this way
we obtain a periodic Markov chain of period two due to the absence of self-loops
in the chain. This kind of Markov chains does not converge to one stationary
distribution but jumps between two stationary distributions: one for odd time
steps and one for even time steps. We calculate a unique limiting distribution
of the process by taking the mean of the two steady-state distributions of the
chain. The analysis presented at the end of Sec. 3 is based on the computation
of such limiting distributions.

2.3 Urn Model

We define an urn model that represents most of the relevant features of the locust
system, especially those that are due to spatial biases. Our aim is to develop a
model that is simpler and faster to simulate than the Czirók model but still
represents the qualitative key features of this system. The urn model consists
of 3 urns: main, edges, and resource. Urn main represents the number of left-
and right-goers in the swarm and contains a constant number of N marbles.
Urn edges represents an average neighborhood and contains a variable number
of marbles E which represents the neighborhood size and the edge ratio. Urn
resource provides additional marbles to increase the neighborhood size E and
therefore also holds a variable number of marbles. At each round, the drawing
process follows four stochastic rules (see Table 2 for used parameters).

Rule 1. We draw E times from edges with replacement (if E is even we do
E + 1 draws to avoid treatment of tie-breakers) and count the left-goers λ and
right-goers ρ that we draw. Next, we draw one marble from main. If λ > ρ and
we have drawn a right-goer from main, then we put a left-goer back to main.
If λ < ρ and we have drawn a left-goer from main, then we put a right-goer
back to main. Otherwise, that is, λ < ρ and we have drawn a right-goer, we do
not exchange the marble and put it back in main (accordingly for λ > ρ and
left-goer). This first drawing rule represents the actual decision process of an
agent based on counting neighboring agents and a majority rule.

Rule 2. This second drawing rule is executed at each round only with a prob-
ability of Pnsize. We draw E times from edges with replacement (if E is even
we do E + 1 draws) and count the left-goers λ and right-goers ρ that we draw.
Next, we do min(λ, ρ) + 1 random experiments: with probability Pincr we move
a left-goer or a right-goer (with equal probability) from resource to edges if
possible. Finally we do E(max(λ, ρ)/N − cdecr) random experiments and move
with probability Pdecr a left-goer or a right-goer (with equal probability) from
edges to resource if possible. This rule models the dynamics of the neighborhood
size. Big neighborhoods increase their size faster than small neighborhoods for
a balanced distribution of left- and right-goers. For unbalanced distributions,
neighborhoods tend to decrease their size.

Rule 3. We draw one marble from main. If it is a left-goer, we replace a right-
goer in edges with a left-goer (if possible) or vice versa in the case of a right-goer

176 H. Hamann and G. Valentini

(positive feedback). This third drawing rule is executed in each round only with
a probability of Pnoise.

Rule 4. We draw one marble from main. If it is a left-goer, we replace a left-goer
in main with a right-goer (if possible) or vice versa in the case of a right-goer
(negative feedback). This fourth drawing rule is executed in each round only
with a probability of Pnoise. These two last rules implement noise. They are
executed with the same probability but the positive feedback operates on edges
and negative feedback operates on main.

2.4 Mathematical Model of Feedbacks

We define a mathematical description of the above urn model. A detailed model
would not allow for concise equations, therefore, we restrict our attention to the
main features. We ignore the dynamics of urn edges except for the total number
of marbles E which gives the average neighborhoods size N . Our main focus
is to model the dynamics of urn main. We assume that the ratio of left-goers
in the neighborhood (edges) is identical to the ratio of left-goers m = L/N in
main and that E = N is odd. For N marbles, of which mN are left-goers and
(1−m)N are right-goers, the probability to draw a majority of left-goers is

P left
maj =

∑
n∈{�N

2 �,...,N}

(
N
n

)
mn(1 −m)N−n (2)

and the probability to draw a majority of right-goers is

P right
maj =

∑
n∈{�N

2 �,...,N}

(
N
n

)
(1−m)nmN−n. (3)

Following a heuristic approach, the average change Δm of left-goers within one
time step is modeled as

Δmh(N ,m) = (1−m)P left
maj −mP right

maj − Pnoise(2m− 1), (4)

whereas the first two terms model the positive feedback effect implemented by
rule 1. An increases (respectively, decrease) in the number of left-goers results
from drawing a right-goer while having a majority of left-goers. Besides, the
third term models the negative feedback effect of rule 4.

As a second alternative, we model the average change Δm of left-goers with
a feedback-based approach as reported in [6, 8]. That is, we neglect the actual
processes causing positive and negative feedback in the the urn model and we
focus instead on the probability of positive feedback PFB(N ,m). We get

ΔmFB(N ,m) = 1− 2((1− PFB(N ,m))P left
maj + PFB(N ,m)P right

maj). (5)

The probability of positive feedback is calculated by equating and solving the
right hand sides of eqs. 4 and 5 which yields

PFB(N ,m) = −(2m−15P left
maj+5mP left

maj+5mP right
maj +4)/(10P left

maj−10P right
maj). (6)

Swarm in a Fly Bottle 177

With increasing N , we obtain polynomials of increasing degree. The first 3 are:
PFB(N = 1,m) = 2/5, PFB(N = 3,m) = 3/4 − 7/(20(−2m2 + 2m + 1)) and
PFB(N = 5,m) = 3/4− 7/(20(6m4− 12m3+4m2+2m+1)). Fig. 2c shows the
behavior of eq. 6 when N ∈ {1, 3, . . . , 27}. A ‘negative exponential’ increase of
positive feedback intensity with increasing neighborhood size N is clearly visible.
A similar result was reported in [8, Fig. 8b] for a different swarm experiment
showing temporal dependency. In the locust scenario, the neighborhood size also
increases over time (see Section 3). Hence, the model given by eq. 6 indirectly
confirms the increase of positive feedback in swarm systems as reported in [6, 8].

3 Results

We investigate the Czirók model and the urn model with focus on the key find-
ings that the average neighborhood size and the edge ratio are relevant features
of the locust scenario. In particular, we investigate measured transition proba-
bilities by interpreting both models as Markov chains (Sec. 2.2). An overview
of the complete system dynamics is given by vector fields in Figs. 3a and b for
N = 41 (106 samples for Czirók model and 5× 106 for urn model). These plots
are based on the transition probabilities which are put in relation to each other.
Furthermore, the horizontal and the vertical lengths of the arrows were normal-
ized individually to maximize readability (i.e., vector field plots are qualitative,
the quantitative data is given in Figs. 3c-f). In the case of the Czirók model, as a
consequence of the initial random uniform distribution of agents over the whole
ring, the neighborhood size N is initially small (2ΔrN/C ≈ 1.2). Similarly, urn
edges initially holds one left-goer and one right-goer. In the initial unordered
state there are approximately the same number of left-goers and right-goers
(L ≈ N − L). Hence, both systems start in the area at the lower middle of
the vector field. First, the neighborhood size increases. Only later, once a bigger
neighborhood size is formed, the system either increases or decreases in the num-
ber of left-goers L until reaching a stable state, respectively, (L,N) ≈ (35, 8) or
(L,N) ≈ (6, 8).

Projections of the data given in Figs. 3a and b are given in diagrams c-f.
Figs. 3c and d give the transition probabilities for an increase in L for all N
for Czirók and urn model and e and f give the transition probabilities for an
increase in N for all N . Some curves are noisy because the corresponding con-
figurations occur very rarely. We ignore statistical significance within this qual-
itative study (big quantitative differences between the two models are obvious).
Positive feedback is found within approximately the same intervals in Figs. 3e
and f (similarly for negative feedback). Noticeable is the extreme positive feed-
back for 6 < L < 18 and 23 < L < 35 for the Czirók model seen in Figs. 3c
and for 12 < L < 29 in e. Figs. 3g and h give the left-goer edge ratio ε for
different times. The edge ratio of the urn model is more dynamic because the
urn model is always started with one left-goer and one right-goer, that is, an
edge ratio of ε = 0.5. The initial edge ratio for the Czirók model, in turn, is the
direct result of the uniform distribution of agents which gives ε(L) = L/N .

178 H. Hamann and G. Valentini

parameter sym. value
swarm size N {17, 21, 25, 33,

41, 49, 57, 61}
circumference C 70 (21)
nominal speed v 0.1

perception range Δr 1.0
noise η 2.5

Table 1: Used parameters for the

Czirók model.

parameter symbol value
prob. neighbh. rule (rule 2) Pnsize 0.2
prob. neighbh. size increase Pincr 0.18
prob. neighbh. size decrease Pdecr 0.007
offset neighbh. size decrease cdecr 0.15

probability of noise Pnoise 0.2

Table 2: Used parameters for the

urn model.

 0.25

 0.375

 0.5

 0.625

 0.75

 0 10 20 30

left-goers

right-goers

distance

ra
ti

o
le

ft
-

&
ri

g
h
t-

g
o
er

s

t1 = 30

t2 = 90

(a) Pair correlation function: measured den-
sity of left-/right-goers at distances from a
particle of the same kind.

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

(b) Markov chain for two state vari-
ables: number of left-goers L and the
average neighborhood size N (swarm
size N = 3).

 0.4

 0.5

 0.6

 0.7

 0 0.25 0.5 0.75 1

m

P
F
B

N = 1

N = 3

N = 5

N = 27

(c) Analytically obtained probabilities of
positive feedback (eq. 6) for neighborhood
sizes N ∈ {1, 3, . . . , 27}.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

17 25 33 41 49 57

urn model

Czirok model

N

τN

(d) Mean first passage time τN over swarm
size N for both models fitted to a exp(cx)xb,
error bars give standard deviation.

Fig. 2. Pair correlation, Markov chain, probability of feedback and mean first passage
time

Finally, we investigate the scalability of the mean switching time between
stable modes of the system. We look at the mean time τN necessary to move from
an initial set of states with a majority of right-goers to a final set of states where
left-goers lead the system. We consider swarm systems whose transient dynamics
have already vanished and thus settled down to their limiting behavior. We define
the set of initial (respectively, final) states looking at the limiting distribution
of the process (computed from the Markov chain defined in Sec. 2.2). We select
states with a majority of right-goers (respectively, left-goers) in ascending order

Swarm in a Fly Bottle 179

 10

 20

 0 20 40

L

N

(a) Czirók model, vector field

 10

 20

 0 20 40

L

N

(b) urn model, vector field

 0

 0.25

 0.5

 0.75

 1

 0 20 40

L

P
(L

→
L
+

1
) N = 2

N = 25

(c) Czirók model, transition probabilities
number of left-goers L (alignment)

 0

 0.25

 0.5

 0.75

 1

 0 20 40

L

P
(L

→
L
+

1
)

N = 2

N = 30

(d) urn model, transition probabilities num-
ber of left-goers L (alignment)

 0

 0.25

 0.5

 0.75

 1

 0 20 40

L

P
(N

→
N

+
1
)

N = 4

N = 25

(e) Czirók model, transition probabilities
neighborhood size N

 0

 0.25

 0.5

 0.75

 1

 0 20 40

L

P
(N

→
N

+
1
)

N = 6

N = 30

(f) urn model, transition probabilities neigh-
borhood size N

 0

 0.25

 0.5

 0.75

 1

 0 20 40

L

ε

t = 100

t = 0

(g) Czirók model, left-goer edge ratio ε

 0

 0.25

 0.5

 0.75

 1

 0 20 40

L

ε t = 0

t = 100

(h) urn model, left-goer edge ratio ε

Fig. 3. Vector fields, transition probabilities, and edge ratio for the Czirók and urn
model (N = 41, 106 samples for Czirók model and 5× 106 for urn model)

180 H. Hamann and G. Valentini

of probability up to an overall joint probability of the set of 0.1. This corresponds
to a majority of right-goers where L/N ≈ 0.15 and a majority of left-goers with
L/N ≈ 0.85, while N ∈ [5.8, 14.2] for the urn model and N ∈ [4, 10.6] for the
Czirók model. To compute the mean switching time τN , we first lump together
all final states with majority of left-goers in a single state and then we make
this state absorbing. The mean switching time of our original chain corresponds
to the absorption time of a process in the modified chain that starts with an
initial distribution proportional to the limiting probabilities of the initial states
selected so far. Fig. 2d shows the mean switching time τN when the swarm size
N increases. The urn model’s qualitative behavior is similar to that of the Czirók
model for all swarm sizes, with the latter experiencing shorter switching times.
For both models, the mean switching time scales approximately exponentially
with swarm size thus showing that bigger swarms form more stable majorities.

4 Discussion and Conclusion

This paper started from the result of earlier publications [6, 8] that, in swarm
systems, positive feedback builds up in a transient phase independently of the
order parameter (here L) until maximal positive feedback is reached. In turns,
this indicates the existence of a second feature that controls the increase in
positive feedback. We identify the average size of agents’ neighborhoods as this
second feature and, in addition, we detect the relevance of the edge ratio. We
extended the Markov-chain approach introduced in [6, 8] to model the second
state variable and therefore to count both left-goers and average neighborhood
size. Although it was necessary to consider the original spatial features of the
locust scenario, we extended the urn model concept [6, 8] to mimic spatiality,
particularly, neighborhood size and edge ratio.

The vector fields depicted in Figs. 3a and b provide a clear picture of what
we call the ‘fly-bottle effect’1. The swarm system is initialized with L/N ≈ 0.5
and N < 5. At first, there is no positive feedback concerning the number of
left-goers L (Figs. 3c and d) but the average neighborhood size N increases (in
analogy to the fly bottle: ‘entering from below’, Figs. 3e and f). Once N ≈ 10
or bigger, a strong positive feedback emerges that easily breaks the symmetry
given by L/N ≈ 0.5 and drives the system towards L/N ≈ 0.12 or L/N ≈
0.88 (fly-bottle analogy: phototaxis behavior). For these values, however, there
is negative feedback on N which decreases to N ≈ 8. Finally, positive and
negative feedbacks balance out and the system converges to either L/N ≈ 0.15
or L/N ≈ 0.85 generating a lock-in effect (‘the fly is trapped’). This lock in
effect is only temporary because the positive feedback operating on L for N ≈ 8
is much weaker than for N > 8. In the long run, the system shows a switching
behavior between the two lock-ins. However, such a change in majority becomes
more infrequent with increasing swarm size N as also seen in natural locusts [9].
The fly-bottle effect, that relies on a second feature serving as a kick starter for

1 A fly bottle is a traditional device made of clear glass to passively trap flying insects
that enter it from below and cannot escape because of their phototaxis behavior.

Swarm in a Fly Bottle 181

the whole system, seems to have a certain generality in swarm systems. Indeed,
the increase of positive feedback during a transient phase was also reported
for other systems such as density classification and aggregation controlled by
BEECLUST [6, 8].

An additional interpretation of the fly-bottle effect with reference to Fig. 2a
is that the secondary feature is generating only short-ranged correlations early
on but not global correlations. These short-ranged correlations seem to be side-
effects, such as small clusters of agents in the investigated locust scenario. The
long-range correlations seen later in the system are then an effect of the primary
feature (here L) and probably could neither be generated by the one or the other
feature alone. Future research work will focus on the questions whether the fly-
bottle effect is generally observed in swarm systems and, if so, whether it can be
used to design swarm behaviors for artificial swarm systems.

Acknowledgments. This work was partially supported by the European Re-
search Council through the ERC Advanced Grant “E-SWARM: Engineering
Swarm Intelligence Systems” (contract 246939).

References

1. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organizing Biological Systems. Princeton University Press, NJ (2001)

2. Crick, F.: Diffusion in embryogenesis. Nature 225(5231), 420–422 (1970)
3. Noy-Meir, I.: Stability of grazing systems: an application of predator-prey graphs.

The Journal of Ecology, 459–481 (1975)
4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to

Artificial Systems. Oxford Univ. Press, New York (1999)
5. Arnold, L.: Random Dynamical Systems. Springer (2003)
6. Hamann, H.: Towards swarm calculus: Universal properties of swarm performance

and collective decisions. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp.
168–179. Springer, Heidelberg (2012)

7. Hamann, H.: A reductionist approach to hypothesis-catching for the analysis of
self-organizing decision-making systems. In: 7th IEEE Int. Conf. on Self-Adaptive
and Self-Organizing Systems (SASO 2013), pp. 227–236. IEEE (2013)

8. Hamann, H.: Towards swarm calculus: Urn models of collective decisions and uni-
versal properties of swarm performance. Swarm Intelligence 7(2-3), 145–172 (2013)

9. Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R.,
Simpson, S.J.: From disorder to order in marching locusts. Science 312(5778), 1402–
1406 (2006)

10. Czirók, A., Barabási, A.L., Vicsek, T.: Collective motion of self-propelled particles:
Kinetic phase transition in one dimension. Phys. Rev. Lett. 82(1), 209–212 (1999)

11. Yates, C.A., Erban, R., Escudero, C., Couzin, I.D., Buhl, J., Kevrekidis, I.G.,
Maini, P.K., Sumpter, D.J.T.: Inherent noise can facilitate coherence in collective
swarm motion. Proc. Natl. Acad. Sci. USA 106(14), 5464–5469 (2009)

12. Hamann, H.: Space-Time Continuous Models of Swarm Robotics Systems: Sup-
porting Global-to-Local Programming. Springer, Berlin (2010)

Temporal Task Allocation

in Periodic Environments

An Approach Based on Synchronization

Manuel Castillo-Cagigal1, Arne Brutschy2, Alvaro Gutiérrez1,
and Mauro Birattari2

1 ETSIT, Universidad Politécnica de Madrid, Madrid, Spain
manuel.castillo@upm.es, aguti@etsit.upm.es

2 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{arne.brutschy,mbiro}@ulb.ac.be

Abstract. In this paper, we study a robot swarm that has to perform
task allocation in an environment that features periodic properties. In
this environment, tasks appear in different areas following periodic tem-
poral patterns. The swarm has to reallocate its workforce periodically,
performing a temporal task allocation that must be synchronized with
the environment to be effective.

We tackle temporal task allocation usingmethods and concepts that we
borrow from the signal processing literature. In particular, we propose a
distributed temporal task allocation algorithm that synchronizes robots of
the swarm with the environment and with each other. In this algorithm,
robots use only local information and a simple visual communication pro-
tocol based on light blinking. Our results show that a robot swarm that
uses the proposed temporal task allocation algorithm performs consider-
ably more tasks than a swarm that uses a greedy algorithm.

1 Introduction

In dynamical environments, real-time resource allocation commonly involves sit-
uations in which events occur periodically, with a certain frequency [14]. Peri-
odicity can originate from both natural and artificial phenomena, for example,
earth’s rotation and revolution, tides, cyclic production processes, and customer
demands. In artificial systems, the designer typically wishes to allocate resources
so as to increase the system performance and achieve predefined goals [11]. To
this end, it is paramount that information on the nature of the periodic events
involved is available during the design process [9].

Task allocation as studied in swarm robotics [5] is a class of resource allo-
cation problems: the workforce of the swarm can be seen as the resource to be
allocated—see [2] for a recent review of the swarm robotics literature including
works on task allocation. In this paper, we study a case in which a robot swarm
needs to perform task allocation in an environment that features periodic proper-
ties. Specifically, the periodicity of the environment lies in the temporal pattern

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 182–193, 2014.
© Springer International Publishing Switzerland 2014

Temporal Task Allocation in Periodic Environments 183

in which new tasks appear. To operate effectively, the swarm needs to reallocate
its workforce according to the periodicity of the environment. We call temporal
task allocation a task allocation that takes into account temporal properties of
the environment.

To exploit environments with periodic properties, a task allocation algorithm
needs to adapt to the periodicity of the environment. In this paper, we propose
a novel temporal task allocation algorithm that adapts to the environment. This
algorithm is based on concepts that we borrow from the signal processing and
collective synchronization literature.

Collective synchronization has been previously observed and studied in biolog-
ical systems (e.g., [6]). In these systems, the components converge to a common
phase and oscillate in unison. Collective synchronization is usually modeled via
coupled oscillators [15]. A model that is commonly adopted is the one proposed
by Kuramoto [8]. A direct application of Kuramoto’s model in swarm robotics
is not appropriate because it would require that each robot knows with which
phase the others oscillate. Other models exist that do not require that a robots
knows the phase of the others. Examples are models based on firefly synchro-
nization and chorusing mechanisms [4,7], which are commonly based on local
communication.

In this paper, we propose a temporal task allocation algorithm in which robots
synchronize with each other and with the environment. The synchronization with
the environment is the novelty of our work.

2 Environment and Robots

We consider a rectangular environment that is divided in three areas: workspace
A, workspace B, and a transition area. Fig. 1a shows a schematic representation
of the environment. Tasks appear either in workspace A or B, following a tempo-
ral pattern. Robots have to travel from workspace to workspace to attend tasks
where they appear. The workspaces are separated by the transition area: a robot
that moves from one workspace to the other has to cross the transition area. The
time spent by the robot i to cross the transition area is called switching cost ξis.
It is measured in time units and is independent for each robot. Due to possible
collisions with other robots, ξis is a random variable.

We use an abstracted representation of tasks: to carry out a task, a robot has
to reach the location at which the task appeared and stay there for a certain
amount of time. The time ξe that a robot spends working on a task is fixed.
Tasks have a life time ξl after which they expire: if a task remains unattended
for longer than ξl, it is removed from the environment. At time k, NA[k] and
NB[k] are the number of tasks present in workspace A and B, respectively. The
amount of tasks in each workspace is bounded by the task capacity Γ , which is
the same for the two workspaces.

The periodicity of the environment that we consider in this paper lies in the
temporal pattern with which tasks appear. During a period of time TA, new tasks
appear in workspace A. After the end of TA, new tasks appear in workspace B

184 M. Castillo-Cagigal et al.

W
o
rk
sp
a
ce

A

W
o
rk
sp
a
ce

B

Transition Area

: Robot

Switching Cost

(a)

k

s
e
n
v
[k
]

I
A

B

T env

k

N
A
[k
]

II
Γ

k

N
B
[k
]

III
Γ

TA TB

(b)

Fig. 1. Environment definition. a) Schematic representation of the arena, with
workspaces A and B in white and transition area in gray. b) Environment period
and location of the task appearance example: I) signal senv [k] of task appearance with
period T env, II) number NA[k] of tasks in workspace A, III) number NB [k] of tasks in
workspace B.

for a period of time TB. After the completion of TB, new tasks appear again
in workspace A, and so on. The full cycle has a period T env = TA + TB. In
this paper, we assume TA = TB. The location of the appearance of tasks in the
environment can be described as a square signal denoted by senv[k] that takes
a value of A or B. An example of T env and senv[k] is shown in Fig. 1b-I.

Regardless of the workspace, the tasks appear in the environment with a
certain incoming task rate λ. If the task capacity Γ of a workspace is reached,
additional tasks are dismissed. When tasks no longer appear in a workspace,
the number of tasks in this workspace decreases as tasks expire. This effect can
be observed in Fig. 1b-II and 1b-III for both workspaces: the number of tasks
increases until Γ is reached and decreases after new tasks cease to appear.

The robots move in the arena between workspaceA andB in order to attend to
the tasks. Robots act independently of each other, but are able to exchange sim-
ple messages via short-range line-of-sight communication. The number of robots
in a workspace are the workforce allocated to this workspace by the swarm. In
order to maximize performance, the swarm needs to allocate its complete work-
force to the workspace where tasks are available. To achieve this goal, the robots
need to switch between workspaces so that their movement is synchronized with
the temporal pattern of task appearance, performing a temporal task allocation.

3 Collective Synchronization Algorithm

In this section, we present the collective synchronization (CS) algorithm. The
goal of CS is to synchronize the movement of the robots between workspaces
with the appearance of tasks in the environment. In CS, each robot i has an
internal timer τ i that governs its transitions between workspaces. This timer

Temporal Task Allocation in Periodic Environments 185

increases each time step and resets to zero when it reaches the period T i of
robot i. The robot switches between workspaces depending on τ i:

si[k] =

⎧⎨
⎩

A τ i ≤ T i/2

B τ i > T i/2
(1)

This equation produces a square signal si[k] as shown in Fig. 2a-I. The timer
τ i might not be synchronized with the appearance of tasks in the environ-
ment. The difference between τ i and task appearance is τ̄ i, defined in the range
[−T i/2, T i/2].

CS achieves synchronization in two steps. First, each robot i evaluates the
extend to which it is synchronized with the environment. This is measured by
the fraction of time during which the robot finds tasks in its current workspace—
see Sect 3.1. Second, each robot i modifies its internal timer τ i and period
T i to synchronize with the environment—see Sect. 3.2 and 3.3. A robot i is
synchronized with the environment when T i = T env and τ̄ i = 0. Additionally, CS
features a visual communication protocol to avoid physical interference between
robots—again, see Sect. 3.2.

3.1 Assessment of Synchronization

Each robot i assesses its synchronization with the environment by measuring
the correlation between its internal timer and the appearance of tasks. Robot
i switches between workspaces every T i/2, where T i is updated by CS and
is therefore not constant. Let li be a sequential number that identifies switches
between workspaces for robot i, and let kli be the moment in time at which switch
li happens. Let W i[li] be the amount of time spent in a workspace by robot i
between switch li − 1 and li, as opposed to transitioning between workspaces.
See Fig. 2a-II.

Robot i can perform a task when it is in a workspace that contains available
tasks. Let wi[k] a signal that takes the value 1 if robot i is working on a task at
instant k and 0 if it is not. See Fig. 2a-III.

In order to assess its synchronization with the environment, robot i should
ideally compute the correlation between the signal si[k] of its internal timer and
the signal senv [k] of the actual appearance of tasks:

gi[k] =

⎧⎨
⎩

1 if senv [k] = si[k]

0 if senv [k] �= si[k]
(2)

gi[k] can be integrated over a time interval yielding a cross-correlation by which
robots can evaluate the similarity of the two signals during the chosen interval.
Let ri[li] define the cross-correlation between these signals during W i[li]:

ri[li] =
1

W i[li]

W i[li]∑
κ=0

gi [kli − κ] (3)

186 M. Castillo-Cagigal et al.

ks
i
[k
]

I
A

B

τ̄ i T i
Blink Blink

kR
o
b
o
t

L
o
ca
ti
o
n

II
A

B

W i[li]

W i[li + 1]

k

w
i
[k
]

III
1

0
kli−1

li − 1

kli

li

kli+1

li + 1

(a)

k

s
e
n
v
[k
]

A

B

T env

kR
o
b
o
t

L
o
ca
ti
o
n A

B

W i[li]

W i[li + 1]

k

g
i
[k
]

1

0

ρbeg[l
i] / ρend[l

i] 0.85 0.0 1.0 0.0

ρ[li] 0.425 0.5

(b)

Fig. 2. Example of robot operation and cross-correlation of signals. a) Robot operation:
I) signal si[k] of the internal timer τ i of robot i; II) robot location in the environment
and amount of time W i spent in a workspace (as opposed to transitioning between
workspaces); III) work signal wi[k]. b) Cross-correlation and partial cross-correlation,
from top to bottom: signal senv [k] of task appearance; actual robot location; correlation
of senv [k] and si[k].

If robot i is perfectly synchronized with the environment, the two signals are
identical; that is, ri[li] = 1, ∀li. Typically, the two signals are not identical and
ri[li] takes values lower than 1 for any value of li.

Unfortunately, ri[li] can not be directly measured because senv [k] is not known
by the robots. Nevertheless, we can approximate ri[li] using the work signal
wi[k]: if robot i is performing a task, its internal timer and the location of task
appearance match. Hence, we assume wi[k] ≈ gi[k]. Let ρi[li] define the cross-
correlation between si[k] and wi[k] during W i[li]:

ρi[li] =
1

W i[li]

W i[li]∑
κ=0

wi [kli − κ] (4)

Contrarily to ri[li], ρi[li] can be measured by robot i and provides it with an
estimated assessment of the synchronization between its internal timer and task
appearance.

3.2 Synchronization of the Internal Timer

To achieve internal timer synchronization with senv[k], robot i uses the cross-
correlation ρi[li] defined in (4). We additionally define two partial cross-
correlations:

ρibeg [l
i] =

2

W i[li]

W i[li]∑
κ=W i[li]/2

wi [kli − κ]

ρiend [l
i] =

2

W i[li]

W i[li]/2∑
κ=0

wi [kli − κ]

(5)

Temporal Task Allocation in Periodic Environments 187

where ρibeg [l
i] is computed for the first half of W i[li] and ρiend [l

i] for the second.
The comparison between these two quantities measures the balance of work
between the two halves of W i[li]: ρibeg �= ρiend indicates that robot i is working

more during one half of W i[li] than the other. See Fig. 2b.
Robot i uses the relationship between ρibeg and ρiend to shift its internal timer

as follows:

Δτ i[li] =
W i[li]

2

(
ρibeg [l

i]− ρiend [l
i]
)

(6)

where Δτ i[li] denotes the timer modifier of robot i at switch li, which occurs at
the end of W i[li].

Collective Synchronization: Additionally to (6), we propose a mechanism
for collective synchronization that is based on short-range line-of-sight commu-
nication. Communication is implemented using a simple visual protocol: a robot
emits a light blink when its internal timer has finished a full cycle, thereby signal-
ing to other robots that its timer is zero—see Fig. 2a-I. Other robots perceiving
this light blink adjust their timers to achieve collective synchronization.

Upon perceiving a light blink, robot i shifts its internal timer as follows:

Δτ i =

⎧⎨
⎩

0.1
(
βT i − τ i

)
if τ i ≤ T i/2

0.1
(
T i − βT i − τ i

)
if τ i > T i/2

(7)

where β ∈ [0, 0.5) is a parameter.
In case βT i < τ i < T i−βT i, robot i shifts its timer such that its reset point is

closer to one of the emitting robot. This provokes a coupling and clustering of the
timers. On the level of the swarm, the cluster of timers tends to synchronize with
senv[k] because each timer is modified by (6). On the other hand, if τ i < βT i

or τ i > T i − βT i, robot i shifts its timer so that its reset point is farther from
the one of the emitting robot. This avoids that timers are too closely clustered,
which would cause all robots to cross the transition area at the same time,
thereby creating physical interference. Notice that in (7) there is no reference to
an absolute time as robots do not share a common time reference and the visual
communication protocol is asynchronous.

3.3 Period Synchronization

To achieve period synchronization of signals si[k] and senv[k], robot i uses
two statistics of the cross-correlation ρi[li]: the exponential moving average
avg
(
ρi[li]

)
and the variance var

(
ρi[li]

)
. These statistics are updated with the

current value of the cross-correlation ρi[li], using a memory factor η:

avg
(
ρi[li]

)
= η avg

(
ρi[li − 1]

)
+ (1 − η)ρi[li]

var
(
ρi[li]

)
= η var

(
ρi[li − 1]

)
+ (1− η)

(
ρi[li]− avg

(
ρi[li]

))2 (8)

188 M. Castillo-Cagigal et al.

k

s
e
n
v
[k
]

A

B

kR
o
b
o
t

L
o
ca
ti
o
n A

B

k

g
i
[k
]

1

0

ρ[li] 0.0 1.0 1.0 0.0 0.0

(a)

k

s
e
n
v
[k
]

A

B

kR
o
b
o
t

L
o
ca
ti
o
n A

B

k

g
i
[k
]

1

0

ρ[li] 0.625 0.44

(b)

Fig. 3. Cross-correlation examples for a) T i < T env , where avg
(
ρi[li]

) → 0.5 and
var

(
ρi[li]

)→ 0.25 and b) T i > T env , where avg
(
ρi[li]

)→ 0.53 and var
(
ρi[li]

)→ 0.008.
From top to bottom: location of task appearance (senv [k]), robot location and cross-
correlation.

with η ∈ [0, 1] being a configurable parameter. The higher η, the more relevant
the current value. avg

(
ρi[li]

)
measures the difference between T i and T env : the

closer avg
(
ρi[li]

)
to 1, the smaller the difference is. As avg

(
ρi[li]

)
only indicates

a difference, but not if T i is shorter or longer, we use var
(
ρi[li]

)
to measure

the length of T i in relation to T env : if T i is shorter than T env , var
(
ρi[li]

)
goes

to 1. Figure Fig. 3 illustrates these statistics and their values in two example
situations.

Robot i modifies the period of its internal timer si[k] as follows:

ΔT i[li] = W i[li]
(
finc

(
var
(
ρi[li]

))
− fdec

(
avg
(
ρi[li]

)))
(9)

where finc
(
var
(
ρi[li]

))
and fdec

(
avg
(
ρi[li]

))
are positive functions that increase

and decrease the period, respectively.
We use the following function finc(var

(
ρi[li]

)
) for increasing the period:

finc
(
var
(
ρi[li]

))
= W i[li]αvar

(
var
(
ρi[li]

))2
(10)

where αvar ∈ R is a configurable parameter that regulates the influence of
var
(
ρi[li]

)
on the period. We use the following function fdec

(
avg
(
ρi[li]

))
for

decreasing the period in this paper:

fdec
(
avg
(
ρi[li]

))
= W i[li]αavg

(
1− avg

(
ρi[li]

))2
(11)

where αavg ∈ R is a configurable parameter that regulates the influence of
avg
(
ρi[li]

)
on the period.

4 Experiments

We conduct the experiments in simulation using ARGoS [13]. ARGoS is a
discrete-time physics-based simulation framework whose focus is the simulation

Temporal Task Allocation in Periodic Environments 189

of large robot swarms. The arena that we use in the experiments has the same
layout as shown in Fig. 1a, with a length of 120 cm, a width of 60 cm, and a
workspace width of 30 cm.

For our experiments, we use a swarm of 6 e-puck robots [12], which are ran-
domly distributed in the transition area upon the start of the experiments. We
use the following sensors of the e-puck: proximity sensors for obstacle avoidance,
ground sensors to detect floor color, light sensor for phototaxis and the camera
for task detection and visual communication. We use the wheel actuator with a
maximum speed of 8 cm/s. Additionally, we use the LED actuator to implement
the visual communication protocol.

We represent tasks using a device called task allocation module (TAM) [3]. A
TAM represents a task to be executed by an e-puck robot at a given location
and at a given moment in time. TAMs are programmable booths that signal the
availability of a task to the robots through a set of color LEDs. A robot can work
on the task that is represented by a TAM by driving into it and waiting inside
until ξe has elapsed. We placed 10 TAMs in each workspace; hence, the task
capacity of each workspace is Γ = 10. The time that a robot needs to perform
a task is ξe = 0.5 s. The task life time is ξl = 5 s.

Robots use phototaxis to navigate: a light source identifies the right side of
the arena. Robots navigate towards the light to work in workspace B, and do
the opposite to work in workspace A. Robots can detect the workspace they are
in by reading the color of the floor. When a robot is in a workspace, it perceives
the available tasks by the color of the LEDs of the nearby TAMs. Robot i can
calculate W i[j] by measuring the time at which it arrives in a workspace and the
time at which the internal timer switches to the other workspace. The robot can
sense the work signal wi[k] by the color of the TAMs in its current workspace.

The parameters of the environment are the incoming task rate λ = 10 tasks/s
and the period T env = 80 s. The configurable parameters of CS used for this
example are η = 0.65, αavg = 0.58 and αvar = 41.92. These values have been
obtained through a tuning process using I/F-Race [1,10]. The parameter β =
0.0375 has been obtained by exhaustive search. Initially, the period T i of each
robot i is uniformly sampled from the interval [40, 240], and the initial time
difference between the internal timers and the task appearance τ̄ i is uniformly
sampled from the interval [−T i/2, T i/2].

Figure 4 shows the development of T i, τ̄ i and number of tasks performed
over the duration of the experiment. The synchronization of the periods in the
swarm is shown in Fig. 4a. Notice that T env is constant during the experiment.
We can observe that every T i converges to T env in the first 2500 s. The timer
synchronization is shown in Fig. 4b. We can observe that all τ̄ i converge to
zero. The number of tasks performed by the swarm during the experiment is
a cumulative metric shown in Fig. 4c. We define the performance rate as the
number of tasks performed per second which is the derivate of this metric. In
this example, the robots achieve a performance rate of 0.65 tasks/s.

190 M. Castillo-Cagigal et al.

k (s)

T i (s)

1000 2000 3000 4000 5000

40

80

120

160

200 T env

(a)

k (s)

τ̄ i (s)

1000 3000 5000

100

0

−100

(b)

k (s)

Tasks

1000 3000 5000

600

1200

1800

2400

3000 0.65 tasks/s

(c)

Fig. 4. Development of T i, τ̄ i and number of tasks performed over the duration of
the experiment. a) Periods T i of the robots compared to the period T env. b) Time
difference τ̄ i between the internal timers and the task appearance. c) Number of tasks
performed and final performance rate.

In order to analyze the performance of CS, we compare it with two other
algorithms:

– No-synchronization algorithm (NS): robots using NS have internal timers
for switching between areas, but do not attempt to synchronize with the
environment or with other robots. This means that τ̄ i and T i, which are
randomly initialized, remain unchanged throughout the experiment. This
represents the initial situation of CS. The comparison of CS with NS allows
us to quantify the improvement obtained by synchronizing.

– Greedy algorithm (GR): robots using GR do not switch between workspaces
depending on an internal timer, but on task availability. To this end, robots
switch workspace with a given probability in case they to not find tasks in
their current workspace. The comparison of CS with GR allows us to ob-
serve the difference in task performance between a temporal task allocation
algorithm and an algorithm that is commonly used in task allocation.

Temporal Task Allocation in Periodic Environments 191

k (s)

Tasks

1000 3000 5000

600

1200

1800

2400

3000
0.64 tasks/s

0.53 tasks/s

0.42 tasks/s

CS

GR

NS

(a)

Tasks

1680

2040

2400

2760

3120

CS GR NS

(b)

Fig. 5. Comparison of the performance of CS, NS and GR. a) Average of the number
of tasks performed during the experiments; and final performance rate. b) Boxplot of
the number of task performed by each algorithm during the experiment, based on 15
repetitions per algorithm. The whiskers represent the lowest value still within 1.5 IQR
of the lower quartile, and the highest value still within 1.5 IQR of the upper quartile.

