

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 215–221, 2014.
© Springer International Publishing Switzerland 2014

A New Learning Mechanism for Resolving
Inconsistencies in Using Cooperative Co-evolution Model*

Yongrui Xu and Peng Liang**

State Key Lab of Software Engineering
School of Computer, Wuhan University, Wuhan, China

{xuyongrui,liangp}@whu.edu.cn

Abstract. Many aspects of Software Engineering problems lend themselves to a
coevolutionary model of optimization because software systems are complex
and rich in potential population that could be productively coevolved. Most of
these aspects can be coevolved to work better together in a cooperative manner.
Compared with the simple and common used predator-prey co-evolution model,
cooperative co-evolution model has more challenges that need to be addressed.
One of these challenges is how to resolve the inconsistencies between two pop-
ulations in order to make them work together with no conflict. In this position
paper, we propose a new learning mechanism based on Baldwin effect, and
introduce the learning genetic operators to address the inconsistency issues. A
toy example in the field of automated architectural synthesis is provided to
describe the use of our proposed approach.

Keywords: Cooperative co-evolution, Baldwin effect, automated architectural
synthesis.

1 Introduction

In many software engineering problems, one aspect of a problem is often related to
other aspects [1]. In order to acquire better solutions for these problems, co-evolution
mechanism is used to model these problems, and each aspect of the problems corres-
ponds to an independent population. In co-evolutionary computation, there are mainly
two different evolution models: one is predator-prey model, and the other is coopera-
tive model [1]. The main difference between the two models is that each evolving
population in predator-prey model evolves to acquire better solutions only for their
own populations (e.g., test case population evolves in order to generate better test case
only) and the relationship between different populations is competitive. On the con-
trary, in cooperative co-evolution model, all the populations evolve to acquire better
solutions for the whole problem (e.g., in [2], one population represents developers’
team staffing, and the other population is responsible for work package scheduling.
The two populations co-evolve to achieve minimum completion time for projects).

* This work is partially sponsored by the NSFC under Grant No. 61170025.
** Corresponding author.

216 Y. Xu and P. Liang

There are many existing work about predator-prey evolution model, especially in the
area of testing, such as [3][4]. However, cooperative co-evolution model is not well
explored in Search-Based Software Engineering (SBSE) until very recently [2].

Compared with predator-prey co-evolution model, cooperative co-evolution model
has much more challenges when using it. One of these challenges is how to avoid the
conflicts between populations that work together to generate the final solutions for the
software engineering problems. Here, we take an example to illustrate this challenge
briefly. Xu and Liang proposed a cooperative coevolution approach for automated
architectural synthesis using patterns [5]. In their approach, there are two populations:
one is responsibility population which is used for responsibility synthesis (i.e., how to
assign different methods and attributes from requirement specifications to different
classes in object-oriented architectural synthesis), and the other is pattern population
which is used for architectural pattern synthesis (i.e., how to implement a given pat-
tern in architecture level). When synthesizing the candidate architectural solutions
with the individuals from the two cooperative populations, the conflicts may appear.
For example, method A and method B belong to the same class in an individual of
responsibility population, whilst these two methods belong to different layers in an
individual of pattern population (we simply suppose that Layer pattern is used). As
methods in the same class should not belong to different layers in Layer pattern, this
inconsistency should be resolved before a candidate architectural solution is synthe-
sized with these two individuals. In the above example, the inconsistency occurs
when two populations interact cooperatively, and this kind of inconsistency is specific
to cooperative co-evolution model. As a consequence, special attention should be paid
to resolve inconsistencies in using cooperative co-evolution model.

