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Abstract. The rise and adoption of the Cloud computing paradigm had a strong
impact on the ICT world in the last few years; this technology has now reached
maturity and Cloud providers offer a variety of solutions and services to their
customers. However, beside the advantages, Cloud computing introduced new
issues and challenges. In particular, the heterogeneity of the Cloud services of-
fered and their relative pricing models makes the identification of a deployment
solution that minimizes costs and guarantees QoS very complex. Performance
assessment of Cloud based application needs for new models and tools to take
into consideration the dynamism and multi-tenancy intrinsic of the Cloud envi-
ronment. The aim of this work is to provide a novel mixed integer linear program
(MILP) approach to find a minimum cost feasible cloud configuration for a given
cloud based application. The feasibility of the solution is considered with respect
to some non-functional requirements that are analyzed through multiple perfor-
mance models with different levels of accuracy. The initial solution is further
improved by a local search based procedure. The quality of the initial feasible
solution is compared against first principle heuristics currently adopted by prac-
titioners and Cloud providers.

1 Introduction

The rise and consolidation of the Cloud computing paradigm had a significant impact
on the ICT world in recent years. Cloud has now reached maturity; many are the tech-
nologies and services supplied by various providers, resulting in an already highly di-
versified market. Tools for fast prototyping, enterprise developing, testing and integra-
tion are offered, delegating to Cloud providers all the intensive tasks of management
and maintenance of the underlying infrastructure. However, besides the unquestionable
advantages, Cloud computing introduced new issues and important challenges in appli-
cation development. In fact, current Cloud technologies and pricing models can be so
different and complex that looking for the solution that minimizes costs while guaran-
teeing an adequate performance, might result in a tremendous task. To carry out such
a labor, application designer should consider multiple architectures at once and be able
to evaluate costs and performance for each of them. Moreover, while information on
architectures and costs are openly available, the performance assessment aspect turns
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out to be a far more complicated concern because Cloud environments are often multi-
tenant and their performance can vary over time, according to the congestion level and
the competition for resources among the different applications. Although some analyt-
ical performance models have been proposed to attain an approximate assessment of
software systems performance, there is, until now, no attempt to extend those models
for taking into account the specificity of Cloud solutions. Consider, for example, Pal-
ladio Component Model (PCM) and Palladio Bench [10] for Quality of Service (QoS)
evaluation. PCM is a Domain Specific Language (DSL) for the description of software
architecture, resource and analysis of non-functional requirements but it is limited to
enterprise systems, QoS can be assessed only for the peak workload, and it lacks sup-
port for Cloud systems. On the contrary, Cloud based systems are dynamic and time-
dependent parameters have to be considered to assess performance and costs. It should
also be noticed that cost and performance assessments are just one side of the coin.
On the other side, the problem of quickly and efficiently explore the space of possible
Cloud configurations in automatic or semi-automatic way also exists.

The aim of this work is to propose and validate a novel Mixed Integer Linear Pro-
gram (MILP) designed to quickly find a minimum-cost Cloud configuration for a cer-
tain application, where the feasibility of a solution is considered according to some
non-functional constraints expressed in the model. To realize an accurate model, the
most common Cloud systems have been analyzed deriving general meta-models and
parameter values. Those meta-models have been expressed by means of a Cloud-based
extension of the PCM. This extension, presented for the first time here, is able to ex-
press different kinds of QoS constraints and time-dependent profiles for most important
performance parameters. The proposed MILP is finally validated against a local search
based metaheuristic also designed to explore the space of alternative Cloud configu-
rations. The MILP solution is also compared with first principle heuristics currently
adopted by practitioners and Cloud providers.

The remainder of the paper is organized as follows. In Section 2 the PCM proposed
extension is briefly introduced. The optimization model is introduced in Section 3,
whereas Section 4 illustrates the experimental campaign the optimization model under-
went and analyzes the outcomes. The State-of-the-art analysis is reported in Section 5;
conclusions are finally drawn in Section 6.

