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Abstract The first part of this text is a gentle exposition of some basic constructions
and results in the extended prequantum theory of Chern–Simons-type gauge field
theories. We explain in some detail how the action functional of ordinary 3d Chern–
Simons theory is naturally localized (“extended”, “multi-tiered”) to a map on the
universal moduli stack of principal connections, a map that itself modulates a circle-
principal 3-connection on that moduli stack, and how the iterated transgressions of
this extended Lagrangian unify the action functional with its prequantum bundle and
with the WZW-functional. In the second part we provide a brief review and outlook
of the higher prequantum field theory of which this is a first example. This includes a
higher geometric description of supersymmetric Chern–Simons theory, Wilson loops
and other defects, generalized geometry, higher Spin-structures, anomaly cancella-
tion, and various other aspects of quantum field theory.

1 Introduction

One of the fundamental examples of quantum field theory is 3-dimensional Chern–
Simons gauge field theory as introduced in [88]. We give a pedagogical exposition
of this from a new, natural, perspective of higher geometry formulated using higher
stacks in higher toposes along the lines of [30] and references given there. Then
we indicate how this opens the door to a more general understanding of extended
prequantum (topological) field theory, constituting a pre-quantum analog of the
extended quantum field theory as in [60], in the sense of higher geometric
quantization [67].
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The aim of this text is twofold. On the one hand, we will attempt to dissipate
the false belief that higher toposes are an esoteric discipline whose secret rites are
reserved to initiates. To do this we will present a familiar example from differential
topology, namely Chern–Simons theory, from the perspective of higher stacks, to
show how this is a completely natural and powerful language in differential geometry.
Furthermore, since any language is best appreciated by listening to it rather than
by studying its grammar, in this presentation we will omit most of the rigorous
definitions, leaving the reader the task to imagine and reconstruct them from the
context. Clearly this does not mean that such definitions are not available: we refer
the interested reader to [59] for the general theory of higher toposes and to [79]
for general theory and applications of differential cohesive higher toposes that can
express differential geometry, differential cohomology and prequantum gauge field
theory; the reader interested in the formal mathematical aspects of the theory might
enjoy looking at [81].

On the other hand, the purpose of this note is not purely pedagogical: we show how
the stacky approach unifies in a natural way all the basic constructions in classical
Chern–Simons theory (e.g., the action functional, the Wess-Zumino-Witten bundle
gerbe, the symplectic structure on the moduli space of flat G-bundles as well as its
prequantization), clarifies the relations of these with differential cohomology, and
clearly points towards “higher Chern–Simons theories” and their higher and extended
geometric prequantum theory. A brief survey and outlook of this more encompassing
theory is given in the last sections. This is based on our series of articles including
[28–31] and [74–76]. A set of lecture notes explaining this theory is [80].

We assume the reader has a basic knowledge of characteristic classes and of
Chern–Simons theory. Friendly, complete and detailed introductions to these two
topics can be found in [63] and [20, 32–34], respectively.

In this article we focus on the (extended) geometric quantization of Chern–
Simons theory. Another important approach is the (extended) perturbative quantiza-
tion based on path integrals in the BV-BRST formalism, as discussed notably in [1],
based on the general program of extended perturbative BV-quantization laid out in
[18, 19]. The BV-BRST formalism—a description of phase spaces/critical loci in
higher (“derived”) geometry—is also naturally formulated in terms of the higher
cohesive geometry of higher stacks that we consider here, but further discussion of
this point goes beyond the scope of this article. The interested reader can find more
discussion in Sect. 1.2.15.2 and 3.10.8 of [79].

2 A Toy Example: 1-Dimensional U(n)-Chern–Simons
Theory

Before describing the archetypical 3-dimensional Chern–Simons theory with a com-
pact simply connected gauge group1 from a stacky perspective, here we first look
from this point of view at 1-dimensional Chern–Simons theory with gauge group

1 We are using the term “gauge group” to refer to the structure group of the theory. This is not to
be confused with the group of gauge transformations.
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U (n). Although this is a very simplified version, still it will show in an embryonic
way all the features of the higher dimensional theory.2 Moreover, a slight variant of
this 1-dimensional CS theory shows up as a component of 3d Chern–Simons theory
with Wilson line defects, this we discuss at the end of the exposition part in Sect. 3.4.5.

2.1 The Basic Definition

Let A be a un-valued differential 1-form on the circle S1. Then 1
2π i tr(A) is a real-

valued 1-form, which we can integrate over S1 to get a real number. This construction
can be geometrically interpreted as a map

{trivialized U (n)-bundles with connections on S1}
1

2π i

∫
S1 tr−−−−−→ R.

Since the Lie group U (n) is connected, the classifying space BU (n) of principal
U (n)-bundles is simply connected, and so the set of homotopy classes of maps from
S1 to BU (n) is trivial. By the characterizing property of the classifying space, this
set is the set of isomorphism classes of principal U (n)-bundles on S1, and so every
principal U (n)-bundle over S1 is trivializable. Using a chosen trivialization to pull-
back the connection, we see that an arbitrary U (n)-principal bundle with connection
(P,∇) is (noncanonically) isomorphic to a trivialized bundle with connection, and
so our picture enlarges to

and it is tempting to fill the square by placing a suitable quotient of R in the right
bottom corner. To see that this is indeed possible, we have to check what happens
when we choose two different trivializations for the same bundle, i.e., we have to
compute the quantity

1
2π i

∫

S1

tr(A′) − tr(A),

where A and A′ are two 1-form incarnations of the same connection ∇ under different
trivializations of the underlying bundle. What one finds is that this quantity is always
an integer, thus giving a commutative diagram

2 Even 1-dimensional Chern–Simons theory exhibits a rich structure once we pass to derived higher
gauge groups as in [46]. This goes beyond the present exposition, but see Sect. 5.1 for an outlook
and Sect. 5.7.10 of [79] for more details.
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The bottom line in this diagram is the 1-dimensional Chern–Simons action for
U (n)-gauge theory. An elegant way of proving that 1

2π i

∫
S1 tr(A) − tr(A′) is

always an integer is as follows. Once a trivialization has been chosen, one can extend
a principal U (n)-bundle with connection (P,∇) on S1 to a trivialized principal
U (n)-bundle with connection over the disk D2. Denoting by the same symbol ∇ the
extended connection and by A the 1-form representing it, then by Stokes’ theorem we
have

1
2π i

∫

S1

tr(A) = 1
2π i

∫

∂ D2

tr(A) = 1
2π i

∫

D2

dtr(A) = 1
2π i

∫

D2

tr(F∇),

where F∇ is the curvature of ∇. If we choose two distinct trivializations, what we get
are two trivialized principal U (n)-bundles with connection over D2 together with
an isomorphism of their boundary data. Using this isomorphism to glue together the
two bundles, we get a (generally nontrivial) U (n)-bundle with connection (P̃, ∇̃) on
S2 = D2 ∐

S1 D2, the disjoint union of the upper and lower hemisphere glued along
the equator, and

1
2π i

∫

S1

tr(A′) − tr(A) = 1
2π i

∫

S2

tr(∇̃) = 〈c1(P̃), [S2]〉,

the first Chern number of the bundle P̃ . Note how the generator c1 of the second
integral cohomology group H2(BU (n),Z) ∼= Z has come into play.

Despite its elegance, the argument above has a serious drawback: it relies on
the fact that S1 is a boundary. And, although this is something obvious, still it is
something nontrivial and indicates that generalizing 1-dimensional Chern–Simons
theory to higher dimensional Chern–Simons theory along the above lines will force
limiting the construction to those manifolds which are boundaries. For standard
3-dimensional Chern–Simons theory with a compact simply connected gauge group,
this will actually be no limitation, since the oriented cobordism ring is trivial in
dimension 3, but one sees that this is a much less trivial statement than saying that
S1 is a boundary. However, in any case, that would definitely not be true in general
for higher dimensions, as well as for topological structures on manifolds beyond
orientations.
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2.2 A Lie Algebra Cohomology Approach

A way of avoiding the cobordism argument used in the previous section is to focus
on the fact that

1
2π i tr : un → R

is a Lie algebra morphism, i.e., it is a real-valued 1-cocycle on the Lie algebra un

of the group U (n). A change of trivialization for a principal U (n)-bundle P → S1

is given by a gauge transformation g : S1 → U (n). If A is the un-valued 1-form
corresponding to the connection ∇ in the first trivialization, the gauge-transformed
1-form A′ is given by

A′ = g−1 Ag + g−1dg,

where g−1dg = g∗θU (n) is the pullback of the Maurer–Cartan form θU (n) of U (n)

via g. Since 1
2π i tr is an invariant polynomial (i.e., it is invariant under the adjoint

action of U (n) on un), it follows that

1
2π i

∫

S1

tr(A′) − tr(A) = 1
2π i

∫

S1

g∗tr(θU (n)),

and our task is reduced to showing that the right-hand term is a “quantized” quantity,
i.e., that it always assumes integer values. Since the Maurer–Cartan form satisfies
the Maurer–Cartan equation

dθU (n) + 1
2 [θU (n), θU (n)] = 0,

we see that
dtr(θU (n)) = − 1

2 tr
([θU (n), θU (n)]

) = 0,

i.e., tr(θU (n)) is a closed 1-form on U (n). As an immediate consequence,

1
2π i

∫

S1

g∗tr(θU (n)) = 〈g∗[ 1
2π i tr(θU (n))], [S1]〉

only depends on the homotopy class of g : S1 → U (n), and these homotopy classes
are parametrized by the additive group Z of the integers. Notice how the generator
[ 1

2π i tr(θU (n))] of H1(U (n);Z) has appeared. This shows how this proof is related to
the one in the previous section via the transgression isomorphism H1(U (n);Z) →
H2(BU (n);Z).

It is useful to read the transgression isomorphism in terms of differential forms
by passing to real coefficients and pretending that BU (n) is a finite dimensional
smooth manifold. This can be made completely rigorous in various ways, e.g., by
looking at BU (n) as an inductive limit of finite dimensional Grasmannians. Then
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a connection on the universal U (n)-bundle EU (n) → BU (n) is described à la
Ehresmann by a un-valued U (n)-equivariant 1-form A on EU (n) which gives the
Maurer–Cartan form when restricted to the fibers. The R-valued 1-form 1

2π i tr(A)

restricted to the fibers gives the closed 1-form 1
2π i tr(θU (n)) which is the generator of

H1(U (n),R); the differential d 1
2π i tr(A) = 1

2π i tr(FA) is an exact 2-form on EU (n)

which is U (n)-invariant and so is the pullback of a closed 2-form on BU (n) which,
since it represents the first Chern class, is the generator of H2(U (n),R).

One sees that 1
2π i tr plays a triple role in the above description, which might be

initially confusing. To get a better understanding of what is going on, let us consider
more generally an arbitrary compact connected Lie group G. Then the transgression
isomorphism between H1(G,R) and H2(BG;R) is realized by a Chern–Simons
element CS1 for the Lie algebra g. This element is characterized by the following
property: for A ∈ Ω1(EG; g) the connection 1-form of a principal G-connection on
EG → BG, we have the following transgression diagram

where on the left hand side 〈−〉 is a degree 2 invariant polynomial on g, and on the
right hand side μ1 is 1-cocycle on g. One says that CS1 transgresses μ1 to 〈−〉. Via the
identification of H1(G;R) with the degree one Lie algebra cohomology H1

Lie(g;R)

and of H2(BG;R) with the vector space of degree 2 elements in the graded algebra
inv(g) (with elements of g∗ placed in degree 2), one sees that this indeed realizes the
transgression isomorphism.

2.3 The First Chern Class as a Morphism of Stacks

Note that, by the end of the previous section, the base manifold S1 has completely
disappeared. This suggests that one should be able to describe 1-dimensional Chern–
Simons theory with gauge group U (n) more generally as a map

{U (n)-bundles with connections on X}/iso → ??,

where now X is an arbitrary manifold, and “??” is some natural target to be deter-
mined. To try to figure out what this natural target could be, let us look at something
simpler and forget the connection. Then we know that the first Chern class gives a
morphism of sets

c1 : {U (n)-bundles on X}/iso → H2(X;Z).

Here the right hand side is much closer to the left hand side than it might appear at
first sight. Indeed, the second integral cohomology group of X precisely classifies
principal U (1)-bundles on X up to isomorphism, so that the first Chern class is
actually a map
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c1 : {U (n)-bundles on X}/iso → {U (1)-bundles over X}/iso.

Writing BU (n)(X) and BU (1)(X) for the groupoids of principal U (n)- and U (1)-
bundles over X , respectively,3 one can further rewrite c1 as a function

c1 : π0BU (n)(X) → π0BU (1)(X)

between the connected components of these groupoids. This immediately leads one
to suspect that c1 could actually be π0(c1(X)) for some morphism of groupoids
c1(X) : BU (n)(X) → BU (1)(X). Moreover, naturality of the first Chern class
suggests that, independently of X , there should actually be a morphism of stacks

c1 : BU (n) → BU (1)

over the site of smooth manifolds.4 Since a smooth manifold is built by patching
together, in a smooth way, open balls of Rn for some n, this in turn is equivalent
to saying that c1 : BU (n) → BU (1) is a morphism of stacks over the full sub-site
of Cartesian spaces, where by definition a Cartesian space is a smooth manifold
diffeomorphic to R

n for some n. To see that c1 is indeed induced by a morphism
of stacks, notice that BU (n) can be obtained by stackification from the simplicial
presheaf which to a Cartesian space U associates the nerve of the action groupoid
∗//C∞(U ; U (n)). This is nothing but saying, in a very compact way, that to give
a principal U (n)-bundle on a smooth manifold X one picks a good open cover
U = {Uα} of X and local data given by smooth functions on the double intersections

gαβ : Uαβ → U (n)

such thatgαβgβγ gγα = 1 on the triple intersections Uαβγ . The group homomorphism

det : U (n) → U (1)

maps local data {gαβ} for a principal U (n) bundle to local data {hαβ = det(gαβ)}
for a principal U (1)-bundle and, by the basic properties of the first Chern class, one
sees that

Bdet : BU (n) → BU (1)

induces c1 at the level of isomorphism classes, i.e., one can take c1 = Bdet.
Note that there is a canonical notion of geometric realization of stacks on smooth

manifolds by topological spaces (see Sect. 4.3.4.1 of [79]). Under this realization
the morphism of stacks Bdet becomes a continuous function of classifying spaces
BU (n) → K (Z, 2) which represents the universal first Chern class.

