
Producing Just Enough Documentation:
The Next SAD Version Problem

J. Andres Diaz-Pace, Matias Nicoletti, Silvia Schiaffino, and Santiago Vidal

ISISTAN Research Institute, CONICET-UNICEN, Campus Universitario, Paraje
Arroyo Seco (B7001BBO) Tandil, Buenos Aires, Argentina
{adiaz,mnicolet,sschia,svidal}@exa.unicen.edu.ar

Abstract. Software architecture knowledge is an important asset in to-
day’s projects, as it serves to share the main design decisions among the
project stakeholders. Architectural knowledge is commonly captured by
the Software Architecture Document (SAD), an artifact that is useful
but can also be costly to produce and maintain. In practice, the SAD
often fails to fulfill its mission of addressing the stakeholders’ informa-
tion needs, due to factors such as: detailed or high-level contents that
do not consider all stakeholders, outdated documentation, or documen-
tation generated late in the lifecycle, among others. To alleviate this
problem, we propose a documentation strategy that seeks to balance the
stakeholders’ interests in the SAD against the efforts of producing it.
Our strategy is cast as an optimization problem called "the next SAD
version problem” (NSVP) and several search-based techniques for it are
discussed. A preliminary evaluation of our approach has shown its po-
tential for exploring cost-benefit tradeoffs in documentation production.

Keywords: architecture documentation model, stakeholders, informa-
tion needs, combinatorial optimization, search-based techniques.

1 Introduction

As software systems grow large and complex, the reliance on some form of docu-
mentation becomes a necessity in many projects [1]. Since producing documenta-
tion does not come without cost, software engineers must carefully consider how
this process plays out in the development lifecycle (e.g., artifacts, techniques,
tools), and furthermore, identify the goals of the project stakeholders. In par-
ticular, a useful model for describing the high-level structure of a system is the
software architecture [2], which is the main domain explored in this work. The
architecture is typically captured by the so-called Software Architecture Doc-
ument (or SAD), as an information repository that enables knowledge sharing
among the architecture stakeholders [3]. The SAD is structured into sections that
contain text and design diagrams, known as architectural views, which permit to
reason about the architectural solution from different perspectives.

Documenting an architecture with multiple stakeholders poses challenges for
the SAD. A first challenge is that the SAD contents target readers that might

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 46–60, 2014.
c© Springer International Publishing Switzerland 2014



Producing Just Enough Documentation: The Next SAD Version Problem 47

have different backgrounds and information needs [4]. For example, project man-
agers are mainly interested in high-level module views and allocation views,
whereas developers need extensive information about module views and behav-
ioral views. Many times, the SAD is loaded with development-oriented contents
that only consider a few (internal) stakeholders. In practice, the documentation
usefulness decreases as more information is added, because finding relevant in-
formation in a large set of documents becomes difficult [1]. A second challenge
is the effort necessary for creating (and updating) the SAD, an expenditure
that developers and managers do not wish to bear, mainly because of budget
constraints, tight schedules, or pressures on developing user-visible features. As
a result, the architecture knowledge ends up informally captured. Besides the
stakeholders’ dissatisfaction, the problem of ineffective documentation brings
hidden costs such as: knowledge vaporization, re-work, and poor quality [5].

Recently, some works have investigated the practices and value of architecture
documentation [6]. In this context, we argue that the SAD should be produced
in incremental versions and concurrently with the design work. Thus, the main
question becomes: how much documentation is good enough for the next SAD
release? Answering this question involves a tradeoff between documenting those
aspects being useful to the stakeholders and keeping the documentation efforts
low. To deal with this tradeoff, we previously proposed [7] an optimization tool
that, for a given SAD version, is able to assist the documenter in choosing a set
of SAD updates that brings high value for the stakeholders. The tool is based on
the Views & Beyond (V&B) method [8,3], which explicitly links the candidate
architectural views for the SAD to the needs of its stakeholders. The optimization
was treated as a knapsack problem that maximizes the stakeholders’ utility with-
out exceeding a cost constraint. Yet, considering that documentation is more a
business decision than a technical one, we believe that alternative optimizations
can be required, depending on cost-benefit concerns of the project.

In this work, we provide a general formulation of the SAD documentation
strategy and its associated optimization problem(s), that we call the Next SAD
Version Problem (NSVP), by analogy with the well-known Next Release Problem
(NRP) [9,10]. As its main contribution, our proposal considers two variants for
NSVP: a single-objective cost minimization and a bi-objective optimization (cost
versus utility), in addition to the single-objective utility maximization of [7]. We
also investigate different satisfaction functions for stakeholders. The experimen-
tal results, although preliminary, show that the NSVP optimization approach
helps to explore alternative documentation strategies with reduced costs.