2 Background: Architecture Modeling and Analyses

In order to model the application under analysis, we extended the Palladio Compo-
nent Model [10]. The PCM language allows developers to represent different aspects
of the application by building specific diagrams. Figure 1 shows the main components
of Apache Open For Business (OfBiz), our case study application; the figure is a sum-
mary of the information that can be expressed via our PCM extension, represented in a
UML-like notation.

OfBiz 1 is an enterprise open source automation software developed by the Apache
software foundation and adopted by many companies. We focus here on the E-Commerce

1 http://ofbiz.apache.org/

http://ofbiz.apache.org/
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functionality of OfBiz since it is a good candidate to be implemented with Cloud tech-
nology. The left most activity diagram models the behavior of users of the system, in
this example on average 70% of users will access the application to purchase some prod-
uct while the remaining 30% will check the status of a scheduled order. The incoming
workload is expressed in number of requests per second. Our extension allows to specify
a workload profile of 24 hours. All requests generated by users are served by the Re-
quest Handler component. The behavior of the checkout functionality is described by
the activity diagram associated with the request handler. To serve a checkout request,
the front-end needs to perform some internal computation (e.g., calculate the shipping
price), whose impact on physical resources hosting the system is shown as Demand, and
interact with some components hosted on the back-end. In particular the request handler
interacts with the Database component to check the availability of the desired item and
with the Payment component to check the validity of the credit card information specified
by the user. The topmost part of the diagram shows that the request handler component
is deployed alone in the front-end tier while the database and the payment service are
co-located in the same back-end tier.

The standard PCM allows application designers to build diagrams with this kind of
information and derive (for every time slot) a Layered Queuing Network (LQN) model
from them. LQN models can then be solved analytically or by means of a simulation in
order to derive performance metrics. As opposed to [26] we suppose that the compo-
nent allocation to application tiers has already been chosen by the software developer
therefore will not be changed by the optimization process. Multiple QoS metrics can
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Fig. 1. OfBiz Application Example

be derived from the analysis of LQN models, in this work our focus is on response time
and cost.

In a Cloud environment, infrastructural Costs are also difficult to compute, since the
pricing policy offered by Cloud providers is very heterogeneous. In this work we refer
to cost as to the sum of the prices of allocated resources, charged on a per-hour basis.
This kind of pricing policy is a common denominator of all the most important Cloud
provider offers, the main objective of this cost modeling is to show that cost related
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aspects can be included in the optimization process, not to provide a comprehensive
description of the costs related to any specific Cloud environment.

As main performance metric we consider server side request response time. We also
suppose that all Virtual Machines (VMs) hosting the application components are located
inside the same local network (e.g., the same availability zone in Amazon EC2) so that
the communication between the different application layers does not cause a bottleneck.

<<Interface>>

Request Handler

- LogIn
- CheckOrderStatus
- SearchObject
- Checkout
- LogOut

ResourceName: "CheckOrderStatus"
Metric: "ResponseTime"
Aggregation: "Avg"
Unit: "ms"
Lower Than: 2000

ResourceName: "Request Handler"
Metric: "ResponseTime"
Aggregation: "Avg"
Unit: "ms"
Lower Than: 3000

(a) QoS constraints defined over an interface

Back End VM

Database

Payment 
Service

ResourceName: "Back End VM"
Metric: "RAM"
Unit: "GB"
Greater Than: 8

ResourceName: "Back End VM"
Metric: "Utilization"
Aggregation: "Avg"
Unit: "%"
Lower Than: 80

(b) Architectural constraints defined over an
auto-scaling group

Fig. 2. Examples of different type of constraints that can be specified on the modeled application

In order to describe the Cloud environment the modeled application will run in, we
made use of the meta models presented in [16]. We also extended those models in or-
der to express constraints over the application QoS to drive the optimization process.
Figure 2(a) shows two examples of QoS constraints that can be defined on a component.
The topmost constraint expresses the fact that the functionality in charge of checking the
status of an order should have an average response time lower than 2000 milliseconds.
The other constraint is defined over the entire component and limits the average re-
sponse time, computed over all the functionality offered by the component, to be lower
than 3000 ms. Figure 2(b) shows another kind of constraints that can be expressed on
the virtual hardware used to host the software components of the application. The ex-
ample shows a constraint on the minimum amount of RAM that a VM needs to feature
in order to run the two components and a constraint on the maximum allowed value of
the CPU utilization.