3 That is, for the collections of all such bundles, with gauge transformations as morphisms.
4 The reader unfamiliar with the language of higher stacks and simplicial presheaves in differential
geometry can find an introduction in [31].
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2.4 Adding Connections to the Picture

The above discussion suggests that what should really lie behind 1-dimensional
Chern–Simons theory with gauge group U (n) is a morphism of stacks

ĉ1 : BU (n)conn → BU (1)conn

from the stack of U (n)-principal bundles with connection to the stack of U (1)-
principal bundles with connection, lifting the first Chern class. This morphism is
easily described, as follows. Local data for a U (n)-principal bundle with connection
on a smooth manifold X are

• smooth un-valued 1-forms Aα on Uα;
• smooth functions gαβ : Uαβ → U (n),

such that

• Aβ = g−1
αβ Aαgαβ + g−1

αβ dgαβ on Uαβ ;
• gαβgβγ gγα = 1 on Uαβγ ,

and this is equivalent to saying that BU (n)conn is the stack of simplicial sets5 which
to a Cartesian space U assigns the nerve of the action groupoid

Ω1(U ; un)//C∞(U ; U (n)),

where the action is given by g : A �→ g−1 Ag + g−1dg. To give a morphism
ĉ1 : BU (n)conn → BU (1)conn we therefore just need to give a morphism of simplicial
prestacks

N (Ω1(−; un)//C∞(−; U (n))) −→ N (Ω1(−; u1)//C∞(−; U (1)))

lifting
Bdet : N (∗//C∞(−; U (n))) −→ N (∗//C∞(−; U (1))),

where N is the nerve of the indicated groupoid. In more explicit terms, we have to
give a natural linear morphism

ϕ : Ω1(U ; un) → Ω1(U ; u1),

such that
ϕ(g−1 Ag + g−1dg) = ϕ(A) + det(g)−1d det(g),

and it is immediate to check that the linear map

tr : un → u1

5 It is noteworthy that this indeed is a stack on the site CartSp. On the larger but equivalent site of
all smooth manifolds it is just a prestack that needs to be further stackified.
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does indeed induce such a morphism ϕ. In the end we get a commutative diagram of
stacks

where the vertical arrows forget the connections.

2.5 Degree 2 Differential Cohomology

If we now fix a base manifold X and look at isomorphism classes of principal U (n)-
bundles (with connection) on X , we get a commutative diagram of sets

where Ĥ2(X;Z) is the second differential cohomology group of X . This is defined as
the degree 0 hypercohomology group of X with coefficients in the two-term Deligne
complex, i.e., in the sheaf of complexes

C∞(−; U (1))
1

2π i dlog−−−−→ Ω1(−;R),

with Ω1(−;R) in degree zero [8, 39]. That Ĥ2(X;Z) classifies principal U (1)-
bundles with connection is manifest by this description: via the Dold–Kan correspon-
dence, the sheaf of complexes indicated above precisely gives a simplicial presheaf
which produces BU (1)conn via stackification. Note that we have two natural mor-
phisms of complexes of sheaves

The first one induces the forgetful morphism BU (1)conn → BU (1), while the second
one induces the curvature morphism F(−) : BU (1)conn → Ω2(−;R)cl mapping a
U (1)-bundle with connection to its curvature 2-form. From this one sees that degree
2 differential cohomology implements in a natural geometric way the simple idea of
having an integral cohomology class together with a closed 2-form representing it
in de Rham cohomology.

The last step that we need to recover the 1-dimensional Chern–Simons action
functional from Sect. 2.1 is to give a natural morphism

hol : Ĥ2(S1;Z) → U (1)
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so as to realize the 1-dimensional Chern–Simons action functional as the composition

SS1 1

As the notation “hol” suggests, this morphism is nothing but the holonomy morphism
mapping a principal U (1)-bundle with connection on S1 to its holonomy.

An enlightening perspective from which to look at this situation is in terms of
fiber integration and moduli stacks of principal U (1)-bundles with connections over
a base manifold X . Namely, for a fixed X we can consider the mapping stack

Maps(X, BU (1)conn),

which is presented by the simplicial presheaf that sends a Cartesian space U to the
nerve of the groupoid of principal U (1)-bundles with connection on U × X . In other
words, Maps(X, BU (1)conn) is the internal hom space between X and BU (1)conn in
the category of simplicial sheaves over the site of smooth manifolds. Then, if X is
an oriented compact manifold of dimension one, the fiber integration formula from
[44, 45] can be naturally interpreted as a morphism of simplicial sheaves

holX : Maps(X, BU (1)conn) → U (1),

where on the right one has the sheaf of smooth functions with values in U (1). Taking
global sections over the point one gets the morphism of simplicial sets

holX : H(X, BU (1)conn) → U (1)discr,

where on the right the Lie group U (1) is seen as a 0-truncated simplicial object
and where H(X, BU (1)conn) is a simplicial model for (the nerve of) the groupoid
of principal U (1)-bundles with connection on X . Finally, passing to isomorphism
classes/connected components one gets the morphism

Ĥ2(X;Z) → U (1).

This morphism can also be described in purely algebraic terms by noticing that for any
1-dimensional oriented compact manifold X the short exact sequence of complexes
of sheaves

induces an isomorphism

Ω1(X)/Ω1
cl,Z(X)

∼−→ Ĥ2(X;Z)
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in hypercohomology, where Ω1(X)/Ω1
cl,Z(X) is the group of differential 1-forms

on X modulo those 1-forms which are closed and have integral periods. In terms of
this isomorphism, the holonomy map is realized as the composition

Ĥ2(X;Z)
∼−→ Ω1(X)/Ω1

cl,Z(X)
exp(2π i

∫
X −)−−−−−−−−→ U (1).

2.6 The Brylinski–McLaughlin 2-Cocycle

It is natural to expect that the lift of the universal first Chern class c1 to a morphism
of stacks c1 : BU (n)conn → BU (1)conn is a particular case of a more general
construction that holds for the generator c of the second integral cohomology group
of an arbitrary compact connected Lie group G with π1(G) ∼= Z. Namely, if 〈−〉 is
the degree 2 invariant polynomial on g[2] corresponding to the characteristic class c,
then for any G-connection ∇ on a principal G-bundle P → X one has that 〈F∇〉 is
a closed 2-form on X representing the integral class c. This precisely suggests that
(P,∇) defines an element in degree 2 differential cohomology, giving a map

{G-bundles with connection on X}/iso → Ĥ2(X;Z).

That this is indeed so can be seen following Brylinski and McLaughlin [12] (see [9]
for an exposition an [10, 11] for related discussion). Let {Aα, gαβ} the local data for
a G-connection on P → X , relative to a trivializing good open cover U of X . Then,
since G is connected and the open sets Uαβ are contractible, we can smoothly extend
the transition functions gαβ : Uαβ → G to functions ĝαβ : [0, 1] × Uαβ → G with
ĝαβ(0) = e, the identity element of G, and ĝαβ(1) = gαβ . Using the functions ĝαβ

one can interpolate from Aα

∣
∣
Uαβ

to Aβ |Uαβ by defining the g-valued 1-form

Âαβ = ĝ−1
αβ Aα|Uαβ ĝαβ + ĝ−1

αβ dĝαβ

on Uαβ . Now pick a real-valued 1-cocycle μ1 on the Lie algebra g representing the
cohomology class c and a Chern–Simons element CS1 realizing the transgression
from μ1 to 〈−〉. Then the element

(CS1(Aα),

∫

Δ1

CS1( Âαβ) mod Z)

is a degree 2 cocycle in the Čech–Deligne total complex lifting the cohomology class
c ∈ H2(BG,Z) to a differential cohomology class ĉ. Notice how modding out by
Z in the integral

∫
Δ1 CS1( Âαβ) precisely takes care of G being connected but not

simply connected, with H1(G;Z) ∼= π1(G) ∼= Z. That is, choosing two different
extensions ĝαβ of gαβ will produce two different values for that integral, but their



164 D. Fiorenza et al.

difference will lie in the rank 1 lattice of 1-dimensional periods of G, and with the
correct normalization this will be a copy of Z.

A close look at the construction of Brylinski and McLaughlin, see [31], reveals
that it actually provides a refinement of the characteristic class c ∈ H2(BG;Z) to a
commutative diagram of stacks

2.7 The Presymplectic Form on BU(n)conn

In geometric quantization it is customary to call pre-quantization of a symplectic
manifold (M, ω) the datum of a U (1)-principal bundle with connection on M whose
curvature form is ω. 6 Furthermore, it is shown that most of the good features of
symplectic manifolds continue to hold under the weaker hypothesis that the 2-form
ω is only closed; this leads to introducing the term pre-symplectic manifold to denote
a smooth manifold equipped with a closed 2-form ω and to speak of prequantum
line bundles for these. In terms of the morphisms of stacks described in the previous
sections, a prequantization of a presymplectic manifold is a lift of the morphism
ω : M → Ω2(−R)cl to a map ∇ fitting into a commuting diagram

where the vertical arrow is the curvature morphism. From this perspective there is
no reason to restrict M to being a manifold. By taking M to be the universal moduli
stack BU (n)conn, we see that the morphism ĉ1 can be naturally interpreted as giving
a canonical prequantum line bundle over BU (n)conn, whose curvature 2-form

ωBU (n)conn : BU (n)conn
ĉ1−→ BU (1)conn

F−→ Ω2(−;R)cl

is the natural presymplectic 2-form on the stack BU (n)conn: the invariant polyno-
mial 〈−〉 viewed in the context of stacks. The datum of a principal U (n)-bundle
with connection (P,∇) on a manifold X is equivalent to the datum of a morphism
ϕ : X → BU (n)conn, and the pullback ϕ∗ωBU (n)conn of the canonical 2-form on
BU (n)conn is the curvature 2-form 1

2π i tr(F∇) on X . If (P,∇) is a principal U (n)-
bundle with connection over a compact closed oriented 1-dimensional manifold Σ1

6 See for instance [54] for an original reference on geometric quantization and see [67] for further
pointers.
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and the morphism ϕ : Σ1 → BU (n)conn defining it can be extended to a mor-
phism ϕ̃ : Σ2 → BU (n)conn for some 2-dimensional oriented manifold Σ2 with
∂Σ2 = Σ1, then

C S1(∇) = exp
∫

Σ2

ϕ̃∗ωBU (n)conn ,

and the right hand side is independent of the extension ϕ̃. In other words,

C S1(∇) = exp
∫

Σ2

tr(F∇̃),

for any extension (P̃, ∇̃) of (P,∇) to Σ2. This way we recover the definition of
the Chern–Simons action functional for U (n)-principal connections on S1 given in
Sect. 2.1.

More generally, the differential refinement ĉ of a characteristic class c of a com-
pact connected Lie group G with H1(G;Z) ∼= Z, endows the stack BGconn with a
canonical presymplectic structure with a prequantum line bundle given by ĉ itself,
and the same considerations apply.

2.8 The Determinant as a Holonomy Map

We have so far met two natural maps with target the sheaf U (1) of smooth functions
with values in the group U (1). The first one was the determinant

det : U (n) → U (1),

and the second one was the holonomy map

holX : Maps(X; BU (1)conn) → U (1),

defined on the moduli stack of principal U (1)-bundles with connection on a
1-dimensional compact oriented manifold X . To see how these two are related,
take X = S1 and notice that, by definition, a morphism from a smooth manifold
M to the stack Maps(S1; BU (n)conn) is the datum of a principal U (n)-bundle with
connection over the product manifold M × S1. Taking the holonomy of the U (n)-
connection along the fibers of M × S1 → M locally defines a smooth U (n)-valued
function on M which is well defined up to conjugation. In other words, holonomy
along S1 defines a morphism from M to the stack U (n)//AdU (n), where Ad indicates
the adjoint action. Since this construction is natural in M we have defined a natural
U (n)-holonomy morphism
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holU (n) : Maps(S1; BU (n)conn) → U (n)//AdU (n).

For n = 1, due to the fact that U (1) is abelian, we also have a natural morphism
U (1)//AdU (1) → U (1), and the holonomy map holS1 factors as

holS1 : Maps(S1; BU (1)conn)
holU (1)−−−−→ U (1)//AdU (1) → U (1).

Therefore, by naturality of Maps we obtain the following commutative diagram

where the leftmost bottom arrow is the natural quotient projection U (n) → U (n)//Ad
U (n). In the language of [79] (3.9.6.4) one says that the determinant map is the “con-
cretification” of the morphism Maps(S1, ĉ1), we come back to this in Sect. 5.3. This
construction immediately generalizes to the case of an arbitrary compact connected
Lie group G with H1(G;Z) ∼= Z: the Lie group morphismρ : G → U (1) integrating
the Lie algebra cocycle μ1 corresponding to the characteristic class c ∈ H2(BG;Z)

is the concretification of Maps(S1, ĉ).

2.9 Killing the First Chern Class: SU(n)-bundles

Recall from the theory of characteristic classes (see [63]) that the first Chern class is
the obstruction to reducing the structure group of a principal U (n)-bundle to SU (n).
In the stacky perspective that we have been adopting so far this amounts to saying
that the stack BSU (n) of principal SU (n)-bundles is the homotopy fiber of c1, hence
the object fitting into the homotopy pullback diagram of stacks of the form

By the universal property of the homotopy pullback, this says that an SU (n)-principal
bundle over a smooth manifold X is equivalently a U (n)-principal bundle P , together
with a choice of trivialization of the associated determinant U (1)-principal bundle.
Moreover, the whole groupoid of SU (n)-principal bundles on X is equivalent to
the groupoid of U (n)-principal bundles on X equipped with a trivialization of their
associated determinant bundle. To explicitly see this equivalence, let us write the
local data for a morphism from a smooth manifold X to the homotopy pullback
above. In terms of a fixed good open cover U of X , these are:

• smooth functions ρα : Uα → U (1);
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• smooth functions gαβ : Uαβ → U (n),

subject to the constraints

• det(gαβ)ρβ = ρα on Uαβ ;
• gαβgβγ gγα = 1 on Uαβγ .

Morphisms between {ρα, gαβ} and {ρ′
α, g′

αβ} are the gauge transformations locally
given byU (n)-valued functions hα onUα such that hαgαβ = g′

αβhβ andρα det(hα) =
ρ′

α . The classical description of objects in BSU (n) corresponds to the gauge fixing
ρα ≡ 1; at the level of morphisms, imposing this gauge fixing constrains the gauge
transformation hα to satisfy det(hα) = 1, i.e. to take values in SU (n). From a cat-
egorical point of view, this amounts to saying that the embedding of the groupoid
of SU (n)-principal bundles over X into the groupoid of morphisms from X to the
homotopy fiber of c1 given by {gαβ} �→ {1, gαβ} is fully faithful. It is also essentially
surjective: use the embedding U (1) → U (n) given by eit �→ (eit , 1, 1, . . . , 1) to lift
ρ−1

α to a U (n)-valued function hα with det(hα) = ρα
−1; then {hα} is an isomorphism

between {ρα, gαβ} and {1, hαgαβhβ
−1}.