The comparison between algorithms is based on the number of tasks performed
in experiments of 5000 s. We perform 15 experiments for each algorithm.

The average number of tasks performed by the swarm, calculated every second
for each algorithm, is shown in Fig. 5a. Notice that the performance rates of NS
and GR remain constant during the experiment because these algorithms do
not implement a synchronization process. We can observe that GR has a higher
performance rate than NS. This implies that a temporal task allocation algorithm
that is not perfectly synchronized performs less tasks than a greedy algorithm.
Furthermore, we can observe that the performance rate of CS increases over
time due to the synchronization process. At the beginning of the experiments,
CS and NS have a similar performance rate. After 800 s, the performance rate of
CS increases and eventually the number of tasks performed by CS exceeds the
number of tasks performed by NS. Similarly, the number of tasks performed by
CS exceeds the number of tasks performed by GR after 1600 s.

Figure 5b shows a boxplot representation of the number of task performed at
the end of the experiments. The NS algorithm has the highest dispersion because
there is no synchronization; the results strongly depend on the initial conditions.
CS and GR have a lower dispersion than NS as they adapt the behavior of the
robots to the environment, reducing the dependence on the initial conditions.
Notice that the lower whisker of CS is longer than the upper whisker of the GR
algorithm. This implies that the previous deductions made on Fig. 5a are valid.

192 M. Castillo-Cagigal et al.

5 Conclusions

In this paper, we studied task allocation in an environment that exhibits peri-
odic temporal patterns. In such an environment, robots can perform temporal
task allocation to exploit synchronization for improving their task performance.
We have described and analyzed a collective synchronization algorithm that
performs temporal task allocation for robot swarms. In order to analyze the per-
formance of the proposed algorithm, we compared it with a no-synchronization
algorithm and a greedy algorithm. From the results, we can conclude that a
swarm using our algorithm can synchronize with the environment, thereby out-
performing the competing algorithms. The comparison also shows that a tempo-
ral task allocation algorithm without synchronization performs less tasks than
a greedy algorithm. However, an algorithm with synchronization as proposed
by us increases the number of tasks performed by the robots considerably with
respect to a reactive behavior.

In this paper, we applied the concepts of synchronization and signal processing
to task allocation in swarm robotics, with satisfactory results. In the immediate
future, we plan to study the proposed approach on a swarm of real robots. The
potential of our approach opens several possible directions for future research.
One is to study environments that exhibit more complex temporal patterns,
for example, environments in which the task appearance is not only a square
signal but a signal with multiple frequency components. Another direction is
the application of this approach to other resource allocation problems such as
energy management. For example, they can be used to organize the consumption
of a scarce energy resource by a swarm of robots or other autonomous agents
such as electric vehicles.

Acknowledgments. M. Castillo-Cagigal is sponsored by the Spanish Ministry
of Education with a PhD grant (FPU-2010). Arne Brutschy and Mauro Birattari
acknowledge support from the Belgian F.R.S.–FNRS.

References

1. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa
Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HCI/ICCV 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)

3. Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M.,
Birattari, M.: The TAM: abstracting complex tasks in swarm robotics research.
Tech. Rep. TR/IRIDIA/2014-006, IRIDIA, Université Libre de Bruxelles, Belgium
(2014)

4. Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to fault-tolerant swarm
of robots. IEEE Transactions on Evolutionary Computation 13(4), 754–766 (2009)

Temporal Task Allocation in Periodic Environments 193

5. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

6. Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410(6825),
277–284 (2001)

7. Holland, O., Melhuish, C., Hoddell, S.E.J.: Convoying: using chorusing for the
formation of travelling groups of minimal agents. Robotics and Autonomous Sys-
tems 28, 207–216 (1999)

8. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin
(1984)

9. Liu, F., Picard, R.W.: Finding periodicity in space and time. In: Proceedings of the
6th International Conference on Computer Vision, pp. 376–383. IEEE Computer
Society, Los Alamitos (1998)

10. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

11. Martin, H.J.A., de Lope, J., Maravall, D.: Adaptation, anticipation and rational-
ity in natural and artificial systems: computational paradigms mimicking nature.
Natural Computing 8(4), 757–775 (2009)

12. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: Gonçalves, P.J.S., et al. (eds.) Proceedings of the 9th
Conference on Autonomous Robot Systems and Competitions, pp. 59–65. IPCB:
Instituto Politècnico de Castelo Branco, Portugal (2009)

13. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M.,
Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence 6(4), 271–295 (2012)

14. Rosu, D., Schwan, K., Yalamanchili, S., Jha, R.: On adaptive resource allocation
for complex real time applications. In: Proceedings of the 18th Real-Time System
Symposium, pp. 320–329. IEEE Computer Society, Los Alamitos (1997)

15. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization
in populations of coupled oscillators. Physica D: Nonlinear Phenomena 143(1-4),
1–20 (2000)

Towards a Cognitive Design Pattern

for Collective Decision-Making

Andreagiovanni Reina1, Marco Dorigo1, and Vito Trianni2

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
2 ISTC, Italian National Research Council, Rome, Italy
{areina,mdorigo}@ulb.ac.be, vito.trianni@istc.cnr.it

Abstract. We introduce the concept of cognitive design pattern to pro-
vide a design methodology for distributed multi-agent systems. A cog-
nitive design pattern is a reusable solution to tackle problems requiring
cognitive abilities (e.g., decision-making, attention, categorisation). It
provides theoretical models and design guidelines to define the individ-
ual control rules in order to obtain a desired behaviour for the multi-
agent system as a whole. In this paper, we propose a cognitive design
pattern for collective decision-making inspired by the nest-site selection
behaviour of honeybee swarms. We illustrate how to apply the pattern
to a case study involving spatial factors: the collective selection of the
shortest path between two target areas. We analyse the dynamics of the
multi-agent system and we show a very good agreement with the predic-
tions of the macroscopic model.

1 Introduction

Several recent studies describe swarm systems as information-processing systems
capable of some cognitive ability, which is strongly determined by the interac-
tion patterns among the system components [4,14]. In this paper, we propose to
take a similar perspective in the design of large-scale distributed systems. The
studies mentioned above suggest that—to a large extent—the cognitive process-
ing of natural decentralised systems takes place in inter-individual interactions,
therefore limiting the need to postulate explicit representations within the single
units. By viewing artificial swarm systems as distributed cognitive systems, it
will be possible to maximise their information processing capability while keep-
ing a low complexity of the individual units. That is, individual units would
contribute to the overall system behaviour without having the global picture
about the cognitive process they are collectively producing.

Designing such an information-processing system is clearly a complex endeav-
our, and in general, modelling, predicting and controlling large-scale distributed
systems are complex tasks. Therefore, a successful design methodology for such
systems should be grounded on solid theoretical premises. We propose a design
methodology that leverages the current understanding of cognitive processing
in (natural) distributed systems, and that puts this knowledge in use for the

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 194–205, 2014.
c© Springer International Publishing Switzerland 2014

Towards a Cognitive Design Pattern for Collective Decision-Making 195

design of artificial ones. Our proposal is based on the concept of cognitive de-
sign patterns, that is, reusable solutions to tackle problems requiring cognitive
processing (e.g., collective decision-making among multiple alternatives). Simi-
larly to common practice in software engineering [5], these design patterns can
be used to guide the design and development of distributed cognitive processes,
independently of the particular implementation technique. The idea of using
design patterns in distributed systems has already been partially explored, but
previous studies are not grounded on the theoretical understanding of collective
dynamics [6,1,12]. Our proposal aims at providing general solutions grounded
on the principled understanding of the basic mechanisms underlying cognitive
processing.

In this paper, we propose a cognitive design pattern for collective decision-
making. We refer to decision-making as the process of choosing the best option
among a (finite, possibly unknown) number of different alternatives. This process
requires the estimation of the quality of the available alternatives (possibly with
uncertainty) to select the best one. Recent studies have identified optimal deci-
sion strategies in decentralised systems [8,13,11].We propose a cognitive design
pattern hinged on these studies, to be applied to artificial distributed systems.
Although decision-making has been largely studied in this context [2,7,9,12],
general purpose solutions are still missing. Our work aims at filling this gap
by providing a design methodology that can be applied to several application
domains.

The cognitive design pattern we propose is composed of the following ele-
ments: problem, inspiration, solution and case study. The collective decision-
making problem and its relevance in artificial distributed systems have been
discussed above. The biological inspiration is presented in Section 2, in which
we discuss nest-site selection in honeybees and the related theoretical models
accounting for the collective decision-making process. From these models, we
derive the solution, which is discussed in Section 3 along with the causal rela-
tionship between the microscopic and macroscopic levels. To ease the pattern
comprehension, we instantiate the design pattern in a case study presented in
Section 4. In Section 5, we show the agreement between the collective decision
implemented following the design pattern and the macroscopic model predic-
tions. In Section 6, we discuss the proposed methodology and identify directions
for further improvements.

2 Biological Inspiration and Theoretical Models

A remarkable example of collective decision-making is given by honeybee swarms
during nest site selection. In spring, honeybee swarms reproduce by colony fis-
sion: the queen bee and several thousand workers leave the parent hive and create
a cluster in the neighbourhood. Several hundred scout bees start searching for
new potential nest sites, and return to the swarm to advertise through waggle
dances what they have discovered. A number of alternatives may be discovered
during the selection process, and a consensus decision is necessary to lead the

196 A. Reina, M. Dorigo, and V. Trianni

whole swarm to the best one. Decision-making is based on peer-to-peer inter-
actions among bees: scouts committed to a potential site recruit other scouts.
Additionally, scouts have a certain probability of spontaneously abandoning com-
mitments. As a consequence, a competition between populations committed to
different sites takes place, eventually leading to a quorum of individuals commit-
ted for the site that is finally chosen. Recently, cross-inhibition between different
populations has been discovered. This is implemented through a stop signal that
scout bees selectively deliver to nest-mates advertising for a different option [13].
A bee receiving several stop signals abandons the recruitment and becomes un-
committed. Thanks to the stop signal, poor-quality sites are quickly abandoned
in favour of better ones. Most importantly, the stop signal allows to break deci-
sion deadlocks when same-quality alternatives are available, leading to a random
decision for one of the two. In this way, the system can optimise the decision
making, resulting in a choice that maximises the colony reward.

An analytical model of the nest-site selection process has been developed and
confronted with empirical results, confirming the existence of both positive and
negative feedback loops that determine the collective decision [13]. The model
describes the decision-making process in a binary-choice scenario. The swarm
is composed of N individuals (e.g., the scout bees), which can belong to three
different groups: uncommitted individuals (population U with size NU), and
individuals committed to one of the alternatives (respectively population A and
B, with sizes NA and NB). A continuous-time Markov process describes the way
in which individuals switch between populations. Four types of transitions are
sufficient: discovery, abandonment, recruitment and cross-inhibition.

Uncommitted individuals spontaneously discover and become committed to
the alternative i at the rate γi:

〈NU , NA, NB〉
γA−−→ 〈N−

U , N+
A , NB〉

〈NU , NA, NB〉
γB−−→ 〈N−

U , NA, N
+
B 〉

(1)

where N+
i and N−

i represent an increment or a decrement in population i. Com-
mitted individuals abandon the alternative i and thus get uncommitted at the
rate αi:

〈NU , NA, NB〉
αA−−→ 〈N+

U , N−
A , NB〉

〈NU , NA, NB〉
αB−−→ 〈N+

U , NA, N
−
B 〉

(2)

Individuals from population i actively recruit uncommitted ones at the rate
ρiNi/N proportional to the recruiting population size:

〈NU , NA, NB〉
ρANA/N−−−−−−→ 〈N−

U , N+
A , NB〉

〈NU , NA, NB〉
ρBNB/N−−−−−−→ 〈N−

U , NA, N
+
B 〉

(3)

Finally, individuals from population i actively inhibit individuals of population
j at the rate σiNi/N proportional to the inhibiting population size:

〈NU , NA, NB〉
σANA/N−−−−−−→ 〈N+

U , NA, N
−
B 〉

〈NU , NA, NB〉
σBNB/N−−−−−−→ 〈N+

U , N−
A , NB〉

(4)

Towards a Cognitive Design Pattern for Collective Decision-Making 197

Here, all transition rates—γi, αi, ρi, σi—are greater than zero. It is worth noting
that this model does not require any explicit comparison of the alternatives’
quality by the single individuals. The quality value of the two alternatives—
hereafter labelled vA and vB—is instead encoded in the transition rates (e.g.,
through value-dependent discovery or recruitment rates [11]): different-quality
alternatives correspond to biased transition rates, while same-quality alterna-
tives to unbiased ones. Overall, the collective decision is based purely on the
system dynamics resulting from individual-to-individual interactions.

Starting from this stochastic model, it is possible to obtain the continuous-
time master equation that describes how the probability of being in each state
evolves over time. In the limit of large N , it is possible to extract a mean-field,
population-level model of the system dynamics [13]. This takes the form of two
coupled ordinary differential equations that describe the dynamics of the fraction
Ψi = Ni/N of individuals belonging to population i ∈ {U,A,B}:

{
Ψ̇A = ΨU (γA + ρAΨA)− ΨA(αA + σBΨB)

Ψ̇B = ΨU (γB + ρBΨB)− ΨB(αB + σAΨA)
(5)

where ΨU = 1 − ΨA − ΨB. An extensive analysis of this model showed that the
cross-inhibition rates σi crucially determine the dynamics of decision-making
(see [11]). In case of same-quality alternatives (vA = vB), the transition rates
for different alternatives have the same value (i.e., γi = γ, ρi = ρ, αi = α
and σi = σ). In this case, for low rates of cross-inhibition, the system remains
deadlocked at indecision with an equal number of individuals committed to either
alternative (ΨA = ΨB). Through linear stability analysis [13], it is possible to
identify the cross-inhibition level for which the system breaks the deadlock and
converges to the choice of one alternative. The working region is {ρ > α, σ > σ∗},
with critical value:

σ∗ =
4αγρ

(ρ− α)2
. (6)

Additionally, in case of options of different quality, the cross-inhibition rate de-
termines the minimum quality difference between the two alternatives to break
the symmetry and make a systematic choice [11]. Therefore, there exist parame-
terisations of the system that allow to obtain accurate decisions when the quality
of the options differs sufficiently, or random decisions when the values are similar.

3 Design Guidelines

The models discussed above provide a link between the individual-level
description—given by the continuous time Markov process—and the population-
level dynamics—given by the dynamical system in (5). However, the models
alone are not sufficient to guide the implementation of a distributed multi-agent
system. In fact, the transition rates depend on several factors: they incorporate
global knowledge about the populations size, which may not be available to the
agents, and they embed spatial and topological factors that partially determine

198 A. Reina, M. Dorigo, and V. Trianni

��

ΓA�0.6; ΓB�0.4

ΑA� ΑB�0.01

ΡA� ΡB�0.4

ΣA� ΣB�0.02

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(a)

��

ΓA� ΓB�0.4

ΑA� ΑB�0.01

ΡA�0.6; ΡB�0.4

ΣA� ΣB�0.02

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A
�
B

(b)

��

ΓA�0.6; ΓB�0.4

ΑA� ΑB�0.01

ΡA� ΡB�0.4

ΣA� ΣB�0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(c)

��

��

��

ΓA� ΓB�0.4

ΑA� ΑB�0.01

ΡA� ΡB�0.4

ΣA� ΣB�0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(d)

Fig. 1. Macroscopic dynamics for different parameterisations (trajectories and equi-
librium points, shown as light green triangles for stable points and dark blue rhombus
for unstable saddle points)

the probability of interaction among agents. For design purposes, it is therefore
necessary to identify the causal relationship between microscopic transitions and
macroscopic dynamics, and to provide a mechanistic description of the working
principles.

The analysis of the macroscopic model in (5) reveals that, when the two al-
ternatives have different value (e.g., vA > vB), an unbalanced agent distribution
between the two populations is obtained thanks to a similarly biased commit-
ment rate. This can be obtained through either discovery or recruitment (e.g.,
γA > γB or ρA > ρB). Different discovery rates directly lead to a distribution of
agents between the two alternatives that follows the rate ratio (see for instance
Figure 1(a)). Similarly, a difference in the recruitment rates results in a unbal-
anced distribution even when the discovery rates are equal (see Figure 1(b)).
This is due to the positive feedback mechanism that can be noted in (3), which
states that the recruitment rate is proportional to the recruiting population size:
the larger the population, the stronger the recruitment for the same population.
Conversely, cross-inhibition provides a negative feedback loop that reduces the
size of a population committed to an alternative, as stated in (4). Crucially,
the rate of cross-inhibition is proportional to the size of the inhibiting popula-
tion, and therefore contributes to the creation of an unbalanced distribution of
individuals between committed populations, even for unbiased inhibition rate
(i.e., σA = σB , see Figure 1(c)). This is true also for same-quality alternatives
(i.e., vA = vB). In this symmetric case, discovery, abandonment and recruitment
are equal and are therefore not sufficient to break the symmetry. However, a suf-
ficient level of cross-inhibitio (i.e., σ > σ∗) makes the equilibrium point unstable,
therefore leading to a symmetry breaking, as shown in Figure 1(d).1

This mechanistic description clarifies the working regimes and suggests how
the transition rates should be chosen to obtain the desired macroscopic be-
haviour. However, to guide the implementation of a distributed multi-agent

1 A full characterisation of the parameter space is out of the scope of the present
paper, and is object of ongoing studies. The interested reader can find a dynamical
systems analysis for the parameter σ in [11].

Towards a Cognitive Design Pattern for Collective Decision-Making 199

system it is also necessary to define the main features of the individual agent
behaviour and of the agent-to-agent interactions in order to obtain the transi-
tion rates in the appropriate range. In doing this, spatial and topological factors
need to be suitably taken into account. The definition of these guidelines should
provide the minimal requirements to obtain the desired system behaviour, and
should incorporate the knowledge gained from the theoretical models.

In the particular case of collective decision making, we define general-purpose
design guidelines as follows:

(i) discovery: an uncommitted agent must commit to the alternative i with
probability per unit time Pγ,i (possibly proportional to the value vi);

(ii) abandonment : an agent committed to the alternative i must become un-
committed with probability Pα,i (possibly inversely proportional to vi);

(iii) recruitment : an uncommitted agent interacting with an agent committed
to any alternative i must commit to i with probability Pρ,i (possibly pro-
portional to the value vi);

(iv) cross-inhibition: an agent committed to alternative i that interacts with
an agent committed to alternative j �= i must become uncommitted with
fixed probability Pσ;

(v) interaction: the system must be well-mixed, that is, the probability of in-
teraction between any two agents is uniform.

Note that cross-inhibition is asymmetric, that is, only one of the two agents
(e.g., the one initiating the interaction) can change commitment state, this way
respecting the stop signals mechanism. These guidelines are sufficient to gener-
ate a collective decision, provided that the agent probabilities of changing the
commitment state are in the correct range. In the following section, we follow
the design guidelines to implement a multi-agent system.

4 A Simple Spatial Scenario

We introduce a simple, spatial multi-agent scenario to demonstrate the applica-
tion of the cognitive design pattern for collective decision making. The simplicity
of the case study eases the analysis and the comprehension of the implemented
mechanisms. At the same time, the studied scenario preserves the relevant ingre-
dients of the collective decision making, therefore can well represent application
scenarios where spatiality influences the system dynamics.

We study the collective choice of the shortest path between two alternatives
in a 1D space: agents move on a circle and need to collectively select and ex-
ploit the shortest path between two target areas (see a pictorial representation
in Figure 2). Two alternatives are possible: the upper and the lower path, re-
spectively labelled A and B. The angle θ between the target areas defines the
decision problem: the best alternative is A for θ < π, B for θ > π and any of
the two for θ = π. To identify and exploit a path, agents need to navigate back
and forth between target areas. We assume that agents can move at maximum
angular speed ω = π/18 s−1, and that movements are subject to noise mod-
elled as a Gaussian displacement per arc degree following a N (0, ξ) distribution,

200 A. Reina, M. Dorigo, and V. Trianni

with ξ = π/4500. During navigation, agents track the angular distance of the
two areas through dead reckoning, and use their estimates to attain previously
visited areas without exploring or sensing the environment. However, due to the
movement noise, position estimates are subject to cumulative errors. As a con-
sequence, agents may end up with incorrect information and may be unable to
attain a target area. Finally, agents have a sensing range of β = π/36 within
which they can identify target areas and interact with other agents. All agents
start with no knowledge about the target areas, and are therefore uncommitted.

Given the above specifications, we have developed the agent behaviours and
interactions following the cognitive design pattern, as stated below.

(i) Discovery: an agent explores the environment through a correlated random
walk with persistence rate λ = 0.8 [3], and gets committed to a path as
soon as it stores the position of the two target areas, allowing to navigate
back and forth between them on the discovered path. Here, the probability
Pγ,i is determined by spatial factors (such as position and size of the areas)
and by the parameters ω and λ. We obtain γi ∝ vi because shorter paths
are easier to discover through random walk.

(ii) Abandonment : an agent abandons its commitment if it fails to attain a
target area due to errors in the position estimates. Consequently, it erases
the stored locations and resumes exploration. Also in this case, Pα,i is not
directly under control of the agent’s behaviour, but depends on the param-
eter β and on the movement noise variance ξ. Here, we obtain αi ∝ 1/vi
because lower abandonment rates result from smaller cumulative error on
shorter paths: the variance increases proportionally to the path length.

(iii) Recruitment : an uncommitted agent that interacts with an agent commit-
ted to alternative i gets recruited with fixed probability Pρ: it receives the
location of the target areas and transforms them in its own reference frame.

(iv) Cross-inhibition: an agent committed to alternative i that interacts with
an agent committed to alternative j �= i becomes uncommitted with fixed
probability Pσ: it erases the stored locations and resumes exploration.

(v) Interaction: to provide an equal probability of interaction with agents ex-
ploiting different paths, interactions are possible only when agents are
within the same target area. Each agent has a maximum of one inter-
action per time unit. Additionally, agents remain in the target area with

Fig. 2. A graphical representa-
tion of the multi-agent scenario.
The monodimensional environ-
ment is a circle in which the
agents move on the circumfer-
ence line to navigate back and
forth between the two target ar-
eas.

Towards a Cognitive Design Pattern for Collective Decision-Making 201

probability Ps = 0.9 per time unit, or until a state change. This helps in
creating well-mixed conditions and also increases the interaction rate.

Note that we have not specified a direct way to control the transition rates
for discovery and abandonment, while recruitment and cross-inhibition are de-
termined by the control probabilities Pρ and Pσ. We choose fixed probabili-
ties independently of the possible differences in the path lengths. As discussed
in Section 3, this should be sufficient to produce a collective choice, provided
that the discovery rates are biased toward the best option. Additionally, a suf-
ficient level of cross-inhibition will contribute to make a collective choice and
to break decision deadlocks (see Figure 1). To simplify the system analysis, we
fix Pρ = Pσ = P , which we refer to as the interaction probability. We study the
system behaviour varying P and θ, while the other parameters are kept constant.

5 Results

To verify the correctness of the design pattern and to study how the collective
behaviour changes as a function of the interaction probability P and of the deci-
sion problem given by θ, we check the adherence of the multi-agent system with
the macroscopic model. To this purpose, we statistically estimate the transition
rates γi, αi, ρi and σi directly from the multi-agent system. Parameter estima-
tion is performed through survival analysis, which permits to estimate how the
probability of an event changes over time directly from the experimental data.
Using the Nelson-Aalen estimator [10], we computed the hazard curve for the
cumulative number of expected events (e.g., the discovery of alternative A):

H(t) =
∑
ti≤t

di/ni, (7)

where di is the number of events recorded at ti and ni is the number of events
occurring at t ≥ ti (or not occurring at all, e.g., censored cases). In a memoryless
process, the instantaneous transition rate is constant over time, therefore events
cumulate at a constant rate, which corresponds to the hazard curve being a line.
Its slope represents the estimated transition rate (see for instance Figure 3(a)).
By employing a survival analysis, we can at the same time estimate all the

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

2.
0

t

H
(t

)

●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●

●●●●●●●●●● ●

(a)

0.0 0.2 0.4 0.6 0.8 1.00.
00

0
0.

01
0

0.
02

0
0.

03
0

Ψi

σ i
Ψ

i

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

(b)

Fig. 3. (a) Hazard curve to esti-
mate the transition rate αA for
θ = π and P = 0.1. (b) Tran-
sition σiΨi as function of Ψi for
i = A,B, θ = π and P = 0.1.
Points are unnormalised estima-
tions, and the fitting line slope
represents the normalised transi-
tion rate.

202 A. Reina, M. Dorigo, and V. Trianni

�
�
��
�
�

�
�
�

���
� �
�
�

����������
��
�

��
��
������

�
�

�

�
�
����
�
�
�
�
�

�

�
���������
�

���

����
��
���
��
�
�
�
��
���
��
�
�

�� ���

�
��
�
�
���

�����
����

�
��
�
�
�
�
�����
���

�
�
�����
���
�
�

�

��
�
��� ��

�

�

��

�
�
�
�����
�

��
������
��

��
��

�
����
�

�
��

�
�

�

� �
������
��
�

�
��
��

�
�
�
�� �
����
�
�
�
�

��
�
���
�

�
����

��
�
��

�
���
�

�

�
����
����

�
�
�
��
�

�

��
����
�

�
��
�
�

�����
����
�
�
���
����
�
�
�
���
��
�

�

��
�

��
Θ�

5 Π

4

P�0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(a)

���
�
���
��
������
���
�
�
������
�
�
����
�
�
�
������
�����
�
�
��
�
�
�
�
�
�
���

�

�����
��
�

�
��
�
�
�������
��
�

�������
����
�
��
�

�����������
�
����
�
�
�
������
����
�
�
����
�

����
�
��
�
��
���
�
��
���
�
���
�
��
�

�
�
���
���������
�

��
�
��
����
���
�
�
��
�
����
���
��
�

�
��
������
�������
��
��
���
�
����
��
�
�
��
�����
��
�
�
���
�
��
�

�

�
�

�
��
��
�
���
�
�
�������
����
�
���������
���
����
���

�

���

Θ�
5 Π

4

P�0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A
�

B

(b)

������
��������
����������
�
�������
������������
�������������
������������������������
������������������������������
��������������
���������������
�
�
�������������
��������
���������������������������������
���������������
�������
��������������
����������
�
�
�����������
����������������
�������������������������������

��

��

Θ�
5 Π

4

P�0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(c)

��

��

��

Θ�
5 Π

4

P�1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(d)

Fig. 4. Comparison between macroscopic dynamics (trajectories and fixed points,
shown as light green triangles for stable points and dark blue rhombus for unsta-
ble ones) and the multi-agent simulations (final repartition of agents between the two
populations, shown as red empty dots) for the asymmetric case θ = 5π/4

transition rates and check the Markov assumption by looking at the shape of
the hazard curves. Indeed, even if the agent behaviour is purely memoryless,
departure from the Markov assumption is possible due to the spatial factors.

We perform M = 300 multi-agent simulations with N = 400 agents, and we
vary both P and θ. The events we consider are the changes in the commitment
status of each agent resulting from discovery, abandonment, recruitment and
cross-inhibition, for both alternatives A and B. Discovery and abandonment
are transitions spontaneously triggered by an agent, therefore it is possible to
directly estimate the parameters γi and αi from the corresponding hazard curve
(e.g., Figure 3(a)). Conversely, recruitment and cross-inhibition result from the
interaction of agents belonging to different populations, and the transition rates
are proportional to the size of the recruiting and inhibiting populations. In this
case, it is necessary to first estimate the transition rates for each population
fraction (i.e., we estimate ρΨi and σΨi), and then normalize for Ψi to obtain
ρ and σ (see for instance Figure 3(b)). In this study, we limit the number of
different events to consider to N/10 by approximating the population fractions
within fixed-width windows of 0.025.

We first consider the asymmetric case of θ = 5π/4. In this case, the decision
problem should lead to the systematic choice of the alternative B. In Figure 4, we
show the dynamics of the macroscopic model of equation (5) with the parameters
estimated from the multi-agent system. We note that for low values of the inter-
action probability P there exists a single stable fixed point for ΨB > 0.8, and all
trajectories converge to it. The agreement between the multi-agent system and
the macroscopic dynamics is remarkable: the final distribution of agents from
the simulations perfectly matches the model predictions (see Figure 4(a) and
4(b)). For higher values of P , the macroscopic dynamics show that the system
undergoes a bifurcation, and a second stable fixed point appears that corre-
sponds to the choice of the inferior option (see Figure 4(c) and 4(d)). The basin
of attraction of the inferior fixed point is however smaller, and the trajectories
starting from the origin (i.e., when all agents are uncommitted) always lead to

Towards a Cognitive Design Pattern for Collective Decision-Making 203

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00

P

T
im

e
un

it
[s

]

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●●●

●

●●

●●

●

●

●
●●

●

●
●
●

●●●●

●

●

●●

●

●
●●●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●●●

●

●
●
●●

●

●●

●
●
●●

●

●●

●
●

●
●
●

●●

●●●
●●
●●
●●
●
●
●

●●●

●
●
●

●

●●●
●
●

●

●●
●
●

●●●●●●

●

●
●
●●

●

●
●

●

●

●

●

●
●●
●●●

●●

●

●
●●
●●
●

●

●

●

●

●

●●●

θ=π
θ=5π/4

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

0.
30

P
Tr

an
si

tio
n

ra
te

● ● ●
●

●
●

●
●

●
●

●
●

●

γ
α
ρ
σ
σ*

(b)

Fig. 5. (a) Convergence time
for symmetric and asymmet-
ric cases as a function of
the interaction probability P ,
with decision threshold at
Ψi = 0.7 and tmax = 2000s.
(b) Transition rates as a func-
tion of interaction probabil-
ity P for the symmetric case,
with θ = π.

the selection of the best option. This is confirmed by the multi-agent simulations,
as all the repetitions resulted in a systematic choice of the alternative B. The
bifurcation observed in the macroscopic dynamics appears when cross-inhibition
is sufficiently strong compared to the other transition rates. On the one hand,
this may lead to errors in the decision making if the system happens to be in the
basin of attraction of the inferior choice. On the other hand, as also noted in [11],
larger cross-inhibition rates lead to increased decision speed (see Figure 5(a)).
Similar dynamics can be observed for different values of θ < π, for which we
observed that smaller differences between the alternatives sometimes lead to
the wrong choice, as predicted by the macroscopic model (see supplementary
material http://iridia.ulb.ac.be/supp/IridiaSupp2014-005/sm.pdf).

In Figure 6 we show the case for θ = π, which corresponds to equal alternatives
and—potentially—to a decision deadlock. This is actually the case for very low
values of the interaction probability (e.g., P = 0.01 shown in Figure 6(a)). In this
case, the model predicts a single stable fixed point for ΨA = ΨB, in agreement
with the multi-agent simulations that equally remain deadlocked at indecision
(see the red dot-cloud around the fixed point in Figure 6(a)). However, a phase
transition is observed for increasing interaction probability, corresponding to a
higher cross-inhibition rate and therefore to the ability of breaking the symmetry:
two stable solutions appear indicating a collective choice for either A or B. The
accordance between the multi-agent simulations and the macroscopic dynamics
is very good also in this case, as shown in Figure 6(b)-(d). Note also that the
macroscopic dynamics are highly symmetric, in accordance with the underlying
multi-agent system. Similarly to the asymmetric case, we observe that higher
values of P lead to a more definite choice of one or the other option, and that
the convergence speed is also increased (see Figure 5(a)).

Figure 5(b) shows how the estimated transition rates vary with respect to the
interaction probability P for the symmetric case. While discovery and abandon-
ment remain roughly constant, both ρ and σ increase quasi-linearly with P , in-
dicating that a higher probability of interaction among agents directly translates
in increased recruitment and cross-inhibition rates. We note that the estimated
cross-inhibition rate is initially below the critical value (σ < σ∗) for small in-
teraction probabilities (P < 0.07). These are actually the values at which the
multi-agent simulations remain deadlocked at indecision. For larger P , cross-
inhibition is sufficiently high and the collective decision is efficiently performed.

http://iridia.ulb.ac.be/supp/IridiaSupp2014-005/sm.pdf

204 A. Reina, M. Dorigo, and V. Trianni

�� �
�

�

�

�
�
��
�
���

�
�

�

�
�

�

�
�
��
�

�
�
�
��

�

�
�

�
��
�

�

�
�
�

�
�

�

�
�

�

�
�

��

�

�
�

��

�
�

�

�
��
�
�

��

�

�
�

�

� �
�

�
�
�����

�

�

�

�

�
�

�

�
�

�

�
�
��

�

�
��

�
� �
��

�

�

�

�

�

�
�

�

�
��
�

�
�

�

�

�
�
�

�

�
��
��
�
�

�
�

�

�
�
��

��
���
��
��

�

�
�
�

�

��
�

��
��

�

�
�

�
�
��

��� ��
�
��

���

�

�
��

�

���

�
�
�

�
�

�

���
�

��
����
�

��

�

�
�
�
�

� �
�

�

�

�

�

�

�
����

�

��
� �
�

�

�
����
�

�

�

���

�

�
����

��
�
��� ���
�
��

�����
�
�

�
� �

�

�
�

�

�
�

���
�
�

��
�
�

�

�
�

�

�

�
��
�

�
��
�

���
�

�

��

Θ� Π

P�0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(a)

�

�

�

�
�

�

��

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�
�

�

�

� �

�
��

�
�

�

����� ��

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

� � �

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�� �

�

�

�
�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�
�
�

�

�

���

�

�

�

�

���

� ��

�

��

���

�
�

��

�

�

�

�
�

� �

�

��
�

�

��
�

��

�
�

��

�

�

�

��
�
�

� �

�

�

�

�

�
��

�

��

�

�

���

�

��

�

�

�

�
� �

�

�
�

�

� ���
�

�
�
�

�

�

�

�

�

�

�

�

�

�
�

�
�
�
�

�

��

�

�

�
�
��

��

�

����

��

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

� �

�

�

�

��

�

�

��

�

��

�

�

���

�

�

�

�

�

��

�

���

�

�

�

�

�

�

�

�
�

�

�

��

��

��

��

Θ� Π

P�0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A
�

B

(b)

�

��

��

�

���

�

��

���

���
�

����

�����
�

�

�

��

��

����

�

�

�

���

�

�

��

��

�

�

�

�

�

���

�

�

�

��

��

���

�

�

�

���

�

�

�

��

��

�

���

��

�

��

�

��

�

�

�

��

�

�

��

� �

�

��

�
��

�

�

�

����

�

�

��

�
�

� �

�

�

���

�����

�

�����

��

�

�

���

�

�

����

�

�

�

�

�

�

�

�

�

��

�

��

�

����

�

��

�

�

���

�

������

�

��

�

�

��
������
�
�

�

��

�

�

���� �

����
��

�

�

�

��

�

�

��

�����

����

�

���

�

�

��

��

�

�

�

�

��

��

�

�

�
�

�

��

�

�

�

�

��

�

��

�

�

���

�

�

��

��

�

�

��

�
�

�

�

�����

�

��

���

��

��

Θ� Π

P�0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(c)

���

�

��

���

�

�

�

��

�

�

�

��

����

��

��

�

�

�

�

���

�

��

�

�

�

�

��

�

��

�

�

��

�

���

�

���

�

�����

���

���

�

��

�

�

��

��������

�

�

�

���

�

��

�

��

��

�
���

������

��

�

�

�

�

�

��

��

�

�

��

�

��

�

��

��

�

�

���

�

�

�

�

���

��

�

����

���������

��

��

���

�

�

������

�

���

��

��

�

��

�

��

�

��

��

�

�
�

�

��

�

��

��

�

�

��

�

�

�

�

��

�

�

����

��

����

���

��

��

��

�

�

��

��

���

�

���

�

�

���

�

��

�

���

��

���

�

���

�

��

��

���

��

�����

���

�

�

�

����

���

��

��

��

��

Θ� Π

P�1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

�A

�
B

(d)

Fig. 6. Macroscopic dynamics vs. multi-agent simulations for the symmetric case θ = π

6 Conclusions

Overall, the results we obtained confirm that the multi-agent system that we
implemented following the guidelines given by the cognitive design pattern cor-
responds very well to the reference macroscopic model. This result is non-trivial
due to the differences between the two levels: while the model is continuous and
deterministic, the multi-agent system, due to the finite swarm size, is discrete
and stochastic. We have exploited the understanding of the basic mechanisms
underlying the collective decision-making process in order to perform important
implementation choices, such as the use of a fixed interaction probability in-
dependent of the decision problem to be faced. This minimalistic choice would
not have been safe without knowledge about the system dynamics and about
the correspondence between microscopic rules and macroscopic behaviour. Sim-
ilarly, the implementation choices to grant a uniform interaction probability
among agents—and therefore the well-mixed property—are also a result of the
design pattern guidelines, which allowed to pinpoint the important aspects to
be considered (e.g., the need to limit peer-to-peer interactions in a location con-
taining a good sample of the population distribution). The parameter estimation
we performed and the subsequent analysis for varying P and θ suggest that our
implementation results in a well-behaved system not violating any assumption,
despite the spatial factors that hinder the adherence to a Markov process.

The main feature of the design pattern we have developed consists in the
possibility to perform decisions with minimal complexity at the individual level.
Indeed, the only requirement is that agents can interact and recognise that their
peers have a different opinion. Quality comparison is not necessary, which allows
to implement the system in a large number of possible applications.