The article is organized as follows. Section 2 provides background about archi-
tecture documentation. Section 3 formally defines the NSVP as an optimization
problem. Section 4 discusses exact and heuristic algorithms for NSVP. Section 5
reports on an empirical evaluation with a SAD case-study. Section 6 discusses
related work. Finally, Section 7 gives the conclusions and future work.



48 J. Andres Diaz-Pace et al.

2 Background

The software architecture is the set of structures needed to reason about a com-
puting system, comprising software elements, their relations, and properties of
both [2]. Design decisions are part of the architecture, as they record the ratio-
nale behind the architects’ solution [11]. An example of decisions is the use of
certain patterns, such as layers or client-server, to meet stakeholders’ goals, such
as modifiability or performance qualities, among others. Thus, the architecture
acts as a blueprint in which the main stakeholders’ concerns can be discussed. By
stakeholder [12], we mean any person, group or organization that is interested
in or affected by the architecture (e.g., managers, architects, developers, testers,
end-users, contractors, auditors). In order to share the architecture knowledge
among the stakeholders, it must be adequately documented and communicated.
The SAD is the usual “knowledge radiator” and can take a variety of formats,
for instance: Word documents, UML diagrams, or Web pages in a Wiki [13,14].

The notion of architectural views is key in the organization of architectural
documentation, and it is part of most current documentation methods [3]. A
view presents an aspect or viewpoint of the system (e.g., static aspects, run-
time aspects, allocation hardware, etc.). Typical views include: module views
(the units of implementation and their dependencies), component-and-connector
views (the elements having runtime presence and their interactions), or alloca-
tion views (the mappings of software elements to hardware). In addition, these
views include text describing the design elements and decisions that pertain to
the views. Therefore, we can see a SAD as a collection of documents with tex-
tual and graphical contents. Figure 1 shows a snapshot of a Wiki-based SAD1,
in which their documents (Wiki pages) adhere to the V&B templates2.

In architecture-centric projects, the SAD usually emerges as a by-product of
the architects’ design work. The stakeholders (both internal and external ones)
are the main SAD consumers. Moreover, a SAD is useful as long as its contents
satisfy the stakeholders’ information needs. A good strategy to ensure this goal is
to deliver the SAD in incremental versions along with the (iterative & incremen-
tal) development of the architecture itself [15,1]. In the documentation process,
the documenter must decide what should be added (or updated) in a given SAD
version. She is expected to follow the well-known rule: “write the SAD contents
from the reader’s perspective rather than from writer’s” [3], but also consider
the so-called TAGRI principle3: “They [the stakeholders] Ain’t Gonna Read It”,
which advocates for documenting only what reflects true needs. To realize these
ideas, a model of stakeholders’ interests regarding the architectural contents of
the SAD is needed. For instance, we can have a matrix of S stakeholders (or
stakeholder roles) and D SAD documents (or view types), in which a cell in-
dicates that stakeholder Si is interested in the information of document Dj .
1 SEI example:
https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD

2 V&B templates:
http://www.sei.cmu.edu/downloads/sad/SAD_template_05Feb2006.dot

3 Scott Ambler’s website: http://www.agilemodeling.com/essays/tagri.htm

https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD
http://www.sei.cmu.edu/downloads/sad/SAD_template_05Feb2006.dot
http://www.agilemodeling.com/essays/tagri.htm


Producing Just Enough Documentation: The Next SAD Version Problem 49

Fig. 1. Example of a Wiki-based SAD with architectural views of the V&B method

In fact, some documentation methods, and specifically V&B, provide guidance
for generating the SAD contents according to such a model [8,16].

In an ideal situation, one would analyze the matrix and produce a SAD version
addressing all stakeholders’ interests. Unfortunately, this is seldom the case in
practice, either because the documentation resources are scarce or because of
conflicts between stakeholders’ interests. Empirical studies [17] have shown that
individual stakeholder’s concerns are met by a SAD fraction (less than 25%),
but for each stakeholder a different (sometimes overlapping) fraction is needed.
Therefore, determining the “delta” of SAD contents that brings most utility (or
benefit) to the stakeholders as a whole is not a straightforward decision.

3 The Next SAD Version Problem (NSVP)

We see the SAD as an artifact that contains n documents, each one associated to
a predefined view template4. In this work, we assume the usage of the V&B views
and templates, although other view-centric methods are equally possible. Let
SADt =< d t

1 , ..., d
t
n > be a SAD version at time t, in which each vector position

corresponds to a document and dk (1 ≤ k ≤ n) is its level of detail (at time t).
We assume a discretization of the possible completion states of a document k,
based on the sub-sections prescribed by the V&B templates. Figure 2 depicts how
a view document of V&B can be filled with new contents over time. This should
not be interpreted as a strict documentation progression for the documenter,
but rather as a guideline based on the relative importance of the sub-sections
4 Admittedly, other documents with no architectural views are usually part of a SAD

(e.g., system context, main stakeholders, architectural drivers, or glossary). These
documents are out of the current NSVP scope, but still considered in our evaluation.