3 Optimization Process
In this section we describe the hybrid optimization approach we propose, to solve the
capacity allocation problem. As in [22], we implemented a two-steps approach. The
first step consists in solving a Mixed Integer Linear Problem (MILP) in which the QoS
associated to a deployment solution is calculated by means of an M/G/1 queuing model
with processor sharing policy. Such performance model allows to calculate the average
response time of a request in closed form. Our goal is to determine quickly an approxi-
mated initial solution through the MILP solution process which is then further improved
by a local search based optimization algorithm (step 2). The aim of this algorithm is to
iteratively improve the starting Cloud deployment exploring several application con-
figurations. A more expressive performance model (LQN) is employed to derive more
accurate estimations of the QoS by means of the LQNS tool [17]. Figure 3 shows the
workflow of the optimization process. As explained in Section 2 the specification of
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Fig. 3. Solution generation workflow

the application design is given in form of a PCM with an accompanying extension.
The information contained in these models constitutes the input of the optimization
problem and is passed to the optimization framework, which is the main object of
this work, in order to derive an initial solution. This solution is then passed to the
SPACE4Cloud tool [5], which performs an assessment of the solution using the more
accurate LQN model and an heuristic optimization to derive an optimized solution.

In the remainder of the paper, Section 3.1 describes in details the capacity allocation
problem faced in this work, Section 3.2 provides its MILP formulation, while Section
3.3 outlines the heuristic local search approach.

3.1 Search Problem Formulation

The aim of the optimal selection and capacity allocation problem for Cloud applications
is to minimize the usage cost of Cloud resources, while satisfying some user-defined
constraints. As discussed in Section 2, an application can be described as a composition
of several components C, each of them implementing a particular set of functionalities
K with a certain resources demand. Each component is deployed into a resource pool,
or application tier, I composed by a set of homogeneous VMs. Such a set is not static
but can scale to handle variations of the incoming workload. Since, the daily workload
is periodic for many applications [11], we decided to limit our analysis to a single day
horizon. Many Cloud providers charge the use of VMs per hour (e.g., Amazon EC2
on-demand pricing scheme2), hence it is reasonable to split the time horizon into 24
time slots T of one hour each . For the sake of simplicity, in the following we consider
QoS constraints predicating on application response time. In a nutshell, the problem we
deal with presents two main decision aspects, first is the selection of a certain VM type
V for each resource pool, while the second faces the way the application has to scale in
order to meet the constraints, i.e., aims at determining the optimum number of VMs to
be devoted to each pool at every hour of the day. The overall workload of an application
is described in terms of requests per second Λt.

Users interact with the application by making requests, the set of possible requests
is referred to as K. Moreover, each class of requests is characterized with a probability
to be executed (αk specified in the model, see Figure 1) and by a set of components
supporting its execution (i.e., its execution path [6]). Finally, we assume that requests
are served according to the processor sharing scheduling policy, a typical scheduling

2 http://aws.amazon.com/ec2/pricing

http://aws.amazon.com/ec2/pricing
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policy in Web and application server containers that evenly splits the workload among
all the VMs of the resource pool. As for the QoS requirements the application designer
can define a threshold on the average response time Rk for a set of classes KAvg ⊆ K
(as depicted in Figure 2(a)).

