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Abstract. Many aspects of Software Engineering problems lend themselves to a 
coevolutionary model of optimization because software systems are complex 
and rich in potential population that could be productively coevolved. Most of 
these aspects can be coevolved to work better together in a cooperative manner. 
Compared with the simple and common used predator-prey co-evolution model, 
cooperative co-evolution model has more challenges that need to be addressed. 
One of these challenges is how to resolve the inconsistencies between two pop-
ulations in order to make them work together with no conflict. In this position 
paper, we propose a new learning mechanism based on Baldwin effect, and  
introduce the learning genetic operators to address the inconsistency issues. A 
toy example in the field of automated architectural synthesis is provided to  
describe the use of our proposed approach. 
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1 Introduction 

In many software engineering problems, one aspect of a problem is often related to 
other aspects [1]. In order to acquire better solutions for these problems, co-evolution 
mechanism is used to model these problems, and each aspect of the problems corres-
ponds to an independent population. In co-evolutionary computation, there are mainly 
two different evolution models: one is predator-prey model, and the other is coopera-
tive model [1]. The main difference between the two models is that each evolving 
population in predator-prey model evolves to acquire better solutions only for their 
own populations (e.g., test case population evolves in order to generate better test case 
only) and the relationship between different populations is competitive. On the con-
trary, in cooperative co-evolution model, all the populations evolve to acquire better 
solutions for the whole problem (e.g., in [2], one population represents developers’ 
team staffing, and the other population is responsible for work package scheduling. 
The two populations co-evolve to achieve minimum completion time for projects). 
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There are many existing work about predator-prey evolution model, especially in the 
area of testing, such as [3][4]. However, cooperative co-evolution model is not well 
explored in Search-Based Software Engineering (SBSE) until very recently [2]. 

Compared with predator-prey co-evolution model, cooperative co-evolution model 
has much more challenges when using it. One of these challenges is how to avoid the 
conflicts between populations that work together to generate the final solutions for the 
software engineering problems. Here, we take an example to illustrate this challenge 
briefly. Xu and Liang proposed a cooperative coevolution approach for automated 
architectural synthesis using patterns [5]. In their approach, there are two populations: 
one is responsibility population which is used for responsibility synthesis (i.e., how to 
assign different methods and attributes from requirement specifications to different 
classes in object-oriented architectural synthesis), and the other is pattern population 
which is used for architectural pattern synthesis (i.e., how to implement a given pat-
tern in architecture level). When synthesizing the candidate architectural solutions 
with the individuals from the two cooperative populations, the conflicts may appear. 
For example, method A and method B belong to the same class in an individual of 
responsibility population, whilst these two methods belong to different layers in an 
individual of pattern population (we simply suppose that Layer pattern is used). As 
methods in the same class should not belong to different layers in Layer pattern, this 
inconsistency should be resolved before a candidate architectural solution is synthe-
sized with these two individuals. In the above example, the inconsistency occurs 
when two populations interact cooperatively, and this kind of inconsistency is specific 
to cooperative co-evolution model. As a consequence, special attention should be paid 
to resolve inconsistencies in using cooperative co-evolution model. 

Recently, the community of SBSE has realized the importance of using Artificial 
Intelligence (AI) techniques (e.g., machine learning) to solve software engineering 
problems [6]. In this paper we propose a new learning mechanism, which is based on 
the Baldwin effect [7] original from the biological evolution field, to address the in-
consistency issue in the cooperative co-evolution computation. In our approach, we 
extend the steps in each generation of evolution procedure with a new kind of genetic 
operator called learning operator, and we define four specific types of learning oper-
ators. We further use a specific type of learning operator to resolve the inconsistency 
issue in the automated pattern-based architectural synthesis as a toy example to show 
the use and effectiveness of our proposed approach. The contributions of this work 
are: (1) introduce a new genetic operator for individual learning in each generation, 
which extends the traditional genetic operators (e.g., selection operator, crossover 
operator, and mutation operator). This new operator is generic in cooperative co-
evolution computation, and AI techniques can be integrated in the search process with 
this operator; (2) propose a new learning mechanism based on Baldwin effect for 
cooperative co-evolution computation, which can be used to resolve the inconsisten-
cies between different populations. To our knowledge, it is the first attempt to investi-
gate the learning relationship between different populations in the field of SBSE. 