50 J. Andres Diaz-Pace et al.

for the view under consideration [8] (e.g., a documenter might begin adding
rationale information, but it is recommended that she works first on the primary
presentation of her solution and describes its main elements before providing a
detailed solution rationale). In particular, we here assume 4 completion states
DS = {empty, overview, someDetail, detailed} for a document, so as to keep
its evolution at a manageable level. In general, the mapping between discrete
completion states and required view sections can be adjusted, depending on the
chosen documentation method and templates.

Given a partially-documented SADt, let us consider an arbitrary next version
SADt+1 =< d t+1

1 , ..., d t+1
n > with d t+1

i ≥ d t
i . We define an increment vector

Δ =< x1, ..., xn > such that d t
i + xi = d t+1

i . Note that changes in document
states are currently assumed to be always additive (fixes to a sub-section are also
allowed with a cost, but they are not expected to alter the current state). For
example, a deployment view like in Figure 1 can be refined with information for
the sections Element Catalog and Context Diagram, which implies a transition
from overview to someDetail. Thus, Δ is actually a decision vector, because one
can choose alternative increments (i.e., levels of detail) for the documents in
order to fulfill objectives related to stakeholders’ satisfaction and cost.

Fig. 2. Evolution of the contents of a document (based on View template of V&B)

The cost of a document state change dk � d′k is assumed to be a fixed
quantity. Then, we have a cost vector CΔ =< c1, ..., cn > with ck = cost(dk , d

′
k),

and the total cost of an increment Δ, denoted by Cost(Δ), is the sum of the
individual costs of changing document. If dk = d′k, a zero cost is assigned, unless
fixes were applied to the document (without altering its completion level). We
refer to Cost(Δ) as the production cost for the next SAD version.

The expected utility of an increment Δ is a function of the vectors SADt

and SADt+1, but it also depends on the stakeholders’ preferences on those two
state vectors. Similarly to the cost formulation, we assume a benefit vector
BΔ =< b1, ..., bn > with bk = benefit(dk , d

′
k, satisfactionk(S)) in the range

[0, 1] (0 means no utility, and 1 means high utility). Given a set of m stakehold-
ers S = {S1, ..., Sm}, satisfactionk(S) captures the combined preferences of all
stakeholders on the document state transition dk � d′k. For example, stake-
holder X might prefer a deployment view D in overview, while stakeholder Y



Producing Just Enough Documentation: The Next SAD Version Problem 51

might instead prefer the same document in detailed. In other words, bk is the
“happiness” of the stakeholders group with an increased detail in document k,
and Benefit(Δ) is computed as the sum of the utilities through all documents.
Benefit(Δ) is a measure of the stakeholders’ utility with the next SAD version.

The NSVP consists of choosing an increment Δ for a SADt such that both
Cost(Δ) and Benefit(Δ) are optimized. Specifically, 3 variants are possible:
(i) NSVP-B, in which Benefit(Δ) is maximized with Cost(Δ) lower than a
threshold C; (ii) NSVP-C, in which Cost(Δ) is minimized with Benefit(Δ)
above a threshold B; or (iii) NSVP-BC, in which Benefit(Δ) is maximized while
Cost(Δ) is minimized. The first two variants are constrained, mono-objective
optimizations, whereas the third variant is a bi-objective optimization. In the
latter, we are interested in the non-dominated solutions of the benefit-cost space.

3.1 Determining Production Costs

The production cost of the next SAD version is Cost(Δ) =
n∑

k=1

cost(xk) =

n∑

k=1

cost(d t
k , d

t+1
k ). In our 4-state model the detail level of a document increases

according to the sequence empty (0) → overview (1) → someDetail (2) →
detailed (3). Thus, we assume an “atomic” cost associated to each transition
in the sequence (see Figure 2). An atomic cost ci,k denotes the (documenter’s)
effort of updating document k with current detail i to its next consecutive level
i+1. For a transition between not-consecutive states, we use a “composite” cost
equal to the sum of the atomic costs across the transition.

Certainly, estimating the costs of writing SAD sections is a subjective activity.
One proxy for estimating such costs is the number of words. For instance, if a
document has 1000 words and is considered to have a 100% of completeness, its
atomic costs can be c0 = c1 = c2 � 333. This estimation is crude, since costs are
affected by the document type (e.g., architectural view, template used, typical
amount of text required, or need of design diagrams). In practice, the final length
of a SAD document can be unknown. Nonetheless, it is possible for the docu-
menter to provide ballpark estimates (often, in collaboration with the manager
or experienced architects), based on: historical effort information, importance of
certain views, or number of design decisions involved, among others.