Similarly, the stack of SU (n)-principal bundles with sun-connections is the
homotopy pullback

Details on this homotopy pullback description of BSU (n)conn can be found in [28].

In summary, what we have discussed means that the map ĉ1 between universal
moduli stacks equivalently plays the following different roles:

1. it is a smooth and differential refinement of the universal first Chern class;
2. it induces a 1-dimensional Chern–Simons action functional by transgression to

maps from the circle;
3. it represents the obstruction to lifting a smooth unitary structure to a smooth

special unitary structure.

In the following we will consider higher analogs of ĉ1 and will see these different
but equivalent roles of universal differential characteristic maps amplified further.

3 The Archetypical Example: 3d Chern–Simons Theory

We now pass from the toy example of 1-dimensional Chern–Simons theory to the
archetypical example of 3-dimensional Chern–Simons theory, and in fact to its
extended (or “multi-tiered”) geometric prequantization.
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While this is a big step as far as the content of the theory goes, a pleasant conse-
quence of the higher geometric formulation of the 1d theory above is that concep-
tually essentially nothing new happens when we move from 1-dimensional theory
to 3-dimensional theory (and further). For the 3d theory we only need to restrict our
attention to simply connected compact simple Lie groups, so as to have π3(G) ∼= Z

as the first nontrivial homotopy group, and to move from stacks to higher stacks, or
more precisely, to 3-stacks. (For non-simply connected groups one needs a little bit
more structure, as we briefly indicate in Sect. 4.)

3.1 Higher U(1)-bundles with Connections and Differential
Cohomology

The basic 3-stack naturally appearing in ordinary 3d Chern–Simons theory is the
3-stack B3U (1)conn of principal U (1)-3-bundles with connection (also known as
U (1)-bundle-2-gerbes with connection). It is convenient to introduce in general the
n-stack BnU (1)conn and to describe its relation to differential cohomology.

By definition, BnU (1)conn is the n-stack obtained by stackifying the prestack
on Cartesian spaces which corresponds, via the Dold–Kan correspondence, to the
(n + 1)-term Deligne complex

U (1)[n]∞D =
(

U (1)
1

2π i dlog−−−−→ Ω1(−;R)
d−→ · · · d−→ Ωn(−;R)

)

,

where U (1) is the sheaf of smooth functions with values in U (1), and with Ωn(−;R)

in degree zero. It is immediate from the definition that the equivalence classes
of U (1)-n-bundles with connection on a smooth manifold X are classified by the
(n + 1)-st differential cohomology group of X ,

Ĥn+1(X;Z) ∼= H
0(X; U (1)[n]∞D ) ∼= π0H(X; BnU (1)conn),

where in the middle we have degree zero hypercohomology of X with coefficients in
U (1)[n]∞D . Similarly, the n-stack of U (1)-n-bundles (without connection) BnU (1)

is obtained via Dold–Kan and stackification from the sheaf of chain complexes

U (1)[n] =
(

U (1) → 0 → · · · → 0

)

,

with C∞(−; U (1)) in degree n. Equivalence classes of U (1)-n-bundles on X are in
natural bijection with

Hn+1(X;Z) ∼= Hn(X; U (1)) ∼= H
0(X; U (1)[n]) ∼= π0H(X; BnU (1)).
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The obvious morphism of chain complexes of sheaves U (1)[n]∞D → U (1)[n] induces
the “forget the connection” morphism BnU (1)conn → BnU (1) and, at the level of
equivalence classes, the natural morphism

Ĥn+1(X;Z) → Hn+1(X;Z)

from differential cohomology to integral cohomology. If we denote by Ωn+1(−;R)cl
the sheaf (a 0-stack) of closed n-forms, then the morphism of complexesU (1)[n]∞D →
Ωn+1(−;R)cl given by

induces the morphism of stacks BnU (1)conn
F(−)−−→ Ωn+1(−;R)cl mapping a circle

n-bundle ((n − 1)-bundle gerbe) with connection to the curvature (n + 1)-form of
its connection. At the level of differential cohomology, this is the morphism

Ĥn+1(X;Z) → Ωn+1(X;R)cl.

The last n-stack we need to introduce to complete this sketchy picture of differential
cohomology formulated on universal moduli stacks is the n-stack �Bn+1

R associated
with the chain complex of sheaves

�R[n + 1]∞ =
(

Ω1(−;R)
d−→ · · · d−→ Ωn(−;R)

d−→ Ωn+1(−;R)cl

)

,

with Ωn+1(−;R)cl in degree zero. The obvious morphism of complexes of sheaves
Ωn+1(−;R)cl → �R[n + 1]∞ induces a morphism of stacks Ωn+1(−;R)cl →
�Bn+1

R. Moreover one can show (see, e.g., [31, 79]) that there is a “universal curva-
ture characteristic” morphism curv : BnU (1) → �Bn+1

R and a homotopy pullback
diagram

of higher moduli stacks in H, which induces in cohomology the commutative diagram

This generalizes to any degree n ≥ 1 what we remarked in Sect. 2.5 for the
degree 2 case: differential cohomology encodes in a systematic and geometric way
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the simple idea of having an integral cohomology class together with a closed
differential form representing it in de Rham cohomology. For n = 0 we have
Ĥ1(X;Z) ≡ H0(X; U (1)) = C∞(X; U (1)) and the map Ĥ1(X;Z) → H1(X;Z)

is the morphism induced in cohomology by the short exact sequence of sheaves

0 → Z → R → U (1) → 1.

At the level of stacks, this corresponds to the morphism

U (1) → BZ

induced by the canonical principal Z-bundle R → U (1).

3.2 Compact Simple and Simply Connected Lie Groups

From a cohomological point of view, a compact simple and simply connected Lie
group G is the degree 3 analogue of the group U (n) considered in our 1-dimensional
toy model. That is, the homotopy (hence the homology) of G is trivial up to degree
3, and π3(G) ∼= H3(G;Z) ∼= Z, by the Hurewicz isomorphism. Passing from G
to its classifying space BG we find H4(BG;Z) ∼= Z, so that the fourth integral
cohomology group of BG is generated by a fundamental characteristic class c ∈
H4(BG;Z). All other elements in H4(BG;Z) are of the form kc for some integer k,
usually called the “level” in the physics literature. For P a G-principal bundle over a
smooth manifold X , we will write c(P) for the cohomology class f ∗c ∈ H4(X,Z),
where f : X → BG is any classifying map for P . This way we realize c as a map

c : {principal G-bundles on X}/iso → H4(X;Z).

Moving to real coefficients, the fundamental characteristic class c is represented, via
the isomorphism H4(BG;R) ∼= H3(G;R) ∼= H3

Lie(g,R) by the canonical 3-cocycle
μ3 on the Lie algebra g of G, i.e., up to normalization, by the 3-cocycle 〈[−,−],−〉,
where 〈−,−〉 is the Killing form of g and [−,−] is the Lie bracket. On the other
hand, via the Chern-Weil isomorphism

H∗(BG;R) ∼= inv(g[2]),

the characteristic class c corresponds to the Killing form, seen as a degree four
invariant polynomial on g (with elements of g∗ placed in degree 2). The transgression
betweenμ3 and 〈−,−〉 is witnessed by the canonical degree 3 Chern–Simons element
CS3 of g. That is, for a g-valued 1-form A on some manifold, let

CS3(A) = 〈A, d A〉 + 1
3 〈A, [A, A]〉.
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Then, for A ∈ Ω1(EG; g) the connection 1-form of a principal G-connection on
EG → BG, we have the following transgression diagram

where θG is the Maurer–Cartan form of G (i.e., the restriction of A to the fibers of
EG → BG) and FA = d A+ 1

2 [A, A] is the curvature 2-form of A. Notice how both
the invariance of the Killing form and the Maurer–Cartan equation dθG+ 1

2 [θG, θG ] =
0 play a rôle in the above transgression diagram.

3.3 The Differential Refinement of Degree 4 Characteristic
Classes

The description of the Brylinski–McLaughlin 2-cocycle from Sect. 2.6 has an ev-
ident generalization to degree four. Indeed, let {Aα, gαβ} be the local data for a
G-connection ∇ on P → X , relative to a trivializing good open cover U of X , with
G a compact simple and simply connected Lie group. Then, since G is connected
and the open sets Uαβ are contractible, we can smoothly extend the transition func-
tions gαβ : Uαβ → G to functions ĝαβ : [0, 1] × Uαβ → G with ĝαβ(0) = e,
the identity element of G, and ĝαβ(1) = gαβ , and using the functions ĝαβ one
can interpolate from Aα

∣
∣
Uαβ

to Aβ

∣
∣
Uαβ

as in Sect. 2.6, defining a g-valued 1-form

Âαβ = ĝ−1
αβ Aα

∣
∣
Uαβ

ĝαβ + ĝ−1
αβ dĝαβ . On the triple intersection Uαβγ we have the paths

in G

Since G is simply connected we can find smooth functions

ĝαβγ : Uαβγ × Δ2 → G

filling these 2-simplices, and we can use these to extend the interpolation between
Âαβ , Âβγ and Âγα over the 2-simplex. Let us denote this interpolation by Âαβγ .
Finally, since G is 2-connected, on the quadruple intersections we can find smooth
functions

ĝαβγ δ : Uαβγ δ × Δ3 → G

cobounding the union of the 2-simplices corresponding to the ĝαβγ ’s on the triple
intersections. We can again use the ĝαβγ δ’s to interpolate between the Âαβγ ’s over
the 3-simplex. Finally, one considers the degree zero Čech–Deligne cochain with
coefficients in U (1)[3]∞D
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⎛

⎜
⎝CS3(Aα),

∫

Δ1

CS3( Âαβ),

∫

Δ2

CS3( Âαβγ ),

∫

Δ3

CS3( Âαβγ δ) mod Z

⎞

⎟
⎠ . (1)

Brylinski and McLaughlin [12] show (see also [9] for an exposition and [10, 11] for
related discussion) that this is indeed a degree zero Čech–Deligne cocycle, and thus
defines an element in Ĥ4(X;Z). Moreover, they show that this cohomology class
only depends on the isomorphism class of (P,∇), inducing therefore a well-defined
map

ĉ : {G-bundles with connection on X}/iso → Ĥ4(X;Z).

Notice how modding out byZ in the rightmost integral in the above cochain precisely
takes care of π3(G) ∼= H3(G;Z) ∼= Z. Notice also that, by construction,

∫

Δ3

CS3( Âαβγ δ) =
∫

Δ3

ĝαβγ δ
∗ μ3(θG ∧ θG ∧ θG),

where θG is the Maurer–Cartan form of G. Hence the Brylinski–McLaughlin cocycle
lifts the degree 3 cocycle with coefficients in U (1)

∫

Δ3

ĝαβγ δ
∗ μ3(θG ∧ θG ∧ θG) mod Z,

which represents the characteristic class c(P) in H3(X; U (1)) ∼= H4(X;Z). As a
result, the differential characteristic class ĉ lifts the characteristic class c, i.e., we
have a natural commutative diagram

By looking at the Brylinski–McLaughlin construction through the eyes of simplicial
integration of ∞-Lie algebras one sees [31] that the above commutative diagram is
naturally enhanced to a commutative diagram of stacks

As we are going to show, the morphism ĉ : BGconn → B3U (1)conn that refines the
characteristic class c to a morphism of stacks is the morphism secretly governing all
basic features of level 1 three-dimensional Chern–Simons theory with gauge group
G. Similarly, for any k ∈ Z, one has a morphism of stacks
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kĉ : BGconn → B3U (1)conn

governing level k 3d Chern–Simons theory with gauge group G. Indeed, this map
may be regarded as the very Lagrangian of 3d Chern–Simons theory extended
(“localized”, “multi-tiered”) to codimension 3. We discuss this next.

3.4 Prequantum n-bundles on Moduli Stacks of G-connections
on a Fixed Manifold

We discuss now how the differential refinement ĉ of the universal characteristic map
c constructed above serves as the extended Lagrangian for 3d Chern–Simons theory
in that its transgression to mapping stacks out of k-dimensional manifolds yields
all the “geometric prequantum” data of Chern–Simons theory in the corresponding
dimension, in the sense of geometric quantization. For the purpose of this exposition
we use terms such as “prequantum n-bundle” freely without formal definition. We
expect the reader can naturally see at least vaguely the higher prequantum picture
alluded to here. A more formal survey of these notions is in Sect. 5.4.

If X is a compact oriented manifold without boundary, then there is a fiber inte-
gration in differential cohomology lifting fiber integration in integral cohomology
[48]:

In [44] Gomi and Terashima describe an explicit lift of this to the level of Čech–
Deligne cocycles; see also [25]. One observes [30] that such a lift has a natural
interpretation as a morphism of moduli stacks

holX : Maps(X, Bn+dim X U (1)conn) → BnU (1)conn

from the (n +dim X)-stack of moduli of U (1)-(n +dim X)-bundles with connection
over X to the n-stack of U (1)-n-bundles with connection (Sect. 2.4 of [30]). There-
fore, if Σk is a compact oriented manifold of dimension k with 0 ≤ k ≤ 3, we have
a composition

Maps(Σk, BGconn)
Maps(Σk ,ĉ)−−−−−−−→ Maps(Σk, B3U (1)conn)

holΣk−−−→ B3−kU (1)conn.

This is the canonical U (1)-(3 − k)-bundle with connection over the moduli space of
principal G-bundles with connection over Σk induced by ĉ: the transgression of ĉ
to the mapping space. Composing on the right with the curvature morphism we get
the underlying canonical closed (4 − k)-form
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Maps(Σk, BGconn) → Ω4−k(−;R)cl

on this moduli space. In other words, the moduli stack of principal G-bundles with
connection over Σk carries a canonical pre-(3 − k)-plectic structure (the higher
order generalization of a symplectic structure, [67]) and, moreover, this is equipped
with a canonical geometric prequantization: the above U (1)-(3 − k)-bundle with
connection.

Let us now investigate in more detail the cases k = 0, 1, 2, 3.

3.4.1 k = 0: The Universal Chern–Simons 3-Connection ĉ

The connected 0-manifold Σ0 is the point and, by definition of Maps, one has a
canonical identification

Maps(∗, S) ∼= S

for any (higher) stack S. Hence the morphism

Maps(∗, BGconn)
Maps(∗,ĉ)−−−−−−→ Maps(∗, B3U (1)conn)

is nothing but the universal differential characteristic map ĉ : BGconn → B3U (1)conn
that refines the universal characteristic class c. This map modulates a circle 3-bundle
with connection (bundle 2-gerbe) on the universal moduli stack of G-principal con-
nections. For ∇ : X −→ BGconn any given G-principal connection on some X , the
pullback

is a 3-bundle (bundle 2-gerbe) on X which is sometimes in the literature called
the Chern–Simons 2-gerbe of the given connection ∇. Accordingly, ĉ modulates
the universal Chern–Simons bundle 2-gerbe with universal 3-connection. From the
point of view of higher geometric quantization, this is the prequantum 3-bundle of
extended prequantum Chern–Simons theory.