The present paper represents the very first step toward the definition and for-
malisation of cognitive design patterns for swarm systems. Several aspects must
be investigated further in order to provide a proper engineering methodology.
For what concerns collective decision-making mechanisms, future work will be
dedicated to the characterisation of the full parameter space, in order to identify
the parameter ranges that result in desired macroscopic dynamics. Addition-
ally, we will characterise the relationship between individual-level parameters
(e.g., the interaction probabilities Pρ and Pσ) and the corresponding transition

Towards a Cognitive Design Pattern for Collective Decision-Making 205

rates (e.g., ρ and σ). Another issue to be considered is the effect of spatial and
topological constraints on the collective decision process. In some preliminary
studies, we have observed that spatiality influences the macroscopic dynamics
(e.g., violating the well-mixed condition), and therefore needs to be characterised
properly in order to provide guidelines re-usable in multiple domains.

Finally, following software engineering common practices [5], to let a solution
become a design pattern we need to apply such solution to at least three different
problems. In particular, we aim, as future work, to implement this cognitive
design pattern in the fields of cognitive radio networks and language games.

References

1. Babaoğlu, O., Canright, G., Deutsch, A., Di Caro, G., Ducatelle, F., Gambardella,
L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design
patterns from biology for distributed computing. Transactions on Adaptive and
Autonomous Systems 1(1), 26–66 (2006)

2. Campo, A., Garnier, S., Dédriche, O., Zekkri, M., Dorigo, M.: Self-Organized Dis-
crimination of Resources. PLoS One 6(5), e19888 (2011)

3. Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. Journal
of the Royal Society, Interface 5(25), 813–834 (2008)

4. Couzin, I.: Collective cognition in animal groups. Trends in Cognitive Sci-
ences 13(1), 36–43 (2009)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1995)

6. Gardelli, L., Viroli, M., Omicini, A.: Design patterns for self-organising systems.
In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 123–132. Springer, Heidelberg (2007)

7. Hamann, H.: Towards swarm calculus: Urn models of collective decisions and uni-
versal properties of swarm performance. Swarm Intelligence 7(2-3), 145–172 (2013)

8. Marshall, J.A.R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., Franks, N.R.:
On optimal decision-making in brains and social insect colonies. Journal of the
Royal Society, Interface 6(40), 1065–1074 (2009)

9. Montes, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M.:
Majority-rule opinion dynamics with differential latency: A mechanism for self-
organized collective decision-making. Swarm Intelligence 5(3-4), 305–327 (2010)

10. Nelson, W.: Hazard plotting for incomplete failure data. Journal of Quality Tech-
nology 1, 27–52 (1969)

11. Pais, D., Hogan, P.M., Schlegel, T., Franks, N.R., Leonard, N.E., Marshall, J.A.R.:
A mechanism for value-sensitive decision-making. PLoS One 8(9), e73216 (2013)

12. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-
robot systems: the best-of-N problem. IEEE Transactions on Mechatronics 14(2),
240–251 (2009)

13. Seeley, T.D., Visscher, P.K., Schlegel, T., Hogan, P.M., Franks, N.R., Marshall,
J.A.R.: Stop signals provide cross inhibition in collective decision-making by hon-
eybee swarms. Science 335(6064), 108–111 (2012)

14. Trianni, V., Tuci, E., Passino, K.M., Marshall, J.A.R.: Swarm Cognition: An inter-
disciplinary approach to the study of self-organising biological collectives. Swarm
Intelligence 5(1), 3–18 (2010)

A Novel Competitive Quantum-Behaviour

Evolutionary Multi-Swarm Optimizer Algorithm
Based on CUDA Architecture Applied

to Constrained Engineering Design

Daniel Leal Souza1,2, Otávio Noura Teixeira1,3, Dionne Cavalcante Monteiro2,
Roberto Célio Limão de Oliveira3, and Marco Antônio Florenzano Mollinetti1

1 Laboratory of Natural Computing (LCN),
Area of Exact and Natural Sciences (ACET), University Centre of Pará (CESUPA),

Belém, PA, Brazil
{onoura,marco.mollinetti}@gmail.com

2 Laboratory of Applied Artificial Intelligence (LAAI),
Institute of Exact and Natural Sciences (ICEN), Federal University of Pará (UFPA),

Belém, PA, Brazil
{daniel.leal.souza,dionnecm}@gmail.com

3 Post-Graduate Program in Electrical Engineering (PPGEE),
Institute of Technology (ITEC), Federal University of Pará (UFPA),

Belém, PA, Brazil
limao@ufpa.br

Abstract. This paper presents a new bio-inspired algorithm named
Competitive Quantum-Behaviour Evolutionary Multi-Swarm Optimiza-
tion (CQEMSO) based on CUDA parallel architecture applied to solve
engineering problems, using the concept of master/slave swarm working
under a competitive scheme and being executed over the paradigm of
General Purpose Computing on Graphics Processing Units (GPGPU).
The efforts on implementing the CQEMSO algorithm are focused at
generating a solution which includes greater quality of search and higher
speed of convergence by using mechanisms of evolutionary strategies with
the procedures of search and optimization found in the classic QPSO.
For performance analysis, the proposed solution was submitted to some
well-known engineering problems (WBD, DPV) and its results compared
to other solutions found on scientific literature.

1 Introduction

As notable examples of modifications of the classical Particle Swarm Optimiza-
tion (PSO) that has shown superior results in comparison to the classical PSO,
the following can be cited: the Quantum-Behaviour Particle Swarm Optimiza-
tion (QPSO), which is one of the most well known optimization algorithm based
on quantum properties, proposed by [7] to be a more complex solution than the
classic PSO based on Newtonian mechanics; the Evolutionary Particle Swarm
Optimization (EPSO), developed by [3] where it uses a modified PSO trajec-
tory scheme combined with a robust mechanism of evolutionary strategies; and

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 206–213, 2014.
c© Springer International Publishing Switzerland 2014

Competitive Quantum-Behaviour Evolutionary Multi-Swarm Optimizer 207

lastly, there is the existence of another category of PSO algorithms where it
involves the concept of creating multiple populations for the sake of maximiz-
ing the search and exchange of information obtained by each particle in order
to compare and refine the search based on the results already obtained by the
neighbouring clusters [1].

In this paper, a hybrid multi-swarm QPSO which includes mechanisms of
Evolutionary Strategies proposed by [3] over a competitive approach of master
and slaves swarms implemented under CUDA architecture is presented by the
name of Competitive Quantum-Behaviour Evolutionary Multi-Swarm Optimiza-
tion (CQEMSO).

2 An Evolutionary Competitive Multi-Swarm Approach
for QPSO on CUDA Architecture (CQEMSO)

The solution proposed in this paper is a result of the integration between the
mechanisms found in Miranda’s EPSO [3] (e.g. Evolutionary Strategies), Jun
Sun’s QPSO [7] and a slave/master multi-swarm approach proposed by [5]. It
can be described as an environment where two or more slave swarms compete
among themselves and the master swarm in the search of the global best. The
optimization process that occurs in the master swarm takes advantage of the
best results found by slave swarms and by the master swarm itself in order to
increase the search performance. In other words, the master swarm explores the
best results obtained by the slave swarm and use it as an exploitative approach.

The use of CUDA architecture for CQEMSO allows the swarms to be executed
in parallel and with a low processing time. In comparison to other parallel and
distributed computing techniques, CUDA takes advantage of many threads on
low cost computers with no need for clusters. Concerning the parallel scheme
for slave swarms, CUDA provides a programming environment that allows to
execute the Evolutionary Strategies (ES) with a high level of parallelism.

The data structure of CQEMSO in CUDA is configured as it follows [6]: One
thread, one particle : Each thread is responsible for handling a single particle;
One block, one swarm : Each block (a vector or a matrix (2D or 3D) of
threads) is responsible for handling a single swarm; One grid, one collection
of swarms: Each grid (a vector or a matrix (2D) of blocks) is responsible for
handling the slaves and master swarm.

2.1 Quantum-Behaviour Particle Swarm Optimization with
Evolutionary Strategies (QPSO+ES) on Slave Swarms

The Quantum-Behaviour Particle Swarm Optimization with Evolutionary
Strategies emerges as a new hybrid metaheuristic where the mechanisms of ES
found in EPSO are inserted in the QPSO algorithm with a weighted mean best.
The main goal behind the use of ES in QPSO is to include a search engine
to assist the optimization process by generating replicas with new values based
on the original particle position. Among the main features proposed for the

208 D.L. Souza et al.

QPSO+ES algorithm, there are: A modified calculation of Learning Inclina-
tion Point, a global best that undergoes perturbation process (adapted from
the EPSO’s ES) and a contraction-expansion factor (β) submitted to mutation
process (mβ∗

(i)) applied to the replicas (based on the procedure developed by [3]).
Equations 1, 2 and 3 shows the mutation process applied to the replicas

that are related to the following variables: Global best disturbance factor (ωi)
[3], Swarm’s global best undergone disturbance process (P ∗

g) [3] and mutated
contraction-expansion factor (mβ∗

(i)).

ωi = Pg + (1 + σgN(0, 1)) (1)

P ∗
g = Pg + (1 + ωiN(0, 1)) (2)

mβ∗
(i) = β + (1 + σN(0, 1)) (3)

The variables described in equations 1, 2 and 3 are: Gaussian distribution of
mean value 0 and standard deviation value 1 (N(0, 1)); Disturbance variable for
global best (σg); Mutation parameter for mβ∗

(i) (σ); Swarm’s global best (Pg);

Stochastic star probability constant (θ).
Along with the mutation process for β factor, the QPSO+ES algorithm intro-

duces some modifications to the calculation of Learning Inclination Point (LIP),
where the constant θ acts as a selection parameter between two LIPi solutions.
The logic behind this procedure is based on the stochastic star topology pro-
posed by [4], which involves the probability of the particle’s element to use the
information available on the global best in the respective iteration. If the value
obtained by a uniform random number generator between 0 and 1 (rand()) is less
than the value of θ, the particle’s element will have the global best information
available and therefore the calculation of the LIP will include both components
(local and global), otherwise, the particle’s element will have anything but the
local best information available, therefore, the LIP calculation will only use the
local best.

Another important change is the use of global best that has been undergone
disturbance (P ∗

g) applied to the Learning Inclination Point update, which is de-
scribed in equation 2. This addition provides a new search reference and conse-
quently, improves the optimization process. Equation 4 demonstrates a Learning
inclination Point calculation for the replicas (R(LIPi)).

R(LIPi) =

{
(R(c1)∗Pi)+(R(c2)∗P∗

g)/(R(c1)+R(c2))
if rand() < θ

(R(c1)∗Pi)/R(c1)
if rand() > θ

(4)

With the values of R(LIPi) and mβ∗
(i), the new replica’s position (R(X

(t+1)
i))

is calculated by equation 5. The variables R(c1), R(c2) R(u) are uniform random
numbers between 0 and 1.

R(X
(t+1)
i) =

⎧⎨
⎩

R(LIPi) +mβ∗
(i) ∗

∣∣∣PM(i) −X
(t)
i

∣∣∣ ∗ ln(1
R(u)

) if rand() < 0.5

R(LIPi)−mβ∗
(i) ∗

∣∣∣PM(i) −X
(t)
i

∣∣∣ ∗ ln(1
R(u)

) if rand() > 0.5
(5)

Competitive Quantum-Behaviour Evolutionary Multi-Swarm Optimizer 209

It is noteworthy to state that the calculation of Learning Inclination Point
and position update applied to original particles in the slave swarms are the
same as those found in classical QPSO. Algorithm 1 describes the optimization
process in slave swarms.

Update contraction-expansion factor (β = 0.5− (0.5 ∗ rand()));
Update α factor (α = 0.5− (0.5 ∗ rand()));
Update weighted mean best (PM(i)) with α as described in [10];
Run in Parallel For All Slave Swarms (multi-Block)

Update Learning Inclination Point using classic QPSO equation [10];

Update original particles’ position (X
(t+1)
i) using classic QPSO equation

[10];
Apply position correction to the replicated particles (”Damping”);
Update fitness for the original particles;
foreach Particle’s replica do

Generate mβ∗
(i) (equation 3) and ωi

∗ (equation 1) by mutation;
Update Learning Inclination Point using equation 4;

Update replicated particles’ position (R(X
(t+1)
i)) using equation 5;

Apply position correction to the replicated particles (”Damping”);
Update fitness for the replicated particles;
Select the best particles for the next iteration (slave swarms);

end
Update particle’s local best (Pi);
Sync threads (wait for all threads to finish);
if threadIndex=0 then

Update global best (Pg) of each slave swarm;
end

end
Sync blocks (wait for all blocks to finish);

Update the best global value found in the slave swarms (PS
g);

Algorithm 1. CQEMSO under CUDA Architecture - Slave Swarms

2.2 Quantum-Behaviour Particle Swarm Optimization with
Evolutionary Strategies (QPSO+ES) on Master Swarm

In CQEMSO, the search procedure applied to the master swarm optimization is
based on an exploratory search, where the master swarm uses the best solution
obtained by the entire system, either by the master or slave swarms in order to
enhance its particles.

In order to adapt QPSO+ES for the master swarm, a comparative process
between the original master swarm (PM

g) and the original slave swarms’ best

solution (PS
g) is included to select the best result to be used on the calcula-

tion of the LIP . The update equation for the master swarm’s LIP described in
equation 8 is based on stochastic star topology and can be summarized by the
following conditions: If the value obtained by a uniform random number genera-
tor between 0 and 1 (rand()) is less than the constant θ, both slave and master
swarms’ global best are compared and the best one is subjected to disturbance
process and then inserted to the calculation of LIPM

i . Otherwise, the master

210 D.L. Souza et al.

and slave swarm’s global best remains unchanged. Equations 6 and 7 shows the
perturbation process for slave (PS∗

g) and master swarms’ global best (PM∗
g).

PS∗
g = PS

g + (1 + ωiN(0, 1)) (6)

PM∗
g = PM

g + (1 + ωiN(0, 1)) (7)

The update process for LIPM
i (master swarm) is described by equation 8

R(LIPM
i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(R(c1)∗Pi)+(R(c2)∗PS∗
g)/(R(c1)+R(c2))

if rand() < θ and PS
g < PM

g

(R(c1)∗Pi)+(R(c2)∗PM∗
g)/(R(c1)+R(c2))

if rand() < θ and PS
g ≥ PM

g

(R(c1)∗Pi)+(R(c2)∗PM
g)/(R(c1)+R(c2))

if rand() ≥ θ and PS
g < PM

g
(R(c1)∗Pi)/R(c1)

if rand() ≥ θ and PS
g = PM

g

(R(c1)∗Pi)+(R(c2)∗PS
g)/(R(c1)+R(c2))

if rand() ≥ θ and PS
g > PM

g

(8)

After obtaining the values from the Learning Inclination Point, the next step
is to calculate the position of the replicas by using equation 9.

R(X
(t+1)
i) =

⎧⎨
⎩

R(LIPM
i) +mβ∗

(i) ∗
∣∣∣PM(i) −X

(t)
i

∣∣∣ ∗ ln(1
R(u)

) if rand() < 0.5

R(LIPM
i)−mβ∗

(i) ∗
∣∣∣PM(i) −X

(t)
i

∣∣∣ ∗ ln(1
R(u)

) if rand() > 0.5
(9)

LIP and Position Update for the Original Particles. The position update
applied to the original particle in master swarm is similar to that found in the
classical QPSO algorithm. However, some changes in the Learning Inclination
Point calculation have been made in order to use the best value found throughout
the system as a global best reference for the calculation of the LIPM

i .
The major differences between the method used in particle’s replicas and

its original counterpart consists on the use of comparative process between the
original master swarm (PM

g) and the original slave swarms best solution (PS
g) in

order to select which global best will be used on the Learning Inclination Point
calculation, and also for the use of the original contraction-expansion factor (β).
Equation 10 shows the calculation of the LIPM

i applied to the original particles.

LIPM
i =

{
(R(c1)∗Pi)+(R(c2)∗PS

g)/(R(c1)+R(c2))
if PS

g < PM
g

(R(c1)∗Pi)+(R(c2)∗PM
g)/(R(c1)+R(c2))

if PS
g ≥ PM

g

(10)

After obtaining the values from the Learning Inclination Point, the position
of the original particles are calculated by equation 11.

X
(t+1)
i =

⎧⎨
⎩

LIPM
i + β ∗

∣∣∣PM(i) −X
(t)
i

∣∣∣ ∗ ln(1
R(u)

) if rand() < 0.5

LIPM
i − β ∗

∣∣∣PM(i) −X
(t)
i

∣∣∣ ∗ ln(1
R(u)

) if rand() > 0.5
(11)

Competitive Quantum-Behaviour Evolutionary Multi-Swarm Optimizer 211

Based on the proposed mechanisms and procedures found in this paper, the
CQEMSO algorithm could be treated as an enhanced and evolutionary version
of the QPSO algorithm applied to a multi-swarm approach with slave/master
topology. As seen under a single swarm perspective it is possible to adapt the
QPSO+ES algorithm to be executed under sequential environments. Therefore
it can be said that the CQEMSO algorithm can be divided in two distinct al-
gorithms: one for slave swarms and for sequential single swarm implementations
(QPSO+ES), and another one applied for the master swarm based on the multi-
swarm approach described in this work. Algorithm 2 describes the optimization
process in master swarm.

Update master swarm’s mean best (PM(i)) as described in [10];
Run in Parallel For Master Swarm (single-Block)

Update Learning Inclination Point using equation 10;
Update position from the original particles using equation 11;
Apply position correction to the replicated particles (”Damping”);
Update fitness for the original particles;
foreach Particle’s replica do

Generate mβ∗
(i) (equation 3) and ωi

∗ (equation 1) by mutation;
Update Learning Inclination Point using equation 8;
Update position from the replicated particles using equation 9;
Apply position correction to the replicated particles (”Damping”);
Update fitness for the replicated particles;
Select the best particles for the next iteration (master swarm);

end
Update particle’s local best (Pi);
Sync threads (wait for all threads to finish);
if threadIndex=0 then

Update master swarm’s global best (PM
g);

if PS
g is better than PM

g then
Assign value of PS

g to PM
g ;

end
end

end
Sync blocks (wait for all blocks to finish);

Algorithm 2. CQEMSO under CUDA Architecture - Master Swarm

3 Experiments and Results

The CQEMSO algorithm was subjected to tests with two engineering prob-
lems widely used in scientific literature: Welded Beam Design (WBD); Design
of Pressure Vessel (DPV). Tables 1 and 2 shows the best results obtained in 500
executions. For means of comparison, a multi-swarm approach with slave/master
topology version of QPSO called Classic Competitive Multi Swarm Optimization
(COQMSO) has been implemented.

The parameter values are: Number of iterations = 1000; Particles for each
slave swarm = 80; Particles for master swarm = 80; Replicas per particle =
4; Number of slave swarms = 4; Disturbance parameter for global best (σg) =
0.005; Mutation parameter for β factor (σ) = 0.22.

212 D.L. Souza et al.

Table 1. Comparison of results for the WBD

Variables CQEMSO COQMSO [8] [9]

X1(h) 0.205727 0.204985 0.171937 0.202369
X2(l) 1.517707 1.523215 4.122129 3.544214
X3(t) 9.036655 9.036094 9.587429 9.048210
X4(b) 0.205729 0.205760 0.183010 0.205723
G1 -0.106445 -0.257812 -8.067400 -12.839796
G2 -0.189453 -0.833984 -39.336800 -1.247467
G3 -0.000003 -0.000774 -0.011070 -0.001498
G4 -3.607639 -3.607062 -3.467150 -3.429347
G5 -0.080727 -0.079985 -0.236390 -0.079381
G6 -0.235540 -0.235540 -16.024300 -0.235536
G7 -0.001465 -2.382324 -0.046940 -11.681355

Violations 0 0 0 0
Avg. time (s) 1.083012 0.353992 N/A N/A
Variance 1.288738e-08 9.671503e-07 N/A N/A
Mean 1.4590260 1.4607121 N/A N/A
Fitness 1.458890 1.459244 1.664373 1.728024

Table 2. Comparison of results for the DPV

Variables CQEMSO COQMSO [8] [2]

X1(Ts) 0.778169 0.794552 0.812500 0.812500
X2(Th) 0.384649 0.401580 0.437500 0.437500
X3(R) 40.319626 41.098831 42.092732 42.097398
X4(L) 199.999954 190.783829 195.678619 176.654050
G1 -0.000000 -0.001345 -0.000110 -0.000020
G2 -0.000000 -0.009497 -0.035935 -0.035891
G3 -0.000000 -7184.000000 -1337.994634 -27.886075
G4 -40.000046 -49.216171 -63.052220 -63.345953

Violations 0 0 0 0
Avg. time (s) 0.945307 0.295996 N/A N/A
Variance 1.574957e+01 7.628519e+05 N/A N/A
Mean 5886.6388926 6869.2100430 N/A N/A
Fitness 5885.334961 5979.822266 6066.029360 6059.946300

4 Conclusions and Future Works

Based on results obtained from the experiments involving engineering problems,
the CQEMSO algorithm showed the best results compared to the values obtained
by other implementations. In CQEMSO, by adding the Evolutionary Strategies
proposed by [3], every particle tends to a better exploration of the search space
by generating mutated copies that represents a large amount of new solutions,
thus increasing its search capability. Despite being implemented under CUDA
architecture, due to its feasibility of execution for multi-populations algorithms
with a small processing time, CQEMSO can be easily ported to other parallel
solutions such as Beowulf with MPI.

In regards to the experiments, some conclusions can be outlined: 1) The av-
erage time of the CQEMSO is higher than the COQMSO due to the usage of

Competitive Quantum-Behaviour Evolutionary Multi-Swarm Optimizer 213

the ES mechanisms; 2) The results obtained by CQEMSO (i.e. mean, variance,
best solution) were higher than the ones obtained by COQMSO, reflecting the
impact of the Evolutionary Strategies in the optimization process.

For future works, we can highlight the inclusion of mechanisms based on
Game Theory developed by [8], a study based on the impact caused by boundary
conditions in the optimization process, as well as the inclusion to new approaches
applied to the calculation of the Learning Inclination Point.

Acknowledgments. This work is supported financially by the Research Sup-
port Foundation of Pará (FAPESPA) and Federal University of Pará (UFPA).

References

1. El-Abd, M., Kamel, M.: A taxonomy of cooperative particle swarm optimizers.
International Journal of Computational Intelligence Research, 137–144 (2008)

2. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for
constrained engineering design problems. Engineering Applications of Artificial In-
telligence, 89–99 (2007)

3. Miranda, V., Fonseca, N.: EPSO - evolutionary particle swarm optimization, a new
algorithm with applications in power systems. In: Transmission and Distribution
Conference and Exhibition 2002: Asia Pacific. IEEE/PES, vol. 2, pp. 745–750.
IEEE Press (2002)

4. Miranda, V., Keko, H., Duque, A.J.: Stochastic star communication topology in
evolutionary particle swarm optimization(EPSO). IJCIR - International Journal of
Computational Intelligence Research 4(2) (2007)

5. Niu, B., Zhu, Y., He, X.: Multi-population cooperative particle swarm optimization.
In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.)
ECAL 2005. LNCS (LNAI), vol. 3630, pp. 874–883. Springer, Heidelberg (2005)

6. Souza, D.L., Teixeira, O.N., Monteiro, D.C., de Oliveira, R.C.L.: A new cooper-
ative evolutionary multi-swarm optimizer algorithm based on CUDA architecture
applied to engineering optimization. In: Hatzilygeroudis, I., Palade, V. (eds.) Com-
binations of Intelligent Methods and Applications, vol. 23, pp. 95–115. Springer
(2013)

7. Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quan-
tum behavior. In: Congress on Evolutionary Computation (CEC 2004), vol. 1,
pp. 325–331 (2004)

8. Teixeira, O.N., Lobato, W.A.L., Yanaguibashi, H.S., Cavalcante, R.V., Silva,
D.J.A., de Oliveira, R.C.L.: Algoritmo Genético com Interação Social na Resolução
de Problemas de Otimização Global com Restrições, ch. 10, 1st edn., pp. 197–223.
Editora OMNIPAX (2011)

9. Wang, Y., Feng, X.Y., Huang, Y.X., Pu, D.B., Zhou, W.G., Liang, Y.C., Zhou,
C.G.: A novel quantum swarm evolutionary algorithm and its applications. Neu-
rocomputing 70, 633–640 (2007)

10. Xi, M., Sun, J., Xu, W.: An improved quantum-behaved particle swarm optimiza-
tion algorithm with weighted mean best position. Applied Mathematics and Com-
putation 205(2), 751–759 (2008)

Cooperative Object Recognition:

Behaviours of a Artificially Evolved Swarm

David King and Philip Breedon

School of Architecture Design and the Built Environment,
Nottingham Trent University, Nottingham, UK

Abstract. Having simple agents capable of cooperatively distinguish-
ing one shape from another is an interesting problem, which will have
benefits in the future. An abstracted model of this was tested with neigh-
bouring agents who change state according to their immediate surround-
ings, changing the surroundings themselves. Using a genetic algorithm
to determine the agent behaviours at each state it was possible to train
a swarm to remove only one out of two unknown types of shape in an
enclosed space. Estimates of the difficulty the genetic algorithm would
have in finding a suitable solution had a significant correlation with the
measured difficulty in the eleven tested scenarios, with known solutions.

1 Introduction

Swarm robotics, which takes inspiration from the behaviours of social insects,
provide methods of cooperation for groups of agents [8]. Groups of homogeneous
regular shaped robots can connect into lattice formations, providing useful capa-
bilities. Two-dimensional lattice structures can be formed by triangular, square
and hexagonal robots [1][4][5][9]. Three-dimensional lattice structures are formed
by cubical and spherical robots [2][7][10].

An advantage of lattice robots, especially with smaller and simpler robots, is
their ability to become a unit of measurement. This method is used for duplicat-
ing inert shapes built from blocks the same size as the agents [3]. To determine
the shape these cubic robots surround the object and pass a message from agent
to agent in a loop. This information is then used to replicate the shape from the
robots themselves.

In the case of identification, without duplication, the whole shape does not
require mapping, only an identifying feature needs to be found. This method of
identifying only key features was shown to be possible on a hexagonal lattice
where agents cooperate to distinguish two shapes without completely surround-
ing the shapes [6].

This paper proposes using a genetic algorithm (GA) to train the swarm to
remove only one out of two types of shape in an enclosed arena. Scenarios, with
known solutions, are tested to determine how difficult it is for a GA to find
suitable behaviours for a swarm of homogeneous agents to complete the task.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 214–221, 2014.
c© Springer International Publishing Switzerland 2014

Cooperative Object Recognition: Behaviours of a Artificially Evolved Swarm 215

2 The Simulation Method

A hexagonal lattice forms an arena where each hexagonal cell in the arena can
represent: an object cell, which are grouped to form object shapes; a single agent,
termed a hBot; a border, which the hBots cannot pass; or an empty space, Fig.1.

Fig. 1. The arena with six each of two types of object shape and 37 hBots in the centre

2.1 Object Shapes

Neighbouring object cells form object shapes, which are described by data-
chains, without notation of rotation or location. If each cell that neighbours
an object shape has a value determined by how many object cells it touches,
the data-chain is an array of these values (in clockwise order), represented by
the sequence which is first in lexicographical order. All the object shapes with
four object cells (ID0 - ID9) are shown, Fig. 2, with the numbers in each of
their surrounding cells indicating how many object cells they neighbour. For the
purposes of these experiments only object shapes with the values, 1, 2 and 3 will
be considered, negating object shape ID6, future implementation will allow for
higher values.

2.2 hBot Agents

The hBots used in the cooperative object recognition task are homogeneous,
anonymous, have no common coordinate system and are not aware of their posi-
tion relative to the arenas coordinate system. The hBots are modelled with local
sensor and communication, both with a range of one cell. This capability allows
the hBots to determine their current state from their immediate surroundings
and to communicate this state to any hBots that they neighbour, providing a
feedback loop between neighbouring hBots. As the hBots share more information

216 D. King and P. Breedon

Fig. 2. All ten object shapes with four object cells and their IDs and data-chains

with their neighbours the states that they achieve are at higher state-levels, rep-
resenting an increased awareness of their surroundings. In practice a hBot that
neighbours two hBots with a state-level equal to or higher than it’s own state,
excluding state-level 0, will change its current state to the relevant state at the
next state-level. In the case that a hBot is at state-level 0, a hBot changes states
dependant on the number of object cells that it is neighbouring. The states and
state-levels are summarised as follows:

– A hBot at state-level 0 is not in contact with an object shape and therefore
has no knowledge about the object.

– A hBot at state-level 1 knows the number of object cells it is neighbouring:
one, two, or three which is equivalent to knowing a single value in a data-
chain. This knowledge is represented by states 1, 2 and 3 respectively.

– A hBot at state-level 2 knows as much as three individual agents at state-
level 1, as it knows its own state-level 1 state and the states of its neighbours.
This is equivalent to knowing three consecutive values in a data-chain and
includes states 4 - 21.

– A hBot at state-level 3 knows as much as five individual agents at state-
level 1, or three agents at state-level 2. This is equivalent to knowing five
consecutive values in a data-chain and includes states 22 - 264.

Distinguishing between Object Shapes. A scenario is defined by the two
types of object shapes that the hBots must cooperate to distinguish between. In
a scenario one of the object shapes is always valid and the other object shape is
invalid. Object shapes are placed such that a hBot will only ever be in contact
with a single shape at any moment. In a given scenario the hBots are required

Cooperative Object Recognition: Behaviours of a Artificially Evolved Swarm 217

to identify and destroy all six valid object shapes whilst leaving the six invalid
object shapes intact. To achieve this the hBots have four different behaviours:

0. Attempt to move a single cell in a random direction, if the cell is occupied
remain stationary.

1. Destroy whole object shape which is currently being neighboured.
2. 10% chance of returning to state 0, allowing movement from neighboured

object shape.
3. 1% chance of returning to state 0, allowing movement from neighboured

object shape.

Behaviour 0 is always used when the hBot is in state 0, state-level 0. If the
hBots have perfect information about the two object shapes and therefore the
states they can achieve whilst interacting with the object shapes, the behaviours
that they should exhibit for each of the states can be determined using the
following rules:

– If state is achievable for valid object shapes only: Behaviour 1
– If state is achievable for invalid object shapes only: Behaviour 2
– If state is common to both object shapes and state-level 3: Behaviour 2
– If state is common to both object shapes and state-level 1 or 2: Behaviour 3

The Simulation of hBot Actions. Once per time-step, each of the three steps
listed is performed by all the hBots before moving to the next step.

1. Perform one of the four behaviours as determined by the current hBot state.
2. Sense the surrounding six cells of the hBot.
3. Update the hBot’s current state.

3 Genetic Algorithm

In a scenario where the hBots do not have prior information about the two ob-
ject shapes they would be required to learn to determine suitable behaviours in
order to distinguish between the objects. To achieve this task a GA was chosen.
In this GA each member of the population (size 30) is swarm of 37 homoge-
neous hBots with identical behaviours. The behaviours for each of the states
were determined by the genome (length L, 41). Although there are 264 states
over the three state-levels only the states achievable with the four cell object
shapes are considered. An integer representation which had a restricted set of
{1,2,3} representing the three behaviours, excluding behaviour 0 which remains
constant at state 0. Recombination is 2-point crossover. The mutation probabil-
ity is 1/L with equal probabilities of the two other integer values occurring. A
tournament selection with group size 4 was used for the parent selection using a
generation model. The population was initialised with random seeding and was
terminated after 30 generations. Each member of the population attempted the
given scenario 15 times. The maximum number of time-steps allowed for each
member to complete each of its 15 repeated runs was 7000.

218 D. King and P. Breedon

3.1 The Fitness Value

The overall fitness, normalised between 0 and 1, for a candidate solution was
found with the following formula:

fitness =
154C + 28(Vn − In) +

(Ifirst+Ilast)−(Vfirst+Vlast)
1000 + 336

672
(1)

Where:
Vn is the median number of valid object shapes removed.
In is the median number of invalid object shapes removed.
Vfirst is the mean time-steps to remove the first valid object shape.
Vlast is the mean time-steps to remove the last valid object shape.
Ifirst is the mean time-steps to remove the first invalid object shape.
Ilast is the mean time-steps to remove the first invalid object shape.

C =

⎧⎨
⎩

1 if Vn > 0 and In = 0
−1 if Vn = 0 and In > 0
0 otherwise

(2)

The formula was determined to insure that the calculated fitness values give
the following relationships:

– Removing only the correct object shapes is more important than the differ-
ence in the number of each type of object shape removed.

– The number of each type of object shape removed is more important than
the number of time-steps it took to remove them.

– The number of time-steps taken to remove the object shape is the least
important factor.

3.2 Selected Scenarios

Of the different possible pairings of the object shapes with four object cells,
eleven scenarios were selected to test the GA. These eleven scenarios were se-
lected to give a suitable range of task difficulty as determined by the number of
time-steps taken to complete the task when the behaviours are pre-determined.
The chosen scenarios are listed in Table 1 along with the average and maximum
number of time-steps taken to complete the scenario, after fifty repeated tests.

Table 1. The number of time-steps required to complete each of the eleven scenarios
when the behaviours are pre-determined

Object Shape
Valid 0 0 0 1 1 3 5 5 5 9 9
Invalid 1 4 9 0 9 5 0 9 4 0 4

Number of
Time-Steps

max 7877 9982 6678 3712 5744 6344 2724 9015 3445 5969 8623
average 3980 3645 2392 1400 1699 3331 1355 3728 1501 1993 2686

Cooperative Object Recognition: Behaviours of a Artificially Evolved Swarm 219

4 Results

Each of the eleven selected scenarios was repeated three times. The following
notation is used to describe a scenario:

– F5I9A: Find and destroy valid object shape ID5 whilst ignoring invalid object
shape ID9 experiment run A.

A suitable solution to the scenario is one where, over the average of the fifteen
repeated candidate member tests, the candidate solution removed all of the six
valid object shapes whilst not removing the invalid object shapes within the
allotted 7000 time-steps. This requires a candidate solution fitness value of above
0.9792. For all but one of the scenarios a suitable solution was found for each
of the three repeated runs of the GA. The exception to this is F5I4B, where
all of both types of object shape were removed, however, the valid shapes were
removed earlier in subsequent generations and the invalid ones later.

4.1 Measuring the Genetic Algorithm Scenario Difficulty

The boxplots indicate the relative difficulty of finding a suitable solution using
a GA for each scenario. If on average a population’s fitness increases rapidly
early it suggests an easier scenario to solve, for example F1I9. Where a boxplot
that increases gradually and later suggest a harder scenario to solve, for example
F3I5, both in Fig. 3.

An estimation of the difficulty that the GA had in determining a suitable
solution was quantified by calculating the average number of successful candidate
solutions over the three GA runs. This gives an indication of how quickly the
solutions were found and the consistency over the repeated test runs.

Fig. 3. The mean, minimum and maximum, and first and third quartiles for the 30
generations of the GA for scenarios F1I9A, which is easier to solve and F3I5A, which
is more difficult to solve

220 D. King and P. Breedon

The Number of Time-Steps. For each of the eleven chosen scenarios this
value was compared to the perceived difficulty of the task as determined by the
average number of time-steps to complete the scenario when the hBots have a
pre-determined behavioural rule set. The correlation coefficient found between
these measures of difficulty of scenario was -0.96 (p<.01).

This correlation is expected, scenarios which take longer to complete when the
behaviours of the hBots are predetermined would also take longer for the GA
to find a suitable solution. These difficult scenarios require greater interaction
between the hBots to reach the higher state-levels, which takes time. A drawback
of this method is that it requires running the scenario numerous times.

The Number of Identifying States. A more efficient method for determining
the difficulty of each scenario is the proportion of identifying states relative to
the total number of achievable states at each state-level. An identifying state
is a state that is only achievable for the hBots when interacting with the valid
object shape and not the invalid object shape. For the eleven chosen scenarios
the number of identifying states at each state-level is shown in Table 2.

Table 2. The fraction of identifying states at each state-level for each of the eleven
scenarios

Object Shape
Valid 0 0 0 1 1 3 5 5 5 9 9
Invalid 1 4 9 0 9 5 0 9 4 0 4

Fraction of
Identifying States
per all achievable
states at:

State-Level 1 0.00 0.00 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.00 0.00
State-Level 2 0.02 0.02 0.05 0.10 0.07 0.02 0.12 0.12 0.10 0.07 0.05
State-Level 3 0.05 0.07 0.07 0.22 0.22 0.07 0.27 0.24 0.24 0.10 0.10

Total 0.07 0.10 0.12 0.34 0.32 0.10 0.41 0.39 0.34 0.17 0.15

Comparing the difficulty of the scenarios as determined by the total number
of identifying states with the measured difficulty from running the GAs a corre-
lation coefficient of 0.69 (p<.02) was found. As the number of identifying states
decreases the number of generations required to solve the scenario increases.

At state-levels 1, 2 and 3 the correlations are 0.79 (p<.01), 0.75 (p<.01) and
0.63 (p<.05) respectively. This indicates that the number of identifying states
at lower state-levels have a larger effect than those at a higher state-level. If the
object shape can be identified at a lower state-level then there is no need to
identify it at a higher state-level as the object shape will already be destroyed.

5 Conclusion

The difficulty of eleven scenarios was predicted with two methods and compared
to the measured difficulty the GA had in solving them. The number of time-steps
taken to complete the scenario with a swarm of agents that had pre-programmed
behaviours correlated closely with the measured difficulty. The second method

Cooperative Object Recognition: Behaviours of a Artificially Evolved Swarm 221

calculated the number of identifying states for the pair of object shapes in the
scenario. This value gives an indication of how many of the possible states could
be used to determine that the object shape being identified is the valid object
shape. This method proved to be a marginally less accurate indication of the
difficulty of the task scenario but benefits from being considerably quicker.