3.2 Assessing Stakeholders’ Utility

The benefit of the next SAD is given by Benefit(Δ) =
n∑

k=1

benefit(xk) =

n∑

k=1

benefit(d t
k , d

t+1
k , satisfactionk(S)). Computing benefit(dk , d

′
k,

satisfactionk(S)) for a document k requires the specification of: i) the satis-
faction information satisfactionk(S), and ii) a procedure to combine individual
satisfactions into one single value. For every SAD document, a stakeholder can
prefer any state in DS = {empty, overview, someDetail, detailed}. Note here



52 J. Andres Diaz-Pace et al.

that empty is interpreted as the stakeholder being “not interested” in the docu-
ment. This model of preferences is derived from the V&B method [8,3]. In order
to translate preferences to satisfaction values, we introduce the notion of satis-
faction function. We depart from the assumption that a stakeholder somehow
knows her “perfect” level of detail for a document, based on her own information
needs and the expected information to be conveyed by an architectural view.
This knowledge is modeled by functions of the form sf : DS × DS → [0, 1],
which depend on both the actual and preferred completion states of a document
and also on the view type. Based on our experience with architectural documen-
tation projects, we propose three candidate functions that can be assigned to
stakeholders, as described in Figure 3. Anyway, other satisfaction functions that
take into account the semantics of document changes are also possible.

Fig. 3. Satisfaction functions for stakeholders’ preferences on detail of documents

Fig. 4. Example of converting stakeholder preferences to satisfaction values

Function A (exact-or-nothing) gives maximal satisfaction (1.0) when the cur-
rent detail of the document matches exactly the stakeholder preference, and 0.0
satisfaction otherwise. Function B (more-is-fine) proportionally increases the sat-
isfaction value as the current detail of the document gets closer to the stakeholder
preference, and beyond that point the satisfaction gets the maximal value (1.0).
This reflects the situation in which the stakeholder does not care having more
detail than required. Function C (more-can-be-penalized) is a variant of Func-
tion B. It begins with a proportional increase until the document detail matches
the stakeholder preference, but for higher detail than required the satisfaction
value decreases slightly. This situation would happen when the stakeholder is



Producing Just Enough Documentation: The Next SAD Version Problem 53

overwhelmed by an excess of information. In all functions, we set ε = 0.1 as the
“allowed difference” for a matching between a preference prefk and a document
state dk, that is, prefk ≈ dk ⇒| prefk − dk |≤ ε . Eliciting the right satisfaction
function of a stakeholder is not trivial, and it is out of the scope of this work.

In the end, after applying this kind of satisfaction functions, we obtain a
vector satisfactionk(S) =< sk(S1), ..., s(Sm) > with sk(Si) ∈ [0, 1]. Examples of
satisfaction vectors computed with functions A, B, and C are shown in Figure 4.
Note that two (or more) stakeholders might have competing preferences on the
same document, which cannot be solved by means of the satisfaction functions
(except perhaps when Function B is used). This tradeoff situation means that
selecting a detail level for a document might satisfy some stakeholders but might
just partially satisfy others. In our model, the aggregation of the stakeholder
satisfaction is based on a weighted average schema. Specifically, we assign each
stakeholder Si a priority pi in the range [0, 10], where 0 is the lowest priority and
10 is the highest one. This priority can be defined by the role that the stakeholder
plays in the project. Along this line, the average utility of all stakeholders with

document k is benefit(dk , d
′
k, satisfactionk(S)) = (

m∑

i=1

uk(Si) ∗ pi)/
m∑

i=1

pi.

4 Exact and Heuristic Algorithms for NSVP

To solve NSVP instances (i.e., find a “good” SAD documentation strategy),
discrete optimization techniques can be applied [18], based either on exact or
heuristic algorithms. In our case, the number of SAD documents (N) is the
main contributor to problem size, affecting the choice between exact or heuristic
algorithms. Real-life SAD sizes have typically 15-40 documents, depending on
how critical the architecture is for the system (and hence, its documentation). In
this work, we explored 2 exact and 2 heuristic implementations, namely: i) Back-
tracking, ii) SAT4J [19], iii) Random Search, and iv) the NSGA-II algorithm [20].
The goal here was to assess their performance and optimality (of results) using
synthetic data for SAD state vectors, costs, and stakeholders’ preferences. The
goodness (or score) of a solution is tied to the NSVP variant, namely: highest
benefit (NSVP-B), lowest cost (NSVP-C), or non-dominated cost-benefit pairs
(NSVP-BC). Figure 5 shows outputs of SAT4J, NSGA-II and RandomSearch
for NSVP-BC. The points represent the Pareto front of pairs (benefit, cost).