This means that the prequantum U (1)-(3 − k)-bundles associated with
k- dimensional manifolds are all determined by the prequantum U (1)-3-bundle asso-
ciated with the point, in agreement with the formulation of fully extended topological
field theories [36]. We will denote by the symbol ω

(4)
BGconn

the pre-3-plectic 4-form
induced on BGconn by the curvature morphism.

3.4.2 k = 1: The Wess-Zumino-Witten Bundle Gerbe

We now come to the transgression of the extended Chern–Simons Lagrangian to the
closed connected 1-manifold, the circle Σ1 = S1. Here we find a higher analog of
the construction described in Sect. 2.8. Notice that, on the one hand, we can think
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of the mapping stack Maps(Σ1, BGconn) � Maps(S1, BGconn) as a kind of moduli
stack of G-connections on the circle—up to a slight subtlety, which we explain in
more detail below in Sect. 5.3. On the other hand, we can think of that mapping stack
as the free loop space of the universal moduli stack BGconn.

The subtlety here is related to the differential refinement, so it is instructive to first
discard the differential refinement and consider just the smooth characteristic map
c : BG → B3U (1) which underlies the extended Chern–Simons Lagrangian and
which modulates the universal circle 3-bundle on BG (without connection). Now,
for every pointed stack ∗ → S we have the corresponding (categorical) loop space
ΩS := ∗ ×S ∗, which is the homotopy pullback of the point inclusion along itself.
Applied to the moduli stack BG this recovers the Lie group G, identified with the
sheaf (i.e., the 0-stack) of smooth functions with target G: ΩBG � G. This kind of
looping/delooping equivalence is familiar from the homotopy theory of classifying
spaces; but notice that since we are working with smooth (higher) stacks, the loop
space ΩBG also knows the smooth structure of the group G, i.e. it knows G as a Lie
group. Similarly, we have

ΩB3U (1) � B2U (1)

and so forth in higher degrees. Since the looping operation is functorial, we may also
apply it to the characteristic map c itself to obtain a map

Ωc : G → B2U (1)

which modulates a BU (1)-principal 2-bundle on the Lie group G. This is also known
as the WZW-bundle gerbe; see [41, 83]. The reason, as discussed there and as we
will see in a moment, is that this is the 2-bundle that underlies the 2-connection
with surface holonomy over a worldsheet given by the Wess-Zumino-Witten action
functional. However, notice first that there is more structure implied here: for any
pointed stack S there is a natural equivalence ΩS � Maps∗(�(S1), S), between the
loop space object ΩS and the moduli stack of pointed maps from the categorical
circle �(S1) � BZ to S. Here � denotes the path ∞-groupoid of a given (higher)
stack.7 On the other hand, if we do not fix the base point then we obtain the free loop
space object LS � Maps(�(S1), S). Since a map �(Σ) → BG is equivalently a
map Σ → �BG, i.e., a flat G-principal connection on Σ , the free loop space LBG
is equivalently the moduli stack of flat G-principal connections on S1. We will come
back to this perspective in Sect. 5.3. The homotopies that do not fix the base point
act by conjugation on loops, hence we have, for any smooth (higher) group, that

LBG � G//AdG

is the (homotopy) quotient of the adjoint action of G on itself; see [64] for details
on homotopy actions of smooth higher groups. For G a Lie group this is the familiar

7 The existence and functoriality of the path ∞-groupoids is one of the features characterizing the
higher topos of higher smooth stacks as being cohesive, see [79].
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adjoint action quotient stack. But the expression holds fully generally. Notably, we
also have

LB3U (1) � B2U (1)//AdB2U (1)

and so forth in higher degrees. However, in this case, since the smooth 3-group
B2U (1) is abelian (it is a groupal E∞-algebra) the adjoint action splits off in a direct
factor and we have a projection

In summary, this means that the map Ωc modulating the WZW 2-bundle over G
descends to the adjoint quotient to the map

p1 ◦ Lc : G//AdG → B2U (1),

and this means that the WZW 2-bundle is canonically equipped with the structure of
an adG-equivariant bundle gerbe, a crucial feature of the WZW bundle gerbe [41,
42].

We emphasize that the derivation here is fully general and holds for any smooth
(higher) group G and any smooth characteristic map c : BG → BnU (1). Each such
pair induces a WZW-type (n −1)-bundle on the smooth (higher) group G modulated
by Ωc and equipped with G-equivariant structure exhibited by p1 ◦ Lc. We discuss
such higher examples of higher Chern–Simons-type theories with their higher WZW-
type functionals further below in Sect. 4.

We now turn to the differential refinement of this situation. In analogy to the above
construction, but taking care of the connection data in the extended Lagrangian ĉ,
we find a homotopy commutative diagram in H of the form

where the vertical maps are obtained by forming holonomies of (higher) connections
along the circle. The lower horizontal row is the differential refinement of Ωc: it
modulates the Wess-Zumino-Witten U (1)-bundle gerbe with connection

wzw : G → B2U (1)conn.

That wzw is indeed the correct differential refinement can be seen, for instance, by
interpreting the construction by Carey et al. [15] in terms of the above diagram. That
is, choosing a basepoint x0 in S1 one obtains a canonical lift of the leftmost vertical
arrow:
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where (Px0∇x0) is the principal G-bundle with connection on the product G × S1

characterized by the property that the holonomy of ∇x0 along {g} × S1 with starting
point (g, x0) is the element g of G. Correspondingly, we have a homotopy commu-
tative diagram

Then Proposition 3.4 from [15] identifies the upper path (hence also the lower path)
from G to B2U (1)conn with the Wess-Zumino-Witten bundle gerbe.

Passing to equivalence classes of global sections, we see that wzw induces, for
any smooth manifold X , a natural map C∞(X; G) → Ĥ2(X;Z). In particular, if
X = Σ2 is a compact Riemann surface, we can further integrate over X to get

wzw : C∞(Σ2; G) → Ĥ2(X;Z)

∫
Σ2−−→ U (1).

This is the topological term in the Wess-Zumino-Witten model; see [14, 38, 40].
Notice how the fact that wzw factors through G//AdG gives the conjugation invari-
ance of the Wess-Zumino-Witten bundle gerbe, hence of the topological term in the
Wess-Zumino-Witten model.

3.4.3 k = 2: The Symplectic Structure on the Moduli Space of Flat
Connections on Riemann Surfaces

For Σ2 a compact Riemann surface, the transgression of the extended Lagrangian ĉ
yields a map

Maps(Σ2; BGconn)
Maps(Σ2,ĉ)−−−−−−−→ Maps(Σ2; B3U (1)conn)

holΣ2−−−→ BU (1)conn,

modulating a circle-bundle with connection on the moduli space of gauge fields on
Σ2. The underlying curvature of this connection is the map obtained by composing
this with

which gives the canonical presymplectic 2-form

on the moduli stack of principal G-bundles with connection on Σ2. Equivalently,
this is the transgression of the invariant polynomial
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to the mapping stack out of Σ2. The restriction of this 2-form to the moduli stack
Maps(Σ2; �BGconn) of flat principal G-bundles on Σ2 induces a canonical symplec-
tic structure on the moduli space

Hom(π1(Σ2), G)/AdG

of flat G-bundles on Σ2. Such a symplectic structure seems to have been first made
explicit in [3] and then identified as the phase space structure of Chern–Simons theory
in [88]. Observing that differential forms on the moduli stack, and hence de Rham
cocycles BG → �dRBn+1U (1), may equivalently be expressed by simplicial forms
on the bar complex of G, one recognizes in the above transgression construction a
stacky refinement of the construction of [87].

To see more explicitly what this form ω is, consider any test manifold U ∈ CartSp.
Over this the map of stacks ω is a function which sends a G-principal connection
A ∈ Ω1(U ×Σ2) (using that every G-principal bundle over U ×Σ2 is trivializable)
to the 2-form ∫

Σ2

〈FA ∧ FA〉 ∈ Ω2(U ).

Now if A represents a field in the phase space, hence an element in the concretification
of the mapping stack, then it has no “leg” 8 along U , and so it is a 1-form on Σ2 that
depends smoothly on the parameter U : it is a U -parameterized variation of such a
1-form. Accordingly, its curvature 2-form splits as

FA = FΣ2
A + dU A,

where FΣ2
A := dΣ2 A + 1

2 [A ∧ A] is the U -parameterized collection of curvature
forms on Σ2. The other term is the variational differential of the U -collection of
forms. Since the fiber integration map

∫
Σ2

: Ω4(U × Σ2) → Ω2(U ) picks out the
component of 〈FA ∧ FA〉 with two legs along Σ2 and two along U , integrating over
the former we have that

ω|U =
∫

Σ2

〈FA ∧ FA〉 =
∫

Σ2

〈dU A ∧ dU A〉 ∈ Ω2
cl(U ).

In particular if we consider, without loss of generality, (U = R
2)-parameterized

variations and expand

dU A = (δ1 A)du1 + (δ2 A)du2 ∈ Ω2(Σ2 × U ),

then

8 That is, when written in local coordinates (u, σ ) on U ×Σ2, then A = Ai (u, σ )dui + A j (u, σ )dσ j

reduces to the second summand.
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ω|U =
∫

Σ2

〈δ1 A, δ2 A〉.

In this form the symplectic structure appears, for instance, in prop. 3.17 of [32] (in
[88] this corresponds to (3.2)).

In summary, this means that the circle bundle with connection obtained by trans-
gression of the extended Lagrangian ĉ is a geometric prequantization of the phase
space of 3d Chern–Simons theory. Observe that traditionally prequantization in-
volves an arbitrary choice: the choice of prequantum bundle with connection whose
curvature is the given symplectic form. Here we see that in extended prequantization
this choice is eliminated, or at least reduced: while there may be many differen-
tial cocycles lifting a given curvature form, only few of them arise by transgres-
sion from a higher differential cocycles in top codimension. In other words, the
restrictive choice of the single geometric prequantization of the invariant polynomial
〈−,−〉 : BGconn → Ω4

cl by ĉ : BGconn → B3U (1)conn down in top codimension
induces canonical choices of prequantization over all Σk in all lower codimensions
(n − k).

3.4.4 k = 3: The Chern–Simons Action Functional

Finally, for Σ3 a compact oriented 3-manifold without boundary, transgression of
the extended Lagrangian ĉ produces the morphism

Maps(Σ3; BGconn)
Maps(Σ3,ĉ)−−−−−−−→ Maps(Σ3; B3U (1)conn)

holΣ3−−−→ U (1).

Since the morphisms in Maps(Σ3; BGconn) are gauge transformations between field
configurations, while U (1) has no non-trivial morphisms, this map necessarily gives
a gauge invariant U (1)-valued function on field configurations. Indeed, evaluating
over the point and passing to isomorphism classes (hence to gauge equivalence
classes), this induces the Chern–Simons action functional

Sĉ : {G-bundles with connection on Σ3}/iso → U (1).

It follows from the description of ĉ given in Sect. 3.3 that if the principal G-bundle
P → Σ3 is trivializable then

Sĉ(P,∇) = exp 2π i
∫

Σ3

CS3(A),

where A ∈ Ω1(Σ3, g) is the g-valued 1-form on Σ3 representing the connection ∇
in a chosen trivialization of P . This is actually always the case, but notice two things:
first, in the stacky description one does not need to know a priori that every principal
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G-bundle on a 3-manifold is trivializable; second, the independence of Sĉ(P,∇) on
the trivialization chosen is automatic from the fact that Sĉ is a morphism of stacks
read at the level of equivalence classes.

Furthermore, if (P,∇) can be extended to a principal G-bundle with connection
(P̃, ∇̃) over a compact 4-manifold Σ4 bounding Σ3, one has

Sĉ(P,∇) = exp 2π i
∫

Σ4

ϕ̃∗ω(4)
BGconn

= exp 2π i
∫

Σ4

〈F∇̃ , F∇̃ 〉,

where ϕ̃ : Σ4 → BGconn is the morphism corresponding to the extended bundle
(P̃, ∇̃). Notice that the right hand side is independent of the extension chosen. Again,
this is always the case, so one can actually take the above equation as a definition of
the Chern–Simons action functional, see, e.g., [32, 33]. However, notice how in the
stacky approach we do not need a priori to know that the oriented cobordism ring is
trivial in dimension 3. Even more remarkably, the stacky point of view tells us that
there would be a natural and well-defined 3d Chern–Simons action functional even
if the oriented cobordism ring were nontrivial in dimension 3 or even if not every
G-principal bundle on a 3-manifold were trivializable. An instance of checking that
a nontrivial higher cobordism group vanishes can be found in [57], allowing for the
application of the construction of Hopkins–Singer [48].

3.4.5 The Chern–Simons Action Functional with Wilson Loops

To conclude our exposition of the examples of 1d and 3d Chern–Simons theory
in higher geometry, we now briefly discuss how both unify into the theory of 3d
Chern–Simons gauge fields with Wilson line defects. Namely, for every embedded
knot

ι : S1 ↪→ Σ3

in the closed 3d worldvolume and every complex linear representation R : G →
Aut(V ) one can consider the Wilson loop observable Wι,R mapping a gauge field
A : Σ → BGconn, to the corresponding “Wilson loop holonomy”

Wι,R : A �→ trR(hol(ι∗ A)) ∈ C.

This is the trace, in the given representation, of the parallel transport defined by the
connection A around the loop ι (for any choice of base point). It is an old observation9

that this Wilson loop W (C, A, R) is itself the partition function of a 1-dimensional
topological σ -model quantum field theory that describes the topological sector of a
particle charged under the nonabelian background gauge field A. In Sect. 3.3 of [88] it
was therefore emphasized that Chern–Simons theory with Wilson loops should really

9 This can be traced back to [4]; a nice modern review can be found in Sect. 4 of [6].
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be thought of as given by a single Lagrangian which is the sum of the 3d Chern–
Simons Lagrangian for the gauge field as above, plus that for this topologically
charged particle.

We now briefly indicate how this picture is naturally captured by higher geometry
and refined to a single extended Lagrangian for coupled 1d and 3d Chern–Simons
theory, given by maps on higher moduli stacks. In doing this, we will also see how the
ingredients of Kirillov’s orbit method and the Borel-Weil-Bott theorem find a natural
rephrasing in the context of smooth differential moduli stacks. The key observation
is that for 〈λ,−〉 an integral weight for our simple, connected, simply connected and
compact Lie group G, the contraction of g-valued differential forms with λ extends
to a morphism of smooth moduli stacks of the form

〈λ,−〉 : Ω1(−, g)//T λ → BU (1)conn,

where Tλ ↪→ G is the maximal torus of G which is the stabilizer subgroup of 〈λ,−〉
under the coadjoint action of G on g∗. Indeed, this is just the classical statement that
exponentiation of 〈λ,−〉 induces an isomorphism between the integral weight lattice
�wt(λ) relative to the maximal torus Tλ and the Z-module HomGrp(Tλ, U (1)) and
that under this isomorphism a gauge transformation of a g-valued 1-form A turns
into that of the u(1)-valued 1-form 〈λ, A〉.