There were some limitations to the simulation, which should be addressed in
future research: using a less common hexagonal lattice, comparisons with exist-
ing multi-agent systems are difficult to make; all the agents were modelled with
perfect sensors and communication; the system only deals with object shapes
that have the values 1, 2 and 3 in their data-chain, ignoring possible shapes that
have the values 4, 5 and 6; object shapes that are mirror images of each other ap-
pear identical due to the way the hBots sense their surroundings; and currently
the number of state-levels would only allow a single hBot to have the equiva-
lent knowledge of five state-level 1 hBots. Although the GA was found to be
successful at determining the correct behaviours in these initial scenarios, more
complex scenarios need testing. In parallel with this different training methods
for the hBots should be considered as this will help identify more efficient self
determining solutions for the cooperative object recognition problem.

References

1. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen,
T.: Programmable parts: A demonstration of the grammatical approach to self-
organization. In: 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2005), pp. 3684–3691. IEEE (2005)

2. Gilpin, K., Kotay, K., Rus, D., Vasilescu, I.: Miche: Modular shape formation by
self-disassembly. The International Journal of Robotics Research 27(3-4), 345–372
(2008)

3. Gilpin, K., Rus, D.: A distributed algorithm for 2d shape duplication with smart
pebble robots. In: 2012 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 3285–3292. IEEE (2012)

4. Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Com-
puter 38(6), 99–101 (2005)

5. Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems:
Analogy with chemical kinetics. Artificial Life 1(4), 413–427 (1994)

6. King, D., Breedon, P.: Robustness and stagnation of a swarm in a cooperative
object recognition task. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011,
Part I. LNCS, vol. 6728, pp. 19–27. Springer, Heidelberg (2011)

7. Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the atron lattice-
based self-reconfigurable robot. Autonomous Robots 21(2), 165–183 (2006)

8. Şahin, E.: Swarm robotics: From sources of inspiration to domains of applica-
tion. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342,
pp. 10–20. Springer, Heidelberg (2005)

9. White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics.
In: Proceedings of the 2004 IEEE International Conference on Robotics and Au-
tomation, ICRA 2004, vol. 3, pp. 2888–2893. IEEE (2004)

10. Zykov, V., Mytilinaios, E., Desnoyer, M., Lipson, H.: Evolved and designed self-
reproducing modular robotics. IEEE Transactions on Robotics 23(2), 308–319
(2007)

Emergent Diagnoses from a Collective

of Radiologists: Algorithmic versus Social
Consensus Strategies

Daniel W. Palmer1, David W. Piraino2, Nancy A. Obuchowski2,
and Jennifer A. Bullen2

1 John Carroll University, University Heights, OH, USA
dpalmer@jcu.edu

2 Cleveland Clinic, Cleveland, OH, USA

Abstract. Twelve radiologists independently diagnosed 74 medical im-
ages. We use two approaches to combine their diagnoses: a collective
algorithmic strategy and a social consensus strategy using swarm tech-
niques. The algorithmic strategy uses weighted averages and a geometric
approach to automatically produce an aggregate diagnosis. The social
consensus strategy used visual cues to quickly impart the essence of the
diagnoses to the radiologists as they produced an emergent diagnosis.
Both strategies provide access to additional useful information from the
original diagnoses. The mean number of correct diagnoses from the radi-
ologists was 50 and the best was 60. The algorithmic strategy produced
63 correct diagnoses and the social consensus produced 67. The algo-
rithm’s accuracy in distinguishing normal vs. abnormal patients (0.919)
was significantly higher than the radiologists’ mean accuracy (0.861; p =
0.047). The social consensus’ accuracy (0.951; p = 0.007) showed further
improvement.

1 Introduction

The normal work practice of radiologists includes consulting peers on cases where
the medical images provide insufficient, conflicting, or ambiguous information.
Ideal consults result in exposure to a potential diagnosis not previously consid-
ered [3]. In phase I of our study, we explored the intersection of this idea and
Surowiecki’s definition of wise crowds [6] to determine the diagnostic effective-
ness of a collective of radiologists. Four criteria must be met in order for the
crowd to be effective: diversity, independence, decentralization, and a method of
aggregating the estimates. In our study, the group of radiologists does not fully
meet the diversity criterion, as they all are professional radiologists or fellows
training in musculoskeletal radiology. However, they do have differing special-
ties within the field including sports medicine, tumors, trauma, and emergency
medicine. Each radiologist evaluated the images in isolation to meet the indepen-
dence and decentralization criteria and we developed an automated aggregation
algorithm to combine the diagnoses.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 222–229, 2014.
c© Springer International Publishing Switzerland 2014

Emergent Collective Diagnoses 223

In phase II, we sought to improve the collaborative diagnoses through vi-
sual stigmergic cues and social decision-making techniques as demonstrated by
househunting ants (Temnothorax albipennis) [1].

2 Methodology

2.1 Experiment and Data Collection

In phase I, 74 musculoskeletal images with surgical proof or proof by follow-up
images were read and evaluated by 12 sub-specialized radiologists (referred to
as readers in this paper). One third of the images were normal, two thirds were
abnormal including moderate and difficult cases. All images were displayed as
single images (no image series or volumes) with no window or leveling capabil-
ities (similar to brightness and contrast). Additionally, we provided no patient
information or medical history. These conditions severely limit the readers and
do not represent actual diagnostic conditions, but do produce more diverse di-
agnoses. This study was conducted under approval from the Cleveland Clinic’s
institutional review board; all images were de-identified and the data collected
was anonymized prior to analysis. The images were presented in randomized
order and each reader gave a differential diagnosis for each abnormality that
they found. A diagnosis consists of two parts, a location in the image and an
identification within five broad categories (Normal and four abnormality types:
Fracture, Tear, Mass/Mass-like abnormalities and Other). The readers marked
a location of interest with an enclosing oval and made a differential diagnosis for
the identification using a multi-region slider bar yielding a vector of certainty
percentages for 15 specific abnormality subtypes.

In phase II, nine of the original 12 readers returned to view the collected data,
to evaluate the diagnoses, and collectively generate a social consensus diagnosis.
We displayed all the identification and location information for each image and
the readers selected which diagnosis they most agreed with.

2.2 Collective Diagnosis Algorithm

We developed a deterministic strategy that separately calculates both the identi-
fication of the abnormality and its location and then combines them into a single
diagnosis. To determine the identification of the condition in medical image k,
we use:

Ak = f(index(Vk,

⎧⎨
⎩max

⎧⎨
⎩

nr∑
j=1

cijk|i ∈ 1..nd

⎫⎬
⎭
∣∣∣∣∣∣ k ∈ 1..nm

⎫⎬
⎭)) (1)

where Ak is the algorithmic diagnosis for image k, nr is the number of readers,
nd is the number of options for the differential diagnosis and also the size of
the diagnosis vector (Vk), nm is the number of medical images in the study, and
cijk is the certainty of reader i of identification j in image k - found in position

224 D.W. Palmer et al.

Fig. 1. Individual locations (black ovals) on the left, algorithmically combined location
(white outline) on the right

j of the Vk. The function index() returns the position in a vector of a given
value and the function f() maps those positions to corresponding abnormalities.
To determine the location of the abnormality, we overlay all the location ovals
and apply a threshold of > 50%. In figure 1, the region outlined on the right
was selected by at least seven of the 12 readers. (Color images and additional
material can be accessed at http://go.jcu.edu/ants2014)

2.3 Social Consensus Diagnosis

To generate the social consensus, all equivalent diagnoses were collapsed to re-
move insignificant differences in location ovals. Differences in identifications or
differences in certainty of identical identifications remained distinct. Each reader
voted for a single diagnosis, and all the votes were tallied producing in a social
consensus as defined in Table 1. The first three categories are self-explanatory.
A plurality exists when no diagnosis exceeds 50% and there is one selected by
at least three readers that has a higher percentage of agreement than all others.
Any other circumstances constitute a disagreement. This includes cases in which
no diagnosis has more than two readers agreeing with it, or when ties occur. For
the top four categories, the agreed upon diagnosis becomes the social consensus.
When a disagreement occurs, we take a weighted average of all identifications
and normalize the certainties.

Table 1. This table shows the definitions and actions for each type of social agreement

Agreement Type Criteria Action

Unanimous 100% agreement Use agreed upon diagnosis
Consensus ≥70% agreement Use agreed upon diagnosis
Majority >50% agreement Use agreed upon diagnosis
Plurality ≤ 50% and ≥ 3 readers agree, no ties Use agreed upon diagnosis
Disagreement ≤ 2 readers agree or a tie Average all diagnoses

Emergent Collective Diagnoses 225

3 Results

Table 2 displays the outcomes of the 12 individual readers, their (M)ean, the
(A)lgorithmic strategy, and the (S)ocial consensus. The first row shows how
many times the specified diagnosis matched the verified condition. Mentioned
Correct Diagnosis indicates that the correct location and identification are both
included in the diagnosis, but given a lower certainty than other possibilities. An
Incorrect Diagnosis does not include the correct condition. Both the collective
algorithm and the social consensus had more correct diagnoses than any of the
individual readers, but in two instances for social consensus, and in four in-
stances for the algorithmic strategy, readers had the same or fewer incorrect
diagnoses. The main goal of this analysis was to compare the mean of the 12
readers’ accuracies with the accuracies of our two strategies. Accuracy was char-
acterized by the area under the receiver operating characteristic (ROC) curve for
each pairwise comparison among the three truth states (normal, fractures/tears,
and mass/mass-like abnormality) (see figure 2). For each reader, nonparametric
accuracy estimates were calculated using the methods in [4]. Additionally, the
accuracies were compared on their ability to distinguish normal patients from
those with an abnormality of any type. Standard errors were calculated using
the methods in [2] for the algorithm and social consensus accuracies and [5] for
the mean of the readers’ accuracies. T tests were used to assess the differences
between the mean reader and algorithm/social consensus accuracies for each
comparison and the standard error for these tests was adjusted to account for
the fact that multiple readers read the same images [5]. A significance level of
0.05 was applied. The collective algorithm tied or outperformed 8 of 12 readers
in distinguishing normal patients vs. patients with a trauma, 9 of 12 readers
in distinguishing normal patients vs. patients with a mass, 8 of 12 readers in
distinguishing patients with a mass vs. trauma, and 9 of 12 readers in distin-
guishing normal patients vs. patients with an abnormality of any type. Table
3 displays the accuracy estimates for the algorithm. The algorithm’s accuracy
was significantly higher than the readers’ mean accuracy in distinguishing nor-
mal patients vs. patients with a mass and in distinguishing normal patients vs.
patients with an abnormality. The readers reached a clear social consensus for
66 images (89%). The social consensus tied or outperformed all 12 readers in
distinguishing normal patients vs. patients with a trauma, 8 of 12 readers in
distinguishing normal patients vs. patients with a mass, 8 of 12 readers in dis-
tinguishing patients with a mass vs. trauma, and all 12 readers in distinguishing
normal patients vs. patients with an abnormality of any type. The accuracy

Table 2. Raw Results of the Study

1 2 3 4 5 6 7 8 9 10 11 12 M A S

Correct Diagnoses 47 46 54 38 52 50 56 54 55 60 51 41 50 63 67

Mentioned Correct Diagnosis 16 14 4 3 10 12 13 11 6 10 9 17 11 0 2

Incorrect Diagnoses 11 14 16 33 12 12 5 9 13 4 14 16 13 11 5

226 D.W. Palmer et al.

(a) Mass vs. Trauma (b) Normal vs. Abnormal

Fig. 2. ROC Plots

Table 3. Estimates (standard error) of readers’ mean accuracy and algorithm/social
consensus accuracy

Mean reader Algorithm Social Consensus

Accuracy (SE) Accuracy (SE) Accuracy (SE)

Norm vs. Trauma 0.855 (0.096) 0.899 (0.043) 0.966 (0.024)
Norm vs. Mass(-like) 0.949(0.044) 0.978 (0.021) 0.978 (0.023)
Mass(-like) vs. Trauma 0.970 (0.024) 0.974(0.023) 0.978 (0.022)
Norm vs. Abnorm 0.861(0.093) 0.919 (0.031) 0.951 (0.028)

estimates for the social consensus are displayed in Table 3. Table 4 compares
both strategies against the readers’ mean performance.

4 Discussion

4.1 Shared Visual Cues for Stigmergic Coordination

Trail blazes, stone cairns and graffiti tags constituting physical examples, and
Facebook’s likes and Twitter’s favored retweets as digital ones, humans employ
many kinds of visual stigmergic information. In phase II, the collection of overlaid
location ovals constitute shared visual cues. Readers marked the images inde-
pendently in phase I, but in phase II, the ovals are aggregated and collectively
displayed, propagating information to the readers’ as they make their selections.
These visual cues impart two types of information: the extent of the agreement
of the readers and, when there is agreement, a proposed location of an abnor-
mality. By engaging the human visual system, the information transfers quickly,
setting up expectations in the reader and potentially reducing uncertainty in

Emergent Collective Diagnoses 227

Table 4. Estimates (standard error) of readers’ mean accuracy and algorithm/social
consensus accuracy

Alg.-Mean reader Soc. Con.-Mean reader
Diff. 95%CI p Diff. 95%CI p

Norm vs. Trauma 0.044 (-0.014, 0.103) 0.120 0.111 (0.031, 0.191) 0.011
Norm vs. Mass(-like) 0.029 (0.002, 0.057) 0.036 0.029 (0.001, 0.056) 0.041
Mass(-like) vs. Trauma 0.004 (-0.008, 0.016) 0.488 0.008 (-0.023, 0.039) 0.587
Norm vs. Abnorm 0.058 (0.001, 0.116) 0.047 0.091 (0.030, 0.1511) 0.007

their diagnoses (see Figure 3). Figure 3A indicates a high level of agreement in
a tightly defined location. A reader will expect an abnormality there and deem
it unlikely that there is another abnormality in the image. Figure 3B indicates
some agreement in one location, but suggests that there may be other abnormal-
ities. Figure 3C shows very little agreement and dictates careful consideration of
the entire image. The single oval in figure 3D indicates strong agreement with
a normal diagnosis. The readers in our study treated the visual cues in three
ways: as direction to diagnoses, as confirmation of diagnoses, and, in a few cases,
as noise. In cases like 3A and 3D the readers would focus on the marked area
and often quickly agree with it. In a case like 3C, some readers would briefly
look at the visual cues, realize the lack of agreement and then hide the ovals and
re-evaluate the image. Once they had a diagnosis, they would reveal the ovals
for comparison. Depending on their agreement, they would move on or recon-
sider. For some images, some readers found the visual cues distracting and would
re-diagnosed the image without them. In addition to the viewing static visual
cues, our software provides the reader with the ability to manipulate the visual
information. We linked the locations with the identifications so that the read-
ers can highlight corresponding diagnosis components by changing colors of the
ovals, or display individual diagnoses in isolation. These interactive visual cues
can be used to generate and satisfy queries, and to pair multiple abnormalities
identified by the same reader.

Fig. 3. Visual cues isolated from medical image they relate to

228 D.W. Palmer et al.

4.2 Examination of Specific Instances of Emergent Diagnoses

Table 5 splits the social diagnoses based on their degree of certainty. We also
separate out multiple abnormalities per image and the cases in which the social
consensus produced multiple diagnoses for single abnormalities. This increases
the number of cases from 74 to 82. Table 5 shows categories that indicate the
performance of the social consensus strategy relative to the algorithmic strategy.
The headings same C and same I indicate that the two strategies produced the
same diagnosis, either both Correct or both Incorrect. I→C means that where
the algorithmic strategy produced an Incorrect diagnosis, the social consensus
strategy produced a Correct one, and C→I specifies the reverse. For entry 1a, five
readers specified a 100% certainty in a normal diagnosis while six readers didn’t
mention normal at all. All readers produced an incorrect diagnosis and only one
those gave a diagnosis that included the correct identification - and that at only
a 50% certainty level. The algorithmic strategy produced a diagnosis of Normal.
During phase II, readers saw the visual cues indicating a lack of agreement and
more than 70% of them selected the one diagnosis with the correct component
and as a result, demonstrated a successful consult.

Table 5. Comparison of Social Consensus to Algorithm by Agreement Type

same C same I I→C C→I Other Totals —

Unanimous 13 13

Consensus 26 1a 27

Majority 16 1 17

Plurality 7 2 3 2 3 17

Disagreement 4b 1 3 8

Totals 62 2 8 4 6 82

Entry 4b specifies four instances in which the phase II readers did not reach
agreement. Three of these cases were ties; the fourth one had almost universal
disagreement. The algorithmic strategy’s approach of inflating the component
with the highest certainty fails here; while the weighted average favored the
correct diagnosis in all cases due to common secondary choices.

5 Conclusion

We combined multiple, individual diagnoses for medical images using collective
algorithmic and social consensus strategies. In both approaches, we accessed
and leveraged more useful information from the readers collectively than they
could individually. Despite the cost of this approach, it demonstrates that better
diagnoses can be obtained and sets the challenge to find efficient ways to reach
them. The observations made in this study reinforce the idea that consults should
be made without any information provided, to ensure an independent outcomes.

Emergent Collective Diagnoses 229

The shared visual cues for the location worked well, so we plan to also use them
for identification. The current display shows 12 equal-size rectangles containing
a list of the readers’ identifications and their certainty level. In the next version
of the software, boxes will be sized proportionally to the number of readers
selecting each one.

Acknowledgements. John Carroll University supported this work with a
George Grauel Faculty Fellowship. B. Josipovic, N. Orlando, A. Lanese, and
T. Drescher developed the original software. Al Denelsbeck, Mike Kovacina, and
Paige Rinker provided valued assistance in preparing this paper. We thank the
anonymous reviewers - their feedback improved the paper.

References

1. Brutschy, A., Scheidler, A., Merkle, D., Middendorf, M.: Learning from house-
hunting ants: collective decision-making in organic computing systems. In: Dorigo,
M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS
2008. LNCS, vol. 5217, pp. 96–107. Springer, Heidelberg (2008)

2. DeLong, E., DeLong, D., Clarke-Pearson, D.: Comparing the areas under two of
more correlated receiver operating characteristic curves: a nonparametric approach.
Biometrics 44, 837–845 (1988)

3. Drew, T., Vo, M., Wolfe, J.: The invisible gorilla strikes again sustained inattentional
blindness in expert observers. Psychological Science 24(9), 1848–1853 (2013)

4. Obuchowski, N., Goske, M., Applegate, K.: Assessing physicians’ accuracy in diag-
nosing pediatric patients with acute abdominal pain: measuring accuracy for mul-
tiple diseases. Statistics in Medicine 20, 3261–3278 (2001)

5. Obuchowski, N., Rockette, H.: Hypothesis testing of diagnostic accuracy for mul-
tiple readers and multiple tests: an anova approach with dependent observations.
Communication in Statistics – Simulation 24, 285–308 (1995)

6. Surowiecki, J.: The Wisdom of Crowds. Doubleday, New York (2005)

Foraging Agent Swarm Optimization

with Applications in Data Clustering

Kevin M. Barresi

Department of Electrical and Computer Engineering
Stevens Institute of Technology, New Jersey, USA

kbarresi@stevens.edu

Abstract. This paper proposes a novel method of swarm optimization
called Foraging Agent Swarm Optimization (FASO). FASO is designed
to converge on multiple optima in both gradient and point-based search
spaces. FASO also operates well in situations where “field optima” are
desired, rather than single-point optima. The utility and effectiveness
of FASO in a non-gradient search space is demonstrated in the context
of data clustering, where we present Foraging Agent Swarm Clustering
(FASC). FASC provides several benefits over conventional clustering,
such as the ability to automatically determine the number of clusters,
and strong performance in both noisy and sparse data sets. FASC is
demonstrated to outperform existing methods of clustering in a variety
of situations. Positive results by FASC in data clustering suggest that
FASO has a promising future in other optimization applications as well.

1 Introduction

Data clustering is a notoriously difficult task in pattern recognition where unla-
beled, multi-dimensional data vectors are grouped together in an unsupervised
manner. Through cluster analysis, valuable predictions and summarizations of
the data set can be made. Data clustering has direct applications in the grow-
ing fields of data mining, machine learning, and bioinformatics, and thus, an
increasing need for more effective and versatile clustering algorithms exists.

Conventional clustering algorithms sort n-dimensional data points into groups
based on positional similarity. Most existing methods are either centroid or
density based. Centroid-based clustering algorithms attempt to derive a single
“point-centroid” for each cluster. An example of this is the well known k-means
method [10]. Centroid based algorithms work well on globular clusters, due to
the intrinsic concept of a cluster center. However, k-means performs poorly on
arbitrarily shaped clusters and requires the total number of clusters be known
a priori. This is a major drawback, as this metric is often unknown. Density
based clustering algorithms, such as DBSCAN, group points together by a den-
sity gradient, and thus excel in creating arbitrarily shaped clusters in noisy
environments [5]. However, DBSCAN performance suffers greatly in data sets of
varying density. Data clustering operates on the premise of reducing the number

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 230–237, 2014.
c© Springer International Publishing Switzerland 2014

Foraging Agent Swarm Optimization with Applications in Data Clustering 231

of incorrect point categorizations, while maximizing the number of correct cat-
egorizations. In this sense, data clustering can be thought of as an optimization
problem.

The ability of swarm algorithms to effectively solve optimization problems has
drawn significant attention to the prospect of applying them to data clustering.
Earlier attempts utilize basic Particle Swarm Optimization (PSO), with numer-
ous refinements only providing slight performance enhancements [1, 3, 4, 13, 14].
More recent progress has included a Glowworm Swarm Optimization (GSO)
based method [2] as well as Bacterial Foraging Optimization (BSO) based clus-
tering [11,12,15]. Unfortunately, these methods tend to provide marginal cluster-
ing improvements at the expense of significant resource overhead. Furthermore,
swarm algorithms generally aim to find one or more “point optima”; the swarm
aims to converge on individual points, as opposed to “field optima”, where po-
tential solutions exist as a broader area. This quality creates an intrinsic issue
that makes clustering via swarm algorithms difficult.

The contributions of this paper are twofold. First, a novel swarm-based op-
timization algorithm is presented, called Foraging Agent Swarm Optimization
(FASO), which excels at finding multiple area optima. The second contribution
is a novel clustering scheme named Foraging Agent Swarm Clustering (FASC).
As a direct application of FASO in a non-gradient search space, the new method
is shown to perform well on a wide range of data sets, outperforming existing
clustering techniques and requiring no user configuration.

2 Foraging Agent Swarm Optimization

2.1 Algorithm Description

FASO uses a metaphor of organisms (agents) foraging for food in a user-defined
search space. Food, representative of a strong objective function value, is a ben-
eficial commodity that characterizes an optimal solution. Agents are graded by
their “happiness”, a quantitative approach to marking how optimal an agent’s
current position is. Happiness is positively impacted by a high objective function
value, and negatively impacted by inter-agent overcrowding. In order to effec-
tively move through the search space, agents are first and foremost attracted
to other agents with higher happiness values. In this sense, agent happiness is
reminiscent of luciferin levels of GSO [9]. Agents will move in the direction of
the neighboring agent with the highest happiness level. Agents with no superior
neighbors are given the opportunity for random movement, allowing for contin-
ued searching. The precise nature and magnitude of movement is determined by
a vector of ranges. After several cycles of happiness updates, range updates, and
movement, groups of agents will become centered around optima. This effectively
provides one or more solutions to the provided optimization problem.

2.2 Ranges and Update Mechanisms

Ranges are automatically adapted per agent based on the current position,
and guide the swarm towards timely convergence on an appropriate number

232 K.M. Barresi

of optima. Agents rely on one static range per swarm: sensor range (rs), and two
dynamic ranges per agent: foraging range (rf), and crowding range (rc). Range
magnitudes are bounded by the inequality rc < rf < rs.

The sensor range rs acts as an upper bound for all other ranges, and represents
the farthest distance at which an agent can sense objects, including other agents
and objective function values. The sensor range is determined by the objective
function, giving appropriate scaling based on general gradient observations as
well as local search area size. The sensor range can greatly impact that time
required for swarm convergence, as well as the number of optima discovered. A
large sensor range spanning the entire search space causes the swarm to converge
on a single, global optimum. Smaller sensor ranges result in more fine-tuned
searching, and increases swarm sensitivity to local optima. As such, a balance
between the two is required for effective operation.

The foraging range rf determines the distance at which other agents and ob-
jective function values can be sensed. During the movement stage, this range
is used to determine which agents are considered local, and outlines a range of
movement. It also determines how far an agent can search for areas of better
optima in the current iteration. The foraging range is inversely related to the
number of neighboring agents within the previous foraging range. This encour-
ages more localized searching, when a large number of neighbors exists. Formally,
the foraging range can be written as follows:

rif (t+ 1) = α+
ris − α

1 + β|A(pi, rif (t))|
. (1)

Where α is a constant representing the minimum acceptable foraging range,
and is related linearly to rs. In practice, setting α equal to 10% of rs results
in strong performance. β is a constant that quantifies the importance of the
number of neighboring agents. A higher β value results in a faster fall-off of rif (t+
1) in response to a growing number of neighboring agents. Through empirical
evaluation, setting β equal to 10 was found to perform well for a wide variety of
optimization problems.

The crowding range rc is the maximum range at which any neighboring agents
will negatively impact happiness. In terms of the swarm as a whole, the crowding
range affects how closely together agents are located. It is modified to increase or
decrease swarm density inside areas of objective function optima. This value can
be derived from the foraging range through a simple linear function. Empirical
observation has shown that the crowding range should be less than half of the
foraging range in order to avoid stifling agent movement.

2.3 Happiness

Happiness is a quantitative measurement bounded between 0 and 1 of how opti-
mal an agent’s current position is. Happiness is affected positively by increasing
objective function value, and negatively by increased inter-agent crowding, as

Foraging Agent Swarm Optimization with Applications in Data Clustering 233

determined by the crowding range. Formally, the happiness h of agent ai at
position pi is characterized by the following:

h(i) =
O(pi)

|A(pi, ric|+ 1
. (2)

Where O(pi) is the objective function value at position pi, normalized between
0 (worst) and 1 (best). A(pi, r

i
c) is a vector of agents whose distance from point

pi is less than ric. In other words, the magnitude of this term is the number of
agents located within the crowding range. Clearly, higher objective function val-
ues results in higher agent happiness, while a larger number of crowded neighbors
results in decreased happiness. In practice, increasing the happiness of an agent
is a balancing act between higher objective function values and lower numbers of
neighboring agents. Through movement, agents travel to positions representing
a “sweet spot” of the two values, resulting in a dense group of agents spread
around optima. This behavior is the desired “area optima” effect.

2.4 Movement Rules

Effective movement mechanisms are critical for any swarm based algorithm, as
it determines how well agents are able to avoid local optima, while at the same
time, maintaining the ability to locate potential areas of interest. FASO agents
move with a primary focus on superior local neighbors, with a cascaded series
of backup movement cases.

The first step in movement involves searching the local area for neighboring
agents. The foraging range rf is used to generate a list of potential target agents,
of which, the agent with the highest happiness score is selected as the candidate
target agent. If the candidate’s happiness is found to be higher than that of the
moving agent, then the agent is moved a small distance towards this neighbor. In
this way, agents are indirectly drawn towards areas of optima containing agents,
while at the same time searching the paths towards these areas. If no superior
neighbors are found, then a “safe” random movement is attempted, where a
random position in the search space is selected and evaluated for happiness. If
the resulting happiness is greater than or equal to the agent’s current happi-
ness, it is moved to this new position. Otherwise, the agent does not move. The
random movement is considered safe because it cannot result in the agent being
moved to a worse position. If the agent does not have any neighbors, a gradient
ascent/descent approach is used. The agent will simply move a small distance in
the direction of the gradient unit vector. This has the effect of moving the agent
toward optima, in the hopes of either discovering a global optima, or locating
new agent neighbors. Neighbor-based movement is characterized by Equation 3,
while gradient-based movement by Equation 4:

pi(t+ 1) = pi(t) + δ

(
pj(t)− pi(t)

||pj(t)− pi(t)||

)
. (3)

pi(t+ 1) = pi(t) + δ

(
df
d1
, df
d2
, . . . , df

dn

|| dfd1
, df
d2
, . . . , df

dn
||

)
. (4)

234 K.M. Barresi

Where pi(t + 1) is the next position of agent ai, and pi(t) is the current
position. The magnitude of the movement, δ, is determined randomly by the

forage range, following the bounding inequality 0 < δ <
rif
2 .

2.5 Sample Results

In order to evaluate the effectiveness of FASO, we tested its ability to find global
minima in two multivariate functions: an Ackley function, and a Styblinski-Tang
function. FASO was run 50 times for each function, and agent positions were
recorded each time after the final iteration was completed.

Fig. 1. Agent positions (black) for the Ackley function (A-D) and Styblinski-Tang func-
tion (E-H) after 50 instances of FASO, with (A,E) 25 iterations, (B,F) 100 iterations,
(C,G) 200 iterations, (D,H) 500 iterations

Overall, results from Figure 1 show that FASO is able to reliably converge on
global minima in a small number of iterations, without becoming trapped in local
minima. It also confirms that the density of agents per unit area is dependent on
the gradient around optima; a smaller slope allows for greater agent spread with
less objective function penalty. Agent spread can be controlled by modifying the
sensor range; higher sensor ranges result in higher spread, while smaller ranges
result in more densely packed agent groups.

3 Foraging Agent Swarm Clustering

Clustering is an application in a non-gradient search space; positions in the
space are marked as either containing a data point or not. We define the objec-
tive function as the percentage of data points located within an agent’s foraging
range. In order to account for the non-gradient quality of clustering, we modify
the basic happiness function presented in FASO to take into account “data point

Foraging Agent Swarm Optimization with Applications in Data Clustering 235

density” (Equation 5). Data point density is chosen over raw data point count
in order to make the happiness score less dependent on foraging range.

h(i) =
|O(pi, r

i
f)|

πr2if |A(pi, ric)|
=

density(data)

crowding
. (5)

FASC operates in three phases: the convergence phase, the consolidation
phase, and the assignment phase. The convergence phase uses FASO to super-
impose agents over the data set. Agents move towards areas of higher data point
density, eventually forming a “net” of coverage around groups of data points.
The ability of FASO to converge into “area optima” is apparent in this appli-
cation, where it is critical for agents to completely cover clusters, rather than
converge on the center of a cluster. After a specified number of FASO iterations,
the consolidation phase removes “stray” agents that may have become lost in
unpopulated areas. While unlikely, this removes the chance of a wondering agent
accidentally creating unnecessary clusters. Finally, the assignment phase places
data points in clusters formed by agent groups. Using a density based approach
similar to that used in the DBSCAN method, clusters of agents are produced
by connecting chains of neighboring agents. If the foraging ranges of two agents
overlap, they are considered part of the same cluster. With each agent part of
a cluster, all data points that fall within an agent’s foraging range immediately
join that agent’s cluster. Points that lie outside of the range of any agent simply
join the nearest cluster. These outlying points may alternatively be ignored as
noise.

4 Experimental Results

In order to evaluate FASC, four different two-dimensional clustering data sets
were used. Together, the data sets are highly representative of most common
clustering applications. We used the Aggregation data set [7] as a constant den-
sity, non-regular cluster sample, Jain’s data set [8] as a multi-density, non-regular
cluster sample, and finally S1 and S2 [6] as a semi-constant density, regular and
non-regular cluster sample with varying degrees of noise. data set sizes ranged
from 373 points (Jain) to 5000 points (S1, S2).

We compared the effectiveness of FASC to several well known clustering
methods, including both centroid (k-means) and density based (DBSCAN) algo-
rithms. All FASC clusters were generated using 100 iterations of FASO, a swarm
size of 0.25 to 0.75 times the number of data points, and a sensor range rs of 0.2
to 0.6 times the average data point to data point distance per data set. With
these settings, FASC was able to perform the clustering without any other user
configuration.

As shown in Figure 2, FASC performed well on all data sets in terms of cluster
detection and point assignment. FASC was able to correctly identify 38

39 clusters
across all data sets. This high level of performance shows that FASC is able
work well with clusters of arbitrary size and shape, as well as clusters of varying
density: a highly desirable trait.

236 K.M. Barresi

Fig. 2. Clustering results for FASC (A-D), k-means (E-F), and DBSCAN (I-L) on data
sets Aggregation (A,E,I), Jain (B,F,J), S1 (C,G,K), and S2 (D,H,L)

On the other hand, the conventional clustering methods did not perform as
well across all data sets. The k-means method identified 27

39 clusters, while DB-
SCAN identified 35

39 clusters. As expected, k-means excelled in globular cluster
identification, while DBSCAN performed best at identifying density-based clus-
ters. Overall, FASC outperformed both classic methods in the data sets tested.

5 Conclusions

In this paper, a novel swarm optimization algorithm named Foraging Agent
Swarm Optimization (FASO) was presented. FASO is designed to excel at con-
verging on one or more optima in both gradient and point-based search spaces.
It also operates well in situations where “field optima”, rather than single point
optima, are desired. Experimental results directly demonstrated that FASO is
able to perform well in gradient search spaces containing one or more optima.
FASO was also shown to be resilient to local minima that prove problematic to
other optimization methods.

The ability of FASO to find “field optima” in point-based search spaces was
demonstrated by directly applying FASO to data clustering. The novel clustering
method, called Foraging Agent Swarm Clustering (FASC), treats clustering as
an optimization problem containing multiple optima. Experimentation showed
that FASC is a highly effective clustering technique in a variety of situations.
It outperforms both k-means and DBSCAN in terms of cluster quality and au-
tonomous adaptability to numerous clustering situations.

Overall, results for both FASO and FASC are very promising. As a generic
swarm algorithm, FASO is able to consistently find optima in a variety

Foraging Agent Swarm Optimization with Applications in Data Clustering 237

of landscapes. Similarly, FASC provides an excellent clustering performance,
perhaps paving the path for newer swarm-based clustering methods.

References

1. Alam, S., Dobbie, G., Riddle, P.: An evolutionary particle swarm optimization
algorithm for data clustering. In: IEEE Swarm Intelligence Symposium, SIS 2008,
pp. 1–6 (September 2008)

2. Aljarah, I., Ludwig, S.: A new clustering approach based on glowworm
swarm optimization. In: 2013 IEEE Congress on Evolutionary Computation
(CEC), pp. 2642–2649 (June 2013)

3. Cui, X., Potok, T., Palathingal, P.: Document clustering using particle swarm
optimization. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS 2005,
pp. 185–191 (June 2005)

4. Esmin, A., Coelho, R.: Consensus clustering based on particle swarm optimization
algorithm. In: 2013 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC), pp. 2280–2285 (October 2013)

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise, pp. 226–231. AAAI Press
(1996)

6. Fränti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pat-
tern Recogn. 39(5), 761–775 (2006)

7. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl.
Discov. Data 1(1) (March 2007)

8. Jain, A., Law, M.: Data clustering: A user’s dilemma. In: Pal, S.K., Bandyopad-
hyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Hei-
delberg (2005)

9. Krishnanand, K.N., Ghose, D.: Detection of multiple source locations using a glow-
worm metaphor with applications to collective robotics. In: Proceedings 2005 IEEE
Swarm Intelligence Symposium, SIS 2005, pp. 84–91 (June 2005)

10. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations (1967)

11. Niu, B., Duan, Q., Liang, J.: Hybrid bacterial foraging algorithm for data cluster-
ing. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao,
X. (eds.) IDEAL 2013. LNCS, vol. 8206, pp. 577–584. Springer, Heidelberg (2013)

12. Olesen, J., Cordero, H.J., Zeng, Y.: Auto-clustering using particle swarm optimiza-
tion and bacterial foraging. In: Cao, L., Gorodetsky, V., Liu, J., Weiss, G., Yu, P.S.
(eds.) ADMI 2009. LNCS, vol. 5680, pp. 69–83. Springer, Heidelberg (2009)

13. Szabo, A., de Castro, L., Delgado, M.: The proposal of a fuzzy clustering algorithm
based on particle swarm. In: 2011 Third World Congress on Nature and Biologically
Inspired Computing (NaBIC), pp. 459–465 (October 2011)

14. Van Der Merwe, D.W., Engelbrecht, A.: Data clustering using particle swarm opti-
mization. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 1,
pp. 215–220 (December 2003)

15. Wan, M., Li, L., Xiao, J., Wang, C., Yang, Y.: Data clustering using bacterial
foraging optimization. Journal of Intelligent Information Systems 38(2), 321–341
(2012)

GPU Implementation of Food-Foraging Problem

for Evolutionary Swarm Robotics Systems

Kazuhiro Ohkura1, Toshiyuki Yasuda1, Yoshiyuki Matsumura2,
and Masaki Kadota1

1 Graduate School of Engineering, Hiroshima University, Hiroshima, Japan
kohkura@hiroshima-u.ac.jp

2 Faculty of Textile Science and Technology, Shinshu University, Nakano, Japan

Abstract. Evolutionary swarm robotics (ESR) is an artificial approach
for developing smart collective behavior in a system of homogenous au-
tonomous robots. Robot behavior is generally controlled by evolving ar-
tificial neural networks. ESR has been considered a promising approach
for swarm robotics systems (SRSs), because swarm behavior naturally
emerges from numerous local interactions among the autonomous robots.
In contrast, programming individual robots to display appropriate swarm
behavior is extremely difficult. However, even in a simulated SRS, ESR
is precluded by a very high computational cost. In this study, we in-
troduce a novel implementation that overcomes the computational cost
problem. The method employs parallel problem solving on a graphics
processing unit (GPU) and OpenMP on a multicore CPU. To demon-
strate the efficiency of the proposed method, we engage an evolving SRS
in a food-foraging problem.

1 Introduction

Swarm robotics (SR) [1] investigates the collective behavior of multirobot sys-
tems with large redundancy and lack of centralized control. Specifically, since
autonomous robots have limited capacity to sense and act in their local envi-
ronments, they must cooperate in various ways to achieve a given task. Most
SR systems are manually programmed [2] [3]. However, the complexity of the
robot environment depends on the SR system size, and the complex behavior
of large SR systems cannot be adequately generated by a sequence of manually
controlled behaviors.