3.2 Analytic Optimization

In the light of the considerations made so far, the optimal capacity allocation problem
can be formulated as follows:

min
Z,V

∑

i∈I

∑

v∈V

∑

t∈T
Cv,tzi,v,t (1)

Subject to:

∑

v∈V
wi,v = 1 ∀i ∈ I (2)

wi,v ≤ zi,v,t ∀i ∈ I,∀v ∈ V,∀t ∈ T (3)

zi,v,t ≤ Nwi,v ∀i ∈ I,∀v ∈ V,∀t ∈ T (4)
∑

v∈V
Mvwi,v ≥ Mi ∀i ∈ I (5)

∑

v∈V
(1− μk,cRk,cSv)zic,v,t ≤ μk,cGk,c,tRk,c ∀k ∈ K,∀c ∈ C,∀t ∈ T (6)

∑

v∈V
Svzic,v,t > Gk,c,t ∀k ∈ K,∀c ∈ C,∀t ∈ T (7)

zi,v,t Integer ∀i ∈ I,∀t ∈ T (8)

wi,v ∈ {0, 1} ∀i ∈ I,∀v ∈ V (9)

Where T = {1 . . . 24} and Gk,c,t = Λt

∑
c̃∈Ic

∑
k̃∈K

αkpk,c̃

μk̃,c̃
.

Table 1 summarizes the list of parameters of our optimization model and Table 2 reports
the decision variables.

The value expressed by (1) represents the total usage cost of the Cloud application
and it is the objective function to minimize. As wi,v are binary decision variables (eq. 9)
equal to 1 if the VM type v is assigned to the i-th resource pool, condition (2) guarantees
that exactly one type can be selected for each resource pool. Equation (8) defines a
set of integer variables zi,v,t that represent the number of VMs of type v assigned to
resource pool i at time t. Condition (3) in combination with (2) and (9) guarantees
that a nonempty set of VMs is assigned to each resource pool. Moreover, condition (4)
imposes the set of VMs assigned to each resource pool to be homogeneous. Indeed, if
wi,v = 0 the total number of VMs of type v assigned to resource pool i is forced to
be zero as well and this happens for all v ∈ V but one (eq. (2)). Besides, if wi,v =
1 the number of VMs assigned to the resource pool i is at least 1, for eq. (3), and
at most N , which is an arbitrary large integer number. Finally, equations (5) and (6)
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Table 1. Optimization model parameters

System parameters
Index
t ∈ T time interval
i ∈ I resource pool or application tiers
k ∈ K class of request
v ∈ V type of virtual machine
Parameters
Λt number of incoming requests (workload) at time t
αk proportion of requests of class k in the workload
pk,c probability of request of class k to be served by component c
μv
k,c maximum service rate of requests of class k on component c hosted on a VM of type v

Uk set of components serving request k
Ic set of components that are co-located with c

Cv,t cost of a single machine of type v at time t

Mv memory of a virtual machine of type v

M i memory constraint for tier i
Rk,c maximum average response time for the k-class of requests on component c

Table 2. Optimization model decision variables

Optimization model decision variables.
wi,v binary variable that is equal to 1 if the VMs type v is assigned to the i-th tier and equal

to 0 otherwise
zi,v,t number of virtual machines of type v assigned to the i-th resource pool at time t

represent memory and QoS constraints, respectively, while (7) is the M/G/1 equilibrium
condition.

As previously discussed, to evaluate the average response time of the Cloud applica-
tion we model each VM container as an M/G/1 queue. However, in general, a request
of class k is processed by more than a single component. Let Λk,t = αkΛt be the in-
coming workload at time t for request class k and Λk,c,t = pk,cΛk,t the arrival rate of
request class k at component c. The response time of requests in class k can then be
obtained by:

Rk,t =
∑

c∈Uk

pk,cRk,c,t =
∑

c∈Uk

pk,c

1

μṽ
k,c

1−
∑

c̃∈Ic

∑

k̃∈K

Λk̃,c̃,t

μṽ
k̃,c̃

zic,ṽ,t

(10)

whereUk is the set of components serving class k requests and Ic represents the set of
components that are co-located with c on the same VM (Ic can be obtained by standard
PCM allocation diagrams, see Figure 1). In other words, the average response time is
obtained by summing up the time spent by the request in each component weighted
by the probability of the request to actually be processed by that component. Notice
that Rk,c,t depends on the type and number of VMs (ṽ and zic,ṽ,t, respectively) the
component c is allocated in at time t.