Comparison with the discussion in Sect. 2 shows that this is the extended
Lagrangian of a 1-dimensional Chern–Simons theory. In fact it is just a slight variant
of the trace-theory discussed there: if we realize g as a matrix Lie algebra and write
〈α, β〉 = tr(α · β) as the matrix trace, then the above Chern–Simons 1-form is given
by the “λ-shifted trace”

CSλ(A) := tr(λ · A) ∈ Ω1(−;R).

Then, clearly, while the “plain” trace is invariant under the adjoint action of all of G,
the λ-shifted trace is invariant only under the subgroup Tλ of G that fixes λ.

Notice that the domain of 〈λ,−〉 naturally sits inside BGconn by the canonical
map

Ω1(−, g)//T λ → Ω1(−, g)//G � BGconn.

One sees that the homotopy fiber of this map is the coadjoint orbit Oλ ↪→ g∗ of
〈λ,−〉, equipped with the map of stacks

θ : Oλ � G//T λ → Ω1(−, g)//T λ

which over a test manifold U sends g ∈ C∞(U, G) to the pullback g∗θG of the
Maurer–Cartan form. Composing this with the above extended Lagrangian 〈λ,−〉
yields a map
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which modulates a canonical U (1)-principal bundle with connection on the coadjoint
orbit. One finds that this is the canonical prequantum bundle used in the orbit method
[53]. In particular its curvature is the canonical symplectic form on the coadjoint orbit.

So far this shows how the ingredients of the orbit method are incarnated in smooth
moduli stacks. This now immediately induces Chern–Simons theory with Wilson
loops by considering the map Ω1(−, g)//T λ → BGconn itself as the target10 for
a field theory defined on knot inclusions ι : S1 ↪→ Σ3. This means that a field
configuration is a diagram of smooth stacks of the form

i.e., that a field configuration consists of

• a gauge field A in the “bulk” Σ3;
• a G-valued function g on the embedded knot

such that the restriction of the ambient gauge field A to the knot is equivalent, via
the gauge transformation g, to a g-valued connection on S1 whose local g-valued
1-forms are related each other by local gauge transformations taking values in the
torus Tλ. Moreover, a gauge transformation between two such field configurations
(A, g) and (A′, g′) is a pair (tΣ3 , tS1) consisting of a G-gauge transformation tΣ3 on
Σ3 and a Tλ-gauge transformation tS1 on S1, intertwining the gauge transformations
g and g′. In particular if the bulk gauge field on Σ3 is held fixed, i.e., if A = A′, then
tS1 satisfies the equation g′ = g tS1 . This means that the Wilson-line components of
gauge-equivalence classes of field configurations are naturally identified with smooth
functions S1 → G/Tλ, i.e., with smooth functions on the Wilson loop with values
in the coadjoint orbit. This is essentially a rephrasing of the above statement that
G/Tλ is the homotopy fiber of the inclusion of the moduli stack of Wilson line field
configurations into the moduli stack of bulk field configurations.

We may postcompose the two horizontal maps in this square with our two extended
Lagrangians, that for 1d and that for 3d Chern–Simons theory, to get the diagram

Therefore, writing FieldsCS+W

(
S1 ι

↪→ Σ3

)
for the moduli stack of field configura-

tions for Chern–Simons theory with Wilson lines, we find two action functionals as
the composite top and left morphisms in the diagram

10 This means that here we are secretly moving from the topos of (higher) stacks on smooth manifolds
to its arrow topos, see Sect. 5.2.
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in H, where the top left square is the homotopy pullback that characterizes maps in
H(Δ1) in terms of maps in H. The product of these is the action functional

where the rightmost arrow is the multiplication in U (1). Evaluated on a field config-
uration with components (A, g) as just discussed, this is

exp

⎛

⎜
⎝2π i

⎛

⎜
⎝

∫

Σ3

CS3(A) +
∫

S1

〈λ, (ι∗ A)g〉
⎞

⎟
⎠

⎞

⎟
⎠ .

This is indeed the action functional for Chern–Simons theory with Wilson loop ι in
the representation R corresponding to the integral weight 〈λ,−〉 by the Borel-Weil-
Bott theorem, as reviewed for instance in Sect. 4 of [6].

Apart from being an elegant and concise repackaging of this well-known action
functional and the quantization conditions that go into it, the above reformulation
in terms of stacks immediately leads to prequantum line bundles in Chern–Simons
theory with Wilson loops. Namely, by considering the codimension 1 case, one finds
the symplectic structure and the canonical prequantization for the moduli stack of
field configurations on surfaces with specified singularities at specified punctures
[88]. Moreover, this is just the first example in a general mechanism of (extended)
action functionals with defect and/or boundary insertions. Another example of the
same mechanism is the gauge coupling action functional of the open string. This we
discuss in Sect. 5.4.2.

4 Extension to More General Examples

The way we presented the two examples of the previous sections indicates that they
are clearly just the beginning of a rather general pattern of extended prequantized
higher gauge theories of Chern–Simons type: for every smooth higher group G with
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universal differential higher moduli stack BGconn (and in fact for any higher moduli
stack at all, as further discussed in Sect. 5.1) every differentially refined universal
characteristic map of stacks

constitutes an extended Lagrangian—hence, by iterated transgression, the action
functional, prequantum theory and WZW-type action functional—of an n-dimensional
Chern–Simons type gauge field theory with (higher) gauge group G. Moreover, just
moving from higher stacks on the site of smooth manifolds to higher stacks on the site
of smooth supermanifolds one has an immediate and natural generalization to super-
Chern–Simons theories. Here we briefly survey some examples of interest, which
were introduced in detail in [76] and [30]. Further examples and further details can
be found in Sect. 5.7 of [79].

4.1 String Connections and Twisted String structures

Notice how we have moved from the 1d Chern–Simons theory of Sect. 2 to the
3d Chern-Simon theory of Sect. 3 by replacing the connected but not 1-connected
compact Lie group U (n) with a compact 2-connected but not 3-connected Lie group
G. The natural further step towards a higher dimensional Chern–Simons theory
would then be to consider a compact Lie group which is (at least) 3-connected.
Unfortunately, there exists no such Lie group: if G is compact and simply connected
then its third homotopy group will be nontrivial, see e.g. [62]. However, a solution
to this problem does exist if we move from compact Lie groups to the more general
context of smooth higher groups, i.e. if we focus on the stacks of principal bundles
rather than on their gauge groups. As a basic example, think of how we obtained the
stacks BSU (n) and BSU (n)conn out of BU (n) and BU (n)conn in Sect. 2.9. There we
first obtained these stacks as homotopy fibers of the morphisms of stacks

c1 : BU (n) → BU (1); ĉ1 : BU (n)conn → BU (1)conn

refining the first Chern class. Then, in a second step, we identified these homotopy
fibers with the stack of principal bundles (with and without connection) for a certain
compact Lie group, which turned out to be SU (n). However, the homotopy fiber
definition would have been meaningful even in case we would have been unable to
show that there was a compact Lie group behind it, or even in case there would have
been no such. This may seem too far a generalization, but actually Milnor’s theorem
[61] would have assured us in any case that there existed a topological group SU (n)

whose classifying space is homotopy equivalent to the topological realization of the
homotopy fiber BSU (n), that is, equivalently, to the homotopy fiber of the topological
realization of the morphism c1. This is nothing but the topological characteristic map

c1 : BU (n) → BU (1) � K (Z, 2)
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defining the first Chern class. In other words, one defines the space BSU (n) as the
homotopy pullback

the based loop space Ω BSU (n) has a natural structure of topological group “up to
homotopy”, and Milnor’s theorem precisely tells us that we can strictify it, i.e. we
can find a topological group SU (n) (unique up to homotopy) such that SU (n) �
Ω BSU (n). Moreover, BSU (n), defined as a homotopy fiber, will be a classifying
space for this “homotopy-SU (n)” group. From this perspective, we see that having
a model for the homotopy-SU (n) which is a compact Lie group is surely something
nice to have, but that we would have nevertheless been able to speak in a rigorous and
well-defined way of the groupoid of smooth SU (n)-bundles over a smooth manifold
X even in case such a compact Lie model did not exist. The same considerations
apply to the stack of principal SU (n)-bundles with connections.

These considerations may look redundant, since one is well aware that there is
indeed a compact Lie group SU (n) with all the required features. However, this
way of reasoning becomes prominent and indeed essential when we move to higher
characteristic classes. The fundamental example is probably the following. For n ≥ 3
the spin group Spin(n) is compact and simply connected with π3(Spin(n)) ∼= Z. The
generator of H4(BSpin(n);Z) is the first factional Pontrjagin class 1

2 p1, which can
be equivalently seen as a characteristic map

1
2 p1 : BSpin(n) → K (Z; 4).

The String group String(n) is then defined as the topological group whose classifying
space is the homotopy fiber of 1

2 p1, i.e., the homotopy pullback

this defines String(n) uniquely up to homotopy. The topological group String(n) is
6-connected with π7(String(n)) ∼= Z. The generator of H8(BString(n);Z) is the
second fractional Pontrjagin class 1

6 p2, see [75]. One can then define the 3-stack of
smooth String(n)-principal bundles as the homotopy pullback

where 1
2 p1 is the morphism of stacks whose topological realization is 1

2 p1. In other
words, a String(n)-principal bundle over a smooth manifold X is the datum of
a Spin(n)-principal bundle over X together with a trivialization of the associated
B2U (1)-principal 3-bundle. The characteristic map
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1
6 p2 : BString(n) → K (Z; 8)

is the topological realization of a morphism of stacks

1
6 p2 : BString(n) → B7U (1),

see [31, 76]. Similarly, one can define the 3-stack of smooth String bundles with
connections as the homotopy pullback

where 1
2 p̂1 is the lift of 1

2 p1 to the stack of Spin(n)-bundles with connections. Again,
this means that a String(n)-bundle with connection over a smooth manifold X is the
datum of a Spin(n)-bundle with connection over X together with a trivialization of the
associated U (1)-3-bundle with connection. The morphism 1

6 p2 lifts to a morphism

1
6 p̂2 : BString(n)conn → B7U (1)conn,

see [31], and this defines a 7d Chern–Simons theory with gauge group the String(n)-
group.

In the physics literature one usually considers also a more flexible notion of
String connection, in which one requires that the underlying U (1)-3-bundle of a
Spin(n)-bundle with connection is trivialized, but does not require the underlying
3-connection to be trivialized. In terms of stacks, this corresponds to considering the
homotopy pullback

see, e.g., [84]. Furthermore, it is customary to consider not only the case where the
underlying U (1)-3-bundle (with or without connection) is trivial, but also the case
when it is equivalent to a fixed background U (1)-3-bundle (again, eventually with
connection). Notably, the connection 3-form of this fixed background is the C-field
of the M-theory literature (cf. [70, 71]). The moduli stacks of Spin(n)-bundles on
a smooth manifold X with possibly nontrivial fixed U (1)-3-bundle background are
called [76] moduli stacks of twisted String bundles on X . A particular interesting
case is when the twist is independent of X , hence is itself given by a universal
characteristic class, hence by a twisting morphism

where S is some (higher moduli) stack. In this case, indeed, one can define the stack
BString(n)c of c-twisted String(n)-structures as the homotopy pullback
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and similarly for the stack of c-twisted String(n)-connections. This is a higher analog
of Spinc-structures, whose universal moduli stack sits in the analogous homotopy
pullback diagram

(For more on higher Spinc-structures see also [72, 73] and Sect. 5.2 of [79].). By
a little abuse of terminology, when the twisting morphism a is the refinement of a
characteristic class for a compact simply connected simple Lie group G to a morphism
of stacks a : BG → B3U (1), one may speak of G-twisted structures rather than of
a-twisted structures.

By the discussion in Sect. 3 the differential twisting maps 1
2 p̂1 and â appearing here

are at the same time extended Lagrangians of Chern–Simons theories. Together with
the nature of homotopy pullback, it follows [31] that a field φ : X → BStringa

conn
consists of a pair of gauge fields and a homotopy between their Chern–Simons data,
namely of

1. a Spin-connection ∇so;
2. a G-connection ∇g;
3. a twisted 2-form connection B whose curvature 3-form H is locally given by

H = d B + CS(∇so) − CS(∇g).

These are the data for (Green–Schwarz-) anomaly-free background gauge fields
(gravity, gauge field, Kalb–Ramond field) for the heterotic string [76]. A further
refinement of this construction yields the universal moduli stack for the supergrav-
ity C-field configurations in terms of E8-twisted String connections [29]. Here the
presence of the differential characteristic maps ĉ induces the Chern–Simons gauge-
coupling piece of the supergravity 2-brane (the M2-brane) action functional.

4.2 Cup-Product Chern–Simons Theories

In Sect. 3 we had restricted attention to 3d Chern–Simons theory with simply con-
nected gauge groups. Another important special case of 3d Chern–Simons theory is
that with gauge group the circle group U (1), which is of course not simply connected.
In this case the universal characteristic map that controls the theory is the differential
refinement of the cup product class c1 ∪c1. Here we briefly indicate this case and the
analogous higher dimensional Chern–Simons theories obtained from cup products
of higher classes and from higher order cup products.



188 D. Fiorenza et al.

The cup product ∪ in integral cohomology can be lifted to a cup product ∪̂ in dif-
ferential cohomology, i.e., for any smooth manifold X we have a natural commutative
diagram

for any p, q ≥ 0. Moreover, this cup product is induced by a cup product defined
at the level of Čech–Deligne cocycles, the so called Beilinson-Drinfeld cup product,
see [8]. This, in turn, may be seen [30] to come from a morphism of higher universal
moduli stacks

∪̂ : Bn1U (1)conn × Bn2U (1)conn → Bn1+n2+1U (1)conn.

Moreover, since the Beilinson–Deligne cup product is associative up to homotopy,
this induces a well-defined morphism

Bn1U (1)conn × Bn2U (1)conn × · · · × Bnk+1U (1)conn → Bn1+···+nk+1+kU (1)conn.

In particular, for n1 = · · · = nk+1 = 3, one finds a cup product morphism

(
B3U (1)conn

)k+1 → B4k+3U (1)conn.

Furthermore, one sees from the explicit expression of the Beilinson–Deligne cup
product that, on a local chart Uα , if the 3-form datum of a connection on a U (1)-3-
bundle is the 3-form Cα , then the (4k + 3)-form local datum for the corresponding
connection on the associated U (1)-(4k + 3)-bundle is

Cα ∧ dCα ∧ · · · ∧ dCα︸ ︷︷ ︸
k times

.