The 4 implementations are summarized next. First, Backtracking is a algo-
rithm that progressively generates and evaluates all valid decision vectors Δ that
derive from SADt. We used backtracking as a baseline for the SAT4J algorithm,
knowing in advance that backtracking would have trouble with medium-to-large
instances (e.g., SADs with N ≥ 20). Second, SAT4J treats the document state
representation as if it were a 0-1 Knapsack Problem [7]. The tasks model the
transitions between document states, like in Figure 2. With this representa-
tion, we took advantage of the state-of-the-art Pseudo-boolean (PB) solver of
SAT4J [19]. The PB solver only deals with single-objective minimization subject
to constraints (NSVP-C), but its adaptation to single-objective maximization



54 J. Andres Diaz-Pace et al.

Fig. 5. Sample of Pareto fronts (cost versus benefit) using exact/heuristic algorithms

(NSVP-B) is straightforward. In NSVP-BC, we iterate over all possible costs,
defining each one as a constraint and then invoking the solver with an NSVP-B
instance. Non-dominated solutions are returned. This schema adds some over-
head, but still capitalizes on the SAT4J performance.

Third, the Random Search implementation takes the current SADt and then
randomly generates vectors Δ leading to SADt+1. It was built on top of an im-
plementation provided by the MOEA framework5, as a baseline for the NSGA-II
algorithm. Despite the low execution times of Random Search for the 3 NSVP
variants, the solutions are seldom optimal (see Figures 5a and 5b), and some-
times they even violate the cost (or benefit) constraints. Fourth, NSGA-II is a
well-known genetic algorithm for multi-objective optimization [20]. Our imple-
mentation was based on the NSGA-II version of MOEA, and solves any of the
NSVP variants. In short, NSGA-II uses an evolutionary process with operators
such as selection, genetic crossover and genetic mutation, applied to the docu-
ment state representation of NSVP. An initial population of vectors Δ is evolved
through several generations.

For the sake of brevity, we focus our analysis on the NSVP-BC formulation.
From Figure 5 (and other Pareto fronts, not included here), we observed that
the percentage of SAD completion affects the number of non-dominated solu-
tions: the higher the percentage the fewer the solutions. Also, the differences in
solution quality (cost and benefit) for the 3 algorithms get smaller, as the com-
pletion percentage increases. A possible explanation for this trend is that the

5 http://www.moeaframework.org/

http://www.moeaframework.org/


Producing Just Enough Documentation: The Next SAD Version Problem 55

optimization problem gets “easier” for SAD percentages greater than 70% (be-
cause the potential solution space to search for is small). Nonetheless, there were
differences between the solutions of NSGA-II and Random Search for NSVP-BC,
particularly for large SADs (N ≥ 30), as NSGA-II produced Pareto fronts closer
to the reference front of SAT4J. In addition, the SAD completion influenced the
costs attainable by the NSVP-BC solutions, with wider cost fluctuations in the
Pareto sets for SAD instances with completion lower than 30%. Along this line,
we can say that the completion range 25-50% offers the best opportunities for
the documenter to find diverse cost-benefit solutions.

Another interesting observation is how the satisfaction functions modulate
the Pareto solutions. The choice of function B (more-is-fine) leads to more so-
lutions than the other functions (see Figures 5c and 5d), because function B is
more likely to accommodate many stakeholder preferences, even if the stakehold-
ers have different priorities. Function A (exact-or-nothing) showed the opposite
behavior, with a very “strict” preference satisfaction that generates a sort of com-
petition among stakeholders, which ultimately leads to few solution alternatives.

A performance analysis of the SAT4J and NSGA-II showed that their scal-
ability varies, as expected, depending on the SAD sizes. For example, Figure 6
presents execution times of the 3 algorithms for a range of N (15-40) and incre-
mental SAD completions (25%, 50%, and 75%). Overall, NSGA-II came out as
an efficient alternative for the 3 NSVP variants. On one hand, NSGA-II showed
bound execution times, with a slight increase at N � 30, independently of the
SAD completion. This behavior can be attributed to the evolutionary process
of the genetic algorithm. On the other hand, SAT4J performed well for small
SADs (N ≤ 30), with a fast response for SADs above 50%. Its execution times
started to degrade beyond N = 30 but only for incomplete SADs (completion
around 25%). Although more experiments are needed, this finding suggests that
SAT4J is very competitive for NSVP instances involving small-to-medium SADs
and medium-to-high completion levels. For a general setting (or future, more
complex NSVPs), we conclude that NSGA-II should be the solver of choice.