The present study adopts a typical evolutionary robotics approach [4] de-
scribed in [5]. In this approach, the robot controller is designed by evolving an
artificial neural network whose inputs and outputs are sensory inputs and motor
outputs, respectively. Typically, the synaptic weights are coordinated with the
artificial evolution. This SR approach is frequently called Evolutionary swarm
robotics (ESR) [6]. Although ESR achieves an effective and robust collective
behavior in a robotic system, the artificial evolution incurs prohibitively large
computational cost.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 238–245, 2014.
c© Springer International Publishing Switzerland 2014

GPU Implementation of Food-Foraging Problem 239

To overcome this problem, we evolve an SR system by the so-called GPU
(graphics processing unit) computing technique. GPU computing extends the
original role of GPUs (as graphics processing devices) to general-purpose com-
puting. The high-speed architecture of GPUs is specialized for simple and inde-
pendent calculation. Although GPU performance is degraded in computations
involving many conditional branches, GPUs conduct floating-point calculations
much more rapidly than CPUs. NVIDIA, a leading GPU-developing company,
has launched a parallel computing platform and programming model called
CUDA (compute unified device architecture))1. GPUs developed by NVIDIA
are frequently used for purposes other than graphics [7][8]. For instance, Riegel
et al. [9] implemented a Lattice Boltzmann method for numerical fluid mechanics
in a GPU, and increased the computational speed (relative to CPU processing)
by 7.5 times. Three GPUs improved the processing speed by 18.4 times.

The efficiency of a GPU depends on the number of processes in the algorithm
that are suitable for parallel computing. The number of conditional branches is
also important. In this study, we expect that GPU computing will accelerate
the processing, since conditional branches are restricted to a particular section
of the ESR algorithm.

This study considers GPU computing for solving ESR problems. The cooper-
ative foraging problem is a typical problem that can be resolved from an ESR
systems approach. Indeed, ESR might be the only way to develop smart collective
behavior in this scenario. The study is organized as follows. Section 2 introduces
our ESR systems approach to the cooperative foraging problem. Section 3 briefly
explains the GPU architecture and the CUDA programming model. The imple-
mentation of ESR in a GPU is discussed in Section 4. In Section 5, the proposed
method is evaluated in computational experiments. The study concludes with
Section 6.

2 Cooperative Foraging Problem

Figure 1(a) shows the initial state of the cooperative foraging problem. The
square field covers (5000 × 5000) unit lengths and is surrounded by walls. Ini-
tially, members of the robotic swarm are randomly placed in the square nest at
the center of the field. The nest is (1000 × 1000) unit lengths. The swarm size
(i.e., the number of robots) is set to 8, 16, 24 or 32.

The robotic swarm is required to maximize its collection of circular food
sources. Each food source is 600 units in diameter and is randomly placed along
the circumference of a circle centered at the field center, as shown in Fig. 1. If
a robotic swarm succeeds in transporting a food source to the nest, i.e., when a
food source is pushed by the robotic swarm until its center reaches the nest, it
disappears, and a new food source is randomly placed on the solid circumference
in Figure 1(a). A food source is assumed sufficiently heavy that at least three
robots must combine their forces in the same direction to push it toward the
nest. The maximum execution time of a single trial is set to 4000.

1 http://www.nvidia.com/cuda/

240 K. Ohkura et al.

5000

5000

1000

1000

Food φ600

Robot
Nest

(a) Experimental Field at Initial State

IR Sensor

Omni directional Camera
and Compass

Nest Area

Nearest Robot

Nearest
Food

y

x

(b) Sensors of Robot

Fig. 1. Cooperative Foraging Problem

Table 1. Point calculation for swarm behavior

A food source reaches the nest +1000

Distance pushed to the nest +1000 × (1 drem / dinit)

+0.03125 (swarm size = 8)
A robot is touching a food source +0.015625 (swarm size = 16)

+0.0104167 (swarm size = 24)
+0.0078125 (swarm size = 32)

The specifications of the robots are shown in Fig. 1(b). Each robot is 200
units in diameter, and is equipped with six IR sensors at its front and two IR
sensors at its back. The sensing range of all detectors is 100 units. At the center
of each robot is an omnidirectional camera with a sensing rage of 500 units.
Individual robots can detect their nearest neighbor robots and the nearest food
source by image processing within the sensing range. A robot receives distance
and directional information on nearby objects. It should be noted here that
directions are computed by pairs of sine and cosine functions. Each robot is also
equipped with a digital compass by which it determines its absolute direction. In
addition, all robots are assumed to obtain the absolute direction to the nest. All
sensory information is perturbed by 3% Gaussian noise. The right and left wheels
of each robot are actuated by separate motors. Therefore, each robot controller
receives 18 inputs and generates two outputs. In this study, the controller is
assumed to be a fully connected recurrent artificial neural network with four
hidden neurons.

GPU Implementation of Food-Foraging Problem 241

The collective behavior of a robotic swarm is evaluated as shown in Table 1. A
robotic swarm gains 1000 points when it successfully brings a food source to the
nest. If the swarm fails to transport the food to the nest within one time step,
its points are calculated as 1000 × (1−drem/dinit), where drem and dinit denote
the linear distances between the centers of the nest and the food source in the
last and initial states, respectively. If a robot touches a food source during a time
step, it receives a small score that depends on the swarm size. Points awarded
for touching a food source are 0.03125, 0.015625, 0.0104167, and 0.0078125 for
swarm sizes of 8, 16, 24, and 32, respectively. Awarded scores assume that a
robotic swarm will gain 1000 points if all of the robots contact food sources in
all time steps.

3 CUDA

CUDA is a parallel computing platform and programming model invented by
NVIDIA Corp. This integrated developmental GPU environment is widely used
because it is well designed and free of charge. The GPU coprocessor executes
many threads in parallel. In this environment, the GPU behaves as a device
while the CPU and its main memory play host roles. A function executed on a
device is called a kernel. A device executes a kernel function under direction by
the host.

A device has many streaming multiprocessors (SM), each including numerous
CUDA cores. Our objective is efficient use of these CUDA cores. The device
can access global memory from all CUDA cores, and each SM holds shared
memory, accessible solely from its internal CUDA cores. While shared memory
may be speedily accessed from the CUDA cores with low latency, the latency
of global memory access is hundreds of cycles. An important consideration is
how to simultaneously execute many threads in parallel on CUDA cores while
concealing the latency by accessing different threads at different times.

In the CUDA programming environment, threads are organized in two layers.
The upper layer comprises grids, which are directly called by kernel functions.
The lower layer is composed of thread blocks, typically in a two-dimensional
configuration. In the following, thread blocks are simply referred to as blocks.
The threads comprising the blocks are also typically arranged in two dimensions.
During an execution process, a thread is assigned to a CUDA core, whereas a
block is assigned to an SM.

4 GPU Implementation

As mentioned above, threads are configured in a two-layered structure in the
CUDA environment. That is, such a structure is suitable for two-layered parallel
computing. Therefore, the blocks are used to evaluate individuals in the artificial
evolution, since they allow independent update of each individual. The threads
in a block are used to calculate the fitness values of individuals in parallel.

242 K. Ohkura et al.

Table 2. Settings of GA

Population size 256

Last generation 200

Selection Tournament (size:2)
Elitism (size:1)

Crossover rate 0.2
Crossover index 0.35

Mutation rate 0.01
Mutation index 0.25

Table 3. Development environment

CPU Intel Core i7 2600K (3.40GHz)

GPU NVIDIA Geforce GTX580
(512 CUDA cores, 16 SMs)

(1544MHz)

Main Mem. 8GB

OS Fedora16 (64bits)

IDE Nsight Eclipse Edition
CUDA 5.0

The artificial evolution of the SR system proceeds through the following steps:

1. Initialization: robots and food sources are randomly positioned. All informa-
tion is initialized.

2. Sensing: a robot retrieves sensory information from its IR sensors, omnidi-
rectional camera and compass.

3. Controller calculation: the obtained sensory information is passed to the
robot controller, which provides output information.

4. Collision detection and constraint solving: robots move according to their
controller outputs. Collisions with other robots, walls, and food sources are
monitored. If robots collide with an object, constraint calculations are exe-
cuted.

5. Return to step 2 until the last time step is counted.

At Step 1, a block is defined for each individual. The number of threads de-
fined per block equals the swarm size. The robotic swarm is initialized prior to
other operations. Step 2 employs two kernel functions. The first kernel controls
the sensing by IR sensors. All IR sensors of all robots are assigned to different
threads, enabling complete parallel processing of each block. The second kernel
controls sensing by omnidirectional cameras and compasses. This kernel function
is executed identically to Step 1. At Step 3, the outputs of the robot controller
are calculated by the parallel processing adopted in Step 1. At Step 4, the con-
ditional branches for collision detection and constraint solving are unavoidable,
this step is thus executed on the CPU. However, we access pinned memory on
the host since the pinned memory can be copied to the device memory parallel
to other kernel executions. To coordinate the population, the CPU execution is
parallelized on OpenMP2.

Genetic operators are implemented on the GPU as described in [10]. In the fol-
lowing computer simulations, we adopt a real-coded genetic algorithm (GA) [11]
with Laplace crossover [12] and power mutation [13]. The pseudorandom number
generator used in both GPU and CPU is Xorshift [14].

2 http://openmp.org/wp/

GPU Implementation of Food-Foraging Problem 243

Table 4. Average processing time (s) for swarm size = 8

Operation
Using OpenMP Using GPU and OpenMP

Processing time Deviation Processing time Deviation Ratio

Op. A 1142.564 98.412 140.913 5.965 8.108

Op. B 102.399 1.109 84.155 0.019 1.217

Op. C 183.802 37.566 193.489 32.672 0.950

Op. D - - 111.632 0.060 -

Op. E 0.099 0.003 0.022 0.000 4.476

Op. F 0.592 0.004 41.723 12.504 0.014

Total 1429.456 124.147 571.933 37.888 2.499

Table 5. Average processing time (s) for swarm size = 16

Operation
Using OpenMP Using GPU and OpenMP

Processing time Deviation Processing time Deviation Ratio

Op. A 3122.674 201.117 296.775 15.443 10.522

Op. B 202.507 0.774 131.170 0.094 1.544

Op. C 642.163 115.369 629.665 100.970 1.020

Op. D - - 201.970 0.131 -

Op. E 0.100 0.002 0.022 0.000 4.565

Op. F 1.122 0.004 44.637 11.935 0.025

Total 3968.566 278.123 1304.239 108.911 3.043

5 Computational Experiments

5.1 Settings

The parameters of the real-coded GA are listed in Table 2. The genotype length
is 136. In addition to the elitism of size 1, the tournament selection of size 2 is
assumed in the natural selection process. The computer environment is summa-
rized in Table 3. Our approach is compared against a typical implementation
on a Core i7 CPU multithreaded for population by OpenMP. In the following,
the comparison is referred to as the standard method. Similarly, we refer to
the GPU implementation of the standard method as the proposed method. The
swarm size is set to 8, 16, 24, or 32. Under each condition, the average and
standard deviation of the processing time is calculated from 30 runs.

5.2 Results

In all of the computational experiments, the cooperative food foraging problem
was solved and robot teams successfully brought one or more food sources to

244 K. Ohkura et al.

Table 6. Average processing time (s) for swarm size = 24

Operation
Using OpenMP Using GPU and OpenMP

Processing time Deviation Processing time Deviation Ratio

Op. A 5885.165 413.318 518.594 38.487 11.348

Op. B 301.589 0.283 179.200 0.033 1.683

Op. C 1806.164 902.308 1667.286 455.317 1.083

Op. D - - 298.787 0.133 -

Op. E 0.097 0.001 0.022 0.000 4.471

Op. F 1.662 0.008 54.048 11.619 0.000

Total 7994.676 1109.690 2717.938 482.373 2.941

Table 7. Average processing time (s) for swarm size = 32

Operation
Using OpenMP Using GPU and OpenMP

Processing time Deviation Processing time Deviation Ratio

Op. A 9612.531 437.086 927.365 65.771 10.365

Op. B 402.251 4.447 237.831 1.158 1.691

Op. C 4211.370 4470.927 3508.710 1243.615 1.200

Op. D - - 389.825 0.734 -

Op. E 0.101 0.002 0.022 0.001 4.508

Op. F 2.260 0.033 60.862 11.318 0.037

Total 14228.513 4615.823 5124.614 1264.831 2.777

the nest. The processing times of the various operations are summarized in
Tables 4, 5, 6 and 7. Operation A (denoted Op. A) is the sensing activity. The
other operations, denoted Ops. B, C, D, E and F, are the ANN calculation,
collision detection and constraint solving, data transfer between the GPU and
CPU, natural selection and genetic operations, and miscellaneous operations,
respectively. Relative to the standard method, the proposed method reduced the
total processing time by factors of 2.5, 3.0, 2.9, and 2.8 for swarm sizes of 8, 16, 24,
and 32, respectively. The proposed method conferred its greatest benefit in the
sensing operation, which was maximized at 11.3 times faster than the standard
method. On the other hand, the proposed method only minimally benefitted the
ANN calculation (performing only 1.7 times faster than the standard method).

6 Conclusions

In this study, we discussed whether the smart collective behavior in an ESR sys-
tem can be efficiently implemented by GPU computing. As an example, we imple-
mented the food-foraging problem. In an experimental computer environment,

GPU Implementation of Food-Foraging Problem 245

the GPU proved beneficial for parallel processing of ESR, particularly when
processing independent sensors equipped on robots. As a next step, we plan to
extend the proposed method into a multi-GPU computing environment, which
will accommodate a much larger ESR system.

References

1. Şahin, E.: Swarm robotics: From sources of inspiration to domains of applica-
tion. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342,
pp. 10–20. Springer, Heidelberg (2005)

2. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile
robot swarms. Swarm Intelligence 2(2-4), 97–120 (2008)

3. Liu, W., Winfield, A.F., Sa, J.: Modelling swarm robotic systems: A case study in
collective foraging. Towards Autonomous Robotic Systems (TAROS 2007), 25–32
(2007)

4. Harvey, I., Husbands, P., Cliff, D., et al.: Issues in evolutionary robotics. School of
Cognitive and Computing Sciences, University of Sussex (1992)

5. Şahin, E., Girgin, S., Bayindir, L., Turgut, A.E.: Swarm robotics. In: Swarm Intel-
ligence, pp. 87–100. Springer (2008)

6. Trianni, V.: Evolutionary swarm robotics: evolving self-organising behaviours in
groups of autonomous robots, vol. 108. Springer (2008)

7. Stone, S.S., Haldar, J.P., Tsao, S.C., Hwu, W.M., Sutton, B.P., Liang, Z.P., et
al.: Accelerating advanced mri reconstructions on gpus. Journal of Parallel and
Distributed Computing 68(10), 1307–1318 (2008)

8. Preis, T., Virnau, P., Paul, W., Schneider, J.J.: Accelerated fluctuation analysis by
graphic cards and complex pattern formation in financial markets. New Journal of
Physics 11(9), 093024 (2009)

9. Riegel, E., Indinger, T., Adams, N.: Implementation of a lattice boltzmann method
for numerical fluid mechanics using the nvidia cuda technology. Computer Science-
Research and Development 23(3-4), 241–247 (2009)

10. Oiso, M., Matsumura, Y., Yasuda, T., Ohkura, K.: Implementing genetic algo-
rithms to cuda environment using data parallelization. Tehnicki vjesnik/Technical
Gazette 18(4) (2011)

11. Goldberg, D.E., et al.: Genetic algorithms in search, optimization, and machine
learning, vol. 412. Addison-Wesley, Reading (1989)

12. Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms.
Applied Mathematics and Computation 188(1), 895–911 (2007)

13. Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms.
Applied mathematics and Computation 193(1), 211–230 (2007)

14. Marsaglia, G.: Xorshift rngs. Journal of Statistical Software 8(14), 1–6 (2003)

Nature-Inspired Swarm Robotics Algorithms

for Prioritized Foraging

Jade Abbott and Andries P. Engelbrecht

Computational Intelligence Research Group, Department of Computer Science,
University of Pretoria, South Africa
{jabbott,engel}@cs.up.ac.za

Abstract. This paper introduces the problem of prioritized foraging.
The performance of a näıve foraging algorithm and a desert ant foraging
algorithm is evaluated on the prioritized foraging problem. The evalua-
tion is used to motivate the creation of a novel honey bee based foraging
algorithm. The performance and adaptability to different environments is
evaluated for all algorithms. This paper concludes that a relationship ex-
ists between the performance of the existing foraging algorithms and the
initial ratio of agents configured to forage prioritized items. The honey
bee algorithm was shown to perform well across all configurations.

1 Introduction

An important activity of all natural swarms is foraging for resources [1]. These
resources could be food, water, or building materials. In times of stress, the
collection of one resource may be prioritized over others - such as water during
a drought. Individuals in a natural swarm often adapt behaviour appropriately
to enable greater collection of the prioritized item. Item prioritization during
foraging exists in real-world robot foraging problems such as search and rescue
where some agents move waste material to reach the trapped survivors.

This paper introduces the problem of prioritized foraging. The performance
of a näıve foraging algorithm and a desert ant-based foraging algorithm are
evaluated on the prioritized foraging problem. The evaluation is used to motivate
the creation of an algorithm whose performance is independent of the initial
agent configuration. Finally, a novel honey bee based foraging algorithm, with the
ability to divide its labourers between items of different priorities, is presented.

Section 2 provides background on foraging, while the problem of prioritized
foraging is discussed in section 3. The agents are described in section 4, and
section 5 presents the algorithms. Section 6 outlines the experimental setup and
the results are reported in 7. Section 8 concludes the paper.

2 Background

In swarm robotics, foraging has become a benchmark problem due to its complex
nature involving coordination of numerous sub-tasks. Foraging has a variety of

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 246–253, 2014.
c© Springer International Publishing Switzerland 2014

Nature-Inspired Swarm Robotics Algorithms for Prioritized Foraging 247

real-life applications and numerous swarm robotics algorithms have been devel-
oped to improve robustness, time and energy efficiency of the foraging process
[1]. This section discusses foraging algorithms in nature.

2.1 Ant Foraging

Ant-based algorithms are difficult to replicate in real-life since techniques use
pheromone. Agent-based algorithms that use pheromone require agents to be
equipped with substance-distributors, beacon-deployers or a complex simulation
of pheromone [2].

The desert ant (Cataglyphis bicolor) does not make use of pheromone-based
communication to forage, as pheromone deposited on desert sand would be blown
away by the wind. Instead, desert ants use a technique called path-integration
for navigation to relocate food sources that have already been found [3].

Desert ant foraging has been modelled and experiments performed on real
agents in [4]. Experiments were performed using a small set of agents in a small
arena on different environment types. Two algorithms were evaluated: one based
on the desert ant foraging and one with pheromone-like communication. It was
shown that communication improved performance; however, the desert-ant al-
gorithm performed reasonably.

2.2 Bee Foraging

Honey bee foraging is made up of three roles [5]: Employed foraging, unemployed
foraging and scouting. Scouts explore to locate new food sources. Once a source
has been found, scouts return to the hive to communicate information about the
source. Scout bees perform a waggle-dance to the hive, containing information
about the distance and bearing of the resource, known as recruitment.

Unemployed foragers evaluate the dances of the scout bees. An unemployed
bee chooses a location described by the scout bees, and becomes an employed
forager. Employed foragers attempt to locate the source, load themselves and
return to the hive where unemployed foragers are ready to offload the food.
Jansen [6] suggests that unemployed bees become exploring scouts when they
do not detect any dancing scout bees. Bee swarms have been used in swarm
robotics for problems such as path planning [7] and collective perception [8].

3 Prioritized Foraging

The prioritized foraging problem, is a modified version of the multi-foraging
problem [9] with two types of items: prioritized items and non-prioritized items.
The goal is to forage all items of the prioritized type. Prioritized items may
become trapped among non-prioritized items and thus the non-prioritized items
must be removed from the environment, however foraging the non-prioritized
item too much may result in a waste of time and energy.

The aim of research in prioritized foraging is to develop an algorithm to ef-
ficiently adapt the number of agents foraging prioritized items to those moving
non-prioritized items out the way.

248 J. Abbott and A.P. Engelbrecht

4 Agents

Each agent is equipped with a 360◦camera to identify an item’s type and eight
local proximity sensors spaced equally around the circular perimeter of the agent.
Both camera and proximity sensors have a depth of view of five times the agent’s
size. Agents have grippers, to pick up items.

Agents use local broadcast communication, occurring in a radius of five times
the agent’s size. An agent can forage a single item at a time. The agents do not
have a global positioning system capability. All algorithms used in this paper
use the same obstacle avoidance and navigation technique.

Item identification and navigation techniques run in a separate thread. An
agent will only approach an item when the item has been identified as the agent’s
allocated item type, otherwise the robot will attempt to move around the item.

5 Algorithm Description

Näıve foraging is discussed in section 5.1, desert ant foraging discussed in section
5.2, and honey bee foraging is discussed in 5.3.

5.1 Näıve Foraging

Näıve foraging includes only the most minimal set of foraging actions. Näıve
foraging is a baseline for comparison to evaluate how other techniques compare
to a standard model [10,2].

Näıve foraging works as follows: Agents perform a random walk until they
find an item. On locating an item, the agent grips the item. If the item has been
moved, the agent will continue to explore; otherwise the agent returns the item
to the correct sink using a beacon-based homing algorithm.

The following random walk is used: an agent chooses a random direction, σ,
and a random distance m ∈ (0,M) where M is a chosen maximum path length.
The agent walks in direction σ for distance m. The agent then chooses new
values for σ and m.

5.2 Desert Ant Foraging

Due to the lack of pheromone, desert ant foraging behaviour is a very suitable
model for agent foraging. Desert ants use path integration to memorize the
location of an existing food source and later to return to the memorized source
to find more food. The notion of returning to a previously explored site is known
as site fidelity [11]. The desert ant algorithm does not require communication
between agents or the dispersal of beacons, and is thus simpler than other many
swarm robotics foraging algorithms.

Path integration (PI) is the integration of an ant’s odometry such that the
ant can maintain a position and heading estimate of where the ant is going,
by continuously updating a heading direction vector that points to the starting

Nature-Inspired Swarm Robotics Algorithms for Prioritized Foraging 249

position [12]. The heading-direction vector is known as the PI vector. The agent
control algorithm consists of five states. The agent performs a random walk while
performing PI (exploration). On finding an item, the agent loads the item and
memorizes the PI vector (loading). The agent uses the path integration vector to
move to the sink (homing). When the agent is at the sink, the object is offloaded
(offloading). The agent follows the memorized PI vector to the location of the
previous item. If another item is found, the item is loaded; otherwise the agent
returns to the exploration state (locating).

5.3 Honey Bee Foraging

The presented honey bee algorithm is based on the mathematical model of honey
bee foraging in [5]. A portion of the agents are initialized as scouts and the rest
as unemployed foragers in a waiting state. State transitions for the honey bee
algorithm are described as follows:

1. A scout agent performs a random walk and, upon finding an item and eval-
uating the site, forages the item by returning the item to the sink using
PI.

2. A scout decides to dance, based on the quality of the site. If the estimated
quality of the site, μ, is less than the dance threshold, φ, the scout agent does
not dance and instead continues to forage the site as an employed forager.

3. Otherwise, if the estimated quality of the site, μ, is greater or equal to the
dance threshold, φ, the scout agent dances for the unemployed foragers.

4. After a dance is complete, the scout agent decides with probability ρ to start
exploring again or recruit itself and begins foraging the found site.

5. On detecting a dance, waiting bees become foraging bees with a probability
α and switch to foraging the dancer’s item type.

6. Employed foragers become unemployed foragers (waiting foragers) if the for-
aging site has been depleted.

7. Unemployed foragers become scouts if no dances are detected tmax time
steps.

Site quality, μt, for an agent scouting items of type t, is calculated as the
estimated density of items of type t in the local vicinity of the found item. The
agent has distance sensor values ki ∈ [0, 1] for i = 1...n, where 0 means that
nothing is detected in sensor range and 1 indicates that the agent is touching an
item and n is the number of distance sensors. The item density of type t, μt, is
calculated using

μt =
1

n

n∑
i=1

kit (1)

where the sensor value for item type t, kit , is calculated using

kit =

{
ki if item i is type t

0 otherwise
(2)

250 J. Abbott and A.P. Engelbrecht

In times of drought, bees prioritize water over nectar or pollen. Bees are sent
out to forage water; however, if they happen to encounter pollen, they will forage
it but will not communicate the discovery [5]. The rules for item-type division
of labour are based on the behaviour of bees under environmental pressure.
An agent foraging the prioritized type, forages a non-prioritized type only if
a prioritized item can not be located for max time fmax. An agent foraging a
non-prioritized item forages the non-prioritized item type until the agent fails
to relocate the site or the agent locates a prioritized item, switching back to
foraging the prioritized item. An agent foraging a non-prioritized item will not
communicate the location of the non-prioritized item site.

6 Experimental Setup

A 2D grid world was used to evaluate the performance of the foraging algorithms.
Each agent fits into one grid block and each item takes up one grid block. Items
can be picked up, or otherwise form obstacles that agents must navigate around.

The prioritized and non-prioritized sinks were placed beside each other, on
a single side of the environment to more accurately represent the type of en-
vironment that the problem could be applied to e.g. in mine tunnels, differing
from the more common placement at the centre of the environment. The sinks
were marked by light beacons that all agents can detect and navigate towards.
Agent’s beacon homing to the sinks is simulated by each agent evaluating and
moving up a light intensity gradient. The colour of the light is used to distinguish
between the 2 sinks.

Four different classes of environments were used: uniformly distributed en-
vironments, clustered environments with clusters of item types generated by
randomly relabelling items in clusters generated by Lumer-Faieta ant cemetery
clustering [13] as either prioritized or non-prioritized items, vein environments
resembling the natural occurrence of gold and gaussian environments where pri-
oritized items are focused at the environment center.

For each class of environment, the following configurations were tested: The
environment grid size, S = 50, 100, 200 where S is the width and length of the
grid and the percentage p of the grid covered by objects, with p = 5%, 20%,
50%, 70%, 90%. The ratio of prioritized to non-prioritized items r, is varied,
where r = 0, 0.2,0.25, 0.333, 0.5, 0.667, 0.75, 0.8, 1. For each configuration, 30
environments were generated and all algorithms were run on all environments.
Honey bee specific parameters were selected as tmax = 200 timesteps, fmax =
100 timesteps, φ = 0.8 and ρ = 0.1, are based on [5].

Agents were initially configured to forage either the prioritized item or the
non-prioritized item with a ratio of τ = 0, 0.2, 0.25, 0.333, 0.5, 0.667, 0.75, 0.8,1.
Different numbers of agents, c, were used with c = 10, 30, 50, 70, 100; c is defined
as the percentage of cells of the grid size S that are occupied by agents.

All algorithms were run for 10000 time steps, where an agent can move maxi-
mum 1 grid cell at a time, to any adjacent cell, with no stopping conditions. For
all algorithms, the agents begin randomly placed next to the sink. Due to space
constraints, only the percentage of prioritized items foraged, σ, is presented.

Nature-Inspired Swarm Robotics Algorithms for Prioritized Foraging 251

7 Results

When comparing two foraging algorithms, pairwise Wilcoxon test was performed,
to determine if a statistical difference occurs, at a significance level of 95%. If
an algorithm statistically outperforms the other algorithm in the comparison,
a win is awarded to that algorithm. The wins are counted per algorithm and
are shown in Table 1. The sample set consisted of all data obtained from the
experiment over all configurations. The null hypothesis is that the results of the
two algorithms come from the same distribution.

Table 1. The overall Pairwise Mann Whitney U wins, averages and standard deviations
of for average prioritized item found over time (σ) for each algorithm

Algorithms Wins Average Std Dev

Naive 3 0.528 0.394
Desert Ant 2 0.643 0.387
Honey Bee 1 0.807 0.294

Statistical tests indicate a significant difference between the results of all al-
gorithms. Desert ant foraging performed better than näıve foraging showing the
positive effect of site fidelity. The honey bee algorithm out-performed the näıve
foraging algorithm and desert ant algorithm indicating the positive effect of com-
munication and adaptivity of the honey bee foraging algorithm. The standard
deviation is high for all algorithms due to large variations in the environments
provided.

The following hypotheses are addressed: An algorithm foraging a portion of
non-prioritized items will have greater performance than an algorithm that does
not forage any non-prioritized items. Performance depends on the r and τ . As
r increases, the value of τ that yields the greatest value of σ, τbest, will increase
approximately linearly for the näıve and desert ant algorithms.

An algorithm with configuration τ = 1, forages only prioritized items.
Analysing Table 2, for the näıve and desert ant algorithms, for all values of
r where r �= 1, τbest is never equal to 1, proving the hypothesis that the algo-
rithms achieved the best performance when some agents are configured to forage
non-prioritized items. Perhaps non-prioritized items are moved out of the way to
allow for easier, faster access to prioritized items or allow access to inaccessible
prioritized items.

The näıve and desert ant algorithms performed best when τ was slightly
greater than r. The existence of the relationship motivates the development of
an algorithm that adapts τ to correspond the environment item ratio r.

Analysis of Table 2 indicates that the honey bee foraging algorithm achieves
similar performance throughout all configurations for r and τ , highlighting that
the performance of the honey bee algorithm is independent of the configuration
of τ , resulting in an algorithm that is more flexible and robust. This could mean
that the honey bee algorithm could perform well in dynamic environments where

252 J. Abbott and A.P. Engelbrecht

Table 2. The performance, σ, for each foraging algorithm, for each combinations of r
and τ . If τbest exists, τbest is provided. The best value of σ is shown in bold.

τ
Algorithm r

0 0.2 0.25 0.333 0.5 0.667 0.75 0.8 1
τbest

0 1 1 1 1 1 1 1 1 1
0.2 0 0.492 0.526 0.567 0.597 0.595 0.587 0.577 0.471 0.5
0.25 0 0.484 0.526 0.557 0.588 0.595 0.585 0.575 0.477 0.667
0.333 0 0.467 0.507 0.544 0.586 0.596 0.592 0.584 0.495 0.667
0.5 0 0.428 0.46 0.508 0.568 0.588 0.591 0.589 0.528 0.75

0.667 0 0.4 0.433 0.487 0.544 0.583 0.591 0.593 0.554 0.75
0.75 0 0.377 0.425 0.47 0.531 0.576 0.585 0.591 0.567 0.8
0.8 0 0.372 0.409 0.455 0.53 0.571 0.584 0.592 0.575 0.8

Näıve

1 0 0.336 0.375 0.433 0.5 0.552 0.57 0.581 0.618 1
0 1 1 1 1 1 1 1 1 1
0.2 0 0.698 0.724 0.737 0.737 0.712 0.694 0.67 0.519 0.333
0.25 0 0.678 0.711 0.73 0.735 0.715 0.697 0.673 0.530 0.5
0.333 0 0.65 0.693 0.722 0.739 0.725 0.71 0.686 0.562 0.5
0.5 0 0.596 0.645 0.684 0.729 0.734 0.725 0.701 0.621 0.667

0.667 0 0.554 0.607 0.648 0.706 0.737 0.738 0.716 0.675 0.75
0.75 0 0.533 0.587 0.63 0.691 0.731 0.739 0.72 0.703 0.75
0.8 0 0.523 0.577 0.62 0.682 0.725 0.736 0.74 0.718 0.8

Desert Ant

1 0 0.488 0.543 0.588 0.654 0.702 0.718 0.726 0.758 1
0 1 1 1 1 1 1 1 1 1
0.2 0.687 0.687 0.686 0.686 0.686 0.685 0.686 0.685 0.687
0.25 0.678 0.679 0.678 0.678 0.679 0.679 0.678 0.677 0.679
0.333 0.674 0.674 0.674 0.674 0.674 0.674 0.673 0.674 0.674
0.5 0.668 0.669 0.668 0.668 0.668 0.668 0.668 0.668 0.669

0.667 0.671 0.671 0.671 0.671 0.671 0.672 0.671 0.671 0.671
0.75 0.672 0.673 0.671 0.671 0.672 0.673 0.672 0.673 0.673
0.8 0.674 0.674 0.674 0.674 0.674 0.675 0.675 0.675 0.675

Honey Bee

1 0.691 0.69 0.691 0.69 0.691 0.691 0.69 0.69 0.69

agents and items can be destroyed. This robustness of the honey bee algorithm
may be attributed to the division of labour strategy used by the algorithm.

However, according to Table 2, the desert ant algorithm performs better than
the honey bee algorithm, for particular configurations of r and τ . This indicates
that, if the value of r is known for a particular environment, then it is beneficial
to use desert ant foraging and choose τ appropriately. A possible reason why the
desert ant algorithm performs better when optimally configured for a particular
environment than the honey bee algorithm is that the honey bee algorithm takes
time to adapt to the environment, while the desert ant algorithm with optimal
configuration has no division of labour overhead and may outperform the honey
bee algorithm under those circumstances.

8 Conclusions and Future Research

This paper concludes that an algorithm that forages a portion of non-prioritized
items will have greater performance than an algorithm that does not forage
any non-prioritized items and that the performance of the näıve and desert ant
foraging algorithms is dependant on the ratio of agents initially configured to
forage the prioritized item and the ratio of prioritized items in the environment.
The honey bee algorithm was shown to perform well across all of the initial

Nature-Inspired Swarm Robotics Algorithms for Prioritized Foraging 253

configurations; however, the desert ant algorithm still outperformed the honey
bee algorithm for certain environment object ratios and agent forage type ratios.

Future work will also evaluate the performance of the honey bee algorithm
in dynamic environments and will include an evaluation of other performance
measures and an in depth discussion of the scalability of the algorithms.

References

1. Winfield, A.F.: Foraging robots. In: Meyers, R. (ed.) Encyclopedia of Complexity
and Systems Science, pp. 3682–3700. Springer (2009)

2. Hoff, N.R., Sagoff, A., Wood, R.J., Nagpal, R.: Two foraging algorithms for robot
swarms using only local communication. In: 2010 IEEE International Conference
on Proceedings of Robotics and Biomimetics (ROBIO), pp. 123–130. IEEE (2010)

3. Collett, M., Collett, T.S., Bisch, S., Wehner, R.: Local and global vectors in desert
ant navigation. Nature 394(6690), 269–272 (1998)

4. Hecker, J.P., Letendre, K., Stolleis, K., Washington, D., Moses, M.E.: formica
ex machina: Ant swarm foraging from physical to virtual and back again. In:
Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R.,
Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 252–259. Springer, Heidelberg
(2012)

5. Seeley, T.D.: The wisdom of the hive: the social physiology of honey bee colonies.
Harvard University Press (2009)

6. Janson, S., Middendorf, M., Beekman, M.: Searching for a new home—scouting
behavior of honeybee swarms. Behavioral Ecology 18(2), 384–392 (2007)

7. Lin, J.H., Huang, L.R., et al.: Chaotic bee swarm optimization algorithm for path
planning of mobile robots. In: Proceedings of the 10th WSEAS International Con-
ference on Evolutionary Computing, World Scientific and Engineering Academy
and Society (WSEAS), pp. 84–89 (2009)

8. Schmickl, T., Möslinger, C., Crailsheim, K.: Collective perception in a robot swarm.
In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006 Ws 2007. LNCS,
vol. 4433, pp. 144–157. Springer, Heidelberg (2007)

9. Balch, T.: The impact of diversity on performance in multi-robot foraging. In:
Proceedings of the Third Annual Conference on Autonomous Agents, pp. 92–99.
ACM (1999)

10. Østergaard, E.H., Sukhatme, G.S., Matari, M.J.: Emergent bucket brigading: a sim-
ple mechanisms for improving performance in multi-robot constrained-space for-
aging tasks. In: Proceedings of the Fifth International Conference on Autonomous
Agents, pp. 29–30. ACM (2001)

11. Switzer, P.V.: Site fidelity in predictable and unpredictable habitats. Evolutionary
Ecology 7(6), 533–555 (1993)

12. Ronacher, B.: Path integration as the basic navigation mechanism of the desert
ant cataglyphis fortis (forel, 1902)(hymenoptera: Formicidae). Myrmecological
News 11, 53–62 (2008)

13. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants.
In: Proceedings of the Third International Conference on Simulation of Adaptive
Behavior: from Animals to Animats, pp. 501–508. MIT Press (1994)

Particle Swarm Optimisation with Enhanced

Memory Particles

Ian Broderick and Enda Howley

Discipline of Information Technology, National University of Ireland, Galway, Ireland
{i.broderick1,enda.howley}@nuigalway.ie

Abstract. Particle swarm optimisation (PSO) is a general purpose op-
timisation algorithm in which a population of particles are attracted to
their past success and the success of other particles. This paper intro-
duces a new variant of the PSO algorithm, PSO with Enhanced Memory
Particles, where the cognitive influence is enhanced by having particles
remember multiple previous successes. The additional positions intro-
duce diversity which aids exploration. Balancing the need for exploita-
tion with this additional diversity is achieved through the use of a small
memory and by using Roulette selection to select a single position from
memory to use when calculating particles’ velocities. The research shows
that PSO EMP performs better than the Standard PSO in most cases
and does not perform significantly worse in any case.

1 Introduction

The particle swarm optimisation algorithm was developed by James Kennedy
and Russell Eberhart [1] as a result of their work on modelling the behaviour of
flocking birds. In PSO particles are driven by two influences, a social influence
and a nostalgic influence. The social influence encourages particles to emulate
the behaviour of the most successful particles in the swarm, while the nostalgic
influence tends to pull them back to their own past successes. The social influence
depends on the interactions and connections between particles. Much research
has been conducted on the social component, by varying the topology in which
the particles are connected [6] or how the social influence is calculated [3,4].
The focus of this paper will be on the nostalgic or cognitive influence on the
particles with the goal of answering two main research questions: (1) Can the
performance of the Standard PSO be improved by having particles remember
additional previous good positions? (2) What is the most efficient way to utilise
this additional information?