Now let G be a compact and simply connected simple Lie group and let ĉ : BGconn →
B3U (1)conn be the morphism of stacks underlying the fundamental characteristic
class c ∈ H4(BG,Z). Then we can consider the (k +1)-fold product of ĉ with itself:

If X is a compact oriented smooth manifold, fiber integration along X gives the
morphism

Maps(X, BGconn) −→ Maps(X, B4k+3U (1)conn)
holX−−→ B4k+3−dim X U (1)conn.

In particular, if dim X = 4k +3, by evaluating over the point and taking equivalence
classes we get a canonical morphism
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{G-bundles with connections on X}/iso → U (1).

This is the action functional of the (k + 1)-fold cup product Chern–Simons theory
induced by the (k+1)-fold cup product of c with itself [30]. This way one obtains, for
every k ≥ 0, a (4k +3)-dimensional theory starting with a 3d Chern–Simons theory.
Moreover, in the special case that the principal G-bundle on X is topologically trivial,
this action functional has a particularly simple expression: it is given by

exp 2π i
∫

X

CS3(A) ∧ 〈FA, FA〉 ∧ · · · ∧ 〈FA, FA〉,

where A ∈ Ω1(X; g) is the g-valued 1-form on X representing the connection in the
chosen trivialization of the G-bundle. But notice that in this more general situation
now not every gauge field configuration will have an underlying trivializable (higher)
bundle anymore, the way it was true for the 3d Chern–Simons theory of a simply
connected Lie group in Sect. 3.

More generally, one can consider an arbitrary smooth (higher) group G, e.g.
U (n)× Spin(m)× String(l), together with k + 1 characteristic maps ĉi : BGconn →
Bni U (1)conn and one can form the (k + 1)-fold product

ĉ1 ∪̂ · · · ∪̂ ĉk+1 : BGconn → Bn1+···nk+1+kU (1)conn,

inducing a (n1 +· · · nk+1 +k)-dimensional Chern–Simons-type theory. For instance,
if G1 and G2 are two compact simply connected simple Lie groups, then we have
a 7d cup product Chern–Simons theory associated with the cup product ĉ1 ∪̂ ĉ2. If
(P1,∇1) and (P2,∇2) are a pair of topologically trivial principal G1- and G2-bundles
with connections over a 7-dimensional oriented compact manifold without boundary
X , the action functional of this Chern–Simons theory on this pair is given by

exp 2π i
∫

X

CS3(A1) ∧ 〈FA2 , FA2〉 = exp 2π i
∫

X

CS3(A2) ∧ 〈FA1 , FA1〉,

where Ai is the connection 1-forms of ∇i , for i = 1, 2. Notice how in general a
Gi -principal bundle on a 7-dimensional manifold is not topologically trivial, but still
we have a well defined cup-product Chern–Simons action Sĉ1 ∪̂ ĉ2

. In the topologically
nontrivial situation, however, there will not be such a simple global expression for
the action.

Let us briefly mention a few representative important examples from string theory
and M-theory which admit a natural interpretation as cup-product Chern–Simons
theories, the details of which can be found in [30]. For all examples presented below
we write the Chern–Simons action for the topologically trivial sector.

• Abelian higher dimensional CS theory and self-dual higher gauge theory. For
every k ∈ N the differential cup product yields the extended Lagrangian
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for a 4k + 3-dimensional Chern–Simons theory of (2k + 1)-form connections on
higher circle bundles (higher bundle gerbes). Over a 3-dimensional manifold Σ

the corresponding action functional applied to gauge fields A whose underlying
bundle is trivial is given by

exp 2π i
∫

Σ

CS1(A) ∪ dCS1(A) = exp 2π i
∫

Σ

A ∧ FA,

where FA = d A is the curvature of a U (1)-connection A. Similarly, the trans-
gression of L to codimension 1 over a manifold Σ of dimension 4k + 2 yields the
prequantization of a symplectic form on (2k + 1)-form connections which, by a
derivation analogous to that in Sect. 3.4.3, is given by

ω(δA1, δA1) =
∫

Σ

δA1 ∧ δA1.

A complex polarization of this symplectic structure is given by a choice of confor-
mal metric on Σ and the corresponding canonical coordinates are complex Hodge
self-dual forms on Σ . This yields the famous holographic relation between higher
abelian Chern–Simons theory and self-dual higher abelian gauge theory in one
dimension lower.

• The M5-brane self-dual theory. In particular, for k = 1 it was argued in [89] that the
7-dimensional Chern–Simons theory which we refine to an extended prequantum
theory by the extended Lagrangian

describes, in this holographic manner, the quantum theory of the self-dual 2-form
in the 6-dimensional worldvolume theory of a single M5-brane. Since moreover
in [90] it was argued that this abelian 7-dimensional Chern–Simons theory is to
be thought of as the abelian piece in the Chern–Simons term of 11-dimensional
supergravity compactified on a 4-sphere, and since this term in general receives
non-abelian corrections from “flux quantization” (see [29] for a review of these
and for discussion in the present context of higher moduli stacks), we discussed in
[28] the appropriate non-abelian refinement of this 7d Chern–Simons term, which
contains also cup product terms of the form â1 ∪̂ â2 as well we the term 1

6 p̂2 from
Sect. 4.1.

• Five-dimensional and eleven-dimensional supergravity. The topological part of
the five-dimensional supergravity action is exp 2π i

∫
Y 5 A ∧ FA ∧ FA, where A

is a U (1)-connection. Writing the action as exp 2π i
∫

Y 5 CS1(A) ∪ dCS1(A) ∪
dCS1(A), one sees this is a 3-fold Chern–Simons theory. Next, in eleven dimen-
sions, the C-field C3 with can be viewed as a 3-connection on a 2-gerbe with 4-
curvature G4. By identifying the C-field with the Chern–Simons 3-form CS3(A)
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of a U (1)-3-connection A, the topological action exp 2π i
∫

Y 11 C3 ∧ G4 ∧ G4, is
seen to be of the form exp 2π i

∫
Y 11 CS3(A) ∪ dCS3(A) ∪ dCS3(A). This realizes

the 11d supergravity C-field action as the action for a 3-tier cup-product abelian
Chern–Simons theory induced by a morphism of 3-stacks [29].

4.3 Super-Chern–Simons Theories

The (higher) topos H of (higher) stacks on the smooth site of manifolds which we
have been considering for most of this paper has an important property common
to various similar toposes such as that on supermanifolds: it satisfies a small set of
axioms called (differential) cohesion, see [79]. Moreover, essentially every construc-
tion described in the above sections makes sense in an arbitrary cohesive topos. For
constructions like homotopy pullbacks, mapping spaces, adjoint actions etc., this is
true for every topos, while the differential cohesion in addition guarantees the exis-
tence of differential geometric structures such as de Rham coefficients, connections,
differential cohomology, etc. This setting allows to transport all considerations based
on the cohesion axioms across various kinds of geometries. Notably, one can speak
of higher supergeometry, and hence of fermionic quantum fields, simply by declaring
the site of definition to be that of supermanifolds: indeed, the higher topos of (higher)
stacks on supermanifolds is differentially cohesive ([79], Sect. 4.6). This leads to a
natural notion of super-Chern–Simons theories.

In order to introduce these notions, we need a digression on higher complex line
bundles. Namely, we have been using the n-stacks BnU (1), but without any substan-
tial change in the theory we could also use the n-stacks Bn

C
× with the multiplicative

group U (1) of norm 1 complex numbers replaced by the full multiplicative group of
non-zero complex numbers. Since we have a fiber sequence

R>0 → C
× → U (1)

with topologically contractible fiber, under geometric realization | − | the canonical
map BnU (1) → Bn

C
× becomes an equivalence. Nevertheless, some constructions

are more naturally expressed in terms of U (1)-principal n-bundles, while others are
more naturally expressed in terms of C×-principal n-bundles, and so it is useful to
be able to switch from one description to the other. For n = 1 this is the familiar
fact that the classifying space of principal U (1)-bundles is homotopy equivalent to
the classifying space of complex line bundles. For n = 2 we still have a noteworthy
(higher) linear algebra interpretation: B2

C
× is naturally identified with the 2-stack

2LineC of complex line 2-bundles. Namely, for R a commutative ring (or more
generally an E∞-ring), one considers the 2-category of R-algebras, bimodules and
bimodule homomorphisms (e.g. [22]). We may think of this as the 2-category of
2-vector spaces over R (appendix A of [78], Sect. 4.4 of [82], Sect. 7 of [36]). Notice
that this 2-category is naturally braided monoidal. We then write
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for the full sub-2-groupoid on those objects which are invertible under this tensor
product: the 2-lines over R. This is the Picard 2-groupoid over R, and with the
inherited monoidal structure it is a 3-group, the Brauer 3-group of R. Its homotopy
groups have a familiar algebraic interpretation:

• π0(2LineR) is the Brauer group of R;
• π1(2LineR) is the ordinary Picard group of R (of ordinary R-lines);
• π2(2LineR) � R× is the group of units.

(This is the generalization to n = 2 of the familiar Picard 1-groupoid 1LineR of
invertible R-modules.) Since the construction is natural in R and naturality respects
2-lines, by taking R to be a sheaf of k-algebras, with k a fixed field, one defines the
2-stacks 2Vectk of k-2-vector bundles and 2Linek of 2-line bundles over k. If k is
algebraically closed, then there is, up to equivalence, only a single 2-line and only a
single invertible bimodule, hence 2Linek � B2k×. In particular, we have that

2LineC � B2
C

×.

The background B-field of the bosonic string has a natural interpretation as a section
of the differential refinement B2

C
×
conn of the 2-stack B2

C
×. Hence, by the above

discussion, it is identified with a 2-connection on a complex 2-line bundle. However,
a careful analysis, due to [23] and made more explicit in [35], shows that for the
superstring the background B-field is more refined. Expressed in the language of
higher stacks the statement is that the superstring B-field is a connection on a complex
super-2-line bundle. This means that one has to move from the (higher) topos of
(higher) stacks on the site of smooth manifolds to that of stacks on the site of smooth
supermanifolds (Sect. 4.6 of [79]). The 2-stack of complex 2-line bundles is then
replaced by the 2-stack 2sLineC of super-2-line bundles, whose global points are
complex Azumaya superalgebras. Of these there are, up to equivalence, not just one
but two: the canonical super 2-line and its “superpartner” [85]. Moreover, there are
now, up to equivalence, two different invertible 2-linear maps from each of these
super-lines to itself. In summary, the homotopy sheaves of the super 2-stack of super
line 2-bundles are

• π0(2sLineC) � Z2,
• π1(2sLineC) � Z2,
• π2(2sLineC) � C

×.

Since the homotopy groups of the group C
× are π0(C

×) = 0 and π1(C
×) = Z, it

follows that the geometric realization of this 2-stack has homotopy groups

• π0(|2sLineC|) � Z2,
• π1(|2sLineC|) � Z2,
• π2(|2sLineC|) � 0,
• π3(|2sLineC|) � Z.

These are precisely the correct coefficients for the twists of complex K-theory [24],
witnessing the fact that the B-field background of the superstring twists the Chan-
Paton bundles on the D-branes [23, 35].
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The braided monoidal structure of the 2-category of complex super-vector spaces
induces on 2sLineC the structure of a braided 3-group. Therefore, one has a natu-
rally defined 3-stack B(2sLineC)conn which is the supergeometric refinement of the
coefficient object B3

C
×
conn for the extended Lagrangian of bosonic 3-dimensional

Chern–Simons theory. Therefore, for G a super-Lie group a super-Chern–Simons
theory, inducing a super-WZW action functional on G, is naturally given by an
extended Lagrangian which is a map of higher moduli stacks of the form

L : BGconn → B(2sLineC)conn.

Notice that, by the canonical inclusion B3
C

×
conn → B(2sLineC)conn, every bosonic

extended Lagrangian of 3d Chern–Simons type induces such a supergeometric theory
with trivial super-grading part.

5 Outlook: Higher Prequantum Theory

The discussion in Sects. 2 and 3 of low dimensional Chern–Simons theories and the
survey on higher dimensional Chern–Simons theories in Sect. 4, formulated and ex-
tended in terms of higher stacks, is a first indication of a fairly comprehensive theory
of higher and extended prequantum gauge field theory that is naturally incarnated in
a suitable context of higher stacks. In this last section we give a brief glimpse of some
further aspects. Additional, more comprehensive expositions and further pointers are
collected for instance in [79, 80].

5.1 σ -models

The Chern–Simons theories presented in the previous sections are manifestly special
examples of the following general construction: one has a universal (higher) stack
Fields of field configurations for a certain field theory, equipped with an extended
Lagrangian, namely with a map of higher stacks

L : Fields → BnU (1)conn

to the n-stack of U (1)-principal n-bundles with connections. The Lagrangian L
induces Lagrangian data in arbitrary codimension: for every closed oriented world-
volume Σk of dimension k ≤ n there is a transgressed Lagrangian

defining the (off-shell) prequantum U (1)-(n − k)-bundle of the given field theory.
In particular, the curvature forms of these bundles induce the canonical pre-(n − k)-
plectic structure on the moduli stack of field configurations on Σk .

In codimension 0, i.e., for k = n one has the morphism of stacks
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exp(2π i
∫

Σn

− ) : Maps(Σn; Fields) → U (1)

and so taking global sections over the point and passing to equivalence classes one
finds the action functional

exp(2π i
∫

Σn

− ) : {Field configurations}/equiv → U (1).

Notice how the stacky origin of the action functional automatically implies that its
value only depends on the gauge equivalence class of a given field configuration.
Moreover, the action functional of an extended Lagrangian field theory as above is
manifestly a σ -model action functional: the target “space” is the universal moduli
stack of field configurations itself. Furthermore, the composition

ω : Fields
L−→ BnU (1)conn

F(−)−−→ Ωn+1(−;R)cl

shows that the stack of field configurations is naturally equipped with a pre-n-plectic
structure [67], which means that actions of extended Lagrangian field theories in
the above sense are examples of σ -models with (pre)-n-plectic targets. For binary
dependence of the n-plectic form on the fields this includes the AKSZ σ -models
[2, 16–19, 26, 50, 51, 55, 56, 69]. For instance, from this perspective, the action
functional of classical 3d Chern–Simons theory is the σ -model action functional with
target the stack BGconn equipped with the pre-3-plectic form 〈−,−〉 : BGconn → Ω4

cl
(the Killing form invariant polynomial) as discussed in 3. If we consider binary
invariant polynomials in derived geometry, hence on objects with components also
in negative degree, then also closed bosonic string field theory as in [91] is an example
(see 5.7.10 of [79]) as are constructions such as [21]. Examples of n-plectic structures
of higher arity on moduli stacks of higher gauge fields are in [28, 30].