68 D. Ardagna et al.

In order to simplify expression (10) we consider the lowest CPU machine a reference
machine and calculate the maximum service rates for each request class and component,
μk,c. In this way μv

k,c can be written as:

μv
k,c = μk,c Sic = μk,c

∑

v

Sv wic,v (11)

where Sv is the speed ratio between the reference machine and a VM of type v, while
ic is the index of the resource pool where component c is allocated.

Let zi,t =
∑

v zi,v,t be the number of VMs of the selected type (only one type can
be selected (eq.2) ) for resource pool i at time t. Therefore the following expression
holds:

μv
k,c zic,v,t = μk,c Sic zic,t = μk,c

∑

v

Sv zic,v,t (12)

Under M/G/1 assumptions the response time of a request of class k processed by com-
ponent c hosted on a VM of type v is given by:

Rk,c,t =

1

μk,c Sic

1−
∑

c̃∈Ic

∑

k̃∈K

Λk̃,c̃,t

μk̃,c̃ Sic zic,t

(13)

By replacing (11) and (12) in (10) we can write the following constraint on the
response time of requests of class k:

Rk,t =
∑

c∈Uk

pk,c Rk,c,t =
∑

c∈Uk

pk,c

1

μk,c Sic

1− Λt

Sic zic,t

∑

c̃∈Ic

∑

k̃∈K

αk̃pk̃,c̃
μk̃,c̃

≤ Rk, (14)

Equation (14) is non-linear due to the presence of productSi zi,t in the denominator;
in order derive a linear model, which can be solved efficiently by MILP solvers, we
explode it into a set of stricter constraints defined over the average response time of
each component traversed by the request.

To do so we split the response time constraint among components of a path and take
the most stringent constraint among the conditions generated by all the possible paths
that the request can traverse. In other words, let:

rk,c,u =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

μk,c∑

c∈u

1

μk,c

if c belongs to path u

0 otherwise

(15)

and let: Rk,c = minu rk,c,u Rk. Instead of using constraint (13) for the response
time we introduce the constraint family: Rk,c,t ≤ Rk,c and after some algebra we get
constraint (6).
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Finally, constraint (7) represents the M/G/1 equilibrium condition obtained from (13)
imposing the denominator to be greater than zero.

3.3 Local Search Optimization

The aim of this section is to provide a brief description of the optimization algorithm
implemented by the SPACE4Cloud [5] tool that we used to further optimize the so-
lution obtained by the MILP optimization problem. One of the key differences be-
tween the two optimization processes is the fact that the performance model used by
SPACE4Cloud, the LQN model, is more complex and accurate than the M/G/1 models
used in the analytic formulation of the optimization problem. Another differentiating
factor is the way SPACE4Cloud explores the free space, in fact it uses an heuristic ap-
proach that divides the problem into two levels delegating the assignment of the type of
VMs to the first (upper) level and the definition of the number of replicas to the second
(lower) level. The first level implements a stochastic local search with tabu memory, at
each iteration the type of the VMs used for a particular tier is changed randomly from
all the available VMs, according to the architectural constraints. The tabu memory is
used to store recent moves and avoid cycling of the candidate solutions around the same
configurations. Once the VM size is fixed the solution may enter in a repair phase dur-
ing which the number of VMs is increased until the feasibility is restored (switching
to slower VMs can make the current system configuration unfeasible). The solution is
then refined by gradually reducing the number of VMs until the optimal allocation is
found. This whole process is repeated for a pre-defined number of iterations updating
the final solution each time a feasible and cheaper one is found.

4 Experimental Results

The proposed optimization approach has been evaluated for a variety of system and
workload configurations. Our solution will be compared with current approaches for
capacity allocation and according to threshold based the auto-scaling policies that can
be implemented at IaaS providers.