Fig. 6. Performance (in ms.) of exact/heuristic algorithms for different SAD sizes



56 J. Andres Diaz-Pace et al.

5 Case-Study

In addition to the experiments with synthetic data, we evaluated our approach
on Wiki-based SADs being accessed by groups of (simulated) stakeholders. The
main goal was to compare SAD increments produced by the SAT4J (or NSGA-II)
algorithm against SAD versions generated in a usual manner (i.e., with no con-
tent optimization whatsoever). The objects of the study were incremental SAD
versions, and we measured the cost of producing those increments as well as their
benefit for predefined stakeholders. The subjects (stakeholders) were undergrad-
uate students from a Software Architecture course taught at UNICEN University
(Tandil, Argentina), with 2-4 years of developing experience. We organized these
students into 11 groups of 7 members, each member playing a distinctive stake-
holder role: 3 members took the architect role, whereas the other 4 members
were divided into: 1 manager, 1 evaluator (responsible for design reviews) and
2 clients (e.g., representatives of external companies). Their priorities were as
follows: pmanager = 10 , parchitect = 6, pclient1 = 6, pevaluator = 2, pclient2 = 2.

The architects (of each group) were asked to: i) design an architecture solution
for a model problem called CTAS6, and ii) use V&B to produce SADs (one per
group) that should satisfy the concerns of the other roles of the group. The
stakeholders’ preferences were derived from the view-role matrix of [3]. Both
the design and documentation work had to be done in 3 iterations of 3 weeks,
with 2 (partial) SAD versions for the first 2 iterations and a final release after 9
weeks. The managers, clients, and evaluators periodically assessed the solution
and documentation quality, and gave feedback to the architects. We refer to these
documentation versions as normal SADs, because their production strategy was
only based on architects’ criteria (and not steered by optimization techniques).

Once all the groups were finished, we obtained 3 normal SAD versions (or
slices) per group with the different completion percentages: 10-25% after the
1st iteration (slice 1), 40-60% after the 2nd iteration (slice 2), and 75-85% af-
ter the 3rd iteration (final SAD). The final SADs were not considered as 100%
complete, because some sections were unfinished or lacked details. These percent-
ages were estimated by counting the number of words and images per document
(an image ≈ 200 words). The same metric was also used to estimate the cost
of producing a SAD document, by considering a word as a unit of effort. We
established the costs and utilities of the normal SAD slices as references for the
optimization counterparts. Under a NSVP-BC formulation, we initially executed
the optimization algorithms on slice 1 of every group (transition to slice 2). The
same procedure was then repeated for slice 2 (transition to final SAD). We re-
fer to the SAD versions produced by our algorithms as optimized SADs. Based
on the Pareto fronts, we analyzed two situations: i) the best benefit reachable
for each slice (and its corresponding cost), and ii) the cost for having the same
benefit shown by the (next) normal slice.

6 http://people.cs.clemson.edu/~johnmc/courses/cpsc875/resources/
Telematics.pdf

http://people.cs.clemson.edu/~{}johnmc/courses/cpsc875/resources/Telematics.pdf
http://people.cs.clemson.edu/~{}johnmc/courses/cpsc875/resources/Telematics.pdf


Producing Just Enough Documentation: The Next SAD Version Problem 57

Figure 7 shows the evolution of the average values of costs and benefits across
the normal SAD versions, and the vectors represent what-if optimization an-
alyzes (for the 3 satisfaction functions). The Utility Evolution chart (left side)
compares utility values of normal SADs against optimized SADs. For instance, at
slice 2, normal-Fa (normal SAD for function A) reached a utility of 5.52, whereas
opt-optimal-Fa (best solution of optimized SAD for function A) reached a util-
ity of 6. The Cost Evolution chart (right side) compares the costs of producing
normal SADs against: i) optimized SADs with maximum benefit, and ii) opti-
mized SADs with the same benefit as normal SADs. For instance, at slice 2,
the cost of having a normal SAD was 98, while the costs of opt-optimal-Fa and
opt-same-utility-normal-Fa were 103 and 78 respectively. In opt-optimal-Fa we
had a slightly higher cost than that of normal SADs but the utility was better.
In opt-same-utility-normal-Fa, the optimization helped to reach a utility of 5.52
(normal-Fa at slice 2 in Utility Evolution chart) but with a lower effort.

Fig. 7. Evolution of utility and cost over different SAD versions

From the results of Figure 7, we noticed that the optimized SADs achieved
higher benefits for the 3 satisfactions functions, ranging between 9-20% of im-
provement for slice 2 and 55-93% for slice 3. Although, the costs to compute
optimal solutions increased by 11%. However, for the same utility values of the
normal SADs, we observed lower costs when applying optimization with savings
of 44-78%. These savings mean that our algorithms produced smaller SADs with
comparable utilities. Furthermore, it would suggest that the normal SADs had
unnecessary contents for the stakeholder’s needs.