More generally, we have transgression of the extended Lagrangian over manifolds
Σk with boundary ∂Σk . Again by inspection of the constructions in [44] in terms of
Deligne complexes, one finds that under the Dold–Kan correspondence these induce
the corresponding constructions on higher moduli stacks: the higher parallel trans-
port of L over Σk yields a section of the (n −k +1)-bundle which is modulated over
the boundary by Maps(∂Σk, BGconn) → Bn−k+1U (1)conn. This is the incarnation
at the prequantum level of the propagator of the full extended TQFT in the sense of
[60] over Σk , as indicated in [58]. Further discussion of this full prequantum field
theory obtained this way is well beyond the scope of the present article. However,
below in Sect. 5.4 we indicate how familiar anomaly cancellation constructions in
open string theory naturally arise as examples of such transgression of extended
Lagrangians over worldvolumes with boundary.
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5.2 Fields in Slices: Twisted Differential Structures

Our discussion of σ -model-type actions in the previous section might seem to sug-
gest that all the fields that one encounters in field theory have moduli that form
(higher) stacks on the site of smooth manifolds. However, this is actually not the
case and one need not look too far in order to find a counterexample: the field of
gravity in general relativity is a (pseudo-)Riemannian metric on spacetime, and there
is no such thing as a stack of (pseudo-)Riemannian metrics on the smooth site.
This is nothing but the elementary fact that a (pseudo-)Riemannian metric cannot
be pulled back along an arbitrary smooth morphism between manifolds, but only
along local diffeomorphisms. Translated into the language of stacks, this tells us that
(pseudo-)Riemannian metrics is a stack on the étale site of smooth manifolds, but
not on the smooth site.11 Yet we can still look at (pseudo-)Riemannian metrics on a
smooth n-dimensional manifold X from the perspective of the topos H of stacks over
the smooth site, and indeed this is the more comprehensive point of view. Namely,
working in H also means to work with all its slice toposes (or over-toposes) H/S
over the various objects S in H. For the field of gravity this means working in the
slice H/BGL(n;R) over the stack BGL(n;R). 12

Once again, this seemingly frightening terminology is just a concise and rigorous
way of expressing a familiar fact from Riemannian geometry: endowing a smooth
n-manifold X with a pseudo-Riemannian metric of signature (p, n − p) is equiv-
alent to performing a reduction of the structure group of the tangent bundle of
X to O(p, n − p). Indeed, one can look at the tangent bundle as a morphism
τX : X → BGL(n;R).

Example: Orthogonal Structures.

The above reduction is then the datum of a homotopy lift of τX

(  )

where the vertical arrow

is induced by the inclusion of groups O(n) ↪→ GL(n;R). Such a commutative
diagram is precisely a map

in the slice H/BGL(n;R). The homotopy e appearing in the above diagram is precisely
the vielbein field (frame field) which exhibits the reduction, hence which induces the

11 See [13] for a comprehensive treatment of the étale site of smooth manifolds and of the higher
topos of higher stacks over it.
12 More detailed discussion of how (quantum) fields generally are maps in slices of cohesive toposes
has been given in the lecture notes [80] and in Sects. 1.2.16, 5.4 of [79].
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Riemannian metric. So the moduli stack of Riemannian metrics in n dimensions
is OrthStrucn , not as an object of the ambient cohesive topos H, but of the slice
H/BGL(n). Indeed, a map between manifolds regarded in this slice, namely a map
(φ, η) : τY → τX , is equivalently a smooth map φ : Y → X in H, but equipped with
an equivalence η : φ∗τX → τY . This precisely exhibits φ as a local diffeomorphism.
In this way the slicing formalism automatically knows along which kinds of maps
metrics may be pulled back.

Example: (Exceptional) Generalized Geometry.

If we replace in the above example the map OrthStrucn with inclusions of other
maximal compact subgroups, we similarly obtain the moduli stacks for generalized
geometry (metric and B-field) as appearing in type II superstring backgrounds (see,
e.g., [47]), given by

and of exceptional generalized geometry appearing in compactifications of 11-
dimensional supergravity [49], given by

For instance, a manifold X in type II-geometry is represented by τ
gen
X : X →

BO(n, n) in the slice H/BO(n,n), which is the map modulating what is called the
generalized tangent bundle, and a field of generalized type II gravity is a map
(ogen

X , e) : τ
gen
X → typeII to the moduli stack in the slice. One checks that the

homotopy e is now precisely what is called the generalized vielbein field in type
II geometry. We read off the kind of maps along which such fields may be pulled
back: a map (φ, η) : τ

gen
Y → τ

gen
X is a generalized local diffeomorphism: a smooth

map φ : Y → X equipped with an equivalence of generalized tangent bundles
η : φ∗τ gen

X → τ
gen
Y . A directly analogous discussion applies to the exceptional

generalized geometry.
Furthermore, various topological structures are generalized fields in this sense,

and become fields in the more traditional sense after differential refinement.

Example: Spin Structures.

The map SpinStruc : BSpin → BGL is, when regarded as an object of H/BGL,
the moduli stack of spin structures. Its differential refinement SpinStrucconn :
BSpinconn → BGLconn is such that a domain object τ∇

X ∈ H/GLconn is given by
an affine connection, and a map (∇Spin, e) : τ∇

X → SpinStrucconn is precisely a Spin
connection and a Lorentz frame/vielbein which identifies ∇ with the corresponding
Levi-Civita connection.

This example is the first in a whole tower of higher Spin structure fields [74–76],
each of which is directly related to a corresponding higher Chern–Simons theory.
The next higher example in this tower is the following.

Example: Heterotic Fields.

For n ≥ 3, let Heterotic be the map
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regarded as an object in the slice H/BGL(n;R)×B3U (1). Here p is the morphism induced
by

Spin(n) → O(n) ↪→ GL(n;R)

while 1
2 p1 : BSpin(n) → B3U (1) is the morphism of stacks underlying the first

fractional Pontrjagin class which we met in Sect. 4.1. To regard a smooth manifold
X as an object in the slice H/BGL(n;R)×B3U (1) means to equip it with a U (1)-3-
bundle aX : X → B3U (1) in addition to the tangent bundle τX : X → BGL(n;R).
A Green–Schwarz anomaly-free background field configuration in heterotic string
theory is (the differential refinement of) a map (sX , φ) : (τX , aX ) → Heterotic, i.e.,
a homotopy commutative diagram

The 3-bundle aX serves as a twist: when aX is trivial then we are in presence of a
String structure on X ; so it is customary to refer to (sX , φ) as to an aX -twisted String
structure on X , in the sense of [76, 86]. The Green–Schwarz anomaly cancellation
condition is then imposed by requiring that aX (or rather its differential refinement)
factors as

where c2(E) is the morphism of stacks underlying the second Chern class. Notice
that this says that the extended Lagrangians of Spin- and SU-Chern–Simons theory
in 3-dimensions, as discussed above, at the same time serve as the twists that control
the higher background gauge field structure in heterotic supergravity backgrounds.

Example: Dual Heterotic Fields.

Similarly, the morphism

governs field configurations for the dual heterotic string. These examples, in their
differentially refined version, have been discussed in [76]. The last example above
is governed by the extended Lagrangian of the 7-dimensional Chern–Simons-type
higher gauge field theory of String-2-connections. This has been discussed in [28].

There are many more examples of (quantum) fields modulated by objects in slices
of a cohesive higher topos. To close this brief discussion, notice that the twisted String
structure example has an evident analog in one lower degree: a central extension of
Lie groups A → Ĝ → G induces a long fiber sequence
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in H, where c is the group 2-cocycle that classifies the extension. If we regard this
as a coefficient object in the slice H/B2 A, then regarding a manifold X in this slice
means to equip it with an (BA)-principal 2-bundle (an A-bundle gerbe) modulated
by a map τ A

X : X → B2 A; and a field (φ, η) : τ A
X → c is equivalently a G-principal

bundle P → X equipped with an equivalence η : c(E) � τ A
X with the 2-bundle

which obstructs its lift to a Ĝ-principal bundle (the “lifting gerbe”). The differen-
tial refinement of this setup similarly yields G-gauge fields equipped with such an
equivalence. A concrete example for this is discussed below in Sect. 5.4.

This special case of fields in a slice is called a twisted (differential) Ĝ-structure
in [76] and a relative field in [37]. In more generality, the terminology twisted
(differential) c-structures is used in [76] to denote spaces of fields of the form
H/S(σX , c) for some slice topos H/S and some coefficient object (or “twisting ob-
ject”) c; see also the exposition in [80]. In fact in full generality (quantum) fields in
slice toposes are equivalent to cocycles in (generalized and parameterized and pos-
sibly non-abelian and differential) twisted cohomology. The constructions on which
the above discussion is built is given in some generality in [64].

In many examples of twisted (differential) structures/fields in slices the twist is
constrained to have a certain factorization. For instance the twist of the (differen-
tial) String-structure in a heterotic background is constrained to be the (differential)
second Chern-class of a (differential) E8 × E8-cocycle, as mentioned above; or for
instance the gauging of the 1d Chern–Simons fields on a knot in a 3d Chern–Simons
theory bulk is constrained to be the restriction of the bulk gauge field, as discussed
in Sect. 3.4.5. Another example is the twist of the Chan-Paton bundles on D-branes,
discussed below in Sect. 5.4, which is constrained to be the restriction of the ambient
Kalb–Ramond field to the D-brane. In all these cases the fields may be thought of as
being maps in the slice topos that arise from maps in the arrow topos HΔ1

. A moduli
stack here is a map of moduli stacks

in H; and a domain on which such fields may be defined is an object Σbulk ∈ H
equipped with a map (often, but not necessarily, an inclusion) Σdef → Σbulk, and a
field configuration is a square of the form

in H. If we now fix φbulk then (φbulk)|Σdef serves as the twist, in the above sense,
for φdef . If Fieldsdef is trivial (the point/terminal object), then such a field is a cocy-
cle in relative cohomology: a cocycle φbulk on Σbulk equipped with a trivialization
(φbulk)|Σdef of its restriction to Σdef .

The fields in Chern–Simons theory with Wilson loops displayed in Sect. 3.4.5
clearly constitute an example of this phenomenon. Another example is the field
content of type II string theory on a 10-dimensional spacetime X with D-brane
Q ↪→ X , for which the above diagram reads
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discussed further below in Sect. 5.4. In [29] we discussed how the supergravity C-field
over an 11-dimensional Hořava-Witten background with 10-dimensional boundary
X ↪→ Y is similarly a relative cocyle, with the coefficients controlled, once more,
by the extended Chern–Simons Lagrangian

now regarded in H(Δ1).

5.3 Differential Moduli Stacks

In the exposition in Sects. 2 and 3 above we referred, for ease of discussion, to the
mapping stacks of the form Maps(Σk, BGconn) as moduli stacks of G-gauge fields on
Σk . From a more refined perspective this is not quite true. While certainly the global
points of these mapping stacks are equivalently the G-gauge field configurations
on Σk , for U a parameter space, the U -parameterized collections in the mapping
stack are not quite those of the intended moduli stack: for the former these are gauge
fields and gauge transformations on U × Σk , while for the latter these are genuine
cohesively U -parameterized collections of gauge fields on Σk .

In the exposition above we saw this difference briefly in Sect. 3.4.3, where we
constrained a 1-form A ∈ Ω1(U × Σ, g) (a U -plot of the mapping stack) to vanish
on vector fields tangent to U ; this makes it a smooth function on U with values in
connections on Σ . More precisely, for G a Lie group and Σ a smooth manifold, let

GConn(Σ) ∈ H

be the stack which assigns to any U ∈ CartSp the groupoid of smoothly
U -parameterized collections of smooth G-principal connections on Σ , and of
smoothly U -parameterized collections of smooth gauge transformations between
these connections. This is the actual moduli stack of G-connections. In this form, but
over a different site of definition, it appears for instance in geometric Langlands dual-
ity. In physics this stack is best known in the guise of its infinitesimal approximation:
the corresponding Lie algebroid is dually the (off-shell) BRST-complex of the gauge
theory, and the BRST ghosts are the cotangents to the morphisms in GConn(Σ) at
the identity.

Notice that while the mapping stack is itself not quite the right answer, there is a
canonical map that comes to the rescue
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We call this the concretification map. We secretly already saw an example of this in
Sect. 3.4.2, where this was the map Maps(S1, BGconn) −→ G//AdG.

In more complicated examples, such as for higher groups G and base spaces Σ

which are not plain manifolds, it is in general less evident what GConn(Σ) should be.
But if the ambient higher topos is cohesive, then there is a general abstract procedure
that produces the differential moduli stack. This is discussed in Sects. 3.9.6.4 and
4.4.15.3 of [79] and in [65].

5.4 Prequantum Geometry in Higher Codimension

We had indicated in Sect. 3.4 how a single extended Lagrangian, given by a map of
universal higher moduli stacks L : BGconn → BnU (1)conn, induces, by transgres-
sion, circle (n − k)-bundles with connection

holΣk Maps(Σk, L) : Maps(Σk, BGconn) −→ Bn−kU (1)conn

on moduli stacks of field configurations over each closed k-manifold Σk . In codimen-
sion 1, hence for k = n−1, this reproduces the ordinary prequantum circle bundle of
the n-dimensional Chern–Simons type theory, as discussed in Sect. 3.4.3. The space
of sections of the associated line bundle is the space of prequantum states of the
theory. This becomes the space of genuine quantum states after choosing a polariza-
tion (i.e., a decomposition of the moduli space of fields into canonical coordinates
and canonical momenta) and restricting to polarized sections (i.e., those depend-
ing only on the canonical coordinates). But moreover, for each Σk we may regard
holΣk Maps(Σk, L) as a higher prequantum bundle of the theory in higher codimen-
sion hence consider its prequantum geometry in higher codimension.

We discuss now some generalities of such a higher geometric prequantum theory
and then show how this perspective sheds a useful light on the gauge coupling of the
open string, as part of the transgression of prequantum 2-states of Chern–Simons
theory in codimension 2 to prequantum states in codimension 1.