Analysis performed in this Section are intended to be representative of real Cloud
applications. We have used a very large set of randomly generated instances, obtained
varying the performance model parameters according to the ranges used by other liter-
ature approaches [4], [3], [36], [39] and from real system [7] (see Table 3). VMs costs
and capacities have been taken from Amazon EC2, Microsoft Azure, and Flexiscale.

As, in [8,4], the request class service time threshold has been set equal to:

Rk = 10
∑

c∈Uk

pk,c
μv
k,c

where we considered as reference VM, the Amazon EC2 small with index v.
Workloads have been generated by considering the trace of a large Web system in-

cluding almost 100 servers. The trace contains the number of sessions, on a per-hour
basis, over a one year period. The trace follows a bimodal distribution with two peaks
around 11.00 and 16.00. Multiple workloads have been obtained by adding random
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Table 3. Ranges of model parameters

Parameter Range
αk [0.1; 1] %
pk,c [0.01; 0.5]

μv
k,c [50; 2800] req/sec

Cvp,i [0.06; 1.06] $ per hour
←−
M i [1;4] GB
N 5000 VMs
Rk,c [0.005; 0.01] sec

Table 4. MILP sets cardinalities

Description Variation
range

Number of resource containers |I| [1; 9]

Time Intervals |T | [4; 24]

Number of Requests Classes |K| [1; 10]

Number of VM types |V| [1; 12]
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(b) Example of SPACE4Cloud execution trace.

white noise to each sample as in [4] and [24]. The MILP optimization model sets cardi-
nality has been varied as reported in Table 4. The number of applications components
has been varied between 1 and 10.

The next Section reports the results of the scalability of the MILP formulation. The
quality of the MILP solution is evaluated in Section 4.2.

4.1 Scalability Analysis

Tests have been performed on a VirtualBox virtual machine based on Ubuntu 12.10
server running on an Intel Xeon Nehalem dual socket quad-core system with 32 GB of
RAM. CPLEX 12.2.0.0 3 has been used as MILP solver.

In order to guarantee statistical independence of our scalability results, for each test
we considered ten different instances with the same size. The results reported here have
been obtained by considering 10,000 total runs.

Figure 4(a) reports a representative example and shows how CPLEX optimization
time (i.e., the time required to optimally solve the model) for optimizing a system with
10 components varies by changing the number of containers and request classes. On
average CPLEX is able to find a solution in 0.5-3 seconds. In the very worst case,
considering a system including 5 containers, 9 requests classes and 9 components the
optimization time was 8.72 seconds.

3 http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/


A Multi-model Optimization Framework 71

Table 5. Results comparison

First Feas.
Time Savings

Final Opt.
Time Savings

First Feas.
Cost Savings

Final Opt.
Cost Savings

MILP Feas.
Initial Sol.

HEU Feas.
Initial Sol.

-57.2% 414.5% 130.7% 98.5% 78.5% 82.0%

4.2 Initial Solution Quality Evaluation

In general the performance of a heuristic based optimization approach is measured by
assessing final local solutions values and the time needed to generate such solutions. We
evaluate the benefits of the MILP formulation by comparing the final solution that can
be obtained by SPACE4Cloud considering as initial solution the MILP configuration
and the one obtained by the following heuristic:

– for all containers, the cheapest VM type available at the Cloud provider satisfying
also the memory constraint (5 ) is adopted;

– as in other literature approaches [36,39] and coherently to the auto-scaling policies
that can be implemented by current IaaS providers4, the number of VMs of each
resource pool is determined such that the average CPU utilization is lower than a
given threshold ρ.

In our experiments we set ρ = 0.6 as in [39]. More in details, the performance
metrics we considered in our comparison are:

– the time required by SPACE4Cloud to find the first feasible solution;
– the time required by SPACE4Cloud to converge to the final local optimum;
– the cost of the first feasible solution;
– the cost of the final local optimum;
– the percentage of initial feasible solutions obtained by the MILP and heuristic ap-

proach.