We applied a Mann-Whitney-Wilcoxon (MWW) test to statistically validate
results of this case-study. We tested the null hypothesis H0 : individual utility
values of normal SADs are equal to those of optimized SADs, for slice 2 and



58 J. Andres Diaz-Pace et al.

the final SAD. With a significance level of 0.05, we verified a significant dif-
ference between utility values in favor of optimized SADs, except for function
C at slice 2 and function B at the final SAD. Nevertheless, in those cases the
average utility values of optimized SADs were still higher. Furthermore, in order
to get insights on why optimized SADs outperformed normal ones, we manually
inspected a sample of manual SADs in terms of satisfaction values. We realized
that documenters who produced normal SADs tended to satisfy all stakeholders
alike. On the contrary, the optimized SADs clearly favored high-priority stake-
holders. These observations also support our conjecture about the complexity of
producing satisfying documentation for stakeholders with competing interests.

At last, the evaluation has some validity threats. First, the results of our
case-study cannot be generalized, as we used students in an academic environ-
ment, which might differ from an industrial context with seasoned practitioners.
However, many students were actually working for software companies. Second,
our effort unit for SAD production costs (amount of words of documents) is a
simplification, and a better estimation proxy should be applied in real scenarios.

6 Related Work

In the last decade, several methods for software architecture documentation have
emerged, namely: Kruchten’s 4+1 View Model, Siemens Four Views, Software
Systems Architecture and SEI Views & Beyond (V&B) [3,16]. A common aspect
is the prescription of a SAD structure (i.e., templates) and the usage of views for
different system viewpoints, which might be related to stakeholders’ concerns.
Nonetheless, these methods do not provide guidelines for creating the documen-
tation package, except for the steps suggested by V&B [3]. V&B also proposes
basic rules for relating stakeholder roles and views. The documenter is expected
to apply these rules when determining the contents of a SAD release, but still
this might be a complex and time-consuming task. This drawback motivated our
NSVP work as a semi-automated aid to the documenter. However, our approach
is not tied to V&B and can apply to other strategies, such as ACDM [15].

Optimization techniques have been used in several Software Engineering fields
[21]. In particular, the Next Release Problem (NRP) is initially due to Bagnall
et al. [9]. In the NRP formulation, a software company has to determine a subset
of features that should be included in the next product release, in such a way the
overall satisfaction of the company customers is maximized. Every customer is
interested in a given subset of features and her satisfaction is proportional to the
percentage of relevant features being included in the next release. Each feature
is associated to a cost, and the total cost of the scheduled features must not
exceed the available resources. The NRP was lately extended to a multi-objective
formulation, known as MONRP (Multi-Objective Next Release Problem) [10,22],
which treats the cost as a minimization objective. Along this line, MONRP
has admits several solutions. Experiments with synthetic data [10,22] to solve
(large) MONRP instances have shown that NSGA-II algorithms outperformed
other ones with acceptable execution times. Nonetheless, the application of these
ideas to other domains is still a topic of research.



Producing Just Enough Documentation: The Next SAD Version Problem 59

7 Conclusions and Future Work

In this article, we have formalized the NSVP as an optimization problem for
the production of software architecture documentation. A novel aspect of NSVP
is that it seeks to balance the multiple stakeholders’ interests in the SAD con-
tents against the efforts of producing them. To do so, we characterize common
stakeholder profiles and relate them to architectural views prescribed by SAD
templates. The stakeholders’ benefits were quantified by means of possible sat-
isfaction functions. Our NSVP formulation admits 3 optimization variants. The
project context should inform the selection of the most suitable variant. Two al-
gorithms (SAT4J and NSGA-II) for efficiently solving the NSVP were discussed,
although other algorithms are also possible. This kind of algorithms supports
the documenter’s tasks, assisting her to explore alternative solutions (e.g., the
Pareto fronts). We actually envision a practical scenario where she can quickly
identify “unnecessary” architectural information (with the consequent effort sav-
ings), and then prioritize relevant contents for the next SAD version.

A preliminary evaluation of the NSVP algorithms with both synthetic data
and a case-study showed encouraging results. We observed a clear improvement
in the quality of the optimized SAD versions, when compared to SAD coun-
terparts generated in the usual manner. Regarding the satisfaction functions,
we corroborated that, beyond a certain completion (≈ 75%), the addition of
more documentation reduces the SAD global utility. There is a “sweet spot” for
applying optimized documentation when the SAD has a 25-40% of completion.