The rest of this paper will be organised as follows. Section 2 will summarize
the previous research that is relevant to this paper. Section 3 will introduce the
new PSO EMP algorithm. The experimental data will be presented in Section
4. Finally, Section 5 will give the conclusions reached as a result of this research.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 254–261, 2014.
c© Springer International Publishing Switzerland 2014

Particle Swarm Optimisation with Enhanced Memory Particles 255

2 Background Research

2.1 Particle Swarm Optimisation

In PSO optimisation there is a population of agents, known as particles. These
particles move around a solution space, defined by a fitness function, and eval-
uate their fitness at each location they visit. Particles are defined by a location
within the solution space (xt) and a velocity (vt). At each iteration every particle
calculates its velocity, moves to a new location and evaluates its fitness.

xt+1 = xt + vt (1)

vt+1 = χ (vt + r1c1 (pid − xt) + r2c2 (pgd − xt)) (2)

Where r1 and r2 are random numbers between 0 and 1. c1 and c2 are acceleration
coefficients. χ is the constriction coefficient.

χ =
2

|2− ϕ−
√
ϕ2 − 4ϕ|

, ϕ = c1 + c2 (3)

Selecting c1 = c2 = 2.05 gives ϕ = 4.1 and χ ≈ 0.72984. Setting these values
guarantees convergence [11]. The use of these values with Eq.1 and Eq.2 has
become the Standard PSO [2]. pid is the position where the particle achieved its
best fitness. pgd is the best position achieved by any particle.

2.2 Social Influence

Mendes et al. introduced the Fully Informed Particle Swarm (FIPS) [3]. In the
FIPS a particle uses information from all of its neighbours when calculating the
velocity, not just the best performer. This is done by splitting the c2 acceleration
constant between the particles in the neighbourhood. Two different methods for
doing this were examined. In the Standard FIPS all neighbours contribute the
same weight to the velocity equation. In the weighted FIPS the contribution of
each neighbour is weighted by its previous fitness. Jordan et al. introduced a
variant of FIPS, the ranked FIPS [4]. The ranked FIPS uses a ranking system
to weight the influence of each particle in the neighbourhood.

Both the FIPS and ranked FIPS attempt to improve the social component of
the velocity equation by dividing c2 term. This paper will examine the cognitive
component, dividing the c1 term using methods similar to those used by the
FIPS and ranked FIPS.

2.3 Enhancing Memory in PSO

This section summarises some of the research conducted into the use of internal
and external memories in PSO to make better use of the available information.
An internal memory stores information within the population, while an external
memory stores information separate to the population.

256 I. Broderick and E. Howley

Yin et al. introduced the Cyber Swarm Algorithm which adopted the idea of
using a Reference Set in a PSO [7]. A Reference Set is an external memory storing
elite mutually diverse solutions taken from the entire swarm that is dynamically
updated during the optimisation process. The members of the Reference Set
are used when calculating the particles’ velocities. This approach was found to
improve on the Standard PSO.

Hu et al. proposed the use of an external memory to store all Pareto optimal
solutions to improve the performance of PSO in MOP [8]. The external memory
is then used when selecting the neighbourhood best. Chao et al. used both an
internal and external memory to enhance the performance of PSO for MOP [9].
Each particle’s extended memory stores a set of mutually non-dominating non-
inferior pBest solutions. A random pBest is chosen from memory when a particle
is calculating its velocity. An external memory is also used to store all Pareto
optimal solutions.

The research in this paper will use an internal memory to store additional
best positions for each particle.

3 PSO with Enhanced Memory Particles

In a typical PSO implementation each particle remembers only the best position
it has been to, forgetting all other positions. This discards a lot of information
that could potentially be useful. In PSO EMP particles remember a number
of their best positions. These additional remembered positions are used when
calculating the particles’ velocities. The additional positions should encourage
swarm diversity which may lead to improved performance.

The new PSO EMP algorithm will replace the individual best term in the ve-
locity equation with a new EMP term (Eq. 4). A number of different approaches
to calculating this term have been explored. The approaches typically involve a
division of the c1 acceleration coefficient. This division does not affect the con-
vergence of the algorithm as long as the sum of the terms gives the whole c1.
The proposed methods of dividing the c1 term are outlined below.

vt+1 = χ ∗ (νt + r1EMPterm + r2c2 (pgd − xt)) (4)

3.1 Equal Influence EMP

The simplest method for calculating the EMP term is to give equal influence
to all remembered positions when calculating the velocity of a particle. This is
done by splitting the c1 acceleration coefficient into N equal parts, where N is
the number of remembered positions. The velocity equation then becomes:

vt+1 = χ ∗

⎛
⎝νt + r1

N∑
j=1

c1
N

(pid,j − xt) + r2c2 (pgd − xt)

⎞
⎠ (5)

Where pid,j is the jth best position remembered by the particle. This approach
is similar to the approach used in the FIPS for dividing the c2 term [3].

Particle Swarm Optimisation with Enhanced Memory Particles 257

3.2 Power Law Distribution EMP

The second method for calculating the EMP term divides c1 among the remem-
bered positions using the ranking of these positions according to their fitness.
The best remembered position will have twice the influence of the second best,
the second twice that of the third, and so on down the ranking. In this way the
influences are determined by a power law distribution.

vt+1 = χ ∗

⎛
⎝νt + r1c1

N∑
j=1

rankj (pid,j − xt) + r2c2 (pgd − xt)

⎞
⎠ (6)

rankj =
2j−1

2N − 1
(7)

Where a rank of j = N is the best and j = 1 the worst. This method is similar
to the approach used by Jordan et al. in the ranked FIPS [4].

3.3 Roulette EMP

The final approach for determining the EMP term is inspired by Roulette Wheel
selection [10]. Roulette selection will be used in the proposed PSO EMP to select
a single position from memory to be used in the velocity update equation. Since
fitnesses in PSO tend to be quite similar toward the end of the optimisation pro-
cess, the probability of a position from memory being chosen will be calculated
by rank as given in Eq. 7 above. This method will mean that the best position a
particle remembers will have twice the probability of being chosen as the second
best position, and so on.

4 Experimental Results

This section will outline the experiments carried out on the PSO EMP algorithm
to select the optimum memory size and method of calculating the EMP term.
The algorithm’s performance will then be compared to the Standard PSO.

A suite of 32 test functions is used in the experiments. The first seven test
functions are functions that are widely used by researchers when testing new
PSOs. These are the Sphere, Rosenbrock, Ackley, Griewank , Rastrigin, Schaffer
and Griewank10 functions. The remaining 25 functions were proposed by Sugan-
than et al. [5]. All functions in the test suite are tested in 30 dimensions, except
for Schaffers f6, which is a two dimensional problem, and Griewank10, the 10
dimensional version of the Griewank function.

The following parameters are used in all experiments. The maximum number
of iterations is set to 10,000 iterations. A swarm of 50 particles randomly ini-
tialised within the function bounds is used. χ is set to 0.72984 and c1 = c2 = 2.05.
Particles do not evaluate their fitness outside of the function bounds, except in
functions f7 and f25, where the global optimum is outside of the initialisation
region. Results for each experiment are averaged from 25 independent runs.

258 I. Broderick and E. Howley

4.1 Experiment 1: Memory Size

The first factor that needs to be determined is the number of positions that a
particle should remember. This experiment tested the three EMP approaches on
seven test functions varying the number of remembered positions. Each EMP
approach was tested using the gBest, lBest and von Neumann topologies. The
performance measures used were the mean best fitness achieved and the percent-
age of runs which achieved the goal for each function. Table 1 below shows the
results for the Roulette EMP PSO with a gBest topology (GEMP). It can be
seen that a memory of size 2 yields the best results across the test functions, in
terms of both the mean best value achieved and the success rate. Similar results
were found for other combinations of swarm topology and EMP approach.

Table 1. GEMP (M = MemorySize)

M = 2 M = 3 M = 4 M = 5

Sphere 5.35E-069 (2.44E-068) 2.41E-029 (6.559E-029) 8.02E-015 (1.74E-014) 1.35E-009 (2.04E-009)
1.00 1.00 1.00 1.00

Rosenbrock 1.76E+001 (2.32E+000) 2.64E+001 (1.47E+001) 3.20E+001 (1.75E+001) 2.57E+001 (2.18E+000)
1.00 1.00 1.00 1.00

Ackley 7.55E-015 (0.00E+000) 4.52E-014 (4.25E-014) 3.18E-004 (1.55E-003) 3.04E-003 (1.03E-002)
1.00 1.00 1.00 0.96

Griewank 2.90E-002 (2.42E-002) 3.94E-002 (3.23E-002) 4.44E-002 (4.59E-002) 5.13E-002 (4.97E-002)
0.84 0.76 0.72 0.64

Rastrigin 2.35E+001 (6.07E+000) 6.03E+001 (2.24E+001) 1.15E+002 (2.17E+001) 1.37E+002 (4.59E+001)
1.00 0.88 0.32 0.24

Schaffer 0.00E+000 (0.00E+000) 0.00E+000 (0.00E+000) 0.00E+000 (0.00E+000) 0.00E+000 (0.00E+000)
1.00 1.00 1.00 1.00

Griewank10 1.21E-002 (1.63E-002) 4.01E-003 (7.54E-003) 1.15E-002 (9.67E-003) 1.61E-002 (1.48E-002)
0.96 1.00 1.00 1.00

It is expected that remembering additional good positions should aid perfor-
mance by keeping the particles more diverse. However, too many remembered
positions will hinder convergence. Remembering two positions seems to give the
desired balance between diversity and convergence. This result matches the find-
ing of Yin et al. [7] for the Cyber Swarm where it was found that more than
three guiding solutions blurred the guidance information and so degraded per-
formance. Mendes [3] also obtained the best results for the FIPS using the Ring
and von Neumann topologies without self, where particles are influenced by 2-4
solutions. A memory size of two will be adopted for all further experiments.

4.2 Experiment 2: EMP Approach

The second factor to be determined experimentally is which of the approaches
to determining the EMP term is the most effective. In this experiment the three
approaches discussed above are compared using the first seven test functions.
The criteria used to evaluate performance will be the best mean value achieved
and the proportion of runs meeting the goal. Table 2 below shows the results for
each EMP approach for a global topology. It can be seen that using the Roulette
approach to determine the EMP term yields the best results in terms of the

Particle Swarm Optimisation with Enhanced Memory Particles 259

Table 2. EMP Approach (Global Topology)

Roulette Equal Power Law

Sphere 4.47E-068 (1.38E-067) 3.31E-005 (1.49E-004) 1.77E-005 (5.87E-005)
1.00 1.00 1.00

Rosenbrock 1.88E+001 (8.62E+000) 2.41E+001 (1.15E+001) 2.55E+001 (7.50E+000)
1.00 1.00 1.00

Ackley 7.55E-015 (0.00E+000) 3.18E+000 (2.57E+000) 3.89E+000 (2.48E+000)
1.00 0.04 0.08

Griewank 4.15E-002 (4.51E-002) 2.93E-001 (4.21E-001) 6.45E-001 (1.26E+000)
0.80 0.44 0.36

Rastrigin 2.28E+001 (5.83E+000) 4.60E+001 (1.76E+001) 4.88E+001 (1.91E+001)
1.00 1.00 0.96

Schaffer 0.00E+000 (0.00E+000) 0.00E+000 (0.00E+000) 0.00E+000 (0.00E+000)
1.00 1.00 1.00

Griewank10 1.97E-002 (2.86E-002) 1.28E-001 (1.02E-001) 1.61E-001 (2.27E-001)
0.84 0.24 0.40

mean best value achieved and the success rate. Similar results were obtained for
the ring and von Neumann topologies.

As in the first experiment the most important factor seems to be adding
diversity without hindering convergence. The Roulette EMP approach introduces
the least variance. It will behave like the standard PSO in most iterations, as the
best position has the highest chance of being selected. However, the occasional
selection of the second best position may help keep the particles diverse and aid
exploration. As the Roulette EMP gives the best final solution with consistent
performance, this is the method that will be adopted for further testing.

4.3 Experiment 3: Comparison to Standard PSO

This experiment will compare the developed EMP algorithm with the Standard
PSO, using the global (gBest), ring (lBest) and von Neumann topologies, to see
if the proposed algorithm gives the desired performance increases. The Roulette
EMP with a memory size of two and a global topology, as this was the found to
perform best, will be compared to the Standard PSO across the full range of 32
test functions.

Table 3 below shows the mean best values achieved by each PSO and the
standard deviation across the suite of test functions. The Roulette EMP out-
performs the Standard PSO on a large number of the test functions. It is also
the best performer in 11 of the 32 functions, while being the worst performer
in only 5 functions. The most notable performance of the Roulette EMP PSO
is on the Sphere and Ackley functions, where the mean best values achieved
are substantially better than the value achieved by the Standard PSO. A t-test
was also conducted to test the statistical significance of these results. If the two
tailed p value if less than 5% the difference is deemed significant. Table 4 shows
the results of the t-test. These results show that PSO EMP can yield significant
performance improvements in some cases and only decreases the performance
significantly in a relatively small number of cases.

260 I. Broderick and E. Howley

Table 3. Comparison to Standard PSO

Roulette gBest lBest vonNeumann
Mean (std) Mean (std) Mean (std) Mean (std)

Sphere 4.47E-068 (1.38E-067) 2.30E-008 (1.02E-007) 4.82E-004 (5.34E-004) 7.68E-005 (1.23E-004)

Rosenbrock 1.88E+001 (8.62E+000) 2.22E+001 (1.42E+000) 2.39E+001 (2.48E+000) 2.57E+001 (7.92E-001)

Ackley 7.55E-015 (0.00E+000) 1.91E-001 (9.31E-001) 1.65E-002 (9.98E-003) 3.63E-003 (3.71E-003)

Griewank 4.15E-002 (4.51E-002) 4.54E-002 (5.48E-002) 1.37E-002 (1.10E-002) 1.82E-002 (2.02E-002)

Rastrigin 2.28E+001 (5.83E+000) 4.34E+001 (1.43E+001) 1.02E+002 (2.52E+001) 8.50E+001 (2.94E+001)

Schaffer 0.00E+000 (0.00E+000) 0.00E+000 (0.00E+000) 3.00E-004 (5.56E-004) 2.05E-004 (4.13E-004)

Griewank10 1.97E-002 (2.86E-002) 7.19E-002 (8.30E-002) 1.82E-002 (1.86E-002) 3.11E-002 (3.01E-002)

f1 -4.50E+002 (5.57E-014) -4.50E+002 (1.45E-008) -4.50E+002 (3.39E-004) -4.50E+002 (5.99E-005)

f2 -4.46E+002 (4.55E+000) -4.50E+002 (3.40E-001) 1.92E+002 (1.60E+002) 9.06E+001 (2.61E+002)

f3 2.24E+006 (6.34E+005) 1.28E+006 (6.32E+005) 5.18E+006 (1.60E+006) 4.45E+006 (1.72E+006)

f4 5.91E+002 (5.33E+002) 7.40E+002 (1.82E+003) 8.21E+003 (1.89E+003) 8.80E+003 (2.71E+003)

f5 3.67E+003 (6.81E+002) 4.09E+003 (7.90E+002) 4.26E+003 (7.52E+002) 4.11E+003 (8.38E+002)

f6 4.18E+002 (3.76E+001) 5.17E+002 (1.81E+002) 5.42E+002 (7.42E+001) 5.25E+002 (5.71E+001)

f7 -1.80E+002 (1.41E-002) -1.80E+002 (1.80E-002) -1.79E+002 (9.21E-002) -1.79E+002 (2.50E-001)

f8 -1.19E+002 (6.39E-002) -1.19E+002 (6.86E-002) -1.19E+002 (6.51E-002) -1.19E+002 (5.75E-002)

f9 -3.04E+002 (7.53E+000) -2.75E+002 (2.06E+001) -2.15E+002 (3.06E+001) -2.47E+002 (2.40E+001)

f10 -1.53E+002 (3.99E+001) -2.48E+002 (2.46E+001) -2.41E+002 (2.46E+001) -2.52E+002 (1.92E+001)

f11 1.14E+002 (3.61E+000) 1.12E+002 (4.15E+000) 1.16E+002 (2.55E+000) 1.16E+002 (2.71E+000)

f12 1.45E+004 (1.30E+004) 8.91E+003 (9.84E+003) 1.77E+004 (9.59E+003) 1.30E+004 (6.57E+003)

f13 -1.26E+002 (1.29E+000) -1.24E+002 (2.34E+000) -1.19E+002 (2.21E+000) -1.20E+002 (3.13E+000)

f14 -2.87E+002 (3.08E-001) -2.88E+002 (5.97E-001) -2.87E+002 (1.37E-001) -2.86E+002 (2.02E-001)

f15 5.60E+002 (2.50E+002) 4.48E+002 (8.32E+001) 3.69E+002 (3.85E+001) 4.03E+002 (1.15E+002)

f16 3.18E+002 (1.60E+002) 3.47E+002 (1.42E+002) 2.65E+002 (2.38E+001) 2.83E+002 (9.07E+001)

f17 4.32E+002 (1.21E+002) 3.82E+002 (1.68E+002) 3.27E+002 (1.59E+001) 3.46E+002 (1.40E+001)

f18 9.30E+002 (0.00E+000) 9.19E+002 (4.12E+001) 9.32E+002 (0.00E+000) 9.29E+002 (0.00E+000)

f19 9.34E+002 (0.00E+000) 9.31E+002 (2.77E+001) 9.32E+002 (0.00E+000) 9.29E+002 (0.00E+000)

f20 1.06E+003 (0.00E+000) 7.71E+002 (1.50E+002) 7.17E+002 (0.00E+000) 6.94E+002 (0.00E+000)

f21 8.60E+002 (0.00E+000) 1.00E+003 (2.64E+002) 8.60E+002 (0.00E+000) 8.60E+002 (0.00E+000)

f22 1.30E+003 (0.00E+000) 1.34E+003 (2.98E+001) 1.32E+003 (0.00E+000) 1.33E+003 (0.00E+000)

f23 8.94E+002 (0.00E+000) 9.85E+002 (2.04E+002) 8.94E+002 (0.00E+000) 8.94E+002 (0.00E+000)

f24 4.60E+002 (0.00E+000) 5.04E+002 (2.15E+002) 4.60E+002 (0.00E+000) 4.60E+002 (0.00E+000)

f25 4.73E+002 (0.00E+000) 4.78E+002 (5.41E+000) 4.75E+002 (0.00E+000) 4.72E+002 (0.00E+000)

Best 11 7 5 3

Worst 5 10 12 5

Better 20 20 18

Worse 11 8 11

Table 4. Statistical Comparison to Standard PSO

gBest lBest vonNeumann

Statistically Better 10 14 15

Statistically Same 16 14 13

Statistically Worse 6 4 4

Particle Swarm Optimisation with Enhanced Memory Particles 261

5 Conclusions

Two research questions were posed at the beginning of this paper which the re-
search has attempted to address. In terms of the first question the research has
found that the new PSO EMP can yield significant performance improvements
over the Standard PSO. Experiment 2 addressed the second research question
and found that the most important factor for PSO EMP seems to be balanc-
ing diversity and convergence, and therefore exploration and exploitation. The
most successful variants were those which only gave a little extra diversity, i.e.
Roulette EMP with M=2. However, this little extra diversity seems to give im-
proved exploration. The other variants introduced too much variance leading
to particles being pulled in too many directions and preventing them from ex-
ploiting known good areas. Further research is required to obtain an optimal
exploration exploitation balance for PSO EMP.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press
(November/December 1995)

2. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
IEEE Swarm Intelligence Symposium, pp. 120–127 (April 2007)

3. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler,
maybe better. IEEE Transactions on Evolutionary Computation 8(3), 204–210
(2004)

4. Jordan, J., Helwig, S., Wanka, R.: Social interaction in particle swarm optimization,
the ranked fips, and adaptive multi-swarms. In: Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computation (GECCO 2008), pp. 49–56.
ACM, New York (2008)

5. Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization. Technical report, Nanyang
Technological University, Singapore and KanGAL Report Number 2005005 (2005)

6. Kennedy, J., Mendes, R.: Population structure and particle swarm performance.
In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002),
pp. 1671–1676. IEEE Computer Society, Washington, DC (2002)

7. Yin, P.-Y., Glover, F., Laguna, M., Zhu, J.-X.: Cyber Swarm Algorithms – Im-
proving particle swarm optimization using adaptive memory strategies. European
Journal of Operational Research 201, 377–389 (2010)

8. Hu, X.H., Eberhart, R.C., Shi, Y.H.: Particle swarm with extended memory for
multi-objective optimization. In: Proceedings of the IEEE Swarm Intelligence Sym-
posium (SIS 2003), pp. 193–197 (2003)

9. Zhou, C., Zhang, G.-A., Zhou, H.: Extended Individual Memory Based Multi-
objective Particle Swarm Optimization. In: International Conference on Future
Computer and Communication (ICFCC), Wuhan, pp. 390–394 (2010)

10. Sivaraj, R., Ravichandran, T.: A review of selection methods in genetic algorithm.
Int. J. Eng. Sci. Tech. 3, 3792 (2011)

11. Clerc, M., Kennedy, J.: The particle swarm: explosion stability and convergence in
a multi-dimensional complex space. IEEE Trans. Evolution. Comput. 6(1), 58–73
(2002)

Sorting in Swarm Robots Using

Communication-Based Cluster Size Estimation

Hongli Ding and Heiko Hamann

Department of Computer Science,
University of Paderborn, Paderborn, Germany

hongli.ding@uni-paderborn.de, heiko.hamann@uni-paderborn.de

Abstract. Inspired by sorting behaviors of social insects, we are in-
terested in sorting by robot swarms using only local information and
hence achieving high degrees of robustness and scalability. In this work,
we propose a gossip-based sorting method which allows two swarms of
simple homogeneous autonomous robots to sort themselves in two not
pre-assigned areas. Key feature of this method is the estimation of cluster
sizes based on communication that allows to determine the local major-
ity. In a series of simulation experiments, we show the effectiveness of
the approach and investigate the influence of different swarm sizes.

1 Introduction

Recent research shows that social insects sort their brood in sophisticated pat-
terns. These well-organized brood sorting patterns emerge spontaneously from
dynamic interactions during the process of depositing and removing brood. Dur-
ing this sorting process, no specified spatial plans or any global representation is
required, nor any hierarchical decisions are made [2]. By interacting among other
individuals and with the environment, individuals act following their own goals
and knowledge about the environment. The collective behavior on the group
level emerges from the sum over all individual decisions, actions, and the inter-
actions among individuals and the environment. The sorting system of social
insects has many attractive features such as scalability, flexibility, and robust-
ness. Abstract models based on sorting behaviors of social insects have been
applied in many areas such as search, collective sorting, data mining, numeric
data analysis, and graph partitioning [4]. Inspired by how ants and honey bees
sort their broods, we are interested in how to implement these natural sorting
behaviors and strategies in a swarm of robots. We simplify the sorting task to
sorting robots instead of objects. This preliminary work aims at sorting robots of
different classes which can be considered as robots carrying objects of different
types. Hence, our algorithm still aims to sort objects.

Object sorting by swarm robots is a complex task which involves mechanism
such as self-organization, collective decision making, and pattern recognition.
Abstract models of sorting objects by a group of minimalist homogeneous robots
were proposed by Deneubourg et al. [2]. These models are based on simple rules

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 262–269, 2014.
c© Springer International Publishing Switzerland 2014

Sorting in Swarm Robots 263

which are used to determine the probabilities of picking up and dropping down
objects. The major drawback of these models is the complexity of the procedure
to obtain the local object density. Being limited to the minimal sensors of real
robots imposes a challenge in achieving sorting similar to that observed in ants.
This method was extended to sort more than three types of objects [5]. Inspired
by [2], an approach using an overhead camera to identify robots, object positions
and orientations, and global data about the entire arena was proposed [8]. It is
unclear how this approach could be transferred to use local sensors only. This
approach was extended by adding a forward-facing camera on each robot, which
not only allows robots to share image data with their neighbors, but also allows
robots to estimate cluster sizes [7]. Both approaches [7,8] achieve good sorting
results while it is hard to apply these approaches to real robots, in particular
swarm robots, due to the applied complex and sophisticated sensors.

In this paper, we describe a gossip-based sorting method which aims to sort
different robots by using only local information and simple onboard sensors.
Similar to previous studies, our algorithm is based on simple behavioral rules. In
addition, we examine how the system performance changes with different swarm
densities (different swarm sizes on a constant area).

This paper is organized as follows. Sec. 2 describes the scenario and objective
of this work. A global approach is proposed in this section. Sec. 3 focuses on the
proposed sorting algorithm. In Sec. 4, we report the experimental setups and the
simulation results. We conclude the paper and outline the future work in Sec. 5.

2 Scenario Description

In a given space as shown in Fig. 1a, the ground is divided into three areas:
two black areas and one white area. Green and red robots are initially randomly
distributed in the white part of the arena. These two groups of robots have to
sort themselves in the two black areas using only local information (shown in
Fig. 1b).

In this scenario, the allocation of the two black areas to the two robot groups
is not predetermined. The robot swarms decide collectively on this allocation at
runtime during the sorting process by interacting with other robots and the envi-
ronment. Each agent’s individual decision is based on local information only. The
mechanism is implemented as a self-organizing system which requires no global
information like spatial plans, hierarchical decisions, or message broadcasting.
We investigate how swarm robots can make correct decisions and self-organize
themselves to achieve this complex sorting task under these strict constraints.

The two groups of robots are randomly distributed in the white area initially
as shown in Fig. 1a. At the beginning, all robots walk randomly in the white
area by avoiding obstacles, especially other robots. When a robot detects a black
ground, it stops while continuing to communicate with other robots in its neigh-
borhood. At the same time, each stopped robot identifies other stopped robots
in its neighborhood based on a unique robot identity (UID). They communicate
and transfer the UIDs of stopped neighbors to other stopped robots and count

264 H. Ding and H. Hamann

(a) initial setup (red and green
robots positioned within the
white area)

(b) expected result (green robots
share one black area and red
robots share the other black area)

Fig. 1. Initial setup and expected result of the simulation experiment

the number of stopped robots of both groups at the boundary. When one group
of stopped robots represents the majority at this boundary, then the minority
robots leave this boundary and search for an unoccupied boundary. With time
going on, the number of robots representing the majority is expected to increase
at this boundary. Robots position themselves in a line formation at the bound-
aries to form, what we call a robot barrier. It allows the same robots to pass and
prevents the passage of other robots. For example, if the barrier is composed of
a certain number of red robots which is above a threshold, then the red robots
are allowed to cross this barrier. They hence allocate this black area and stay
inside of it. In contrast, green robots are not allowed to pass this barrier. The
control algorithm is organized in several modules as follows:

– Count robots: Stopped robots count the number of different robots staying
at the boundary by communicating with each other.

– Minority robots leave: After counting the number of different robots at a
boundary, the robots know whether they represent the minority. If they are
the minority, they leave this boundary for a random walk in the white area.

– Barrier formation: When a moving robot reaches the communication range
of a stopped robot of the same color, it moves on a circular trajectory around
the stopped robot in order to position itself in a neighboring position at
the boundary. It stops once a black ground is detected, and consequently
becomes a part of the robot barrier. The circular trajectory enforces a certain
distance between robots in the robot barrier.

– Pass robot barrier: When the number of majority robots on the boundary
exceeds a threshold, robots of the same color are allowed to pass the barrier
and position themselves at an appropriate spot within the black area.

3 Gossip-Based Sorting Algorithm

In this work, the gossip-sorting method is based on gossip communication to
count the number of robots in a swarm. The idea of gossip communication is that

Sorting in Swarm Robots 265

robots exchange their local knowledge in pairs when robots reach the communi-
cation range of each other. Each robot that is stopped at a boundary and that is
in the communication range of other robots, communicates with each neighbor,
and they mutually exchange their local knowledge. In this work, robots exchange
information about the number of robots of each group at the boundary that the
robot either can perceive itself or about which it has received information via
past gossiping. After several gossip communication iterations between robots,
every robot knows the number of different robots at the same boundary.

Fig. 2. Robot barrier under construction

Table 1. Example of the gossip-based communication

Fig. 2 is an example of the gossiping method which shows a robot barrier
under construction. This robot barrier consists of two groups of robots: green
labeled with UIDs G1, G2, etc., and red labeled with UIDs R1, R2, etc. We
assume that the communication is robust (subject to future work, see Sec. 5).
Robots are assumed to communicate only with neighbors in the line of sight,
that is, messages are neither addressed to a particular robot (i.e., no multi-hop
communication) nor sent through obstacles including other robots. In Fig. 2,
robot G1 cannot communicate with robot G2, because they are not in each
others communication range. Robot G2 cannot communicate with robot R1,
because multi-hop messaging is not available (robot G3 would need to serve as
relay).

Table 1 shows how robots exchange messages based on gossip communication.
As shown in Fig. 2, robot G1 is isolated. Similarly, Robot G5 and R4 cannot
communicate with each other. In consequence, the robot barrier shown in Fig. 2

266 H. Ding and H. Hamann

consists of three sub-groups: S1 = {G1}, S2 = {G2, G3, R1, R2, G4, R3, G5}, and
S3 = {R4, G6, G7}. Obviously, sub-group S1 will consider itself as majority robot
until the approach of other red robots. Each robot in sub-group S2 knows about
all other robots from the same sub-group after the gossip-based communication.
Each robot has a counter for red robots nr and a counter for green robots ng.
In this case, green robots are the majority (ng = 4, nr = 3). Consequently,
red robots leave the barrier and start a random walk into the white area until
they find another place to stay. Similarly for sub-group S3, green robots are
the majority and hence red robot leaves the barrier. In this case, all red robots
leave the boundary and there are only green robots left. In the sequel, other
green robots have a higher probability to stop at this boundary compared to red
robots, even before the green robots have formed a complete barrier. If a red
robot tries to stop at this boundary, it detects the green majority and leaves.
Similarly, the probability of forming a barrier at another area is increased for the
red robots. We set a threshold to determine the length of robot barriers (The
threshold is set to 5 for all experiments in this work). Once the majority group
size at a barrier reaches this threshold, other robots of that kind are allowed to
pass the barrier through two robots of the same color. Hence, this robot group
claims the respective black area.

4 Simulation Environment and Results

In this section, we give a brief description of our simulation environment. Results
of our sorting method for different swarm densities are shown. Videos of our
simulations are available online1.

4.1 Simulation Environment

Experiments were conducted using the foot-bot robot [1] in the ARGoS simu-
lator [6]. ARGoS is designed to simulate complex experiments involving large
swarms of robots of different types. It allows to transfer robot controllers from
the simulation directly to real robots without any modification [6].

In the following simulation experiments, we use an arena of 3 meters by 3 me-
ters, divided to three areas (two blacks, one white). Two groups of robots (green
and red) are randomly distributed in the white area. The communication range
of each robot is set to 60 cm, which is the minimal communication range re-
quired to allow a robot to pass between two robots in communication distance
(requirement for passing barriers). With this communication range the robot
covers 12.6% of the total arena. We use only basic onboard sensors: IR sensors,
range and bearing sensors.

4.2 Simulation Results

Second Swarm as Disturbance. In this experiment, our sorting method is
tested for different swarm sizes N ∈ {10, 16, 20, 26, 30, 40} (i.e., different swarm

1 See https://www.youtube.com/user/SortingRobots

https://www.youtube.com/user/SortingRobots

Sorting in Swarm Robots 267

densities because the area is constant) forming groups of red and green robots
in the following way: (nr, ng) ∈ {(2, 8), (4, 12), (5, 15), (6, 20), (8, 22), (10, 30)}.
The swarms are composed of approximately 25% of red robots and 75% of green
robots. Initially, both red and green robots are uniformly positioned in the white
area. For each parameter setting, 10 runs were done. The simulation ends when
either all robots have stopped in black areas or one group of robots has stopped
in black areas while the other group of robots moves in the white area. We define
the sorting rate as the percentage of robots sorted in black areas (i.e., robots
positioned correctly in the neighborhood of their own kind). When both kinds
of robots are found within the same black area, we consider the group of robots
which represents the majority as sorted. Fig. 3a shows the sorting rates and the
required time for the different swarm sizes.

 0

 20

 40

 60

 80

 100

10 16 20 26 30 40

 0

 1000

 2000

 3000

 4000

 5000

 6000

swarm size

so
rt

in
g

p
er

ce
n
ta

g
e

si
m

u
la

ti
o
n

ti
m

e
st

ep
sgreen

total

time

red

(a) 25% red robots, group compositions
(nr, ng) ∈ {(2, 8), (4, 12), (5, 15), (6, 20),
(8, 22), (10, 30)}

 0

 20

 40

 60

 80

 100

10 16 20 26 30 40

 0

 1000

 2000

 3000

 4000

 5000

 6000

total

red

green

time

swarm size

so
rt

in
g

p
er

ce
n
ta

g
e

si
m

u
la

ti
o
n

ti
m

e
st

ep
s

time

(b) 50% red robots

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

 0

 1000

 2000

 3000

red swarm percentage

so
rt

in
g

p
er

ce
n
ta

g
e

si
m

u
la

ti
o
n

ti
m

e
st

ep
sgreen

total

time

red

(c) varied swarm ratios

Fig. 3. Results of the simulations, sorting rate and simulation time (mean values of
10 runs, error bars give standard deviation)

From Fig. 3a, we can see that the disturbance from approximately 25% of
red robots has no significant influence on the sorting results of green robots,
while the low sorting rate of red robots decreases the total sorting rate. The
relatively small numbers of red robots induce a small probability to occupy any
boundaries. However, the total sorting rate is still bigger than 75%.

268 H. Ding and H. Hamann

As seen in Fig. 3a, the swarm size has little influence in these experiments.
Only the required time indicates a trend to increased times for bigger swarms.
Furthermore, there is a trend indicating that a swarm size of N = 20 might be
optimal in terms of the system’s convergence time.

The total sorting rate is influenced by several conditions. The total swarm
density is too low to guarantee a good cooperation among robots. The sizes of
the two robot groups are of importance. The green robots are enough to occupy
both boundaries, hence, the red robots have a limited chance to occupy any
boundary. Many of the experiments end with the red robots being trapped in
the white area. Therefore, the red robots have a small chance to sort themselves.

The curve of required time decreases at first, probably because the low swarm
density provides insufficient opportunities for cooperation among individuals.
The robots spend much time searching or waiting for other robots. We therefore
observe a tradeoff between positive effects of interference and obstructive inter-
ference which has commonly seen in swarm intelligence [3]. This indicates the
existence of an optimal density for this scenario.

Two Swarms of Equal Size. In this experiment, we keep the same simulation
setups except the composition of two swarms. 10 runs were done for swarms
composed of N ∈ {10, 16, 20, 26, 30, 40} robots. Each robot swarm is composed
of 50% of red robots and 50% of green robots.

Fig. 3b shows the results for these settings. Both robot swarms sort themselves
efficiently for different swarm sizes. In the worst case, the total sorting rate
is still higher than 85%. The required time clearly increases with the swarm
size. Comparing to the experiments with only 25% red robots, this experiment
achieves a better sorting rate, while the required sorting time relative to the
same swarm size is longer. This seems mainly because both swarms have the
same probability to occupy any boundary. The self-organized collective decision-
making process about which group is occupying which black area takes time.

Optimal Ratio for Two Swarms.Given the previous results, we are interested
in how the swarm behaves with different proportion for two swarms. What is
the optimal proportion? The total swarm size is fixed to N = 20 robots. For
each series of runs, the number of red robots is increased by one robot and the
number of green robots is reduced by one robot (5% of the total swam size).

The results are given in Fig. 3c. When the red swarm size is nr ≤ 20% · N ,
red robots are not able to sort themselves at all. For ratios of nr > 20% ·N , the
sorting rate for red robots increases until reaching 100%.

In contrast to the red robots, the number of green robots reduces from 95%·N
to 50% ·N . For all the cases ng > 50% ·N , they represent the majority, hence,
they have a bigger probability to occupy one of the boundaries to sort themselves
well. The case for both swarms having the same quantity (nr = ng = 10) has
the same result as shown in Fig. 3b for N = 20: a 100% sorting rate.

Sorting in Swarm Robots 269

5 Conclusion

Sorting by swarm robots is a complex task. Recent research in sorting by swarm
robots relies often on sophisticated sensors and complex image processing meth-
ods. We have proposed a gossip-based sorting method based exclusively on local
information without using any sophisticated sensors. Our method allows differ-
ent robot swarms to sort themselves efficiently by using the mechanism of self-
organization. Comparing to previous research, we use a smaller communication
range and simpler sensors to achieve sorting. The relationship between system
performance, swarm size, and different compositions of competing swarms are
studied in this work.

We plan to extend this work to the actual task of sorting objects by consider-
ing the two kinds of robots as robots carrying different types of objects. Instead
of having the robots stop at the black areas they drop the carried object, pick
a new one, and try to find the appropriate black area for it. Our findings about
the influence of ratios of robot types will be applied, for example, by trying to
guarantee that both kinds of objects are carried by two robot groups of approx-
imately equal size at all time. The influence of our assumption of robust com-
munication will be investigated by simulating unreliable communication. This
might introduce difficulties for the gossiping method which might require ad-
ditional methods. We also plan the obvious follow-up work to implement this
method on real robots.