5.4.1 Higher Prequantum States and Prequantum Operators

We indicate here the basic concepts of higher extended prequantum theory and how
they reproduce traditional prequantum theory.13

Consider a (pre)-n-plectic form, given by a map

ω : X −→ Ωn+1(−;R)cl

13 A discussion of this and the following can be found in Sects. 3.9.13 and 4.4.19 of [79]; see also
[27].
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in H. A n-plectomorphism of (X, ω) is an auto-equivalence of ω regarded as an
object in the slice H

/Ωn+1
cl

, hence a diagram of the form

A prequantization of (X, ω) is a choice of prequantum line bundle, hence a choice

of lift ∇ in

modulating a circle n-bundle with connection on X . We write c(∇) : X
∇−→

BnU (1)conn → BnU (1) for the underlying (Bn−1U (1))-principal n-bundle. An au-
toequivalence

Ô : ∇ �−→ ∇

of the prequantum n-bundle regarded as an object in the slice H/BnU (1)conn , hence a
diagram in H of the form

is an (exponentiated) prequantum operator or quantomorphism or regular contact
transformation of the prequantum geometry (X,∇). These form an ∞-group in H.
The L∞-algebra of this quantomorphism ∞-group is the higher Poisson bracket Lie
algebra of the system. If X is equipped with group structure then the quantomor-
phisms covering the action of X on itself form the Heisenberg ∞-group. The homo-
topy labeled O in the above diagram is the Hamiltonian of the prequantum operator.
The image of the quantomorphisms in the symplectomorphisms (given by composi-
tion the above diagram with the curvature morphism F(−) : BnU (1)conn → Ωn+1

cl )
is the group of Hamiltonian n-plectomorphisms. A lift of an ∞-group action
G → Aut(X) on X from automorphisms of X (diffeomorphism) to quantomor-
phisms is a Hamiltonian action, infinitesimally (and dually) a momentum map.

To define higher prequantum states we fix a representation (V, ρ) of the circle
n-group Bn−1U (1). By the general results in [64] this is equivalent to fixing a ho-
motopy fiber sequence of the form
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in H. The vertical morphism here is the universal ρ-associated V -fiber ∞-bundle
and characterizes ρ itself. Given such, a section of the V -fiber bundle which is
ρ-associated to c(∇) is equivalently a map

Ψ : c(∇) −→ ρ

in the slice H/BnU (1). This is a higher prequantum state of the prequantum geom-
etry (X,∇). Since every prequantum operator Ô as above in particular is an auto-

equivalence of the underlying prequantum bundle Ô : c(∇)
�−→ c(∇) it canonically

acts on prequantum states given by maps as above simply by precomposition

Ψ �→ Ô ◦ Ψ.

Notice also that from the perspective of Sect. 5.2 all this has an equivalent interpre-
tation in terms of twisted cohomology: a preqantum state is a cocycle in twisted
V -cohomology, with the twist being the prequantum bundle. And a prequantum op-
erator/quantomorphism is equivalently a twist automorphism (or “generalized local
diffeomorphism”).

For instance if n = 1 then ω is an ordinary (pre)symplectic form and ∇ is the
connection on a circle bundle. In this case the above notions of prequantum operators,
quantomorphism group, Heisenberg group and Poisson bracket Lie algebra reproduce
exactly all the traditional notions if X is a smooth manifold, and generalize them to
the case that X is for instance an orbifold or even itself a higher moduli stack, as
we have seen. The canonical representation of the circle group U (1) on the complex
numbers yields a homotopy fiber sequence

where C//U (1) is the stack corresponding to the ordinary action groupoid of the ac-
tion of U (1) on C, and where the vertical map is the canonical functor forgetting the
data of the local C-valued functions. This is the universal complex line bundle asso-
ciated to the universal U (1)-principal bundle. One readily checks that a prequantum
state Ψ : c(∇) → ρ, hence a diagram of the form

in H is indeed equivalently a section of the complex line bundle canonically associ-
ated to c(∇) and that under this equivalence the pasting composite
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is the result of the traditional formula for the action of the prequantum operator Ô
on Ψ .

Instead of forgetting the connection on the prequantum bundle in the above
composite, one can equivalently equip the prequantum state with a differential
refinement, namely with its covariant derivative and then exhibit the prequan-
tum operator action directly. Explicitly, let C//U (1)conn denote the quotient stack
(C × Ω1(−,R))//U (1), with U (1) acting diagonally. This sits in a homotopy fiber
sequence

which may be thought of as the differential refinement of the above fiber sequence
C → C//U (1) → BU (1). (Compare this to Sect. 3.4.5, where we had similarly seen
the differential refinement of the fiber sequence G/T λ → BTλ → BG, which analo-
gously characterizes the canonical action of G on the coset space G/Tλ.) Prequantum
states are now equivalently maps

�̂ : ∇ −→ ρconn

in H/BU (1)conn . This formulation realizes a section of an associated line bundle equiv-
alently as a connection on what is sometimes called a groupoid bundle. As such, �̂

has not just a 2-form curvature (which is that of the prequantum bundle) but also a
1-form curvature: this is the covariant derivative ∇σ of the section.

Such a relation between sections of higher associated bundles and higher covariant
derivatives holds more generally. In the next degree for n = 2 one finds that the
quantomorphism 2-group is the Lie 2-group which integrates the Poisson bracket
Lie 2-algebra of the underlying 2-plectic geometry as introduced in [67]. In the next
section we look at an example for n = 2 in more detail and show how it interplays
with the above example under transgression.

The above higher prequantum theory becomes a genuine quantum theory after
a suitable higher analog of a choice of polarization. In particular, for L : X →
BnU (1)conn an extended Lagrangian of an n-dimensional quantum field theory as
discussed in all our examples here, and for Σk any closed manifold, the polarized
prequantum states of the transgressed prequantum bundle holΣk Maps(Σk, L) should
form the (n − k)-vector spaces of higher quantum states in codimension k. These
states would be assigned to Σk by the extended quantum field theory, in the sense of
[60], obtained from the extended Lagrangian L by extended geometric quantization.
There is an equivalent reformulation of this last step for n = 1 given simply by the
push-forward of the prequantum line bundle in K-theory (see Sect. 6.8 of [43]) and
so one would expect that accordingly the last step of higher geometric quantization
involves similarly a push-forward of the associated V -fiber ∞-bundles above in some
higher generalized cohomology theory. But this remains to be investigated.
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5.4.2 Example: The Anomaly-Free Gauge Coupling of the Open String

As an example of these general phenomena, we close by briefly indicating how the
higher prequantum states of 3d Chern–Simons theory in codimension 2 reproduce
the twisted Chan-Paton gauge bundles of open string backgrounds, and how their
transgression to codimension 1 reproduces the cancellation of the Freed-Witten-
Kapustin anomaly of the open string.

By the above, the Wess-Zumino-Witten gerbe wzw : G → B2U (1)conn as dis-
cussed in Sect. 3.4.2 may be regarded as the prequantum 2-bundle of Chern–Simons
theory in codimension 2 over the circle. Equivalently, if we consider the WZW
σ -model for the string on G and take the limiting TQFT case obtained by sending
the kinetic term to 0 while keeping only the gauge coupling term in the action, then
it is the extended Lagrangian of the string σ -model: its transgression to the mapping
space out of a closed worldvolume Σ2 of the string is the topological piece of the
exponentiated WZW σ -model action. For Σ2 with boundary the situation is more
interesting, and this we discuss now.

The Heisenberg 2-group of the prequantum geometry (G, wzw) is14 the String
2-group (see the appendix of [28] for a review), the smooth 2-group String(G) which
is, up to equivalence, the loop space object of the homotopy fiber of the smooth
universal class c

The canonical representation of the 2-group BU (1) is on the complex K-theory
spectrum, whose smooth (stacky) refinement is given by BU := lim−→n

BU (n) in H

(see Sect. 5.4.3 of [79] for more details). On any component for fixed n the action of
the smooth 2-group BU (1) is exhibited by the long homotopy fiber sequence

in H, in that ddn is the universal (BU (n))-fiber 2-bundle which is associated by this
action to the universal (BU (1))-2-bundle.15 Using the general higher representation
theory in H as developed in [64], a local section of the (BU (n))-fiber prequantum
2-bundle which is ddn-associated to the prequantum 2-bundle wzw, hence a local
prequantum 2-state, is, equivalently, a map

� : wzw|Q −→ ddn

in the slice H/B2U (1), where ιQ : Q ↪→ G is some subspace. Equivalently (compare
with the general discussion in Sect. 5.2), this is a map

14 This follows for instance as the Lie integration of the result in [5] that the Heisenberg Lie 2-algebra
here is the string(g) Lie 2-algebra; see also [27].
15 The notion of (BU (n))-fiber 2-bundle is equivalently that of nonabelian U (n)-gerbes in the
original sense of Giraud, see [64]. Notice that for n = 1 this is more general than then notion
of U (1)-bundle gerbe: a G-gerbe has structure 2-group Aut(BG), but a U (1)-bundle gerbe has
structure 2-group only in the left inclusion of the fiber sequence BU (1) ↪→ Aut(BU (1)) → Z2.
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(�, wzw) : ιQ −→ ddn

in H(Δ1), hence a diagram in H of the form

One finds (Sect. 5.4.3 of [79]) that this equivalently modulates a unitary bundle on
Q which is twisted by the restriction of wzw to Q as in twisted K-theory (such a
twisted bundle is also called a gerbe module if wzw is thought of in terms of bundle
gerbes [7]). So

ddn ∈ H/B2U (1)

is the moduli stack for twisted rank-n unitary bundles. As with the other moduli
stacks before, one finds a differential refinement of this moduli stack, which we
write

(ddn)conn : (BU (n)//BU (1))conn → B2U (1)conn,

and which modulates twisted unitary bundles with twisted connections (bundle
gerbe modules with connection). Hence a differentially refined state is a map
�̂ : wzw|Q → (ddn)conn in H/B2U (1)conn

; and this is precisely a twisted gauge
field on a D-brane Q on which open strings in G may end. Hence these are the
prequantum 2-states of Chern–Simons theory in codimension 2. Precursors of this
perspective of Chan-Paton bundles over D-branes as extended prequantum 2-states
can be found in [68, 77].

Notice that by the above discussion, together the discussion in Sect. 5.2, an equiv-
alence

in H/B2U (1)conn
has two different, but equivalent, important interpretations:

1. it is an element of the quantomorphism 2-group (i.e. the possibly non-linear
generalization of the Heisenberg 2-group) of 2-prequantum operators;

2. it is a twist automorphism analogous to the generalized diffeomorphisms for the
fields in gravity.

Moreover, such a transformation is locally a structure well familiar from the literature
on D-branes: it is locally (on some cover) given by a transformation of the B-field
of the form B �→ B + ddRa for a local 1-form a (this is the Hamiltonian 1-form
in the interpretation of this transformation in higher prequantum geometry) and its
prequantum operator action on prequantum 2-states, hence on Chan-Paton gauge
fields
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(by precomposition) is given by shifting the connection on a twisted Chan-Paton
bundle (locally) by this local 1-form a. This local gauge transformation data

B �→ B + da, A �→ A + a,

is familiar from string theory and D-brane gauge theory (see e.g. [66]). The
2-prequantum operator action � �→ Ô� which we see here is the fully global-
ized refinement of this transformation.

Surface Transport and the Twisted Bundle Part of Freed-Witten-Kapustin
Anomalies.

The map �̂ : (ιQ, wzw) → (ddn)conn above is the gauge-coupling part of the
extended Lagrangian of the open string on G in the presence of a D-brane Q ↪→ G.
We indicate what this means and how it works. Note that for all of the following
the target space G and background gauge field wzw could be replaced by any target
space with any circle 2-bundle with connection on it.

The object ιQ in H(Δ1) is the target space for the open string. The worldvolume of
that string is a smooth compact manifold Σ with boundary inclusion ι∂Σ : ∂Σ → Σ ,
also regarded as an object in H(Δ1). A field configuration of the string σ -model is
then a map

φ : ιΣ → ιQ

in H(Δ1), hence a diagram

in H, hence a smooth function φ : Σ → G subject to the constraint that the boundary
of Σ lands on the D-brane Q. Postcomposition with the background gauge field �̂

yields the diagram

Comparison with the situation of Chern–Simons theory with Wilson lines in Sect. 3.4.5
shows that the total action functional for the open string should be the product of the
fiber integration of the top composite morphism with that of the bottom composite
morphisms. Hence that functional is the product of the surface parallel transport of
the wzw B-field over Σ with the line holonomy of the twisted Chan-Paton bundle
over ∂Σ .

This is indeed again true, but for more subtle reasons this time, since the fiber
integrations here are twisted. For the surface parallel transport we mentioned this
already at the end of Sect. 5.1: since Σ has a boundary, parallel transport over Σ
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does not yield a function on the mapping space out of Σ , but rather a section of
the line bundle on the mapping space out of ∂Σ , pulled back to this larger mapping
space.

Furthermore, the connection on a twisted unitary bundle does not quite have a
well-defined traced holonomy inC, but rather a well defined traced holonomy up to a
coherent twist. More precisely, the transgression of the WZW 2-connection to maps
out of the circle as in Sect. 3.4 fits into a diagram of moduli stacks in H of the form

This is a transgression-compatibility of the form that we have already seen in
Sect. 3.4.2.

In summary, we obtain the transgression of the extended Lagrangian of the open
string in the background of B-field and Chan-Paton bundles as the following pasting
diagram of moduli stacks in H (all squares are filled with homotopy 2-cells, which
are notationally suppressed for readability)

Here

• the top left square is the homotopy pullback square that computes the mapping
stack Maps(ι∂Σ, ιQ) in H(Δ1), which here is simply the smooth space of string
configurations Σ → G which are such that the string boundary lands on the
D-brane Q;

• the top right square is the twisted fiber integration of the wzw background 2-
bundle with connection: this exhibits the parallel transport of the 2-form connection
over the worldvolume Σ with boundary S1 as a section of the pullback of the
transgression line bundle on loop space to the space of maps out of Σ ;

• the bottom square is the above compatibility between the twisted traced holonomy
of twisted unitary bundles and the transgression of their twisting 2-bundles.

The total diagram obtained this way exhibits a difference between two section of
a single complex line bundle on FieldsOpenString(ι∂Σ) (at least one of them non-
vanishing), hence a map
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exp

⎛

⎝2π i
∫

Σ

[Σ, wzw]
⎞

⎠ · tr holS1([S1, �̂]) : FieldsOpenString(ι∂Σ) −→ C.

This is the well-defined action functional of the open string with endpoints on the
D-brane Q ↪→ G, charged under the background wzw B-field and under the twisted
Chan-Paton gauge bundle Ψ̂ .

Unwinding the definitions, one finds that this phenomenon is precisely the twisted-
bundle-part, due to Kapustin [52], of the Freed-Witten anomaly cancellation for
open strings on D-branes, hence is the Freed-Witten-Kapustin anomaly cancellation
mechanism either for the open bosonic string or else for the open type II superstring
on Spinc-branes. Notice how in the traditional discussion the existence of twisted
bundles on the D-brane is identified just as some construction that happens to cancel
the B-field anomaly. Here, in the perspective of extended quantization, we see that
this choice follows uniquely from the general theory of extended prequantization,
once we recognize that ddn above is (the universal associated 2-bundle induced by)
the canonical representation of the circle 2-group BU (1), just as in one codimension
up C is the canonical representation of the circle 1-group U (1).
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