 A New Learning Mechanism for Resolving Inconsistencies 217 

 

2 Approach 

In evolutionary developmental biology, a character or trait change occurs in an organ-
ism as a result of its interaction with its environment. In [7], Baldwin proposed a me-
chanism for specific selection of offspring for general learning ability. Selected 
offspring would tend to have an increased capacity for learning new skills rather than 
being confined to genetically coded and relatively fixed abilities. This is a theory of 
evolutionary process known as Baldwin effect. 

In [7], Baldwin observed that there are three different sorts of modifications to or-
ganisms which should be distinguished. The first one is rooted in the physical agen-
cies and influences in the environment, which is called “physic-genetic”. In nature, 
physical agencies and influences in the environment include all chemical agents,  
temperature changes, and so on. This kind of agencies works upon the organism to 
produce modifications of its form and functions. As far as these forces change the 
organism peremptorily, they may be considered accidental. One of the examples in 
biology is genetic mutation, and in the field of evolution computation, we can map 
this kind of modifications into the mutation operators, which are defined to introduce 
relatively small changes to individual solutions. Second, some “neuro-genetic” mod-
ifications arise from the spontaneous activities of the organism itself when it is carry-
ing out of its normal congenital functions [7]. In plants, in unicellular creatures, and in 
very young children, we can see these variations and adaptations in a remarkable way. 
The commonality of these changes is that all of them have the selective property of 
the nervous system. In the field of evolution computation, we can map this kind of 
modifications into the selection operators and crossover operators. In addition, there 
are a set of “psycho-genetic” modifications which come from the conscious agency of 
the organism itself [7]. For instance, gregarious influences, maternal instruction, the 
lessons of pleasure and pain, and experience in the life may change the organism. 
This kind of modifications has the intelligent property, and has great influence on 
organisms in nature. However, in the field of evolution computation, there is no kind 
of genetic operators corresponds to this kind of modifications for individuals, which is 
widespread in nature.  

On one hand, for co-evolution computation, each population acts as an external en-
vironment for other populations and individuals in one population can learn the expe-
rience from individuals of other populations, consequently other populations play a 
“conscious agency” role [7] of individuals in each population, which further leads to 
appearance of “psycho-genetic” modifications for individuals. On the other hand, in 
cooperative co-evolution, close relationships exist between populations, which are the 
root cause of appeared inconsistencies. Hence we introduce a new genetic operator 
called learning operator for intelligent learning of individuals, and this new genetic 
operator can be used to address the inconsistency issue. Fig. 1 illustrates an improved 
cooperative coevolution procedure, which introduces the new learning mechanism 
based on Baldwin effect. 

Due to space limitation, we omit the details from Step 1 to Step 5, and Step 9, 
which are widely used in existing SBSE research. In the improved cooperative coevo-
lution procedure, we add Step 6 to Step 8 to implement the learning mechanism for 
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each population in cooperative co-evolution, and the inconsistencies between popula-
tions can be resolved in these steps. We introduce these steps (i.e., Step 6, Step 7, and 
Step 8) in detail in following sub-sections. A toy example in the field of automated 
architectural synthesis is provided in Section 3. 
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Fig. 1. The improved cooperative co-evolution procedure of our approach 