References

1. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G.,
Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot
opening new perspectives for the collective-robotic research. In: International Con-
ference on Intelligent Robots and Systems, pp. 4187–4193 (2010)

2. Deneubourg, J.L., Goss, S., Franks, N., Franks, A.S., Detrain, C., Chrétien, L.: The
dynamics of collective sorting: robot-like ants and ant-like robots. In: Proceedings
of the First International Conference on Simulation of Adaptive Behavior: From
Animals to Animats, pp. 356–363. MIT Press, Cambridge (1990)

3. Hamann, H.: Towards swarm calculus: Urn models of collective decisions and uni-
versal properties of swarm performance. Swarm Intelligence 7(2-3) (2013)

4. Handl, J., Knowles, J., Dorigo, M.: On the Performance of Ant-based Clustering.
In: Design and Application of Hybrid Intelligent Systems, pp. 204–213. IOS Press,
Amsterdam (2003)

5. Melhuish, C., Wilson, M., Sendova-Franks, A.: Patch sorting: Multi-object clustering
using minimalist robots. In: Kelemen, J., Sośık, P. (eds.) ECAL 2001. LNCS (LNAI),
vol. 2159, pp. 543–552. Springer, Heidelberg (2001)

6. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Birattari, M., Gambardella, L.M.,
Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence 6, 271–295 (2012)

7. Vardy, A.: Accelerated patch sorting by a robotic swarm. In: 9th Conference on
Computer and Robot Vision (CRV) (2012)

8. Verret, S., Zhang, H., Meng, M.Q.H.: Collective sorting with local communication.
In: IROS, pp. 2687–2692. IEEE (2004)

Using Fluid Neural Networks to Create

Dynamic Neighborhood Topologies
in Particle Swarm Optimization

Stephen M. Majercik

Computer Science Department, Bowdoin College, Brunswick, Maine, USA
smajerci@bowdoin.edu

Abstract. Fluid Neural Networks (FNNs) are a model of interacting
mobile automata. The automata move on a lattice, affecting each other’s
motion in a way that can result in clusters of automata that change
over time, making FNNs a potential basis for dynamic neighborhood
topologies in Particle Swarm Optimization. We describe Fluid Neural
Network Particle Swarm Optimization (FNN-PSO), a PSO algorithm
that uses a dynamic neighborhood mechanism based on FNNs, and we
report promising results from experiments indicating that FNN-PSO can
outperform both the standard PSO algorithm and PCGT-PSO, a PSO
algorithm based on partially connected grid topologies [3], over a range
of neighborhood topologies and influence models.

1 Introduction

The Particle Swarm Optimization (PSO) algorithm, introduced by Kennedy and
Eberhart [5], is one of the most successful swarm based optimization techniques.
In this algorithm, a swarm of particles flies through the solution space of the
objective function, seaching for the optimum function value, each particle guided
by its personal best, the best solution it has found do far and the global best, the
best solution the entire swarm has found so far. The algorithm, however, tends to
converge to a local optimum. For this reason, many PSO variants use a neighbor-
hood topology that specifies smaller, overlapping neighborhoods, thus replacing
the global best with multiple local (neighborhood) bests that help diversify the
search.

Dynamic topologies, in which the neighborhoods of particles change over time,
have also been used to address this issue. We propose Fluid Neural Network
Particle Swarm Optimization (FNN-PSO), a PSO algorithm in which dynamic
neighborhoods are constructed using fluid neural networks, a type of neural
network in which mobile automata move and interact with each other [8]. Our
work generalizes the PSO algorithm based on partially connected grid topologies
of [3]. Experiments show that FNN-PSO is competitive with both that algorithm
and a standard PSO algorithm.

In Section 2, we describe fluid neural networks and FNN-PSO. We describe
the results of our experiments in Section 3. In Section 4, we discuss related work,
and we conclude with ideas for future work in Section 5.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 270–277, 2014.
c© Springer International Publishing Switzerland 2014

Using Fluid Neural Networks to Create Dynamic Neighborhood Topologies 271

2 PSO and FNN-PSO

2.1 Standard PSO

In the standard PSO algorithm (S-PSO), a swarm of particles iteratively searches
a d-dimensional solution space. Each particle i remembers the best solution it
has found so far (its personal best, or pbest), pi, and the best solution found so
far by the particles in i’s neighborhood (the neighborhood best, or nbest), ni. On
each iteration, the velocity vi of particle i is updated (but confined to a range
[Vmin, Vmax] for each component of vi, where Vmin and Vmax are the minimum
and maximum values of the search space), such that its motion is biased toward
both pi and ni, and the new velocity is used to update its position xi. The
update equations for the constriction coefficient variant of S-PSO are:

vi ← χ(vi +U(0, φ1)⊗ (pi − xi) +U(0, φ2)⊗ (ni − xi)) (1)

xi ← xi + vi (2)

where:

– φ1 and φ2, the acceleration coefficients that scale the attraction of particle
i to pi and ni, respectively, are equal and have the value 2.05,

– U(0, φi) is a vector of real random numbers uniformly distributed in [0, φi],
– ⊗ is component-wise multiplication, and
– χ is a constriction coefficient (approximatley 0.7298).

2.2 FNN-PSO

Fluid neural networks were used by Miramontes to model the chaotic dynamics
in Leptothorax ant colonies [6] and were explored further in [8]. A fluid neural
network (FNN) is a set of n automata, or neurons, that occupy positions on a
d × d lattice. The number of neurons and lattice size are such that n < d × d;
thus, neurons can move. Time is discrete. Neurons have an activation level and
are active if and only if their activation level exceeds a specified threshold. Si(t),
the activation level of neuron i at time t, depends on the activation levels of i’s
neighbors and is determined by the following formula:

Si(t) = tanh

⎛
⎝g ×

∑
j∈N(i)

JijSj(t− 1)− θi

⎞
⎠ (3)

where g is the gain, N(i) is the set of neurons in the eight positions adjacent
to i and i itself, Jij is a coupling matrix, θi is the threshold of particle i, and
θ is the global threshold. If Si(t) > θ, neuron i becomes active. Neurons may
also spontaneously activate with probability pa (the spontaneous activation prob-
ability). In this case, a neuron’s activation level is set to Sa (the spontaneous
activation level). In [8], and in our work, ∀ i, j Jij = 1 (i.e. J has no impact on
the dynamics), θi = 0, and θ = 10−16.

272 S.M. Majercik

The operation of FNN-PSO is similar to that of S-PSO with a von Neumann
(or Moore) topology. In these topologies, the particles are thought of as being
on a toroidal grid and a particle’s neighbors are those particles in the spaces
to the north, south, east, and west of it (von Neumann) or in the eight spaces
adjacent to it (Moore). In FNN-PSO, the toroidal grid is replaced by the lattice
of an FNN and the PSO particles occupy this lattice and move in the same way
as the neurons of an FNN. The neighbors of particle i are those particles in the
locations specified by the von Neumann (or Moore) topology (relative to i), but,
because the density of the FNN is less than 1.0, some of those spaces may be
unoccupied, reducing the number of particles in i’s neighborhood. In addition,
because the particles move, a particle’s neighbors will change over time. See
Algorithm 1 for pseudocode.

Algorithm 1. FNN-PSO

1 Inputs:
2 n, the size of the swarm
3 f , the function to be optimized (minimized)
4 itersmax, the maximum number of iterations
5 d, g, J , θi, θ, pa, and Sa (parameters specifying an FNN)
6 Outputs:
7 x∗, the position of the minimum function value found
8 f(x∗), the value or the function at that position
9 for i← 1 . . . n do

10 Initialize particle i with:
11 - a random position xi and random velocity vi in the solution space,
12 - a random position on the FNN lattice, and
13 - a random FNN activation level in [0.0, 1.0];

14 while iteration i < itersmax do
15 for i← 1 . . . n do
16 pi ← position of the best solution particle i has found so far;
17 N(i)← particles currently in particle i’s neighborhood in the FNN;
18 ni ← position of the particle in N(i) with the lowest function value;
19 vi ← velocity of particle i updated using pi and ni and Equation 1;
20 xi ← position of particle i updated using Equation 2;
21 Calculate f(xi) and update pbest, nbest, and x∗;

22 return x∗ and f(x∗)

FNN-PSO generalizes the PSO algorithm of [3], in which a particle’s neighbors
are determined by a partially connected grid topology. (We will refer to this
algorithm as PCGT-PSO.) Particles move on a 2-dimensional torus and, like
FNN-PSO, a particle’s neighbors at time t are those particles that are in the
locations specified by the standard topology being used, either von Neumann or
Moore. In both FNN-PSO and PCGT-PSO, the particles move, but in FNN-
PSO, the grid is a lattice, rather than a torus. In both, on each iteration, each

Using Fluid Neural Networks to Create Dynamic Neighborhood Topologies 273

particle moves randomly to one of the eight adjacent cells, if any of those cells
are empty. The major difference between FNN-PSO and PCGT-PSO is that
particles in FNN-PSO have an activation level that changes depending on the
activation levels of their neighbors and determines whether they are active and
can move, whereas the particles in PCGT-PSO always move.

3 Experimental Results

We compared the performance of FNN-PSO to that of the S-PSO algorithm
described in Section 2.1 and PCGT-PSO on six standard benchmark functions:
Sphere, Rosenbrock, Ackley, Griewank, Rastrigin, and Penalized Function P8.
(See [2] for the function definitions.) Sphere and Rosenbrock are uni-modal func-
tions, while Ackley, Griewank, Rastrigin, and Penalized Function P8 are multi-
modal functions with many local optima. The optimum (minimum) value for all
of these functions is 0.0. We used asymmetric initialization and randomly shifted
the location of the optimum away from the center of the search space in order to
mitigate the tendency of PSO algorithms to converge to the center. We tested
each of these functions in 30 dimensions, allowing 10,000 iterations. The FNN
parameters are described below. We ran each algorithm 50 times and computed
the mean and standard deviation of the lowest function value found.

We tested each algorithm on combinations of two topologies—von Neumann
andMoore—and two neighborhood influence models—neighborhood best (nbest)
and fully informed particle swarm (FIPS). In nbest, a particle is influenced only
by the pbest of the fittest particle in the neighborhood. In FIPS, a particle is
influenced by the pbest of every particle in its neighborhood.

We fixed the following parameters to the same values as those used in [8]: the
threshold for an individual neuron i (∀ i θi = 0), the global activation threshold
(θ = 10−16), and the coupling matrix (∀ i, j Jij = 1). We varied the following
parameters in our experiments: the lattice size (d), the gain (g), the spontaneous
activation level (Sa), and the spontaneous activation probability (pa).

Our working hypothesis was that the dynamics of FNNs with high informa-
tion transfer would provide a good basis for dynamic neighborhood creation.
Information transfer is used in [8] as a measure of the propagation of activation
events (when a particle becomes active) through the lattice. At one extreme—
very low density and/or gain—activation events die out almost immediately. At
the other extreme—very high density and/or gain—activation events spread in-
discriminately, becoming noise. In between these two regimes (referred to as “the
edge of chaos” in [8]), information spreads but individual neurons remain in the
same state for a long time. Thus, although not every neuron is in the neighbor-
hood of every other neuron at each time step, there are waves of activation that
travel across the lattice, so that a neuron in one place is affected by a neuron
becoming active at a distant location. In a sense, the waves of activation would
produce “waves of neighborhoods” forming and dissolving over time.

We ran exploratory tests over a broad range of FNN parameter settings:
lattice sizes {7×7, 8×8, 9×9, 10×10}, densities {0.10, 0.12, 0.14, . . . , 0.90},

274 S.M. Majercik

gains {0.1, 0.2, 0.3, 0.4, 0.5}, spontaneous activation levels {0.1, 0.2, 0.3, 0.4},
and spontaneous activation probabilities {1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1}, for
a total of 19,680 parameter settings. We tested the performance of FNN-PSO
using parameter settings with high information transfer and found that FNN-
PSO outperformed S-PSO and PCGT-PSO in many cases (with respect to the
minimum function value found). Subsequent tests with parameters that had low
information transfer did almost as well, however, suggesting that our information
transfer hypothesis was incorrect, and we do not report those results.

The activity patterns (the change in number of active neurons over time) of
the most successful runs had a characteristic appearance: cyclic, varying sharply
between no neurons active and all neurons active, and spending approximately
the same amount of time in both states. And, since tests indicated that neurons
are actually moving about 99% of the time they are active, this is the movement
pattern as well. We conjectured that it is beneficial to have periods during which
neighborhoods are static alternating with periods in which neighborhoods are
changing, and we explored the performance of FNN-PSO given different activity
patterns as a function of gain (maintaining density at 0.5).

These experiments indicated that lower gains yielded better performance. We
compared the performance of one of these parameter settings (40 particles on
a 9 × 9 lattice, a gain of 1e-4, a spontaneous activation level of 0.2, and a
spontaneous activation probability of 1e-3) to that of S-PSO with 40 particles
and PCGT-PSO with 40 particles on a 9 × 9 torus (see Table 1). For each of
the 24 cases (six functions for each of the four topology/influence models), the
best result is shown in bold-face. FNN-PSO had the best performance in ten
cases, S-PSO in five cases, and PCGT-PSO in seven cases. (The total is less
than 24 due to ties, which were not counted.) In each case, we compared the
best algorithm to the next best algorithm using a 2-tailed Mann-Whitney U-test.
The difference was significant at the 0.05 level or less in nine of the ten FNN-PSO
cases in which FNN-PSO was top-ranked (90%), four of the five cases in which
S-PSO was top-ranked (80%), and four of the seven cases in which PCGT-PSO
was top-ranked (57%). Of the ten cases in which FNN-PSO was ranked first,
the difference was significant in nine of them (90%). Of the five cases in which
S-PSO was ranked first, the difference was significant in four of them (80%).
Of the seven cases in which PCGT-PSO was ranked first, the difference was
significant in four of them (57%). Instances where the difference was significant
are underlined in Table 1. We ran the same tests using neighborhoods in which a
particle was excluded from its own neighborhood: of the 24 cases, FNN-PSO had
the best performance in 15 cases (nine of them significant), S-PSO in seven cases
(five of them significant), and PCGT-PSO in one case (which was significant).

4 Related Work

A number of researchers have investigated the benefits to be obtained from
using dynamic topologies. Mohais et al. looked at two methods for randomly
restructuring neighborhoods, one in which a single edge is randomly reconfigured

Using Fluid Neural Networks to Create Dynamic Neighborhood Topologies 275

on each iteration, and one in which all neighborhoods are randomly recreated
periodically [7]. This approach, when used with a FIPS information sharing
approach, outperformed a number of PSO variants. Since the gain and density
parameters of the FNN in FNN-PSO control the rate at which neighborhoods
are reconfigured, the FNN mechanism may provide a useful way to interpolate
between these two appoaches.

Table 1. Mean and Standard Deviation of Minimum Function Value Obtained (Best
performance in bold-face and underlined if statistically significant)

Von Neumann Topology
Function Neighborhood Best FIPS

S-PSO PCGT-PSO FNN-PSO S-PSO PCGT-PSO FNN-PSO

Sphere 7.57e-30 3.55e-30 4.04e-30 0.0 1.69e+00 0.0
3.06e-29 1.22e-29 2.86e-29 0.0 7.21e-01 0.0

Rosenbrock 8.20e+00 1.86e+01 1.37e+01 8.32e-01 2.95e+01 4.86e+00
2.89e+00 3.25e+00 2.25e+00 2.39e+00 8.10e-01 1.07e+01

Ackley 3.99e+00 4.15e+00 4.01e+00 5.09e+00 4.67e+00 3.33e+00
8.06e+00 8.15e+00 8.09e+00 7.41e+00 6.64e+00 7.70e+00

Griewank 4.38e-03 9.89e-03 4.83e-03 4.55e-02 9.80e-01 2.86e-03
6.93e-03 1.23e-02 7.15e-03 7.43e-02 4.01e-02 5.30e-03

Rastrigin 4.81e+01 5.50e+01 4.00e+01 5.79e+01 2.03e+02 3.28e+01
1.40e+01 1.75e+01 1.29e+01 3.37e+01 1.16e+01 2.32e+01

Penal P8 6.65e-02 4.35e-02 2.70e-02 3.49e+00 6.38e+00 1.87e-02
2.51e-01 1.15e-01 7.78e-02 5.94e+00 1.67e+00 9.07e-02

Moore Topology
Function Neighborhood Best FIPS

S-PSO PCGT-PSO FNN-PSO S-PSO PCGT-PSO FNN-PSO

Sphere 1.45e-29 1.12e-29 1.62e-29 1.96e-29 0.0 0.0
4.89e-29 4.12e-29 5.53e-29 1.38e-28 0.0 0.0

Rosenbrock 7.09e+00 1.83e+01 9.58e+00 2.10e+01 3.81e-03 3.13e-03
2.61e+00 1.66e+00 2.18e+00 1.02e+01 1.48e-03 1.85e-02

Ackley 2.79e+00 1.23e+00 3.23e+00 7.51e+00 3.76e+00 4.46e+00
6.97e+00 4.92e+00 7.41e+00 8.10e+00 8.11e+00 7.71e+00

Griewank 1.38e-02 9.00e-03 6.89e-03 2.66e-02 2.96e-04 1.05e-02
1.61e-02 1.19e-02 1.05e-02 4.24e-02 1.46e-03 1.70e-02

Rastrigin 5.12e+01 5.74e+01 4.43e+01 8.20e+01 1.63e+02 4.91e+01
1.44e+01 2.34e+01 1.16e+01 6.24e+01 7.93e+00 2.53e+01

Penal P8 1.46e-01 5.19e-02 5.40e-02 4.97e+00 3.08e-32 8.89e-01
3.63e-01 1.47e-01 1.56e-01 6.68e+00 1.07e-31 1.54e+00

Akat and Gazi compared three approaches to creating dynamic neighbor-
hoods [1] and raised the issue of the effect of information flow topology on the
performance of the PSO algorithm. In the general case, the parameter deter-
mining neighborhood composition is different for each particle, resulting in non-
reciprocal neighborhoods, which can be represented as directed graphs. If these
digraphs are strongly connected over time, i.e. if there is a fixed interval I such
that the union of the digraphs over every interval of iterations of that length is

276 S.M. Majercik

strongly connected, then information flow in the swarm will be preserved and
every particle eventually has access to the information gathered by every other
particle. We are currently investigating whether FNN-PSO provides this type of
strong connectedness over time.

Wang and Xiang proposed a dynamic ring topology in which particles are
connected unidirectionally based on their personal bests [9]. Particles are ordered
by personal bests and have neighbors that are either 1) all better, in which
case one is chosen based on a variant of a fitness-distance ratio (“learn from
far and better ones”), or 2) all worse, in which case a weighted average of the
neighborhoods is used (“centroid of mass”). Their algorithm was competitive
with a number of standard PSO variants.

Garćıa-Nieto and Alba tested a variant of the S-PSO algorithm in which the
neighborhood for each particle on each iteration is constructed by choosing k
other particles, or informants, randomly [4]. They tested the algorithm over a
range of values for k and found evidence for a quasi-optimal neighborhood size in
the range of 6-8 neighbors. The neighborhood creation mechanism of FNN-PSO
is somewhat similar, in that it is constructing neighborhood sets based on the
random motion of the particles in the FNN space. A maximum neighborhood
set size (12) could be obtained by using a topology in which the neighborhood is
composed of those locations whose Manhattan distance from the particle is less
than or equal to two, and the expected neighborhood set size could be varied from
0 to 12 by changing the lattice size. We are currently running tests to determine
whether FNN-PSO performance peaks when the expected neighborhood set size
falls in the range that Garćıa-Nieto and Alba found to be quasi-optimal.

5 Discussion and Further Work

FNN-PSO is a promising PSO algorithm, but our results are not sufficient to
recommend a particular topology, influence model, or set of FNN parameters.
Of the nine cases in which FNN-PSO’s top-ranked performance was statistically
significant, five of them used the von Neumann topology and four of them used
the Moore topology, so the algorithm does not appear to be sensitive to the
underlying topology. The algorithm did seem to be somewhat sensitive to the
influence model used; FIPS was the influence model in six of the nine cases where
FNN-PSO was top-ranked. The better performance of the FIPS model may be
due to the motion of the particles; particles may be in neighborhoods only briefly,
and the FIPS model allows them to influence each other no matter how brief
that period is. We are currently testing whether the advantage conferred by FIPS
disappears if particles move more slowly (by reducing the gain and/or raising
the activation threshold).

Our results indicate that good performance is achieved by FNN parameters
that produce relatively long periods during which no particles are moving in
the FNN and neighborhoods are static, punctuated by short periods, initiated
by the spontaneous activation of a particle, during which most of the particles
are moving. Further testing is needed to determine whether a constant, but

Using Fluid Neural Networks to Create Dynamic Neighborhood Topologies 277

very slow, rate of mixing might be better than periods of complete inactivity
punctuated by brief periods of mixing.

We have described some current work in Section 4 investigating the temporal
connectedness of the swarm in FNN-PSO and the effect of expected neighbor-
hood size. There are other interesting avenues to explore. The coupling matrix,
J , can modulate the impact two particles have on each other’s activation level.
Currently, all elements of J , are set to 1.0, so it has no impact. There is potential
to use this matrix to allow particles to affect each other differently depending on
their fitness-distance ratio, e.g. two particles with a high ratio should affect each
other more strongly since this would increase both their activation levels, mak-
ing it more likely that they would both be active and, thus, in a neighborhood
together.

Finally, it might be beneficial for each particle to have its own gain param-
eter, adjusted dynamically based on the fitness of the particle, e.g. when the
particle’s fitness increases, its gain might be increased slightly (and decreased
when the particle’s fitness remained the same). This would allow particles with
higher fitness to stay active longer, influencing other particles in the swarm more
strongly.

References

1. Akat, S., Gazi, V.: Particle swarm optimization with dynamic neighborhood topol-
ogy: Three neighborhood strategies and preliminary results. In: Swarm Intelligence
Symposium, SIS 2008, pp. 1–8. IEEE (2008)

2. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
Swarm Intelligence Symposium, SIS 2007, pp. 120–127. IEEE (2007)

3. Fernandes, C., Rosa, A., Laredo, J., Cotta, C., Merelo, J.J.: Performance and scal-
ability of particle swarms with dynamic and partially connected grid topologies.
In: Proceedings of the 5th International Joint Conference on Computational Intel-
ligence, pp. 47–55 (2013)

4. Garćıa-Nieto, J., Alba, E.: Empirical computation of the quasi-optimal number of
informants in particle swarm optimization. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO 2011, pp. 147–154 (2011)

5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE,
pp. 1942–1948 (1995)

6. Miramontes, O.: Order-disorder transitions in the behavior of ant societies. Com-
plexity 1(3), 56–60 (1995)

7. Mohais, A.S., Mendes, R., Ward, C., Posthoff, C.: Neighborhood re-structuring
in particle swarm optimization. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS
(LNAI), vol. 3809, pp. 776–785. Springer, Heidelberg (2005)

8. Solé, R.V., Miramontes, O.: Information at the edge of chaos in fluid neural net-
works. Physica D 80, 171–180 (1995)

9. Wang, Y.X., Xiang, Q.L.: Particle swarms with dynamic ring topology. In: IEEE
Congress on Evolutionary Computation, pp. 419–423 (2008)

A Low-Cost Real-Time Tracking Infrastructure

for Ground-Based Robot Swarms

Alan G. Millard1, James A. Hilder1,2, Jon Timmis2, and Alan F.T. Winfield3

1 Department of Computer Science,
York Robotics Laboratory, University of York, UK

millard@cs.york.ac.uk
2 Department of Electronics, York Robotics Laboratory, University of York, UK

{james.hilder,jon.timmis}@york.ac.uk
3 Bristol Robotics Laboratory, University of the West of England, Bristol, UK

alan.winfield@uwe.ac.uk

Optical tracking systems are used in many research laboratories for monitoring
and recording the movements of mobile robots. The data gathered by such sys-
tems is invaluable for offline post-experiment analysis, for example, measuring
the area coverage of a robot swarm. These systems can also be used to provide
robots with online feedback about their current position and orientation, for
the purposes of indoor localisation. Unfortunately, obtaining precise and reliable
tracking data often comes at the cost of expensive equipment.

For many research laboratories, commerical motion capture systems such as
Vicon1, comprising even a small number of cameras, are prohibitively expensive.
The cost of developing a custom-built system such as IRIDIA’s Arena Tracking
System [6] may also be too great. Open-source solutions such as SwisTrack [1]
and AprilTag [5] provide a cheap alternative, however, the precision of the track-
ing data obtained using visible-light cameras is often inferior to that aquired from
commercial motion capture systems that use infrared cameras and retroreflec-
tive markers. OptiTrack2 is a recent competitor in the motion capture market
that offers a cost-effective commercial solution, whilst still delivering precise
and reliable tracking data. We have recently built an OptiTrack system at the
York Robotics Laboratory, which is capable of simultaneously tracking up to 32
ground-based robots in real-time within a 2.5m square arena. The cost of the
OptiTrack hardware and software totalled just under $6,000 (USD), so this may
potentially provide an affordable solution for other research laboratories.

We currently use the system to track swarms of e-puck robots that are each
augmented with a Linux Extension Board, which improves their processing and
memory resources, and enables Wi-Fi communication. Figure 1 provides an
overview of our experimental infrastructure. Three Flex 13 cameras are con-
nected via USB to an OptiHub 2 — a custom USB hub that allows the cameras
to synchronise with each other. This, in turn, connects via USB to the OptiTrack
server (a Windows machine with tracking software installed), allowing tracking
data to be obtained from the cameras. The server processes the tracking data,
logs it for post-experiment analysis, and makes it available to e-pucks and users

1 www.vicon.com
2 www.naturalpoint.com/optitrack

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 278–279, 2014.
c© Springer International Publishing Switzerland 2014

www.vicon.com
www.naturalpoint.com/optitrack

A Low-Cost Real-Time Tracking Infrastructure 279

Flex 13
camera

OptiHub 2 OptiTrack
server

Wireless
router

Flex 13
camera

Flex 13
camera

e-puck robots

User

Fig. 1. Overview of the tracking infrastructure, showing data flow between system
components

in real-time via the wireless LAN. Each robot is assigned a static IP address, and
connects to the LAN via a wireless router. This allows networked computers to
connect to any robot using the SSH protocol. For further details please see [2],
which contains information we believe will be of use to the wider swarm robotics
research community, and will assist others in developing low-cost solutions for
tracking ground-based robot swarms in real-time.

In future, we will use this tracking infrastructure to implement exogenous
fault detection as proposed in [3]. This fault detection approach has already
been shown to work for single-robot systems [4], and will soon be extended for
use with robot swarms.

References

1. Lochmatter, T., Roduit, P., Cianci, C., Correll, N., Jacot, J., Martinoli, A.: Swis-
Track - A Flexible Open Source Tracking Software for Multi-Agent Systems. In:
Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4004–4010 (2008)

2. Millard, A.G., Hilder, J.A., Timmis, J., Winfield, A.F.T.: A Low-cost Real-time
Tracking Infrastructure for Ground-based Robot Swarms. Tech. Rep. YCS-2014-
489, University of York (2014)

3. Millard, A.G., Timmis, J., Winfield, A.F.T.: Towards Exogenous Fault Detection
in Swarm Robotic Systems. In: Natraj, A., Cameron, S., Melhuish, C., Witkowski,
M. (eds.) TAROS 2013. LNCS (LNAI), vol. 8069, pp. 429–430. Springer, Heidelberg
(2014)

4. Millard, A.G., Timmis, J., Winfield, A.F.T.: Run-time Detection of Faults in Au-
tonomous Mobile Robots Based on the Comparison of Simulated and Real Robot
Behaviour. In: Proceedings of the 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) (to appear, 2014)

5. Olson, E.: AprilTag: A robust and flexible visual fiducial system. In: 2011 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 3400–3407 (2011)

6. Stranieri, A., Turgut, A.E., Francesca, G., Reina, A., Dorigo, M., Birattari, M.:
IRIDIA’s Arena Tracking System. Tech. Rep. TR/IRIDIA/2013-013, Université Li-
bre de Bruxelles (2013)

A New Ant Colony Optimization Algorithm:
Three Bound Ant System

Nikola Ivkovic1 and Marin Golub2

1 Faculty of Organization and Informatics, University of Zagreb, Varazdin, Croatia
2 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Since their introduction, ant colony optimization (ACO) algorithms and espe-
cially the MAX-MIN ant system (MMAS) [4] have been found to be well suited
to various optimization problems. Our theoretical analysis of MMAS allowed us
to create a new algorithm, entitled ’three bound ant system (TBAS)’, which has
lower computational complexity while retaining and even improving the quality
of constructed solutions. In this paper, TBAS is briefly explained and experi-
mentally explored in terms of algorithmic speedup and solution quality. Some
distinctive characteristics of TBAS with regard to MMAS are:

– three pheromone bounds (the lower bound τLB, the upper bound τUB , and
the contraction bound τCB = ω · τUB),

– occasional pheromone contractions instead of regular evaporations,
– a unique pheromone reinforcement procedure, and
– the lower pheromone bound equal to the initial pheromone value.

In the solution construction procedure, TBAS uses a well-known random-propor-
tional rule in a manner identical to that in MMAS (and many other ACO
algorithms). TBAS uses all the parameters that MMAS does, although some
parameters are employed somewhat differently (e.g. parameter ρ), with TBAS
also using the additional parameter ω, where τLB/τUB ≤ ω ≤ 1.

The pheromone update procedure of TBAS starts with pheromone reinforce-
ment, which is followed by the pheromone contraction procedure, provided that a
pheromone trail outgrows the upper pheromone bound τUB . During the
pheromone reinforcement it is necessary to select one or more solutions whose
components will be assigned an additional pheromone value. For that purpose,
different strategies like iteration best, κ-best or max-κ-best can be used [2]. All
the components of the selected solution sbs are reinforced in the TBAS accord-
ing to expression (1), where in the first iteration Q0 = 1, and in the subsequent
i-th iteration Qi is modified by Qi+1 = Qi/(1− ρ). The pheromone contraction
multiplies all the pheromone trails and Qi with ω′ = τUB/τmax ·ω while ensuring
that every pheromone trail τc remains inside the interval [τLB, τCB].

τc = τc +
Qi

f(sbs)
, ∀c ∈ sbs (1)

Owing to different pheromone update procedures, TBAS has lower computa-
tional complexity than MMAS. In the case when precomputed values ofταc · ηβc
are stored in a lookup table (LUT) to speed up the algorithm, the TBAS has
an additional advantage in that it is often sufficient to recompute pheromone

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 280–281, 2014.
c© Springer International Publishing Switzerland 2014

A New Ant Colony Optimization Algorithm: Three Bound Ant System 281

trails only for components affected by the pheromone reinforcement. The ac-
tual speedup of TBAS over MMAS, for an equal number of iterations and equal
common parameters, depends on the optimization problem, algorithm implemen-
tation and parameters, among others, and can vary from negligible to highly
significant. According to [3], the time spent in the pheromone update proce-
dure can amount to 90% of the total running time of the algorithm. In order
to demonstrate a possible speedup of TBAS over MMAS we chose an opti-
mization problem and parameter settings that we expected would yield a sig-
nificant speedup. Experiments were conducted on instances of ATSP, with sizes
ranging from 53 to 5000, available at http://www2.research.att.com/~dsj/chtsp/
and http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. Both algorithms
shared the same source code, except for the pheromone update procedure, as
well as the same parameters (α = 1.3, β = 4, ρ = 0.02, with the favorite nodes
list size set at 40, etc.), with the exception of ω = 0.03125 which only exists
in TBAS. The experiments conducted on an HP 6830s laptop showed that the
speedup ratio in the case when the number of ants m = 10 is between 2 and 18,
and for m = 1000 the speedup ratio was between 1.01 and 1.2 (i.e. TBAS was
1% to 20% faster than MMAS).

To explore TBAS in terms of solution quality, experimental comparison of
TBAS and MMAS was conducted on 55 instances of the quadratic assignment
problem (QAP) [4,1] from QAPLIB, with sizes ranging from 15 to 256 locations.
The algorithms were compared without local optimization and with 2-opt local
optimization after 10000 iterations, in each category with two parameter set-
tings. For MMAS the parameters were set at commonly recommended values,
while the reinforcement strategy was tuned by comprehensive experimentation.
For TBAS the parameters were copied from MMAS, after which the parameters
ω and ϑ = τLB/τUB were tuned based on pQAP probability [1]. The experiments
were repeated 100 times, from which median values were used. In both categories
TBAS clearly outperformed MMAS, which was confirmed by a very high level
of statistical significance obtained by Friedman test and various post hoc pro-
cedures. The newly proposed TBAS has a special theoretical relationship with
MMAS. In addition, we experimentally proved that it can compete with MMAS
both in terms of algorithmic speedup and solution quality.

References
1. Ivkovic, N., Golub, M., Malekovic, M.: A pheromone trails model for MAX-MIN

ant system. In: Hao, J.K. (ed.) 10th Conf. on Artificial Evolution, pp. 35–46 (2011)
2. Ivkovic, N., Malekovic, M., Golub, M.: Extended trail reinforcement strategies for

ant colony optimization. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapa-
thy, S.C. (eds.) SEMCCO 2011, Part I. LNCS, vol. 7076, pp. 662–669. Springer,
Heidelberg (2011)

3. Oliveira, S.M., Hussin, M.S., Stützle, T., Andrea, R., Dorigo, M.: A detailed analysis
of the population-based ant colony optimization algorithm for the TSP and the
QAP. In: Krasnogor, N., Lanzi, P.L. (eds.) 13th Conf. on Genetic and Evolutionary
Computation, pp. 13–14. ACM (2011)

4. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Generation Comp. Syst. 16,
889–914 (2000)

An Adaptive Bumble Bees Mating Optimization

Algorithm for the Hierarchical Permutation
Flowshop Scheduling Problem

Yannis Marinakis and Magdalene Marinaki

School of Production Engineering and Management, Technical University of Crete,
Chania, Greece

marinakis@ergasya.tuc.gr, magda@dssl.tuc.gr

In the last few years, a new algorithm, the Bumble Bees Mating Optimization
(BBMO) algorithm, has been proposed. BBMO is based on the mating behaviour
of the bumble bees. In this extended abstract, we present a procedure to optimize
the parameters of the Bumble Bees Mating Optimization algorithm during the
iterations of the algorithm and, thus, the user does not need to give any para-
meters for the algorithm. The outcome of the algorithm, besides the solution
of the problem, is the best calculated parameters for each instance. We use
as basis the last version of the BBMO algorithm, the CNTBBMO, where no
transformation in continuous values is needed [1]. The algorithm is used for
the solution of a hierarchical version of the Permutation Flowshop Scheduling
Problem where two different criteria, the makespan and the total flow time are
optimized in lexicographical order. In this extended abstract, we select an a priori
approach where two different optimization criteria are selected and are optimized
in lexicographical order. The proposed algorithm is based on the Combinatorial
Neighborhood Topology Bumble Bees Mating Optimization (CNTBBMO) [1].
Generally, a BBMO algorithm has three kinds of bumble bees in the colony, the
queen bee, the worker bees and the drones (males). Each bee is a solution of the
problem and it is represented via the permutation of the jobs. The main phases of
the algorithm are: Initialization, Drones’ Selection, Offspring’ Creation, Feeding
the new queens, Mutation phase, Mating phase, Next Iteration [1]. The most
important and novel part of the algorithm is the optimization of the parameters
during the iterations of the algorithm. Initially, random values of the parameters
are given taking into consideration not to exceed some specific bounds. For
example, w1 should always be less than w2 (w1, w2 are two parameters necessary
for CNTBBMO [1]). The parameters that are optimized are the number of bees,
the number of iterations, the number of VNS (local search) iterations, the w1 and
w2, the ubound and the lbound [1]. The upper bounds (ubound) and lower bounds
(lbound) should always have positive values and the ubound should be greater
than the lbound. Another value that is selected as a threshold value is a value
corresponding to the number of consecutive iterations with no improvement in
the results of the best solution. The algorithm was tested on the 90 benchmark
instances of Taillard. The results of the algorithm are presented in Table 1.
1. Marinakis, Y., Marinaki, M., (2014), Combinatorial neighborhood topolo-

gy bumble bees mating optimization for the vehicle routing problem with
stochastic demands, Soft Computing, DOI: 10.1007/s00500-014-1257-1.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 282–283, 2014.
c© Springer International Publishing Switzerland 2014

ABBMO Algorithm for the HPFSP 283

Table 1. Analytical presentation of the results of the proposed algorithm

Primary Objective: Makespan
Ta20X5 Ta20X10 Ta20X20 Ta50X5 Ta50X10 Ta50X20 Ta100X5 Ta100X10 Ta100X20

Values Optimization
AB1 1224.6 1517 2241.1 2738.9 3035.5 3837 5254.7 5690.3 6536.8
AB2 14647.2 21168.3 34771.6 70328.8 92615.4 131748.3 253083.6 312416.9 406070.5
AP1 1231.2 1536.7 2272.1 2753.8 3090.9 3917.4 5272.3 5754.5 6656.9
AP2 14915.1 21384.2 35089.2 72190.4 94969.1 133221.4 261002.3 321608.2 415993.1
Q1 0.18 0.22 0.27 0.09 1.75 3.43 0.20 1.11 3.79
Q2 5.18 5.79 5.66 5.84 7.53 8.29 4.89 7.46 7.62
QB1 0.73 1.54 1.66 0.64 3.62 5.60 0.53 2.25 5.70
QB2 7.11 6.90 6.60 8.63 10.27 9.51 8.17 10.64 10.25
BKSN 8 3 0 4 0 0 2 0 0
LV I 0.00 0.00 0.09 0.00 0.49 2.70 0.00 0.38 3.44
UV I 1.14 0.50 0.60 0.32 2.98 4.17 0.58 1.52 4.18

Parameters optimization
iter 182.3 142.3 139.7 209.6 209.8 188.1 251.2 304.6 242.5
NB 122 75.2 100.3 175.6 106.9 85.1 213.9 191.6 138.6
LB 2.60 2.63 2.68 2.71 2.82 2.82 2.77 2.83 2.81
UB 5.20 5.12 5.27 4.96 5.37 5.54 5.68 5.35 5.54
w1opt 2.40 2.25 2.59 2.40 2.31 2.38 2.28 2.35 2.30
w2opt 2.95 2.87 3.23 3.15 2.86 2.94 2.68 2.83 2.87
LS 129.4 130 143.4 147.3 149.2 148.3 146.7 149.3 149.3

Ten Runs 1st Objective
A10 1226.1 1518.8 2242.8 2740.6 3037.2 3838.8 5256.4 5692 6538.6
AQ10 0.30 0.35 0.35 0.15 1.81 3.48 0.23 1.14 3.82
stdev 1.38 1.47 1.34 1.46 1.41 1.49 1.34 1.48 1.56
var 1.95 2.22 1.83 2.17 2.03 2.27 1.83 2.24 2.45

Ten Runs 2nd Objective
A10 14648.9 21170.2 34773.3 70330.6 92617.3 131750.3 253085.4 312418.4 406072.3
AQ10 5.19 5.80 5.66 5.84 7.53 8.30 4.89 7.46 7.62
stdev 1.57 1.49 1.39 1.42 1.54 1.31 1.54 1.36 1.49
var 2.47 2.24 1.99 2.13 2.39 1.76 2.41 1.90 2.25

Primary Objective: Total Flow Time
Ta20X5 Ta20X10 Ta20X20 Ta50X5 Ta50X10 Ta50X20 Ta100X5 Ta100X10 Ta100X20

Values Optimization
AB1 13945.4 20027.4 32929.7 67197.1 87716.7 123589.3 244732.7 297899.3 387194
AB 1323.4 1667.9 2450 2873.3 3309 4124.6 5402.3 5904 6904.4
AP1 14044.2 20200.5 33162.9 68192.1 89226.8 125458.9 249053.4 303514.6 393525.2
AP2 1325.3 1682.7 2463.4 2884.4 3316.4 4160.6 5425.2 5978.7 6991.7
Q1 0.10 0.12 0.06 1.11 1.83 1.59 1.42 2.48 2.62
Q2 8.55 10.26 9.63 5.04 10.94 11.18 3.02 4.92 9.63
QB1 0.80 0.98 0.76 2.61 3.58 3.12 3.21 4.42 4.29
QB2 8.66 11.21 10.22 5.42 11.19 12.16 3.45 6.26 11.02
BKSN 6 5 6 0 0 0 0 0 0
LV I 0.00 0.00 0.00 0.71 0.95 1.19 0.81 1.63 2.06
UV I 0.39 0.39 0.19 1.38 2.25 2.09 2.09 3.42 3.24

Parameters optimization
iter 125.9 152.3 151.1 198.5 182.8 197.6 316.6 261.8 250.2
NB 108.6 124.7 146.3 103.9 87.7 111.9 129.9 104.6 126.2
LB 2.65 2.74 2.78 2.83 2.72 2.86 2.84 2.78 2.85
UB 5.25 5.36 5.40 5.63 5.47 5.62 5.36 5.39 5.30
w1opt 2.41 2.44 2.34 2.20 2.42 2.64 2.34 2.37 2.06
w2opt 2.93 3.00 2.99 3.01 2.93 3.12 2.97 2.98 2.88
LS 135.4 148.1 148.2 149.2 149.4 149.3 149.5 149.1 149.1

Ten Runs 1st Objective
A10 13947.3 20029.3 32931.3 67198.8 87718.7 123591.2 244734.5 297901 387195.9
AQ10 0.11 0.13 0.06 1.11 1.83 1.59 1.42 2.48 2.62
stdev 1.38 1.42 1.46 1.38 1.49 1.49 1.41 1.49 1.44
var 1.94 2.03 2.16 1.95 2.25 2.26 2.01 2.25 2.10

Ten Runs 2nd Objective
A10 1325.3 1669.87 2451.92 2874.98 3310.91 4126.3 5404.18 5905.62 6906.32
AQ10 8.70 10.39 9.72 5.10 11.00 11.23 3.06 4.95 9.66
stdev 1.53 1.52 1.42 1.51 1.56 1.44 1.60 1.46 1.40
var 2.37 2.32 2.06 2.31 2.46 2.12 2.62 2.18 1.99

Gene Expression in DNA Microarrays:

A Classification Problem Using Artificial Bee
Colony (ABC) Algorithm

Beatriz A. Garro1, Roberto A. Vazquez2, and Katya Rodŕıguez1

1 Instituto en Investigaciones en Matemáticas Aplicadas y en Sistemas
Universidad Nacional Autónoma de México, México, D.F.
{beatriz.garro,katya.rodriguez}@iimas.unam.mx
2 Intelligent Systems Group, Facultad de Ingenieŕıa,

Universidad La Salle, México, D.F.
ravem@lasallistas.org.mx

1 Introduction

Analyzing the information captured in a DNA microarray to diagnose a diseases
using computation intelligence techniques is complex due to the samples number
is much lower than the genes number. Moreover, many genes could be irrelevant
to diagnose a specific diseases; for that reason it is necessary to study techniques
that allow to select the most relevant genes. There are many works that present
different feature selection techniques whose results are applied to classify DNA
microarrays data [1], [2], [3]. In this paper, we describe how ABC algorithm
could be applied to select the best set of genes from a DNA microarray in order
to classify the gene expression with the aim to diagnose efficiently a disease.