Table 5 summarizes the results achieved. The results reported here have been ob-
tained by considering 100 total runs. Figures report the average percentage improve-
ments that can be obtained by adopting the MILP formulation. The precentages have
been evaluated by considering the ratio (Y −X)/X , where X and Y are the MILP and
heuristic performance, respectively (negative values means that the heuristic solution
performs better). The first two columns report the percentage time saving obtained to
identify the first feasible solution and the final local optimum. The third and fourth
columns report the percentage of cost reduction of the first feasible and final local
optimum solution, while the last two columns report the average percentage of QoS
constraints that are satisfied by the two initial solutions. Even if the MILP approach
introduces an overhead to find the first feasible solution (the first feasible solution is ob-
tained by the heuristic with around 57% lower time), the hybrid approach outperforms
the heuristic, reducing the time to converge to the final local optimum and improving
significantly the cost of the final optimum solution.

4 http://aws.amazon.com/elasticbeanstalk/

http://aws.amazon.com/elasticbeanstalk/
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As an example, Figure 4(b) reports the execution trace of SPACE4Cloud for opti-
mising a system including 5 containers, 9 request classes, and 9 components. On the x
axis the overall optimization time is reported (including the time required to determine
the initial solution by the MILP or the heuristic and the local search execution time),
while the y axis reports the Cloud daily resource cost. The blue and red lines are the
costs of the best current solution obtained by considering as initial solution the MILP
and the heuristic solution, respectively. The initial gap shows the time required by iden-
tifying the first initial solution (which is more evident for the MILP trace where around
3 seconds are needed). Even if the evaluation of the MILP solution introduces an initial
delay, the local search performance are significantly improved. In this specific case the
final solution is around 88% cheaper, while the time required by the local search to
identify the final local optimum is reduced by almost an order of magnitude.

5 Related Work

In the last two decades prediction and assessment of QoS characteristics of complex
software systems has emerged as an important requirement. An effective way of deal-
ing with this requirement is to integrate non functional properties prediction techniques
into the software development process by means of appropriate tools and techniques.
In these kind of approaches a model of the software architecture is annotated with non
functional elements that are used to predict the performance of the application. The
output of this analysis is used by application designers as feedback to modify the archi-
tecture in order to meet the requirements.

The Model-Driven Quality Prediction (MDQP) approach is to model the application
with UML models, in order to support the specification of non functional properties
the Object Management Group (OMG) introduced two profiles called Schedulability,
Performance and Time (SPT) [31] and Modeling and Analysis of Real-Time and Em-
bedded Systems MARTE [32]. This approach of extending UML is not the only one
that deals with the analysis of non functional properties of software systems, Becker
et al. developed the PCM [10], a language that can be used to model an application
and its non functional properties and, with the support of the PCM-Bench tool, derive
a LQN model to estimate the performance of the running system. The automated trans-
formation of architecture-level models to predictive models is the second phase of the
MDQP process (see, e.g., [37]). Many meta-models have been built to support perfor-
mance prediction, some surveys of these models, their capability and their applicability
to different scenarios can be found in [9,23,1]. The output of the performance analysis
performed using these models is used to optimize the architecture of the application at
design time in (semi-)automatic way.

We divide the most relevant approaches extending the classification presented by
Martens et al. in [27]. The classes used to categorize the different solutions are: rule-
base, meta-heuristic, generic Design Space exploration (DSE), quality-driven model
transformations.

Rule-Based Approaches. Rule-based approaches use feedback rules to modify the ar-
chitecture of the application. The QVT-Rational framework proposed in [13,14] extends
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the Query, View, Transformation language defined by OMG by adding the support for
feedback rules for semi-automatic generation of system architectures. The PUMA [37]
framework aims at filling the gap between the design model and the performance mod-
els and has been extended with support for feedback rules specification in JESS [38].
Other language-specific tools, like the one proposed by Parsons et al. [34] for Java EE,
are able to identify performance anti-patterns in existing systems specified by a set of
rules; the tool reconstruct the model of the application using different monitoring tech-
niques and analyze the generated model against the stored rules. Rule-based model to
model transformation approaches has been proposed by Kavimandan and Gokhale [20]
to optimize real-time QoS configuration in distributed and embedded systems.