The current NSVP formulation still has shortcomings, mostly related to the
assumptions of our model, such us stakeholders’ interests on views, the com-
pletion actions for templates, the satisfaction functions, and the cost measures.
These assumptions are either based on the authors’ experience or taken from the
literature, but they must be further validated (e.g., with user studies). We need
to empirically investigate the correlations between the satisfaction computed by
the functions and the actual stakeholders’ satisfaction [6]. Regarding the SAD
structure, some aspects ignored in today’s model include: dependencies between
SAD sections, or varied documentation actions (e.g., updating a section due to
system refactoring, or deleting a section). These extensions to the NSVP pose
a more complex optimization problem, and might emphasize the role of heuris-
tic solvers. As for the V&B schema of stakeholder preferences, we will enhance
it with user profiling techniques that incorporate personal dynamic interests,
instead of using just predefined roles. Finally, we plan to consider stakehold-
ers’ concerns that might crosscut the SAD with the support of document pro-
cessing/recognition techniques. For instance, interests on topics, such us system
features or quality attributes, that affect more than one view or document.

Acknowledgments. This work was supported by PICT Project 2011-0366
(ANPCyT) and also by PIP Project 112-201101-00078 (CONICET) - Argentina.



60 J. Andres Diaz-Pace et al.

References

1. Ruping, A.: Agile Documentation: A Pattern Guide to Producing Lightweight
Documents for Software Projects. John Wiley & Sons (2003)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional (2012)

3. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,
Nord, R., Stafford, J.: Documenting Software Architectures: Views and Beyond,
2nd edn. Addison-Wesley Professional (2010)

4. ISO/IEC/IEEE: ISO/IEC/IEEE 42010: Systems and software engineering - archi-
tecture description. C/S2ESC. IEEE Computer Society (2011)

5. Parnas, D.L.: Precise documentation: The key to better software. In: Nanz, S. (ed.)
The Future of Software Engineering, Springer, pp. 125–148. Springer (2010)

6. Falessi, D., Briand, L.C., Cantone, G., Capilla, R., Kruchten, P.: The value of
design rationale information. ACM Trans. Softw. Eng. Methodol. 22(3), 21 (2013)

7. Diaz-Pace, J.A., Nicoletti, M., Schiaffino, S., Villavicencio, C., Sanchez, L.E.:
A stakeholder-centric optimization strategy for architectural documentation. In:
Cuzzocrea, A., Maabout, S. (eds.) MEDI 2013. LNCS, vol. 8216, pp. 104–117.
Springer, Heidelberg (2013)

8. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: A practical method for documenting software architectures. In: Pro-
ceedings of the 25th ICSE (2003)

9. Bagnall, A., Rayward-Smith, V., Whittley, I.: The next release problem. Informa-
tion and Software Technology 43(14), 883–890 (2001)

10. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem.
In: Proceedings of the 9th GECCO, pp. 1129–1137. ACM, New York (2007)

11. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: Proceedings Working Conf. on Software Architecture, pp. 109–120 (2005)

12. Mitchell, R.K., Agle, B.R., Wood, D.J.: Toward a theory of stakeholder identifica-
tion and salience: Defining the principle of who and what really counts. Academy
of Management Review 22, 853 (1997)

13. Farenhorst, R., van Vliet, H.: Experiences with a wiki to support architectural
knowledge sharing. In: Proc. 3rd Wikis4SE, Portugal (2008)

14. Bachmann, F., Merson, P.: Experience using the web-based tool wiki for architec-
ture documentation. Technical Report CMU/SEI-2005-TN-041, SEI, CMU (2005)

15. Lattanze, A.: Architecting Software Intensive Systems: A Practitioners Guide.
Taylor & Francis (2008)

16. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives, 2nd edn. Addison-Wesley (2011)

17. Koning, H., Vliet, H.V.: Real-life it architecture design reports and their relation
to ieee std 1471 stakeholders and concerns. Auto. Soft. Eng. 13, 201–223 (2006)

18. Diwekar, U.: Introduction to Applied Optimization, 2nd edn. Springer Publishing
Company, Incorporated (2010)

19. Berre, D.L., Parrain, A.: The SAT4J library, release 2.2. JSAT 7(2-3), 59–64 (2010)
20. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. Trans. Evol. Comp. 6(2), 182–197 (2002)
21. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:

Trends, techniques and applications. ACM Comput. Surv. 45(1), 1–11 (2012)
22. Durillo, J.J., Zhang, Y., Alba, E., Harman, M., Nebro, A.J.: A study of the bi-

objective next release problem. Empirical Softw. Eng. 16(1), 29–60 (2011)


	Producing Just Enough Documentation: The Next SAD Version Problem
	Introduction
	1Background
	2The Next SAD Version Problem (NSVP)
	2.1Determining Production Costs
	2.2Assessing Stakeholders’ Utility

	3Exact and Heuristic Algorithms for NSVP
	4Case-Study
	5Related Work
	6Conclusions and Future Work
	References