2 Proposed Methodology

The problem to be solved can be defined as follows: Giving a set of input
patterns X = {x1, . . . ,xp},xi ∈ IRn, i = 1 . . . , p and a set of desired classes
d = {d1, ..., dp} , d ∈ IN, find a subset of genes G ∈ {0, 1}n such that a function
defined by (F (X|G,d)) is minimized.

The food source’s position represents the solution to the problem which is
defined with an array I ∈ IRn. Each individual Iq,q = 1, . . . , NB is binarized
using a threshold level th in order to select the best set of genes that compose the
gene expression defined as Gk = Tth

(
Ik
)
,k = 1, . . . , n; component whose values

is set to 1, indicates that this gene will be selected. The proposed fitness function
is described in Equation 1, where tng is the total number of gene expressions to
be classified, D is any distance measure, K is the number of classes and c is the
center of each class.

F (X |G,d) =

p∑
i=1

(∣∣∣∣ K
argmin

k=1

(
D
(
xi |G , ck

))
− di

∣∣∣∣
)

tng
. (1)

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 284–285, 2014.
c© Springer International Publishing Switzerland 2014

Gene Expression in DNA Microarrays 285

3 Experimental Results

The proposed methodology was tested using a bench-mark high-dimensional
biomedical DNA microarray data set: leukemia ALL-AML database [2]. In order
to validate statistically the experimental results, the proposed methodology was
executed 30 runs for each distance measure.

Table 1 shows the results obtained with the proposed methodology. For the
case of average accuracy, Manhattan distance was a little better than Euclidean
distance obtaining a Tr. cl. of 100% and a Te. cl. of 77.7.9%. For the case of
average number of genes, Manhattan distance found more genes to diagnose the
disease in less iterations. Finally, the best accuracy was achieved by Euclidean
distance providing a Te. cl. of 82.4% using only four genes in 446 iterations.

Table 1. Average behavior of the proposed methodology using distance classifiers

Dist. Accuracy # of Genes # of iter. Best acc. # of genes # of iter

Tr. cl. Te. cl. Tr. cl. Te. cl.
Euc. 0.98 ± 0.01 0.76 ± 0.03 2618.3 933.5 1.00 0.82 4 446
Man. 1.00 ± 0.00 0.77 ± 0.01 3563.8 58.8 1.00 0.79 3557 59

Tr. cl. = Training classification rate, Te. cl. = Testing classification rate.

4 Conclusions

The feature selection task presents good results using the ABC algorithm. In
this process, in order to binarize each population individual a threshold of 0.5
was setting. On the other hand, a gene number reduction was evident between
original problem and the genes founded by ABC algorithm obtained a good
testing classification. Finally, similar results were obtained when the proposed
methodology was compared against [2].

Acknowledgments. The authors thank DGAPA-UNAM and ULSA for the
economic support under grant number IN107214 and I-61/12, respectively. Be-
atriz Garro thanks CONACYT for the posdoctoral scholarship provided.

References

1. Deegalla, S., Boström, H.: Classification of microarrays with knn: Comparison of
dimensionality reduction methods. In: Yin, H., Tino, P., Corchado, E., Byrne, W.,
Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 800–809. Springer, Heidelberg
(2007)

2. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class pre-
diction by gene expression monitoring. Science 286(5439), 531–537 (1999)

3. Tang, E.K., et al.: Feature selection for microarray data using least squares svm and
particle swarm optimization. In: CIBCB 2005, pp. 1–8 (2005)

Morphology Learning via MDL and Ants

Päivi Suomalainen

Attido Oy, Espoo, Finland
paivi.suomalainen@attido.com

1 Introduction

In computational linguistics, data preprocessing is an important step. For ex-
ample, word segmentation into morphemes is widely used in various learning
tasks, such as text classification, information extraction, part-of-speech (PoS)
tagging and machine translation. In fact, our morphology learner is one part of
our future information extraction software, which will be tailored for extracting
relevant marketing information from the web, for example, from twitter. Working
with text written in a language having a rich morphology, it is very important
to have the words in their base form when training and testing a classifier in
order to increase the performance of the classifier.

In order to achieve a good segmentation, we utilize the important feature of
the minimum description length (MDL) principle [4], the ability to avoid under-
and over-fitting. The heuristic we use with our simple MDL-based cost function
is ant colony optimization (ACO) [3]. ACO is a nature inspired meta-heuristic
used in many different kinds of optimization problems. Our algorithm iteratively
splits the words in our corpus into stems and suffixes based on a pheromones
and heuristic information, and after that, combines some of the words based on
the MDL cost function. As far as we know, no ACO-based search heuristic has
been proposed to tackle the problem of morphology learning until now.

2 Algorithm

Our aim is to minimize the combined code-length l(M) + l(D|M), that is, the
length of the model M and the length of the data D given the model. First,
we encode the model in straightforward manner and use the probabilities of the
morphemes in the data in order to encode it.

Our algorithm begins by creating a colony with one ant for each
word-frequency pair in our data. Each ant has its own pheromone trails. That is,
each ant has pheromone information for all possible segmentations of its word
into half. All splits are considered as equal at the initial phase of the algorithm.
Our algorithm iterates over a splitting phase, combining phase, and over a phase
that we call stealing. Each iteration begins with going through all the ants, and
each ant splits its word using a probabilistic rule based on pheromone informa-
tion and on the frequency and probability information of the minimal-cost model
so far. After going through the whole colony, each ant has a possibility to com-
bine the segmented word or to steal one character from the suffix to the stem,

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 286–287, 2014.
c© Springer International Publishing Switzerland 2014

Morphology Learning via MDL and Ants 287

if no combination was made. These actions are made only if the action results
decrease on the current code length. After that, each ant updates its pheromone
trails according to a function of the code-length of the current solution, and af-
ter updating the trails an evaporation phase of the pheromones takes place. And
finally, the current code-length is compared to the all-time minimum, and the
all-time minimum is updated if the current code-length is smaller than all-time
minimum. This is repeated until the all-time minimum code-length has not been
updated in fifty iterations.

3 Experiments

The data set for our experiments consists of the English and Finnish versions of
the Acquis communautaire, i.e., the rights and obligations that European Union
countries share. The data are extracted from the DGT-TM-2012 corpus 1. We
test our approach against the Morfessor [1] and the Morfessor Categories-MAP
[2] algorithms. In our experiments, the language we use is Finnish, which is a
language having a rich morphology. We evaluate five hundred randomly selected
words in order to compare the different algorithms.

We compared our ACO-based heuristic against a greedy iterative one that
exploits the frequencies of the suffixes of the words when splitting them. Our
@tico algorithm achieved much more compression than the greedy heuristic.
After that, we concentrated on comparing our @tico algorithm against the Mor-
fessor and the Morfessor Categories-MAP algorithms. We collected five hundred
words randomly, and analyzed them with respect to the results of @tico and
the two Morfessor algorithms. Our @tico algorithms outperformed the MDL-
based Morfessor algorithm, but not the Morfessor Categories-MAP algorithm.
The latter uses a more sophisticated probabilistic modeling than our straight-
forward MDL-model, so we did not expect our simple approach to achieve as
good results as the Morfessor Categories-MAP algorithm.

Acknowledgments. We would like to thank Timo and Mikko Jääskelainen for
providing us the chance to work with this problem.

References

1. Creutz, M., Lagus, K.: Unsupervised discovery of morphemes. In: Proceedings of the
Workshop on Morphological and Phonological Learning of ACL 2002, Philadelphia,
Pennsylvania, pp. 21–30 (2002)

2. Creutz, M., Lagus, K.: Inducing the morphological lexicon of a natural language
from unannotated text. In: Proceedings of the International and Interdisciplinary
Conference on Adaptive Knowledge Representation and Reasoning (AKRR 2005),
Espoo, Finland (2005)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
4. Grünwald, P.: The Minimum Description Length Principle. MIT Press (2007)

1 http://ipsc.jrc.ec.europa.eu/index.php?id=197

Parallelizing Solution Construction

in ACO for GPUs

Noriyuki Fujimoto and Shigeyoshi Tsutsui

Graduate School of Science, Osaka Prefecture University, Osaka, Japan
{fujimoto,tsutsui}@mi.s.osakafu-u.ac.jp

1 Introduction

We present a GPU implementation of an ant colony optimization (ACO) al-
gorithm called the Cunning Ant System (cAS) [3]. Although local search can
be effectively combined to ACO [4], such local search algorithms are heuristics
that inherently depend on the target problem and there are many problems for
which such a heuristic is not known. Hence, we intend to evaluate ACO as a
meta-heuristic which can be applied to problems without effective local search,
and does not use local search in this paper.

2 Parallelization of the Solution Construction

ACO has parallelism among solutions, but in order to extract high perfor-
mance of a GPU, parallelizing processing for each solution is desirable. Fig. 1
shows a pseudo code of our solution construction. The lines four to six can be
replaced with the prefix-sums of tau[index[i]*n+vw[i..n-1]] into rw[i..n-1]. We
implemented prefix-sums with the warp-shuffle instructions [2]. The line eight
was implemented with the atomic instruction atomicMin(). We also parallelized
a simple for loop with embarrassing parallelism in our sampling code.

3 Experiments

Table 1 shows the performance of the proposed GPU algorithm and the corre-
sponding CPU algorithm for several problem instances from the QAPLIB bench-
mark library [1]. QAPLIB provides the optimal values of the objective function
for these problem instances. For each problem instance, the measurement was
conducted 25 times consecutively and the average value of the 25 trials was
adopted.

4 Conclusion

The effect of parallelizing the solution construction in ACO has been experimen-
tally shown on the NVIDIA CUDA GPU architecture. If no local search heuristic
is known for the target problem, our approach seems to be effective.

Future work includes performance improvement of the proposed implementa-
tion and extensive applications to other problems.

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 288–289, 2014.
c© Springer International Publishing Switzerland 2014

Parallelizing Solution Construction in ACO for GPUs 289

1 Generate a random permutation o f { 0 , 1 , 2 , . . . , n−1} i n t o idx [] ;
2 I n i t i a l i z e v [] , vw [] , copyLength ;
3 for (int i = copyLength ; i < n ; i++) {
4 rw [i] = tau [idx [i] ∗ n + vw [i]] ;
5 for (int j = i +1; j < n ; j++)
6 rw [j] = rw [j −1] + tau [idx [i] ∗ n + vw [j]] ;
7 f loat ptr = a random r e a l in [0 , rw [n− 1]] ;
8 int pos = min va lue j in rw [i . . n−1] s . t . p t r < rw [j] ;
9 int node = vw [pos] ; vw [pos] = vw [i] ; v [idx [i]] = vw [i] = node ;

10 }

Fig. 1. The solution construction in a pseudo code

Table 1. Results of ACO on a GPU in case that population size is equal to 4n, the
maximum number of evaluations is 200000n where n is the number of the locations. The
algorithm terminates when an optimal solution is found by any thread or the number of
evaluations arrives at the maximum value. (GPU programs run on: NVIDIA GeForce
TITAN GPU, 3.1GHz Intel Core i7-3770S CPU, Windows 7 Professional SP1, Visual
Studio 2008 Professional, CUDA 5.5, CPU programs run on: 2.67 GHz Intel Xeon
X5550 CPU, Linux 2.6.27.29 (Fedora10 x86 64), gcc 4.3.2)

CPU GPU GPU speedup
problem (with prefix-sums) (without prefix-sums) by
instance time error time error speedup time error speedup prefix-sums

(sec) () (sec) () (to CPU) (sec) () (to CPU)

tai35b 22.9 1.9 22.5 1.1 1.0 21.1 1.1 1.1 0.94

tai40b 28.3 2.1 23.9 2.4 1.2 26.8 2.4 1.1 1.12

tai50b 59.0 3.4 39.4 1.6 1.5 40.5 1.7 1.5 1.03

tai60b 97.8 1.4 54.4 0.9 1.8 60.7 0.9 1.6 1.12

tai80b 232.2 2.4 100.0 2.6 2.3 117.1 2.6 2.0 1.17

tai100b 432.0 1.2 174.6 1.4 2.5 202.4 1.3 2.1 1.16

tai150b 1410.3 3.2 480.6 2.9 2.9 621.5 3.0 2.3 1.29

References

1. Burkard, R.E., Çela, E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment
problem library (2002), www.seas.upenn.edu/qaplib

2. Demouth, J.: Shuffle: Tips and tricks (2013),
http://on-demand.gputechconf.com/gtc/2013/presentations/

S3174-Kepler-Shuffle-Tips-Tricks.pdf

3. Tsutsui, S.: cAS: Ant colony optimization with cunning ants. Parallel Problem
Solving from Nature, 162–171 (2006)

4. Tsutsui, S., Fujimoto, N.: Aco with tabu search on a gpu for solving qaps using move-
cost adjusted thread assignment. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 1547–1554 (2011)

www.seas.upenn.edu/qaplib
http://on-demand.gputechconf.com/gtc/2013/presentations/S3174-Kepler-Shuffle-Tips-Tricks.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3174-Kepler-Shuffle-Tips-Tricks.pdf

Solving Resource-Constraint Project Scheduling

Problems Based on ACO Algorithms

Antonio Gonzalez-Pardo and David Camacho

Computer Science Department, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, Spain
{antonio.gonzalez,david.camacho}@uam.es

1 Introduction

Constraint Satisfaction Problems (CSP) belongs to this kind of traditional NP-
hard problems with a high impact in both, research and industrial domains.
CSP problems are represented using triples (X,D,C) where X represents a set
of variables that needs to be assigned with a particular value (V), which must
satisfy a set of constraints (C) [1,2].

The possible utilization of ACO algorithms to solve CSP problems requires the
design of the decision graph where the ACO is executed. The classical approach
[3,4,5] builds a graph where the nodes represent the variable/value pairs (<
variable, value >) and the edges connect those nodes whose variables X are
different. One of the problem with this representation is that problems composed
by many variables or by variables that could be assigned with many different
values, become really difficult to model due to the size of the resulting graph.
Another limitation with a full-connected approach is that continuous problems
cannot be represented (this is a hot topic research problem in CSP), and only
those problems with a finite set of values for the variables are allowed.

This work uses the representation proposed in [6] to solve Resource-Constraint
Project Scheduling Problems (RCPSP). This new model creates a node for each
given variable. In this way, given a problem composed by N variables where
each variable can be assigned with a value from a set of M different values
(di ∈ D), will be modelled into a graph composed by N nodes (instead of N ∗M
nodes created in the classical approaches). The restrictions of the problem are
represented in the edges of the graph. Two nodes will be connected if there is,
at least, one restriction that involve the variables contained in each node.

The simplification of the graph entails a change in the behaviour of the ants,
that using the proposed model they have to select the value that is assigned to
the variable encoded in the node.

2 Experimental Results

The dataset used has been extracted from PSPLib library1, several single-mode
datasets with different number of jobs have been selected. 2040 problems have

1 http://www.om-db.wi.tum.de/psplib/main.html

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 290–291, 2014.
c© Springer International Publishing Switzerland 2014

http://www.om-db.wi.tum.de/psplib/main.html

Solving Resource-Constraint Project Scheduling Problems 291

Table 1. Makespan and accuracy obtained using the Single-Mode problems from
PSPLib dataset for the 2040 analysed problems

Instance
PSPLib Makespan Accuracy Makespan Accuracy

makespan Without Obl. Without Obl. With Obl. With Obl.

j30.sm 58.99 ± 14.08 59.98 ± 14.77 58.33 % 60.0± 14.81 58.33 %
j60.sm 79.8 ± 17.44 82.79 ± 20.70 52.71 % 82.83 ± 20.75 52.29 %
j90.sm 94.94 ± 20.59 99.1± 25.64 52.08 % 99.07± 25.63 52.29 %
j120.sm 122.19 ± 39.78 135.73 ± 49.22 8.0 % 135.76 ± 49.28 8.0%

been analysed from 4 datasets that contains instances of Single-Mode projects
composed by 30 jobs (j30.sm), 60 jobs (j60.sm), 90 jobs (j90.sm) and 120 jobs
(j120.sm). The ACO algorithm has been executed 10 times for each problem
and the evaporation rate has been fixed to 5%. The ACO algorithm executed
for the dataset j30.sm is composed by 100 ants during 400 steps whereas for
the instances j60.sm, j90.sm and j120.sm, the ACO is composed by 200 ants
executing during 500 steps.

Table 1 shows, for each RCPSP dataset, the average of the minimummakespan
published in PSPLib, the average minimum makespan obtained using our ap-
proach, and the accuracy of the algorithm for each instance. This accuracy is
computed as the number of problems that our algorithm is able to obtain the
minimum makespan published divided by the total number of problems that
compose the dataset.

The results obtained are really close to the best makespan obtained in the
literature, our algorithm is able to find these best solutions in more than the 50%
of the problems analysed. As it could be expected, the quality of the makespan,
and the accuracy, decreases with the complexity of the problems.

Acknowledgments. This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant TIN2010-19872 (ABANT) and
Savier project (Airbus Defence & Space project, FUAM-076914).

References

1. Tsang, E.P.K.: Foundations of constraint satisfaction. Computation in cognitive
science. Academic Press (1993)

2. Barto, L., Kozik, M.: Constraint satisfaction problems solvable by local consistency
methods. J. ACM 61(1), 1–19 (2014)

3. Hoseini Semnani, S., Zamanifar, K.: The power of ants in solving distributed con-
straint satisfaction problems. Appl. Soft Comput. 12(2), 640–651 (2012)

4. Khan, S., Bilal, M., Sharif, M., Sajid, M., Baig, R.: Solution of n-queen problem
using aco. In: IEEE 13th International Multitopic Conference, INMIC 2009 (2009)

5. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on
Evolutionary Computation 6, 347–357 (2002)

6. Gonzalez-Pardo, A., Camacho, D.: A new csp graph-based representation for ant
colony optimization. In: 2013 IEEE Conference on Evolutionary Computation (CEC
2013), vol. 1, pp. 689–696 (2013)

Author Index

Abbott, Jade 246
Abdelbar, Ashraf M. 1
Allwright, Michael 158
Alvarez, Segundo 146
Antônio Florenzano Mollinetti, Marco

206
Antoun, Anthony 158
Areces, Paula 13

Barresi, Kevin M. 230
Bhalla, Navneet 158
Birattari, Mauro 25, 182
Blesa, Maria J. 74
Blum, Christian 74
Bosman, Phlippie 86
Brambilla, Manuele 25
Breedon, Philip 214
Broderick, Ian 254
Brutschy, Arne 25, 182
Bullen, Jennifer A. 222

Calvo, Borja 74
Camacho, David 122, 290
Castillo-Cagigal, Manuel 182
Cavalcante Monteiro, Dionne 206
Célio Limão de Oliveira, Roberto 206
Cleghorn, Christopher W. 134

Dı́az, Diego 13, 146
Ding, Hongli 262
Dodd, Tony J. 62
Dorigo, Marco 158, 194

El-faham, Haitham 158
Ena, Borja 146
Engelbrecht, Andries P. 38, 86, 134, 246

Fernandez, Silvino 146
Francesca, Gianpiero 25
Fujimoto, Noriyuki 288

Garattoni, Lorenzo 25
Garro, Beatriz A. 284
Genter, Katie 110
Golub, Marin 280

Gonzalez-Pardo, Antonio 290
Groß, Roderich 62
Gutiérrez, Alvaro 182

Hamann, Heiko 170, 262
Hilder, James A. 278
Howley, Enda 254

Iglesias, Miguel 146
Ivkovic, Nikola 280

Kadota, Masaki 238
King, David 214

Leal, André B. 62
Leal Souza, Daniel 206
Leonard, Barend J. 38
Lopes, Yuri K. 62
López-Ibáñez, Manuel 50

Majercik, Stephen M. 270
Marinaki, Magdalene 282
Marinakis, Yannis 282
Matsumura, Yoshiyuki 238
Menéndez, Héctor D. 122
Miletitch, Roman 25
Millard, Alan G. 278

Noura Teixeira, Otávi 206

Obuchowski, Nancy A. 222
Ohkura, Kazuhiro 238
Otero, Fernando E.B. 122

Palmer, Daniel W. 222
Pérez Cáceres, Leslie 50
Pinciroli, Carlo 25, 158
Piraino, David W. 222
Podevijn, Gaëtan 25

Reina, Andreagiovanni 25, 194
Rodil, Jorge 13
Rodŕıguez, Katya 284

Salama, Khalid 1
Salvaro, Mattia 25
Soleymani, Touraj 25
Stone, Peter 110

294 Author Index

Stützle, Thomas 50
Suárez, Montserrat 13
Suomalainen, Päivi 286

Timmis, Jon 278
Trianni, Vito 25, 194
Tsutsui, Shigeyoshi 288
Tuci, Elio 98

Valentini, Gabriele 170

Valledor, Pablo 13

Vazquez, Roberto A. 284

Winfield, Alan F.T. 278

Yasuda, Toshiyuki 238

	Preface
	Organization
	Table of Contents
	A Novel Ant Colony Algorithm for BuildingNeural Network Topologies
	1 Introduction
	2 Background
	2.1 Feed-Forward Neural Networks
	2.2 ACO Related Work

	3 Our Proposed Ant Colony Algorithm
	3.1 The Construction Graph
	3.2 The ANN-Miner Overall Algorithm
	3.3 Solution Creation Procedure
	3.4 Quality Evaluation and Pheromone Update
	3.5 Variations of the Algorithm

	4 Experimental Methodology and Results
	5 Conclusions and Future Work Directions
	References

	An ACO Algorithm to Solve an ExtendedCutting Stock Problem for Scrap Minimizationin a Bar Mill
	1 Introduction
	2 Problem Statement
	3 Literature Review
	4 Solution Using ACO with Efficient Patterns
	4.1 Efficient Patterns
	4.2 Partial Solution Management
	4.3 Algorithmic Details

	5 Experimental Results
	6 Conclusions and Future Work
	References

	An Experiment in Automatic Designof Robot Swarms
	1 Introduction
	2 Design Methods Considered
	3 Experimental Protocol
	4 Tasks and Results
	5 Analysis and Discussion
	6 Conclusions
	References

	Angle Modulated Particle Swarm Variants
	1 Introduction
	2 Particle Swarm Optimization
	3 Angle Modulated Particle Swarm Optimization
	3.1 AMPSO Coefficients
	3.2 AMPSO Limitations

	4 AMPSO Variations
	4.1 Amplitude AMPSO
	4.2 Increased-Domain AMPSO
	4.3 Min-Max AMPSO

	5 Benchmark Problems
	5.1 N-Queens
	5.2 Knight’s Coverage
	5.3 Knight’s Tour
	5.4 Deceptive Problems

	6 Experiments
	7 Results and Discussion
	8 Conclusion
	References

	Ant Colony Optimization on a Budget of 1000
	1 Introduction
	2 Experimental Setting
	2.1 Problems
	2.2 ACO Algorithms
	2.3 Automatic Configuration

	3 Experimental Results
	3.1 Default Parameter Settings
	3.2 Tuned Settings
	3.3 Parameter Variation and Anytime Parameter Tuning

	4 Final Remarks and Future Work
	References

	Application of Supervisory Control Theoryto Swarms of e-puck and Kilobot Robots
	1 Introduction
	1.1 Formal Approaches in Swarm Robotics
	1.2 Contributions

	2 Supervisory Control Theory
	3 Modelling Swarm Robotic Behaviours with Supervisory Control Theory
	3.1 Orbit Case Study
	3.2 Segregation Case Study

	4 Supervisor Synthesis
	4.1 Local Modular Supervisors

	5 Implementation of Supervisory Control in SR
	6 Experiment
	7 Conclusions
	References

	Can Frogs Find Large Independent Setsin a Decentralized Way? Yes They Can!
	1 Introduction
	2 The FrogSim Algorithm
	2.1 Algorithm Preliminaries
	2.2 Main Algorithm
	2.3 Identifying the Best Coloring and Detecting Convergence

	3 Experimental Evaluation
	3.1 Generation of the Benchmark Set
	3.2 Results

	4 Conclusions and Future Work
	References

	Diversity Rate of Change Measurementfor Particle Swarm Optimisers
	1 Introduction
	2 Background
	2.1 Particle Swarm Optimisers
	2.2 Particle Swarm Optimiser Variations
	2.3 Swarm Diversity
	2.4 Two-Piecewise Linear Approximation

	3 Algorithm Behaviour
	4 Diversity Rate-of-Change Measure
	5 Experimental Procedure
	6 Results
	7 Conclusions
	References

	Evolutionary Swarm Robotics:Genetic Diversity, Task-Allocationand Task-Switching
	1 Introduction
	2 The Simulation Environment
	3 The Task and the Fitness Function
	4 Controller and the Evolutionary Algorithm
	5 Results
	5.1 Behavioural Strategies

	6 Conclusions
	References

	Influencing a Flock via Ad Hoc Teamwork
	1 Introduction
	2 Related Work
	3 Background and Problem Definition
	3.1 Ad Hoc Teamwork
	3.2 Problem Definition
	3.3 Simulation Environment

	4 1-Step Lookahead Behavior
	5 Experiments
	5.1 Baseline Ad Hoc Agent Behavior
	5.2 Experimental Setup
	5.3 Orient Experimental Results
	5.4 Herd Experimental Results

	6 Conclusion
	References

	MACOC: A Medoid-Based ACO ClusteringAlgorithm
	1 Introduction
	2 Related Work
	3 Medoid-Based ACO Clustering Algorithm (MACOC)
	4 Experiments
	4.1 Datasets Description
	4.2 Experimental Setup and Evaluation Methods
	4.3 Synthetic Experiments
	4.4 Real-World Experiments

	5 Conclusions and Future Work
	References

	Particle Swarm Convergence: StandardizedAnalysis and Topological Influence
	1 Introduction
	2 Particle Swarm Optimization
	3 Theoretical Particle Swarm Optimization Background
	4 Experimental Setup
	5 Experimental Results and Discussion
	6 Conclusion
	References

	Scheduling a Galvanizing Line by Ant ColonyOptimization
	1 Introduction
	2 Related Work
	3 Context of the Problem
	3.1 Origin of the Problem: The Importance of the Sequencing
	3.2 Proposed Solution: ACO

	4 How to Apply ACO to a Scheduling Problem in the Steel Industry
	5 Results
	6 Conclusions
	References

	SRoCS: Leveraging Stigmergy on a Multi-robotConstruction Platform for UnknownEnvironments
	1 Introduction
	2 Background
	2.1 Construction in Nature
	2.2 Simulation
	2.3 Multi-robot Construction
	2.4 Summary

	3 Overview of the Proposed Platform
	3.1 The Stigmergic Building Blocks
	3.2 The Mobile Robots
	3.3 Simulation Tool

	4 Swarm Construction Examples
	4.1 Substructure Formation
	4.2 Construction Using Templates
	4.3 Construction Exploiting Environmental Heterogeneities

	5 Conclusions
	References

	Swarm in a Fly Bottle: Feedback-Based Analysisof Self-organizing Temporary Lock-ins
	1 Introduction
	1.1 Locust Scenario

	2 Models
	2.1 Well-Mixed and Biased Spatial Distributions
	2.2 Markov Chain Model for Two System Variables
	2.3 Urn Model
	2.4 Mathematical Model of Feedbacks

	3 Results
	4 Discussion and Conclusion
	References

	Temporal Task Allocationin Periodic Environments
	1 Introduction
	2 Environment and Robots
	3 Collective Synchronization Algorithm
	3.1 Assessment of Synchronization
	3.2 Synchronization of the Internal Timer
	3.3 Period Synchronization

	4 Experiments
	5 Conclusions
	References

	Towards a Cognitive Design Patternfor Collective Decision-Making
	1 Introduction
	2 Biological Inspiration and Theoretical Models
	3 Design Guidelines
	4 A Simple Spatial Scenario
	5 Results
	6 Conclusions
	References

	Short Papers
	A Novel Competitive Quantum-BehaviourEvolutionary Multi-Swarm Optimizer AlgorithmBased on CUDA Architecture Appliedto Constrained Engineering Design
	1 Introduction
	2 An Evolutionary Competitive Multi-Swarm Approach for QPSO on CUDA Architecture (CQEMSO)
	2.1 Quantum-Behaviour Particle Swarm Optimization with Evolutionary Strategies (QPSO+ES) on Slave Swarms
	2.2 Quantum-Behaviour Particle Swarm Optimization with Evolutionary Strategies (QPSO+ES) on Master Swarm

	3 Experiments and Results
	4 Conclusions and Future Works
	References

	Cooperative Object Recognition:Behaviours of a Artificially Evolved Swarm
	1 Introduction
	2 The Simulation Method
	2.1 Object Shapes
	2.2 hBot Agents

	3 Genetic Algorithm
	3.1 The Fitness Value
	3.2 Selected Scenarios

	4 Results
	4.1 Measuring the Genetic Algorithm Scenario Difficulty

	5 Conclusion
	References

	Emergent Diagnoses from a Collectiveof Radiologists: Algorithmic versus SocialConsensus Strategies
	1 Introduction
	2 Methodology
	2.1 Experiment and Data Collection
	2.2 Collective Diagnosis Algorithm
	2.3 Social Consensus Diagnosis

	3 Results
	4 Discussion
	4.1 Shared Visual Cues for Stigmergic Coordination
	4.2 Examination of Specific Instances of Emergent Diagnoses

	5 Conclusion
	References

	Foraging Agent Swarm Optimizationwith Applications in Data Clustering
	1 Introduction
	2 Foraging Agent Swarm Optimization
	2.1 Algorithm Description
	2.2 Ranges and Update Mechanisms
	2.3 Happiness
	2.4 Movement Rules
	2.5 Sample Results

	3 Foraging Agent Swarm Clustering
	4 Experimental Results
	5 Conclusions
	References

	GPU Implementation of Food-Foraging Problemfor Evolutionary Swarm Robotics Systems
	1 Introduction
	2 Cooperative Foraging Problem
	3 CUDA
	4 GPU Implementation
	5 Computational Experiments
	5.1 Settings
	5.2 Results

	6 Conclusions
	References

	Nature-Inspired Swarm Robotics Algorithmsfor Prioritized Foraging
	1 Introduction
	2 Background
	2.1 Ant Foraging
	2.2 Bee Foraging

	3 Prioritized Foraging
	4 Agents
	5 Algorithm Description
	5.1 Na¨ıve Foraging
	5.2 Desert Ant Foraging
	5.3 Honey Bee Foraging

	6 Experimental Setup
	7 Results
	8 Conclusions and Future Research
	References

	Particle Swarm Optimisation with EnhancedMemory Particles
	1 Introduction
	2 Background Research
	2.1 Particle Swarm Optimisation
	2.2 Social Influence
	2.3 Enhancing Memory in PSO

	3 PSO with Enhanced Memory Particles
	3.1 Equal Influence EMP
	3.2 Power Law Distribution EMP
	3.3 Roulette EMP

	4 Experimental Results
	4.1 Experiment 1: Memory Size
	4.2 Experiment 2: EMP Approach
	4.3 Experiment 3: Comparison to Standard PSO

	5 Conclusions
	References

	Sorting in Swarm Robots UsingCommunication-Based Cluster Size Estimation
	1 Introduction
	2 Scenario Description
	3 Gossip-Based Sorting Algorithm
	4 Simulation Environment and Results
	4.1 Simulation Environment
	4.2 Simulation Results

	5 Conclusion
	References

	Using Fluid Neural Networks to CreateDynamic Neighborhood Topologiesin Particle Swarm Optimization
	1 Introduction
	2 PSO and FNN-PSO
	2.1 Standard PSO
	2.2 FNN-PSO

	3 Experimental Results
	4 Related Work
	5 Discussion and Further Work
	References

	Extended Abstracts
	A Low-Cost Real-Time Tracking Infrastructurefor Ground-Based Robot Swarms
	References

	A New Ant Colony Optimization Algorithm:Three Bound Ant System
	References

	An Adaptive Bumble Bees Mating OptimizationAlgorithm for the Hierarchical PermutationFlowshop Scheduling Problem
	Gene Expression in DNA Microarrays:A Classification Problem Using Artificial BeeColony (ABC) Algorithm
	1 Introduction
	2 Proposed Methodology
	3 Experimental Results
	4 Conclusions
	References

	Morphology Learning via MDL and Ants
	1 Introduction
	2 Algorithm
	3 Experiments
	References

	Parallelizing Solution Constructionin ACO for GPUs
	1 Introduction
	2 Parallelization of the Solution Construction
	3 Experiments
	4 Conclusion
	References

	Solving Resource-Constraint Project SchedulingProblems Based on ACO Algorithms
	1 Introduction
	2 Experimental Results
	References

	Author Index