Meta-Heuristics. Meta-heuristics use particular algorithms that are specifically de-
signed to efficiently explore the space of design alternatives and find solutions that
are optimized with respect to some quality criteria. In [25], Li et al. propose the Au-
tomated Quality-driven Optimization of Software Architecture (AQOSA) toolkit that
implements some advanced evolutionary optimization algorithms for multi-objective
problems, the toolkit integrates modelling technologies with performance evaluation
tools in order to evaluate the goodness of generated solution according to a cost func-
tion. Aleti et al. proposed a similar approach in [2]; they presented the ArcheOpterix
framework that exploits evolutionary algorithms to derive Pareto optimal component
deployment decisions with respect to multiple quality criteria. Meedeniva et al. de-
veloped a multi-objective optimization strategy on top of ArcheOpterix in [28] to find
trade-off between reliability and energy consumption in embedded systems. PerOpteryx
[21] use a similar approach to optimize software architectures modeled with the Palla-
dio framework [10] according to performance, reliability and cost. Other approaches
combine analytical optimization techniques with evolutionary algorithms to find Pareto
optimal solutions, an example of this is presented by Koziolek et al. in [22] with a par-
ticular focus on availability, performance and cost. A tabu search (TS) heuristic has
been used by Ouzineb et al. [33] to derive component allocation under availability con-
straints in the context of embedded systems. The SASSY [29] framework developed by
Menascé et al. starts from a model of a service-oriented architecture, performs service
selection and applies patterns like replication and load balancing in order to fulfill qual-
ity requirements. Finally, Frey et al. [18] proposed a combined metaheuristic-simulation
approach based on a genetic algorithm to derive deployment architecture and runtime
reconfiguration rules while moving a legacy application to the Cloud environment.

Generic Design Space Exploration (GDSE). Generic Design Space Exploration ap-
proaches encode feedback rules into a Constraint Satisfaction Problem (CSP) in order to
explore the design space. The DeepCompass [12] framework proposed by Bondarev et
al. perform design space exploration according to a performance analysis of component-
based software on multiprocessors systems. The DESERT framework [30,15] performs
a general exploration of design alternatives by modeling system variations in a tree
structure and using Boolean constraints to cut branches without feasible solutions.
The latest version of this framework, DESERT-FD [15] automates the constraint gen-
eration process and the design space exploration. The GDSE [35] framework pro-
posed by Saxena et al.is a meta-programmable system domain-specific DSE problems,
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it provides a language to express constraints and support different solvers for candi-
date solution generation. A similar approach is proposed by Jackson et al. in the For-
mula [19] framework; Formula allows the specification of non-functional requirements,
models and meta-models by first-order logic with arithmetic relations, the problem is
solved by the Z3 Satisfiability Modulo Theory (SMT) solver to generate several design
alternatives that comply with the specified requirements.

Most of the presented works are tailored to solve very particular problem and lack
of generalization on the quality attributes supported for the design space exploration.
Moreover, only one approach [18] tackles directly the problem of building architectures
for the Cloud environment but it focuses on the migration of legacy applications.

6 Conclusions

In this paper, a hybrid approach for the cost minimization of Cloud based applications
has been proposed. The MILP formulation that implements the first step of the hybrid
approach is able to identify a promising initial solution for a local search optimiza-
tion procedure which outperforms, both in terms of overall optimization time and final
solution costs, first principles heuristics based on utilization thresholds. The proposed
approach can lead to a reduction of Cloud application costs and to an improvement
of the quality of the final system, because an automated and efficient search is able to
identify more and better design alternatives.

Ongoing work focuses on the extension of the MILP formulation and the local search
to multiple Cloud deployments and on QoS analyses of real case studies.
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