Recently, the community of SBSE has realized the importance of using Artificial
Intelligence (AI) techniques (e.g., machine learning) to solve software engineering
problems [6]. In this paper we propose a new learning mechanism, which is based on
the Baldwin effect [7] original from the biological evolution field, to address the in-
consistency issue in the cooperative co-evolution computation. In our approach, we
extend the steps in each generation of evolution procedure with a new kind of genetic
operator called learning operator, and we define four specific types of learning oper-
ators. We further use a specific type of learning operator to resolve the inconsistency
issue in the automated pattern-based architectural synthesis as a toy example to show
the use and effectiveness of our proposed approach. The contributions of this work
are: (1) introduce a new genetic operator for individual learning in each generation,
which extends the traditional genetic operators (e.g., selection operator, crossover
operator, and mutation operator). This new operator is generic in cooperative co-
evolution computation, and AI techniques can be integrated in the search process with
this operator; (2) propose a new learning mechanism based on Baldwin effect for
cooperative co-evolution computation, which can be used to resolve the inconsisten-
cies between different populations. To our knowledge, it is the first attempt to investi-
gate the learning relationship between different populations in the field of SBSE.

 A New Learning Mechanism for Resolving Inconsistencies 217

2 Approach

In evolutionary developmental biology, a character or trait change occurs in an organ-
ism as a result of its interaction with its environment. In [7], Baldwin proposed a me-
chanism for specific selection of offspring for general learning ability. Selected
offspring would tend to have an increased capacity for learning new skills rather than
being confined to genetically coded and relatively fixed abilities. This is a theory of
evolutionary process known as Baldwin effect.

In [7], Baldwin observed that there are three different sorts of modifications to or-
ganisms which should be distinguished. The first one is rooted in the physical agen-
cies and influences in the environment, which is called “physic-genetic”. In nature,
physical agencies and influences in the environment include all chemical agents,
temperature changes, and so on. This kind of agencies works upon the organism to
produce modifications of its form and functions. As far as these forces change the
organism peremptorily, they may be considered accidental. One of the examples in
biology is genetic mutation, and in the field of evolution computation, we can map
this kind of modifications into the mutation operators, which are defined to introduce
relatively small changes to individual solutions. Second, some “neuro-genetic” mod-
ifications arise from the spontaneous activities of the organism itself when it is carry-
ing out of its normal congenital functions [7]. In plants, in unicellular creatures, and in
very young children, we can see these variations and adaptations in a remarkable way.
The commonality of these changes is that all of them have the selective property of
the nervous system. In the field of evolution computation, we can map this kind of
modifications into the selection operators and crossover operators. In addition, there
are a set of “psycho-genetic” modifications which come from the conscious agency of
the organism itself [7]. For instance, gregarious influences, maternal instruction, the
lessons of pleasure and pain, and experience in the life may change the organism.
This kind of modifications has the intelligent property, and has great influence on
organisms in nature. However, in the field of evolution computation, there is no kind
of genetic operators corresponds to this kind of modifications for individuals, which is
widespread in nature.

On one hand, for co-evolution computation, each population acts as an external en-
vironment for other populations and individuals in one population can learn the expe-
rience from individuals of other populations, consequently other populations play a
“conscious agency” role [7] of individuals in each population, which further leads to
appearance of “psycho-genetic” modifications for individuals. On the other hand, in
cooperative co-evolution, close relationships exist between populations, which are the
root cause of appeared inconsistencies. Hence we introduce a new genetic operator
called learning operator for intelligent learning of individuals, and this new genetic
operator can be used to address the inconsistency issue. Fig. 1 illustrates an improved
cooperative coevolution procedure, which introduces the new learning mechanism
based on Baldwin effect.

Due to space limitation, we omit the details from Step 1 to Step 5, and Step 9,
which are widely used in existing SBSE research. In the improved cooperative coevo-
lution procedure, we add Step 6 to Step 8 to implement the learning mechanism for

218 Y. Xu and P. Liang

each population in cooperative co-evolution, and the inconsistencies between popula-
tions can be resolved in these steps. We introduce these steps (i.e., Step 6, Step 7, and
Step 8) in detail in following sub-sections. A toy example in the field of automated
architectural synthesis is provided in Section 3.

1. Initial Population A

2. Calculate the

Fitness of

Individuals in A

9. Satisfy

Stopping

Condition?

9. Satisfy

Stopping

Condition?