2.1 Apply Learning Operator (Step 6) 

In traditional population evolution, when Step 5 is completed, the next generation of 
each population is produced. But in our approach, the new produced generation of 
each population is regarded as a change impact for other populations, and each indi-
vidual in any population should execute certain learning operations with a type of 
learning operator in Step 6. In this paper, we define four types of learning operators, 
which are similar to the types of traditional genetic operator (e.g., roulette wheel se-
lection and tournament selection for the selection operator, and one-point and two-
point crossover for the crossover operator): (1) Lazy learning operator. Similar to 
human beings that not all the people like learning, some individuals in a population 
are “lazy” in this step, which means they don’t update their genes and remain the 
same representation. When using this learning operator, it follows the same procedure 
with traditional evolution for these individuals since no extra learning operation to  
be conducted; (2) Localized learning operator. In a society, people have different 
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interests (e.g., the readers of this paper may be interested in SBSE, but may not be 
interested in software architecture), and they only care about the knowledge of their 
interested fields. In this step, some individuals in a population may do localized learn-
ing with this operator, which means they update their genes according to the know-
ledge of only a few individuals in other populations that they are interested. We may 
use AI techniques (e.g., classification and clustering algorithms) in this learning oper-
ator to decide what the “interesting knowledge” that an individual cares about is (e.g., 
we can define a similarity function to choose the most similar individuals, which pos-
sess the “interesting knowledge”, in other populations for an individual); (3) One-to-
one learning operator. Similar to the human communication that some people prefer 
one-to-one communication, individuals in a population may update their genes ac-
cording to the knowledge of an individual in other populations, which can also be 
decided by AI techniques; (4) Global learning operator. Some individuals in a popu-
lation may update their genes according to the knowledge contained in all the individ-
uals in other populations. Statistics or probabilistic methods might be used with this 
type of learning operator to acquire the collective knowledge of the whole population. 
In summary, these learning operators are used to adjust and update the genes of indi-
viduals according to the knowledge from individuals in other populations except Lazy 
learning operator. Inconsistencies between individuals in different populations can be 
resolved during this learning step (one exception is that when some “lazy” individuals 
are composed in the next step, they will make a mistake for their “laziness” because 
inconsistencies appear. In this situation, these “lazy” individuals only need to re-apply 
another type of learning operator to resolve the inconsistencies). 

2.2 Composed New Population and Calculate the Fitness (Step 7 & 8) 

In Step 7, individuals from two population respectively should be composed to a set 
of new individuals, and these new individuals establish a new population (e.g., for 
automated pattern-based architectural synthesis problem, it is needed to compose the 
individuals from responsibility population and pattern population respectively in order 
to acquire the final solutions. The details can be found in [5]). When this step is com-
pleted, we employ the defined fitness function to evaluate the individuals in the new 
population in Step 8. In our improved cooperative co-evolution procedure, we distin-
guish the fitness functions in Step 2 and Step 8 explicitly. The former only evaluates 
an independent aspect of the software engineering problem, but the latter evaluates 
the problem itself in a cooperative way. For example, in automated pattern-based 
architectural synthesis [5], both responsibility and pattern populations have an inde-
pendent fitness function for evaluating their individuals respectively, in which  
one fitness function measures the quality of responsibility synthesis results (i.e., indi-
viduals in responsibility population) and the other measures the quality of pattern 
synthesis results (i.e., individuals in pattern population), while there is a third fitness 
function that measures the quality of pattern-based architectural solutions (i.e., indi-
viduals in composed population). 
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3 Example 

In this section, we show how to resolve inconsistencies in cooperative co-evolution 
using our approach with a toy example (a more detailed example can be found in [5] 
due to space limitation). We use automated pattern-based architectural synthesis that 
mentioned in the Introduction Section as the application domain of the problem, but 
our approach is generic for nearly all the software engineering problems using coop-
erative co-evolution, which is not limited to this specific problem. 
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Fig. 2. An example of conflict in automated pattern-based architectural synthesis 

As shown in Fig. 2, methods A, B, and C belong to the same class (Class 1) but are 
not allocated in the same layer (A, B are in Layer 1, and C, D, E are in Layer 0), and 
consequently the two individuals in responsibility and pattern populations are con-
flicting. We use the One-to-one learning operator to update the genes of the individu-
al in responsibility population according to the knowledge of the individual in pattern 
population. For instance, in order to generate the next generation solution, Ri should 
learn the layer allocation information from Pi to update itself (or the other way round). 
After learning the genes of Pi, Ri knows that methods A and B should not be allocated 
in a class which contains any of methods C, D, and E. It is then found that the three 
methods in Class 1 (A, B, and C) of Ri have conflicts. As method C conflicts with 
both A and B, Ri decides to move C to another class (e.g., Class 2). The result of ap-
plying this learning operator to the individuals in responsibility and pattern population 
is shown in Fig. 3. The conflict is resolved between the two individuals after the 
learning operation, and we can compose them to an individual for the design problem. 
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Fig. 3. The result of resolving an inconsistency between individuals using learning operator 

4 Conclusions 

In this paper, we propose a new learning mechanism for resolving inconsistencies in 
using cooperative co-evolution model, which is based on Baldwin effect. We extend 
the traditional genetic operators with the concept of learning operator which includes 
four types of learning operators. We describe the use of our approach using a toy 
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example in automated pattern-based architecture synthesis. The approach can be ap-
plied to various software engineering problems that use cooperative co-evolution. 
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