3. Apply Selection

Operator

No

End

Yes

4. Apply Crossover

Operator

5. Apply Mutation

Operator

6. Apply Learning

Operator

1. Initial Population B

2. Calculate the

Fitness of

Individuals in B

3. Apply Selection

Operator

4. Apply Crossover

Operator

5. Apply Mutation

Operator

6. Apply Learning

Operator

NoCurrent

Population A

Current

Population B

Knowledge of Individuals

Knowledge of Individuals

End

Yes

7. Composed New

Population C

8. Calculate the Fitness of

Individuals in C

Output

Pareto Front of Solutions for

Cooperative Co-Evolution

Problem

Fig. 1. The improved cooperative co-evolution procedure of our approach

2.1 Apply Learning Operator (Step 6)

In traditional population evolution, when Step 5 is completed, the next generation of
each population is produced. But in our approach, the new produced generation of
each population is regarded as a change impact for other populations, and each indi-
vidual in any population should execute certain learning operations with a type of
learning operator in Step 6. In this paper, we define four types of learning operators,
which are similar to the types of traditional genetic operator (e.g., roulette wheel se-
lection and tournament selection for the selection operator, and one-point and two-
point crossover for the crossover operator): (1) Lazy learning operator. Similar to
human beings that not all the people like learning, some individuals in a population
are “lazy” in this step, which means they don’t update their genes and remain the
same representation. When using this learning operator, it follows the same procedure
with traditional evolution for these individuals since no extra learning operation to
be conducted; (2) Localized learning operator. In a society, people have different

 A New Learning Mechanism for Resolving Inconsistencies 219

interests (e.g., the readers of this paper may be interested in SBSE, but may not be
interested in software architecture), and they only care about the knowledge of their
interested fields. In this step, some individuals in a population may do localized learn-
ing with this operator, which means they update their genes according to the know-
ledge of only a few individuals in other populations that they are interested. We may
use AI techniques (e.g., classification and clustering algorithms) in this learning oper-
ator to decide what the “interesting knowledge” that an individual cares about is (e.g.,
we can define a similarity function to choose the most similar individuals, which pos-
sess the “interesting knowledge”, in other populations for an individual); (3) One-to-
one learning operator. Similar to the human communication that some people prefer
one-to-one communication, individuals in a population may update their genes ac-
cording to the knowledge of an individual in other populations, which can also be
decided by AI techniques; (4) Global learning operator. Some individuals in a popu-
lation may update their genes according to the knowledge contained in all the individ-
uals in other populations. Statistics or probabilistic methods might be used with this
type of learning operator to acquire the collective knowledge of the whole population.
In summary, these learning operators are used to adjust and update the genes of indi-
viduals according to the knowledge from individuals in other populations except Lazy
learning operator. Inconsistencies between individuals in different populations can be
resolved during this learning step (one exception is that when some “lazy” individuals
are composed in the next step, they will make a mistake for their “laziness” because
inconsistencies appear. In this situation, these “lazy” individuals only need to re-apply
another type of learning operator to resolve the inconsistencies).

2.2 Composed New Population and Calculate the Fitness (Step 7 & 8)

In Step 7, individuals from two population respectively should be composed to a set
of new individuals, and these new individuals establish a new population (e.g., for
automated pattern-based architectural synthesis problem, it is needed to compose the
individuals from responsibility population and pattern population respectively in order
to acquire the final solutions. The details can be found in [5]). When this step is com-
pleted, we employ the defined fitness function to evaluate the individuals in the new
population in Step 8. In our improved cooperative co-evolution procedure, we distin-
guish the fitness functions in Step 2 and Step 8 explicitly. The former only evaluates
an independent aspect of the software engineering problem, but the latter evaluates
the problem itself in a cooperative way. For example, in automated pattern-based
architectural synthesis [5], both responsibility and pattern populations have an inde-
pendent fitness function for evaluating their individuals respectively, in which
one fitness function measures the quality of responsibility synthesis results (i.e., indi-
viduals in responsibility population) and the other measures the quality of pattern
synthesis results (i.e., individuals in pattern population), while there is a third fitness
function that measures the quality of pattern-based architectural solutions (i.e., indi-
viduals in composed population).

220 Y. Xu and P. Liang

3 Example

In this section, we show how to resolve inconsistencies in cooperative co-evolution
using our approach with a toy example (a more detailed example can be found in [5]
due to space limitation). We use automated pattern-based architectural synthesis that
mentioned in the Introduction Section as the application domain of the problem, but
our approach is generic for nearly all the software engineering problems using coop-
erative co-evolution, which is not limited to this specific problem.

Method A

Method B

Method C

Class 1

Method D

Method E

Class 2 Layer 1:

Method A, B

Layer 0:

Method C, D, E

A possible individual Ri in

Responsibility population

A possible individual Pi in

(Layer) Pattern population

Fig. 2. An example of conflict in automated pattern-based architectural synthesis

As shown in Fig. 2, methods A, B, and C belong to the same class (Class 1) but are
not allocated in the same layer (A, B are in Layer 1, and C, D, E are in Layer 0), and
consequently the two individuals in responsibility and pattern populations are con-
flicting. We use the One-to-one learning operator to update the genes of the individu-
al in responsibility population according to the knowledge of the individual in pattern
population. For instance, in order to generate the next generation solution, Ri should
learn the layer allocation information from Pi to update itself (or the other way round).
After learning the genes of Pi, Ri knows that methods A and B should not be allocated
in a class which contains any of methods C, D, and E. It is then found that the three
methods in Class 1 (A, B, and C) of Ri have conflicts. As method C conflicts with
both A and B, Ri decides to move C to another class (e.g., Class 2). The result of ap-
plying this learning operator to the individuals in responsibility and pattern population
is shown in Fig. 3. The conflict is resolved between the two individuals after the
learning operation, and we can compose them to an individual for the design problem.

Method A

Method B

Class 1

Method C

Method D

Method E

Class 2 Layer 1:

Method A, B

Layer 0:

Method C, D, E

A possible individual Rj in

Responsibility population

A possible individual Pi in

(Layer) Pattern population

Fig. 3. The result of resolving an inconsistency between individuals using learning operator

4 Conclusions

In this paper, we propose a new learning mechanism for resolving inconsistencies in
using cooperative co-evolution model, which is based on Baldwin effect. We extend
the traditional genetic operators with the concept of learning operator which includes
four types of learning operators. We describe the use of our approach using a toy

 A New Learning Mechanism for Resolving Inconsistencies 221

example in automated pattern-based architecture synthesis. The approach can be ap-
plied to various software engineering problems that use cooperative co-evolution.

References

1. Harman, M., Mansouri, S.A., Zhang, Y.: Search-Based software engineering: Trends,
techniques and applications. ACM Comput. Surv. 45(1), 1–61 (2012)

2. Ren, J., Harman, M., Di Penta, M.: Cooperative co-evolutionary optimization of software
project staff assignments and job scheduling. In: Cohen, M.B., Ó Cinnéide, M. (eds.)
SSBSE 2011. LNCS, vol. 6956, pp. 127–141. Springer, Heidelberg (2011)

3. Adamopoulos, K., Harman, M., Hierons, R.M.: How to overcome the equivalent mutant
problem and achieve tailored selective mutation using co-evolution. In: Deb, K., Tari, Z.
(eds.) GECCO 2004. LNCS, vol. 3103, pp. 1338–1349. Springer, Heidelberg (2004)

4. Arcuri, A.: On the automation of fixing software bugs. In: ICSE, pp. 1003–1006 (2008)
5. Xu, Y., Liang, P.: Co-evolving pattern synthesis and class responsibility assignment in

architectural synthesis. In: ECSA (2014)
6. Harman, M.: The role of artificial intelligence in software engineering. In: RAISE, pp. 1–6

(2012)
7. Baldwin, J.M.: A new factor in evolution. The American Naturalist 30(354), 441–451

(1896)

	A New Learning Mechanism for Resolving Inconsistencies in Using Cooperative Co-evolution Model*
	1 Introduction
	2 Approach
	2.1 Apply Learning Operator (Step 6)
	2.2 Composed New Population and Calculate the Fitness (Step 7 & 8)

	3 Example
	4 Conclusions
	References

